
CSS Master, 3rd Edition
Copyright © 2021 SitePoint Pty. Ltd.

Technical Editor: Rachel Andrew
Product Manager: Simon Mackie
Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information
herein. However, the information contained in this book is sold without warranty, either
express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors
will be held liable for any damages to be caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the
names only in an editorial fashion and to the benefit of the trademark owner with no intention
of infringement of the trademark.

Published by SitePoint Pty. Ltd.
10-12 Gwynne St, Richmond, VIC, 3121, Australia

Web: www.sitepoint.com
Email: books@sitepoint.com
ISBN 978-1-925836-42-4

Printed and bound in the United States of America

i

About the Author

Tiffany B. Brown is a freelance web developer based in Los Angeles, California. She has
worked on the Web for nearly two decades with a career that includes media companies,
marketing agencies, and government.

Brown was also part of the Digital Service Team at the United States Department of Veterans
Affairs, the United States Digital Service, and the Opera Software Developer Relations team.

Brown is also a co-author of SitePoint's Jump Start HTML 5, and has contributed to
Dev.Opera, A List Apart, SitePoint.com, and Smashing Magazine.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters,
articles, and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby,
mobile development, design, and more.

2 CSS Master, 3rd Edition

http://www.sitepoint.com/

Table of Contents

Preface ... xvi

What’s Changed in This Edition? ...xvi

Who Should Read This Book? .. xvii

Conventions Used .. xvii

Supplementary Materials... xviii

Chapter 1: Selectors..1

Types of Selectors ... 2

Combinators ... 3

The Descendant Combinator ...6

The Child Combinator ..8

The Adjacent Sibling Combinator...9

The General Sibling Combinator... 12

Attribute Selectors ..15

Matching Space-separated Attribute Values16

Matching Hyphenated Attribute Values .. 17

Matching Attribute Values by Substring ...19

Matching Attribute Values by Case .. 20

Pseudo-classes and Pseudo-elements..21

Pseudo-elements ..22

Table of Contents iii

::before and ::after...23

Creating Typographic Effects with ::first-letter 26

Creating Typographic Effects with ::first-line...............................31

User Interface Fun with ::selection .. 34

Custom List and Summary Icons with ::marker 36

Styling Input ::placeholder Values ... 39

Pseudo-classes ..41

Styling the :root of a Document ...41

Highlighting Page Fragments with :target ...41

Styling Elements That Have No Children Using :empty 43

Concise and Resilient Selectors with :is() .. 44

Negating Selectors with :not() .. 46

Adjusting Selector Specificity with :where() 48

Selecting Elements by Their Index ... 50

Selecting Elements of a Particular Type by Their Index............... 58

Styling Form Fields Based on Input ... 65

Conclusion ..72

Chapter 2: CSS Architecture and Organization 74

File Organization ..75

Specificity ..77

Understanding the Impact of !important...80

Choosing Low-specificity Selectors ..81

iv CSS Master, 3rd Edition

Avoid Chaining Selectors... 83

Avoid Using ID Selectors.. 84

Minimizing Nesting When Using a Preprocessor86

Using Type and Attribute Selectors with Caution............................88

Choosing What to Name Things ...90

Block-Element-Modifier (BEM) ..91

Atomic CSS .. 95

The Case Against Atomic CSS... 97

Know When to Go Your Own Way...98

Conclusion ...98

Chapter 3: Debugging and Optimization99

Browser-based Developer Tools ...100

Using the Styles Panel .. 101

Debugging Flexbox and Grid Layouts ...104

Debugging Responsive Layouts ..107

Debugging for UI Responsiveness ..112

What Are Reflows and Repaints? ...112

Performance Tools...113

Identifying Which Lines to Remove...121

Minification with CSS Optimizer ... 122

Installing CSSO with npm .. 123

Running CSSO with npx.. 123

Table of Contents v

Using CSSO .. 124

Enforcing Code Quality with stylelint.. 125

Using stylelint and Understanding Its Output 126

Configuring stylelint’s Rules... 128

Using stylelint with npx ...131

Consider a Task Runner or Build Tool ..131

Conclusion ... 132

Chapter 4: Custom Properties...133

Defining a Custom Property... 134

Using Custom Properties .. 135

Setting a Fallback Value...136

Custom Properties and the Cascade .. 137

Custom Properties and Color Palettes ... 138

Using Custom Properties and Media Queries ..141

Using Custom Properties with JavaScript... 143

Custom Properties and Components.. 143

Conclusion ... 147

Chapter 5: Layouts...148

Display Types and Normal Flow ..149

Block Formatting versus Inline Formatting.......................................150

Logical Properties ... 152

vi CSS Master, 3rd Edition

Box Dimensions and the Box Model .. 155

Managing Box Dimensions with box-sizing156

Preventing Box Generation with display: contents160

Floating Elements and Normal Flow... 161

Clearing Floats..165

Clearfix ..168

Positioning and Stacking Elements..169

Outside-the-box Layouts with CSS Shapes ... 178

Using Shape Functions ... 181

Using Images... 187

The Shape of the Future (or the Future of Shapes)........................191

Using CSS Multicolumn Layout ... 192

Defining Column Number and Width Using columns.................... 192

Spacing Columns with column-gap and column-rule198

Images within Columns ..201

Making Elements Span Columns...203

Managing Column Breaks within Elements..................................... 204

Optimizing the User Interface ...207

Creating Flexible Layouts with Flexbox .. 209

Understanding the flex Property ...211

Using the flex Property.. 213

Flex Factors and Space Distribution... 214

Creating Multi-line Flexible Layouts ..218

Table of Contents vii

Distributing Space Vertically with flex-direction.........................220

Creating Layouts with CSS Grid ...222

The Grid Formatting Context ...222

Defining a Grid Layout ...224

Explicit Grid versus Implicit Grids ..226

Specifying Track Size for an Implicit Grid ..228

Creating Flexible Grids with Flex Units ...230

Using the grid-template Shorthand Property232

Repeating Rows and Columns ..233

Line-based Grid Placement ...236

Using Named Grid Areas ...243

Spacing Grid Items... 246

Images within Grids ..249

Progressively Enhanced Layouts with Grid and display:

contents ... 250

Grid Conclusion ..253

Box Alignment and Distribution ...253

Distributing Items in the Main Axis with justify-content254

Aligning Items in the Cross Dimension with align-content258

Aligning Items with align-items and align-self262

Choosing flex or grid .. 266

Conclusion .. 266

viii CSS Master, 3rd Edition

Chapter 6: Working with Text .. 268

Better-looking Text with @font-face ... 269

Setting an @font-face Rule... 269

Using Multiple Font Formats..270

Fonts and Origins... 271

Using Multiple Font Weights and Styles ..273

Variable Fonts ...274

Incorporating Variable Fonts..276

Specifying Font Weight When Using Variable Fonts277

Lower-level Font Control with font-variation-settings278

Shaping Loading Behavior with font-display ...279

Understanding auto ... 280

Optimizing Fonts with Subsetting and unicode-range281

Subsetting Self-hosted Fonts with FontTools..................................283

Writing Modes ..285

What Is a Writing Mode? ... 286

Setting the Direction of Text with the direction Property 286

Using the HTML dir Attribute Is Best ..287

Setting Block Flow Direction with the writing-mode

Property .. 288

Managing Typesetting with text-orientation293

Writing Mode and Alignment ..295

Conclusion ...297

Table of Contents ix

Chapter 7: Transitions and Animations........................ 298

CSS Transitions.. 299

Creating Your First Transition.. 299

Using the transition Property ... 303

Transition Durations and Delays.. 305

Timing Functions .. 306

Transitioning Multiple Properties.. 309

Multiple Transitions and transitionend Events 313

CSS Animation .. 313

Creating Your First Animation.. 314

Animation Properties ...316

To Loop or Not to Loop: The animation-iteration-count

Property ...318

Playing Animations: The animation-direction Property318

Using Percentage Keyframes .. 319

The animation-fill-mode Property ..320

Pausing Animations .. 321

Detecting When Animations Start, End, or Repeat 321

Animation and Accessibility...322

A Note about Performance ..324

Conclusion ...327

Chapter 8: Transforms ... 328

x CSS Master, 3rd Edition

How Transforms Affect Layout ... 331

transform Creates a Containing Block ... 331

transform Creates a New Stacking Context333

transform Creates a Local Coordinate System................................335

2D Transform Functions...339

rotate() ..339

2D Scaling Functions: scale(), scaleX(), and scaleY()............... 340

2D Translation Functions: translateX(), translateY(), and

translate() ...343

skew, skewX, and skewY ...344

Current Transform Matrix ... 346

Matrix Multiplication and the Matrix Functions ..349

3D Transform Functions...352

rotateX() and rotateY() ...353

Rotating around Multiple Axes with rotate3d() 356

The perspective() Function ...357

Translating Depth with translateZ() and translate3d()........... 360

Scaling the Z-dimension: scaleZ() and scale3d()361

Creating Depth with the perspective Property ...362

Modifying the Point of View with perspective-origin............................ 364

Preserving Three Dimensions with transform-style 366

Showing Both Faces with the backface-visibility Property370

Conclusion ...375

Table of Contents xi

Chapter 9: Visual Effects... 376

Blend Modes ...377

mix-blend-mode ..378

background-blend-mode ..383

Blend Mode Values ..387

Filter Effects... 391

Meet the CSS Filter Functions ...392

Using backdrop-filter.. 399

How Filter Effects Affect Layout .. 403

Clipping and Masking .. 403

The clip-path Property.. 404

Creating More Complex Clipping Regions with path() 406

Masking ..410

Conclusion .. 426

Chapter 10: Applying CSS Conditionally 428

Media Queries and @media...429

Media Query Syntax: The Basics ..429

Range Media Features and min- and max- Prefixes 431

Discrete Media Features ..433

Using prefers-reduced-motion to Improve the Experience of

People with Vestibular and Seizure Disorders 436

Respecting Users Color Preferences with prefers-color-

xii CSS Master, 3rd Edition

scheme ... 438

Nesting @media Rules .. 440

Working around Legacy Browser Support with only 440

Negating Media Queries .. 441

Other Ways to Use Media Queries ..442

Content-driven Media Queries..443

Using Media Queries with JavaScript ... 446

Listening for Media Changes .. 448

Testing for Property Support with Feature Queries 449

Determining Selector Support with selector()452

CSS.supports DOM API...452

Understanding the Cascade for @supports and @media453

Conclusion ...454

Chapter 11: CSS and Scrolling..455

Dump the Jump: Smooth Internal Links with scroll-behavior 456

What Is a Scrolling Box?.. 456

Scroll Snap .. 459

Creating a Scroll Snap Container.. 459

Aligning Scrolled Elements with scroll-snap-align461

Don’t Break Scrolling! ... 463

Optimizing the Scroll Viewing Area with scroll-padding 465

Shifting Box Alignment with scroll-margin 469

Table of Contents xiii

Conclusion ...472

Chapter 12: SVG ...473

Vector Images versus Raster Images..474

Associating CSS with SVG Documents...475

Using the style Attribute ...475

Embedding CSS in SVG Documents ..477

Linking from SVG to an External CSS File..478

Differences between SVG and HTML... 480

SVG Doesn’t Adhere to the CSS Box Model..................................... 480

SVG Lacks a Positioning Scheme ... 480

Styling SVG Elements ...481

Using SVG Attributes as CSS Properties ... 483

Animating and Transitioning SVG CSS Properties.................................... 485

An Animated Path Future ... 488

Using SVG with Media Queries.. 488

Using Media Queries with background-size492

Conclusion .. 494

Chapter 13: Conclusion .. 495

Nested Grids with subgrid ... 496

Creating Brick-like Layouts with masonry.. 499

Container Queries ...501

xiv CSS Master, 3rd Edition

How to Follow Changes and Additions to CSS .. 503

Tracking Browser Support.. 503

Documentation and Tutorials ... 504

Table of Contents xv

Preface
CSS has grown from a language for formatting documents into a robust language for
designing web applications. Its syntax is easy to learn, making CSS a great entry point for
those new to programming. Indeed, it’s often the second language that developers learn, right
behind HTML.

However, the simplicity of CSS syntax is deceptive. It belies the complexity of the box model,
stacking contexts, specificity, and the cascade. It’s tough to develop interfaces that work
across a variety of screen sizes and with an assortment of input mechanisms. CSS mastery
lies in understanding these concepts and how to mitigate them.

Mastering CSS development also means learning how to work with tools such as linters and
optimizers. Linters inspect your code for potential trouble spots. Optimizers improve CSS
quality, and reduce the number of bytes delivered to the browser. And, of course, there’s the
question of CSS architecture: which selectors to use, how to modularize files, and how to
prevent selector creep.

CSS has also grown in its capabilities. Until recently, we had to use clunky methods such as
float, or weighty JavaScript libraries, to create the kinds of layouts that are now possible with
the Flexible Box, Multicolumn, and Grid layout modules. Three-dimensional effects were
impossible—or required images—before the arrival of CSS transforms. Creating slide shows is
now trivial thanks to Scroll Snap. We even have support for variables.

What’s Changed in This Edition?
As with previous editions, writing this edition required careful consideration of what to include
and what to exclude. The third edition restores and expands the “Selectors” chapter from the
first edition. The “Layouts” chapter now includes a section on CSS Shapes, and a more
comprehensive look at Flexible Box (aka Flexbox) layout.

This edition also adds two entirely new chapters. One covers the scroll-behavior property and

the ins-and-outs of CSS Scroll Snap. The second covers CSS visual effects: blend modes, filter
effects, clipping and masking.

But CSS Master isn’t a comprehensive guide to CSS. CSS is a dense and ever-expanding topic
with lots of nooks and crannies. Trying to cover it all is a massive task. Instead, my hope is that
you’ll come away from this book with a better sense of how CSS works—particularly its

xvi CSS Master, 3rd Edition

trickier bits—and how to write it well.

Who Should Read This Book?
This book is for intermediate-level CSS developers, as it assumes a fair amount of experience
with HTML and CSS. No time is spent covering the basics of CSS syntax. Coverage of CSS
concepts such as the box model and positioning are included to illuminate concepts for the
experienced developer, but this coverage is not meant as an introduction for beginners.
Experience with JavaScript is helpful, but not necessary.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this book to
signify different types of information. Look out for the following items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.</p>

Where existing code is required for context, rather than repeat all of it, ⋮ will be displayed:

function animate() {

⋮
new_variable = "Hello";

}

Some lines of code should be entered on one line, but we’ve had to wrap them because of
page constraints. An ➥ indicates a line break that exists for formatting purposes only, and
should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-

➥design-real-user-testing/?responsive1");

Preface xvii

Tips, Notes, and Warnings

Supplementary Materials
https://www.sitepoint.com/community/ are SitePoint’s forums, for help on any tricky
problems.
This book's code archive is available on GitHub: https://github.com/spbooks/csspro3
books@sitepoint.com is our email address, should you need to contact us to report a
problem, or for any other reason.

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand. Think
of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

xviii CSS Master, 3rd Edition

https://www.sitepoint.com/community/
https://github.com/spbooks/csspro3
https://github.com/spbooks/csspro3

Selectors
Chapter

1

Selectors 1

Understanding selectors is key to writing maintainable, scalable CSS. Selectors are the
mechanism by which CSS rules are matched to elements. There are various ways to do this,
and you’re probably familiar with most of them. Element type, class name, ID, and attribute
selectors are all well supported and widely used.

In this chapter, we’ll firstly review the types of selectors. Then we’ll look at the current
browser landscape for CSS selectors, with a focus on newer selectors defined by the
Selectors Level 31 and Selectors Level 42 specifications.

This chapter stops short of being a comprehensive look at all selectors, as that could take up a
whole book in itself. Instead, we’ll focus on selectors with good browser support that are likely
to be useful in your current work. Some material may be old hat, but it’s included for context.

Types of Selectors
Selectors can be grouped into four basic types: simple, compound, combinator, and complex.

Simple selectors are the oldest form of CSS selector, and may be the type used most often.
Simple selectors specify a single condition for matching elements. The universal selector (*)

is a simple selector. So are type (or element) selectors such as p and pseudo-element

selectors such as ::first-letter . Attribute selectors such as [hidden] , class selectors

such .message-error , and ID selectors such as #masthead also fall into this category.

Compound selectors, such as p:last-child or .message.error , are a sequence of simple

selectors that reflect a set of simultaneous conditions to meet when applying rules to an
element. In other words, .message.error will match <div class="message error"> , but not

<div class="message"> or <div class="error"> .

Combinator selectors express a relationship between elements. There are four:

the descendant combinator, as in article p

the child combinator (>), as in .sidebar > h2

the adjacent sibling combinator (+), as in ul + p

the general sibling combinator (~), as in p ~ figure

Rules are applied to the right-most element in a combinator selector when it fits the condition
indicated by the combinator. We’ll discuss combinator selectors in detail later in the chapter.

1. http://dev.w3.org/csswg/selectors-3/
2. http://dev.w3.org/csswg/selectors-4/

2 CSS Master, 3rd Edition

Lastly, there are complex selectors. Complex selectors consist of one or more compound
selectors separated by a combinator. The selector ul:not(.square) > a[rel=external] is an

example of a complex selector.

Selectors can be grouped into what’s known as a selector list by separating them with a
comma. Selector lists apply styles to elements that match any of the selectors in the list. For
example, the rule article, div { padding: 20px; } adds 20 pixels of padding to both

<article> and <div> elements.

Knowing what kind of selectors you’re working with will help you grasp one of the more
confusing aspects of CSS: specificity. Keeping specificity low increases the reusability of
your CSS rules. A selector such as #menu > .pop-open means that you can only use the .pop-

open pattern when it’s a direct descendant of #menu , even if there are similar interactions

elsewhere in your project.

We’ll return to specificity in Chapter 2, “CSS Architecture and Organization”. For the rest of
this chapter, however, we’ll discuss specific groups of selectors: combinators, attribute
selectors, pseudo-elements, and pseudo-classes.

Combinators
As we saw above, a combinator is a character sequence that expresses a relationship
between the selectors on either side of it. Using a combinator creates a complex selector.
Using complex selectors can, in some cases, be the most concise way to define styles.

In the previous section, we listed the four combinators: descendant (via whitespace), child
(>), adjacent sibling (+), and general sibling (~).

Let’s illustrate each of these combinators. We’ll use them to add styles to the HTML form
shown below.

Selectors 3

1-1. The HTML form that we’ll style using combinators

The form pictured above was created using the following chunk of HTML:

<form method="GET" action="/processor">

<h1>Buy Tickets to the Web Developer Gala</h1>

<p>Tickets are $10 each. Dinner packages are an extra $5. All

➥ fields are required.</p>
<fieldset>

<legend>Tickets and Add-ons</legend>

<p>

<label for="quantity">Number of Tickets</label>

Limit 8

<input type="number" value="1" name="quantity"

➥ id="quantity" step="1" min="1" max="8">
</p>

<p>

<label for="quantity">Dinner Packages</label>

Serves 2

<input type="number" value="1" name="quantity"

➥ id="quantity" step="1" min="1" max="8">
</p>

4 CSS Master, 3rd Edition

</fieldset>

<fieldset>

<legend>Payment</legend>

<p>

<label for="ccn">Credit card number</label>

No spaces or dashes, please.

<input type="text" id="ccn" name="ccn" placeholder=

➥"372000000000008" maxlength="16" size="16">
</p>

<p>

<label for="expiration">Expiration date</label>

<abbr title="Two-digit month">MM

➥</abbr>/<abbr title="Four-digit Year">YYYY</abbr>
<input type="text" id="expiration" name="expiration"

➥placeholder="01/2018" maxlength="7" size="7">
</p>

</fieldset>

<fieldset>

<legend>Billing Address</legend>

<p>

<label for="name">Name</label>

<input type="text" id="name" name="name" placeholder=

➥"ex: John Q. Public" size="40">
</p>

<p>

<label for="street_address">Street Address</label>

<input type="text" id="name" name="name" placeholder=

➥"ex: 12345 Main Street, Apt 23" size="40">
</p>

<p>

<label for="city">City</label>

<input type="text" id="city" name="city" placeholder=

➥"ex: Anytown">
</p>

<p>

<label for="state">State</label>

<input type="text" id="state" name="state" placeholder=

➥"CA" maxlength="2" pattern="[A-W]{2}" size="2">
</p>

<p>

<label for="zip">ZIP</label>

<input type="text" id="zip" name="zip" placeholder=

➥"12345" maxlength="5" pattern="0-9{5}" size="5">
</p>

Selectors 5

</fieldset>

<button type="submit">Buy Tickets!</button>

</form>

The Descendant Combinator

You’re probably quite familiar with the descendant combinator. It’s been around since the
early days of CSS (though it lacked a proper name until CSS2.1). It’s widely used and widely
supported.

The descendant combinator is simply a whitespace character. It separates the parent selector
from its descendant, following the pattern A B , where B is an element contained by A .

Let’s add some CSS to our markup from above and see how this works:

form h1 {

color: hsl(231, 48%, 48%);

}

We’ve just changed the color of our form title, the result of which can be seen below.

6 CSS Master, 3rd Edition

1-2. The effect of a descendant combinator

Let’s add some more CSS, this time to increase the size of our pricing message (“Tickets are
$10 each”). We’ll also make it hot pink:

form p {

font-size: 36px;

color: #c2185b;

}

There’s a problem with this selector, however, as you can see in the image below. Our selector
is too broad.

Selectors 7

1-3. Oops! Our selector is too broad

We’ve actually increased the size of the text in all of our form’s paragraphs, which isn’t what
we want. How can we fix this? Let’s try the child combinator.

The Child Combinator

In contrast to the descendant combinator, the child combinator (>) selects only the

immediate children of an element. It follows the pattern A > B , matching any element B

where A is the immediate ancestor.

If elements were people, to use an analogy, the child combinator would match the child of the
mother element. But the descendant combinator would also match her grandchildren, and
great-grandchildren. Let’s modify our previous selector to use the child combinator:

form > p {

font-size: 36px;

}

Now only the direct children of form are affected, as shown in the image below.

8 CSS Master, 3rd Edition

1-4. The effect of the child combinator

The Adjacent Sibling Combinator

With the adjacent sibling combinator (+), we can select elements that follow each other and

have the same parent. It uses the pattern A + B . Styles are applied to B elements that are

immediately preceded by A elements.

Let’s go back to our example. Notice that, in the Billing Address section, our labels and inputs
sit next to each other. That means we can use the adjacent sibling combinator to make them
sit on separate lines:

label + input {

display: block;

clear: both;

}

You can see the results in the image below.

Selectors 9

1-5. Adjacent combinator to the rescue

You can see in the image above that some of our labels remain on the same line as their input
fields. In those instances, there’s a element between the <label> and <input>

elements, meaning they’re not adjacent siblings. To match sibling elements that aren’t
adjacent, we’ll have to use the general sibling combinator (as we’ll see in the next section).

Let’s look at another example that combines the universal selector (*) with a type selector:

* + fieldset {

margin: 5em 0;

}

This example adds a 5em margin to the top and bottom of every <fieldset> element, as

shown in the image below.

10 CSS Master, 3rd Edition

1-6. Using the adjacent sibling combinator to adjust the bottom margin for our fieldset elements

Since we’re using the universal selector, there’s no need to worry about whether the previous
element is another <fieldset> or <p> element.

More Uses of the Adjacent Sibling Selector

Heydon Pickering explores more clever uses of the adjacent sibling selector in his
article “Axiomatic CSS and Lobotomized Owls”3.

3. http://alistapart.com/article/axiomatic-css-and-lobotomized-owls

Selectors 11

The General Sibling Combinator

With the general sibling combinator (~) we can select elements that share the same parent

without considering whether they’re adjacent. Given the pattern A ~ B , this selector

matches all B elements that are preceded by an A element.

Let’s look at the Number of Tickets field again. Its markup looks like this:

<p>

<label for="quantity">Number of Tickets</label>

Limit 8

<input type="number" value="1" name="quantity" id="quantity"

➥ step="1" min="1" max="8">
</p>

Our <input> element follows the <label> element, but there’s a element in

between. The adjacent sibling combinator will fail to work here. Let’s change our adjacent
sibling combinator to a general sibling combinator:

label ~ input {

display: block;

}

Now all of our <input> elements sit on a separate line from their <label> elements, as seen

in the following image.

12 CSS Master, 3rd Edition

1-7. The ~ combinator targets sibling elements, regardless of whether they’re adjacent

Because the general sibling combinator matches any subsequent sibling, you’ll want to use it
judiciously. Consider the markup and CSS below:

<!DOCTYPE html>

<html lang="en-US">

<head>

<meta charset="utf-8">

<title>In This Essay, I Will</title>

Selectors 13

<style>

h1 ~ p {

background: yellow

}

h2 + p {

outline: 5px dotted #009;

}

</style>

</head>

<body>

<h1>In This Essay, I Will</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce odio leo, sollicitudin

vel mattis eget.…</p>

<p>Nulla sit amet neque eleifend diam aliquam rhoncus. Donec id congue est. Aliquam

sagittis euismod tristique.…</p>

<h2>Show how the general sibling combinator works</h2>

<p>Proin condimentum elit sapien, ut tempor nisl porta quis. …</p>

</body>

</html>

Here we’ve used the general sibling combinator with an <h1> element. As a result, every

paragraph element that follows an <h1> element has a yellow background. This includes the

paragraph that follows the <h2> heading, as shown below.

14 CSS Master, 3rd Edition

1-8. Remember, the general sibling combinator matches every element B that follows A, regardless of its position in

the document

If you have control over the document’s markup, I’d recommend using a class selector instead
of the general sibling combinator. The general sibling combinator makes it too easy to
accidentally style more elements than you intended to.

Attribute Selectors
Introduced with the CSS Level 2 Specification4, attribute selectors make it possible to style
elements based on the presence of an attribute, such as [controls] for a media player, or

[disabled] for a form field.

You can also use attribute selectors to match elements based on the presence of an attribute
and its value. For example, to style submit buttons, you might use the following CSS:

[type=submit] {

background: seagreen;

border: 0;

border-radius: 1000px;

color: #fff;

font-size: 18pt;

padding: 10px 20px;

}

4. https://www.w3.org/TR/CSS21/

Selectors 15

There are also several attribute selectors for partially matching attribute values, as well as
substrings. Being able to target partially matching attribute values is one of my favorite
features of CSS selectors. When used thoughtfully, they can reduce the number of rules and
declarations you need to write. We’ll look at them shortly. Most of the attribute selectors we’ll
cover are old hat. I’ve included them, however, for context and completeness.

Matching Space-separated Attribute Values

Although we can select elements based on an attribute value, as discussed above, a selector
such as [rel=external] won’t match , because the

rel value isn’t exactly external . Instead, we need to use a selector that can accommodate

space-separated values, which takes the form of [att~=val] .

The space-separated attribute value selector matches elements with the attribute (att) and

a list of values, one of which is val . This can be any attribute that accepts space-separated

values, including class or data-* .

Space-separated lists of attributes are admittedly uncommon. They’re sometimes used with
the rel attribute and microformats5 to describe relationships between people and

documents. As an example, we might mark up external links like so:

<nav>

Bob

María

Ifeoma

</nav>

We can then use this presence-based attribute selector to match links that contain friend

as one of its attribute values:

A Note About Quotes

Quoting the values of attribute selectors is optional in most cases. Both
[type=checkbox] and [type="checkbox"] are valid and well-supported syntaxes

for attribute selectors. Use quotes when the attribute’s value contains spaces or
punctuation characters, such as [class="piechart animated"] , [data-

action="modal:close"] or [id='section-2.2'] .

5. http://microformats.org/wiki/existing-rel-values

16 CSS Master, 3rd Edition

[rel~=friend] {

font-size: 2em;

background: #eee;

padding: 4px;

text-decoration: none;

border-bottom: 3px solid #ccc;

}

[rel~=friend]:link, [rel~=friend]:visited {

color: #34444C;

}

[rel~=friend]:hover{

background: #ffeb3b;

border-color: #ffc107;

}

The result of this is shown in the image below.

1-9. A link to Bob’s website styled using an attribute selector

Matching Hyphenated Attribute Values

One of the more interesting tasks we can do with attribute selectors is to use [attr|=val] to

match the first part of an attribute value before the first hyphen. For example, [lang|=en]

would match an element like <p lang="en-US"> .

The main purpose of this selector is for working with languages and language codes, such as
en-US and es-MX .

Let’s say we have some markup like this:

<p lang="fr-FR"><q>Tout le monde</q></p>

<p><q>All the world</q>, or <q>Everyone</q></p>

We can italicize our French text and add language-appropriate angle quotes (« and ») to either
side of it:

[lang|="fr"] {

Selectors 17

font-style: italic;

}

[lang|="fr"] q:before{

content: '\00AB'; /* Left angle quote */

}

[lang|="fr"] q:after{

content: '\00BB'; /* Right angle quote */

}

What’s cool about this selector is that it works even if there’s no hyphen. So the styles above
would also apply to <p lang="fr"> . And we can further limit the scope of these selectors by

adding an element selector, such as p[lang|="fr"] .

This selector isn’t limited to language codes. We can use it with any hyphenated attribute
value. Consider the following markup:

<article class="promo">

<h3>U.S. Meets Climate Goals 5 Years Early</h3>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing</p>

</article>

<article class="promo-entertainment">

<h3>Prince-Bythewood, Duvernay Among Nominees At Oscars</h3>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing</p>

</article>

<article class="promo-sports">

<h3>New York Knicks win NBA title</h3>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing</p>

</article>

<article class="promo-business">

<h3>GrubDash to Hire 3,000 Drivers, Offer Benefits</h3>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing</p>

</article>

These are all article promos or teasers. They share some of the same visual characteristics
and behavior, along with classes prefixed with promo . Here, too, we can use the hyphenated

attribute selector to match these class names:

[class|="promo"] {

border-top: 5px solid #4caf50;

color: #555;

line-height: 1.3;

padding-top: .5em;

18 CSS Master, 3rd Edition

}

[class|="promo"] h3 {

color: #000;

font-size: 1.2em;

margin:0;

}

[class|="promo"] p {

margin: 0 0 1em;

}

Follow this up with specific border colors for each section type, and you’ll achieve something
along the lines of the layout pictured below.

1-10. Using hyphenated attributes to style elements

We can also use this selector with ID names. For example, [id|=global] would match

#global-footer , #global-menu , and so on.

Matching Attribute Values by Substring

We can also select elements when the attribute values match a particular substring using
[att^=val] , [att$=val] and [att*=val] .

The ^= selector matches a substring at the beginning of an attribute value. For example,

think about links using tel: (non-standard) or mailto: . Since they behave differently from

other hyperlinks, it makes sense to style them differently just as a hint to the user. Take a “Call
this business” link:

Call this business

We can select this and other tel: links by using [href^="tel:"] . Let’s add some

declarations:

Selectors 19

[href^="tel:"] {

background: #2196f3 url(../../images/phone-icon.svg) 10px center /

➥ 20px auto no-repeat;
border-radius: 100px;

padding: .5em 1em .5em 2em;

}

You can see the result in the image below.

1-11. Our new “Call this business” button

The $= selector matches a substring at the end of an attribute value. If, for example, we

wanted to give a special color to PDF file links, we could use a[href$=".pdf"] :

a[href$=".pdf"] {

color: #e91e63;

}

This selector would also be handy for matching elements whose attribute values end with the
same suffix. For example, you could match both <aside class="sports-sidebar"> and

<aside class="arts-sidebar"> with [class$=sidebar] .

The *= selector matches a substring in any position within the attribute value. Using the

selector [class*=sidebar] , we could select an element with a class of sports-sidebar-a ,

along with elements with the classes sports-sidebar and arts-sidebar .

Matching Attribute Values by Case

CSS is, for the most part, a case-insensitive language. Both color: tomato and COLOR:

TOMATO do the same thing. Both p {…} and P {…} will style paragraphs in HTML, whether the

HTML uses <p> or <P> . The same applies with attribute names, where [href] and [HREF]

will both match href="…" and HREF="…" .

However, the same doesn’t apply to attribute values. Letter case matters with these. In the
following markup, the ID attribute for our <div> tag mixes uppercase and lowercase letters:

20 CSS Master, 3rd Edition

<div id="MixedCaseIDExample">

The identifier for this tag mixes uppercase and lowercase letters.

</div>

To style the <div> , we might use its ID selector—that is, #MixedCaseIDExample . But we’d have

to use it exactly as it appears in the HTML. Using #mixedcaseidexample , for example, wouldn’t

cut it.

But there is an alternative. We could instead use case-insensitive attribute matching. It’s a
feature defined by the Selectors Level 4 specification.6

Case-insensitive attribute matching uses the i flag to indicate that these styles should be

applied to any case combination:

[id=mixedcaseidexample i] {

color: blue;

}

Now our selector will match the ID attribute whether its value is mixedcaseidexample ,

MixedCaseIDExample , or mIxEdCaSeIdExAmPlE .

In some cases, you may want to enforce case-sensitive value matching. To enforce case-
sensitive matching, use the s flag:

[id="mixedcaseidexample" s] {

color: orange;

}

The s flag matches #mixedcaseidexample , but not #MixedCaseIDExample or

#mIxEdCaSeIdExAmPlE .

Pseudo-classes and Pseudo-elements
Most of the new selectors added in CSS3 and CSS4 are not attribute selectors at all. They’re
pseudo-classes and pseudo-elements.

Though you’ve probably used pseudo-classes and pseudo-elements in your CSS, you may not
have thought about what they are or how they differ from each other.

6. https://drafts.csswg.org/selectors-4/

Selectors 21

Pseudo-classes let us style objects based on information—such as their state—that’s distinct
from the document tree, or that can’t be expressed using simple selectors. For example, an
element can only have a hover or focus state once the user interacts with it. With the :hover

and :focus pseudo-classes, we can define styles for those states. Otherwise, we’d have to

rely on scripting to add and remove class names.

Pseudo-elements, on the other hand, let us style elements that aren’t directly present in the
document tree. HTML doesn’t define a firstletter element, so we need another way to

select it. The ::first-letter pseudo-element gives us that capability.

Pseudo-elements
The CSS Pseudo-elements Module Level 4 specification7 clarifies behavior for existing
pseudo-elements and defines several new ones. We’ll focus on the ones that currently have
browser support:

::after inserts additional generated content after the content of an element

::before inserts additional generated content before the content of an element

::first–letter selects the first letter of an element

::first–line selects the first line of an element

::marker styles bullets and numbers for list items and the <summary> element

Beware of Universal Selection

Using pseudo-classes and pseudo-elements without a simple selector is the
equivalent of using them with the universal selector. For a selector such as
:not([type=radio]) , every element that lacks a type attribute and value of
radio will match—including <html> and <body> . To prevent this, use :not() as

part of a compound selector, such as with a class name or element, as in
p:not(.error) .

In the same way, using class names, IDs and attribute selectors on their own applies
them universally. For example, .warning and [type=radio] are the same as
*.warning and *[type=radio] .

7. http://dev.w3.org/csswg/css-pseudo-4/

22 CSS Master, 3rd Edition

::placeholder styles placeholder text for form controls using the placeholder attribute

::selection styles text selected by the cursor

Of these, ::first–letter , ::first–line , ::selection , ::marker and ::placeholder affect

content that’s part of the document source. The ::before and ::after pseudo-elements,

on the other hand, inject content into a document. Let’s look at each of these pseudo-
elements more closely.

::before and ::after

Most pseudo-elements allow us to select content that’s already part of the document
source—that is, the HTML you authored—but that’s not specified by the language. But
::before and ::after work differently. These pseudo-elements add generated content to

the document tree. This content doesn’t exist in the HTML source, but it’s available visually.

Why would you want to use generated content? You might, for example, want to indicate
which form fields are required by adding content after their label:

/* Apply to the label element associated with a required field */

.required::after {

content: ' (Required) ';

color: #c00;

font-size: .8em;

}

Required form fields use the required HTML property. Since that information is already

available to the DOM, using ::before or ::after to add helper text is supplemental. It isn’t

critical content, so it’s okay that it’s not part of the document source.

Another use case for ::before or ::after is adding a prefix or suffix to content. For

example, the form mentioned above might include helper text, as shown here:

Generated Content and Accessibility

Some screen reader and browser combinations recognize and read generated
content, but most don’t. You can’t be sure that content generated using ::before

or ::after will be available to assistive technology users. You can read more about
this in Leonie Watson’s piece “Accessibility support for CSS generated content”8.

8. http://tink.uk/accessibility-support-for-css-generated-content/

Selectors 23

<form method="post" action="/save">

<fieldset>

<legend>Change Your Password</legend>

<p>

<label for="password">Enter a new password</label>

<input type="password" id="password" name="password">

</p>

<p>

<label for="password2">Retype your password</label>

<input type="password" id="password2" name="password2">

</p>

<p class="helptext">Longer passwords are stronger.</p>

<p><button type="submit">Save changes</button></p>

</fieldset>

</form>

Let’s enclose our helper text in red parentheses using ::before and ::after :

.helptext::before,

.helptext::after {

color: hsl(340, 82%, 52%);

}

.helptext::before {

content: '(';

}

.helptext::after {

content: ')';

}

The result is shown below.

1-12. Using ::before and ::after to add supplemental content

24 CSS Master, 3rd Edition

Both ::before and ::after behave similarly to other descendant elements. They inherit the

inheritable properties of their parent, and are contained within it. They also interact with other
element boxes as though they were true elements.

This means that we can use ::before and ::after with CSS Grid and Flexbox. One use case

is decorated headings, such as the one shown below.

1-13. Using Grid layout with ::before and ::after to create decorated headings

The CSS required to create this heading is as follows:

h1 {

display: grid;

grid-template-columns: 1fr auto 1fr;

gap: 3rem;

}

h1::before,

h1::after {

content: '\00a0';

background: url('decoration.svg') repeat-x center / 50% auto;

}

One Pseudo-element per Selector

Currently, only one pseudo-element is allowed per selector. A selector such as
p::first-line::before is invalid and unsupported.

Selectors 25

You can read more about CSS Grid and Flexbox layout in Chapter 5, “Layouts”.

Creating Typographic Effects with ::first-letter

While the ::before and ::after pseudo-elements inject content, ::first-letter works

with content that exists as part of the document source. With ::first-letter , we can create

initial letter effects, such as drop caps, as you might see in a magazine or book layout.

This CSS snippet adds an initial capital letter to every <p> element in our document:

p::first-letter {

font-family: serif;

font-weight: bold;

font-size: 3em;

font-style: italic;

color: #3f51b5;

}

The result is shown below.

1-14. Creating initial caps with the ::first-letter pseudo-element

Initial and Drop Caps

An initial capital is an uppercase letter at the start of a block of text that’s set in a
larger font size than the rest of the body copy. A drop capital (or drop cap) is similar
to an initial capital, but is inset into the first paragraph by at least two lines.

26 CSS Master, 3rd Edition

As you may have noticed from the image above, ::first–letter will affect the line-height

of the first line if you’ve set a unitless line-height for the element. In this case, each <p>

element inherits a line-height value of 1.5 from the <body> element. There are three ways

to mitigate this:

Decrease the value of line-height for the ::first–letter pseudo-element. A value of

.5 seems to work well most of the time, depending on the font.

Set a line-height with units on the ::first–letter pseudo-element.

Set a line-height with units on either the <body> or the ::first–letter parent.

The first option preserves the vertical rhythm that comes with using a unitless line-height .9

The second option limits the side effects of using a fixed line-height just to those pseudo-

elements. Option three, however, introduces a high likelihood that you’ll create a side effect
that requires more CSS to undo.

In this case, let’s decrease the line-height value for p::first-letter to .5 (and rewrite

our file properties to use the font shorthand):

p::first-letter {

font: normal 10rem / 1 'Alfa Slab One', serif;

color: hsl(291, 64%, 30%);

display: inline-block;

padding-right: .25rem;

}

This change produces the result shown in the image below.

9. The Mozilla Developer Network entry for line-height explains why unitless values are the way to

go: https://developer.mozilla.org/en-US/docs/Web/CSS/line-height.

Selectors 27

https://developer.mozilla.org/en-US/docs/Web/CSS/line-height

1-15. Mitigating the effect of ::first-letter on line height

Notice here that we adjusted the bottom margin of each <p> element to compensate for the

reduced line-height of p::first-letter .

Creating a drop capital requires a few more lines of CSS. Unlike an initial capital, the text
adjacent to the drop capital letter wraps around it. This means that we need to add
float:left; to our rule set:

p::first-letter {

float: left; /* Makes the text wrap around the drop cap */

font: normal 10rem / 1 'Alfa Slab One', serif;

color: hsl(200, 18%, 46%);

margin-bottom: .4rem;

padding: 1rem 1.4rem 0 0;

text-shadow: 2px 2px 0px hsl(200, 100%, 10%);

}

Floating an element, or in this case a pseudo-element, causes the remaining text to flow
around it, as illustrated below.

28 CSS Master, 3rd Edition

1-16. Creating a drop capital with ::first-letter

Be aware that ::first-letter can be difficult to style with pixel-perfect accuracy across

browsers, unless you use px or rem units for size, margin, and line height.

Sometimes the first letter of a text element is actually punctuation—such as in a news story
that begins with a quote:

<p>“Lorem ipsum dolor sit amet, consectetur adipiscing elit.

➥” Fusce odio leo, sollicitudin vel mattis eget, …</p>

In this case, the styles defined for ::first-letter affect both the opening punctuation mark

and the first letter, as shown below. All browsers handle this in the same way.

1-17. Punctuation characters may also receive ::first-letter styles if they immediately precede a letter or numeric

character

Selectors 29

However, this isn’t necessarily how it works when the punctuation mark is generated by an
element. Consider the following markup:

<p><q>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</q>

➥ Fusce odio leo, sollicitudin vel mattis eget, iaculis sit …</p>

Current browsers typically render the <q> element with language-appropriate quotation

marks before and after the enclosed text. Safari, Chrome, and Edge ignore the opening
quotation mark. However, Firefox versions 90 and under apply ::first-letter styles to the

opening quotation mark, not the first letter.

1-18. Firefox applies ::first-letter styles to the opening quotation of the q element

In Chrome-based browsers and Safari, neither the opening quotation mark for the <q>

element nor the first letter of the paragraph are restyled. The image below shows how this
looks in Chrome.

30 CSS Master, 3rd Edition

1-19. Chrome ignores the opening quotation mark and first letter when using the q element

According to the CSS Pseudo-elements Module Level 4 specification10, punctuation that
immediately precedes or succeeds the first letter or character should be included. However,
the specification is unclear about whether this also applies to generated punctuation.11

In Firefox 90 and earlier, some punctuation characters cause Firefox to ignore a
::first–letter rule altogether. These include, but are not limited to, the dollar sign ($), caret

(^), back tick (`) and tilde (~) characters. Firefox, to date, also doesn’t apply ::first-letter

styles to emoji.

This is true whether the first character is set using ::before and the content property, or

included in the document source. There’s no fix for this. Avoid using these characters as the
first character if you’re also using ::first-letter .

The ::first-letter pseudo-element doesn’t apply to elements such as <a> , , or

<code> . Nor does it apply to parent elements with a display property value of inline .

Creating Typographic Effects with ::first-line

The ::first-line pseudo-element works similarly to ::first-letter , but affects the entire

first line of an element. For example, the first line of every paragraph could have larger text
and a different color from the rest of the paragraph:

10. http://dev.w3.org/csswg/css-pseudo-4/#first-letter-pseudo
11. The specification actually uses the phrase “typographic letter unit”. This includes Unicode letters and
numbers, but also characters used in East Asian and Middle Eastern writing systems.

Selectors 31

p::first-line {

font: bold 1.5em serif;

font-style: italic;

color: #673ab7;

}

You can see the result in the image below.

1-20. Using the ::first-line pseudo-element

Notice that the first line of each paragraph is affected, rather than the first sentence. The font
size and element width determine how many characters fit on this first line.

It’s possible to force the end of a first line by using a
 or <hr> element, as shown below.

1-21. Forcing the end of a line with a br element

Unfortunately, this is far from perfect. If your element is only wide enough to accommodate
72 characters, adding a
 element after the 80th character won’t affect the ::first-

line pseudo-element. You’ll end up with an oddly placed line break.

32 CSS Master, 3rd Edition

Similarly, using a non-breaking space () to prevent a line break between words won’t

affect ::first-line . Instead, the word that sits before the will be forced onto the

same line as the text that comes after it.

Generated content that’s added using ::before will become part of the first line, as shown in

the image below.

1-22. Generated content becomes part of the first line

If the generated text is long enough, it will fill the entire first line. However, if we add a
display: block declaration—such as p::before {content: '!!!'; display: block;} —that

content will become the entire first line.

1-23. When Chrome (shown here), Edge, and Safari treat ::before {display: block;} content as the first line

Unfortunately, versions of Firefox 90 and below handle this differently. Firefox correctly
inserts the value of the content property, but adding display: block causes the ::first-

line rule to fail completely.

Selectors 33

Not all properties are compatible with ::first-line . Only the following are supported:

background and the background- prefixed properties

color

font and the font- prefixed group of properties

letter-spacing

line-height

opacity

text-decoration , including expanded properties such as text-decoration-line

text-transform

text-shadow

word-spacing

vertical-align

User Interface Fun with ::selection

The ::selection pseudo-element is one of the so-called “highlight pseudo-elements”

defined by the CSS Pseudo-Elements Module Level 4 specification12. Formerly part of the
Selectors Level 3 specification, it’s the only highlight pseudo-element that’s currently
supported by browsers. Three other properties— ::target-text , ::spelling-error and

::grammar-error —are still in flux.

With ::selection , we can apply CSS styles to content that users have highlighted with their

mouse. By default, the background and text color of highlighted content is determined by the
user’s system settings. Developers, however, can change what that highlight looks like—as
shown below, where the selection color has been set to green.

12. http://dev.w3.org/csswg/css-pseudo-4/

34 CSS Master, 3rd Edition

1-24. An example of a highlight set using ::selection

Not every CSS property can be used with ::selection . Only a few properties are permitted

by the specification:

color

background-color

text-decoration , and related properties such as text-decoration-style

text-shadow

stroke-color

fill-color

stroke-width

To date, only text-shadow , color and background-color have been implemented in

browsers. Let’s look at an example:

::selection {

background: #9f0; /* lime green */

color: #600;

}

This CSS adds a lime-green background to any element the user highlights, and changes the
text color to a deep red. The example works in every browser that supports ::selection , and

you can see the effect in the image below.

Selectors 35

1-25. Deep red text on a lime-green background set using the ::selection pseudo-element

Custom List and Summary Icons with ::marker

::marker is a pseudo-element that represents a bullet or number indicator of elements with

a display value of list-item . In most current browser versions, the default user-agent

stylesheet applies display: list-item to and <summary> elements.

Any element with a list-item display value will generate a marker box that can be selected

and styled using ::marker . Using a display value other than list-item —such as display:

inline or display: grid —removes the marker box and the ability to use ::marker .

Color Combinations

When selecting foreground and background colors to use with ::selection , keep
accessibility in mind. Some color combinations fail to generate enough contrast to
be read by low-vision users. Other color combinations may be illegible for color-
blind users. Be sure to use a contrast checker and color-blindness simulator before
selecting your final colors.

Browser support for ::marker

Safari 14.2 and below, and Chrome/Edge versions 88 and below, don’t support
::marker when used with the <summary> element. Instead, use the ::-webkit-

details-marker pseudo-element. Keep in mind, however, that ::-webkit-details-

marker is limited to color and font properties.

36 CSS Master, 3rd Edition

With ::marker , we can do things like define custom bullet content for unordered lists, or

change the size and color of the numbers in an ordered list:

ol ::marker {

color: blue;

font-size: 4rem;

}

You can see the effect of this rule in the image below.

1-26. Using ::marker to style an ordered list

Only a small subset of CSS properties can be used with ::marker , as outlined in the CSS Lists

and Counters Module Level 3 specification13:

color

content

direction

font , along with its longhand properties such as font-size and font-weight

white-space

animation and transition properties, such as animation-transition and transition-delay

text-combine-upright

unicode-bidi

Future versions of the specification may expand this list. To date, we’re limited to the above
properties.

13. https://www.w3.org/TR/css-lists-3/#marker-properties

Selectors 37

Because of these limitations, li::before can be a more flexible option for adding custom

bullets or numbers. Using ::before gives you more control over things like horizontal spacing

between bullets and content, and vertical alignment. It’s also well-supported in older
browsers.

In browsers that support both, you may instead choose to use both ::marker and ::before :

li::marker {

content: '❌';

}

li::before {

content: '\00a0'; /* Unicode for a non-breaking space */

display: inline-block;

padding: 0 10px;

}

In the preceding example, we’ve used ::marker to set the content and color of list item

bullets, and ::before to manage the spacing between the markers and each list item’s

contents. You can see the results below.

1-27. Using ::before to manage spacing between ::marker and the contents of a list item

For the most part, list style properties interact with the ::marker pseudo-element. Adding a

list-style: upper-roman declaration, for example, sets the numeric markers for an

unordered list. You can then use ::marker to change the size and color:

Further Safari Limitations

Safari versions 14.2 and below only partially support ::marker . They render color
and font styles, but not the value of the content property.

38 CSS Master, 3rd Edition

ul {

list-style: upper-roman;

}

ul ::marker {

font-size: 4rem;

color: green;

}

But there’s an exception: if you set the content property of a list item using ::marker , most

browsers will render that value instead of the value of list-style or list-style-type :

ul ::marker {

content: '🔹'; /* Rendered in browsers that support ::marker */

font-size: 2.3rem;

font-weight: bold;

color: #090;

}

ul {

list-style: '→'; /* Visible when ::marker is unsupported */

}

The image below shows how, in Firefox 90, ::marker takes precedence over list-style

when both are defined and supported.

1-28. Firefox 90, which supports the ::marker element, displays the value of the content attribute, despite the

inclusion of a list-style value

Styling Input ::placeholder Values

Text-based form inputs have a placeholder attribute that lets us add a hint about what kind

of data the field expects:

<form>

Selectors 39

<p>

<label for="subscriber_email">Your email address</label>

<input type="email" name="subscriber_email" id="subscriber_email"

➥placeholder="yourname@example.com">
</p>

</form>

Most browsers display the value of the placeholder attribute within the form control as black

text with a reduced opacity, as pictured below.

1-29. An email form control with a placeholder attribute

We can change the appearance of this text using the ::placeholder pseudo-element

selector. Let’s change the color and size of our placeholder text:

::placeholder {

color: rgba(0, 0, 100, 1);

font-weight: bold;

}

Now this is what we see.

1-30. Using ::placeholder to change the appearance of the placeholder text within a form control

Placeholder Text Can Be Harmful

Placeholder text can be confusing for many users14, particularly those with
cognitive impairments. Consider using descriptive text positioned near the form
control instead. Placeholder text is also not a replacement for the <label>

element. Use labels with your form controls, even if you use the placeholder

attribute.

40 CSS Master, 3rd Edition

::placeholder supports the same subset of CSS properties as ::first-line . When

changing the appearance of ::placeholder text, choose colors and text sizes that create

sufficient contrast. Firefox includes tools to check for basic accessibility blunders such as
poor contrast between text and background colors.

Later in this chapter, we’ll discuss the :placeholder-shown pseudo-class, which applies to the

form control itself.

Pseudo-classes
As mentioned earlier in this chapter, pseudo-classes help us define styles for documents
based on information that can’t be gleaned from the document tree or that can’t be targeted
using simple selectors. Among them are logical and linguistic pseudo-classes such as :not()

and :lang() , as well as user-triggered pseudo-classes such as :hover and :focus , and

form state pseudo-classes such as :checked and :invalid .

Styling the :root of a Document

One pseudo-class you often see in CSS snippets and demos is the :root pseudo-class. The

:root pseudo-class matches the root element of the document. When working with HTML,

this matches the <html> element. For SVG documents, it’s the <svg> element.

You might choose :root over html if you need to define a set of custom properties

(variables) for a stylesheet that will be shared across HTML and SVG documents. The
following example uses :root and custom properties to define a color palette:

:root {

--color-primary: blue;

--color-secondary: magenta;

--color-tertiary: yellowgreen;

}

Linking this stylesheet from an SVG or HTML document makes these properties available for
use with either in a way that using html as a selector doesn’t.

Highlighting Page Fragments with :target

A fragment identifier is the part of a URL starting with a # character—such as #top or

#footnote1 . You may have used them to create in-page navigation links—sometimes called

14. https://www.smashingmagazine.com/2018/06/placeholder-attribute/

Selectors 41

“jump links”. With the :target pseudo-class, we can highlight the portion of the document

that corresponds to that fragment.

Say, for example, you have a series of comments in a discussion board thread:

<section id="comments">

<h2>Comments</h2>

<article class="comment" id="comment-1146937891">...</article>

<article class="comment" id="comment-1146937892">...</article>

<article class="comment" id="comment-1146937893">...</article>

</section>

With some CSS and other fancy bits, it might look a little like what’s pictured below.

1-31. A comments section as you might find on a blog

Each comment in the code above has a fragment identifier, which means we can link directly
to it with an anchor link such as or . Then all we need to do is specify a

style for this comment using the :target pseudo-class:

.comment:target {

background: #ffeb3b;

border-color: #ffc107

}

When someone clicks a link to an <article> element with a class of comment , the browser

42 CSS Master, 3rd Edition

will take them to that comment and give it a yellow background, as shown below.

1-32. A comments section with a yellow background

You can use any combination of CSS with :target , but be cautious about using properties

that can show or hide content. Adjusting the z-index property, for example, can hide content

on the page, but still expose it to assistive technology. That may not be what you want.

Styling Elements That Have No Children Using :empty

Sometimes WYSIWYG (what you see is what you get) editors add empty <p> elements to

your content. These empty elements may affect your document layout if your stylesheet also
uses p as a type selector. It’s possible to visually exclude these elements, however, with the

:empty pseudo-class:

p:empty {

display: none;

}

Earlier versions of the selectors specifications defined :empty elements as elements devoid

of any element or text nodes—including space or newline characters. This means that for
most current implementations, p:empty matches <p></p> , but not <p> </p> .

Perhaps unexpectedly, :empty will always match and <input> elements when used

with the universal selector (again, :empty is the same as *:empty). For <input> elements,

this is true even if the field contains text.

Selectors 43

In the meantime, you can use the :placeholder-shown pseudo-class to select blank form

control fields. We’ll discuss this selector later in the chapter.

Concise and Resilient Selectors with :is()

The :is() pseudo-class is one of three logical pseudo-classes available in CSS—the other

two being :not() and :where() (which we’ll discuss in the next sections).

You can use :is() to create more concise and resilient selectors. It’s a functional pseudo-

class that accepts a selector list as its argument. Here’s an example:

article :is(h1, h2, h3, h4) {

font-family: 'EB Garamond', serif;

font-style: italic 45deg;

}

In this case, our selector matches <h1> , <h2> , <h3> , or <h4> elements that are the

descendants of an <article> . It’s the equivalent of writing the following:

article h1,

article h2,

article h3,

article h4 {

font-family: 'EB Garamond', serif;

font-style: italic 45deg;

}

That’s a much longer selector list! Using :is() significantly reduces the length of selectors.

Can I :has() a Parent Selector?

CSS Selectors Level 4 also defines a fourth logical pseudo-class, :has() .
Unfortunately, :has() lacks browser support, so we won’t cover it in this chapter.
It’s sometimes referred to as the elusive “parent selector”, a long wished for but
difficult to implement concept. In early 2021, Igalia announced an intent to
prototype15 support for :has() . Full browser support may take some time. In the
meantime, parent selection remains the preserve of JavaScript.

15. https://groups.google.com/a/chromium.org/g/blink-dev/c/hqkcKdDrhXE

44 CSS Master, 3rd Edition

The :is() function accepts what’s known as a forgiving selector list. Consider the following

CSS:

:is(:blank, :placeholder-shown) {

font: inherit;

padding: 1rem;

color: #003a;

}

The selector above matches input elements that are blank or that have visible placeholder
text. Here’s the catch: most browsers don’t yet support the :blank pseudo-class. Despite

this, our declarations will still be applied to elements that match :placeholder-shown . A

forgiving selector lists tells browsers to ignore selectors that the browser doesn’t understand.

Forgiving selector lists are a newer CSS concept. Earlier CSS specifications defined how a
browser should treat a selector list that it can’t fully parse, whether the error is due to a lack of
browser support or a typo. As explained in the CSS 2.1 specification:

CSS 2.1 gives a special meaning to the comma (,) in selectors. However,

since it is not known if the comma may acquire other meanings in future

updates of CSS, the whole statement should be ignored if there is an error

anywhere in the selector, even though the rest of the selector may look

reasonable in CSS 2.1.

In other words, if any item in a standard selector list isn’t supported, the browser ignores the
entire rule. Using :is() , on the other hand, lets the browser ignore selectors that it doesn’t

understand.

Before :is() Was

WebKit implemented an earlier version of the :is() pseudo-class as :-webkit-

any() . The main difference was that :-webkit-any() didn’t support a selector list
argument. Earlier versions of the Selectors Level 4 specification also defined a
:matches() pseudo-class. It’s been replaced by :is() .

Selectors 45

Negating Selectors with :not()

The :not() pseudo-class is the opposite of :is() . It returns all elements except for those

that match the selector argument. For example, p:not(.message) matches every <p>

element that doesn’t have a class of message .

Here’s an example of a form that uses textual input types and radio buttons:

<form method="post" action="#">

<h1>Join the Cool Kids Club</h1>

<p>

<label for="name">Name:</label>

<input type="text" id="name" name="name" required>

</p>

<p>

<label for="email">Email:</label>

<input type="email" id="email" name="email" required>

</p>

<fieldset>

<legend>Receive a digest?</legend>

<p>

<input type="radio" id="daily" name="digest">

<label for="daily" class="label-radio">Daily</label>

<input type="radio" id="weekly" name="digest">

<label for="weekly" class="label-radio">Weekly</label>

</p>

</fieldset>

<button type="submit">Buy Tickets!</button>

</form>

In the HTML, labels associated with a radio type have a .label-radio class. We can use

:not() to target those elements without a .label-radio class:

label:not(.label-radio) {

font-weight: bold;

display: block;

Browser Support

Yes, :is() lets us write resilient selectors, but that resiliency still requires browser
support. If the browser doesn’t support :is() , the original parsing rules still apply.
The entire rule will fail.

46 CSS Master, 3rd Edition

}

The end result is shown below.

1-33. Using the :not() pseudo class to style form labels

Here’s a slightly trickier example. Let’s create styles for textual inputs. These include input
types such as number, email, and text along with password and URL. Let’s do this by excluding
radio button, checkbox, and range inputs:

input:not([type=radio], [type=checkbox], [type=range]) {

...

}

As with :is() , the :not() pseudo-class accepts either a single selector or a selector list as

an argument. It will match any and all of the supported selectors in the list.

Chrome and Edge versions 87 and below, and Firefox versions 83 and below, implement an
earlier definition of :not() that doesn’t accept selector lists. Instead, those browsers accept

a single selector argument. For those browsers, we’ll need a different approach.

Your instinct might be to rewrite the preceding example like so:

input:not([type=radio]),

input:not([type=checkbox]),

input:not([type=range]) {

...

}

Unfortunately, this won’t work. Each selector overrides the previous one. It’s the equivalent of
typing:

Selectors 47

input:not([type=radio]){ ... }

input:not([type=checkbox]) { ... }

input:not([type=range]) { ... }

Instead, you’ll need to use the following selector:

input:not([type=radio]):not([type=checkbox]):not([type=range]) {

...

}

Each instance of :not() in this selector further filters the list, achieving our desired result.

Pseudo-elements aren’t valid arguments for :is() and :not() . A selector such as

:is(::first-letter) or :is(::marker, ::-webkit-details-marker) won’t match any

elements, and browsers will ignore the rules associated with that selector.

Adjusting Selector Specificity with :where()

The CSS Selectors Level 4 specification calls :where() the “specificity-adjustment pseudo-

class”. It’s also a functional pseudo-class that accepts a selector or a selector list as its
argument. Using :where() limits the impact of a selector’s specificity without changing it.

Consider this CSS snippet:

a:not(:hover) { /* Specificity of 0,1,1 */

text-decoration: underline 2px;

}

nav a { /* Specificity of 0,0,2. This rule does not take effect */

text-decoration: hsl(340, 82%, 52%) wavy underline 1.5px;

}

In this example, our first rule has a more specific selector than our second. As a result, the
second rule is never applied, and the links don’t get a wavy, pink underline.

48 CSS Master, 3rd Edition

1-34. Our navigation links lack a wavy, pink underline because the selector isn’t specific enough

One way to resolve this would be to change nav a to nav a:not(:hover) . Doing so would

increase the specificity of that rule, which may not be what you want. Let’s try :where()

instead:

a:where(:not(:hover)) { /* Retains specificity of 0,1,1 but with an adjustment */

text-decoration: underline 2px;

}

nav a { /* Rule takes effect. Still has a specificity of 0,0,2 */

text-decoration: red wavy underline 1.5px;

}

Adding :where() says to the browser: “Apply this style to <a> elements only where they

don’t have a hover state.” Now our navigation links have squiggly underlines.

Selectors 49

1-35. Using :where() to adjust the specificity of a selector

Again, using :where() doesn’t modify the specificity value of a selector. In fact, its specificity

value is zero. Instead, think of it as a way to clarify your intent.

Selecting Elements by Their Index

CSS also provides selectors for matching elements based on their position in the document
subtree. These are known as child–indexed pseudo-classes, because they rely on the
position or order of the element rather than its type, attributes, or ID. There are five:

:first-child

:last-child

:only-child

:nth-child()

:nth-last-child()

:first-child and :last-child

As you’ve probably guessed from the names, the :first-child and :last-child pseudo-

classes make it possible to select elements that are the first child or last child of a node
(element). As with other pseudo-classes, :first-child and :last-child have the fewest

side effects when they’re part of a compound selector.

Let’s take a look at the HTML and CSS below:

50 CSS Master, 3rd Edition

<!DOCTYPE html>

<html lang="en-US">

<head>

<meta charset="utf-8">

<title>:first-child and :last-child</title>

<style type="text/css">

body {

font: 16px / 1.5 sans-serif;

}

:first-child {

color: #e91e63; /* hot pink */

}

:last-child {

color: #4caf50; /* green */

}

</style>

</head>

<body>

<h2>List of fruits</h2>

Apples

Bananas

Blueberries

Oranges

Strawberries

</body>

</html>

This code produces the result shown below. Using :first-child by itself matches more

elements than we want.

1-36. Using :first-child by itself matches more elements than we want

Selectors 51

Because :first-child is unqualified, both the <h2> element and first element are hot

pink. After all, <h2> is the first child of <body> , and the Apples is the first child of the

 element. But why are the remaining elements green? Well, that’s because :last-

child is also unqualified, and is the last child of body. It’s effectively the same as typing

*:first-child and *:last-child .

If we qualify :first-child and :last-child by adding a simple selector, it all makes more

sense. Let’s limit our selection to list items. Change :first-child to li:first-child and

:last-child to li:last-child . The result is shown below.

1-37. Qualifying :first-child and :last-child with a simple selector

:only-child

The :only-child pseudo-class matches elements if they’re the only child of another

element. In the following example, we have two parent <div> elements and their child

elements. The first <div> contains one item, while the second contains three:

<div>

Apple

</div>

<div>

Banana

Spinach

Okra

</div>

52 CSS Master, 3rd Edition

Using .fruit:only-child {color: #9c27b0; /* violet */} will match <span

class="fruit">Apple , since it’s the only child of the first <div> . None of the items in

the second <div> match, however, because there are three siblings. You can see what this

looks like below.

1-38. Matching elements with :only-child

:nth-child() and :nth-last-child()

The ability to select the first and last children of a document is fine. But what if we want to
select odd or even elements instead? Perhaps we’d like to pick the sixth element in a
document subtree, or apply styles to every third element. This is where the :nth-child() and

the :nth-last-child() pseudo-classes come into play.

Like :not(), :nth-child() and : nth-last-child() are also functional pseudo-classes. They

accept a single argument, which should be one of the following:

the odd keyword

the even keyword

an integer (such as 2 or 8)
an argument in the form An+B (where A is a step interval, B is the offset, and n is a

variable representing a positive integer)16

That last item has a degree of complexity. We’ll come back to it shortly.

The difference between :nth-child() and :nth-last-child() is the starting point. :nth-

child() counts forward and :nth-last-child() counts backward. CSS indexes use counting

numbers and start with one rather than zero.

16. This An+B syntax is described in CSS Syntax Module Level 3: http://www.w3.org/TR/css-

syntax-3/#anb.

Selectors 53

Both :nth-child() and :nth-last-child() are useful for alternating patterns. Creating

zebra-striped table row colors is a perfect use case. The CSS that follows gives even-
numbered table rows a light, bluish-gray background:

tr:nth-child(even) {

background: rgba(96, 125, 139, 0.1);

}

Here’s the result seen in the browser.

1-39. Using :nth-child(even) to style table rows

Changing :nth-child() to :nth-last-child() inverts this banding, since the counting

begins from the bottom.

1-40. Counting starts from the bottom with :nth-last-child()

How about trying some complex examples using more complex arguments? We’ll start with
the document pictured below, which contains 20 <div> items.

54 CSS Master, 3rd Edition

1-41. A document of 20 div elements

With :nth-child() and :nth-last-child() , we can select a single child at a particular

position. We can select all of the children after a particular position, or we can select elements
by multiples, with an offset. Let’s change the background color of the sixth item:

.item:nth-child(6) {

background: #e91e63; /* red */

}

This gives us the result below.

1-42. Using :nth-child() to select a single item by its index

But what if we want to select every third element? Here’s where the An+B syntax comes in:

Selectors 55

.item:nth-child(3n) {

background: #e91e63; /* red */

}

Again, A is a step interval. It’s kind of a multiplier for n , which starts at 0. So if A equals 3,

then 3n would match every third element (the 3rd, 6th, 9th elements, and so on). That’s

exactly what happens, as you can see below.

1-43. Using An+B syntax to select every third element

Matters become even more interesting when we use :nth-child() and :nth-last-child()

to select all elements after a certain point. Let’s try selecting all but the first seven elements:

.item:nth-child(n+8) {

background: #e91e63;

}

Counting with n

We noted earlier that selectors count elements from 1. However, n is a variable
that represents any number from zero. The 3n in our .item:nth-child(3n)

selector above produces 3 x 0 , 3 x 1 , 3 x 2 and so on. Of course, 3 x 0

equals zero, so we don’t see any visual styling based on this, as there’s no element
zero. It’s important to note that n starts at zero, because, as we’ll see below when
we introduce + , n+8 will produce results starting from 8 (because 0 + 8 equals
8).

56 CSS Master, 3rd Edition

Here, there’s no step value. As a result, n+8 matches every element n beginning with the

eighth element, as shown below.

1-44. Using the step An+B microsyntax to select items 8 through 20

We can also use the offset and step values to select every third element, starting with the
fifth:

.item:nth-child(3n+5) {

background: #e91e63;

}

You can see the results of this selector below.

Negative Offsets

Negative offset and range values are also valid. Using :nth-child(-n+8) would
invert our selection, and match the first eight elements.

Selectors 57

1-45. Selecting every third element, starting with the fifth

Selecting Elements of a Particular Type by Their Index

The pseudo-classes discussed in the previous section match elements if they occupy the
given position in a document subtree. For instance, p:nth-last-child(2) selects every <p>

element that’s the next-to-last element of its parent.

In this section, we’ll discuss typed child-indexed pseudo-classes. These pseudo-classes also
match elements based on the value of their indexes, but matches are limited to elements of a
particular type or tag name—such as selecting the fifth <p> element, or all even-indexed

<h2> elements.

There are five such pseudo-classes with names that mirror those of their untyped
counterparts:

:first-of-type

:last-of-type

:only-of-type

:nth-of-type()

:nth-last-of-type()

The difference between these and child-indexed pseudo-classes is a subtle one. Where
p:nth-child(5) matches the fifth item only if it’s a <p> element, p:nth-of-type(5) matches

all <p> elements, then finds the fifth <p> element among those.

58 CSS Master, 3rd Edition

Let’s start with a slightly different document. It still has 20 items, but some of them are <p>

elements and some of them are <div> elements. The <p> elements have rounded corners,

as can be seen below.

1-46. A document of 20 items, with p elements indicating rounded corners

Using :first-of-type, :last-of-type, and :only-type

With :first-of-type , we can select the first element that matches a selector. How about we

give our first <p> element a lime-green background:

p:first-of-type {

background: #cddc39; /* lime green */

}

This will match every <p> element that’s the first <p> element of its parent.

Selectors 59

1-47. Matching the first child p element

The :last-of-type pseudo-class works similarly, matching the last such element of its

parent.

1-48. The :last-of-type pseudo-class matches the last element of a type

However, :only-of-type will match an element if it’s the only child element of that type of its

parent. In the image below, we're using p:only-of-type to match the only child that’s a
paragraph element.

60 CSS Master, 3rd Edition

1-49. Using p:only-of-type to match the only child that’s a paragraph element

Let’s look at another example of using :first-of-type , but this time with a pseudo-element.

Remember the ::first-letter pseudo-element from earlier in this chapter? Well, as you

saw, it created an initial capital for every element it was applied to. We’ll now go one step
further and limit this initial capital to the first paragraph instead:

p:first-of-type::first-letter {

font: bold italic 3em / .5 serif;

color: #3f51b5;

}

Now our paragraph will have an initial capital, even if it’s preceded by a headline.

Selectors 61

1-50. Using :first-of-type with the ::first-letter pseudo-element

Using :nth-of-type() and :nth-last-of-type()

The :nth-of-type() and :nth-last-of-type() are also functional pseudo-classes. They

accept the same arguments as :nth-child() and :nth-last-child() . But like :first-of-

type and :last-of-type , the indexes resolve to elements of the same type. For example, to

select every odd-numbered <p> element, we can use the odd keyword with :nth-of-

type() :

p:nth-of-type(odd) {

background: #cddc39;

color: #121212;

}

As you can see from the image below, this only matches odd-numbered paragraph elements,
even though there are other element types in between them.

62 CSS Master, 3rd Edition

1-51. Selecting odd-indexed p elements with :nth-of-type(odd)

Similarly, using :nth-last-of-type(even) selects even-numbered <p> elements, but the

count begins from the last <p> element in the document—in this case, item 18.

1-52. Selecting even-indexed p elements with :nth-last-of-type(even)

Using *-of-type Pseudo-classes with Non-element Selectors

The “of-type” selectors are designed to be used with element selectors—such as p:first-of-

Selectors 63

type . You might be tempted to use “of-type” selectors to target the first instance of some

other kind of hook, such as a class—as in .item:first-of-type . But this can lead to

unexpected results. In the markup that follows, we have three list items and a paragraph
element, all of which have a class attribute value of item :

<li class="item">Lorem ipsum dolor sit amet, consectetur adipiscing elit.

<li class="item">Pellentesque sodales at risus vel fermentum.

<li class="item">Fusce et eros iaculis, accumsan ligula ac felis.

<p class="item">Duis nec ex at arcu rhoncus rhoncus sit amet at est. Donec condimentum accumsan

➥justo. Ut convallis faucibus sollicitudin.</p>

Let’s say we want to target just the first element with a class of item . If we add a rule

.item:first-of-type {background: magenta;} , you might expect just the first list item to have

a magenta background. That isn’t what happens, however, as you can see in the image below.

1-53. How browsers resolve :first-of-type when it’s used with a class name as part of a compound selector

Instead, our paragraph element also has a magenta background. Because it’s the first
paragraph type element in the document, it also matches the .item:first-of-type selector.

The Selectors Level 4 specification adds a new argument syntax for :nth-of-type() / :nth-

last-of-type() to bring its behavior more into line with developer expectations: the of [S]

syntax, where [S] is a non-element selector.

64 CSS Master, 3rd Edition

To use our previous markup example, we could select the first instance of an element with the
item class using the following CSS:

:nth-of-type(1 of .item) {

background: magenta;

}

This matches the first element with an item class attribute value. To date, however, Safari is

the only browser that supports this syntax.

Styling Form Fields Based on Input

Let’s take a look at some pseudo-classes that are specific to form fields and form field input.
These pseudo-classes can be used to style fields based on the validity of user input, whether
the field is required or currently enabled.

All of the pseudo-classes that follow are specific to forms. As a result, there’s less of a need to
limit the scope with a selector. Using :enabled won’t introduce side effects for

elements. Limiting the scope is helpful, however, when you want to style various types of form
controls differently.

:enabled and :disabled

As their name suggests, these pseudo-classes match elements that have (or lack) the HTML5
disabled attribute. This can be elements such as <input> , <select> , <button> or

<fieldset> :

<button type="submit" disabled>Save draft</button>

Form elements are enabled by default. That is, they only become disabled if the disabled

attribute is set. Using input:enabled will match every input element that doesn’t have a

disabled attribute. Conversely, button:disabled will match all button elements with a

disabled attribute:

button:disabled {

opacity: .5;

}

The image below shows the :enabled and :disabled states for our <button> element.

Selectors 65

1-54. A button in :enabled (left) and :disabled (right) states

:required and :optional

Required and optional states are determined by the presence or absence of the required

attribute on the field.17 For example:

<p>

<label for="email">Email:</label>

<input type="email" id="email" name="email" placeholder=

➥"example: jane.doe@example.com" required>
</p>

Most browsers only indicate whether a field is required once the form is submitted. With the
:required pseudo-class, we can indicate to the user that the field is required before

submission. For example, the following CSS will add a yellow border to our email field:

input:required {

border: 1px solid #ffc107;

}

1-55. Indicating that a field is required with :required

The :optional class works similarly, by matching elements that don’t have a required

attribute. For example, take the following CSS:

select:optional {

border: 1px solid #ccc;

}

This produces the following result in Firefox 86.

17. Remember that, in HTML5, the presence or absence of the attribute determines its value. In other
words, required="false" has the same effect as required="true" , required="required" and

required

66 CSS Master, 3rd Edition

1-56. An optional select element styled with the :optional pseudo-class rendered in Firefox 86

:checked

Unlike the other form-related pseudo-classes we’ve covered, :checked only applies to radio

and checkbox form controls. As the name indicates, this pseudo-class lets us define separate
styles for selected inputs.

In order to create custom radio button and checkbox inputs that work well across browsers,
we’ll need to be a little bit clever with our selectors. Let’s combine an adjacent sibling
combinator, a pseudo-element, and :checked to create custom radio button and checkbox

controls. For example, to change the style of a label when its associated radio button is
checked, we could use the following CSS:

[type=radio]:checked + label {

font-weight: bold;

font-size: 1.1rem;

}

This makes the label bold and increases its size when its associated control is checked. We
can improve this, though, by using the ::before pseudo-element with our <label> element

to inject a custom control:

[type=radio] {

/*

appearance: none removes default browser styles for radio buttons

and other elements. Safari supports this property with a -webkit-

prefix.

*/

-webkit-appearance: none;

appearance: none;

}

[type=radio] + label::before {

background: #fff;

content: '';

display: inline-block;

border: 1px solid #444;

border-radius: 1000px;

height: 1.2rem;

margin-right: 1em;

Selectors 67

vertical-align: middle;

width: 1.2rem;

}

[type=radio]:checked + label::before {

background: #4caf50;

}

This gives us the customized controls you see below.

1-57. Using the adjacent sibling combinator and the ::before pseudo-class to create custom radio controls

In order for this technique to work, of course, our HTML needs to be structured appropriately:

The <label> element must be immediately adjacent to its <input> control.

The form control must have an id attribute in addition to the name attribute (for

example, <input type="radio" id="chocolate" name="flavor">).

The label must have a for attribute, and its value must match the ID of the form control

(for example, <label for="chocolate">Chocolate</label>).

Associating the <label> using for with the input ensures that the form input will be

selected when the user clicks or taps the label or its child pseudo-element (::before).

:indeterminate

The :indeterminate pseudo-class lets you set styles for elements that are in an

indeterminate state. Only three types of elements can have an indeterminate state:

<progress> elements, when it’s unclear how much work remains (such as when waiting for

a server response)
grouped input[type=radio] form controls, before the user selects an option

input[type=checkbox] controls, when the indeterminate attribute is set to true (which

can only be done via DOM scripting)

68 CSS Master, 3rd Edition

Let’s look at an example using the <progress> element:

<div>

<label for="upload">Uploading progress</label>

<progress max="100" id="upload" aria-describedby="progress-text"></progress>

0 of <i>unknown</i> bytes.

</div>

Notice here that we haven’t included a value attribute. For most WebKit- and Blink-based

browsers, the presence or absence of the value attribute determines whether a <progress>

element has an indeterminate state. Firefox, on the other hand, sets an indeterminate state
for <progress> elements when the value attribute is empty.

Unfortunately, <progress> elements still require vendor-prefixed pseudo-elements. Here’s

our CSS:

progress {

background: #ccc;

box-shadow: 0 0 8px 0px #000a;

border-radius: 1000rem;

display: block;

overflow: hidden;

width: 100%;

}

/* Firefox progress bars */

progress:indeterminate::-moz-progress-bar {

background: repeating-linear-gradient(-45deg, #999, #999 1rem, #eee 1rem, #eee 2rem);

}

/* WebKit and Blink progress bars */

progress:indeterminate::-webkit-progress-bar {

background: repeating-linear-gradient(-45deg, #999, #999 1rem, #eee 1rem, #eee 2rem);

}

/* Perhaps someday we'll be able to do this */

progress:indeterminate {

background: repeating-linear-gradient(-45deg, #999, #999 1rem, #eee 1rem, #eee 2rem);

}

Indeterminate Checkboxes

CSS-Tricks.com provides a useful overview of indeterminate checkbox controls,
including when and why you might use them.18

18. https://css-tricks.com/indeterminate-checkboxes/

Selectors 69

This CSS gives us the progress bar shown below.

1-58. Progress bar with an indeterminate state

When the value of the progress element changes, it will no longer have an :indeterminate

state.

:in-range and :out-of-range

The :in-range and :out-of-range pseudo-classes can be used with range, number, and date

input form controls. Using :in-range and :out-of-range requires setting min and/or max

attribute values for the control. Here’s an example using the number input type:

<p>

<label for="picknum">Enter a number from 1-100</label>

<input type="number" min="1" max="100" id="picknum" name=

➥"picknum" step="1">
</p>

Let’s add a little bit of CSS to change styles if the values are within or outside of our range of
one to 100:

:out-of-range {

background: #ffeb3b;

}

:in-range {

background: #fff;

}

If the user enters -3 or 101, the background color of #picknum will change to yellow, as

defined in our :out-of-range rule.

1-59. Styling :out-of-range values

70 CSS Master, 3rd Edition

Otherwise, it will remain white, as defined in our :in-range rule.

:valid and :invalid

With the :valid and :invalid pseudo-classes, we can set styles based on whether or not

the form input meets our requirements. This will depend on the validation constraints
imposed by the type or pattern attribute value. For example, an <input> with type="email"

will be invalid if the user input is “foo 123”, as shown below.

1-60. An email field in the :invalid state

A form control will have an invalid state under the following conditions:

when a required field is empty
when the user’s input doesn’t match the type or pattern constraints—such as abc entered

in an input[type=number] field

when the field’s input falls outside of the range of its min and max attribute values

Optional fields with empty values are valid by default. Obviously, if user input satisfies the
constraints of the field, it exists in a valid state.

Form controls can have multiple states at once. So you may find yourself managing specificity
(discussed in the next section) and cascade conflicts. A way to mitigate this is by limiting
which pseudo-classes you use in your projects. For example, don’t bother defining an
:optional rule set if you’ll also define a :valid rule set.

It’s also possible, however, to chain pseudo-classes. For example, we can mix the :focus and

:invalid pseudo-classes to style an element only if it has focus: input:focus:invalid . By

chaining pseudo-classes, we can style an element that has more than one state.

:placeholder-shown

Where ::placeholder matches the placeholder text, the :placeholder-shown pseudo-class

matches elements that currently have a visible placeholder. Placeholder text is typically
visible when the form control is empty—that is, before the user has entered any information in
the field. Any property that can be used with <input> elements can also be used with

:placeholder-shown.

Selectors 71

Remember that :invalid matches form controls that have a required attribute and no user

data. But we can exclude fields for which no data has been entered by combining :invalid

with :not() and :placeholder-shown :

input:not(:placeholder-shown):invalid {

background-color: rgba(195, 4, 4, .25);

border-color: rgba(195, 4, 4, 1);

outline-color: rgba(195,4,4, 1);

}

The image below shows the results. Both form fields are required, but only the field with
invalid user-entered data is highlighted.

1-61. Both form fields are required, but only the field with invalid user-entered data is highlighted

Our first field is visually marked invalid because the user has entered an invalid email address.
However, the second field hasn’t changed, because the user hasn’t entered data.

As mentioned earlier in this section, placeholder text can introduce usability challenges. For
that reason, it’s best avoided. Removing the attribute, however, prevents us from using the
:placeholder-shown pseudo-class.

But there’s a simple fix. Set the value of the placeholder attribute to a whitespace character:

placeholder=" " . This lets us avoid the usability issues associated with using placeholder

text, but still takes advantage of the :placeholder-shown selector.

Conclusion
You’ve made it to the end of the chapter! I know that was a lot to take in. You should now have
a good understanding of:

72 CSS Master, 3rd Edition

what kinds of selectors are available for matching elements
the difference between pseudo-elements and pseudo-classes
how to use newer pseudo-classes introduced by the Selectors Level 3 and 4 specifications

In the next chapter, we’ll address some golden rules for writing maintainable, scalable CSS.

Selectors 73

CSS
Architecture

and
Organization

Chapter

2

74 CSS Master, 3rd Edition

If you’ve ever worked on a CSS codebase of any size—or even a small codebase with multiple
developers—you’ll have realized how difficult it is to create CSS that’s predictable, reusable,
and maintainable without being bloated. With added developers often comes added
complexity: longer selectors, colliding selectors, and larger CSS files.

In this chapter, we’ll explore CSS architecture and organization. First up: file organization. We’ll
take a look at strategies for managing CSS across projects, or as part of your own CSS
framework.

Then we’ll look at specificity. It’s a frequent pain point for CSS development, especially for
teams. Specificity is the means by which browsers decide which declarations to apply. If
you’ve ever wondered why all of the buttons on your site are green when you wanted some of
them to be orange, this section is for you. We’ll discuss how to calculate selector specificity,
and choose selectors that maximize reusability while minimizing the number of characters
you’ll need.

Finally, we’ll discuss some guidelines and methodologies for writing CSS. These rules make it
easier to avoid selector-naming collisions and overly specific selectors—the kinds of issues
that arise when working within teams.

File Organization
Part of a good CSS architecture is file organization. A monolithic file is fine for solo developers
or small projects. For large projects—sites with multiple layouts and content types—it’s
smarter to use a modular approach and split your CSS across multiple files.

Splitting your CSS across files makes it easier to parcel tasks out to teams. One developer can
work on form input components, while another can focus on a card pattern or media object
component. Teams can split work sensibly and increase overall productivity.

So what might a good file structure that splits the CSS across files look like? Here’s a
structure that’s similar to one I’ve used in projects:

typography.css : font faces, weights, line heights, sizes, and styles for headings and body

text
forms.css : styles for form controls and labels

lists.css : list-specific styles

tables.css : table-specific styles

accordion.css : styles for the accordion component

cards.css : styles for the card component

CSS Architecture and Organization 75

CSS frameworks such as Bootstrap1, Bulma2, and UIkit3 use a similar approach. They all
become quite granular, with separate files for progress bars, range inputs, close buttons, and
tooltips. That granularity allows developers to include only the components they need for a
project.

The details of how you split your CSS will depend on your own preferences and practices. If
your workflow includes a preprocessor such as Sass or Less, these might be partials with a
.scss or .less extension. You may also add a _config.scss or _config.less file that

contains color and font variables.

Or perhaps you have a more component-centric workflow, as with the component library tool
Fractal4, or JavaScript frameworks like React5 and Vue.js6. You might instead opt for a single
base.css or global.css file that smooths out browser differences, and use a separate CSS

file for each pattern or component.

2-1. In many cases, you’ll want to combine these smaller files into one larger bundle

Something to avoid: organizing your CSS by page or view. Page-centric approaches
encourage repetitious code and design inconsistencies. You probably don’t need both
.contact-page label and .home-page label rule sets. Instead, try to find common patterns

or components in your site’s design and build your CSS around them.

Using multiple files during site development doesn’t necessarily mean you’ll use multiple files
in production. In most cases, you’ll want to optimize CSS delivery by concatenating files, and
separating critical from non-critical CSS. We discuss optimization techniques in Chapter 3.

1. https://getbootstrap.com/
2. https://bulma.io/
3. https://getuikit.com/
4. https://fractal.build/
5. https://reactjs.org/
6. https://vuejs.org/

76 CSS Master, 3rd Edition

File organization is just one aspect of CSS architecture. Despite its position in this chapter, it’s
actually the least important aspect. In my experience, most CSS architecture problems arise
from selector choice and specificity. We’ll discuss how to avoid these issues in the next
section.

Specificity
Developers who come to CSS from more traditional programming languages sometimes note
that CSS has a global scope. In other words, using button as a selector applies those

declarations to every <button> element, whether that was intended or not.

The “global” nature of CSS is really an issue of specificity and the cascade in Cascading Style
Sheets. Although it may seem arbitrary at first, CSS has well-defined rules for determining
what declarations to apply. Understanding specificity may be what separates CSS developers
from CSS masters.

Calculating exact specificity values can seem tricky at first. As explained in the Selectors
Level 47 specification, you need to:

count the number of ID selectors in the selector (= A)
count the number of class selectors, attribute selectors, and pseudo-
classes in the selector (= B)
count the number of type selectors and pseudo-elements in the
selector (= C)
ignore the universal selector

A Quick CSS Vocabulary Review

A CSS declaration consists of a property paired with a value. Properties are
features that you can modify, such as box-sizing or display . A value is the
modification or settings for a property (such as border-box or none). Both box-

sizing: border-box and display: none are examples of declarations. A set of
declarations enclosed by curly braces ({ and }) is a declaration block. Together,
declaration blocks and their selectors are called rules or rule sets.

7. https://drafts.csswg.org/selectors-4/#specificity-rules

CSS Architecture and Organization 77

We then need to combine A, B, and C to get a final specificity value. Take the following rule:

input {

font-size: 16px;

}

The selector for this rule, input , is a “type” or “element” selector. Since there’s only one type

selector, the specificity value for this rule is 0,0,1. What if we add an attribute selector, as
shown below?

input[type=text] {

font-size: 16px;

}

Adding an attribute selector raises the value for this rule to 0,1,1. Let’s add a pseudo-class:

input[type=text]:placeholder-shown {

font-size: 16px;

}

Now our selector’s specificity is 0,2,1. Adding an ID selector, as shown below, increases the
specificity value to 1,2,1:

#contact input[type=text]:placeholder-shown {

font-size: 16px;

}

Think of specificity as a score or rank that determines which style declarations get applied to
an element. The universal selector (*) has a low degree of specificity. ID selectors have a high

degree. Descendant selectors such as p img , and child selectors such as .panel > h2 , are

more specific than type selectors such as p , img , or h1 . Class names fall somewhere in the

middle.

Higher-specificity selectors are higher-priority selectors. Declarations associated with higher-
specificity selectors are the declarations that the browser will ultimately apply.

Calculating Specificity

Keegan Street’s Specificity Calculator 8 and Polypane’s CSS Specificity calculator9

are helpful for calculating selector specificity. Polypane’s calculator also supports
selector lists.

78 CSS Master, 3rd Edition

However, when two selectors are equally specific, the cascade kicks in, and the last rule wins.
Here’s an example:

a:link {

color: #369;

}

a.external {

color: #f60;

}

Both a:link and a.external have a specificity value of 0,1,1: zero ID selectors, one class or

pseudo-class, and one type (or element) selector. However, the a.external rule set follows

the a:link rule set. As a result, a.external takes precedence. Most of our links will be cadet

blue, but those with class="external" will be orange.

Complex and combinator selectors, of course, give us higher-specificity values. Consider the
following CSS:

ul#story-list > .book-review {

color: #0c0;

}

#story-list > .book-review {

color: #f60;

}

Although these rule sets look similar, they aren’t the same. The first selector, ul#story-list

> .bookreview , contains a type selector (ul), an ID selector (#story-list), and a class

selector (.bookreview). It has a specificity value of 1,1,1. The second selector, #story-list >

.book-review , only contains an ID and a class selector. Its specificity value is 1,1,0. Even

though our #story-list > .book-review rule follows ul#story-list > .bookreview , the

higher specificity of the former means that those elements with a .book-review class will be

green rather than orange.

Although most pseudo-classes increase the specificity of a selector, :not() and :is() work

a bit differently. They don’t change the specificity value of a selector. Instead, the specificity
value of these selectors gets replaced by the value of the most specific selector in their
arguments. In other words, the specificity value :not([type=text]) is the same as

[type=text] : 0,1,0.

8. http://specificity.keegan.st/
9. https://polypane.app/css-specificity-calculator/

CSS Architecture and Organization 79

Understanding the Impact of !important

The !important keyword upends some of these rules. When a declaration contains an

!important keyword, that declaration takes precedence, regardless of specificity or cascade

rules. Consider the following CSS:

body {

background: pink !important;

}

html body {

background: yellow;

}

Although html body has a higher level of specificity (0,0,2) than body (0,0,1), the

!important keyword means that our document will have a pink background instead of a

yellow one.

2-2. Declarations containing the !important keyword take precedence, even over more specific selectors

Overriding an !important declaration requires another !important declaration paired with a

selector of equal or higher specificity. In other words, if we really wanted a yellow background,

The Cascade in Cascading Style Sheets

Read more about how declarations are sorted in the “Cascade Sorting Order”
section of the CSS Cascading and Inheritance Level 3 specification10.

10. https://www.w3.org/TR/2021/REC-css-cascade-3-20210211/#cascade-sort

80 CSS Master, 3rd Edition

we’d need to add an !important keyword to the html body rule set.

Removing the body rule altogether is also an option. If you have complete control over your

stylesheets and markup, doing so would save a few bytes. If you’re using a component library,
or customizing a theme, you may prefer to override the rule instead. That way, your changes
won’t be undone by a new release of the component or theme.

Choosing Low-specificity Selectors

Err on the side of using low-specificity selectors. They make it easier to reuse your CSS, and
extend patterns in new ways.

Consider the following:

button[type=button] {

background: #333;

border: 3px solid #333;

border-radius: 100px;

color: white;

line-height: 1;

font-size: 2rem;

font-family: inherit;

padding: .5rem 1rem;

}

This gives us a charcoal-gray button with white text and rounded ends, as shown in the
following image.

2-3. A charcoal-gray button with white text, styled using the CSS above

Let’s add some styles for a close button. We’ll use a .close class, as shown below:

button[type=button] {

CSS Architecture and Organization 81

background: #333;

border: 3px solid #333;

border-radius: 100px;

color: white;

line-height: 1;

font-size: 6rem;

font-family: inherit;

padding: .5rem 1rem;

}

.close {

width: 9rem;

height: 9rem;

background: #c00;

border: 0;

border-bottom: 5px solid #c00;

font-size: 3rem;

line-height: 0;

padding: 0;

}

Now we have two charcoal-gray buttons with white text and rounded ends.

2-4. Our second button inherits unintended styles from the type=button selector

What’s happening? Our button[type=button] selector has a specificity of 0,1,1. However,

.close is a class selector. Its specificity is only 0,1,0. As a result, most of our .close rules

don’t get applied to <button type="button" class="close"> .

We can ensure that our .close styles are applied by either:

changing .close to button[type=button].close

making button[type=button] less specific

The second option adds fewer bytes, so let’s use that:

82 CSS Master, 3rd Edition

[type=button] {

background: #333;

border: 3px solid #333;

border-radius: 100px;

color: white;

line-height: 1;

font-size: 6rem;

padding: .5rem;

}

.close {

width: 9rem;

height: 9rem;

background: #c00;

border: 0;

border-bottom: 5px solid #c00;

font-size: 3rem;

line-height: 0;

}

Changing the specificity of our selector leaves us with our intended result.

2-5. Declarations attached to lower-specificity selectors are easier to override

Avoid Chaining Selectors

Another way to minimize specificity is to avoid chaining selectors. Selectors such as
.message.warning have a specificity of 0,2,0. Higher specificity means they’re hard to

override. What’s more, chaining classes may cause side effects. Here’s an example:

.message {

background: #eee;

border: 2px solid #333;

border-radius: 1em;

padding: 1em;

}

.message.error {

CSS Architecture and Organization 83

background: #f30;

color: #fff;

}

.error {

background: #ff0;

border-color: #fc0;

}

Using <p class="message"> with this CSS gives us a nice gray box with a dark gray border.

2-6. The visual effect of our .message selector

Using <p class="message error"> , however, gives us the background of .message.error and

the border of .error , as shown below.

2-7. The visual effect of using .message.error as a selector

The only way to override a chained selector is to use an even more specific selector. To be rid
of the yellow border, we’d need to add a class name or type selector to the chain, such as
.message.warning.exception or div.message.warning . It’s more expedient to create a new

class instead.

If you do find yourself chaining selectors, go back to the drawing board. Either the design has
inconsistencies, or you’re chaining prematurely in an attempt to prevent problems you don’t
yet have. The maintenance headaches you’ll prevent and the flexibility you’ll gain are worth it.

Avoid Using ID Selectors

HTML allows an identifier (that is, an id attribute) to be used once per document. As a result,

rule sets that use ID selectors are hard to repurpose. Doing so typically involves using a list of
ID selectors—for example, #sidebar-feature, #sidebar-sports , and so on.

Identifiers also have a high degree of specificity, and require longer selectors to override
declarations. In the example that follows, we need to use #sidebar.sports and

#sidebar.local to undo the background color of #sidebar :

/* Avoid doing this in your CSS */

84 CSS Master, 3rd Edition

#sidebar {

float: right;

width: 25%;

background: #eee;

}

#sidebar.sports {

background: #d5e3ff;

}

#sidebar.local {

background: #ffcccc;

}

Instead, we can use a simple .sidebar class selector:

.sidebar {

float: right;

width: 25%;

background: #eee;

}

.sports {

background: #d5e3ff;

}

.local {

background: #ffcccc;

}

Not only does this save a few bytes, but our .sports and .local rules can now be used with

other elements.

Using an attribute selector such as [id=sidebar] avoids the higher specificity of an identifier.

Though it lacks the reusability of a class selector, the low specificity means we can avoid
selector chaining.

Let’s discuss a selector such as #content article.sports table#stats tr:nth-child(even)

A Case for Higher Specificity

In some circumstances, you may want the higher specificity of an ID selector. For
example, a network of media sites might wish to use the same navigation bar
across all of its web properties. This component must be consistent across sites in
the network, and should be hard to restyle. Using an ID selector reduces the
chances of those styles being overridden accidentally. You can also achieve this
using the !important keyword.

CSS Architecture and Organization 85

td:last-child . Not only is it absurdly long, but with a specificity of 2,3,4, it’s also not reusable.

How many possible instances of this selector can there be in your markup?

Let’s make this better. We can immediately trim our selector to #stats tr:nth-child(even)

td:last-child . It’s specific enough to do the job. An even simpler approach is to use a class

name such as .stats . It’s a much shorter selector, and those styles aren’t limited to #stats

tables.

Minimizing Nesting When Using a Preprocessor

Overly long, highly specific selectors are often caused by nested rule sets. Both Sass and Less
support nested rule set syntax, which is useful for grouping related styles and saving
keystrokes. Take, for example, the following CSS:

article {

margin: 2em auto;

}

article p {

margin: 0 0 1em;

font-family: 'Droid Serif','Liberation Serif',serif;

}

In both Less and Sass, we can rewrite this to take advantage of nesting:

article {

margin: 2em auto;

p {

margin: 0 0 1em;

font-family: 'Droid Serif','Liberation Serif',serif;

}

}

This gives us a descendant selector, and the output will match the standard CSS above.

It’s also possible to nest a rule set inside a nested rule set. Take a look at this example:

nav {

> ul {

height: 1em;

overflow: hidden;

position: relative;

&::after {

86 CSS Master, 3rd Edition

content: ' ';

display: block;

clear: both;

}

}

}

Here, we’ve nested styles for ::after inside a declaration block for ul , which itself is nested

inside a nav declaration block. When compiled, we end up with the following CSS:

nav > ul {

height: 1em;

overflow: hidden;

position: relative;

}

nav > ul::after {

content: ' ';

display: block;

clear: both;

}

So far, so good. Our selectors aren’t terribly long or specific. Now let’s look at a more complex
example of nesting:

article {

color: #222;

margin: 1em auto;

width: 80%;

&.news {

h1 {

color: #369;

font-size: 2em;

&[lang]{

font-style: italic;

}

}

}

}

That doesn’t seem too egregious, right? Our [lang] selector is only four levels deep. Well,

take a look at our compiled CSS output:

article {

CSS Architecture and Organization 87

color: #222;

margin: 1em auto;

width: 80%;

}

article.news h1 {

color: #369;

font-size: 2em;

}

article.news h1 [lang] {

font-style: italic;

}

Uh-oh! Now we have a couple of high-specificity selectors: article.news h1 and

article.news h1[lang] . They use more characters than necessary, and require longer and

more specific selectors to override them. Mistakes like this can swell the size of our CSS when
repeated across a codebase.

Neither Less nor Sass has a hard limit on how deeply rules can be nested. A good rule of
thumb is to avoid nesting your rules by more than three levels. Less nesting results in lower
specificity and CSS that’s easier to maintain.

Using Type and Attribute Selectors with Caution

It’s good to keep specificity low, but be careful about the selectors you use to accomplish that.
Type and attribute selectors can be the most bothersome.

Type selectors are element selectors such as p , button , and h1 . Attribute selectors

include those such as [type=checkbox] . Style declarations applied to these selectors will be

applied to every such element across the site. Let’s look at another example using buttons,
this time with an element selector:

button {

background: #FFC107;

border: 1px outset #FF9800;

display: block;

font: bold 16px / 1.5 sans-serif;

margin: 1rem auto;

width: 50%;

padding: .5rem;

}

This seems innocuous enough. But what if we want to create a button that’s styled
differently? Let’s create a .tab-rounded button for tab panels:

88 CSS Master, 3rd Edition

<div class="tabs">

<button type="button" role="tab" aria-selected="true" aria-controls="tab1" id="tab-id"

➥class="tab-rounded">Tab 1</button>
</div>

<div tabindex="0" role="tabpanel" id="tab1" aria-labelledby="tab-id">

<p>This is the tab 1 text</p>

</div>

Now we need to write CSS to override every line that we don’t want our rounded button to
inherit from the button rule set:

.tab-rounded {

background: inherit;

border: 1px solid #333;

border-bottom: 0; /* We only need borders on three sides for tabs */

border-radius: 3px 3px 0 0;

diplay: inline-block;

font-weight: normal;

margin: .5rem 0 0;

width: auto;

padding: 1rem 2rem;

}

We’d still need many of these declarations to override browser defaults, but what if we assign
our button styles to a .default class instead? We can then drop the display , font-weight

and width declarations from our .tab-rounded rule set. That’s a 21% reduction in size:

.default {

background: #FFC107;

border: 1px outset #FF9800;

display: block;

font: bold 16px / 1.5 sans-serif;

margin: 1rem auto;

width: 50%;

padding: .5rem;

}

.tab-rounded {

background: inherit;

border: 1px solid #333;

border-bottom: 0;

border-radius: 3px 3px 0 0;

padding: 1rem 2rem;

}

Just as importantly, avoiding type and attribute selectors reduces the risk of styling conflicts.
A developer working on one module or document won’t inadvertently add a rule that creates a

CSS Architecture and Organization 89

side effect in another module or document.

Choosing What to Name Things
When choosing class-name selectors, use semantic class names.

When we use the word semantic, we mean meaningful. Class names should describe what
the rule does or the type of content it affects. Ideally, we want names that will endure changes
in the design requirements. Naming things is harder than it looks.

Here are examples of what not to do: .red-text , .blue-button , .border-4px , .margin10px .

What’s wrong with these? They’re too tightly coupled to the existing design choices. Using
class="red-text" to mark up an error message does work. But what happens if the design

changes and error messages become black text inside orange boxes? Now your class name is
inaccurate, making it tougher for you and your colleagues to understand what’s happening in
the code.

A better choice in this case is to use a class name such as .alert , .error , or .message-

error . These names indicate how the class should be used and the kind of content (error

messages) they affect.

We’ll now look at two methodologies for naming things in CSS. Both methods were created to
improve the development process for large sites and large teams, but they work just as well
for teams of one. It’s up to you whether you choose one or the other, neither, or a mix of both.
The point of introducing them is to help you to think through approaches for writing your own
CSS.

Recommended Reading

Philip Walton discusses these and other rules in his article “CSS Architecture”11. I
also recommend Harry Roberts’ site CSS Guidelines12 and Nicolas Gallagher’s post
“About HTML Semantics and Front-end Architecture”13 for more thoughts on CSS
architecture. For a different take, read “CSS Utility Classes and ‘Separation of
Concerns’”14 by Adam Wathan, the creator of Tailwind CSS.

11. https://philipwalton.com/articles/css-architecture/
12. https://cssguidelin.es/
13. http://nicolasgallagher.com/about-html-semantics-front-end-architecture/
14. https://adamwathan.me/css-utility-classes-and-separation-of-concerns/

90 CSS Master, 3rd Edition

Block-Element-Modifier (BEM)

BEM15, or Block-Element-Modifier, is a methodology, a naming system, and a suite of related
tools. Created at Yandex16, BEM was designed for rapid development by sizable development
teams. In this section, we’ll focus on the concept and the naming system.

BEM methodology encourages designers and developers to think of a website as a collection
of reusable component blocks that can be mixed and matched to create interfaces. A block is
simply a section of a document, such as a header, footer, or sidebar, as illustrated below.

Perhaps confusingly, “block” here refers to the segments of HTML that make up a page or
application.

2-8. A home page might have header, main, and footer blocks

Blocks can contain other blocks. For example, a header block might also contain logo,
navigation, and search form blocks, as seen below. A footer block might contain a site map
block.

15. https://en.bem.info/
16. https://www.yandex.com/

CSS Architecture and Organization 91

2-9. A header block that contains logo, navigation, and search blocks

More granular than a block is an element. As the BEM documentation explains17:

An element is a part of a block that performs a certain function. Elements

are context-dependent: they only make sense in the context of the block

they belong to.

A search form block, for example, contains a text input element and a submit button element,
as illustrated below. (To clarify, we’re using “element” as a shorthand for “design element”
rather than in the sense of HTML elements.)

2-10. A search block with text input and submit button elements

A main content block, on the other hand, might have an article list block. This article list block
might contain a series of article promo blocks. And each article promo block might contain
image, excerpt, and “Read more” elements, as presented below.

17. https://en.bem.info/methodology/key-concepts/#element

92 CSS Master, 3rd Edition

2-11. A promotional block for a website article

Together, blocks and elements form the basis of the BEM naming convention. According to
the rules of BEM:

block names must be unique within a project
element names must be unique within a block
variations of a block—such as a search box with a dark background—should add a modifier
to the class name

In a BEM naming system, block and element names are separated by a double underscore (as
in .block__element). Block and element names are separated from modifier names by a

double hyphen (for example, .block--modifier or .block__element--modifier).

Here’s what BEM looks like using a search form example:

<form class="search">

<div class="search__wrapper">

<label for="s" class="search__label">Search for: </label>

<input type="text" id="s" class="search__input">

<button type="submit" class="search__submit">Search</button>

</div>

</form>

A variation of this form with a dark background might use the following markup:

<form class="search search--inverse">

<div class="search__wrapper search__wrapper--inverse">

<label for="s" class="search__label search_label--inverse">Search for: </label>

<input type="text" id="s" class="search__input search__input--inverse">

<button type="submit" class="search__submit search__submit--inverse">Search</button>

</div>

</form>

Our CSS might look like this:

CSS Architecture and Organization 93

.search {

color: #333;

}

.search--inverse {

color: #fff;

background: #333;

}

.search__submit {

background: #333;

border: 0;

color: #fff;

height: 2rem;

display: inline-block;

}

.search__submit--inverse {

color: #333;

background: #ccc;

}

In both our markup and CSS, search--inverse and search__label--inverse are additional

class names. They’re not replacements for search and search__label . Class names are the

only type of selector used in a BEM system. Child and descendant selectors may be used, but
descendants should also be class names. Element and ID selectors are verboten. Enforcing
block and element name uniqueness also prevents naming collisions, which can become a
problem among teams.

There are several advantages to this approach:

it’s easy for new team members to read the markup and CSS, and understand its behavior
adding more developers increases team productivity
consistent naming reduces the possibility of class-name collisions and side effects
the CSS is independent of the markup
the CSS is highly reusable

Learning More about BEM

There’s a lot more to BEM than can comfortably fit in a section of a chapter. The
BEM site describes this methodology in much greater detail, and also features tools
and tutorials to get you started. The Get BEM18 website is another fantastic
resource.

18. http://getbem.com/introduction/

94 CSS Master, 3rd Edition

Atomic CSS
Atomic CSS takes a markedly different approach from BEM. Named and explained by Thierry
Koblentz of Yahoo in his 2013 piece “Challenging CSS Best Practices”19, Atomic CSS uses a
tight library of class names. These class names are often abbreviated and divorced from the
content they affect. In an Atomic CSS system, you can tell what the class name does—but
there’s no relationship between class names (at least, not those used in the stylesheet) and
content types. Today, Tailwind CSS20 and Tachyons21 use a similar approach.

Let’s illustrate with an example. Below is a set of rules in what we might call a conventional
CSS architecture. These rule sets use class names that describe the content to which they
apply—a global message box, and styles for “success”, “warning”, and “error” message boxes:

.msg {

background-color: #a6d5fa;

border: 2px solid #2196f3;

border-radius: 10px;

font-family: sans-serif;

padding: 10px;

}

.msg-success {

background-color: #aedbaf;

border: 2px solid #4caf50;

}

.msg-warning {

background-color: #ffe8a5;

border-color: #ffc107;

}

.msg-error {

background-color: #faaaa4;

border-color: #f44336;

}

To create an error message box, we’d need to add both the msg and msg-error class names

to the element’s class attribute:

<p class="msg msg-error">An error occurred.</p>

Let’s contrast this with an atomic system, where each declaration becomes its own class:

19. https://www.smashingmagazine.com/2013/10/21/challenging-css-best-practices-atomic-approach/
20. https://tailwindcss.com/
21. https://tachyons.io/

CSS Architecture and Organization 95

.bg-a {

background-color: #a6d5fa;

}

.bg-b {

background-color: #aedbaf;

}

.bg-c {

background-color: #ffe8a5;

}

.bg-d {

background-color: #faaaa4;

}

.bc-a{

border-color: #2196f3;

}

.bc-b {

border-color: #4caf50;

}

.bc-c {

border-color: #ffc107;

}

.bc-d {

border-color: #f44336;

}

.br-1x {

border-radius: 10px;

}

.bw-2x {

border-width: 2px;

}

.bss {

border-style: solid;

}

.sans {

font-style: sans-serif;

}

.p-1x {

padding: 10px;

}

That’s a lot more CSS. Let’s now recreate our error message component. Using Atomic CSS,
our markup becomes:

<p class="bw-2 bss p-1x sans br-1x bg-d bc-d">

An error occurred.

</p>

Our markup is also more verbose. But what happens when we create a warning message

96 CSS Master, 3rd Edition

component?

<p class="bw-2 bss p-1x sans br-1x bg-c bc-c">

Warning: The price for that item has changed.

</p>

Two class names changed: bg-d and bc-d were replaced with bg-c and bc-c . We’ve

reused five rules. Now, let’s create a button:

<button type="button" class="p-1x sans bg-a br-1x">Save</button>

Hey now! Here we’ve reused four rules and avoided adding any more rules to our stylesheet. In
a robust atomic CSS architecture, adding a new HTML component such as an article sidebar
won’t require adding more CSS (though, in reality, it might require adding a little bit more).

Atomic CSS comes with a few advantages:

it keeps CSS trim by creating highly granular, highly reusable styles, instead of a rule set for
every component
it greatly reduces specificity conflicts by using a system of low-specificity selectors
it allows for rapid HTML component development once the initial rule sets are defined

Atomic CSS is a bit like using utility classes in your CSS, but taken to the extreme.

The Case Against Atomic CSS

Atomic CSS runs counter to much of the popular advice about writing CSS. It feels almost as
wrong as sticking style attributes everywhere. Indeed, one of the main criticisms of the

Atomic CSS methodology is that it blurs the line between content and presentation. If
class="fl m-1x" floats an element to the left and adds a 10px margin, what do we do when

we no longer want that element to float left?

One answer, of course, is to remove the fl class from our element. But now we’re changing

HTML. The whole point of CSS is to separate markup from presentation. Still, updating the
HTML may be a small price to pay for rapid component development and trimmer CSS.

Another Answer: Change the CSS

We could also solve this problem by removing the .fl {float: left;} rule from
our stylesheet, although that would affect every element with a class name of fl .

CSS Architecture and Organization 97

In Koblentz’s original post, he used class names such as .M-10 for margin: 10px and .P-10

for padding: 10px . I hope the issue with such a naming convention is obvious. Changing to a

margin of 5px or 20px means we’d need to update our CSS and our HTML, or have class

names that fail to accurately describe their effect.

Using class names such as p-1x , as done in this section, resolves that issue. The 1x part of

the class name indicates a ratio rather than a defined number of pixels. If the base padding is
5px (that is, .p-1x { padding: 5px; }), then .p-2x would set 10px of padding. Yes, that’s

less descriptive of what the class name does, but it also means that we can change our CSS
without updating our HTML, and without creating a misleading class name.

An atomic CSS architecture doesn’t prevent us from using class names that describe the
content. You can still add .button__close or .accordion__trigger to your code. Such class

names are preferable for JavaScript and DOM manipulation.

Know When to Go Your Own Way

In practice, your CSS will include a mix of approaches. You may have class names that
describe content or components in addition to utility class names that describe color and
layout.

If you don’t have full control over the markup, as with some CMS products, neither of these
approaches may be useful. You may even need to use long and specific selectors to reach
your design goals.

Conclusion
After reading this chapter, you should now know:

how to organize your CSS for easier development and maintenance
how browsers determine which CSS rules to use
why class selectors are the most flexible selector for writing scalable, maintainable CSS
the basics of BEM and Atomic CSS, and the pros and cons of each

In the next chapter, you’ll learn what to do when you notice a bug in your CSS. We’ll also
discuss a few tools for making your CSS files smaller.

98 CSS Master, 3rd Edition

Debugging and
Optimization

Chapter

3

Debugging and Optimization 99

On your road to becoming a CSS master, you’ll need to know how to troubleshoot and
optimize your CSS. How do you diagnose and fix rendering problems? How do you ensure that
your CSS creates no performance lags for end users?

It’s also important to ensure code quality. Were you a little too verbose with your comments?
Are there too many unused selectors? Are your selectors overly specific in a way that could
affect performance?

Knowing which tools to use will help you ensure that your front end works well. In this chapter,
we’ll look at some browser and command-line tools to help you analyze and troubleshoot your
CSS.

Browser-based Developer Tools
Most desktop browsers include an element inspector feature that you can use to
troubleshoot your CSS. Start using this feature by right-clicking anywhere in the browser
viewport and selecting Inspect or Inspect Element from the menu. Mac user? Press the Ctrl

key while clicking the element you’d like to inspect. The image below indicates what you can
expect to see in Chrome.

3-1. Chrome Developer Tools

You can also press Ctrl + Shift + I (Windows/Linux) or Cmd + Option + I (macOS) to open

the developer tools panel. Or use the the application’s menu:

100 CSS Master, 3rd Edition

Google Chrome and Microsoft Edge: Tools > Developer Tools (More tools and Developer
tools on Linux)
Firefox: Tools > Web Developer
Safari: Develop > Show Web Inspector

In Safari, you may have to enable the Develop menu first by going to Safari > Preferences >
Advanced and checking the box next to Show Develop menu in menu bar.

After opening the developer tools interface, you may need to select the correct panel. In
Firefox, this panel is named Inspector. In Chrome, Edge, and Safari, it’s the Elements panel.
You’ll know you’re in the right place when you see HTML on one side of the panel and CSS
rules on the other.

Using the Styles Panel

Sometimes an element isn’t styled as expected. Maybe a typographical change failed to take,
or there’s less padding around a paragraph than you wanted. You can determine which rules
are affecting an element by using the Styles panel of the Web Inspector.

Browsers are fairly consistent in how they organize the Styles panel. Declarations set using
the style attribute are listed first, whether they were added to the HTML, or

programmatically using JavaScript.

Inline styles are followed by a list of style rules applied via author stylesheets—those written
by you or your colleagues. Styles in this list are grouped by media query and/or filename.

Authored style rules precede user agent styles. User agent styles are the browser’s default
styles. They also have an impact on your site’s look and feel. In Firefox, you may have to select
the Show Browser Styles option in order to view user agent styles. You can find this setting in
the Settings panel. Press the F1 key when the Developer Tools panel is open.

Properties and values are grouped by selector. The checkbox next to each property lets you
enable and disable specific declarations. Click on a property or value to change it.

Generated Markup

The markup you’ll see in the HTML panel is a representation of the DOM. It’s
generated when the browser finishes parsing the document and may differ from
your original markup. Using View Source reveals the original markup. Keep in mind
that, for some JavaScript applications, there may not be much markup to view.

Debugging and Optimization 101

Identifying Cascade and Inheritance Problems

As you inspect styles, you may notice that some properties appear crossed out. These
properties have been overridden either by a cascading rule, a conflicting rule, or a more
specific selector, as depicted below.

3-2. Identifying property and value pairs that have been superseded by another declaration

In the image above, the background , border , and font-size declarations of the

[type=button] block are displayed with a line through them. These declarations were

overridden by those in the .close block, which comes after the [type=button] block in our

CSS file.

Spotting Invalid or Unsupported Properties and Values

You can also use the element inspector to spot invalid or unsupported properties or property
values. In Chromium-based browsers, including Edge, invalid or unsupported CSS
declarations both have a line through them and an adjacent warning icon, which can be seen
below.

102 CSS Master, 3rd Edition

3-3. Spotting an unsupported CSS property value using Chrome 89

Firefox also strikes through unsupported properties and values, but places the warning icon to
the right of the declaration.

3-4. How Firefox Developer Edition indicates invalid or unsupported properties and values

In the screenshot below, Safari strikes through unsupported rules with a red line, and

Debugging and Optimization 103

highlights them with a yellow background and warning icon.

3-5. An invalid CSS property value in Safari

When it comes to basic debugging and identifying inheritance conflicts, it doesn’t matter
which browser you choose. Familiarize yourself with all of them, however, for those rare
occasions when you need to diagnose a browser-specific issue.

Debugging Flexbox and Grid Layouts

As you work with Grid and Flexbox, you may wonder why your layout is a little off, or why a
particular property isn’t working the way you’d expect. Chrome, Edge and Firefox all include
Grid and Flexbox inspectors with their developer tools to help you diagnose issues with both
modules.

Launching the Grid or Flexbox inspector works similarly in Chrome, Edge, and Firefox. First,
open the browser’s developer tools and locate the Elements (Chrome/Edge) or Inspector

Flexbox Inspection

The Flexbox inspector is only available in Chrome/Edge versions 90 and later.

104 CSS Master, 3rd Edition

panel (Firefox). Next, locate the grid or flex container in the document tree. You’ll see a small
label next to the element—grid if the element is a grid container, and flex if it’s a flex container.
Click that label to display the Grid or Flexbox overlay. The following image shows what the
Grid overlay looks like in Edge 92.

3-6. Using the Grid inspector in Microsoft Edge 92

For Grid containers, the overlay shows the number for each grid line (the dividing lines of a
grid) and highlights each grid gap (the space between each item in a grid). One feature of Grid
is the ability to indicate how many columns or rows an element should span by indicating a
starting and an ending grid line number. Using the inspector lets you see how grid lines are
numbered.

For Flex containers, the overlay highlights the size of the gap property, and any space created

by the use of justify-content , align-content , or align-items . The following image shows

the Firefox Flexbox overlay.

Debugging and Optimization 105

3-7. The Firefox Flexbox overlay. The Flexbox overlays for Chrome and Edge work similarly

The Flexbox overlays for Chrome and Edge work similarly. Chrome and Edge versions 92 and
above also include a feature for tinkering with the align-* and justify-* properties of Grid

and Flexbox. The image below shows the Flex inspector in Edge 92.

3-8. Using the Flex inspector in Chrome and Edge 92 and above

Firefox, on the other hand, includes a feature that can help you understand why a flex item

106 CSS Master, 3rd Edition

may be larger or smaller than you expected. The Firefox flex inspector indicates when a flex
item is set to grow or shrink.

3-9. The Firefox flex inspector also indicates when a flex item is set to grow or shrink

We’ll revisit Grid and Flexbox debugging tools in Chapter 5, “Layouts”.

Debugging Responsive Layouts

On-device testing is ideal. During development, however, it’s helpful to simulate mobile device
viewports and touch features. All major desktop browsers include a mode for responsive
debugging.

Firefox

Firefox calls its responsive debugging feature Responsive Design Mode. Look for the phone
and tablet icon. You’ll find it on the right side of the developer tools panel.

3-10. Firefox’s Responsive Design Mode icon

Debugging and Optimization 107

While in Responsive Design Mode, you can test a range of viewport dimensions. You can also
simulate the viewport and pixel density of several Android and iOS devices by selecting an
option from the device menu.

3-11. Firefox Developer Tools when touch events are enabled

You can also switch the viewport’s orientation, adjust its dimensions, or change its pixel
density ratio from this menu.

Touch events are disabled when you first enter Responsive Design Mode. You can enable
them by clicking the touch icon, or by selecting a specific device from the device menu.

You can also use the Firefox Responsive Design Mode to simulate slow connections.
Responsive Design Mode includes the ability to mimic GPRS and LTE mobile speeds as well as
Wi-Fi connections with its throttling feature.

3-12. Firefox Responsive Design Mode includes a throttling feature

Chrome and Microsoft Edge Chromium

In Chrome and Edge versions 79 and above, responsive mode is named Device Mode. To use
it, click the device icon (pictured below) in the upper-left corner, next to the Select an element
icon.

108 CSS Master, 3rd Edition

3-13. Chrome’s Responsive Design Mode icon

Like Firefox, Chrome’s and Edge’s Device Mode lets you mimic several kinds of Android and
iOS devices, including older devices such as the Galaxy S5 and iPhone 8. In both browsers,
DOM touch events are available to your code when using Device Mode.

In Chrome, the Device Mode’s basic throttling feature (shown below) approximates
performance on low-tier and mid-tier devices. You can also use it to simulate being offline.

3-14. Chrome’s throttling is device centered, and mimics the performance of lower-end mobile devices

To mimic network speeds, use the throttling menu found in the developer tools Network
panel.

Debugging and Optimization 109

3-15. Microsoft Edge Chromium, shown here, and Google Chrome offer network speed throttling in the Network

panel

Safari

Safari’s Responsive Design Mode is best for testing layouts in iOS device viewports. To enter
Responsive Design Mode, select Develop > Enter Responsive Design Mode, or Cmd + Ctrl +

R.

110 CSS Master, 3rd Edition

3-16. SitePoint.com as viewed using Safari’s responsive design mode

Unfortunately, Safari’s developer tools are limited by comparison. You can’t, for example,
mimic slow network speeds. Nor can you simulate touch events. To test touch events, you’ll
need to use a physical iOS device, or a remote device testing service.

Responsive Design–focused Browsers

Blisk1 and Polypane2 are two newer, commercial services that have responsive design and
device emulation at their core. Both use Chromium under the hood, so you can’t rely on them
for debugging issues with non-Chromium browsers. They are, however, perfect for testing
and debugging responsive layouts.

1. https://blisk.io/
2. https://polypane.app/

Debugging and Optimization 111

3-17. Polypane emulates multiple viewports in the same browser window

Both browsers let you view your layout at multiple viewports in the same window at the same
time, so that you don’t have to spend time resizing browser windows.

Debugging for UI Responsiveness
Some CSS properties and values trigger operations called “reflows” and “repaints”, which can
have a negative effect on the responsiveness of the user interface. This is especially true for
low-powered devices. Let’s look at how to measure UI performance using browser tools. First,
however, let’s define “reflow” and “repaint”.

What Are Reflows and Repaints?

A reflow is any operation that changes the layout of part or all of a page. Examples include
changing the dimensions of an element or updating its left position. They’re expensive,
because they force the browser to recalculate the height, width, and position of elements in
the document.

112 CSS Master, 3rd Edition

Repaints also force the browser to re-render part of the document. Changing the color of a
button when in a :hover state is one example of a repaint. They’re a bit less troublesome

than reflows, however, because they don’t affect the dimensions or positions of nodes.

Reflows and repaints are most often triggered by DOM operations—such as adding or
removing elements. Changing the values of properties that affect the dimensions, visibility, or
position of an element can also trigger reflows and repaints. CSS Triggers3 is a good (though
dated) starting point for identifying which properties may be causing performance
bottlenecks.

It’s difficult to completely banish repaints and reflows from a project. We can, however,
identify them and reduce their impact using performance tools.

Performance Tools

Performance tools measure how well your front end behaves, capturing things like frame rate
and asset load times. By recording page activity, we can determine which portions of our CSS
may be causing performance bottlenecks.

In Microsoft Edge, Chrome and Firefox, you’ll use the appropriately named Performance
panel. Safari calls it Timelines.

There are two ways to trigger the profiling tool:

manually by pressing the Record or start button
programmatically using console.profile(profileName) , where profileName is the

optional name for the profile.

To stop recording, press the stop button, or use console.profileEnd(profileName) .

Page Loads

Page loads always trigger reflow and repaint operations as the browser parses the
initial HTML, CSS, and JavaScript.

3. https://csstriggers.com/

Debugging and Optimization 113

Performance tools can be a bit befuddling. Each browser displays its data a little bit
differently. To see what this looks like in practice, we’ll compare two basic documents,
examples A and B. In both cases, we’re moving a series of <div> elements from an x-position

of zero to an x-position of 1,000.

Both examples use CSS animations. In example A, however, we’ll animate the left property.

In example B, we’ll translate our elements by 1,000 pixels and animate the transform

property.

Our markup for both is the same:

<!DOCTYPE html>

<html lang="en-US">

<head>

<meta charset="utf-8">

<title>Performance example</title>

<style type="text/css">

/* CSS will go here */

</style>

</head>

<body>

<div></div>

<div></div>

<div></div>

<div></div>

<script type="text/javascript" src="toggle-move-class.js"></script>

</body>

</html>

The JavaScript for both documents is also the same. When the page loads, we’ll add a
running class to the body that triggers our animation:

function startAnimation() {

document.body.classList.add('running');

}

window.addEventListener('load', startAnimation);

Some of our CSS is common to both examples:

For Testing Only

Both console.profile() and console.profileEnd() are experimental and non-
standard. Don’t use them in production!

114 CSS Master, 3rd Edition

div {

background: #36f;

margin-bottom: 1em;

width: 100px;

height: 100px;

/*

* Shorthand for animation direction,

* duration, timing function, iteration, and play state

*/

animation: alternate 2s ease-in 2 paused;

}

.running div {

animation-play-state: running;

}

For example A, we’ll animate the left property. Here’s our animation CSS:

@keyframes change_left {

from {

left: 0px;

}

to {

left: 1000px;

}

}

div {

position: relative; /* Element must be positioned in order for left to work */

left: 0;

animation-name: change_left;

}

In Safari, animating the left property generates lots of layout and rendering operations. It

also uses quite a bit of CPU power.

Debugging and Optimization 115

3-18. Safari timeline output for left-position transition

In Chrome and Edge, the profile is similarly red. In this case, however, the uppermost row of
red markings indicates dropped frames. Dropped frames can cause what experts call jank, or
animations that aren’t as smooth as they can be. The lower row of markings indicates shifts in
page layout. These changes may cause performance lags or rendering glitches for devices
with limited memory or slower processors. Animating the left property results in lots of
dropped frames in Chrome and Edge, as shown below.

116 CSS Master, 3rd Edition

3-19. Animating the left property results in lots of dropped frames in Chrome and Edge

The reason for the style recalculations and repaints has to do with the property we’re
transitioning: left . The left property triggers a reflow whenever it’s changed, even if that

change is caused by an animation or transition.

Now, let’s take a look at the CSS for example B:

@keyframes translate_left {

from {

transform: translateX(0);

}

to {

transform: translate(1000px);

}

}

div {

Debugging and Optimization 117

transform: translateX(0);

animation-name: translate_left;

}

This time we’re animating the transform property from a start value of translateX(0) and

an ending value of translateX(1000px) .

In most browsers, transforms don’t trigger reflows. Animating transform vastly reduces the

amount of layout and rendering operations in Safari. The image below shows the Safari
timeline output for a transition of the transform property.

3-20. Safari timeline output for a transition of the transform property

Chrome and Edge drop far fewer frames.

118 CSS Master, 3rd Edition

3-21. Animating a translation transform results in fewer dropped frames and jank in Chrome and Edge

I haven’t yet mentioned Firefox, because Firefox handles both animations similarly. The
following image shows the results of animating the left property. Firefox 86 managed an

average frame rate of 52.58 frames per second.

Debugging and Optimization 119

3-22. Firefox 86 managed an average frame rate of 52.58 frames per second when animating the left property

The next image reflects the performance of animating a translation transform. Firefox 86 had
a slightly higher frame rate of 56.56 frames per second.

120 CSS Master, 3rd Edition

3-23. Firefox 86 had a slightly higher frame rate of 56.56 frames per second when animating transform

In practice, choose the property that performs best across the broadest range of browsers.

Identifying Which Lines to Remove

As mentioned earlier in this chapter, properties that affect the size, geometry, or placement of
objects can trigger reflow operations. This includes positional properties like left , top ,

right , and bottom , alignment-related properties, and display .

Once you know which properties could cause trouble, the next step is to test the hypothesis.
Disable the property—either with a comment, or by adding a temporary x- prefix—and rerun

the performance test.

Remember that performance is relative, not absolute or perfect. The goal is improvement:
make it perform better than it did before. If a property or effect is unacceptably slow,
eliminate it altogether.

Debugging and Optimization 121

Minification with CSS Optimizer
Developer tools help you find and fix rendering issues, but what about efficiency? Are our file
sizes as small as they can be? For that, we need minification tools.

Minification in the context of CSS means “removing excess characters”. Consider, for
example, this block of code:

h1 {

font: 16px / 1.5 'Helvetica Neue', arial, sans-serif;

width: 80%;

margin: 10px auto 0px;

}

That’s 98 bytes long, including line breaks and spaces. Let’s look at a minified example:

h1{font:16px/1.5 'Helvetica Neue',arial,sans-serif;width:80%;

➥margin:10px auto 0}

Now our CSS is only 80 bytes long—an 18% reduction. Fewer bytes, of course, means faster
download times and data transfer savings for you and your users.

In this section, we’ll look at CSS Optimizer, or CSSO, a minification tool that runs on Node.js5.
It’s available as a plugin for several build tools and workflows, but we’ll focus on the
command-line interface version.

Of course, using the command-line version of CSSO requires that you get comfortable using a
command-line interface. Linux and macOS users can use the Terminal application (Ctrl + Alt

+ T for most Linux distributions, Terminal.app for macOS). If you’re using Windows, try the

command prompt. Go to the Start or Windows menu and type “cmd” in the search box. You
can also use PowerShell.

Before you install CSSO, you’ll need to install Node.js and npm. Node.js is a JavaScript runtime

More on Web Performance

If you’d like to learn more about how to use browser tools to analyze performance,
check out the book Jump Start Web Performance4, by Craig Buckler.

4. https://www.sitepoint.com/premium/books/jump-start-web-performance/
5. https://nodejs.org

122 CSS Master, 3rd Edition

that lets you write JavaScript applications that run on your computer or on a server without a
browser. npm is the package manager for Node.js. Package managers make it easy to install
and update the code libraries used in your projects. npm is installed as part of the Node.js
installation process, so you’ll only need to install one package.

Installing CSSO with npm

Now you can install CSSO. In the command line, type the following:

npm install -g csso-cli

The -g flag installs CSSO globally, so that you can run it from any directory. npm will print a

message to your terminal window when installation is complete. The image below shows
CSSO being installed using npm on macOS.

3-24. Installing CSSO with npm using macOS

Running CSSO with npx

If you do a lot of Node.js development, you may want to avoid installing packages globally.
Global packages can cause trouble if multiple projects require different versions of a package.
Luckily, npm includes a package runner—npx6—that lets you run package binaries from a
local directory or a central cache.

Because npx is a package runner, rather than an installer, you’ll need to type npx and the full

name of the package every time you want to run CSSO:

npx csso-cli

6. https://www.npmjs.com/package/npx

Debugging and Optimization 123

The first time you use this command, npx will alert you that it needs to install csso-cli .

Confirm that you want to do so when prompted.

3-25. Using npx to run csso-cli using macOS

Now you’re ready to minify your CSS.

Using CSSO

To minify CSS files, run the csso command, passing the name of a file as an argument:

csso style.css

If you’re using npx, you’ll need to type a few more characters:

npx csso-cli style.css

This performs basic compression. CSSO strips unneeded whitespace, removes superfluous
semicolons, and deletes comments from your CSS input file.

Once complete, CSSO prints the optimized CSS to standard output, meaning the current
terminal or command prompt window. In most cases, however, we’ll want to save that output
to a file. To do that, pass an output argument to csso using the --output or shorter -o flag.

For example, if we wanted to save the minified version of style.css as style.min.css , we’d

use the following:

csso style.css -o style.min.css

If you’ve chosen npx, use this:

npx csso-cli style.css -o style.min-css

By default, CSSO also restructures your CSS. It will, for example, merge the declaration blocks
of duplicate selectors and remove some redundant properties. Consider the following CSS:

124 CSS Master, 3rd Edition

body {

margin: 20px 30px;

padding: 100px;

margin-left: 0px;

}

h1 {

font: 200 36px / 1.5 sans-serif;

}

h1 {

color: #ff6600;

}

In this snippet, margin-left overrides the earlier margin declaration. We’ve also repeated

h1 as a selector for consecutive declaration blocks. After optimization and minification, we

end up with this:

body{padding:100px;margin:20px 30px 20px 0}h1{font:200 36px/1.5 sans-serif;color:#f60}

CSSO has removed extraneous spaces, line breaks, and semicolons, and shortened #ff6600

to #f60 . CSSO also merged the margin and margin-left properties into one declaration

(margin: 20px 30px 20px 0) and combined our separate h1 selector blocks into one.

If you’re skeptical about how CSSO will rewrite your CSS, you can disable its restructuring
features. Use the --no-restructure flag. For example, running csso style.css -o

style.min.css --no-restructure gives us the following:

body{margin:20px 30px;padding:100px;margin-left:0}h1{font:200 36px/1.5 sans-serif}h1{color:#f60}

Now our CSS is minified, but not optimized. Our margin-left: 0 declaration remains.

Disabling restructuring will keep your CSS files from being as small as they could be. Avoid
disabling restructuring unless you encounter a problem.

Preprocessors and post-processors (such as Sass, Less and PostCSS) offer minification as
part of their toolset. However, using CSSO may shave additional bytes from your files.

Enforcing Code Quality with stylelint
stylelint7 is a linting tool. A linter is an application that checks code for potential trouble spots,
and enforces coding conventions according to a set of rules. You can, for instance, use linters
to enforce tabs instead of spaces for indentation. stylelint can find problems such as duplicate

7. https://github.com/stylelint/stylelint

Debugging and Optimization 125

selectors, invalid rules, or unnecessary specificity. These have the greatest impact on CSS
maintainability.

Install stylelint as you would any other npm package:

npm install -g stylelint

Once installed, we’ll need to configure stylelint. Start by installing the standard configuration:

npm install -g stylelint-config-standard

Next, create a file named .stylelintrc in your home directory. We’ll use this file to configure

stylelint. Placing it in your home directory makes it available to all of your projects.

The .stylelintrc file can use JSON (JavaScript Object Notation) or YAML (YAML Ain’t

Markup Language) syntax. We’ll use JSON here.

Let’s extend the standard configuration. Add the following to your .stylelintrc file:

{

"extends": "stylelint-config-standard"

}

This is enough to start linting our CSS.

Using stylelint and Understanding Its Output

Type the following in the command line:

Configuring stylelint for Each Project

You can also configure stylelint on a per-project basis by adding a .stylelintrc file
to your project directory.

File Names and Syntax Highlighting

You may prefer to name your file .stylelintrc.json or .stylelintrc.yaml so that
your text editor applies the appropriate syntax highlighting. Both file extensions are
supported by stylelint.

126 CSS Master, 3rd Edition

stylelint style.css

To recursively lint all CSS files in a directory, use the following:

stylelint "./css/**/*.css"

stylelint can also lint CSS that’s embedded in HTML files using the <style> element. Pass the

path to an HTML file as the argument. When stylelint finishes analyzing your CSS, you’ll see
output resembling what’s shown below.

3-26. How stylelint displays rule violations

The first column indicates the line number and character position of the rule violation. For
example, 4:2 indicates that our first rule violation occurs on line 4 of style.css , beginning

with the second character.

Next, stylelint describes what it expected to see based on the rules defined in the standard
configuration. Expected "#FFFFFF" to be "#ffffff" indicates that we should have used

lowercase hexadecimal color notation. The last column indicates the name of the violated

Debugging and Optimization 127

rule— color-hex-case . Our second error occurs on the same line. We’ve also violated the

color-hex-length rule by using a six-digit hexadecimal color value instead of a more concise,

three-digit version.

As you can see from this output, the standard configuration is quite opinionated. It prefers an
indentation of two spaces instead of tabs, and enforces a rule of one selector per line. Let’s
make a few changes.

Configuring stylelint’s Rules

We can add or override stylelint rules by adding a rules property to .stylelintrc .

Remember that our .stylelintrc file uses JSON. Each property needs to be enclosed in

double straight quotation marks:

{

"extends": "stylelint-config-standard",

"rules": {}

}

Now let’s decide what we’d like to change. We can view our current configuration using the
following command:

stylelint --print-config ./

The --print-config flag requires a file path. We’ve installed stylelint and our configuration

globally, so we can use any directory—in this case, our current path. Refer to the stylelint user
guide for a complete list8 of rules and options.

Let’s change our current indentation from spaces to tabs. We’ll need to modify the
indentation rule by adding it as a property of our rules object:

{

"extends": "stylelint-config-standard",

"rules": {

"indentation": "tab"

}

}

8. https://stylelint.io/user-guide/rules/list

128 CSS Master, 3rd Edition

Let’s also enforce single-line selector lists, with a space after each comma. In other words,
we’ll allow selector lists formatted as follows:

h1, h2, h3, h4 {

font-family: 'geomanistbold';

}

But let’s also disallow multi-line selector lists, such as the example below:

h1,

h2,

h3,

h4 {

font-family: 'geomanistbold';

}

For this, we’ll need to use a combination of four rules: selector-list-comma-newline-after ,

selector-list-comma-newline-before , selector-list-comma-space-after and selector-

list-comma-space-before :

{

"extends": "stylelint-config-standard",

"rules": {

"indentation": "tab",

"selector-list-comma-newline-after": "never-multi-line",

"selector-list-comma-newline-before": "never-multi-line",

"selector-list-comma-space-before": "never",

Tabs or Spaces?

“Tabs or spaces” is the subject of much developer debate. Spaces provide more
consistent visual spacing across editors. Tabs, on the other hand, let individual
developers adjust visual spacing to their needs while maintaining consistent
spacing in the code. Choose either one, but stick to your choice.

Choose Your Own Custom Rules

Whether to use single-line selector lists or multi-line selector lists is strictly a
matter of preference. We’re enforcing a single-line selector list in this example to
demonstrate how to customize a stylelint configuration.

Debugging and Optimization 129

"selector-list-comma-space-after": "always"

}

}

Now when we run stylelint , we’ll see the following output. Notice that stylelint no longer

makes a fuss about our indentation.

3-27. stylelint output after our rule changes

In Chapter 2, I mentioned selector specificity and how it affects CSS maintenance. stylelint
includes a few rules that let us enforce low specificity. We’ll use one of them here: selector-

max-specificity . Let’s edit .stylelintrc again to limit specificity to a maximum of 0,2,1:

{

"extends": "stylelint-config-standard",

"rules": {

"indentation": "tab",

"selector-list-comma-newline-after": "never-multi-line",

"selector-list-comma-newline-before": "never-multi-line",

"selector-list-comma-space-before": "never",

"selector-list-comma-space-after": "always",

"selector-max-specificity": "0,2,1"

}

}

With this rule, selectors such as .subnav a:hover won’t trigger warnings or errors, but

selectors such as #menu or .features p:first-of-type::first-letter will.

It’s not necessary to use a preset configuration with stylelint. You could remove the

130 CSS Master, 3rd Edition

"extends" property and set your own style preferences using "rules" . A custom

configuration may be the wiser choice if you find yourself overriding more than a few standard
rules.

Using stylelint with npx

As mentioned above, global npm packages can cause troubles if you work on multiple Node.js
projects. The good news is that we can use stylelint with npx too. That said, the process of
using stylelint with npx is a little bit different.

First, we’ll need to install a local, directory-level version of stylelint-config-standard :

npm install stylelint-config-standard

Using npm install without the -g flag installs the stylelint-config-standard package in

our current directory. It’s only available within this directory, rather than system-wide. Now we
can use npx to run stylelint:

npx stylelint style.css

Keep in mind that we only need to install stylelint-config-standard if we plan to use it in our

.stylelistrc configuration. Otherwise, you can skip that step and just use whatever rules

you’ve defined using the rules property.

Consider a Task Runner or Build Tool
Running these tools probably seems like a lot of extra work. To that end, consider adding a
task runner or build system to your workflow. Popular tools include Grunt9, Gulp10, webpack11

and Broccoli.js12. All four have robust documentation and sizable developer communities.

What’s great about these task runners and build systems is that they automate concatenation
and optimization tasks. They’re not limited to CSS either. Most build tools also optimize
JavaScript and images.

Because the configuration and build script files are typically JSON and JavaScript, you can
easily reuse them across projects or share them with a team. Both CSSO and stylelint can be

9. https://gruntjs.com
10. https://gulp.js
11. https://webpack.js.org
12. https://broccoli.build

Debugging and Optimization 131

integrated with Grunt, Gulp, webpack, or Broccoli with the help of a plugin.

Above all, however, take a pragmatic approach to building your toolkit. Add tools that you
think will enhance your workflow and improve the quality of your output.

Conclusion
In this chapter, we’ve looked at some tools to help you diagnose, debug, and optimize your
CSS. In the next chapter, we’ll look at how to work with variables in CSS.

132 CSS Master, 3rd Edition

Custom
Properties

Chapter

4

Custom Properties 133

For years, variables were one of the most commonly requested CSS features. It took years to
work through the details of the syntax and decide how variables would fit into existing rules
governing cascade and inheritance. Now they’re available to developers in the form of CSS
custom properties.

Custom properties make it easier to manage colors, fonts, size, and animation values, and
ensure their consistency across a codebase. In this chapter, we’ll look at:

how to define properties and set default values for those properties
how custom properties interact with cascade and inheritance rules
how to use custom properties with media queries
how to use custom properties and the HSL color space to generate color palettes

By the end, you should have a good grasp of how to use custom properties in your projects.

Defining a Custom Property
To define a custom property, select a name and prefix it with two hyphens. Any alphanumeric
character can be part of the name. Hyphen (-) and underscore (_) characters are also

allowed. A broad range of Unicode characters can be part of a custom property name. This
includes emoji, but for the sake of clarity and readability, stick to alphanumeric names.

Here’s an example:

--primarycolor: #0ad0f9ff; /* RGB alpha hexadecimal color notation */

The -- indicates to the CSS parser that this is a custom property. When used as a variable,

the parsing engine replaces the property with its value.

Custom property names are case-sensitive. That means --primaryColor and --

primarycolor are considered two distinct property names. That’s a departure from traditional

CSS, in which property and value case don’t matter. It is, however, consistent with the rules for
variable names in ECMAScript.

As with other properties, such as display or font , CSS custom properties must be defined

within a declaration block. One common pattern is to define custom properties using the
:root pseudo-element as a selector:

:root {

134 CSS Master, 3rd Edition

--primarycolor: #0ad0f9ff;

}

:root is a pseudo-element that refers to the root element of the document. For HTML

documents, that’s the <html> element. For SVG documents, it’s the <svg> element. Using

:root makes properties immediately available throughout the document.

Using Custom Properties
To use a custom property as a variable, we need to use the var() function. For instance, if we

wanted to use our --primarycolor custom property as a background color, we’d do the

following:

body {

background-color: var(--primarycolor);

}

Our custom property’s value will become the computed value of the background-color

property.

To date, custom properties can only be used as variables to set values for standard CSS
properties. You can’t, for example, store a property name as a variable and then reuse it. The
following CSS won’t work:

:root {

--top-border: border-top; /* Can't set a property as custom property's value */

var(--top-border): 10px solid #bc84d8; /* Can't use a variable as a property */

}

You also can’t store a property–value pair as a variable and reuse it. The following example is
also invalid:

:root {

--text-color: 'color: orange'; /* Invalid property value */

}

body {

var(--text-color); /* Invalid use of a property */

}

Lastly, you can’t concatenate a variable as part of a value string:

Custom Properties 135

:root {

--base-font-size: 10;

}

body {

font: var(--base-font-size)px / 1.25 sans-serif; /* Invalid CSS syntax */

}

“Custom properties” is a future-proof name that accounts for how this feature might be used
someday. This could change, however, should the CSS Extensions1 specification be
implemented by browser vendors. That specification defines ways to extend CSS with
custom selector combinations, functions, and at-rules.

We commonly call custom properties “variables”, and to date, that’s the only way we can use
them. In theory, they’re not entirely interchangeable terms. In practice and for now, they are.
I’ll mostly use custom properties in this chapter, since that’s their proper name. I’ll use
variables when it makes the sentence clearer.

Setting a Fallback Value

The var() function accepts up to two arguments. The first argument should be a custom

property name. The second argument is optional, but must be a declaration value. This
declaration value functions as a fallback or default value that’s applied when the custom
property value isn’t defined.

Let’s take the following CSS:

.btn__call-to-action {

background: var(--accent-color, deepskyblue);

}

If --accent-color is defined—let’s say its value is #f30 —then the fill color for any path with a

.btn__call-to-action class attribute will have a red-orange fill. If it’s not defined, the fill will

be a deep sky blue.

Declaration values can also be nested. In other words, you can use a variable as the fallback
value for the var function:

body {

background-color: var(--books-bg, var(--arts-bg));

}

1. https://drafts.csswg.org/css-extensions/

136 CSS Master, 3rd Edition

In the CSS above, if --books-bg is defined, the background color will be set to the value of the

--books-bg property. If not, the background color will instead be whatever value was

assigned to --arts-bg . If neither of those are defined, the background color will be the initial

value for the property—in this case, transparent .

Something similar happens when a custom property has a value that’s invalid for the property
it’s used with. Consider the following CSS:

:root {

--text-primary: #600;

--footer-link-hover: #0cg; /* Not a valid color value */

}

body {

color: var(--text-primary);

}

a:link {

color: blue;

}

a:hover {

color: red;

}

footer a:hover {

color: var(--footer-link-hover);

}

In this case, the value of the --footer-link-hover property is not a valid color. Instead,

footer a:hover inherits its color from that of the <body> element.

Custom properties are resolved in the same way other CSS values are resolved. If the value is
invalid or undefined, the CSS parser will use the inherited value if the property is inheritable
(such as color or font), and the initial value if it’s not (as with background-color).

Custom Properties and the Cascade
Custom properties also adhere to the rules of the cascade. Their values can be overridden by
subsequent rules:

:root {

--text-color: #190736; /* navy */

}

body {

--text-color: #333; /* dark gray */

}

Custom Properties 137

body {

color: var(--text-color);

}

In the example above, our body text would be dark gray. We can also reset values on a per-
selector basis. Let’s add a couple more rules to this CSS:

:root {

--text-color: #190736; /* navy */

}

body {

--text-color: #333; /* dark gray */

}

p {

--text-color: #f60; /* orange */

}

body {

color: var(--text-color);

}

p {

color: var(--text-color)

}

In this case, any text that’s wrapped in <p> element tags would be orange. But text within

<div> or other elements would still be dark gray.

You can also set the value of a custom property using the style attribute—for example,

style="--brand-color: #9a09af" .

Custom Properties and Color Palettes
Custom properties work especially well for managing HSL color palettes. HSL stands for hue,
saturation, lightness. It’s a light-based color model that’s similar to RGB. We can use HSL
values in CSS thanks to the hsl() and hsla() color functions. The hsl() function accepts

three arguments: hue, saturation, and lightness. The hlsa() function also accepts a fourth

argument, indicating the color’s alpha transparency (a value between 0 and 1).

While an RGB system expresses color as proportions of red, green, and blue, HSL uses a color
circle where hue is a degree position on that circle, and the tone or shade are defined using
saturation and lightness values. Saturation can range from 0% to 100%, where 0% is gray and
100% is the full color. Lightness can also range from 0% to 100%, where 0% is black, 100% is
white, and 50% is the normal color.

138 CSS Master, 3rd Edition

4-1. An HSL color wheel

Chromatic Wheel by CrazyTerabyte from Openclipart.2

In the HSL color system, the primary colors red, green, and blue are situated 120 degrees
apart at 0 degrees/360 degrees, 120 degrees, and 240 degrees. Secondary colors—cyan,
magenta, and yellow—are also 120 degrees apart, but sit opposite the primary colors, at 180
degrees, 300 degrees, and 60 degrees/420 degrees respectively. Tertiary, quaternary, and
other colors fall in between at roughly ten-degree increments. Blue, written using HSL
notation, would be hsl(240, 100%, 50%) .

Here’s where it gets fun. We can set our hue values using a custom property, and set lighter
and darker shades by adjusting the saturation and lightness value:

:root {

HSL Argument Units

When you use a unitless value for the first argument of the hsl() and hsla()

functions, browsers assume that it’s an angle in degree units. You can, however, use
any supported CSS angle unit3. Blue can also be expressed as hsl(240deg, 100%,

50%) , hsl(4.188rad, 100%, 50%) or hsla(0.66turn, 100% 50%) .

2. https://openclipart.org/detail/226044/chromatic-wheel
3. https://drafts.csswg.org/css-values-4/#angles

Custom Properties 139

--brand-hue: 270deg; /* purple */

--brand-hue-alt: .25turn; /* green */

/*

hsl() and hsla() can accept comma-separated or space-separated arguments,

but older browsers (such as Internet Explorer 11) only support

comma-separated arguments.

*/

--brand-primary: hsl(var(--brand-hue) 100% 50%);

--brand-highlight: hsl(var(--brand-hue) 100% 75%);

--brand-lowlight: hsl(var(--brand-hue) 100% 25%);

--brand-inactive: hsl(var(--brand-hue) 50% 50%);

--brand-secondary: hsl(var(--brand-hue-alt) 100% 50%);

--brand-2nd-highlight: hsl(var(--brand-hue-alt) 100% 75%);

--brand-2nd-lowlight: hsl(var(--brand-hue-alt) 100% 25%);

--brand-2nd-inactive: hsl(var(--brand-hue-alt) 50% 50%);

}

The CSS above gives us the palette shown below.

4-2. Using custom properties with the HSL function to generate a color palette

This is a simple version, but you can also use custom properties to adjust saturation and
lightness values.

140 CSS Master, 3rd Edition

Another idea is to combine custom properties and the calc() function to generate a square

color scheme from a base hue. Let’s create a square color scheme in our next example. A
square color scheme consists of four colors that are equidistant from each other on the color
wheel—that is, 90 degrees apart:

:root {

--base-hue: 310deg; /* Hot pink */

--distance: 90deg;

--color-a: hsl(var(--base-hue), 100%, 50%);

--color-b: hsl(calc(var(--base-hue) + var(--distance)), 100%, 50%);

--color-c: hsl(calc(var(--base-hue) + (var(--distance) * 2)), 100%, 50%);

--color-d: hsl(calc(var(--base-hue) + (var(--distance) * 3)), 100%, 50%);

}

This bit of CSS gives us the rather tropical-inspired color scheme shown below.

4-3. Generating a square color scheme from a base hue using an HSL function to generate a color palette

Custom properties also work well with media queries, as we’ll see in the next section.

Using Custom Properties and Media Queries
We can also use custom properties with media queries.5 For example, you can use custom
properties to define light and dark color schemes:

Robust Palette Generation

Dieter Raber discusses a technique for robust palette generation in “Creating Color
Themes With Custom Properties, HSL, and a Little calc()”4.

4. https://css-tricks.com/creating-color-themes-with-custom-properties-hsl-and-a-little-calc/
5. We’ll take a deeper look at media queries in Chapter 10, “Applying CSS Conditionally”.

Custom Properties 141

:root {

--background-primary: hsl(34, 78%, 91%);

--text-primary: hsl(25, 76%, 10%);

--button-primary-bg: hsl(214, 77%, 10%);

--button-primary-fg: hsl(214, 77%, 98%);

}

@media screen and (prefers-color-scheme: dark) {

:root {

--background-primary: hsl(25, 76%, 10%);

--text-primary: hsl(34, 78%, 91%);

--button-primary-bg: hsl(214, 77%, 98%);

--button-primary-fg: hsl(214, 77%, 10%);

}

}

Similarly, we can use custom properties to change the base font size for screen versus print:

:root {

--base-font-size: 10px;

}

@media print {

:root {

--base-font-size: 10pt;

}

}

html {

font: var(--base-font-size) / 1.5 sans-serif;

}

body {

font-size: 1.6rem;

}

In this case, we’re using media-appropriate units for print and screen. For both media, we’ll use
a base font size of 10 units—pixels for screen, points for print. We’ll also use the value of --

base-font-size: to set a starting size for our root element (html). We can then use rem

units to size our typography relative to the base font size.

Custom properties can help us write simpler, more maintainable CSS.

Rem Values

As defined in the CSS Values and Units Module Level 3 specification6, a rem unit is
always “equal to the computed value of font-size7 on the root element”. If the root
element’s computed value of font-size is 10px, 1.6rem will create a computed
value of 16px .

142 CSS Master, 3rd Edition

Using Custom Properties with JavaScript
Remember: custom properties are CSS properties, and we can interact with them as such. For
example, we can use the CSS.supports() API to test whether a browser supports custom

properties:

const supportsCustomProps = CSS.supports('--primary-text: #000');

// Logs true to the console in browsers that support custom properties

console.log(supportsCustomProps);

You can learn more about the CSS.supports() API, as well as the @supports CSS rule, in

Chapter 10, “Applying CSS Conditionally”.

We can also use the setProperty() method to set a custom property value:

document.body.style.setProperty('--bg-home', 'whitesmoke');

Using removeProperty() works similarly. Just pass the custom property name as the

argument:

document.body.style.removeProperty('--bg-home');

To use the custom property as a value with JavaScript, use the var() function with the

property name as its argument:

document.body.style.backgroundColor = 'var(--bg-home)';

Alas, you can’t set custom properties using square-bracket syntax or camelCased properties
of the style object. In other words, neither document.body.style.--bg-home nor

document.body.style['--bg-home'] will work.

Custom Properties and Components
JavaScript frameworks like React, Angular and Vue let developers use JavaScript to create
reusable, sharable blocks of HTML, often with CSS that’s defined at the component level.

Here’s an example of a React component, written in JSX8, a syntax extension for JavaScript. It

6. https://drafts.csswg.org/css-values-3/#rem
7. https://drafts.csswg.org/css-fonts-3/#propdef-font-size

Custom Properties 143

resembles XML, and gets compiled into HTML or XML. It’s a common way of building React
components:

import React from 'react';

/* Importing the associated CSS into this component */

import '../css/field-button.css';

class FieldButtonGroup extends React.Component {

render() {

return (

<div className="field__button__group">

<label htmlFor={this.props.id}>{this.props.labelText}</label>

<div>

<input type={this.props.type}

name={this.props.name}

id={this.props.id}

onChange={this.props.onChangeHandler} />

<button type="submit">{this.props.buttonText}</button>

</div>

</div>

);

}

}

export default FieldButtonGroup;

Our React component imports CSS into a JavaScript file. When compiled, the contents of

More on JavaScript Frameworks

SitePoint has extensive resources on React, Angular and Vue if you want to learn
more about working with JavaScript frameworks. For React, check out Your First
Week With React9 and extensive React articles10. For Angular, there’s Learn
Angular: Your First Week11 and plenty of Angular articles and tutorials12. For Vue,
check out Jump Start Vue.js13 and more Vue articles14.

8. https://reactjs.org/docs/introducing-jsx.html
9. https://www.sitepoint.com/premium/books/your-first-week-with-react-2nd-edition/
10. https://www.sitepoint.com/tag/react/
11. https://www.sitepoint.com/premium/books/learn-angular-your-first-week/
12. https://www.sitepoint.com/tag/angular/
13. ttps://www.sitepoint.com/premium/books/jump-start-vue-js/
14. https://www.sitepoint.com/tag/vue/

144 CSS Master, 3rd Edition

field-button.css are loaded inline. Here’s one possible way to use this with custom

properties:

.field__button__group label {

display: block;

}

.field__button__group button {

flex: 0 1 10rem;

background-color: var(--button-bg-color, rgb(103, 58, 183)); /* include a default */

color: #fff;

border: none;

}

In this example, we’ve used a custom property— --button-bg-color —for the button’s

background color, along with a default color in case --button-bg-color never gets defined.

From here, we can set a value of --button-bg-color , either in a global stylesheet or locally via

the style attribute.

Let’s set the value as a React “prop”. React props (short for properties) mimic element
attributes. They’re a way to pass data into a React component. In this case, we’ll add a prop
named buttonBgColor :

import FieldButtonGroup from '../FieldButtonGroup';

class NewsletterSignup extends React.Component {

render() {

// For brevity, we've left out the onChangeHandler prop.

return (

<FieldButtonGroup type="email" name="newsletter" id="newsletter"

labelText="E-mail address" buttonText="Subscribe"

buttonBgColor="rgb(75, 97, 108)" />

);

}

}

export default NewsletterSignup;

Now we need to update our FieldButtonGroup to support this change:

class FieldButtonGroup extends React.Component {

render() {

/*

In React, the style attribute value must be set using a JavaScript

object in which the object keys are CSS properties. Properties

Custom Properties 145

should either be camelCased (e.g. backgroundColor) or enclosed in

quotes.

*/

const buttonStyle = {

'--button-bg-color': this.props.buttonBgColor

};

return (

<div className="field__button__group">

<label htmlFor={this.props.id}>{this.props.labelText}</label>

<div>

<input type={this.props.type}

name={this.props.name} id={this.props.id}

onChange={this.props.onChangeHandler} />

<button type="submit" style={buttonStyle}>

{this.props.buttonText}

</button>

</div>

</div>

);

}

}

In the code above, we’ve added a buttonStyle object that holds the name of our custom

property and sets its value to that of our buttonBgColor prop, and a style attribute to our

button.

Using the style attribute probably runs counter to everything you’ve been taught about

writing CSS. A selling point of CSS is that we can define one set of styles for use across
multiple HTML and XML documents. The style attribute, on the other hand, limits the scope

of that CSS to the element it’s applied to. We can’t reuse it. And we can’t take advantage of
the cascade.

But in a component-based, front-end architecture, one component may be used in multiple
contexts, by multiple teams, or may even be shared across client projects. In those cases, you
may want to combine the “global scope” of the cascade with the narrow “local scope”
provided by the style attribute.

Setting the custom property value with the style attribute limits the effect to this particular

instance of the FieldButtonGroup component. But because we’ve used a custom property

instead of a standard CSS property, we still have the option of defining --button-bg-color in

a linked stylesheet instead of as a component prop.

146 CSS Master, 3rd Edition

Conclusion
Custom properties take one of the best features of pre-processors—variables—and make
them native to CSS. With custom properties, we can:

create reusable, themed components
easily adjust padding, margins, and typography for a range of viewport sizes and media
improve the consistency of color values in our CSS

Variables have a range of applications, and are particularly useful in component-based design
systems.

I hope you’re leaving this chapter with a better understanding of how to use custom
properties. In the next chapter, we’ll dive into how to create layouts with CSS, including
flexible boxes, grids, and shapes.

Custom Properties 147

Layouts
Chapter

5

148 CSS Master, 3rd Edition

CSS layouts have come a long way in the last decade. In an earlier era of the Web, we wrestled
and wrangled <div> tags or used heavy CSS frameworks that relied on floats and clearing. Or

we threw a bunch of JavaScript at them. These days, it’s much easier to create the kinds of
complex layouts that used to require nested elements, extensive knowledge of browser
quirks, or expensive DOM operations.

In this chapter, we’ll look at several aspects of CSS layout. In the first half, we’ll review some of
the basics: normal flow, floated elements, and how to clear floats. We’ll follow that up with
refreshers on both the box model and stacking context. Understanding these concepts helps
us diagnose and fix layout bugs.

In the second half of this chapter, we’ll look at shapes, multicolumn layout, flexible box layout
(better known as Flexbox), and Grid.

This chapter is long and dense. But by the end of it, you’ll have a good sense of how to create
layouts that are robust and adaptable.

Display Types and Normal Flow
One of the most important points to understand about CSS is that everything is a box.

During the parsing and layout process, browsers generate one or more boxes for each
element, based on its display type.

Display types are a newer CSS concept, introduced in the CSS Display Module Level 3
specification1. There are two of them: inner and outer. The inner display type affects how the
descendants of an element—what’s inside the box—are arranged within it. Outer display types
affect how the element’s box behaves in flow layout or normal flow. Display type is
determined by the computed value of an element’s display property.

In practical terms, this means that there are two display box types that participate in normal
flow:

block-level boxes that participate in a block formatting context
inline-level boxes that participate in an inline formatting context

Formatting context is a fancy way of saying that an element behaves according to the rules
for boxes of this type.

1. https://www.w3.org/TR/css-display-3/

Layouts 149

Both block and inline are outer display values. The block value triggers a block

formatting context for an element’s principal box, or its outermost, containing box. Using
inline triggers an inline formatting context.

Inner display types include the flex / inline-flex , grid / inline-grid , and table values

for the display property. These properties tell the browser how to lay out contents inside the

principal box. They also provide a shorthand way to tell the browser to treat the outer box as a
block-level (or inline-level) box, but arrange the stuff inside it according to the rules of its
formatting context.

Block Formatting versus Inline Formatting

Block-level boxes are stacked in the order in which they appear in the source document. In a
horizontal writing mode2, they stack vertically from the top to the bottom of the screen.

5-1. Paragraphs ordered from the top to the bottom of the screen

In vertical modes, they sit horizontally—side by side and across the screen. With the exception
of display: table and its related properties, block-level boxes also expand to fill the

available width of their containing element.

2. If you need a refresher on writing modes, refer to Chapter 6, “Working with Text”.

150 CSS Master, 3rd Edition

5-2. Paragraphs in vertical writing mode spread horizontally across the page

Browsers generate a block-level box when the computed value of the display property is

one of the following:

block

list-item

table or any of the table-* values such as table-cell

flex

grid

flow-root

Other property–value combinations can also trigger block-level box behavior and a block
formatting context. Multicolumn containers, for example, trigger a block formatting context
when the value of column-count or column-width is something other than auto . Using

column-span: all also triggers a block formatting context. We’ll discuss multicolumn layout

later in this chapter.

Floating or positioning an element (with position: absolute or position: fixed) also

triggers a block formatting context. So does the contain property when its value is layout ,

content , or strict .

Inline-level boxes, by contrast, don’t form new blocks of content. Instead, these boxes make
up the lines inside a block-level box. They’re displayed horizontally and fill the width of the

Layouts 151

containing box, wrapping across lines if necessary, as shown in the image below, which shows
an inline box with margin: 1em and padding: 5px applied.

5-3. Sections of a paragraph showing a green text over several lines

Inline-level boxes have a display value of inline , inline-block , inline-table , or ruby .

Just about every browser ships with a user agent stylesheet that sets default rules for
element selectors. These stylesheets typically add a display: block rule for elements such

as <section> , <div> , <p> , and . Most phrasing content elements—such as <a> ,

 , and <canvas> —use the initial value of display , which is inline . When you view a

document without any developer-authored CSS, you’re really seeing the computed values
from the browser’s own stylesheet.

User agent stylesheets also set default styles for the root SVG element, particularly when
SVG documents are combined with HTML. However, SVG documents rely on a coordinate
system for layout instead of the box model. SVG elements do create a bounding box, but
elements within the bounding box don’t participate in the box model or normal flow, and don’t
affect the position of other elements in the document. As a result, most layout-related CSS
properties don’t work with SVG elements. We’ll discuss that in greater depth in Chapter 12,
“Using CSS with SVG”.

Logical Properties

Logical properties are closely related to block formatting. Defined by the Logical Properties
and Values Level 13 specification, they affect the dimensions and position of elements.

Properties such as margin-left and width use directional or physical features of the

viewport. Logical properties, on the other hand, are flow-relative. They’re affected by the
value of the direction and writing-mode properties, and fall into two broad categories:

3. https://drafts.csswg.org/css-logical/

152 CSS Master, 3rd Edition

properties that affect the block direction
properties that affect the inline direction

For example, when the writing mode is horizontal, inset-block-start and inset-block-end

are the top and bottom of the container respectively, as pictured below.

5-4. Using inset-block-start and inset-block-end with a horizontal writing mode

For vertical writing modes, however, inset-block-start and inset-block-end are the

physical left and right of the container, as shown below.

Layouts 153

5-5. Using inset-block-start and inset-block-end with a vertical writing mode

The block-size property determines the vertical dimension of block-level elements when

the writing mode is horizontal, and inline-size determines its horizontal dimension. They’re

the equivalent of height and width respectively. When the writing mode is vertical, the

inverse is true: block-size is the equivalent of width , and inline-size is the equivalent of

height .

The Logical Properties specification also adds longhand properties for margins, padding, and
borders. For example, the flow-relative alternative to margin-top is margin-block-start .

Be aware that browsers map the margin , padding , and border-width shorthand properties

to top, right, bottom, and left. For a declaration such as border-width: 1rem , this is fine. But a

declaration such as border-width: 10rem 1rem 1rem 1rem creates a physical, 10rem top

border instead of a flow-relative one. You must use the longhand border-block-* , margin-

block-* and padding-block-* properties if you want flow-relative borders, margins, or

padding.

You’ll see flow-relative properties sprinkled throughout this chapter.

154 CSS Master, 3rd Edition

Box Dimensions and the Box Model

How does the browser calculate the dimensions of a block? Box dimensions are the sum of
the box’s content area, plus its padding size and border size, as defined by the CSS Level 2
specification4. The margin size creates a margin box for the element.

5-6. The CSS 2.1 box model, with border and padding within the box dimensions, but margin outside

Margin boxes affect the placement of other elements in the document, but the size of the
margin has no effect on the dimensions of the box itself.

Adjacent margin boxes also collapse. If two paragraph elements have top and bottom
margins of 20 pixels, the margin space between them will be 20 pixels—not 40 pixels.

For instance, a <p> element with width: 300px , padding: 20px , and border: 10px , has a

When Margins Don’t Collapse

In some formatting contexts, such as Grid, margins do not collapse. We’ll discuss
this in the “Creating Layouts with CSS Grid” section below.

4. https://drafts.csswg.org/css2/box.html

Layouts 155

calculated width of 360 pixels. That’s the sum of its width, left and right padding, and left and
right border-width properties. To create an element that’s 300 pixels wide with 20 pixels of

padding and a ten-pixel border, the width needs to be 240px .

Let’s take a brief detour to add some historical context. Although today’s browsers calculate
the width as I’ve just described, Internet Explorer 5.5 didn’t. Instead, IE5.5 used the width

property as the final arbiter of box dimensions, with padding and border drawn inside the box,
as shown in the image below, which compares the CSS 2.1 box with the old Internet Explorer
5.5 “quirks mode” box model.

5-7. The CSS 2.1 box model versus the old Internet Explorer 5.5 “quirks mode” box model, whose box dimensions

include margin and border

In IE5.5, both padding and border values were, in effect, subtracted from width , decreasing

the size of the content area. Though this was the exact opposite of the behavior defined in
early CSS specifications, many web developers thought it was the more sensible approach.

As a way to resolve these competing models, the CSS Working Group introduced the
box–sizing property. It lets us choose how the browser should calculate box dimensions.

Managing Box Dimensions with box-sizing

The box-sizing property is defined in the CSS Basic User Interface Module Level 3

specification.5 It has two possible values: content-box and border-box .

Initially, the value of box-sizing is content-box . With this value, setting the width and

height (or inline-size and block-size) properties of an element affects the size of its

content area. This matches the behavior defined by the CSS 2.1 specification. It’s also the

5. http://www.w3.org/TR/css3-ui/#box-sizing

156 CSS Master, 3rd Edition

default behavior in browsers (as illustrated in the image above).

Setting the value of box-sizing to border-box creates a little bit of magic. Now the values of

width and height are applied to the outer border edge instead of the content area. Borders

and padding are drawn inside the element box. Let’s look at an example that mixes
percentage widths and px units for padding and borders:

<div class="wrapper">

<article>

<h2>This is a headline</h2>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing ... </p>

</article>

<aside>

<h2>This is a secondary headline</h2>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing ... </p>

</aside>

</div>

Both our <article> and <aside> elements have the following CSS applied. Our first element

has a width of 60%, while the second has a width of 40%:

article, aside {

background: #FFEB3B;

border: 10px solid #9C27B0;

float: left;

padding: 10px;

}

article {

width: 60%;

}

aside {

width: 40%;

}

The image below shows how this code renders in the browser.

Layouts 157

5-8. Elements with box-sizing: content-box. Both have a yellow background with a purple border, with the article

sitting above the aside.

By default, both <aside> and <article> have a box-sizing value of content-box . The

border-width and padding values add 40 pixels to the width of each element, which throws

off the 60%/40% split. Now let’s add box-sizing: border-box to the <article> and

<aside> elements:

article, aside {

box-sizing: border-box;

}

You can see the change below.

158 CSS Master, 3rd Edition

5-9. Thanks to box-sizing: border-box, the two elements are now sitting side by side

The elements have the same width, but the box-sizing: border-box means that the width

includes the border and padding. Because the width property applies to the border edge

instead of the content area, our elements now fit side by side.

I recommend using box-sizing: border-box in your projects. It makes life easier, as there’s no

need to calculate the width value to account for the values of padding and border . Boxes

behave more predictably.

The best way to apply box-sizing: border-box is with reset rules. The following example is

from Chris Coyier’s CSS-Tricks post, “Inheriting box-sizing Probably Slightly Better Best-
Practice”6:

html {

box-sizing: border-box;

}

*, *:before, *:after {

box-sizing: inherit;

}

This applies border-box sizing to every element by default, without affecting the box-sizing

behavior of existing parts of your project. If you know that there’ll be no third-party or legacy
components that rely on content-box behavior, you can simplify these rules:

6. https://css-tricks.com/inheriting-box-sizing-probably-slightly-better-best-practice/

Layouts 159

*, *:before, *:after {

box-sizing: border-box;

}

In some cases, you may not want an element to generate a box at all, but still keep its
contents visible to the user and retain its semantics. That’s when you’ll want to use display:

contents .

Preventing Box Generation with display: contents

Using the contents value for the display property prevents the browser from generating an

element box, without removing its semantics. Applying display: contents to an unordered

list, for example, removes its default margin and padding.

5-10. A ul element with display: contents applied (which removes margin/padding and thus hides the bullets)

compared to one that uses the user agent’s default styles

In visual terms, it’s as if the element isn’t there. This is particularly useful when working

with Grid and Flexbox. In grid and flexible box layout, the direct children of the grid or flex
container participate in the formatting context. Adding display: contents to the child of a

grid or flex container means that the container’s “grandchild” elements participate in that
formatting context instead. We’ll come back to this point later in the chapter.

160 CSS Master, 3rd Edition

Chrome and Edge fixed a similar bug in their implementations of display: contents as of

version 89 (released March 2021) and later. Firefox resolved its version of this bug with Firefox
62 (released in 2018).

Floating Elements and Normal Flow
When we float an item by setting the value of the float , we remove it from the normal flow.

Instead of stacking in the block direction, the box is shifted to either end of the current line
until its edge aligns with the containing block or another floated element. float has four

possible values:

left , which shifts the box to the left of the current line

right , which shifts the box to the right of the current line

inline-start , which shifts the box to the start of the current line

inline-end , which shifts the box to the end of the current line

Both inline-start and inline-end depend on the language direction of the document. For

languages that are written and read horizontally, from left to right, inline-start aligns the

box to the left, while inline-end shifts it to the right. For languages that are written and read

Use display: contents with Caution

display: contents is not supposed to affect the semantics of an element.
Unfortunately, there’s a severe accessibility bug7 in Safari’s implementation
(versions 15 and older as of this writing). In Safari, display: contents strips
semantic meaning from elements, which prevents them from being exposed to the
accessibility tree. Landmark elements such as <h1> and interactive elements such
as <button> become imperceptible to screen readers. It makes document
navigation impossible. Adding ARIA attributes doesn’t fix it.

For this reason, do not use display: contents to reset margins and padding for
every element until this bug is fixed in Safari. For a detailed overview of the
accessibility issues display: contents can cause, see Adrian Roselli’s “Display:
Contents Is Not a CSS Reset”8.

Chrome and Edge fixed a similar bug in their implementations of display:

contents as of version 89 (released March 2021) and later. Firefox resolved its
version of this bug with Firefox 62 (released in 2018).

7. https://bugs.webkit.org/show_bug.cgi?id=185679
8. https://adrianroselli.com/2018/05/display-contents-is-not-a-css-reset.html#Tree

Layouts 161

from right to left, such as Arabic, inline-start shifts the box to the right and inline-end

shifts it to the left. When the language is written vertically, inline-start is the top of the

container, and inline-end is the bottom.

Content flows along the far edge of a floated box if there’s enough horizontal space. If, for
example, we left-float an image that’s 300 pixels wide by 225 pixels high, the adjacent lines of
text fill in along its right edge. If the computed height of the content exceeds 225 pixels, the
text wraps around the bottom of the image.

5-11. Floating an img element to the left

If, however, the computed height of the remaining content is shorter than 200 pixels, the
floated element overflows its container.

5-12. The image extends down below the text

Text in sibling elements will also flow along the edge of a float if there’s enough room. The
length of each line—its line box—will be shortened to accommodate the float.

162 CSS Master, 3rd Edition

Floating a series of elements works a little bit differently. Let’s apply float: left to a series

of <div> elements that are 500 pixels wide inside a container that’s 1500 pixels wide. As you

can see in the image below, these elements stack horizontally to fill the available space.
Elements that don’t fit in the available horizontal space will be pushed down until the box fits
or there are no more floated elements.

5-13. Floating a series of elements, which can result in ugly gaps

Floated elements don’t wrap neatly. Yet before Flexbox and Grid layout, developers used
floats to create gridded layouts. This requires setting an explicit height value to elements

within a floated grid to ensure that elements don’t “snag” on previously floated elements. The
drawback, of course, is that you have to adjust the height of every element should the content
require it, or edit your text and images to ensure that they don’t overflow the container, as is
happening in the image below.

Layouts 163

5-14. Using floated elements to create a grid, where each element has a fixed height

Removing elements from the normal flow can be tricky. Other content in the document will
want to cozy up next to a floated element, but that may not be the layout we’re trying to
achieve.

Consider the UI pattern known as a media object. A media object consists of an image or
video thumbnail that’s aligned to the left or right of its container, accompanied by some
related text. You’ve probably seen this style of component in comments sections, on news
sites, or as part of YouTube’s “Up Next” feature.

5-15. Two sections, each containing an image and text, arranged vertically

164 CSS Master, 3rd Edition

Here’s what the markup for a media object might look like:

<div class="media__object">

<div class="media__object__text">

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt

utlabore et dolore magna aliqua.

</div>

</div>

The media object is a simple pattern: it consists of an image placed to the left or right of its
container and some related text. Floating an image is one way to create a media object layout:

.media__object {

background: #ccc;

padding: 1rem;

}

.media__object img {

float: left;

margin-right: 1rem;

}

The drawback of simply floating an image is that the height of the accompanying text may be
shorter than the height of the floated image. When that happens, our container will collapse
to match the height of the text. Content in adjacent elements will flow around the floated
element, as illustrated in the image below.

5-16. The content in the second media object snaps on the image of the first, which is hanging out of its container

To prevent this, we need to clear our float. That is, we need to force the container to wrap
around its floated contents. Let’s look at some methods for doing so in the next section.

Clearing Floats

The simplest way to clear a float is to establish a new block formatting context for its

Layouts 165

container. A block formatting context always contains its children, even when those children
are floated.

So how do we create a new block formatting context? We have a couple of options.

Using display: flow-root

One way is to use the display: flow-root property. Let’s add display: flow-root to our

.media__object rule set:

.media__object {

background: #ccc;

padding: 1rem;

display: flow-root;

}

.media__object img {

float: left;

margin-right: 1rem;

}

Now our floated image is completely contained by its parent, as shown below.

5-17. Thanks to display: flow-root, both containers wrap around their contents

The flow-root value for the display property is a fairly recent addition to CSS. Its sole

purpose is to trigger a block formatting context for a containing element. It’s well supported in
modern browsers, but it’s not the only option for creating a new block formatting context.

Using the contain Property

The contain property is a performance-related property. Its purpose is to constrain reflow

166 CSS Master, 3rd Edition

and repaint operations to an element and its children, instead of the entire document.
However, it also creates a new block formatting context for that element. That means we can
also use it to clear floats.

Let’s update our CSS. We’ll float the image to the right this time. The image below shows what
our media objects look like before clearing the float.

5-18. The contents of the second media item snag on the right-floated image of the first, which hangs out of its

container

Now let’s add contain: content to the .media__object rule set:

.media__object {

background: #ccc;

padding: 1rem;

contain: content;

}

.media__object--right img {

float: right;

margin-left: 1rem;

}

Now our .media__object elements encompass their floated image children.

Layouts 167

5-19. Using contain to create a new block formatting context

Unfortunately, Safari versions 15 and below don’t support the contain property. Since

display: flow-root has broader compatibility, use that instead.

For older browsers—versions of Firefox prior to 52, Chrome prior to 57, Safari prior to 13, Edge
prior to 79, and every version of Internet Explorer—use the “clearfix” method.

Clearfix

Clearfix uses the ::after pseudo-element and the content property to insert a box at the

end of a containing element. Since pseudo-elements can be styled like actual elements, we
can apply display: table (or display: block) and clear: both to clear our float:

.media__object::after {

content: "";

display: table;

clear: both;

}

Floats are best used for aligning images and tables to the left or right, or for placing content
asides within a page. For most other uses, Flexbox and Grid are better choices. Flexbox and
Grid typically require less markup and less CSS, while offering more flexibility in the kinds of
layouts we can create. Grid and Flexbox also make vertical centering remarkably easy, as we’ll
see later in this chapter.

But first, let’s discuss another way to remove elements from the normal flow: the position

and z-index properties.

168 CSS Master, 3rd Edition

Positioning and Stacking Elements
Every element in a document participates in a stacking context. The stacking context is a
model or set of rules for how elements are painted to the screen. If you’ve ever used the z-

index property, you’ve worked with stacking contexts.

The root <html> element creates a root stacking context. Some CSS properties and values

can also trigger a stacking context for the elements they’re applied to. Whether part of a root
or local context, children within a stacking context are painted to the screen from back to
front as follows:

child stacking contexts with a negative stack level (for example, positioned and with z-

index: -1)

non-positioned elements whose computed position value is static

child stacking contexts with a stack level of 0 (for example, positioned and with z-index:

auto)

child stacking contexts with positive stack levels (for example, positioned and with z-

index: 1)

If two elements have the same stack level, they’ll be layered according to their order in the
source HTML.

Let’s look at an example. Here’s our HTML:

<div id="a">

<p>div#a</p>

</div>

<div id="b">

<p>div#b</p>

</div>

<div id="c">

<p>div#c</p>

</div>

<div id="d">

<p>div#d</p>

</div>

<div id="e">

<p>div#e</p>

</div>

And here’s our CSS:

Layouts 169

#a {

background: rgba(233, 30, 99, 0.5);

}

#b, #c, #d, #e {

position: absolute;

}

#b {

background: rgba(103, 58, 183, 0.8);

bottom: 120px;

width: 410px;

z-index: 2;

}

#c {

background: rgba(255, 235, 59, 0.8);

top: 190px;

z-index: 1;

}

#d {

background: #03a9f4;

height: 500px;

top: 10px;

z-index: -1;

}

#e {

background: rgba(255, 87, 34, 0.7);

top: 110px;

z-index: 1;

}

This produces the stacking order shown in the image below.

170 CSS Master, 3rd Edition

5-20. A stacking context with positioned and unpositioned elements of varying z-index values

The bottommost layer is #d , because its z-index value is -1. Since #a isn’t positioned, it sits

above #d , but below the positioned elements (#b , #c , and #e). The next layer is #c ,

followed by #e . Since both elements have the same z-index value, #e is stacked higher,

because it’s last in the source order. The topmost layer is #b , due to its z-index of 2 .

To make it a bit easier to visualize, the following image shows a three-dimensional projection
of the above stacking context.

Layouts 171

5-21. A three dimensional projection of a stacking context

All of the elements in the previous example are part of the root stacking context. But let’s see
how stacking is affected by the opacity property, which forces a local context when its value

is less than 1 . Consider the following HTML:

<div id="f">

<p>div#f</p>

</div>

<div id="g">

<p>div#g</p>

</div>

It’s paired with this CSS:

#f, #g {

position: absolute;

}

#f {

background: rgba(255, 193, 7, .9);

}

#f p {

background: rgb(34, 34, 34);

color: whitesmoke;

172 CSS Master, 3rd Edition

position: relative;

z-index: 1;

}

#g {

background: rgba(3, 169, 244, .7);

top: 50px;

left: 100px;

}

According to the rules of the stacking context, #f p occupies the topmost layer in the stack.

That’s what we see in the following image.

5-22. The rendered version of our sample HTML and CSS

But if we change our CSS and add opacity: .99 to the #f rule set, something interesting

happens:

#f {

background: rgba(255, 193,7, .9);

opacity: .99;

}

The opacity property creates a new stacking context any time its value is less than 1 . As a

result, the z-index for its child element becomes relative to its parent rather than the root

stacking context. You can see how this works below. Notice that #g now occupies the

topmost layer.

Layouts 173

5-23. How opacity affects stacking order

Let’s add an absolutely positioned <div> element to #f and give it a z-index value of 2 .

Now <div> is stacked on top of #f p (see below), but it’s still layered behind #g because

#f has a local stacking context. Children of a local stacking context can only be reordered

relative to that context. Elements that sit in other contexts can’t be layered within a local one.

5-24. Multiple elements in a stacking context

174 CSS Master, 3rd Edition

Let’s look at an example of using the stacking context to manage layers and positioned
elements. In this case, we’ll create a menu that slides in from the top of the screen. But rather
than slide in over the logo and menu button, we’ll make it slide in beneath it. First, our HTML:

<header>

<button type="button" id="menu">

</button>

<nav>

<ul id="menu-list">

Sports

Politics

Arts & Entertainment

Business

Travel

</nav>

</header>

Clicking the <button> element causes the element to slide into view. Here’s our our

(simplified) CSS:

header {

background: hsl(206, 9%, 15%);

color: whitesmoke;

width: 100%;

}

nav {

background: hsla(206, 9%, 15%, .9);

position: absolute;

width: 100%;

left: 0;

top: -33vw;

transition: top 500ms;

}

.open {

A Workaround for Opacity Transition Issues

Because opacity triggers a new stacking context, you may run into undesired
behavior when transitioning the opacity of layers that overlap. To work around
this, use rgba() or hsla() values for color or background-color and transition
those instead.

Layouts 175

top: 6rem;

}

The CSS above creates a menu that slides down from the top when triggered. But as it slides
in, it passes over the AwesomeNews logo, as pictured below.

5-25. The menu slides over the AwesomeNews logo

Our menu (the <nav> element) slides over the logo and menu button because it has a higher

stack level. Remember that when multiple elements have the same z-index value, the last

one in the source will be the topmost layer.

Let’s change this. What happens when we add z-index: -1 to the nav rule set? Well, you

get the mess you see pictured below.

176 CSS Master, 3rd Edition

5-26. Adding z-index: -1 forces nav to the bottom of the stack

The navigation slides in behind the logo and menu button, but it also slides in behind the
content. It’s hard to read and impossible to click.

Because its parent element (<header>) isn’t positioned and has a computed z-index value

of auto , the <nav> element is still part of the root stacking context. Adding z-index: -1

shoves it to the bottom of the root element’s stack, which means it sits behind other elements
in the root stacking context.

So how do we fix this? By creating a new stacking context on our <header> element, which is

the parent element of <nav> . We already know that the opacity property can create a new

stacking context when its value is less than 1 . However, positioned elements can also create

a new stacking context.

Let’s add position: fixed to our <header> element. Now our <nav> element participates in

the stacking context of header instead of the document root:

Positioning and z-index

If using position: absolute or position: relative , you’ll also need to set z-

index to a value other than auto in order to create a new stacking context.

Layouts 177

header {

background: #222629;

color: whitesmoke;

width: 100%;

top: 0;

position: fixed;

}

Since <nav> now participates in the stacking context of <header> , the menu sits above the

rest of our content. But because <nav> has a negative stack level, it sits at the bottom of the

<header> element’s stacking context, as illustrated below.

5-27. The menu still sits behind the heading

For the rest of this chapter, we’ll switch gears and talk about some newer modules for creating
more complex layouts. We’ll learn how to wrap text around complex shapes, flow content
across multiple columns, create more flexible components, and build complex grid layouts—all
of which was previously difficult if not impossible, and often required extra markup or
JavaScript.

Outside-the-box Layouts with CSS Shapes
Everything is a box in CSS, but with CSS Shapes we can sometimes have circles and triangles.
The CSS Shapes specification9 makes it possible to flow content around non-rectangular

9. https://www.w3.org/TR/css-shapes/

178 CSS Master, 3rd Edition

shapes.

Shaped elements must be floated. Remember: when you float an element, content will flow
along its right or left edge. When an element is shaped, content instead flows along the edges
of the shape. Shaped elements must also have a width and height. Width and height can
either be explicitly set, derived from the element’s padding value, or derived from the size of

its contents.

Let’s look at a simple example of flowing text around a circle. Here’s our (abbreviated) HTML:

<p>

Etiam pharetra nibh tempus, viverra sem vel, eleifend eros. Integer semper lorem odio, ac feugiat

mi tincidunt et. Donec luctus ante sit amet elementum facilisis. Suspendisse potenti. In varius

eros at mollis eleifend.…

</p>

<p>

Phasellus blandit elit vitae euismod volutpat. Maecenas venenatis sed leo euismod aliquam.

</p>

We’ll pair it with the following CSS:

p:first-of-type::before {

content: ' ';

float: left;

width: 40rem;

height: 40rem;

shape-outside: circle(50%);

}

In this example, our rule set floats the element and explicitly sets its width and height. We’ve
defined our actual shape using the shape-outside property. shape-outside defines the type

of shape, along with its size and position. The above CSS results in the layout shown below.

Layouts 179

5-28. Text curving around an unseen object

Using shape-outside generates a reference box. This reference box functions as a sort of

coordinate system in which the shape is drawn. Even though content flows around the shape,
the reference box still exists. You can see it by adding a background color to p:first-of-

type::before .

5-29. The floated box now appears as a green square, though the text still follows a curved shape

180 CSS Master, 3rd Edition

Shapes can be defined in one of two ways:

using the ellipse() , circle() , inset() , path() , or polygon() basic shape functions

using an image with an alpha channel—that is, an image with full or partial transparency,
including gradients

Let’s look at shape functions next.

Using Shape Functions

Shapes are a type of CSS value, like length, angle, or color units. Here, we’re going to discuss
them in the context of shape-outside , but they also apply to the clip-path and offset-

path properties. Some of the examples in this section will use clip-path() to illustrate the

contours of the shape.

This section uses value definition syntax to explain the arguments for each of these functions.
I’ve lifted each function definition directly from the CSS Shapes specification. Value definition
syntax is a bit awkward to read, but it’s far clearer than saying “it accepts from one to six
arguments, the first four of which use the same order and shorthand as margin , and the last

two of which are really one argument that sets a border radius.” That is, by the way, an
explanation of the inset() function.

Value definition syntax is easy to read once you get the hang of it. If you’re familiar with
regular expressions, some of it will be familiar.

5-30. The structure of a value definition

The image above illustrates a value definition statement using a generic example. Mozilla
Developer Network has a far more thorough explanation10 if you want more details.

10. https://developer.mozilla.org/en-US/docs/Web/CSS/Value_definition_syntax

Layouts 181

ellipse() and circle()

The ellipse() function creates an ellipse or oval around two focal points within the

reference box. Its arguments use the following pattern:

ellipse([<shape-radius>{2}]? [at <position>]?)

Both sets of arguments for ellipse() are optional, and the center point of the reference box

(50%, 50%) is the default value for both. Yes, shape-outside: ellipse() is perfectly valid. It

creates a circle.

5-31. Using ellipse() with no arguments produces a circle

The first set of arguments indicates the x-radius and y-radius positions around which the
ellipse will be drawn. If you include one, you must include the other. Here’s an example:

Remember Geometry?

Ellipses are easy to recognize but hard to explain. If you’re like me and didn’t pay
enough attention during your geometry lessons, Math Is Fun11 has an easy-to-
understand primer. Also recall that circles are a special kind of ellipse.

11. https://www.mathsisfun.com/geometry/ellipse.html

182 CSS Master, 3rd Edition

.ellipse {

float: left;

width: 40rem;

height: 40rem;

shape-outside: ellipse(20% 40%);

/* Added to illustrate the ellipse and how text flows around it */

background-color: #666;

clip-path: ellipse(20% 40%);

}

Adding x- and y-radius arguments to the ellipse function causes an oval-shaped text flow:

5-32. Text wraps around the right-hand side of an oval-shaped object

The second argument must begin with the at keyword, and it indicates the position of the

center point for the ellipse. Let’s set a position for our ellipse:

.ellipse {

float: left;

width: 40rem;

height: 40rem;

shape-outside: ellipse(20% 40% at 0% 50%);

/* Added to illustrate the ellipse and how text flows around it */

background-color: #666;

clip-path: ellipse(20% 40% at 0% 50%);

}

Layouts 183

Adding a position value to the ellipse function shifts where the center point of the ellipse sits
within the shape’s reference box. Now the center point for our ellipse sits completely to the
left of the reference box, and halfway down.

5-33. Text wraps around an ellipse, half of which is positioned offscreen

Position values can be lengths or percentages. Or you can use position keywords like left ,

bottom , right , top , and center .

The circle() function is a simpler version of ellipse() . Rather than requiring an x-radius

and y-radius, circle() instead accepts a single shape radius argument. Using circle(30%)

is the same as ellipse(30% 30%) .

inset()

We can create rectangular shapes with the inset() function. I suspect you’re wondering why

we need a rectangular shape when floats are already rectangular. Well, floats don’t let you
create neat inset effects, nor do they cause text to flow around a rectangle’s rounded corners.
With inset() we can do both. Let’s update our example from earlier in the chapter. We’ll

change our shape from circle() to inset() :

p:first-of-type::before {

content: ' ';

float: left;

width: 40rem;

height: 40rem;

184 CSS Master, 3rd Edition

shape-outside: inset(10% 20% 20% 0 round 8rem);

background: hsl(271, 76%, 83%);

}

Using inset() with a border radius causes text to flow around the borders’ curves, as

illustrated below.

5-34. Text flows around a curve, overlapping parts of the square object, which has a purple background

Arguments for inset() use the following syntax:

inset(<length-percentage>{1,4} [round <'border-radius'>]?)

The inset() function requires at least one length or percentage value, but accepts as many

as four, representing the top, right, bottom, and left offsets from the reference box. These
arguments mirror the syntax of the margin shorthand property. Using two values, for

example, sets the top/bottom and right/left offsets. Using three values sets the top/bottom
and right offsets.

The inset() function also accepts an optional border-radius argument, indicated by the

round keyword, and followed by a valid border radius value.

Layouts 185

polygon()

We can use the polygon() function for more complex shapes. A polygon is a closed shape

made from straight lines—which includes triangles, rhomboids, stars, and octagons. The
polygon() function takes arguments in the following form:

polygon(<'fill-rule'>? , [<length-percentage> <length-percentage>]#)

Its fill-rule argument is optional. It should be nonzero or evenodd , but defaults to

nonzero if omitted. The second argument should be a series of length or percentage values

that describe the shape. Let’s create a triangle, this time floated to the right:

p:first-of-type::before {

content: ' ';

float: right;

width: 60rem;

height: 60rem;

shape-outside: polygon(100% 0, 0% 50%, 100% 100%);

/* Helps visualize the shape */

clip-path: polygon(100% 0, 0% 50%, 100% 100%);

background-color: hsl(182, 25%, 50%, .25);

}

The image below shows the result—a triangle-shaped float created using the polygon()

function, and floated to the right.

5-35. Text flowing around a triangle

186 CSS Master, 3rd Edition

Notice here that some languages and writing directions may cause text to flow less tightly
around a floated shape. The language in this example (Latin) uses a left-to-right language
direction, and spaces to mark the beginning and ending of words. As a result, our lines differ in
length, and our shape is less clearly articulated. Use word-break: break-all or text-align:

justify to mitigate this.

If you want to use complex, multi-sided polygons, or shapes that include curves and arcs,
these basic shapes can be quite limiting. Luckily for us, we aren’t limited to using shapes with
shape-outside .

Using Images

We can also use images to define shapes for use with shape-outside . You can use any image

with an alpha channel. This includes PNG images, SVG images with HSLA or RGBA fill

values, and CSS gradients. It doesn’t, however, include image formats such as GIF, which only
support binary transparency. Such formats are incompatible with shape-outside .

The image below illustrates the use of shape-outside with a PNG image that contains an

alpha channel.

5-36. Text wrapping around in image of a coffe cup, with a heading of “A Good Cuppa Joe”

Mug of coffee photo by Foodie Factor from Pexels.12

12. https://www.pexels.com/photo/close-up-photo-white-ceramic-cup-539432/

Layouts 187

Let’s look at the CSS used to create the layout for A Good Cuppa Joe (pictured above). In this
example, we’ve added the shape-margin property, which adds space around the shape. Unlike

margin , shape-margin accepts a single length or percentage value that’s applied around the

contours of the shape:

[src='coffee-cup.png'] {

float: right;

width: 615px;

height: 569px;

shape-outside: url('coffee-cup.png');

shape-margin: 2rem;

}

The CSS above is paired with the markup shown below. It’s been abbreviated for the sake of
space:

<p>

Etiam pharetra nibh tempus, viverra sem vel, eleifend eros. Integer semper lorem odio, ac

feugiat mi tincidunt et. Donec luctus ante sit amet elementum facilisis. Suspendisse potenti.

In varius eros at mollis eleifend. …

</p>

<p>

Phasellus blandit elit vitae euismod volutpat.…

</p>

The trick to getting text to flow along the curved edge of coffee-cup.png is to apply the

shape-outside property to the image element, and set the image’s URL as its value. But it’s

not the image itself that causes text to flow along the image curve. It’s the combination of
float and shape-outside . Remove the tag and change the selector to p:first-of-

type::before , and there will be an empty, rounded space where the cup used to be. The image

below shows how the combination of float and shape-outside causes text to flow around

the curve of the image, whether the image is included in the markup or not.

188 CSS Master, 3rd Edition

5-37. Text wrapping around the space where the image used to be

When using external images with shape-outside , the browser makes a potentially CORS-

enabled fetch for the resource. The browser must be able to resolve the document’s path in
such a way that it can generate an origin. In practical terms, this means two things:

Linked and external images need to share the same origin as your document, or be served
with the correct Access-Control-* response headers.

You’ll need to use a server or content delivery network when developing or viewing layouts
that use shape-outside so that the browser can create an origin.

You’ll need to use a web server even during local development. Loading files directly from
your computer’s file system won’t work.

CSS Gradients Are Images Too!

Image files and data URIs are not the only images we can use with shape-outside . CSS

gradients13 also work. The image below shows an example of shape-outside combined with

background-image with a CSS gradient to create a beach-like page design.

Cross-origin Resource Sharing

Refer to the “Fonts and Origins” section of Chapter 6, “Working with Text”, for an
explanation of cross-origin resource sharing.

Layouts 189

5-38. Text following a beach-like, transparent to blue angled gradient

To create it, we’ve used the following CSS:

body {

background-color: hsl(183, 80%, 80%);

}

body::before {

content: ' ';

display: block;

float: right;

height: 100vh;

width: 50%;

background-size: cover;

background-image: linear-gradient(-45deg, hsl(240, 86%, 25%) 0%, hsla(213, 100%, 50%,

➥ 0.8) 22%, hsla(183, 100%, 50%, 0) 53%);

shape-outside: linear-gradient(-45deg, hsl(240, 86%, 25%) 0%, hsla(213, 100%, 50%,

➥ 0.8) 22%, hsla(183, 100%, 50%, 0) 53%);
}

In this case, the text flows along the edge of the gradient at the point where it becomes fully
transparent (hsla(183, 100%, 50%, 0)).

We can adjust the point at which the text flows by adjusting the value of the shape-image-

13. https://drafts.csswg.org/css-images-3/

190 CSS Master, 3rd Edition

threshold property. shape-image-threshold represents an alpha value between 0 and 1,

inclusive. Portions of the image with an alpha level that exceeds this threshold will be included
in the shape. Adding shape-image-threshold: 0.4 to the preceding CSS changes the size of

the triangle created by the linear gradient.

5-39. The angled text now flows over the beach and into the “water”

Changing the alpha threshold means that text now flows around areas of the gradient that
have a transparency value of 0.4 or higher. These are interpolated values between hsla(213,

100%, 50%, 0.8) (alpha = 0.8) and hsla(183, 100%, 50%, 0) (alpha = 0).

The Shape of the Future (or the Future of Shapes)

As you may have figured out from the shape-outside property name, CSS Shapes is

concerned with flowing text around floated items. Content inside the shaped element does
not, in fact, follow the contours of the inside of the shape. Instead, that content is contained
by the dimensions of the reference box.

Level 2 of the CSS Shapes Module specification14 defines shape-inside and shape-padding

properties that do affect the shape of content inside the box. The image below shows what a
layout that uses shape-inside might look like.

14. https://drafts.csswg.org/css-shapes/#basic-shape-functions

Layouts 191

5-40. Lines of text fitting within a circle

Some day, we may be able to create layouts like the one pictured above, in which the text
inside the shape follows its contours. It’s not clear how soon these features will be
implemented, however. That specification is still in its early stages.

Using CSS Multicolumn Layout
Multicolumn layout allows text and elements to flow from one column to another
automatically. With it, we can create text layouts that mimic those found in newspapers,
magazines and ebooks. We can also use it to create space-efficient user interfaces.

Defining Column Number and Width Using columns

To create multiple columns, set the columns property:

<div style="columns: 2">

<p>Lorem ipsum dolor sit amet, consectetur adipisicing ... </p>

<p>Duis aute irure dolor in reprehenderit in voluptate ... </p>

</div>

The columns property is a shorthand property for column-width and column-count . With

columns , the first value that can be interpreted as a length becomes the value of column-

width . The first value that can be interpreted as an integer becomes the value of column-

count . Order doesn’t matter. A declaration such as columns: 10em 3 is the shorthand way of

192 CSS Master, 3rd Edition

typing column-width: 10em; column-count: 3 . It’s also equivalent to typing columns: 3 10em .

If a value is unspecified, its initial value is auto . In other words, columns: 4 has the same

effect as typing columns: 4 auto or column-width: auto; column-count: 4 .

Setting column-width determines the optimal size for each column. Its value should be in

length units—such as column-width: 200px or column-width: 10em . Percentages won’t work.

“Optimal”, of course, means that column-width sets the ideal width. The actual width of a

column may be wider or narrower than the value of column-width . It depends on the available

space and/or viewport size.

In the example pictured below, for example, the container is 800px wide and the column-

width value is 15em . That gives us three columns.

5-41. A three column layout in an 800-pixel-wide container

But if we expand the width of the container to 1920 pixels, there’s now room for six columns:

Layouts 193

5-42. Our layout becomes four columns when the container is 1920 pixels wide

Shrinking the width of the container to 450 pixels, on the other hand, reduces this layout to a
single column.

5-43. Reducing the container width to 450 pixels makes our layout a single column

Setting the column-count property defines the optimal number of columns to create. Its

value must be an integer greater than 0 .

When column-width is something other than auto , the browser creates columns of that

width up to the number of columns specified by column-count . If column-width is auto , the

browser will create the number of columns specified by column-count . That may be more

easily shown than explained, so let’s illustrate it.

194 CSS Master, 3rd Edition

In the images that follow, our container has a column-count value of 3 , and a column-width

value of auto . Whether our container is 800 pixels wide (as in the first image) or 450 pixels

wide (as in the second image), we still have three columns.

5-44. Three columns at 800 pixels wide

Layouts 195

5-45. Three columns at 355 pixels wide

Now compare these to the following two images. In both cases, our container has a column-

count value of 3 , and a column-width value of 10em . When the container is 800 pixels wide,

the number of columns remains the same, as shown below.

196 CSS Master, 3rd Edition

5-46. When our container is 800 pixels wide, we see all three columns

But when our container is 400 pixels wide, we can only fit two columns, as shown below.

Layouts 197

5-47. With a container that’s 450 pixels wide and with a column-width value of 10em, we can only fit two columns

This goes out of the window entirely if we set the height of a column container. Setting a

fixed height on a container forces the browser to create additional columns to accommodate
the container’s content. In this case, the column-count property is ignored.

Spacing Columns with column-gap and column-rule

The number of columns that can fit in a container also depends on the value of column-gap .

Known as the gutter in print design, the column gap sets the distance between each column.
The initial value of column-gap is normal . In most browsers, that’s 1em or 16px .

Increasing or decreasing the width of the column-gap can affect both the width of each

column and the space between. For example, if a container is 45em wide with column-width:

15em and column-gap: normal applied, its contents will be divided into two columns rather

than three, as shown below.

198 CSS Master, 3rd Edition

5-48. Only two columns fit when they’re 15em wide inside a 45em container with the default column-gap value

Changing column-gap to 0 , however, gives us our full three-column layout, as shown below.

5-49. Three 15em wide columns fit inside a 45em wide container with column-gap: 0

Without a column-gap , there’s now sufficient space for three columns.

As with column-width , the value of column-gap should be either 0 or a positive length value.

Layouts 199

Negative lengths such as -2em are invalid.

Although originally defined as part of the multicolumn specification, newer browsers (Firefox
63 and later, Chrome and Edge 84 and later, and Safari 14.2 and later) also support the use of
column-gap with Grid and Flexbox. Similarly, you can use the gap shorthand property—which

was first defined by the CSS Grid specification—with multicolumn and Flexbox layouts.

With column-rule , we can add lines to visually separate columns. It functions similarly to

border , and accepts the same values. For example:

.multi-col {

column-rule: 5px hsl(190, 73%, 50%) dashed;

}

Like border , column-rule is a shorthand for the column-rule-width , column-rule-style ,

and column-rule-color properties. Each column-rule-* property accepts the same values

as its border counterpart. An example of using column-rule is shown below.

5-50. Adding a column rule

Column width isn’t affected by changes to column-rule . Instead, column rules sit at the

midpoint of the column gap. If the width of the rule exceeds that of the gap, the column rule
renders beneath the columns’ contents.

200 CSS Master, 3rd Edition

5-51. The column rule exceeds the column gap and underlaps text

Images within Columns

In cases when an image is wider than its column, the text gets rendered on top of the image.
This is the expected behavior that’s defined by the specification.15

The image below shows an image within a column sitting at the bottom of the stacking
context in Firefox.

5-52. An oversized image extends into a neighboring column and appears behind et column's text

15. https://www.w3.org/TR/css-multicol-1/#overflow-inside-multicol-elements

Layouts 201

Adding a width: 100% declaration to the image or object constrains the image width to that

of the column box, as shown below. It also constrains the height based on the aspect ratio of
the image. You can add height: auto to ensure this behavior.

5-53. Using img {width: 100%} inside a multicolumn container to contain the image within its own column

Floated elements within a multicolumn layout are floated within the column box. In the image
below, the element has a float: inline-start rule applied. Text still flows around the

image, but within the constraints of the column.

5-54. Text flows around a floated image within a column

Multicolumn layout doesn’t automatically create a new stacking context. Positioned elements
in a multicolumn container are positioned relative to the root stacking context unless you
create a local stacking context on the container.

202 CSS Master, 3rd Edition

Making Elements Span Columns

We can also make a particular element span columns with the column-span property. This

property accepts two values: none and all . Using none means that the element will be part

of the normal column flow, while using all will make the element span every column.

It’s not currently possible to make an element span a particular number of columns. We’re
limited to specifying whether it should span all columns or none at all. Consider the layout
shown below, which shows how an <h1> element fits into the multicolumn layout flow.

5-55. A large heading wraps over multiple lines to fit within its column

Corgi photo by Alvan Nee from Unsplash.16

Here, the <h1> element (the article headline “Dog bites man …”) is part of the multicolumn

layout flow. It sits within a column box, wrapping as appropriate. Now let’s add column-span:

all :

article > h1 {

column-span: all;

}

This gives us the layout shown below, with a headline that spans all of our columns.

16. https://unsplash.com/photos/Id1DBHv4fbg

Layouts 203

5-56. Using column-span to make an element span multiple columns

Managing Column Breaks within Elements

In a multicolumn layout, a long block of text may start in one column and end in another, as
illustrated below.

5-57. Elements may break across columns in a multicolumn layout

To prevent this, use break-inside: avoid or break-inside: avoid-column . The break-

inside property applies to the children of a multicolumn container. For example, to prevent all

children of .multi-col from breaking across column boxes, use the following:

204 CSS Master, 3rd Edition

.multi-col > * {

break-inside: avoid-column;

}

Now the purple paragraph no longer breaks across columns, as can be seen below.

5-58. Using break-inside kepps a paragraph with a purple background contained within a single column

The break-inside property also affects paged media17, which explains why there are both

avoid and avoid-column values. The difference? The avoid-column property only prevents

a box from breaking across columns, while avoid prevents a box from breaking across both

columns and pages.

It’s also possible to force a break before or after an element using break-before and break-

after . Let’s force a column break before the third paragraph:

CSS Fragmentation Module Level 3

The CSS Fragmentation Module Level 3 specification18 is closely related to the
multicolumn and paged media specifications. It unifies the column-break- and
page-break- properties from earlier specifications, and further defines how block

boxes should break across columns and pages.

17. https://drafts.csswg.org/css-page-3/
18. http://dev.w3.org/csswg/css-break-3/

Layouts 205

.multi-col p:nth-of-type(3) {

background-color: #c09a;

break-before: column;

}

Here, we’ve used the column value to force a column break before the selected element, as

illustrated below.

5-59. Forcing a column break before the third paragraph

The break-after property works similarly, forcing a column break after the selected element.

Using break-before: always also forces column breaks. However, the always value also

applies to paged media, where column only applies to multicolumn layout.

Basic browser support for multicolumn layout is quite good. Support for break-before ,

break-after , and break-inside , however, is a different story.

Safari (versions 14.2 and later), Chrome, and Edge support the column and avoid-column

values for break-before and break-after , but lack support for the always value. Instead,

you can use the -webkit-column-break-before and -webkit-column-break-after properties

with always . These prefixed properties are remnants of an earlier version of the multicolumn

specification, but they function in much the same way as break-before and break-after . If

you use the -webkit-column-* properties, future-proof your CSS by including the

standardized properties.

206 CSS Master, 3rd Edition

Firefox, on the other hand, only supports the always value of break-before and break-

after , and only for printed documents. Firefox also lacks support for the avoid-column value

of break-inside . As a workaround, you can use the avoid value, since break-inside: avoid

works for columns and pages in every browser.

Optimizing the User Interface

Arranging paragraphs of text isn’t the only use case for multicolumn layouts. We can also use
them with lists to optimize the use of horizontal space. Consider the layout shown below,
representing a list split into three columns.

5-60. A list split into three columns

Your first thought might be to split this list into three separate lists and use floats, Flexbox or
Grid to place them side by side. Here’s what that markup might look like:

<div class="grid-3-across">

Apples

Oranges

Bananas

Dragon fruit

Cherries

Strawberries

Blueberries

Raspberries

Durian

Mangosteen

Mangoes

</div>

Layouts 207

And the accompanying CSS:

.grid-3-across {

display: grid;

grid-template-columns: repeat(3, 1fr);

}

While this approach works, it requires slightly more markup than a single list element. We’re
using three elements instead of one. With a multicolumn layout, we can use a single

element:

<ul style="columns: 3">

Apples

Oranges

Bananas

Dragon fruit

Cherries

Strawberries

Blueberries

Raspberries

Durian

Mangosteen

Mangoes

What’s more, multicolumn layout automatically balances the number of items in each column.
If our list grows to 16 or 18 items, we don’t have to edit the markup to rebalance the list.

Another use case for multicolumn layouts is wrangling lists of checkbox inputs. Here, too, we
can maximize the use of horizontal space to create more compact forms, as pictured below.

Missing Bullets

Blink- and WebKit-based browsers remove bullets and numbers from some or all
list items in a multicolumn layout. To resolve this, add margin-inline-start: 20px

or margin-left: 20px to elements in a multicolumn container.

208 CSS Master, 3rd Edition

5-61. A form’s checkboxes spread across two columns

Use multicolumn layout when you have blocks of content to be automatically distributed and
evenly spaced across several columns. It isn’t well suited to creating page layouts—such as
adding a navigation column and a main content column. For page layouts, CSS Grid is a better
choice. We’ll discuss Grid later in the chapter.

Creating Flexible Layouts with Flexbox
The CSS Flexible Box Layout Module19, better known as Flexbox, was designed to distribute
elements and space in one direction—a row (flex-direction: row or row-reverse) or a

column (flex-direction: column or column-reverse).

A basic flexible box layout is simple to create: just add display: flex or display: inline-

flex to the containing element. These values for display trigger a flex formatting context

for that containing element’s children. Both flex and inline-flex are inner display modes.

We set these values on the container, which behaves like a block-level or inline-level box,
respectively. The children of that container are then arranged according to the rules of flex
layout.

By adding display: flex or display: inline-flex to a containing element, its immediate

children become flex items. Flex items may be element children or non-empty text nodes, as
shown in the following example:

19. https://www.w3.org/TR/css-flexbox-1/

Layouts 209

<div style="display: flex; width: 1000px; margin: 5rem auto;">

This text is contained by a SPAN element.

This text is contained by a B element.

This un-wrapped text node still behaves like a flex item.

</div>

Flex items don’t have to be elements. Non-empty text nodes can also be flex items. The code
above produces the layout shown below.

5-62. The blocks of text ordered horizontally

Let’s look at an example using the markup below. Notice here that the contents of .alpha ,

.beta , .gamma , and .delta differ in size:

<div class="flex-container">

<div class="alpha">

A

</div>

<div class="beta">

B

<p>This is a short sentence made of short words.</p>

<p>Antidisestablishmentarianism is a long word.</p>

</div>

<div class="gamma">

C

</div>

<div class="delta">

D

</div>

<div class="epsilon">

E

</div>

</div>

The CSS we’ll use is simple. We’ll add a display: flex declaration to .flex-container , and

set its inline size to 1500 pixels:

.flex-container {

display: flex;

inline-size: 1500px; /* Can also use width: 1500px */

}

210 CSS Master, 3rd Edition

The image below shows the result: a simple flexible box layout with display: flex applied,

and no other Flexbox properties. The dashed line represents the boundaries of our flex
container. Each flex item is about as wide as its contents, plus whatever padding exists inside
the flex item.

5-63. Colored boxes ordered horizontally and vertically, with some text

This example uses the initial value of flex , which is 0 1 auto . The flex property applies to

the children of a flex container. Since the flex property sits at the heart of Flexbox, it’s

important to understand how it works.

Understanding the flex Property

The flex property is actually a shorthand for three other properties:

flex-grow indicates the factor by which an element should grow, if necessary, and must

be a positive integer. Its initial value is 0 .

flex-shrink indicates the factor by which that an element should shrink, if necessary, and

must be a positive integer. Its initial value is 1 .

flex-basis: indicates the initial or minimum size of a flex item. This may be its width

when the main axis is horizontal (for example, with flex-direction: row), or the flex item’s

height when the main axis is vertical. (See the note below for more detail on this.) The value
of flex-basis must be a valid value for the width property.

Layouts 211

When flex-basis is auto , the maximum size of the flex item becomes its initial size, also

known as the flex base size. In the example above, .gamma is 400 pixels wide because one of

its children is 400 pixels wide. Similarly, .alpha (A), .beta (B), .delta (D), and .epsilon (E)

are as wide as their longest line of text. For .beta , that’s 389.633 pixels. For .alpha ,

.delta , and .epsilon , that ranges from 37.333 to 47.733 pixels wide, depending on the

width of the letters A, D, and E.

The value of each flex item’s flex-basis determines whether the browser will use flex-

grow or flex-shrink when allocating free space within the flex container. When the sum of

the flex base size for each flex item is greater than the inner size of the flex container, the
browser allocates space using flex-shrink . If it’s less than the inner size of the flex

container, it uses flex-grow . This is the used flex factor.

Let’s add the flex basis values of our flex items from the example above:

Horizontal and Vertical Writing Modes

There’s a little more nuance to the point above about horizontal and vertical axes. A
flex item’s main size is determined by a combination of its writing mode and
whether the value of flex-direction is row or column. For horizontal writing

modes:

when flex-direction: row , the main axis is horizontal, and the main size is the flex

item’s width
when flex-direction: column , the main axis is vertical, the main size is the flex

item’s height

For vertical writing modes:

when flex-direction: row , the main axis is vertical, and the main size is the flex

item’s height
when flex-direction: column , the main axis is horizontal, and the main size is the

flex item’s width

Limiting Maximum Size

You can limit the maximum size of a flex item with the max-width property. In that
case, the browser uses the max-width as the initial size.

212 CSS Master, 3rd Edition

47.733 + 386.663 + 400 + 43.983 + 37.333 = 915.712

Remember that our container is 1500 pixels wide. Since 915.712 pixels is less than 1500
pixels, the browser uses the flex-grow value to allocate free space inside the container;

flex-shrink is ignored.

In this case, the initial flex: 0 1 auto declaration means that each flex item grows from its

initial size by a factor of zero. In other words, it won’t grow at all.

Using the flex Property

Although it’s possible to set flex-grow , flex-shrink , and flex-basis individually, the

specification recommends using the flex shorthand property. It accepts one, two, or three

values.

When using one-value syntax, the value must be a number or one of the initial , auto , or

none keywords. When the value is a number—say, flex: 4 —this value is interpreted as the

value for flex-grow . The flex-shrink value is assumed to be 1 , which is its initial value.

However, the value of flex-basis is assumed to be 0 , instead of its initial value of auto . In

other words, flex: 4 is the equivalent of flex: 4 1 0 and not flex: 4 1 auto . That seems

counterintuitive at first, but changing the value of flex-basis to 0 makes flex-grow and

flex-shrink behave more predictably.

When using a two-value syntax, the first value must be a number. Here, too, it’s interpreted as
the value of flex-grow . The second value, however, can be either a number or a valid value of

the width property.

If the second value is a number, it’s interpreted as a value of flex-shrink , and the value of

flex-basis is assumed to be 0 . If it’s a width value, it’s interpreted as the flex-basis value,

and flex-shrink is assumed to be 1 .

To explain it another way, take this CSS:

Two-value Dangers

Be careful using the two-value syntax. If your intent is to set a width of 0 for flex-

basis , include a unit so that it’s not misinterpreted as the flex-shrink value.

Layouts 213

.item {

flex: 4 1;

}

The code above is the equivalent of this:

.item {

flex-grow: 4;

flex-shrink: 1;

flex-basis: 0%;

}

On the other hand, take this CSS:

.item {

flex: 2 auto;

}

It’s equivalent to this:

.item {

flex-grow: 2;

flex-shrink: 1;

flex-basis: auto;

}

When using the three-value syntax, values are interpreted as flex-grow , flex-shrink , and

flex-basis , in that order. The first two values must be numbers. The last value must be a

valid value for the width property.

Flex Factors and Space Distribution

Both flex-grow and flex-shrink represent proportions. They tell the browser how to

allocate the free space inside of a flex container.

So how does the browser determine the free space? First, it adds the flex base size of every
flex item and deducts that from the inner width of the flex container. Then it subtracts the size
of inflexible items. An item is considered inflexible if:

its flex factor is zero
its flex base size is greater than its hypothetical main size, and the browser is using the flex
shrink factor

214 CSS Master, 3rd Edition

its flex base size is smaller than its hypothetical main size, and the browser is using the flex
grow factor

The space that remains is the free space. Keep in mind that both gap and margin can further

reduce the amount of free space in a container.

Let’s return to our previous example. We’ll add an explicit value for flex to all of our flex

items:

.flex-container > div {

flex: 1;

}

The image below shows the result.

5-64. Adding flex: 1 to the children of a flex container: items have equal width except the one containing an image,

which is slightly wider

Adding flex: 1 to a flex item is the equivalent of adding flex: 1 1 0 . However, .gamma

img has an intrinsic width of 400 pixels, so .gamma will be at least 400 pixels wide. Since the

browser already knows what size .gamma needs to be, the browser subtracts its width from

that of the container: 1500 minus 400 equals 1100 pixels of free space.

Once the browser has determined the free space available, it calculates the main size of each
flexible item:

If the flex used factor is flex-grow , the calculation is roughly: free space ÷ sum of each

flexible item’s flex-grow value × flex-grow .

If the flex used factor is flex-shrink , the calculation is roughly: flex base size - ((free

Layouts 215

space ÷ sum of each flexible item’s flex-shrink value) × flex-shrink).

Gaps and margins also affect size of flex items. Margins don’t collapse in a flex formatting
context. Instead, margins along the main axis are deducted from the main size of each flex
item. Gaps set using the row-gap , column-gap or gap properties, work similarly. Each gap

reduces the size of a flex item by one half of the gap length.

The specification details a far more complex process for this, but for the purposes of this
book, the explanation above will do.

Let’s apply this formula to our current example. We have four items with an indefinite or
undetermined width, and a flex-grow factor of 1 : 1100 ÷ (1 + 1 + 1 + 1) = 275. For each flex

item, multiply 275 by the value of that item’s flex-grow property. In this case, all of our items

will be 275 pixels wide.

Here’s another example. We’ll set the flex-grow value of .epsilon to 5. It inherits the flex-

shrink and flex-basis value of the .flex-container > div rule set:

/* Remember this is the same as flex: 1 1 0; */

.flex-container > div {

flex: 1;

}

.flex-container > .epsilon {

flex-grow: 5;

}

You can see the result in the image below. The flex-grow factor of 5 changes the ratio by

which space gets distributed within the flex container.

5-65. A flex-grow factor of 5 changes the ratio by which space gets distributed within the flex container

216 CSS Master, 3rd Edition

Since “Antidisestablishmentarianism” is one (long) word, it forces .beta to be 249 pixels

wide. In this case, the browser deducts the width of .beta and .gamma from the inner width

of the flex container: 1500 - (400 + 249) ≈ 851. Our flex container has 851 pixels of free space
to distribute.

Let’s determine the size of our flexible items. We’ll add the flex factors for .alpha , .delta ,

and .epsilon , then divide our free space value by that number: 851 ÷ (1 + 1 + 5) = 121.571.

Now we can multiply this number by our flex grow factor to determine the size of each flex
item:

.alpha : 121.571 × 1 121.571

.beta : 121.571 × 1 = 121.571

.epsilon : 121.571 × 5 = 607.855

Flex item .epsilon is roughly five times as wide as .alpha and .beta .

When Flex Items Shrink

When the chosen flex mode is flex-shrink , the browser determines how much space to

shrink each flex item by. Remember, flex items shrink when their initial main size exceeds the
inner main size of the container. Let’s change the flex-basis value of our flex items from 0

to 410px . We’ll also give .epsilon a flex-shrink factor of 5:

.flex-container > div {

flex: 1 1 410px;

}

.flex-container > .epsilon {

flex-shrink: 5;

}

This makes the sum of the hypothetical main size of each flex item 2050 pixels—greater than
the 1500 pixel width of our container. First, determine the amount of free space available:
1500 - 2050 = -550 pixels.

Next, account for the width of .gamma img . It’s still 400 pixels wide, which means .gamma

shrinks by ten pixels—the difference between its contents and flex-basis . Deduct that ten-

pixel difference from our free space: -550 + 10 = -540 pixels.

We’ve accounted for the width of .gamma , so we can perform the next step. Divide the

amount of free space by the sum of the flex factors of our flexible items, .alpha , .beta ,

.delta , and .epsilon : -540 ÷ (1 + 1 + 1 + 5) ≈ -67.5.

Layouts 217

Now we can calculate the size of each flex item:

.alpha : 410 + (-67.5 × 1) = 342.5 pixels

.beta : 410 + (-67.5 × 1) = 342.5 pixels

.delta : 410 + (-67.5 × 1) = 342.5 pixels

.epsilon : 410 + (-67.5 × 5) = 72.5 pixels

The image below shows the result. When the chosen flex factor is flex-shrink , the browser

shrinks flex items proportionately.

5-66. When the used flex factor is flex-shrink, the browser shrinks flex items proportionately

Creating Multi-line Flexible Layouts

So far, our examples have looked at flex box spacing in a single direction, along a single line.
We can also make flex items wrap across multiple lines using the flex-wrap property. Its

initial value is nowrap . Other values are wrap and wrap-reverse .

The spacing formulas for flex-grow and flex-shrink work per line. Flex items wrap and

form a new line when the sum of their hypothetical main size exceeds the inner main size of
the flex container. Take the following CSS:

.flex-container {

display: flex;

width: 1500px;

gap: 20px;

flex-wrap: wrap;

}

.flex-container > div {

flex: 0 1 33.333%;

218 CSS Master, 3rd Edition

}

Since flex-basis is 33.33%, each flex item should fill one third of the available space. But

this time, we’ve added a gap of 20 pixels. Although the sum of the hypothetical main size of
these flex items is 1500 pixels—33.333% of 1500 is roughly 500 pixels, and 500 + 500 + 500
= 1500—the additional gap changes how many items can fit on a line—as illustrated below.

5-67. Our items now wrap

Only two flex items fit on each line. Because our flex-grow value is zero, these flex items

don’t expand to fill the width of our flex container. If we changed the declaration to flex: 1

1 33.333%; , they would.

The wrap-reverse value works the same way as wrap , but reverses the visual ordering of

flex items. The following image shows how flex-wrap: wrap-reverse changes a flex layout,

reversing the visual ordering of the container’s children.

Layouts 219

5-68. The flex items now appear in reverse order

The examples we’ve used thus far have looked at horizontal spacing. But in some
circumstances, you may want to distribute space vertically. We’ll discuss the flex-direction

property in the next section.

Distributing Space Vertically with flex-direction

The flex-direction property lets us change the main axis direction of our flex container. Its

initial value is row ; other values are column and column-reverse . The following image shows

a flex container with a flex-direction value of column , which changes the axis along which

space space gets distributed.

220 CSS Master, 3rd Edition

5-69. Items are now stacked vertically

The title of this section is a little misleading. The flex-column also depends on the writing

mode of the document. In languages that are written and read horizontally, columns are
vertical, as shown by the image above. Vertical languages rotate the row and column axes by
90 degrees clockwise (as with writing-mode: vertical-rl) or counterclockwise (as with

writing-mode: vertical-lr) . Consider the CSS below:

.flex-container {

display: flex;

flex-direction: column;

writing-mode: vertical-rl;

}

This code creates the layout pictured below.

Layouts 221

5-70. Flex items running horizontally but text running vertically

When using flex-direction: column with multilingual sites, the block-size property is a

better choice than height or max-height . Remember that block-size and inline-size are

relative to the writing mode, rather than to the vertical and horizontal dimensions as height

and width are. Using logical properties removes the need to reset properties based on the

document’s language.

Creating Layouts with CSS Grid
CSS Grid allows us to create two-dimensional grid-based layouts that were previously
impossible, or only possible with lots of JavaScript.

Keep in mind that the CSS Grid20 specification is dense, and it introduces several new
concepts that are a bit complex. Consider this section an overview rather than a
comprehensive look at Grid. Don’t worry, though: we’ll point you to lots of resources for
learning more.

The Grid Formatting Context

Adding display: grid to an element triggers a grid formatting context for that element and

its children. In a grid formatting context, three things happen:

20. https://www.w3.org/TR/css-grid-1/

222 CSS Master, 3rd Edition

The element becomes a block-level element that participates in the normal flow.
Its children—whether elements or text nodes—create block-like, grid-level boxes that can
be arranged into rows and columns. Immediate children of a grid container are grid items.
In a horizontal writing mode, each member in a grid row will have the same height as its
tallest element (as determined by content), unless an explicit height value is set. When the
document uses a vertical writing mode, it takes on the same length as its longest element
(as determined by content).

The image below illustrates how using display: grid creates a block-level container, and

block boxes for its children.

5-71. Five grid items stacked vertically, filling the width of the container

Using display: inline-grid works similarly. Children of inline-level grid containers create

grid-level boxes, but the container itself participates in an inline formatting context.

Layouts 223

5-72. Grid items stacked vertically, but only as wide as their content

By themselves, display: grid and display: inline-grid won’t automatically arrange these

boxes into rows and columns. We also need to tell the browser where and how to place things.

Before creating your grid, determine whether you want a fixed number of columns and/or
rows, whether you’d like the browser to calculate the number of columns and rows
automatically, or whether you’d like a mix of the two. Knowing what kind of grid you want to
create determines the approach you’ll take. Let’s look at a few techniques.

Defining a Grid Layout

After defining a grid container, we’ll need to tell the browser how many rows and columns our
grid should contain. We can define the number of rows and columns using the grid-template-

rows and grid-template-columns properties. They’re applied to the grid container.

Both grid-template-rows and grid-template-columns accept what’s known as a track list.

The track list is a space-separated string that specifies grid line names and sizes of each
position in the row or column.

Each value in a track list creates a new space—a track—within the row or column. You can use
lengths, flexible length units (discussed later in this chapter), or percentages. You can also use
sizing values21 such as auto , min-content and max-conent .

21. https://www.w3.org/TR/css-sizing-3/#sizing-values

224 CSS Master, 3rd Edition

Let’s define a grid with three columns, each 25rem units wide and two rows, each 10rem

units tall:

.grid {

display: grid;

grid-template-columns: 35rem 35rem 35rem;

grid-template-rows: 10rem 10rem;

}

Let’s now apply that CSS to the following HTML. Yes, this is all the markup required:

<div class="grid">

<div>Grid item A</div>

<div>Grid item B</div>

<div>Grid item C</div>

<div>Grid item D</div>

<div>Grid item E</div>

</div>

We’ve created an explicit grid, organized into the columns and rows, with grid-template-

columns and grid-template-rows . The result is pictured below.

5-73. Our five grid items arranged in two rows and three columns

Here, we’ve created a grid of evenly sized rows and columns, but that isn’t a requirement of
Grid. Let’s tweak our CSS slightly. We’ll change the value of grid-template-columns to 40rem

35rem 25rem :

.grid {

display: grid;

grid-template-columns: 40rem 35rem 25rem;

grid-template-rows: 40rem 10rem;

}

Now the second column in our grid is narrower than the first and third, as pictured below.

Layouts 225

5-74. Items in the first row are much taller now

Explicit Grid versus Implicit Grids

In the previous section, we explicitly stated that this grid should have six available grid cells
formed by three columns and two rows. This is what’s known as an explicit grid. Here, our grid
container only has five children. The remaining position is empty. What if we add more
children to the container? When grid items exceed the number of explicitly defined cells, the
remaining items are arranged in an implicit grid.

5-75. The grid now contains nine items in three rows and three columns

Now we have three rows. Notice, however, that our third row is only as tall as its contents and
padding. It’s part of the grid because these items are the children of a grid container. Yet the
row isn’t explicitly defined by grid-template-rows . What we have instead is an implicit

grid—an explicit grid with additional grid items that exceed the defined number of explicit grid
cells.

226 CSS Master, 3rd Edition

Items within an implicit grid are sized auto by default. Grid items will expand to

accommodate their contents, or fill the remaining vertical space in the container—whichever
is taller. If, for example, we set the height property of our container to 100rem , our implicit

grid track will expand to be 60rem tall, because implicit grid rows expand to fill the available

height of the container.

5-76. The third row increases in height to extend to the bottom of the container

If we add enough items to create a fourth row, the height of our implicit grid items will be
distributed evenly across the remaining 60rem of vertical space in the container. Their

computed height will be 30rem each.

Layouts 227

5-77. The two extra items form a fourth row with the same height as the third row

In our original example, we’ve explicitly defined only two rows with a height of 10rem each, so

our third row defaults to auto sizing. Its height will adjust to the size of its contents and

padding.

Specifying Track Size for an Implicit Grid

It’s possible, however, to set a kind of default height or width for implicit grid items using the
grid-auto-rows and grid-auto-columns properties. Let’s update our CSS with grid-auto-

rows :

.grid {

display: grid;

grid-template-columns: 25rem 15rem 25rem;

grid-template-rows: 10rem 10rem;

grid-auto-rows: 30rem;

}

Now items in our third row—and any subsequent rows—will be 30rem in height.

228 CSS Master, 3rd Edition

5-78. The third row now explicitly fills the remaining height of the container

There’s one drawback to using the grid-auto-* properties: when the contents of a grid item

exceed its dimensions, they will overflow the container (as shown below), and may be clipped
visually by elements in other rows. This can happen when using length or percentage units.

5-79. The grid now interferes with following elements

One way to avoid this is to use the minmax() function. Let’s rewrite our CSS to use minmax() :

Layouts 229

.grid {

display: grid;

grid-template-columns: 25rem 15rem 25rem;

grid-template-rows: 10rem 10rem;

grid-auto-rows: minmax(30rem, auto);

}

As you may have guessed from its name, minmax() lets us define the minimum and maximum

size of a track. It requires two arguments, the first of which is the minimum desired track size.
The second argument is the maximum desired size.

In this case, our row will be at least 30rems high. But since we’ve set our maximum size to

auto , our track will expand to accommodate the content of that cell. Arguments for

minmax() can be lengths or percentages, or one of the auto , min-content , and max-

content keywords. Flexible length units, discussed in the next section, are also valid.

Lengths and percentages can be used to define track sizes. Using them may mean that the
grid items don’t fill the entire width or height of the container. For example, if our grid
container is 70rem wide, grid-template-columns: 25rem 15rem 25rem; will only fill about 90%

of its horizontal space. On the other hand, if our grid container is only 50rem wide, the total

width of our columns will overflow the container’s bounds. To prevent this, use flexible length
units.

Creating Flexible Grids with Flex Units

Flexible length or flex units are expressed using the fr unit indicator. Flex units tell the

browser what fraction or proportion of the leftover space in a grid container should be
allocated to each grid item. They’re a ratio, not a true length value in the way px , em , or cm

are.

There’s a formula for calculating the used width of an item when using flexible units: (flex ×
leftover space) ÷ sum of all flex factors. Leftover space is what remains after deducting the
known size of items (the specification calls this “definite size”22), the size of grid gaps, and
grid item padding from the size of the grid container.

Consider the CSS below:

[id=grid] {

display: grid;

22. https://www.w3.org/TR/css-sizing-3/#definite

230 CSS Master, 3rd Edition

grid-template-columns: 3fr 2fr 1fr;

width: 1500px;

}

[id=grid] > div {

padding: 10px;

}

We’ll pair it with the following HTML:

<div id="grid">

<div>Grid item A</div>

<div>Grid item B</div>

<div>

Grid item C

</div>

<div>Grid item D</div>

<div>Grid item E</div>

<div>Grid item F</div>

</div>

You can see the result in the image below, which illustrates how flexible length units maintain
grid proportions, rather than absolute lengths.

5-80. Our grid arranged in two rows and three columns

The image in our grid has intrinsic dimensions: a width of 400 pixels and height of 300 pixels.
As a result, the third column must be at least 400 pixels wide. Each grid item also has ten
pixels of padding along both the horizontal and vertical axes. That increases the size of our
column by 20 pixels, for a width of 420px .

Layouts 231

Next, the browser subtracts that width from the width of our grid container: 1500 - 420 =
1080. That leaves 1,080 pixels of leftover space to distribute across the other two columns of
this grid.

Dividing 1080 by 5—the sum of the flex factors of the first two columns—gives us a quotient
of 216. Multiply the first two flex factors by that quotient and we end up with columns that are
648px (216 times 3) and 432px (216 times 2) wide, as shown above. It’s very similar to the

way browsers distribute remaining space for flexible box layout.

Because these units are ratios and not absolute lengths, grid-template-columns: 2fr 2fr

2fr is equivalent to grid-template-columns: 1fr 1fr 1fr .

Using the grid-template Shorthand Property

We can also indicate the number of rows and columns using the grid-template property. Its

syntax is as follows:

grid-template: [row track list] / [column track list]

Remember this block of CSS from earlier in the chapter?

.grid {

display: grid;

grid-template-columns: 25rem 25rem 25rem;

grid-template-rows: 10rem 10rem;

}

We can combine the second and third lines using grid-template :

.grid {

display: grid;

grid-template: 10rem 10rem / 25rem 25rem 25rem;

}

Not True Length Units

fr units are not true length values. This makes them incompatible with other
length units such as px and rem . It also means that you can’t use fr units with
the calc() function. For example, calc(1fr - 1rem) is an invalid length value.

232 CSS Master, 3rd Edition

For clarity, however, you may still prefer to use the longhand properties.

Repeating Rows and Columns

In many cases, you’ll want grid columns or rows that repeat automatically; think of a list of
products for sale, or recipe search results. Grid offers a syntax for that—the repeat()

function:

.grid {

display: grid;

grid-template-columns: repeat(3, 1fr);

}

The repeat() function accepts two arguments:

the number of times to repeat the track list
a track list to repeat

Arguments must be separated by a comma. The first argument may be a positive integer, or
the auto-fit or auto-fill keywords. The above CSS produces the following grid. Our 1fr

track list is repeated three times.

5-81. Eleven items ordered into four rows and three columns

We could also use a two-column pattern that repeats twice. For example, grid-template-

columns: repeat(2, 1fr 3fr); produces a four-column grid. As the next image shows, the

first and third columns are one third the width of the second and fourth. In both cases, the
value of grid-template-rows is auto .

Layouts 233

5-82. Columns one and three are narrower than columns two and four

Repeating Columns with auto-fit or auto-fill

Both of the preceding examples tell the browser: “Here’s a track list pattern; please repeat it X
number of times.” What you may want to tell the browser instead, is: “Please fit as many
columns or rows as you can within this grid container.” For that, we can use auto-fit or

auto-fill as the first argument for repeat() , in combination with minmax() .

What’s the difference between auto-fit and auto-fill ?

auto-fit fits as many grid items as it can within a track line, and collapses empty tracks.

auto-fill fits as many grid items as it can within a track line, but doesn’t collapse empty

tracks.

This difference becomes apparent when the grid container’s width exceeds the maximum
total width of its grid items. Let’s compare some CSS:

.grid {

display: grid;

width: 1500px;

}

.autofill {

grid-template-columns: repeat(auto-fill, minmax(100px, 1fr));

}

234 CSS Master, 3rd Edition

.autofit {

grid-template-columns: repeat(auto-fit, minmax(100px, 1fr));

}

And let’s apply this CSS to the HTML below:

<div class="grid autofill">

<div>Grid item A</div>

<div>Grid item B</div>

<div>Grid item C</div>

<div>Grid item D </div>

<div>Grid item E</div>

</div>

<div class="grid autofit">

<div>Grid item A</div>

<div>Grid item B</div>

<div>Grid item C</div>

<div>Grid item D </div>

<div>Grid item E</div>

</div>

The only difference between these two grid layouts is that one uses auto-fill and the other

uses auto-fit . But compare the two grids in the image below.

5-83. Both grids consist of five items in a row, but the auto-fill grid appears half the width of the auto-fit grid

In both grids, the total maximum width of the grid items is less than that of the grid container.
However, in the top grid—our auto-fill grid—that excess space is filled in by additional,

empty grid items. The following image provides a visualization of the difference between
auto-fill and auto-fit provided by the Firefox grid inspector.

Layouts 235

5-84. The Firefox inspector highlights the inisible, empty auto-fill cells with dotted lines

The empty, auto-fill cells are highlighted with dotted lines. Compare that to the bottom

grid, in which each grid item is stretched to fit the available space.

Line-based Grid Placement

So far, we’ve discussed simple grids that are neatly aligned rows and columns of boxes. But
Grid layout is far more robust and flexible than that. We can also use it to create complex
layouts, like the one pictured below.

More on Auto-sizing Columns

If this still doesn’t make any sense, read Sara Soueidan’s “Auto-sizing Columns in
CSS Grid: auto-fill vs auto-fit ”23. It contains some video examples that
illustrate the difference better than static images can.

23. https://css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/

236 CSS Master, 3rd Edition

5-85. A complex grid layout with eight items and some gaps in between

The layout pictured above uses line-based grid placement, a core feature of CSS Grid. We’ll
look at how to create this layout later in this section. But first, let’s discuss grid lines.

Understanding Grid Lines

Grid lines are horizontal and vertical lines that separate rows and columns, as shown below.
These lines exist on each side of a row or column, but don’t affect its dimensions.

Layouts 237

5-86. A grid of three rows and two columns, with every grid line numbered—1, 2, 3 along the top and 1, 2, 3, 4 along

the left side

The space between each grid line is known as a grid track. A grid track can be a row or a
column; the phrase itself is a generic term for both. Grid columns and grid rows intersect to
form grid cells.

Most desktop browsers have grid layout inspectors as part of their developer tools. In Firefox,
look for the crosshatch icon between display and grid . Clicking that crosshatch icon

displays (or hides) the grid overlay.

5-87. The grid inspector icon as seen in the developer tools of Firefox Developer Edition

In Chrome, Safari and Edge, look instead for the grid label next to a grid container in the
Elements panel. Clicking the label activates the grid inspector in those browsers.

238 CSS Master, 3rd Edition

5-88. Activating or deactivating the grid inspector feature of Chrome’s developer tools

The image below shows the Firefox grid overlay in action.

5-89. A CSS Grid layout as viewed using the grid inspector feature of Firefox

Notice that each edge of each column in this grid is bounded by a grid line, and each of these
lines has a numeric index. The same is true for each row.

Grid line numbering begins with 1, and the count begins at the start of the grid container.
When the text direction is left to right, the starting point is the left edge. When the direction is
right to left, the starting point is the right edge.

Each grid line may also have a negative index. Negative index counts begin with -1, and
decrement from the ending edge of the explicit grid. So an index of -1 specifies the ending
edge of the container, while an index of -2 specifies one grid line in from that one, and so on.
(We’ll see an example of negative line numbers in use shortly.)

Line numbers can be used to place items within the grid using the grid-column-start / grid-

column-end and grid-row-start / grid-row-end properties. Here’s an example:

Layouts 239

.grid-10cols {

display: grid;

}

#a {

grid-column-start: 1;

grid-column-end: 11;

}

#b {

grid-column-start: 1;

grid-column-end: 6;

}

#c {

grid-column-start: 6;

grid-column-end: 11;

}

We’ll pair that CSS with the HTML below:

<div class="grid-10cols">

<div id="a">Grid item A</div>

<div id="b">Grid item B</div>

<div id="c">Grid item C</div>

</div>

The image below illustrates the result.

5-90. A grid created using line-based placement, as viewed using the Firefox grid inspector

As shown above, #a fills the space between line 1 and line 11, or the entire width of the grid.

#b begins at the first line and ends at the sixth. #c begins at the sixth line and extends to

line 11. With grid-*-start and grid-*-end , we’re telling the browser to align the starting and

ending edges of our grid items with specific grid lines.

We haven’t used either of the grid-template-* properties in this example. By defining a start

line and an end line, we’ve created ten implicit grid tracks. Note that because this grid hasn’t
been explicitly defined—with something like grid-template-columns: repeat(10,

1fr) —we’ve lost the ability to use negative grid line indexes for placement.

240 CSS Master, 3rd Edition

Spanning Rows or Columns

In the example above, we’ve used line numbers to indicate where our grid items should begin
and end. Another way to do this is with the span keyword. The span keyword indicates how

many tracks—that is, how many rows or columns—a grid item should occupy. We could, in
other words, rewrite our CSS like so:

.grid-10cols {

display: grid;

}

#a {

grid-column-start: span 10;

}

#b {

grid-column-start: span 5;

}

#c {

grid-column-start: span 5;

}

Again, span indicates how many columns or rows a grid item should occupy. Line indexes

indicate where to align the edges of a grid item.

Complex Layouts with Line-based Placement

Let’s return to some code we used earlier. Once again, our markup is simple—a containing
<div> with eight children:

<div class="grid-10cols-complex">

<div id="a">Grid item A</div>

<div id="b">Grid item B</div>

<div id="c">Grid item C</div>

<div id="d">Grid item D </div>

<div id="e">Grid item E</div>

<div id="f">Grid item F</div>

<div id="g">Grid item G</div>

<div id="h">Grid item H</div>

</div>

For this layout, we’ll explicitly define a five-row, ten-column grid:

.grid-10cols-complex {

display: grid;

/* Syntax: grid-template: [rows] / [columns] */

Layouts 241

grid-template: repeat(5, 9.5rem) / repeat(10, 10%);

}

Explicitly defining a grid isn’t strictly necessary for line-based placement. In this case,
however, it ensures that each box in our layout has the right proportions. The next step is to
place our grid items:

#a, #h {

grid-column-start: span 10; /* Span the entire grid */

}

#b {

grid-row-start: span 3;

grid-column-start: span 2;

}

#c, #d {

grid-column-start: span 4;

}

#e, #f {

grid-column-start: span 3;

}

#f, #g {

grid-column-end: -1; /* Begin from the container's ending edge */

}

#g {

grid-column-start: span 5;

}

Here, both #a and #h span all ten columns of our grid, while the other elements span

between two and five columns, as illustrated below. Element #b also spans three rows.

242 CSS Master, 3rd Edition

5-91. A grid of ten columns and five rows, with some gaps, as viewed with Firefox’s grid inspector

Notice that for #f and #g , we’ve used a negative line index. Remember that negative line

indexes begin at the ending edge of the container. With grid-column-end: -1 , we’ve told the

browser to align the ending edge of #f and #g with the ending edge of our grid container.

These elements still span three and five columns, respectively, but their ending edges align
with the ending edge of the container.

Using Named Grid Areas

One of the more clever aspects of CSS Grid is template areas. Template areas use the grid-

template-areas property, and let us define our grid in terms of named slots. We can use

template areas, in combination with grid placement properties, to define complex grid layouts
that are still readable.

Take the layout shown in the image below. It’s a fairly conventional, two-column layout with a
header, footer, and main content area, along with a right-hand navigation menu.

Layouts 243

5-92. A layout with heading, food image, menu list and cooking directions, with a sidebar to the right

Here’s the markup we’ll use to create this page. It’s simplified to emphasize the document’s
structure:

<!DOCTYPE html>

<html lang="en-US">

<head>

<title>GoodRecipes! Tuna with zucchini noodles</title>

</head>

244 CSS Master, 3rd Edition

<body>

<header>…</header>

<article>…</article>

<nav>…</nav>

<footer>…</footer>

</body>

</html>

Named template areas can be hard to understand at first. We still need to define rows and
columns. Then we can define named areas that span some or all of those rows and columns
using the grid-template-areas property. Here’s an example:

body {

display: grid;

/*

Using the longhand properties for

the sake of clarity. We could also use

grid-template: repeat(2, auto) / 4fr 1fr

instead.

*/

grid-template-rows: repeat(2, auto);

grid-template-columns: 4fr 1fr;

grid-template-areas: "pagehead pagehead"

"mains navigation"

"pagefoot pagefoot";

}

Yes, the syntax of grid-template-areas is a little weird. Template areas are strings and must

be enclosed in single or double quotes. Each template area corresponds to a row in the grid.
Columns within each row are delineated by a space.

Now, in order for grid-template-areas to work, we have to account for every position in the

grid. That’s why we’re repeating pagehead and pagefoot . Repeating a name within a

template string indicates that the area should span multiple columns.

Line Breaks Not Required

You’re not required to use line breaks when setting the value of grid-template-

areas . We could put our definition on a single line: grid-template-areas:

"pagehead pagehead" "mains navigation" "pagefoot pagefoot"; . Line breaks do,
however, make it easier to visualize and understand the layout.

Layouts 245

5-93. Three colored rows representing the layout: the first row reads pagehead pagehead; second row reads mains

navigation; the third row reads pagefoot pagefoot

Once we’ve defined our template areas, the last step is to assign our elements to each area
using the grid-area property:

header {

grid-area: pagehead;

}

article {

grid-area: mains;

}

nav {

grid-area: navigation;

}

footer {

grid-area: pagefoot;

}

This tells the browser to place the <header> element in the pagehead area, the <article>

element in the mains area, and so forth.

Spacing Grid Items

In all of the grids we’ve created thus far, the edges of our grid items abut each other. As with
multicolumn layout, however, we can add gutters to our grid. We know that the column-gap

246 CSS Master, 3rd Edition

property adds spacing between columns. With grid layout, we can also use the row-gap

property to add spacing between grid rows. Both properties apply to the grid container:

.grid {

display: grid;

grid-template: 20rem 20rem / 35rem 35rem 35rem 35rem;

column-gap: 1rem;

row-gap: 1rem;

}

The image below shows the effect of adding 1rem row and column gaps.

5-94. Seven colored items in two rows, with gaps between them

In a grid formatting context, column-gap: normal and row-gap: normal resolve to a used

value of 0px . That behavior differs from multicolumn layout, where column-gap: normal

resolves to a used value of 1em .

Only length and percentage values are valid for column-gap and row-gap (and the gap

shorthand property). If you’d rather have the browser automatically distribute boxes along
each grid axis, use justify-content or align-items instead. We’ll discuss both properties in

the “Box Alignment and Distribution” section below.

The gap Shorthand Property

We can also specify both column-gap and row-gap at once using the gap shorthand

property. The first value of gap becomes the size of the row gap; the second value is the

column gap. Providing only one value sets the same gap size for both properties. In other
words, we can rewrite column-gap: 1rem; row-gap: 1rem; as gap: 1rem; .

Layouts 247

Older versions of the Grid specification defined grid-column-gap and grid-row-gap

properties. These have been replaced by column-gap , which can also be used with

multicolumn layout and Flexbox in most browsers. (Safari, as of version 15, doesn’t support
the use of gap with multicolumn layout.) For compatibility with older browsers, include the

legacy grid-row-gap and grid-column-gap properties in addition to column-gap and row-

gap . Or, if you use the shorthand gap property, include grid-gap as well.

Using column-gap and row-gap aren’t the only ways to space grid content. We can also use

the justify-* and align* properties to distribute grid items within the available space.

Since most of these properties are common to Grid and Flexbox, we’ll discuss them together
in the section “Box Alignment and Distribution” later in this chapter.

Grid Items and Margins

Grid items can have margins of their own. However, margins work a bit differently in a grid
formatting context than they do in a block formatting context.

Grid cells, and the grid lines that bound them, form containing blocks for grid items. As a
result, adjacent margins of grid items do not collapse. That’s the opposite of what happens in
a block formatting context.

5-95. An inspector view showing that grid item margins are contained by the grid track and don’t collapse

For grid items, top and bottom margins of 1rem result in 2rem of space between the content

248 CSS Master, 3rd Edition

boxes, as shown above. And because grid item margins fall within the containing block, they
may affect the dimensions of auto -sized grid tracks.

Images within Grids

Images within grid cells work similarly to the way they behave in multicolumn layouts. When
the track size uses length or percentage units, images may overflow the grid cell if their
dimensions exceed those of the cell.

5-96. Seven items arranged in two rows, with a bird image in the third cell too wide for that cell and partly hidden

behind the next cell

However, when the track sizing function is auto , or uses flex units (fr), the track containing

that grid cell expands to accommodate the image.

Layouts 249

5-97. The third column is now wider and contains the bird image

As in multicolumn layout, we can constrain the image dimensions to those of its grid cell by
setting its width to 100%.

Floating an image or other elements within a grid cell works as you’d expect. But you can’t
float a grid item. Floated siblings of grid containers also don’t intrude on the grid container.

Progressively Enhanced Layouts with Grid and display: contents

Earlier in this chapter, we talked about the contents value of the display property.

Remember that display: contents prevents the browser from generating an element box. In

a grid formatting context, this turns grandchild elements into grid items.

Say you have extra <div> elements in your markup to create a grid-like layout in browsers

that don’t support CSS Grid, as we have in the following block of code:

<div class="grid">

<div class="grid-row">

<div>Item 1</div>

<div>Item 2</div>

<div>Item 3</div>

<div>Item 4</div>

</div>

<div class="grid-row">

250 CSS Master, 3rd Edition

<div>Item 5</div>

<div>Item 6</div>

<div>Item 7</div>

<div>Item 8</div>

</div>

</div>

In browsers that don’t support Grid, you might use Flexbox to create a grid-like layout like the
one shown below:

.grid {

width: 80%;

margin: auto;

}

.grid-row {

display: flex;

}

.grid-row > * {

flex: 0 0 calc(25% - 2rem);

background-color: #121212;

color: var(--color-a);

margin: 0 2rem 2rem 0;

padding: 1rem;

}

5-98. The eight divs are ordered into four rows and two columns

Then to progressively enhance this layout, you might add display: grid to div.grid . Doing

so, however, turns those .grid-row elements into grid items. As a result, the children of

.grid-row don’t participate in a grid formatting context, as illustrated below.

Layouts 251

5-99. The eight grandchild divs are now stacked into two columns

If we add display: contents to .grid-row , though, the grandchild elements participate in

the grid formatting context created by div.grid . Here’s that CSS:

@supports (display: grid) {

.grid {

display: grid;

grid-template-columns: repeat(4, 1fr);

}

.grid-row {

display: contents;

}

.grid-row > * {

width: unset;

}

}

The image below shows the resulting layout.

5-100. The div items are once again ordered into two rows of four columns

Notice that we didn’t undo or override the flex declaration. Since we’ve switched the

252 CSS Master, 3rd Edition

display value to grid , flex-related properties no longer apply and they’re ignored.

Although display: contents can cause severe accessibility issues, in this particular instance

it doesn’t. Unlike lists or headings, <div> elements don’t describe document structure, nor

do they have defined functionality in the way that elements such as <button> and <input>

do. Because there’s no behavior to break, using display: contents for our <div> element

doesn’t break anything.

Grid Conclusion

CSS Grid is a dense topic. We’ve really just scratched the surface here. Luckily, there’s a
wealth of resources that can help you learn more.

I believe in reading specifications where possible. In my opinion, the CSS Grid specification is
quite readable, and it’s a good place to begin your own explorations of grid layout. But
specifications do tend to contain a lot of jargon. They’re written not only for web developers,
but also for those tasked with implementing them in browsers.

Rachel Andrew’s Grid by Example24 was created for a web developer audience. The site
includes grid layout tutorials and a collection of common user interface patterns. Be sure to
visit the site’s Resources section too. It’s a cornucopia of links that demonstrate what you can
do with CSS Grid.

Jen Simmons’ Experimental Layout Lab25 is also chock-full of examples that illustrate Grid’s
possibilities. If video is more your style, Simmons’ Layout Land YouTube channel26 includes
video walk-throughs of grid and other layout topics.

When you need more of a cheatsheet-style reference, try “A Complete Guide to Grid”27, by
CSS-Tricks.

Box Alignment and Distribution
Before closing this chapter, let’s take a look at some properties that we can use for
distributing and spacing boxes. These properties can be used with either Flexbox or Grid.
Most examples in this section use Flexbox.

24. https://gridbyexample.com/
25. http://labs.jensimmons.com/
26. https://www.youtube.com/channel/UC7TizprGknbDalbHplROtag
27. https://css-tricks.com/snippets/css/complete-guide-grid/

Layouts 253

First, some terminology: justify versus align. As the CSS Box Alignment28 specification
explains, justify refers to alignment in the main or inline axis, while align refers to alignment in
the cross or block axis. Each of the three justify-* properties is concerned with the main,

inline dimension. Their align-* counterparts are concerned with the block dimension.

For layouts that use Grid, the main axis depends on the document’s writing mode. When the
writing mode is horizontal, the main or inline axis is horizontal—either left to right or right to
left—and the cross axis is vertical. For vertical writing modes, the main axis is vertical, and the
cross axis is horizontal.

For layouts that use Flexbox, the value of the flex-direction property determines the main

axis, and the initial value is row . We discuss writing modes in Chapter 6, “Working with Text”.

The document’s writing mode determines whether that main axis is horizontal or vertical.

Distributing Items in the Main Axis with justify-content

The justify-content property indicates to the browser how the contents of a container

should be aligned along the main or inline axis. It only has an effect when there’s leftover
space available—for example, when no flex items have flex-grow: 0 , or when the length of

an explicit grid is less than that of its container.

The justify-content property accepts more than a dozen different values. The table below

illustrates each value and its impact on box alignment and distribution, when using a left-to-
right writing direction. The dotted line represents the outline of the flex or grid container.

28. https://www.w3.org/TR/css-align-3/

254 CSS Master, 3rd Edition

Value Effect

center

left

right

start

end

flex-start

flex-end

space-between

Layouts 255

Value Effect

space-around

space-evenly

stretch (shown

here with Grid)

The values above can be split into two broad groups: positional alignment values and
distributed alignment values.

Positional alignment values indicate where items should be stacked within a container, and
include:

center

left

right

start

end

flex-start

flex-end

Both justify-content: flex-start and justify-content: flex-end only apply to flex

containers. For a similar effect in Grid and multicolumn containers, use start or end .

Despite appearances, left , start , and flex-start are not the same. Neither are right ,

end and flex-end . Writing mode and language direction affect box alignment and

distribution for start / flex-start and end / flex-end . For example, when the direction is

rtl (right to left), justify-content: flex-start packs boxes against the right edge of the

flex container, as shown in the image below.

256 CSS Master, 3rd Edition

5-101. Boxes A through G, with A sitting far right

When flex-start and flex-end are used on non-flex containers, they behave like start

and end .

On the other hand, justify-content: left and justify-content: right always pack boxes

to the left or right of the container, respectively. The following image illustrates the effect of
justify-content: left on a container with a horizontal writing mode and right-to-left

language direction.

5-102. Boxes A through G with box G sitting hard left and space to the right of A

Distributed alignment values indicate how to divvy up the remaining space in a container.
Using justify-content: stretch , for example, causes the size of each element to increase

evenly to fill the available space, within max-height / max-width constraints. However, it has

no effect on flex items.

space-around versus space-evenly

Where space-between places the first and last items flush against the edges of their

container and evenly distributes the space, the difference between space-around and space-

evenly is more subtle:

space-around distributes items evenly within the alignment container, but the size of the

space between the first/last item and the edge of the container is half that of the space
between each item.
space-evenly distributes space evenly between each item. The size of the space between

the first/last item and the edge of the container is the same as the size of the space
between each item.

Layouts 257

Aligning Items in the Cross Dimension with align-content

Where justify-content affects items in the main dimension, align-content affects them in

the cross or block dimension. The align-content property accepts most of the same values

as justify-content , except for left and right .

Remember that align-content , like justify-content , affects the distribution of leftover

space. You’ll only notice its impact when the used height of the container is something
besides auto . The table below illustrates the impact of align-content and its values when

using a horizontal writing mode and a left-to-right text direction.

258 CSS Master, 3rd Edition

Value Effect

center

start/flex-start

end/flex-end

Layouts 259

Value Effect

space-between

space-around

space-evenly

260 CSS Master, 3rd Edition

Value Effect

stretch

Because align-content distributes space in the cross direction, you only notice its impact

when there are multiple rows of content.

We can also combine values for justify-content and align-content by using the place-

content shorthand property. It accepts up to two, space-separated values. The first value

assigns the align-content value; the second is the justify-content value. Take, for

example, the following CSS:

.centerstart {

place-content: center start;

}

This is the equivalent of:

.centerstart {

align-content: center;

justify-content: start;

}

Firefox handles place-content a bit differently from Chrome, Edge, and Safari. Beginning

with version 60, Firefox supports a single value for place-content only when it’s a valid value

for both align-content and justify-content :

.place-start {

place-content: start; /* Valid value for both properties. Firefox supports it */

}

Layouts 261

.place-left {

place-content: left; /* Not supported. left is an invalid value for align-content */

}

.place-start-left {

place-content: start left; /* Supported. Values are valid and ordered correctly */

}

In the preceding code example, the .place-start rule works in Firefox, but .place-left

doesn’t.

Aligning Items with align-items and align-self

Where align-content affects the distribution of rows in the block dimension, align-items

and align-self are concerned with the cross/block alignment of each item within a grid or

flex container. The table below shows how align-items and its values work with a horizontal

writing mode.

262 CSS Master, 3rd Edition

Value Effect

center

start/flex-start

end/flex-end

Layouts 263

Value Effect

baseline

first baseline

last baseline

264 CSS Master, 3rd Edition

Value Effect

normal

Baseline alignment is probably the trickiest concept to understand. When items are aligned
along a baseline, they’re vertically aligned with the bottom of each letter, without regard for
descender height. Descenders are the stem parts of lowercase letters such as q and p that
dangle below a line of text. Both baseline and first baseline align items along the first

baseline of a row, while last baseline aligns them along the last line of a row.

The align-items property applies to the container element and sets the alignment for all of

its children. align-self , on the other hand, applies to the child elements, and overrides the

value of align-items . It accepts the same values as align-items . Here’s an example:

.flex-baseline {

display: flex;

align-items: flex-start;

}

.flex-baseline *:nth-child(2) {

align-self: flex-end;

}

Now our second flex item is aligned with the end of the flex container, as shown below.

Layouts 265

5-103. Items A though G in a row and all aligned to the top except B, which is aligned to the bottom

Choosing flex or grid
As you develop page or component layouts, you may find yourself wondering when it’s better
to use Flexbox and when to use Grid.

Use Grid when you want items to line up along a vertical, a horizontal axis, or both.

Use Flexbox when you want to distribute items and space vertically or horizontally.

Of course, these aren’t absolute rules. There’s a lot of overlap in terms of what you can do with
these modules. Jen Simmons’ video “Flexbox vs. CSS Grid — Which is Better?”29 walks you
through some things to consider when choosing between Grid and Flexbox. Rachel Andrew’s
“Should I use Grid or Flexbox?”30 is another great resource for understanding both.

In practice, your projects will mix both of these techniques, as well as floats. For instance, you
may use Grid to define the overall page layout, while using Flexbox for your navigation menu
or search box, and floats to place tables or images.

Conclusion
We’ve covered a lot of ground in this chapter! Now that you’ve made it through, you should
understand:

29. https://www.youtube.com/watch?v=hs3piaN4b5I
30. https://www.rachelandrew.co.uk/archives/2016/03/30/should-i-use-grid-or-flexbox/

266 CSS Master, 3rd Edition

what the CSS box model is, and how it affects page rendering and layout
how the float property affects normal flow, and how to clear floated elements

what stacking contexts are, and how to use them to create layered effects in CSS
when and how to use multicolumn, Grid, and flexible box layout

In the next chapter, we’ll take a look at the fun topic of creating animations with CSS.

Layouts 267

Working with
Text

Chapter

6

268 CSS Master, 3rd Edition

In this chapter, we’ll look at two features of CSS that relate to text: @font-face , and writing

modes. These features both play a role in internationalization—the process of making
websites that work with the range of humanity’s languages and writing forms.

This chapter won’t be a comprehensive look at every text-related CSS property. There are far
too many properties for that. Instead, we’ll focus on some features that are related to
internationalization and text display.

Fonts are an integral part of web design and how we display text on the Web, but they can also
add bloat. In the first half of this chapter, we’ll look at how to go beyond system fonts like Arial,
or generic families such as sans-serif , with @font-face . We’ll also discuss strategies for

font optimization.

We’ll end the chapter with a look at writing modes. Writing modes and the writing-mode

property affect the display of text, particularly for non-Latin scripts such as Arabic and
Japanese. Newer CSS layout modules such as Flexbox, Grid, and Box Alignment are writing
mode agnostic. Understanding the basics of how writing modes work lays a good foundation
for what we’ll cover in the next chapter.

Better-looking Text with @font-face

In the early days of CSS, font choice was limited to whatever fonts users had installed on their
system, and generic font values such as sans-serif and monospace . Towards the end of the

“aughts”, however, CSS introduced web fonts and the @font-face CSS rule. Web design and

typography changed forever.

With @font-face , we can use just about any font for our web pages, as long as the font is

available in a browser-compatible format.

Setting an @font-face Rule

Here’s what a basic @font-face rule set looks like. This is the bare minimum you’ll need in

Check Your Licenses

Not all fonts are licensed for web use, even if it’s possible to convert them to a web-
friendly format. Do the right thing, and don’t risk being on the losing end of a
lawsuit. Ensure that you’re adhering to the licensing terms of any font you use on
your site.

Working with Text 269

order to use a web font:

@font-face {

font-family: 'MyAwesomeFont';

src: url('https://example.com/fonts/myawesomefont.woff2');

}

The @font-face at-keyword tells the browser that we want to use an external font file. The

font-family line sets a descriptor, or nickname, for this font. Don’t confuse this with the

font-family property. When used within an @font-face rule set, font-family sets the

value that will be used for CSS font-name matching. The last line defines a font source with
the src descriptor, which is the location of a font file.

To apply this font to your text, include the descriptor value in the font or font-family

declaration:

body {

font: 16px / 1.5 'MyAwesomeFont', sans-serif;

}

The browser will match instances of MyAwesomeFont to the source we’ve specified in our

@font-face rule set. If MyAwesomeFont isn’t available, or the browser doesn’t support web

fonts, it will fall back to the sans-serif generic.

Just because we’ve defined a font for use doesn’t mean the browser will load it. Our font also
needs to be in a format the browser can parse. For current browsers, that means WOFF2.
However, a surprising number of web users don’t or can’t update their devices. We can
accommodate these users by defining multiple font sources.

Using Multiple Font Formats

While the @font-face example above takes care of the latest and greatest browsers, older

browser versions lack support for the WOFF2 format. They do, however, support its
predecessor, WOFF. Let’s update our @font-face rule to provide a WOFF alternative:

@font-face {

font-family: 'MyAwesomeFont';

src: url('http://example.com/fonts/myawesomefont.woff2') format('woff2'),

url('http://example.com/fonts/myawesomefont.woff') format('woff');

}

270 CSS Master, 3rd Edition

The src descriptor takes the format <url> format() , where <url> is the location of a font

resource, and format() is a format hint. We can provide multiple src options by separating

them with a comma. Using format() helps the browser select a suitable format from the

ones provided. Its argument should be one of woff , woff2 , truetype , opentype , or

embedded-opentype . In this example, browsers that don’t support WOFF2 will download the

WOFF-formatted font file instead.

You may see examples of @font-face rules that include EOT, SVG, TrueType, or OpenType

font formats. You can safely exclude these formats. EOT font support is limited to ancient
versions of Internet Explorer 9 and below. Most browsers have removed support for SVG
fonts, or never implemented it to begin with. TrueType and OpenType enjoy wide browser
support, but WOFF2 file sizes are much smaller. The only reason to use either format is if the
font in question isn’t available as a WOFF2-formatted or WOFF-formatted file.

Fonts and Origins

Web fonts are subject to the same-origin policy. Under this policy, a browser loads a resource
only if it shares the same “origin” as the requesting document. An origin is the combination of
a document’s scheme or protocol, host name, and port number.

6-1. An origin is comprised of a protocol, a host or domain name and, optionally, a port number

In other words, if your web page is served from https://example.com and your fonts are

served from https://cdn.example.com , they won’t load. To get around this restriction, you’ll

More on Font Formats

The CSS Fonts Module Level 4 specification includes a more complete list1 of
formats and their corresponding font hint values.

1. https://drafts.csswg.org/css-fonts-4/#font-face-src-format-types

Working with Text 271

need to enable “cross-origin resource sharing”.

Cross-origin resource sharing, or CORS, is a system of headers that tell the browser whether
or not a document from a requesting origin has permission to use a requested asset from
another. A full discussion of CORS is well beyond the scope of this book, but I’ll try my best to
explain it.

When an HTML or CSS document links to external assets, the browser first checks whether
those assets share the same origin as the requesting script or file. If so, it loads the asset.

If the requesting document doesn’t share the same origin as the requested resource, the
browser makes a “preflight request” for the resource. A preflight request asks the external
server: “Does https://example.com have permission to load GreatGroteskWebFont.woff2?” If
the server response includes the Access-Control-Allow-Origin response header and

https://example.com as its value, the browser follows up with a GET request for the font file

and loads it. If the response doesn’t include that, the browser won’t make the GET request

and the font won’t be loaded.

To enable CORS, you’ll need to add an Access-Control-Allow-Origin response header to your

font URLs. This header grants permission to the requesting document’s origin. Origins must
not have a trailing slash. Here’s an example:

Access-Control-Allow-Origin: https://example.com

Adding headers requires access to your server or content delivery network configuration. If
you don’t have such access, or don’t feel comfortable managing headers, you have two
options:

serve your font files from the same origin as your document
use a hosted web font service such as Google Fonts3 (free), Adobe Fonts4 or Fontspring5

More about CORS

If you’d like to learn more about CORS, MDN Web Docs has what may be the Web’s
most thorough explanation of cross-origin resource sharing2 and its collection of
response headers.

2. https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
3. https://fonts.google.com/
4. https://fonts.adobe.com/

272 CSS Master, 3rd Edition

Hosted services implement their own cross-origin headers so that you don’t have to worry
about it.

Using Multiple Font Weights and Styles

A font is actually a collection of typefaces or faces. A face is a single weight, width, and style
of a font. EB Garamond is a font. EB Garamond Regular and EB Garamond Bold Italic are
faces. Most people use the terms interchangeably, but differentiating between the two is
helpful here.

When incorporating a web font into your site’s design, you may also want to incorporate its
stylistic variants for bolded or italicized text. We can do this using the font-weight and font-

style descriptors. These descriptors tell the browser which face (and corresponding file) to

match with a particular weight or style:

@font-face {

font-family: 'EB Garamond Regular';

src: url('EB-Garamond-Regular.woff2') format('woff2'),

url('EB-Garamond-Regular.woff') format('woff');

/*

The next line is optional, since this is the initial value.

It's the equivalent of font-weight: 400

*/

font-weight: normal;

}

@font-face {

font-family: 'EB Garamond Italic';

src: url('EB-Garamond-Italic.woff2') format('woff2'),

url('EB-Garamond-Italic.woff') format('woff');

font-style: italic;

}

@font-face {

font-family: 'EB Garamond Bold';

src: url('EB-Garamond-Bold.woff2') format('woff2'),

url('EB-Garamond-Bold.woff') format('woff');

font-weight: bold; /* The equivalent of font-weight: 700 */

}

@font-face {

font-family: 'EB Garamond Bold Italic';

src: url('EB-Garamond-Bold-Italic.woff2') format('woff2'),

url('EB-Garamond-Bold-Italic.woff') format('woff');

font-weight: bold;

font-style: italic;

}

5. https://www.fontspring.com/

Working with Text 273

In the example above, we’ve matched faces from the EB Garamond font family with an
appropriate style and weight. Here, too, font-weight and font-style are descriptors that tell

the browser to download an additional font file to display weight and style variants, should the
page use bold and/or italic text.

Browsers synthesize bold or italic text from the primary font when an appropriate weight or
style isn’t available. However, this may lead to less readable or less attractive text. Compare
the synthetic italic text (using EB Garamond, top) to the italic version (EB Garamond Italic) of
this font in the image below.

6-2. Synthetic italic text using EB Garamond (top) versus EB Garamond Italic

That said, pretty isn’t always fast. Using multiple faces increases the amount of data that
must be sent to the browser. As with most aspects of web development, you’ll need to make
trade-offs between style and performance.

Variable Fonts
Variable fonts—more accurately called “OpenType font variations”—are an extension of the
OpenType specification6. Variable fonts are single font files with support for additional
features that can be managed using CSS. You can, for example, control the width of each
glyph or the degree of tilt used for oblique text. If the font file supports it, you can even adjust
the width of serifs, as with the Foreday7 font by DSType Foundry.

With variable fonts, a single font file behaves like multiple font faces. Variable fonts make the
previous section of this chapter moot.

Below is pictured the letter A, from the open-source variable font Jost8, in varying weights.

6. https://docs.microsoft.com/en-us/typography/opentype/spec/
7. https://www.dstype.com/variable-fonts
8. https://indestructibletype.com/Jost.html

274 CSS Master, 3rd Edition

6-3. Jost letter A in various weights

To use variable fonts in your project, you’ll first need a font file that supports variable font
features. Axis-Praxis9 (pictured below) and v-fonts10 are two sources for discovering and
experimenting with variable fonts.

6-4. The user interface of Axis-Praxis.org, a playground for experimenting with variable fonts

Both sites include specimens and controls to play with the variable features that each font
supports. Most hosted font services have small but growing selections.

Although most major browsers have implemented support for variable fonts, the number of
such fonts is still fairly small in comparison to the number of traditional fonts.

OpenType

OpenType is a file format that enables cross-platform font support by combining
support for TrueType and PostScript font data in a single file.

9. https://www.axis-praxis.org/
10. https://v-fonts.com/

Working with Text 275

Incorporating Variable Fonts

To incorporate a variable font, we’ll need to add another source and format hint to our CSS:

@font-face {

font-family: 'FontFamilyName';

src: url('FontFamilyName-Variable.woff2') format('woff2-variations'),

url('FontFamilyName.woff2') format('woff2'),

url('FontFamilyName.woff') format('woff');

}

If the browser supports variable fonts, it will download FontFamilyName-Variable.woff2 . If it

doesn’t, it will download a file that it’s capable of parsing. This syntax above works today in
every browser that supports variable fonts.

In April 2018, the CSS Working Group decided to change the syntax of format hints. As
Richard Rutter explains in his article “Upcoming changes to the CSS you need for variable
fonts”11:

the list of potential format strings is growing fast and could in future

contain other kinds of font features, such as colour fonts. With an eye on

the future, the CSS Working Group recently resolved to change the syntax

of the format() hint [to] separate out the font features from the file type.

Format hints will soon use a format('format_name', supports feature_name) syntax, which is

shown below:

@font-face {

font-family: 'FontFamilyName';

/* New CSS syntax. Not yet widely implemented. */

src: url('FontFamilyName-Variable.woff2') format('woff2' supports variations);

}

A future-proof @font-face declaration with support for variable fonts might look like this:

@font-face {

font-family: 'FontFamilyName';

src: url('FontFamilyName-Variable.woff2') format('woff2-variations'),

11. http://clagnut.com/blog/2391

276 CSS Master, 3rd Edition

url('FontFamilyName.woff2') format('woff2'),

url('FontFamilyName.woff') format('woff');

/* New CSS syntax. Not yet widely implemented. */

src: url('FontFamilyName-Variable.woff2') format('woff2' supports variations);

}

Why two src declarations? Remember: browsers ignore CSS rules they can’t understand,

and the last rule wins. Adding the format('woff2' supports variations) hint to our existing

src declaration would cause browsers to ignore the entire rule. By using two src

declarations, we guarantee that the browser will use one of them. The first src declaration

will be used by browsers that don’t support the newer format hint syntax. Browsers that do
support it will override the first declaration with the second.

Specifying Font Weight When Using Variable Fonts

As mentioned in the previous section, the font-weight descriptor lets us tell the browser

which font-face file should be matched to a particular weight. Variable fonts, however, can
support a range of font weights within a single file.

Instead of using a src declaration for each font-face weight, CSS4 has modified the behavior

of the font-weight descriptor to accept a value range:

@font-face {

font-family: 'FontFamilyName';

src: url('FontFamilyName-Variable.woff2') format('woff2-variations'),

src: url('FontFamilyName-Variable.woff2') format('woff2' supports variations);

font-weight: 1 1000; /* Use this file for values within this font range. */

}

Adding a font-weight range instructs the browser to use the same file for every font-

weight value that falls within the range. This includes font-weight: bold , which is the

equivalent of font-weight: 700 , and font-weight: normal , which is the equivalent of font-

weight: 400 .

Historically, font-weight accepted numeric weight values ranging from 100–900, in

increments of 100. As of CSS4—and with the advent of variable fonts—we no longer have
those restrictions. For example, font-weight: 227 is now a valid, supported font-weight

value. Any number greater than or equal to 1 and less than or equal to 1000 is a valid font-

weight value. Fractional weights, such as font-weight: 200.5 are also valid.

Working with Text 277

Lower-level Font Control with font-variation-settings

CSS4 has also introduced a font-variation-settings property for finer-grained control of

font features. It lets us manipulate fonts along one of five axes, using one of the registered
axis tags12 defined in the OpenType specification.

Axis
tag

Name Notes

ital italic Typically a float value between 0 and 1, although some fonts may exceed
those bounds

opsz optical
size

Adjusts the shape of glyphs according to the target point size. For
example, "opsz" 72 adjusts the shape of each glyph to match that of 72pt

type, regardless of the value of font-size. Requires the font to support

optical sizing

slnt slant The degree of slant for oblique text

wdth width Works similarly to the font-stretch property

wght weight Works similarly to the font-weight property

We could, for example, use wght and ital to set the weight and amount of italicization of an

h1 selector:

h1 {

font-variation-settings: "wght" 900, "ital" .9;

}

Keep in mind that not all variable fonts support all of these axis tags. Some fonts, such as
Amstelvar, support additional settings such as YTSE , which controls serif height. On the left

of the image below is the Latin letter A with the default serifs. On the right is the same letter
with "YTSE" 48 as part of its font-variation-settings declaration.

12. https://docs.microsoft.com/en-us/typography/opentype/spec/dvaraxisreg

278 CSS Master, 3rd Edition

6-5. Left shows the Latin letter A with default serifs, while the right shows the same letter with YTSE 48

Which values we can modify, and the boundaries of those values, depends on the font file
itself. You’ll need to consult the documentation for each font, if available. Because of this
hurdle, your best bet is to use the font-weight , font-style , font-optical-sizing and

font-stretch properties.

Shaping Loading Behavior with font-display

Early browser implementations of @font-face differed pretty significantly in how they

handled text while waiting for the web font to download. Firefox, for example, drew text using
the fallback font face, then swapped the font face once downloaded—resulting in the dreaded
“flash of unstyled text”, or FOUT.

Safari’s implementation, on the other hand, drew invisible text, then swapped it for the visible
font face once it finished loading. Users would see large blocks of empty space until the font
face was available to the browser. Developers dubbed this the “flash of invisible text”, or FOIT.

The font-display descriptor came about largely as a way to let developers choose which

behavior they prefer. It has five possible values. Excluding auto , each of these values

changes the duration of the block and swap periods of the font display timeline.

auto : initial value. The “Browser’s Choice” option. It uses whatever policy the browser

prefers.
block : draws invisible text until the font loads, then swaps the font face. (Approximately a

three-second block period, and an infinite swap period.)
swap : draws text using the fallback font until the font face loads, then immediately swaps

the font face. (Roughly a 100ms block period, and an infinite swap period.)
fallback : draws text using the fallback font, while waiting for the font face to load. If the

font face takes too much time to load, it continues to use the fallback. Otherwise, it swaps
the font face once loading completes. (Approximately a 100ms block period, and about a
three-second swap period.)
optional : uses the font only if it can be downloaded immediately. Otherwise, it will use the

Working with Text 279

fallback text. The browser can decide whether or not to download the font and swap it, or
continue to use the fallback text. Optional won’t cause layout shifts. The browser may
never swap the font face.

When a browser begins downloading a font face, it enters the block period. During the block
period, the browser draws text using an invisible fallback font. If the font face finishes
downloading during the block period, the browser will use it.

Next comes the swap period. During the swap period, if the font face hasn’t loaded, the
browser draws the text using the fallback font. It then swaps the font face when loading
completes.

If the font hasn’t loaded by the end of the swap period, the browser enters the failure period.
The browser uses the fallback font.

Understanding auto

When font-display is auto , you’re relying on the browser’s default font-face handling. For

most recent browsers, that behavior resembles block . There’s a short period of about three

seconds during which the user won’t see any text. The image below shows what this looks like
in Firefox using a simulated 2G connection.

6-6. The view in Firefox before the web font loads

280 CSS Master, 3rd Edition

In most browsers, font-display: auto means the text will be invisible until the font face

loads. Text that doesn’t use the web font is immediately drawn.

If the font face hasn’t loaded by the end of this timeout period, the browser draws text using
the fallback font. When the font fully downloads, as shown below, the browser swaps the text.

6-7. Once the browser loads the web font, it swaps the invisible text for the font face

On very slow connections, font faces can take several seconds to download. Until then, your
site visitors won’t be able to read any text that uses a font face.

Instead, use fallback or optional , particularly for larger blocks of text. They’re both

particularly well suited to serving users with slow internet connections. For smaller blocks of
text, such as headlines, swap also works well. All three values keep your text visible while the

font face loads. Something is happening. As a result, the page loading time seems faster to
users than seeing no text at all, as happens with block or auto .

Optimizing Fonts with Subsetting and unicode-range

Languages are written using scripts, or groups of symbols or characters used to express a
language. English, Spanish, and Norwegian use Latin script. Farsi uses a variant of Arabic
script. Hindi and Rajasthani use Devanagari.

Scripts are comprised of characters. In computing, each character in a script is represented
by a hexadecimal numeric value, also known a character code. Mapping codes to characters is
called character encoding.

Working with Text 281

There are multiple systems of character encoding available in computing. On the Web,
however, you should use Unicode. Unicode is a system that maps characters from multiple
scripts to unique hexadecimal numeric values. The Latin letter A, for example, is represented
by the number 0041 , while the Armenian character Ֆ is represented by the number 0556 .

Depending on the context, these numbers may be prefixed by U+ or a \u when used with

CSS.

Stick with me here—I promise there’s a point to all of this background information. Fonts map
character codes to “glyphs”. A glyph is the actual shape that represents a character. A
lowercase letter “a”, for example, can be represented by glyphs from several different fonts,
as shown below. From left to right are glyphs representing the letter “a” from the Bodoni 72
Bold, Juju Outline, Junction Bold, and Futura Bold fonts.

6-8. The letter A is a character that can be represented by different glyphs or shapes

Now, font files contain the entire character set or glyph set available for that font. That
includes obscure punctuation, characters from other scripts, and symbols such as © and ™.
There’s a very good chance you won’t use all of those characters on your site. But if your web
font contains them, you’re still sending those bytes to your users.

The good news is that we can manage this using the unicode-range descriptor and a process

known as “subsetting”. Subsetting is the process of breaking a font into multiple files, each
containing a smaller collection—a subset—of glyphs.

Browsers that fully support unicode-range —and this includes most versions released since

More on Unicode

I’ve left out a lot of background about the history of character encodings and how
Unicode came to be. This is, after all, a book about CSS, not character encoding. If
you’d like to learn more about the whys and what-fors of Unicode, visit the Unicode
Consortium’s website—unicode.org13.

13. https://www.unicode.org/

282 CSS Master, 3rd Edition

2016—only download a font face when characters in the document fall within its
corresponding unicode range.

Most web font services automatically manage subsetting and unicode ranges. For self-hosted
fonts, there’s FontTools.

Subsetting Self-hosted Fonts with FontTools

Consider a multi-script font such as Gaegu (available with an SIL Open Font License), which
includes characters from Latin and Hangul scripts. We might split this font into two files:
gaegu-latin.woff2 and gaegu-hangul.woff2 . We can then use the unicode-range descriptor

to assign each file to a different Unicode range:

@font-face {

font-family: 'Gaegu';

src: url('https://example.com/fonts/gaegu-latin.woff2') format('woff2');

unicode-range: U+000-5FF; /* Latin glyph range */

}

@font-face {

font-family: 'Gaegu';

src: url('https://example.com/fonts/gaegu-hangul.woff2') format('woff2');

unicode-range: U+1100-11FF; /* Hangul glyph range (partial) */

}

For self-hosted fonts, we’ll need to create the subset version of the font ourselves using
FontTools14. FontTools is a Python library for manipulating fonts. While this does require us to
have Python installed, we don’t need to know how to program with Python.

To install FontTools, we’ll need to use pip , the Python package manager. In a terminal

window or at the Windows command-line prompt, type the following:

Licensing Requirements

The SIL Open Font License (OFL) requires that variations of a font file be
completely renamed. This may include file format conversions, such as TrueType to
WOFF. It probably includes subsetting. For the sake of clarity, I’ve retained the
Gaegu font name for both files. In a public-facing project, you may wish to use a
different name.

14. https://github.com/fonttools/fonttools

Working with Text 283

pip install fonttools[woff]

This installs fonttools and two additional libraries that we’ll need for creating WOFF and

WOFF2 files: brotli and zopfli.

This command installs a few different subpackages, including ones for font format conversion
(ttx) and merging fonts (pyftmerge). We’re interested in pyftsubset , which can create

subsets from OpenType, TrueType, and WOFF font files.

Let’s use pyftsubset to create a Latin-only version of the Gaegu font:

pyftsubset ~/Library/fonts/Gaegu-Regular.ttf --unicodes=U+000-5FF

At a minimum, pyftsubset needs an input file and one or more glyph identifiers or a Unicode

range as arguments. In the example above, we’ve used the --unicodes flag to specify the

range of characters to include. Again, both of these arguments are required.

To create a WOFF2 web font, we need to pass an additional --flavor flag:

pyftsubset Gaegu-Regular.ttf --unicodes=U+000-5FF --flavor="woff2"

For OFL-licensed fonts, we should also rename our font file and remove name information
from the font tables. To do that, we need to pass two more flags: --output-file flag, and --

name-IDs :

pyftsubset ~/Library/fonts/Gaegu-Regular.ttf --unicodes=U+000-5FF --flavor="woff2"

➥ --output-file='myproject/subsetfont-latin.woff2' --name-IDs=''

Passing an empty string as the argument for --name-IDs strips all existing name information

from the font file. Now we can use our subset OFL-licensed font in our project.

Mac Users

Although macOS comes with Python installed, it may not include pip. Your best bet
for installing pip while creating the fewest headaches is to install the latest Python
version using Homebrew15: brew install python . Homebrew will install pip as part
of the Python installation process. Use pip3 instead of pip to run commands.

15. https://brew.sh/

284 CSS Master, 3rd Edition

pyftsubset is more feature-rich than we’ve discussed here. We can, for example, exclude

ligatures and vertical typesetting data. To see a full list of commands and how they work, use
pyftsubset --help .

Writing Modes
Writing modes are one of the more esoteric areas of CSS. However, they’re important to
understand for developers who work with languages that are written from right to left (such
as Hebrew and Arabic), languages that can be written vertically (such as Mongolian), or
languages that can be written using both (such as Japanese, Chinese, or Korean). In this
section, we’ll discuss:

what writing modes are, and how browsers determine the writing mode of a document
CSS properties that affect the writing mode

Although the primary purpose of writing modes is internationalization, you can also use them
in creative ways. For instance, you might use vertical or sideways headings to mark sections
of text, as shown below.

6-9. Writing modes used to add sideways headers

Let’s dig in!

Working with Text 285

What Is a Writing Mode?

A document’s writing mode is the combination of its inline base direction and its block flow
direction. The inline base direction, or inline direction, is the primary direction in which lines of
text are ordered. Block flow refers to the direction in which block-level boxes stack.

Languages such as English, French and Hindi are typically written and read from left to right.
Lines of text start at the left edge of the container and continue horizontally, ending at the
right edge of the container. Blocks of text—such as headings and paragraphs—stack vertically
from the top of the screen to the bottom. These languages use a horizontal writing mode.

Languages such as Chinese and Korean, on the other hand, can also use a vertical writing
mode. In a vertical writing mode, lines of text begin at the top of the container and continue to
the bottom. Blocks of text stack horizontally.

Technically, what we’re discussing here are scripts, or the groups of symbols used to express
a language. Scripts can be used to write multiple languages. For example, Spanish, English,
and Norwegian all use Latin script. The inverse is also true: some languages can be written
using more than one script. As the World Wide Web Consortium explains16, Azeri can be
written using Latin, Cyrillic, or Arabic scripts. Scripts have a writing direction. Languages use
the direction of the script in which they’re written. In other words, when written using Latin or
Cyrillic scripts, Azeri is read and written from left to right. When written using Arabic, it’s read
from right to left. For the sake of precision, we’ll use “script” instead of “language” for the rest
of this chapter.

We can set the writing mode of a document using the writing-mode property, but direction

and text-orientation also affect how text is typeset and displayed.

Setting the Direction of Text with the direction Property

With the direction property, we can specify the direction of text—either rtl (right to left)

or ltr (left to right). Its initial value is ltr . When the value of direction is ltr , text lines

start at the left edge of the container and end at the right edge, as illustrated below.

16. https://www.w3.org/International/questions/qa-scripts

286 CSS Master, 3rd Edition

6-10. Text begins at the left edge of the container when set to direction: ltr

When the value is rtl —as appropriate for Arabic and Hebrew scripts—text lines start at the

right edge and end at the left, as shown below.

6-11. Text begins at the right edge of the container when set to direction: rtl

Using the HTML dir Attribute Is Best

Because browsers can strip CSS from HTML documents—say, when using Reader mode—the
Writing Modes17 specification advises web developers to avoid using the direction

Working with Text 287

property with HTML. Instead, use the HTML dir attribute to set text direction, and the

<bdo> or <bdi> elements to override the direction for smaller bits of inline content:

<!DOCTYPE html>

<html lang="ar" dir="rtl">

<head>

<title> السمة باستخدام dir</title>

</head>

<body>

<p> الكسول الكلب على السريع البني الثعلب قفز .<bdo dir="ltr" lang="en">

➥SitePoint.com</bdo>
</p>

</body>

</html>

Using markup ensures that user agents will properly display the document, even if its CSS has
been stripped away. For markup languages that lack these features (such as SVG), the
direction CSS property is appropriate.

Setting Block Flow Direction with the writing-mode Property

The writing-mode property determines how block-level boxes and table rows are ordered on

the screen or page. It also determines whether lines of text within those boxes are arranged
horizontally or vertically. Its initial value is horizontal-tb , which is a shorthand for “horizontal,

top to bottom”.

If no other CSS is applied to a document, block boxes will flow from top to bottom. Lines of
text within those boxes will be arranged horizontally, as was shown in the two images in the
previous section. For languages that use Latin, Arabic, Hebrew, or Devanagari script, this is
always appropriate.

Humanity, of course, is varied and complicated. A top-to-bottom block flow doesn’t work for
every language. With the writing-mode property, we can accommodate these differences in

how languages are written and displayed on the Web.

Writing Modes

For a more comprehensive look at writing modes and scripts, consult the
“Language enablement”18 documentation of the World Wide Web Consortium’s
Internationalization Activity group.

17. https://www.w3.org/TR/css-writing-modes-4/

288 CSS Master, 3rd Edition

In addition to horizontal-tb , the writing-mode property accepts four other values:

vertical-rl

vertical-lr

sideways-rl

sideways-lr

When the value of writing-mode is vertical-rl , text is arranged vertically, and the block

boxes are ordered from right to left.

6-12. An example of vertical-rl text

When the value of writing-mode is vertical-lr , text is arranged vertically, and blocks

progress from left to right.

18. https://www.w3.org/International/layout

Working with Text 289

6-13. An example of vertical-lr text

The following image features an example of Japanese text with a vertical-rl writing mode.

6-14. Japanese characters, with non-Japanese characters rotated 90 degrees

290 CSS Master, 3rd Edition

The text begins from the right edge of the image. Our Japanese glyphs are translated and
rendered vertically. However, non-Japanese glyphs such as numerals are rotated 90 degrees.

Both sideways-rl and sideways-lr work similarly, except that all characters are rotated by

90 degrees. With writing-mode: sideways-rl , text is displayed vertically, from top to bottom,

and all glyphs are rotated clockwise by 90 degrees, as illustrated below.

6-15. Text set using a sideways-rl writing mode

However, with writing-mode: sideways-lr , text is displayed from bottom to top, and blocks

progress from left to right. Glyphs are instead rotated 90 degrees counter-clockwise.

Working with Text 291

6-16. An example of writing-mode: sideways-lr

Support for sideways-rl and sideways-lr is currently limited to Firefox 43 and above.

Consider these values to be experimental for the time being. Their behavior may change, or
support may be dropped from browsers entirely.

Note that the orientation of and <video> elements isn’t affected by writing-mode , as

pictured below.

292 CSS Master, 3rd Edition

6-17. Images retain their intrinsic orientation regardless of writing mode

Managing Typesetting with text-orientation

Writing systems, and the fonts that use them, have one or more native orientations. Latin-,
Arabic- and Devangari-based scripts are always written horizontally, and therefore have a
horizontal native orientation. Mongolian script is always written vertically and has a vertical
native orientation. Chinese, Japanese, and Korean can be written vertically or horizontally,
which is known as bidirectional orientation. Native orientation helps determine how glyphs are
displayed within a document.

Most contemporary fonts assign a horizontal orientation for every glyph that’s used when
glyphs are presented horizontally. But as we’ve mentioned, some scripts can be written
vertically. Glyphs within those scripts are transformed when text is presented vertically.

Working with Text 293

6-18. When presented vertically, glyphs may be translated, as shown on the left, or rotated, as shown on the right

Transformed glyphs may be translated, or shifted, so that they’re arranged vertically, as
pictured above on the left. Or they may be rotated, so they’re typeset sideways, as illustrated
above on the right. Some scripts have a native bidirectional orientation. Their font files usually
contain vertical typesetting information that’s used when glyphs are presented vertically.

It’s not uncommon, however, to use characters from horizontally oriented scripts in a vertically
oriented document. Think numerals such as 0, 2, or 4 within a paragraph of Japanese text. We
can shape how these glyphs are typeset using the text-orientation property.

The text-orientation property accepts one of three values, each of which is described as

follows:

mixed : glyphs from horizontally oriented scripts are rendered sideways, or rotated by 90

degrees, but vertically oriented glyphs will be rendered vertically (as pictured below, left).
upright : glyphs from horizontally oriented scripts are rendered in horizontal orientation.

Glyphs from vertically oriented scripts are rendered in their intrinsic, vertical orientation
(as pictured below, center).
sideways : all text is rendered sideways, as if in a horizontal writing mode, and rotated 90

degrees (as pictured below, right).

294 CSS Master, 3rd Edition

6-19. From left to right: the effect of text-orientation: mixed, text-orientation: upright, and text-orientation: sideways

In order for text-orientation to have an effect, the container must use a vertical writing

mode—either vertical-rl or vertical-lr . It doesn’t apply to table rows, table row groups,

table columns, or table column groups. You can, however, use it with tables, table cells, and
table headers.

Writing Mode and Alignment

Text alignment and box alignment are also affected by writing mode. Writing mode
determines which direction is considered the start of a line and which is considered the

end . In the image below, for example, our table has a direction value of rtl (right to left).

As a result, text-align: start aligns the text of each cell along its right edge.

6-20. The effect of text direction on text alignment

Working with Text 295

However, in the image below, the direction is ltr (left to right). In this case, text-align:

start causes the text of each cell to be aligned with its left edge.

6-21. When the text direction is left to right, text-align: start aligns text to the left edge of the container

Similarly, justify-content: flex-start aligns items with the left edge of their container

when the value of writing-mode is horizontal-tb , and the direction: ltr , as seen below.

6-22. Writing mode has an effect on how the children of flex containers are aligned

However, when the value of direction is rtl (or the dir attribute value is rtl), justify-

content: flex-start aligns items with the right edge, as shown below.

296 CSS Master, 3rd Edition

6-23. When the direction of text is rtl or right to left, justify-content: start stacks items against the left edge of the

container

Conclusion
In this chapter, we’ve discussed how text can be manipulated and enhanced with CSS. You
should now have a sense of how to:

implement web fonts and optimize them for a better user experience
support sites that use non-Latin scripts and multiple languages

You should also have a sense of how writing modes work.

In the next chapter, we’ll look at how to use CSS to add a sense of fun and energy to our web
pages with transitions and animations.

Working with Text 297

Transitions and
Animations

Chapter

7

298 CSS Master, 3rd Edition

Now let’s look at how to add some whimsy, delight, and polish to our documents and
applications. In this chapter, we’ll cover CSS transitions and animations. Transitions and
animations can clarify the effect of an action. A menu that slides into view, for example, is less
abrupt and jarring than one that appears suddenly after a button is clicked. Transitions and
animations can also draw attention to a page change or problem. You might, for instance,
transition the border color of a form field to highlight that its value is invalid.1

This is probably a good time to explain how animations and transitions differ. With a
transition, you define start and end states, and the browser fills in the states in between. With
an animation, on the other hand, you can define those in-between states to control how the
animation progresses.

CSS Transitions
CSS transitions2 are a CSS-based way—as opposed to a JavaScript way—to update the value
of a CSS property over a specified duration. Given a start value and an end value, the browser
will interpolate in-between values over the course of the transition. They’re great for simple
effects where you don’t mind giving up control over how the animation progresses.

In my own work, I sometimes use transitions for :hover states. I also use them when

revealing or concealing content, such as showing an off-screen menu. You could create
animations for such effects, but animations are generally more verbose, as you’ll see later in
the chapter.

We can’t transition every property. We can only use transitions with properties that accept
interpolatable values. Interpolation is a method of calculating values that fall within a range.
These values are typically numeric unit values such as lengths, percentages, or colors. That
means we can’t transition between visibility: visible and visibility: hidden , or

display: block and display: none . Nor can we transition to or from auto values.3

Creating Your First Transition

In this example, we’ll make our link color transition from blue to pink when users move their
mouse over it, and back to blue when users moves their mouse off it.

1. “Animation for Attention and Comprehension”, from the Nielsen Norman Group, is a nice
backgrounder on how animation and transitions can enhance usability: http://www.nngroup.com/
articles/animation-usability/
2. https://drafts.csswg.org/css-transitions/
3. The CSS Transitions specification includes a list of animatable CSS properties and values:
http://dev.w3.org/csswg/css-transitions-1/#animatable-css

Transitions and Animations 299

Here’s our bare-bones HTML:

<!DOCTYPE html>

<html lang="en-US">

<head>

<link rel="stylesheet" href="style.css">

</head>

<body>

<p>Mouse over this linkto see the transition

➥effect.</p>
</body>

</html>

This gives us the page shown below.

7-1. A basic HTML page with a link

Now let’s add the following CSS to our style.css :

a {

transition: 1s;

}

a:link {

color: #309;

}

a:hover {

color: #f0c;

}

This is the bare minimum CSS required for a transition to work: a start value (color: #309), an

end value (color: #f0c), and a transition duration (transition: 1s;). When you mouse over

the link, you’ll see a gradual transition from blue to hot pink, as illustrated below.

300 CSS Master, 3rd Edition

7-2. Once the transition has completed

Transitions need to be triggered by some kind of event. Often, this is a user interaction. We
might transition between colors when entering and leaving a :hover state, as we’ve done

here. But we can also trigger a transition by adding or removing a class name using JavaScript.
In the following example, we modify an element’s classList attribute to do just that:

const btn = document.querySelector('button');

const clickHandler = () => {

document.body.classList.toggle('change');

}

btn.addEventListener('click', clickHandler);

In the code, we’ve first defined a variable named btn . If you’re unfamiliar with programming,

a variable is simply a bucket of sorts that holds a value. We can then use the variable
anywhere we need that value.

The value of btn is our button element, as returned by document.querySelector('button') .

The document.querySelector() method is defined by the Selectors API4 specification. It

accepts any CSS selector as its argument, and returns the first item that matches. It’s a way to
select elements using JavaScript.

Next, we’ve defined a clickHandler function. This will be the event listener for our click

event. Finally, we’ve added the event listener to btn using addEventListener . The

addEventListener method is part of the Document Object Model. It allows us to define a

function that’s invoked when a particular event occurs.

4. https://www.w3.org/TR/selectors-api2/

Transitions and Animations 301

The magic happens within the clickHandler function. Here we’ve used the

Element.classList.toggle() method to add or remove the change class from the <body>

element (document.body). This is what triggers our transition. The classList property is part

of the Document Object Model API. It provides a handful of methods for manipulating the
class names of an element.5

Now let’s look at our CSS. It’s only a few lines long:

body {

background: #fcf;

transition: 5s;

}

.change {

background: #0cf;

}

Here, we’ve defined a starting background color for our <body> element, and a transition.

We’ve also defined a .change class, which has a different value for background . When our

event handler runs, it adds the change class to our <body> element. This triggers a transition

from the original background color to the one defined in the .change declaration block, as

shown below.

If you want a transition to work in both directions—for example, when the class is both added
and removed—you should add it to whichever declaration block is your start state. We’ve done
that here by including the transition property in the body declaration block. If we moved

the transition to the change class, our transition would only work when change was added to

our <body> element, but not when it was removed.

Understanding JavaScript

If any of that went over your head, don’t worry. Pick up Darren Jones’ JavaScript:
Novice to Ninja, 2nd Edition6 if you want to get up to speed with JavaScript.

5. The classList property is defined in the Document Object Model specification: http://www.w3.org/

TR/dom/
6. https://www.sitepoint.com/premium/books/javascript-novice-to-ninja-2nd-edition

302 CSS Master, 3rd Edition

7-3. Creating a transition triggered by JavaScript

So far, we’ve used the transition shorthand property. It’s a condensed way of specifying

four “longhand” properties, which are listed in the table below.

Property Description Initial value

transition-

duration

How long the transition should last 0s (no transition)

transition-

property

Which property to transition all (all

animatable
properties)

transition-

timing-

function

How to calculate the values between the start and
end values

ease

transition-

delay

How long the browser should wait between changing
the property and starting the transition

0s (no delay)

Each longhand property has an initial value. The browser uses the initial value for the property,
unless you explicitly set its value. For example, the initial value of transition-property is

all (all properties), and the initial value of transition-timing-function is ease . When we

set a transition duration—such as transition: 1s —the values for transition-property and

transition-timing-function are implied. This is why we can get away with setting the

transition property and nothing else.

Using the transition Property

As we’ve already seen in the previous examples, time units are one acceptable value for the
transition property. The CSS Values and Units Module Level 37 specification defines two

Transitions and Animations 303

kinds of time units for use with transitions and animations: s for seconds, and ms for

milliseconds. We can also collapse values for transition-timing-function , transition-

delay , and transition-property into this shorthand transition property:

body {

background: red;

transition: background 500ms linear 1s;

}

Here, we’ve told the browser to transition the background property. The duration will last 500

milliseconds (which we could also write as .5s). It will use the linear timing function

(discussed later in this chapter), and the start of the transition will be delayed by one second.
It’s a compact version of the following CSS:

body {

background: red;

transition–property: background;

transition–duration: 500ms;

transition–timing–function: linear;

transition–delay: 1s;

}

Order matters somewhat when using the transition shorthand property. The first value that

can be interpreted as a time will become the transition duration no matter where it sits in the
value string. The second time value will determine the transition delay. In other words, we
could reorder the values in our transition property like so:

body {

background: red;

transition: 500ms 1s background linear;

}

Here, our transition duration will be 500ms with a one-second delay.

Using the transition property is the most concise way to define a transition. However, there

may be cases in which you want to define a global transition effect (for example, transition:

500ms ease) in one part of your CSS, and limit it to specific CSS properties (for example,

transition-property: color) in another. This is where the longhand properties are useful.

7. http://www.w3.org/TR/css3-values/

304 CSS Master, 3rd Edition

Transition Durations and Delays

The transition-duration property sets the duration of the transition, or how long it takes to

complete. The transition-delay property determines how much time should elapse before

the transition begins. Both properties accept time units as a value. These can be seconds or
milliseconds: 1s , 2.5s , and 200ms are all valid values.

Both transition-duration and transition-delay have an initial value of 0s , or zero

seconds. For transition-duration , this means there will be no gradual transition between

the start and end states. For transition-delay , this means the transition will occur

immediately.

With transition-duration , you must use values greater than zero, such as .5s or 2500ms .

Negative values will be treated like a value of 0s , and the transition will fail to execute, as

illustrated below.

7-4. The effect of a negative transition delay

However, negative values are valid for transition-delay . Positive transition-delay values

shift the start of the animation by the specified amount of time. Negative values, however,
offset the beginning of the transition, as seen above. Using transition-duration: 2s;

transition-delay: -1s will cause the transition to jump one second into the play cycle before

continuing. Using a negative transition-delay value can create a snappier transition

experience by shortening its perceived duration.

Transitions and Animations 305

Timing Functions

We can also shape transition effects using the transition-timing-function property. Timing

functions are formulas of sorts that determine how the in-between values of a transition are
calculated. Which timing function you use will depend on what kind of transition effect you’d
like to achieve: a stepped transition or a smooth, gradual one.

Stepped Transitions

With stepped transitions, the play cycle is divided into intervals of equal value and duration.
We can set how many intervals a transition should have using the steps timing function.

Let’s revisit our background color example from earlier in this chapter. Instead of using the
default ease timing function, we’ll instead use the steps function to create a five-step

transition. Our revised CSS looks like this:

body {

background: #f0f;

transition: 5s steps(5);

}

.change {

background: #0cf;

}

Rather than a smooth, gradual shift between colors, this transition cycles through five distinct
color states.

There are also two keywords we can use to create stepped animations: step-start and

step-end . These are equivalent to steps(1, start) and steps(1, end) . With these

keywords (or their step function equivalents), you’ll see one transition step between the

starting and ending values.

Smooth Transitions

Smooth transitions use the cubic-bezier function to interpolate values. Understanding how

this function works involves a bit of math, along with some handwaving and magic. Read
Pomax’s “A Primer on Bézier Curves”8 if you’re interested in the intimate details. What follows
is a simplified explanation.

The cubic Bézier function is based on the cubic Bézier curve. A Bézier curve consists of a

8. http://pomax.github.io/bezierinfo/#explanation

306 CSS Master, 3rd Edition

start point and an end point, and one or more control points that affect the shape of the curve.
A cubic Bézier curve always has two of these control points, which can be seen below. Curves
are drawn from the start point to the end point, towards the control points.

7-5. A cubic Bézier curve, where the filled circles are the control points

The arguments passed to the cubic-bezier function represent the coordinates of those

control points: x1, y1, x2, y2. But there’s a constraint on these points: X values (the first and
third parameters) must fall between 0 and 1 . Y values (the second and fourth parameters)

can exceed this range in either direction. In other words, cubic-bezier(0, 1.02, 1, 0) and

cubic-bezier(0, 1.08, .98, -0.58) are valid values, but cubic-bezier(2, 1.02, -1, 0) is

not.

Graphs are the best way to illustrate how cubic-bezier works. The X-axis is a function of the

transition’s duration, as can be seen in the image below, which shows a graph of cubic-

Experimenting with Bézier Curves

Lea Verou’s cubic-bezier.com9 is a great tool for experimenting with the cubic-

bezier function. Easing Function Cheat Sheet10 also offers several ready-made
cubic-bezier snippets for easing functions that are not defined by the

specification.

9. https://cubic-bezier.com/
10. https://easings.net/

Transitions and Animations 307

bezier(0.42, 0, 1, 1) . The Y-axis is a function of the value of the property that’s being

transitioned. The outputs for these function determine the values of the property at a
particular point in the transition. Changes in the graph match the changes in speed over the
course of a transition. The image below shows a graph of cubic-bezier(0.42, 0, 1, 1) .

7-6. A graph of cubic-bezier(0.42, 0, 1, 1)

In most cases, it’s easier to use a timing function keyword. We mentioned step-start and

step-end in the previous section, but there are five more keywords, each of which is an alias

for cubic-bezier values. They’re listed in the following table:

Keyword
Equivalent
function

Effect

ease cubic-bezier(0.25,

0.1, 0.25, 1)

Begins slowly, accelerates quickly, then slows towards
the end of the transition

ease-in cubic-bezier(0.42,

0, 1, 1)

Begins quickly, then accelerates slowly but steadily until
the end of the transition

ease-out cubic-bezier(0, 0,

0.58, 1)

Accelerates quickly but slows towards the end of the
transition

ease-in-

out

cubic-bezier(0.42,

0, 0.58, 1)

Begins slowly, accelerates quickly, then decelerates
towards the end of the transition

linear cubic-bezier(0, 0,

1, 1)

Speed remains consistent over the course of the
animation

308 CSS Master, 3rd Edition

Transitioning Multiple Properties

It’s possible to transition multiple properties of a single element using a transition list. Let’s
look at an example:

div {

background: #E91E63;

height: 200px;

width: 200px;

margin: 10px 0;

position: relative;

left: 0;

top: 3em;

transition: left 4s cubic-bezier(0.175, 0.885, 0.32, 1.275),

background 2s 500ms;

}

.transthem {

left: 30%;

background: #00BCD4;

}

Here, we’ve defined transitions for the left and background properties. The difference is

that each item is separated by a comma. The left transition will last four seconds and use a

cubic-bezier timing function. The background transition will only last two seconds, but it

begins after a half-second (500ms) delay.

Occasionally, you may need to detect when a transition ends in order to take another action.
For example, if you transition opacity: 1 to opacity: 0 , it’s a good idea to add a hidden

attribute to the element for improved assistive technology support. This is where the
transitionend event comes in handy.

When a transition completes, the browser fires a transitionend event on the affected

element—one for each property. We can listen for these events using addEventListener :

const transitionEndHandler = function() {

// Do something.

}

const element = document.getElementById('el');

element.addEventListener('transitionend', transitionEndHandler);

HTML also supports an ontransitionend attribute. The code above could also be written as

follows:

Transitions and Animations 309

const transitionEndHandler = function() {

// Do something.

}

const element = document.getElementById('el');

element.ontransitionend = transitionEndHandler;

Let’s put this knowledge to use. In this example, we’ll hide unselected form options when the
user picks one. Our (simplified) HTML follows:

<h1>Please select your favorite color of the ones shown below.</h1>

<form>

<input type="radio" name="favecolor" id="red"><label for="red">Red</label>

<input type="radio" name="favecolor" id="yellow"><label for="yellow">Yellow</label>

<input type="radio" name="favecolor" id="blue"><label for="blue">Blue</label>

<div id="thanks" hidden>Thank you for selecting your favorite color.</div>

<button type="reset">Reset</button>

</form>

And here’s our (also simplified) CSS:

li {

transition: 500ms;

}

.fade {

opacity: 0;

}

Add some styles for color and font size, and we end up with the example below.

Shorthand Properties

In cases where the property is a shorthand property, the browser will fire one event
for each longhand property. In other words, a transition of the padding property
will result in transitionend events for padding-top , padding-right , padding-

bottom , and padding-left .

310 CSS Master, 3rd Edition

7-7. Our transition demo form

Now let’s tie it together with JavaScript. First, let’s define an action that adds the fade

class—in this case, a change event handler:

const changeHandler = function() {

// Select unchecked radio buttons. Returns a NodeList.

const notfave = document.querySelectorAll('input:not(:checked)');

// Create a new array from the NodeList

notfave.forEach(function(item) {

// Find the parent node, and add a 'fade' class

item.parentNode.classList.add('fade');

});

};

const form = document.querySelector('form');

form.addEventListener('change', changeHandler);

When the user selects a color, our form element will receive a change event. That in turn

triggers the changeHandler method, which adds a fade class to the parent element of each

radio button. This is what triggers our transition.

Transitions and Animations 311

Now let’s take a look at our transitionend handler. It’s slightly different from the other

examples in this chapter:

const transitionendHandler = function(domEvent) {

domEvent.target.setAttribute('hidden', '');

document.getElementById('thanks').removeAttribute('hidden');

};

document.addEventListener('transitionend', transitionendHandler);

Our transitionendHandler accepts a single event object argument. Here, we’ve named it

domEvent , but you could name it evt , foo —just about anything. This event object is passed

automatically, according to behavior defined by the Document Object Model Level 2
specification. In order to reference this event object within our handler, we need to define it as
a parameter for our function.

Every event object includes a target property. This is a reference to the element that

received the event. In this case, it’s a list item, and we’re adding a hidden attribute to each

(eventObject.target.setAttribute('hidden', '')). The last line of our event handler removes

the hidden attribute from our “Thank you” message, as seen below.

The forEach DOM Function

The forEach method used above is a DOM function for iterating through a
NodeList, or collection of elements. It’s supported in most major browsers, with the
exception of Internet Explorer 11. It’s not the forEach method of JavaScript. The
Mozilla Developer Network covers forEach in depth11.

11. https://developer.mozilla.org/en-US/docs/Web/API/NodeList/forEach

312 CSS Master, 3rd Edition

7-8. Our form after the user has chosen an option and the transitionend event has fired

Multiple Transitions and transitionend Events

Transitions of multiple properties trigger multiple transitionend events. A declaration such

as transition: left 4s linear, background 2s 500ms ease; triggers a transitionend event

for the left property and another for background . To determine which transition triggered

the event, you can check the propertyName property of the event object:

const transitionendHandler = function (eventObject) {

if (eventObject.propertyName === 'opacity') {

// Do something based on this value.

}

};

Occasionally, a transition will fail to complete. This can typically happen when the property is
overridden while it’s in progress—such as when a user action removes the class name. In
those situations, the transitionend event won’t fire.

Because of this risk, avoid using the transitionend event to trigger anything “mission

critical”, such as a form submission.

CSS Animation
Think of CSS animation as the more sophisticated sister to CSS transitions. Animations differ
from transitions in a few key ways:

Animations don’t degrade gracefully. If there’s no support from the browser, the user is out
of luck. The alternative is to use JavaScript.
Animations can repeat, and repeat infinitely. Transitions are always finite.

Transitions and Animations 313

Animations use keyframes, which offer the ability to create more complex and nuanced
effects.
Animations can be paused in the middle of the play cycle.

The latest versions of all major browsers support CSS animations. Firefox versions 15 and
earlier require a -moz- prefix; later version don’t. Internet Explorer versions 10 and 11 also

support animations without a prefix, as do all versions of Microsoft Edge.

We can check for CSS animations support in a few ways. The first is by testing for the
presence of CSSKeyframeRule as a method of the window object:

const hasAnimations = 'CSSKeyframeRule' in window;

If the browser supports the @supports rule and the CSS.supports() API (discussed in

Chapter 10, “ Applying CSS Conditionally”), we can use that instead:

const hasAnimations = CSS.supports('animation-duration: 2s');

As with transitions, we can only animate interpolatable values such as color values, lengths,
and percentages.

Creating Your First Animation

We first have to define an animation using an @keyframes rule. The @keyframes rule has two

purposes:

setting the name of our animation
grouping our keyframe rules

Let’s create an animation named pulse :

@keyframes pulse {

}

Our keyframes will be defined within this block. In animation, a keyframe is a point at which
the action changes. With CSS animations specifically, keyframe rules are used to set property
values at particular points in the animation cycle. Values that fall between the values in a
keyframe rule are interpolated.

314 CSS Master, 3rd Edition

At the minimum, an animation requires two keyframes: a from keyframe, which is the starting

state for our animation, and a to frame, which is its end state. Within each individual

keyframe block, we can define which properties to animate:

@keyframes pulse {

from {

transform: scale(0.5);

opacity: .8;

}

to {

transform: scale(1);

opacity: 1;

}

}

This code will scale our object from half its size to its full size, and change the opacity from
80% to 100%.

The keyframes rule only defines an animation, though. By itself, it doesn’t make elements

move. We need to apply it. Let’s also define a pulse class that we can use to add this

animation to any element:

.pulse {

animation: pulse 500ms;

}

Here, we’ve used the animation shorthand property to set the animation name and duration.

In order for an animation to play, we need the name of an @keyframes rule (in this case,

pulse) and a duration. Other properties are optional.

The order of properties for animation is similar to that of transition . The first value that

can be parsed becomes the value of animation-duration . The second value becomes the

value for animation-delay . Words that aren’t CSS-wide keywords or animation property

keyword values are assumed to be @keyframe rule set names.

As with transition , animation also accepts an animation list. The animation list is a comma-

separated list of values. We could, for example, split our pulse animation into two
rules— pulse and fade :

@keyframes pulse {

from {

Transitions and Animations 315

transform: scale(0.5);

}

to {

transform: scale(1);

}

}

@keyframes fade {

from {

opacity: .5;

}

to {

opacity: 1;

}

}

We can combine them as part of a single animation list:

.pulse-and-fade {

animation: pulse 500ms infinite, fade 500ms 8;

}

Or, as an alternative, we can combine them using longhand properties:

.pulse-and-fade {

animation-name: pulse, fade;

animation-duration: 500ms; /* used for both animations */

animation-iteration-count: infinite, 8;

}

Animation Properties

Though using the animation property is shorter, sometimes longhand properties are clearer.

Longhand animation properties are listed in the following table:

316 CSS Master, 3rd Edition

Property Description Initial value

animation-delay How long to wait before executing the animation 0s (executes

immediately)

animation-

duration

How long the cycle of an animation should last 0s (no animation

occurs)

animation-name The name of an @keyframes rule none

animation-

timing-function

How to calculate the values between the start and
end states

ease

animation-

iteration-count

How many times to repeat the animation 1

animation-

direction

Whether or not the animation should ever play in
reverse

normal (no

reverse)

animation-play-

state

Whether the animation is running or paused running

animation-fill-

mode

Specifies what property values are applied when
the animation isn’t running

none

The animation-delay and animation-duration properties function like transition-delay

and transition-duration . Both accept time units as a value, either in seconds (s) or

milliseconds (ms). Negative time values are valid for animation-delay , but not animation-

duration .

Let’s rewrite our .pulse rule set using longhand properties. Doing so gives us the following:

.pulse {

animation-name: pulse;

animation-duration: 500ms;

}

The animation-name property is fairly straightforward. Its value can be either none or the

name of the @keyframes rule. Animation names have few restrictions. CSS keywords such as

initial , inherit , default , and none are forbidden. Most punctuation characters won’t

work, while letters, underscores, digits, and emojis (and other Unicode characters) usually will.
For clarity and maintainability, it’s a good idea to give your animations descriptive names, and
avoid using CSS properties or emojis as names.

Transitions and Animations 317

To Loop or Not to Loop: The animation-iteration-count Property

If you’re following along with your own code, you’ll notice that this animation only happens
once. We want our animation to repeat. For that, we’ll need the animation-iteration-count

property.

The animation-iteration-count property accepts most numeric values. Whole numbers and

decimal numbers are valid values. With decimal numbers, however, the animation will stop
partway through the last animation cycle, ending in the to state. Negative animation-

iteration-count values are treated the same as 1 .

To make an animation run indefinitely, use the infinite keyword. The animation will play an

infinite number of times. Of course, infinite really means until the document is unloaded,

the browser window closes, the animation styles are removed, or the device shuts down. Let’s
make our animation infinite:

.pulse {

animation-name: pulse;

animation-duration: 500ms;

animation-iteration-count: infinite;

}

Or, using the animation shorthand property:

.pulse {

animation: pulse 500ms infinite;

}

Playing Animations: The animation-direction Property

There’s still a problem with our animation, however. It doesn’t so much pulse as repeat our
scaling-up animation. What we want is for this element to scale up and down. Enter the
animation-direction property.

The animation-direction property accepts one of four values:

normal : the initial value, playing the animation as specified

reverse : flips the from and to states and plays the animation in reverse

alternate : plays even-numbered animation cycles in reverse

alternate-reverse : plays odd-numbered animation cycles in reverse

318 CSS Master, 3rd Edition

To continue with our current example, reverse would scale down our object by a factor of

0.5. Using alternate would scale our object up for the odd-numbered cycles and down for

the even-numbered ones. Conversely, using alternate-reverse would scale our object down

for the odd-numbered cycles and up for the even ones. Since this is the effect we want, we’ll
set our animation-direction property to alternate-reverse :

.pulse {

animation-name: pulse;

animation-duration: 500ms;

animation-iteration-count: infinite;

animation-direction: alternate-reverse;

}

Or, using the shorthand property:

.pulse {

animation: pulse 500ms infinite alternate-reverse;

}

Using Percentage Keyframes

Our previous example was a simple pulse animation. We can create more complex animation
sequences using percentage keyframes. Rather than using from and to , percentage

keyframes indicate specific points of change over the course of the animation. Below is an
example using an animation named wiggle :

@keyframes wiggle {

25% {

transform: scale(.5) skewX(-5deg) rotate(-5deg);

}

50% {

transform: skewY(5deg) rotate(5deg);

}

75% {

transform: skewX(-5deg) rotate(-5deg) scale(1.5);

}

100% {

transform: scale(1.5);

}

}

We’ve used increments of 25% here, but these keyframes could be 5%, 10%, or 33.2%. As the
animation plays, the browser will interpolate the values between each state. As with our

Transitions and Animations 319

previous example, we can assign it to a selector:

/* Our animation will play once */

.wiggle {

animation-name: wiggle;

animation-duration: 500ms;

}

Or using the animation shorthand property:

.wiggle {

animation: wiggle 500ms;

}

There’s just one problem here. When our animation ends, it goes back to the original, pre-
animated state. To prevent this, use the animation-fill-mode property.

The animation-fill-mode Property

Animations have no effect on properties before they begin or after they stop playing. But as
you’ve seen with the wiggle example, once an animation ends, it reverts to its pre-animation

state. With animation-fill-mode , we can fill in those states before the animation starts and

ends.

The animation-fill-mode property accepts one of four values:

none : the animation has no effect when it’s not executing

forwards : when the animation ends, the property values of the end state will still apply

backwards : property values for the first keyframe will be applied during the animation

delay period
both : effects for both forwards and backwards apply

Since we want our animated element to remain in its final, scaled-up state, we’re going to use
animation-fill-mode: forwards (noting that animation-fill-mode: both would also work).

The effect of animation-fill-mode: backwards is most apparent when the animation-delay

property is set to 500ms or higher. When animation-fill-mode is set to backwards , the

property values of the first keyframe are applied, but the animation isn’t executed until the
delay elapses.

320 CSS Master, 3rd Edition

Pausing Animations

As has been mentioned, animations can be paused. Transitions can be reversed midway, or
stopped altogether by toggling a class name. Animations, on the other hand, can be paused
partway through the play cycle using animation-play-state . It has two defined

values— running and paused —and its initial value is running .

Let’s look at a simple example of using animation-play-state to play or pause an animation.

First, our CSS:

.wobble {

animation: wobble 3s ease-in infinite forwards alternate;

animation-play-state: paused;

}

.running {

animation-play-state: running;

}

Here, we have two declaration blocks: wobble , which defines a wobbling animation, and

running , which sets a play state. As part of our animation declaration, we’ve set an

animation-play-state value of paused . To run our animation, we’ll add the running class to

our element. Let’s assume that our markup includes a Run animation button with an id of

trigger :

const trigger = document.querySelector('#trigger');

const moveIt = document.querySelector('.wobble');

trigger.addEventListener('click', function() {

moveIt.classList.toggle('running');

});

Adding .running to our element overrides the animation-play-state value set in .wobble ,

and causes the animation to play.

Detecting When Animations Start, End, or Repeat

Like transitions, animations fire an event when they end: animationend . Unlike transitions,

animations also fire animationstart and animationiteration events when they begin to

repeat. As with transitions, you might use these events to trigger another action on the page.
For example, you might use animationstart to contextually reveal a Stop Animation button,

or animationend to reveal a Replay button.

Transitions and Animations 321

We can listen for these events with JavaScript. Below, we’re listening for the animationend

event:

const animate = document.getElementById('animate');

animate.addEventListener('animationend', function(domEvent) {

// Do something

});

Here, too, the event handler function receives an event object as its sole argument. In order to
determine which animation ended, we can query the animationName property of the event

object.

Animation and Accessibility
Transitions and animations can enhance the user experience by making interactions smooth
rather than jumpy, and otherwise bring delight to the interface. But they have accessibility
risks. Large spinning animations, for example, can cause dizziness or nausea for people with
vestibular disorders, such as vertigo.12Consider adding controls for larger, longer, or infinite
animations so users can turn them off.

You can also use media queries and the prefers-reduced-motion feature to reduce or disable

animation. Users can indicate that they prefer less motion, typically by adjusting the
accessibility settings for their operating system.

If you’d like your website to respect those preferences, you must include the prefers-

reduced-motion media query. Browsers won’t do it on their own. For example:

.wobble {

animation: wobble 3s ease-in infinite forwards alternate;

animation-play-state: paused;

}

.running {

animation-play-state: running;

}

@media screen and (prefers-reduced-motion) {

.running {

animation-play-state: paused;

}

12. Rachel Nabors’ “Infinite Canvas 6: Vestibular Disorders and Accessible Animation” is a great
introduction to the subject of vestibular disorders and animation: https://www.youtube.com/
watch?v=QhnIZh0xwk0

322 CSS Master, 3rd Edition

}

In this example, if the user has indicated that they prefer reduced motion, the animation-

play-state will be paused . If there are controls associated with this animation (such as a Play

button), you might use JavaScript to add a hidden attribute to them.

You don’t have to completely disable your animations. For example, if your animation scales
and also skews, as with our .wobble animation, you can instead disable a portion of it. Here

we’ll change the scale value:

.wobble {

--wobble-min-scale: .5;

--wobble-max-scale: 1.5;

}

@media screen and (prefers-reduced-motion) {

.wobble {

--wobble-min-scale: 1;

--wobble-max-scale: 1;

}

}

@keyframes wobble {

25% {

transform: scale(var(--wobble-min-scale)) skewX(-5deg) rotate(-5deg);

}

50% {

transform: skewY(5deg) rotate(5deg);

}

75% {

transform: skewX(-5deg) rotate(-5deg) scale(var(--wobble-max-scale));

}

100% {

transform: scale(var(--wobble-max-scale));

}

}

Notice that we’ve used custom properties (see Chapter 4) to manage the scale factor, and
applied them to the .wobble selector.

We’ll cover the ins and outs of media queries in Chapter 10, “Applying CSS Conditionally”.

Flashing animations can trigger seizures in some people with photosensitive epilepsy.13 Avoid
flashing content more than three times per second, particularly across large areas of the

13. WCAG 2.1 includes advice for for avoiding flashes and animations that are known to trigger seizures:
https://w3c.github.io/wcag/guidelines/22/

Transitions and Animations 323

screen.

A Note about Performance
Some properties create better-performing transitions and animations than others. If an
animation updates a property that triggers a reflow or repaint, it may perform poorly on low-
powered devices such a phones and tablets.

Properties that trigger a reflow are ones that affect layout. These include the following
animatable properties:

block-size

border-width (and border-*-width properties)

border (and border-* properties)

bottom

font-size

font-weight

height

inset-block (and inset-block-*) longhand properties

inset-inline (and inset-inline-*) longhand properties

inline-size

left

line-height

margin (and margin-* properties)

min-height

min-width

max-height

max-width

padding (and padding-* properties)

right

top

vertical-align

width

When these properties are animated, the browser must recalculate the size and position of
the affected—and often neighboring—elements. Use transforms where you can. Transitioning
or animating translation transforms can replace top , left , right , and bottom or inset-

block-* and inset-inline-* properties. Take, for example, the animation below that reveals

a menu:

324 CSS Master, 3rd Edition

[id=menu] {

left: -300px;

transition: left 500ms ease-in;

}

[id=menu].open {

left: 0;

}

We could rewrite this using a translation transform:

[id=menu] {

transform: translateX(-300px);

transition: transform 500ms ease-in;

}

[id=menu].open {

transform: translateX(0);

}

Browsers calculate and apply transforms after they calculate the document’s layout. As a
result, transforms tend to be smoother, and less resource-intensive. We’ll cover transforms in
Chapter 8.

Animations that take up a lot of screen real estate or that contain a lot of child elements may
also perform poorly. In such cases, try adding the will-change property to an element:

header {

perspective: 400px;

perspective-origin: 50% 50%;

}

[id=megamenu] {

width: 100vw;

height: 100vh;

transform: rotateX(-90deg);

CSS Triggers

The CSS Triggers14 reference is a good starting point for learning how browsers
treat various CSS-related properties. Keep in mind that it’s a little dated. Newer
properties such as block-size aren’t included, and Microsoft Edge has moved
away from the EdgeHTML engine. Still, it’s one of the more comprehensive guides
available.

14. https://csstriggers.com/

Transitions and Animations 325

transform-origin: 50% 0;

transition: transform 1s;

will-change: transform;

}

[id=megamenu].open {

transform: rotateX(0deg);

}

The will-change property indicates to the browser that an element will change soon. Set its

value to the value of the property you plan to animate. Be careful with will-change , however.

It’s best used for a single element, and only after you’ve determined that a particular
animation or transition doesn’t perform well. Consider it a property of last resort.

Properties that trigger a repaint are typically those that cause a color change. These include:

background

background-image

background-position

background-repeat

background-size

border-radius

border-style

box-shadow

color

outline

outline-color

outline-style

outline-width

Using will-change

Use will-change sparingly. Even the Will Change specification15 says that the
optimizations that will-change triggers may use more of the machine’s resources
if used too widely. Sara Soueidan’s “Everything You Need to Know About the CSS
will-change Property”16 has more detail about when to use—and not to

use— will-change .

15. https://drafts.csswg.org/css-will-change/#using
16. https://dev.opera.com/articles/css-will-change-property/

326 CSS Master, 3rd Edition

Changes to these properties are less expensive to calculate than those that affect layout, but
they do still have a cost. Changes to box-shadow and border-radius are especially expensive

to calculate, especially for low-powered devices. Use caution when animating these
properties.

Conclusion
In this chapter, we’ve looked at how to add motion to web pages using CSS transitions and
animations, and why you might like to do so. We’ve also touched on performance and
accessibility concerns, and explained the finer points of the cubic-bezier function.

As you use transitions and animations, consider how you’re using them. They’re best used to
focus the user’s attention or clarify an action. But they can also be used to add whimsy and
delight.

Transitions and Animations 327

Transforms
Chapter

8

328 CSS Master, 3rd Edition

Transforms allow us to create effects and interactions that are otherwise impossible. When
combined with transitions and animations, we can create elements and interfaces that rotate,
dance and zoom. Three-dimensional transforms, in particular, make it possible to mimic
physical objects.

Take, for example, the humble postcard received from a friend. Its front face displays a photo
of the location your friend sent the card from. When you flip it over, you see expanded
information about the photo and your friend’s journey. (By the way, they wish you were there.)

8-1. Greetings from Hollywood

A postcard isn’t a web interface, obviously, but it’s a metaphor for the kind of interfaces we
can create. Perhaps you want to build a weather widget that functions similarly to a postcard.
The front of our widget contains a current weather summary, as shown below.

Transforms 329

8-2. An example weather widget

Flipping it over—triggered by a tap or swipe—might show an expanded weather forecast, or
reveal a Settings panel.

8-3. Our widget’s Settings panel

Card-style interfaces are a great example of what we can build with transforms. In this
chapter, we’ll do a deep dive into the details of how they work.

330 CSS Master, 3rd Edition

How Transforms Affect Layout
Before we go too much further, there are some things you should know about how the
transform property affects layout. When you apply the transform property to an element

and its value is other than none , three things happen:

the element becomes a containing block for child elements
it establishes a new stacking context for the element and its children
it imposes a local coordinate system within the element’s bounding box

Let’s look at these concepts individually.

transform Creates a Containing Block

When an element is positioned—that is, when the value of the position property is

something other static —it’s drawn relative to a containing block. A containing block is the

closest positioned ancestor or, failing that, the root element (such as <html> or <svg>) of a

document.

Consider the example pictured below.

Checking Out the Spec

Transforms are defined by the CSS Transforms Module Level 2 specification1. At
one point, two-dimensional and three-dimensional transforms were defined in
separate specifications. As you move through the chapter, you’ll notice some
redundancy in function names.

1. https://drafts.csswg.org/css-transforms-2/

Transforms 331

8-4. A child element with position: absolute inside a container with position: relative

In this image, the child rectangle has a position value of absolute . Its right and bottom

properties are both set to 0 . Its parent element has a position value of relative . Because

the parent in this case is positioned, it becomes a containing block for the child. If the parent
rectangle were not positioned, this child element would instead be drawn at the bottom right
of the browser window.

Transforms work similarly. Setting the value of transform to something other than none

turns the transformed element into a containing block. Positioned children of a transformed
element are positioned relative to that element, as seen below.

8-5. A child element with position: absolute nested within an element with transform: skewX(-15deg)

In the image above, the parent element isn’t positioned. The transform property is what’s

creating this containing block. A child element with position: absolute is nested within an

element with transform: skewX(-15deg) .

332 CSS Master, 3rd Edition

1

2

3

4

transform Creates a New Stacking Context

A transform also creates a new stacking context for the element it’s applied to. As you may
recall from Chapter 5, “Layouts”, elements within a stacking context are painted from back to
front, as follows:

child-stacking contexts with a negative stack level (for example, positioned z-index:

-1)

nonpositioned elements

child-stacking contexts with a stack level of 0 (for example, positioned and z-index:

0; or z-index: auto;)

child-stacking contexts with positive stack levels (for example, z-index: 1), which sit

at the top of the stack

Setting the value of transform to something other than none makes the element’s stack

level 0 . Transformed elements are stacked in front of non-positioned elements. The z-

index values of each child element are relative to the parent. Let’s update our example from

Chapter 5 to see how this works:

<div style="position:relative;">

<div id="a">

<p>div#a</p>

</div>

<div id="b" style="transform: scale(2) translate(25%, 15%);">

<p>div#b</p>

</div>

<div id="c" style="position:relative; z-index: 1">

<p>div#c</p>

</div>

<div id="d" style="position:absolute; z-index: -1">

<p>div#d</p>

</div>

</div>

In this case, div#d sits at the bottom of the stack, and div#a sits above it (as pictured

below). But div#b comes next because the transform property forces its z-index value to

be 0 instead of auto . With z-index: 1 , div#c sits at the top of the stack.

Transforms 333

8-6. A stacking context with positioned and unpositioned elements with varying z-index values

Three-dimensional transforms add additional complexity. An element shifted along the Z-axis
may render on a different plane from its container. Elements may also intersect with other
elements across layers. Still, the basic rules of the stacking order apply.

Transformed elements may also overlap other elements on the page and prevent them from
receiving mouse, touch, or pointer events. Applying pointer-events: none to the

transformed element solves this issue.2

Browsers apply transforms after elements have been sized and positioned. Unlike floated
elements, transformed elements aren’t removed from the normal flow.3

Because transforms are applied after the layout has been calculated, they don’t affect
document layout. Transformed child elements may overflow the parent element’s bounding
box, but they don’t affect the position of other elements on the page. They also don’t affect
the HTMLElement.offsetLeft or HTMLElement.offsetTop DOM properties of an element. Using

these properties to detect the rendered position of an element will give you inaccurate
results.

2. The pointer-events CSS property is distinct from the PointerEvents DOM event object.
3. Document flow is described by the Visual formatting model section of the CSS2.1 specification:
http://www.w3.org/TR/CSS21/visuren.html. Updates to this model are partly described by the CSS
Display Module Level 3: http://dev.w3.org/csswg/css-display/

334 CSS Master, 3rd Edition

Transforms do, however, affect client rectangle values and visual rendering of elements. To
determine the rendered left and top positions of an element, use the
HTMLElement.getClientRects() or HTMLElement.getBoundingClientRect() DOM methods (for

example, document.getElementById('#targetEl').getClientRects()). Because they don’t

force the browser to recalculate page layout, transforms typically perform better than
properties such as left and height when animated.

transform Creates a Local Coordinate System

You may recall from geometry class that the Cartesian coordinate system is a way of
specifying points in a plane. You may also recall that a plane is a flat, two-dimensional surface
that extends infinitely along the horizontal and vertical axes. These axes are also known as the
X-axis and Y-axis.

Point values along the X-axis increase as you move from left to right, and decrease from right
to left. Y-axis point values decrease as you move up from the origin, and decrease as you
move down. The X- and Y-axes are perpendicular to each other. Where they cross is known as
the origin, and the coordinates of its location are always (0,0), as illustrated below.

Transforms 335

8-7. A two-dimensional coordinate system

A three-dimensional coordinate system also has a Z-axis. This axis is perpendicular to both
the X- and Y-axes, as well as the screen (see the image below). The point at which the Z-axis
crosses the X- and Y-axes is also known as the origin. Its coordinates are (0,0,0).

336 CSS Master, 3rd Edition

8-8. A three-dimensional coordinate system

A rendered HTML document is also a coordinate system. The top-left corner is the origin, with
coordinates of (0,0) or (0,0,0). Values increase along the X-axis as you move right. However,
unlike the Cartesian system mentioned above, values along the Y-axis increase as you move
down the screen or page. Z-axis values increase as elements move towards the viewer and
decrease as they move away from the viewer.

Setting the value of transform to a value besides none creates a local coordinate system

for the selected elements. The origin—point (0,0) or (0,0,0)—in this local coordinate system
sits at the center of the element’s bounding box. We can change the position of the origin,
however, by using the transform-origin property. Points within the element’s bounding box

Transforms 337

are transformed relative to this local origin.

The transform-origin Property

The transform-origin property accepts up to three values, one for each of the X, Y, and Z

positions—for example, transform-origin: 300px 300px for a 2D transformation, or

transform-origin: 0 0 200px for a 3D transformation.

If one value is specified, the second value is assumed to be center , and the third value is

assumed to be 0px .

Both the X- and Y-coordinates may be percentages, lengths, or positioning keywords.
Positioning keywords are left , center , right , top , and bottom . The Z position, however,

must be a length. In other words, transform-origin: left bottom 200px works, but

transform-origin: left bottom 20% doesn’t.

Setting transform-origin moves the (0,0) point of the local coordinate system to a new

location within the element’s bounding box. This, of course, modifies the transformation,
sometimes radically. The image below shows a transform-origin point of 50% 50% and one

at 0px 0px .

338 CSS Master, 3rd Edition

8-9. Rectangles with transform-origin values of 50% 50% (left) and 0 0 (right)

Now that you know a little more about how transforms affect document layout, let’s dig into
the transform functions. This is how we make the magic. Transforms let us rotate, flip, skew,
and scale elements. When combined with animations and transitions, we can create slick
motion graphic effects.

Transforms can be grouped into two categories: 2D and 3D. Each group contains functions for
rotating, skewing, scaling, and translating. 2D functions are concerned with transformations
of points along the X- and Y-axes. 3D functions add the third dimension of depth and affect
points along the Z-axis.

2D Transform Functions
There are four primary two-dimensional transform functions: rotate() , scale() , skew() ,

and translate() . Six other functions let us transform an element in a single dimension:

scaleX() and scaleY() ; skewX() and skewY() ; and translateX() and translateY() .

rotate()

A rotation transform spins an element around its origin by the angle specified around the
transform-origin point. Using rotate() tilts an element clockwise (positive angle values) or

Transforms 339

counterclockwise (negative angle values). Its effect is much like a windmill or pinwheel, as
pictured below, where the purple box has been rotated 55 degrees from its start position,
shown by the dotted line.

8-10. The purple box has been rotated 55 degrees from its start position, shown by the dotted line

The rotate() function accepts values in angle units. Angle units are defined by the CSS

Values and Units Module Level 34 specification. These may be deg (degrees), rad (radians),

grad (gradians), or turn (turn) units. One complete rotation is equal to 360deg , 6.28rad ,

400grad , or 1turn .

Rotation values that exceed one rotation (say, 540deg or 1.5turn) are rendered according to

their remaindered value, unless animated or transitioned. In other words, 540deg is rendered

the same as 180deg (540 degrees minus 360 degrees) and 1.5turn is rendered the same as

.5turn (1.5 minus 1). But a transition or animation from 0deg to 540deg or 1turn to

1.5turn rotates the element one-and-a-half times.

2D Scaling Functions: scale(), scaleX(), and scaleY()

With scaling functions, we can increase or decrease the rendered size of an element in the X-
dimension (scaleX()), Y-dimension (scaleY()), or both (scale()). Scaling is illustrated

below, where the border illustrates the original boundaries of the box, and the + marks its

4. https://drafts.csswg.org/css-values-3/#angles

340 CSS Master, 3rd Edition

center point. The red box (left) is scaled by a factor or two (right).

8-11. A box (left) is scaled by a factor of 2 (right)

Each scale function accepts a multiplier or factor as its argument. This multiplier can be just
about any positive or negative number. Percentage values aren’t supported. Positive
multipliers greater than 1 increase the size of an element. For example, scale(1.5)

increases the size of the element in the X and Y directions 1.5 times, as illustrated below. The
northern cardinal drawing on the left is not transformed. The cardinal drawing on the right has
been scaled to 1.5 times the size of the original illustration.

8-12. The northern cardinal drawing not transformed (left), and then scaled (right)

Cardinal drawing by kattekrab from Openclipart.5

5. https://openclipart.org/detail/75481/red-cardinal

Transforms 341

Positive multipliers between 0 and 1 reduce the size of an element. Negative multipliers

scale the element, but they also flip or reflect it along one or both axes. In the image below,
the northern cardinal drawing on the left is not transformed, while the one on the right has a
negative scaling transformation (transform: scale(-1.5)) applied.

8-13. transform: scale(-1.5) scales and flips the element to which it’s applied

Using scale(1) creates an identity transformation, which means it’s drawn to the screen as

if no scaling transformation was applied. Using scale(-1) won’t change the drawn size of an

element, but the negative value causes the element to be reflected. Even though the element
doesn’t appear transformed, it still triggers a new stacking context and containing block.

You can also scale the X- and Y-dimensions separately by passing two arguments to the
scale() function, such as scale(1.5, 2) . The first argument scales the X-dimension; the

second scales the Y-dimension. We could, for example, reflect an object along the X-axis
alone using scale(-1, 1) . Passing a single argument scales both dimensions by the same

factor.

Watch Your Scale

Using scale(0) causes the element to disappear, because multiplying a number by
zero results in a product of zero.

342 CSS Master, 3rd Edition

2D Translation Functions: translateX(), translateY(), and translate()

Translating an element offsets its painted position from its layout position by the specified
distance. As with other transforms, translating an element doesn’t change its offsetLeft or

offsetTop positions. It does, however, affect where it’s visually positioned on screen.

The 2D translation functions— translateX() , translateY() , and translate() —accept

lengths or percentages for arguments. Length units include pixels (px), em , rem , and

viewport units (vw and vh).

The translateX() function changes the horizontal rendering position of an element. If an

element is positioned zero pixels from the left, transform: transitionX(50px) shifts its

rendered position 50 pixels to the right of its start position. Similarly, translateY changes the

vertical rendering position of an element. A transform of transform: transitionY(50px)

offsets the element vertically by 50 pixels.

With translate() , we can shift an element vertically and horizontally using a single function.

It accepts up to two arguments: the X translation value, and the Y translation value. The image
below shows the effect of an element with a transform value of translate(120%, -50px) ,

where the left green square is in the original position, and the right green square is translated
120% horizontally and -50 pixels vertically from its containing element (the dashed border).

8-14. The effect of having an element with a transform value of translate(120%, -50px)

Passing a single argument to translate is the equivalent of using translateX ; the Y

translation value will be set to zero. Using translate() is the more concise option. Applying

Transforms 343

translate(100px, 200px) is the equivalent of translateX(100px) translateY(200px) .

Positive translation values move an element to the right (for translateX) or downward (for

translateY). Negative values move an element to the left (translateX) or upward

(translateY).

Translations are particularly great for moving items left, right, up, or down. Updating the value
of the left , right , top , and bottom properties forces the browser to recalculate layout

information for the entire document. But transforms are calculated after the layout has been
calculated. They affect where the elements appear on screen, but not their actual dimensions.
Yes, it’s weird to think about document layout and rendering as separate concepts, but in
terms of browsers, they are.

skew, skewX, and skewY

Skew transformations shift the angles and distances between points while keeping them in
the same plane. Skew transformations are also known as shear transformations, and they
distort the shapes of elements, as seen below, where a rectangle is skewed 45 degrees along
its X-dimension—the dashed line representing the original bounding box of the element.

8-15. A rectangle is skewed 45 degrees along its X-dimension

The skew functions— skew() , skewX() , and skewY() —accept most angle units as

arguments. Degrees, gradians, and radians are valid angle units for the skew functions, while

Speed Matters

Google’s “Why does speed matter?”6 discusses some of the differences between
layout or rendering, and painting or drawing.

6. https://developers.google.com/web/fundamentals/performance/why-performance-matters/

344 CSS Master, 3rd Edition

turn units, perhaps obviously, are not.

The skewX() function shears an element in the X direction (or horizontally). In the image

below, the left object isn’t transformed, while the right object reveals the effect of
transform: skewX(30deg) .

8-16. The left object isn’t transformed, while the right object reveals the effect of transform: skewX(30deg)

skewX accepts a single parameter, which again must be an angle unit. Positive values shift the

element to the left, and negative values shift it towards the right.

Similarly, skewY shears an element in the Y direction (vertically). The image below shows the

effect of transform: skewY(30deg) .

Transforms 345

8-17. Again, the left object remains untransformed, and the right object is skewed vertically by 30 degrees

With skewY , points to the right of the origin are shifted downward with positive values.

Negative values shift these points upward.

This brings us to the skew() function. The skew() function requires one argument, but

accepts up to two. The first argument skews an element in the X direction, and the second
skews it in the Y direction. If only one argument is provided, the second value is assumed to
be zero, making it the equivalent of skewing in the X direction alone. In other words,
skew(45deg) renders the same as skewX(45deg) .

Current Transform Matrix
So far, we’ve discussed transform functions separately, but they can also be combined. Want
to scale and rotate an object? No problem: use a transform list. For example:

.rotatescale {

transform: rotate(45deg) scale(2);

}

346 CSS Master, 3rd Edition

This produces the results you see below.

8-18. The original element (left) and after a combined rotation and scaling transformation is applied (right)

Order matters when using transform functions. This is a point that’s better shown than talked
about, so let’s look at an example to illustrate. The following CSS skews and rotates an
element:

.transformEl {

transform: skew(10deg, 15deg) rotate(45deg);

}

It gives us the result you see below.

Transforms 347

8-19. An element after a transformation of skew(10deg, 15deg) rotate(45deg)

What happens if you rotate an element first and then skew it?

.transformEl {

transform: rotate(45deg) skew(10deg, 15deg);

}

The effect is quite different, as seen below.

348 CSS Master, 3rd Edition

8-20. An element after it has been rotated and then skewed

Each of these transforms has a different current transform matrix created by the order of its
transform functions. To fully understand why this is, we’ll need to learn a little bit of matrix
multiplication. This will also help us understand the matrix() and matrix3d() functions.

Matrix Multiplication and the Matrix Functions
A matrix is an array of numbers or expressions arranged in a rectangle of rows and columns.
All transforms can be expressed using a 4×4 matrix.

8-21. The 4×4 matrix for 3D transforms

Transforms 349

This matrix corresponds to the matrix3d() function, which accepts 16 arguments, one for

each value of the 4×4 matrix. Two-dimensional transforms can also be expressed using a 3×3
matrix, seen in the following image.

8-22. A 3×3 matrix used for 2D transforms

This 3×3 matrix corresponds to the matrix() transform function. The matrix() function

accepts six parameters, one each for values a through f.

Each transform function can be described using a matrix and the matrix() or matrix3d()

functions. The image below shows the 4×4 matrix for the scale3d() function, where sx, sy,

and sz are the scaling factors of the X-, Y-, and Z-dimensions respectively.

350 CSS Master, 3rd Edition

8-23. The 4×4 scaling transform matrix

When we combine transforms—such as transform: scale(2) translate(30px, 50px) —the

browser multiplies the matrices for each function to create a new matrix. This new matrix
gets applied to the element.

But here’s the thing about matrix multiplication: it isn’t commutative. With simple values, the
product of 3×2 is the same as 2×3. With matrices, however, the product of A×B is not
necessarily the same as the product of B×A. Let’s look at the image below as an example,
where we calculate the matrix product of transform: scale(2) translate(30px, 50px) .

8-24. The product of the matrices for scale(2) and translate(30px, 50px)

Our product results in a matrix that scales our element by a factor of two along the X- and Y-
axes, and offsets each pixel in the element horizontally by 60 pixels and vertically by 100
pixels. We can also express this product using the matrix() function: transform: matrix(2,

0, 0, 2, 60, 100) .

Transforms 351

Now let’s switch the order of these transforms—that is, transform: translate(30px, 50px)

scale(2) . The result is shown below.

8-25. The product of the matrices for translate(30px, 50px) and scale(2)

Notice that our object is still scaled by a factor of two, but now it’s offset by 30 pixels
horizontally and 50 pixels vertically. Expressed using the matrix() function, this is

transform: matrix(2, 0, 0, 2, 30, 50) .

It’s also worth noting that inherited transforms function similarly to transform lists. Each child
transform is multiplied by any transform applied to its parent. For example, take the following
code:

<div style="transform: skewX(25deg)">

<p style="transform: rotate(-15deg)"></p>

</div>

This is rendered the same as the following:

<div>

<p style="transform: skewX(25deg) rotate(-15deg)"></p>

</div>

The current transform matrix of the <p> element will be the same in both cases. Though

we’ve focused on 2D transforms so far, the above also applies to 3D transforms. The third
dimension adds the illusion of depth. It also brings some additional complexity in the form of
new functions and properties.

3D Transform Functions
There are nine functions for creating 3D transforms. Each of these functions modifies the Z-
coordinates of an element and/or its children, in addition to the X- and Y-coordinates.
Remember, Z-coordinates are points along the plane that sit perpendicular to the viewer. With

352 CSS Master, 3rd Edition

the exception of rotateZ() , these functions create and change the illusion of depth on

screen.

rotateX() and rotateY()

The rotateX() and rotateY() functions rotate an element around the X- and Y-axes

respectively. Using rotateX() creates a somersault effect, causing an object to flip top-over-

tail around a horizontal axis. With rotateY() , the effect is more like that of a spinning top,

rotating around a vertical axis.

Like rotate() , both rotateX() and rotateY() accept an angle measurement as an

argument. This angle can be expressed in degrees (deg), radians (rad), gradians (grad), or

turn (turn) units. As mentioned earlier in the chapter, rotateZ() works the same way as

rotate() . It’s a relic from when 2D and 3D transforms were defined by separate

specifications.

Positive angle values for rotateX() cause an element to tilt backwards, as shown in the

image below, where transform: rotate(45deg) is applied.

8-26. An element with transform: rotate(45deg) applied

Negative angle values for rotateX() do the opposite, causing the element to tilt forward, as

shown below, where transform: rotate(-45deg) is applied.

Transforms 353

8-27. An element with a negative rotation (transform: rotate(-45deg)) applied

Negative angles for rotateY() cause the element to tilt counterclockwise. In the image

below, the element is rotated -55 degrees around the Y-axis (transform: rotateY(-55deg)).

8-28. An element with transform: rotateY(-55deg) applied

Positive values tilt it clockwise, as shown below (transform: rotateY(55deg)).

354 CSS Master, 3rd Edition

8-29. An element with transform: rotateY(55deg) applied

As an aside, the three images above have a perspective value of 200px . We’ll discuss the

perspective property later in this chapter. For now, it’s enough to know that this property

adds a sense of depth and exaggerates the effect of the three-dimensional rotation. Compare
the image above to the image below. Both have been rotated along the Y-axis by 55 degrees
(transform: rotateY(55deg)), but in the image below, the parent container has a

perspective value of none . Our object looks more squished than rotated. Use perspective

on a container element when creating a 3D transform.

8-30. An element with transform: rotateY(55deg), nested within a container with perspective:none

Transforms 355

Rotating around Multiple Axes with rotate3d()

Sometimes we want to rotate an object around more than one axis. Perhaps you want to
rotate an element counterclockwise and tilt it by 45 degrees, as in the image below, where our
object is rotated around both the X- and Y-axes by 45 degrees.

8-31. Rotating around both the X- and Y-axes by 45 degrees

This is what rotate3d() does. It’s a function that accepts four arguments. The first three

make up an X, Y and Z direction vector, and each of these should be a number. The fourth
argument for rotate3d() should be an angle. The transformed object will be rotated by the

angle around the direction vector defined by the first three arguments.

What those first three numbers are matters less than the ratio between them. For example,
transform: rotate3d(100,5,0,15deg); and transform: rotate3d(20,1,0,15deg); have

Disappearing Elements

There’s another issue to be aware of when working with 3D rotations. Rotating an
element by plus or minus 90 degrees, or plus or minus 270 degrees, can
sometimes cause it to disappear from the screen. Each element on a page has an
infinitesimal thickness. By rotating it a quarter or three-quarters of a turn, we’re
looking at its infinitesimally thin side. It’s kind of like looking at the edge of a sheet
of paper that’s perpendicular to your face. Adjusting the perspective and
perspective-origin values of a parent element can prevent this behavior in some

cases, but not all of them.

356 CSS Master, 3rd Edition

equivalent 3D matrices and produce the same effect.

That said, due to way the rotate3d matrix gets calculated7, a declaration such as

transform: rotate3d(1, 500, 0, 15deg); won’t produce an effect significantly different

from transform: rotate3d(1, 1, 0, 15deg); .

Just about any non-zero value for any of the first three parameters creates a tilt along that
axis. Zero values prevent a tilt. As you may have guessed, rotateX(45deg) is the equivalent of

rotate3d(1, 0, 0, 45deg) , and rotateY(25deg) could also be written as rotate3d(0, 1, 0,

25deg) .

If the first three arguments are 0 (such as transform: rotate3d(0, 0, 0, 45deg)), the

element won’t be transformed. Using negative numbers for the X, Y, or Z vector arguments is
valid; it will just negate the value of the angle. In other words, rotate3d(-1, 0, 0, 45deg) is

equivalent to rotate3d(1, 0, 0, -45deg) .

Using rotate3d() rotates an element by the given angle along multiple axes at once. If you

want to rotate an element by different angles around multiple axes, you should use
rotateX() , rotateY() , and rotate() or rotateZ() separately.

The perspective() Function

The perspective() function controls the foreshortening of an object when one end is tilted

towards the viewer. Foreshortening is a specific way of drawing perspective—that is,
simulating three dimensions when you only have two dimensions. With foreshortening, the
ends of objects that are tilted towards the viewer appear larger, and the ends furthest from
the viewer appear smaller. Foreshortening mimics the distortion that occurs when you view an
object up close versus viewing it at a distance.

The more technical definition, pulled from the CSS Transforms Module Level 28 specification,
says that perspective() “specifies a perspective projection matrix.” The definition continues:

This matrix scales points in X and Y based on their Z value, scaling points

with positive Z values away from the origin, and those with negative Z

values towards the origin. Points on the Z=0 plane are unchanged.

7. https://drafts.csswg.org/css-transforms-2/#Rotate3dDefined
8. https://drafts.csswg.org/css-transforms-2/#funcdef-perspective

Transforms 357

In practice, this means that perspective() will have a visible effect only when some of an

object’s points have a non-zero Z-coordinate. Use it with another 3D function in a transform
list (for example, transform: perspective(400px) rotateX(45deg)), or apply it to the child of a

transformed parent.

The perspective() function accepts a single argument. This argument must be a length

greater than zero. Negative values are invalid, and the transform won’t be applied. Lower
values create a more exaggerated foreshortening effect, as you can see below. In this image,
the value of our transform is perspective(10px) rotate3d(1,1,1,-45deg) .

8-32. Exaggerated foreshortening

Higher values create a moderate amount of foreshortening. The next image illustrates the
impact of a higher perspective value. Its transform property value is perspective(500px)

rotate3d(1,1,1,-45deg) .

358 CSS Master, 3rd Edition

8-33. An element with a transform value of perspective(500px) rotate3d(1,1,1,-45deg)

Order really matters when working with the perspective() function. A good rule of thumb is

to list it first, as we’ve done in the examples here. You can list it elsewhere in the transform list
(for example, rotate3d(1,0,1,-45deg) perspective(100px)), but the resulting current

transform matrix doesn’t create much of an effect.

There’s also a point of diminishing returns with the perspective() function (and with the

perspective property, as well). Increasing the argument’s value beyond a certain threshold

will create little difference in how the element and its children are painted to the screen.

perspective() versus perspective

A word of caution: the transforms specification defines both a perspective()

function and a perspective property. Though both are used to calculate the
perspective matrix, they’re used differently. The perspective property
affects—and must be applied to—the containing element. It sets an imaginary
distance between the viewer and the stage. The perspective() function, on the
other hand, can be applied to elements as part of a transform list.

Transforms 359

Translating Depth with translateZ() and translate3d()

Earlier in this chapter, we discussed how to translate an element horizontally or vertically
using translateX() and translateY() . However, we can also translate along the Z-axis.

There are two functions that allow us to do this: translateZ() and translate3d() . We can

combine them with transitions to create zoom effects, or mimic the feeling of moving through
a chute.

The translateZ() function accepts a single length parameter as its argument. Length units

are the only valid units for this function. Remember that we’re projecting three-dimensional
coordinates into a two-dimensional space, so percentages don’t make much sense. The
translateZ() function shifts the object towards or away from the user by the specified

length. Negative values shift the element or group away from the user—in effect shrinking
it—as can be seen below with transform: translateZ(-150px) .

8-34. The effect of transform: translateZ(-150px)

Positive values shift the element towards the viewer, making it appear larger. Sometimes the
effect is to fill the entire viewport, thereby engulfing the viewer, as seen below with
transform: translateZ(150px) .

360 CSS Master, 3rd Edition

8-35. The effect of transform: translateZ(150px)

If the value of translateZ() is large enough, the element disappears from view. That’s

because it’s moved behind the viewer in this imagined 3D space. Similarly, if the value of
translateZ() is small enough—say translateZ(-40000px) —the element will disappear from

view because it’s now “too far” from the viewer and too small to draw on screen.

translate3d() is a more concise way of translating in two or three directions at once. It

accepts three arguments: one each for the X, Y, and Z directions. Translation values for the X
and Y direction arguments may be lengths or percentages, but the Z direction argument (the
third argument) must be a length value. Keep in mind that translateX(50%) translateY(10%)

translateZ(100px) is the equivalent of translate3d(50%, 10%, 100px) . Use translate3d()

when you want to translate more than one dimension and you also want more concise code.

Scaling the Z-dimension: scaleZ() and scale3d()

We can also scale an object’s Z-dimension using the scaleZ() and scale3d() functions. The

scaleZ() function transforms points along the Z-axis alone, while scale3d() lets us scale all

three dimensions at once. Scaling the Z-dimension changes the depth of an object, and in
some combinations can be used to create zoom effects. Experiment with them and see.

The scaleZ() function accepts a number as its argument. As with scaleX() and scaleY() ,

Transforms 361

positive values greater than 1 increase the size of the element’s Z-dimension. Values

between 0 and 1 decrease its size. Negative values between 0 and -1 decrease the element’s
size along the Z-dimension, while values less than -1 increase it. Since these values are
negative, however, the element and its children are inverted. In the image below, the left die
shows an element group with transform: scaleZ(0.5) applied. The box on the right has a

transformation of scaleZ(-0.5) applied. Notice that the positions of the six face and one

face have been swapped in the example with a negative scale.

8-36. Element groups with transform: scaleZ(0.5) and transform: scaleZ(-0.5) styles

The scale3d() function accepts three arguments—all of which are required in order for this

function to work. The first argument scales the X-dimension. The second argument scales its
Y-dimension, and the third argument scales the Z-dimension. As with translate3d() , the

scale3d() function is just a more concise way to write transforms that scale in multiple

dimensions. Rather than using scaleX(1.2) scaleY(5) scaleZ(2) , for example, you could use

scale3d(1.2, 5, 2) .

Transform functions are only part of what you need to create 3D transforms. You’ll also need
CSS properties that manage how objects are drawn in a simulated three-dimensional space.
These properties affect the perception of depth and distance.

Creating Depth with the perspective Property
To make a 3D-transformed object look like it’s sitting in a three-dimensional space, we need
the perspective property. The perspective property adjusts the distance between the

drawing plane and the viewer. We’re still projecting three-dimensional coordinates into a two-
dimensional space. But adding perspective to a containing element causes its children to

362 CSS Master, 3rd Edition

have the appearance of being in a 3D space.

As with transform , perspective creates both a new containing block and a new stacking

context when the value is something other than none . Along with the perspective-origin

property, perspective is used to calculate the perspective matrix. We’ll cover perspective-

origin in the next section.

In addition to the none keyword, perspective also accepts a length as its value. Values must

be positive (such as 200px or 10em). Percentages don’t work. Neither do negative values

such as -20px .

Smaller values for perspective increase the visual size of the element, as seen below, which

has a perspective value of 500px . Items that are closer to the viewer on the Z-axis appear

larger than those further away.

8-37. Perspective value of 500 pixels

Larger values, on the other hand, make elements appear smaller. The container element
pictured below has a perspective value of 2000px . This is similar to how your eye perceives

objects of varying distances.

Safari and UC Browser

Use a -webkit- prefix for perspective and perspective-origin to support users
of UC Browser and Safari 8 and under (-webkit-perspective and -webkit-

perspective-origin).

Transforms 363

8-38. Perspective value of 2000 pixels

Modifying the Point of View with perspective-origin

If you’ve ever studied how to draw in perspective, the perspective-origin property will feel

like old hat. To draw in perspective, you first make a point on your page or canvas. This point is
known as the vanishing point. It’s the point in your drawing at which items will theoretically
disappear from view.

Next, draw a shape of your choosing. We’ll keep this example simple by using a rectangle.

Step three is to draw a series of lines towards the vanishing point, as shown in the image
below. These lines, also known as convergence lines, serve as guides for drawing shapes that
are sized appropriately given their perceived distance from the viewer.

364 CSS Master, 3rd Edition

8-39. Perspective lines converging to a point

As you can see in the following image, the rectangles that appear closer to the viewer are
larger. Those that appear further away are smaller.

8-40. Boxes appear smaller and further away as they get closer to the vanishing point

This is essentially how the perspective-origin property works. It sets the coordinates of the

vanishing point for the stage. Negative Y values give the impression that the viewer is looking
down at the stage, while positive ones imply looking up from below it. Negative X values
mimic the effect of looking from the right of the stage. Positive X values mimic looking from
its left. The following image shows a containing element with a perspective-origin of -50%

-50% .

Transforms 365

8-41. A containing element with perspective-origin: -50% -50%

As with transform-origin , the initial value of perspective-origin is 50% 50% —the center

point of the containing element. Values for perspective–origin may be lengths or

percentages.

Positioning keywords— left , right , top , bottom , and center —are also valid. The center

keyword is the same as 50% 50% . Both bottom and right compute to positions of 100%

along the vertical and horizontal positions respectively. The top and left keywords

compute to vertical and horizontal positions of 0% . In all cases, perspective-origin is an

offset from the top-left corner of the container.

Preserving Three Dimensions with transform-style

As you work with 3D transforms, you may stumble across a scenario in which your transforms
fail to work—or they work, but only for one element. This is caused by grouping property
values9. Some combinations of CSS properties and values require the browser to flatten the
representation of child elements before the property is applied. These include opacity when

the value is less than 1 and overflow when the value is something other than visible .

Here’s the counterintuitive part: transform and perspective also trigger this flattening when

their value is something other than none . In effect, this means that child elements stack

according to their source order if they have the same z-index value, regardless of the

9. https://drafts.csswg.org/css-transforms-2/#grouping-property-values

366 CSS Master, 3rd Edition

transform applied. Consider the following source:

<div class="wrapper">

<figure>a</figure>

<figure>f</figure>

</div>

And the following CSS:

.wrapper {

perspective: 2000px;

perspective-origin: 50% -200px;

}

.wrapper figure {

position: absolute;

top: 0;

width: 200px;

height: 200px;

}

.wrapper figure:first-child {

transform: rotateY(60deg) translateZ(191px);

background: #3f51b5;

}

.wrapper figure:nth-child(2) {

transform: rotateY(120deg) translateZ(191px);

background: #8bc34a;

}

In this example, since we’ve applied perspective: 1000px to .wrapper , our <figure>

elements are flattened. Since both elements also have the same calculated z-index ,

.wrapper figure:nth-child(2) will be the topmost element in the stack, as seen in the

following image.

Transforms 367

8-42. Elements with a transform-style value of flat

Note that .wrapper figure:first-child is still visible. It’s just not the topmost element. Here

the computed value of transform-style is flat .

To work around this, we set the value of transform-style to preserve-3d . Let’s update our

CSS:

.wrapper {

perspective: 2000px;

perspective-origin: 50% -200px;

transform-style: preserve-3d;

}

.wrapper figure {

position: absolute;

top: 0;

width: 200px;

height: 200px;

}

.wrapper figure:first-child {

transform: rotateY(60deg) translateZ(191px);

background: #3f51b5;

368 CSS Master, 3rd Edition

}

.wrapper figure:nth-child(2) {

transform: rotateY(120deg) translateZ(191px);

background: #8bc34a;

}

Now .wrapper figure:first-child becomes the topmost element, as our rotateY()

functions suggest it should be in the image below.

8-43. Elements with a transform-style value of preserve-3d

In the vast majority of cases, you should use transform-style: preserve-3d . Use transform-

style: flat only when you want to collapse child elements into the same layer as their

parent.

Transforms 369

Showing Both Faces with the backface-visibility Property
By default, the back face of an element is a mirror image of its front face. With stacked or
overlapping elements, the reverse side is always visible to the viewer, regardless of which side
sits at the top of the stack.

Sometimes, however, we don’t want this back side to be visible. Let’s return to the card
metaphor mentioned in the introduction to this chapter. This time we’ll use the playing card
pictured below.

8-44. With cards, we only want to see one side at a time

Transform Style

The WebKit team’s Transform Style demo10 shows the effect of transform-style:

flat . It’s an old demo that was created for WebKit browsers, so you’ll need to use a
WebKit- or Blink-based browser such as Safari, Chrome, Opera, or Samsung
Internet to view it.

10. https://www.webkit.org/blog-files/3d-transforms/transform-style.html

370 CSS Master, 3rd Edition

With any card, we only want one side to be visible to the user at a time. To manage the
visibility of an object’s back side, we can use the backface-visibility property.

The initial value of backface-visibility is visible . Rear faces will always be shown. But if

we want to hide a visible back face, we can use backface-visibility: hidden instead.

Let’s create our playing card. First our HTML:

<div class="card">

<div class="side front">

<div class="suit">♣</div>

</div>

<div class="side back"></div>

</div>

In the markup above, we’ve set up front and back sides for a card container. Here’s our card

CSS:

.card {

border: 1px solid #ccc;

height: 300px;

position: relative;

transition: transform 1s linear;

transform-style: preserve-3d;

width: 240px;

}

The important part to notice here is transform-style: preserve-3d . Again, we’ll need this

property to prevent the flattening that occurs by default when we use the transform

property. Now let’s set up the CSS for the front and back sides of our cards:

/* Applies to both child div elements */

.side {

height: inherit;

left: 0;

position: absolute;

top: 0;

width: inherit;

}

.front {

transform: rotateY(180deg);

}

.back {

background: rgba(204, 204, 204, 0.8);

Transforms 371

}

.suit {

line-height: 1;

text-align: center;

font-size: 300px;

}

Both sides are absolutely positioned, so they’ll stack according to their source order. We’ve
also flipped the .front sides around the Y-axis by 180 degrees. When it’s all put together,

your card should look a bit like the one pictured below.

8-45. A see-through card with backface-visibility: visible (its initial value)

Both sides of the card are visible at the same time. Let’s revise our CSS slightly. We’ll add
backface-visibility: hidden to our .side rule set:

.side {

backface-visibility: hidden;

height: inherit;

372 CSS Master, 3rd Edition

left: 0;

position: absolute;

top: 0;

width: inherit;

}

Now, div.front is hidden. If you see a gray box and no club symbol, it’s working as expected.

The utility of backface-visibility: hidden becomes a little clearer when we flip div.card .

Let’s add a .flipped class to our CSS:

.flipped {

transform: rotateY(180deg);

}

Now when we flip our card over (pictured below), we see div.front , and only div.front .

8-46. Flipping our card

Prefixes for Safari

Safari versions 12 and earlier require the -webkit- vendor prefix for the backface-

visibility property.

Transforms 373

The image below shows two cards before being flipped. The card on the left has a backface-

visibility value of hidden , while the one on the right has a value of visible .

8-47. Two cards prior to flipping

And in the next image, we can see these same cards after the flipped class is added—that is,

<div class="card flipped"> .

374 CSS Master, 3rd Edition

8-48. The same cards after being rotated 180 degrees

Conclusion
Whew! That was a lot to take in. I hope that, after reading this chapter, you’ve learned how to:

affect page layout and stacking order with transforms
calculate the current transform matrix
apply 2D transform functions that rotate, translate, and skew objects
use 3D transforms to create the illusion of depth and dimension

In the next chapter, we’ll look at CSS visual effects—including gradients, blend modes, and
filters.

Transforms 375

Visual Effects
Chapter

9

376 CSS Master, 3rd Edition

CSS includes several features for creating the kinds of visual effects that used to require
image-editing software such as Photoshop. Filter effects give us the ability to add true drop
shadows, and to blur or desaturate images, while blend modes let us combine layers.

In this chapter, we’ll take a look at three of these features:

the background-blend-mode and mix-blend-mode properties of the Compositing and

Blending specification1

filter effects2

masking and clipping3

Browsers have long supported these features—fully or in part. Adoption of them by CSS
authors has been a bit slower, however, presumably because many still use image editing
software to create these effects. Using CSS, however, gives us flexibility: changing a header
image or creating a new icon variant doesn’t require your design team to create a new asset.

Let’s dig in!

Blend Modes
Blend modes make it possible to combine background colors and images using effects
commonly found in graphics software such as Photoshop. Defined modes include multiply ,

screen , overlay , and color-dodge .

“Blend modes” is the colloquial name for the background-blend-mode and mix-blend-mode

properties. These properties are outlined in the Compositing and Blending specification.
Although the CSS Working Group manages most CSS specifications, the World Wide Web
Consortium’s CSS-SVG Effects Task Force manages this one. Blend modes apply to HTML
and SVG elements. Here we’ll focus on using them with HTML.

Blend modes describe how to visually combine layers. Both mix-blend-mode and background-

blend-mode accept the same values, but work slightly differently:

mix-blend-mode blends foreground layers with layers that they overlap.

background-blend-mode mixes background images and colors. It accepts a single mode or

a list of modes, and this list gets applied in the same order as background-image .

1. https://drafts.fxtf.org/compositing-1/
2. https://drafts.fxtf.org/filter-effects-1/
3. https://drafts.fxtf.org/css-masking-1/

Visual Effects 377

Let’s look at some examples.

mix-blend-mode

As mentioned above, mix-blend-mode merges foreground layers with layers that are stacked

below it. A layer may be a background color or image for a parent element, for the root
element, or elements that sit beneath the targeted element in the stack. Consider the
following HTML and CSS:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>mix-blend-mode</title>

<link rel="stylesheet" href="mix-blend-mode.css">

</head>

<body>

<div>

<p>This is a paragraph that's positioned below the image in the stack. </p>

</div>

</body>

</html>

Our mix-blend-mode.css file looks like this:

div {

background-image: linear-gradient(to left, #f30, #fc0);

width: 60vw;

margin: 3rem auto;

position: relative;

}

p {

position: absolute;

color: black;

margin: 4rem;

font-size: 6.4rem;

}

img {

display: block;

height: auto;

width: 100%;

}

The image below shows the output of the code we have so far.

378 CSS Master, 3rd Edition

9-1. Our layout before we add mix-blend-mode

Photo by dewdrop157 from Pixabay.4

Since the <p> element is absolutely positioned, the text overlays the photo. Notice too that

the photo fills the entire width and height of its parent container so we can’t see its
background gradient. Now let’s add mix-blend-mode to the img rule set. We’ll use the

difference mode:

img {

Contrast Issues

Notice that the text pictured above is hard to read. That’s because there’s
insufficient contrast between the text and the image. In a real-world project, you
should add a background color or gradient to the <p> element to make it legible.
Also ensure that there’s sufficient contrast between foreground and background
colors.

4. https://pixabay.com/photos/dahlia-flower-plant-petals-bud-6154889/

Visual Effects 379

display: block;

height: auto;

width: 100%;

mix-blend-mode: difference;

}

Now the photograph has moved to the top of the layer stack (as pictured below), but its pixels
have been blended with the paragraph’s text and the background image of its parent <div> .

9-2. The photograph, text, and background of its parent have blended

Adding mix-blend-mode: difference causes the photograph, text, and background of its

parent to blend in a specific way. Using a value other than normal for mix-blend-mode

creates a new stacking context for the element. The new stack or group then gets blended
and composited with the stacking context that contains the element.

Stacking

Refer to Chapter 5, “Layouts”, for a refresher on stacking contexts.

380 CSS Master, 3rd Edition

Although this looks like chaos on screen, it’s predictable once you understand how each blend
mode works. Blend modes use an RGB color system, where the red, green, and blue
component of each color is expressed as a value between 0 and 1. We can convert from
colors expressed using the CSS rgb / rgba functions by dividing each channel’s value by 255.

For example, rgb(255, 0, 255) becomes RGB(1, 0, 1) , and rgb(52, 62, 28) becomes

RGB(0.203, 0.243, 0.109) .

With the exception of normal , each blend mode uses a mathematical formula to determine

what color to paint each pixel within the overlapping region (normal indicates that no

blending should occur). The specification5 outlines how to calculate the output for each blend
mode. For difference , that formula is:

pixel color = bottom layer color - top layer color

In other words, pixel color is the absolute value of the difference between the red, blue, and
green channels of the bottom and top layers.

Let’s return to the photo of dahlias in the example above. The color of the pixel at (0,0) of the
photograph is rgb(185, 40, 58) . If we express each channel as a value between 0 and 1, this

becomes RGB(0.725, 0.157, 0.227) .

The color of the pixel at (0,0) in the background gradient of div is rgb(255, 204, 0) , or

RGB(1, 0.8, 0) . Let’s calculate the difference between each channel:

RED: 1.0 - 0.725 = 0.275

GREEN: 0.8 - 0.157 = 0.643

BLUE: 0.0 - 0.227 = -0.227

The color at (0,0) of our blended layers is RGB(0.275, 0.643, 0.227) or rgb(70, 164, 58) .

When used with difference , black doesn’t produce a change in pixel color; its red, blue, and

green channels are all zero (rgb(0,0,0)). White, on the other hand, inverts the color of a pixel.

Layer Names

I’ve used the terms “bottom layer” and “top layer” for clarity. The specification calls
the bottom layer the “destination layer” or “backdrop”, and it calls the top layer the
“source layer”.

5. https://drafts.fxtf.org/compositing-1/

Visual Effects 381

Safari versions 14.0.2 and under behave a little differently from other browsers. When the
value of background-image or background-color isn’t explicitly set, those versions of Safari

use white or rgb(255,255,255) as the initial value. Firefox, Chrome, and Edge, on the other

hand, use rgba(0,0,0,0) . This can lead to unexpected results for some blend modes. Let’s

look at an example using exclusion .

The exclusion blend mode is similar to the difference blend mode, with a slightly lower

level of contrast. Here’s the formula for calculating an exclusion blend mode:

pixel color = bottom layer + top layer - 2 × bottom layer × top layer

Say we have a pixel with color rgb(128, 177, 230) . If we express each channel as a

proportion of 255, this becomes RGB(0.502, 0.694, 0.902) . First, we’ll blend it with black, or

RGB(0, 0, 0) :

RED: 0 + 0.502 - 2 × 0 × 0.502 = 0.502

GREEN: 0 + 0.694 - 2 × 0 × 0.694 = 0.694

BLUE: 0 + 0.902 - 2 × 0 × 0.902 = 0.902

Our pixel color remains unchanged at RGB(0.502, 0.694, 0.902) or rgb(128, 177, 230) . But

if we blend it with white, or RGB(1, 1, 1) , something else happens:

RED: 1 + 0.502 - 2 × 1 × 0.502 = 0.498

GREEN: 1 + 0.694 - 2 × 1 × 0.694 = 0.306

BLUE: 1 + 0.902 - 2 × 1 × 0.902 = 0.098

Our blended pixel color is RGB(0.498, 0.306, 0.098) or rgb(127, 78, 25) .

In the image below, the picture on the left reflects what happens when you use mix-blend-

mode: exclusion and the initial value of background-color in Firefox, Chrome, and Edge. The

picture on the right reflects Safari’s behavior. Adding background-color: white to the

element’s parent ensures consistent behavior across browsers.

Taming Blend Modes

To learn more about how the difference and exclusion blend modes work, read
Ana Tudor’s article “Taming Blend Modes: difference and exclusion ”6.

6. https://css-tricks.com/taming-blend-modes-difference-and-exclusion/

382 CSS Master, 3rd Edition

9-3. mix-blend-mode: exclusion as shown in Firefox (left) and Safari (right)

Photo by Aaron Burden from Unsplash.7

background-blend-mode

As mentioned at the beginning of this section, the background-blend-mode property combines

background colors and images. It accepts a mode or a list of modes. Arguments follow the
ordering of background-image , meaning that background-blend-mode can accept a single

blend mode or a list of blend modes.

The first image listed in a background-image list is the topmost layer, drawn closest to the

user. Other images in the list stack towards the bottom in the order in which they’re listed. In
the following example, our background-image list contains two values. However, because the

top gradient uses opaque colors, it’s the only background image that’s visible:

body {

background-image: linear-gradient(90deg, rgb(255,0,0), rgb(0,0,255)),

linear-gradient(270deg, rgb(127,255,0), rgb(255,255,0));

}

7. https://unsplash.com/photos/2IzoIHBgYAo

Visual Effects 383

The following image illustrates that just the topmost layer is visible, which is the first image
listed.

9-4. In a background image list, the first image listed becomes the topmost layer

Each item in a background-blend-mode list gets applied in the same order. If there’s only one

item in the list, it’s repeated for every item in the background-image list. Let’s add a blend

mode to the CSS above:

body {

background-image: linear-gradient(90deg, rgb(255,0,0), rgb(0,0,255)),

linear-gradient(270deg, rgb(127,255,0), rgb(255,255,0));

background-blend-mode: multiply;

}

Since background-blend-mode has one item in its list, the browser will use multiply for both

background images.

The multiply blend mode sets the color of a pixel to the product of the top and bottom

layers. In this case, the pixel at (0,0) is the product of red (RGB(1,0,0)) and yellow

(RGB(1,1,0)), which works out to RGB(1,0,0) , as illustrated below. Multiplying our gradient

layers creates a gradient that transitions from red to black.

384 CSS Master, 3rd Edition

9-5. Multiplying our gradient layers creates a gradient that transitions from red to black

Let’s look at another example using multiple backgrounds and multiple blend modes:

div {

height: 733px;

width: 1152px;

background-size: 100% auto;

background-repeat: no-repeat;

background-position: 0 0, -70px -140px, center right;

/* List of multiple backgrounds */

background-image: linear-gradient(to bottom, #f90d, #f30d, #f0fd 105%),

url('strawberry-trio.jpg'),

url('strawberry-and-milk.jpg');

background-blend-mode: saturation, darken, screen;

}

In this example, we’ve combined a gradient and two photographs of strawberries. The
following image shows the separate layers.

9-6. Each of our background layers before blending

Visual Effects 385

Strawberry image (center) by al Gatewood8 from Unsplash. Strawberry on spoon image by
wallner9 from Pixabay.

Each layer has a different blend mode. The saturation mode applies to the gradient layer,

while saturation and darken apply to the strawberry-trio.jpg and strawberry-and-

milk.jpg layers respectively. You can see the result below.

9-7. When using multiple background images, we can also use multiple blend modes

You may have noticed here that we haven’t defined a background color. Let’s change that:

div {

height: 733px;

width: 1152px;

background-size: 100% auto;

background-repeat: no-repeat;

background-position: 0 0, -70px -140px, center right;

background-image: linear-gradient(to bottom, #f90d, #f30d, #f0fd 105%),

url('strawberry-trio.jpg'),

url('strawberry-and-milk.jpg');

8. https://unsplash.com/photos/NaJ3s9y7GGE
9. https://pixabay.com/photos/milk-strawberry-spoon-food-eat-5267300/

386 CSS Master, 3rd Edition

background-blend-mode: saturation, darken, screen;

background-color: green; /* Now we have a background color */

}

Now our element has a greenish tint, as you can see below. If the element has a background
color, that layer becomes part of the blend.

9-8. The background-blend-mode property also blends with the background color if one has been set

Blend modes are limited to a local stacking context. Adding a background color to an ancestor
of div would not affect the blending result of div .

Blend Mode Values

There are sixteen values that you can use with the mix-blend-mode and background-blend-

mode properties. The following image is a partly transparent PNG image of a lemon set against

a background gradient of its container that transitions from magenta to purple to blue, with
no blend mode applied.

Visual Effects 387

9-9. A partially-transparent lemon set against a background gradient

Sliced lemon photo by Louis Hansel from Unsplash.10

The following table illustrates the result of each mix-blend-mode value when added to the

img element.

10. https://unsplash.com/photos/O48E9P1NfBM

388 CSS Master, 3rd Edition

Property Behavior Effect

color Creates a color with the hue and saturation
of the source or top layer color and the
luminosity of the backdrop or bottom layer
color, preserving the gray levels of the
backdrop

color-burn Darkens the color of the bottom layer’s
pixel to reflect that of the top or source
layer. (White produces no change)

color-

dodge

Brightens the color of the bottom layer’s
pixel to reflect that of the top or source
layer. (Black produces no change)

darken Replaces the bottom layer’s color with that
of the top layer when the top or source
layer is darker

difference The absolute value of the difference
between the bottom layer’s color and the
top layer’s color

exclusion Similar to difference in appearance, but

creates a lower contrast

Visual Effects 389

Property Behavior Effect

hard-light When the top layer’s color value is less
than or equal to 0.5, it multiplies the colors.
Otherwise, it screens them. Produces an
effect that’s similar to shining a harsh
spotlight on the bottom layer or backdrop
color

hue Creates a color with the hue of the top (or
source) layer’s color and the saturation and
luminosity of the bottom layer or backdrop
color

lighten Replaces the bottom layer’s color with that
of the top layer when the top or source
layer is lighter

luminosity Creates a color with the luminosity of the
source (or top layer) color and the hue and
saturation of the backdrop color. The
effect is the inverse of color

multiply Multiplies the top layer by the bottom layer
and replaces the color in the bottom layer
(or destination)

overlay Colors in the top layer are mixed with
those in the bottom layer or backdrop
while preserving the backdrop’s highlights
and shadows. The inverse of hard-light

390 CSS Master, 3rd Edition

Property Behavior Effect

saturation Creates a color with the saturation of the
top layer’s color and the hue and
luminosity of the bottom layer’s color.
When an area of a backdrop is pure gray
(such as saturation = 0), the colors don’t
change

screen Multiplies the complements of the bottom
layer and top layer values, and
complements the product

soft-light Darkens or lightens based on the color of
the top or source layer. Channel values less
than or equal to 0.5 tend to darken source
colors. Channel values greater than 0.5
lighten them. Produces an effect that’s
similar to shining a diffused spotlight on
the bottom layer or backdrop color

Refer to the pecification11 for the formulas used to calculate the pixel color for each blend
mode.

Filter Effects
With filter effects12, we can blur objects, change them from full color to grayscale or sepia
tone, modify their hue, and invert their colors. As with blend modes, CSS filter effects can be
used with HTML or SVG documents. Most examples in this section use HTML elements.

Filter effects have two parts:

filter primitives, which are SVG tags that must be used as children of the SVG filter

element
filter functions, which are used with the CSS filter and backdrop-filter properties

Most filter functions have a filter primitives equivalent, but not every filter primitive has an

11. https://drafts.fxtf.org/compositing-1/
12. https://drafts.fxtf.org/filter-effects-1/

Visual Effects 391

equivalent filter function. We’ll focus on filter functions in this section, since they’re most
applicable to CSS.

Filter functions can be used with the filter or backdrop-filter properties. The filter

property affects foreground elements, while backdrop-filter affects the layers behind the

element to which it’s applied.

You’ll see examples of both in this section. First, let’s meet the filter functions.

Meet the CSS Filter Functions

There are 12 filter functions, each of which has an SVG filter primitive counterpart. Both
filter and backdrop-filter accept these functions as part of their filter function list. The

table below shows how each filter function affects the following photograph.

SVG Primitives

SVG primitives are beyond the scope of this book. If you’d like to learn more,
though, the Mozilla Developer Network has an excellent SVG element reference
that includes documentation about filter primitive13 elements.

13. https://developer.mozilla.org/en-US/docs/Web/SVG/Element#filter_primitive_elements

392 CSS Master, 3rd Edition

9-10. Keel-billed toucan

Keel-billed toucan photo by Zdeněk Macháček from Unsplash.14

14. https://unsplash.com/photos/jfWHzG7gIRw

Visual Effects 393

Function
name

Effect
Initial
value

Result

blur() Applies a Gaussian blur to
the input image or element.
Must be a length value.

0px

brightness() Uses a linear multiplier to
make an image or element
appear brighter or dimmer,
and its value must be
greater than 0. Values may
be a percentage or a
decimal value. 0 or 0%
turns the layer completely
black. 1 or 100% creates no
change. Values greater than
1 or 100% create an image
that’s brighter than its
input.

1 or 100%

contrast() Changes the contrast of
the input. Values may be a
percentage or a decimal
value. 0 or 0% turns the
image gray. 1 or 100%
leaves it unchanged. Values
greater than 100% or 1
create increasing amounts
of contrast.

1 or 100%

394 CSS Master, 3rd Edition

Function
name

Effect
Initial
value

Result

drop-

shadow()

Applies a Gaussian blur
drop shadow to the
element. Arguments are
similar to those of box-

shadow, but instead of the

third argument being the
blur radius, it’s the standard
deviation (<x-offset> <y-
offset> <standard
deviation> <shadow color>).

0 0 0
transparent

grayscale() Converts the image to
grayscale or black and
white. Values may be a
percentage or a decimal
value. Accepts a value
between 0 and 1 or 0% and
100%. Values greater than
100% are permitted, but
are clamped to 100%.

1 or 100%

hue-rotate() Accepts an angle
measurement in degree,
radian, gradian, or turn
units. An angle of 0 degrees
or multiples of 360 degrees
don’t create a visual
change. However,
animating to or from a
multiple of 360 changes
the hue a sufficient number
of times.

0deg

Visual Effects 395

Function
name

Effect
Initial
value

Result

invert() Accepts a value between 0
and 1 or 0% and 100%.
Values may be a
percentage or a decimal
value. Values greater than
100% are permitted, but
are clamped to 100%.

1 or 100%

opacity() Changes the transparency
of an element. Values may
be a percentage or a
decimal value. Accepts a
value between 0 and 1 or
0% and 100%. Values
greater than 100% are
permitted, but are clamped
to 100%. Note that this isn’t
an alias or alternative to the
opacity property. They’re

separate properties. Using
both will increase the
transparency of the target
object.

1 or 100%

saturate() Affects the saturation or
color intensity of a layer.
Values may be a
percentage or a decimal
value. 0 or 0% is
completely unsaturated,
which is typically rendered
as gray. 100% creates no
change. Values greater than
1 or 100% increase
saturation, creating super-

1 or 100%

396 CSS Master, 3rd Edition

Function
name

Effect
Initial
value

Result

saturated or over-saturated
layers.

sepia() Converts the image to
sepia tones. Values may be
a percentage or a decimal
value. Accepts a value
between 0 and 1 or 0% and
100%. Values greater than
100% are permitted, but
are clamped to 100%.

1 or 100%

Filter functions can be used alone or in combination. For instance, we can combine the sepia
and drop shadow filters:

img {

filter: sepia(1) drop-shadow(3px 3px 8px #0da8cc);

}

This creates the effect shown in the image below.

Visual Effects 397

9-11. Multiple filter effects can be combined in one declaration

I should probably mention here that the drop-shadow() function works differently from the

box-shadow property, despite its similar syntax. Firstly, the drop shadow filter doesn’t accept

a list of shadows. Passing a shadow list, as in the example below, won’t work. The browser will
ignore your entire filter rule:

div {

/* Unsupported. Will not work */

filter: drop-shadow(0px 0px 3px #0c0, -2px -2px 3px #333);

}

398 CSS Master, 3rd Edition

Secondly, the drop-shadow function, as the specification explains, is “a blurred, offset version

of the input image’s alpha mask drawn in a particular color, composited below the image”. In
other words, when a layer contains transparent areas, the drop shadow filter follows the
contours of the transparency. It doesn’t create a shadow for the element’s box.

9-12. The drop-shadow() filter function follows the contours of an element’s alpha mask, or transparent areas, not its

box

The image above illustrates this difference. In both cases, these images are PNG images with
100% alpha transparency. The image on the left uses filter: drop-shadow() , and the

shadow follows the shape of the lemon. In the image on the right, the shadow follows the
dimensions of the image.

Using backdrop-filter

Where filter affects foreground elements, backdrop-filter affects elements or layers

that sit behind the element to which backdrop-filter is applied. This can be a layer created

using background-image , or a positioned sibling element.

Browser support for backdrop-filter is less robust than for filter . Major Chromium-based

browsers—including Chrome, Edge, Opera, and Samsung Internet—support it by default.
However, Safari still requires a -webkit- prefix (such as -webkit-backdrop-filter).

Firefox supports backdrop-filter without a vendor prefix. At the time of writing (and

confirmed in Firefox 91 and below), that support is still considered experimental and needs to
be enabled. To tinker with this feature in Firefox, edit your about:config settings and change

Visual Effects 399

the layout.css.backdrop-filter.enabled and gfx.webrender.all settings to true .

In the image below, we see a paragraph with backdrop-filter applied. The backdrop-filter

property affects the background image layer, not the paragraph itself.

9-13. A paragraph with backdrop-filter applied

Flamingo photo by Alejandro Contreras from Unsplash.15

Take a look at the flamingo image above. Notice that the area of the flamingo that sits
beneath the pink-colored box is both blurred and blue, but the text isn’t. Here’s the CSS to
create that effect:

div {

background-image: url('flamingo.jpg');

background-size: contain;

width: 600px;

height: 600px;

display: flex;

align-items: center;

justify-content: center;

margin: auto;

}

p {

15. https://unsplash.com/photos/wTPp323zAEw

400 CSS Master, 3rd Edition

margin: 0;

align-items: center;

padding: 6rem 2rem;

/*

* Set a background color as a fallback.

*/

background: hsla(22.4, 44.9%, 63.7%, .9);

}

@supports (

(backdrop-filter: blur(8px) hue-rotate(180deg)) or

(-webkit-backdrop-filter: blur(8px) hue-rotate(180deg))

) {

p {

/*

* Undo the background color. The initial value of `background-color` is

* `transparent`.

*/

background-color: initial;

backdrop-filter: blur(8px) hue-rotate(180deg);

}

}

In order for backdrop-filter to work, the top layer needs to be at least partly transparent. If

you use a background color, it should have an alpha transparency value of less than 1 (such as
hsla(300, 100%, 50%, .5) or #636a). A transparent background color, as shown here, also

works.

Firefox doesn’t yet support background-filter by default. Adding a background color to p

prevents the text in this example from becoming unreadable in Firefox and older versions of
other browsers. How did I arrive at hsla(22.4, 44.9%, 63.7%, .9) ? First, I used the

eyedropper tool of an image editor to select a pixel color (hsl(202.4, 43%, 64.9%)). Next, I

subtracted 180 degrees to match the hue-rotation value (202.4 - 180). Lastly, I adjusted its

transparency. This gives us a fallback effect that’s similar to our backdrop filter, as shown in
the image below.

Visual Effects 401

9-14. What our fallback CSS looks like in browsers that don’t yet support background-filter

Don’t forget to set a fallback when using backdrop-filter , particularly if you’re layering text

on top of an image.

Wrapping the backdrop-filter rule set in an @supports block lets us undo the background

color only if the browser supports the backdrop-filter property.

402 CSS Master, 3rd Edition

How Filter Effects Affect Layout

As with transform and opacity , filter turns the element to which it’s applied into a

containing block when its value is something other than none . It also creates a new, local

stacking context. The image below shows the same markup before and after a filter: hue-

rotate(45deg); declaration is added to the <div> element.

9-15. Adding a filter property

Using filter still creates a containing block and stacking context, even if the value of the

filter property doesn’t create a change in the element’s appearance. In other words, div

{filter: blur(0px);} would have the same impact on a layout as filter: hue-

rotate(45deg) , but wouldn’t change the color of the elements.

The backdrop-filter property works similarly. Adding backdrop-filter to an element

contains its absolute and fixed positioned descendants. But it doesn’t affect the stacking

context of the element or elements that comprise the backdrop.

So far, we’ve covered blend modes and filter effects. We’ll close out the chapter by looking at
two more effects: clipping and masking.

Clipping and Masking
Clipping and masking are ways of concealing or revealing portions of a layer or document.
Both are defined by the CSS Masking Module Level 1 specification16.

More on @supports

Learn more about @supports and how it works in Chapter 10, “Applying CSS
Conditionally”.

16. https://drafts.fxtf.org/css-masking-1

Visual Effects 403

Although they’re defined by the same specification, clipping and masking work slightly
differently.

Clipping is a bit like using a cookie cutter. It uses a closed vector path, shape, or polygon to
trim areas of a layer. Parts of the layer that lie outside the vector path are hidden. Parts
that are inside the path are visible.
Masking works more like peeled away masking tape, where painted or filled areas of the
masking image expose the layers underneath.

In practical terms, the big difference is that clipping uses the clip-path property, and

masking uses the mask shorthand or the mask-* longhand properties. Masking is more

complicated to use, but it’s also a little more flexible.

In some cases, you may want to wrap your clipping and masking rule sets in an @supports

block.

The clip-path Property

The clip-path property accepts a basic shape or the URL of an SVG clip path. In the

“Shapes” section of Chapter 5, “Layouts”, we saw that there are five basic shape functions
defined by the CSS Shapes17 specification:

inset() (used to create rectangles)

circle()

ellipse()

polygon()

path() (which must be an SVG path data string)

Let’s look at an example using the ellipse() shape function. Our markup is simple—just an

 element:

And here’s our CSS:

img {

display: block;

height: 95vh;

17. https://drafts.csswg.org/css-shapes/#basic-shape-functions

404 CSS Master, 3rd Edition

margin: 2rem auto;

width: auto;

/* Creates an oval shape that effectively crops the image */

clip-path: ellipse(50% 50% at 50% 50%);

}

Areas of the photograph that fall outside the clipping shape aren’t painted to the screen, as
seen in the image below.

9-16. Using clip-path with an ellipse-shaped clip path

Using clip-path with Polygons

The clip-path property also accepts a polygon shape as a value. Polygons are closed shapes

made from straight lines. The polygon() function accepts a comma-separated list of

coordinates for each point that makes up the polygon. Let’s change our CSS to use a
hexagonal polygon:

img {

display: block;

height: 95vh;

margin: 2rem auto;

width: auto;

/* Creates a hexagon clipping area */

clip-path: polygon(25% 0%, 75% 0%, 100% 50%, 75% 100%, 25% 100%, 0% 50%);

Visual Effects 405

}

The following image shows the result of using a hexagonal polygon as a clip path.

9-17. The clip-path property also accepts a polygon shape

Polygons can be tricky to create. Bennett Feely’s Clippy18 is perhaps the best web-based tool
for creating polygon clip paths. Firefox’s developer tools also include a rudimentary polygon
shape editor.

Creating More Complex Clipping Regions with path()

For more complex shapes made of curves and arcs alone or in combination, we need to use
the path() function. path() , unlike polygon() , accepts an SVG data path (the value of the

d attribute of a path element) as its argument:

img {

display: block;

height: 95vh;

margin: 2rem auto;

width: auto;

/* Creates a blob-shaped clipping area */

clip-path: path('m 104.3412,-94.552373 a 235.57481,242.55224 0 0 0 -235.57475,242.551213

➥235.57481,242.55224 0 0 0 235.57475,242.55309 235.57481,242.55224 0 0 0 35.90179,-2.83462

18. https://bennettfeely.com/clippy

406 CSS Master, 3rd Edition

➥116.28209,116.28209 0 0 0 -0.3821,9.42037 A 116.28209,116.28209 0 0 0 256.14311,513.4198
➥116.28209,116.28209 0 0 0 363.17355,442.59305 288.39157,288.39157 0 0 0 645.41323,671.74187
➥288.39157,288.39157 0 0 0 933.80515,383.34996 288.39157,288.39157 0 0 0 645.41323,94.957809
➥288.39157,288.39157 0 0 0 587.24283,100.88816 116.28209,116.28209 0 0 0 587.69599,90.618827
➥116.28209,116.28209 0 0 0 471.41379,-25.663306 116.28209,116.28209 0 0 0 355.88656,
➥77.404732 230.96342,158.23655 0 0 0 328.66979,73.946711 235.57481,242.55224 0 0 0 104.34119
➥,-94.552373 Z');

}

The result is pictured below.

9-18. Using the path() function

The easiest way to create path data is by creating an SVG image that contains a path

element and grabbing value of the path element’s d attribute. Using the path() function

lets us create more complex shapes that include curves and arcs, in addition to straight lines.

Notice here that the points of the path exceed the bounds of the element being clipped. Parts
of the image we’ve used to clip the photograph extend outside of the element’s

bounds. Because path() uses coordinates and pixels, there isn’t a way to scale it

proportionally to fit an element’s dimensions as can be done with other basic shapes.

This also means that path() isn’t responsive. It won’t change with the size of the viewport or

the container. Basic shapes, however, can be responsive if you use percentages for the
coordinates of each vertex.

Clipping paths don’t affect the geometry of an element; they only affect its rendering. DOM

Visual Effects 407

functions such as getClientRects() return the dimensions of the entire element, not the

clipped region.

Clipping paths do, however, affect the interactive area of an element. If, for example, you apply
a clip-path to an <a> element, only the area within the bounds of the clip path will receive

pointer and mouse events.

Using clip-path with URLs

Most current browser versions also support using SVG URLs as values. However Chromium-
based browsers and Safari require the SVG to be inline. To date, Firefox is the only browser
that also supports external SVG images. Of course, this may have changed between the
writing of this paragraph and your reading of it.

However, we can’t use just any SVG image. The image needs to contain a clipPath element,

which should have one or more shapes, paths, or lines as children. An SVG clipPath must

also have an id attribute, which is how we’ll reference it. Here’s an example of using an SVG

clipPath element:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 400 400">

<clipPath id="star">

<path

transform="translate(200, 0) scale(1.8)"

style="fill: #000;"

d="M 328.05692,385.18211 203.81502,322.90671 82.079398,389.94936 102.91396,252.54413

➥ 1.5342416,157.48399 138.65261,134.83828 197.73212,9.0452444 261.64137,132.45466 l
➥137.89287,17.31576 -97.62028,98.91692 z" />

</clipPath>

</svg>

To use this image as a clip path, we’ll need to use the url() function:

img {

display: block;

height: 95vh;

margin: 2rem auto;

width: auto;

/* Creates a star-shaped clipping area */

clip-path: url(#star);

}

You can see the result in the image below.

408 CSS Master, 3rd Edition

9-19. Using an SVG clip path to clip the area of an image

External SVG images work similarly. We just need to add the external URL of the image, such
as url(https://example.com/star.svg#svg) .

Using an inline SVG image will affect the layout of other items on your page, even though it’s
rendered invisibly. Luckily, there’s an easy workaround: set the dimensions and position of the
SVG element:

svg.clipper {

position: absolute;

top: 0px;

left: 0px;

width: 0px;

height: 0px;

}

Since the contents of a clip path are only rendered when the clip path gets applied, it’s still
available to the document. However, the CSS above prevents the root <svg> element from

Origin Issues

When used with clip-path , external SVG are subject to cross-origin restrictions.
You’ll need to serve the image from the same origin, or set the appropriate Access-

Control-* headers. See Chapter 6, “Working with Text”, for more on dealing with
cross-origin restrictions.

Visual Effects 409

taking up space.

Using display: none won’t work. It prevents a box from being generated altogether. Similarly,

visibility: hidden not only hides the root SVG element and its children, but also the layers

you want to clip. Positioning the clipping path offscreen, or setting its height and width to zero
avoids those issues.

Clipping defines a contiguous region of a layer that will be painted to the screen. Masked
areas, on the other hand, don’t need to be contiguous. Unlike clip-path , they can be also be

resized and positioned.

Masking

Masking is likely familiar to you if you’ve ever worked with graphics editors such as
Photoshop, Sketch, or Glimpse. It’s an effect created when the painted areas of one layer
reveal portions of another layer, as illustrated below.

9-20. Masking merges two layers into a single masked object

Masks can be defined using the mask shorthand property, or the mask-* longhand

properties. The behavior of masking properties mimics those of background properties.

Masking, however, also affects foreground layers, and creates a new stacking context for
those layers.

At the time of writing, Firefox has the most complete support for CSS masking. Firefox
supports all masking properties, without a prefix. Chromium- and WebKit-based browsers
support prefixed versions of all masking properties, with the exception of mask-mode . Firefox

also includes support for the -webkit- prefixed subset of properties. The table below details

mask property support across the three browser engine families.

410 CSS Master, 3rd Edition

Mask property Firefox Chromium WebKit

-webkit-mask Yes Yes Yes

-webkit-mask-clip Yes Yes Yes

-webkit-mask-composite Yes No No

-webkit-mask-image Yes Yes Yes

-webkit-mask-mode No No No

-webkit-mask-origin Yes Yes Yes

-webkit-mask-position Yes No No

-webkit-mask-repeat Yes Yes Yes

-webkit-mask-size Yes Yes Yes

mask Yes No No

mask-clip Yes No No

mask-composite Yes No No

mask-image Yes No No

mask-mode Yes No No

mask-origin No No No

mask-position Yes No No

mask-repeat Yes No No

mask-size Yes No No

The CSS Masking Module Level 1 specification21 also defines a set of mask-border-*

properties. As of this writing, however, support for these properties is still in the experimental
phase. Safari, Chrome, and Edge use non-standard -webkit-mask-box-* properties. Firefox

Tracking Browser Support

To keep track browser of support for each property, refer to the property’s page on
MDN Web Docs19 or caniuse.com20 (which uses MDN’s browser compatibility data
for some properties).

19. https://developer.mozilla.org/
20. https://caniuse.com/
21. https://drafts.fxtf.org/css-masking-1/

Visual Effects 411

lacks any support. Since support and standardization are still in the works, we won’t cover
them here.

Creating a Mask with mask-image

To create a mask, use mask-image . Its value should be either a CSS image created with a

gradient function, or the URL of an SVG <mask> element.

In SVG, the <mask> element is a container for other shapes that form the contours of the

mask. It’s similar to clipPath . The following code shows a simple example of a star-shaped

mask:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 400 400">

<mask id="star">

<path style="fill: #000;" d="M 328.05692,385.18211 203.81502,322.90671 82.079398,389.94936

➥102.91396,252.54413 1.5342416,157.48399 138.65261,134.83828 197.73212,9.0452444 261.64137,
➥132.45466 l 137.89287,17.31576 -97.62028,98.91692 z" />

</mask>

</svg>

We can then reference this mask like so:

img {

height: 95vh;

margin: auto;

display: block;

width: auto;

mask-image: url('masks.svg#star');

}

At least, that’s how it’s supposed to work, according to the specification. In practice, referring
to an SVG <mask> element only works in Firefox. You can, however, use an SVG or PNG image

as a masking image. Gradients created using the linear-gradient() function also work, but

radial and conic gradients don’t (as of this writing).

For our first masking example, we’ll use the star.png shown below. It has a filled, star-shaped

area where alpha=1, and it’s surrounded by transparent pixels where alpha=0.

412 CSS Master, 3rd Edition

9-21. Our masking image is a star-shaped SVG

Here’s our CSS:

img {

height: 95vh;

margin: auto;

display: block;

width: auto;

-webkit-mask-image: url('star.png'); /* Chromium and WebKit browsers */

mask-image: url('star.png');

}

As you can see in the image below, the painted or filled areas of star.png reveal the

photograph below it. Transparent areas of star.png hide the layer (or layers) below it.

Visual Effects 413

9-22. Filled areas of a mask image reveal the layer below it, while transparent areas hide it

In this example, our mask image includes some areas that are 100% opaque and some that
are 100% transparent. However, the rendering of masked layers may be affected by the alpha
transparency or color of the masking layer.

Managing Mask Processing with mask-mode

Take a look at the image below, where a linear gradient transitions from an opaque to a
transparent color. Notice how the image fades into the background, particularly toward the
bottom.

414 CSS Master, 3rd Edition

9-23. Using a linear gradient that transitions from an opaque color to a transparent one

This effect is created by using a linear gradient as the masking image:

img {

mask-image: linear-gradient(to bottom, #000, #fff0 90%);

}

Our gradient transitions from opaque black, where alpha = 1, to white with an alpha
transparency of 0. Where the mask image is 100% opaque, the toucan photograph is also
fully opaque. As the gradient transitions from opaque to transparent, the image fades in
opacity, approaching 0% at the bottom of the image.

This is an alpha mask. With alpha masks, the browser uses the alpha channel—and only the
alpha channel—of the masking image to determine the pixel colors of the final painted layer.
Portions of a layer that sit beneath the transparent portions of a mask image are invisible.

CSS (and SVG) also supports luminance masks. Luminance masks use the values of each
color channel (red, green, and blue), in addition to the alpha channel, to calculate the color of
the pixels painted to the screen. With luminance masks, areas of a layer that are overlapped
by black or transparent colors will be invisible. Other areas of the layer will be more or less
opaque based on the luminance of the colors in the masking layer.

We can change the behavior of a masking layer using the mask-mode property. It accepts one

of three values: alpha , luminance , or match-source . Its initial value is match-source .

Visual Effects 415

When the mask image is an SVG <mask> element and the value of mask-mode is match-

source , the browser uses the computed value of the <mask> element’s mask-type

property22. However, when the mask is an image, such as a gradient or PNG, the mask is
processed as an alpha mask.

Let’s look at an example using the linear gradient and photograph shown below, where a
striped gradient is used to illustrate the difference between alpha and luminance masking.

9-24. Using a striped gradient to illustrate the difference between alpha and luminance masking

Firstly, let’s set up our linear gradient mask image. Although the CSS below doesn’t include
prefixed properties, don’t forget to include the -webkit- prefix (such as -webkit-mask-image)

when using this in the real world:

body {

background: #000;

}

img {

height: 95vh;

margin: auto;

display: block;

width: auto;

mask-image: linear-gradient(#f006 0 33.33%, #ff0a 33.33% 66.66%, #080 66.66% 100%);

mask-mode: alpha;

}

Our gradient consists of a transparent red stripe (#f006), followed by a band of transparent

yellow (#ff00a), and a bright, opaque green. We’ve also set a background color of black for

our document. The image below shows the result of using a linear gradient with transparent
colors as a mask image.

22. https://developer.mozilla.org/en-US/docs/Web/CSS/mask-type

416 CSS Master, 3rd Edition

9-25. Using a linear gradient with transparent colors as a mask image, when mask-mode is alpha

In this example, mask-mode is alpha , so each band of the gradient mask only changes the

opacity of the photograph. If we change the value of mask-mode to luminance , however, the

bright yellow band of the gradient is much brighter than the red band at top, and the green
band is slightly darker than the yellow band. In fact, the red band is almost as black and
opaque as the document’s background color.

9-26. Using a linear gradient with transparent colors as a mask image, when mask-mode is luminance

Luminance refers to the perceived lightness of a color. Yellow has a higher luminance than
green. This particular green, at full opacity, has a higher luminance than our semi-transparent

Visual Effects 417

red. As a result, the yellow band is the brightest of the three.

Opaque white, of course, has the highest luminance value of all. Changing opaque blue to
white creates that bright, full-color band across the bottom of the photo, as shown in the
image below. Opaque white results in opaque pixels when the value of mask-mode is

luminance .

9-27. Opaque white results in opaque pixels when the value of mask-mode is luminance

Making Mask Images Repeat (or Not) with mask-repeat

The behavior of mask-image is a bit like that of background-image . For example, mask images

repeat horizontally and vertically to fill the dimensions of the element to which they’re applied.

We can prevent a mask image from repeating with the mask-repeat property. Let’s update

our mask-image CSS from earlier:

Calculating Luminance

Although there are formulas for calculating the relative and absolute luminance of
RGB(A) colors, it’s a lot easier to use the relative luminance and contrast ratio from
Planetcalc.com23.

23. https://planetcalc.com/7779/

418 CSS Master, 3rd Edition

img {

height: 95vh;

margin: auto;

display: block;

width: auto;

-webkit-mask-image: url('star.png');

mask-image: url('star.png');

-webkit-mask-repeat: no-repeat;

mask-repeat: no-repeat;

}

This gives us the result shown below.

9-28. Using mask-repeat to prevent a masking image from repeating

As you may have figured out, mask-repeat behaves a bit like background-repeat . In fact, it

accepts the same values (up to two):

repeat-x : repeats the mask image horizontally

repeat-y : repeats the mask image vertically

repeat : repeats the mask image in both dimensions

space : repeats the mask as often as it can be repeated without being clipped, then spaces

them out
round : repeats the whole mask image, scaling the image up or down if necessary

no-repeat : prevents the mask image from repeating

Visual Effects 419

When repeat-x and repeat-y are used as mask-image values, it’s the same as using mask-

image: repeat no-repeat and mask-image: no-repeat repeat , respectively.

Resizing Mask Images with mask-size

Mask images, similarly to background images, can be resized using the mask-size property.

Let’s change our CSS a little bit. In the code below, we’ve resized the mask image and
changed how it repeats:

img {

height: 95vh;

margin: auto;

display: block;

width: auto;

-webkit-mask-image: url('star.png');

mask-image: url('star.png');

-webkit-mask-repeat: round;

mask-repeat: round;

-webkit-mask-size: 5vw auto;

mask-size: 5vw auto;

}

Setting the mask-size property means that it can repeat more often across each dimension,

as shown below.

420 CSS Master, 3rd Edition

9-29. Setting the mask-size property means that it can repeat more often across each dimension

As with background-size , permitted values for mask-size include length and percentages, as

well as the cover and contain keywords.

It’s also possible to change the mask-position and mask-origin of a masking image. These

properties share values and behavior with their background-position and background-origin

counterparts.

Using Multiple Mask Images

As mentioned earlier in this section, mask-image supports multiple masks, like its

background-image counterpart. We’ll switch from PNG images to SVG images for the

examples in this section. We’ll use circle.svg and square.svg , shown below.

Visual Effects 421

9-30. Our new masking images, circle.svg and square.svg

The gray areas of the images above are just to show the position of the circle and square
within the bounds of the SVG document. Those areas are transparent.

Let’s change our CSS to use multiple mask images:

img {

height: 95vh;

margin: auto;

display: block;

width: auto;

-webkit-mask-repeat: no-repeat;

mask-repeat: no-repeat;

-webkit-mask-image: url('circle.svg'), url('square.svg');

mask-image: url('circle.svg'), url('square.svg');

}

Multiple masking images follow the same ordering as background-image . The first image in

the list becomes the topmost layer mask.

422 CSS Master, 3rd Edition

9-31. Multiple mask images combine to form a single mask when drawn to the screen

Here, the circle and square images overlap to form a single shape, as shown above. We can
shape how masking layers are visually combined using the mask-composite property.

Managing Mask Layer Compositing with mask-composite

Compositing is the process of combining separate image layers or sources into a single visual
layer. With mask images, the initial or default behavior is to add the layers together: mask-

composite: add . The mask-composite property accepts one of four values: add , subtract ,

intersect , or exclude . The table below shows the effect of each property when the order of

mask-image is url('circle.svg'), url('square.svg') .

Visual Effects 423

Property What it does Example

add Source, or top layer is placed over the
destination or bottom layer. This is the
initial value.

subtract Destination or bottom layer is subtracted
from the top or source layer.

intersect Only the areas of the top layer that overlap
the destination or bottom layer are
painted.

424 CSS Master, 3rd Edition

Property What it does Example

exclude The non-overlapping areas of the source
and destination layers are painted.

The order of the layers in mask-image matters in some cases. Changing the order of our mask

images to mask-image: url('square.svg'), url('circle.svg'); , for example, changes the

effect of mask-composite: subtract . The image below shows this difference. Since

square.svg is now the top layer, circle.svg gets subtracted from it.

9-32. Order matters when it comes to mask-composite

Using the mask Shorthand Property

You may find it easier to use the mask shorthand property. Let’s rewrite our mask-composite

Visual Effects 425

example using the mask shorthand:

img {

mask: no-repeat url('circle.svg'), no-repeat url('square.svg');

}

Notice that we’ve repeated the mask-repeat value for each image in our mask list. If we

wanted to get fancy and change the size and position of square.svg , we could use the

following:

img {

mask: no-repeat url('circle.svg'), no-repeat url('square.svg') 0 0 / 200px 200px;

}

The CSS above moves our square to the top-left corner of the container, and resizes it to
200px by 200px , as pictured below.

9-33. Using the mask shorthand property to re-position and resize a mask image

Longhand properties are more verbose, but clearer. Shorthand properties save bytes, but
potentially at the expense of readability.

Conclusion
Now you’re all up to speed on visual effects! After reading this chapter, you should now know:

426 CSS Master, 3rd Edition

how to use blend modes and predict the value of a blended pixel
how to make layers appear in grayscale or sepia tone using filter effects
how to use clip-path and masking, and when you might choose one over the other

In the next chapter, we’ll look at applying CSS conditionally.

Visual Effects 427

Applying CSS
Conditionally

Chapter

10

428 CSS Master, 3rd Edition

Conditional CSS refers to CSS rules that are applied when a condition is met. A condition may
be a CSS property and value combination, as with the @supports rule. A condition may test

for a browser window condition such as width, as with the @media rule. Or a condition may be

a device feature such as hover capability or pointer input, as with some newer features of
@media . We’ll discuss all of the above in this chapter.

Both @media and @supports are described by the CSS Conditional Rules Module Level 3

specification1. The @media rule—which you probably know as media queries—is fully defined

by the Media Queries2 specification.

Media Queries and @media

The @media rule is actually a long-standing feature of CSS. Its syntax was originally defined

by the CSS 2 specification3 back in 1998. Building on the media types defined by HTML 44,
@media enabled developers to serve different styles to different media types—such as

print or screen .

The Media Queries Level 3 specification5 extended the @media rule to add support for media

features in addition to media types. Media features include window or viewport width, screen
orientation, and resolution. Media Queries Level 4 added interaction media features, a way to
apply different styles for pointer device quality—that is, the fine-grained control of a mouse or
stylus versus the coarseness of a finger. Media Queries Level 56 adds features for light-

level and scripting , along with user preference media features such as prefers-reduced-

motion and prefers-reduced-transparency .

Alas, most of the media types defined by HTML 4 are now obsolete. Only all , screen ,

print , and speech are currently defined by any specification. Of those, only all , screen

and print have widespread browser support. We’ll briefly discuss them in the examples that

follow. As for media features, we’ll focus on what’s available in browsers today.

Media Query Syntax: The Basics

Media query syntax seems simple, but sometimes it’s a bit counterintuitive. In its simplest
form, a media query consists of a media type, used alone or in combination with a media

1. https://drafts.csswg.org/css-conditional-3/
2. https://drafts.csswg.org/mediaqueries-4/
3. https://www.w3.org/TR/1998/REC-CSS2-19980512/media.html#at-media-rule
4. https://www.w3.org/TR/html4/types.html#h-6.13
5. https://www.w3.org/TR/css3-mediaqueries/
6. https://drafts.csswg.org/mediaqueries-5/

Applying CSS Conditionally 429

condition—such as width or orientation . A simple, type-based media query for screens

looks like this:

@media screen {

/* Styles go here */

}

CSS style rules are nested within this @media rule set. They’ll only apply when the document

is displayed on a screen, as opposed to being printed:

@media screen {

body {

font-size: 20px;

}

}

In the example above, the text size for this document will be 20px when it’s viewed on a

desktop, laptop, tablet, mobile phone, or television.

We can apply CSS to one or more media types by separating each query with a comma. If the
browser or device meets any condition in the list, the styles will be applied. For example, we
could limit styles to screen and print media using the following:

@media screen, print {

body {

font-size: 16px;

}

}

The real power of media queries, however, comes when you add a media feature. Media
features interrogate the capabilities of the device or conditions of the viewport.

A media feature consists of a property and a value, separated by a colon. The query must also
be wrapped in parentheses. Here’s an example:

/* Note that this is the equivalent of @media all (width: 480px) */

@media (width: 480px) {

If No Media Type Is Specified

When no media type is specified, it’s the same as using all .

430 CSS Master, 3rd Edition

nav li {

display: inline-block;

}

}

Now nav li will have a display value of inline-block only when the width of the viewport

is equal to 480 pixels. Let’s use the and keyword to make a more specific media query:

@media screen and (width: 480px) {

nav li {

display: inline-block;

}

}

These styles will be used only when the output device is a screen and its width is 480px .

Notice here that the media type is not enclosed by parentheses, but the media
feature— (width: 480px) —is.

But the query above has a small problem. If the viewport is wider than 480px or narrower

than 480px —and not exactly 480px —these styles won’t be applied. What we need instead is

a range.

Range Media Features and min- and max- Prefixes

A more flexible media query might test for a minimum or maximum viewport width. We can
apply styles when the viewport is at least this wide, and no more than that wide. Luckily for us,
the Media Queries Level 3 specification defines the min- and max- prefixes for this purpose.

These prefixes establish the lower or upper boundaries of a feature range.

Let’s update our previous code:

@media (max-width: 480px) {

nav li {

display: block;

}

}

In this example, nav li will have a display property value of block from a viewport width

of 0 , up to and including a maximum viewport width of 480px .

We can also define a media query range using min- and max- , along with the and keyword.

For example, if we wanted to switch from display: block to display: flex between 481px

Applying CSS Conditionally 431

and 1600px , we might do the following:

@media (min-width: 481px) and (max-width: 1600px) {

nav ul {

display: flex;

}

}

If both conditions are true—that is, the viewport width is at least 480px , but not greater than

1600px —our styles will apply.

Not all media feature properties support ranges with min- and max- . The table below lists

those that do, along with the type of value permitted for each.

Property Description Value type

aspect-ratio The ratio of viewport width to height ratio (such as 1024/

768 or 16:9)

color Number of bits per color component of the device;
0 when the device is not a color device

integer

color-index Minimum number of colors available on the device integer

height Height of the viewport or page box length

monochrome Number of bits per pixel in a monochrome frame
buffer

integer

resolution (see

note below)

Describes the pixel density of a device resolution (dpi,

dpcm, and dppx) units

width Width of the viewport or page box length

Firefox versions 63 and above support comparison operators such as > and <= in addition

to the min and max syntax for ranges. Instead of @media (min-width: 480px) and (max-

width: 1600px) , we could write this query as follows:

Safari and resolution

Safari doesn’t yet support the resolution media feature. Instead, it still uses the
non-standard, vendor-prefixed -webkit-device-pixel-ratio feature. For
min / max ranges, use -webkit-min-device-pixel-ratio and -webkit-max-device-

pixel-ratio .

432 CSS Master, 3rd Edition

@media (width >= 480px) and (width <= 1600px) {

nav li {

display: block;

}

}

That’s a little clearer than @media (min-width: 480px) and (max-width: 1600px) .

Unfortunately, this syntax isn’t yet supported by most browsers. Stick with min- and max-

for now.

Discrete Media Features

There’s a second type of media feature: the discrete type. Discrete media features are
properties that accept one of a set—or a predefined list—of values. In some cases, the set of
values is a Boolean—either true or false. Here’s an example using the orientation

property. The example adjusts the proportional height of a logo when in portrait mode:

@media screen and (orientation: portrait) {

#logo {

height: 10vh;

width: auto;

}

}

The orientation feature is an example of a discrete media feature. It has two supported

values, portrait and landscape . Minimum and maximum values don’t make much sense for

these properties. The table below lists discrete media features that are currently available in
major browsers.

Applying CSS Conditionally 433

Property Description Acceptable values

any-hover Ability of any connected input mechanism
to have a hover state as determined by the
user agent

none, hover

hover Ability of the primary input mechanism to
have a hover state as determined by the
user agent

none

any-pointer Presence and accuracy of any pointing
device available to the user

none, coarse, coarse

pointer Presence and accuracy of the primary
pointing device as determined by the user
agent

none, coarse, coarse

grid Whether the device is grid (such as a
teletype terminal or phone with a single
fixed font) or bitmap. Don’t confuse this
with CSS Grid layout

Boolean (see note
below)

orientation Describes behavior for whatever is larger
out of width or height. When the width is
greater than height, the orientation is
landscape. When the inverse is true, the

orientation is portrait

portrait, landscape

prefers-reduced-

motion

Defines styles when the user has disabled
animations for their operating system

no-preference, reduce

prefers-color-scheme Set styles when the user has indicated that
they prefer a color scheme for their
operating system

light, dark

Other discrete media features include overflow-block and overflow-inline , which describe

the behavior of the device when content overflows in the block or inline direction (think
electronic billboards or slide shows). Eventually, we may also see support for a scripting

Boolean Feature Queries

Boolean feature queries have an unusual syntax. You can use either 0 or 1 as a
value, or just the feature itself. In the case of grid , this would be @media (grid) or
@media (grid: 1) .

434 CSS Master, 3rd Edition

feature which tests for JavaScript support.

One discrete media feature we can use now is hover (along with any-hover). The hover

media feature query allows us to set different styles based on whether or not the primary
input mechanism supports a :hover state. The any-hover feature works similarly, but

applies to any input mechanism, not just the primary one. It’s a discrete feature type, and has
just two valid values:

none : the device has no hover state, or has one that’s inconvenient (for example, it’s

available after a long press)
hover : the device has a hover state

Consider the case of radio buttons and checkbox form controls on touchscreens.
Touchscreen devices typically have an on-demand hover state, but may lack one completely.
Adult-sized fingers are also fatter than the pointers of most mouse or track pad inputs. For
those devices, we might want to add more padding around the label, making it easier to tap:

@media screen and (hover: on-demand) {

input[type=checkbox] + label {

padding: .5em;

}

}

Another media feature that’s well supported by browsers is the pointer media feature (and

any-pointer). With pointer , we can query the presence and accuracy of a pointing device

for the primary input mechanism. The any-pointer property, of course, tests the presence

and accuracy of any pointer available as an input mechanism. Both media features accept one
of the following values:

none : the device’s primary input mechanism is not a pointing device

coarse : the primary input mechanism is a pointing device with limited accuracy

fine : the device’s primary input mechanism includes an accurate pointing device

Devices with pointing inputs include stylus-based screens or pads, touchscreens, mice, and
track pads. Of those, touchscreens are generally less accurate. Stylus inputs, on the other
hand, are very accurate—but, like touchscreens, they lack a hover state. With that in mind, we
might update our hover query from earlier so that we only add padding when the pointer is

coarse :

@media screen and (hover: none) and (pointer: coarse) {

Applying CSS Conditionally 435

input[type=checkbox] + label {

padding: .5em;

}

}

Most operating systems include a set of accessibility and user preference settings that
control features like the animation and transparency of windows, or system-wide theming
preferences. Level 5 of the Media Queries8 specification defines several features for querying
user-preference settings: prefers-reduced-motion , prefers-color-scheme , prefers-

contrast , prefers-reduced-transparency , prefers-reduced-data and forced-colors . Of

these, only prefers-reduced-motion and prefers-color-scheme have widespread support

across browsers and operating systems.

Using prefers-reduced-motion to Improve the Experience of People with
Vestibular and Seizure Disorders

As mentioned in Chapter 7, “Transitions and Animations”, large-scale animations can create
sensations of dizziness and nausea for people with vestibular disorders. Flickering animations
can cause seizures for people with photosensitive epilepsy.

Seizures and dizziness don’t make for a very good user experience. At the same time,
animation can improve usability for users who aren’t affected by vestibular disorders. As a
way to balance improved usability for some while preventing debilitating conditions in others,
WebKit proposed a prefers-reduced-motion media feature. It has two possible values: no-

preference and reduce .

Multiple Device Inputs

Don’t assume that a primary input is the only input for a device, or even that it’s the
main input for the user. In fact, interaction media features don’t account for
keyboards at all. In his article “Interaction Media Features and Their Potential (for
Incorrect Assumptions)7”, Patrick H. Lauke explains the limits of the pointer / any-

pointer and hover / any-hover media features.

7. https://css-tricks.com/interaction-media-features-and-their-potential-for-incorrect-assumptions/
8. https://drafts.csswg.org/mediaqueries-5/

436 CSS Master, 3rd Edition

With prefers-reduced-motion , we can provide an alternative animation or disable it

altogether, as shown in the following example:

/* Starting state */

.wiggle {

animation: wiggling 3s ease-in infinite forwards alternate;

}

@media screen and (prefers-reduced-motion: reduce) {

.wiggle {

animation-play-state: paused;

}

}

If the user’s preference is to reduce motion, the .wiggle animation will be disabled.

When used without a value, prefers-reduced-motion is true. In other words, removing

reduce from the above media query gives it an equivalent meaning:

@media screen and (prefers-reduced-motion) {

.wiggle {

animation-play-state: paused;

}

}

Even when the user has chosen to reduce motion, your animations won’t be disabled unless
you add CSS to accommodate that preference. You may instead wish to enable transitions
and animations only when the user hasn’t indicated a preference:

/* @media screen and not (prefers-reduced-motion) also works */

@media screen and (prefers-reduced-motion: no-preference) {

.wiggle {

animation: wiggling 3s ease-in infinite forwards alternate running;

}

}

Rationale

“Responsive Design for Motion”9, a blog post from the WebKit team, explains the
team’s rationale for proposing the prefers-reduced-motion query, as well as how to
use it.

9. https://webkit.org/blog/7551/responsive-design-for-motion/

Applying CSS Conditionally 437

Chrome versions 73 and below, Firefox versions 62 and below, Edge versions 18 and below,
and Safari versions 10.1 and below don’t support prefers-reduced-motion . Consider adding a

user interface element that lets site visitors disable animations in those browsers. Don’t
forget to follow WCAG guidelines10 when creating animations and transitions.

Respecting Users Color Preferences with prefers-color-scheme

Some operating systems offer the ability to select a dark theme for the interface. We can use
the prefers-color-scheme feature to add support for this preference in web pages and

applications. This feature has two possible values: light and dark .

@media (prefers-color-scheme: dark) {

/* Styles here */

}

The prefers-color-scheme feature works well with custom properties (see Chapter 4). For

example, you might use a different color palette for each color scheme, and use custom
properties to define each color:

/* Styles when there's no preference */

:root {

--background: #ccc;

--foreground: #333;

--button-bg: #505;

--button-fg: #eee;

--link: #909;

--visited: #606;

}

/* Update colors for the background, foreground, and buttons */

@media screen and (prefers-color-scheme: light) {

:root {

--background: #fff;

--foreground: #000;

--button-bg: #c0c;

--button-fg: #fff;

}

}

@media screen and (prefers-color-scheme: dark) {

:root {

--background: #222;

--foreground: #eee;

--button-bg: #808;

--button-fg: #fff;

10. https://www.w3.org/WAI/WCAG22/Understanding/seizures-and-physical-reactions

438 CSS Master, 3rd Edition

--link: #f0f;

--visited: #e0f;

}

}

When creating themes for use with prefers-color-scheme , don’t forget to check whether

your foreground and background colors have sufficient contrast. Firefox, Chrome and Edge
have robust accessibility checking tools built into their developer tools. Deque provides axe11,
a free developer tools browser extension for Firefox, Chrome and Edge that includes checks
for color contrast. Tools such as Lea Verou’s Contrast Ratio12 also work well.

To develop and test for dark mode, you’ll first need to enable it:

Windows: go to Settings > Personalization > Colors > Choose your color
macOS: go to System Preferences > General > Appearance
Ubuntu: go to Settings > Appearance > Window colors

Chrome and Edge also allow users to set a preference at the browser level by enabling the
Force Dark Mode for Web Contents setting. You can find this setting at
chrome://flags/#enable-force-dark and edge://flags/#enable-force-dark , respectively.

Keep in mind that even when Force Dark Mode is enabled, matchMedia('(prefers-dark-

mode)').matches may return false for some operating systems.

In Firefox, you can simulate light (via the sun-shaped icon) and dark (via the crescent-
moon–shaped icon) color scheme support in the web inspector panel.

10-1. The Firefox developer tools include two icons for simulating light and dark theme mode

A third value, no-preference , has been removed from the specification due to a lack of

browser support. You may, however, come across articles or code samples that include it.
Don’t use it in new projects.

11. https://www.deque.com/axe/browser-extensions/
12. https://contrast-ratio.com/

Applying CSS Conditionally 439

Nesting @media Rules

It’s also possible to nest @media rules. Here’s one example where it might be useful to nest

media queries:

@media screen {

@media (min-width: 320px) {

img {

display: block;

width: 100%;

height: auto;

}

}

@media (min-width: 640px) {

img {

display: inline-block;

max-width: 300px;

}

}

}

In this example, we’ve grouped all our screen styles together, with subgroups for particular

viewport widths.

Working around Legacy Browser Support with only

As mentioned in the beginning of this chapter, @media has been around for a while. However,

the syntax and grammar of @media has changed significantly from its original

implementation. As the Media Queries Level 4 specification explains13, the original error-
handling behavior:

would consume the characters of a media query up to the first non-

alphanumeric character, and interpret that as a media type, ignoring the

rest. For example, the media query screen and (color) would be

truncated to just screen .

To avoid this, we can use the only keyword to hide media queries from browsers that

support the older syntax. The only keyword must precede a media query, and affects the

entire query:

13. https://www.w3.org/TR/mediaqueries-4/#mq-only

440 CSS Master, 3rd Edition

@media only screen and (min-resolution: 2dppx) {

/* Styles go here */

}

Negating Media Queries

You can also negate a media query using the not keyword. The not keyword must come at

the beginning of the query, before any media types or features. For example, to hide styles
from print media, you might use the following:

@media not print {

body {

background: url('paisley.png');

}

}

If we wanted to specify low-resolution icons for lower-resolution devices instead, we might
use this snippet:

@media not print and (min-resolution: 1.5dppx) {

.external {

background: url('arrow-lowres.png');

}

}

Notice here that not comes before and negates the entire media query. You can’t insert not

after an and clause. Arguments such as @media not print and not (min-resolution: 2dppx)

or @media screen and not (min-resolution: 2dppx) violate the rules of media query

grammar. However, you can use not at the beginning of each query in a media query list:

@media not (hover: hover), not (pointer: coarse) {

/* Styles go here */

only the Lonely

The only keyword tells the browser that these styles should be applied only when
the following condition is met. The good news is that the older error-handling
behavior is mostly an edge case among browsers that are in use today. For most
current browsers and current web users, using the only keyword is unnecessary.
I’ve included it here for completeness.

Applying CSS Conditionally 441

}

Styles within this grouping rule would be applied when the device doesn’t have a hover state
or when the pointing device has fine-grained accuracy.

Other Ways to Use Media Queries

Thus far, we’ve talked about @media blocks within stylesheets, but this isn’t the only way to

use media types and queries. We can also use them with either @import or the media

attribute. For example, to import a stylesheet typography.css when the document is viewed

on screen or printed, we could use the following CSS:

@import url(typography.css) screen, print;

But we can also add a media query to an @import rule. In the following example, we’re serving

the hi-res-icons.css stylesheet only when the device has a minimum pixel density of

2dppx :

@import url(hi-res-icons.css) (min-resolution: 2dppx);

Another way to use queries is with the media attribute, which can be used with the <style> ,

<link> , <video> , and <source> elements. In the following example, we’ll only apply these

linked styles if the device width is 480 pixels wide or less:

<link rel="stylesheet" href="styles.css" type="text/css" media="screen and (max-width: 480px)">

HTTP/1.1

For browsers and servers that still use HTTP/1.1, @import adds an additional HTTP
request and blocks other assets from downloading. Use it with care!

Performance Considerations

In every browser tested, the stylesheet will be requested and downloaded, even
when the media query doesn’t apply. However, linked assets within that stylesheet
(for example, background images defined with url()) won’t be.

442 CSS Master, 3rd Edition

We can also use the media attribute with the <source> element to serve different files for

different window widths and device resolutions. What follows is an example using the
<source> element and media attribute with the <picture> element:

<picture>

<source srcset="image-wide.jpg" media="(min-width: 1024px)">

<source srcset="image-med.jpg" media="(min-width: 680px)">

</picture>

Content-driven Media Queries

A current common practice when using media queries is to set min-width and max-width

breakpoints based on popular device sizes. A breakpoint is the width or height that triggers a
media query and its resulting layout changes. Raise your hand if you’ve ever written CSS that
resembles this:

@media screen and (max-width: 320px) {

⋮
}

@media screen (min-width: 320px) and (max-width: 480px) {

⋮
}

@media screen (min-width: 481px) and (max-width: 768px) {

⋮
}

@media screen (min-width: 769px) {

⋮
}

These work for a large number of users. But device screen widths are more varied than this.
Rather than focus on the most popular devices and screen sizes, try a content-centric
approach.

Precedence

If your linked stylesheets also contain media queries, these will take precedence
over the value of the media attribute.

Applying CSS Conditionally 443

A content-centric approach to media queries sets breakpoints based on the point at which
the layout starts to show its weaknesses. One strategy is to start small, which is also known as
a mobile-first approach. As Bryan Reiger puts it, “the absence of support for @media queries

is in fact the first media query”14.

You can do a lot to create a flexible, responsive layout before adding media queries. Then, as
you increase the viewport width or height, add styles that take advantage of the additional
real estate. For example, how wide is the browser window when lines of text become too long
to read comfortably? That can be the point at which your layout switches from a single-
column layout (as illustrated in the first image below) to a two-column layout (shown in the
second image).

10-2. A document viewed in a narrow mobile browser

Don’t Use device-width with Media Queries

Avoid using device-width (including min / max) altogether for media queries. High
DPI devices in particular may report a device width that doesn’t match its actual
pixel capability.

14. https://www.slideshare.net/bryanrieger/rethinking-the-mobile-web-by-yiibu

444 CSS Master, 3rd Edition

10-3. The document viewed in a wider browser window, such as on a desktop or laptop

There are two advantages to this approach. First, your site will still work on older mobile
browsers that lack support for media queries. The second reason is just as important: this
approach prepares your site for a wider range of screen widths and resolutions.

Applying CSS Conditionally 445

Using Media Queries with JavaScript

Media queries also have a JavaScript API, better known as matchMedia() . If you’re not versed

in JavaScript, don’t worry. We’ll keep the examples short so they’re easier to understand. The
API for media queries is actually defined by a different specification, the CSSOM View
Module15. It’s not CSS, strictly speaking, but since it’s closely related to @media , we’ll cover it.

The matchMedia() method is a property of the window object. That means we can refer to it

using window.matchMedia() or just matchMedia() . The former is clearer, since it indicates that

this is a native JavaScript method, but the latter saves a few keystrokes. I’m a lazy typist, so I’ll
use matchMedia() in the examples that follow.

Use matchMedia() to test whether a particular media condition is met. The function accepts a

single argument, which must be a valid media query.

Why use a media query with JavaScript rather than CSS? Perhaps you’d like to display a set of
images in a grid on larger screens, but trigger a slide show on small screens. Maybe you want
to swap the src value of a <video> element based on the screen size or resolution. These

are cases for using matchMedia() .

Here’s a simple example of matchMedia in action. This code checks whether the viewport

width is greater than or equal to 45em :

var isWideScreen = matchMedia("(min-width: 45em)");

console.log(isWideScreen.matches); // Logs true or false to console

Using matchMedia() creates a MediaQueryList object. Here, that object is stored in the

isWideScreen variable. Every MediaQueryList object contains two properties:

media , which returns the media query argument that was passed to matchMedia()

matches , which returns true if the condition is met and false otherwise

Since we want to know whether it’s true that the browser window is at least 45em wide, we

need to examine the matches property.

MediaQueryList.matches will return false when either:

the condition isn’t met at the time matchMedia() is invoked

15. https://drafts.csswg.org/cssom-view/

446 CSS Master, 3rd Edition

the syntax of the media query is invalid
the browser doesn’t support the feature query

Otherwise, its value will be true .

Here’s another example of using matchMedia . We’ll update the source of a <video> element

based on the size of the current viewport and resolution:

if(matchMedia("(max-width: 480px) and (max-resolution: 1dppx)") {

document.querySelector('video').src = 'smallvideo.mp4';

}

If the condition doesn’t match—or the browser doesn’t support the resolution feature

query—the value of src won’t change.

Error Checking with not all

Typically, the value of the media property is the media query we’ve tested. But maybe you

forgot to include the parentheses around your feature query (a syntax error). Or perhaps the
query uses a pointer feature query, but the browser is yet to support it. In both of those

cases, the browser will return a not all value. This is media query speak for “this doesn’t

apply to any media condition”.

In cases where the media query is a list—that is, when it contains multiple conditions—the
value of matchMedia().media will also contain multiple values. If part of that query list is

invalid or unsupported, its value will be not all . Here’s an example:

var mq = matchMedia("(hover: none), (max-width: 25em)");

In browsers lacking support for the hover: none media feature query, the value of mq.media

will be not all, (max-width: 25em) . In browsers that do support it, the value of mq.media will

be (hover: none), (max-width: 25em) . Let’s look at another example:

var mq = matchMedia("min-resolution: 1.25dppx, (max-width: 25em)");

In this example, the value of mq.media will also be not all, (max-width: 25em) . In this

case, however, it’s because our first feature query uses the wrong syntax. Remember that
media feature queries need to be enclosed in parentheses. The argument should be
matchMedia("(min-resolution: 1.25dppx), (max-width: 25em)"); instead.

Applying CSS Conditionally 447

Listening for Media Changes

Media conditions aren’t necessarily static. Conditions can change when the user resizes the
browser or toggles between portrait and landscape mode. Luckily, there’s a mechanism for
monitoring and responding to changes in our document’s environment: the
addEventListener() method.

The addEventListener() method is a standard method of the Document Object Model. It

accepts two arguments: the event type, and a callback function. The callback function gets
invoked every time an event of the specified type occurs. Changes to the document’s
environment are always change events.

Let’s add a class name when our document enters landscape orientation. The first step is to
create a MediaQueryList object using matchMedia and a media query:

var isLandscape = matchMedia("(orientation: landscape)");

Step two is to define our callback function. The callback function receives an object as its only
argument. In Chrome, Safari and Microsoft Edge, this will be a MediaQueryListEvent object. In

Firefox (verified in versions 90 and below), it’s a MediaQueryList object, which is a holdover

from an earlier version of the specification. There isn’t much difference between them, and
the code below works with both object types:

const toggleClass = function (mediaquery) {

if (mediaquery.matches) {

document.body.classList.add('widescreen');

} else {

document.body.classList.remove('widescreen');

}

}

Media query events aren’t very smart. They’re fired any time the value of
MediaQueryList.matches changes, regardless of whether or not the condition is true . This

means we need to examine the value of the MediaQueryListEvent.matches or

MediaQueryListEvent.media property. In this case, if the value of mediaquery.matches is

true , we’ll add a class name to our <body> element. Otherwise, we’ll remove it.

Finally, let’s add this event listener to our MediaQueryList object with addEventListener :

isLandscape.addEventListener('change', toggleClass);

448 CSS Master, 3rd Edition

To remove a listener, use removeEventListener as shown:

isLandscape.removeEventListener(toggleClass);

Early versions of the CSSOM View specification defined addListener and removeListener

methods. These methods were separate mechanisms, removed from the DOM event queue.
This changed in the Level 4 specification. Both functions are now deprecated, but older
browsers still support them.

One workaround for this is to test whether the browser supports addEventListener when

used with a MediaQueryList object:

if(typeof isLandscape.addEventListener === 'function') {

isLandscape.addEventListener('change' , toggleClass);

} else {

isLandscape.addListener(toggleClass);

}

You can use a similar check for removeEventListener and removeListener .

Testing for Property Support with Feature Queries
Feature queries let us apply CSS rules when the browser supports a particular property and
value combination. As with media queries, feature queries consist of two parts: the
@supports CSS rule, and a DOM-based API for use with JavaScript.

Why might we use @supports ? Here’s a scenario: as originally specified16, display allowed

four possible values: block , inline , list-item , and none . Later specifications added

table-* values, flex , and grid . With @supports , we can define CSS rules that will be

applied only when the browser supports display: grid :

@supports (display: grid) {

.gallery {

display: grid;

grid-template-columns: repeat(4, auto);

}

}

To define a condition, wrap the property and value you’d like to test in a set of parentheses as
shown. Both portions are required. A condition such as @supports (hyphens) won’t work. You

16. https://www.w3.org/TR/CSS1/#display

Applying CSS Conditionally 449

can, however, use a CSS keyword such as unset or initial as part of the test—such as

@supports (hyphens: initial) .

To combine conditions, use the and keyword. For example, if you wanted to apply styles

when both the text-decoration-color and text-decoration-style are supported, you could

use the following:

@supports (text-decoration-color: #c09) and (text-decoration-style: double) {

.title {

font-style: normal;

text-decoration: underline double #f60;

}

}

The @supports syntax also allows disjunctions using the or keyword. Disjunctions are

especially useful for testing vendor-prefixed property support. Older versions of WebKit-
based browsers require a vendor prefix for flexible box layout support. We can augment our
@supports condition to take that into account:

@supports (display: flex) or (display: -webkit-flex) {

nav ul {

display: -webkit-flex;

display: flex;

}

}

Finally, we can also define a collection of styles if a condition isn’t supported by using the not

keyword:

@supports not (display: grid) {

nav {

display: flex;

}

}

The not keyword can only be used to negate one condition at a time. In other words,

@supports not (text-decoration-color: #c09) and (text-decoration-style: double) is not

valid. But you can combine two tests into a single condition by using an outer set of
parentheses: @supports not ((text-decoration-color: #c09) and (text-decoration-style:

double)) .

Very old browsers, such as Internet Explorer, lack support for both @supports and properties

450 CSS Master, 3rd Edition

you might wish to query, such as float: inline-start . For those browsers, we can leverage

CSS error handling and the cascade instead. CSS ignores rules that it can’t parse, and the last-
defined rule wins. Below is an example using the float property:

img {

float: left; /* Browsers that support the old float values */

float: inline-start; /* Browsers that support newer logical values */

}

Using error handling and the cascade often works well enough that you can forgo using
@supports altogether. You may, however, need to use @supports to isolate and override

declarations supported by both older and newer browsers. Consider the following CSS:

nav ul {

text-align: center;

padding: 0;

}

nav li {

display: inline-block;

min-width: 20rem

}

nav li:not(:last-child) {

margin: 0 1.5rem 0 0;

}

@supports (display: grid) {

nav ul {

display: grid;

grid-template-columns: repeat(auto-fit, 20rem);

justify-content: center;

gap: 1.5rem;

}

/* Undo all of the styles from above */

nav li:not(:last-child),

nav li {

display: initial;

margin: 0;

min-width: unset;

}

}

In this case, we’ve used @supports to remove the margin for nav li only when the browser

supports CSS Grid. Browsers that lack support for feature queries ignore the entire block.

Applying CSS Conditionally 451

Determining Selector Support with selector()

Originally designed to test support of properties and values, the CSS Conditional Rules
Module Level 4 specification17 expands the syntax of @supports to include selectors using

selector() . Here’s an example:

@supports selector(:blank) {

input:not(:blank):invalid {

background: pink;

}

}

In browsers that support the :blank pseudo-class (and to date, no browser does), <input>

elements that contain invalid data but are not blank will have a pink background.

Remember that CSS ignores rules and selectors that it doesn’t understand. In other words,
you probably don’t need to use selector() . If you do, make sure your site degrades

gracefully.

CSS.supports DOM API

Feature queries also have an API: CSS.supports() . CSS.supports() always returns a Boolean

(true or false) value depending on whether or not the browser supports that property and

value combination.

CSS.supports() accepts a parentheses-wrapped CSS declaration as its argument. For

example:

CSS.supports('(text-decoration: underline wavy #e91e63)');

If the browser supports this syntax for text-decoration , CSS.supports returns true .

Otherwise, it returns false .

We can test multiple conditions using conjunctions (the and keyword) or disjunctions (the

or keyword). CSS.supports also allows negation using the not keyword. For example, we

can test whether a browser supports display: -webkit-flex or display: flex using the

following:

17. https://drafts.csswg.org/css-conditional-4/

452 CSS Master, 3rd Edition

CSS.supports('(display: -webkit-flex) or (display: flex)');

Most browsers treat parentheses as optional when testing a single property and value
combination (versions of Microsoft Edge 18 and under are an exception). When testing
support for multiple conditions, each one must be wrapped in parentheses, as we’ve done
here. Failing to do so means that CSS.supports() may return a false negative.

You can also use CSS.supports with selector() to test selector support, as shown below:

const canUseIs = CSS.supports('selector(:is())');

console.log(canUseIs); // Logs true or false

Enclose the entire condition in quotes to prevent a JavaScript ReferenceError that selector

is undefined .

Selectors that use functional notation— :is() , :where() and :has() —should include

parentheses. When testing support for :not() , you’ll also need to include an argument (it’s

optional for the other selectors):

CSS.supports('selector(:not())'); // Returns false

CSS.supports('selector(:not(:last-child))'); // Returns true

Although this feature isn't well-documented, it is widely supported in browsers.

Understanding the Cascade for @supports and @media

Using @supports or @media doesn’t increase the specificity or importance of a rule. Normal

cascade rules apply, meaning that styles defined after an @supports or @media block will

override rules within the block. Consider the following CSS:

@supports (text-decoration: underline wavy #c09) {

.title {

font-style: normal;

text-decoration: underline wavy #c09;

}

}

.title {

font-style: italic;

}

All elements with a title class will be both italicized and underlined. The subsequent

Applying CSS Conditionally 453

font–style: italic; line overrides the font-style: normal; . That’s not what we want here.

Instead, we need to flip the order of our rule sets, so that font-style: normal takes

precedence over font-style: italic :

.title {

font-style: italic;

}

@supports (text-decoration: underline wavy #c09) {

.title {

font-style: normal;

text-decoration: underline wavy #c09;

}

}

Both @supports and @media work best when used to progressively enhance a site. Define

your base styles—the styles that every one of your target browsers can handle. Then use
@supports or @media to override and supplement those styles.

Conclusion
Both @media and @supports are powerful and flexible ways to progressively enhance your

CSS and serve a range of devices. Now that you’ve reached the end of this chapter, you should
know how to use:

@media to create flexible layouts for a range of devices and inputs

window.matchMedia() and the addEventListener / removeEventListener methods to call

JavaScript based on a media query
@supports and the CSS.supports() API to progressively enhance documents

In the next chapter, we’ll learn about two scroll-related CSS properties and features: Scroll
Snap, and the scroll-behavior property.

454 CSS Master, 3rd Edition

CSS and
Scrolling

Chapter

11

CSS and Scrolling 455

Smooth scrolling previously required the use of JavaScript to calculate the speed and timing
of a scrolling operation. Developers of a certain age may remember using the animate()

method of the jQuery JavaScript library, or the MooTools Fx.Scroll() class to make a page

scroll to a given location.

Similarly, carousels and slide shows often required JavaScript libraries. Perhaps you’ve tried a
slide show such as Flickity1 or FlexSlider2 that uses JavaScript to animate the position of a
scrolling container by updating its transform value.

In this chapter, we’ll look at two CSS features—the scroll-behavior property, and CSS Scroll

Snap—that make it possible to create jump links that scroll smoothly, and carousels that
require minimal amounts of JavaScript, if any.

Dump the Jump: Smooth Internal Links with scroll-

behavior

The scroll-behavior property manages the behavior of scrolling when caused by navigation,

or the invocation of a CSSOM scrolling method— scroll() , scrollTo() , scrollBy() , or

scrollIntoView() . Other methods of scrolling, such as with a pointer device, aren’t affected

by the scroll-behavior property.

Initially, the value of scroll-behavior is auto . This value causes an instant scroll. An instant

scroll is less of a scroll and more of a jump to the desired location within the document. You
can also use smooth , which causes what we generally think of as scrolling behavior: the

content glides to the requested point.

What Is a Scrolling Box?

Smooth scrolling only works when the element has a “scrolling box”. An element or a viewport
has a scrolling box when:

Scrolling and Vestibular Disorders

Smooth scrolling may cause dizziness for people who have vestibular disorders.
Use the prefers-reduced-motion media feature and @media to reduce or disable
scrolling for visitors who’ve indicated a preference.

1. https://flickity.metafizzy.co/
2. ttp://flexslider.woothemes.com/

456 CSS Master, 3rd Edition

the element or viewport has a scrolling mechanism
the element overflows its content area and the used value of the overflow-x or overflow-

y property is something other than hidden or clip

Here’s an example:

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>scroll-behavior</title>

<style>

ul {

display: flex;

list-style: none;

padding: 1rem;

gap: 1rem;

justify-content: center;

}

.scroll-container {

width: 50%;

margin: auto;

/*

* When the container has a fixed height, its contents may

* overflow it

*/

height: 30rem;

/*

* Can also use `overflow` as a property. Value can also be

* `scroll`

*/

overflow-y: auto;

scroll-behavior: smooth;

}

/*

* Remember, motion can make some people dizzy!

*/

@media screen and (prefers-reduced-motion) {

.scroll-container {

scroll-behavior: auto;

}

}

CSS and Scrolling 457

.scroll-container div {

/*

* Total height of child divs are large enough or contain

* enough content to overflow their parent container

*/

height: 50vh;

}

</style>

</head>

<body>

<nav>

A

B

C

D

</nav>

<div class="scroll-container">

<div id="A">A</div>

<div id="B">B</div>

<div id="C">C</div>

<div id="D">D</div>

</div>

</body>

</html>

Clicking any of the navigation links triggers a smooth, gliding-style scroll to the linked <div> .

For non-root elements, the element must have a fixed height, set using the height or max-

height properties in order for scroll-behavior to have an effect. The value of overflow

should also be scroll or auto . The root <html> element takes on the dimensions of the

viewport. Content that exceeds the viewport dimensions creates both an overflow and a
scrolling mechanism. As a result, scroll-behavior: smooth works for the <html> element

without any additional properties.

The <body> element, however, is a bit of a special case. Body elements rarely generate a

scrolling box, in part because content rarely overflows them. Body elements grow and shrink
with the dimensions of their child content. That means if you apply scroll-behavior to a

<body> element, you’ll also need to set the height , width , and overflow values of its

parent. Applying scroll-behavior to the root element, on the other hand, works similarly, and

requires fewer bytes.

458 CSS Master, 3rd Edition

Unfortunately, this version of the CSSOM specification didn’t include a way for developers to
have control over how the page scrolls beyond smooth and “not-smooth” (better known as

the auto value). We can’t use an easing function, or set a scroll duration.

Instead, scroll-behavior: smooth uses a browser-defined timing function and duration.

Depending on the browser, scroll-behavior may also follow conventions of the operating

system on which it runs. If you want to shape how the scroll works—for example, whether the
timing function is linear or ease-in , or how many milliseconds it should take—you’ll need

to use JavaScript.

Scroll Snap
Sometimes the inability to control what happens when scrolling ends is the problem you’d like
to solve. For example, it can be tricky to create a slide show that always centers a photo
without doing a lot of potentially intensive DOM operations. This is where CSS Scroll Snap3

shines. Scroll Snap makes it easy to set the alignment of content within a scroll container.

Creating a Scroll Snap Container

Again: an element is a scroll container when the total width and/or height of its children (along
with any margins or gaps) overflows its horizontal or vertical dimension. To make it a scroll
snap container, we need to add the scroll-snap-type property. Here’s an example. First, let’s

look at our markup:

<div class="scroll-container">

<p>A</p>

<p>B</p>

<p>C</p>

Scroll Snap versus Scroll Snap Points

You may have heard of an earlier, similar feature known as “Scroll Snap Points”.
Scroll Snap Points was deprecated in favor of Scroll Snap. You may see some old
web tutorials that reference the earlier specification. One clear way to tell whether
the tutorial is up to date is to look for the presence of properties with a scroll-

snap-points prefix, or mentions of scroll-snap-type-x and scroll-snap-type-y .
The MDN Web Docs have a guide to Scroll Snap browser compatibility4.

3. https://drafts.csswg.org/css-scroll-snap-1/
4. https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Scroll_Snap/Browser_compat

CSS and Scrolling 459

<p>D</p>

<p>E</p>

<p>F</p>

<p>G</p>

<p>H</p>

<p>I</p>

</div>

This markup is simple. We have a containing <div> element, with a class name of scroll-

container . Its children are all <p> elements. We we could just as well use <div> or

elements as child elements. Here’s the CSS:

.scroll-container {

display: flex;

gap: 2rem;

/*

* These two properties force the element to be a scrolling

* container. The value of overflow should be auto or scroll

*/

width: 100vw;

overflow-x: auto;

/*

* Makes the element a Scroll Snap container

*/

scroll-snap-type: x mandatory;

}

.scroll-container p {

/*

* Makes every flex item exactly 40vw. The total width of

* the children overflows the width of the container

*/

flex: 0 0 40vw;

/*

* Where to snap after scrolling

*/

scroll-snap-align: none center;

}

The scroll-snap-type property indicates two things: the Scroll Snap axis and its strictness. In

this example, we’ve used scroll-snap-type: x mandatory . That first value, x , means that our

container will scroll horizontally; mandatory indicates that the container must snap to a

position when it isn’t being scrolled.

460 CSS Master, 3rd Edition

You must specify the scroll axis for scroll-snap-type . In addition to none (the initial value),

and CSS global values, the value of scroll-snap-type can be any of the following:

inline : scrolls in the inline direction—horizontally for languages written and read from

left to right or right to left, and vertically for vertical writing modes
block : scrolls in the block direction—vertically for languages written and read from left to

right or right to left, and horizontally for vertical writing modes
x : scrolls horizontally

y : scrolls vertically

both : scrolls both horizontally and vertically

Since the scroll axis is a mandatory value, it must be listed first. The Scroll Snap strictness
value, on the other hand, is optional. Its value can be one of the following:

none : no snapping occurs

proximity : may snap to a position after a scrolling operation completes, at the discretion

of the user agent
mandatory : must snap to a snap position when there’s no scrolling operation in progress

If you don’t indicate the strictness of a Scroll Snap, the browser uses proximity . Using

mandatory , however, ensures that the browser snaps to the position you indicate.

The scroll-snap-type property sets the scrolling behavior on the containing element. For the

snap to work, we also need to indicate how child elements should be aligned within the
container when a scrolling operation completes.

Aligning Scrolled Elements with scroll-snap-align

As shown in the example above, Scroll Snap also requires the scroll-snap-align property.

This property gets applied to the children of a Scroll Snap container. It accepts up to two
values: the first indicates the snapping alignment along the block axis, while the second
indicates the snapping alignment along the inline axis:

.scroll-container p {

scroll-snap-align: none center;

}

The CSS above says to the browser: “Don’t snap vertical scrolling, and snap horizontal
scrolling to the center position of each child element.” The image below shows the effect. Our
child element is centered within the Scroll Snap container.

CSS and Scrolling 461

11-1. When scrolling horizontally, the scroll comes to rest with each next child element centered

The following properties are valid scroll-snap-align values, and the property accepts up to

two snap alignment positions:

none : initial value; don’t snap scroll in either direction

start : snap to the start of the element’s box

end : snap to the end of the element’s box

center : snap to the middle of the element’s box

When scroll-snap-align has a single position, that value is used for both axes. In other

words, scroll-snap-align: center is the same as scroll-snap-align: center center .

Whether start and end align to the right or left edge depends on the writing mode of the

document.

Let’s change the value of scroll-snap-align from none center to none start . Now, instead

of our child element being centered within the snapport, its starting edge is aligned to the
starting edge of the container, as pictured below.

462 CSS Master, 3rd Edition

11-2. The child element has scrolled to where its left edge aligns with the left edge of the container

Using scroll-snap-align: none end or scroll-snap-align: end , on the other hand, aligns

the ending edge of our child element to the ending edge of the container.

11-3. The scroll has ended with the child element’s right edge aligned with the right edge of the container

Don’t Break Scrolling!

Avoid using hidden with the overflow properties. Yes, it eliminates scrollbars. Unfortunately,

overflow: hidden also breaks keyboard and pointer device scrolling in Firefox and Safari.

Using arrow or Page Up/Page Down keys won’t work. Neither will scrolling via a trackpad,

mouse, or swipe gesture. Using overflow: hidden also breaks gesture and pointer device

scrolling in Chromium-based browsers.

Instead, use the scrollbar-width property5 to hide scrollbars. The scrollbar-width

property accepts three possible values: none , thin , and auto , which is the initial value.

5. https://drafts.csswg.org/css-scrollbars-1/#scrollbar-width

CSS and Scrolling 463

Adding scrollbar-width: none to a Scroll Snap container hides the scrollbar while

maintaining the ability to scroll the container.

To date, Firefox (versions 64 and later) is the only browser to support scrollbar-width . At the

time of writing, Chromium’s support is in progress6. Until it’s ready, use the ::-webkit-

scrollbar pseudo-class and display: none to hide scrollbars in both Chromium and WebKit-

based browsers. Here’s an example:

.scroll-container::-webkit-scrollbar {

display: none;

}

.scroll-container {

display: flex;

width: 70vw;

overflow-x: auto;

scroll-snap-type: inline mandatory;

scroll-padding: 0rem;

scrollbar-width: none;

}

If you do hide scrollbars, offer some visual indication that there’s more content available and
provide an alternative way to scroll through it. You may, for example, add Back and Forward
buttons and define a click handler that uses the Element.scrollBy() function. For example:

const moveIt = (evt) => {

/* If this is not a scrolling control, do nothing */

if(evt.type === 'click') {

if(! evt.target.classList.contains('scroll-trigger')) return;

}

/* Divide by 2 to reduce the distance scrolled */

let xScrollBy = (scrollContainer.clientWidth / 2);

/* Negate the scrollBy value if the back arrow was clicked */

if(evt.target.dataset.direction === 'back') {

xScrollBy = xScrollBy * -1;

}

const scrollContainer = document.querySelector('.scroll-container');

/*

scrollBy can accept arguments in the form (x-distance, y-distance),

or a dictionary that contains `top`, `left`, and/or `behavior`

properties.

6. https://bugs.chromium.org/p/chromium/issues/detail?id=891944

464 CSS Master, 3rd Edition

Instead of setting `behavior` as an option, we could also apply

the CSS `scroll-behavior` property to `.scroll-container`.

*/

const scrollByOptions = {

left: xScrollBy,

behavior: 'smooth'

}

scrollContainer.scrollBy(scrollByOptions);

}

/* Take advantage of event delegation */

document.body.addEventListener('click', moveIt);

This ensures that your site’s visitors know that there’s more to view.

When using navigation buttons, as shown here, you’ll also need to indicate how the scroll
should behave. Browsers treat a button click more like a link click than a scroll wheel; the
scrolling behavior will be an instant scroll, instead of a smooth one. To fix this, add scrolling-

behavior: smooth to the container element, or include behavior: 'smooth' in the dictionary

parameter that you pass to the scrolling function.

Optimizing the Scroll Viewing Area with scroll-padding

Sometimes you’ll want to ensure that your content isn’t obscured by a fixed or absolutely
positioned element. For instance, you may have controls that are positioned at the bottom of
the container, as shown in the image below, which depicts a Scroll Snap container with
scrolling controls for the container. The controls are absolutely positioned, within an element
that contains both the Scroll Snap container and buttons.

11-4. A container with vertically scrolling elements and Up and Down buttons sitting center bottom

CSS and Scrolling 465

This is when the scroll-padding property comes in handy. As the specification explains, the

scroll-padding property defines the optimal viewing region of a scrollport. It adds space

within the scrolling container, but doesn’t change its dimensions. This is true even if the
computed value of its box-sizing property is border-box .

Let’s look at an example. We’ll use markup from earlier in this section, and add additional
elements for our controls:

<div class="slideshow">

<p class="controls">

<button type="button" data-direction="back">Up</button>

<button type="button" data-direction="forward">Down</button>

</p>

<div class="scroll-container">

<p>A</p>

<p>B</p>

<p>C</p>

<p>D</p>

<p>E</p>

<p>F</p>

<p>G</p>

<p>H</p>

</div>

</div>

Let’s pair the above markup with the CSS shown below:

.slideshow {

position: relative;

}

.controls {

position: absolute;

bottom: 0;

z-index: 1;

display: flex;

gap: 2rem;

justify-content: center;

width: 100%;

Scrollports and Snapports

A scrollport is the viewable area of a scrolling container. The snapport is the
scrollport plus any offsets specified with scroll-padding .

466 CSS Master, 3rd Edition

}

.scroll-container {

width: 70vw;

height: 50vh;

margin: auto;

overflow-y: auto;

scroll-snap-type: block mandatory;

}

.scroll-container p {

margin: 0;

height: 80%;

scroll-snap-align: end none;

}

This gives us the layout we saw pictured at the beginning of this section. Without scroll-

padding , each child element gets partially obscured by the controls at the end of each

scrolling operation. You can see this in the image below.

11-5. The positioned scroll buttons sit on top of the scrolled child element

Let’s add a scroll-padding declaration to our scroll container:

.scroll-container {

width: 70vw;

height: 50vh;

margin: auto;

overflow-y: auto;

scroll-snap-type: block mandatory;

/* Total height of the control container and its vertical margin */

scroll-padding: 0 0 68px;

}

Now at the end of each scrolling operation, the end of the child element aligns with the edge

CSS and Scrolling 467

of the Scroll Snap container, plus 68 pixels.

11-6. The scroll extends a bit further so that the target child element isn’t partly obscured by the scroll buttons

As you may have gathered from its syntax, scroll-padding is a shorthand property for

physical longhand properties. Values follow the same order and syntax as margin or

padding : top, right, bottom, left. You can use lengths or percentages for values, but negative

values are invalid.

If you only want to set padding along a single edge, use physical properties instead. The
physical longhand scroll-padding properties are as follows:

scroll-padding-top

scroll-padding-right

scroll-padding-bottom

scroll-padding-left

For padding that adjusts with the writing mode, use flow-logical longhand properties:

scroll-padding-inline-start

scroll-padding-block-start

scroll-padding-inline-end

scroll-padding-block-end

All Scroll Containers

The scroll-padding property applies to scroll containers of every type, not just
Scroll Snap containers.

468 CSS Master, 3rd Edition

Like other logical properties, which edge these properties affect depends on the document’s
writing mode. In languages written horizontally from left to right, scroll-padding-inline-

start is the left edge of the container and scroll-padding-block-start is its top edge. For

horizontal, right-to-left languages, scroll-padding-inline-start is the right edge. For

vertical, right-to-left languages, scroll-padding-block-start is the right edge. For vertical,

left-to-right languages, it’s the left.

Using scroll-padding only affects a scrolling axis when there’s something to scroll. Adding

left or right scroll padding has no effect when using scroll-snap-type: y . Similarly, scroll-

padding-top makes no difference when the scroll direction is horizontal.

Shifting Box Alignment with scroll-margin

The scroll-margin property, on the other hand, applies to the children of a scroll container. It

adjusts the area of the box that gets aligned to the snapport. It doesn’t change the
dimensions of the box to which it’s applied, but instead shifts its alignment position by the
provided length. Let’s revisit our CSS from the scroll-snap-align section:

.scroll-container p {

scroll-snap-align: none center;

}

Without scroll-margin , each child of a Scroll Snap container will be centered within the

snapport, as pictured below.

11-7. The child element is centered horizontally within the container

Let’s add a right scroll-margin value of 200 pixels:

CSS and Scrolling 469

.scroll-container p {

scroll-snap-align: none center;

scroll-margin: 0 200px 0 0;

}

Now the center of our child element is shifted to the left by 200 pixels, due to this extra right
margin, as shown below.

11-8. The child element has moved 200 pixels to the left

Values for scroll-margin must be lengths. Negative values are perfectly valid, and scroll-

margin uses the same ordering as margin . Let’s change our right scroll-margin value to a

negative value.

.scroll-container p {

scroll-snap-align: none center;

scroll-margin: 0 -200px 0 0;

}

Now the center of our child element has been pulled 200 pixels to the right, as pictured below.
This is, in effect, the same as using a positive scroll-margin-left value.

470 CSS Master, 3rd Edition

11-9. The scrolled child element has now been pulled 200 pixels to the right thanks to the negative right margin

Much like scroll-padding , the scroll-margin property is a shorthand for the physical

longhand properties. Values are ordered the same way as margin and scroll-padding too:

top, right, bottom, and left. You can also specify a margin value based on the inline or block
direction:

scroll-margin-top

scroll-margin-right

scroll-margin-bottom

scroll-margin-left

Logical longhand properties are:

scroll-margin-inline-start

scroll-margin-block-start

scroll-margin-inline-end

scroll-margin-block-end

Here, too, scroll-margin only affects the margin of a box along the axis of the overflowing

content. If the scrolling direction is vertical, adding scroll-margin-left , scroll-margin-

right , or either of the scroll-margin-inline-* properties, won’t affect box alignment within

the scrollport.

To date, there isn’t a way to change the Scroll Snap timing function using CSS. If you want that
level of control, you’ll still need to use JavaScript.

CSS and Scrolling 471

Conclusion
You’ve made it to the end of this chapter! You should now know:

how to create smooth scrolling jump links without JavaScript
how to create a carousel or slide show using a minimal amount of JavaScript

There’s an area of CSS that’s a little more experimental than the features we’ve discussed in
the book so far: using CSS with SVG. SVG (which stands for Scalable Vector Graphics) uses
markup to describe how images should be rendered onscreen. Because SVG is markup, we
can use many CSS properties with SVG elements. We can also express some SVG attributes
using CSS properties. We’ll dig into the details in the next chapter.

472 CSS Master, 3rd Edition

SVG
Chapter

12

SVG 473

So far, we’ve talked about using CSS with HTML, but we can also use CSS with SVG, or
Scalable Vector Graphics. SVG is a markup format for describing flat, two-dimensional
images. Because it’s a markup language, it has a Document Object Model, and can be used
with CSS.

By using CSS with SVG, we can change the appearance of SVG based on user interaction. Or
we can use the same SVG document in multiple places, and show or hide portions of it based
on the width of the viewport.

All major browser engines support the SVG 1.1 specification, and they have done for years.
Support for features of SVG 2, on the other hand, is still a work in progress. Some of what we’ll
discuss here has limited browser support at the time of writing. That may have changed by
the time you’re reading this. Keep an eye on the Chromium meta issue—Implement SVG2
features1—to track development progress in Chromium-based browsers. Watch the Support
SVG 2 features2 meta issue to follow Firefox’s implementation work, and WebKit’s Implement
SVG 2 meta issue3 for Safari. Issue trackers can be unpleasant to navigate, but for now
they’re the best way to track SVG 2 support.

Before we go any further, however, let’s talk about what SVG is and why you should use it.

Vector Images versus Raster Images
Most of the images currently used on the Web are raster images, also known as bitmap
images. Raster images are made up of pixels on a fixed grid, with a set number of pixels per
inch. JPEG, WebP, GIF, and PNG are all examples of raster image formats.

Raster images are resolution dependent. A 144 PPI (pixels-per-inch) PNG image looks great
on a device with a 144 PPI display resolution. When viewed on a higher resolution, 400 PPI
display, however, that same image can look fuzzy. Raster images also have fixed dimensions
and look best at their original size. Scaling a 150 by 150 pixel image up to 300 by 300 pixels
distorts it.

Instead of using pixels on a grid, vector image formats describe the primitive shapes—circles,
rectangles, lines, or paths—that make up an image, and their placement within the document’s
coordinate system. As a result, vector images are resolution independent, and retain their
quality regardless of display resolution or display dimensions.

1. https://bugs.chromium.org/p/chromium/issues/detail?id=225863
2. https://bugzilla.mozilla.org/show_bug.cgi?id=1328534
3. https://bugs.webkit.org/show_bug.cgi?id=191292

474 CSS Master, 3rd Edition

Resolution independence is the biggest advantage of SVG. We can scale images up or down
with no loss of quality. The same image looks great on both high and low PPI devices. That
said, SVG is poorly suited to the amount of color data required for photographs. It’s best for
drawings and shapes. Use it in place of PNG and GIF images, and as a more flexible
replacement for icon fonts.

Another advantage of SVG is that it was designed to be used with other web languages. We
can create, modify, and manipulate SVG images with JavaScript. Or, as we’ll see in this chapter,
we can style and animate SVG using CSS.

Associating CSS with SVG Documents
Using CSS with SVG is a lot like using it with HTML. We can apply CSS using the style

attribute of an SVG element, group CSS within a document using the <style> element, or link

to an external stylesheet. The pros and cons of each method are the same as when using CSS
with HTML.

Using the style Attribute

Here’s a simple SVG document where the code creates a black circle:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 200"

➥enable-background="new 0 0 200 200">
<circle cx="101.3" cy="96.8" r="79.6" />

</svg>

The image below shows how that code renders in a browser.

SVG 475

12-1. A circle in SVG

Let’s give our circle a pink fill using CSS and the style attribute:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 200"

➥enable-background="new 0 0 200 200">
<circle cx="101.3" cy="96.8" r="79.6" style="fill: #f9f" />

</svg>

The effect of this is shown below.

476 CSS Master, 3rd Edition

12-2. Using the style attribute to add a fill color

Here’s one difference between using CSS with HTML and using it with SVG: property names.
Many of the CSS properties that we use with HTML documents aren’t compatible with SVG,
and vice versa. We’ll come back to this point later in the chapter.

Using the style attribute isn’t the best way to use CSS, of course. Doing so limits the ability

to reuse those styles across multiple elements or documents. Instead, we should use inline or
linked CSS.

Embedding CSS in SVG Documents

Instead of using the style attribute, we can use the <style> element:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0

➥ 200 200" enable-background="new 0 0 200 200">
<style type="text/css">

circle {

fill: #0c0;

}

</style>

<circle cx="101.3" cy="96.8" r="79.6" />

</svg>

Embedding CSS in an SVG document lets us reuse those styles for multiple elements within

SVG 477

the same document, but it prevents that CSS from being shared across multiple documents.
That’s fine for logos and icons. But if you’re creating something like a library of chart styles, an
external CSS file is a better bet.

Using a standard text editor, you can also add CSS to SVG images created with software such
as Sketch, Inkscape, or Illustrator. Doing so won’t affect your ability to edit the image with the
drawing application, but if you edit the file using image software, the application may rewrite
or remove your CSS.

Linking from SVG to an External CSS File

As with HTML, linking to an external CSS file makes it possible to share styles across several
SVG documents. To link an external CSS file, add <? xml-stylesheet ?> to the beginning of

your SVG file:

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet href="style.css" type="text/css"?>

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0

➥ 200 200" enable-background="new 0 0 200 200">
<circle cx="101.3" cy="96.8" r="79.6" />

</svg>

Using the <link> Element

Alternatively, use the HTML <link> element. If you do use this method, you’ll need to include

the xmlns namespace attribute, as shown below:

<link href="style.css" type="text/css" rel="stylesheet"

➥ xmlns="http://www.w3.org/1999/xhtml" />

The <link> element isn’t an SVG element. It belongs to HTML and XHTML. XHTML is a

variant of HTML that’s parsed according to the rules of XML markup. According to the rules of
XML, we can borrow elements and their behavior from other XML dialects, such as XHTML. To
do so, however, we need to tell the browser which namespace the element belongs to using

Older Browsers and <link>

Some older browsers need the <link> element to be enclosed by <defs> or <g>

tags.

478 CSS Master, 3rd Edition

the xmlns attribute.

Using @import

We can also link to an external stylesheet by using @import inside <style> and </style>

tags:

<style type="text/css">

@import('style.css');

</style>

This method functions similarly to the <link> method.

SVG and the Element: Limitations

Linking from SVG files to external assets, including CSS files, doesn’t work with the

element. This is a security limitation of the element that’s baked into browsers.

If you’d like to use linked CSS with your SVG images, you’ll need to do either of these two
things:

use the <style> element in your SVG document to place your CSS inline

use an <iframe> or <object> element (see note below)

In general, you should use <iframe> over <object> . However, the <object> element can be

the child of an <a> element, while <iframe> can’t. Using <iframe> or <object> also makes

the SVG document tree available to the parent document’s document tree. This means that
we can use JavaScript to interact with it (for example, with
document.querySelector('iframe').contentDocument).

Inline SVG and External Assets

When adding SVG to HTML, the browser won’t load external assets referenced by the SVG

Using <iframe> and <object>

Craig Buckler’s tutorial “How to Add Scalable Vector Graphics to Your Web Page”4

discusses using <iframe> and <object> in detail.

4. https://www.sitepoint.com/add-svg-to-web-page/

SVG 479

document. We can, however, link to CSS for our SVG document from the <head> of our HTML

document:

<head>

⋮
<link href="svg.css" type="text/css" rel="stylesheet" />

</head>

SVG elements within HTML documents also become part of the HTML document tree. If
you’re using inline SVG, it’s perfectly fine to combine your HTML-related and SVG-related CSS
in the same stylesheet.

Differences between SVG and HTML
While SVG and HTML are both markup languages, there are two significant differences
between them that affect how they work with CSS:

SVG doesn’t adhere to the CSS box model
SVG lacks a positioning scheme

SVG Doesn’t Adhere to the CSS Box Model

When used with HTML, CSS layout follows the rules of the CSS box model. SVG, on the other
hand, uses coordinates for layout. It adheres to what may be best understood as a “shape
model”.

SVG shapes aren’t limited to rectangular boxes. As a result, most box-model–related
properties don’t apply to SVG elements. You can’t, for instance, change the padding or

margin of an SVG element. Nor can you use the box-sizing , box-shadow , outline , or

border-* properties. Grid layout, floats, and Flexbox also don’t work.

You can, however, use CSS to set or change a range of SVG properties and attribute values.
The full list is outlined in the SVG 2 specification5, although support in most browsers is
incomplete. Some CSS properties, such as filter , can be used with SVG or HTML. We’ll

discuss a few of them in this chapter, within the context of specific techniques.

SVG Lacks a Positioning Scheme

When CSS is used with HTML, element boxes can:

5. https://www.w3.org/TR/SVG2/propidx.html

480 CSS Master, 3rd Edition

exist within a normal flow
be removed from normal flow with the float property

be removed from normal flow with the position property

The CSS specification refers to these as positioning schemes. Positioning schemes don’t
exist in SVG. The position property has no effect on SVG elements. Neither do properties

such as top , left and bottom , which depend on elements being positioned. You also can’t

float elements within an SVG document.

Instead, SVG uses a coordinate system for element placement. To create a <circle> , for

example, you need to set its center point coordinates using the cx and cy attributes, and

set a radius length using the r attribute. A polygon consists of a series of point coordinates

and line segments drawn between them. In other words, you can define where an element will
be drawn to the SVG canvas, but you can’t “position” them in the CSS sense of the word.

Related to positioning schemes, SVG also lacks the idea of z-index and stacking contexts.

The SVG 2 specification does define behavior for z-index and stacking contexts in SVG

documents6, but most browsers don’t yet support it. SVG elements are instead stacked
according to their source order. Those that appear later in the document sit towards the top
of the stack. If you want to change the stacking order of SVG elements, you’ll need to move
them around in the source or use JavaScript to reorder them in the DOM tree.

In fact, most CSS 2.1 properties don’t apply to SVG documents. Exceptions include animations
and transforms, display , overflow , visibility , filter , and a few font and text-related

properties. Instead, you’ll have to use SVG-specific styling properties with SVG documents.
Most of these properties can also be expressed as SVG element attributes.

Styling SVG Elements
Here’s a simple example of how to style SVG elements using CSS. First our SVG document,
which is a stand-alone file:

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet href="styles.css" type="text/css" ?>

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink=

➥"http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 497
➥ 184" enable-background="new 0 0 497 184" xml:space="preserve">

<polygon id="star" points="77,23.7 98.2,66.6 145.5,66.5 111.2,

➥106.9,119.3,154 77,131.8 34.7,154 42.8,106.9 8.5,67.5 55.8,

6. https://svgwg.org/svg2-draft/

SVG 481

➥66.6 "/>
<circle id="circle" cx="245" cy="88.9" r="67.5"/>

</svg>

This markup creates the image shown below.

12-3. A simple star and circle SVG image

Although we can’t use most CSS properties with SVG documents, we can use CSS to change
an element’s color. Let’s make our star yellow:

#star {

fill: hsl(44, 100%, 50%);

}

You’ll often see the fill attribute used with SVG tags—for example, <circle fill="rgb(

255, 185, 0)" cx="3" cy="10" r="100"> —but it’s also a property that can be used with CSS.

We can also use CSS to adjust an element’s stroke , which is the outline of an SVG shape. A

shape’s stroke exists, even if no stroke properties are set. Let’s give our circle a dark blue,

dashed border that’s ten pixels wide. We’ll also set its fill property to cornflowerblue :

482 CSS Master, 3rd Edition

circle {

fill: cornflowerblue;

stroke: darkblue;

stroke-width: 10;

stroke-dasharray: 10, 15;

stroke-linecap: round;

}

Together this gives us the result below.

12-4. Our star and circle with color and outline

Using SVG Attributes as CSS Properties

We can also use CSS to set the coordinate values of some shape elements: <rect> ,

<circle> , and <ellipse> . Typically, we’d use SVG attributes for these elements:

<svg viewBox="0 0 400 400" xmlns="http://www.w3.org/2000/svg">

<rect x="20" y="200" width="300" height="300" fill="#f60" />

</svg>

However, SVG 2 redefined some SVG attributes as geometry properties. This means we can
use CSS to set their values:

SVG 483

<svg viewBox="0 0 400 400" xmlns="http://www.w3.org/2000/svg">

<style type="text/css">

rect {

x: 20px;

y: 50px;

width: 300px;

height: 300px;

fill: #f60;

}

</style>

<rect />

</svg>

Coordinate properties (x and y), center coordinate properties (cx and cy), and radius

properties (rx , ry , and r), can be set using CSS. So can width and height . Units are

optional for SVG attributes. CSS values, on the other hand, require units. Both lengths and
percentages are valid for the properties mentioned here, but be aware that lengths work a bit
differently with SVG documents. Remember that the S in SVG stands for scalable. The
computed size of an SVG element also depends on:

the computed width and height of the root SVG element

the value of the root element’s viewBox attribute

any scaling transforms applied to the element or its ancestors

In other words, the corners of our <rect> element are (20, 50) , (20, 320) , (350, 320) ,

and (20, 350) within the SVG coordinate system. However, the actual dimensions may be

larger or smaller, depending on the factors above.

Not every SVG attribute is available via CSS—at least not in every browser. For example,
Chrome and Edge support using the CSS path() function to set path data, or the d

attribute:

path {

d: path("M 454.45223,559.21474 -304.96705,163.45948 417.4767,-296.33928 Z");

}

As of this writing, they are the only browsers that do. Work to add support in Firefox7 and
WebKit has not yet begun.

For other shape elements, the SVG 2 specification is downright inconsistent. To date, you
must use element attributes to set the properties of <line> , <polyline> , and <polygon>

7. https://bugzilla.mozilla.org/show_bug.cgi?id=1042874

484 CSS Master, 3rd Edition

elements.

That said, we aren’t limited to using type (or element) selectors to set properties. We could,
for instance, define small, medium, and large circles using class selectors:

<svg viewBox="0 0 400 400" xmlns="http://www.w3.org/2000/svg">

<style type="text/css">

.small {

cx: 20px;

cy: 20px;

r: 20px;

fill: #0c0;

}

.medium {

cx: 80px;

cy: 80px;

r: 60px;

fill: #fc0;

}

.large {

cx: 220px;

cy: 220px;

r: 120px;

fill: #00f;

}

</style>

<circle class="small" />

<circle class="medium" />

<circle class="large" />

</svg>

Regardless of the selector, using CSS syntax to specify properties also makes it easy to
animate them. We’ll take a look at how to do this in the next section.

Animating and Transitioning SVG CSS Properties
Using CSS with SVG becomes more interesting when we add transitions and animations to
the mix. The process is just like animating HTML elements with CSS, but with SVG-specific
properties. Let’s create a twinkling star effect using the following SVG document:

SVG 485

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" x="0px"

➥ y="0px" viewBox="0 0 497 184" xml:space="preserve">
<defs>

<link href="twinkle.css" type="text/css" rel="stylesheet"

➥ xmlns="http://www.w3.org/1999/xhtml"/>
</defs>

<polygon class="star" points="77,23.7 98.2,66.6 145.5,66.5 111.2

➥,106.9 119.3,154 77,131.8 34.7,154 42.8,106.9 8.5,67.5
➥ 55.8,66.6 "/>

<polygon class="star twinkle" points="77,23.7 98.2,66.6 145.5,

➥66.5 111.2,106.9 119.3,154 77,131.8 34.7,154 42.8,106.9
➥ 8.5,67.5 55.8,66.6 "/>
</svg>

Our document contains two star-shaped polygon elements, each with a class name of star .

To create the twinkling effect, we’ll animate the first one. Here’s our CSS:

@keyframes twinkle {

from {

fill-opacity: .4;

}

to {

fill-opacity: 0;

transform: scale(2);

}

}

.star {

fill: rgb(255,195,0);

transform-origin: 50% 50%;

}

.twinkle {

animation: twinkle 1.5s infinite forwards ease-in;

}

Here we’ve used the SVG-specific property fill-opacity . As with CSS, if we can interpolate

the value of an SVG styling property, we can animate or transition it. You can see two different
points of the animation in the image below.

486 CSS Master, 3rd Edition

12-5. States of our pulsing star animation

Let’s look at another example. This time we’ll create a drawing effect by transitioning the
stroke-dasharray property. Here’s our SVG document:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"

➥xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 200 200" enable-background="new 0 0 200 200">

<circle fill="transparent" stroke-width="16" cx="101.3"

➥ cy="96.8" r="79.6"/>
</svg>

The stroke-dasharray property accepts a comma-separated list of length or percentage

values that create a dashed pattern. Odd-numbered values determine the dash length. Even-
numbered values determine the gap length. A stroke-dasharray value of 5, 10 means that

the stroke will be 5px long with a gap of 10px between each dash. A value of 5, 5, 10

alternates 5px and 10px dash lengths with 5px gaps in between.

We can use stroke-dasharray to create a drawing effect by starting with a zero dash length

and a large gap, and ending with a large dash length and a dash gap of zero. Then we’ll
transition between the two. Here’s what our CSS looks like:

circle {

transition: stroke-dasharray 1s ease-in;

fill: transparent;

stroke-dasharray: 0, 500;

}

SVG 487

.animate {

stroke-dasharray: 500, 0;

}

At the beginning of the transition, our stroke is invisible because the dash length is 0 and our

gap is 500 . But when we add the animate class to our circle, we shift the dash length to 500

and eliminate the gap. The effect is a bit like drawing a circle with a pair of compasses. Why
500? It’s the smallest value that worked to create this particular effect.

An Animated Path Future

Remember our example of defining a path via CSS from the previous section? Someday, we
may be able to animate paths in every browser, using CSS:

path {

d: path("M357.5 451L506.889 192.25H208.111L357.5 451Z");

transition: d 1s ease-in-out;

}

.straighten {

d: path("M357.5 8871L406 -10113.75H208.111L357.5 351Z");

}

To date, however, only Chromium-based browsers such as Google Chrome and Microsoft
Edge support animating path definitions in this way. To make this work in other browsers, use
a JavaScript library such as GreenSock8 and its MorphSVGPlugin. In addition to its cross-
browser compatibility, GreenSock and the MorphSVGPlugin also make it much easier to
morph between two shapes regardless of the number of points in each.

Using SVG with Media Queries
With HTML documents, we might show, hide, or rearrange parts of the page based on the
conditions of the viewport. If the browser window is 480 pixels wide, for example, we might
shift our navigation from a horizontal one to a vertical, collapsible list. We can do something
similar with media queries and SVG documents. Consider a logo, such as that of the fictitious
Hexagon Web Design & Development pictured below.

8. https://greensock.com/

488 CSS Master, 3rd Edition

12-6. A very real logo for a fictitious company

Without media queries, this SVG logo would simply stretch or shrink to fit the viewport or its
container. But with media queries, we can do more clever things.

Let’s distinguish between the HTML document viewport and the SVG document viewport.
When SVG is inline, the HTML viewport and the SVG viewport are one and the same. The SVG
document behaves like any other HTML element. On the other hand, when an SVG document
is linked—as with the <iframe> , <object> or elements—we’re dealing with the SVG

document viewport.

Media queries work in both cases, but when the SVG document is linked, its viewport is
independent of its HTML document. In that case, the size of the browser window doesn’t
determine the size of the SVG viewport. Instead, the viewport size is determined by the
dimensions of the <object> , <iframe> , or element. Take the (abridged) SVG

document that follows as an example: 9

<svg version="1.1" id="HexagonLogo" xmlns="http://www.w3.org/2000/

➥svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
➥ viewBox="0 0 555 174" xml:space="preserve">

<defs>

<style type="text/css">

/* CSS goes here */

</style>

</defs>

<g id="hex">

<polygon id="hexagonbg" points="55.2,162 10,86.5 55.2,11

➥ 145.5,11 190.7,86.5 145.5,162 "/>

9. A full demonstration of this technique, including the complete source of this SVG document, is
available in the code archive: https://github.com/spbooks/csspro3

SVG 489

<path id="letterH" fill="#FFFFFF" d="M58,35.5h33v35.2h18.

➥4V35.5 h33.2v103.4h-33.2v-38.3H91v38.3H58V35.5z M77.5,126.5V87.
➥3h45.6v39.2h4V47.9h-4v35.6H77.5V47.9h-4v78.6H77.5z"/>

</g>

<g id="word-mark">

<g id="hexagon-word">

...

</g>

<g id="web-design-and-dev">

...

</g>

</g>

</svg>

In smaller viewports, let’s show just the H in a hexagon symbol:

@media (max-width: 320px) {

[id=word-mark] {

display: none;

}

}

Now, whenever our SVG’s container is less than or equal to 20em , only the symbol portion of

our logo will be visible.

12-7. Showing/hiding elements based on the SVG viewport size

490 CSS Master, 3rd Edition

To trigger this view from the HTML document, set the width of the SVG container:

<iframe src="hexlogo.svg" style="width: 320px; border:0"></iframe>

As you may have noticed from looking at the image above, our SVG image retains its intrinsic
dimensions even though part of it has been hidden. This, unfortunately, is a limitation of SVG.
To fix it, we need to change the viewBox attribute of the SVG document, but only when the

viewport is below a certain size. This is a great use case for matchMedia (which is discussed in

Chapter 10, “Applying CSS Conditionally”).

The viewBox attribute, as its name suggests, determines the viewable area of an SVG

element. By adjusting it, we can determine which part of an SVG image fills the viewport.
What follows is an example using matchMedia and a media query to update the viewBox

attribute:

<script type="text/javascript">

const svg = document.querySelector('svg');

/* Store the original value in a variable */

const originalViewBox = svg.getAttribute('viewBox');

/* Define our media query and media query object */

const mq = matchMedia('(max-width: 320px)');

/* Define the handler */

const updateViewBox = () => {

if (mq.matches) {

/* Change the viewBox dimensions to show the hexagon */

svg.setAttribute('viewBox', '0 0 200 174');

} else {

svg.setAttribute('viewBox', originalViewBox);

}

}

svg.addEventListener('SVGLoad', updateViewBox);

/* Fire if the media condition changes */

mq.addEventListener('change', updateViewBox);

</script>

Now, whenever the SVG container is 320 pixels or less, the value of viewBox will be "0 0

200 174" . When it exceeds 320 pixels, viewBox gets restored to its initial value.

SVG 491

12-8. Adjusting the viewBox attribute based on the viewport’s width

Since this technique uses either the onload event attribute or the SVGLoad event, it’s a good

idea to embed our CSS and JavaScript within the SVG file. When CSS is external, the SVGLoad

event may fire before its associated CSS finishes loading.

Using Media Queries with background-size

SVG documents and media queries aren’t limited to foreground images. We can also resize
the SVG viewport using the CSS background-size property.

We’ll start with this SVG document:

<?xml version="1.0" encoding="utf-8"?>

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"

➥ xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
➥ viewBox="-20 -20 250 250" xml:space="preserve">

<style type="text/css">

circle {

stroke: #000;

stroke-width: 30;

492 CSS Master, 3rd Edition

fill: #009688;

}

@media (width: 100px) {

circle {

fill: #673ab7;

}

}

@media (width: 300px) {

circle {

fill: #ffc107;

}

}

</style>

</defs>

<circle cx="100" cy="100" r="100" />

<circle cx="100" cy="100" r="50" />

</svg>

This is a simple case. Our <circle> elements get a new fill color at specific viewport

widths. When the viewport is 20 pixels wide, the fill value is teal. When it’s 300 pixels wide,

it’s yellow.

To make this work, we have to use our SVG image as a background image and set the
selector’s background-size property. In this case, we’ll use our image as a background for the

<body> element and for elements:

body, li {

background: url(circles.svg);

}

body {

background-color: #9c27b0;

background-size: 300px auto;

}

li {

background-position: left center;

background-repeat: no-repeat;

background-size: 1em auto;

padding-left: 40px;

font-size: 24px;

margin: 1rem 0;

}

The result is pictured below.

SVG 493

12-9. Manipulating the SVG viewport with the CSS background-size property

Conclusion
Using SVG with CSS gives us more possibilities for flexible and adaptive documents. Upon
completing this chapter, you should now know how to:

use CSS to style SVG elements
animate SVG properties
employ CSS media queries and the matchMedia API to show and hide portions of an SVG

document

494 CSS Master, 3rd Edition

Conclusion
Chapter

13

Conclusion 495

In this book, we’ve covered some of the finer points and broad strokes of CSS. In some ways,
we’ve only scratched the surface.

With the CSS Working Group’s switch to modularized specifications and shorter browser
release cycles, new CSS features are created and implemented much more quickly.
Attempting to keep up and stay ahead of the curve can leave your head spinning. Indeed,
browsers support CSS features and properties such as generated content1 and scroll
anchoring2, which I haven’t covered in this book.

So what’s coming next? Quite a bit! One caveat: progress on features that seem to be on a
fast track can stall over time. Browser vendors shift development priorities and sometimes
entire rendering engines based on developer demand, performance, security, and business
concerns. In rare cases—such as support for SVG fonts—vendors may remove support
altogether.

The following list of upcoming features isn’t comprehensive. It’s more of a look at a few
specifications and implementations in progress.

Nested Grids with subgrid

Applying display: grid to an element creates a grid formatting context, and turns its

immediate child elements into grid items. Children of grid items, however, don’t participate in
the grid formatting context. Instead, they behave according to the rules of normal flow, as
pictured below.

1. https://drafts.csswg.org/css-content-3
2. https://drafts.csswg.org/css-scroll-anchoring-1/

496 CSS Master, 3rd Edition

13-1. Descendants of grid items participate in the normal layout flow

As the image above illustrates, neither child of Item 1 participates in the grid formatting
context of its “grandparent” element. By specifying a subgrid, however, we can force our
grandchild elements to line up with the grid tracks established by the grandparent element.

First, let’s look at the markup for the layout shown in the image above:

<div class="grid">

<div class="grid-item-1">

Item 1

<div class="subgrid-item">Child of Item 1</div>

<div class="subgrid-item">Child of Item 1</div>

</div>

<div class="grid-item-2">Item 2</div>

<div class="grid-item-3">Item 3</div>

<div class="grid-item-4">Item 4</div>

</div>

The markup is straightforward. Our grid container has four child elements, and its first child
has two children of its own.

Here’s the CSS. I’ve removed non-essential declarations such as background colors:

.grid {

gap: 2rem;

Conclusion 497

display: grid;

grid-template-columns: repeat(12, 1fr);

grid-template-rows: repeat(2, 1fr);

}

/*Spans 10 columns */

.grid-item-1 {

grid-column: 1 / 11;

}

/* Spans two columns */

.grid-item-2 {

grid-column: 11 / 13;

}

/* Spans six columns each */

.grid-item-3 {

grid-column: 1 / 7;

}

.grid-item-4 {

grid-column: 7 / 13;

}

.subgrid-item {

font-size: .5em;

padding: .5rem;

}

We haven’t yet defined a subgrid for this layout. Adding a subgrid requires adding two
declarations to a grid item:

display: grid (or display: inherit), which creates a grid formatting context for

children of the grid item
grid-template-columns: subgrid or grid-template-rows: subgrid

Let’s add a column subgrid for .grid-item-1 . We’ll also make each child element take up five

columns:

.grid-item-1 {

grid-column: 1 / 11;

/* Adopts the adopts the parent's grid tracks */

display: grid;

grid-template-columns: subgrid;

}

.subgrid-item:first-child {

grid-column: 1 / 6;

}

.subgrid-item:last-child {

grid-column: 6 / 11;

498 CSS Master, 3rd Edition

}

Elements within the subgrid align with the grid tracks of the parent grid container, as pictured
below.

13-2. Elements within a subgrid align with the grid tracks of the parent grid container

The child elements of Item 1 now align with the grid tracks of div.grid , minus any padding

applied to .grid-item-1 .

You may also have noticed from the screenshots that the Item 1 text wraps in our subgrid.
Although that text isn’t an element, it participates in the grid formatting context of its parent.
As a result, its width is constrained to the width of a single grid track.

Unfortunately, Firefox (versions 71 and above) is the only browser that currently supports
subgrid.

Creating Brick-like Layouts with masonry

Firefox is also the only browser that currently supports masonry-style grid layouts. It’s still
experimental at this stage. You’ll need to enable it by changing the value of layout.css.grid-

template-masonry-value.enabled to true . You can find this option in Firefox’s about:config

menu.

Conclusion 499

Masonry-style layouts, also known as Pinterest-style layouts, until now have required a
JavaScript library such as Masonry.js3. With the masonry grid template value, creating

masonry-style layouts requires much less effort:

.grid {

display: grid;

gap: 1rem;

/* Short hand for grid-template-rows / grid-template-columns */

grid-template: masonry / repeat(6, 1fr);

}

This creates the layout shown in the image below.

13-3. Masonry or Pinterest-style layouts are much easier to create thanks to the masonry value of grid-template

Rather than add strict tracks for rows (when grid-template-rows: masonry) or columns (when

grid-template-rows: masonry), masonry creates a tightly packed layout.

Grid items shrink to the dimensions of their content. By default, they’re arranged where
there’s available space, which may not match the source order. However, we can change this
behavior using the masonry-auto-flow property4. For example, adding masonry-auto-flow:

next to the grid container forces items to be arranged in order, as pictured below, where

3. https://masonry.desandro.com/
4. https://developer.mozilla.org/en-US/docs/Web/CSS/masonry-auto-flow

500 CSS Master, 3rd Edition

masonry-auto-flow: next preserves the order of grid items in a masonry layout.

13-4. Using masonry-auto-flow: next preserves the order of grid items in a masonry layout

To experiment with masonry while ensuring backward compatibility, separate your grid-

template-rows and grid-template-columns values. Remember: if a browser can’t parse a

declaration, that declaration gets discarded. Using grid-template for both values would

make the entire rule fail. Instead, set grid-template-rows or grid-template-columns to

masonry , and use the other property to define grid tracks:

.grid {

display: grid;

gap: 1rem;

grid-template-columns: repeat(6, 1fr);

grid-template-rows: masonry;

}

In browsers that don’t yet support the masonry value, the CSS above creates a six-column

grid layout. For 12 grid items, you’d see two rows.

Container Queries
Almost as soon as media queries landed in browsers, developers began asking for a way to
change the layout of components based on the width of their container, instead of the
browser viewport. A few developers have used JavaScript to create responsive containers5

Conclusion 501

and element queries6 that have a similar effect, but browser implementations have never
gone beyond the specification phase.

In March of 2021, however, Chrome announced some movement in this space. Google
released Chrome Canary with an experimental container queries implementation, based on a
draft specification7 for single-axis containment.

Work on the container queries feature is now part of the CSS Containment specification8. We
may soon be able to create adaptable layouts using an @container rule with a syntax that’s

similar to @media :

.simple-input {

contain: layout inline-size; /* Creates a containment context for the inline axis */

}

.simple-input input,

.simple-input button {

display: block;

font: inherit;

padding: 2px;

}

@container (min-width: 40rem) {

.simple-input {

display: flex;

gap: 1rem;

}

}

To experiment with container queries today, install Chrome or Chromium. Enable the feature
by typing chrome://flags/#enable-container-queries in the address bar, and selecting

Enabled from the Enable CSS Container Queries menu.

Both David A. Herron’s “Container Queries: a Quick Start Guide”9 and the Mozilla Developer
Network’s “CSS Container Queries”10 are fantastic introductions to container queries.
CodePen also has a growing collection of container query demos worth exploring11. If poring
over technical details is your thing, read Miriam Suzanne’s “Container Query Proposal &
Explainer”12.

5. https://github.com/ahume/selector-queries
6. https://github.com/eqcss/eqcss
7. ttps://github.com/w3c/csswg-drafts/issues/5796
8. https://drafts.csswg.org/css-contain/
9. https://www.oddbird.net/2021/04/05/containerqueries/
10. https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Container_Queries
11. https://codepen.io/collection/XQrgJo

502 CSS Master, 3rd Edition

How to Follow Changes and Additions to CSS
Keeping track of all this can be overwhelming. Just when you think you’re up to date on
everything, you find a new spec that you didn’t know existed, or an existing spec changes in a
significant way. Because specifications and implementations are often in flux, keeping up with
changes to CSS can be tough. But it is possible.

The World Wide Web Consortium manages a list of current specifications and their status13.
One of the best ways to become a CSS expert is to carefully read specifications.
Specifications explain how features are supposed to work, and can help you recognize
browser bugs, or understand what may be going wrong in your CSS.

If you’d like to track the development and discussion of CSS specifications, try the CSS
Working Group’s GitHub repository. It contains current drafts of specifications14 , and a list of
issues that developers, browser vendors, and specification editors are working through15.
The CSS Working Group also has a Twitter account16 if you’d just like to keep up with
developments without getting into the proverbial weeds.

Tracking Browser Support

The Can I Use17 site is the leader in the browser support tracking space. It tracks support for a
range of CSS, HTML, SVG and JavaScript features in every major browser across several
versions. Can I use shares documentation with the Mozilla Developer Network18, another
fantastic resource for tracking features as they land.

Chrome Platform Status19 tracks features as they appear in Google Chrome. Because they
both use Chromium, Microsoft Edge hews closely to the feature set and release cycle of
Google’s Chrome. If Chrome supports a feature, there’s a good chance Edge does as well.
Other Chromium-based browsers, such as Samsung Internet, have a longer release cycle.
Samsung includes the version of Chrome on which the current release is based as part of its
release notes20.

12. https://css.oddbird.net/rwd/query/explainer/
13. https://www.w3.org/Style/CSS/
14. https://github.com/w3c/csswg-drafts
15. https://github.com/w3c/csswg-drafts/issues
16. https://twitter.com/csswg
17. https://caniuse.com/
18. https://developer.mozilla.org/
19. https://chromestatus.com/
20. https://developer.samsung.com/internet/release-note.html

Conclusion 503

Apple is notoriously secret about its products. Safari, the web browser for macOS and iOS, is
no exception. Safari is, however, based on WebKit, an open-source web browser engine.
WebKit Feature Status21 is a great way to keep up with what’s coming to Safari and other
WebKit-based browsers.

If you prefer to weigh in on what features browsers should support, you can also follow and
comment on issue tickets in the bug trackers of WebKit22, Firefox23, and Chromium24.
Developer interest can help vendors prioritize feature development.

Documentation and Tutorials

The Mozilla Developer Network is an amazing resource for web development more generally.
Its CSS Reference25 is perhaps the best on the Web. Almost every property is documented,
and each property’s page includes examples of use, details whether it’s experimental or
production-ready, and links to the relevant specification.

For general CSS tricks, tips, and techniques, CSS-Tricks26 is an excellent resource. The site
includes tutorials on CSS and other front-end development topics.

Stephanie Eckles’ Modern CSS Solutions27 is perfect for experienced developers who are still
trying to learn the CSS landscape. Its companion site SmollCSS28 includes snippets.

Newsletters are also a great way to keep track of new CSS features. Rachel Andrew keeps
track of layout specifications and implementations in her long-running weekly CSS Layout
News29. Her newsletter also contains useful pointers to CSS and design-focused resources.

SitePoint.com, too, has a treasure trove of CSS-related material. Its HTML and CSS channel30

has lots of CSS tutorials, including topics such as Grid, CSS optimization, authoring tools, and
progressive enhancement. If you need help, you can always ask a question in the SitePoint
Forums31.

21. https://webkit.org/status/
22. https://bugs.webkit.org
23. https://bugzilla.mozilla.org/
24. https://bugs.chromium.org/p/chromium/issues/list
25. https://developer.mozilla.org/en-US/docs/Web/CSS
26. https://css-tricks.com
27. https://moderncss.dev/
28. https://smolcss.dev/
29. https://csslayout.news/
30. https://www.sitepoint.com/html-css/
31. ttps://www.sitepoint.com/community/c/html-css

504 CSS Master, 3rd Edition

And that’s how this book ends. Of course, just reading this book isn’t sufficient for becoming a
true CSS master. The best way to achieve mastery is by putting knowledge into practice. My
hope is that you’ve gained a better understanding of a range of CSS topics, including
specificity, layout, and project architecture. These topics provide a solid foundation for your
journey toward CSS mastery.

Conclusion 505

	CSS Master, 3rd Edition
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About the Author

	About SitePoint
	Table of Contents
	Preface
	What’s Changed in This Edition?
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Supplementary Materials

	Selectors
	
	Types of Selectors
	Combinators
	The Descendant Combinator
	The Child Combinator
	The Adjacent Sibling Combinator
	More Uses of the Adjacent Sibling Selector

	The General Sibling Combinator

	Attribute Selectors
	A Note About Quotes
	Matching Space-separated Attribute Values
	Matching Hyphenated Attribute Values
	Matching Attribute Values by Substring
	Matching Attribute Values by Case

	Pseudo-classes and Pseudo-elements
	Beware of Universal Selection

	Pseudo-elements
	::before and ::after
	Generated Content and Accessibility
	One Pseudo-element per Selector

	Creating Typographic Effects with ::first-letter
	Initial and Drop Caps

	Creating Typographic Effects with ::first-line
	User Interface Fun with ::selection
	Color Combinations

	Custom List and Summary Icons with ::marker
	Browser support for ::marker
	Further Safari Limitations

	Styling Input ::placeholder Values
	Placeholder Text Can Be Harmful

	Pseudo-classes
	Styling the :root of a Document
	Highlighting Page Fragments with :target
	Styling Elements That Have No Children Using :empty
	Concise and Resilient Selectors with :is()
	Can I :has() a Parent Selector?
	Before :is() Was
	Browser Support

	Negating Selectors with :not()
	Adjusting Selector Specificity with :where()
	Selecting Elements by Their Index
	:first-child and :last-child
	:only-child
	:nth-child() and :nth-last-child()
	Counting with n
	Negative Offsets

	Selecting Elements of a Particular Type by Their Index
	Using :first-of-type, :last-of-type, and :only-type
	Using :nth-of-type() and :nth-last-of-type()
	Using *-of-type Pseudo-classes with Non-element Selectors

	Styling Form Fields Based on Input
	:enabled and :disabled
	:required and :optional
	:checked
	:indeterminate
	Indeterminate Checkboxes
	:in-range and :out-of-range
	:valid and :invalid
	:placeholder-shown

	Conclusion

	CSS Architecture and Organization
	
	File Organization
	Specificity
	A Quick CSS Vocabulary Review
	Calculating Specificity
	Understanding the Impact of !important
	The Cascade in Cascading Style Sheets

	Choosing Low-specificity Selectors
	Avoid Chaining Selectors
	Avoid Using ID Selectors
	A Case for Higher Specificity

	Minimizing Nesting When Using a Preprocessor
	Using Type and Attribute Selectors with Caution

	Choosing What to Name Things
	Recommended Reading
	Block-Element-Modifier (BEM)
	Learning More about BEM

	Atomic CSS
	The Case Against Atomic CSS
	Another Answer: Change the CSS

	Know When to Go Your Own Way

	Conclusion

	Debugging and Optimization
	
	Browser-based Developer Tools
	Generated Markup
	Using the Styles Panel
	Identifying Cascade and Inheritance Problems
	Spotting Invalid or Unsupported Properties and Values

	Debugging Flexbox and Grid Layouts
	Flexbox Inspection

	Debugging Responsive Layouts
	Firefox
	Chrome and Microsoft Edge Chromium
	Safari
	Responsive Design–focused Browsers

	Debugging for UI Responsiveness
	What Are Reflows and Repaints?
	Page Loads

	Performance Tools
	For Testing Only

	Identifying Which Lines to Remove
	More on Web Performance

	Minification with CSS Optimizer
	Installing CSSO with npm
	Running CSSO with npx
	Using CSSO

	Enforcing Code Quality with stylelint
	Configuring stylelint for Each Project
	File Names and Syntax Highlighting
	Using stylelint and Understanding Its Output
	Configuring stylelint’s Rules
	Tabs or Spaces?
	Choose Your Own Custom Rules

	Using stylelint with npx

	Consider a Task Runner or Build Tool
	Conclusion

	Custom Properties
	
	Defining a Custom Property
	Using Custom Properties
	Setting a Fallback Value

	Custom Properties and the Cascade
	Custom Properties and Color Palettes
	HSL Argument Units
	Robust Palette Generation

	Using Custom Properties and Media Queries
	Rem Values

	Using Custom Properties with JavaScript
	Custom Properties and Components
	More on JavaScript Frameworks

	Conclusion

	Layouts
	
	Display Types and Normal Flow
	Block Formatting versus Inline Formatting
	Logical Properties
	Box Dimensions and the Box Model
	When Margins Don’t Collapse

	Managing Box Dimensions with box-sizing
	Preventing Box Generation with display: contents
	Use display: contents with Caution

	Floating Elements and Normal Flow
	Clearing Floats
	Using display: flow-root
	Using the contain Property

	Clearfix

	Positioning and Stacking Elements
	A Workaround for Opacity Transition Issues
	Positioning and z-index

	Outside-the-box Layouts with CSS Shapes
	Using Shape Functions
	ellipse() and circle()
	Remember Geometry?
	inset()
	polygon()

	Using Images
	Cross-origin Resource Sharing
	CSS Gradients Are Images Too!

	The Shape of the Future (or the Future of Shapes)

	Using CSS Multicolumn Layout
	Defining Column Number and Width Using columns
	Spacing Columns with column-gap and column-rule
	Images within Columns
	Making Elements Span Columns
	Managing Column Breaks within Elements
	CSS Fragmentation Module Level 3

	Optimizing the User Interface
	Missing Bullets

	Creating Flexible Layouts with Flexbox
	Understanding the flex Property
	Horizontal and Vertical Writing Modes
	Limiting Maximum Size

	Using the flex Property
	Two-value Dangers

	Flex Factors and Space Distribution
	When Flex Items Shrink

	Creating Multi-line Flexible Layouts
	Distributing Space Vertically with flex-direction

	Creating Layouts with CSS Grid
	The Grid Formatting Context
	Defining a Grid Layout
	Explicit Grid versus Implicit Grids
	Specifying Track Size for an Implicit Grid
	Creating Flexible Grids with Flex Units
	Not True Length Units

	Using the grid-template Shorthand Property
	Repeating Rows and Columns
	Repeating Columns with auto-fit or auto-fill
	More on Auto-sizing Columns

	Line-based Grid Placement
	Understanding Grid Lines
	Spanning Rows or Columns
	Complex Layouts with Line-based Placement

	Using Named Grid Areas
	Line Breaks Not Required

	Spacing Grid Items
	The gap Shorthand Property
	Grid Items and Margins

	Images within Grids
	Progressively Enhanced Layouts with Grid and display: contents
	Grid Conclusion

	Box Alignment and Distribution
	Distributing Items in the Main Axis with justify-content
	space-around versus space-evenly

	Aligning Items in the Cross Dimension with align-content
	Aligning Items with align-items and align-self

	Choosing flex or grid
	Conclusion

	Working with Text
	
	Better-looking Text with @font-face
	Check Your Licenses
	Setting an @font-face Rule
	Using Multiple Font Formats
	More on Font Formats

	Fonts and Origins
	More about CORS

	Using Multiple Font Weights and Styles

	Variable Fonts
	OpenType
	Incorporating Variable Fonts
	Specifying Font Weight When Using Variable Fonts
	Lower-level Font Control with font-variation-settings

	Shaping Loading Behavior with font-display
	Understanding auto

	Optimizing Fonts with Subsetting and unicode-range
	More on Unicode
	Subsetting Self-hosted Fonts with FontTools
	Licensing Requirements
	Mac Users

	Writing Modes
	What Is a Writing Mode?
	Setting the Direction of Text with the direction Property
	Using the HTML dir Attribute Is Best
	Setting Block Flow Direction with the writing-mode Property
	Writing Modes

	Managing Typesetting with text-orientation
	Writing Mode and Alignment

	Conclusion

	Transitions and Animations
	
	CSS Transitions
	Creating Your First Transition
	Understanding JavaScript

	Using the transition Property
	Transition Durations and Delays
	Timing Functions
	Stepped Transitions
	Smooth Transitions
	Experimenting with Bézier Curves

	Transitioning Multiple Properties
	Shorthand Properties
	The forEach DOM Function

	Multiple Transitions and transitionend Events

	CSS Animation
	Creating Your First Animation
	Animation Properties
	To Loop or Not to Loop: The animation-iteration-count Property
	Playing Animations: The animation-direction Property
	Using Percentage Keyframes
	The animation-fill-mode Property
	Pausing Animations
	Detecting When Animations Start, End, or Repeat

	Animation and Accessibility
	A Note about Performance
	CSS Triggers
	Using will-change

	Conclusion

	Transforms
	
	Checking Out the Spec

	How Transforms Affect Layout
	transform Creates a Containing Block
	transform Creates a New Stacking Context
	transform Creates a Local Coordinate System
	The transform-origin Property

	2D Transform Functions
	rotate()
	2D Scaling Functions: scale(), scaleX(), and scaleY()
	Watch Your Scale

	2D Translation Functions: translateX(), translateY(), and translate()
	Speed Matters

	skew, skewX, and skewY

	Current Transform Matrix
	Matrix Multiplication and the Matrix Functions
	3D Transform Functions
	rotateX() and rotateY()
	Disappearing Elements

	Rotating around Multiple Axes with rotate3d()
	The perspective() Function
	perspective() versus perspective

	Translating Depth with translateZ() and translate3d()
	Scaling the Z-dimension: scaleZ() and scale3d()

	Creating Depth with the perspective Property
	Safari and UC Browser

	Modifying the Point of View with perspective-origin
	Preserving Three Dimensions with transform-style
	Transform Style

	Showing Both Faces with the backface-visibility Property
	Prefixes for Safari

	Conclusion

	Visual Effects
	
	Blend Modes
	mix-blend-mode
	Contrast Issues
	Stacking
	Layer Names
	Taming Blend Modes

	background-blend-mode
	Blend Mode Values

	Filter Effects
	SVG Primitives
	Meet the CSS Filter Functions
	Using backdrop-filter
	More on @supports

	How Filter Effects Affect Layout

	Clipping and Masking
	The clip-path Property
	Using clip-path with Polygons

	Creating More Complex Clipping Regions with path()
	Using clip-path with URLs
	Origin Issues

	Masking
	Tracking Browser Support
	Creating a Mask with mask-image
	Managing Mask Processing with mask-mode
	Calculating Luminance
	Making Mask Images Repeat (or Not) with mask-repeat
	Resizing Mask Images with mask-size
	Using Multiple Mask Images
	Managing Mask Layer Compositing with mask-composite
	Using the mask Shorthand Property

	Conclusion

	Applying CSS Conditionally
	
	Media Queries and @media
	Media Query Syntax: The Basics
	If No Media Type Is Specified

	Range Media Features and min- and max- Prefixes
	Safari and resolution

	Discrete Media Features
	Boolean Feature Queries
	Multiple Device Inputs

	Using prefers-reduced-motion to Improve the Experience of People with Vestibular and Seizure Disorders
	Rationale

	Respecting Users Color Preferences with prefers-color-scheme
	Nesting @media Rules
	Working around Legacy Browser Support with only
	only the Lonely

	Negating Media Queries
	Other Ways to Use Media Queries
	HTTP/1.1
	Performance Considerations
	Precedence

	Content-driven Media Queries
	Don’t Use device-width with Media Queries

	Using Media Queries with JavaScript
	Error Checking with not all

	Listening for Media Changes

	Testing for Property Support with Feature Queries
	Determining Selector Support with selector()
	CSS.supports DOM API

	Understanding the Cascade for @supports and @media
	Conclusion

	CSS and Scrolling
	
	Scrolling and Vestibular Disorders

	Dump the Jump: Smooth Internal Links with scroll-behavior
	What Is a Scrolling Box?

	Scroll Snap
	Scroll Snap versus Scroll Snap Points
	Creating a Scroll Snap Container
	Aligning Scrolled Elements with scroll-snap-align
	Don’t Break Scrolling!
	Optimizing the Scroll Viewing Area with scroll-padding
	Scrollports and Snapports
	All Scroll Containers

	Shifting Box Alignment with scroll-margin

	Conclusion

	SVG
	
	Vector Images versus Raster Images
	Associating CSS with SVG Documents
	Using the style Attribute
	Embedding CSS in SVG Documents
	Linking from SVG to an External CSS File
	Using the <link> Element
	Older Browsers and <link>
	Using @import
	SVG and the Element: Limitations
	Using <iframe> and <object>
	Inline SVG and External Assets

	Differences between SVG and HTML
	SVG Doesn’t Adhere to the CSS Box Model
	SVG Lacks a Positioning Scheme

	Styling SVG Elements
	Using SVG Attributes as CSS Properties

	Animating and Transitioning SVG CSS Properties
	An Animated Path Future

	Using SVG with Media Queries
	Using Media Queries with background-size

	Conclusion

	Conclusion
	
	Nested Grids with subgrid
	Creating Brick-like Layouts with masonry
	Container Queries
	How to Follow Changes and Additions to CSS
	Tracking Browser Support
	Documentation and Tutorials

