Beginning

HTML with CSS
and XHTIVIL

Modern Guide and Reference

Learn how to create modern, standards-compliant
HTML and CSS websites with no fuss.

David Schultz and Craig Cook

Foreword by Simon Collison, author of Beginning CSS Web Development

Apress:

Beginning HTML with
CSS and XHTML

Modern Guide and Reference

David Schultz and Craig Cook

Apress’

Beginning HTML with CSS and XHTML: Modern Guide and Reference
Copyright © 2007 by David Schultz, Craig Cook

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-747-7
ISBN-10 (pbk): 1-59059-747-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Chris Mills

Technical Reviewer: Gez Lemon

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole Flores

Copy Editors: Nicole Abramowitz, Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor: Susan Glinert

Proofreader: Lisa Hamilton

Indexer: John Collin

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
WWW.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/Download
section.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com

Contents at a Glance

FOrBWOId ... e xiii
About the AUTNOrS XV
About the Technical REVIBWETo i Xxvii
ACKNOWIBdgMENTS ... e Xix
INrOdUCTIONo e e e XXi
CHAPTER 1 Getting Started i 1
CHAPTER2 XHTMLand CSSBasiCscovvvviiiiiiiininnnnnnnn. 13
CHAPTER 3 Moving A<head> ...t M
CHAPTER4 AddingContent.......... ...t 51
CHAPTER 5 USINg IMages ...t i i 105
CHAPTER 6 Linkingtothe Web 131
CHAPTER 7 Using Tables ... i 153
CHAPTER 8 Building Formso 187
CHAPTER9 Adding Style to Your Documents: CSS 227
CHAPTER 10 Client-Side ScriptingBasicsc.coiiiiint. 251
CHAPTER 11 Putting It All Together..............o it 281
APPENDIX A XHTML 1.0 Strict Referenceccoiiiiiiiit. 327
APPENDIX B Color Namesand Valuescccviiiiinnnnnnnns 367
APPENDIX C Special Characters 381
APPENDIX D CSS Browser SUpport ..o, 387
INDEX .o 397

Contents

FOrBWOId .. o e Xiii
About the AUThOrS o XV
About the Technical Reviewer e e i Xvii
ACKNOWIBdgMENTS ... e Xix
INErOdUCHION ...t XXi
CHAPTER1 GettingStarted ... 1
Introducing the Internet and the World Wide Web 1

What IS HTML? ... e e et i 2

The Evolution of HTML. ... e 3

One Language, Many Versionsccvvivininnnnnnnns. 3

One Version, Three FIavorscovee oo ieees 4

Validating Your Documentscoiiiii i 5

Separating Content from Presentation 6

Working with XHTMLand CSS ...t 7

Choosingan HTML Editorccoiiiiiiiii et 7

Choosinga Web Browser.c.oviiiiiiiieiie e 8

Hosting Your Web Site 8

Introducingthe URL i e 9

The Componentsofa URL. ..ot 9

Absolute and Relative URLS., 11

SUMMANY . e i 12

CHAPTER2 XHTMLandCSSBasics 13
The Parts of Markup: Tags, Elements, and Attributes 13

Block-Level and Inline Elements. 15

NestingElementsco i 16

White SPacecoiii e 16

Standard Attributes. 17

Adding Comments ...t e 19

vi CONTENTS

CHAPTER 3

CHAPTER 4

The XHTML Documentcooiiiiiii it 19
The DOCtYpe ... 20
ThehtmlElement..............c i 22
Andthe Rest. 24
The DocumentTreeo i 24

CSS Fundamentals ...t i 25
Anatomy of aCSSRuUle ... 25
CSS Selectors .. ovv v e 27
Specificity and the Cascadeccoiiiiiniant. 30
Attaching Style Sheets to Your Documents.................... 32
The Cascade Order.oeiiiiriiiiii i 34
important e 36
Formatting CSS. ... 36
CSS Comments. ..ot 38

SUMMANY . e i 38

Moving A<head>ll M

The head SeCtioNot e e 41
<head> ... e 4

The Supporting Elements ... 42
<baASE> ... e 42
<HNK> . e 44
<Ml . e e 45
D1] 46
SHYlE> e 47
<itle> L e 49

SUMMANY . e i 50

AddingContentl 51

Contentand Structure ...t 51

Abeautiful <body> ... 52
0100 1 52

Meaningful Portionscciiiiiiii i 54
D et e i 54
Headings: h1, h2, h3,h4,h5,andh6......................... 56
blockquote. e 58
AAAIESS . ottt e e 59

CONTENTS
S 62
] 62
Ol o e e e 64
[65
Definition Listscovvei i e 67
0 67
| 68
0 69
Phrase Elementso e 70
1 70
(0] o 71
0 PP 72
ettt e et e et e e e e e 74
iMoo e e 75
Abbreviations: abbr and acronym............... ... o 76
Revising Documents: delandinsccoovviiinnann 78
DO . . 79
Programming: code, kbd, samp, andvar...................... 80
0] 82
] 83
Multipurpose Elementsouviiiiiiiii i 85
QIV. e 85
] 072 86
Embedding External Content o, 87
0] 0] T 88
072 S 89
Presentational Elementsc.iiiiiiiiiiiii i 90
FaNd D . 91
bigandsmall....... i 91
L 91
SUP AN SUD. ..ottt e e 91
Special Characterscc i i i e 92
Styling Content with CSS ... i 94
Declaring Base FontStyles ...t 94
Styling ListS. ..o 100

SUMMANY . e e 103

vii

viii

CONTENTS

CHAPTER 5

CHAPTER 6

CHAPTER 7

Usinglmages ... 105
How Digital Images Work ... 106
Web-Friendly Image Formatsooiieinn, 107
Including Images in Your Contentoiit 11
M0 e 111
ImagesinContext.........cooiiiiii i 118
Wrapping Text Around anlmageccooiiiiiiiieneeannn, 120
Background Images ...t e e e 122
Positioning a Background Imagecoeeiiinn 126
SUMMANY .o e 129
LinkingtotheWeb 131
The AnchorTag e 131
B 131
Usingthe <a>Tagcovviiiniiii i it i 133
Linking to Other Documentsccoviiiiiatt, 133
Linking to Non-XHTML Documents.......................... 136
Linking to E-Mail Addressesc.ovvvviiiiniinnnnnnns 138
Usinganimage Asalinkc.couiiiiiiiiiiininnnnns. 139
USING IDS .\t ti eae 140
Adding CSStothe AnchorTagccoviiiiiiiiii i, 141
Creating Image Mapsccooviiiiiiiiii i, 146
D11 147
B - 148
SUMMANY . e e e 152
UsingTables ..., 153
TheBasicsof Tables ..ot i 153
<dable> ... e 154
> 156
AU e 157
CodingaBasicTablecccoviiiiiiii i, 159
<CAPHION> ..t e e 161

CHAPTER 8

CHAPTER 9

CONTENTS
Advanced Use of TableS 166
<dbody>. ... e 168
<thead>........... i 170
<Hoot> .o 171
<COlgIOUP> . . oo e 175
OOl . e 176
Using CSS to Add Styleto YourTablescoiintt. 178
Adding Borders 178
Aligning TextinaTable, 180
Adding PaddingtoCells..............cooiiiiiiiii.s, 182
Adding BackgroundstoTables...............ccovvviiiinnnn, 184
SUMMANY . e e e 186
BuildingForms ... 187
How Forms Worko e e 187
The Componentsof aFormo, 188
L0101 189
MPUL. . 191
bUttON. .. e e 202
2T 203
OPHON . e 206
(0] 010 0TV 208
textared e 210
Structuring Forms ... 212
fleldset. ..o e 212
T =T T 214
[abel . e e e 216
Styling Forms with CSS o 219
Removing the Border from Field Sets........................ 221
Aligning Labels 222
Changing the Typeface in Form Controls..................... 224
SUMMANY . e e e 225
Adding Style to Your Documents: CSS 227
Using External Style Sheets, 227

UNitS OF MBASUIE . . v v v vttt et e e e et e et et e e e e eee e 229

ix

CONTENTS

CHAPTER 10

CHAPTER 11

LaYOUt ..o e 230
Containers. e e 230
Container Sizingand Flowt 234
Positioning a Container ...t 236

Backgrounds e e e 245

Styling TexXt ..o e 246

Media TYPES ..ttt e e 249

Compatibilityco i e 250

SUMMANY .o e 250

Client-Side Scripting Basics 251

What Is Scripting? ... e 251

Placement of JavaScript i 252

JavaScript, the Language ... 253
JavaScript Syntax Rules. 254
Operators and EXpressionsovviiiiiniiennnannnns 256
Statements ... e 258
010 01 T 265
FUNCLIONS . . .o e e e 270
ATy S, .ttt e 271

Advanced TOPICS ..o v vttt e e e e 272
HandlingEventsco i 272
The DOM ... e e e 276
FormValidation.............cooiii i e 276

SUMMANY . e e e 279

Putting It All Together 281

Introducing Our Case Study: Spaghetti & Cruft 281

The Design ProCeSSvvvrt i e 282
Step 1: Defining Goalsccoiiiiii i 283
Step 2: Contemplating Architecture 283
Step 3: Arranging the Template 284
Step 4: Creating the Design. ...t 286
Step 5: Assembling the Website.................... ... 287

StepB: Testing . ..o vt 288

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

CONTENTS
Building Spaghetti & Cruft ... 288
SettingUpthe Document., 288
MarkingUptheMasthead 289
Marking Up the Main ContentArea.......................... 291
Marking Up the Navigation 292
Marking Up the Tag Lineand Footer 292
The Completed Template. ..., 293
Designing Spaghetti & Cruft with CSS 295
Stylingthe PageBody ... 296
Stylingthe Masthead i, 302
LayingOutthe Page...........cooiiei i 307
Styling the Navigation L. 309
Stylingthe Footer ... 311
Assemblingthe Pages ... 312
TheMenuPage. ... i 312
The Reviews Pagecoviriiiiiii et 317
The ContactPage ...t e 320
SUMMANY . e e e 324
XHTML 1.0 Strict Reference 327
ColorNamesand Values 367
Special Characters 381
CSS Browser Support ...l 387
... 397

Xi

Foreword

In 1999, I bought a book about the web. This brave and still relatively new world had
caught my interest, and the pocket-sized Rough Guide to the Internet featured four or so
pages of rudimentary HTML. After about three hours I had built a web page and linked to
another one. This first web page looked awful, but I was excited. Later that day I somehow
managed to upload it to a domain, and I realized I had created a website—an actual website.

So naive was I back then thatI assumed I'd need to leave my home computer on in
order for other web users to see my pages! How amazed I was at work the next day when I
successfully called my little website up in front of the boss.

So, I decided to buy another book, called Learn HTML in a Weekend. It was a very long
weekend. This and other preliminary books taught me alot, but much of it badly; my code was
littered with font tags, frames, and tables for layout. CSS had not really taken hold back then.

In the beginning, we used HTML to do all the hard work because we didn’t know any
better. This difficult, limiting, and weighty approach to building websites was born out of
HTML'’s generosity, it being a rich language with early specifications offering rather too
much scope for abuse. I can accept that now, but I'm unsure why so many recent books
still preoccupy the reader with ill-advised and outdated techniques that can be achieved
much better and more easily with web standards.

I care about how people learn to build websites, and I know it can be impenetrable for
beginners. Equally, I worry that many professionals are still ripping off clients with shoddy
workmanship. This is why I'm so happy to introduce this book. David Schultz and Craig Cook
understand that building websites is a craft, and with Beginning HTML with CSS and
XHTML: Modern Guide and Referencethey bring you years of experience condensed into
an enjoyable, carefully structured reference focused on responsible, powerful HTML,
CSS, XHTML and even JavaScript—the perfect introductory package.

You'll find a wealth of practical examples that you can actually use. As a stickler for
top-notch code, I'm especially impressed that everything within validates as HTML Strict
(which you’ll learn more about soon) and that David and Craig have ensured all methods
work cross-browser and will stand up to whatever twists and turns the Internet takes next.

You are embarking upon a great adventure, but you have in your hands the best possible
map and two expert guides to hold your hand. Soon you’ll reach your destination and will
be waxing lyrical to anyone who'’ll listen about your grasp of web standards, wondering
why the old boys still work with their outdated methods. Mighty explorers, this book will
tell you all you need to know.

Simon Collison

Author of Beginning CSS Web Development, Apress 2006

Xiii

About the Authors

DAVID SCHULTZ is an IT team leader for a major national retailer. He
has more than 15 years of IT experience in various positions using
several different platforms and computer languages. He has a
bachelor of science degree in management information systems
from Oakland University located in Rochester, Michigan. His
interest in computers started when he received his first computer,
a Commodore 64, back in the 1980s. Today, his preference is to
work with Microsoft’s ASP.NET platform. David has been a technical reviewer on many

books from several publishers. He is also an author, reviewer, and editor for the www.
ASPToday . com website. In his spare time, he enjoys family time, video games, pinball,
and movies.

CRAIG COOK has been designing and building websites since 1998,
though he still silently harbors the aspiration to draw comic books.
His background is in traditional graphic design, and he has a degree
in commercial graphics from Pittsburg State University (Kansas).
Although he spent years learning how to make ink stick to paper, he
soon fell in love with the web, and the affair continues to this day.
In addition to his passions for design and technology, Craig has an
affinity for science-fiction novels, zombie movies, and black T-shirts. He occasionally
muses on these subjects and others at his personal website, waw.focalcurve. com. Craig
lives and works near San Francisco.

Xv

http://www.ASPToday.com
http://www.ASPToday.com
http://www.focalcurve.com

About the Technical Reviewer

GEZ LEMON works as an accessibility consultant for TPG. A keen accessibility advocate, Gez
participates in the Web Content Accessibility Guidelines Working Group and is a member
of the Web Standards Project’s Accessibility Task Force. In his spare time, Gez talks about
accessibility issues on his blog, Juicy Studio.

Xvii

Acknowledgments

Writing abookis no small task. Although the authors’ names go on the cover and they
get most of the credit, tons of people behind the scenes at Apress really make it happen. In
particular, I want to thank Chris Mills for approaching me and keeping me enthused about
the project throughout the life cycle. A ton of thanks goes to the technical editor, Gez Lemon,
for keeping me to the standards and providing really great feedback. Elizabeth Seymour
and Richard Dal Porto did a great job of keeping me on track and getting me through the
tedious process. Thanks to the Apress production team for making all those last-minute
changes and doing the magic that brings a manuscript to print. I also want to thank my
coauthor, Craig Cook, for the ideas and contributions he made to the book, which are all
much appreciated.

Finally, I would have never been able to complete this long journey without the under-
standing and support of my family—my wife, Kim, and my children, Justin, Jessica, and
Crystal.

David Schultz

I must first thank all of the authors, artists, designers, coders, bloggers, evangelists, and
gurus on whose shoulders I stand. I've been inspired and guided by the work and teachings of
John Allsopp, Douglas Bowman, Andy Budd, Dan Cederholm, Tantek Celik, Joe Clark,
Andy Clarke, Simon Collison, Derek Featherstone, Aaron Gustafson, Christian Heilmann,
Jon Hicks, Molly Holzschlag, Shaun Inman, Roger Johansson, Jeremy Keith, Ian Lloyd,
Scott McCloud, Eric Meyer, Cameron Moll, Keith Robinson, Richard Rutter, Dave Shea,
Jeffrey Zeldman . . . and many others equally deserving of being name dropped, but I'm
trying to keep this to one page.

I'should also extend gratitude to all the daily-grinders and cubicle-dwellers who strive
to build a better web—not for riches and adoration but simply because they love what they
do and care about doing it right. To everyone who has embraced web standards and accessi-
bility, furthering the cause in your own subtle ways and reclaiming the earth that was
scorched by the dark Browser Wars: you're making the web a better place to live. Take a bow.

Many kind thanks to everyone who contributed to making this book an eventual reality:
to Chris Mills, for sharing barbecued brisket and asking me to participate in this project; to
Gez Lemon, for pointing out my mistakes and oversights with gently brutal honesty; to
David Schultz, my coauthor, for doing so much of the hard work; to Elizabeth Seymour,
Richard Dal Porto, Grace Wong, Nicole Abramowitz, Kim Wimpsett, Laura Esterman, and

Xix

XX ACKNOWLEDGMENTS

everyone else at Apress, for their patience with my often-sluggish pace throughout this
entire process.

Special thanks must be given to my friends Jolene, Jannyce, and Bill. They were the
readers I imagined I was writing for whenever I struggled to find the right words. [hope I
succeeded.

I'm endlessly grateful of my parents, R.L. and Beverly, for instilling me with a desire to
learn, a passion to create, and a compulsion to instruct.

Craig Cook

Introduction

The World Wide Web has come along way in a relatively short period of time. Since its
debutin the early 1990s, the web has quickly evolved from an esoteric collection of academic
papers into a fully fledged and pervasive medium, an equal to print, radio, and television.
The web is a vast repository of information on every subject imaginable, from astrophysics
and ancient philosophy to the care and feeding of hermit crabs. It has become an integral
part of many people’s daily lives and is the platform for many aspects of modern business
and commerce. But at its heart, the web is still just a way to share documents.

This book will show you how to create documents of your own so you can share them
on the web. You'll become intimately familiar with the rules and constructs of HyperText
Markup Language (HTML), the computer language the web is built on. It’s a simple language,
and the basic rules are easy to pick up and put to use. HTML is a tool, and once you know
how to use it, you're limited only by your imagination.

Not very long ago, parts of HTML were frequently misused, and the rules were largely
ignored—because we had no other choice or simply didn’t know any better. But the web
has matured a lot in the last few years, and we’ve since learned that sometimes following
the rules really is the best approach. Unfortunately, many of the outdated methods that
came about during the web’s unruly, rebellious youth are still in common practice today.
This book will help you avoid the mistakes of the past and build a better web for the future.
You'll learn how to use HTML effectively and responsibly and to make your web documents
clean, meaningful, and accessible to as many people and devices as possible.

If you've been around the web for a little while, you've likely heard about Cascading
Style Sheets (CSS), and you may be curious about just what they are. In a nutshell, CSS is a
language that describes how web documents should be visually presented. It’s very powerful
and flexible and is also pretty dang cool. However, CSS is a rich, complex language in its
own right, and we can’t possibly cover every facet of it in these pages. But as you’ll soon
see, CSSis directly connected to HTML, and you'll first need to understand markup before
you can put CSS to good use. This book will introduce you to CSS and offer many practical
examples of how you can use it. We'll give you the solid grounding in HTML you’ll need as
a starting point to delve deeper into the art and craft of designing web pages with CSS.

Who This Book Is For

This book is for anyone interested in learning how to build web pages from the ground up
using modern best practices. We assume you’re familiar with the Internet and the World

XXii

INTRODUCTION

Wide Web, and you probably wouldn’t pick up a book with “HTML” in the title unless
you’d atleast heard of it. Beyond that, we don’t assume any prior knowledge of web design
or computer programming. As you advance through this book, the topics get a little more
advanced as well. But fear not: this is a book for beginners, and we’ll walk you through the
tough parts.

Even if you're not a beginner, this may be well worth a read. Only a few short years ago,
the common approach to building web pages was very different from how things are done
today. A lot has changed in recent times, so if you're a more experienced web developer
looking to get back to basics and see what all this “semantic XHTML and CSS” mumbo-
jumbo is about, this is the book for you.

How This Book Is Structured

Here we present a brief road map of where this book is going to take you. The first two
chapters lead you through the bare essentials you’ll need to start creating your own web
documents. Throughout the bulk of this book, Chapters 3 through 10, you'll dig into different
subject areas within HTML and XHTML, becoming familiar with all of the different elements
at your disposal. Along the way, you’ll also see examples of some of the many CSS tech-
niques you might use to visually design your pages. We finish up with Chapter 11, where
you'll see a case study that takes much of what you've learned throughout the previous
chapters and puts it together into a functional website, built from scratch with XHTML
and CSS.

e Chapter 1, “Getting Started,” takes a high-level view of how the web works and what
you'll need in order to create your own XHTML documents.

e Chapter 2, “XHTML and CSS Basics,” presents the basic syntax and rules to follow
when you assemble web documents and style sheets, laying the foundation for the
rest of the book.

e Chapter 3, “Moving A<head>,” introduces the document’s head element, explaining
why it’s so important and showing you the different components you can place
within it.

e Chapter 4, “Adding Content,” explores how you’ll add content to your documents
and give your text a stable, meaningful structure.

e Chapter 5, “Using Images,” describes how you can add pictures to your web pages
for meaningful communication as well as decoration.

INTRODUCTION

e Chapter 6, “Linking to the Web,” looks at how you can include links in your docu-
ments that point to other documents, either within your own site or elsewhere on
the Internet.

e Chapter 7, “Using Tables,” shows you how to structure complex data in tables,
organizing related information in sets of connected rows and columns.

e Chapter 8, “Building Forms,” will show you how to create forms that allow your
visitors to input their own information and interact with your website.

e Chapter9, “Adding Style to Your Documents: CSS,” dives deeper into the use of CSS,
covering a few of the more advanced topics you'll need to understand when you
visually style your web pages.

e Chapter 10, “Client-Side Scripting Basics,” outlines the basics of the JavaScript

language, which you can use to make your web pages more dynamic and interactive.

e Chapter 11, “Putting It All Together,” puts the topics discussed throughout the book
to use, taking you step-by-step through the creation of a functioning website.

At the back of the book, you'll find four appendixes for your reference. In order, they
cover XHTML 1.0 Strict, color names and values, special characters, and CSS browser
support.

Conventions Used in This Book

Throughout this book, we’ll provide numerous examples of XHTML and CSS coding. Most
of these examples appear in numbered listings, separated from the regular text. They look
something like Listing 1.

Listing 1. An Example Code Listing

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Just an Example</title>
</head>
<body>
<p>Hello, world!</p>
</body>
</html>

Xxiii

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

XXiv

INTRODUCTION

Sometimes aline of code is too long to fit within the limited width of a printed page, and
we're forced to wrap it to a second line. When that happens, we’ll use the symbol = to let
you know a line is wrapped only to fit the page layout; the real code would appear on a
single line.

We'll occasionally add notes, tips, and cautions that relate to the section you've just
read. They appear distinct from the main text, like so:

Tip Don't overlook these exira tidbits. They’re relevant to the current topic and deserve some special attention.

We may also sometimes wander off on a slight tangent that isn’t really part of the topic
at hand but is still important information you should know. To keep things flowing
smoothly, we’ll place such supplemental information in sidebars, which look like this:

SIDEBARS

Sidebars offer extra information, exploring a related topic in more depth without derailing the main
topic. The term sidebar comes from magazine and newspaper publishing, where these sorts of
accompanying stories are often printed in another column alongside the main article.

Downloading the Code

All the markup and CSS you'll see in this book is available for download in the Source
Code/Download section of the Apress website (http://www.apress.com). Once you've
downloaded and unzipped the file, you’ll find each chapter’s source code in a separate
folder; you can pickit apart and refer to it at your leisure. You can also find the source code
at this book’s companion website, http://www.beginninghtmlbook.com.

Contacting the Authors

You can contact David Schultz through e-mail at david. schultz@apress.com.
You can reach Craig Cook through his website at http://www.focalcurve.com.

http://www.apress.com
http://www.beginninghtmlbook.com
mailto:schultz@apress.com
http://www.focalcurve.com

CHAPTER 1

Getting Started

We’re going to ease you into the book with some general information about the Internet
and World Wide Web; this will lay a foundation of useful knowledge to help you as you
begin to create your own web pages with HTML and CSS. This chapter won’t be a compre-
hensive overview by any means, but it will get you up to speed on some of the terminology
and concepts you'll need to be familiar with throughout the rest of this book. If you feel
you're already pretty web-savvy, having used and worked with websites for some time,
you can probably skip ahead to Chapter 2 and start getting your hands dirty.

Introducing the Internet and the World Wide Web

“The Internet” is simply a catchall phrase referring to the vast, globe-spanning network of
computers that are connected to each other and are able to transmit and receive data,
shuttling information back and forth around the world at nearly the speed of light. It has
been around in some form for almost half a century now, ever since a few very smart
people figured out how to make one computer talk to another computer. The Internet has
since become so ubiquitous and pervasive, impacting so many aspects of modern life, that
it’s hard to imagine a world without it.

The World Wide Web is just one facet of the Internet, like a bustling neighborhood in
amuch larger city. It's made up of millions of files and documents residing on different
computers across the Internet, all cross-referenced and interconnected to weave a web
of information around the world, which is how it gets its name. In its relatively short
history, the web has grown and evolved far beyond the simple text documents it began
with, carrying other types of information through the same channels: images, video, audio,
and fully immersive interactive experiences. But at its core, the web is fundamentally a
text-based medium, and that text is usually encoded in HTML (more on that in a minute).

Many different devices can access the web: desktop and laptop computers, personal
digital assistants (PDAs), mobile phones, game consoles, and even some household appli-
ances. Whatever the device, it in turn operates software that has been programmed to
interpret HTML. These programs are technically known as user-agents, but the more

CHAPTER 1 GETTING STARTED

familiar term is web browsers. Aweb browser is specifically a program intended to visually
render web documents, whereas some user-agents interpret HTML but don’t display it.

Throughout this book we’ll often use the word browserto mean any user-agent capable
of handling and rendering HTML documents, and we’ll use the term graphical browser
when we’re specifically referring to one that renders the document in a visually enhanced
format, in full color, and with styled text and images. It’s important to make this distinc-
tion because some web browsers are not graphical and render only plain, unstyled text
without any images.

A browser or user-agent is also known as a client, because it is the thing requesting and
receiving service. The computer that serves data to the client is, not surprisingly, known
as a server. The Internet is riddled with servers, all storing and processing data and deliv-
ering it in response to client requests. The client and the server are two ends of the chain,
connected to each other through the Internet.

What Is HTML?

If the web is to be woven from connected bits of digital text, there must be some techno-
logical means to establish that connection. This is the basis of hypertext, wherein a string
of words in one document can be directly linked to another document somewhere else on
the web. HyperText Markup Language (HTML) is the computer coding language used to
convert ordinary text into active text for display and use on the web and also to give plain,
unstructured text the sort of structure human beings rely on to read it. Without some kind
of structure imposed on it, plain text would just run together with nothing to distinguish
one string of words from another.

HTML consists of encoded markers called tags that surround and differentiate bits
of text, indicating the function and purpose of the text those tags “mark up.” Tags are
embedded directly in a plain-text document where they can be interpreted by computer soft-
ware. They're called tagsbecause, well, that’s what they are. Just as a price tag displays the
cost of an item and a toe tag identifies a cadaver, so too does an HTML tag indicate the
nature of a portion of content and provide vital information about it. The tags themselves
are not displayed and are distinct from the actual content they envelop.

HTML has been carefully designed to be a simple and flexible language. It’s a free, open
standard, not owned or controlled by any company or individual. There is no license to
purchase or specialized software required to author your own HTML documents. Anyone
and everyone is free to create and publish web pages, and it’s that very openness that
makes the web the powerful, far-reaching medium it is. HTML exists so that we can all
share information freely and easily.

However, you do have to follow certain rules when you author documents in HTML—
there are certain ways they should be assembled to make certain they’ll work properly.
The rules are maintained by the World Wide Web Consortium (W3C), a nonprofit organi-
zation that defines many of the open technical standards the web is built on, collectively

CHAPTER 1 GETTING STARTED

referred to as web standards. Standardizing web languages allows everyone—authors as
well as people who make the software that interprets those languages—to adhere to the
same set of agreed-upon rules, like the rules of grammar and punctuation that help you
understand this sentence.

The Evolution of HTML

HTML first appeared in the early 1990s—based on the preexisting Standard Generalized
Markup Language (SGML)—and was created specifically for marking up documents for
use on the newly born World Wide Web. Since its inception, HTML has gone through
many changes and enhancements. New features have been added, while other features
have become outdated and removed from the specifications. The formal act of retiring a
feature from standard specifications is known as deprecation; deprecated features should
be phased out and avoided in new documents.

The technical specifications for all official versions of HTML are freely available from
the W3C at its website (http://www.w3.0rg). These specifications can be difficult to read
because they're extremely technical in nature, written primarily for computer scientists
and software vendors who program web user-agents. But this kind of standardization is
essential for the widespread adoption of the web, ensuring that websites operate consistently
across different browsers and operating systems. The web is intended to be “platform
independent” and “device independent,” and adherence to web standards is what makes
this possible.

In the early years of the web, the language specifications were not always followed as
closely as they should have been. Competing browsers supported different features and
introduced nonstandard features of their own. This made web development troublesome
for authors in those days, often leading them to create multiple versions of their sites aimed
at different browsers. Thankfully, this is no longer necessary. The web browsers of today
follow the standards much more consistently than the previous generation did, advancing
the web toward the ultimate goal of a truly universal medium.

One Language, Many Versions

As HTML has progressed and evolved over time, new versions of the language have been
released to introduce the new features and deprecate the old. The very first version of
HTML, 1.0, was published in 1993. It was further refined and extended with HTML 2.0 in
1995, followed closely by HTML 3.0 in 1996. Version 4.0 was published in 1997, and a few
minor (but significant) changes were released in 1999 as HTML 4.01. This was to be the
final, complete specification for the HTML language. A new kid called eXtensible HTML,
or XHTML, joined the class in 2000, and it was praised as the wave of the future.

XHTML is a reformulation of HTML following the more stringent rules of eXtensible
Markup Language (XML), which is a powerful language that allows web authors to create

http://www.w3.org

CHAPTER 1 GETTING STARTED

their own customized tags. XHTML, unlike XML, offers a finite set of predefined tags to
choose from. XHTML is similar to HTML 4.01, with just a few more rules dictating how it
must be written. XHTML 1.0 is the current version, and XHTML 1.1 and 2.0 are already
under development but haven’t yet been finalized as formal recommendations as of this
writing.

Throughout the rest of this book, you’ll be learning how to author your own web docu-
ments following the XHTML 1.0 specifications. Even so, HTML 4.01 is still very much alive
and kicking, so most of what you’ll learn from this book can be applied just as well to that
earlier language.

Note Though HTML 4.01 was long held as “the final version” of the HTML language, a recent initiative
within the W3C has started drafting a specification for HTML 5. The version is still in the early stages of devel-
opment and hasn’t yet been published as we write this book.

One Version, Three Flavors

As if all the different versions of HTML weren’t confusing enough, there are multiple versions
of those versions, each with slightly different rules and features. The three “flavors” of
XHTML are Strict, Transitional, and Frameset:

e XHTML 1.0 Strictis the most stringent in its rules. Deprecated features are forbidden
outright, and the rules must be followed to the letter if a document is to be well formed.

e XHTML 1.0 Transitional is a bit more relaxed than Strict, allowing some outdated
features to still linger in a well-formed document. This variant is intended for authors
making the transition from earlier versions of HTML to XHTML 1.0.

e XHTML 1.0 Frameset applies only to situations when frames are being used to lay
out a web page. (Frames are a feature from earlier versions of HTML that allowed a
page to be split into multiple panes, each displaying a different document. They’ve
been deprecated in XHTML Strict and Transitional, which is why this special flavor
exists.)

All of the markup examples you'll be seeing in this book follow the XHTML 1.0 Strict
rules. You can learn much more about the different versions of HTML and XHTML, and
the various flavors of each, at the W3C website (http://www.w3.0rg).

http://www.w3.org

CHAPTER 1 GETTING STARTED

Validating Your Documents

Having a strict set of rules is all well and good, but how can you be sure you’'ve followed
them correctly? An XHTML document can be automatically validated, checking it against
the chosen rule set to ensure that it’s put together properly, somethinglike a spell checker
for markup. The W3C has created an online validation tool (available at http://
validator.w3.org/, shown in Figure 1-1) for just this purpose. This web-based service
allows you to validate your documents by either entering the location of a page on the
web, uploading a file from your computer, or simply pasting your markup directly into a
form on the website.

W3€ h Markup Validation Servicevo74

Home About... News Docs Help & FAQ Feedback

Donate

Validate:

This is the W3C Markup Validation Service, a free service that checks Web documents in formats like HTML and by URL
XHTML for conformance to W3C Recommendations and other standards. 5 'i:{,; ﬁli'e"u"p ==
by direct Input

if you wish to validate specific content such as ASS/Atom feeds or CSS stylesheets or to find broken links, there are
other validators and tools available.

Validate Your Markup
Address: | Check

Enter the URL of the page you want to check. Advanced options are available from the Extended Interface.

Local File:| Browse... | Check

Select the file you want to upload and check. Advanced options are available from the Extended File Upload Interface.

Note: file upload may not work with Internet Explorer on some versions of Windows XP Service Pack 2, see our information
page on the W3C QA Website.

Figure 1-1. The W3C Markup Validation Service website

The W3C Markup Validation Service can automatically analyze your markup and
display any errors it encounters so you can correct them. It will also display validation
warnings, which are simply cautions about issues you might want to address but are not
quite as severe as errors; warnings can be ignored if you have good reason to do so, but
errors are flaws that really must be fixed. When no errors are found, you'll see a joyful
banner declaring that your document is valid. A well-formed document is one that is valid
and correctly assembled according to the rules of the language. Other validation tools are
also available—both online and offline—that can help you check your documents.

http://validator.w3.org
http://validator.w3.org

CHAPTER 1 GETTING STARTED

Most web browsers are still able to interpret and render invalid documents, but only
because they’'ve been designed to compensate for minor errors. Valid, well-formed docu-
ments are much more stable, and you won'’t have to depend on a browser’s built-in error
handling to display them correctly.

Separating Content from Presentation

HTML is intended to bestow a meaningful structure upon unstructured text, designating
that different blocks of words are in fact different types of content. A headline is not the
same as a paragraph; those two types of content should be delineated with different tags,
making their innate difference emphatically clear to another computer. But human beings are
used to reading text that looks a certain way—we expect headlines to appear in a large,
boldfaced font to let us know that it’s a headline and not something else. Early browser
developers knew this, and they programmed their software to display different types of
content in different styles.

From its humble roots, the web quickly took off and soon was no longer the exclusive
domain of computer scientists. Graphic designers discovered this exciting new medium
and sought ways to make it more aesthetically appealing than ordinary, unadorned text.
However, HTML lacked a proper means of influencing the display of content; it was strictly
intended to provide structure. Designers were forced to repurpose many of the features
in HTML, taking advantage of the way browsers displayed content in an effort to create
something more visually compelling. Unfortunately, this resulted in many websites of the
day being built with presentational markup that was messy, overcomplicated, hard to
maintain, and had nothing to do with what the content meantbut only how it should look.

In the late 1990s, when the web was still in its infancy, a new technology called
Cascading Style Sheets (CSS) was introduced. It was an entirely different language; one
specifically intended to describe how HTML documents should be visually presented
while leaving the structural markup clean and meaningful. A style sheet written in CSS can
be applied to an HTML or XHTML document, adding an attractive layer of visual design
without negatively impacting the markup that serves as its foundation.

Separating content from presentation allows both aspects to become stronger and
more adaptable. An XHTML document can be easily modified without completely recon-
structing it to correct the design. An entire website can be redesigned by changing a single
style sheet without rewriting one line of structural markup.

It took some time for the popular browsers to catch up and fully support CSS as it was
intended, but today’s browsers (a few lingering bugs notwithstanding) support CSS well
enough that presentational markup can be a thing of the past.

CHAPTER 1 GETTING STARTED

Throughout this book, you’ll be learning to write meaningful, structural markup to
designate your content according to its inherent purpose. Along the way, you’ll see many
examples of how you can visually style your content with CSS, avoiding the trap of presen-
tational markup. Like XHTML, CSS is an open standard that you can learn about at the
W3C website (http://www.w3.0rg/Style/CSS/).

Working with XHTML and CSS

Though XHTML and CSS can seem overwhelming when you first dive in, creating your
own web pages is actually quite easy once you get the hang of it. All you really need is a way
to edit text files, a browser to view them in, and a place to store the files you create.

Choosing an HTML Editor

XHTML documents are plain text, devoid of any special formatting or style—all of the
visual formatting takes place when a graphical web browser renders the document. To
create and edit plain-text electronic documents, you’ll need to use software that can do so
without automatically imposing any formatting of its own. Fortunately, every operating
system comes with some kind of simple text-editing program:

* Windows users can use Notepad, which can be found under Start » All Programs »
Accessories » Notepad. WordPad is another Windows alternative, but it will format
documents by default. If you use WordPad, be sure to edit and save your documents
as plain text, not “rich text.”

¢ Linux users can choose from several different text editors, such as vi or emacs.

e Mac users can use TextEdit, which ships natively with OS X in the Applications
folder. Like WordPad for Windows, TextEdit defaults to a rich-text format. You can
change this by selecting Format » Make Plain Text.

In addition to these basic text editors, numerous other, more advanced text editors are
available for Windows, Linux, and Macintosh systems, many specially designed for editing
web documents. Some of them can even be had free of charge. There are also so-called
What You See Is What You Get (WYSIWYG, pronounced as “wizzy wig”) editors on the
market that offer a graphical interface wherein you can edit documents in their formatted,
rendered state while the software automatically produces the markup behind it. However,
this is no substitute for understanding how XHTML and CSS really work, and some WYSIWYG
editors can generate convoluted, presentational markup. Handcrafting your documents
in plain text is really the best way to maintain control over every aspect of your markup,
and many professionals swear by it.

http://www.w3.org/Style/CSS

CHAPTER 1 GETTING STARTED

Choosing a Web Browser

As we mentioned earlier, a web browser is the software you use to view websites, and you
almost certainly already have one. Every modern computer operating system comes with
some sort of web browser installed, or you can choose one of the many others on the market:

e Microsoft Internet Explorer is the default browser on Windows operating systems.
e Apple Safari is the default browser for Mac OS X.

e Modzilla Firefox is a free browser available for Windows, Mac OS X, and Linux
(http://www.mozilla.com/firefox/).

¢ Netscape Navigator is available for Windows, Mac OS X, and Linux and is based on
the same software that powers Firefox (http://browser.netscape.com).

e Opera is another free browser available for a wide range of operating systems
(http://www.opera.com).

* Konqueror is a free browser and file manager for Linux (http://www.konqueror.org).

* OmniWeb is abrowser for Mac OS X that costs a small fee, though a free trial version
is available (http://www.omnigroup.com/applications/omniweb/).

Ordinary XHTML documents don’t require any other software to operate. All of your
files can be stored locally on your computer’s hard drive, and you can view pages in their
rendered state by simply launching your browser of choice and opening the document
you want to view (you can find the command to open alocal file under the File menu in
most graphical browsers).

Hosting Your Web Site

You can save all of your work locally on your own computer, but when it’s time to make it
available to the World Wide Web, you need to move those files to a web server. You have a
few hosting options if you're building your own website:

» Using web space provided by your ISP: An Internet service provider (ISP) is a company
that connects you to the Internet. Many service providers offer a limited amount of
web space where you can host your own site. Ask your ISP whether web space is
included with your service contract and how you can use it.

http://www.mozilla.com/firefox
http://browser.netscape.com
http://www.opera.com
http://www.konqueror.org
http://www.omnigroup.com/applications/omniweb

CHAPTER 1 GETTING STARTED

» Using free web space: Many companies provide free web hosting, though freeis a
relative term since free web hosts are often supplemented by advertising. If you're
not bothered by such ads appearing on your website, free hosting may be a quick
solution to getting your files online.

* Paying for web hosting Perhaps the best option is to purchase service from a company
that specializes in hosting websites. Many offer hosting packages for as little as $10
(US) per month and include more robust features than free hosting or ISP hosting
provides (such as e-mail service, server-side scripting, and databases). Research
your options, and choose a host that can meet your needs.

We won’t go into all the particulars of getting your site online with a web host. After all,
this is still the first chapter, and numerous resources online can provide more information. To
learn more about hosting your websites when the time comes, just visit your favorite web
search engine and have alook around for information about “web hosting basics” or some
similar phrase. One good place to start is the Wikipedia entry about web hosting service
(http://en.wikipedia.org/wiki/Web_hosting), which offers a fairly detailed introduction
to set you on your way.

Introducing the URL

Every file or document available on the web resides at a unique address called a Uniform
Resource Locator (URL). The term Uniform Resource Identifier (URI) is sometimes used
interchangeably with URL, though URIis a more general term; a URLis a type of URL We'll
be using the term URL in this book to discuss addressed file locations. It’s this address that
allows a web-connected device to locate a specific file on a specific server in order to down-
load and display it to the user (or employ it for some other purpose; not all files on the web
are meant to be displayed).

The Components of a URL

A web URL follows a standard syntax that can be broken down into a few key parts,
diagrammed in Figure 1-2. Each segment of the URL communicates specific information
to both the client and the server.

The protocolindicates one of a few different sets of rules that dictate the movement of
data over the Internet. The web uses HyperText Transfer Protocol (HTTP), the standard
protocol used for transmitting hypertext-encoded data from one computer to another. The
protocol is separated from the rest of the URL by a colon and two forward slashes (://).

http://en.wikipedia.org/wiki/Web_hosting

10

CHAPTER 1 GETTING STARTED

Protocol Hostname Path File

]]]]
[[[| |

http://www.example.com/examples/example.html

L I 1 | L I 1 |
I I I I

Prefix Domain Name Extension

Figure 1-2. The basic components of a URL

A hostnameis the name of the site from which the browser will retrieve the file. The web
server’s true address is a unique numeric Internet Protocol (IP) address, and every computer
connected to the Internet has one. IP addresses look something like “65.19.150.101,” which
isn’t very easy on the eyes and is certainly a challenge to remember. A domain nameis a
more memorable alias that can be used to direct Internet traffic to an IP address. Many
web hostnames feature a domain prefix, further naming the particular server being accessed
(especially when there are multiple servers within a single domain), though that prefix is
frequently optional. A prefix can be almost any short text label, but “www” is traditional.
It’s possible for another entire website to exist separately within a domain under a different
prefix, known as a subdomain. A hostname will also feature a domain suffix (sometimes
called an extension) to indicate the category of domain the host resides in, such as “.com”
for a U.S. commercial domain, “.edu” for a U.S. educational institution, or “.co.uk” for a
commercial website in the United Kingdom.

The path specifies the directory on the web server that holds the requested document,
just as you probably save files in different virtual folders on your own computer. Files on
aweb server may be stored in subdirectories—like folders within folders—and each direc-
tory in the path is separated by a forward slash (/). This path is the route a client will follow
to reach the ultimate destination file. The top-level directory of a website (the one that
contains all other files and directories) is called the site root directory and doesn’t appear
in the URL.

The specific file to retrieve is identified by its file name and extension. You can give your
files just about any name you want, and a file extension indicates what type of file it is. An
HTML (or XHTML) document will have an extension of .html or .htm (the shorter version
is used on some servers that support only three-letter file extensions). CSS files use the .css
extension, JavaScript files use .js, and so forth. Aweb server can be configured to recognize
these extensions and handle the files appropriately, processing different types of files in
different ways.

You won’t see a file name and extension in every URL you encounter. Most web servers
are configured to automatically locate a speciallynamed file when a directory is requested
without a specified file name. This could be the file called index.html, default.html, or

CHAPTER 1 GETTING STARTED

some other name, depending on the way the server has been set up. Indeed, most of the
various parts of the URL may be optional depending on the particular server configuration.
The URL is the instrument that allows you to build links to other parts of the web,
including other parts of your own site. You'll use URLSs extensively in the XHTML and CSS
you author, which is why we’ve spent so much time exploring them in this first chapter.

Absolute and Relative URLSs

A URL can take either of two forms when it points to a resource elsewhere within the same
site. An absolute URLis one that includes the full string, including the protocol and host-
name, leaving no question as to where that resource is found on the web. You'll use an
absolute URL when you link to a site or file outside your own site’s domain, though even
internal URLs can be absolute.

A relative URLis one that points to a resource within the same site by referencing only
the path and/or file, omitting the protocol and hostname since those can be safely assumed.
It might look something like this:

examples/chapteri/example.html

Ifthe destination file is held within the same directory as the file where the URL occurs,
the path can be assumed as well so only the file name and extension are required, like so:

example.html

If the destination is in a directory above the source file, that relative path can be indi-
cated by two dots and a slash (. . /), instructing the browser to go up one level to find the
resource. Each occurrence of . ./ indicates one up-level directive, so a URL pointing two
directories upwards might look like this:

../../example.html

Almost all web servers are configured to interpret aleading slash in a relative URL as the
site root directory, so URLs can be “site root relative,” showing the full path from the site
root down:

/examples/chapteri/example.html
Lastly, if the destination is a directory rather than a specific file, only the path is needed:
/examples/chapter1/

Relative URLs are a useful way to keep file references short and portable; an entire site
can be moved to another domain, and all of its internal URLs will remain fully functional.

11

12

CHAPTER 1 GETTING STARTED

Summary

This chapter has provided a high-level overview of what the Internet and World Wide Web
are and how they work. You’ve been introduced to HTML and CSS and are beginning to
understand how you can make these languages work together to produce a rendered web
page. We covered a few different text editors you can use to create your documents and
some popular web browsers you can view them with. You've also learned a little about
web hosting and lot about the components of a URL, information you’ll find essential as
you begin assembling your own websites. We haven’t gone into all the gory details in this
introduction—after all, we’ve got the rest of the book to cover them. In the next chapter,
you'll finally get to sink your teeth into some real XHTML and CSS. Buckle up, this should
be a fun ride!

CHAPTER 2

XHTML and CSS Basics

Chapter 1 briefly introduced you to XHTML and CSS, and in this chapter we’ll show you
howyou can author markup and style sheets to create your own web pages. You'llbecome
familiar with the essential components of XHTML documents and how they should be
correctly assembled. As you know, you must adhere to some standards when authoring
a document for the web, and we’re going to be following the rules of XHTML 1.0 Strict
throughout this book. XHTML is an updated reformulation of HTML, with just a few more
stringent rules to obey, and we’ll point out the differences between the two languages in
this chapter.

Later in the chapter, we’ll guide you through the essentials of CSS so you can use it to
visually style your web pages. XHTML provides the structure that supports the content of
your web pages, while CSS provides the polish to make your content more attractive and
memorable. Designing websites with CSS isn’t possible without some solid bedrock of
markup underneath, so let’s begin at the beginning.

The Parts of Markup: Tags, Elements,
and Attributes

The linchpin of XHTML—as well as other markup languages—is the fag Tags are the coded
symbols that separate and distinguish one portion of content from another while also
informing the browser of what type of content it’s dealing with. A user-agent can interpret
thetags embedded in an XHTML document and treat different types of content appropriately.
Most of the tags available in XHTML have names that describe exactly what they do and
what type of content they designate, such as headings, paragraphs, lists, images, quotations,
and so on.

Tags in XHTML are surrounded by angle brackets (< and »>) to clearly distinguish them
from ordinary text. The first angle bracket (<) marks the beginning of the tag, immediately
followed by the specific tag name, and the tag ends with an opposing angle bracket (>). For
example, this is the XHTML tag that indicates the beginning of a paragraph:

<p>

13

14

CHAPTER 2 XHTML AND CSS BASICS

Notice that the tag name is written in lowercase, which is a requirement of XHTML; tag
names are not case-sensitive in HTML (and many web authors write them in uppercase to
make their markup more readable), but they must be lowercase in XHTML (that’s one of
those more stringent rules that separates XHTML from HTML).

Most tags come in matched pairs: one opening tag (also called a start tag) to mark the
beginning of a segment of content and one closing tag (also called an end tag) to mark its
end. For example, the beginning of a paragraph is indicated by the opening tag, <p>, and
the paragraph ends with a </p> closing tag; the slash after the opening bracket is what
distinguishes it as a closing tag. A full paragraph would be marked up as follows:

<p>Hello, world!</p>

These twin tags and everything between them forms a complete element, and elements
are the basic building blocks of an XHTML document. Some elements don’t require a closing
tag in older versions of HTML—the appearance of a new opening tag implies that the
previous element has ended and a new one is beginning. But in XHTML, all elements
must end with a closing tag . . . almost all, that is.

Some tags indicate empty elements, which are elements that do not, and in fact cannot,
hold any contents. Empty elements don’t require a closing tag but are instead “self-closed” in
XHTML with a trailing slash at the end of a single tag that represents the entire element.
For example, the following tag represents a line break, an empty element that forces the
text that follows it to wrap to a new line when a browser renders the document (you’ll learn
more about this element in Chapter 4):

The space before the trailing slash isn’t strictly required, but it will help older browsers
interpret the tag correctly—without that space, some rare, old browsers fail to notice the
tag’s closing bracket. Some empty elements are also known as replaced elements; the
element itself isn’t actually rendered by a graphical browser but is instead replaced by
some other content. Empty elements in HTML should not include a trailing slash.

An element’s opening tag can carry attributes to provide more information about the
element—specific properties that element should possess. An attribute consists of an
attribute name followed by an attribute value, like so:

<p class="greeting">Hello, world!</p>

This paragraph includes a class attribute with a value of “greeting,” making it distinct
from other paragraphs that don’t include that attribute (you’ll learn more about the class
attribute later). An attribute’s name and its value are connected by an equal sign (=), and
the value is enclosed in quotation marks. All attribute values must be quoted in XHTML,
using either single quotes (' ... ") or double quotes (" ... ") solong as both of them match
(quoting a value like " . .. ' wouldn’t be valid). Quoting attribute values was optional in
HTML butisrequired in XHTML Strict. Some attributes don’t require a value in HTML (an
attribute without a value is called a minimized attribute), but all attributes must have a

CHAPTER 2 XHTML AND CSS BASICS 15

value in XHTML—minimizing attributes isn’t allowed. Like tag names, attribute names
must be lowercase in XHTML but aren’t case-sensitive in HTML. Attribute values are
never case-sensitive, especially since some values might need to use capital letters. Even
so, it’s not a bad idea to use lowercase wherever practical, for consistency’s sake.

An element’s opening tag can include several attributes separated by spaces, and
attributes must appear onlyin an opening tag (or an empty element’s lone, self-closing
tag). Some elements require specific attributes, while others are optional—it all depends
on the individual element, and you’ll be learning about all of them throughout the rest of
this book, including which attributes each element may or must possess.

Figure 2-1 illustrates the components of an element.

Element

]
[|

Opening Tag Contents Closing Tag

] | |
| 1 1 1

<p class="greeting">Hello, world!</p>

L 11 |
I I

Name Value

L |
I

Attribute

Figure 2-1. The basic components of an XHTML element

Block-Level and Inline Elements

The entire range of elements can be divided into two basic types: block-level and inline.
A block-level element is one that contains a significant block of content that should be
displayed on its own line, to break apart long passages of text into manageable portions
such as paragraphs, headings, and lists. An inlineelement usually contains a shorter string
of text and is rendered adjacent to other text on the same line, such as a few emphasized
words within a sentence.

Many nonempty, block-level elements can contain other block-level elements, and all
can contain text and inline elements. A nonempty, inline element, on the other hand, can
contain only text or otherinline elements. For example, the em element is inline and is used
to add emphasis to the text within it, while the p element is block-level and designates a para-
graph of text. Because emis inline, it cannot contain block-level elements, so the following
example is wrong and invalid:

<p>Hello, world!</p>

16

CHAPTER 2 XHTML AND CSS BASICS

You'll find out which elements are block-level and which are inline as you progress
through this book, exploring each element in greater detail.

Nesting Elements

Elements can be nested like Russian nesting dolls, each one residing within its containing
element. They must be nested correctly, with each closing tag appearing in the correct
order to close an inner element before you close its container. The following markup is an
example of an improperly nested set of elements:

<p>Hello, world!</p>

The opening tag occurs after the opening <p> tag, but the closing </p> tag occurs
before the closing tag. To ensure correct nesting of elements, always close them in
the reverse order in which they were opened:

<p>Hello, world!</p>

White Space

When you create your XHTML documents as plain text, you're free to format them however
you want. Line breaks and indentions can help make your markup more readable as you
work, as you'll see in most of the markup examples in this book. Indenting nested, block-
level elements can make it easier to see where a particular element opens and closes, and
thus you're less likely to run into nesting problems or forget to end an element with the
correct closing tag.

Web browsers ignore any extra line breaks and carriage returns, collapsing multiple
spaces into a single space. To illustrate, here’s a bit of markup with a lot of extra space:

<p>

Wide open
spaces |
</p>

This is a rather extreme example—one you’d probably never commit yourself—but it
serves to demonstrate how all of those spaces are collapsed when a browser renders the
document. Although the spaces and returns are intact in the markup, your visitors would
see something like this:

Wide open spaces!

CHAPTER 2 XHTML AND CSS BASICS

Sometimes you may want to preserve extra spaces, tabs, and line breaks in your content—
when you’re formatting poetry or presenting computer code on your pages, for instance.
The pre element can delineate passages of preformatted text in just such cases, and you'll
learn more about that element in Chapter 4.

Standard Attributes

We'll be listing each element’s required and optional attributes as they're covered individ-
ually throughout this book. But some common attributes can be assigned to practically
any element (and are almost always optional). To spare you the repetition, we’ll cover
those attributes here, divided into a few categories.

Core Attributes

These attributes include general information about the element and can be validly included
in the opening tag of almost any element:

¢ class:Indicates the class or classes to which a particular element belongs. Elements
that belong to the same class may share aspects of their presentation, and classifying
elements can also be useful in client-side scripting. A class name can be practically
any text you like but can be made up only of letters, numbers, hyphens (-), and
underscores (_); other punctuation or special characters aren’t allowed in a class
attribute. Any number of elements may belong to the same class. Furthermore, a
single element may belong to more than one class, with multiple class names sepa-
rated by spaces in the attribute value.

e id: Specifies a unique identifier for an element. An ID can be almost any short text
label, but it must be unique within a single document; more than one element
cannot share the same identifier. The id attribute cannot contain any punctuation
or special characters besides hyphens (-) and underscores (_). The first character in
an ID must be a letter; it cannot begin with a numeral or any other character.

* style: Specifies CSS properties for the element. This is known as inline styling,
which you’ll learn more about later in this chapter. Although the style attribute
is valid with most elements, it should almost always be avoided because it mixes
presentation with your content.

e title: Supplies a text title for the element. Many graphical browsers display the
value of a title attribute in a “tooltip,” a small, floating window displayed when the
user’s cursor lingers over the rendered element.

17

18

CHAPTER 2 XHTML AND CSS BASICS

Internationalization Attributes

Internationalization attributes contain information about the natural language in which
an element’s contents are written (such as English, French, Latin, and so on). They can be
included in almost any element, especially those that contain text in a language different
from the rest of the document’s content.

e dir:Setsthe direction in which the text should be read, as specified by a value of 1tr
(left to right) or rt1 (right to left). This attribute usually isn’t needed, since a language’s
direction should be inferred from the lang and xml:lang attributes.

» lang: Specifies the language in which the enclosed content is written. Languages are
indicated by an abbreviated language code such as en for English, es for Spanish
(Espafiol), jp for Japanese, and so on. You can find a listing of the most common
language codes at http://webpageworkshop.co.uk/main/language_codes.

* xml:lang: Also specifies the language in which the enclosed content is written. This
is the XML format for the lang attribute, as it should be used in XML documents.
XHTML documents are both XML and HTML (depending on how the server delivers
them), so both the 1ang and xml:lang attributes may be applied to an element, both
with the same language code as their value.

Focus Attributes

When some elements—especially links and form controls—are in a preactive state, they
are said to have focusbecause the browser’s “attention” is concentrated on that element,
ready to activate it. You can apply these focus attributes to some elements to enhance
accessibility for people using a keyboard to navigate your web pages:

* accesskey: Assigns a keyboard shortcut to an element for easier and quicker access
through keyboard navigation. The value of this attribute is the character corresponding
to the access key. The exact keystroke combination needed to activate an access key
varies between browsers and operating systems.

e tabindex: Specifies the element’s position in the tabbing order when the Tab key is
used to cycle through links and form controls.

Note Numerous event attributes are available for client-side scripting, including onclick, ondblclick,
onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, and
onmouseup. Each of these events occurs when the user performs the indicated action upon the element. However,
use of such inline event handlers is strongly discouraged, so we won’t be covering these optional attributes in any
detail. Scripted behavioral enhancements are best separated from the document’s content and structure, just as
presentation should be separated. Chapter 10 offers a general introduction to client-side scripting.

http://webpageworkshop.co.uk/main/language_codes

CHAPTER 2 XHTML AND CSS BASICS

Adding Comments

It’s often useful to embed comments in your documents. They’re notes that won'’t be
displayed in a browser but that you (or someone else) can read when viewing the original
markup. Comments can include background on why a document is structured a particular
way, instruction on how to update a document, or arecorded history of changes. Comments
in XHTML use a specialized tag structure:

<!-- Use an h2 for subheadings -->
<h2>Adding Comments</h2>

A comment starts with <! --, a set of characters the browser recognizes as the opening
of a comment, and ends with -->. Web browsers won’t render any content or elements
that occur between those markers, even if the comment spans multiple lines. Comments
can also be useful to temporarily “hide” portions of markup when you’re testing your web

pages.

<!-- Hiding this for testing
<h2>Adding Comments</h2>
End hiding -->

Although a browser doesn’t visibly render comments, the comments are still delivered
along with the rest of the markup and can be seen in the page’s source code if a visitor
views it. Don’t expect comments to remain completely secret, and don’t rely on them to
permanently remove or suppress any important content or markup.

The XHTML Document

So far, we’ve been using the words documentand page repeatedly, and you might think
those terms are interchangeable. But generally speaking, when we refer to a document,
we're talking about the plain-text file that contains the XHTML source code, while a page
is the visible result when a graphical web browser renders that document. A document is
what you author, and a page is what you (and the visitors to your website) will see and use.

An XHTML document must conform to a rigid structure to be considered valid and well
formed, with a few required components arranged in a precise configuration. Listing 2-1
shows the basic skeleton of a well-formed document, with all the required pieces in their
proper places.

Listing 2-1. A Basic XHTML Document

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">

19

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

20

CHAPTER 2 XHTML AND CSS BASICS

<head>
<title>My first web page</title>
</head>
<body>
<p>XHTML is easy!</p>
</body>
</html>

As simple as it seems, this is actually a complete, valid, well-formed document. Every
web page you create will begin with a framework just like this. Next, we’ll discuss a few of
the components in a bit more detail.

The Doctype

An XHTML document begins with a Document Type Declaration (doctype, for short), a
required component that—as the name suggests—declares what type of document this is
and the set of standardized rules the document intends to follow. Each “flavor” of XHTML
has its own corresponding doctype.

* XHTML 1.0 Strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

e XHTML 1.0 Transitional:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

e XHTML 1.0 Frameset.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-frameset.dtd">

The doctype declaration is a sort of tag, but despite its enclosing angle brackets, it’s not
an element in XHTML, so it doesn’t require a closing tag or trailing slash. In fact, it’s not
truly part of the document’s markup at all; it merely relays information about the docu-
ment to the user-agent so it can determine what kind of document it’s dealing with and
render the page according to the proper rules.

The doctype must appear in your XHTML documents exactly as we’ve shown here,
complete with capitalization and quotes, though it doesn’t have to be broken onto two
lines. Other versions of HTML have their own doctypes, but we’ll be using XHTML 1.0
Strict throughout this book. For a more exhaustive investigation into the parts ofa doctype

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd

CHAPTER 2 XHTML AND CSS BASICS

declaration, see Brian Wilson’s informative explanation at http://www.blooberry.com/
indexdot/html/tagpages/d/doctype.htm.

Doctype Switching: Compliance Mode vs. Quirks Mode

When a web browser downloads an HTML or XHTML document, it must make a number
of programmed assumptions in order to parse the document’s markup and apply the
presentation suggested by the author’s CSS. The earliest browsers that supported CSS did
so largely according to their own rules, rather than following the standardized specifications.
This was a major stumbling block in the adoption of CSS and web standards in general. A page
might be rendered perfectly in one graphical browser and appear completely broken in
another.

As browsers improved their support of CSS—that is, moved toward better compliance
with web standards—they were faced with a dilemma. Many websites had already been
designed with built-in dependencies on the inconsistent, inaccurate renderings of older
browsers. Suddenly opting to follow the rules could cause millions of web pages to seem
“broken” in the latest version of a web browser when theylooked just fine the day before.
The site didn’t change overnight; only the browser’s method of rendering it did.

This dilemma inspired the introduction of the doctype switch. When a document
includes a full, correct doctype, a modern browser can assume the entire document is well
formed and authored according to web standards. The browser can then render the page
in amode intended to comply with the established standards for markup and CSS, amode
known as compliance mode or strict mode. If the doctype is missing, incomplete, or
malformed, the browser will assume it’s dealing with an outdated document and revert to
its loose and tolerant rendering mode, known as quirks mode because it’s intended to
adjust to the various quirks of nonstandard and improperly constructed markup (it’s also
sometimes called compatibility mode). Older browsers lack a built-in doctype switch and
so are forever locked in their outdated quirks modes.

To correctly invoke compliance mode in modern web browsers, a complete doctype
must be included as the very first line of text in a document; only white space is allowed
to appear before it. Any markup, text, or even comments appearing before the doctype
declaration will throw most modern browsers into quirks mode, with often-unpredictable
results. Designing websites with CSS is considerably easier and the results are more consistent
when the document is rendered in compliance mode. Hence, including a complete and
correct doctype is essential. And because a doctype is already a required part of a valid
web document, modern browsers will always render your pages in compliance mode if
you build your documents correctly.

Peter-Paul Koch offers additional information and opinions on quirks mode at his aptly
named website, Quirks Mode (http://www.quirksmode.org/css/quirksmode.html). To find
out just how documents are rendered differently in quirks mode, see Jukka Korpela’s article
“What Happens in Quirks Mode?” (http://www.cs.tut.fi/~jkorpela/quirks-mode.html).

21

http://www.blooberry.com
http://www.quirksmode.org/css/quirksmode.html
http://www.cs.tut.fi/~jkorpela/quirks-mode.html

22

CHAPTER 2 XHTML AND CSS BASICS

THE XML DECLARATION

To be honest, a proper XHTML document should include an XML declaration before the doctype. This
special declaration indicates that the document has been encoded as XML and optionally specifies the
XML version and the document’s character encoding:

<?xml version="1.0" encoding="UTF-8"?>

Internet Explorer for Windows is far and away the most common graphical web browser for the most
common computer operating system on the planet today, dominating 70% to 90% of the web-using world,
depending on which statistics you believe. And, unfortunately, Internet Explorer doesn’t recognize an XML
declaration, instead reverting to quirks mode when any text appears before the doctype.

Including an XML declaration in your XHTML documents, while absolutely correct, would simply result in
a vast number of your site’s visitors seeing your pages displayed in an outdated rendering mode, a sure-
fire recipe for frustration when you attempt to achieve consistent cross-browser presentation with
CSS. So we recommend against adding an XML declaration, though its omission might make some
XML purists cringe.

The html Element

The actual markup begins after the doctype with the html element, which acts as a container
for the entire document. This is known as the root element, the one from which all other
elements sprout and grow. The html element has no other properties of its own; it’s strictly
a container that defines where the document begins and ends. Any elements or content
that appear outside this element (apart from the doctype, which isn’t an element) will
make the entire document invalid.

Required Attributes

e xmlns: A URL specifying an XML namespace, which is http://www.w3.0rg/1999/
xhtml for XHTML documents

Optional Attributes

There are no optional attributes for the html element.
Standard Attributes
e dir

e id

http://www.w3.org/1999

CHAPTER 2 XHTML AND CSS BASICS

e lang
e xml:lang

A namespace is where element and attribute names are specified for XML languages.
XML is an extensible markup language, allowing authors to define their own customized
elements and attributes. For example, an animal element with a species attribute could be
useful for documents about animals, and such customized names could be defined in a
special namespace. XHTML 1.0, on the other hand, has a predefined set of element and
attribute names, and the correct URL of its namespace is http://www.w3.0rg/1999/xhtml
(XHTML 1.1 and 2 can be extended with a custom namespace, but those versions of XHTML
haven’t yet been released as official standards). The namespace is declared in an XHTML
document via the xmlns attribute of the root html element.

The standard 1ang and xml: lang attributes are optional for the html element (as they are
for most other elements). Because this is the root element from which all other elements
descend, the language declared here will be passed on to every other element in the docu-
ment, so it’'s recommended to include them.

CONTENT TYPES

Web servers and clients rely on standardized content types to differentiate one type of content from
another, in order to determine how the data should be processed. Plain, unformatted text is delivered
with a content type of text/plain, a JPEG image is delivered with a content type of image/ jpeg,
an MPEG video uses video/mpeg, and so on. Most of this goes on automatically, behind the scenes
between the server and the client, and a web author usually doesn’t need to be concerned with content
types. Content types are also known as Internet media types or MIME types (MIME stands for Multipur-
pose Internet Mail Extensions, but the standard is used on the web as well).

HTML documents use a content type of text/html, so both the server and the client know exactly
what that document is and how it should be handled. However, we’ve said before that XHTML is a refor-
mulation of HTML following the stringent rules of XML. But the truth is that XHTML is XML, and should
most correctly be served as such with a content type of application/xml+xhtml. Unfortunately,
many popular web browsers (most notably Internet Explorer for Windows, the most dominant browser in
the world) don’t correctly interpret XHTML documents served with the correct content type. Those browsers,
unable to cope with XHTML delivered as XML, will fail to render the document. This is simply unacceptable
for most web authors since the overwhelming majority of the browsing public would be unable to see
and use their sites.

Furthermore, devices that parse XML are required to stop processing the document on the first
error they encounter. A single validation error would make the entire web page fail if it was being treated
as true XML. As much as we might want to keep our documents strictly valid, it's simply not always
possible, especially when third-party software and content management systems are involved. Alas,
delivering XHTML documents with the correct content type is rarely practical at this time.

23

http://www.w3.org/1999/xhtml

24

CHAPTER 2 XHTML AND CSS BASICS

Luckily, XHTML documents can optionally be served with a content type of text/html, just as
other versions of HTML are. This effectively means XHTML is treated as if it were HTML 4.01, sacrificing
some of the power of XML for the sake of wider compatibility with web browsers. You still gain some
benefits from using XHTML, ensuring your documents are well formed and forward compatible, but for
all intents and purposes you’re simply writing HTML 4.01 with a few tighter constraints.

And the Rest...

The rest of the document consists of the head and body elements; the head element contains
information about the document itself (including the required title element), while the
body element contains all the content that will ultimately be rendered by a browser, to be
seen and used by your visitors. These elements are covered in detail in the next two chap-
ters (in fact, Chapter 3 is devoted entirely to the head element).

All in all, the basic structure of an XHTML document is quite simple, requiring only a
doctype, aroot element, a head with a title, and a body.

The Document Tree

It’s helpful to visualize the structure of an XHTML document as an inverted tree, with all
the elements represented as connected branches. The tree begins with the root element
at the top and all other elements descending downward, making it more like a family tree
than the leafy, wooden sort. Because of this, genealogy terms are often used to refer to the
relationships between elements. Figure 2-2 shows the family tree of a simple document.

In the diagram, the tree begins with the root element, which has two child elements: the
head and the body. That body element has two children of its own: alevel-one heading (the
h1 element, covered in Chapter 4) and a p element for a single paragraph (also covered in
Chapter 4). Those two elements are siblings of each other, sharing the body element as
their common parent. They're also descendants of the html element, which is their ancestor.
The paragraph contains an em element and an a element, sibling children of their parent
paragraph, descended from the ancestral body and html elements.

We'll use these terms—children, siblings, parents, descendants, and ancestors—often
throughout this book.

CHAPTER 2 XHTML AND CSS BASICS

html

head body

title h1 p

em d

Figure 2-2. A simple document tree

CSS Fundamentals

CSS can add style to your pages, enhancing and improving the presentation of your content.
The structure is supplied by XHTML—each element designates a different portion of
content, and attributes pass along more information about those elements. CSS acts as
another layer to influence the presentation of those XHTML elements when they’re rendered.
Colors, fonts, text sizes, backgrounds, and the arrangement of elements on the page are all
presentational aspects of your content, and all can be controlled through artful applica-
tion of CSS.

Anatomy of a CSS Rule

If elements are the building blocks of markup, the building block of CSS is the rule. It’s a
set of instructions that a browser can follow to alter the appearance of XHTML elements
based on the presentational values you supply. A CSS rule consists of a few component
parts, diagrammed in Figure 2-3.

25

26

CHAPTER 2 XHTML AND CSS BASICS

Rule

|
| 1

Selector Declaration

]]
[| [|

body { background-color: white; }

L 1 |
I I

Property Value

Figure 2-3. The components of a rule in CSS

The selector is the part of the rule that targets an element that will be styled. Its scope
can be very broad, affecting every instance of a particular element or very narrow and
specific, affecting only a few elements or even just one. We'll cover the different kinds of
selectors in the next section of this chapter.

A declaration comprises two more parts: a property and a value. The property is that
aspect of an element’s presentation that is being modified, such as its color, its width, or
its placement on the page. Dozens of properties are available in the CSS language, and
you’ll become familiar with many of them in the pages of this book.

The property value delivers the specific style that should be applied to the selected
element. The values accepted depend on the particular property, and some properties
accept multiple values, separated by spaces.

Declarations reside in a set of curly braces ({ and }), and multiple declarations can
apply to the same selector, thus modifying several aspects of an element’s presentation in
the course of a single rule. A property and its value are separated by a colon (:) and the
declaration ends with a semicolon (;). That semicolon is important to separate multiple
declarations, but if there’s only one declaration in the rule or if it’s the last declaration in
a series, the terminating semicolon is optional. It’s not a bad idea to get in the habit of
including a semicolon at the end of every declaration, even when there’s only one, just to
play it safe.

If your CSS doesn’t conform to this basic structure and syntax—if you forget the closing
brace or the colon separating a property from its value, for example—the entire rule or
even the entire style sheet might fail. Just like XHTML, a style sheet should be well formed
and properly constructed. The W3C provides a CSS validation service (http://jigsaw.
w3.org/css-validator/) that can help you catch goofs and glitches in your style sheets.

http://jigsaw.w3.org/css-validator
http://jigsaw.w3.org/css-validator

CHAPTER 2 XHTML AND CSS BASICS

CSS Selectors

A selector, as its name implies, selects an element in your XHTML document. A few
different types of selectors are available, with varying levels of specificity to target a large
number of elements or just a few. Specificity is a means of measuring a given selector’s
scope, in other words how many or few elements it selects. CSS is designed so that more
specific selectors override and supersede less specific selectors. Specificity is one of the
more nebulous and hard-to-grasp concepts in CSS but is also one of the most powerful
features of the language. We’ll cover the rules of specificity in more detail later, but let’s
first introduce the selectors.

Universal Selector

The universal selector is merely an asterisk (*) acting as a “wild card” to select any and all
elements in the document. For example, this rule:

* { color: blue; }

would apply a blue foreground (text) color to all elements. Headings, paragraphs, lists,
cells in tables, and even links—all would be rendered in blue because the universal selector
selects the entire universe. This is the least specific selector available, since it’s not specific
at all.

Element Selector

An element selector selects all instances of an element, specified by its tag name. This
selector is more specific than the universal selector, but it’s still not very specific since it
targets every occurrence of an element, no matter how many of them there may be. For
example, the rule:

em { color: red; }

gives every em element the same red foreground color, even if there are thousands of them
in a document. Element selectors are also known as type selectors.

Class Selector

A class selector targets any element that bears the given class name in its class attribute.
Because a class attribute can be assigned to practically any element in XHTML, and any
number of elements can belong to the same class, this selector is not extremely specific
but is still more specific than an element selector. In CSS, class selectors are preceded by
a dot (.) to identify them. For example, this rule will style any elements belonging to the
“info” class, whatever those elements happen to be:

.info { color: purple; }

27

28

CHAPTER 2 XHTML AND CSS BASICS

ID Selector

An ID selector will select only the element carrying the specified identifier. Practically any
element can have an id attribute, but that attribute’s value may be used only once within
a single document. The ID selector targets just one element per page, making it much
more specific than a class selector that might target many. ID selectors are preceded by an
octothorpe (#). (This is often called a hash, number sign, or pound, but octothorpe is the
character’s proper name. It also sounds cool and will impress people at dinner parties.)
The following rule would give the element with the ID “introduction” a green foreground
color:

#introduction { color: green; }

Pseudo Class Selector

A pseudo class is somewhat akin to a class selector (and is equal to classes in specificity),
but it selects an element in a particular state. It's preceded by a colon (:), and only a few
pseudo classes are available:

:1link { color: blue; }
:visited { color: purple; }
:active { color: red; }
thover { color: green; }
:focus { color: orange; }

The :1ink pseudo class selects all elements that are hyperlinks (which you’ll learn much
more aboutin Chapter 6). The :visited pseudo class selects hyperlinks whose destination
has been previously visited (recorded in a web browser’s built-in history). The :active
pseudo class selects links in an active state, during that interval while they’re being acti-
vated (while clicking a mouse or pressing the Enter or Return key). The :hover pseudo
class selects any element that is being “hovered” over by a user’s pointing device. Although
any element can be in a hover state, this most commonly applies to links (though some
older browsers supported this pseudo class only for links and no other elements). The
:focus pseudo class selects any element in a focused state. Some browsers don’t support
:focus, most notably Internet Explorer 6 for Windows. However, Internet Explorer does
(incorrectly) treat the :active pseudo class as if it were : focus, but only for links and not
any other elements.

Descendant Selector

One of the most useful and powerful selectors in the CSS arsenal, a descendant selector
can be assembled from two or more of the basic selector types (universal, element, class,
pseudo class, and ID), separated by spaces, to select elements matching that position in
the document tree. These are also called contextual selectorsbecause they target elements
based on their context in the document. For example:

CHAPTER 2 XHTML AND CSS BASICS

#introduction em { color: yellow; }

That rule will color any em element within the element with the id value introduction
yellow. Descendant selectors allow for very precise selection of just the elements you want
to target, based on the structure of your XHTML document. This more elaborate example:

#introduction .info p * { color: pink; }

would select all elements that are descendants of a p element that is a descendant of an
element with the class info that is a descendant of the element with the ID introduction.
You can see how the scope of a descendent selector can be very narrow indeed, targeting
only a few elements that meet the selector’s criteria.

Combining Selectors

You can combine two or more selector types, such as an element and an ID or an ID and
a class. These combinations can also narrow down the specificity of your selectors, seeking
out only the elements you want to style and leaving others alone. This rule:

p.info { color: blue; }

selects only paragraphs (p elements) belonging to the info class. Another element in that
class would be overlooked, and other paragraphs not belonging to the info class are also
left untouched.

Combining selectors within a descendant selector can target elements with surgical
precision:

p#tintroduction a.info:hover { color: silver; }

This rule would apply only to hovered links (a elements) belonging to the info class that
are descendants of the paragraph with the ID introduction.

Grouping Selectors

You can group several selectors together as part of a single rule so the same set of declara-
tions can apply to numerous elements without redundantly repeating them. A comma
separates each selector in the rule:

p, h1, h2 { color: blue; }

The previous rule applies the same color value to every instance of the p, h1, and h2
elements. The more complex set of selectors in this rule:

p#introduction em, a.info:hover, h2.info { color: gold; }

will target all emelements descended from the paragraph with the ID introduction and all
hovered links with the class info as well as h2 elements (a second-level heading) in the
info class (remember that different types of elements can belong to the same class).

29

30

CHAPTER 2 XHTML AND CSS BASICS

Grouping and combining selectors is a great way to keep your style sheets compact and
manageable.

Advanced Selectors

The selectors you've seen so far are all part of CSS 1, the first standardized version of CSS
introduced way back in 1996. This version of CSS is very well supported in today’s gener-
ation of graphical web browsers, so you can use all of these selectors with fair confidence
that most of your visitors will see their intended effect.

Since CSS 1, newer versions have come about, including CSS 2.1 and CSS 3. These
updates to the CSS specifications have introduced a number of new and exciting selectors:

» Attribute selectors target an element bearing a particular attribute and even an
attribute with a specified value.

* Pseudo element selectors target elements that don’t specifically exist in the markup
but are implied by its structure, such as the first line of a paragraph or the element
immediately before another element.

e Child selectors select an element that is an immediate child of another element and
not its other descendants.

* Adjacent sibling selectors target elements that are immediate siblings of another
element, sharing the same parent in the document.

Unfortunately, CSS 2.1 and CSS 3 haven’t yet been released by the W3C as official
recommendations, though you can see them in their draft status at the W3C website to
learn about these selectors and how they work (http://www.w3.0rg/Style/CSS/). These
advanced selectors are already supported by many of the latest graphical browsers, but
not all of them (and even some modern browsers don’t support all of these selectors).
Such advanced CSS features should be used with care combined with intensive cross-
browser testing. For the purposes of this book, we’ll stick with the CSS 1 selectors we've
covered here, and they're all you’ll need for most of what you may want to accomplish.

Specificity and the Cascade

As we mentioned earlier, each type of selector is assigned a certain level of specificity,
measuring how many possible XHTML elements that selector might influence. Examine
these two CSS rules, one with an element selector and the other with a class selector:

h2 { color: red; }
.title { color: blue; }

and this snippet of XHTML, an h2 element classified as a title:

http://www.w3.org/Style/CSS

CHAPTER 2 XHTML AND CSS BASICS

<h2 class="title">Specificity and the Cascade</h2>

The first rule selects all h2 elements, and the second rule selects all elements belonging
to the title class. But the element shown fits both criteria, causing a conflict between the
two CSS rules. A graphical browser must choose one of the two rules to follow to determine
the heading’s final color. In CSS, a more specific selector trumps a less specific selector.
Because a class selector is more specific than an element selector, the second rule has
greater specificity, and the heading is rendered in blue.

Modern web browsers follow a complex formula to calculate a selector’s specificity,
which can be rather confusing to noncomputers like us. Thankfully, you'll rarely need to
calculate a selector’s numeric specificity value if you just remember these few rules:

e Auniversal selector isn’t specific at all.

* An element selector is more specific than a universal selector.

* Aclass or pseudo class selector is more specific than an element selector.
e AnID selector is more specific than a class or pseudo class.

* Properties in an inline style attribute are most specific of all.

Specificity is also cumulative in combined and descendant selectors. Each of the base
selector types carries a different weight in terms of specificity—a selector with two classes
is more specific than a selector with one class, a selector with one ID is more specific than
a selector with two classes, and so on. The specificity algorithm is carefully designed so
that a large number of less specific selectors can never outweigh a more specific selector.
No number of element selectors can ever be more specific than a single class, and no
number of classes can ever be more specific than a single ID. Even if you assembled a
complex selector made up of hundreds of element selectors, another rule with just one ID
selector would still override it.

Understanding specificity will allow you to construct CSS rules that target elements
with pinpoint accuracy. For a more in-depth explanation of how specificity is calculated
by web browsers, see the W3C specification for CSS 2.1 (http://www.w3.0rg/TR/CSS21/
cascade.html#specificity) along with Molly Holzschlag’s more approachable clarifica-
tion athttp://www.molly.com/2005/10/06/css2-and-css21-specificity-clarified/.

At this point you might be wondering what happens when two selectors target the same
element and also have the same specificity. For example:

.info h2 { color: purple; }
h2.title { color: orange; }

If an h2 element belonging to the title class is a descendant of another element in the
info class, both of these rules should apply to that h2. How can the browser decide which
rule to obey? Enter the cascade, the Cin CSS.

31

http://www.w3.org/TR/CSS21/cascade.html#specificity
http://www.w3.org/TR/CSS21/cascade.html#specificity
http://www.molly.com/2005/10/06/css2-and-css21-specificity-clarified

32

CHAPTER 2 XHTML AND CSS BASICS

Assuming selectors of equal specificity, style declarations are applied in the order in
which they are received, so later declarations override prior ones. This is true whether the
declarations occur within the same rule, in a separate rule later in the same style sheet, or
in a separate style sheet that is downloaded after a prior one. It’s this aspect of CSS that
gives the language its name: multiple style sheets that cascade over each other, adding up
to the final presentation in the browser. In the earlier example, the h2 element would be
rendered in orange because the second rule overrides the first.

For another example, the following rule:

p { color: black; color: green; }

contains two declarations, but paragraphs will be rendered in green because that declara-
tion comes later in the cascade order.

The sometimes-complex interplay between specificity and the cascade can make CSS
challenging to work with in the beginning, but once you understand the basic rules, it all
becomes second nature. You’'ll learn more about the cascade order later in this chapter,
but first we’ll explain how you can attach style sheets to your XHTML documents.

Attaching Style Sheets to Your Documents

To style your pages with CSS, you’ll also need to connect your style sheets to your docu-
ments. When a graphical browser downloads the XHTML document and parses it for
rendering, it will automatically seek out CSS rules to instruct it on how the various elements
should be presented. You can include style sheets with your documents in a few ways,
each with its own benefits and some drawbacks.

Inline Styles

You can include CSS declarations within the optional style attribute of each element in
your markup. Inline styles aren’t constructed as rules, and there is no selector because the
properties and values are attached directly to the element at hand, as in Listing 2-2. An
inline style is the most specific of all because it applies to exactly one element and no others.

Listing 2-2. An Example of Inline Styles

<h2 style="color: red;">Good eats for hungry geeks</h2>

<p style="color: gray;">Our fresh pizzas, hearty pasta dishes, and
succulent desserts are sure to please. And don't forget about our
daily chalkboard specials!</p>

However, you should avoid using inline styles. They mix presentation with your structural
markup, thus negating one of the primary advantages of using CSS. They’re also highly
redundant, forcing you to declare the same style properties again and again to maintain

CHAPTER 2 XHTML AND CSS BASICS

consistent presentation. Should you ever want to update the site in the future—changing
all your headings from red to blue, for example—you would need to track down every
single heading in every single document to implement that change, a daunting task on a
large and complex website.

Still, an inline style might be an efficient approach on a few rare occasions, but those
occasions are very few and far between, and another solution is always preferable; inline
styles should be a last resort only when no other options are available.

Embedded Style Sheets

You can embed style rules within the head element of your document, and those rules will
be honored only for the document in which theyreside. An embedded style sheet (sometimes
called an internal style sheet) is contained within the style element, shown in Listing 2-3 and
covered in greater detail in Chapter 3.

Listing 2-3. An Example of an Embedded Style Sheet

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Spaghetti and Cruft : Our Menu</title>
<style type="text/css">
h2 { color: red; }
p { color: gray; }
</style>
</head>
<body>
<h2>Good eats for hungry geeks</h2>

<p>Our fresh pizzas, hearty pasta dishes, and succulent
desserts are sure to please. And don't forget about our
daily chalkboard specials!</p>
</body>
</html>

Embedding a style sheetin the head of your document does further separate presentation
from your structured content, and those rules will be applied throughout that document,
butitisn’t an efficient approach if you're styling more than one page at a time. Other
documents within the same website would require embedded style sheets of their own, so
making any future modifications to your site’s presentation would require updating every
single document in the site.

33

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

34

CHAPTER 2 XHTML AND CSS BASICS

External Style Sheets

The third and best option is to place all your CSS rules in a separate, external style sheet,
directly connected to your documents. An external style sheet is a plain-text file that you
can edit using the same text editing software you use to create your XHTML documents,
saved with the file extension . css. This approach completely separates presentation from
content and structure—they’re not even stored in the same file. A single external style
sheet can be linked from and associated with any number of XHTML documents, allowing
your entire website’s visual design to be controlled from one central file. Changes to that
file will propagate globally to every page that connects to it. It’s by far the most flexible and
maintainable way to design your sites, exercising the true power of CSS.

An XHTML document links to an external style sheet via a 1ink element in the docu-
ment’s head, and you’ll learn more about that in the next chapter. For now, Listing 2-4
shows a simple example.

Listing 2-4. Linking to an External Style Sheet

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Spaghetti and Cruft : Our Menu</title>
<link rel="stylesheet" type="text/css" href="styles.css" />
</head>
<body>
<h2>Good eats for hungry geeks</h2>

<p>Our fresh pizzas, hearty pasta dishes, and succulent
desserts are sure to please. And don't forget about our
daily chalkboard specials!</p>
</body>
</html>

When a graphical browser downloads and begins processing the document, it will
follow that link to retrieve the external style sheet and process it as well, automatically
following its rules to render the page. An external style sheet is downloaded only once and
then cached in the browser’s memory for use on subsequent pages, keeping your docu-
ments lighter and improving the speed of your entire website.

The Cascade Order

You're not limited to a single style sheet; several different CSS files can be linked to from
one document, with each style sheet having its own link element in the document’s head.
Depending on the complexity of your site, you might have one style sheet containing

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 2 XHTML AND CSS BASICS

general rules for the entire site while pages within a certain section can link to a second
style sheet to define specific styles for that subset of pages. You might also prefer to break
your styles apart based on their purpose: for example, one style sheet defining colors and
backgrounds and another style sheet defining your page layout.

You can also combine all three methods—inline, embedded, and external—to style
your web pages, although it’s rarely advisable. If just one page on your site needs some
additional rules, you might choose to include an embedded style sheet within that docu-
ment alone. You may even, very rarely, want to call out one element for special treatment
and use an inline style for just that element. In almost every case, external style sheets are
the best approach: they eliminate presentational markup, improve a site’s performance,
and are much easier to maintain.

With so many CSS rules being dictated from so many different sources, some overlap
is to be expected. You already have specificity on your side, with more specific selectors
overruling general selectors. But specificity alone isn’t enough to resolve all the potential
style conflicts a graphical browser might run into when trying to render a web page. Where
specificity fails, the cascade order steps in to sort things out.

CSSrules are applied to content in the order in which they are received; later rules over-
ride previous rules. Separate style sheets are downloaded in a particular order as well. In
the case of external style sheets, their order is indicated by the order in which the 1ink
elements appear in the document; rules in later linked style sheets override rules in previ-
ously linked style sheets. Rules embedded in a document’s style element are processed
after all external style sheets. If more than one style sheet is embedded in a document—
eachinits own style element—later embedded style sheets override previous ones. Inline
declarations in an element’s style attribute are applied even after embedded style sheets.

In addition to author style sheets, every modern graphical web browser has its own
built-in style sheet to define the default presentation of various elements. When you view
aweb page without any of the author’s CSS applied, you're simply seeing it rendered with
the browser style sheet, which comes first in the cascade order so all the author’s styles
override those defaults. To complicate matters just a bit further, most web browsers allow
the end user to attach their own customized style sheets—known as a user style sheet—
which comes second in the cascade order, thus overriding the browser’s default styles but
not the author’s.

To break it down, the cascade order for multiple style sources is as follows:

1. Browser style sheet

2. User style sheet

3. External author style sheets (in the order in which they're linked)
4. Embedded author style sheets (in the order in which they occur)

5. Inline author styles

35

36

CHAPTER 2 XHTML AND CSS BASICS

And don’t forget, the cascade works within each style sheet as well. To remember how
the cascade works, follow this rule of thumb: the style closest to the content wins. Which-
ever value is declared last will be the one applied when the content is rendered.

limportant

In some extremely rare cases where both specificity and the cascade may not be sufficient
to apply your desired value, the special keyword ! important (complete with preceding
exclamation point) can force a browser to honor that value above all others. This is a powerful
and dangerous tool and should be used only as a last resort to resolve conflicting styles
beyond your control (for example, if you're forced to work with third-party markup that
uses inline styles that you're unable to modify directly).

The !important directive must appear at the end of the value, before the semicolon, like so:

hi { color: red !important; }

A value declared as !important is applied to the rendered content regardless of where
that value occurs in the cascade or the specificity of its selector. That is unless another
competing value is also declared to be ! important; specificity and the cascade once again
take over in those cases. There’s one notable exception to be aware of: ! important values
in a user style sheet always take precedence, even overriding ! important values in author
style sheets. This gives the ultimate power to the user, which is only right; after all, it’s their
computer.

Formatting CSS

Like XHTML documents, external style sheet files are plain text. You're free to format your
CSS however you like, just as long as the basic syntax is followed. Extra spaces and carriage
returns are ignored in CSS; the browser doesn’t care what the plain text looks like, just that
it’s technically well formed. When it comes to formatting CSS, the most important factors
are your own preferences. Individual rules can be written in two general formats: extended
or compacted.

Extended rules break the selector and declarations onto separate lines, which many
authors find more readable and easier to work with. It allows you to see at a glance where
each new property begins and ends, at the expense of a lot of scrolling when you’re working
with long and complex style sheets. Listing 2-5 shows a few simple rules in an extended
format.

CHAPTER 2 XHTML AND CSS BASICS

Listing 2-5. CSS Rules in Extended Format

h1, h2, h3 {
color: red;
margin-bottom: .5em;
}
hi {
font-size: 150%;
}
h2 {
font-size: 130%;
}
h3 {

font-size: 120%;
border-bottom: 1px solid gray;

}

Compact formatting condenses each rule to a single line, thus shortening the needed
vertical scrolling, but it can demand horizontal scrolling in your text editor when a rule
includes many declarations in a row. Listing 2-6 demonstrates the same set of rules
compacted to single lines and with unnecessary spaces removed.

Listing 2-6. CSS Rules in Compacted Format

h1,h2,h3{color:red;margin-bottom:.5em;}
hi{font-size:150%;}

h2{font-size:130%;}
h3{font-size:120%;border-bottom:1px solid gray;}

Another advantage of compacted rules is a slight reduction in file size. Spaces, tabs, and
carriage returns are stored as characters in the electronic file, and each additional character
adds another byte to the overall file size that must be downloaded by a client. A long style
sheet might be a considerably larger file in an extended format because of all the extra
space characters. In fact, you could choose to remove all excess spaces and place your
entire style sheet on a single line for optimal compression, but that might be overkill and
make your CSS much harder to work with. To reconcile maximum readability with minimal
file size, some authors work with style sheets in an extended format and then automati-
cally compress the entire thing to a single line when moving it to a live web server.

37

38

CHAPTER 2 XHTML AND CSS BASICS

A few extra spaces in a compacted rule can at least make it easier to scan, spreading a
one-line rule out a bit by including spaces between declarations and values. For lack of a
better term, we’ll call this format semicompacted, as shown in Listing 2-7.

Listing 2-7. CSS Rules in Semicompacted Format

h1, h2, h3 { color: red; margin-bottom: .5em; }

h1 { font-size: 150%; }

h2 { font-size: 130%; }

h3 { font-size: 120%; border-bottom: 1px solid gray; }

In the end, the choice is entirely yours, and you should author your style sheets in a way
that makes sense to you.

CSS Comments

You can add comments to your style sheets for the same reasons you might use comments
in XHTML: to make notes, to pass alonginstructions to other web developers, or to tempo-
rarily hide or disable parts of the style sheet during testing. A comment in CSS begins with
/* and ends with */, and anything between those markers won’t be interpreted by the
browser. Just like comments in XHTML, CSS comments can span multiple lines.

/* These base styles apply to all heading levels. */
h1, h2, h3, h4, h5, h6 { color: red; margin-bottom: .5em; }
/* Adjust the size of each. */

h1 { font-size: 150%; }

h2 { font-size: 130%; }

h3 { font-size: 120%; }

/* Temporarily hiding these rules

hg { font-size: 100%; }

hs { font-size: 90%; }

hée { font-size: 80%; }

End hiding */

Summary

This chapter has covered a lot of ground to get you up to speed on the inner workings of
XHTML and CSS. You've seen how you can author XHTML documents, using tags to define
elements and adding attributes to relay more information about them. Throughout the
rest of this book, you’'ll become intimately familiar with most of the elements you’ll use
when you create your own web pages.

CHAPTER 2 XHTML AND CSS BASICS

HTML was first introduced in the early 1990s, but the language has already undergone
many changes in its short and bright career. XHTML is a stricter reformulation of earlier
versions of HTML, with just a few rules that differentiate the two, as shown in Table 2-1.

Table 2-1. HTML 4.01 Strict vs. XHTML 1.0 Strict

HTML 4.01 Strict XHTML 1.0 Strict

Tag and attribute names are not Tag and attribute names must be written in
case-sensitive. lowercase.

Some attributes can be minimized, and All attributes must have a specified value, and the
attribute values don’t require quotes. value must be quoted.

Some elements don’t require closing tags, All elements must be closed, either with a closing
and empty elements should not be closed tag for nonempty elements or with a trailing slash
with a trailing slash. for empty elements.

The second part of this chapter gave you a crash course in CSS, unveiling the mechanics
of this rich and powerful language. You learned about CSS selectors and how specificity
and the cascade work together to give you great control over how your content is presented.
You'll use XHTML to build the structure of your documents and then use CSS to apply a
separate layer of polished presentation. In the following chapters, you'll see glimpses of
how you can use CSS in different ways to create different visual effects. Chapter 9 will
delve a bit deeper to show you a few ways to use CSS to lay out your pages by placing
elements where you want them to appear on-screen, all without damaging their under-
lying structure.

From here on, we’ll assume you’ve reached an understanding of the basic rules of
syntax for authoring your own XHTML and CSS, and the rest of this book will dig into the
real meat of markup. To get things rolling, Chapter 3 is a detailed examination of the head
element, where you'll include vital information about the documents you create.

39

CHAPTER 3

Moving A<head>

The title of this chapter says it all; we’re moving ahead and starting to get into creating
XHTML documents. This chapter explains the head element, which contains information
about the document. While the head element and its contents aren’t displayed in the
browser, they can play a critical role in defining special features in your document, such
as JavaScript code, the name of your document, and any styling that your document
should have.

The head Section

Many people consider the head a section as well as an element. The head can contain
several other elements, which this chapter focuses on. One of the more interesting things
about the head element is that is doesn’t contain any elements that are actually displayed in
your document. The first thing you need to learn is how to create the head element itself.

Chapter 1 presented the basic structure of an XHTML document. Based on the sample
presented in Chapter 1 and the rules presented in Chapter 2, you should realize that the
head section is contained in the html section. The head section must contain the head
element, and it may contain any of the following elements as well: base, 1ink, meta, script,
style, and title. I describe each of these elements in detail throughout the remainder of
this chapter. Let’s start with the head element.

<head>

For each tag, I present a summary of the available attributes. I break the attributes down into
three sections: required, optional, and standard. A required attribute must be present if
you use the tag. An optional attribute is just that: it’s optional and may or may not be
present. If you need more detail on the standard attributes, refer back to Chapter 2.

The <head> tag contains information about the XHTML document, including key words
that describe the site, links to other files that the document is making use of such as CSS
files, and more. Nothing in the head section is displayed to users in the browser, except the
contents of the <title> element, in the browser’s title bar.

4

42

CHAPTER 3 MOVING A<HEAD>

Required Attributes

No attributes are required for the head element.

Optional Attributes

e Profile: A space-separated list of URLs that contains metadata information about
the document

Standard Attributes
o dir
e lang

e xml:lang

Usage

Listing 3-1 illustrates an empty head element that should help remind you where it lives.

Listing 3-1. An Empty head Element

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>

<head>

</head>

<body>

</body>
</html>

The Supporting Elements

The remainder of this chapter goes through each of the tags you can use within the head
element. Adding or removing any of these elements may or may not affect the visual
presentation of your document.

<base>

The <base> tag helps make links (discussed in Chapter 6) shorter and maintenance easier.
You use the <base> tag to specify a base URL for all the links in a document.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 3 MOVING A<HEAD>

Required Attributes

e href: Specifies a URL to be used as the base URL for links in the document

Optional Attributes

The base element doesn’t offer any optional attributes.

Standard Attributes

No standard attributes are available for the base element.

Usage

Asyou’lllearn in Chapter 5, when you wish to include an image in your XHTML document,
you need to specify where the image can be found. Using the <base> tag can make life
easier when several images reside in the same directory. For example, if your document
includes several images all from the same directory, you could use the <base> tag to
shorten the URL link. Also, if you decide to move the images to a new location, updating
the links would be a snap. All you would need to do is change the href attribute in the
<base> tag.

For example, let’s say you want to display an image that resides at the following URL
address:

http://waw.apress.com/images/logo.gif

Listing 3-2 shows you how to make use of the <base> tag.

Listing 3-2. Using the <base> Tag with an Image

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<base href=" http://www.apress.com/images/" />
</head>
<body>

</body>
</html>

When the browser goes to retrieve the image, it takes the base URL specified in the
<base> tag and combines it with the requested file. Using the <base> tag to retrieve images
is most effective when you have several images, because it saves on your typing and reduces
the overall size of your document.

43

http://www.apress.com/images/logo.gif
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.apress.com/images

44

CHAPTER 3 MOVING A<HEAD>

<link>

The link element defines defines the relationship between two linked documents. It is
most often used to link external style sheets into the current document.

Required Attributes

The link element does not require any attributes.

Optional Attributes

charset: Sets the character set used by the document being linked to. You can find a
listing of available character sets athttp://www.iana.org/assignments/character-sets.

href: The URL pointing to the document that is being linked.

media: Refers to the type of media intended for the document that is being linked to.
Common values include all, braille, print, projection, screen, and speech. The
media attribute allows you to specify a different style sheet for different media types.
For example, you may want the screen to be colorful and bright, but some of your
users may have a monochrome printer. This attribute allows you to use a different
style sheet for each media type.

rel: Defines the relationship between the document being linked to and the current
document. Common values include alternate, appendix, bookmark, chapter, contents,
copyright, glossary, help, home, index, next, prev, section, start, stylesheet, and
subsection.

rev: The opposite of rel, this attribute defines the relationship between the current
document and the document being linked to.

type: Specifies the Multipurpose Internet Mail Extensions (MIME) type of the target
URL. The most common values are text/css for external style sheets, text/javascript
for JavaScript files, and image/gif for .gif image files. The MIME type tells the browser
what type of file is being downloaded and how to handle it. You can find a listing of
common MIME types at http://www.webmaster-toolkit.com/mime-types.shtml.

Standard Attributes

class

dir

id

http://www.iana.org/assignments/character-sets
http://www.webmaster-toolkit.com/mime-types.shtml

CHAPTER 3 MOVING A<HEAD>

e lang
e style

e title

Usage

The following code shows you how to link to an external style sheet—a common use of the
link element:

<head>
<link rel="stylesheet" type="text/css" href="main.css" />
</head>

<meta>

The <meta> tag provides information about your document. Search engines often use this
information to catalog pages on the Internet. You use the <meta> tag to provide keywords
and descriptions that search engines can use to catalog your document. Another common use
is to allow for automated refreshes of your document within a browser using the http-equiv
attribute. The term metarefers to metadata, which is a term often described as data about
data. The <meta> tag provides data about the data in the document.

Required Attributes

* content: The value to be associated with a name or http-equiv

Optional Attributes

* http-equiv: Connects the content attribute value to a specific HTTP response header.
You can use this attribute to request the browser to do something or to reference
information about the document from an external source.

* name: Assigns extra information to a document. The value of this attribute comes
from the content attribute. Some common names include author, keywords,
description, and summary.

¢ scheme: Defines a format used to interpret the value set in the content attribute.

45

46

CHAPTER 3 MOVING A<HEAD>

Standard Attributes
o dir
e lang

e xml:lang

Usage

The best way to explain this tag is by simply showing a few short samples. Oftentimes, you
may want your document to be associated with specific keywords on a search site. By adding
the keywords name and a comma-separated list, you're providing clues for a search engine.
For example, you could use the following XHTML for this book:

<meta name="keywords" content="HTML, XHTML, CSS, Javascript" />

You could also use the description name value to provide a short description to search
engines about your document:

<meta name="description" content="This is an introduction to HTML/XHTML." />

Tip It's a good idea to always be concise in what you make available to search engines. People who use
a search engine are looking for specific information. The site http://www.webmarketingnow.com/
tips/meta-tags-uncovered.html#google has some really good examples and explanations of using
different meta elements.

The http-equiv attribute provides the ability to do some pretty neat things. First, you
can use it along with the refresh value to specify that you want your document to be
refreshed at a specific interval. This sample refreshes the document every 15 seconds
(bear in mind that you should use this with caution; otherwise, you may end up really
annoying your web site visitors!):

<meta http-equiv="refresh" content="15" />

You can find a listing of other http-equiv tags athttp://vancouver-webpages.com/META/
metatags.detail.html.

<script>

The <script> tag plays a key role in making your site more dynamic and feature-rich. It
allows you to add scripting languages to your XHTML documents that respond to user
actions. Chapter 10 covers the basics of JavaScript.

http://www.webmarketingnow.com
http://vancouver-webpages.com/META

CHAPTER 3 MOVING A<HEAD>

Required Attributes

* type: Defines the MIME type of the script included. You must set this attribute as
text/javascript when using JavaScript.

Optional Attributes
e charset: Defines the character encoding used in the script

e defer: Tells the browser that the script won’t generate any document content, so
the browser can continue parsing and drawing the page

e src: Uses a URL to point to a document that contains the JavaScript

Standard Attributes

e xml:space

Usage

The use of scripting can really bring life to your documents. In Chapter 10, you’ll dive into
the details of adding scripting to your documents.

<style>

The last chapter briefly introduced the <style> tag when discussing internal style sheets.
The sole purpose of the <style> tag is to create internal style sheets for your document.

Required Attributes

* type: Defines the style type and is pretty much always set to text/css, unless you are
using some kind of proprietary style language, which you shouldn’t really be doing
anyhow.

Optional Attributes

e media: Defines what media the style should affect. Some of the possible values include
screen, print, tty, tv, projection, handheld, braille, aural, and all. all is the
default media value, assumed when a media attribute is not specified. Visit http://
www.w3schools.com/css/css_mediatypes.asp for the specifics on the media types.

47

http://www.w3schools.com/css/css_mediatypes.asp
http://www.w3schools.com/css/css_mediatypes.asp

48 CHAPTER 3 MOVING A<HEAD>

Standard Attributes
e dir
e lang
o title

e xml:space

Usage

The media attribute lets you have different styles for different output devices. For example,
you may produce some online reports that users may want to print on their printer. Most
likely, you’d want to make the text on the screen larger and possibly in a different font than
that on a printed page. Listing 3-3 shows an example of a style sheet that makes the screen
font size 16 pixels, while making the text on the printed page 12 pixels. Both the screen and
printed media have normal font weight (as opposed to bold). Note the use of the @media
rule, which allows for the use of multiple media types within a single style sheet.

Listing 3-3. The style Element Using Several Different Media Types

<style type="text/css">
@media screen

{

ptext {font-size:16px}
}
@media print
{

ptext {font-size:12px}
}
@media screen,print
{

ptext {font-weight:normal}
}

</style>

CHAPTER 3 MOVING A<HEAD>

Tip CSS has an @import statement that instructs the browser to retrieve and use the styles from an
external style sheet. Typically, you use the @import statement in the <style> tag (it has to appear prior to
any other rules), as shown here, although it can also be used in external style sheets to import other stylesheets:

<style type="text/css">
@import "http://www.mysite.com/css/style.css"
</style>

Any rule that is in the external style sheet takes precedence over rules that precede the actual @import state-
ment. You can also use multiple @impoxrt statements to bring in several different style sheets. In addition, the
order of the @import statements is important. The rules are applied top down, so those at the top of the list
take precedence over those at the bottom of the @import list. For more information on using the @import
statement, refer to Chapter 9.

<title>

The <title> tagallows you to provide a title to your document. Browsers typically display
this value in their title bar, and they use it as the default name in a bookmark.

Required Attributes

No attributes are required for the title element.

Optional Attributes

There are no optional attributes for the title element.

Standard Attributes
e class
e dir
e id
e lang
e style

e xml:lang

49

http://www.mysite.com/css/style.css

50

CHAPTER 3 MOVING A<HEAD>

Usage

To add a title to your document, you simply need to put the text you wish to use between
the opening and closing tags of the title element, as Listing 3-4 shows.

Listing 3-4. Sample to Illustrate the title Element

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>This text will be displayed within the titlebar</title>
</head>
<body>
</body>
</html>

Figure 3-1 shows the results of Listing 3-4.

2 This text will be displayed within the titlebar - Micro...

J Back .J @ @ :h p Search
: File Edit View Favorites Tools Help
: Address |@ C:\HTML\Chapter 3\Chapter3-5.html V| Go

|

@ Done j My Computer

Figure 3-1. The title element displayed within a browser

Tip I1t's a good idea to always set a title, because it’s displayed in the title bar of the browser. This allows
users to know what document they’re viewing, even if they don’t have the full browser window displayed. If
you don’t specify a <title>, the document will display an empty title.

Summary

This chapter has explained the head section in detail, including each element and its
attributes. Several samples helped to enforce the point as needed. In Chapter 4, you’ll
learn how to add content to your document through the use of many new tags.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 4

Adding Content

Now that you’ve got a handle on the basics, the real fun can begin: it’s time to start
adding content to your web pages. In this chapter, you’'ll learn about most of the XHTML
elements you’ll need to organize your content and give it a meaningful structure. Along
the way, you'll see examples of how the different elements are rendered by a web browser
with its default styling. Then we’ll show you a few simple ways you can use CSS to enhance
the presentation of your text.

Content and Structure

The content of your web page consists of everything your visitors will see, read, and use.
However, content is more than simply words and images; it’s also the message, the thing
your words and images are actually about. Your content is the information that you're
trying to communicate to your audience, and the web is a conduit for moving that infor-
mation from one place (you) to another (them).

The World Wide Web originated as a purely textual medium, built upon the written
word. Pictures were soon added to the mix, and eventually sound, animation, and video
made the web the rich multimedia tapestry it is today. But the vast bulk of online content
still takes the form of written text, and that is unlikely to change any time soon. Most of the
time you spend surfing the web is probably spent reading.

Human beings rely on some structure to make text readable and understandable. As
you read this book, you're looking for visual cues to help you organize the words into
concise pieces that you can process and comprehend. You recognize the significance of
such things as punctuation, capitalization, spacing, and font size. You know just by looking
at it that this paragraph ends after this sentence.

Computers don’t read the same way humans do—they can’t interpret a string of words
and grasp the concept behind them, they don’t see the visual cues we use to separate one
string of words from another, and they can’t automatically group related sentences into
useful blocks. Instead of visual cues, a computer requires a structure composed of clear
markers indicating the nature of each portion of text. That is the essence of a markup
language: embedded instructions that a computer can follow in order to make content

readable and usable by humans. 51

52

CHAPTER 4 ADDING CONTENT

In Figure 4-1, the “before” image shows a sample of text as it would appear in a web
browser without any XHTML structure. It’s nothing but a large mass of words, all mashed
together and difficult to read (even if you're fluent in pseudo-Latin filler text). You can
break down that blob of words into discernable, readable portions by adding a few bits of
structural markup. The “after” image is much more readable (the words are stillnonsense,
but we're making a point).

Lorem ipsum dolor sit amet, coesectetuer adipiscing elit. Pellensesque
orh VoRAPAC S0, et agua il s T ol ol Donce m:ﬁfwumms Ut unms el Lorem ipsum dolor sit amet
sickis naioeue

pemmxmu magais s pusrias mories, rmrmuum e mew sociosqy mlmnmqucmwemw

Enbgger telly . Denea T, Vi Cmmmlpmg elie, Peliennesque neﬁre ipsiam cursus accumsan dictum, enim orci volutpal jusio, egec
noa, -uqm. mm:unhlmﬂ Jasin, g m? \lrrnbi l)uhmln:mm . e nulls lscus #f massa. Nul n.n:uzpe pm welit a furpis. Ut ut misk. wlummmmﬂﬁ mfgq
Pracscat lbortis ectus at esat. Ui a odio. lml:sl:rf lis, Vestibulum L] ;cwmum;nmmmmmm Tispis epestis m.qnnmmnrm
convallis clementum, dui nisé lesnpor arew, in wllamcorper odo asse e Jorem. Sed Interdum nurpss 1 nisi, Pelleesesque
vl itigas sen. Mascenss s ik, valputee i, Esique 1, fermeaiumsed, clic pcucm.c il amet ane. Cum socie penagibus ¢t d Class
Macceras ef Joremn. Phasellus quam aibh, molls sed Ny torguent post, hymenacos. tellus. telhes, conare lat
facilisi, A:mnmumquh Nella venenats. Nullum cus. Pasoe oo vel s teap solcoodin Tacger K mmf:'wh::m m"m“"m""" dw““WM :‘m ";:,:‘m"‘::” ""B e Do
loctus ot g lamccrpe il Ut s e, I porm vulpeses
mm.qufml et e ol ek k. Fracec it Bhcep o A i ok DUl = Morbi sit amet risus
candimentuen soctor, Bosureny e, pretism vitse, dism. Nulla facifil, Musris ea mews, + Quisque tEmpas.

= Pracsest lobarts loctus af erst.

Ut a odio. Integer felis.

Vesshulum magna, Nollam consecteier. Eam sceleeisque, magaa in convallis elementuen, dud nisi smpos arce, in
e, Sed interdum furps af nisi. Pelientesque vulputate tristique sem. Masoenas bipis mi,
ulpuie i, mnmm rmmmmm elil. Pelkeniesque sit amet anic.

Macconas et losem. Phascllis quam nibt, mollls sed, adipiscing sed, culsmod nec, mrpis. Diuls wmpus cleifiend dolor.

Dulla facilisl. Atrean sagittis saginis el Nulla venenatis, Nullun eursus. Fusce et orci vel mauris iempor solieimdin.
Imeger id lectus at augue intexdu condimey llamcorper nisl. Ut eget Bbero. Ia pos

Before s s sl et ok e o After ’Mnrmal:kmmlm D loeem

Figure 4-1. Some example text, with and without structure

Providing a solid structure for your content will make it stronger and more flexible. By
using XHTML to insert encoded statements to the browser that tell it “this is a heading”
and “this is a paragraph” and “this word is emphasized,” you’ll make your content work
better, for both machines and people alike. And by organizing your content logically with
the proper elements, you'll also be building in the framework you’ll need to style your
pages with CSS.

A beautiful <body>

Before you can add content to your document, you'll need a place to put it. The head element
contains information about the document itself, none of which (apart from the title) is
displayed on-screen. All of your content resides in the body element.

body

The body element comes after the head element and must be closed before the closing </html>
tag, as seen in Listing 4-1—the head and body are both contained by the html element. Any
content appearing outside the body element will make the document invalid, and that
content might not be displayed.

CHAPTER 4 ADDING CONTENT

Listing 4-1. An XHTML Document with an Empty body Element

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Spaghetti and Cruft : Geek Pizzeria</title>
</head>
<body>

</body>
</html>

The body element is block-level and can only contain block-level children; any text or
inline elements must be nested in another block-level parent, not directly within the body
element. If you move to a new house, you'll put all your small items into boxes before
loading them onto the truck; otherwise, they would rattle around loose and probably
arrive broken. Think of the body element like that big moving truck, and all your smaller
bits of content need to be packed safely in their own containers. In the next section, you’ll
learn some of the major structural elements you’ll need to properly package your content.

Required Attributes

No attributes are required for the body element.

Optional Attributes

The body element doesn’t offer any optional attributes.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

53

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

54

CHAPTER 4 ADDING CONTENT

Caution oOlder versions of HTML allowed several presentational attributes to appear in the <body> tag:
background to define a background image, bgcolor to apply a background color, text to set the main text
color, 1ink to set the color of unvisited links, v1ink to color visited links, and alink to color active links.
These attributes have all been deprecated and are not valid in XHTML 1.0 Strict. Their effects are now achieved
with CSS.

You may also encounter the attributes topmargin, leftmargin, marginheight, and marginwidth in
the <body> tag of some older web documents. These were proprietary attributes introduced by browser
manufacturers and have never been part of any official standardized specification. They too are presenta-
tional, nonstandard, and invalid, and you shouldn’t use them.

Meaningful Portions

Semantics is the study of meaning in language. Web designers have borrowed the term
from the field of linguistics and use it to refer to the inherent meaning of an XHTML element
or attribute, as opposed to the way it would be visually rendered by a web browser. As you
work to keep your content and presentation separate, you should always be considerate
of an element’s semantic value, choosing the most meaningful element to fit the meaning
of the content inside it.

p

As you probablylearned in grammar school, a paragraph is one or more sentences expressing
a single thought or idea, or about one aspect of a topic. It’s the standard unit of written
prose. You can tell a web browser how to separate groups of sentences into easily digest-
ible portions by marking each paragraph’s boundaries with a p element. Listing 4-2 shows
two paragraphs in XHTML, where the beginning of one paragraph is indicated by an
opening <p> tag, and a closing </p> tag marks its end. Blank lines between elements aren’t
necessary, but they can help make your markup more readable as you work. Paragraphs
are block-level elements that are only allowed to contain text and inline elements.

Listing 4-2. Two Example Paragraphs

<p>Spaghetti and Cruft opened our doors in 1999, bringing great pizza and

pasta to the heart of the city's trendy Riverbend district. We handcraft

our pizzas on the spot using only the best ingredients, and then we bake them to
perfection in our rustic wood-fired brick oven. We sell pizza by the slice

or by the pie and even offer catering for any occasion all around the
neighborhood.</p>

CHAPTER 4 ADDING CONTENT

<p>0Our broad menu of pasta dishes puts a modern twist on O0ld Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll want
seconds anyway). But it's not all noodles and crust at Spaghetti and Cruft;
we also have fresh veggie sides, an all-you-can-eat salad bar, and the best
cannolis in town!</p>

Figure 4-2 shows what these paragraphs will look like in a browser. Because p is a block-
level element, each paragraph begins on a new line and is followed by a blank line of white
space. In the past, many web designers would inject empty paragraphs (<p></p>) into
their documents to add more vertical space on the page. This is presentational markup
and should be avoided—an empty paragraph has no meaning. If you need to add vertical
white space to your page layout, use CSS.

Spaghetti and Cruft opened our doors in 1999, bringing great pizza and pasta to the heart of the
city's trendy Riverbend district. We handcraft our pizzas on the spot using only the best
ingredients, and then we bake them to perfection in our rustic wood-fired brick oven. We sell
pizza by the slice or by the pie and even offer catering for any occasion all around the
neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served in heaping bowlfuls
sure to satisfy any appetite (though we bet you'll want seconds anyway). But it's not all noodles
and crust at Spaghetti and Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar,
and the best cannolis in town!

Figure 4-2. The browser renders the two paragraphs as separate blocks.

Required Attributes

The p element doesn’t have any required attributes.

Optional Attributes

There are no optional attributes for the p element.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

55

56

CHAPTER 4 ADDING CONTENT

CmMm1Wwﬂmw@msdﬂMUmN@dmahmammmmmmmeSMMmmmmMMWh
level elements), allowing the designer to specify whether the contents should be aligned to the left or right,
centered, or justified (meaning the column is evenly aligned on both the left and right sides). The align attribute is
deprecated and should not be used in XHTML 1.0 Strict; its modern CSS equivalent is the text-align property.

Headings: h1, h2, h3, h4, h5, and h6

Headings act as titles to introduce a new section of content. XHTML offers a range of six
heading elements to indicate the relative importance of a heading or its rank in the docu-
ment’s hierarchy (and, by association, the importance or rank of the content that follows
the heading). You can organize your document as a simple outline, separated into specific
topics or areas of interest, sorted from the top down in order of importance, and with each
section containing subsections of its own.

Listing 4-3 shows some content marked up as headings and short paragraphs; each
heading introduces the content that follows it. Different heading levels imply a hierarchy
of importance; the top-level heading introduces the entire section, while the subheadings
beneath it introduce lesser sections within that.

Listing 4-3. A Mixture of Headings and Paragraphs

<h1>Praise for Spaghetti and Cruft: Geek Pizzeria</h1>
<p>See what people are saying about us!</p>

<h2>Customer feedback</h2>
<p>0ur loyal customers love us (and we love them).</p>

<h2>Reviews</h2>
<p>Even those stuffy restaurant critics can't resist our charms.</p>

The h1 element designates the top-level heading—the mostimportant one on the page.
Since there can logically be only one “most important” heading, it’s customary for only
one h1 to occur within a single document, often used for the name of the website or the
title of the page you're viewing. This isn’t a requirement of XHTML, but rather just a good
semantic rule of thumb. You should also try to keep your headings in the proper
sequence—an h5 shouldn’t come before an h2 unless it makes good sense to change their
natural order, which it rarely does.

Figure 4-3 shows the previous markup as rendered by a browser. Most graphical web
browsers will automatically display headings in a boldfaced font and at different sizes for
each level, h1 being the largest and h6 being the smallest. Because of this default styling,

CHAPTER 4 ADDING CONTENT

headings have often been abused in the past for their presentational effects. Avoid committing
this error, and use headings in a meaningful way. An h2 is “the second-most important
heading,” not “the second largest font.” You can use CSS to alter the default appearance
of headings, including their font size.

Praise for Spaghetti and Cruft: Geek Pizzeria

See what people are saying about us!

Customer feedback

Our loyal customers love us (and we love them).

Reviews

Even those stuffy restaurant critics can't resist our charms.

Figure 4-3. Different heading levels appear in different sizes by default.

Headings are block-level elements and may only contain text or inline elements.

Required Attributes

There are no required attributes for heading elements.

Optional Attributes

Heading elements don’t offer any optional attributes.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

57

58

CHAPTER 4 ADDING CONTENT

Caution As with paragraphs, previous versions of HTML allowed the presentational align attribute in
heading elements. This has since been deprecated and isn’t valid in XHTML 1.0 Strict. To change the align-
ment of text in block-level elements, use the CSS text-align property.

blockquote

The blockquote element designates along quotation, such as a passage from a book or ablurb
from areview. It’s ablock-level element and can only contain block-level children. Almost
any other structural markup can reside in a blockquote (paragraphs, headings, lists, and even
other blockquotes), but all of its contents should be part of the original quotation.

Ifyou're quoting an online source, even if the quotation comes from elsewhere on your
own website, you can include the URL of the original source in the optional cite attribute
of the opening <blockquote> tag. The cite attribute’s value should be a URL rather than a
name or title. To cite a source by name, use the cite element, which you'll learn about
later in this chapter.

Listing 4-4 shows a block quotation, including a source URL in the cite attribute. The
quoted text resides in a nested paragraph, not directly within the blockquote element.

Listing 4-4. Example Markup for a Block Quotation

<h2>Reviews</h2>
<p>Even those stuffy restaurant critics can't resist our charms.</p>

<blockquote cite="http://example.com/food/reviews/SpaghettiCruft/">
<p>Spaghetti and Cruft offers tasty wood-fired pizzas at affordable
prices, served in a hip, relaxed atmosphere. Comfortable seats, free
WiFi and abundant power outlets make this a popular spot for the
neighborhood technophiles to linger with their laptops.</p>
</blockquote>

Most graphical browsers will display the blockquote element as an indented block of
text, as you can see in Figure 4-4. In the past, some web designers misused this element
to create wider margins around their text, whether it was a quotation or not. Once again,
that’s presentational markup that confuses the content’s meaning. You should only use a
blockquote for actual quotations, and you should use CSS to control margins.

http://example.com/food/reviews/SpaghettiCruft

CHAPTER 4 ADDING CONTENT

Reviews

Even those stuffy restaurant critics can't resist our charms.

Spaghetti and Cruft offers tasty wood-fired pizzas at affordable prices, served in a hip, relaxed atmosphere.
Comfortable seats, free WiFi and abundant power outlets make this a popular spot for the neighborhood
technophiles to linger with their laptops.

Figure 4-4. The default rendering of a block quotation as an indented portion of text

Required Attributes

The blockquote element doesn’t have any required attributes.

Optional Attributes

e cite: The URL of the quotation’s original source

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

address

Contrary to this element’s name, address isn’t intended for just any postal address; its
purpose is to provide contact information for the person or organization responsible for
the particular document you're reading. The address element harkens back to the early
days when primarily academics and programmers used the web. A researcher at a univer-
sity might publish her findings on the Internet and include her name, position, and e-mail
address to stake her claim. In that sense, think of the address element more like a byline
or attribution than a physical location on a street in a town somewhere (though it can include

59

60

CHAPTER 4 ADDING CONTENT

a physical address as well). The address element says, “This is who is responsible for this
document, and here’s how to reach them.”

The address element is block-level and can only contain text or inline elements. With
nested block-level elements forbidden, you're somewhat limited in the elements you can
use to format the contents of an address. Listing 4-5 shows some contact information
wrapped in an address element, with line breaks inserted to provide some formatting
(you’ll learn more about the br element later in this chapter).

Listing 4-5. Contact Info Marked Up with the address Element

<address>

Andy Clarke

MODern Web Designer

1000 Stiff Upper Lip Street, Manchester, UK

http://stuffandnonsense.co.uk

</address>

This example would be semantically appropriate in a document authored by Andy
Clarke, but if you simply wish to name-drop Andy in a document that you're responsible
for, some other element would be called for (probably a paragraph).

The contents of an address element are usually displayed in an italicized font, as you
can see in Figure 4-5. Of course, if you don’t like the looks of it, you can always change its
presentation with CSS.

Andy Clarke

MODern Web Designer

1000 Stiff Upper Lip Street, Manchester, UK
hittp /istuffandnonsense co.uk

Figure 4-5. Most visual browsers display the address element in italics by default.

Required Attributes

The address element doesn’t have any required attributes.

Optional Attributes

There are no optional attributes for the address element.

Standard Attributes
e class

e dir

http://stuffandnonsense.co.uk

CHAPTER 4 ADDING CONTENT

e id

e lang
e style
e title

e xml:lang

pre

Asyoulearned in Chapter 2, white space in XHTML is “collapsed” when the document is
rendered by a browser; multiple spaces are reduced to a single space, and carriage returns
are ignored. However, you can use the pre element to define a block of preformatted text
in which white space and line breaks should be preserved exactly as they appear in the
markup. This element is especially useful for displaying computer code or poetry where
line breaks and indention are important, such as in the haiku in Listing 4-6.

Listing 4-6. Poetry Contained by a pre Element to Preserve Its Formatting

<pre>
Dough spins in the air
Tomato, cheese, in oven
Pizza nirvana
</pre>

The pre element is block-level and can only contain inline elements. Its contents are
typically rendered in a monospace typeface by default, as shown by Figure 4-6.

Dough spins in the air
Tomato, cheese, in oven
Pizza nirvana

Figure 4-6. The spaces and returns remain intact when the content is rendered.

Required Attributes

There are no required attributes for the pre element.

Optional Attributes

The pre element doesn’t offer any optional attributes.

61

62 CHAPTER 4 ADDING CONTENT

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

Caution In previous versions of HTML, the width atiribute allowed web designers to indicate the width
of a pre element, specified in the number of characters allowed on one line. This attribute has been deprecated and
should not be used in XHTML 1.0 Strict.

Lists

Alist is simply a collection of two or more related items. A list consisting of a single item is
perfectly valid and may even be semantically correct in same cases, but normally a list
groups several items together. There are three types of lists in XHTML: unordered lists,
ordered lists, and definition lists.

ul

An unordered list is designated by the ul element and is used for lists wherein the sequence of
the items isn’t especially significant, such as a list of ingredients—the order in which you
fetch them from the pantry doesn’t matter so long as you get everything on the list. Each
list item is in turn defined by its own 11 element, all contained by the surrounding
and tags. The ul element is block-level and only 1i elements are allowed as its chil-
dren; no text or elements can appear in an unordered list unless an 1i contains them.

Listing 4-7 shows the ingredients for making pizza dough in an unordered list, with
each item living in its own 1i element (more on that one in a moment).

CHAPTER 4 ADDING CONTENT

Listing 4-7. An Unordered Listing of Ingredients

<1i>1 cup warm water</1i>
1 packet active dry yeast
<1i>2 1/2 to 3 cups all-purpose flour</1i>
2 tablespoons olive o0il</1i>
<1i>1/2 teaspoon salt</1i>

By default, unordered lists are displayed in graphical browsers slightly indented and
with a bullet marking each list item, as seen in Figure 4-7. Later in this chapter, you'll see
how you can change the default bullet using CSS, replacing it with a different character or
even an image.

+ 1 cup warm water

+ 1 packet active dry yeast

+ 2 1/2 to 3 cups all-purpose flour
+ 2 tablespoons olive oil

+ 1/2 teaspoon salt

Figure 4-7. The bullets are rendered automatically when this list of ingredients is displayed in
a web browser.

Required Attributes

The ul element doesn’t have any required attributes.

Optional Attributes

The ul element doesn’t feature any optional attributes.
Standard Attributes

e class

e dir

e id

e lang

e style

o title

e xml:lang

63

64

CHAPTER 4 ADDING CONTENT

ol

The ol element defines an ordered list, one in which the items are meant to be read or
followed in a specific sequence, such as the steps in a recipe. Listing 4-8 shows an example.
Note that the items are not numbered in the XHTML markup.

Listing 4-8. A Deliberate Sequence of Steps, Marked Up As an Ordered List

Combine the water, yeast, oil, salt and two thirds of the
flour in a large bowl and mix thoroughly.</1i>
Gradually add the remaining flour until the dough holds
its shape, being careful not to let it become too dry. You may
not need all the flour.</1li>
Place the dough on a lightly floured surface and knead
for five minutes until it becomes smooth and elastic.
Transfer the dough to a lightly oiled bowl, cover with
plastic wrap and let it rise until it has doubled in size.</1i>
When the dough has risen, place it on a floured surface,
divide it into two equal portions rolled into balls. Allow the
dough to rest for 15 minutes before forming your pizzas.</1i>
</0l>

As you can see in Figure 4-8, each item in an ordered list is displayed with a number
beside it in a visual browser, with those numbers created automatically.

1. Combine the water, yeast, oil, salt and two thirds of the flour in a large
bowl and mix thoroughly.

2. Gradually add the remaining flour until the dough holds its shape, being
careful not to let it become too dry. You may not need all the flour.

3. Place the dough on a lightly floured surface and knead for five minutes
until it becomes smooth and elastic.

4. Transfer the dough to a lightly oiled bowl, cover with plastic wrap and let it
rise until it has doubled in size.

5. When the dough has risen, place it on a floured surface, divide it into two
equal portions rolled into balls. Allow the dough to rest for 15 minutes
before forming your pizzas.

Figure 4-8. The web browser numbers the list items automatically.

Like unordered lists, the ol element is block-level and can only have 1is as children.

Required Attributes

No attributes are required for the ol element.

CHAPTER 4 ADDING CONTENT 65

Optional Attributes

There are no optional attributes for the ol element.

Standard Attributes
e class
e dir
e id
* lang
e style
e title

e xml:lang

li

In both ordered and unordered lists, individual items are defined by the block-level 11
element. A list item can contain text or other elements—even more lists. Listing 4-9 shows
an elaborate list, including more lists nested inside it. The containing list has only a single
item in this example, but you could include several different specialty pizzas within that
list, each following the same pattern in its own 1i.

Listing 4-9. Example of a Complex, Unordered List

<h2>Specialty Pizzas</h2>

<h3>Barbecue Chicken Pizza</h3>
<p>This hearty American departure from Italian
tradition is one of our most popular pizzas.</p>

Spicy barbecue sauce.</1i>
Chunks of mesquite grilled chicken.</1i>
Blend of three cheeses:

66 CHAPTER 4 ADDING CONTENT

Mozzarella</1i>
Monterey Jack
Smoked Gouda</1i»

</1i>

<1i>Thin-sliced red onion.</1li>

Roasted red peppers.

</1i>

When one list is nested within another, the inner list will, by default, be styled differently
according to its level of nesting. Figure 4-9 shows how this list is rendered, and you can see
that each nested listis indented a bit further and displayed with a different style of marker.

Specialty Pizzas
« Barbecue Chicken Pizza

This hearty American departure from Italian tradition is
one of our most popular pizzas.
o Spicy barbecue sauce.
o Chunks of mesquite grilled chicken.
o Blend of three cheeses:
= Mozzarella
» Monterey Jack
= Smoked Gouda
o Thin-sliced red onion.
o Roasted red peppers.

Figure 4-9. The list as it appears in a browser with default styling

Required Attributes

There are no required attributes for the 1i element.

Optional Attributes

The 1i element doesn’t have any optional attributes.

Standard Attributes
e class

e dir

CHAPTER 4 ADDING CONTENT

e id

e lang
e style
e title

e xml:lang

Definition Lists

A definition list is not merely a collection of items, but rather a collection of items and
descriptions of each. Unlike ordered and unordered lists, a definition list doesn’t contain
listitem (1i) elements. Rather, items in a definition list may consist of definition terms (dt)
and definition descriptions (dd). A single term may have several associated descriptions,
or a single description may apply to several terms grouped before it. The list is segmented
wherever a dt immediately follows a dd, thus marking the beginning of a new sequence of
terms and descriptions.

There is an implied semantic connection between a term and its descriptions. The dt
and dd elements are bound to each other, paired together to form the structure of the list.
Because of this semantic symbiosis, definition lists are sometimes used to mark up content
thatisn’t technically a list of terms and definitions. A series of questions and their answers,
a set of images and their captions, or a sequence of dialog showing the names of the speakers
and their speeches are all potential uses of a definition list.

dl

The d1 element creates a definition list. It’s a block-level element, which in turn must
contain at least one term (dt) or atleast one description (dd)—only the dt and dd elements
are allowed as children of a d1.

Required Attributes

The d1 element doesn’t have any required attributes.

Optional Attributes

The d1 element doesn’t have any optional attributes.

67

68 CHAPTER 4 ADDING CONTENT

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

dt

The dt element, which is block-level and can only contain text and/or inline elements,
designates a term or item being described. A definition termis related to every description
that follows it until a new dt element appears to begin a new sequence (or until the list
ends with a closing </d1> tag).

Required Attributes

There are no required attributes for the dt element.

Optional Attributes

The dt element doesn’t have any optional attributes.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

CHAPTER 4 ADDING CONTENT

dd

The dd element contains a description of the dt elements that immediately precede it. In
the case of multiple descriptions for a single term, each one should be wrapped in its own
dd element. The element is block-level and may contain text, inline elements, and other
block-level elements. If your description spans several paragraphs, mark them up as para-
graphs (p) in a single dd rather than as separate dds—the entire contents of one dd element
should comprise one description.

Required Attributes

The dd element doesn’t require any attributes.

Optional Attributes

The dd element doesn’t offer any optional attributes.
Standard Attributes

e class

e dir

e id

* lang

style

title
e xml:lang

Listing 4-10 shows the markup for a brief definition list. In the example, the first term’s
description consists of two paragraphs, while the second term has two distinct descriptions.

Listing 4-10. A Definition List Featuring Two Terms

<dl>

<dt>Pizzac</dt>

<dd>
<p>A flat, open-faced baked pie of Italian origin, consisting of
a layer of bread dough covered with tomato sauce, cheese and a
wide variety of optional toppings.</p>
<p>Also called pizza pie.</p>

</dd>

69

70

CHAPTER 4 ADDING CONTENT

<dt>Pasta</dt>

<dd>Unleavened dough that is molded into any of a variety of shapes

and boiled.</dd>

<dd>A prepared dish containing pasta as its main ingredient.</dd>
</d1>

Most browsers will display dd elements slightly indented from their corresponding dt.
When a dd contains other structural markup (such as paragraphs), the default margins of
that nested element will apply. As you can see in Figure 4-10, the paragraphs in the first
term’s description have white space above and below them, while the second term’s two
descriptions have no top and bottom margins at all. You can modify all of this, of course,
with CSS.

Pizza
A flat, open-faced baked pie of Italian origin, consisting of
a layer of bread dough covered with tomato sauce, cheese
and a wide variety of optional toppings.
Also called pizza pie.

Pasta
Unleavened dough that is molded into any of a variety of
shapes and boiled.
A prepared dish containing pasta as its main ingredient.

Figure 4-10. The definition list rendered with default browser styling

Phrase Elements

We’ve covered most of the major structural elements you’ll use to organize your content
into meaningful, readable portions. Headings, paragraphs, and lists are the basic building
blocks of structured text. In the next few sections, we’ll be moving inside the blocks to pick
out smaller morsels of content for special attention.

These inline elements are called phrase elementsbecause they're intended to wrap
around a short string of a few words, or even a single word, to give it added meaning and
formatting that sets it apart from the other words that surround it. As you learned in
Chapter 2, inline elements are only allowed to contain text and other inline elements.

cm

The em element adds emphasis to a word or phrase. Its contents are displayed in an itali-
cized font in most visual web browsers, but other devices may apply emphasis differently.
For example, screen-reading software used by the visually impaired may read the contents
of an em aloud with a different vocal inflection.

CHAPTER 4 ADDING CONTENT I

Required Attributes

There are no required attributes for the em element.

Optional Attributes

The em element doesn’t have any optional attributes.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

strong

The strong element adds strong emphasis to text for those words or phrases that demand
more importance than an em element can provide. Text in a strong element is displayed in
a boldfaced font in graphical browsers, but may be emphasized differently by other devices.

Required Attributes

The strong element has no required attributes.

Optional Attributes

The strong element has no optional attributes.

Standard Attributes
e class
o dir

e id

72

CHAPTER 4 ADDING CONTENT

e lang

e style

o title

e xml:lang

Listing 4-11 shows a passage of text with some emphasized phrases. For yet another
level of emphasis, you can combine the strong and em elements (properly nested, of course),
effectively declaring that the text within has extra-strong emphasis, which most browsers
will display in a font that is both italicized and boldfaced.

Listing 4-11. A Paragraph Containing Some Emphasized Phrases

<p>A traditional pizza is round. Not only should a pizza be round,
but a proper pizza must be round. To reiterate,
real pizzas are round. Except when they're not.</p>

Figure 4-11 shows the rendered result of Listing 4-11.

A traditional pizza is round. Not only should a pizza be round,
but a proper pizza must be round. To reiterate, real pizzas are
round. Except when they're not.

Figure 4-11. The contents of em are italicized, the contents of strong are boldfaced, and the
combined elements show a combined style.

cite

The cite element designates a citation or reference to some resource: a person; the title of
abook, poem, song, or movie; or the name of a magazine, newspaper, or website. It’s espe-
cially useful when attributing quotations, as in Listing 4-12, which shows two applications
of the cite element: one to highlight the name of a source, and one to give attribution of a
block quotation.

Listing 4-12. Two Different Applications of the cite Element

<p>Restaurant critic <cite>Norm Deplume</cite> had this to say
about our eatery:</p>

CHAPTER 4 ADDING CONTENT 73

<blockquote cite="http://example.com/food/reviews/SpaghettiCruft/">
<p>Spaghetti and Cruft offers tasty wood-fired pizzas at affordable
prices, served in a hip, relaxed atmosphere. Comfortable seats, free
WiFi and abundant power outlets make this a popular spot for the
neighborhood technophiles to linger with their laptops.</p>
<p><cite>Gotham Examiner, November 22, 2006</cite></p>

</blockquote>

Graphical browsers usually render the contents of a cite element in an italicized font,
as shown in Figure 4-12, but—wait for it—you can change that with CSS.

Restaurant critic Norm Deplume had this to say about our eatery:

Spaghetti and Cruft offers tasty wood-fired pizzas at
affordable prices, served in a hip, relaxed atmosphere.
Comfortable seats, free WiFi and abundant power outlets
make this a popular spot for the neighborhood technophiles
to linger with their laptops.

Gotham Examiner, November 22, 2006

Figure 4-12. The cite element is italicized by default in most graphical browsers.

Required Attributes

No attributes are required for the cite element.

Optional Attributes

There are no optional attributes for the cite element.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

http://example.com/food/reviews/SpaghettiCruft

74

CHAPTER 4 ADDING CONTENT

q

The g element is intended to mark up short, inline quotations (as opposed to blockquote,
which you should use for longer quotations of more than a sentence or two). Like the
blockquote element, a q element may carry a cite attribute to include the URL of the
quotation source, as you see in Listing 4-13.

Listing 4-13. The g Element, Complete with a URL in a cite Attribute

<p>Norm Deplume, food critic for <cite>The Gotham Examiner</cite>, recently
commended our geek-friendly attitude, even saying that we're

<q cite="http://example.com/food/reviews/SpaghettiCruft/">a popular

spot for the neighborhood technophiles to linger with their laptops.</q></p>

According to the W3C specifications, a web browser should automatically render the
opening and closing quotation marks at the beginning and ending of a q element. However,
not all currently popular browsers support the element correctly, so it's unfortunately
impractical to use it. If you do make use of the q element, you shouldn’t include quotation
marks of your own—you’ll end up with duplicate punctuation in the browsers that render
the element correctly.

Figure 4-13 shows the q element as rendered by two popular browsers on two common
operating systems. Mozilla Firefox 2.0 for Mac OS X generates quotation marks automati-
cally, but Internet Explorer 6 for Windows XP doesn’t.

&l

‘@006 Spaghetti and Cruft : Geek Pizzeria =

@1 Spaghetti and Cruft : Geek Pizzeria - L._][_E.l_}m
Q‘J 'ﬁ_‘ @ filezfjjLw | & W+ Wikipec Q, File Edit View Favorites Tools Help 1?

Sy = 2 »
Norm Deplume, food critic for The Gotham Examiner, recently Q- © ¥ A G) search ¢ Favarites

commended our geek-friendly attitude, even saying that we're ;
“a popular spot for the neighborhood technophiles to linger with | “49== |1 Fr'BegnningHTHL \Code \Chapter4\0413.himl |ﬂ 5
their laptops.”

Norm Dephmme, food critic for The Garham Examiner, recently
commended our geel-friendly attitude. even saving that we're a
popular spot for the neighborhood technophiles to linger with
their laptops.

Firefox 2.0 | Internet Explorer 6.0
—— —d-"_—_' e R @ Done p J‘Cll'l'll:lt.lt&ri

o) Oerrors [Owarnings | 2 -

“Done

Figure 4-13. A view of the same markup from two different browsers: Firefox draws the
punctuation, but Internet Explorer doesn't.

Required Attributes

The g element doesn’t have any required attributes.

http://example.com/food/reviews/SpaghettiCruft

CHAPTER 4 ADDING CONTENT 75

Optional Attributes

e cite: The URL of the quotation’s original source

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

dfn

The dfn element is used to signify the defining instance of a term, especially one that may
reoccur throughout the rest of the page. If the term is defined in context, the dfn element
alone is enough to communicate that a new word is being introduced. If the term’s meaning
isn’t made clear by the adjacent text, you should include a brief definition in a title attribute.
A dfnis usually displayed (by graphical browsers) in an italicized font to set it off from the
surrounding text.

Required Attributes

There are no required attributes for the dfn element.

Optional Attributes

The dfn element doesn’t have any optional attributes.

Standard Attributes
e class
o dir

e id

76

CHAPTER 4 ADDING CONTENT

e lang

e style

o title

e xml:lang

Listing 4-14 shows an example of a dfn element that includes a short definition in its
title attribute.

Listing 4-14. A dfn Element with a Definition in Its title Attribute

<p>Spaghetti and Cruft offers free wireless broadband internet access so
laptop-toting patrons can check their e-mail, publish updates to their
<dfn title="short for weblog, a kind of online journal">blogs</dfn>, or
even do some honest work.</p>

Abbreviations: abbr and acronym

An abbreviation is a shortened form of a lengthy term. For example, etc. is an abbreviation
of et cetera (the Latin phrase meaning “and so forth”), and Inc. is an abbreviation of Incor-
porated. Abbreviations can also be formed from the initial letters of a multiword phrase
such as ATM for Automatic Teller Machine or CSSfor Cascading Style Sheets, or from initials
extracted from the syllables of a long word, such as DNA for deoxyribonucleic acid (these
are also called initialisms). You can indicate an abbreviation in XHTML with the abbr element.

An acronym is a specific type of abbreviation, being a pronounceable word formed
from the first letters of a multiword phrase—laser from light amplification by simulated
emission of radiation and PINfrom personal identification number—or the first portion of
each word, as in defcon from defense condition and sysadmin from system administrator.
You can mark up acronyms with the acronym element.

To know the difference between abbreviations and acronyms, just remember that
an acronym is a word that can be spoken; if you can’t pronounce it, it’s probably not an
acronym. Because acronyms are themselves abbreviations, there is considerable semantic
overlap between these two elements. It's important to distinguish the two on the web
because screen-reading software can be designed to read the initials in an abbr element,
but attempt to pronounce an acronym. Even so, many unpronounceable abbreviations
(such as ATM or CSS) are still thought of as acronyms. If in doubt, use abbr, the more
general of the two elements.

The abbr and acronym elements may be used similarly to dfn to point out the defining
instance of a term; thereafter, the term can be used normally. Of course, not every abbre-
viation needs to be specifically called out; common ones such as etc. and Inc. probably
don’t require explanation. Use your best judgment based on your understanding of the
content and your audience.

CHAPTER 4 ADDING CONTENT

Both abbr and acronym should include the expanded form of the term in a title
attribute, as seen in Listing 4-15.

Listing 4-15. A Bit of Content Featuring an Abbreviation and an Acronym

<p>We accept all major credit cards, as well as

<abbr title="Automatic Teller Machine">ATM</abbr> cards

(you'll need to provide your

<acronym title="Personal Identification Number">PIN</acronym>).</p>

Most modern browsers display these elements with a dotted underline, as Firefox does
in Figure 4-14. Many browsers display the value of the title attribute in a “tooltip” when
the user’s pointer lingers over the element, so even sighted readers can read the extended
form of an abbreviation.

‘We accept all major credit cards, as well as ATM cards (you'll need to provide your PIN).

Automatic Teller Machine

Figure 4-14. The content from Listing 4-15 as it appears in Firefox 2.0 for Mac OS X

Required Attributes

The abbr and acronym elements don’t have any required attributes.

Optional Attributes

There are no optional attributes for the abbr and acronym elements.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

77

78

CHAPTER 4 ADDING CONTENT

Revising Documents: del and ins

There may be times when you need to update a phrase in your document but would like

to clearly indicate what was updated. This is the purpose of the inline del and ins elements:

delindicates deleted text, and ins indicates inserted text. Both del and ins may optionally
include a cite attribute containing the URL of a page with details about the change and a
datetime attribute to mark the date and time the revision was made. You can also include
a short note about the change in a title attribute, as Listing 4-16 shows.

Listing 4-16. Revisions Noted with the del and ins Elements

<p>Beginning <del datetime="2007-01-04T06:49:15-08:00">January 5th
<ins datetime="2007-01-04T06:49:35-08:00" title="Delayed one week =
while we hire more wait staff">January 12th</ins>, we'll be open until
2AM on Fridays and Saturdays.</p>

In most graphical browsers, the contents of del are displayed as a strikethrough (a hori-
zontal line drawn through the text), and the ins element is displayed as underlined text, as
shown in Figure 4-15. It’s conventional for inserted text to follow the deleted text.

Beginning January-Sth January 12th, we'll be open until 2AM on Fridays and Saturdays.
Figure 4-15. Deleted text is displayed with a strikethrough, and inserted text is underlined.

Required Attributes

No attributes are required for the del and ins elements.

Optional Attributes
e cite: The URL of a document featuring information on why the change was made

e datetime: The date and/or time the change to the document was made

Standard Attributes
e class
e dir
e id

e lang

CHAPTER 4 ADDING CONTENT

e style
e title

e xml:lang

Note There are very specific requirements for formatting the value of the datetime attribute. See the
W3C specs for details (http://www.w3.0rg/TR/NOTE-datetime).

bdo

The bdo element (bidirectional override) defines a segment of text where the direction
should be reversed from the natural direction of the text surrounding it. The direction is
indicated by the required dir attribute, which can have a value of either 1tr for “left to
right” or rtl for “right to left.”

It’s a very rare element, only useful in multilingual documents where one passage appears
in alanguage that should be read in the opposite direction from the language used throughout
the rest of the document. The language any content is written in should be indicated by the
lang and xml : lang attributes, and in most cases, those attributes are sufficient; a browser
should understand that differentlanguages are read in different directions and render the text
correctly. However, some language combinations cause the direction to be miscalculated,
and the bdo element can counteract that error.

Listing 4-17 shows the bdo element used as if the emphasized word were written in
alanguage different from the rest of the document. This example uses English text for
demonstration purposes only—you would never do this in reality.

Listing 4-17. The bdo Element in Action

<p>A passage of text containing one <em lang="en" xml:lang="en">ws
<bdo dir="rtl">reversed</bdo> word.</p>

Figure 4-16 shows that the web browser reverses the text automatically.

A passage of text containing one desrever word.

Figure 4-16. When a browser renders the text, the contents of the bdo element are automati-
cally written in the direction specified by the dir attribute.

79

http://www.w3.org/TR/NOTE-datetime

80

CHAPTER 4 ADDING CONTENT

Required Attributes

¢ dir: The direction in which the enclosed text should be read: either 1tr or rtl

Optional Attributes

The bdo element doesn’t have any optional attributes.

Standard Attributes
e class
 id
e lang
e style
e title

e xml:lang

Programming: code, kbd, samp, and var

Several elements available in XHTML are specially intended for marking up computer
code, allowing computer scientists, programmers, and web developers to publish and
share their work. These are inline elements, and the same standard attributes apply to all.

The code element can be used to designate a portion of code. It’s not specific to any
programming language, so its contents could be CSS, JavaScript, PHP, Perl, C#, or any
computer language that needs to be distinguished from surrounding human-language
content. To aid readability, most graphical browsers display the contents of a code element in
a monospace typeface—one in which every character is the same width, such as Courier.

The kbd element defines text or commands that the user should enter, while the samp
element illustrates sample output of a program or script. Both of these are also typically
displayed in a monospace typeface.

The var element is used to designate a programming variable or argument, and is
usually displayed as italicized text.

The code, kbd, and samp elements are frequently combined with the pre element to
preserve the formatting of their contents, as you can see in Listing 4-18.

CHAPTER 4 ADDING CONTENT

Listing 4-18. A JavaScript Function Marked Up with a code Element

<pre><code>
function helloWorld() {
var button = document.getElementById("button");
if (button) {
button.onclick = function(){
alert("Hello world!");

}
}
}

</code></pre>

Figure 4-17 shows the markup as a web browser renders it. The computer code is rendered
in a monospace typeface (Courier, in this case).

function helloWorld({) {
var button = document.getElementById("button");
if (button) {
button.onclick = function(){
alert("Hello world!");

Figure 4-17. Nesting the code element within a pre element preserves the formatting just as it
appears in the markup.

Required Attributes

There are no required attributes for these programming-related elements.

Optional Attributes

These programming-related elements don’t feature any optional attributes.

Standard Attributes
e class
e dir
e id
e lang

e style

81

82

CHAPTER 4 ADDING CONTENT

e title

e xml:lang

br

Long lines of text on a web page wrap naturally to a new line when they reach the edge of
their container, with the break occurring in the space between two words. However, there
may be times when you’ll want to force text to wrap to a new line at a specific point. The
br element creates a line break for just such occasions. It’s an empty element, so it has no
text content and consists of a single tag, self-closed with a trailing slash (/>).

You saw some line breaks when you read about the address element earlier in this
chapter. Listing 4-19 shows another address, but this time its contents are all on a single
line with brs inserted at strategic points.

Listing 4-19. An address Element with Inserted Line Breaks

<address>
Jon Hicks
Illustrator and cheese lover
http://hicksdesign.co.uk
</address>

Figure 4-18 shows the rendered content. Browsers ignore carriage returns in markup,
but will forcefully break a line of text where directed.

Jon Hicks
Hlustrator and cheese lover
hitp:/ihicksdesign .co.uk

Figure 4-18. The markup from Listing 4-19 as it appears in a browser, with the text wrapping
at the specified points

In the past, line breaks were often misused to affect the layout of pages by stacking
several in a row to increase white space, to create lists by breaking between items, and to
simulate the appearance of paragraphs by forcing line breaks between blocks of text.
These are presentational hacks that shouldn’t be committed. Use CSS margins, padding,
and positioning to add space, and mark up lists and paragraphs as lists and paragraphs.
You should use the br element sparingly and only when the text requires it.

Required Attributes

The br element doesn’t have any required attributes.

http://hicksdesign.co.uk

CHAPTER 4 ADDING CONTENT

Optional Attributes

There are no optional attributes for the br element.

Standard Attributes
e class
e id
e style

o title

Caution 0lder versions of HTML featured a c1ear attribute for the br element, giving visual web browsers
instruction on how text and other elements should flow around the line break. This presentational attribute has
been deprecated in XHTML 1.0 Strict and replaced by the equivalent clear property in CSS.

hr

The block-level hr element creates a horizontal rule, a dividing line between sections of
content. It’s largely presentational, but the real semantic intent of an hr is to declare that
the previous section has ended and a new section is beginning. It’s an empty element and
must be closed with a trailing slash (/>), as shown in Listing 4-20.

Listing 4-20. A Horizontal Rule Separates Two Sections of Content

<h2>Customer feedback</h2>

<p>0Our loyal customers love us (and we love them).</p>

<hr />

<h2>Reviews</h2>

<p>Even those stuffy restaurant critics can't resist our charms.</p>

The hr element is block-level, so it will appear on its own line, but the amount of space
above and below it will vary slightly in different browsers. Figure 4-19 shows the hr element
rendered in Firefox 2.0 for Mac OS X. You can use CSS to specify the top and bottom margins
of an hr for some improved consistency across browsers.

83

84 CHAPTER 4 ADDING CONTENT

Customer feedback

Our loyal customers love us (and we love them).

Reviews

Even those stuffy restaurant critics can't resist our charms.

Figure 4-19. A horizontal rule rendered by a web browser

Required Attributes

The hr element doesn’t have any required attributes.

Optional Attributes

No optional attributes exist for the hr element.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

Caution oOlder versions of HTML included a number of presentational attributes for horizontal rules:
align to specify the alignment of the rule to the left, right, or center; size to specify the thickness of the
rule; width to define its width in pixels; and noshade to override the 3-D shading effect some browsers use
when rendering an hr. These are all deprecated and invalid in XHTML 1.0 Strict, and most of their effects can
now be achieved with CSS.

CHAPTER 4 ADDING CONTENT

Multipurpose Elements

Each of the elements we’ve covered so far has an inherent meaning and is meant to be
used for specific types of content and to serve specific purposes. There are also two generic
elements available in XHTML, to use when no other element quite meets your needs: div
and span. They are semantically neutral—they don’t really hold a specific meaning other
than to group and distinguish portions of content—so they are among the most versatile
elements in your markup tool kit.

div

The div element creates alogical division in your document, grouping related content and
elements together. It's semantically neutral but not entirely meaningless; a div essentially
states, “Everything in here belongs together and is separate from everything else.”

The div is extremely handy for organizing content into large blocks that you can then
style with CSS or manipulate with JavaScript. For example, you may want your company
logo, the name of your website, a set of navigation links, and a site search form to appear
at the top of your page, separated from the main content. These components should each
be marked up with their own meaningful elements, but they’re all related because they
form the overall branding and navigation of your site, so they could be collected in a single
div element. You can easily apply CSS styles to the contents of that div by giving it a unique
identifier via the id attribute. In Listing 4-21, a div identified as “main-content” wraps
around and contains all the important content on the page, separating it from other major
blocks such as site branding and navigation.

Listing 4-21. A Block of Content Wrapped in a div Element

<div id="main-content">
<h1>About Us</h1>

<p>Spaghetti and Cruft opened our doors in 1999, bringing great pizza and
pasta to the heart of the city's trendy Riverbend district. We handcraft

our pizzas on the spot using only the best ingredients, and then we bake them to
perfection in our rustic wood-fired brick oven. We sell pizza by the slice

or by the pie and even offer catering for any occasion all around the
neighborhood.</p>

<p>Our broad menu of pasta dishes puts a modern twist on 0ld Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll want
seconds anyway). But it's not all noodles and crust at Spaghetti and Cruft;
we also have fresh veggie sides, an all-you-can-eat salad bar, and the best
cannolis in town!</p>

</div>

85

86

CHAPTER 4 ADDING CONTENT

A divis block-level and can contain text and any other elements, both block-level and
inline. A div element’s only default styling is to behave like any other block-level element;
its contents begin on a new line and occupy the full available width. Because a div alone
imparts no deeper semantic meaning to its contents, any text within it should ideally be
nested in a more meaningful element.

Because divs are so versatile and act as useful boxes to be styled with CSS, there is a
tendency for some web designers to overuse them, crowding their markup with an exces-
sive number of divs for presentational purposes. This practice has come to be known as
“divitis,” and you should try to avoid it. Use divs wisely to support your content. Remember
that the div element is a content-organization device, not a page-layout device.

Required Attributes

The div element doesn’t have any required attributes.

Optional Attributes

There are no optional attributes for the div element.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

Caution Oider versions of HTML allowed the align attribute in div elements as well. It is now deprecated
and invalid in XHTML 1.0 Strict.

span

The div’s inline cousin is the span, which you can use to set apart an arbitrary segment of
text to act as a “hook” for CSS styling, or to carry additional information about its contents

CHAPTER 4 ADDING CONTENT

through attributes in the opening tag. As with divs, you should use spans only when
amore semantically valuable element doesn’t fit the bill.

Required Attributes

No attributes are required for the span element.

Optional Attributes

The span element has no optional attributes.

Standard Attributes
e class
e dir
e id

* lang

style

title
e xml:lang

Listing 4-22 shows a span nested within a top-level heading to distinguish the “last
updated” date from the other heading text. You could then style the contents of this span
with CSS to appear different from the rest of the heading. An em element could serve the
same purpose, but would add unwanted emphasis to the date.

Listing 4-22. A span Nested in a Heading

<hi>Latest News from Spaghetti and Cruft
Last updated on 11/22/2006</h1>

Embedding External Content

Most of the contents of your page will be part of the XHTML document, but there will often
be times when you need to embed external content such as images, Java applets, Flash

animations, or QuickTime videos. Such files must exist separately from the document, but
you can reference them in your XHTML markup so the browser will display them on your
page. You probably won’t need to make use of these elements until you're quite comfortable

87

88

CHAPTER 4 ADDING CONTENT

with the other parts of XHTML first. This is a pretty advanced topic for a beginning-level
book, so we’ll keep it short.

object

Theinline object element embeds a file or type of media that exists external to the XHTML
document. Many objects occur in data formats that web browsers may not be equipped to
handle, requiring a plug-in application to render them. You can use an object to place
an image on your page, but it’s more common to use the inline img element, covered in
Chapter 5.

Required Attributes

There are no required attributes for the object element.

Optional Attributes
e archive: A space-separated list of URLs pointing to archives relating to the object
e classid: URL specifying the location of the object’s implementation
e codebase: Specifies the base path of relative URLs
* codetype: The content type of the data expected when downloading the object
¢ data: The URL where the object’s data can be found
e declare: When present, this attribute makes the current object a declaration only
* height: The height of the object in pixels or a percentage of the parent element
* standby: Text that will be displayed as the object is downloaded
e tabindex: Specifies the object’s position in the document’s tabbing order
* type: The object’s content type
* usemap: Identifies a client-side image map to be used

e width: The width of the object in pixels or a percentage of the parent element

CHAPTER 4 ADDING CONTENT 89

Standard Attributes

e class
e dir

e id

e lang
* name
e style
e title

e xml:lang

Caution Previous versions of HTML included some presentational attributes for the object element:
align, border, hspace, and vspace. These have all been deprecated in favor of CSS. The width and
height attributes are also presentational but are still valid in XHTML.

param

A param element can be nested within an object element to define various object param-
eters and pass along additional information for the object to use. It’s an empty element,
so you should close it with a trailing slash (/>). A single object can contain several nested
param elements.

Required Attributes

e name: The specific parameter being declared

Optional Attributes
* type: The parameter’s content type
e value: The value of the parameter specified by the name attribute

* valuetype: The type of the value attribute: either data, ref, or object

90

CHAPTER 4 ADDING CONTENT

Standard Attributes
e id

Listing 4-23 shows an example of the object element being used to embed an MPEG video
onto a page. Within the object are some nested param elements declaring the source of the
video and a command to the plug-in application to begin playing the video automatically.

Listing 4-23. An Example of an MPEG Video Embedded with the object Element

<p>Here's a short video of Jeremy making pizza.</p>

<div><object data="makingpizza.mpg" type="video/mpeg" width="368" height="272">
<param name="src" value="makingpizza.mpg" />
<param name="autoplay" value="true" />

</object></div>

Figure 4-20 shows the result of the markup in Listing 4-23.

Here's a short video of Jeremy making pizza.

Figure 4-20. The video is displayed directly on the page, assuming the browser has the
necessary plug-in.

Presentational Elements

Throughout this book, we strongly discourage the use of presentational markup—those
elements and attributes that only affect the display of content and contribute nothing to
its function or meaning. Having said that, afew presentational elements remain valid even
in XHTML 1.0 Strict, so we're including them here in the interest of completeness. You
should be familiar with these elements, even if only to recognize them in order to avoid
them. Standard attributes apply to all of these.

CHAPTER 4 ADDING CONTENT

iand b

The i element designates text to be displayed in an italic font, and the b element desig-
nates boldfaced text. In nearly every case, when you need to italicize or embolden text,
you'll be doing so to add emphasis. To emphasize text, you should use the preferred em
and strong elements to deliver that message, to proudly declare that “this text means
something important, so pay attention” rather than simply “this text looks different but
doesn’t have much else to say.”

big and small

The text contained in a big element will be slightly larger than the text surrounding it,
while the text contained in a small element will be slightly shrunken. These elements have
little semantic value otherwise, and their presentational effects are usually best achieved
by using a more meaningful element styled with CSS.

t

The tt element stands for “teletype” and specifies that its text contents should be displayed
in a monospace typeface. It’s a presentational element that has no real meaning apart
from text styling, so it’s preferable to achieve the same result with the CSS equivalent,
font-family: monospace.

sup and sub

You may occasionally need to include superscript or subscript characters in your text,
especially of you're writing about mathematics or chemistry, or in certain languages that
require it (French, for example). In these cases, you can use the sup and sub elements, for
superscript and subscript, respectively. Superscript text is raised slightly higher than
surrounding text, while subscripts are slightly lower. Listing 4-24 shows an example of
these elements: sup is used in the Pythagorean Theorem for calculating right triangles, and
sub used in the chemical formula for sulfuric acid.

Listing 4-24. Examples of the sup and sub Elements

<p>a² + b² = c²</p>

<p>H₂S0₄</p>

91

92

CHAPTER 4 ADDING CONTENT

Figure 4-21 shows how a browser renders these elements. The contents of both
elements appear slightly smaller than the ordinary text surrounding them.

al+bl=¢2

H,S0,

Figure 4-21. The example markup from Listing 4-24 when viewed in a web browser

While the sup and sub elements are essentially presentational, there may be cases
where they communicate more meaning than a span would. A superscript numeral in a
mathematical formula can signify an exponent, so wrapping that numeral in a sup element
may be semantically preferable to styling it strictly with CSS; the sup element itself carries
that stylistic meaning. You should exercise your own judgment and use these elements
only when the content warrants it.

THE FONT ELEMENT

In the early days of the World Wide Web, authors and designers lacked a means to alter the typography
of their pages—that is, to choose different typefaces, colors, and sizes from whatever default settings
were built into the web browsers of the day. The font element was soon introduced to HTML, giving
web designers some influence over the presentation of text by simply wrapping it in a bit of additional markup:

Typography in action (sort of)

However, peppering a document with dozens of presentational font elements added a lot of extra
data to the file that did nothing to improve the real quality or utility of the content. And in the event of a
redesign, every one of those tags in every document over an entire site had to be located and
modified. It wasn’t pretty.

The advent of CSS a few years later finally gave designers the means to influence typography
without extra markup, and to update the design of even the largest sprawling website by editing a single
file. The font element was officially made obsolete. This element is strictly presentational, has no
semantic value whatsoever, and has been deprecated for a decade. It should never be used. Ever.

Special Characters

You know by now that an XHTML document is simply plain text. There’s nothing special
atall about the file format; it’s just written in a language that web devices are programmed
to understand. Tags within that plain-text document are enclosed by angle brackets (< and
>) to distinguish them from ordinary text. When a browser encounters those symbols,

CHAPTER 4 ADDING CONTENT

it can assume it’s dealing with markup and behave accordingly. This raises one issue, of
course: what if you need to use angle brackets in your text? If the browser treats them as
part of a tag, the entire document falls apart.

XHTML includes a large number of character references, which offer a way to encode
special characters that aren’t part of the regular English alphanumeric set of characters
(A-Z, a-z, 0-9, and most common punctuation). A character reference begins with an
ampersand (&) and ends with a semicolon (;). Between those symbols there are two
different ways to invoke the special character you desire: with a character entity name
or a numeric character reference.

A character entity name is simply a predefined name referring to a particular symbol,
like a nickname. The entity for the “less than” symbol (<) is 81t; and its counterpart, the
“greater than” symbol (>), is 8gt;. You can use these entities to render the symbols in your
content and prevent them from being treated as tags.

Your other option, the numeric character reference, refers to a character by its assigned
Unicode number, and is specified by an octothorpe (#) after the ampersand. The numeric
character reference for the “less than” symbol is < and “greater than” is 8#62 ;. Most of
the time, the much-easier-to-remember entity names are sufficient, but to ensure maximum
compatibility with devices that parse XML but may not support the full range of entity
names, numeric character references are usually recommended for XHTML documents.

Encoding special characters in this manneris known as escaping because these embedded
codes are excluded from the parsing of regular XHTML markup. One character you must
be careful to escape is the ampersand itself; a non-escaped ampersand in your markup
will be treated as the beginning of a character reference. In order to display an ampersand
in your content, encode it with the entity & or the numeric reference &. This also
goes for ampersands in URLs within an attribute (such as cite, src, or href).

Table 4-1 lists some of the most common (and useful) characters you may need, and
you'll find the complete list in Appendix C of this book.

Table 4-1. Common Character References

Character Description Entity Numeric Reference
& ampersand & &

< less than < <

> greater than > &4#62;

‘ left single quotation mark ‘ &1#t8216;

’ right single quotation mark ’ ’

“ left double quotation mark “ “

" right double quotation mark ” ”

non-breaking space

- en dash – –

93

94

CHAPTER 4 ADDING CONTENT

Table 4-1. Common Character References (Continued)

Character Description Entity Numeric Reference
— em dash — &1#8212;

© copyright © &4#169;

™ trademark ™ &18482;

® registered trademark ® ®

Caution A non-breaking space is a single character of white space that a browser will not treat as a
break between words when text is wrapped. Many web designers use non-breaking spaces to force extra
white space that won’t be collapsed to a single space (such as indenting the first line of a paragraph), or as a
placeholder in nonempty elements that have no content, to prevent them from being treated as empty (for
example, <p> </p>). Using non-breaking spaces to force white space where it doesn’t ordinarily
belong should usually be avoided as presentational markup.

Styling Content with CSS

All of the examples you've seen so far show content rendered in a browser’s default style,
with its default fonts, colors, and spacing. CSS allows you to modify the presentation of
almost every element on the page. Chapter 2 offers a general introduction to the basic
concepts of CSS, but it’s a broad and powerful language in its own right. Explaining every
facet of its depths is well beyond the scope of this book. For more detailed instruction in
the ways of CSS, we recommend Simon Collison’s Beginning CSS Web Development
(Berkeley, CA: Apress, 2006) as an excellent follow-up to the book you're reading right now.

But until then, we’ll whet your appetite for CSS by showing you just a few ways you can
use style sheets to make your text more distinctive and attractive.

Declaring Base Font Styles

A graphical web browser draws text on-screen using font files installed on your visitor’s
computer. Unfortunately, this limits your options to the few typefaces that are very common
in most operating systems—ones with familiar names such as Times New Roman, Helvetica,
Arial, Verdana, Georgia, Trebuchet, and Courier. However, you can achieve great things
even with such a limited palette. Good typography is about more than just choosing a nice
typeface; it’s also about how you arrange text on the page.

CHAPTER 4 ADDING CONTENT 95

Font Family

A font family is, well, a family of fonts. Also called a typeface, a font family consists of a set
of variations on a single type design. The typeface known as Times New Roman, for example,
includes normal, italic, bold, and bold italic versions in a few different sizes. Each of these
variants is actually a distinct font—“12 point Times New Roman bold” is one font within
the Times New Roman font family. These days, the terms “font,” “typeface,” and “font
family” are often used interchangeably.

In CSS, a font family is declared using the font-family property, followed by a comma-
separated list of your desired typefaces, in order of preference. When the browser renders
the page, it looks on the user’s computer system for the first font family listed. If it doesn’t
find that one, it will continue to the next, and so on. If it doesn’t find any, the browser will
simply fall back on its default typeface.

Listing 4-25 shows an example of a CSS style rule declaring a sequence of font families
for the body element.

Listing 4-25. A CSS Rule Setting the Font Family for an Element

body {
font-family: Georgia, "Times New Roman", Times, serif;

}

Note The typeface Times New Roman has a name that includes spaces, so its name appears in quotation
marks to group those words together. Font families with single-word names don’t require quotes.

One very important aspect of CSS is the concept of inheritance. The values of some prop-
erties in CSS can be passed down from an ancestor element to its descendent elements,
including most font-related properties. Since every element on the page is descended
from the body element, they will all inherit their font styles from that common ancestor,
without the need to redeclare the same styles over and over. You can then override or alter
this base font family for different elements elsewhere in the style sheet.

Revisiting the style rule for the body element, let’s say you've decided you’d prefer a
sans serif typeface such as Trebuchet, whose full name is Trebuchet MS, so it will need to
appear in quotes. If the browser doesn’t find that one, you’ll settle for Helvetica, and if the
reader doesn’t have Helvetica installed, you'll accept Arial. If it has none of these, then
you’d at least like the text to be drawn in some kind of sans serif typeface, so you should
end with the generic family name, sans-serif (the phrase “sans serif” must be hyphen-
ated in CSS). You can see the revised rule in Listing 4-26.

96

CHAPTER 4 ADDING CONTENT

Listing 4-26. The Updated font-family Declaration, Listing a Variety of Sans Serif Typefaces

body {

font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;

Figure 4-22 shows a “before and after” view of a sample web page. The left side shows
the text in the default browser font (Times, in this case), and the right shows the same text

after the new CSS has been applied.

About Us

Spaghetti and Cruft opened our doors in 1999, bringing great
pizza and pasta to the heart of the city's trendy Riverbend
district. We handcraft our pizzas on the spot using only the best
ingredients, and then we bake them to perfection in our rustic
wood-fired brick oven. We sell pizza by the slice or by the pie
and even offer catering for any occasion all around the
neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old
Italia, served in heaping bowlfuls sure to satisfy any appetite
(though we bet you'll want seconds anyway). But it's not all
noodles and crust at Spaghetti and Cruft; we also have fresh
veggie sides, an all-yon-can-eat salad har, and the best cannolis

in town! Before

About Us

Spaghetti and Cruft opened our doors in 1999, bringing
great pizza and pasta to the heart of the city's trendy
Riverbend district. We handcraft our pizzas on the spot
using only the best ingredients, and then we bake them
to perfection in our rustic wood-fired brick oven. We
sell pizza by the slice or by the pie and even offer
catering for any occasion all around the neighborhood.

Our broad menu of pasta dishes puts a modern twist on
Old Italia, served in heaping bowlfuls sure to satisfy any
appetite (though we bet ueu’llwant caconds anyway).
But it's not all noodle After kghettl‘ and Cruft;
we also have fresh ve T you-can-eat salad

bar, and the best cannolis in town!

Figure 4-22. Some example text rendered in the browser’s default typeface, and then in

Trebuchet through the power of CSS

GENERIC FONT FAMILIES

There are five generic font family names built into the CSS language. Using any of these in a font-family
declaration will instruct the browser to render text in whatever default typeface it’s configured to use for

that generic family.

o Serif. A typeface featuring serifs, which are ornamental crosslines at the ends of a character’s
main strokes. Times New Roman and Georgia are serif typefaces.

e Sans serif. Literally, “without serif”; a typeface that lacks those ornamental flourishes. Helvetica

and Arial are sans serif typefaces.

e Monospace: Atypeface in which every character, including punctuation, occupies the same width.

Courier and Monaco are monospace typefaces.

CHAPTER 4 ADDING CONTENT

e (Cursive: A fancy typeface modeled after handwriting. Brush Script MT and Apple Chancery are

common cursive typefaces.

e Fantasy. A decorative or highly stylized typeface. Impact and Copperplate are fairly common fantasy

typefaces.

Serif typefaces are best for print, as they remain readable at small sizes. On screen, however, the
fine points of the serifs tend to be lost or blocky when rendered in pixels, so sans serif typefaces are
generally easier to read on the web (though serifs can be quite lovely at larger sizes). Monospace type-
faces are best for displaying computer code, where it’s important to accurately make out each and every
character. Cursive and fantasy typefaces are more decorative and can be difficult to read, so they should
only be used for large headings or avoided entirely; never use a cursive or fantasy typeface for body text.

Font Size

You've changed the font family, but what about the size? Most browsers today render body
text at a default size of 16 pixels, which might be a bit too large for your tastes. You can
change this with the font-size property, and by applying the declaration to the body element,
every other element on the page will inherit the same value. Listing 4-27 shows the style
rule with a font-size declaration added, setting the base size to 12 pixels.

Listing 4-27. A font-size Declaration Has Been Added to the body Style Rule

body {

font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;

font-size: 12px;

}

Figure 4-23 shows the change in text size.

About Us

Spaghetti and Cruft opened our doors in 1999, bringing great pizza and
pasta to the heart of the city’s trendy Riverbend district. We handcraft
our pizzas on the spot using only the best ingredients, and then we bake
them to perfection in our rustic wood-fired brick oven. We sell pizza by
the slice or by the pie and even offer catering for any occasion all around
the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll
want seconds anyway). But it's not all noodles and crust at Spaghetti and
Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar, and
the best cannolis in town!

Figure 4-23. The browser renders the text at the specified size, rather than its default size.

97

98

CHAPTER 4 ADDING CONTENT

The heading, an h1, has also become a bit smaller than it was previously. The default
font size of headings is relative to the base size for normal text. When the font size is changed
for the body element, the headings are resized in proportion to that value. But if you're not
happy with the heading at its default size, you can modify it with a new style rule—this
time for the h1 element, as you see in Listing 4-28. Thanks to inheritance, there’s no need
to restate the desired font family—only the font-size property with the new size to use for
h1 elements.

Listing 4-28. Adding a New Rule to Declare the Font Size of the h1 Element

body {
font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;
font-size: 12px;

}
h1 {

font-size: 160%;
}

Figure 4-24 shows the result of the new declaration added in Listing 4-28.

About Us

Spaghetti and Cruft opened our doors in 1999, bringing great pizza and
pasta to the heart of the city’s trendy Riverbend district. We handcraft
our pizzas on the spot using only the best ingredients, and then we bake
them to perfection in our rustic wood-fired brick oven. We sell pizza by
the slice or by the pie and even offer catering for any occasion all around
the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll
want seconds anyway). But it's not all noodles and crust at Spaghetti and
Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar, and
the best cannolis in town!

Figure 4-24. The heading has been resized.

The new rule specifies the font size as a percentage of whatever size was inherited from
the element’s ancestor—160% of 12 pixels in this case, which turns out to be around 19 pixels.
You can declare font sizes using any of several units of measure: pixels, millimeters, centi-
meters, inches, points, picas, ems (one em is the height of a capital letter from top to baseline),
exes (one ex is the height of a lowercase letter from top to baseline), or a percentage. You
can also declare font sizes using a predefined set of keywords: xx-small, x-small, small,
medium, large, x-large, and xx-large.

CHAPTER 4 ADDING CONTENT

A keyword, em, ex, or percentage is a relative unit, calculated as a proportion of a size
declared elsewhere. The others are all absolute units: a pixel is a pixel, and an inch is an
inch. Some of these units are less practical than others; you'll probably never need to
specify a font size in inches, millimeters, or centimeters, while points and picas are units
used in printing that aren’t really appropriate for screen display (though are perfect for an
alternative printable style sheet). Most of the time, you’ll want to use ems, percentages,
keywords, and sometimes pixels for font sizes.

Most modern web browsers are able to resize text to suit the user’s preference, so any
size you specify in your CSS is more like a suggestion than a command. Always be aware
that your visitors may see text larger or smaller than you originally intended.

Line Height

Line height is the height of a line of text measured from its baseline to the baseline of the
preceding line (the baselineis the invisible line the text rests on; letters such as gand q
have descenders that drop below the baseline). Line height shouldn’t be confused with
leading, which is the typographic term for added space between two lines, measured from
the bottom of one line to the top of the following line. CSS doesn’t offer a means to specify
true leading, but you can achieve the same effect by increasing the line height of the text.

In the example you've been working with, let’s say that you think the default line height
is a little too close. Spreading those lines further apart will help the eye move through the
text a bit more easily, so add aline-height declaration to your CSSrule for the body element,
as you see in Listing 4-29. Every other element on the page will also inherit this value.

Listing 4-29. Adding a line-height Declaration to the body Rule

body {
font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;
font-size: 12px;
line-height: 1.5em;

}

You should specify line height with a relative unit—an em, in this case—which is calcu-
lated relative to the text size. A value of 1.5em means the line height will be one and a half
times an element’s font size, whatever that size happens to be. You could achieve the same
effect with the value 150%; it’s really just a matter of personal preference. You can see the
result in Figure 4-25—each line of text has a bit more breathing room.

99

100 CHAPTER 4 ADDING CONTENT

About Us

Spaghetti and Cruft opened our doors in 1999, bringing great pizza and
pasta to the heart of the city’s trendy Riverbend district. We handcraft
our pizzas on the spot using only the best ingredients, and then we bake
them to perfection in our rustic wood-fired brick oven. We sell pizza by
the slice or by the pie and even offer catering for any occasion all around
the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll
want seconds anyway). But it's not all noodles and crust at Spaghetti and
Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar, and
the best cannolis in town!

Figure 4-25. Each line of text is separated by a little more white space by increasing the
line height.

Styling Lists

Lists are useful elements in XHTML. They're the right tool to reach for any time you need
to arrange connected portions of content into a sequence of memorable chunks. Unfor-
tunately, lists are rather unattractive by default, but you have the power of CSS on your
side to compensate for their aesthetic shortcomings.

Changing Unordered List Markers

A special character marks each item in an unordered list to help the reader distinguish one
item from the next. The list marker you're probably most familiar with is the bullet: a solid
dot that’s the same color as the list’s text. CSS includes a few predefined alternative list
markers, declared using the 1ist-style-type property: disc (this is the default bullet),
circle (an empty circle), or square (a solid square). The size of the marker is proportional
to the text size. Listing 4-30 demonstrates the list-style-type property, replacing the
standard round bullet with a small square.

Listing 4-30. Using the list-style-type Property

ul {
list-style-type: square;
}

Figure 4-26 shows the results of the rule in Listing 4-30.

CHAPTER 4 ADDING CONTENT

= 1 cup warm water

= 1 packet active dry yeast

= 2 1/2 to 3 cups all-purpose flour
= 2 tablespoons olive oil

= 1/2 teaspoon salt

Figure 4-26. Unordered lists are now presented with a small square marking each item.

If you like, the declaration list-style-type: none; will disable the item markers entirely
without affecting the format of the list.

Using an Image As a List Marker

If none of the three standard list markers quite satisfies your creative desires, you can provide
your own graphic to use via the list-style-image property, as shown in Listing 4-31.

Listing 4-31. Using the list-style-image Property

ul {
list-style-image: url("/images/mybullet.gif");
}

The property’s value is the file’s URL, denoted by the url keyword with the URL itself
contained in parentheses—the quotation marks are optional. The URL can be either abso-
lute or relative (you learned about absolute and relative URLs in Chapter 1). As you see in
Figure 4-27, a browser will load that image file in place of its standard bullet.

2 1 cup warm water

2 1 packet active dry yeast

2 21/2 to 3 cups all-purpose flour
2 2 tablespoons olive oil

2 1/2 teaspoon salt

Figure 4-27. The image now appears next to each list item.

Images used for list markers should be small and certainly no taller than the text size.
Large images might push your list items apart to make room, as Figure 4-28 demonstrates.

101

102 CHAPTER 4 ADDING CONTENT

D2
1 cup warm water

.> 1 packet active dry yeast
.> 2 1/2 to 3 cups all-purpose flour

.> 2 tablespoons olive oil

.> 1/2 teaspoon salt

Figure 4-28. The list is unpleasantly reformatted, forced apart by the large image.

Changing the Style of Ordered Lists

By default, items in an ordered list are numbered with Arabic numerals (1, 2, 3, etc.). You
can change this with CSS, once again using the 1ist-style-type property, and this time
choosing from another set of accepted values:

* upper-roman: Uppercase Roman numerals (I, I, III, IV, etc.)
e lower-roman: Lowercase Roman numerals (i, ii, iii, iv, etc.)
* upper-alpha: Uppercase English letters (A, B, C, D, etc.)
* lower-alpha: Lowercase English letters (a, b, ¢, d, etc.)
e decimal: Arabic numerals (this is the default)

You can see this in action in Listing 4-32.

Listing 4-32. Declaring Ordered Lists to be Rendered with Uppercase Roman Numerals

ol {
list-style-type: upper-roman;
}

Figure 4-29 shows the on-screen results of Listing 4-32.

CHAPTER 4 ADDING CONTENT

. Combine the water, yeast, oil, salt and two thirds of the flour in a large bowl and
mix thoroughly.

Il. Gradually add the remaining flour until the dough holds its shape, being careful
not to let it become too dry. You may not need all the flour.

ll. Place the dough on a lightly floured surface and knead for five minutes until it
becomes smooth and elastic.

IV. Transfer the dough to a lightly oiled bowl, cover with plastic wrap and let it rise
until it has doubled in size.

V. When the dough has risen, place it on a floured surface, divide it into two equal

portions rolled into balls. Allow the dough to rest for 15 minutes before forming

your pizzas.

Figure 4-29. The browser generates the Roman numerals automatically.

As with unordered lists, the declaration 1ist-style-type: none; will prevent the display
of any list item markers while the list remains intact.

Summary

Whew! We’ve covered a lot of ground in this chapter—in fact, a majority of the elements
in the entire XHTML language. You learned how to organize your content into bite-sized
pieces using meaningful elements that will communicate the true intent of your words,
how to insert some useful special characters, and just a few ways you can use CSS to affect
the presentation of text. You've also learned a few things you should notdo when marking
up your content. Be semantically responsible and choose elements for what they mean,
not how they look.

Most of this chapter has been about adding text content to your documents, but not
all content is text. In the next chapter, you’ll learn how to add images to your web pages
to communicate ideas that text alone just can’t get across (at least not with less than a
thousand words).

103

CHAPTER 5

Using Images

Chapter 4 was all about adding text content to your web pages, but now it’s time to put
the multiin multimedia and punch up your pages with pictures. Imagery of some sort is
an important part of most websites to make them visually stimulating and memorable.
The graphical elements of a design can form the basis of your site’s branding and visual
identity and can set your site apart from the millions of others on the World Wide Web.

Images can decorate, but they can also communicate; pictures are content too, and
some ideas are much better communicated visually. Photos, illustrations, logos, icons, maps,
charts, and graphs can get your ideas across in ways that text alone might not accomplish.
Even so, it's important to remember that not everyone who visits your website will be able
to see the images, and it’s your responsibility as a web author to help everyone access the
same vital information. This chapter shows you how to improve your site’s accessibility by
providing text alternatives when your images aren’t available.

Images that you're using as content can be referenced from your XHTML document
with the img element and will be rendered in the web browser right alongside your text.
You can also use theobject element, covered in Chapter 4, to embed images in your pages.
However, current browser support of the object element is sketchy and inconsistent, so
the img element remains the preferred, tried-and-true method. You should attach images
that are strictly decorative (rather than informative) to your page with CSS, keeping your
presentation separated from your content.

In this chapter, you'll learn how to use images in your web pages. You'll learn a few
basics about digital image files, explore the inline img element to embed a graphic into the
meat of your content, and see just a few ways you can use CSS to style inline images and
integrate them into your page’s layout. You'll also discover CSS background images, allowing
you to improve the look of your page without changing its semantic structure.

105

106

CHAPTER 5 USING IMAGES

How Digital Images Work

Like anything else that lives in a computer’s electronic memory, a digital image is nothing
more than data in the form of ones and zeros, collected into a virtual file. A computer reads
that array of digits (each digit is a bif) and translates each set of bits into a signal that can
be sent to a display device where the bits are converted into tiny dots of colored light that
human beings can see—bright red, dark blue, pale gray, and so on. The file also includes
encoded instructions abouthow these dots oflight (called pixels, short for “picture elements”)
should be arranged, like a mosaic of tiles, to make up a discernable image. You can see the
individual pixels if you look closely at a computer or television screen, or you can check
out the extreme close-up in Figure 5-1.

Figure 5-1. Zooming in on a digital image reveals the tiny pixels that comprise it.

Because these images are assembled from a “map of bits,” they're called bitmapped
images, and bitmaps are what we use to display images on the web. Storing the color and
location of every single pixel adds up to alot of data, especially when there are hundreds of
thousands of pixels in the typical picture and millions of possible colors (up to 16,777,216
unique colors in a 24-bit image to be exact).

Images for the web are usually compressedto decrease the file size so that downloading
a web page is tolerable, even on slower Internet connections. By either reducing the number
of colors stored or reducing the number of pixels memorized, you can greatly reduce the
overall file size as well. If you've ever downloaded a large file over a slow Internet connec-
tion, you know how grueling it can be. The goal of compressing an image is to achieve the
smallest possible file without sacrificing too much of the original picture quality.

CHAPTER 5 USING IMAGES

VECTOR GRAPHICS

In addition to bitmaps, there are also digital images whose data is stored as a set of mathematical
instructions that a computer can follow to draw shapes on the screen or on paper. These are called
vector graphics, and they can be rendered at any size without changing the original image’s appearance
or quality. Unfortunately, interpreting and rendering vector images requires specialized software that
isn’t included in most web browsers, so nearly all images used on the web are bitmaps.

There is an ongoing initiative to develop a vector graphic format specifically for use on the web.
Based on XML, the Scalable Vector Graphics (SVG) language is not yet widely supported by web browsers, so
its practical applications are limited for the time being. You can learn more about SVG at the W3C website
(http://www.w3.0rg/Graphics/SVG/).

Web-Friendly Image Formats

You can compress digital images for the web using three formats: JPEG, GIF, and PNG.
These formats each use a different means of compression, and each has its own particular
benefits and drawbacks. Most web browsers (those that can display images, that is) have
built-in software that will interpret and render files in these formats. Web browsers may
notbe able to render other formats, so you should stick to JPEG, GIF, and PNG. Almost any
program you might use for creating or editing digital images will be able to export files in
all of these formats.

JPEG

JPEG (pronounced “jay-peg”) stands for Joint Photographic Experts Group, the organiza-
tion that invented the format. The compression scheme reduces the size of the file by
sampling the average color values of the pixels and then removing excess redundant pixels
from the image. When the image is later decompressed and rendered, those deleted pixels
are re-created based on the stored samples.

Because JPEG compression loses some information, the compression is said to be lossy,
and decompressed JPEGs will never be quite the same quality as the originals. JPEG is in
fact a variable-lossformat and can be compressed at different levels—more compression
means more pixels are discarded to create a smaller file, but the price is paid in quality.
Highly compressed JPEGs will tend to appear blurry or with blocky smudges, called artifacts,
where the pixels have been regenerated. In Figure 5-2 you see three pictures of Jolene,
each the same JPEG image saved at a different level of compression (shown here at twice
the original size for clarity). The file gets smaller as the image is more compressed, but the
quality also declines.

107

http://www.w3.org/Graphics/SVG

108

CHAPTER 5 USING IMAGES

Low Compression Medium Compression High Compression
56kb 12kb 4kb

Figure 5-2. The same JPEG image at three different levels of compression. The version on the
far right is the smallest file, but the image quality has suffered greatly.

Furthermore, every time you edit and save a JPEG image, you're essentially recompressing
an image that has already been compressed, losing a bit more data in the process. Every
generation of JPEG compression will degrade the image quality a little more, like making
a photocopy of a photocopy. You should keep original, uncompressed versions of your
images to work from, compressing to a JPEG file only when you're ready to put your
images on the web.

The JPEG format saves disk space by sacrificing pixels but will store a lot of color infor-
mation in a relatively small file, making it ideal for photographs and other images with
many different colors or images where one color blends smoothly into another (called
continuous tone). JPEG files use the file extension .jpeg or .jpg—the shorter version
became customary because some computer operating systems don’t allow four-letter
(or more) file extensions.

GIF

GIF stands for Graphic Interchange Format; it compresses images by reducing the overall
number of colors saved in the file, but it preserves the location of every pixel. Because GIF
is considered to be a lossless format, it’s a good choice for logos, icons, or graphics that
feature text and need to maintain sharp outlines for readability. A GIF image can contain
a maximum of 256 different colors but may contain fewer than that; storing fewer colors
makes for a smaller file. Graphs, maps, line drawings, and any images with large areas of
solid color, or few colors overall, are ideal candidates for GIF.

CHAPTER 5 USING IMAGES

GIF images may also have some areas that are transparent, allowing whatever is behind
the image to show through. Any given pixel is either completely transparent or completely
opaque, so there will be a jagged edge where the transparent and opaque areas border
each other. Most graphic editing programs enable you to specify a matte color for trans-
parent GIFs, which can be the same as your page’s background color to minimize “the
jaggies.” Figure 5-3 shows a transparent GIF against a checkerboard background. You can
see the white matte surrounding the image, which would blend seamlessly with a solid
white background color.

Spaghetti
*Cruft

Figure 5-3. A transparent GIF with a white matte. The checkerboard background is just for
demonstration.

Another special trait of GIF is support for rudimentary animation. The image can consist
of anumber of frames to be displayed in sequence, allowing for some very cool (and also
some very annoying) effects. Of course, each frame in an animated GIF is additional infor-
mation to store and will naturally increase the size of the file.

GIF files use the .gif extension.

Note There’s some debate about just how to pronounce the acronym GIF. Some people (including the
people who invented the format) pronounce it like “jif,” with a soft g sound. But in common usage it’s often
pronounced with a hard g, as in “gift.” The truth is that both ways are equally correct, so say it whichever way
sounds most natural to you.

PNG

Portable Network Graphic (PNG) is a format invented to be a free successor to the patented
GIF, and it improves on its predecessor in several ways. Like a GIF, a PNG image can also
contain a maximum of 256 colors (known as 8-bit color, since 256 different values are the
most that can be described using only 8 bits of data per pixel), and it supports transparency
the same as GIFs do. Thanks to a different compression scheme, an 8-bit PNG file can
sometimes be smaller than its GIF counterpart.

109

110

CHAPTER 5 USING IMAGES

However, another variant of the PNG format can support 24-bit color to produce millions
of unique colors; it’s similar to JPEG in that respect, though it frequently results in larger
files than JPEGs. Arguably the best feature of 24-bit PNG images is their capacity to include
a transparent alpha channel, like an extra invisible layer embedded in the image to define
areas of partial transparency. While the transparent pixels in a GIF or 8-bit PNG are completely
transparent, the pixels in a 24-bit PNG can be only partially transparent, allowing some of
the background to show through the image like a translucent overlay. You can see alpha
transparency in action in Figure 5-4. The checkerboard background shows through the
translucent parts of the image, allowing this logo to blend smoothly and seamlessly with
any background.

Spaghetti
*Cruft

Figure 5-4. A 24-bit PNG with a transparent alpha channel. The checkerboard background
shows through the translucent parts of the image.

Unfortunately, many older browsers don’t fully support PNGs with alpha transparency,
including Internet Explorer for Windows prior to version 7. Until those older browsers
become less prevalent, you'll need to be careful if and when you use alpha-transparent PNGs.

PNG files use the extension .png, delightfully pronounced as “ping.”

A BIT ABOUT BITS

All data in the world of computers consists of ones and zeros, the “digits” that give us the term digital.
Those ones and zeros represent two positions of a switch—1 for on, 0 for off—and form the basis of
binary code, the root language of computers. Each digit is called a bit, and they are collected into groups
of 8 bits called a byte. When dealing with larger collections of bytes, they’re measured in multiples of
1,024; 1,024 bytes is a kilobyte, 1,024 kilobytes is a megabyte, 1,024 megabytes is a gigabyte, and so
on. This is how we measure amounts of digital data.

The color value of every pixel in a bitmapped digital image is described with simple ones and zeros.
More colors can be produced as more digits are devoted to describing the color of each pixel. The simplest
images use only a single bit of data (1 or 0) per pixel to describe two possible colors—each pixel is either
on or off, black or white. Since each bit has two possible values, the total number of possible colors is
always 2 to the power of the number of bits. As the number of bits per pixel increases, so does the number

CHAPTER 5 USING IMAGES

of possible colors that can be described. Using 2 bits per pixel provides a total of four possible permuta-
tions (00, 01, 10, and 11), thus producing four possible colors (22). Four bits expands the number of
colors to 16 (24). At 8 bits per pixel, the total possible colors number 256 (28).

GIF images store color information at the rate of 8 bits per pixel and hence can contain only a maximum
of 256 different colors. JPEGs use 24 bits per pixel and can thus produce 16,777,216 possible colors,
approaching the very limits of human vision. The PNG format supports either 8-bit color or 24-bit color.

In an 8-bit GIF or PNG, only a single digit is devoted to describing each pixel’s transparency, so any
given pixel is either visible or not visible. In a 24-bit transparent PNG, 8 of those bits can be devoted to
describing the transparency of the pixel, allowing 256 possible levels of translucency all the way from
completely transparent (0) to completely opaque (255).

Including Images in Your Content

The text content of a web page is part of the XHTML document, surrounded by tags that
indicate the meaning and purpose of each portion of words. Images, on the other hand,
are external files and not actually part of the document at all. An image is referenced from
an XHTML document with the img element (or the object element, though img is more
common and reliable). Rendering a web page that includes images is a two-stage process;
first the markup is downloaded, and then the external images are downloaded. Wherever
the img element occurs in the document, the browser will fetch the referenced file from the
web server and render it on the page in place of the element.

img

The inline img element (an abbreviation of “image,” as you might have guessed) is consid-
ered a replaced element; the element itselfis not rendered. It’s also an empty element with
no text content, so it must be self-closed with a trailing slash (/>). The img element requires
a src attribute to define the source of the graphic file as the URL (either absolute or relative)
where that file resides on a web server.

An alt attribute is also required, providing an alternative text equivalent of the image.
The alternative text will be displayed if the image is unavailable or if the browser is incapable
of displaying images, and it can offer improved accessibility for the visually impaired.
Listing 5-1 shows an img element with only the src and alt attributes, the bare minimum
required to be valid.

Listing 5-1. The Simplest Incarnation of the img Element

11

112 CHAPTER 5 USING IMAGES

Required Attributes
e src: Specifies the URL where the graphic file resides on a web server

e alt: Provides an alternative text equivalent of the image

Optional Attributes
e width: Specifies the width of the image in pixels
* height: Specifies the height of the image in pixels
* ismap: Declares that the image is used for a server-side image map
* usemap: Identifies a client-side image map to be used

* longdesc: Specifies the URL of an extended text description of the image

Standard Attributes

e class

e dir

e id

e lang

e style

e title

e xml:lang

The alt Attribute

Allinstances of the img element must carry an alt attribute to provide a text alternative for
when the picture can’t be seen. It could be that the reader is visually impaired, they're
using a device that doesn’t display the image, or the image file couldn’t be found at the
source URL. Including a brief alternative text description preserves some of your image’s
communicative intent when the image itself isn’t visible. An alt attribute can contain up
to 1,024 characters (including spaces), but shorter is better. If the image is particularly
complex and demands a wordy explanation, you should provide that via the longdesc
attribute, which we’ll cover shortly.

CHAPTER 5 USING IMAGES

The text value of an alt attribute should serve as a replacement for the image when the
image isn’t available. If your page features a photo of your cat asleep in a grocery bag, the
appropriate alt text might be “my catin a bag” or “my gray cat sleeping in a brown paper
bag” or even “my gray striped tabby asleep in a brown paper grocery bag on my kitchen
table.” These all describe the content of the picture to help your readers conjure the image
in their minds even if they can’t see it on their screens. Figure 5-5 shows an example of
how Internet Explorer for Windows reacts if a referenced image can’t be found on the
server. The value of the alt attribute is displayed in place of the missing image, offering at
least a sense of what it depicts.

€] Spaghetti and Cruft : Geek Pizzeria - E]@
;::

File Edit View Favorites Tools Help

)
<) > \ﬂ \ELI .'\J P | Search ‘:\'/ Favorites

Address | F:\Chapter5\0505.html v B co

3

|Z| A pizza with sausage and
olives

@;‘] Done _J My Computer

Figure 5-5. A graphical browser will display the alternative text if the image fails to download.

An alt attribute should be a meaningful substitute for the image, so avoid unhelpful
alt texts such as “companylogo.” Tell your visitors the name of the company, notjust that
your anonymous company has some sort of logo they’'re unable to see. If you like, you can
specify that the missing image is, in fact, a logo with alt text such as “CorpCo, Inc., logo”
or something similar. It still replaces the image as well as passing on the extra information
that it’s a logo. Images that are pictures of text should include that text in their alt attributes.

A well-written alt attribute might inform the reader that the missing image is a logo,
a photograph, an illustration, a portrait, a landscape, a thumbnail, a close-up, a chart, a
map, and so on, but you should avoid restating the obvious: “a picture of my cat” tells the
reader what it’s a picture of but doesn’t tell them much else about the scene that picture
captures. The alt attribute is a descriptive or functional replacement for the image, so you
should try to describe the subject if possible, not just the image itself. And you shouldn’t
use the image file name as the value of alt; mycat.jpg tells the reader nothing meaningful
about the picture.

Internet Explorer for Windows, the most common browser on the most common oper-
ating system today, inexplicably displays the contents of an alt attribute as a tooltip, a

113

114

CHAPTER 5 USING IMAGES

small text bubble that appears when the user’s mouse lingers over the image (shown in
Figure 5-6).

. . . |
@ Spaghetti and Cruft : Geek Pizzeria - E]@
File Edit View Favorites Tools Help !,'
" — n =
1 1 N)] ;
) </ \ﬂ \ELI (0l | Search 1. Favorites
Address @F:'-BeginningI-I'I'I'ﬂL'-.Chapter5'-.II|5CI-5.I1hnI !_V_E a Go

A

A dose-up of one of our delicious pizzas

! We handeraft our pizzas on the spot
using only the best ingredients, and then we balke them to perfection
in our rustic wood-fired brick oven.

@;‘] Done J My Computer

Figure 5-6. Internet Explorer for Windows improperly displays the value of the alt attribute as
a tooltip below the mouse cursor.

Because of this, many web designers in years past misused the alt attribute to inject the
kind of supplemental information they wanted to appear in a tooltip: “my favorite picture” or
“my cat’s name is Neena.” These statements don’t describe the image or take its place, so
they’re not really proper values for alt. And since only Internet Explorer for Windows shows
the alt value in a tooltip, that information isn’t seen by anyone who is using a different
browser.

The title attribute, on the other hand, will be displayed as a tooltip in most graphical
browsers, and that is the more correct place to include a description of the image’s contex-
tual purpose, with the attribute acting as a caption, or indeed a title. When both alt and
title are present, asin Listing 5-2, Internet Explorer will display the title text rather than
the alt text.

Listing 5-2. An img Element with Descriptive alt and title Attributes

<img src="/images/pizza.jpg" title="Our famous Pizza Napoli" ws
alt="A whole pizza topped with green olives and melted mozzarella cheese" />

Even worse than improper alt text, some web designers omit the alt attribute entirely
just to avoid unwanted tooltips in Internet Explorer. An img element without an alt attribute,
in addition to being invalid XHTML, is also inaccessible. A screen reader or text browser
might simply state “[IMAGE]” without any further information or may read/display the
URL from the src attribute. Omitting the alt attribute could render an important image
meaningless.

CHAPTER 5 USING IMAGES 115

Informative alt text is especially critical when using images in links or as buttons to
submit forms. Such images are functional, not merely informative. If an image features
text acting as a link phrase, it’s absolutely essential that the link is made accessible by
including the same phrase in an alt attribute. Figure 5-7 shows an example of a site’s navi-
gation consisting of linked images. A visitor with keen eyesight who is able to download
the images can get around just fine, even without alt attributes.

"®m006 Free Money For Everyone! (=)
<« @ /I‘ &) http:/ /localhost: 8888 /Chapter$ /FreeMoney/ v | = W - Wikipedia (English) Q,

AS SEEMN OM

L'/

home about us download virus get free money recieve spam

Free Money For Everyone!

That's right, free money! Money for free!

Qur warehouses are overstocked with cash! Everything must go!

Just click the free money button and we'll send you a briefcase full of small, unmarked bills! For free! And if
you're unsatisfied for any reason, simply return the unused portion and you can keep the briefcase as our
gift!

Done 4

Figure 5-7. This site’s navigation consists of linked image buttons. This is how it appears
in Firefox.

However, Figure 5-8 shows the same site as it appears in Lynx, a text-only web browser
that displays the image file name when the alt attribute is missing. Without alt attributes
for the images, the site’s navigation is practically useless.

Inline images that are decorative (meaning they’re just for show and aren’t informative
as content) still require alt attributes. But rather than describing their ornamental function,
simply including an empty alt attribute (alt="") will “hide” those nonessential images;
it's as if the image doesn’t exist at all if its description is blank. As an added bonus, Internet
Explorer won't show tooltips for images with an empty alt attribute.

Note Many people use the incorrect phrase alt tag to refer to the alt attribute. This is confusing and
misleading since alt is not a fag at all; it’s an aftribute of the img element.

116

CHAPTER 5 USING IMAGES

[CHANE] Terminal — lynx.command — 80x24
Free Momey For Evervonel 5
[spacer .gif]

[spacer.qif] [fmeg_B3.gif] [spacer.gif]

[fmeq_B5.9if] [fmeq_86.9if] [fmeq_@67.9if] [fmeg_@3.qif] |HENEMEE

That 's right, free money! Money for free!

Our warehouses are overstocked with caosh! Everything must go!

Just click the free money button and we'll send you a briefcose full of
small, unmarked bills! For free! And if wou're unsatisfied for any
reqzon, simply return the unused portion ond wou can keep the briefcose
as our gift!

= Use arrow keys to move, "?' for help, 'q" to quit, "<"' to go bock. &
Arrow keys: Up ond Down to move. Right to follow a link; Left to go baock. v
Hielp O)ptions Plrint Glo Miain screen Qluit /=search [delete]=history list 4

Figure 5-8. Images without alt attributes are indicated by the file name in Lynx. This site has
become nigh impossible to navigate, forcing the visitor to guess where each link might lead.

longdesc

The optional longdesc attribute (shortened from “long description”) contains a URL
pointing to another page with a more detailed description of the image when that descrip-
tion is too lengthy for the alt attribute. It’s especially handy for charts and graphs that
might graphically present complex data that would otherwise need to be shown in a table.
Listing 5-3 shows an img element with a longdesc attribute. The referenced image is a pie
chart, something rather difficult to explain in a brief alt attribute.

Listing 5-3. An img Element with a longdesc Attribute

<img src="/images/piechart.gif" alt="A pie chart showing the proportional
popularities of different pizza toppings" longdesc="/toppings.html" />

Figure 5-9 shows the pie chart, as well as the same information presented in a table. The
tabular data can be accessed and understood by people who otherwise wouldn’t be able
to see and interpret the visual chart. You’ll learn about using tables to structure complex
tabular data in Chapter 7.

CHAPTER 5 USING IMAGES

B Pepperoni Various pizza toppings and the percentage of

customers surveyed who ranked them as their favorite.

B Sausage Toboin P
Cheese oPpng ercentage

) Pepperoni 35%

W Otives Sausage 24%
Mushrooms Cheese 18%

M Peppers Olives 10%
Pineapple Mushrooms 6%
Anchovies Peppers 49

Pineapple 2%
Anchovies 1%

Figure 5-9. The pie chart graphic side by side with its tabular text equivalent

width and height

Images will appear at their natural dimensions when rendered in a browser window. But
because images are downloaded after the markup and text, the browser won’t know the
dimensions of the image until it has been completely downloaded as well. The browser
will reflow text to accommodate the image once its dimensions are known, which can be
jarring if your visitor has already started reading the text. Including width and height
attributes in an img element will tell the browser to reserve space for the image and draw
the text where it should the first time around.

If the width and height attributes aren’t the same as the image’s natural dimensions,
the browser will scale the image to fit to those attributes. However, you should usually
avoid resizing images this way. When a web browser scales an image larger than its natural
dimensions, it will appear blocky, showing off the individual pixels. If it’s scaled smaller,
it may still look sharp, but the file size will be larger than necessary and take longer to
download. Ideally, the width and height attributes should match the image’s natural
width and height, and you should do your resizing with a graphic editing program better
equipped for the task.

Note You can also use the CSSwidth and height properties to describe an image’s dimensions. When
an img element that includes a width or height attribute is further styled by CSS, the CSS dimensions will
override the XHTML attributes.

117

118

CHAPTER 5 USING IMAGES

usemap and ismap

An image mapis an image where certain areas have been designated as hyperlinks, rather
than the entire image being contained in a single link. The usemap attribute identifies the
specific map element to use when rendering a client-side image map. The ismap attribute
declares that this image will be used as a server-side image map (which is an inherently
inaccessible device that should usually be avoided). You'll learn more about the inner
workings of image maps when you learn about hyperlinks in Chapter 6.

Deprecated Presentational Attributes

Older versions of HTML included a number of optional attributes for the img element that
have since been deprecated in favor of CSS. None of these is valid in XHTML, but we’re
listing them here so you'll recognize these attributes and know how to achieve their effects
with modern CSS:

* align: Specifies how the image should be aligned with adjacent text using the values
left, right, top, middle, and bottom. Left or right alignment is achieved with the
float property in CSS; top, middle, and bottom alignments are achieved with the
vertical-align property.

e border: Specifies the width of the border that will surround images that act as
hyperlinks. This has been supplanted by the border-width property in CSS.

* hspace: Specifies the horizontal space on the left and right sides of the image,
replaced by the CSS margin-left and margin-right properties.

* vspace: Specifies the vertical space at the top and bottom of the image, replaced by
the CSS margin-top and margin-bottom properties.

Note You may encounter a Lowsrc attribute within img elements in some older documents. This attribute
designated a smaller file that would be downloaded first before the final image was downloaded. However,
it’s an outdated, proprietary attribute that was supported only by older versions of Netscape Navigator. The
lowszc attribute is invalid and shouldn’t be used.

Images in Context

The img element is inline, so it will appear alongside any adjacent text on the same line,
with the bottom edge of the image resting on the same invisible baseline. Listing 5-4
shows an img element within a paragraph of text (designated by the p element).

CHAPTER 5 USING IMAGES

Listing 5-4. An img Element Inline with Text in a Paragraph

<p><img src="/images/pizza.jpg" width="180" height="110" =

alt="A close-up of one of our delicious pizzas" />

We handcraft our pizzas on the spot using only the best ingredients,

and then we bake them to perfection in our rustic wood-fired brick oven.</p>

Figure 5-10 shows how this would appear in a graphical browser. The bottom edge of
the inline image rests on the same baseline as the text.

.."" 2 &] ‘We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic
wood-fired brick oven.

Figure 5-10. The image is inline with its neighboring text when displayed in a browser.
(Photo by Jeremy Keith.)

Ifthe image, the text, or both are separately contained by block-level elements (such as
adiv or p element), the standard block behavior takes over, and the browser will draw the
appropriate line breaks. Listing 5-5 shows the same content, but this time the img element
is outside the paragraph, wrapped in its own div element.

Listing 5-5. An img Element Within a Block-Level div, Followed by a Paragraph

<div><img src="/images/pizza.jpg" width="180" height="110" =
alt="A close-up of one of our delicious pizzas" /></div>

<p>We handcraft our pizzas on the spot using only the best ingredients,
and then we bake them to perfection in our rustic wood-fired brick oven.</p>

Figure 5-11 shows the result in a graphical browser, with the image (or rather the div
that contains it) and paragraph rendered on separate lines.

When deciding whether an img element should appear inside or outside the element
containing adjacent text, consider the meaning of the image. Is the image part of the same
thought or idea being expressed by the text? If so, it may belong within the paragraph. If
the image represents an idea that stands alone, then the text can also stand alone in an
element of its very own.

119

120

CHAPTER 5 USING IMAGES

‘We handcraft our pizzas on the spot using only the best ingredients, and
then we bake them to perfection in our rustic wood-fired brick oven.

Figure 5-11. The div and p elements are both block-level, so each appears on its own line.

Caution Remember that the body element can have only block-level elements as children. An img is an
inline element, so it cannot be a direct child of the body; it must be held in some block-level container to keep
your XHTML valid.

When two or more images appear together, they behave the same as other inline elements;
they will line up next to each other on the same baseline, just like words do. And like words,
images will automatically wrap to multiple lines if they’re too wide to fit on one.

Wrapping Text Around an Image

You've no doubt seen it in hundreds of books, magazines, and newspapers: an image
placed in a column of text where the text wraps around the image and continues on its
way, like a stream flowing around a boulder. In previous versions of HTML, this was
accomplished with the now-deprecated align attribute, but today you can achieve the
same effect with the float property in CSS.

The float property accepts one of three values: left, right, or none. When an element
is “floated,” it will be shifted as far to one side (left or right) as possible until its edge comes
up against the edge of its containing block (or until it collides with another floating element).
Any text or elements that come afterward will then flow upward around the floated element.
The default none value is most useful for overriding any float properties that have been
granted to an element by another rule in your style sheet.

In Listing 5-6, you see the markup for an image followed by a block of text (both are
contained in a single paragraph). The img element features a class attribute that will make
it easy to apply CSS.

CHAPTER 5 USING IMAGES

Listing 5-6. An Image in a Paragraph of Text

<p><img src="/images/pizza.jpg" width="180" height="110" class="figure" w»
alt="A close-up of one of our delicious pizzas" />

Spaghetti &i#38; Cruft opened our doors in 1999, bringing great pizza and

pasta to the heart of the city's trendy Riverbend district. We handcraft

our pizzas on the spot using only the best ingredients, and then we bake them to
perfection in our rustic wood-fired brick oven. We sell pizza by the slice

or by the pie and even offer catering for any occasion all around the
neighborhood.</p>

The image belongs to the figure class, and Listing 5-7 shows the CSS rule for that class,
declaring that the element should float to the left.

Listing 5-7. The CSS Rule for the figure Class

.figure {
float: left;

Figure 5-12 shows the combined result. The image floats to the left side of the para-
graph, and the following text flows upward around it.

" Spaghetti & Cruft opened our doors in
51999, bringing great pizza and pasta o
Wthe heart of the city's ttcndy Riverbend
district. We handcraft our pizzas on the
. /spot using only the best mgmdmms and
Bsthen we bake them to perfection in our
rustic wood-fired brick oven. We sell
p1zza by the shoc or by the pie and even offer catering for any
occasion all around the neighborhood.

Figure 5-12. The image floats to the left, allowing the text to wrap around it.

Aninline image rests on the same baseline as its neighboring text, but when that image
is floated to one side, its top edge now rests at the top of the line it appears on, descending
below the baseline. In the previous example, you'll notice that the wrapped text rubs
directly against the right edge of the image, making it harder to read. To create a bit of
spacing, you can apply margins to the floating image by expanding the CSS rule, as in
Listing 5-8.

121

122

CHAPTER 5 USING IMAGES

Listing 5-8. Adding Margins to the figure Class Rule

.figure {
float: left;
margin-right: 1em;
margin-bottom: .5em;

}

Only the right and bottom sides need margins in this case because the top and left sides
don’t collide with any text. Leaving those sides with the default margin value of 0 will make
those edges press right against the invisible edge of the containing paragraph. You can see
in Figure 5-13 that the floating image now has a bit more room to breathe; the margins
extend the influence of the image’s float, and the text now wraps around the margins as
well.

Spaghetti & Cruft opened our doors in
1999, bringing great pizza and pasta
to the heart of the city's trendy
Riverbend district. We handcraft our
pizzas on the spot using only the best
ingredients, and then we bake them to
perfection in our rustic wood-fired
brick oven. We sell pizza by the slice
or by the pie and even offer catering for any occasion all around the
neighborhood.

Figure 5-13. Applying some margins to the floating image separates it from the text.

Background Images

Using the CSS background-image property, you can add decorative imagery to your page
and still avoid mixing presentation with your content—images that are meaningful content
belong with your other content. Almost any element in XHTML can be assigned a back-
ground image, and the contents of the element will overlay that background. The background
image will tilein both directions by default, beginning at the top-left corner of the element
and replicating itself horizontally and vertically to fill the space, like the tiles on a kitchen floor.
Listing 5-9 shows a CSS rule that will apply a background image to the body element. The
image is specified by its URL, contained in parentheses and denoted by the url keyword.

Listing 5-9. A Background Image Applied to the body Element

body {
background-image: url(/images/background.gif);
}

The image tiles to fill the window when a graphical browser renders the document, as
you can see in Figure 5-14.

CHAPTER 5 USING IMAGES

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart
of the city's trendy Riverbend district. We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic wood-fired brick
oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all
around the neighborhood.

Figure 5-14. The background image tiles in both directions, repeating as many times as
necessary to fill the element’s area.

You can modify the default tiling with the background-repeat property, specifying
whether the image should be repeated only horizontally, only vertically, or not at all.
Listing 5-10 expands the previous CSS rule, declaring that the background image should
be repeated horizontally along the x-axis.

Listing 5-10. Adding a background-repeat Declaration

body {
background-image: url(/images/background.gif);
background-repeat: repeat-x;

}

You can see in Figure 5-15 that the image now repeats across the top of the page but

not downward.

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart
of the city's trendy Riverbend district. We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic wood-fired brick
oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all
around the neighborhood.

Figure 5-15. The background now tiles horizontally but not vertically.

Likewise, a value of repeat-y will tile the image vertically but not horizontally. Listing 5-11
shows the revised CSS.

123

124

CHAPTER 5 USING IMAGES

Listing 5-11. The Value repeat-y Will Tile the Image Vertically

body {
background-image: url(/images/background.gif);
background-repeat: repeat-y;

}

Figure 5-16 shows the result. The image now tiles vertically along the y-axis.

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart
of the city's trendy Riverbend district. We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic wood-fired brick
oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all
around the neighborhood.

Figure 5-16. Now the background tiles vertically but not horizontally.

The default value of background-repeat is repeat, which you can use to override another
value in another rule if necessary. You can also disable tiling altogether with the value
no-repeat, as shown in Listing 5-12.

Listing 5-12. The no-repeat Value Prevents the Image from Tiling

body {
background-image: url(/images/background.gif);
background-repeat: no-repeat;

}

Figure 5-17 shows the effect of the no-repeat value; the image appears only once and
doesn’t tile in either direction.

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart
of the city's trendy Riverbend district. We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic wood-fired brick
oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all
around the neighborhood.

Figure 5-17. The background image appears only once and is not repeated.

CHAPTER 5 USING IMAGES

If your background image is much larger than the element it decorates, the element’s
dimensions act like a window defining the portion of the background that can be seen. In
Figure 5-18, the background image is much larger than the element it has been applied to
(adivin this case), so part of the image is hidden.

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart
of the city's trendy Riverbend district. We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic wood-fired brick
oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all
around the neighborhood.

Figure 5-18. Only part of the background image is visible because it's much larger than the
element to which it has been applied.

If the element expands—if more content is added, if the text size is increased, or if the
element is resized with CSS—more of the image becomes visible, as in Figure 5-19.

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart
of the city's trendy Riverbend district. We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic wood-fired brick
oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all
around the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served in heaping
bowlfuls sure to satisfy any appetite (though we bet you'll want seconds anyway). But
it's not all noodles and crust at Spaghetti & Cruft; we also have fresh veggie sides, an
all-you-can-eat salad bar, and the best cannolis in town!

Figure 5-19. Adding another paragraph expands the parent element, revealing more of the
background image.

Text can be difficult to read when it overlays a complicated background image or when
there’s insufficient contrast between the foreground and background colors. Be wise in
your use of background images, ensuring they don’t interfere too much with the read-
ability of your content.

Also be sure to specify a solid background color (with the CSS background-color prop-
erty) that provides enough contrast with the foreground text color in the event the image
doesn’t display. Most modern browsers default to black text on a white background. If
your design uses light-colored text against a dark background image, you should also
declare a dark background color—background images are rendered on top of background
colors, but the solid color will be displayed when the image isn’t available.

125

126

CHAPTER 5 USING IMAGES

Positioning a Background Image

By default, a background image is placed at the top-left corner of the element, which is
also where the tiling begins if the image is allowed to tile. The CSS background-position
property controls the placement of a background image. If the image is meant to repeat,
the value of background-position will mark the beginning of the tiling pattern.

The property takes two values, one for the horizontal position and one for the vertical
position. The horizontal value always comes before the vertical, and if only one value is
given, it will be taken as the horizontal position. Listing 5-13 shows the CSS to place a
background image at the bottom of the right side of a div element.

Listing 5-13. Adding a background-position Declaration

div {
background-image: url(/images/background.gif);
background-repeat: no-repeat;
background-position: right bottom;

}

Figure 5-20 shows the result—the image is positioned in the element’s bottom-right
corner. In this example, the div element is only as tall as its contents, so its bottom edge
won’treach the bottom of the window—unless declared otherwise, the height of an element
is always dictated by the height of its contents.

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart
of the city's trendy Riverbend district. We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic wood-fired brick
oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all
around the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served in heaping
bowlfuls sure to satisfy any appetite (though we bet you'll want seconds anyway). But
it's not all noodles and crust at Spaghetti & Cruft; we also have fresh veggie sides, an
all-you-can-eat salad bar, and the best cannolis in town!

Figure 5-20. The image now appears in the bottom-right corner and still doesn’t repeat.

You can specify a value for background-position in a few ways: keywords, lengths, and
percentages. The keywords to use are left, center, or right for the horizontal position and
top, center, or bottom for the vertical. Note that you can use the keyword center for either
horizontal or vertical positioning; vertically, center will be half the element’s height, and
horizontally, center is half the element’s width.

CHAPTER 5 USING IMAGES

A length is simply any number with any unit of measure, such as 10px, 20mm, or 3.5em,
and the two values needn’t use the same unit. No unit is required for lengths of 0. After all,
Opx is the same as 0in or Oem—zero is always zero. Listing 5-14 shows two lengths for the
background-position property, placing the image 40 pixels from the left and 3 em units
from the top.

Listing 5-14. Using Lengths for background-position

body {
background-image: url(/images/background.gif);
background-repeat: no-repeat;
background-position: 40px 3em;

}

Figure 5-21 shows the rendered result, with the image positioned 40 pixels from the left
side and 3 ems from the top, just as declared in the CSS.

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart
of the city's trendy Riverbend district. We handcraft our pizzas on the spot using only
the best ingredients, and then we bake them to perfection in our rustic wood-fired brick
oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all
around the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served in heaping
bowlfuls sure to satisfy any appetite (though we bet you'll want seconds anyway). But
it's not all noodles and crust at Spaghetti & Cruft; we also have fresh veggie sides, an
all-you-can-eat salad bar, and the best cannolis in town!

Figure 5-21. The background image is positioned exactly where the CSS told it to be.

When you position a background image with percentages, you must factor in the size
of the image as well as the size of the element it decorates. A background image positioned
75% from the left side of the element will move the reference point 75% from the left side
of theimage as well. This especially makes sense when centering a background at 50%; the
background is placed at a point halfway across the element and halfway across the image,
as illustrated in Figure 5-22.

This isn’t true for lengths based on other units of measure; nonpercentage lengths
always measure the distance from the top and left sides of the element to the top and left
sides of the image, as Figure 5-23 illustrates.

127

128 CHAPTER 5 USING IMAGES

50%

A
Y

Figure 5-22. A background image positioned 50% from the left and 50% from the top will be
perfectly centered, measuring the size of both the element and the image.

300px

A
Y

8em

Figure 5-23. Nonpercentage lengths position the top-left corner of the background image
at the precise point specified in your CSS. This example shows the result of background-
position: 300px 8em;.

CHAPTER 5 USING IMAGES

Summary

Imagery can be instrumental in a well-designed web page and is just one more way to make
your site unique and identifiable. But images can also convey meaning in ways words
can’t. You can embed meaningful images into your content with the inline img element,
always including an alternative text equivalent to improve accessibility for people and
devices that can’t see the image. You should separate presentational images from content
by using CSS and the background-image property. CSS also gives you the power to control
the placement and repetition of background images and the ability to influence the place-
ment of inline images to integrate them into the flow of your page design.

The three popular file formats for compressing images for the web are JPEG, GIF, and
PNG. The format you choose will depend on the image—use JPEG for colorful photos, use
GIF or 8-bit PNG for text and illustrations with solid colors or for transparency, and use 24-bit
PNG for alpha transparency.

You'll make frequent use of the elements and techniques you've explored in this chapter
and the previous one to give your content meaning and to make your pages visually attractive.
But the web wouldn’t be the web without one essential component: the hyperlink.
Chapter 6 will introduce you to hyperlinks and show you how to transform your docu-
ments into living, working parts of the World Wide Web.

129

CHAPTER 6

Linking to the Web

This chapter shows you how to use links to provide a connection between different docu-
ments. Links are one of the most important features that make the World Wide Web so
powerful. The real power comes from the fact that you can easily link to both your own
documents as well as to other external documents found on the web. Using links, you can
point to other documents, graphics, and programs from within your document. Learning
about links requires you to revisit the use of URLs, which you first saw in Chapter 1. By
default, a link shows up as underlined text within your document. When you hover over
the link, the default cursor changes to a different cursor, indicating it is a link. When you
select the link, the browser navigates to where the link is pointing.

The Anchor Tag

The use of links is based around a single tag: the anchor tag. The anchor tag has only a few
attributes, but it provides a lot of functionality, as you'll see. The basic syntax of the anchor
element is as follows:

Text to display

<a>

You use the anchor element to mark any markup that causes the user’s browser to navi-
gate to a different location when interacted with. The text between <a> is presented to
the user. In a visual browser, the text is typically underlined. Other types of browsers vary
in their use, depending on the agent itself. When the user clicks on the link, the browser is
directed to the document that is specified by the href attribute.

Required Attributes

No attributes are required for the <a> tag.

131

http://urlgoeshere.com

132 CHAPTER 6 LINKING TO THE WEB

Optional Attributes
e charset: Specifies a character set used in the encoding of the target URL.
e coords: Specifies coordinates used to define a shape in a client-side image map.

e href: Specifies the URL that you wish the browser to open when the user clicks on
the link. This is the most commonly used attribute for the anchor tag.

* hreflang: Specifies the base language used in the URL specified by the href attribute.

e rel: Specifies the relationship between the current document and the target URL.
Possible values include alternate, stylesheet, start, next, prev, contents, index,
glossary, copyright, chapter, section, subsection, appendix, help, and bookmark.

e rev: Specifies the relationship between the target URL and the current document.
Possible values include alternate, stylesheet, start, next, prev, contents, index,
glossary, copyright, chapter, section, subsection, appendix, help, and bookmark.

* shape: Defines the type of region for mapping in the current <area> tag in an image
map. Possible values include circle, default, poly, and rect.

* type: Specifies the MIME type of the target URL. Refer to Chapter 3 for details on the
MIME types.

Standard Attributes
* accesskey
e class
e dir
e id
e lang
e style
e tabindex
e title

e xml:lang

Event Attributes

onblur
onclick
ondblclick
onfocus
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove
onmouseover

onmouseup

CHAPTER 6

LINKING TO THE WEB

The anchor element has several attributes, but the most commonly used attribute is the
href attribute.

Using the <a> Tag

This section shows examples of how to use the anchor (<a>) tag in different ways. Other
sections that follow show some of the more advanced features in combination with CSS.

Linking to Other Documents

The most common use of the anchor tag is to simply link to another document. Let’s start
by linking to another document from within a document. A typical application of the
anchor tag would be when you publish an XHTML document on the Internet and then link

your document to other documents (see Listing 6-1).

133

134

CHAPTER 6 LINKING TO THE WEB

Listing 6-1. Using the Anchor Element

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Using Links</title>
</head>
<body>
<p>
Search
</p>
</body>
</html>

This sample uses the <a> tag along with the href attribute to provide users the ability to
do a search using Google. Clicking on the text or image located between the opening <a>
tag and the closing tag will result in the link being activated. If the link element has
focus, users can also press the Enter key to invoke the link. The href provides the location—
in this case, http://www.google.com—where the browser should navigate to, as shown in
Figure 6-1.

Search

Figure 6-1. The anchor tag is used in a simple web page.

Listing 6-1 provides the full URL to the requested document. The full URL is referred to
as an absolute path. When you wish to link to a document that is stored in a different loca-
tion from yours, you need to use an absolute link so that the browser knows exactly where
toretrieve the document from. The absolute link provides the domain, at a minimum, and
can include a directory and the specific file (document) you're looking to link to.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.google.com
http://www.google.com%E2%80%94where

CHAPTER 6 LINKING TO THE WEB

When you want to link to other documents that are on your domain, you have the option
of using a relative link. A relative link uses a shortcut so that you don’t need to specify the
domain and possibly the directory path of the document you wish to link to. Relative paths
are based on where the original document is located. Links that are located within the
same directory as the document don’t have any path. To access a directory that is in the
same directory as your document, you use the directory name followed by a slash and
then the file name: images\filename. To access a document or file that is up one level from
the current document, add two periods: ../filename. Notice in Listing 6-2 that href
doesn’t contain any domain or file path information.

Listing 6-2. Using Relative Links

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Using Links - Relative Links</title>
</head>
<body>
<p>
Options:

Home

News

Menu

Locations
</p>
</body>
</html>

Also, notice that several links have been added within the same document, thus
providing several options for users to select from. How, for example, does the browser
know where to look for the document titled home.html? With relative links, the browser
makes the assumption that since you didn’t provide an alternate place to retrieve the
document from, it must be located in the same domain and file path where it found the
current document. In this case, it looks for the document named home.html in the same
location that it loaded the original document.

135

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

136

CHAPTER 6 LINKING TO THE WEB

Tip It's a good idea to use relative links to navigate between the documents on your site. Doing so makes
it much easier should you decide to change the location of your documents, which would cause part of the
URL name to change.

Oftentimes, as your site gets larger and you have different types offiles, such as XHTML
files, images, and CSS, you may find yourself placing these files in different folders to help
in organization. In Chapter 11, we’ll show you how to build an entire site, and we’ll provide
some practical advice on how to set up your site. Using relative links could prove to be
difficult, as you may have files in directories other than the one that your document exists
in. You can use two periods followed by a slash (. ./) to instruct the browser that it needs
to move up one level in the directory path.

Home Page

Based on the href in this example, the browser will move up alevel from the level that
the current linking document is in. The browser will then change to the home folder and
lastly load the document index.html.

FIXING LINKS

When you create a link in your document, it might not always work. For example, you might create a link
in your document, click on the link, and get an error. There are a couple things you can do when links
don’t work:

® (Check the URL: The URL may have changed since you first created it, so verify it by cutting and
pasting the link into your browser manually.

® Check the spelling, capitalization, and the file name (including the extension) of the link: All it takes
is one incorrect character to cause your link to fail.

One sure way to get the correct URL is to open the link in a browser and cut and paste it into your
document.

Linking to Non-XHTML Documents

So far, you've seen how to link to other XHTML documents. It’s also possible to link to
non-XHTML data that you can find on the Internet. One common use is to provide links
to an FTP site in order to make it easy for users to download a file. For example, the following
link allows users to open their browser to the Microsoft FTP site:

Microsoft FTP Site

ftp://ftp.microsoft.com

CHAPTER 6 LINKING TO THE WEB

When users click on the link, it will connect them to the Microsoft FTP site, as shown in
Figure 6-2.

>

FTP root at ftp.microsoft.com

To view this FTP site in Windows Explorer, click Page, and then click Open FTP Site in
Windows Explorer.

Welcome to FTP.MICROSOFT.COM. Also wvisit http:ffwwﬁkmicrosoft.comfdownloads.

01/25/2007 11:03EM Directory bussys
01/25/2007 11:180M Directory deskapps
01/25/2007 11:220M Directory developr
01/25/2007 11:22mM Directory EBHelp
01/25/2007 11:38aM Directory MISC
01/25/2007 11:43AM Directory MISC1
01/25/2007 11:450M Directory peropsys
01/25/2007 11:52EM Directory Prodmcts
01/25/2007 11:52AM Directory BSS
01/25/2007 11:530M Directory ResKit -
01/25/2007 12:11BEM Directory Services
01/25/2007 05:38PM Directory Softlib
v
< | =

Figure 6-2. The user’s browser at the Microsoft FTP site

You can also use this same technique to link to other non-XHTML files on the Internet.
For example, if you have a.pdf document that you wish to make available on your website,
you could simply use a link similar to the following:

Download Menu in PDF (500k)

Ifadocumentisn’t a standard HTML/XHTML document, it’s considered good practice
to make it clear to users what size and type of document it is. The example specifies that it
is a .pdf document and is 500k. This provides users with enough information to decide
whether their computer supports the file type and if the file is too large to download. When
users click on the Download Menu link, the browser presents them with one or both of the
following options:

¢ Save the file to the local machine.
¢ Open the file.

Ifusers select to save the file, the browser will prompt for a location and then download
the file and save it to the local machine. If they select to open the file, the browser will
retrieve the menu. pdf file and use the file extension to try to determine what application to
use to open thefile. If the browser doesn’t know how to handle the file, it will display some
type of error message, depending on the platform, or it will prompt the users to determine

137

138

CHAPTER 6 LINKING TO THE WEB

what type of application the file should be associated with. You can use the technique
presented here for any file type. One word of caution: be careful when linking directly to
certain types of files, such as . exe files, because malicious people sometimes place computer
viruses or destructive files on their websites.

Linking to E-Mail Addresses

One of the most common ways to use the anchor element besides linking to other XHTML
documents is to automatically link to an e-mail address. This is a good way to make sure
thatusers send e-mail to the correct person. When using the <a> tag for e-mail, you use the
href in the following fashion:

Feedback

By default, when users follow the link, the browser opens a new window with the default
e-mail application. If there is no default e-mail application, nothing will happen. In the
example, the e-mail address webmaster@mywebpage.comis inserted automatically into the
To line of the e-mail application. The ?subject=Feedback places the text following the
?subject= into the subject line of the e-mail client, if the e-mail application supports this
functionality. In this case, the text Feedback is placed in the subject line. Figure 6-3 displays
what Microsoft Outlook looks like after clicking on the mailto: link.

EX Feedback - Message (HTML)

! Fle Edit View Insert Format Tools Actions Help
izﬂgendainrial v zAlB|IE=i= M
[10,] |webmasher@.m_\gwebgage.com |
[e JI |
Subject: | Feedback |
|
I

Figure 6-3. Outlook after a mailto: link was selected

mailto:webmaster@mywebpage.com?subject=Feedback
mailto:webmaster@mywebpage.com

CHAPTER 6 LINKING TO THE WEB

Tip Using an anchor element to link to an e-mail address is somewnhat discouraged. When you embed your
e-mail address within a document, you’re making your address available to anyone who can read your docu-
ment. Some people collect these e-mail addresses using special programs and use them for sending out spam.
At the same time, you really want to give your users the ability to e-mail you with questions and comments.
You can use forms (as you’ll see in Chapter 8) to allow your users to communicate with you, or you can use
an obfuscation technique to confuse the programs harvesting e-mail addresses. You must weigh the pros and
cons when deciding whether you want to put a direct e-mail address in your documents. Do you care if you
get spam? Does your e-mail server do a decent job of filtering it out? These are the types of questions you'll
want to think about.

Using an Image As a Link

You learned about the tag in Chapter 5, so now you can put it to good use. Listing 6-3
shows how you can combine the tag along with the <a> tag to make an image into
alink.

Listing 6-3. XHTML That Uses an Image Tag Within an Anchor

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<style type="text/css">
img {border: none;}
</style>
<title>Using Links - Image Links</title>
</head>
<body>
<p>

</p>
</body>
</html>

The only real trick here is to be sure to put the tags within the anchor tags. This
makes the entire image a link. Also, notice that you can add a style to remove the default
border on the image, as shown in Figure 6-4.

139

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
mailto:webmaster@mywebpage.com

140

CHAPTER 6 LINKING TO THE WEB

[EMAIL WEBMASTER |

Figure 6-4. A browser displaying an image link

You can use anyimage you’d like to create links. Typically, people create an image that
looks like a button and use it as a link. One thing to consider when using an image is that
any text you want to use must be part of the image itself. You also might want to use an
animated .gif file to make your site a bit more fun. An animated .gif file uses a sequence of
images to make an image animated. Be careful not to use too many animated .gif files,
because you don’t want to distract from the content or make your document look comical.
Another common practice is to use an image in place of using text altogether. For example,
you might do this in a toolbar or in other cases where a picture or set of pictures may flow
better with your entire document.

A better option than using the tag is to use CSS. CSS provides more flexibility and
keeps the presentation separate from the rendering. The “Adding CSS to the Anchor Tag”
section provides an example.

Using IDs

One of the neat features that the anchor allows you to do is to link to a specific location
within a document. For instance, in a sample restaurant website, you could have one
document that is simply a list of definitions for cooking terms. Then the menu document
could link directly to the terms to allow users to find information about a term they may
not be familiar with. When they click on the link for the term, the retrieved page will open
up. This way, users don’t have to search for a specific term in a document. In order to set
up an ID, you first must assign a value to the id attribute:

Definition goes here

Now that you've set up an ID, you need to be able to link directly to it. You do that by
specifying the URL like you normally would, but you also include a pound sign followed
by the ID (#id) that you wish to link to. For example, to link to the definition of filet in the
definitions.html document, you'd use the following code:

Many times you may want to link to content within the same page. For example, you
may have a list of steps or rules that you want to provide details about further down in the
document. You can use the id attribute here as well. Another common use of the id attribute

http://www.mywebsite/definitions.html#filet

CHAPTER 6 LINKING TO THE WEB

is to make top and bottom links on the document when the document is extremely long.
Listing 6-4 shows you how to use a link to allow users to quickly jump to the top of the
document once they scroll down to the bottom.

Listing 6-4. Using the id Attribute to Link to an Internal Document

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Using IDs Within the Same Doc</title>
</head>
<body>
<p>

</p>
<p>
Return to top
</p>
</body>
</html>

This code isn’t complete. We tried to conserve space and showed you where there
would be alot more content within the document. When users click on the link Return to
top, the browser finds the ID top and returns users to the top of the page.

Adding CSS to the Anchor Tag

In keeping with the theme of showing a little CSS with each chapter, this section shows
you a couple of common CSS techniques developers often use to keep a particular color
scheme or theme for their website. By default, the browser underlines your links and
makes them specific colors so they stand out to users. However, the default colors may not
fit in well with your visual layout. You can change the look of the link by using CSS to
change the <a> tag, as Listing 6-5 shows.

14

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

142

CHAPTER 6 LINKING TO THE WEB

Listing 6-5. Using CSS with the Anchor Tag

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<style type="text/css">
a:link { color: red; text-decoration: none }
a:visited { color: green; text-decoration: none}
a:hover {color: blue; text-decoration: underlined}
a:active {color: black; text-decoration: none}
a:focus {color: yellow; text-decoration: underlined}
</style>
<title>Using CSS with Anchors</title>
</head>
<body>
<p>
Send Feedback
</p>
</body>
</html>

In this code, you use CSS to apply specific styles to the different states available for a
link. This code uses a new concept called pseudo classes. You use pseudo classes in combi-
nation with a selector to apply a style to a specific condition or portion of an element. The
format of a pseudo class looks like this:

selector:pseudo-class {property: value}

When alink (1ink) has never been selected, it shows up with a text color of red. If a user
has already clicked on the link (visited), it shows up as green. As the user clicks (active)
on the link, it turns black, and when the user moves the mouse over the link (hover), it
turns blue. Lastly, this code adds a style for the focus pseudo class. When the user uses a
keyboard shortcut or tabs to the link, the link control gains focus, turns yellow, and becomes
underlined. When styling links, it is important to remember to use the focus pseudo class
for users who use alternative pointing devices or a keyboard. Figure 6-5 shows a link that
displays red text prior to a user clicking on it.

When the user hovers over the link, it turns blue and is underlined, as shown in
Figure 6-6.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
mailto:webmaster@mywebsite.com

CHAPTER 6 LINKING TO THE WEB 143

Send Feedback

Figure 6-5. The link prior to a user clicking on it

Send F eed%l:i'z)ick

Figure 6-6. The link turns blue when someone hovers over it.

Keep in mind that you can apply many different styles to the 1ink, visited, hover, and
active pseudo classes in order to provide a custom look and feel. The order in which you
apply the styles is important. An easy way to remember the order is with the saying LoVe
HAte: 1ink, visited, hover, and active.

You can use CSS to create some really cool effects. By using a background, a border, and
several other attributes, you can make a menu that changes colors as the user moves over
alink. Listing 6-6 builds on the original menu built back in Listing 6-2. By simply applying
anew style, you can completely change the look and feel.

Listing 6-6. Using CSS to Create a Changing Background Color

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<style type="text/css">
a {color: black;
font: 12px Arial,Helvetica,sans-serif;
text-decoration: none;
border: 2px solid black;
display: block;
width: 200px;
padding: 3px 10px;
background: #dcdcdc;}

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

144

CHAPTER 6 LINKING TO THE WEB

a:hover, a:active, a:focus {
background: #4169E1;
font-weight: bold;}
</style>
<title>Using Links - Changing Backgrounds</title>
</head>
<body>
<p>
Options:

Home

News

Menu

Locations
</p>
</body>
</html>

Figure 6-7 shows the much-improved version of the menu. By adjusting the styles, you
can dramatically change how the links are presented. Not only have you changed the
background color, but you've also changed the weight of the font to make the text stand
out for the selected link. Also, notice that you can add attributes to make the menu items
more usable for those users who aren’t using a mouse. The a:active and a: focus attributes
now provide the same functionality as when using a mouse. As users tab through the
controls using their keyboard, it is obvious which menu item has focus.

Options:

| MNews |

| Ilenu |

| Locations |

Figure 6-7. The much-improved menu

Back when we discussed how to use the tag within the anchor, we mentioned that
there is a better way to do the same thing with CSS. Listing 6-7 is similar to Listing 6-6,
exceptinstead of changing the background color, you're changing the background image.
This provides for some professional-looking buttons, as Figure 6-8 shows. The bold code

CHAPTER 6 LINKING TO THE WEB 145

in Listing 6-7 shows the differences from the previous version. Here you remove the back-
ground color, adjust the height and width to match the bitmaps, adjust the padding, and
supply the images to the background- image attribute.

Listing 6-7. Using CSS to Create Professional-Looking Buttons

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<style type="text/css">
a {color: black;
font: 12px Arial,Helvetica,sans-serif;
text-decoration: none;
display: block;
width: 200px;
height: 22px;
padding-top:8px;
text-align:center;
background-image: url('btnOn.gif');}
a:hover {
background-image:url('btnoff.gif');
font-weight: bold;}
</style>
<title>Using Links with Background Images</title>
</head>
<body>
<p>
Options:
Home

News

Menu

Locations
</p>
</body>
</html>

Listing 6-7 provides for some professional-looking buttons, as Figure 6-8 shows.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

146

CHAPTER 6 LINKING TO THE WEB

>

Options:

MNews

w/ W W

Menu

Locations)

B A A A

v

Figure 6-8. Using the background-image attribute to create rollover buttons

This code is pretty cool and simple. You can find many different websites that provide
free buttons or the ability to generate bitmaps for buttons. A couple of good places to start
are http://www.freebuttons.comand http://www.netdenizen.com/buttonmill.

Creating Image Maps

An image map allows you to break an image into specific regions that can be used as links
within the same document or to other documents. When users move their cursor over a
part of an image that has a hotspot, the cursor changes to indicate it’s a link, and the alt
attribute is displayed. Image maps have specific locations and allow for the selection of a
state. They then link to a document based on the selection.

Image maps are not commonly used, because they tend to embed behavior and layout
information within a document, and their functionality is not always intuitive to the readers
of your document. When using image maps, you need to be careful that your interface is
intuitive to users. If it isn’t, they won’t have any idea that the links exist. Some documents
even add a small instruction above or below the image indicating what to do.

To use an image map, start by having an image that you wish to add hotspots to and a
map that specifies the required links and coordinates. Figure 6-9 shows a circle and a square.
In the “Usage” section, you’ll learn how to use an image map to let the user decide whether
they want a round or square pizza.

Using an image map requires the use of two new tags: <map> and <area>. The <map> tag
is used as a container to a list of <area> tags. You can put as many <area> tags within a
<map> tag as you need. Some of the more complicated maps can contain a hundred or
more <area> tags.

http://www.freebuttons.com
http://www.netdenizen.com/buttonmill

CHAPTER 6 LINKING TO THE WEB 147

Figure 6-9. The image used for an image map

<map>
The <map> tag specifies a client-side image map with clickable regions.
Required Attributes

 id: Specifies a unique ID for the map element

Optional Attributes

* name: Specifies a unique name for the map element

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

148

CHAPTER 6 LINKING TO THE WEB

Event Attributes

* accesskey

e onblur

e onclick

e ondblclick
e onfocus
 onkeydown

» onkeypress
* onkeyup

e onmousedown
* onmousemove
e onmouseout
* onmouseover
* onmouseup

e tabindex

<area>

You use the area element to specify a region in an image map.

Required Attributes

e alt: Specifies the text to be used as an alternate for the area

Optional Attributes

e coords: Specifies the coordinates of the clickable area within a map. If the
shape attribute equals rect, then the format is left, top, right, and bottom. If
the shape attribute equals circ, then the format is center x, center y, and radius.
If the shape attribute equals poly, then the formatis x1, y1, x2,y2, ... xn, yn.

CHAPTER 6 LINKING TO THE WEB 149

e href: A URL that specifies the link of the area.
e nohref: Excludes an area from an image map using the values true and false.

* shape: Specifies the shape of an area. Valid values are circle, poly, and rect.

Standard Attributes

* accesskey

e class

e dir

e id

* lang

e style

e tabindex

e title

e xml:lang

Event Attributes
e onblur
e onclick
e ondblclick
* onfocus
* onkeydown
* onkeypress
* onkeyup
* onmousedown

® onmousemove

150

CHAPTER 6 LINKING TO THE WEB

e onmouseout

® onmouseover

¢ onmouseup

Tip The name attribute has been deprecated on the <ma p> tag in XHTML 1.0 and removed in subsequent
versions. However, browsers tend not to work well with maps that don’t have a name attribute, because the
browsers handle content as text/html unless overridden with content negotiation. Therefore, it's best to
continue to use the name attribute for the time being.

Usage

The best way to see how an image map works is to build one. Let’s start by creating the
map container within the body element and giving it the id of map. Later, when you want to
link the map to the image, you’ll use the value specified in the id attribute. Next, you need
to specify the actual hotspots using the area tag. You have two different links (round
pizza and square pizza), so you need to use two different area elements. When specifying
the square pizza, choose a shape of rect and specify its left, top, right, and bottom. When
specifying the round pizza, use a shape of circ, which requires a center point and a radius.
Also, notice that you provide an href that your application will navigate to should the user
click on the region as well as the alt text. In order to specify the coordinates, use an image-
editing program, such as Microsoft Paint, shown in Figure 6-10. Hover over the areas

indicated to get their coordinates. For the circle, you need to get the center point and
calculate the radius.

i imagemap2.GIF - Paint
File Edit View Image Colors Help

llllllllllllll
el o (i (R [

For Help, dick Help Topics on the Help Menu. 167,51

Figure 6-10. Determining the coordinates of an area

CHAPTER 6 LINKING TO THE WEB

Tip Many tools are available (some for free) that will aid in the generation of an image map. For example,
you can find one at http://www.kolchose.org/simon/ajaximagemapcreator/

Once you've defined the <map> and <area>s within your document, you need to hook
the map to the image you wish to apply it to. This is actually pretty simple. All you need to
do is use the usemap attribute within the tag and specify the id of the map you wish
to use. Listing 6-8 puts it all together.

Listing 6-8. Using an Image Map

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<style type="text/css">
img {border-style: none}
</style>
<title>Image Maps</title>
</head>
<body>
<p>
<map id="map" name="map">
<area shape="rect" href="square.html"
coords="20,27 97,76" alt="Order
Square Pizza" />
<area shape="circle" href="round.html"
coords="167,51 35" alt="Order
Round Pizza" />
</map>
<img usemap="#map" src="imagemap.gif"
alt="Choose square or round pizza! "/>
</p>
</body>
</html>

Figure 6-11 shows the image map in action. In this case, the cursor over the circle indi-
cates that the user wants to order a round pizza. Notice that the alt text is displayed, and
the pointer has changed to indicate a link is available. If a user clicks on it, the browser will
navigate to whatever link is specified.

151

http://www.kolchose.org/simon/ajaximagemapcreator
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

152

CHAPTER 6 LINKING TO THE WEB

Order Square Pizza

Figure 6-11. Hovering over an image map

An additional shape, poly, allows for the ultimate in flexibility. When using the poly
shape, you need to specify a space-delimited list of points that make up the outline of the
polygon. For example, this code shows how to make an oddly shaped polygon:

<area shape="poly" href="poly.html" coords=" ="140,210, 190,257, 140,305 110,260"

alt="A Polygon">

Tip When using an image map, you may want to also use CSS to specify that the image doesn’t have a
border. If you don’t, a blue border will be placed around the image.

Summary

This chapter has shown you how to create links using the anchor tag. You saw how to
create links to documents that are within the same site as well as to documents on other
sites. Next, you learned how you can use image maps to break an image into multiple
areas that you can use to link to multiple documents. Finally, you learned some of the
basics of styling your links to make them fit into a theme for an entire website or just to
have fun. When changing any styles related to the anchor tag, you should consider the
effects it will have from a usability point of view. Users are accustomed to the normal link
behavior, so any new behavior needs to be easy to follow and understand. In Chapter 7,
you'll learn how to store tabular data using tables.

CHAPTER 7

Using Tables

This chapter details the use of tables in your documents. Tables are useful when trying to
capture data that is tabular in nature—that is, data that is best kept in a table format or
within rows and columns. Tables are common within web documents, but they aren’t
always used in the correct fashion. The goal of this chapter is to show you how to use CSS
as much as possible to separate the look and feel of tables from the actual data within
them. CSS is mature enough that you can style tables exclusively with CSS, thus allowing
the separation you're striving to maintain.

The Basics of Tables

You can easily set up a basic table in your document. A table consists of three elements:
table, tr, and td. Listing 7-1 shows the code for a typical table.

Listing 7-1. Basic Tag Layout of a Table

<table>
<tr>
<td>Row 1 Cell 1</td>
<td>Row 1 Cell 2</td>
<td>Row 1 Cell 3</td>
</tr>
<tr>
<td>Row 2 Cell 1</td>
<td>Row 2 Cell 2</td>
<td>Row 2 Cell 3</td>
</tr>
</table>

153

154

CHAPTER 7 USING TABLES

Figure 7-1 shows what this basic table looks like within a visual web browser. You can
see that it creates a set of columns and rows, similar to a spreadsheet.

Row 1 Cell 1 Row 1 Cell2 Row 1 Cell 3
Row 2 Cell 1 Row 2 Cell 2 Row 2 Cell 3

Figure 7-1. A basic table within a web browser

The <table> tag marks the beginning and end of the table. The table element must be
within the body of the document. The <tr> tag set marks the beginning and end of a row
and is found within the table element. Lastly, the <td> tag set marks each cell within the
row. The content of the cell exists between the opening and closing <td> tags. You can
pretty much put any content you want in a cell—text, bitmaps, links, and other tables are
all possibilities. You can add as many rows and cells as you want within a table. Each cell,
as well as the table itself, can size itself automatically based on the data it contains.

When creating a large table, consider the rendering time. In other words, take into
account the time it takes to create the table and place it into the document and onto your
browser. In order for a table to size itself automatically, it must read all the data that goes
into the cells to determine how wide to make each cell. As you'll see later in the “<colgroup>"
section, you can provide the table with hints on how wide to make each column, thereby
speeding up the rendering process. The next few sections provide the attributes for the
basic tags used for creating tables.

<table>

The <table> tag set defines where a table starts and ends. You can place table headers,
rows, cells, and other tables within a table.

Required Attributes

The <table> tag doesn’t have any required attributes.

Optional Attributes
* border: Specifies the width of a table’s border in pixels.

* cellpadding: Specifies the amount of space between the cell walls and the content
in pixels or as a percent.

* cellspacing: Specifies the amount of space between cells in pixels or as a percent.

CHAPTER 7 USING TABLES

e frame: Specifies how the outer borders of a table should be displayed. You use this
attribute along with the border attribute. Possible values are above, below, border,
box, hsides, 1hs, rhs, void, and vsides.

e rules: Specifies the horizontal and vertical divider lines. You use this attribute along
with the border attribute. Possible values are all, cols, groups, none, and rows.

* summary: Specifies a summary of the tables for special browsers that provide speech-
synthesizing and nonvisual capabilities. If you need to use a table for layout purposes,
you shouldn’t use the summary attribute, as it will confuse the nonvisual browser user.

e width: Specifies the width of the table in pixels or as a percent. The use of the CSS
property width is the preferred method.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

Event Attributes
e onclick
e ondblclick
 onkeydown
« onkeypress
 onkeyup
« onmousedown

® onmousemove

155

156 CHAPTER 7 USING TABLES

e onmouseout
e onmouseover

¢ onmouseup

<tr>

The <tr> tag marks the start of a new row in a table.

Required Attributes

There are no required attributes for the <tr> tag.

Optional Attributes

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right. The use of the CSS property text-alignis the
preferred method.

e char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be adjusted
to the first character to align on. This requires the use of the align attribute with the
value set as char.

* valign: Specifies the text alignment in vertical cells. Possible values are baseline,
bottom, middle, and top.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

CHAPTER 7 USING TABLES 157

Event Attributes

» onclick

» ondblclick
 onkeydown

« onkeypress

 onkeyup

» onmousedown
* onmousemove
e onmouseout

* onmouseover

* onmouseup

<td>

The <td> tag marks the start of a new cell within a row in a table.

Required Attributes

No attributes are required for the <td> tag.

Optional Attributes

* abbr: Specifies a shortened version of the content in a cell. You use this optional
attribute to provide nonvisual browsers a shortened version of long content.

* align: Specifies the alignment of cell content. Possible values are center, char, justify,
left, and right. The use of the CSS property text-alignis the preferred method.

e axis: Places a cell into conceptual categories. These categories form an axis in an
n-dimensional space. User agents can then give users access to the categories.

* char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

158

CHAPTER 7 USING TABLES

e charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

* colspan: Specifies the number of columns this cell should occupy.
* rowspan: Indicates the number of rows this cell should occupy.

* scope: Specifies if a cell provides header information for the rest of the row that contains
it or for the rest of the column. Valid values are col, colgroup, row, and rowgroup.

* valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

Event Attributes
e onclick
e ondblclick
 onkeydown
» onkeypress
 onkeyup
e onmousedown

® onmousemove

CHAPTER 7 USING TABLES

e onmouseout
e onmouseover

* onmouseup

Coding a Basic Table

In keeping with the restaurant theme used throughout the book, the code in Listing 7-2
creates a table that contains price information for different pizzas.

Listing 7-2. The Code for a Basic Table

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>A Basic Table</title>
</head>
<body>
<table border="1" summary="Prices for types of pizza by size">
<tr>
<td scope="col">Pizza Type</td>
<td scope="col">Small</td>
<td scope="col">Medium</td>
<td scope="col">Large</td>
</tr>
<tr>
<td scope="row">Thin Crust</td>
<td>3.99</td>
<td>4.99</td>
<td>6.99</td>
</tr>
<tr>
<td scope="row">Deep Dish</td>
<td>4.99</td>
<td>6.99</td>
<td>8.99</td>
</tr>
<tr>

159

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

160

CHAPTER 7 USING TABLES

<td scope="row">Stuffed Crust</td>
<td>5.99</td>
<td>7.99</td>
<td>9.99</td>
</tr>
</table>
</body>
</html>

This table associates the prices of the pizzas with their type and size. You start with the
<table> tag, and then you use the <tr> tag to create rows. You create a row for each type
of pizza in the restaurant, and you create cells within each row to hold the different prices.
This table is a perfect way to store the tabular data.

You should also specify a summary property in the table element. The summary attribute
is one of several attributes that you'll see throughout this chapter that provide information
to nonvisual browsers. They allow these browsers to interpret a document properly. We
are introducing some the accessibility attributes early on to impress the importance of
considering nonvisual browsers when creating your documents. In this case, the summary
attribute describes what data is in the table. The summary attribute is not rendered for
visual browsers. The summary attribute really shines when you have a complex table that is
notobvious, but be careful to not overuse this attribute because it can lead to redundancy.

Also, notice that this table makes use of the scope attribute. The scope attribute is an
optional attribute that helps nonvisual browsers interpret the layout of the data within a
table. In this case, we specified that some of the <td> tags apply to the entire column. For
example, the text Smallis meant for the entire column it is in, and the prices below it are
for a small pizza. Along the same lines, we listed several different types of pizzas and spec-
ified the scope attribute as row, since each cell in the row represents the price for that type
of pizza. Figure 7-2 shows the results in a web browser.

Pizza Type |Small Medium Large
Thin Crust |3.99 |4.99 6.99
Deep Dish |4.99 |6.99 899
Stuffed Crust |5.99 |7.99 9.99

Figure 7-2. The pizza table displayed in a web browser

Notice that the table has set its own size for each cell and that each cell is left-aligned
by default. Later, you’ll learn how to change the cell alignment and set the width using
CSS. Wouldn't it be nice if you could put a title on the table so users know what it is? This
is where the caption element comes in.

CHAPTER 7 USING TABLES

<caption>

The <caption> tagis used to assign a title to a table. In a visual browser, it places a caption
or title above the table itself. It is not contained within a row or cell. You should place the
<caption> tag after the <table> tag. You can specify a single caption per table.

Required Attributes

The <caption> tag doesn’t have any required attributes.

Optional Attributes

There are no optional attributes for the <caption> tag.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

Event Attributes
e onclick
e ondblclick
 onkeydown
« onkeypress
 onkeyup
« onmousedown

® onmousemove

161

162 CHAPTER 7 USING TABLES

e onmouseout
e onmouseover

* onmouseup

Usage
In Listing 7-3, the bold code shows how to add a caption to the pizza table.

Listing 7-3. Adding a Caption to a Table

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>A Basic Table with Caption</title>
</head>
<body>
<table border="1" summary="Prices for types of pizza by size">
<caption>Our Pizza Selections</caption>
<tr>
<td scope="col">Pizza Type</td>
<td scope="col">Small</td>
<td scope="col">Medium</td>
<td scope="col">Large</td>
</tr>
<tr>
<td>Thin Crust</td>
<td>3.99</td>
<td>4.99</td>
<td>6.99</td>
</tr>
<tr>
<td>Deep Dish</td>
<td>4.99</td>
<td>6.99</td>
<td>8.99</td>
</tr>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 7 USING TABLES

<tr>
<td>Stuffed Crust</td>
<td>5.99</td>
<td>7.99</td>
<td>9.99</td>
</tr>
</table>
</body>
</html>

Figure 7-3 shows the result. Notice that the caption is displayed outside the table and
centered over the table.

Our Pizza Selections

Pizza Type |Small Medium Large
Thin Crust |3.99 |4.99 6.99
Deep Dish |4.99 |6.99 8.99
Stuffed Crust |5.99 |7.99 9.99

Figure 7-3. The pizza table displayed with a caption

<th>

Now let’s make one more change to the table by adding a header row. Sometimes you
want to mark cells in your table as being a header and not part of the data itself. You may
also want to consider using the abbr attribute to provide an abbreviated version of any
long headers. This provides nonvisual browsers a shorter alternative to use.

You can use the <th> tag in place of the <td> tag to mark a cell as a header. A header cell
is normally bold and centered within the cell for visual browsers.

Required Attributes

There are no required attributes for the <th> tag.

Optional Attributes
e abbr: Specifies a shortened version of the content in a cell as text.

* align: Specifies the alignment of cell content. Possible values are center, char,
justify, left, and right.

163

164

CHAPTER 7 USING TABLES

axis: Places a cell into conceptual categories, which form an axis in an n-dimensional
space. User agents can then give users access to the categories.

char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

colspan: Specifies the number of columns this cell should occupy as a number.

headers: Specifies a space-separated list of header cells that provide header infor-
mation for the current data cell. You must set the cell names by their ID. The
headers attribute helps nonvisual user agents render header information about
data cells.

rowspan: Indicates the number of rows this cell should occupy as a number.

scope: Specifies whether a cell provides header information for the rest of the row
that contains it or for the rest of the column. Valid values are col, colgroup, row, and
rowgroup.

valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

Standard Attributes

class
dir
id
lang
style
title

xml:lang

CHAPTER 7 USING TABLES 165

Event Attributes

» onclick

» ondblclick
 onkeydown

« onkeypress

 onkeyup

» onmousedown
* onmousemove
e onmouseout

* onmouseover
e onmouseup

Listing 7-4 shows how to use the <th> tag in the pizza-pricing table to mark the pizza
sizes as headers.

Listing 7-4. Adding a Header Cell to a Table

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Using the table header attribute</title>
</head>
<body>
<table border="1" summary="Prices for types of pizza by size">
<caption>Our Pizza Selections</caption>
<tr>
<th scope="col">Pizza Type</th>
<th scope="col">Small</th>
<th scope="col">Medium</th>
<th scope="col">Large</th>
</tr>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

166 CHAPTER 7 USING TABLES

<tr>
<td scope="row">Thin Crust</td>
<td>3.99</td>
<td>4.99</td>
<td>6.99</td>
</tr>
<tr>
<td scope="row">Deep Dish</td>
<td>4.99</td>
<td>6.99</td>
<td>8.99</td>
</tr>
<tr>
<td scope="row">Stuffed Crust</td>
<td>5.99</td>
<td>7.99</td>
<td>9.99</td>
</tr>
</table>
</body>
</html>

In Figure 7-4, you can see that the cells marked with the <th> tag really stand out as
headers, since they are bold and centered within their cells.

Our Pizza Selections

Pizza Type Small Medium Large
Thin Crust |3.99 |4.99 6.99
Deep Dish |4.99 |6.99 899
Stuffed Crust |5.99 |7.99 9.99

Figure 7-4. The pizza table displayed with headers

Advanced Use of Tables

The first part of this chapter introduced you to the basics of creating tables. This section
introduces you to some of the more advanced attributes, as well as a few more elements
that you can use within a table. First, we’ll cover the colspan and rowspan attributes (see
Listing 7-5). The colspan attribute allows you to merge multiple cells into one large cell.
You specify how many columns you want a single cell to occupy. The rowspan attribute
does the same thing but goes across multiple rows instead of cells.

CHAPTER 7 USING TABLES 167

Listing 7-5. Code for Adding rowspan and colspan to a Basic Table

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Using colspan and rowspan</title>
</head>
<body>
<table border="1" summary="Prices for types of pizza by size">
<caption>Our Pizza Selections</caption>
<tr>
<th rowspan="5" scope="row">Pizza
Type</th>
<th colspan="4" scope="col">Size</th>
</tr>
<tr>
<th></th>
<th scope="col">Small</th>
<th scope="col">Medium</th>
<th scope="col">Large</th>
</tr>
<tr>
<td scope="row">Thin Crust</td>
<td>3.99</td>
<td>4.99</td>
<td>6.99</td>
</tr>
<tr>
<td scope="row">Deep Dish</td>
<td>4.99</td>
<td>6.99</td>
<td>8.99</td>
</tr>
<tr>
<td>Stuffed Crust</td>
<td>5.99</td>
<td>7.99</td>
<td>9.99</td>
</tr>
</table>
</body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

168

CHAPTER 7 USING TABLES

Tip When you create a table that has an empty cell, you should consider placing a nonbreaking space
entity () in it as a placeholder for the data. If you don’t use the nonbreaking space entity, the table
won't display properly when using Windows Internet Explorer. It will be missing the cell border if you've set one.

Figure 7-5 displays the results of this code. Notice how much more effective the head-
ings are when you merge them using rowspan and colspan attributes. This makes the table
look better visually, but more importantly, the data is grouped properly within the document.

Our Pizza Selections
Size
. Small Medium Large
Pizza i Crust 3.99 499 [6.99
Type

DeepDish |4.99 |6.99 8.99
Stuffed Crust |5.99 |7.99 9.99

Figure 7-5. The pizza table displayed with descriptive headers

So far, you've seen the most common way to create a table, but you can also use the
thead, tfoot, and tbody elements to create rows and cells within a table. The order in
which these elements appear within a table element is important. They must appear in
this order: thead, tfoot, and tbody. These elements allow you to group together the
similar markup in your document and apply styles more easily to content within the
thead, tfoot, and tbody elements. However, this approach hasn’t caught on because of
the lack of compatibility amongst the browsers in the past and because of the wealth of
HTML from the past where people didn’t use these elements. However, this is starting to
change, and most modern browsers now work with these elements.

<tbody>

The <tbody> tag set defines where a table body starts and ends. It is contained within a
table element. The thead, tfoot, and tbody elements allow you to group rows within a
table easily.

Required Attributes

The <tbody> tag doesn’t have any required attributes.

Optional Attributes

Standard Attributes

CHAPTER 7 USING TABLES

align: Specifies the alignment of the text within a cell. Possible values are center,

char, justify, left, and right.

char: Specifies which character the text should be aligned on. This requires the use

of the align attribute with the value set as char.

charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute

with the value set as char.

valign: Specifies the vertical alignment of cell content. Possible values are baseline,

bottom, middle, and top.

class
dir
id
lang
style
title

xml:lang

Event Attributes

e onclick

ondblclick
onkeydown
onkeypress
onkeyup

onmousedown

169

170 CHAPTER 7 USING TABLES

e onmousemove
e onmouseout
e onmouseover

* onmouseup

<thead>

The <thead> tag set defines where a table header starts and ends. It is contained within a
table element. A standards-compliant browser repeats the headings at the top of each
page when printing on paper.

Required Attributes

There are no required attributes for the <thead> tag.

Optional Attributes

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

e char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

* valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

Standard Attributes
e class
e dir
e id
e lang

e style

CHAPTER 7 USING TABLES m

e title

e xml:lang

Event Attributes

» onclick

» ondblclick
 onkeydown

« onkeypress

 onkeyup

» onmousedown
* onmousemove
e onmouseout

* onmouseover

* onmouseup

Tip Internet Explorer doesn’t automatically display the content specified in the <thead> or <tfoot> on
each page when printing to paper. A workaround to this issue is to use CSS and set the table-header-group
and table-footer-group properties like this:

thead { display: table-header-group; }
tfoot { display: table-footer-group; }

<tfoot>
The <tfoot> tag set defines where a table footer starts and ends. It is contained within a

table element.

Required Attributes

There are no required attributes for the <tfoot> tag.

172

CHAPTER 7 USING TABLES

Optional Attributes

align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top

Standard Attributes

class
dir
id
lang
style
title

xml:lang

Event Attributes

e onclick

ondblclick
onkeydown
onkeypress
onkeyup

onmousedown

CHAPTER 7 USING TABLES

e onmousemove
e onmouseout
e onmouseover

* onmouseup

Usage

Listing 7-6 shows how the code from Listing 7-1 would look using this alternative style.

Listing 7-6. An Alternate Way to Create Rows and Cells Within a Table

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Using an alternate way to create a table</title>
</head>
<body>
<table border="1" summary="This table provides the pricing information
for pizzas">
<thead>
<tr>
<th>Pizza Type</th>
<th>Small</th>
<th>Medium</th>
<th>large</th>
</tr>
</thead>
<tfoot>
<tr>
<td scope="row"># Pieces</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
</tfoot>

173

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

174 CHAPTER 7 USING TABLES

<tbody>
<tr>
<td scope="row">Thin Crust</td>
<td>3.99</td>
<td>4.99</td>
<td>6.99</td>
</tr>
<tr>
<td scope="row">Deep Dish</td>
<td>4.99</td>
<td>6.99</td>
<td>8.99</td>
</tr>
<tr>
<td scope="row">Stuffed Crust</td>
<td>5.99</td>
<td>7.99</td>
<td>9.99</td>
</tr>
</tbody>
</table>
</body>
</html>

Figure 7-6 shows the result. Breaking up the table in this fashion allows you to easily
style the table by group using CSS. Notice that we’re still using the <th> tag. The thead
element is used to structurally group the elements only.

Pizza Type |Small Medium Large
Thin Crust |3.99 |4.99 6.99
Deep Dish |4.99 |6.99 899
Stuffed Crust |5.99 |7.99 9.99
Pieces 8 12 16

Figure 7-6. The pizza table displayed using thead, tbody, and tfoot elements

CHAPTER 7 USING TABLES

<colgroup>

We'll cover one last set of elements in this section. Previously, we mentioned that you can
provide hints to the browser about how you want it to display your document. Using the
colgroup and col elements allows you to be specific to help speed up the rendering. These
elements aren’t really used much in the real world but are presented here for completeness.

You use the colgroup element to define a group of <cols> tags. You should use the
element only within a table element. You use this element to group columns and to ease
styling with CSS.

Required Attributes

No attributes are required for the <colgroup> tag.

Optional Attributes

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

* char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

* span: Specifies the number of columns the <colgroup> should occupy.

» valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

e width: Specifies the width of the table in pixels or as a percent.

Standard Attributes
e class
e dir
e id

e lang

175

176 CHAPTER 7 USING TABLES

e style
e title

e xml:lang

Event Attributes
» onclick
» ondblclick
 onkeydown
« onkeypress
 onkeyup
» onmousedown
* onmousemove
e onmouseout
* onmouseover

* onmouseup

<col>

The <col> tag defines the attribute values for one or more columns in a table. You can use
the <col> tag to specify whatever attributes you want to be in common for each column.

Required Attributes

There are no required attributes for the <col> tag.

Optional Attributes

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

e char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

CHAPTER 7 USING TABLES

e charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

* span: Specifies the number of columns the <col> should occupy

» valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

e width: Specifies the width of the table in pixels or as a percentage.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

Event Attributes
» onclick
» ondblclick
 onkeydown
» onkeypress
« onkeyup
» onmousedown
* onmousemove
e onmouseout
* onmouseover

* onmouseup

177

178

CHAPTER 7 USING TABLES

Usage

Listing 7-7 shows the typical use of the colgroup and col elements.

Listing 7-7. The Basic Syntax of Using the colgroup and col Elements

<table>
<colgroup>
<col width="33"/>
<col width="33"/>
<col width="34"/>
</colgroup>
<tr>
<td>Row 1 Cell 1</td>
<td>Row 1 Cell 2</td>
<td>Row 1 Cell 3</td>
</tr>
<trs>
<td>Row 2 Cell 1</td>
<td>Row 2 Cell 2</td>
<td>Row 2 Cell 3</td>
</tr>
</table>

Typically, each <col> represents one cell within the table. Note that when you use a
span attribute, it applies to the number of cells identified by the span. Any attributes that
you set in the <col> will be the default throughout the table. You can also set attributes at
a higher level in the colgroup element.

Using CSS to Add Style to Your Tables

This section shows some of the basic ways you can style your tables in order to align the
text in a specific way, add colors, and change the border. You can use most of the CSS
functionalities to customize your tables to fit your needs.

Adding Borders

Up to this point, we cheated a little and placed some of the look and feel into the XHTML
document by using the border attribute of the table element. Here we’ll go back and show
you the proper way of using CSS to style your border (see Listing 7-8).

CHAPTER 7

Listing 7-8. Adding a Border Using CSS

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Using CSS for Borders</title>
<style type="text/css">
td, th {border-style: groove;}
table {border-style: groove;}
</style>
</head>
<body>
<table summary="Prices for types of pizza by size">
<thead>
<tr>
<th scope="col">Pizza Type</th>
<th scope="col">Small</th>
<th scope="col">Medium</th>
<th scope="col">Large</th>
</tr>
</thead>
<tbody>
<tr>
<td scope="row">Thin Crust</td>
<td>3.99</td>
<td>4.99</td>
<td>6.99</td>
</tr>
<tr>
<td scope="row">Deep Dish</td>
<td>4.99</td>
<td>6.99</td>
<td>8.99</td>
</tr>
<tr>
<td scope="row">Stuffed Crust</td>
<td>5.99</td>
<td>7.99</td>
<td>9.99</td>

USING TABLES

179

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

180

CHAPTER 7 USING TABLES

</tr>
</tbody>
</table>
</body>
</html>

Listing 7-8 removes the border attribute from the table element and adds a style to the
document for the table as well as each cell. You use the border-style property to change
the default to a grooved look, as Figure 7-7 shows. Many other styles are available from the
border-style property: none, hidden, dotted, dashed, solid, double, groove, ridge, inset,
and outset.

Pizza Type || Small| | Medium||Large
Thin Crust ||3.99 ||4.99 6.99
Deep Dish ||4.99 ||6.99 8.99
Stuffed Crust| |5.99 ||7.99 9.99

Figure 7-7. Using CSS to specify the border

CSS gives you complete control over how the border is rendered in the browser. You
can also select the color and width of the table’s appearance using the following CSS in
place of the bold code shown in Listing 7-8:

<style type="text/css">
td {border:2px solid red;}
table {border:2px solid red;}
</style>

This code uses a shortcut property to set several properties (the border size, style, and
color) at one time. You can review Appendix D to see more of the properties that are avail-
able under CSS.

Aligning Text in a Table

Up to this point, we’ve used the default style for all the text. Of course, you can use the
text-align propertyin CSS to align a cell in the following ways: left, right, center, and
justify. In the sample pizza table, it would be nice to right-align the prices and left-align
the descriptions of the pizzas (as they are by default). You can do this using the bold code

CHAPTER 7 USING TABLES

in Listing 7-9. You can pretty much use any of the CSS text properties to decorate your text
to change the color, font, direction, and many other attributes.

Listing 7-9. Text Alignment Within a Table

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Adding Text Alignment</title>
<style type="text/css">
td {border:1px solid black;}
table {border:1px solid black;}
td.number{text-align: right;color: blue;}
td.text{text-align: left;}
</style>
</head>
<body>
<table summary="This table provides the pricing information for pizzas">
<caption>Our Pizza Selections</caption>
<thead>
<tr>
<th scope="col">Pizza Type</th>
<th scope="col">Small</th>
<th scope="col">Medium</th>
<th scope="col">Large</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text" scope="row">Thin Crust</td>
<td class="number">3.99</td>
<td class="number">4.99</td>
<td class="number">6.99</td>
</tr>
<tr>
<td class="text" scope="row">Deep Dish</td>
<td class="number">4.99</td>
<td class="number">6.99</td>
<td class="number">8.99</td>
</tr>

181

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

182 CHAPTER 7 USING TABLES

<tr>
<td class="text" scope="row">Stuffed Crust</td>
<td class="number">5.99</td>
<td class="number">7.99</td>
<td class="number">9.99</td>

</tr>

</tbody>
</table>
</body>
</html>

Figure 7-8 shows the table with the numbers properly aligned. The color property sets
the text color to red in order to make the price stand out from the table.

Our Pizza Selections

Pizza Type Small Medium Large
Thin Crust 3.99 4.99|| 6.99
Deep Dish || 4.99 6.99|| 8.99
Stuffed Crust|| 5.99 7.99| 9.99

Figure 7-8. Using CSS to change the text alignment of the pizza table

Adding Padding to Cells

The pizza table as it stands now is a bit crowded; the cells and text are rather scrunched
together. You can use CSS to “pad” space on each of the sides around the text itself. The
shortcut property padding allows you to set each of the sides individually, or you can seta
single value for all the sides. You can set the padding to a specific value (in pixel, em, or ex
measurements) or as a percentage of the closest element. For example, Listing 7-10 shows
you how to set a padding of 10 pixels inside each cell.

Listing 7-10. Using CSS to Pad Each Side of a Cell the Same Amount

<style type="text/css">
td {border:1px solid black;}
table {border:1px solid black;}
td.number{text-align: right;color: blue;padding: 10px;}
td.text{text-align: left;padding: 10px;}
</style>

CHAPTER 7 USING TABLES

Listing 7-11 shows you how to set the padding of each side separately.

Listing 7-11. Using CSS to Pad Each Side of a Cell a Different Amount

<style type="text/css">
td {border:1px solid black;}
table {border:1px solid black;}
td.number{text-align: right;color: blue;padding: 2px,6px,2px,6px;}
td.text{text-align: left;padding: 2px,6px,2px,6px;}
</style>

You can use a single entry of the padding property and apply it to all four sides, or you
can apply individual entries to the top, right, bottom, and left. Figure 7-9 shows the effect

that the padding has on the table.

Our Pizza Selections

Pizza Type Small Medium Large

Thin Crust 3.99 4.99 || 6.99

Deep Dish 4.99 6.99 | 8.99

Stuffed Crust || 5.99 7.99 | 9.99

Figure 7-9. Using CSS to change the padding of the pizza table

Notice in Figure 7-9 that each cell in the table has its own border, making the table look
rather odd. You can use the CSS property border-collapse to control this, as Listing 7-12
shows.

Listing 7-12. Using the collapse Property to Merge Cell Borders

<style type="text/css">

td, th {border-style: groove;}

table {border-style: groove;border-collapse: collapse;}
</style>

The border-collapse property has two possible values: separate and collapse. Specifying
separate shows the border of each individual data cell, and specifying collapse allows
each data cell to share borders, as shown in Figure 7-10.

183

184 CHAPTER 7 USING TABLES

Our Pizza Selections
Pizza Type | Small Medium| Large
Thin Crust |3.99 |4.99 6.99
Deep Dish |4.99 |6.99 899
Stuffed Crust|5.99 |7.99 9.99

Figure 7-10. Using border-collapse to merge the borders in each cell

Adding Backgrounds to Tables

You can use CSS to change the background color of a table. One common and interesting
techniqueis to alternate between two different colors to provide a striped look reminiscent of
mainframe reports generated years ago (see Listing 7-13).

Listing 7-13. Using a CSS Background with a Table

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Using CSS for Backgrounds</title>
<style type="text/css">
td, th {border-style: groove;}
table {border-style: groove;border-collapse: collapse;}
tr.hlRow td, th {background-color: #eee;}
tr.regRow td {background-color: #fff;}
</style>
</head>
<body>
<table summary="This table provides the pricing information for pizzas">
<thead>
<tr class="hlRow">
<th scope="col">Pizza Type</th>
<th scope="col">Small</th>
<th scope="col">Medium</th>
<th scope="col">Large</th>
</tr>
</thead>
<tbody>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 7 USING TABLES

<tr class="regRow">
<td scope="row">Thin Crust</td>
<td>3.99</td>
<td>4.99</td>
<td>6.99</td>

</tr>

<tr class="hlRow">
<td scope="row">Deep Dish</td>
<td>4.99</td>
<td>6.99</td>
<td>8.99</td>

</tr>

<tr class="regRow">
<td scope="row">Stuffed Crust</td>
<td>5.99</td>
<td>7.99</td>
<td>9.99</td>

</tr>

</tbody>
</table>
</body>
</html>

Figure 7-11 shows the results of running Listing 7-13. Notice how every other row has a
different background color, making the table easier to read than if it were a single color.
Using CSS, you can define two classes: one for highlighted rows (h1Row) and one for normal
rows (regRow). In these classes, you define what color you want the background to be. Next,
you simply assign the class to each <tr>, as shown in the bold code in Listing 7-13.

Pizza Type | Small Medium| Large
Thin Crust |3.99 |4.99 6.99
DeepDish |4.99 |6.99 8.99
Stuffed Crust|5.99 |7.99 9.99

Figure 7-11. Using background-color to produce a striped table

Another common technique is to add a background image to a table. You can achieve
this using some of the CSS background attributes, as shown in Listing 7-14.

185

186

CHAPTER 7 USING TABLES

Listing 7-14. Using the Background Attributes

<style type="text/css">

td, th {border-style: groove;}

table {border-style: groove;border-collapse: collapse;}

table {background-image: url(pizza.gif);background-repeat repeat;}
</style>

Here you set the background of the table to the image called pizza.gif, which the table
will repeat to fill the background. It is also common to use the CSS background shortcut
property, which looks something like this:

table { background: #000000 url(pizza.gif) repeat fixed top;}

This accomplishes the same thing, but it allows you to set many attributes in one shot.
First, you choose the background color of the table, then the image you want (if any). You
choose whether you want the image to repeat, whether you want it to be fixed or scroll
with the rest of the page, and the starting position of the image. For more details on using
the background property, see Appendix D. When adding images to any background,
consider the readability. If the image is too dark or busy and the text color is dark, the data
within the table may become difficult to read.

Summary

This chapter has shown you how to create tables to hold tabular data. In the past and even
still today, it is common to see tables used as an aid in visual browsers when laying out
documents. This is not a good practice and should be avoided. Using CSS, in combination
with the div and span elements you saw in Chapter 4, is the preferred way to present your
documents. When using tables, be sure to keep accessibility in mind, and use the special
attributes to accommodate those using a nonvisual browser. In Chapter 11, you'll see how
you can create a layout for your document from scratch. But first, in the next chapter,
you'll learn to create your own forms that will allow users to enter their own data into your
documents.

CHAPTER 8

Building Forms

We’ve referred to the web as a conduit for the movement of information, distributing
ideas around the world to anyone who wants to find them. It’s this far-reaching scope and
wide-open range that makes the web so philosophically magnificent and fascinating. But
information doesn’t flow only downhill. Your visitors might arrive at your website to
passively absorb, but, if allowed, they can also participate in the exchange of information,
offering their own ideas and reactions.

But how can you receive such feedback from your visitors? The simplest, most common,
and perhaps most powerful means of moving ideas uphill onto the web is through a form.
In the analog world, a form is simply a printed document with predefined, labeled blanks
where people can write information. Forms standardize the formatting of data for easier
handling; when a clerk knows exactly where to look to find a customer’s name on a slip
of paper, it saves precious time and makes their job that much easier. But if you take this
concept a step further, a web form becomes more than just a stodgy way to force your
formatting expectations onto your visitors. Forms are the means by which an anonymous
user becomes an active participant.

If you've ever used a web search engine, made an online purchase, created a personal-
ized login to a website, or posted a comment to an online forum, you've already seen and
used web forms; the web simply wouldn’t be what it is without them. They’re ubiquitous
and a fundamental cornerstone of online living, so you’'ll inevitably need to include forms
in some of the pages you build. This chapter explores the XHTML elements you’ll need
to construct functional, usable, and accessible forms for your web pages, as well as a few
ways to use CSS to make your web forms visually appealing.

How Forms Work

Defined in simplest terms, a form is any section of a web page where a user can input
information (though sometimes form elements are used to display information rather
than collect it). Your visitors can enter text into blank fields, make choices by checking
boxes, select options from menus, and then click a button to send it all away for processing.
These interactive devices are called controls, and their contents are the controls’ values.

187

188

CHAPTER 8 BUILDING FORMS

To modify the value of a control, your visitor must first bring the control into focusso it
becomes active and primed to accept input. A control is usually given focus by clicking it
with a mouse or using the Tab key to move the cursor from one control to the next. Entering a
value requires typing text or performing some other deliberate action (clicking a mouse
button, pressing the Enter key, and so on). Your visitor can then shift their browser’s focus
to another control, enter another value, and continue in that fashion until all the controls
have been modified.

A form isn’t really complete until it’s submitted. The information that was entered will
be transmitted to the server in a form data set consisting of all the form controls and their
values. The job of processing the data set falls to a form handler: a script or program that
has been designed to interpret and utilize the submitted data. Many form handlers are
also designed to validate the entered values, making sure all the required information has
been entered and properly formatted.

Handling submitted form data is something entirely different; it involves complex
matters of scripting, programming, database design, and application design, and it can
even delve into issues of encryption, privacy, and security. Such advanced topics are well
beyond the scope of a book about front-end XHTML and CSS. Instead, the rest of this chapter
focuses on the markup you’ll need to be familiar with to assemble forms for display and use.

Caution The on-screen rendering of various form elements can be quite different between different
browsers and operating systems. Most of the images you’ll see throughout this chapter have been captured
using Firefox 2.0 for Macintosh 0S X. These same form elements might look different in another browser or
on another platform, so don’t be too surprised if what you see on your own computer isn’t the same as what
you see in this book. The actual functionality of all of these elements is identical in every browser, even if their
default appearance isn’t.

The Components of a Form

The entirety of a form is wrapped within a single form element that acts as a container for
the specialized elements that generate form controls. These controls are the text fields,
checkboxes, menus, and buttons your visitors will use to enter their information or make
their selections. When the form is submitted, all the values of its various controls are sent
as name/value pairs to a form handler as part of a data set. Therefore, each control must
carry a name attribute so it can be correctly paired with its value.

CHAPTER 8 BUILDING FORMS

form

Asthe name of the element implies, form defines the portion of an XHTML document that
can receive input from the user. This is a block-level element that acts as a container for
other specialized form elements, as well as any other elements needed to give the form
structure. But even though form is a block-level element, its contents must be held in block-
level containers of their own; like the body element, a form cannot have inline children. To
include multiple, separate forms within a single document, each must be contained by its
own form element—you can’t nest a form within a form.

The formelement requires an action attribute in its opening tag, whose value is the URL
of the form handler. That form handler may be a document or script elsewhere on the
website, a back-end application, or the very same document the form resides in if its data
will be handled exclusively on the client side by JavaScript or if the XHTML document has
been integrated with some kind of scripting language such as PHP, Ruby, ASP, or ASP.NET.

A method attribute is optional and can accept two values, get or post, to indicate the
particular HTTP method to use when the form is submitted. When the method value is get,
the submitted data set will be appended to the form handler’s URL (from the action
attribute) in a query string consisting of all the form’s name/value pairs. The form handler
can then interpret and process that URL, extracting values from the exposed query string.
Amethod of post sends the data set directly to the form handler application (notin a visible
URL query string) for processing at the server.

The get method should be used to request static data from the server for temporary use
(for example, searching the web for a definition of the word idempotent), especially when
the URL—including its query string—might be reused. The post method is most often used to
send data to the server where it will be saved for use in the future (for example, submitting
a comment to a weblog) or when a URL with a visible query string isn’t desirable for reasons
of security and privacy. The default form method is get, which will be assumed if the method
attribute isn’t included.

Note HTTP stands for HyperText Transfer Protocol, which is the set of program rules used for transferring
electronic data over the web. The two basic methods of HTTP are “get” to send data from a server to a client
and “post” to send data from a client to a server. Whenever you download something from a web server, be
it an XHTML document, a cascading style sheet, a video, an image, and so on, your web browser sends a
request to “get” that file. Many forms use the opposite “post” method, sending data from your browser to
the server.

Listing 8-1 shows the XHTML markup for a simple form, including the action and method
attributes in the opening <form> tag. This example contains two input elements (a text
field and a submit button) and a text label wrapped in a 1abel element. You'll learn more
about these elements later in this chapter.

189

190

CHAPTER 8 BUILDING FORMS

Listing 8-1. Simple Form with a Text Control and a Submit Button

<form method="post" action="/cgi-bin/formhandler.cgi">
<p><label for="email">Enter your E-mail address to subscribe w»
to our mailing list.</label></p>
<p><input type="text" name="email" id="email" />
<input type="submit" name="subscribe" value="Subscribe" /></p>
</form>

Figure 8-1 shows how this will appear in a visual web browser with default styling.

Enter your E-mail address to subscribe to our mailing list.

Subscribe

Figure 8-1. The same simple form as it appears in Firefox for Mac OS X. The button may look
different in another browser, but it always works the same way.

Tip The label element is extremely important in forms. It provides a text label for an individual form
control that can be read by assistive technologies to improve the form’s accessibility. You’ll learn about it in
detail later in this chapter.

Required Attributes

e action: Specifies the URL of the form handler, which is the script or application that
will process the submitted form data

Optional Attributes

* accept: Includes a comma-separated list of accepted file MIME types when files are
being posted through the form (via an input type="file" control).

* accept-charset: Specifies the accepted character encoding for data submitted
through the form. When this attribute is missing, the accepted character encoding
is assumed to be the same as that of the parent document.

CHAPTER 8 BUILDING FORMS 191

* enctype: Specifies the content type used to post the form. The default value for
this attribute is application/x-www-form-urlencoded, and a value of multipart/
form-data should be used if the submitted form will include files uploaded via an
input type="file" control.

e method: Specifies which HTTP method will be used to submit the form data, either
get or post.

Standard Attributes

e class
e dir

e id

e lang
* name
e style
e title

e xml:lang

input

Many common form controls can be created with the inline input element, and each type
ofinput control is defined with a corresponding type attribute. Because the input element
isinline, several can appear side by side, but all must be held in a block-level container
(remember that the form element cannot have inline children). The input element is also
an empty element, so it can hold no text content, can hold no other elements, and must
be closed with a trailing slash (/>). An input element is replaced by a functional form control
when a browser renders the document.

Required Attributes

* name: Identifies the control so it can be matched with its value when the form is
submitted. A markup validator may not generate an error if this attribute is missing,
but it’s required in order to successfully handle the form.

192

CHAPTER 8 BUILDING FORMS

Optional Attributes

alt: Specifies an alternative text description (only for input type="image").

accept: Includes acomma-separated list of accepted file MIME types (only for input
type="file").

accesskey: Assigns a keyboard shortcut to a control for easier and quicker access
through keyboard navigation. The value of this attribute is the character corresponding
to the access key. The exact keystroke combination needed to activate an access key
varies between browsers and operating systems.

checked="checked": When present, sets an initial checked state for checkboxes or
radio buttons (only for input type="checkbox" and input type="radio"). Remember
that all attributes must have a quoted value in XHTML, so it must appear as
checked="checked", as redundant as that seems.

disabled="disabled": When present, disables the control so it cannot receive focus
or be modified. The value of a disabled control is not submitted. Many visual browsers
will display disabled controls in a “grayed-out” style.

ismap="ismap": Declares that the control is a server-side image map (only for input
type="image").

maxlength: Specifies the maximum number of characters that can be entered in a
text field (only for input type="text" or input type="password").

readonly="readonly": Specifies that the control may only display a value and cannot
be modified. This differs from disabled in that a read-only control can still receive
focus and its value is still submitted with the form (only for input type="text" or
input type="password").

size: Specifies the width of a text, password, or file control when displayed (only for
input type="text", input type="password", or input type="file"). The value of
this attribute is a number of characters, so the actual rendered width will depend on
the font size. By default, most browsers will display text and password fields around
20 or 25 characters wide.

src: Specifies the source URL of an image file (only for input type="image").

tabindex: Specifies the control’s position in the tabbing order when active controls
are cycled through using the Tab key.

CHAPTER 8 BUILDING FORMS
* type: Specifies the type of form control the element will create. The default value
is text.
* usemap: Specifies the URL of a client-side image map (only for input type="image").

¢ value: Specifies the initial value of a control before it has been modified by the user.

Standard Attributes

e class

e dir

 id

* lang

e style

o title

e xml:lang

Note that many of the optional attributes available for the input element are specific
only to certain types of form inputs (as indicated by the type attribute). Next we’ll go
through each of the different input types in more detail, one by one.

input type="text"

This type of input element creates a single-line field in which your visitor can type what-
ever text you might require, such as a name, address, or short answer to a question. It
usually appears in visual browsers as a white, rectangular box with a slightly inset border.
These single-line text fields are best for very short bits of text, no more than a few words.
If the entered text exceeds the width of the field, the excess characters will run off to the
left of the control so the latter text is shown but the first portion appears truncated. Rest
assured that the complete text is still there; it’s just not all visible. Longer, multiline passages

of text can be entered into the specialized textarea element, covered later in this chapter.

Aninput type="text" element may carry an optional maxlength attribute, defining the
maximum number of characters (including spaces) that can be entered. Unfortunately,
web browsers offer no indication that a text field has a maximum allowed length; when
you reach the limit, it simply stops accepting anything you type. If you paste an overlong
string of text into a field with a maxlength attribute, the text will be truncated. If you need
to use amaxlength attribute on a text field (for example, a username field to log in to a

193

194

CHAPTER 8 BUILDING FORMS

system that allows usernames to be 12 characters long only), it’s helpful to indicate the
maximum length in a note near the form control.

An optional value attribute allows you to set the initial text of the field, which a user can
delete, modify, or leave alone, and the default value will be submitted with the form. It’s
primarily useful for automatically “prepopulating” forms with stored information that a
user can edit. Text fields that are meant to be blanks where new information can be entered
should, in fact, be blank when initially rendered.

Listing 8-2 shows the XHTML markup to create a text field control, including a maxlength
attribute and a note about the maximum allowed length. The field has been prepopulated
in this example using the value attribute.

Listing 8-2. A Text Field with a Prepopulated value Attribute

<p><label for="zip">Change your ZIP code (maximum 5 characters)</label>
<input type="text" id="zip" name="zip" size="5" maxlength="5" value="94710" /></p>

Figure 8-2 shows how this would look in a browser (again, this is Firefox 2.0 on Mac OSX;
other browsers might differ slightly).

Enter your ZIP code (maximum 5 characters) |94 710

Figure 8-2. The text field as it appears in a browser with default styling. The value of the value
attribute is displayed in the field when the page loads.

This example also has an optional (and presentational) size attribute, defining the
width of the field as a number of characters. By default, most browsers will display text
fields around 20 or 25 characters wide. You can also modify the width of a text field with
the CSS width property using any unit you like (ems, pixels, a percentage, and so on).

input type="password"

This control is similar to a text field; it’s a single-line field and will usually appear as a rect-
angular box with a white background and an inset border. But unlike a regular text field, a
password field obscures the entered text, usually as a series of asterisks (*) or solid dots.
This offers a bit of added security and privacy, preventing someone from peering over
your shoulder to sneak a peek at your secret password when you're logging into a secure
system. But this is very light security, protecting your password from a casual glance only.
A properly secured form should be encrypted when it’s submitted to the server; don’t
count on just visually obscuring passwords to keep a determined crook at bay.

CHAPTER 8 BUILDING FORMS

As with a text field, a password field can carry maxlength and size attributes. It also
accepts a value attribute, but it’s probably not a good idea to prepopulate a secure pass-
word, is it?

Listing 8-3 shows an input type="password" with a maxlength attribute. The maximum
length is noted in the control’s label.

Listing 8-3. A Password Form Control

<div>
<label for="password">
Enter your password (maximum 12 characters)
</label>
<input type="password" name="password" id="password" maxlength="12" />
</div>

Figure 8-3 shows how a graphical browser renders the markup, with the entered text
obscured as a string of asterisks—some browsers obscure passwords as dots instead.

Enter your password (maximum 12 cMrar:ters)l *********

Figure 8-3. Text entered into a password field is obscured to prevent sneaky onlookers from
reading it.

Note Encryptionis a means of mathematically scrambling data so that anyone who attempts to intercept
it will not be able to read or use the information. Unscrambling, or decrypting, encrypted data requires an
encryption key that should be extremely difficult to guess. Any sensitive information, such as passwords and
credit card numbers, sent over the web through a form should be encrypted to protect the security and privacy
of your users. Encryption is usually done on the server side and is much too complicated to be addressed in
detail in this book.

input type="checkbox"

A checkbox control is a choice toggle in the form of a small square filled with a check mark
(or sometimes an x) when the control is selected. Checkboxes are used when several options
are available and more than one can be selected, in the sense of “check all that apply.”
Each checkbox input may have a value attribute corresponding to whatever the selected
option is, and this value will be passed along behind the scenes when the form is submitted.
Without a specific value, all that will submit is the state of the box—a value of “on” if it’s
checked or nothing at all if it’s not checked (which is inferred to mean “oft”). In some cases,

195

196

CHAPTER 8 BUILDING FORMS

thisis enough information (when combined with the name or a unique id attribute for each
checkbox), so an explicit value attribute might not always be necessary.

Once checked, a checkbox can be unchecked by simply selecting it again. Furthermore,
it can be “prechecked” using the checked attribute. This attribute doesn’t carry a value; its
value is determined by the attribute’s very existence. If the attribute is present, the box is
checked; if it’s not present, then the box is not checked. In previous versions of HTML, the
checked attribute could be minimized, appearing with no value at all. However, all attributes
in XHTML must have a value, so checked should appear as checked="checked" to be valid;
attribute minimization is not allowed in XHTML. The value must match the attribute
name in this case—checked="yes" wouldn’t be correct.

Listing 8-4 shows an example of several checkbox input elements, one of which has
been checked by default. Theyall include a value attribute to pass along more information
than a simple “checked” or “unchecked” status would offer. These options are marked up
in an unordered list for added structure.

Listing 8-4. A Set of Multiple-Choice Options Using Checkbox Controls

<p>Choose your toppings:</p>

<1i>
<label for="top1">
<input type="checkbox" id="top1" name="top1" =
value="pepperoni" checked="checked" />
Pepperoni
</label>
</11>
<1i>
<label for="top2">
<input type="checkbox" id="top2" name="top2" value="xcheese" />
Extra cheese
</label>
</11>
<1i>
<label for="top3">
<input type="checkbox" id="top3" name="top3" value="onions" />
Onions
</label>
</11>
<1i>
<label for="top4">
<input type="checkbox" id="top4" name="top4" value="mushrooms" />
Mushrooms
</label>

CHAPTER 8 BUILDING FORMS

</1i>
<1li>
<label for="tops">
<input type="checkbox" id="top5" name="top5" value="olives" />
Olives
</label>
</1i>

You can see how this will appear in a browser in Figure 8-4. The default list item bullets
can be removed with CSS, as you learned in Chapter 4. Once again, this image is from
Firefox 2.0 on Mac OS X. Checkboxes will look different in other browsers.

Choose your toppings:

« [+ Pepperoni

« [Exmra cheese
« [Onions

« [~ Mushrooms
« [Olives

Figure 8-4. The list of checkboxes as it might appear in a browser with default styling

input type="radio"

A radio button control is somewhat like a checkbox, but only one option in a set can be
selected. Radio buttons get their name from the station preset buttons on old-fashioned
car radios; since you can listen to only one radio station at a time, pushing one button in
would cause the previous button to pop back out. The radio buttons in a web form work
the same way; selecting a button will automatically deselect whichever one in the list was
previously selected. Hence, radio buttons are ideal when you need to offer a multiple-choice
list of options where only one choice is allowed (unlike checkboxes, which allow several
choices). Once a radio button has been checked, it cannot be unchecked unless another
button in the set is checked in its stead. To define a set of radio buttons, each one must
share the same value of the name attribute.

As with checkboxes, each radio button control can carry a value attribute to pass along
additional information about the selected option, and in this case a value is strongly
recommended. In the absence of a value attribute, the submitted value would simply be
“on” without any other indication of which option was selected. Also like checkboxes, a
radio button can be preselected by including the checked="checked" attribute. However,
only one radio button in a set may be preselected.

Listing 8-5 shows a set of radio buttons, each with the same name attribute and with id
and value attributes to differentiate the options.

197

198

CHAPTER 8 BUILDING FORMS

Listing 8-5. A Set of Radio Buttons

<p>Choose the size of your pizza:</p>

<1i>
<label for="small">
<input type="radio" name="size" id="small" value="small" /> Small
</label>
</1i>
<1i>
<label for="medium">
<input type="radio" name="size" id="medium" value="medium" /> Medium
</label>
</1i>
<1i>
<label for="large">
<input type="radio" name="size" id="large" value="large" /> Large
</label>
</1i>

Figure 8-5 shows this set of radio buttons rendered in Firefox 2.0 for OS X. As with most
other form controls, radio buttons may appear different in other browsers. In this example,
one of the options has been selected, filling the circle with a solid dot. Changing the selec-
tion will automatically uncheck the previous choice.

Choose the size of your pizza:

e ¢ Small
e & Medium
e " Large

Figure 8-5. The set of radio buttons as it might be rendered in a visual browser, now with one
option selected

input type="file"

The file input type creates a special file upload control—usually consisting of a text field
alongside a “browse” button—allowing the user to locate a file on their computer’s hard
drive or local network, either by entering the exact file path in the text field or by clicking
the button to invoke their operating system’s built-in file browser. Once a user locates a
file by browsing for it, thelocal file path is displayed in the text field. As with other text fields,
an optional size attribute can specify the width of the file field as a number of characters.

CHAPTER 8 BUILDING FORMS

The chosen file will be uploaded to the web server when the form is posted. An input
type="file" control can include an optional accept attribute whose value is a comma-
separated list of the accepted file types (specified by their MIME types; see Appendix D for
the full list). If you're asking your users to upload an image, for example, the accept attribute
can limit accepted formats to only image types or can even restrict it to only GIFs and
PNGs; any other file type will be rejected. If your form includes file controls, you should
include an accept attribute in the opening <form> tag as well.

Listing 8-6 presents the markup for a file control, including an accept attribute that
limits uploaded files to GIF, JPEG, or PNG.

Listing 8-6. A file Control That Includes a size Attribute

<p>Upload a picture of your favorite pizzal</p>
<p><input type="file" size="40" accept="image/gif, image/jpeg, image/png" /></p>

Figure 8-6 shows how this looks in Firefox 2.0 for Mac OS X. A file has been selected by
browsing the local hard drive, and its path appears in the text field. Only the first portion
is visible because the full path is longer than what the text field can display.

Upload a picture of your favorite pizza!

I,sters,fcraig,fPiclures;iPholo Library/Originals /200 Browse... |

Figure 8-6. The file control as it appears in Firefox 2.0 for OS X

FILE CONTROLS IN SAFARI

Most visual web browsers display a file control as a text field with a button to its right, with the notable
exception of Apple’s Safari for Macintosh OS X. As you can see here, Safari doesn’t show a writable text
field, instead offering only the browse option with the button on the left side of the control (the button
reads Choose File rather than Browse as in most other browsers). To the right of the button, Safari displays
only the name of the selected file (once the file has been selected) instead of the full path. Along with the
file name, Safari will also display a small icon to indicate the type of file, if the type is known. As is usually the
case, the functionality of the control is identical even if its presentation isn’t.

Upload a picture of your favorite pizza!

/_Choose File_\ * pizza.jpg

199

200

CHAPTER 8 BUILDING FORMS

input type="submit"
Quite simply, an input type="submit" control creates a button that will submit the entire
form data set—all the data entered in the various controls—when clicked. The control’s
value attribute sets the text that will be displayed on the rendered button, which usually
defaults to “Submit” or “Submit Query” if a value attribute isn’t present. Once the button
is clicked and the form is submitted, the form handler (specified in the form element’s
action attribute) takes over to process the data.

You can see the XHTML markup for a simple login form with a submit button in
Listing 8-7. In this example, the value of “Log In” will appear on the rendered button
rather than the default text.

Listing 8-7. A Simple Login Form with a Submit Button

<p><label for="username">Your Username:</label>

<input type="text" id="username" name="username" /></p>
<p><label for="password">Your Password:</label>

<input type="password" id="password" name="password" /></p>
<p><input type="submit" name="login" value="Log In" /></p>

Figure 8-7 shows the rendered form, from Firefox 2 on Mac OS X once again; form
buttons will appear quite different in other browsers.

Your Username: |

Your Password: |

Log In |

Figure 8-7. The submit button’s default text is replaced by the text from the input’s value
attribute.

input type="reset"
This control resets the entire form, blanking out anything that has been entered and setting
all controls back to their initial values. Reset buttons were much more common in the
past, but a few years of practical usability testing has shown them to rarely be of much
value. It’s far too likely that a user will accidentally reset the form and irretrievably lose all
the information they’ve carefully entered—especially frustrating when there’s no mecha-
nism to undo such a mistake. These days reset buttons are generally discouraged; if you
decide to use them, do so with caution.

As with a submit button, the reset button’s value attribute determines the text that will
display, usually defaulting to “Reset” in the absence of a value attribute.

CHAPTER 8 BUILDING FORMS

input type="button"

Abutton control is just that: a generic button. It has no inherent function; it merely serves
as a clickable widget that can trigger a client-side script. The button’s text can be set via the
value attribute and will typically default to “Button” if no value is provided. Instead of
embedding these scripted buttons in your markup, it’s usually preferable to use client-
side JavaScript to generate the control. After all, the button won’t function without a
client-side script to imbue it with purpose, and a control that works only with a script
needn’t be displayed if the script isn’t available.

input type="image"

An image control behaves essentially like a submit button; activating the control will
submit the form. Butan input type="image" control allows you to substitute the standard
button with a more decorative graphic. As with other images in XHTML, an image control
requires a src attribute to specify the image file’s URL and an alt attribute to provide an
alternative text description when the image isn’t available (see Chapter 5 for more about
the alt attribute). Alternative text is especially vital for image form controls to ensure that
the form can be successfully completed, even when the image can’t be seen. Without a
useful alt attribute, people using text browsers or screen readers will have difficulty iden-
tifying the button, making it nearly impossible for them to submit the form. You wouldn’t
want to turn away a paying customer simply because they can’t see your Buy Now button,
would you?

When your visitor uses a mouse (or other pointing device) to click an image control, the
precise location of that click is included in the data set as X and Y coordinates (with the
control identified by its name attribute). A script or form handler can use this information
to determine exactly which part of the button was clicked and thus treat an image control
like an image map (which you learned about in Chapter 6), with different regions of the
button triggering different actions. However, since this requires the button to be clicked
by a pointing device, people using their keyboard to submit the form will be at a disadvan-
tage. It’s preferable to use separate, distinct submit or image controls to trigger those different
actions rather than a single image button.

You can see the markup to insert an image control in Listing 8-8 and the rendered result
in Figure 8-8.

Listing 8-8. Using input type="image" in Place of input type="submit"

<p><input type="image" name="post" src="post.png" alt="Post your comment" /></p>

Post Your Comment &

Figure 8-8. An image control inserts a graphical button that might be more (or sometimes
less) attractive than the standard button style.

201

202

CHAPTER 8 BUILDING FORMS

input type="hidden"

As you might suspect, a hidden input will not be displayed. It exists simply as a vehicle to
pass along extra data with the submitted form that a user needn’t see or modify—such as
an order number or internal tracking ID—via the element’s value attribute.

button

The button element works just like a submit, reset, or button input type, or even an input
type="image" control—activating a button element (with the click of a mouse or press of a
key) will submit or reset the form or trigger a scripted response.

The button elementis inline and requires a type attribute (with a value of submit, reset,
or button), and like other form controls, a button may appear only within a form. However,
unlike the input element, a button elementis not empty; it can contain text or other elements,
offering many more design and semantic options than a simple input element. In fact, a
button must hold some content, because an empty button element will have no default
label. Web developer Aaron Gustafson offers an informative overview of the button element’s
usefulness and flexibility in his article “Push My Button” (http://www.digital-web.com/
articles/push_my button/).

You can see an example of the button element in Listing 8-9, which includes a bit of
emphasized text and an image.

Listing 8-9. A button Element Containing Text and an Image

<div>
<button type="submit" name="continue">
Continue to the next page

</button>
</div>

When a browser renders this on-screen (as shown in Figure 8-9), the entire element
becomes an active push button to submit the form. By default, a button element will have
the same appearance as an input button but can be easily styled with CSS (whereas some
browsers such as Safari will not allow input buttons to be styled at all).

Continue to the next page D

Figure 8-9. The button as it appears in Firefox for OS X

http://www.digital-web.com/articles/push_my_button
http://www.digital-web.com/articles/push_my_button

CHAPTER 8 BUILDING FORMS 203

Required Attributes

* type: Specifies the type of button control the element will create—submit, reset,
or button

Optional Attributes

* accesskey: Assigns a keyboard shortcut to the control for easier and quicker access
through keyboard navigation. The value of this attribute is the character corresponding
to the access key. The exact keystroke combination needed to activate an access key
varies between browsers and operating systems.

e disabled="disabled": When present, disables the button so it cannot be activated.
Many browsers will display disabled controls in a “grayed-out” style.

* tabindex: Specifies the control’s position in the tabbing order when active controls
are cycled through using the Tab key.

¢ value: Specifies a value that may be passed along with the submitted form data.

Standard Attributes

e class
e dir

e id

e lang
* name
e style
e title

e xml:lang

select

The inline select element creates a selection control, which is a menu of options from
which to choose. The control either may be displayed as a single line that can “drop down”
and expand to show all the options or may occupy multiple lines as specified by the optional
size attribute. A single-line selection control, often called a drop-down menu, will show

204

CHAPTER 8 BUILDING FORMS

the selected option whenin its collapsed, inactive state, with a small arrow icon at its right
end as a visual cue that the control can be expanded. In graphical browsers, selections in
a multiline select are usually highlighted with a different background color.

A single-line selection control will allow only one option to be chosen. Adding the
attribute multiple="multiple" will automatically convert the select element to a multi-
line control and allow the user to choose more than one option by holding down the Shift,
Control, or Command key while making their choices. In the absence of a size attribute,
some browsers will expand the menu to show 10 or 20 options or to show all of them if
there are only a few. This is inconsistent and unreliable across various browsers, so you
should always include a size attribute when multiple selections are allowed.

When the form is submitted, the chosen option (or options) will be passed as the value
of the selection control. A name attribute is required for the select element in order to
identify it and to preserve the connection between the control and its value.

The display and behavior of a single-line selection control can be somewhat unpredict-
able, largely dependent on the browser and operating system. If the control appears near
the bottom of the screen, the menu will usually expand upward rather than downward to
prevent the expanded menu from extending past the lower edge of the computer screen.
A menu might expand in both directions if the selected option is near the middle of the list.
When expanded, a selection control will overlap other content on the page and can even
escape the boundaries of the browser window.

When the list of options is exceptionally long, a vertical scroll bar will appear in the
expanded menu, allowing the user to scroll up or down to see the entire list. The number
of items visible in the expanded list can change depending on the size of the screen or
browser window, automatically determined by the browser and operating system. A
multiline select element will display a vertical scroll bar if the number of options exceeds
the number of visible lines.

The width of a selection control is determined by the longest option in the list. The
element’s natural width can be modified with the CSS width property, and any text that
exceeds that width will appear truncated, but most browsers will automatically expand
the width of the opened menu. Ideally, each option in the list should have a short text label
of no more than a few words.

The select element is not empty, instead acting as a container for one or more option
or optgroup elements, which you’ll learn about next. The select element must contain at
least one option. Listing 8-10 shows a select element containing three options. Without a
multiple attribute, this control defaults to a single-line selection.

Listing 8-10. A select Element Containing Three option Elements

<select name="size">
<option>Small</option>
<option>Medium</option>
<option>Large</option>
</select>

CHAPTER 8 BUILDING FORMS

You can see what this control will look like in Figure 8-10, closed on the left and expanded
on the right. As with most other form controls, different browsers present the select
element in different styles (this is Firefox 2 for Mac OS X).

[Small -] Small
S
Medium
Large k

Figure 8-10. The same selection control in both inactive and active states

Adding amultiple="multiple" attribute, as in Listing 8-11, converts the control from
a single-line drop-down menu to a multiline box, allowing the user to choose more than
one option.

Listing 8-11. A select Element with a multiple Attribute

<select name="toppings" size="3" multiple="multiple">
<option>Extra cheese</option>
<option>Mushrooms</option>
<option>0lives</option>

</select>

Figure 8-11 shows the result: a scrolling box displaying the options. No scroll bar is
needed in this case because there are only three options, which is the same number of
lines specified in the size attribute.

Extra cheese
Mushrooms
Olives

Figure 8-11. The menu is automatically converted to a scrolling box when multiple selections
are allowed.

Required Attributes

* name: Identifies the control so that it can be associated with its value when the form
is submitted. A markup validator may not generate an error if this attribute is missing,
but it’s required to successfully handle the form.

205

206

CHAPTER 8 BUILDING FORMS

Optional Attributes

e disabled="disabled": When present, disables the control so it cannot receive focus.
The value of a disabled control is not submitted. Many visual browsers will display
disabled controls in a “grayed-out” style.

* multiple="multiple":Indicates that multiple options may be selected.

e tabindex: Specifies the control’s position in the tabbing order when active controls
are cycled through using the Tab key.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

option

Eachoptioninaselect elementis contained by an optionelement. It’'sanonempty element
(requiring a closing </option> tag) but can contain only a text label that will be displayed
in the select menu, with each option appearing on its own line within the menu. An option
element cannot contain any other elements, only text. That text content is also the value
that will be sent with the form unless a different value is specified in a value attribute.

An option can be preselected by including a selected attribute (whose value in XHTML
is also selected, as in selected="selected"). More than one option can be preselected in
this way, but only when the parent selection control has a multiple attribute.

The option elementsin Listing 8-12 have been given value attributes that will be submitted
in place of the element’s text content. This way a back-end system can receive whatever
cryptic values it has been programmed to handle while the user still sees sensible text
labels. The first option has an empty value attribute, since that option acts only as a label
for the control and should not be submitted with the form (it has also been preselected by
adding a selected attribute). A validation script could automatically detect that this control
was submitted with no value and reply with a message urging the user to make a selection.

CHAPTER 8

Listing 8-12. A select Element Containing option Elements

<select name="size">
<option value="" selected="selected">pick a size...</option>
<option value="1">Small</option>
<option value="2">Medium</option>
<option value="3">Large</option>
</select>

Required Attributes

No attributes are required for the option element.

Optional Attributes

BUILDING FORMS

e disabled="disabled": When present, disables the option so it cannot be selected.
Many browsers will display disabled options in a “grayed-out” style.

e label: Provides a shorter alternative text label, displayed in place of the element’s
contents to improve accessibility when the regular value is too verbose. Unfortunately,

this attribute isn’t widely supported by current browsers or assistive technologies.

e selected="selected": Indicates an initially selected option.

¢ value: Specifies a value that may be passed along with the submitted form data. If

no value attribute is present, the selected option element’s contents are passed as

the value of the selection control.

Standard Attributes

e class
e dir

e id

e lang
* name
e style
e title

e xml:lang

207

208

CHAPTER 8 BUILDING FORMS

optgroup

One or more option elements can be sorted into related sections or categories by wrap-
ping them in a containing optgroup element, so named because it’s a “group of options.”
An option group can contain only option elements; no other elements are allowed, and
you cannot nest an optgroup within an optgroup.

In visual browsers, the value of the required label attribute will be displayed as a title
at the top of the group with the options indented beneath it. All browsers display optgroup
labels in some distinctive fashion, but the exact style varies widely. Firefox and Internet
Explorer render them in a boldfaced and italicized font, while Safari renders them bold-
faced and in a gray color. Opera departs even further, displaying optgroup labels as white
text on a black background.

The optional disabled attribute will effectively disable the entire group, preventing the
user from selecting any of those options. The optgroup label itself is not a selectable option.

You can see an example of optgroup markup in Listing 8-13, which groups different
pizza toppings into logical categories. While the “Other” category is a group of one, this
is still perfectly logical and semantically correct in the context of the menu.

Listing 8-13. A select Element Containing Multiple Option Groups

<select name="extra">
<option value="" selected="selected">Choose one extra topping</option>
<optgroup label="Meat">
<option>Pepperoni</option>
<option>Sausage</option>
<option>Canadian Bacon</option>
<option>Anchovies</option>
</optgroup>
<optgroup label="Fruits/Veggies/Fungi">
<option>Onions</option>
<option>Peppers</option>
<option>0lives</option>
<option>Mushrooms</option>
<option>Pineapple</option>
</optgroup>
<optgroup label="Other">
<option>Extra cheese</option>
</optgroup>
</select>

Figure 8-12 shows the same selection control in two different browsers, Firefox and
Opera. You can see that it looks very different in each, but the functionality is the same.

:Choose one extra topping | ~

Choose one extra topping
Meat
Pepperoni
Sausage S
Canadian Bacon
Anchovies
Fruits/Veggies/Fungi
Onions
Peppers
Olives
Mushrooms
Pineapple
Other
Extra cheese

CHAPTER 8 BUILDING FORMS

Choose one extra topping | +
Choose one extra topping

Pepperoni
Sausage
Canadian Bacon k
Anchovies
Cnions
Peppers
Olives
Mushrooms
Pineapple
Other
Extra cheese

Figure 8-12. The control in Firefox 2 for Mac OS X (left) and Opera 9 for Mac OS X (right).
Although the labels appear very different, both browsers do make them clearly distinguishable
from the options beneath them.

Required Attributes

e label: Specifies a text label or title for the option group, usually displayed in some
distinctive style to set it apart from the selectable options

Optional Attributes

e disabled="disabled": When present, disables the entire group so none of its options
can be selected. Many visual browsers will display disabled options in a “grayed-

out” style.

Standard Attributes

e class
e dir

e id

e lang
* name
e style
e title

e xml:lang

209

210

CHAPTER 8 BUILDING FORMS

textarea

The textarea element creates a multiline field for entering passages of text too lengthy for
asingle-line text field (input type="text").Its size is defined by the required rows and cols
attributes, with the value of rows being the vertical number of text rows and cols being the
number of characters (or columns, which gives the attribute its shortened name, cols) on
a horizontal line. Since the size of the box is based on the size of the text, a larger or smaller
font size will obviously influence the dimensions of the textarea element. The text area’s
dimensions can be further modified by the CSS width and height properties, overriding
the rows and cols attributes. Vertical and horizontal scroll bars will appear if the amount
of text entered into a textarea exceeds what can fit within its given dimensions.

This is a nonempty element that requires a closing tag. It can contain only text, which
will be displayed as the control’s initial value, and a user can easily delete or edit that
initial text. Any initial text within a textarea element will be displayed with all white space
intact, including tabs and returns. If the element has no initial text content, the control will
be empty when a browser renders it.

By default, most visual browsers render the text within a text area in a monospace type-
face—one in which every character is the same width, such as Courier—but this can be
modified with CSS if you prefer (and you’ll learn how later in this chapter). Listing 8-14
shows a textarea element containing some text as its initial value.

Listing 8-14. A textarea Element Containing Initial Text

<textarea name="message" rows="6" cols="50">

Dear Mario and Luigi,

Your crust is divine, your sauce both sweet and spicy.

Your WiFi is strong and stable where the coffee shop's is dicey.
</textarea>

Figure 8-13 shows how thisisrendered. Some browsers will automatically reserve some
space for a scroll bar along the box’s right edge, though the box will not actually become
scrollable until it has been filled with enough text to warrant it. Once again, this is from
Firefox 2 for Mac OS X.

Dearest Mario and Luigi,

Your crust is divine, your sauce both sweet and
apicy.

Your wireless connection is stable where the coffee
shop's is dicey.

Figure 8-13. The textarea control as seen in a graphical browser. Note that the text within it
appears in a monospace typeface by default.

CHAPTER 8 BUILDING FORMS

Required Attributes

e cols: Specifies the number of characters to display on a single horizontal line, thus
defining the width of the rendered box. Text will automatically wrap to new lines as
needed or will invoke a horizontal scroll bar ifa longline of text doesn’t include word
spaces to facilitate wrapping.

* name: Identifies the control so that it can be associated with its value when the form
is submitted. A markup validator may not generate an error if this attribute is missing,
but it’s required in order to successfully handle the form.

* rows: Specifies the number of lines of text to display before scrolling vertically, thus
defining the height of the rendered box. The browser will automatically produce a
vertical scroll bar when the length of the text exceeds this given height.

Optional Attributes

* accesskey: Assigns a keyboard shortcut to the control for easier and quicker access
through keyboard navigation. The value of this attribute is the character corresponding
to the access key. The exact keystroke combination needed to activate an access key
varies between browsers and operating systems.

e disabled="disabled": When present, disables the control so that it cannot receive
focus and its value cannot be modified. Many browsers will display disabled controls in
a “grayed-out” state. The value of a disabled control is not submitted.

* readonly="readonly":Specifies that the control may only display a value and cannot be
modified. This differs from disabled in that a read-only control can still receive
focus and its value is still submitted with the form.

e tabindex: Specifies the control’s position in the tabbing order when active controls
are cycled through using the Tab key.

Standard Attributes
e class
e dir
e id
e lang

e style

212

CHAPTER 8 BUILDING FORMS

e title

e xml:lang

Structuring Forms

Now thatyou’ve been introduced to all the myriad of form controls you’'ll need, you might
be wondering just how to put them all together. Controls are merely component parts,
and the form in its entirety is more than the sum of its controls. A usable and accessible
form needs a meaningful structure, just as the rest of your document does. And because
the form element may contain almost any structural markup, you have a broad XHTML
arsenal at your disposal.

When you construct a form, as with any other content, you should think about the
meaning and purpose of the content and wrap it in the most semantically appropriate
tags. A list of options with checkboxes or radio buttons should probably be marked up as
alist and each option held in a separate list item (the 1i element). If the ordering of those
options is significant—option 1, option 2, option 3, and so on—the list should probably be
an ordered one (using the ol element). If your form is split into distinct sections, perhaps
each section could be wrapped in a div element with a heading (h1 through h6) as its title.
Ifeach control in that form represents a separate thought, it may be sensible to place them
in paragraphs (the p element).

With that in mind, remember that forms are not actually read like static content. They
exist to engage the user—to open the door and invite your visitors in. Think about the
meaning behind the information you're requesting of them, and consider the often-tedious
procedure of stepping through a series of controls and entering data into them. Arrange
and organize your form with an eye toward optimal usability and accessibility.

In addition to the headings, paragraphs, lists, and tables you already know, a few special
elements are specifically designed for use with forms.

fieldset

The block-level fieldset element encompasses a set of related controls, collecting them
into alogical group. The field set can in turn contain any other structural markup needed
to further arrange and support each control (paragraphs, lists, and so on), and even nested
fieldset elements to establish groups within groups (though nesting should be kept to a
minimum). By default, most visual web browsers will display a thin border around a field
set, though the exact appearance of the border will vary from browser to browser. We’ll
show you how you can remove this default border with CSS later in this chapter.

You'll recall that controls within a form element must appear within a block-level
container, since form cannot have inline children. The fieldset element is just such
a container, and it has more semantic value than the semantically neutral div element;

CHAPTER 8 BUILDING FORMS 213

if you're inclined to use a div to group controls, a fieldset might be a better choice. Consider
the meaning and purpose of the controls, and gather them into field sets appropriately.

A fieldset element must contain a legend element (covered in more detail next) to
provide a title for the set of fields.

Listing 8-15 demonstrates the markup for a simple form, much like the one you saw in
Listing 8-1 way back at the beginning of this chapter. This time, the two form controls have
been wrapped in a fieldset element to bind them together and establish their semantic
relationship.

Listing 8-15. A Simple Form with a Field Set Containing Two Controls

<form method="post" action="/cgi-bin/formhandler.cgi">
<fieldset>
<legend>Subscribe to our mailing list</legend>
<label for="email">Enter your E-mail address</label>
<input type="text" id="email" name="email" />
<input type="submit" name="subscribe" value="Subscribe" />
</fieldset>
</form>

You can see how this appears in a graphical browser in Figure 8-14. The border is auto-
matically drawn by the browser, along with a small amount of padding to create space
between the border and its contents. Both the border and padding can be adjusted with CSS.

’78ubscribc to our mailing list

Enter your E-mail address | Subscribe |

Figure 8-14. The form as it appears in Firefox for Mac OS X

Required Attributes

No attributes are required for the fieldset element.

Optional Attributes

The fieldset element doesn’t have any optional attributes.

Standard Attributes
e class

e dir

214 CHAPTER 8 BUILDING FORMS

* id

e lang
e style
e title

e xml:lang

legend

The legend element provides a text title or caption for a field set and hence may appear
only within a fieldset element. Legend text should be chosen with care and should be
succinct and descriptive. It’s an inline element that can contain only text and other inline
elements, but most browsers will position a legend so that it overlaps the field set’s top
border (as shown in Figure 8-15), deviating slightly from typical inline behavior.

Unfortunately, the legend elementis notoriously difficult to style consistently with CSS.
You might be able to alter its font family, size, weight, and color, but attempting to apply
a background, margins, and padding or to reposition the legend via CSS will be problematic
in some common browsers. As a general rule, it’s often best to allow browsers to render
field set legends in their own default styling and keep the CSS artistry to a minimum.

Listing 8-16 shows a field set featuring a legend element, in this case acting as both a
title to announce the purpose of the controls and some instructional text to help the visitor
figure out what to do. An accesskey attribute has also been added, creating a keyboard
shortcut to aid accessibility. Activating the access key will let a user jump directly to this
section of the web page without the need to scroll. Not all web browsers support access
keys inherently, and those that do might have very different implementations of the
functionality.

Listing 8-16. A legend Element Featuring an accesskey Attribute

<fieldset>
<legend accesskey="T">Choose additional toppings</legend>

<1i>
<label for="top1">
<input type="checkbox" id="top1" name="top1" value="peppers" />
Peppers
</label>
</1i>

CHAPTER 8 BUILDING FORMS

<label for="top2">
<input type="checkbox" id="top2" name="top2" value="xcheese" />
Extra cheese
</label>
</1i>

<label for="top3">
<input type="checkbox" id="top3" name="top3" value="mushrooms" />
Mushrooms
</label>
</1i>

<label for="top4">
<input type="checkbox" id="top4" name="top4" value="olives" />
Olives
</label>
</1i>

</fieldset>

Figure 8-15 illustrates how alegend is rendered in Firefox for Mac OS X, and most other
visual browsers will display it much like this. The text is vertically centered over the field
set’s top border and has a slight gap of white space on each side. One interesting oddity is
that Internet Explorer for Windows colors legend elements blue by default, but you can
alter this with CSS if you prefer.

— Choose additional toppings

e [Peppers

« [Exmra cheese
« [Onions

« [~ Mushrooms
« [~ Olives

Figure 8-15. The legend element as seen in Firefox with default styling. This rendering is fairly
typical, though you might see slight variations in some browsers.

Required Attributes

No attributes are required for the legend element.

215

216

CHAPTER 8 BUILDING FORMS

Optional Attributes

* accesskey: Assigns a keyboard shortcut to the element for easier and quicker access
through keyboard navigation. The value of this attribute is the character corresponding
to the access key, though the exact keystroke combination needed to activate an
access key varies between browsers and operating systems.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

label

Perhaps the most useful and meaningful element for structuring forms, the inline label
element creates a text label for a specific control. A label element may contain both the
control and its text label, in which case the connection between the two elements is implied
by context. Alternatively, the 1abel element may carry an optional for attribute whose
value corresponds to the control’s unique id, explicitly declaring the connection between
the two elements. The for attribute, though not technically required, is strongly recom-
mended. Even if the 1abel element encloses both the text and the control, the for and id
attributes reinforce the connection.

When alabel is properly associated with a control, many browsers will make the entire
label area clickable to give focus to the specified control (Safari and OmniWeb are the
most notable exceptions). This feature especially improves the usability of checkboxes
and radio buttons, because the text label enlarges the clickable area, and those controls
can present very small targets for a mouse pointer to land on. It’s possible for more than
one label to share the same for value, in which case all those labels are associated with the
same control and any of them will give focus to that control when clicked (except in Safari
or OmniWeb, of course).

When laying out a form, labels for text fields and selection menus typically appear
above or to the left of the control, while labels for checkboxes and radio buttons should

CHAPTER 8 BUILDING FORMS 217

appear to the control’s right. These aren’t rules dictated by web standards, just usability
conventions established over time.

Listing 8-17 expands the same mailing list subscription form, this time adding some
more structural markup. Options to choose either plain text or HTML e-mails appearin a
nested field set, since those controls are a subset of the complete set of controls. They’re
in an unordered list because it’s a list of two options in no particular order, so that markup
makes good sense. Labels have been added to identify the e-mail address text field as well
as the radio buttons for choosing a format, and all are explicitly connected to their controls
with for attributes. It might look like a lot of extra markup for such a simple form, but the
benefits gained in improved usability, accessibility, and meaningful structure are worth it.

Listing 8-17. A Form Structured with Field Sets and Labels

<form method="post" action="/cgi-bin/formhandler.cgi">
<fieldset>
<legend>Subscribe to our mailing list</legend>
<p>
<label for="email">Your E-mail address</label>
<input type="text" name="email" id="email" />
</p>
<fieldset>
<legend>Select your preferred format</legend>

<1i>
<label for="text">
<input type="radio" name="pref" value="text" id="text" /> Plain text
</label>
</1i>
<1i>
<label for="html">
<input type="radio" name="pref" value="html" id="html" /> HTML
</label>
</1i>

</fieldset>
<p><input type="submit" id="subscribe" value="Subscribe" /></p>
</fieldset>
</form>

You can see how this form looks in Figure 8-16. Alas, it’s not very pretty when rendered
with the browser’s default styles. But you have the power of CSS on your side, and you’ll
learn just a few ways to improve the looks of your forms in the next section.

218 CHAPTER 8 BUILDING FORMS

— Subscribe to our mailing list

Your E-mail address

Select your preferred format

e " Plain text
« " HTML

Subscribe |

Figure 8-16. The form isn’t the most attractive thing when rendered with a browser’s default
style sheet, but its markup is semantically sound and will be accessible to a wider range of
people and devices.

Required Attributes

No attributes are required for the label element.

Optional Attributes

e for: Explicitly associates the label with a single control when the attribute’s value
matches the control’s unique id

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

CHAPTER 8 BUILDING FORMS

INDICATING REQUIRED FIELDS

Not every control in every form is essential for the form’s completion. Some fields may be required while
others will be optional, so it’s polite and advisable to clearly indicate the difference. In the relatively short
life of the World Wide Web thus far, it has become a convention to indicate required fields with an
asterisk (*), a small graphical dot, or the word required next to the control.

In addition to an indicator of some sort, it's recommended that you include an informational statement to
introduce that notation to anyone who might not be familiar with it. A sentence such as “Required fields are
marked with *” at the beginning of the form will suffice. If a particular form has no optional fields, it could
become redundant to indicate every single control as required, so simply stating that “All fields are
required” might be preferable. An instructional statement probably isn’t necessary if required fields are
individually tagged with the word required.

Some web designers opt for indicating required fields with an italicized or boldfaced label, but this
cue is essentially visual and hence problematic for nonsighted users. If you choose to alter the presen-
tation of label text to indicate required fields, do so by wrapping the textin an em or strong element so
that even nonvisual devices can suitably emphasize it. If you use an image as a required field indicator,
adding alt="required" will assist nonsighted users. Don’t indicate required fields visually through
CSS alone; the indicator has real meaning and so belongs in the XHTML markup.

You shouldn’t indicate required fields purely through the use of color either; color-blind users might
be unable to distinguish them, and unsighted users will obviously run into problems. If you do use color
(in combination with some other cue), don't use red because a red label typically indicates an error.

Styling Forms with CSS

Aswe’ve said before, form controls will appear slightly different in just about every browser on
the planet. This is true partly because they're not strictly web elements; they’re basic elements
of any graphical user interface. Many web browsers that run on desktop computers don’t
possess any ingrained presentation logic for rendering form controls. Rather, they call
upon the local operating system to display those controls in whatever visual style is native
to that operating system.

Safari, OmniWeb, and Camino for Macintosh OS X all rely on that operating system’s
standard rendering of form controls, so buttons, checkboxes, and selection menus in
those browsers appear in glassy, candy-coated splendor. Internet Explorer is such a
deeply entrenched part of the Windows operating system that form controls will look
completely different under Windows XP than they do in the same browser running under
Windows Vista. Mozilla Firefox, a browser that is available for Windows, Macintosh, and
Linux, renders form controls in very different ways on each of those platforms. The same
is also true of Opera, another fine cross-platform browser.

219

220 CHAPTER 8 BUILDING FORMS

Figure 8-17 shows the same form in both Safari for Mac OS X and Internet Explorer 6 for
Windows XP. Compared to the images of Firefox you’'ve seen throughout this chapter, you
can see just how differently these controls are presented.

—Legend Legend
—_—— Text |a text field
Text atext field
™ checkbox 1 checkbox 1
1 checkbox 2 [checkbox 2
@ radio 1 @ radio 1
O radio 2 O radio 2
option 1 |+ option 1|+

Figure 8-17. A comparison of a text field, checkboxes, radio buttons, a selection menu, and a
submit button as rendered by two very different browsers, Safari on the left and Internet
Explorer on the right

In the end, web designers must accept the inescapable fact that forms will never look
the same in every browser. With that acceptance comes a Zen-like relinquishing of control. In
many cases, it's simply best to leave form controls alone and allow the browsers to display
them in whatever style they will. This is not to say that form controls can never be styled,
just that sometimes perhaps they shouldn’tbe.

A person who regularly uses a particular browser on a particular operating system tends to
grow accustomed to a consistent presentation of form-related interface elements. They’ll
become trained to recognize text fields, drop-down menus, and buttons in that familiar
style because they see them every day. Deviating too far from that norm—by making a
submit button look like a text link, for example—may simply breach your visitors’ expec-
tations and make the form more difficult to use (“I'm looking for the submit button, but
all I can find is a text link!”).

Despite these admonitions against overly styling form controls and despite warnings
that not all browsers will honor CSS applied to those controls, it’s still often possible to
affect their design. Many browsers do, in fact, allow extensive alteration of a form control’s
appearance; its coloring, typography, borders, and background can all be modified through
CSS. Browsers that don’t honor those style properties will simply display the control in its
default style. In the terms of modern best practices, this is known as graceful degradation:
devices that support the CSS will display the control as designed, while those that don’t
support the CSS ... won’t. The control still functions just as it should.

As arule of thumb, redesigning form controls should be kept to a minimum, and those
form controls should still look like what they are. A text field needs to look like a text field,
and a button should look like a button.

CHAPTER 8 BUILDING FORMS 221

Tip Roger Johansson has explored the rendering of form elements in a wide range of browsers on several
operating systems, including tests of how those browsers honor or disregard CSS rules applied to those
elements. See his article “Styling form controls with CSS, revisited” (http://www.456bereastreet.com/
archive/200701/styling_form_controls _with_css_revisited/)for more information, complete
with eye-opening demonstrations.

With all of that said, a web designer can easily, through artful application of CSS, influence
the overall layout and design of the form and the page in which it resides. The presentation of
the controls themselves may sometimes be beyond the designer’s reach, but the elements
around them are fair game for styling.

Removing the Border from Field Sets

The majority of graphical web browsers display a field set with a border and a bit of padding
by default. The border exists for a reason—to visually indicate the boundaries of the group—
but it’s not always a desirable part of a visual design. Luckily it’s easily removed with CSS,
as shown in Listing 8-18.

Listing 8-18. The border Property with a Value of none

fieldset {
border: none;

}

The none keyword instructs the browser to override any default or inherited values for
border color, width, or style. The border property is CSS shorthand, automatically applying
the same value to all four sides of an element without the need to call out each side indi-
vidually. There is also an equivalent padding shorthand property, shown in Listing 8-19,
affecting the padding on all four sides of a box with a single declaration.

Listing 8-19. The padding Property with a Value of 0

fieldset {
border: none;
padding: 0;

}

You can see the result in Figure 8-18. This is the same form you saw in Figure 8-16, only
now the field sets vanish into white space. Those elements still exist in the markup, bringing
all their semantic and accessibility benefits with them, but their presentation has been
altered to reduce visual clutter. The bullets have also been removed from the unordered

http://www.456bereastreet.com/archive/200701/styling_form_controls_with_css_revisited
http://www.456bereastreet.com/archive/200701/styling_form_controls_with_css_revisited

222 CHAPTER 8 BUILDING FORMS

list, as you learned about in Chapter 4, and the list items have been shifted to the left to
align with the other elements.

Subscribe to our mailing list

Your E-mail address

Select your preferred format
¢ Plain text
¢ HTML

Subscribe |

Figure 8-18. The form as it appears without borders or padding around the field sets

Aligning Labels

Being an inline element, a label will be only as wide as its text contents, and that text will
align to the left by default just as any ordinary text would. But what if your form has a stack
of several controls with labels of different widths? By default, it will look something like
Figure 8-19. Surely there must be some way to tidy this up.

Your name |
Your E-mail address |
Your telephone number |

Figure 8-19. Labels of different widths will be staggered.

Inline elements can be treated as block-level elements with the CSS declaration
display: block. However, that will also cause them to appear on their own line (as any
other block-level element would) rather than to the left of the control. If the label is also
floated to the left, the text field can then flow up onto the same line. It so happens that
any floated element is automatically treated as a block-level element, so the display: block
declaration isn’t even necessary in combination with float: left.

Once the labels have become floating blocks, giving each of them the same width will
push their related text fields to the right, aligning them in a neat column. The text will still
be aligned to the left of the label, resulting in varying gaps of white space between the
labels and their controls. You can align the text to the right instead, and a small margin will
put some distance between the labels and their controls. Listing 8-20 shows the final CSS
rule, converting all label elements within the element with the ID “info” (which might be
adiv, afieldset, or even the form itself) to floating blocks 200 pixels wide. The label text
is aligned to the right, and the margin creates some space between the label and its control.

CHAPTER 8 BUILDING FORMS

Listing 8-20. A CSS Rule Aligning the Labels in a Form

#info label {
float: left;
width: 200px;
text-align: right;
margin-right: 15px;

}

You can see the results in Figure 8-20, where the labels and text fields now align in two
neat columns.

Your name |
Your E-mail address |
Your telephone number |

Figure 8-20. The same form after the CSS is applied

Ifthatlayoutisn’t to your liking and you'd prefer the labels above the controls, a simple
display: block, asin Listing 8-21, does the trick. There’s no need for floats or widths;
simply treating the inline label element as if it were a block-level element will cause it to
appear on its own line. The element itself remains inline in nature (it can still only contain
text and inline elements), but a browser will render it otherwise.

Listing 8-21. A CSS Rule Treating All label Elements As Block-Level

label {
display: block;
}

Figure 8-21 shows the result.

Your name

Your E-mail address

Your telephone number

Figure 8-21. The labels are now treated as block-level, so each appears on its own line.

223

224

CHAPTER 8 BUILDING FORMS

Changing the Typeface in Form Controls

As you see in Figure 8-22, graphical browsers typically render text entered into a textarea
element in amonospace typeface, while textin an input or select elementis usually rendered
in a variable-width, sans-serif typeface. This is in spite of any base font family declared for
the rest of the document (as you learned to do in Chapter 4).

Your name |Meri Williams

Your E-mail address |he||o@meriwi|liams.com

What's this about? |I'm just saying "hello" =

Your message [Hi folks,

Just wanted to say I love the new
ebsite! Keep up the good work.

Send It! |

Figure 8-22. The label text is rendered in Trebuchet, as inherited from the body element. Text
in the text field, selection menu, and submit button is in another default typeface, and the
contents of the textarea are in yet another typeface.

To overcome the default typeface, the font-family property must be separately declared
for input, select, and textarea elements. However, if you'd like those elements to share
the same font family as the rest of your page, you needn’t re-declare the same font family
you applied to the body element. The key is the inherit value, as shown in Listing 8-22.

Listing 8-22. A Simple CSS Rule to Inherit font-family in Form Controls

input, select, textarea {
font-family: inherit;

}

When the inherit keyword is used as the value of any property, it instructs the browser
to use the same value that was applied to the element’s parent. Because the value of
font-family is automatically inherited by every other element except these form controls,
the browser will follow the document tree all the way up to the body element to determine
what value to apply, assuming no other ancestor along the way has been assigned a
different value.

This CSS rule also combines all three elements into a single selector, separated by
commas. Whenever the same set of declarations is meant to apply to several elements,
they can be merged into a single CSS rule to minimize redundancy and keep your style
sheet clean.

CHAPTER 8 BUILDING FORMS

Figure 8-23 shows the same form, now with a consistent font family in all the form
controls.

Your name - |Meri Williams

Your E-mail address |hello@meriwilliams.com

What's this about? |m just saying "hello” -

Your message |Hi folks,

Just wanted to say | love the new
website! Keep up the good work.

Send It! |

Figure 8-23. The controls now inherit their font family—Trebuchet in this case—from their
parent element.

Summary

Forms are avital and integral part of the World Wide Web. They open the flow of commu-
nication so information can move in both directions, from the website to the user and
from the user back to the website. They're also the transit system that makes Internet
commerce possible, which is essential to the success of many modern businesses. A form
in XHTML consists of a form element that may contain a wide range of controls, each with
a distinct purpose and function. The structure and utility of a form can and should be
enhanced by grouping controls into field sets and giving each control a clear label.

Although the components of a form are few and simple, constructing an attractive, usable,
accessible, and functional form can be challenging, especially if that form islong and complex.
But by putting yourself into your visitors’ shoes and thinking about the meaning and purpose
of your forms, you can assemble forms that will meet all of these goals. Usable forms improve
the interactive experience of using the web. Your visitors will appreciate it.

Different browsers running on different operating systems render form elements in
very different styles. Even so, the structural markup around those form controls can be
extensively styled with CSS. You can use CSS to influence the visual organization and
arrangement of your forms, making them more attractive for most of your visitors without
harming the underlying structure. You'll learn a lot more about using CSS to control and
enhance the visual layout of your web pages in the next chapter.

225

CHAPTER 9

Adding Style to Your
Documents: CSS

In Chapter 2 you were introduced to the basics of using CSS to style your documents. You
saw how to use internal and inline styles as well as how to use selectors. Throughout the
rest of the chapters you have seen some basic techniques on how to style the different
elements covered. This chapter will give you additional background on using CSS and
show you some additional styling techniques as well as how to handle the layout and
positioning of your elements. It is meant to introduce you to the basics in order to style
your own documents; to really dig into CSS and gain a thorough understanding of its
features, we recommend Beginning CSS Web Development by Simon Collison (Berkeley, CA:
Apress, 2006).

Using External Style Sheets

In Chapter 2 you saw how to add style sheets by using internal style sheets and inline
styles. The other technique is to use external style sheets. External style sheets allow you to
reuse the same style sheet for multiple documents or even multiple websites easily. You
add an external style sheet to your document with the link element, covered briefly in
Chapter 3. As you recall, the link element goes in the head section. The basic use of the
link element is as follows:

<link href="mycssfile.css" type="text/css" rel="stylesheet" />

You place the 1ink element within your document to point to a separate file that
provides the style. You can then use the file in many different documents to provide a
consistent look to a set of documents. Listing 9-1 shows the sample from Chapter 2 to
introduce CSS, but this time it uses an external style sheet.

227

228

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Listing 9-1. Using the link Element to Add an External Style Sheet

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>Chapter Ten, External Style Sheets</title>
<link href="mystyle.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p class="menu">It is easy to use XHTML</p>
<p class="mainContent">It is easy to use XHTML</p>
<p class="sideContent">It is easy to use XHTML</p>
</body>
</html>

Listing 9-1 shows what the document will look like; notice that there are no style defi-
nitions in it. It contains the 1ink element pointing to the external style sheet found in
Listing 9-2.

Listing 9-2. The External Style Sheet

p.menu {text-align:left;color:red;background-color:white;}
p.mainContent {text-align:center;color:black;background-color:white;}
p.sideContent {text-align:right;color:yellow;background-color:white;}

We saved the code in Listing 9-2 as a separate file in the same directory named myfile.css.
Figure 9-1 shows the document with the style sheet applied—wow, this looks the same as
Figure 2-2 shown in Chapter 2. The difference is we have removed the definitions of the
styles and placed them in an external file. This will allow us to easily change the styles of
many documents by simply changing the style sheet file.

Tip You can also use external sheets within an inline style element by using the @import statement.
The @import statement instructs the browser to load an extenal style sheet and apply its styles. The @import
statement, as shown here, should be the first statement in the style element:

<style>
@import "mystyle.css"
</style>
The style rules for an imported style sheet are applied before the internal style rules. You can also import more
than one style sheet, and the order matters in their precedence being applied.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS 229

It is easy to use XHTML

It is easy to use XHTML

Figure 9-1. The XHTML document with the external style sheet applied

Units of Measure

Before we jump into more features of CSS, we’ll cover an important concept—unit of
measure. CSS offers a variety of units of measure that you can use to specify the value
of CSS properties. Table 9-1 lists the most common units used in CSS.

Table 9-1. Units of Measure in CSS

Unit Description

% Percent.

cm Centimeter.

em One em is the same as the font size of the current element.
ex One ex is the x-height of a font.

in Inch.

mm Millimeter.

pc One pica is the same as 12 points.

pt One point is the same as 1/72 of an inch.

px One pixel represents a single dot on a computer display.

230

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

You also have several ways to specify colors in CSS. Table 9-2 lists the various ways to
specify color for those attributes that accept a color.

Table 9-2. Specifying Color in CSS

Unit Description
Color name A specific color name (blue).
#irrggBB A hexnumber representing the color (#0000ff); as a shortcut, you can also

use a three-digit version that will duplicate each digit. So for #0000, it
would be #00f. Each pair for red, green, and blue is duplicated, as you

can see.
rgb(r,g,b) Avalue specifying a portion of red, green, and blue (such as rgh(0,0,255)).
rgb(x%,g%,b%) A value specifying a portion of red, green, and blue as a percentage

(such as rgb(0%,0%,255%)).

Layout

One of the key roles of CSS is to manage the layout of documents by providing the ability
to position elements within a document precisely as needed. This in combination with

using external style sheets provides the ability to create many different looks for the same
document. This is often used when trying to display the same document on different devices.

Containers

As you have seen, many of the elements in XHTML are actually containers for other elements.
This same concept of containers is also prevalent in the application of CSS. Take a look at
the following code block:

<body>
<p>
Container #1

Pizza</1i>
Spaghetti</1i>
Cheese Sticks</1i>

</p>
<p>
Container #2
</p>
</body>

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS 231

Each indent in the code block represents an XHTML element, but it also is a container
where CSS can be applied. The outermost container shown is the body element, and the
innermost element is the 1i element. Using this sample block, you can also easily see the
parent-child relationship; the 1i element is the child of the ul element, which is the child
of the p element, and so on, until you get to the root body in this case. This concept plays a
key role in understanding the application of styles to containers. When a style is applied
to an element, most content that is contained within that element also inherits the style. Some
styles, however, are not inherited; for example, you must specifically set background- image for
each element. Also, if a style to make the text red was applied to the body element, every
element contained within the body element would also have red text. Of course, you can
always apply a style at a lower level that will supersede a style higher up the tree.

A container consists of several parts, as shown in Figure 9-2.

Border
Padding

<pP>

Figure 9-2. Containers in CSS

Margins

One of the more common elements of a container that is usually changed is the margin.
The margin defines the space that exists around the container. It is similar to setting a margin
in your favorite word processing program. You can set a different margin for each side of
a container with the margin-left, margin-right, margin-top, and margin-bottomattributes.
You can also use the shortcut margin attribute to set all the values with one attribute:

p {margin: 5cm 3cm 5cm 3cm}

The margin shortcut can be very complex since it allows you to pass a different number
of values. If you specify a single value, all four sides will be set to that single value. If you
specify two values, then the top and bottom will be set to the first value, and the second
value applies to the left and right sides. If you specify three values, they are applied as top
and left as the first and then the right and bottom as the second and third. If you specify
all four, they are applied as top, right, bottom, and left. One point to remember is that the
margin element is not considered when determining the overall size of the element.

Tip Sometimes it is clearer to simply provide all four values when using the margin attribute.

232

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Borders

A border is exactly what it sounds like—a visual border around the container that can be
styled. You can apply several different attributes to a border: width, style, and color. As
with the margin attribute, you can style each side of the border separately by adding the side
you want to change to the attribute. For example, to change the border width of the top of
the container, you can use the border-top-width attribute. (You can find a complete listing
of the available attributes in Appendix B.) Here we will use the shortcut attributes border-
width, border-style, and border-color to show their uses. The border-width attribute speci-
fies the width of the border in one of the numerical units or from a predetermined set of
values, as shown in Table 9-3. Unlike margin, the border-width attribute contributes to the
overall size of the element.

Table 9-3. border-width Values

Value Description

thin Specifies a thin border
medium Specifies a medium border
thick Specifies a thick border
Numeric value Allows you to specify a value

The border-style attribute allows you to make the border appear different visually.
Table 9-4 lists the possible values for the border-style attribute.

Table 9-4. border-style Values

Value Description

none No border is set.

hidden No border is set.

dashed Specifies a dashed border.

dotted Specifies a dotted border.

double Specifies a border consisting of two borders where the width is set as the
border width.

groove Specifies a 3D grooved border.

inset Specifies a 3D inset border.

outset Specifies a 3D outset border.

ridge Specifies a 3D ridged border.

solid Specifies a solid border.

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS 233

The border-color attribute allows you to specify the color of the border. You can use
any of the formats shown in Table 9-2 to specify the color.

Padding

Padding affects the space between the border and the contents of the container. By adding
padding, you allow space to be added between the actual content of the container and the
border. Adding padding is key to making your documents not look crowded. The padding
attribute works in the same way as the margin element.

p {padding: 5cm 3cm 5cm 3cm}

Listing 9-3 provides a sample of setting each of the attributes using the shortcuts. You
can change the values in order to try different combinations. The padding elements does,
however, contribute to the overall size of the element.

Listing 9-3. Appling Styles to a Container

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>Using Container Attributes</title>
<link href="sheetl.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p>
We offer the following toppings on our pizzas:
</p>
<p>
pepperoni, sausage,
ham, bacon, hamburger, green pepper,
onion, black olives, pineapple.
</p>
</body>
</html>

The file sheetl.css contains the following style:

p {border: thin outset gray;margin: 10px;padding: 1em;}

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

234 CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Figure 9-3 shows the results of applying the style.

We offer the following toppings on our pizzas:

pepperoni, sausage, ham, bacon, hamburger, green pepper, onion, pineapple, black olives

Figure 9-3. Containers styled with CSS

Container Sizing and Flow

In this section, we will cover how to set the size of a container. This is really the last piece
thatyou need in order to start doing more complicated layouts. You can use the width and
height attributes to set the dimension of a container. The width attribute is pretty self-
explanatory. However, the height attribute can be a bit tricky. By default, containers are
automatically created with the minimum height to contain all their data. If you specify a
height value, it makes the size of the container fixed, and the data can spill over. This can
generate some ugly results because the content can overwrite other content. You can
control this spillover using the overflow and clip properties. The overflow property allows
you to specify how you want any content that spills outside the container to be handled.
The overflow property is not inherited by default. Table 9-5 displays the possible values
for the overflow property.

Table 9-5. Values for the overflow Property Available in CSS

Value Description

auto Specifies that if the content spills over, the browser should display a scroll bar so
the user can see the rest of the content; otherwise, it will not display the scroll bars.

hidden Specifies that content will not be displayed outside the container; the browser
will not display a scroll bar.

scroll Specifies that content will not be displayed outside the container; the browser
will display a scroll bar so the user can see the rest of the content.

visible Specifies the content is allowed to spill over outside the element. This is the
default value.

By default the clipping region is set to be the size of the container. Any content that goes
outside this region will be treated based on the setting of the overflow property. You can

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

use the clip property to change the size of the clipping region; this is often used to make
the clipping region smaller.

p {clip: rect(top, right, bottom, left)}

You should not use the clip property for elements with an overflow property set to
visible. By setting the overflow property to visible, you are telling the browser you
always want the content to spill over. Listing 9-4 shows an example of setting the overflow
property. In this example, the width and height properties are intentionally being set so
that the content will exceed the size of the container. The overflow property has been set
to auto, so the scroll bars will appear and allow the user to see all the content as needed.

Listing 9-4. Using the width, height, and overflow Attributes

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>Using Container Attributes</title>
<link href="sheet2.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p class="menu">
We offer the following toppings on our pizzas:
</p>
<p class="top">
pepperoni, sausage, ham, bacon, hamburger, green pepper, onion, pineapple,
black olives
</p>
</body>
</html>

The file sheet2.css contains the following style:

p.menu {border: thin solid gray;margin: 10px;padding: 10px;}
p.top {width: 100px; height:100px;overflow: auto; border: thin solid gray;margin:
10px;padding: 10px;}

Asyou can see in Figure 9-4, the height of the container is automatically adjusted as the
width is decreased. The content is also adjusted and flows down automatically.

235

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

236 CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

We offer the following toppings on our pizzas:

. ~
pepperoni,
sausage,
ham, bacon,
hamburger,
green
DEDDEL, v

Figure 9-4. The height is automatically adjusted when the width is changed.

Positioning a Container

So far in this chapter we have spent a lot of time discussing containers, and this is where
you will put all the concepts together. Now that you understand how containers work and
how to style them, you need to learn how to position them in your document. CSS offers
five ways to position your containers: static, relative, absolute, fixed, and float.

Static Positioning

Static is the default positioning and is what you are already familiar with. Basically, the
elements within your document prior to the container are placed before the container,
and elements that are after the container within the document are placed following the
container.

Listing 9-5 shows an external style sheet that creates three boxes that are laid out using
the default static positioning, as shown in Figure 9-5.

Listing 9-5. The Default Positioning Is Static

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>Using Static Positioning</title>
<link href="static.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p class="red">
Container 1
</p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS 237

<p class="white">
Container 2
</p>
<p class="blue">
Container 3
</p>
</body>
</html>

The file static.css contains the following style:

p {border-width: thin;border-style: solid; height: 100px; width: 100px;text-align:
center}

p.red {background-color: red;}

p.white {background-color: white;}

p.blue {background-color: blue}

Container 2

Figure 9-5. Static positioning is the same as the default.

Relative Positioning

Relative positioning is similar to static positioning, except that relatively positioned
containers can be moved around from where they ordinarily would be. A relatively posi-
tioned container acts as part of the regular document flow. It takes up space and moves
otherneighboring containers as needed, just like all other statically positioned containers.
The difference is that it is positioned in a different place than expected, shifted in one or
more directions. Listing 9-6 uses relative positioning to stack the three boxes, as shown in
Figure 9-6.

238 CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Listing 9-6. Using Relative Positioning

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Using Relative Positioning</title>
<link href="relative.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p class="red">
Container 1
</p>
<p class="white">
Container 2
</p>
<p class="blue">
Container 3
</p>
</body>
</html>

The file relative.css contains the following style:

p {border-width: thin;border-style: solid; height: 100px; width: 100px;text-align:
center}

p.red {background-color: red; position: relative; left: 0;}

p.white {background-color: white; position: relative; top: -100px;left: 50px;}

p.blue {background-color: blue; position: relative; top: -200px;left: 100px;}

In this sample, we have taken the same three boxes and layout that were in the static
layout sample and used negative positions to stack them. The top property is a negative
value in order to raise the boxes in the document. The left property is positive in order to
spread them out across the document.

If you look closely, the only thing that changed in the actual XHTML markup was the
style sheet that was in the 1ink element. The point is by using external style sheets, you can
keep the same markup in your document and present it in different ways by simply changing
the style sheet.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

v

Figure 9-6. The three boxes are now stacked by using relative positioning.

Absolute Positioning

Absolute positioning allows complete control of the location. Instead of basing its location
on another element, you specify its precise position. Each container that is absolute is
independent of all the other containers. The element is located in the browser in a specified
distance from the left side and from the top of the screen. Listing 9-7 shows an example of
taking the same three boxes and lining them up across the document 50 pixels apart.

Listing 9-7. Using Absolute Positioning

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>Using Absolute Positioning</title>
<link href="absolute.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p style="background-color: red; position: absolute; top: 100px; left: 0;">
Container 1
</p>
<p style="background-color: white; position: absolute; top: 100px;
left: 150px;">
Container 2
</p>
<p style="background-color: blue; position: absolute; top: 100px;
left: 300px;">
Container 3
</p>
</body>
</html>

239

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

240

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

The file absolute.css contains the following style:

p {border-width: thin;border-style: solid; height: 100px; width: 100px;text-align:
center}

Notice that the top value is the same and only the left property is changing. Since the
boxes are all the same size, this will align them across the page, and the various values of
the left property will spread them out. The screen acts as a coordinate system, with the
upper-left corner starting top 0 and left 0. As you move across to the right, the left value
increases. As you move down, the top value increases. See Figure 9-7 for the sample in
action.

You will also notice that we have mixed the use of external style sheets and inline styles
to create this sample. This is perfectly legal and works, but whenever possible it is best to
keep the styles in an external sheet.

Container 2

Figure 9-7. The three boxes line up horizontally with absolute positioning.

Fixed Positioning

Elements that use fixed positioning are locked into their position within a browser even if
the user scrolls within the browser. Any other elements that are not fixed will scroll behind
the fixed elements. You can use this property to make report headings that stick when a
document is scrolled or to preserve a header in a table or a title at the top of a document.
Listing 9-8 uses the three familiar boxes but locks them in place; any content that is not
fixed will scroll behind them, as shown in Figure 9-8. Pretty cool!

Listing 9-8. Using the Fixed CSS Attribute

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS 24

<head>
<title>Using Fixed Positioning</title>
<link href="fixed.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p class="red">
Container 1
</p>
<p class="white">
Container 2
</p>
<p class="blue">
Container 3
</p>

. Add lots of content here

</body>
</html>

The file fixed.css contains the following style:

p {border-width: thin;border-style: solid; height: 100px; width: 100px;text-align:
center}

p.red {background-color: red; position: fixed; top: 0; left: 0}

p.white {background-color: white; position: fixed; top: 0; left: 150px}

p.blue {background-color: blue; position: fixed; top: 0; left: 300px}

Container 2
ontent

Figure 9-8. Using fixed positioning locks the container onto its location.

242

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Tip Although using fixed positioning sounds great, you should consider that fixed positioning has just been
recently supported in Internet Explorer 7. Therefore, fixed positioning will not work properly in previous versions of
Internet Explorer.

Float Positioning

The use of float positioning seems to be increasing. When you float an element, it becomes
a box that can be can be shifted to the left or right on the current line. The available values
for the float attribute are left, right, and none. A box that has been floated will shift in the
specified direction until its outer edge touches the containing block’s edge or the outer
edge of another float. The remaining content will flow down the opposite side of the box
that was floated and wrap around the floated element. However, the border, background
image, and background color will extend underneath the floated box.

Tip You should almost always set the width of a floated item. Failing to do so can have unpredictable
results. However, when working with images, you do not have to set a width since it is provided by the image itself.

Sometimes you might not want elements that are below a floated element to wrap
around it; you can use the clear property on the element following the floated element.
Listing 9-9 uses the familiar boxes and floats them to the right, as shown in Figure 9-9.

Listing 9-9. Using the CSS Float Attribute

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>Using Float Positioning</title>
<link href="float.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p class="red">
Container 1
</p>
<p class="white">
Container 2
</p>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

<p class="blue">
Container 3
</p>
</body>
</html>

The file float.css contains the following style:

p {border-width: thin;border-style: solid; height: 100px; width: 100px;text-align:
center;float: right;}

p.red {background-color: red;}

p.white {background-color: white;}

p.blue {background-color: blue;}

Container 2

Figure 9-9. Using float positioning puts all the boxes on the right side of the document.

If you want to learn more about using a float layout, you can visit http://webdesign.
about.com/od/advancedcss/a/aa010107.htm, which has a tutorial on using floats for
layout. We will visit floats again briefly in Chapter 11 where we will be using float posi-
tioning to build the sample website.

Setting the Order of Containers

In the relative positioning sample, we stacked the three boxes. However, in what order
should the browser stack them? By default when containers overlap, the browser always
puts the last box coded on top of the previous. That explains why the boxes were stacked
with each new box on top of the previous. This may not always be what you want. Using
the z-index property, you can completely control the order in which the containers are
displayed. The z-index property determines the stacking order of an element. A container
with a higher z-index property will always be displayed in front of another container with
alower z-index. Listing 9-10 will once again use the three squares, but the squares will be
stacked in the opposite order with the first one on top.

243

http://webdesign

244 CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Listing 9-10. Using the z-index Property

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>Using z-index</title>
<link href="z-order.css" type="text/css" rel="stylesheet" />
</head>
<body>
<p style="background-color: red; position: relative; left: 0;z-index: 10">
Container 1
</p>
<p style="background-color: white; position: relative; top: -100px;
left: 50px;z-index: 5">
Container 2
</p>
<p style="background-color: blue; position: relative; top: -200px;
left: 100px;z-index: 0">
Container 3
</p>
</body>
</html>

The file z-order.css contains the following style:

p {border-width: thin;border-style: solid; height: 100px; width: 100px;text-align:
center}

Figure 9-10 shows the result we wanted. By making the first container have the largest
z-index, itappears to be on the top of the stack. You can use any numeric values including
negatives to specify the z-index value.

>

v

Figure 9-10. Using z-index to set the order in which the boxes should appear

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Backgrounds

Adding a background to style your document can really dress it up and make it look profes-
sional. Table 9-6 lists the available properties when applying a background to a container.

Table 9-6. Background Properties Available in CSS

Property Description

background A shortgut property that allows the setting of all background
properties at once

background-attachment Specifies whether a background image is fixed or should scroll
with the rest of the document

background-color Specifies the background color of an element

background-image Specifies an image to be used as the background

background-position Specifies the starting position of a background image

background-repeat Specifies whether/how a background image will be repeated

If you simply want to add a background color to a container, you can use the
background-color property along with a color in one of the formats listed in Table 9-2.

p {background-color: #F5F5DC;

Sometimes you might want to add an image as a background. You can specify an image
to use with the background-image property. The background-image property accepts a URL
to the image you want to use:

body

{
background-image: url(pizza.jpg);

Here I am specifying that I want to use an image called pizza.jpg as my background for
my entire document since it is specified in the body element. If the image you are using is
small in size, you may want to repeat the image with the background-repeat property.
Table 9-7 lists the options available for the background-repeat property.

245

246

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Table 9-7. Values for the background-repeat Available in CSS

Value Description

no-repeat Specifies that the background image will be displayed only once

repeat Specifies that the background image will be repeated horizontally and vertically
repeat-x Specifies that the background image will be repeated horizontally

repeat-y Specifies that the background image will be repeated vertically

If we wanted to have the background displayed only one time, we merely need to add
the boldfaced code shown here:

body

{
background-image: url(pizza.jpg);
background-repeat: no-repeat;

The background-position property is pretty self-explanatory; it basically allows you to
provide the specific location of a background image. The last property, background-
attachment, provides an interesting effect. When set to the value fixed, any background
image will scroll with the document when the user scrolls. However, if it is set to scroll,
the image will remain constant in the background, and the document will scroll over it.

Tip Itis agood idea to set a background color even when you set a background image. If for some reason
an image is not found or not allowed, the document will still have some type of style that matches the rest of
the document.

Styling Text

Chapter 4 discussed some of the ways you can style text, and this section will expand on
some of the commonly used styles. Oftentimes you may want to underline text in your
document or provide some type of editing markup, and you can use the text-decoration
property for this:

p {text-decoration: underline}

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

This will take the text in each p element and underline the text. Table 9-8 provides a list
of the values for the text-decoration property.

Table 9-8. Values for the text-decoration Available in CSS

Value Description

blink Specifies text as blinking on and off
line-through Specifies that a line be drawn through the text
none Specifies normal text with no decoration
overline Specifies that a line be over the text

underline Specifies that a line be under the text

Another common property is the text-align property; as its name suggests, it allows
you to define how the text will be aligned within the container. Table 9-9 lists the possible
values.

Table 9-9. Values for the text-align Available in CSS

Value Description

center Specifies the text as being centered within the container
justify Specifies the text as being justified within the container
left Specifies the text as being left aligned within the container
right Specifies the text as being right aligned within the container

For example, if you wanted to center the text for all your top-level headings, you could
use the following style:

body {text-align: left}
hi {text-align: center}

This code will left align all the content in the body and center all the top-level headings.
Pretty simple! Using the text-indent property, you can specify how much you want the
firstline of text to be indented. Using this propertyyou can provide a common look to your
document. You can specify how much you want the text to be indented with either a specific
value or as a percentage of the parent.

Ifyou wanted to make sure all the paragraphs describing the entrees on the menu were
indented 12 pixels, you could use the style shown here:

p {text-indent: 12px}

247

248

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Chapter 4 talked a bit about trying to avoid using the b (bold) element within your docu-
ments. This is really a presentation request and should therefore be done using CSS and
not be part of the document. The font-weight property provides several weights you can
apply to a container. Table 9-10 lists the possible values.

Table 9-10. Values for the font-weight Available in CSS

Value Description

bold Specifies thick characters for text

bolder Specifies thicker characters for text

lighter Specifies lighter characters for text

normal Specifies normal characters for text

100-900 Specifies from thinner to thicker in increments of 100

You can use four standard weights as well as specifying a specific weight from 100-900
in increments of 100. Normal text has the value of 400, and boldfaced text is around 700, which
gives you anidea of what setting the other possible weights will do. To use font-weight, simply
apply the value to the property as follows:

p {font-weight: bold}

Along the same lines, if you wanted to style your text, you can use the font-style property.
Table 9-11 lists its values; the italic and normal values are the most commonly used, while
the oblique value is rarely used.

Table 9-11. Values for the font-style Available in CSS

Value Description

italic Specifies text to be displayed as italic

normal Specifies text to be displayed as a normal font

oblique Specifies text to be displayed as oblique (leaning slightly to the right)

The last text style we will cover, and probably the most commonly used, is the color
style. This one is really easy to use; you simply specify the color using one of the formats
found in Table 9-2:

p {color: red}

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

Media Types

Some CSS properties make sense only for specific media types. The volume property found
in the aural CSS implementation does not make sense to use when presenting a document
onthe screen or in print. Other times a property might make sense for different media types,
but you might want to use different values for each media type. You can use the @media rule
or the media attribute to specify different styles for different media types. Table 9-12lists all the
media types for which you can create specific styles.

Table 9-12. Media Types Available in CSS

Media Type Description

all Specifies all media type devices

aural Specifies media for speech systems

braille Specifies media for Braille-enabled devices

embossed Specifies media for Braille printers

handheld Specifies media for small or handheld devices

print Specifies media for printers

projection Specifies media for projected images and presentations
screen Specifies media for computer screens

tty Specifies media for fixed-pitch devices such as Teletypes and terminals
tv Specifies media for television devices

One common use for the @media rule is to specify different fonts between a screen
presentation and a printed document. Sometimes you may want to have specific elements
display on the screen and not on a printed version. An invoice application may display an
invoice on the screen along with different actionable buttons or links. When you print this
screen, you might not want to display these actionable buttons or links since the user cannot
use them on a printed page. You can achieve hiding these actionable items by using a style
sheet as well:

@media screen

{

p {font-family:verdana,sans-serif; font-size:14px}

}

249

250

CHAPTER 9 ADDING STYLE TO YOUR DOCUMENTS: CSS

@media print

{

p {font-family:times,serif; font-size:10px}
.hideprint {display:none}

}

In this style sheet we have selected a different font size for all text contained in a p element
within the document. We have also created a hideprint class; when this is applied to any
actionable button or link, the button/link will not be printed on the physical printed page
but yet will appear on the computer screen.

Compatibility

In this chapter we have treated CSS as a single entity. In reality, like all the other technol-
ogies presented in this book, there are several versions of CSS with varying degrees of
support among browsers. HTML and XHTML have gone through several versions and
many years of change, thus allowing the browsers to get pretty consistent in their imple-
mentations. CSS, on the other hand, is a bit more in the wild. There are several versions of
CSS that have varying degrees of adoption amongst the major browsers.

Appendix B lists the CSS attributes that are supported amongst the major browsers.
This is where things can get a little tricky—make sure that whatever attributes you are
using are supported by your target browser, or the user will not get the intended visual
representation. In addition, always test your documents on several of the major browsers
that are available. Although this might seem like a lot of work, it is the only way to be sure
that your document is presented exactly how you wanted.

Summary

Each chapter in this book has not only shown you a new topic in XHTML but has also
shown you some of the basic CSS styles that can be applied to it. This chapter has expanded
on some of the styles presented throughout the book; it also detailed how containers work
and how they can be used to handle layouts. This chapter has really only scratched the
surface of what CSS can do. To truly make a professional-looking document, we recom-
mend picking up Pro CSS and HTML Design Patterns by Michael Bowers (Berkeley, CA:
Apress, 2007) as well as visiting many of the great websites on the Internet. The next
chapter will cover the basics of client-side scripting. Client-side scripting will allow you to
make your documents more interactive.

CHAPTER 10

Client-Side Scripting Basics

In this chapter, you’ll learn the basics of using JavaScript with your documents. Scripting
provides a way to make your documents dynamic and respond to users’ actions.

What Is Scripting?

Scripting comes in several flavors when working with XHTML documents. You can use
scripting within the browser itself or on the hosting server. Scripting on the server generates
XHTML documents, sends e-mails, uploads files, and more. You typically use different
technologies such as Java, ASP.NET, PHP, ColdFusion, and Perl, to mention a few. This
chapter concentrates on scripting on the client within the browser itself. Only one tech-
nology for client-side scripting works across all major browsers: JavaScript.

JavaScript is actually a programming language that allows you to create mini programs
within your documents. These programs are interpreted at specific points within your
browsing session in order to react to selections, validate input, or make your document
more dynamic by changing colors or backgrounds of specific elements. One of the really
cool things you can do is combine JavaScript with CSS to produce some stunning visual
effects. Using JavaScript, you can validate the forms you created back in Chapter 8. By
using edits, you verify the validity of the data entered by users. The Internet offers a wealth
ofinformation on JavaScript and freely available scripts that let you do just about anything
you need.

Note Remember, JavaScript is not Java. Java is a full-fledged programming language that you can use
in a variety of ways. JavaScript is a scripting (not compiled) language you can use within a browser. The name
JavaScript takes advantage of the popularity of the programming language Java. This has caused some
confusion over the years with newbie programmers, to say the least.

251

252

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Placement of JavaScript

Back in Chapter 3, you learned about the script element. In Listing 10-1, you can see the
script element within the head section.

Listing 10-1. Placement of JavaScript in the head Section

<head>
<title>JavaScript Basics</title>
<script ype="text/javascript">
alert("This is a sample of inline Javascript");
</script>
</head>

You place most of your JavaScript between the script tags. In the “Handling Events”
section, you'll see where you must use small bits of JavaScript code outside of the script
element in order to hook into events. As with CSS, you can either place the code inline
between the <script> tags or in an external file, as shown in Listing 10-2.

Listing 10-2. Using an External File for JavaScript

<head>
<title>JavaScript Basics</title>
<script src="myscript.js" type="text/javascript">
</script>

</head>

The src attribute directs the browser where to look for the JavaScript file. You can use
both relative and absolute links in the src attribute, which allow you to reference scripts
within other directories. Oftentimes, you will have multiple files you want to include,
which you can do by using multiple <script> tag sets. You can also mix the use of external
and inline JavaScript by simply using multiple sets of <script> tags. However, external
files keep your document cleaner and make it easier to reuse your code in other documents.
The external file is simply a text file that contains any JavaScript you want to use in your
document. The common convention is to use the . js extension in the file name so that it’s
clear what type offile it is. Some authors also tend to place all their JavaScript files together
in a single directory on the web server.

Tip Using external JavaScript files is a good practice for several reasons. First, it allows you to keep your
document more pure by separating the document content from scripting. Second, it allows you to reuse a
script across multiple pages without having to repeat it within the document. Finally, it allows you to make
updates within the script file, which will be applied across all the documents that use the JavaScript file.

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

When using JavaScript, you must consider what will happen if a user’s browser doesn’t
support JavaScript or if the user has disabled JavaScript. XHTML provides the <noscript>
tag for this purpose. When a browser doesn’t support scripting and has a noscript element,
it will display whatever content is in the noscript element. If the browser does support
scripting, then it will disregard the content within the noscript element. You can place the
content of your scripts within an XHTML comment element, as shown in Listing 10-3.

Listing 10-3. Using Comments to Hide JavaScript

<body>

<script type="text/javascript">
<l--
alert('Your browser does support JavaScript');
/7-=>
</script>
<noscript>Your browser does not support JavaScript</noscript>

</body>

Placing JavaScript within an XHTML comment element allows older browsers that
don’t support JavaScript to ignore the JavaScript code. Those that do support JavaScript
will run the JavaScript as expected. If you don’t place your JavaScript code within an
XHTML comment, older browsers (or browsers with JavaScript disabled) will show the
JavaScript code when displaying the document. In reality, the developers don’t use the

<noscript> tag often. Today, most web developers ensure their content is properly available
even when JavaScript is not available.

JavaScript, the Language

JavaScript is a full-fledged computer programming language. JavaScript can be broken
down into several smaller topics, which the following sections cover:

e JavaScript syntax rules

* Variables

e Operators and expressions
¢ Statements

¢ Looping

253

254

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

¢ Functions
¢ Arrays

¢ Objects

Note Entire books have been written about how to program in JavaScript. This chapter provides you with
the basics, but if you want to see more advanced uses of JavaScript, the Internet provides a wealth of JavaScript
samples and explanations. We also recommend picking up the book Beginning JavaScript with DOM Scripting
and Ajax,! which provides an in-depth look at programming with JavaScript.

JavaScript Syntax Rules

JavaScript, like any other computer-programming language or spoken language, has
specific rules that must be followed so that everyone, including computers, can under-
stand it. This section describes some of the basic rules for JavaScript.

Comments

Just as in an XHTML document, you can add comments to your JavaScript code. The
browser completely ignores comments, so they have no effect on the code itself. Comments
are useful to document what a specific section of JavaScript does. Comments come in two
flavors: single-line and multiline. A single-line comment looks like this:

// This is a comment line

The browser ignores any text following (and including) the double slash (//) on that
line. You can also use the single-line comment multiple times in a row:

// This is comment line 1
// This is comment line 2
// This is comment line 3

If you have a multiline comment, it is often easier to use this alternative syntax:

/* This is comment line 1
This is comment line 2
This is comment line 3 */

1. Christian Heilmann, Beginning JavaScript with DOM Scripting and Ajax (Berkeley, CA: Apress, 2006).

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

A multiline comment starts with a /* and ends with a */. Everything in between these
sets of characters is considered a comment. You can use comments when trying to debug
a problem with a script by using them to temporarily remove code to find a problem.

Capitalization

JavaScript is a case-sensitive language, meaning that case matters. Not only must you
spell all script correctly, but you also must make sure it’s in the correct case. As you'll see,
many built-in functions are available for your use. For example, JavaScript provides a
function named alert, which accepts a string as a parameter that places a dialog box on
the screen with the string parameter as a message. If you were to type Alert ("My message
here"), the browser would not understand and would produce an error, since the function
actually begins with a lowercase as follows: alert("My message here").

Statements and White Space

Statements are at the core of JavaScript. Statements are instructions written in JavaScript
that tell the browser to take an action or to perform an instruction. This chapter explores
assignment and conditional statements. Just like XHTML, JavaScript ignores extra white
space, which allows you the freedom to add space as needed in order to make your code
more readable. It is also a good practice to finish each statement with a semicolon, as
Listing 10-4 shows.

Listing 10-4. Completing Each JavaScript Statement with a Semicolon

if(iAge == "")
alert("Please enter your age");
else
alert("Thank you for entering your age!");

//Add more code below

Notice the semicolons after each statement and the blank line before the comment.
Often when writing JavaScript code, it's good to leave some white space between different
code blocks so that you and others can more easily make sense of it when you come back
to it at a later date.

Variables

InJavaScript, variables are containers that hold data. Oftentimes, you’ll find that you need
to calculate a value or use a variable to store a piece of data. Variables are identified by
name. You must follow several rules when naming a variable:

e Variable names are case-sensitive.

e Variable names can only use letters, numbers, and underscores.

255

256

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

e Variable names can contain numbers, but not in the first position.

* Variable names cannot be the same as a reserved word (see http://javascript.
about.com/library/blreserved.htmfor a complete list).

Listing 10-5 shows a few examples of setting the value of a variable.

Listing 10-5. Using Variables

iAge=37;
sLanguagel = "JavaScript";
_bDone = true;

When setting a variable, you always place the variable name on the left and the variable
value to the right. In the previous code, you can see that the value of iAge is set to the value
37.In the second sample, the "JavaScript"” is considered a literal value because it is a
string of characters in between a set of quotation marks. When you work with variables,
you can categorize them as one of a number of data types (see Table 10-1).

Table 10-1. Data Types in JavaScript

Data Type Description Example

Boolean Can only contain a true or false value true

Number A numeric value 29

Null No value null

Object Any of the built-in JavaScript objects or ones you create Date

String Any characters within quotes "This is a test!"

Operators and Expressions

Listing 10-5 shows you how to assign a specific value or a literal value to a variable. Often,
you want to compute a value or create a string that is made up of several other variables
added together. You can do this using operators. These operators are arranged in different
categories, and do different things to the values they’re applied to. For example, you can
use operators to set a value to a variable or do mathematical functions:

iTotal += 20;

sForeName = "Bob";
sSurName = "Smith";
sFullName

sForeName +

+ sSurName;

http://javascript

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Arithmetic operators—probably the easiest to understand—represent the normal
math you use in day-to-day life (see Table 10-2).

Table 10-2. Arithmetic Operators

Operator Example Description

+ a+b Adds a and b together

- a-b Subtracts b from a

* a*b Multiplies a and b together
/ a/b Divides a by b

You use assignment operators to assign a value to a variable (see Table 10-3). Notice
that several assignment operators are simply shortcuts so you can write less code.

Table 10-3. Assignment Operators

Operator Example Description

= a=>b Sets a equal tob

+= a+=b Shortcutfora = a + b
-= a-=b Shortcutfora = a - b
= a=b Shortcutfora = a * b
/= a/=b Shortcutfora =a / b

Comparison operators are used widely in JavaScript code when comparing values in
conditional statements (covered in the “Conditional Statements” section). A comparison
operator tells you whether the values on both sides of the operator are the same. A comparison
operator always returns a boolean value of true or false, as Table 10-4 shows.

Table 10-4. Comparison Operators

Operator Example Description

== a==> true ifa and b are the same value. This operator also changes data
types to do comparisons.

=== a===>b true ifa and b are the same value without changing data types.

I= al=b true ifa and b are not the same value. This operator also changes
data types to do comparisons.

l== al==b true if a and b are not the same value without changing data types.

> a>b true if a is greater than b.

257

258

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Table 10-4. Comparison Operators (Continued)

Operator Example Description

< a<h trueif ais less than b.

>= a>=b true if a is greater than or equal to b.
<= a<=b true if a is less than or equal to b.

N allb true if either a or b is true.

&& adb true if both a and b are true.

JavaScript provides several operators you can use for counting while using special
processes such asloops, which are covered in the “Looping” section. These operators tend
to cause a lot of confusion amongst JavaScript newbies. When the operator occurs before
the variable (e.g., ++b or --b), this is referred to as pre-increment/decrement and means
that the value in the variable will be incremented (++b) or decremented (--b) before the
rest of the statement is completed. A post-increment/decrement (e.g., b++ or b--) means
that the value in the variable will be incremented (b++) or decremented (b--) after the
statement completes. Table 10-5 shows the increment and decrement operators.

Table 10-5. Increment/Decrement Operators

Operator Description

b++ Increments b by 1 after the statement is executed
++b Increments b by 1 before the statement is executed
b-- Decrements b by 1 after the statement is executed
--b Decrements b by 1 before the statement is executed
Statements

JavaScript statements are the heart and soul of JavaScript. Everything you've learned up to
this point has been the groundwork for the rest of this chapter.

Expressions

An expression statement returns a value. You've seen several of them so far in this chapter.
Using an expression with numeric data results in a normal arithmetic function:

itotal = 100 + 29;

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

As expected, the total variable contains the result of adding 100 and 29. However, the
answer is not necessarily as clear when using alphanumeric data:

non

address = streetNumber + + streetName;

This statement takes the text in the streetNumber variable, adds a space, and adds the
text from the streetName variable. It then stores the result in the address variable. Notice
the use of the + operator. Even though you're dealing with text, this operator concatenates
the text together. When using JavaScript, you'll often want to treat data as a different type
than what it is stored as. For example, you would want to treat an age entered into a web
document as a numeric value instead of the string that is normally returned in a form.
Many different built-in functions do data-type conversions. Some of the more common
functions include parseInt(), parseFloat(), and ToInt32(). You can find a great resource
on JavaScript data-type conversion at http://www. jibbering.com/faq/faq_notes/
type convert.html.

Conditional Statements

Conditional statements are common and used extensively in JavaScript. Oftentimes, you'll
want to see if a variable is equal to another value. Conditional statements provide you with
this information. A conditional statement does a comparison between two values and
always returns a boolean value. The first conditional statement we’ll cover is the basic if
statement. An if statement allows you to check if a value is true and perform other state-
ments if it is. This example shows the basic syntax of the if statement:

if(iAge > 20)
alert("You are over 20 years of age");

Listing 10-6 demonstrates how to use JavaScript to determine if a user is 21 years of age
or older. The value of the iAge variable is tested to see if it is greater than 20. If the value is
greater than 20 (as seen in Figure 10-1), then the result is true and a dialog displays on the
screen. If the value of the iAge variable is less than 21, then the result is false and the
dialog box doesn’t display. When a value tests true, you may want to perform multiple
statements, which you can do using a code block. You define a code block using the
opening curly brace ({) at the start of the block and the closing curly brace (}) at the end
of the block.

Listing 10-6. Using a Conditional if Statement

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

259

http://www.jibbering.com/faq/faq_notes
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

<html>
<head>
<title>JavaScript Basic If</title>
<script type="text/javascript">
var iAge;

iAge = prompt("Please enter your age in years.",0);
if(iAge > 20)
{
//The value tested true
alert("You are over 20 years of age");
//more statements can follow here
}
</script>
</head>
<body>
</body>
</html>

In Figure 10-1, you can see that the age test uses an if statement. First, the user enters
an age into the prompt, then an appropriate message is returned.

Explorer User Prompt _ Windows Internet Explorer |§|
Script P : t
koAl ' ‘You are over 20 years of age
Flease enter your age in years. — L]
nc: |
Fz]

Figure 10-1. Displaying a conditional message

An extension of the if statement is the if/else statement, which provides the ability to
run statements when a statement is false, as Listing 10-7 shows.

Listing 10-7. Using an if/else Statement

if(iAge > 20) {

alert("You are over 20 years of age");
}
else {

alert("You are under the age of 21");

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

When the iAge variable is greater than 20, then a message appears indicating this is so.
When the condition tests false, the code block after the else statement runs and produces
a message stating that the age is less than 21.

You can also place an if/else statement within another if/else statement. This concept,
referred to as nesting, is shown in Listing 10-8.

Listing 10-8. Nesting Conditional Statements

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>JavaScript Nested Ifs</title>
<script type="text/javascript">
var iAge;
var sMF;

iAge = prompt("Please enter your age in years.",0);
SMF = prompt("Are you a (M)ale or (F)emale?","M");

if(iAge > 20) {
if(sMF == "M") {
alert("You are a male over 20 years of age");
}
else {
alert("You are a female over 20 years of age");
}
}

else {
if(sMF == "M") {
alert("You are a male under the age of 21");
}
else {
alert("You are a female under the age of 21");
}
}

</script>
</head>
<body>
</body>
</html>

261

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

262

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Figure 10-2 shows the script being run. The script first prompts for the user’s age, then
asks whether the user is male or female. The last dialog box is the result of JavaScript inter-
preting the values the user entered.

Explorer User Prompt

Seript Prompt:

Flease enter your age in years.
Cancel

|15

Explorer User Prompt

4. IS

Script Prompt: % oK
Are Ml le?

you a (Mjale or (Flemale —
@

Windows Internet Exp'korer

1] : ‘fou are a male under the age of 21
L]

Figure 10-2. Using nested conditional if statements to determine the message

Notice that the code in Listing 10-8 places the curly braces a little differently.
Remember, JavaScript doesn’t care about white space, so this is perfectly legal. Actually,
many people prefer to place the opening curly brace at the end of the conditional state-
ment. In this case, the outside if statement is evaluated first, which determines the age.
Next, theinside if statementis evaluated, which determines if the user is a male or female.
It then displays the proper message.

There is one last if statement to cover: the if/else/if statement, as shown in Listing 10-9.
This one may seem a little tricky to follow, but it’s actually very similar to the nested if
statement.

Listing 10-9. Using the iflelse/if Conditional Statement

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

<html>
<head>
<title>JavaScript if/else/if statement</title>
<script type="text/javascript">
var iAge;

iAge = prompt("Please enter your age in years.",0);

if(iAge > 50) {
alert("You are over 50 years of age");
}
else if(iAge > 30) {
alert("You are between the ages of 30 and 40");
}
else {
alert("You are under the age of 31");
}
</script>
</head>
<body>
</body>
</html>

In Figure 10-3, you can see the age test using an if/else/if statement. First, the user
enters the age into the prompt, then a series of if/else/if statements determines the
appropriate message to display.

Explorer User Prompt Windows Internet Explorer |z

Script P :
S ' E ‘You are over 50 years of age
Flease enter your age in years. — L)
nc
-

Figure 10-3. Using iflelsel/if statements to determine the message

The code in Listing 10-9 can be tricky to follow. The rule is to start at the top and work
your way down. Once you match a true condition to any one of the if statements, the
code under it executes and then jumps out of the if/else/if statement.

The last conditional statement we cover is the switch statement, which you can use to
evaluate a single expression for multiple values. This can really save on creating a lot of if
statements sometimes (see Listing 10-10).

263

264 CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Listing 10-10. Using the switch Statement

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>

<head>
<title>JavaScript Switch Statement</title>

<script type="text/javascript">
var sDrink;

sDrink = prompt("Please enter your favorite drink (C)offee,
(W)ater or (0)ther"," ");

switch(sDrink)

{
case "C":

alert("You chose coffee as your favorite drink.");
break;

case "S":
alert("You chose soda as your favorite drink.");
break;
case "W":
alert("You chose water as your favorite drink.");
break;
default:
alert("I am not sure what your favorite drink is.");
}
</script>
</head>
<body>
</body>
</html>

(S)oda,

Figure 10-4 is the result of Listing 10-10. First, the script prompts for the user’s favorite
drink. Next, a dialog box is returned confirming what the user chose by using the switch

statement.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Windows Internet Explorer

Explorer User Prompt

Script Py : k
Fhoiih s 1 E Yfou chose coffee as your favorite drink.
Please enter your favorite drink (Cloffee, (Sjoda, (Water or {Other — L)
ncel
I

Figure 10-4. Using a switch statement to determine the message

The switch statement begins with the keyword switch and is followed by an expression
(or variable) you wish to evaluate. This expression is then matched against the value following
each case. Ifamatch is found, the code contained inside that case executes. If no match is
found, the JavaScript interpreter executes the default statement at the end of the switch
statement. You use the break statement to break out of a switch statement. The next label
or the selected construct’s closing curly brace denotes the end of a particular case. Each
case label acts as the entry point. The only time the break statement is required is when
you need to break out of the switch statement. In Listing 10-10, the variable sDrink is
checked against various drinks, and a message is displayed when a match is found. If no
match is found, a message is displayed stating, “I am not sure what your favorite drink is.”

Looping

Often when you write code, you may want the same block of code to run over and over
again in a row. Instead of adding several almost-identical lines in a script, you can use
loops to perform this task. Loops come in two different varieties: for and do. Using these
two constructs, you can create three different types of loops: a counted loop (for), a
precondition loop (while), and a postcondition loop (do).

The for Loop

You use the for loop when you know in advance how many times you’d like the statements
that are to be iterated to run. The basic syntax of the for loop is as follows:

for (loop init;test condition;increment loop counter)

{

code to be executed

This is a little different than anything you’ve seen so far. The for loop starts by initial-
izing any variables to be used in the loop (typically, this is a single variable). Next, the for
loop sets a condition that needs to be checked each time to see if the condition should
continue. Lastly, the variables controlling the loop are incremented or decremented.
Listing 10-11 shows a quick example so you can see how the for loop works.

265

266 CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Listing 10-11. Using the for Loop

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>JavaScript for loop</title>
<script type="text/javascript">
<!--
var sNewlLine = "
";
document.write("for loop is starting" + sNewlLine);
for (var iCount=0;iCount<=10;iCount++)
{

document.write("iCount =

+ iCount);
document.write(sNewLine);
}
document.write("for loop completed");
//-->
</script>
</head>
<body>
</body>
</html>

Figure 10-5 shows the use of the for loop. Notice that it goes from 0 to 10. This shows
how important it is to understand how many times a loop will execute.

for loop is starting
iCount =0

iCount = 1

iCount = 2

iCount = 3

iCount = 4

iCount = 5

iCount =6 Iy
iCount =7

iCount = §

iCount = 9

iCount = 10

for loop completed

Figure 10-5. Results of using the for loop to count from 0 to 10

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

In Listing 10-11, the keyword for is followed by the parameters for the loop. The first
parameter is the loop variable; in this case, it is iCount, which is initialized to 0. Next, the
test condition is set: iCount <= 10. The loop continues to run while this statement evalu-
ates to true. A statement that manipulates the loop variable is then either incremented or
decremented. This sample executes a total of 11 times, once for each value from 0 to 10. It
starts by going through the loop once and executing any code in the code block. The value
of the variable iCount is then incremented based on the third parameter. Lastly, the condi-
tion is tested to see if the code should go through the loop again.

You need to remember a couple of things when working with loops. First, you can use
the pre- or post-incrementors to determine when the loop count is advanced. Second, you
can also make a loop that decrements and goes backwards if the need arises. You would
start the initial value at the maximum level and decrement the counter. Be sure to set up
the condition correctly as well.

The while Loop

The while loop has two different varieties: the regular while loop and thedo . . . while
loop. You use the regular while loop when you want a loop to execute while a specific
condition is true (see Listing 10-12).

Listing 10-12. Using the while Loop

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>JavaScript while statement</title>
<script type="text/javascript">
<!--
var iCount = 0;
var sNewline = "
";
document.write("While loop is starting");
document.write(sNewLine);

while(iCount < 10){
document.write("iCount =
document.write(sNewlLine);
iCount++;

}

document.write("While loop completed");

//-->

+ iCount);

267

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

268

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

</script>
</head>
<body>
</body>
</html>

Figure 10-6 shows awhile loop that starts at zero and goes through 9, since the test is
done prior to executing the loop.

While loop is starting
iCount =0

iCount = 1

iCount = 2

iCount = 3

iCount = 4

iCount = 5 Ly
iCount = 6

iCount =7

iCount = §

iCount = 9

While loop completed

Figure 10-6. Results of running while to execute a loop

The while loops require you to define the variable to be tested outside the loop, as
Listing 10-12 does with the variable iCount. Next, you code the while statement along with
the condition to be tested in parentheses. Lastly, in the code block, you insert the state-
ments you wish to execute within the loop. Remember to be sure to manipulate the
variable that you're testing for within the loop. In Listing 10-12, you increment the value
of iCount by one each time. If you don’t manipulate the control variable, the code could get
stuck in the loop, and the page will appear to be stuck. One thing to consider with a while
loop as shown here is that it does the condition test first. There is no guarantee that the
loop will ever execute at all if the condition fails the first time.

If you're in a situation where you need to guarantee that a loop executes at least one
time, you can use thedo . . . whileloop (see Listing 10-13).

Listing 10-13. Using the do . . . while Loop

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

<html>
<head>

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

<title>JavaScript do statement</title>

<script type="text/javascript">

<!--
var sNewline = "
";
var iCount = 0;

document.write("do loop is starting" + sNewLine);

do

{
document.write("iCount =
document.write(sNewlLine);
iCount++;

} while (iCount < 10);

+ iCount);

document.write("do loop completed");

//-->
</script>
</head>
<body>
</body>
</html>

Figure 10-7 shows the use ofado . .
Listing 10-13 is at the end of the loop.

do loop is starting
iCount =0

iCount = 1

iCount = 2

iCount = 3

iCount = 4

iCount = 5

iCount = 6

iCount =7 %
iCount = §

iCount = 9

do loop completed

. while loop. Notice that the condition check in

Figure 10-7. Using the do . . . while loop to make sure the loop executes at least once

This time, you place the while condition after the code block, and you place a do statement
up front. The condition check is done after the code block, ensuring that the loop executes at
least one time. Notice that in this case, the loop count variable iCount is initialized to 0, and
the while statement runs only when iCount isless than 0. Since thisisado . . . while loop,

269

270

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

the check is done after the first time through the loop, and the message “The number is 0”
is produced.

Tip Each loop has a specific use. You should use the for loop when you know exactly how many iterations
of a loop you need to do. The while loop is best used when you need to execute a loop until a specific condi-
tion occurs. Lastly, the do loop is almost the same as the while loop, except the condition check occurs after
the first iteration, thus guaranteeing at least one iteration through the loop.

Functions

A function is used to group together a group of statements that need to be executed in
sequence. Functions are often used to organize and reuse code across different documents.
When you create a function, you give it a specific name that is used to call it specifically.
The basic structure of a function is as follows:

function name(arguments) {
one or more statements go here

The keyword function is followed by the name you’ve given the function. You use the
name later in your code to execute the function. The name is followed by parentheses that
contain zero or more variables that can be passed into the function. For example, if you
want to create a function that adds two values together and returns the result, it would
look like this:

function addTwoNumbers(valuel,value2) {
return valuel + value2;

You can use this function anywhere in your JavaScript code to add two numbers together.
You specify which two numbers you’d like added together when making the function call.
For example, if you want to add 25 and 51, you would call the function as follows:

var total = addTwoNumbers(25,51);

When the function is called, JavaScript takes the first number in parentheses and maps
it to the first variable name in the function. In other words, value1 is set to 25. Next, it sets
the value 51 to the second variable in the function definition: value2. This happens for
each parameter defined in the function. You must match the number of parameters in
your function call to the number when you actually use the function; otherwise, an error
will occur. You can also create a function that doesn’t have any parameters by simply
creating an empty parameter list:

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

function noParams() {
// Statements to execute
return true;

You need to get used to coding and calling functions in JavaScript, where they are
commonly used. JavaScript itself provides a wealth of built-in functions such as the
alert() function you saw earlier.

Arrays

An array is a special type of variable that holds a collection of values. Arrays allow you to
group many values together in a single variable. A single array can hold many values, so
you may wonder how you can access the individual values within the array. As you'll see, you
can do this by using an index in brackets next to the number. Let’s start by first creating an
array and seeing how to use it, as Listing 10-14 shows.

Listing 10-14. Creating an Array in JavaScript

var myBeverages = new Array();
var allBeverages;

myBeverages[0] = "Coffee";
myBeverages[1] = "Tea";
myBeverages[2] = "Soda Pop";
myBeverages[3] = "Lemonade";
allBeverages = "";
for (i=0;i< myBeverages.length;i++)
{
allBeverages = allBeverages + myBeverages[i] + ", ";
}

alert("Here are the choice of beverages " + allBeverages);

An array is actually considered an object in JavaScript. Most people have heard of the
term objectin regards to computer programming. An object is simply a bunch of functions
and attributes that together provide a common theme. An array object groups together
the functionalities of arrays. Objects are the basis of object-oriented programming (OOP).

In Listing 10-14, you start by creating a new array named myBeverages and filling it with
four values. Notice the index number after the array name; this is how you differentiate
each value in the array. Also, take note that the index value starts at 0 and not 1, as many
developers may assume. In order to access or set a value in an array, you simply use the
array name followed by the index you want. The sample uses a built-in function for arrays—
the length function—to return the number of elements in the array. It then uses a loop to

2n

272

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

retrieve all the values one at a time. The length function returns the number of elements
in the array.

Advanced Topics

Up until this point, we’ve covered the essential basics of JavaScript. The rest of this chapter
will concentrate on practical uses of this knowledge while adding some new material.

Handling Events

Using events is one of the main areas where JavaScript can really shine. An event is an
action that either the browser takes or the users invoke based on something they do in
your document. For example, one of the most common scripting events is the load event.
Each time a web browser loads your document, it invokes the load event. The submit event
is a good example of an event that is invoked by user action. When a user submits a form
(as discussed in Chapter 8), the submit event validates form values prior to submitting them to
the web server. Table 10-6 provides a list of events that you can attach to your JavaScript code.

Table 10-6. JavaScript Events

Event Description

abort Occurs when the user has canceled the page load

blur Occurs when a control is losing the cursor focus to move to another control
change Occurs when the user selects a different value in a select box

click Occurs when the user single-clicks on an element

dblclick Occurs when the user double-clicks on an element

error Occurs when the browser encounters an error in the script

focus Occurs when a control receives the cursor focus

keydown Occurs when the user holds down a key on the keyboard

keypress Occurs when the user presses a key and releases it

keyup Occurs after an onkeydown event when the user releases the key

load Occurs when the browser loads your document

mousedown Occurs when the user user depresses the mouse button

mousemove Occurs when the user moves the mouse around the document on the screen
mouseout Occurs when the user moves the mouse off an element in the document

mouseover Occurs when the user moves the mouse over an element

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Table 10-6. JavaScript Events

Event Description

mouseup Occurs when the user releases the mouse button after holding it down
reset Occurs when the user presses a button that resets or clears the program
resize Occurs when the user changes the size of the browser window

select Occurs when the user clicks on a radio button or checkbox

submit Occurs when the user submits a form

To use these events, you need to add code within your document to call functions that
will execute when the event occurs. You can use one of three techniques to link JavaScript
code to an event. First, you can use the onload event. In order to add code for the onload
event, you need to specify what to do when the onload event occurs. Listing 10-15 shows
you how to use the simplest technique, referred to as the inline model.

Listing 10-15. Hooking Events with the Inline Model

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>JavaScript inline Events</title>
<script type="text/javascript">
function fn_load()

{
alert("Page has been loaded!");
}
</script>
</head>
<body onload="fn_load()">
</body>

</html>

You create a function in the <script> block, then you hook into the load event in the
body section of your document. All you need to do is tell the browser what function you
want to execute when the event occurs. Figure 10-8 shows how a message is displayed
when the load event occurs.

273

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

274

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

Windows Internet Explorer |z|

1] E Page has been loaded!
L]

[o]

Figure 10-8. A message box displayed once the load event occurs

The second technique you can use to link JavaScript code to an event is known as the
traditional model. This model allows you to use scripting to add or remove events, as
Listing 10-16 shows.

Listing 10-16. Hooking Events with the Traditional Model

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>JavaScript traditional model</title>
<script type="text/javascript">
window.onload = fn_load;
function fn_load()

{
alert("Page has been loaded!");
}
</script>
</head>
<body>
</body>

</html>

If you want to remove an event, you simply set its method to null:

window.onload = null;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

The third technique you can use to link JavaScript code to an event is the most complex
yet flexible method: the Document Object Model (DOM). See Listing 10-17.

Listing 10-17. Hooking Events with the DOM

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>JavaScript do statement</title>
<script type="text/javascript">
document.addEventListener("load", fn_load, true);

function fn_load()

{
alert("Page has been loaded!");
}
</script>
</head>
<body>
</body>

</html>

The DOM model lets you add what is called a listener for a specific event that will be
called when the event occurs. You can also register multiple handlers for the same event.
In order to remove a listener, you can use the removeEventListener() function.

Tip Windows Internet Explorer doesn’t follow the W3C event DOM model, because Microsoft created its
event model prior to the ratification of the W3C standard. Microsoft has two functions, attachEvent() and
detachEvent (), that it uses in place of the ones described in the DOM model.

Responding to events is one of the main uses of JavaScript, so you really need to under-
stand how to use them.

275

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

276

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

The DOM

The DOM is the means by which JavaScript can access and manipulate the content of an
XHTML document as well as any style sheets at run time dynamically. The DOM is actually
the standard way of traversing an XML document. Since you're using XHTML in this book,
you might want to use the DOM because it understands the documents you've created. All
XHTML elements, including their text and attributes, can be modified or deleted through
the DOM. The DOM provides an intuitive way for you to navigate through your documents.
The DOM, much like CSS, uses a hierarchical tree structure to represent your document.
Each element within the tree has relationships (such as child, parent, and sibling) with
other nodes within the tree. You can navigate the tree and delete, change, or add nodes
and attributes. Using the DOM is an advanced topic that is beyond the scope of this book,
but you can surf over to http://www.howtocreate.co.uk/tutorials/javascript/dombasics to
get the basics of using the DOM.

Form Validation

Back in Chapter 8, you saw how to create your own forms using several different available
controls. Forms allow users of your website to input information. What if a user places an
order but forgets to leave a credit card number? Or a name? This can wreak havoc on your
site. Fortunately, JavaScript can help. You can use JavaScript to validate user input.

Tip Itis always good practice to validate the user input on the client within the browser and also when
processing the form on the server. On the client, you should use JavaScript. On the server, though, it depends
on the platform you’re using to publish your documents. Failing to validate can lead to problems in security
and data validity. If users don’t allow JavaScript or their browser doesn’t support JavaScript and you don’t
validate the form data on the server, there is no telling what the client will pass through your server-side programs.

To show a sample of JavaScript form validation in action, we’ll use the Contact Us form
you'll be creating in Chapter 11. This basic form allows users of your website to contact the
restaurant and provide several pieces of information; see Figure 10-9.

As you can see, the user must enter his or her name and e-mail address, select the type
of inquiry, and type a message. You can use JavaScript to make sure the user puts a valid
value in each of these controls. If the user doesn’t put a value in each of the controls, the
JavaScript will display a message describing what the user needs to do (see Figure 10-10).

http://www.howtocreate.co.uk/tutorials/javascript/dombasics

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

1sta and wifi.

Enjoy a bite with your bytes.
GEEK PIZZERIA e - &

About Us Drop us a line

Our Menu

News and Events
Raves and Reviews All flelds are required

== Contact Us ur name |

Figure 10-9. The Contact Us form waiting for user input

Windows Interr*!t Explorer

Please correct the following errors:

L.;

*MName not entered

* Email not entered
*Message not entered
* Subject not entered

Figure 10-10. The Contact Us form with validation errors

If the form doesn’t pass validation, it won’t be sent on to the server for processing. In
this case, the user didn’t enter any text for any of the controls and instead simply clicked
the Send button. This in turn produced an error for each field. Listing 10-18 shows the
JavaScript code used to validate the form.

Listing 10-18. JavaScript Code Used to Validate the Contact Us Form

<script type="text/javascript">
function fn_ValForm()
{
var sMsg = "";
if(document.getElementById("name").value == ""){
sMsg += ("\n* Name not entered");

}

277

278 CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS

if(document.getElementById("email").value == ""){
sMsg += ("\n* Email not entered");

}

else{

if(!fn_valEmail(document.getElementById("email").value)){
sMsg += ("\n* Invalid Email address entered");

}

}

if(document.getElementById("message").value == ""){
sMsg += ("\n* Message not entered");

}

if(document.getElementById("subject").value == ""){
sMsg += ("\n* Subject not entered");

}

if(sMsg 1= ""){

alert("Please correct the following errors:\n" + sMsg);
return false;

}

else
return true;

}

function fn_valkEmail(src) {
var emailReg = "~[a-z0-9][a-z0-9 \.-]{0,}[a-20-9]@[a-z0-9]"
emailReg += "[a-z0-9 \.-1{0,}[a-z0-9][\.][a-2z0-9]{2,4}$";

var regex = new RegExp(emailReg);
return regex.test(src);

}

</script>

The code is invoked when the event handler fn_ValForm() is called when the user clicks
on the Send button. This function for the most part uses many of the JavaScript techniques
you've already seen in this chapter. The function starts by defining a variable used to hold
any messages for validation errors. Next, the code tests each control to see if the user
placed a value into it. If the user entered a value, the next control is checked. If the user
didn’tenter a value, a message is added to the sMsg variable. At the end of the function, the
code checks the sMsg variable to see if any messages need to be sent to the client. If no
messages need to be returned to the client, the value true is returned, indicating the form
can be sent for processing on the server. If sMsg has any messages in it, a message box is
displayed, indicating to the user what needs to be corrected. The value false is also returned,
indicating to the browser that the form should not be submitted for processing on the server.

CHAPTER 10 CLIENT-SIDE SCRIPTING BASICS 279

You can make validation as easy or as complex as you’'d like. For example, in the Contact
Us form validation function, you can check to make sure that the user has entered a valid
e-mail address. You call the function fn_valEmail(), which uses something new—a
regular expression. Regular expressions are great for validating data. A regular expression
uses pattern matching to validate whether a string or number is made up of specific data
types or a pattern of numbers (e.g., an e-mail address or phone number). You can use a
regular expression by creating a regular expression object and passing into it a string that
contains the pattern you want to match your data against. Next, you call the test () function,
passing in the value you want to test against the pattern. If the value matches the pattern,
true is returned; otherwise, false is returned. You can find a detailed explanation of
regular expressions at http://www.regular-expressions.info/javascript.html. Many
regular expression patterns are readily available; you can find a large library of common
ones at http://regexlib.com/.

Summary

This chapter covered a lot of territory. In fact, you've learned an entire new computer
programming language in a single chapter. This chapter has shown you the basics of
addingJavaScript to your documents. You've learned how to validate form values, change
CSS dynamically, and produce some really cool effects. Keep in mind that these effects
only work in visual web browsers; other devices may not implement JavaScript. This chapter
has really only scratched the surface of using JavaScript. Many functions prebuilt into
JavaScript weren’t covered here. We recommend that you search the Internet or pick up
one of the titles mentioned in this chapter to expand your JavaScript skills. In Chapter 11,
you'll take everything you've learned throughout the book and put it together. You'll learn
how to produce a full, working website from start to finish.

http://www.regular-expressions.info/javascript.html
http://regexlib.com

CHAPTER 11

Putting It All Together

Y)u’ve learned alot about modern, standards-compliant markup over the past ten chapters,
along with a healthy dose of CSS and just a dash of JavaScript mixed in. But don’t worry,
nobody expects you to memorize everything at once. Although XHTML and CSS are rich
and nuanced languages, the fundamentals are still quite simple, and there are just a few
important rules to follow. In time, as you gain experience putting together your own
websites, you'll become intimately familiar with the primary languages the web is built on
until it all becomes instinctive.

Of course, knowing the technical ins and outs of XHTML and CSS is only half the battle.
Assembling a well-formed, accessible, and flexible document requires a bit of thought and
planning. Consider the meaning of your content, and choose the elements that best align
with that meaning, validating your markup to ensure that you’'ve adhered to the specifica-
tions. Once you've built a solid foundation of valid, meaningful markup, you can move on
to styling your document’s presentation with CSS and adding behavioral enhancements
with JavaScript.

This chapter will cover the process of planning, designing, and constructing a simple
website from start to finish, from concept to code. We’'ll talk you through the tactical
procedure we followed to design and build the Spaghetti & Cruft website, offering an
example of one workflow that tends to work well for most projects. You'll see how the site
was put together from the ground up, exploring the blend of markup and style that makes
the site a reality (or at least as real as a site for a fictional pizzeria can be).

Introducing Our Case Study: Spaghetti & Cruft

Imagine a vibrant and progressive metropolis called Gotham, California. This city—which
doesn’t exist—has attracted, for some reason or another, a large number of computer soft-
ware companies and Internet-based enterprises. Many of their offices are concentrated in
the city’s trendy and equally nonexistent Riverbend district, drawn perhaps to the neigh-
borhood’s plethora of empty warehouses and decrepit lofts that have since been remodeled
into hip and nearly affordable office spaces. These companies employ a great many smart
and talented people, and those people need to eat.

281

282

CHAPTER 11 PUTTING IT ALL TOGETHER

Recognizing the demand for good food at fair prices in this booming part of town, two
brothers, Mario and Luigi, opened a neighborhood pizzeria. Business was good and their
reputation grew, but things really took off when the brothers had the brilliant notion of
catering to the neighborhood geeks—the designers and developers busily building new
pieces of the World Wide Web. The brothers brought in comfy couches to complement the
red-checkered tablecloths, installed an array of wireless routers to provide free broadband
connectivity for their customers, and even tracked down a vintage Asteroids arcade machine.
They changed the name of their eatery from Mario and Luigi’s Pizza to Spaghetti & Cruft
Geek Pizzeria. Naturally, they’'ll need a new website to go with the new name.

EXPLAINING THE NAME

If you’re wondering about the name Spaghetti & Cruft, we’ve got our tongues planted firmly in cheek
on this one. In the past, many web designers produced overcomplicated markup loaded with messy,
presentational tags and attributes (and far too many designers still do it that way). This is called spaghetti
code because the markup is an unwieldy tangle, extremely difficult to sort out and maintain. The word
cruftis programmer jargon for any excess, outdated code that is no longer necessary, if it was ever
needed to begin with.

So, spaghetti and cruft are two things we’ve spent ten chapters advising you strongly against—
markup sins you’ll never commit because you’ve read this book and learned to do it the right way. Go
ahead and smirk knowingly at our cleverness.

The Design Process

There isno single, one-size-fits-all, written-in-stone procedure for designing and constructing
awebsite, and the process demonstrated in this chapter is by no means the only approach
you can take. With that said, it’s important to establish somekind of process and to follow
arational series of steps to keep your work—and your thoughts—organized and on track.
Developing a website without a plan of attack will only lead to frustration and chaos.

Every site you build and every project you undertake will be just alittle bit different, but
all will share a few common guiding principles. With experience, you’ll find a process that
works best for you, and you’ll also find ways to make your process adaptable enough to
handle the curve balls every new project throws at you. The Spaghetti & Cruft website
followed this general outline, and something similar may work well for you.

CHAPTER 11 PUTTING IT ALL TOGETHER

Step 1: Defining Goals

Any good plan actually begins at the end: take aim at a specific, desired outcome. Defining
goals early on will help you stay on target in every decision you make along the way, always
moving toward that end result. Deciding just what those goals will be demands some
consideration, some research, and some important questions. What is the site meant

to accomplish, and what sort of information should it include to that end? Who are the
people using the site, what do they hope to accomplish during their visit, and what sort of
information will they need to achieve that? Are there other websites that perform similar
tasks or that appeal to the same audience? If so, what do those sites do right? How could
they be improved? The answers to these and other questions form a list of goals and require-
ments to guide the entire project.

Step 2: Contemplating Architecture

With goals in hand, we turn our attention to mapping out the site’s structure, beginning
with the content. Determine what types of content you’ll need to present in order to meet
the site’s goals, and then organize that content into logical sections. This kind of information
architecture is often one of the more challenging steps in any design process, depending on
the size and complexity of the website.

Think about organizing a bookstore; all the art books logically belong together, separate
from the fiction, poetry, and astronomy books. Within the art section, books about painting
might belong together in one area, and the sculpture books might belong in another area.
If you have quite a few painting books, they might be split into even smaller groups, with
one shelf devoted to impressionism, another to abstract expressionism, and yet another to
books about realism. This practice of sorting information into broad categories first and
then sorting it further into increasingly specific subcategories is sometimes referred to as
chunkingin the field of information architecture—the content is broken down into manage-
able chunks, which are then grouped according to their purpose and subject matter.

You can visualize a site’s architecture as a flowchart with connections drawn between
the sections to represent the path a user might take to reach them. Figure 11-1 shows a
flowchart mapping the navigation and structure for the Spaghetti & Cruft site. The home
page acts as a central hub—the gateway to the entire site—though any of the major pages
can also be reached from any other page.

This site is rather simple and offers a relatively a small amount of content. A larger site
would probably call for a more complex architecture, with more tiers of information sorted
into more granular categories.

283

284

CHAPTER 11 PUTTING IT ALL TOGETHER

Home
News Raves
About Us Our Menu and and Contact Us
Events Reviews
Full Review Full Review Full Review
#1 #2 #3
(Off-Site) (Off-Site) (Off-Site)

Figure 11-1. The architecture of the Spaghetti & Cruft website, drawn out in a flowchart

Step 3: Arranging the Template

Now that we understand what the site needs to do and have worked out how the content
will be organized and the pages interconnected, it’s time to start thinking about the pages
themselves. Almost any website you see will have a consistent, overall layout for each of
its pages. There may be a sitewide header displaying the site’s title, a primary set of navi-
gation links, and a large area housing the main content of each page. Establishing some
visual and structural consistency throughout a site makes every page look like it belongs
to part of the greater whole. We'll call this surrounding framework the page template, for
lack of a better term.

This is also the point in the design process where we begin to seriously think about
markup, deciding which elements will form the framework that upholds every page like
the beams and columns that support a building. Some sites have several different templates—
one for each type of page when those pages hold different types of content. The Spaghetti
& Cruft site is simple and straightforward, so it needs only one general template for all of
its pages.

When you're planning a page template, it’s useful to list all the bits and pieces that will
become part of it. Most importantly, each page in the Spaghetti & Cruft site will require a
large space for the main content, including a page title. Additionally, we also know there
will be a branded masthead featuring the pizzeria’s logo, street address, and company tag
line. Each page of the site will need to include a navigation menu, which is simply a collec-
tion of links leading to the other sections of the site. Every page on this site will also display
a small copyright statement.

CHAPTER 11 PUTTING IT ALL TOGETHER

Reorganized and listed in approximate order of importance, the Spaghetti & Cruft
template needs to include the following:

* The main content area
* A pagetitle leading the content
¢ The main navigation menu
e A masthead
¢ The Spaghetti & Cruft logo
* The street address
e The tagline
* A copyright statement

This list will become our guide for both the structural XHTML and the design of the
site’s visual presentation. We’re not really thinking about the site’s appearance just yet,
we’ve been focusing entirely on content and organization. Not all web designers arrange
their process in this sequence, beginning instead with the graphic design—deciding just
how they want the finished site to look—and then building markup and CSS to achieve
that presentation. But that places presentation ahead of content and structure, and
presentational thinking often leads to presentational markup. When you move from
design to construction, you might find yourself choosing XHTML elements for their visual
effect rather than their inherent meaning.

Take the time to understand your content first and then build outward. When you separate
content from presentation in your markup, you can also separate them in your workflow.
Prioritizing structured content first and visual design second will ultimately make your
design better informed when the time comes, helping you avoid the pitfalls of nonstruc-
tural, presentational markup.

In the real world, you may not always have the luxury of constructing your document
before considering its surface appearance. If you do choose to create the visual design
first, you should at least be thinkingabout how you're going to assemble the document as
you work on its eventual presentation. As you're visually arranging content on the page,
think about the markup that will eventually support it. Drawing a picture of an attractive
page is one thing; actually building it with accessible, meaningful XHTML and clean CSS
is something quite different. Setting up your document’s underlying structure early in the
process can be extremely helpful later.

285

286

CHAPTER 11 PUTTING IT ALL TOGETHER

Step 4: Creating the Design

With all the planning settled and a document template constructed, next comes the really
cool part: deciding what the site will look like. As with every other phase in the process,
there isn’t any one definitive approach to creating a visual design. You might start with
sketches, color swatches, and scrapbooks of design motifs to grasp the general mood
before focusing your efforts on the real thing. It's common to produce multiple design
variations before finally choosing the one you like best (or at least the one your client or
boss likes best). You might work through numerous iterations of a single design, gradually
homing in on something approaching perfection.

Whatever approach you take, your finished visual design will be more enlightened and
practical because you took the time to understand your content and give it a solid, mean-
ingful structure. If someone else is responsible for the site’s visual design (as is often the
case in larger teams), providing them with the guidelines you’'ve worked so hard to gather
will help them produce a better design that is aligned with the project goals and the site’s
structure.

For the Spaghetti & Cruft site, we started with some sketches—shown in Figure 11-2—
to quickly work through a few different layout options. Once we found something we
liked, we moved on to Adobe Photoshop to produce a more polished mock-up of our
chosen layout.

sl

Figure 11-2. A few rough sketches for the Spaghetti & Cruft website, trying out several different
layouts before picking one to proceed with

In web design parlance, a mock-up (also called a composite, or comp for short) is a full-
scale image of a page design, essentially a picture of the finished site. It allows the designer

CHAPTER 11 PUTTING IT ALL TOGETHER

(and other project stakeholders) to get a sense of what the real site will look like without
yet committing the design to markup and CSS; you can adjust the mock-up without rebuilding
any pages.

Mario and Luigi asked for a design that’s simple, clean, and sleek but with classical
influences and a distinctly Italian flair. We chose a red and white color scheme with green
accents—the colors of the Italian flag. A few Renaissance-style flourishes give it that old-
world touch, but the overall look and feel remains decidedly modern. You can see the
finished mock-up in Figure 11-3.

Spaghetti & Cruft
742 Cederholm Ave.
Gotham, CA 00234
510-555-0987

Pizza, pasta, and WiFi
GEEK PIZZERIA Enjoy a bite with your bytes.

Our Menu Level Two Heading

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean ve-
2z About Us : . . X Ny
hicula, neque non lacinia luctus, diam quam euismod arcu, ut volutpat
Raves and Reviews leo t.urpls id saplgn. Hullam vitae odio. Pongc c?nsequat eros. Aliquam
feugiat, metus aliquet consequat lobortis, nisl libero euismod nunc, vel
News and Events feugiat orci erat vel pede. Maecenas at dui quis diam varius pretium. Sed
enim. Integer sed ante. Sed feugiat risus cursus nisl. Cras id ligula. Ali-
Contact Us quam et lorem. Hunc tincidunt eros at sem. In imperdiet est quis lectus.
Ham vel turpis.

Level Three Heading

Vivamus aliquet, mauris vitae luctus scelerisque, pede mauris suscipit
turpis, in rhoncus odio erat ut erat. Fusce in turpis. Hulla facilisi. Viva-
mus mattis, orci a euismod iaculis, sem lectus lobortis nunc, in tempus
nisl risus sed purus. Munc nunc leo, tempor tincidunt, consectetuer non,
placerat at, ante. Integer ut urna et tortor viverra suscipit. Suspendisse
potenti. Hunc rutrum. Maecenas lectus. Donec velit. In congue odio plac-
erat quam. In leo. Duis lacus ligula, posuere a, mollis semper, sagittis in,
sapien. Suspendisse porttitor auctor mi. Hullam ullamcorper nunc. Donec
congue. Integer aliquet consequat purus.

o

Spaghetti & Cruft : Geek Pizzeria

Figure 11-3. The final mock-up for the new Spaghetti & Cruft website. This will be our guide
as we work on the CSS.

We showed this to Mario and Luigi, and they loved it (of course they did, we made them
up). With our client’s approval, we can proceed to author the CSS that will make this design a
reality, converting our “picture of a website” into an actual website.

Step 5: Assembling the Website

With the CSS initially written and integrated with the template, the next obvious step is to
continue constructing the rest of the site. Each page begins with a blank template, and the

287

288

CHAPTER 11 PUTTING IT ALL TOGETHER

content is inserted, always considering the meaning of the content and supporting it with
valid, semantically appropriate markup. The site’s style sheet will continue to expand
during this stage, inserting new presentation rules for different types of content as needed.
We’ll cover the construction of a few pages in the Spaghetti & Cruft website in detail later
in this chapter.

Step 6: Testing

Even though this step appears last, it's an ongoing process throughout the site’s produc-
tion. When the template is constructed, it should be tested and the markup validated.
While you're working on the CSS, you should frequently test the site in a browser as you
add new style rules. Validate your style sheets as well to make sure they’re correct and well
formed.

View the site in multiple browsers—as many as you can get your hands on. Each browser
may treat your CSS in slightly different ways. However, don’t be misled into believing that
a website should look exactly the same in every browser. Trying to achieve pixel-perfect,
identical presentation across different browsers and operating systems is a recipe for
distress. Rather, try to treat each browser as an entity unto itself; real users don’t open two
browsers side by side for precise comparison.

Instead of striving to achieve an identical appearance in every browser, concentrate on
offering the most common browsers an equivalent experience. Is the site functional, and
does it look presentable? Are any elements the wrong size, completely misaligned, or in
the wrong position? Some small variations are to be expected, but as long as those varia-
tions don’t harm the design or make the site more difficult to use, they might not be worth
worrying about. As you make adjustments and corrections, retest the site in multiple browsers
to ensure that fixing a problem in one browser doesn’t break something in another.

Building Spaghetti & Cruft

Now that we've described the design process, the rest of this chapter goes into a bit more
detail on the actual construction of the Spaghetti & Cruft website, beginning with the page
template markup. This template lays the groundwork and establishes the common page
elements that will persist throughout the site.

Setting Up the Document

You saw the standard document skeleton way back in Chapter 2, but here it is again in
Listing 11-1 to refresh your memory. It includes all the essential pieces, as well as a link to
an external style sheet in the document’s head element. We haven’t actually authored that

CHAPTER 11 PUTTING IT ALL TOGETHER

style sheet yet, but adding a link to it now will establish it in the template markup for all
the pages to come.

Listing 11-1. A Blank XHTML Document

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Spaghetti & Cruft: Geek Pizzeria</title>
<link rel="stylesheet" type="text/css" href="styles.css" />
</head>
<body>

</body>
</html>

You might have spotted the addition of a meta element in the document’s head, declaring
this document’s content type as text/html and its character set encoding as UTF-8 (a widely
supported standard). This declaration isn’t strictly necessary because a web server is usually
configured to transmit the information automatically. However, it’s still recommended
that you include it in the document’s head element. Declaring the character encoding is
especially important because it will assist user-agents in processing the document’s text.
The W3C'’s online validation service (http://validator.w3.org) will default to UTF-8 if
no character encoding is declared in the document, so including it here saves us a bit of
trouble when we validate the site’s markup.

Marking Up the Masthead

The first essential content to appear in the body element will be the site’s branded mast-
head (also called a header; the terms are pretty much interchangeable), which will help a
viewer instantly identify the website. We’ve already determined that the masthead will
feature Spaghetti & Cruft’s logo (which also serves as the name of the website), its street
address (so a visitor to the website can easily find out where the restaurantislocated), and
its company tag line (which is part of the pizzeria’s marketing), so the entire section can
be contained in an element that will group those other elements together: a div.
However, thinking it through, we realize the tagline isn’t really “essential content”; it’s
supplemental to the rest of the page, and removing the tag line entirely wouldn’t hinder a
reader’s understanding of the other content. So rather than include the tag line alongside
the company name and street address, we’ll place it near the end of the document and

289

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://validator.w3.org

290

CHAPTER 11 PUTTING IT ALL TOGETHER

position it at the top of the page with CSS. The masthead markup will comprise only the
logo and address, collected in a div.

Assigning a unique id attribute to that containing div element will distinguish it from
other portions of the document and provide a useful “hook” for styling its contents with a CSS
ID selector. We could identify the element as the “masthead” or “header,” which would
work perfectly well as a CSS selector. But the words “masthead” and “header” both imply
that the element is located at the head of the page, which might be a reference to the
element’s presentation (even though it actually is at the head of the page in this particular
design). We're calling it a masthead to describe its purpose as a vehicle for site branding,
not to describe its placement on the page. A masthead could just as easily run down one
side of the page, or even appear at the bottom. Instead of identifying an element according
to its presentation, you should identify it based on its meaning and purpose. The Spaghetti &
Cruft masthead is a major part of the site’s visual branding, so an id value of branding
accurately describes why the element exists.

When identifying or classifying an element (with an id or class attribute, respectively),
consider the element’s purpose and choose a name to describe it. An ID of “leftcolumn”
or a class of “blue” becomes rather meaningless if the element is colored red and positioned
on the right. Treat an id attribute as a declaration that “this is the element that serves this
specific purpose” and a class attribute as a statement that “this element belongs in the
same category as other elements in its class.”

The Spaghetti & Cruft logo will be an image (embedded with the inline img element,
covered in Chapter 5), but it’s more than that: the logo also acts as the title of the entire
website. Placing that inline image in an h1 element solidifies its meaning as the most
important title in the document. Alternatively, the title of an individual page might be
considered more important than the site’s title. If that’s your preference, you could
surround the page title in an h1 element and the site’s title in some other element befitting
ofits relative importance. For this site, we’'re using an h1 element for the site title and we’ll
use an h2 element to designate page titles.

You might be tempted to mark up a company’s street address in an address element,
especially when that address pertains to the company responsible for the site. But gener-
ally speaking, an address element should contain contact information for the document’s
author, not just the company that owns the site. We’ve chosen a more general element
and marked up the address as a paragraph with id="address" to identify it. We’ve inserted
line breaks (
) to enforce some visual formatting, breaking the address onto four
separate lines. It’s a minor presentational compromise, but this formatting improves the
readability of the address; those line breaks enhance the content more than they harm it.

After all this semantic pontification, you can at last see the markup for the site’s mast-
head in Listing 11-2.

CHAPTER 11 PUTTING IT ALL TOGETHER

Listing 11-2. The Spaghetti & Cruft Masthead Markup

<div id="branding">

<h1><img src="images/logo.gif" width="375" height="200"
alt="Spaghetti and Cruft: Geek Pizzeria" /></h1>

<p id="address">
Spaghetti & Cruft

742 Cederholm Ave.

Gotham, CA 00234

510-555-0987

</p>

</div>

Marking Up the Main Content Area

After the company name and address, the next most important part of the page is the main
content—the reason for the page’s very existence. Arguably, the content could be considered
the most important part and could appear in the document even before the masthead.
Because this case study is a site for a fictional brick-and-mortar business, we decided that
the company name and address were the most important pieces and placed them ahead
of the main content to emphasize them. A different type of website might lead to a different
decision.

Asyou construct any XHTML document, be mindful of the sequence in which the elements
occur (known as their source order). If the page’s presentation layer is removed from the
equation—by a screen reader or a nongraphical web browser, for instance—the content
will be read from top to bottom in the same order as the document’s source markup. Try
to order elements according to the importance of their contents, not their spatial arrange-
ment on the rendered page. You can use CSS to reposition elements for display in graphical
browsers without altering their underlying structure.

For the time being, we're just building the template that will surround the content and
aren’tyetready to add any real content to the page. Once again, we’lluse a div element to
act as a container for the other elements that will eventually populate it. Giving the divan
ID of main-content describes exactly what that div contains. As you can see in Listing 11-3,
we’ve included a heading and a paragraph as temporary placeholders. They’ll be replaced
with actual content as the site’s assembly progresses.

291

292

CHAPTER 11 PUTTING IT ALL TOGETHER

Listing 11-3. The Main Content Section

<div id="main-content">
<h2>The page title will go here</h2>
<p>The page content will go here.</p>
</div>

Marking Up the Navigation

The site’s primary navigation is a list of links, so it should be marked up as a list of links—
it's as simple as that. The list doesn’t need to follow a specific sequence because a user can
click through to any page they please, so we’ll make it an unordered list (ul). However,
there’s a certain hierarchy we want to imply so the list items will still occur in a deliberate
order, according to the importance of the section to which each link leads. Listing 11-4
shows the completed navigation list. The files these links lead to don’t exist yet, but now
is as good a time as any to decide what they’ll be named.

Listing 11-4. The Navigation Menu

<ul id="navigation">
Our Menu</1i>
About Us</1li>
Raves and Reviews</1li>
News and Events
Contact Us</1i>

The navigation comes after the main content, which might seem to defy logic. Once a
lengthy helping of content is added, you’d have to scroll all the way to the bottom to find
alink to another page. But we're arranging the elements from the top down in order of
each one’s importance, and content is usually more important than navigation. We’ll use
CSS to position this menu at the top of the page when a graphical browser renders it.

Marking Up the Tag Line and Footer

The final components of the template are the branded tag line and a footer to display the
copyright statement. The company tag line—“Pizza, pasta, and WiFi. Enjoy a bite with
your bytes”—could be held in a paragraph, but in this case we’ve decided to treat it as two
separate statements in two paragraphs (they’re two distinct thoughts) and collect them in
a div element (because the two thoughts are related to each other and separate from the
rest of the content). We’ll position the tag line over the site’s masthead with CSS.

The site’s footer is simply a paragraph containing a copyright statement. Some websites
include a lot more supplemental information in their footers, such as contact details or a

CHAPTER 11 PUTTING IT ALL TOGETHER

list of links to administrative pages (terms of use, privacy policies, job openings, and so on). If
asite’s footer will hold more than just text, it’s sensible to use a div to contain all the footer
elements. The Spaghetti & Cruft site’s footer is nothing more than a copyright statement,
so a solitary paragraph is sufficient.

As with other parts of the template, we’ll give these components unique IDs, but we're
not going to identify the footer as “the footer.” This part of aweb page is called a footer only
because it typically appears at the very bottom of a page. But you know by now that it’s not
wise to identify an element based on its presentation, so the paragraph will be dubbed
“copyright,” as you can see in Listing 11-5. This ID describes the element’s true purpose,
notits placementin the visual layout. If the footer contained other information in addition
to a copyright, a different ID—*“site-info,” for example—would be appropriate. The numeric
character reference 8#169; will be rendered as the international copyright symbol (©),
though we could also use the character entity ©.

Listing 11-5. The Tag Line and Copyright Statements

<div id="tagline">
<p>Pizza, pasta, and WiFi.</p>
<p>Enjoy a bite with your bytes.</p>
</div>

<p id="copyright">© 2007 Spaghetti & Cruft: Geek Pizzeria</p>

The Completed Template

That’s really all there is to it. We’ve added all the vital portions that will surround and
support each page of the site, giving each one a sensible identifier that states the purpose
of each element and provides us with the necessary apparatus to style the site with CSS.
Listing 11-6 is the full template markup—Ilean, clean, and valid.

Listing 11-6. The Completed Markup Template for the Spaghetti & Cruft Site

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Spaghetti & Cruft: Geek Pizzeria</title>
<link rel="stylesheet" type="text/css" href="styles.css" />
</head>

293

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

294 CHAPTER 11 PUTTING IT ALL TOGETHER

<body>
<div id="branding">
<h1><img src="images/logo.gif" width="375" height="200" =
alt="Spaghetti and Cruft: Geek Pizzeria" /></h1>

<p id="address">
Spaghetti &i#38; Cruft

742 Cederholm Ave.

Gotham, CA 00234

510-555-0987
</p>
</div>

<div id="main-content">
<h2>The page title will go here</h2>
<p>The page content will go here.</p>
</div>

<ul id="navigation">
Our Menu</1li>
About Us</1li>
Raves and Reviews
News and Events
Contact Us</1i>

<div id="tagline">
<p>Pizza, pasta, and WiFi.</p>
<p>Enjoy a bite with your bytes.</p>
</div>

<p id="copyright">© 2007 Spaghetti & Cruft: Geek Pizzeria</p>
</body>
</html>

From this point on, every new page we create for the site will begin its life as a copy of
this blank template document. We can begin to construct the style sheet using the template as
a framework before building the entire site. It might be necessary to make changes to the
markup during the CSS development phase, and it'll be much easier to do that in the master
template instead of altering every document in the site.

CHAPTER 11 PUTTING IT ALL TOGETHER

Designing Spaghetti & Cruft with CSS

With the template built and the design mock-up suitably polished, the next step is writing
the style sheet that will bring the two into harmony. From the very first stages of visual
design—when you first lay pen to paper or mouse to pad—you should be thinking about
the content and markup you’ll eventually be styling. This is the very reason we chose to
construct the site template before plunging into graphic design; an understanding of the
document’s structure is invaluable when deciding how that document should be presented.

Figure 11-4 shows our template document as seen with a browser’s default style sheet.
We’ve added a few paragraphs to the content area to offer a better sense of how the different
parts of the page relate to each other.

GEEK PIZZERIA

Spaghetti & Cruft
742 Cederholm Ave.
Gotham, CA 00234
510-555-0987

Hot food at a cool joint

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart of the city’s trendy Riverbend district. We handeraft our pizzas on
the spot using only the best ingredients, and then we bake them to perfection in our rustic wood-fired brick oven. We sell pizza by the slice or by the pie
and even offer catering for any occasion all around the neighborhood.

Our broad menu of pasta dishes puts a modem twist on Old Italia, served in heaping bowlfuls sure to satisfy any appetite (though we bet you’ll want
seconds anyway). But it’s not all noodles and crust at Spaghetti & Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar, and the best
cannolis in town!

» Our Menu

= About Us

» Raves and Reviews
= News and Events

» Contact Us

Pizza, pasta, and WiFi.
Enjoy a bite with your bytes.
© 2007 Spaghetti & Cruft : Geek Pizzeria

Figure 11-4. The Spaghetti & Cruft template viewed with a web browser’s default styling

Throughout the rest of this chapter, you’ll see how the Spaghetti & Cruft style sheet
came together bit by bit, making this drab, unstyled document come to life using many of
the CSS techniques you've seen elsewhere in this book, as well as a few new ones. We
won’t go into detail on every part of the site, but you can download all the markup, CSS,
and images from the Apress website (http://www.apress.com). You can also see the finished
Spaghetti & Cruft website online at http://www.beginninghtmlbook.com.

295

http://www.apress.com
http://www.beginninghtmlbook.com

296

CHAPTER 11 PUTTING IT ALL TOGETHER

Styling the Page Body

Ifyou flip back to our design mock-up in Figure 11-3, one of the first things you’ll notice is
the large, red banner across the top of the page (it really is red, take our word for it) that
becomes the backdrop for the masthead. The bannerisn’t a solid color—it graduates from
a lighter color to a darker color, and there’s a subtle shadow that descends into the white
content area.

CSS doesn’t offer a method of transitioning from one color to another (not in current
versions of the language, at least), so we’ll need to use a background image to achieve this
effect. If the background image is applied to the masthead container, the image will end
where the masthead’s content ends. Instead of styling the branding div, let’s not overlook
the ever-present (and required) html element, which is equally susceptible to styling with
CSS. Applying a background to the html element allows the image to tile across the entire
browser portal and extend downward into the content area; all the content will overlay the
image. Listing 11-7 shows the CSS rule styling the html element.

Listing 11-7. Applying a Background to the html Element
html { background: #ffffff url(images/background.gif) repeat-x; }

The background property is CSS shorthand, condensing several values into one declara-
tion. This single declaration takes the place of separate declarations for background-color,
background-image, and background-repeat, saving a bit of space in our style sheet. Any
undeclared values will be filled in by the browser’s default styles, so there’s no need to
specify a value for background-position here; the image begins tiling from the top-left
corner automatically.

As you can see in Figure 11-5, attaching the background image to the html element
works like a charm. The image is only 4 pixels wide and 280 pixels high, so the file size is
quite small and should download quickly, even over a slow Internet connection. The image
doesn’t need to be any wider because it repeats infinitely along the x-axis.

Ap. mi & Cruft
™ ;?‘::Icmnlm Ave,
Gotham, CA 00234
510-555-0087

Hot food at a cool joint

Spagheti & Crult opened our doors in 1999, bringing great pizza wnd pusta (o the heart of the city's trendy Riverbend district, We handemaft our pizzas on
the spot using only the best ingredients, and then we bake them o perfection in our nustic wood-fired brick oven. We sell pizen by the slice or by the pic
and even offer caiering for any eceasion all smound the neighborbood.

Figure 11-5. The background image tiles across the top of the html element and hence across
the entire browser portal.

CHAPTER 11 PUTTING IT ALL TOGETHER

Fixed or Liquid?

An important decision must be made now: will the site’s layout have a fixed width that is
always the same no matter how wide the browser window is, or will its width be liqguid and
adjust dynamically to the window’s width? This has been a topic of much lively debate
among web designers. Many prefer to design sites with a fixed width because it allows for
precise alignment of the page elements in arigid grid. Other designers prefer liquid widths
that flex automatically, letting viewers set their browsers as wide or narrow as they like
while the page layout adjusts to their preferences.

Fixed and liquid layouts both have their own clear benefits, as well as a few potential
drawbacks. Opting for a fixed-width layout is often the easier choice because it eliminates
one more variable from the complicated task of designing a website with CSS, but fixed
widths don’t allow for a browser window that’s narrower than the design, causing the
dreaded horizontal scroll. Narrow fixed layouts can waste a lot of screen real estate in
wider windows. A liquid width gives first priority to the user’s preferred window width, but
it can cause text to stretch out to very long lines in wide windows, making the content
more difficult to read. If the window is very narrow, the content gets compressed into
narrow columns, and some elements might overlap each other.

Neither side of the debate is completely right or completely wrong, which is probably
why the debate still rages on. It’s a decision that must be made on a case-by-case basis,
and it’s just one of those factors that makes every project a new and exciting challenge.
Whichever layout you choose—fixed or liquid—always be conscious of both the content
and the people using it; that’s what should ultimately influence your decision. In the end,
you'll just have to use your own best judgment.

We’ve decided on a liquid layout for the Spaghetti & Cruft site. Given the simplicity of
this design—with only a few major page elements to worry about—we can achieve it with
minimal fuss. First we’ll give the body element a width of 80%. An element’s percentage
width is calculated as a percentage of its parent element’s width. The body element’s parent
is the root html element, which has no width in this case, so the body will naturally occupy
80% of the browser portal, however wide that may be. Listing 11-8 shows the beginnings
of a CSS rule styling the body element, and we’ll expand this rule as we add more style
properties.

Listing 11-8. Declaring a Width for the body Element

body { width: 80%; }

Centering the Page with Margins

With the body element successfully narrowed, it will be pressed against the left side of the
window by default, with space on the right side taking up the remaining 20%. Our design
shows the page body horizontally centered in the window, and we’ll accomplish this with
the margin-left and margin-right properties, both with a value of auto. The browser will
automatically calculate auto as half the available space on either side of the element. This

297

298

CHAPTER 11 PUTTING IT ALL TOGETHER

translates to a 10% space on the left side of the window, the body filling 80%, and another
10% space on the right. Those proportions will always be consistent, regardless of how
wide or narrow the window might be, giving us the centered, liquid layout we want.
Listing 11-9 shows this revision to our body rule.

Listing 11-9. Centering the body Element

body {
width: 80%;
margin-left: auto;
margin-right: auto; }

To simplify this, you can combine the margin-left and margin-right properties into
one declaration with the shorthand margin property (there are similar padding and border
shorthand properties as well). For lack of a better term, we’ll refer to these as box model
properties because they relate to the size and spacing of rendered boxes.

You can format the value of a box model shorthand property in a few different ways.
You can style each side of the box individually using any combination of units, for example,
margin: 2px 4.2em 3% .5in, where each value applies to each side in clockwise order: top,
right, bottom, and left. If the top and bottom sides have the same value and the left and
right sides have the same value, you can shorten the declaration like so: margin: 4px 5%,
with the first value applying to both the top and bottom, and the second value applying to
the left and right. If the top and bottom values are different but the left and right values are
the same, you can arrange the declaration like so: margin: .5em 0 1em, where the first value
is the top margin, the second applies to both the left and right sides, and the third value is
the bottom margin. Lastly, if all four sides of the box will carry the same value, the short-
hand property needs only a single value, as in margin: 15px.

Our body element will have no top and bottom margins (a value of 0), so we can rewrite
itsmarginvalue as 0 auto, shown in Listing 11-10. Many graphical browsers automatically
apply a small amount of padding to the body element, which we can neutralize with the
declaration padding: 0, affecting all four sides with a single declaration.

Listing 11-10. The Shorthand margin and padding Properties

body {
width: 80%;
margin: 0 auto;
padding: 0; }

You can see the combined effect in Figure 11-6; the body has been narrowed and centered
with 10% margins on both sides. The width and margins will automatically adjust to fit the
width of the browser window.

CHAPTER 11 PUTTING IT ALL TOGETHER

GEEK PIZZERIA

Spaghetti & Cruft
742 Cederholm Ave.
Gotham, CA 00234
510-555-0987

Hot food at a cool joint

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart of the city’s trendy Riverbend district.
‘We handcraft our pizzas on the spot using only the best ingredients, and then we bake them to perfection in our rustic
wood-fired brick oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all around the
neighborhood.

Figure 11-6. The body element now occupies 80% of the window’s width and is horizontally
centered.

Caution Versions of Internet Explorer for Windows prior to version 6 didn’t support this method of centering
elements with automatic margins. Version 6 and newer support the auto value, but only in compliance mode,
invoked by a complete doctype (which you must always include anyway). Internet Explorer 6 and 7 don’t auto-
matically calculate margins in quirks mode for the sake of backward compatibility with outdated websites that
were designed before the value was properly supported.

Shorthand for Fonts

As you learned in Chapter 4, most font styles declared for the body element will be inher-
ited by all the elements that descend from it. Body copy on the Spaghetti & Cruft site will
be setin Trebuchet MS at 90% of the browser’s designated size (about 14 pixels, assuming
a default size of 16 pixels) with a 1ine-height value of 1.7 ems (1.7 times the text size). By
declaring the font size as a percentage of the default, we can accommodate any user’s size
preference; all the text on the site can freely scale larger or smaller. We've added these
declarations to our body rule in Listing 11-11.

Listing 11-11. Adding Font Properties to the body Rule

body {
width: 80%;
margin: 0 auto;
padding: 0;
font-family: "Trebuchet MS", Helvetica, Verdana, sans-serif;
font-size: 90%;
line-height: 1.7em; }

299

300

CHAPTER 11 PUTTING IT ALL TOGETHER

We can condense this using the shorthand font property. This single property can carry
values for most font styles in a space-separated list, and those values must occur in a
specific sequence to be recognized: font-style, font-variant, font-weight, font-size/
line-height, and font-family. A slash (/), not a space, separates the values for font-size
and line-height, binding the two values together. Any values not declared with font will
be inherited from an ancestral element, or else the browser will fall back to its default
value for that property. Listing 11-12 shows the updated rule.

Listing 11-12. The Shorthand font Property

body {
width: 80%;
margin: 0 auto;
padding: 0;
font: 90%/1.7 "Trebuchet MS", Helvetica, Verdana, sans-serif; }

Notice that the 1ine-height value suddenly lacks a unit of measure. For the line-height
property, a numeric value without a unit is interpreted as a multiplier of the font size. There-
fore, line-height: 1.7 achieves the sameresultasline-height: 1.7emorline-height: 170%;
all three are proportional to the font size. This is the preferred way to declare line heights,
since that multiplier will be inherited by any descendant elements and automatically
scaled according to the element’s font size (whether that size is inherited or declared).

Tip Eric Meyer offers a much more detailed explanation of unitless 1ine-height values in his
weblog entry “Unitless line-heights” (http://meyerweb.com/eric/thoughts/2006/02/08/
unitless-line-heights/).

Shorthand for Colors

Colors are frequently expressed in CSS using hexadecimal notation, which is a six-digit
number that indicates a specific color as a combination of red, green, and blue—the primary
colors of light that make up every color the human eye can perceive. Each two-digit pair
in the six-digit hex number represents a value of one primary color. When the hex number
consists of three matched pairs (such as #ffcc99 or #3355ee), you can compress the number
to only three digits in CSS (#fc9 or #35e). The savings may seem minor, but sometimes
every last byte counts.

Body copy for the Spaghetti & Cruft site will appear in a dark, neutral gray, the hex color
#555555, which we can shorten to #555. This becomes the base foreground text color for
the entire site by adding a color property to our body rule, as you see in Listing 11-13.
Although most visual browsers default to black text, a slightly lighter color causes less
eyestrain and will be more readable against a bright white background.

http://meyerweb.com/eric/thoughts/2006/02/08/unitless-line-heights
http://meyerweb.com/eric/thoughts/2006/02/08/unitless-line-heights

CHAPTER 11 PUTTING IT ALL TOGETHER

Listing 11-13. Declaring a Foreground Color with Shorthand Hex Notation

body {
width: 80%;
margin: 0 auto;
padding: 0;
font: 90%/1.7 "Trebuchet MS", Helvetica, Verdana, sans-serif;
color: #555; }

You can see the result of our new font styles and text color in Figure 11-7. The website
is gradually taking shape, and just a little bit of typographic style has made a remarkable
impact on the design.

GEEK PIZZERIA

Spaghetti & Cruft
742 Cederholm Ave.
Gotham, CA 00234
510-555-0987

Hot food at a cool joint

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart of the city’s trendy Riverbend
district. We handcraft our pizzas on the spot using only the best ingredients, and then we bake them to perfection in our
rustic wood-fired brick oven. We sell pizza by the slice or by the pie and even offer catering for any occasion all around
the neighborhood.

Figure 11-7. Reloading the template page in a web browser shows the newly styled font and
foreground color (compare this to Figure 11-6).

Styling Links
Most graphical browsers present a text anchor as underlined, blue text by default, and its
color will change to purple after you've visited the link’s destination. These default styles
date back to the earliest web browsers in the mid-90s, but today we’re not limited to the
defaults. Even so, web users have grown accustomed to text links appearing in a different
style than normal text, and some kind of visual differentiation is critical; your readers
won’t be able to locate links that don’t look like links.

To fit into the overall look and feel of the Spaghetti & Cruft site, we're going to change
the color of text links from blue to green, and visited links will appear in a slightly paler
grayish-green, as if using the link has depleted its original color. The link’s color will change to

301

302

CHAPTER 11 PUTTING IT ALL TOGETHER

red when a user’s pointer passes over it to call attention to the link as if it’s shouting, “Click
me!” Our new CSS rules are shown in Listing 11-14.

Listing 11-14. Styling Links with Pseudo Classes

a:link { color: #006d14; }

a:visited { color: #48a95a; }

a:hover { color: #ab0000; }

a:focus, a:active { color: #c50000; background-color: #ddd; }

These rules must appear in this sequence in the style sheet so the cascade can work
properly—the style for an active link takes precedence over a hovered link, which takes
precedence over a visited link, which takes precedence over an unvisited link. We’ve grouped
the styling of focused and active links under a single rule—giving links in both states a
slightly brighter red color as well as a light gray background—to offer keyboard users some
visual indication as to which link has focus when they use their Tab key to cycle through
links on the page. Internet Explorer doesn’t support the : focus pseudo class, but it treats
the :active pseudo class as : focus for links. You learned about these pseudo class selec-
tors in Chapter 2. Combining them with the a element selector means these styles won’t
be applied to any other elements, only anchors.

We’re changing the coloring of text links but leaving the default underline style intact.
Even iflinks are displayed in a different color from surrounding text, people with low vision or
some types of colorblindness may not be able to detect that contrast. Links should always
be visually indicated by some decoration apart from their color, and that usually means an
underline. Similarly, regular text that is not a link should never be underlined. Web users
over the years have become so familiar with the convention of underlined text indicating
alink that any underlined text is assumed to be one; if something is underlined butisn’ta
link, you’ll only confuse your readers.

Caution Older versions of HTML included a presentational u element to define underlined text. Because
it was so often confused with linked text, the element was formally deprecated years ago and should never
be used.

Styling the Masthead

The masthead is held in a div element with a unique ID of “branding,” so we can target
that specific element with an ID selector in our style sheet. The elements inside the branding
division can be specifically targeted by using the ID selector as part of a descendant selector,
eliminating the need to give each element within the masthead an ID of its own (though some
of them do bear IDs, both for semantic reasons and to offer more specific CSS selectors, as
you'll see later).

CHAPTER 11 PUTTING IT ALL TOGETHER

Absolutely Relative

Referring to our design mock-up, the Spaghetti & Cruft address belongs in the upper-right
corner of the masthead, but the paragraph that contains it is naturally positioned after the
logo because that’s where it occurs in the document’s source. We’ll move the address
using the position property with a value of absolute and providing a specific location
where the element should appear, shown in Listing 11-15 (we’ve also made it a lighter
color to show up against the dark background).

Listing 11-15. Positioning the Address

#address {
color: #eee;
position: absolute;
top: 15px;
right: 10px; }
However, as you can see in Figure 11-8, this isn’t quite what we’re after—the address is

against the right edge of the browser portal. But we know the body element is 80% of that
width, so shouldn’t the address line up with the invisible edge of the body?

[Spaghgtti & Cruft

GEEK PIZZERIA

Hot food at a cool joint

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart of the city’s trendy Riverbend
district. We handcraft our pizzas on the spot using only the best ingredients, and then we bake them to perfection in

Figure 11-8. The template page after the address has been positioned. We've drawn borders
around the address and the body element for this illustration.

When an element is absolutely positioned, its placement is determined in relation to its
nearest positioned ancestor—the first ancestral element in the document tree bearing a
position value of absolute, relative, or fixed. If no positioned ancestor is found, the
element is positioned in relation to the root html element, which fills the browser portal
because it lacks a width. Our address paragraph has no positioned ancestor, so the result
shown in Figure 11-9 is utterly correct and rendered according to the CSS we’ve written.
To solve this, we must position one of the address’s ancestors to provide a new frame of
reference.

303

304

CHAPTER 11 PUTTING IT ALL TOGETHER

Applying position: relative to the masthead container (the div with the ID “branding”)
while leaving out any values for top, left, bottom, or right will position the container
exactly where it would normally be by default, but now elements within it can be abso-
lutely positioned in relation to the container; the branding div becomes the address’s
nearest positioned ancestor.

While we’re at it, we can give the entire masthead a height of 250 pixels and a 15-pixel
bottom margin, reserving 265 pixels of vertical space and preventing the other page content
from moving upward into the masthead. It’s usually inadvisable to declare a fixed height
for any elements because it can wreak havoc when text is resized or content is added. But
in the case of this branded header, which holds so little content and already has a height
implied by the background image, declaring a fixed height shouldn’t cause any problems.
The address text can still expand significantly before it overflows the masthead.

Listing 11-16 shows the new CSS rule.

Listing 11-16. Giving the Masthead Container a Position, Height, and Margin

#branding {
position: relative;
height: 250px;
margin-bottom: 15px; }

You can see the results in Figure 11-9; the address is correctly positioned within the
masthead area thanks to its positioned container.

[Spaghetti & Cruft

GEEK PIZZERIA

Hot food at a cool joint

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart of the city’s trendy Riverbend
district. We handcraft our pizzas on the spot using only the best ingredients, and then we bake them to perfection in

Figure 11-9. With a positioned ancestor to refer to, the address is now placed against the right
edge of the masthead.

The address is now just where we want it . . . almost. We specified a top value of 15px,
but the address is more than 15 pixels from the top of the page. A graphical web browser
will give all paragraphs default top and bottom margins to create the blank lines we expect
as visual separation between two paragraphs. That default margin is creating extra space
above the address paragraph, pushing the element down from the top. We can counteract

CHAPTER 11 PUTTING IT ALL TOGETHER

that by supplying a new margin value of 0, applied to all four sides simultaneously with the
shorthand margin property. We’ve also added some more declarations to align the text to
the right, slightly reduce the font size, and compress the line height a bit.

The h1 element that encloses the logo also receives some default margins, and neutral-
izing them will bump the logo to the top of the page. A bit of top padding places the logo
just where we want it to be. Listing 11-17 shows the updated CSS.

Listing 11-17. The Finished Rules That Style the Address and Logo

#address {
color: #eee;
position: absolute;
top: 15px;
right: 10px;
margin: 0;
text-align: right;
font-size: 90%;
line-height: 1.3; }

#branding h1 { margin: 0; padding: 10px 0 0; }

With our CSS rules complete, the address and logo should now appear just as they did
in the mock-up (or at least a very close match). Figure 11-10 shows our progress so far.

Spaghetti & Cruft
742 Cederholm Ave.
Gotham, CA 00234
510-555-0987

GEEK PIZZERIA

Hot food at a cool joint

Spaghetti & Cruft opened our dooers in 1999, bringing great pizza and pasta to the heart of the city’'s trendy Riverbend
district. We handcraft our pizzas on the spot using only the best ingredients, and then we bake them to perfection in our

Figure 11-10. The updated page with the address fully styled and the logo’s placement adjusted

Compensating for Missing Images

A new problem has become evident at this point: the masthead relies on a background
image to define its area, but the entire page reverts to a solid white background color if the
image isn’t available. The address would be nearly impossible to read without a dark back-
ground to provide sufficient contrast, yet applying a solid background color to either the
address itself or the branding div would cover the gradient background image.

305

306

CHAPTER 11 PUTTING IT ALL TOGETHER

We can solve this dilemma by applying a solid background color to the masthead
container but also applying the same background image we used for the html element.
Background images are rendered on top of background colors, so the two images will
overlay each other and merge seamlessly. The masthead’s background color becomes
visible if images are disabled while the rest of the page keeps its white background.

Listing 11-18 shows the changes to the style sheet. We’ve added a background property
to the masthead container, filling it with a dark red color behind the image. We’ve also
applied a white foreground color to the h1 element. Most graphical browsers display the
value of alt attributes when images are disabled, so this will help to make even the logo’s
alternative text readable against the dark background.

Listing 11-18. Ensuring Color Contrast When Images Are Absent

#branding {
position: relative;
height: 250px;
margin-bottom: 15px;
background: #900 url(images/background.gif) repeat-x; }

#branding h1 {
margin: 0;
padding: 10px 0 0;
color: #fff; }

Figure 11-11 shows the page with images disabled. The solid color doesn’t extend to the
full window width, but the masthead remains readable and the design’s general color
scheme survives, in keeping with the principle of graceful degradation. This “CSS on,
images off” scenario is fairly uncommon, but some people—especially those using slow
Internet connections—choose to disable images in order to speed up their browsing.
Spending a few extra minutes to ensure sufficient background/foreground color contrast
will benefit those visitors.

Spaghetti and Cruft : Geek Pizzeria e

Gotham, CA 00234

510-555-0987

Hot food at a cool joint

Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the heart of the city’s trendy Riverbend
district. We handcraft our pizzas on the spot using only the best ingredients, and then we bake them to perfection in our

Figure 11-11. The masthead as it appears when images are disabled

CHAPTER 11 PUTTING IT ALL TOGETHER

Laying Out the Page

With the masthead looking good, we can move down to the real meat of the page. The
content area and navigation menu form two columns in our design mock-up. We can
easily achieve this effect by declaring a width for each element and floating them in oppo-
site directions, as in Listing 11-19. (We've also neutralized the default presentation of the
navigation list.) The main content section will move as far to the right as possible, the navi-
gation menu will move all the way to the left, and both will be held in check by the body
element. Choosing percentages for the width values maintains the fluidity of our liquid
layout.

Listing 11-19. Floating Elements in Opposite Directions

#main-content {
width: 65%;
float: right; }

#navigation {
width: 30%;
float: left;
list-style: none;
margin: 0;
padding: 0; }

Using floats for page layout can be tricky at times. If two elements are floating adjacent
to each other and one of them becomes too wide for the containing element to accommo-
date them both, the two floating boxes will collide, and whichever element comes later in
the source order will wrap under the previous element.

A visual web browser converts percentage dimensions into a number of pixels in order
to render the elements on the screen. Imagine two adjacent, floated elements in a box,
each with a width of 50%. If their container is 800 pixels wide, both elements will be exactly
400 pixels wide and can float side by side in harmony. Now resize your imaginary container
to 799 pixels wide—the two floating boxes need to be 399.5 pixels wide each. There’s really
no such thing as half a pixel, so browsers are forced to round to the nearest whole pixel.
The two floating boxes remain 400 pixels wide in a box that is too narrow to contain them,
so the second element gets pushed below the first.

You can prevent this disastrous scenario by ensuring that the two elements’ combined
widths never exceed 100% of their container’s width, making allowances for rounding to
whole pixels. Our floating content and navigation boxes total 95%, allowing a 5% space
between them (the space between columnsiis called a gutter, another term borrowed from
traditional graphic design).

307

308

CHAPTER 11 PUTTING IT ALL TOGETHER

Clearing Floats

Another potential quagmire that comes packaged with float-based layouts is the matter of
clearingfloated elements. A floated element is partially removed from the natural flow of
content, allowing subsequent content to flow upward and wrap around the floating box.
However, when two adjacent boxes are both floating, there is nothing to tell the browser
where their lower boundary should be drawn. Content can flow upward around those boxes,
squeezing into whatever space is available. You can see an example of this phenomenon in
Figure 11-12; because the content and navigation are floating, the tagline and copyright
statement flow up into whatever space they can find, even squeezing into the gutter.
We’ve drawn borders around the boxes for this illustration.

Our Menu Pizza,

lAbout Us pasta, Hot food at a cool joint

Raves and Reviews fand

[News and Events iFi. [Spaghetti & Cruft opened our doors in 1999, bringing great pizza and pasta to the
IContact Us heart of the city’s trendy Riverbend district. We handcraft our pizzas on the spot

njoy a
Joy using only the best ingredients, and then we bake them to perfection in our rustic

bite with bytes.
ite with your bytes ood-fired brick oven. We sell pizza by the slice or by the pie and even offer

© 2007 Spaghetti & Cruft : Geek Pizzeria catering for any occasion all around the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served in heaping|

bowlfuls sure to satisfy any appetite (though we bet you’ll want seconds anyway).

Figure 11-12. A demonstration of what can happen when floating elements aren’t cleared

To remedy the situation, we must clear the floats by drawing an invisible line across
their lower border beyond which no content will flow. In other cases and with other
layouts, this can sometimes be difficult without resorting to extra, presentational markup.
But on the Spaghetti & Cruft site, the only elements that come after the two floating boxes
are the tagline and copyright statement. The tag line will be styled and positioned at the
top of the page, so it won’t be in danger of flowing around the content and navigation.
However, the copyright statement will form a footer at the bottom of the page, so that
element can also serve as a clearing line by styling it with the declaration clear: both.
We’ve done just that in Listing 11-20.

Listing 11-20. The Copyright Paragraph Clears the Floats Above It

#tcopyright { clear: both; }

Assigning the clear property to the copyright statement with a value of both instructs
the browser to not allow any floats to descend below thatline or any content to flow above
it. Figure 11-13 shows the result; the copyright statement now rests at the bottom of the
page in spite of the floating boxes above it. Once again, the borders are just for illustration.

CHAPTER 11 PUTTING IT ALL TOGETHER

Our Menu

lAbout Us Hot food at a cool joint

Raves and Reviews

MNews and Events Spaghetti & Cruft opened our doers in 1999, bringing great pizza and pasta to the
Contact Us heart of the city’s trendy Riverbend district. We handcraft our pizzas on the spot

using only the best ingredients, and then we bake them to perfection in our rustic
wood-fired brick aven. We sell pizza by the slice or by the pie and even offer

catering for any occasion all around the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served in heaping
bowlfuls sure to satisfy any appetite (though we bet you'll want seconds anyway).
But it’s not all noodles and crust at Spaghetti & Cruft; we also have fresh veggie

sides, an all-you-can-eat salad bar, and the best cannolis in town!

|@ 2007 Spaghetti & Cruft : Geek Pizzeria |

Figure 11-13. The copyright statement now clears the floats above it rather than flowing upward
around them. The tag line isn’t shown here because we've positioned it over the masthead.

Tip For much more detailed information on clearing and containing floats, see Eric Meyer’s article
“Containing Floats” (http://www.complexspiral.com/publications/containing-floats/).
You can find a few alternative clearing methods at the “Clearing Space” page of the CSS-Discuss wiki
(http://css-discuss.incutio.com/?page=ClearingSpace). CSS-Discuss is a popular mailing list
for—you guessed it—discussing CSS.

Styling the Navigation

The site’s navigation menu is nothing more than an unordered list containing ordinary

text links. It’s fully functional as is, and we’ve already placed it roughly where we want it
by floating the element to the left. But it’s still not a very attractive menu and is just begging
for a touch of style.

We'll target the navigation list items with a descendant selector and specify a different
font family, as well as enlarging the text and padding each list item at its top and bottom
to add some more white space between the links. The design mock-up calls for thin, gray
lines between each list item, easily accomplished with the shorthand border-bottom prop-
erty. This one property takes the place of the longhand properties border-bottom-width,
border-bottom-style, and border-bottom-color, accepting all three values in a single decla-
ration to apply a border to the bottom of each list item (the values can occur in any order).

We’ll also apply an equivalent border-top declaration to the navigation ul element, and
we’ll add another rule that removes underlines from the navigation links. Usability and
accessibility guidelines have long discouraged removing underlines from links (we even
discouraged it earlier in this chapter). However, the links in this menu are already visually
distinct and separate from other text content, so removing the underlines here is a small

309

http://www.complexspiral.com/publications/containing-floats
http://css-discuss.incutio.com/?page=ClearingSpace

310

CHAPTER 11 PUTTING IT ALL TOGETHER

compromise to make in the name of aesthetics. Listing 11-21 shows the CSS rules styling
the menu.

Listing 11-21. Styling the Navigation Menu

#navigation {
float: left;
width: 30%;
margin: 0;
padding: 0;
list-style: none;
border-top: 1px solid #b5b5b5; }

#navigation 1i {
padding: 6px 0;
font: 130% Georgia, "Times New Roman", Times, serif;
border-bottom: 1px solid #b5b5bs; }

#navigation a { text-decoration: none; }

You can see the menu nearing completion in Figure 11-14.

Our Menu Hot fo
About Us Spaghett
Raves and Reviews heart of

using onl
News and Events ustic we
Contact Us offer cat

Our broa

Figure 11-14. The navigation menu is now rendered in a different typeface with lines drawn
between the list items and underlines removed from the links.

Background Bullets

In Chapter 4, you learned how to replace the default bullet character with a graphic using
the list-style-image property. But there’s another method to achieve a similar visual
effect using a background image and a bit of padding. With the bullets removed entirely
(with 1list-style: none), a background image is applied to the 1i element, and some
padding on the element’s left side indents the text to make space (otherwise, the text
would overlap the image). Many designers prefer this technique because it grants them

CHAPTER 11 PUTTING IT ALL TOGETHER

more precise control over the positioning of the bullet image. You can see how it’s done in
Listing 11-22.

Listing 11-22. Adding a Bullet-Style Background to Menu Items

#navigation 1i {
font: 130% CGeorgia, "Times New Roman", Times, serif;
border-bottom: 1px solid #ededes;
padding: 6px 0 6px 35px;
background: transparent url(images/ornament.gif) 0 50% no-repeat; }

We're using the shorthand background property again, this time including values for
background-position to place the image at the element’s left side, vertically centered. A
vertical position of 50% will be half the element’s height, whatever that height may be, so
the image stays properly aligned when textis resized (you learned about positioning back-
ground images in Chapter 5). Figure 11-15 shows the finished menu.

Our Menu Hot fo
About Us Spaghett
Raves and Reviews heart of

using onl
News and Events ustic we
Contact Us offer cat

Our broa

Figure 11-15. The finished menu, now with fancy bullet background images

Styling the Footer

In our mock-up, the copyright notice has a red top border, but it’s not quite as simple as
border-top: 1px solid red.There’s a small flourish at one end of the line, something that
can be accomplished only with an image. Alas, CSS as it exists today doesn’t provide the
means to specify an image as an element’s border, but maybe that will be added in a future
version of the language (are you listening, W3C?). Until then, we can use a background
image to achieve the effect.

As you saw in the navigation menu, you can apply padding to an element to wedge in
some space where a background image will appear. We can create our decorative border
with a bit of top padding and a background image spreading across the width of the element,
something a bit more interesting than a plain line. Listing 11-23 is the final CSS rule that
styles the copyright paragraph. You'll recognize all of these properties by now.

311

312

CHAPTER 11 PUTTING IT ALL TOGETHER

Listing 11-23. Styling the Footer

#copyright {
clear: both;
text-align: right;
font-size: 80%;
color: #888;
padding-top: 15px;
background: transparent url(images/footerline.gif) 100% 0 no-repeat; }

Figure 11-16 shows the result.
seconds anyway). But it’s not all noodles and crust at Spaghetti & Cruft;

we also have fresh veggie sides, an all-you-can-eat salad bar, and the best
cannolis in town!

Figure 11-16. Our restyled copyright statement. Compare this to how it appeared in Figure 11-13.

The curly twist that decorates the border image appears at only one end of the line, so
the background image needs to be extremely wide if it’s going to span the entire liquid
page at any size. This graphic is 2000 pixels wide, but it’s only 14 pixels tall and has been
reduced to just a few colors, resulting in a very small file that should download quickly.
The background stretches all the way to the left end of the element because it’s positioned
at the far right.

There’s just one problem with this technique: visual web browsers that honor the CSS
but don’t display images—if the user has disabled downloading images, for example—
won’t display any border at all. In the case of this footer, the border is purely decorative
and isn’t really essential to understanding the content, so using an image here does no
harm.

Assembling the Pages

With our page template completed and styled, we can finally start fleshing out the rest of
the site. We'll create all the pages and fill them with content, which we’ll always structure
with semantically appropriate markup. We’ll inevitably need to return to our style sheet to
enhance the content’s presentation as it's added along the way.

The Menu Page

The Spaghetti & Cruft menu is split into three categories—Pizza, Pasta, and Desserts—
listing dishes and their prices within each category (if this were a real pizzeria, it would

CHAPTER 11 PUTTING IT ALL TOGETHER

probably serve more options than we’re listing, but this is enough for our demonstration).
Although a menu might lend itself to a list format—a menu is a list of choices, after all—
we're choosing tables to draw an emphatic connection between each item and its different
prices, sorted into rows and columns.

The page title, “Good eats for hungry geeks,” is marked up as an h2 element, and each
menu category has an h3 subheading. The tables themselves use table headers to mark
both the price columns (with scope="col") and the rows for individual dishes (with
scope="row"). Where these rows and columns intersect, the price contained in that table
cellis clearly associated with both the name of the dish and the price category. You can see
an example of our menu table markup in Listing 11-24, shortened here for the sake of
brevity (we’re showing only one row plus the header row). Each of the three tables follows
a similar pattern. You learned about all of these elements and attributes in Chapter 7.

Listing 11-24. A Truncated Example of a Menu Table

<table class="menu" summary="Pizzas and their prices, =
in five rows of five columns">
<thead>
<tr>
<td></td>
<th scope="col">Slice</th>
<th scope="col">Small</th>
<th scope="col">Medium</th>
<th scope="col">Large</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Pizza Napoli Vegetarian</th>
<td>$2.50</td>
<td>$9.00</td>
<td>$11.00</td>
<td>$15.75¢</td>
</tr>
</tbody>
</table>

Figure 11-17 shows two tables from the menu page in their current state, rendered with
only inherited CSS (we’ve already styled the h3 headings in another typeface). Because the
tables lack presentational width attributes, each is only as wide as its contents. But we had
the foresight to give each table a class attribute, classifying them as “menu” tables so that
we can easily style them later with CSS.

313

314

CHAPTER 11 PUTTING IT ALL TOGETHER

Pizzas

Slice Small Medium Large

Pizza Napoli Vegetarian $2.50 59.00 511.00 $515.75

Pizza Roma $2.25 $8.50 510.50 $14.00

Pizza Sicilia $2.25 $8.50 510.50 $14.00

Pizza Classico any two toppings $2.75 $9.50 $11.50 $15.00

Pizza Vegetario Vegetarian $1.75 57.50 $9.75 $12.80
Pasta

Half Full

Classic Spaghetti $4.50 58.00
Fettuccine Alfredo Vegetarian $5.25 $9.50
Linguini Bolognese $5.25 59.50
Fusilli Marinara Vegetarian 52.75 $9.50

Figure 11-17. A portion of the menu page, showing the tables as they appear with their
inherited styles

Styling the Menu Tables

We’ve given ourselves the menu class as a useful hook from which to hang our style rules.
In addition to offering a handy CSS selector, this classification differentiates menu tables
from any other tables that may appear on the site, uniting them and establishing their
relationship in a meaningful way. Because these tables belong to the same class, they can
also share aspects of their presentation.

To begin, we can address the width issue with a simple width property and a value of
100%; these tables will now occupy the full available width, which will be the same width
as the main content div that surrounds them, adjusting fluidly with the window size. A
bottom margin will create a bit of vertical spacing between the end of each table and the
heading that follows it.

Although each menu table has a width of 100%, the cells within them have no declared
width at all. The browser will automatically calculate their widths to be at least as wide as
their contents and then expand them further to occupy the full width of the table (the
calculated widths of each cell in a row will add up to 100%). Each of our three tables has a
different number of columns, so the column widths are calculated differently in each
table. Declaring a width for th elements within the table bodies brings the price columns
in line while each price column itself is still sized automatically.

Many graphical browsers display the contents of table headers in a boldfaced font hori-
zontally centered. This styling is important to distinguish header cells from data cells, but
we can use CSS to alter that default presentation and still make them visually distinct.

CHAPTER 11 PUTTING IT ALL TOGETHER

Because th elements appear in both the thead and tbody elements, we can rely on their
ancestors to differentiate the two kinds of table headers with descendant CSS selectors.

Some menu items include a note of extra information contained in an em element.
Those notes inherit their size, weight, and color from the th elements that contain them,
but we’ll use a descendant selector to declare that those specific em elements should
appear slightly smaller, in a normal weight, and in a different color. The notes are still
semantically emphasized by the em elements—we’re altering only their presentation.

Lastly, we’ll add a light gray border to the bottom of th and td elements, drawing a hori-
zontal line between each row to help our readers visually scan across the table. Most
graphical browsers render tables with a small amount of spacing between cells (usually
about 2 pixels), causing tiny gaps in the line. Adding a border-collapse: collapse decla-
ration to the .menu rule instructs the browser to close those default gaps and draw a
continuous border.

Listing 11-25 shows the complete set of CSS rules to style the menu tables.

Listing 11-25. Styling the Menu Tables

.menu {
width: 100%;
margin-bottom: 3em;
border-collapse: collapse; }

.menu td { border-bottom: 1px solid #ddd; }

.menu th {
color: #ab0000;
text-align: left;
border-bottom: 1px solid #ddd; }

.menu thead th { font-size: 85%; }
.menu tbody th { width: 50%; }

.menu tbody th em {
font-size: 90%;
font-weight: normal;
color: #555; }

Figure 11-18 shows an updated example of the menu tables, which have improved
much since you last saw them in Figure 11-17.

315

316 CHAPTER 11 PUTTING IT ALL TOGETHER

Pizzas

Slice Small Medium Large
Pizza Napoli Vegetarian $2.50 $9.00 $11.00 $15.75
Pizza Roma $2.25 $8.50 $10.50 $14.00
Pizza Sicilia $2.25 $8.50 $10.50 $14.00
Pizza Classico any two toppings $2.75 $9.50 $11.50 $15.00
Pizza Vegetario Vegetarian $1.75 §7.50 $9.75 $12.80
Pasta

Half Full
Classic Spaghetti 54.50 $8.00
Fettuccine Alfredo Vegetarian $5.25 $9.50
Linguini Bolognese $5.25 $9.50
Fusilli Marinara Vegetarian $2.75 $9.50

Figure 11-18. The finished Spaghetti & Cruft menu

Updating the Navigation

The Spaghetti & Cruft site features persistent navigation; the same list of links appears on
every page of the site so a user to can easily reach any other page from whichever page they
happen to be reading. When a user follows a navigation link to arrive at a new page on the
site, that original link is no longer needed in the navigation. Your visitors might not remember
which link they clicked to land on a new page, so if that link is still present, they could
become confused when clicking it doesn’t seem to lead anywhere (the link would still
work; they would just end up exactly where they already were).

Yetwe wouldn’t want to remove the item from the navigation list entirely; we only want
to make it so that it’s no longer a link. Removing the anchor but leaving the original text
lets the list item act as a signpost, telling the user, “You are here.” That signpost can also
be styled differently from the other items in the navigation menu to make it stand out and
provide an additional hint that it’s no longer a clickable link. Listing 11-26 shows the
updated navigation list as it appears in the menu page markup.

Listing 11-26. Indicating the Current Page in the Navigation Menu

<ul id="navigation">
<1i class="current">Our Menu</1i>
About Us</1li>
Raves and Reviews
News and Events

CHAPTER 11 PUTTING IT ALL TOGETHER

<liyContact Us</1i>

We've added class="current" to the list item that corresponds to the current page.
We'll use this primarily as a selector to apply CSS, but it also has some additional meaning:
it classifies this item as the currently active item in the list. To visually distinguish that
item, we can change the color and style of its text contents as well as swap in a different
background image. Listing 11-27 shows the CSS rule. The new background image will be
used because this rule has a more specific selector, but the background-position value
carries through from the less specific rule that appears elsewhere in the style sheet.

Listing 11-27. Styling the Current Menu Item

#navigation li.current {
color: #ab0000;
font-style: italic;
background-image: url(images/ornament-current.gif); }

Figure 11-19 shows the result, clearly indicating the current page in the navigation list.

222 Qur Menu Good e
About Us Our fresh |
Raves and Reviews please. An
News and Events Pizzas
Contact Us

Pizza Nap«

Figure 11-19. The navigation menu as it now appears, with the current page highlighted

Every subsequent page we create will receive this alteration to its navigation list, removing
the corresponding link and indicating the current page with the addition of a simple class
attribute.

The Reviews Page

Spaghetti & Cruft has been written up favorably in local newspapers and on community
websites, so Mario and Luigi have asked for a place to showcase reviews on their website.
Instead of publishing the reviews in their entirety, we're going to include only a short

excerpt of each review paired with a link leading to the full review at the original website
(if possible). Each excerpt will be marked up in a blockquote element, followed by a cite

317

318

CHAPTER 11 PUTTING IT ALL TOGETHER

element featuring a link to the original source. Both are grouped in a div that’s classified
as a “blurb.” Listing 11-28 shows an example.

Listing 11-28. An Example of a Quoted Passage from a Review

<div class="blurb">
<blockquote cite="http://example.com/SpaghettiCruft/">
<p>Spaghetti 8& Cruft offers tasty, wood-fired pizzas at affordable
prices, served in a hip, relaxed atmosphere. Comfortable seats, free
WiFi, and abundant power outlets make this a popular spot for the
neighborhood technophiles to linger with their laptops.</p>
</blockquote>

<p class="source"><cite><a href="http://example.com/SpaghettiCruft/"w=
title="Read this full review at example.com">
Gotham Examiner, November 22, 2006</cite></p>
</div>

The link to the original article is nested within the cite element and class="source" is
added to its parent paragraph to set it apart both semantically and stylistically once we
author the CSS. The link’s title attribute offers a hint at where thelink willlead so areader
won’t be too surprised when they’'re whisked away to another website. You can see this
quotation in Figure 11-20 before any further styling has been applied.

Spaghetti & Cruft offers tasty, wood-fired pizzas at affordable prices,
served in a hip, relaxed atmosphere. Comfortable seats, free WiFi,
and abundant power outlets make this a popular spot for the
neighborhood technophiles to linger with their laptops.

Gotham Examiner, November 22, 2006

Figure 11-20. The review blurb as it appears in a graphical browser with its inherited styling

Block quotations appear as indented blocks with margins on the left and right sides by
default. We’ll adjust those margins with the CSSmargin property, giving each review quote
a left and right margin of 20 pixels and a top and bottom margin of 1 em space, using the
blurb class as our style hook (only block quotations descended from that class will be
granted these style properties, rather than all blockquote elements sitewide).

To visually separate each review blurb (the term blurb refers to any short quote taken
from alonger review, such as you’ve seen on movie posters or on the back cover ofabook),
each one will have a small decorative graphic beneath it. It’s applied to the containing div
the same way we added decorative background images to the navigation items and the

http://example.com/SpaghettiCruft
http://example.com/SpaghettiCruft

CHAPTER 11 PUTTING IT ALL TOGETHER 319

copyright statement, using the background shorthand property and some padding to create
adequate space.

Just to make them a bit more interesting to look at and to further distinguish them from
regular, nonquoted text elsewhere on the page, we’ll italicize these blurbs with the decla-
ration font-style: italic. However, because the cite element is italicized by default in
most browsers, citations might tend to blend in with the quotation. We can override that
default style with the declaration font-style: normal, using a descendant selectorso cite
elements elsewhere won'’t be affected. We’ll also align the citation to the right and reduce
its font size, using the class we added to its containing paragraph in our selector.

Listing 11-29 shows the full set of CSS rules that style the review excerpts.

Listing 11-29. Styling Review Excerpts

.blurb {
margin-bottom: 1em;
padding-bottom: 30px;
background: transparent url(images/blurb.gif) 50% 95% no-repeat; }

.blurb blockquote {
margin: lem 20pXx;
font-style: italic; }

.blurb cite { font-style: normal; }

.blurb p.source {
text-align: right;
font-size: 90%; }

Figure 11-21 shows a portion of the Spaghetti & Cruft reviews page, illustrating the
effects of the previous CSS.

Spaghetti & Cruft offers tasty, wood-fired pizzas at affordable prices,
served in a hip, relaxed atmosphere. Comfortable seats, free WiFi, and
abundant power outlets make this a popular spot for the neighborhood

technophiles to linger with their loptops.

Gotham Examiner, November 22, 2006

Nestled between a prominent web design consultancy and a bicycle repair
shop, Spaghetti & Cruft is a neighborhood favorite.

Jessica Spengler - Principia Gastronomica

Figure 11-21. Two styled blurbs from the Spaghetti & Cruft reviews page

320

CHAPTER 11 PUTTING IT ALL TOGETHER

The Contact Page

The Spaghetti & Cruft contact page will allow site visitors to reach Mario and Luigi by
filling in a simple form. A form handler on the server processes the entered data, automat-
ically sending the message to both brothers via e-mail.

The form includes text fields in which a visitor can enter his or her name and e-mail
address, a selection menu to choose one of a few possible message subjects, a larger text
area for the message, and a button to submit the whole thing. Because each of these controls
represents a discrete action on the user’s part, they can be semantically separated any
number of ways. Each could be contained in a div element, logically grouping the control
with its text label. They could also be wrapped in paragraphs, with each label/control pair
representing a distinct thought or idea. But for this site, we’re choosing to mark up the
form as an ordered list, with each control and its label playing the role of one step in a
sequence.

Listing 11-30 presents the contact form markup in its entirety. All of the XHTML elements
used here should be familiar to you by now (you can turn back to Chapter 8 for a refresher
on form markup).

Listing 11-30. The Spaghetti & Cruft Contact Form

<form method="post" action="/path/to/formhandler/">
<fieldset id="contact">

<legend>Contact us</legend>

<1li>
<label for="name">Your name</label>
<input type="text" id="name" name="name" />
</1i>

<label for="email">Your E-mail address</label>
<input type="text" id="email" name="email" />
</1i>

<label for="subject">What's this about?</label>
<select id="subject" name="subject">
<option value="" selected="selected">-- select --</option>
<option value="Hello">I'm just saying "hello"</option>
<option value="Menu Question">I have a question about your menu</option>
<option value="Catering">I have a question about catering</option>

CHAPTER 11 PUTTING IT ALL TOGETHER 321

<option value="Complaint">I'd like to lodge a complaint</option>
</select>
</1i>

<1i>

<label for="message">Your message</label>

<textarea id="message" name="message" cols="40" rows="10"></textarea>
</1i>

<1i>
<input type="submit" id="submit" name="submit" value="Send" />
</1i>

</fieldset>
</form>

Asyoulearned in Chapter 8, form controls tend to look very different from one browser
to the next. We're going to leave these controls alone for the most part, allowing each
browser to display them in its native style rather than risk any usability snags brought
on by overstyling interactive input widgets. On the other hand, the structural elements
surrounding those controls are wide open for styling. Figure 11-22 shows what this form
looks like in Firefox 2.0 for Mac OS X, displayed with only the style properties it inherits
from elsewhere in the style sheet along with the browser defaults.

—Contact us

1. Your name |

2. Your E-mail address |
3. What's this about? | -~ select -~ |

4. Your message

5. Send |

Figure 11-22. The contact form as rendered by Firefox for Mac OS X before we've applied any
further styling

To begin sprucing up this form with a touch of CSS, we’ll remove the default border and
padding from the surrounding field set (as you learned to do in Chapter 8) and the default

322

CHAPTER 11 PUTTING IT ALL TOGETHER

numbering from the ordered list (as youlearned to do in Chapter 4). The fieldset element
has been identified as contact, so we can use that ID as a hook in all our subsequent CSS
rules. We’ll also neutralize the default margins and padding on the ordered list while we’re
atit.

We’ll align the controls in a neat column by converting their labels to floating blocks
with a declared width; this technique was also covered in Chapter 8. This time, we’ll make
the label elements 30% of the main content area’s width and they’ll adjust automatically
with the liquid layout.

To combat any problems with the floating labels bumping into each other, we can also
float the listitems that contain them; a floated element will automatically contain another
floated element, so each floating 1i element effectively clears the floating label inside it.
Declaring a width of 100% for those list items prevents them from collapsing around their
contents—floated elements are reduced to the width of their content, so declaring a width
counteracts this so-called shrink-wrapped effect. A bit of top and bottom margins on the
list items and a right margin on the labels spaces everything out nicely.

We’ll bring the submit button in line with the form controls above it with the addition
of a 32% left margin (the width of the labels plus their right margins). We can target the
button specifically by its unique ID, differentiating it from other input elements. The button is
rather small because of its short text label, so we’ll increase its width to present a larger
target for easier clicking, using ems once again to keep the button’s width proportional to
the text size.

As you learned in Chapter 8, form controls won’t always inherit their font styles from
their parent element, easily remedied with font-family: inherit and font-size: 100%.

Lastly, the form’s legend could use some attention. Even though the legend element is
difficult to style in some browsers, it’s not entirely immune to CSS. We can make it look
justlike one of our h3 headings by applying the same style declarations to the legend
element. Many browsers apply some default padding or margins to the left and right sides
of form legends, so removing those will help it align flush to the left as if it were a regular
heading. Why not simply use an h3 element to begin with? Remember, legend is arequired
element for field sets, and it brings improved form accessibility along with it. We want it
to only look like a level-three heading without losing the benefits of a proper legend
element.

Listing 11-31 shows these new additions to the style sheet, making the contact form
more attractive and more in line with the overall look of the site.

CHAPTER 11

Listing 11-31. Styling the Contact Form

#contact {
border: none;
margin: 0;

padding: 0; }

#contact ol {
list-style: none;
margin: 0;
padding: 0; }

#contact 1i {
margin: .2em 0;
float: left;
width: 100%; }

#contact label {
width: 30%;
float: left;
text-align: right;
margin-right: 2%; }

#contact input#submit {
margin-left: 32%;
width: 10em; }

#contact input, #contact select, #contact textarea {
font-family: inherit;
font-size: 100%; }

#contact legend {
color: #ab0000;
font: 135% Georgia, "Times New Roman", Times, serif;
margin: auto 0;
padding: 0; }

PUTTING IT ALL TOGETHER

Figure 11-23 shows the result: the finished Spaghetti & Cruft contact page.

323

324 CHAPTER 11 PUTTING IT ALL TOGETHER

Spaghetti & Cruft
742 Cederholm Ave.
Gotham, CA 00234
510-555-0987

Pizza, pasta, and WiFl.
Enjoy a bite with your bytes.

GEEK PIZZERIA

Our Menu Drop us a line

About Us We love getting e-mail! If you have any questions or comments for the S&C

Raves and Reviews crew, send it to us using the form below.

News and Events All fields are required.

2 Contact Us Contact us

Your name
Your E-mail address

What's this about? |-- select -- =

Your message

Send

o—

©2007 Spaghetti & Cruft : Geek Pizzeria

Figure 11-23. The finished Spaghetti & Cruft contact page

Summary

This has been one of the longest chapters in this book, but we hope it has also been one of
the most enlightening. You've learned about just one approach to the web design process
and seen it put into action, following the design and construction of our fictional site for
Spaghetti & Cruft. We didn’t cover every last corner of the site, but we walked you through
some of the more interesting parts in enough detail to give you a feel for how it all came
together. All of the markup and CSS examples you've seen in this book—including this
entire case study site—are available at the Apress website (http://www.apress.com) to
download and dissect at your leisure. You can also visit this book’s companion site (http://
www. beginninghtmlbook. com) to see the completed Spaghetti & Cruft website along with
some other useful information about how it was made.

HyperText Markup Language is the very foundation of the World Wide Web. It’s the
common root language without which this vast frontier of cross-referenced information
at our fingertips wouldn’t be possible. This language and the web it weaves allows us
to stay abreast of current affairs in our communities, delve into the histories of distant

http://www.apress.com
http://www.beginninghtmlbook.com
http://www.beginninghtmlbook.com

CHAPTER 11 PUTTING IT ALL TOGETHER

cultures, study the latest breakthroughs in particle physics, and giggle at adorable pictures
of cats with poor grammar. HTML is truly a marvelous thing—powerful yet approachable.

Now that you've grasped the fundamentals of modern, semantic markup and CSS, you
might be wondering, what’s the next step? Keep learning, of course. This book has offered
only a glimpse of what it’s possible to create with these core web languages. Go online and
explore some of the many and varied resources available to you. Graduate to the next level
and further hone your skills with CSS and JavaScript. We highly recommend Beginning
CSS Web Development, by Simon Collison (Berkeley, CA: Apress, 2006), and Beginning
JavaScript with DOM Scripting and Ajax, by Christian Heilmann (Berkeley, CA: Apress,
2006), as helpful guides on your path from novice to professional.

But above all, experiment. Open a text editor, grab your favorite web browser, and just
dive in. We’ve shown you that it doesn’t require any expensive tools or arcane knowledge
to create innovative websites. The web was built by enthusiastic tinkerers, so get out there
and tinker.

325

APPENDIX A

XHTML 1.0 Strict Reference

This appendix provides a reference to the elements described throughout the text. The
elements listed are from the XHTML 1.0 Strict specification, which you can find at http://
www.w3.o0rg/TR/xhtml1/. You can also check out the actual Document Type Definition
(DTD) at http://www.w3.0rg/TR/xhtml1/dtds.html.

Core Attributes

The core attributes are common attributes found in most XHTML elements. The following

elements only support some of the attributes: base, html, meta, param, script, style, and title.

Attribute Description

class Indicates the class or classes that a particular element belongs to

id Specifies a unique identifier to be associated with an element

style Specifies an inline style for the element

title Supplies text that is often rendered as a tooltip when the mouse is over the element

Internationalization Attributes

Internationalization attributes are valid in all elements except base, br, param, and script.

Attribute Description

dir Sets the text direction.

xml:lang Specifies the language being used for the enclosed content; see http://waw.
w3.0rg/XML/1998/namespace for more details. This replaces the deprecated lang
attribute.

327

http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xhtml1/dtds.html
http://www

328

APPENDIX A XHTML 1.0 STRICT REFERENCE

Keyboard Attributes

Keyboard attributes are valid in most elements and pertain to using the keyboard.

Attribute Description
accesskey Sets a keyboard shortcut to access an element
tabindex Sets the tab order for an element

<!DOCTYPE>

The <!DOCTYPE> declaration is at the top of the XHTML document and specifies which XHTML
specification the document uses. The possible values for this are the DTDs representing
the XHTML Strict DTD, the XHTML Transitional DTD, and the XHTML Frameset DTD.

Required attributes: None
Optional attributes: None
Core attributes: None
Event attributes: None

See Chapter 3 for usage.

<a>

The a element is used to specify an anchor within your document. You can use an anchor
to link to another document or to a shortcut within the same document.

Required attributes: None

Optional attributes:
e charset: Specifies a character set used in the encoding of the target URL.

e coords: Specifies coordinates that are used to define a shape used in a client-side
image map.

APPENDIX A XHTML 1.0 STRICT REFERENCE

e href: This the URL that you wish the browser to open when the user clicks on the
link. This is the most commonly used attribute for the anchor tag.

* hreflang: Specifies the base language used in the URL specified by the href attribute.

e rel: Specifies the relationship between the current document and the target URL.
Possible values include alternate, stylesheet, start, next, prev, contents, index,
glossary, copyright, chapter, section, subsection, appendix, help, and bookmark.

e rev: Specifies the relationship between the target URL and the current document.
Possible values include alternate, stylesheet, start, next, prev, contents, index,
glossary, copyright, chapter, section, subsection, appendix, help, and bookmark.

* shape: Defines the type of region for mapping in the current area element in an
image map. Possible values include rect, circle, default, and poly.

* type: Specifies the MIME type of the target URL. Refer to Chapter 1 for details on the
MIME types.

Core attributes: accesskey, class, id, dir, lang, style, tabindex, title, xml:1lang

Event attributes: onblur, onclick, ondblclick, onfocus, onkeypress, onkeydown,
onkeyup, onmousedown, onmouseup, ONMOUSeoVver, onmousemove, onmouseout

See Chapter 6 for usage.

<abbr>

The abbr element specifies an abbreviation, such as “Co.” and “Mr.” By marking up abbre-
viations, you can provide useful information to other applications that may be interpreting
your document.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

329

330 APPENDIX A XHTML 1.0 STRICT REFERENCE

<acronym>

The acronym element specifies that the content is an acronym, such as RAM for random

access memory. By marking up acronyms, you can provide useful information to other
applications that may be interpreting your document.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onNmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<address>

The address element specifies an address. You should use this element to specify an
address or signature of a document.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE 331

<darea>

The area element is used to specify a region in a client-side image map.

Required attributes:
e alt: Specifies text to be used as an alternative for the area
Optional attributes:

e coords: This attribute defines the position and shape within a map. The area s click-
able using a mouse, but it’s also selectable with a keyboard. When the shape attribute
equals rect, then the format is left, top, right, and bottom. If the shape attribute equals
circ, then the format is center x, center y, and radius. If the shape attribute equals
poly, then the format is x1, y1, x2, y2, . . . xn, yn.

e href: A URL that specifies the link to another resource for the area.
e nohref: Used to exclude an area from an image map.
* shape: Specifies the shape of an area. Valid values are circle, default, poly, and rect.

Core attributes: accesskey, class, id, dir, lang, style, tabindex, title, xml:1lang

Event attributes: onblur, onclick, ondblclick, onfocus, onkeypress, onkeydown, onkeyup,
onmousedown, onmouseup, oNMOUSEOVET, oNMousemove, onmouseout

See Chapter 6 for usage.

<h>

The b element is used to specify text as being rendered as bold. Using CSS is the preferred
method instead of using this element.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

332 APPENDIX A XHTML 1.0 STRICT REFERENCE

<hase>

The base element specifies a base URL for all the relative URLs in a document. This element
appears in the head section of the document.

Required attributes:
e href: Specifies a URL to use as the base URL for all links in the document

Optional attributes: None
Core attributes: None
Event attributes: None

See Chapter 3 for usage.

<hdo>

The bdo element is used to override the default text direction.

Required attributes:

e dir: Specifies the direction of the text. Valid values are 1tr (right to left) and rtl
(right to left).

Optional attributes: None
Core attributes: class, id, lang, style, title, xml:1lang
Event attributes: None

See Chapter 4 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE

<hig>

The big element is used to specify text as being rendered larger than normal. Using CSS is
the preferred method instead of using this element.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<blockquote>

The blockquote element specifies a long quotation. Typically, a blockquote renders in a
browser by placing white space on both sides of the text.

Required attributes: None

Optional attributes:

e cite: If the quote is from an Internet source, a URL will point to where the quote is
from.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

333

334 APPENDIX A XHTML 1.0 STRICT REFERENCE

<hody>

The body element defines the document’s body. It contains all the content for the document.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onload, onunload,
onmousedown, onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 2 for usage.

<hr>

The br element inserts a single line break. The br element doesn’t have a closing element;
therefore, it should be used as
. However, due to compatibility, a space is often
placed prior to the closing tag:
.

Required attributes: None

Optional attributes: None

Core attributes: class, id, style, title
Event attributes: None

See Chapter 4 for usage.

<hutton>

The button element specifies a push button within your document. A button element can
contain text or images.

Required attributes: None

Optional attributes:

e disabled: Makes the button disabled and removes the control from tab navigation.
The control’s value won’t be submitted when the form is submitted.

* name: Specifies the unique name for the button.

APPENDIX A XHTML 1.0 STRICT REFERENCE

* type: Specifies the type of button. Valid values include button, reset, and submit. If
no type is specified, the default value is submit.

¢ value: Removes the control from tab navigation and won’t submit the control’s
value when the form is submitted.

Core attributes: accesskey, class, id, dir, lang, style, tabindex, title, xml:1lang

Event attributes: onblur, onclick, ondblclick, onfocus, onkeypress, onkeydown,
onkeyup, onmousedown, onmouseup, ONMoUSeover, onmousemove, onmouseout

See Chapter 8 for usage.

<caption>

The caption element is used to place a caption above the table; it is not contained within
arow or cell. The caption element is placed immediately after the start tag for the table.
You can specify a single caption per table.

Required attributes: None
Optional attributes: None
Core attributes: class, id, dir, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

See Chapter 7 for usage.

<cite>

A citation is a reference to another resource.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

335

336 APPENDIX A XHTML 1.0 STRICT REFERENCE

<code>

The code element is used to define text as computer code.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onNMouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<col>

The col element is used to define the attribute values for one or more columns in a table.
You can use the col element to specify whatever attributes you want to be in common for
each column.

Required attributes: None

Optional attributes:

* align: Specifies the alignment of the text within a cell. Possible values include
center, char, justify, left, and right.

e char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

* span: Specifies the number of columns the col should occupy as a number.

* valign: Specifies the vertical alignment of cell content. Possible values include
baseline, bottom, middle, and top.

APPENDIX A XHTML 1.0 STRICT REFERENCE 337

e width: Specifies the width of the table in pixels or as a percent.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

See Chapter 7 for usage.

<colgroup>

The colgroup element is used to define a group of col elements. You should use this
element only within a table element. Use this element to group columns for formatting.

Required attributes: None

Optional attributes:

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

* char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

* span: Specifies the number of columns the colgroup should occupy as a number.

* valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

width: Specifies the width of the table in pixels or as a percent.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

See Chapter 7 for usage.

338 APPENDIX A XHTML 1.0 STRICT REFERENCE

<dd>

The dd element marks the start of a definition for a term within the definition list. A defi-
nition term must be within a set of definition list (d1) elements.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, oNMouUSeover, onmouseout, onmouseup

See Chapter 4 for usage.

The del element can be used to specify text that has been deleted in a document. It is often
used when you’re editing a document and trying to keep track of all the original content.
Most web browsers display the text with a line through it.

Required attributes: None

Optional attributes:

e cite:Ifthe quoteis from an Internet source, the citation will point to the URL where

the quote is from.

e datetime: Specifies the date and time that the text was marked as deleted.

Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, oNMoUSeover, onmouseout, onmouseup

See Chapter 4 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE 339

<div>

The div element specifies a division or section within a document.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<dfn>

The dfn element is used to define a definition within text.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmMouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<dl>

The d1 element marks the start of a definition list. A definition list must be in the body of
the document.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, oNMouseover, onmouseout, onmouseup

See Chapter 4 for usage.

340 APPENDIX A XHTML 1.0 STRICT REFERENCE

<dt>

The dt element marks the start of a term within the definition list. A definition term must

be within a set of d1 elements.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

The em element is used to define text that will be emphasized when rendered.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, oNMoUSeover, onmouseout, onmouseup

See Chapter 4 for usage.

<fieldset>

A fieldset element is used to draw a box around the element within it. It is often used
when grouping elements within a form to help nonvisual browsers.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 8 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE 3

<form>

The form element is used to contain other elements that make up a form used for user
input. Forms are used to pass data from controls to a specified URL.

Required attributes:

e action: Specifies a URL where to send the data when the user clicks the Submit
button on the form. It is also possible that the form was submitted using script, in
which case it will act as if the Submit button was clicked.

Optional attributes:

* accept: A comma-separated list of MIME types that the server accepts and
processes correctly as files.

* accept-charset: A comma-separated list of possible character sets for the form data.

* enctype: The MIME type used to encode the data within the form when the method
attribute is set to post.

e method: The HTTP method for sending data to the URL specified by the action
attribute. Possible values are get and post. Specifying get appends the data after the
URL itself in the URL. Specifying post places the data within the request itself.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup, onreset, onsubmit

See Chapter 8 for usage.

<h1> - <h6>

The h1 - h6 elements define headers within the document. h1 specifies the largest header,
while h6 specifies the smallest header.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, ONMOUSeoVer, onmouseout, onmouseup

See Chapter 4 for usage.

342 APPENDIX A XHTML 1.0 STRICT REFERENCE

<head>

The head element contains information about the XHTML document. Typically, nothing
in the head section is displayed to the user in a browser.

Required attributes: None

Optional attributes:

» profile: A space-separated list of URLs that point to metadata profiles about
the page

Core attributes: dir, lang, xml:lang

Event attributes: None

See Chapter 3 for usage.

<hr>

The hr element is used to display a horizontal line when rendering the document.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onNMouseover, onmouseout, onmouseup

See Chapter 4 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE

<html>

This element tells a browser that the document is an HTML document and is the parent of
all the other major sections within the document.

Required attributes:

e xmlns: Used to define the XML namespace attribute. However, most validators assume
the value "http://www.w3.0rg/1999/xhtml" since it is a fixed value.

Optional attributes: None
Core attributes: dir, id, lang, xm1:1lang
Event attributes: None

See Chapter 2 for usage.

<>
The i elementis used to specify text as being rendered in italics. Using CSS is the preferred
method instead of using this element.

Required attributes: None

Optional attributes: None

Core attributes: class, dir, id, lang, style, title

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmMouseover, onmouseout, onmouseup

See Chapter 4 for usage.

343

http://www.w3.org/1999/xhtml

344 APPENDIX A XHTML 1.0 STRICT REFERENCE

The img element specifies an image within a document.

Required attributes:

e alt: Specifies a brief description of the image

e src: Specifies the URL of the image to be displayed

Optional attributes:

* height: Specifies the height of an image.

» ismap: Specifies that the image should be used as a server-side image map.

* longdesc: Specifies a URL to a document that contains a long description of the image.

* usemap: Specifies the image as a client-side image map. The browser should look for
the map and area elements for the specifics.

e width: Specifies the width of an image.

Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 5 for usage.

<input>
The input element specifies the start of an input field where the user can enter data.

Required attributes: None

Optional attributes:

e accept: A comma-separated list of MIME types that indicate the type used for a file
transfer when using the file value for the type attribute.

e alt: Specifies a brief description of the image.

APPENDIX A XHTML 1.0 STRICT REFERENCE

* checked: Indicates that the input element should be checked (selected). This is valid
with the checkbox and radio types.

e disabled: If set to the value disabled, it will make the <input> control disabled and
not respond to user interaction.

» ismap: Specifies that the image should be used as a server-side image map.

* maxlength: Specifies the maximum number of characters allowed in a text field
when using the text value in the type attribute.

* name: Specifies the unique name for the input element.

* readonly: Specifies the value readonly. It indicates that the value of the field cannot
be modified when using the text value in the type attribute.

e size: Specifies the size of the input element in characters.

» src: Specifies the URL of an image to be displayed when using the value image with
the type attribute.

» type: Specifies the type of the input element. Valid values are button, checkbox, file,
hidden, image, password, radio, reset, submit, and text (default).

* usemap: Specifies the image as a client-side image map. The browser should look for
the map and area elements for the specifics.

* value: The value attribute has different meaning based on the type attribute’s
value. For button, reset, and submit types, it specifies the text that appears on the
button. For the image type, it specifies the symbolic result of the field passed to a
script. For the checkbox and radio types, it specifies the result of the input element
when clicked.

Core attributes: class, dir, id, lang, style, tabindex, title, xml:1lang

Event attributes: onblur, onchange, onclick, ondblclick, onfocus, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove, onmouseover, onmouseout, onmouseup, onselect,
tabindex

See Chapter 8 for usage.

345

346 APPENDIX A XHTML 1.0 STRICT REFERENCE

<ins>

The ins element can be used to specify text that has been inserted into a document. It is
often used when editing a document and trying to keep track of all the content. In most
web browsers, the displayed text is underlined.

Required attributes: None

Optional attributes:

e cite: If the quote is from an Internet source, a URL will point to where the quote

is from.

e datetime: Specifies the date and time that the text was marked as deleted.

Core attributes: class, dir, id, lang, style, title

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onNMouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<kbd>

The kbd element is used to define text as being keyboard text.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<label>

The label element provides a programmatic association between the prompt and the
form control, so that assistive technology can interact with the element effectively. In
visual browsers, if the user clicks the text within the label element, the element will
manipulate the control as if the user clicked on the control itself.

APPENDIX A XHTML 1.0 STRICT REFERENCE 347

Required attributes: None

Optional attributes:

e for: Specifies which element within a form the label is attached to and will manipulate.
This attribute should be set to the ID of another form element.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: accesskey, onfocus, onblur, onclick, ondblclick, onmousedown,
onmouseup, onmouseover, onmousemove, onmouseout, onkeypress, onkeydown, onkeyup

See Chapter 8 for usage.

<legend>

The legend element is used to define a caption for a fieldset.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title

Event attributes: accesskey, onclick, ondblclick, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onkeydown, onkeypress, onkeyup

See Chapter 8 for usage.

Alistitem (1i) is used to indicate each item to be displayed in a list. The list item element
is used in both ordered (0l) and unordered lists (ul).

Required attributes: None

Optional attributes: None

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

348 APPENDIX A XHTML 1.0 STRICT REFERENCE

<link>

The link element is used to define the relationship between two linked documents. It is
most often used to link external style sheets to the current document.

Required attributes: None

Optional attributes:
e charset: Sets the character set being used by the document being linked to.
e href: The URL pointing to the document that is being linked to.

e media: Refers to the type of media that the document that is being linked to is meant
for. Common values include all, braille, print, projection, screen, and speech.

e rel: Defines the relationship between the document being linked to and the current
document. Common values include alternate, appendix, bookmark, chapter, contents,
copyright, glossary, help, index, next, prev, section, start, stylesheet, and
subsection.

e rev: This is the opposite of rel. It defines the relationship between the current
document and the document being linked to. See the rel attribute for possible values.

* type: This attribute specifies the MIME type of the target URL. The most common
value is text/css for use with external style sheets, and text/javascript for
JavaScript files.

Core attributes: class, dir, id, lang, style, title

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, oNMouSseover, onmouseout, onmouseup

See Chapter 3 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE

<map>
The map element specifies a client-side image map with clickable regions.

Required attributes:

* id: Specifies a unique name for the map element
Optional attributes:

* name: Specifies a unique name for the map element

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, ONMoUSeover, onmouseout, onmouseup

See Chapter 6 for usage.

<meta>

The meta element provides information about the document. This information may be
used by search engines that catalog pages on the Internet. You may use the meta element
to provide keywords and descriptions for the search engines to use in order to catalog your
document. You can also use the meta element to allow for automated refreshes using the
http-equiv attribute. The term metarefers to metadata, which is a term that is often described
as “data about data.” The meta element provides data about the data in the document.

Required attributes:
» content: This is the value or data to be associated with a name or http-equiv.
Optional attributes:

* http-equiv: This attribute is used to connect the content attribute value to a specific
HTTP response header. You can use it to request the browser to do something or to
reference information about the document from an external source.

349

350 APPENDIX A XHTML 1.0 STRICT REFERENCE

e name: This attribute is used to assign extra information to a document. The value of
this attribute comes from the content attribute. Some common names include
author, keywords, description, and summary.

e scheme: This attribute is used to define a format thatis used to interpret the value set
in the content attribute.

Core attributes: dir, lang, xml:lang
Event attributes: None

See Chapter 3 for usage.

<noscript>

The noscript element is used to specify alternate content if scripting isn’t allowed on the

client.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onNMouseover, onmouseout, onmouseup

See Chapter 3 for usage.

<object>

The object element specifies an object to be embedded into the document. Use the param
element to specify any values that need to be passed.

Required attributes: None

Optional attributes:
e archive: A space-separated list of URLs that contain any resources for the object.
e classid: Specifies the location of an object’s implementation through a URL.

e codebase: Specifies the base path to be used when relative URIs are provided for
classid, data, and archive attributes.

APPENDIX A XHTML 1.0 STRICT REFERENCE 351

* codetype: Specifies the MIME type of the code referred to in the classid attribute.
e data: Specifies a URL that refers to any data for the object.

e declare: Specifies that the object should only be declared and created until needed.
* height: Specifies the height of the object in pixels.

e name: Specifies a unique name for the object, which will be used in JavaScript to
access the object. The name attribute is commonly used so that this control can be
used in form submissions.

* standby: Specifies the text to display when the object is being loaded.

* type: Specifies the MIME type of data in the data attribute.

* usemap: Specifies a client-side map in the form of a URL that will be used with the object.
e width: Specifies the width of the object.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup, tabindex

See Chapter 4 for usage.

The ol element is used to signify an ordered list. An ordered list must be in the body of the
document.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

352 APPENDIX A XHTML 1.0 STRICT REFERENCE

<optgroup>

The optgroup element is used to define an option group. It allows you to group choices
together.

Required attributes:

e label: Specifies the label to be used for the option group

Optional attributes:

e disabled: Specifies the option group as being disabled. The user won'’t be able to
interact with the controls.

Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup, tabindex

See Chapter 8 for usage.

<option>

The option element specifies an option in the drop-down or list control. It is common to
have several option elements for each list.

Required attributes: None

Optional attributes:

disabled: Sets the control as disabled

label: Allows authors to provide a shorter label for the content of the option element

selected: Specifies which value is selected by default

value: Specifies the value for the option that will be sent to the server

Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 8 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE

<p>

The p element defines a paragraph within the document.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<param>

The param element allows you to set run-time values for objects that have been inserted
into a document.

Required attributes:
e name: Specifies a unique name for the parameter
Optional attributes:

* type: Specifies the MIME type of the resource specified in the value attribute when
the valuetype attribute is set to ref

* value: Specifies the actual value associated with the parameter
* valuetype: Specifies the type of the value attribute (data, ref, or object)

Core attributes: id
Event attributes: None

See Chapter 4 for usage.

353

354 APPENDIX A XHTML 1.0 STRICT REFERENCE

<pre>

The pre element specifies text as preformatted text and usually preserves spaces and

line breaks.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang, xml:space

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<>
The g element defines a short quotation.

Required attributes: None

Optional attributes:

e cite: If the quote is from an Internet source, a URL will point to where the quote

is from.

Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onNmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<samp>

The samp element is used to specify sample output.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onNMouseover, onmouseout, onmouseup

See Chapter 4 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE

<script>

The script element plays a key role in making your site more dynamic and feature-rich.
It allows you to add scripting languages to your XHTML documents that respond to user
actions. Refer to Chapter 10 for the basics of JavaScript.

Required attributes:

* type: This attribute defines the MIME type of the script included. This is typically set
as text/javascript when using JavaScript.

Optional attributes:
e charset: Defines the character encoding that is used in the script

e defer: Tells the browser that the script won’t generate any document content, so it
can continue parsing and drawing the page

e src: Uses a URL to point to a document that contains the JavaScript

Core attributes: xml:space
Event attributes: None

See Chapter 3 for usage.

<select>

The select element is used to create a drop-down list.
Required attributes: None

Optional attributes:

e disabled: Makes the select element disabled and unresponsive to user interaction
* multiple: Specifies that more than one item can be selected at a time

e name: Specifies the unique name for the select element

e size: Specifies the number of visible items in the drop-down list

Core attributes: class, dir, id, lang, style, tabindex, title, xml:1lang

Event attributes: onblur, onchange, onclick, ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onmousedown, onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 8 for usage.

355

356 APPENDIX A XHTML 1.0 STRICT REFERENCE

<small>

The small element is used to specify text as being rendered smaller than normal. Using
CSS is the preferred method instead of using this element.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

The span element is used to group inline elements within a document.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, oNMoUSeover, onmouseout, onmouseup

See Chapter 4 for usage.

The strong element is used to define text that will stand out when rendered. Typically, the
specified text will be bold.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE

<style>

The sole purpose of the style element is for creating internal style sheets for your docu-
ment. The style element provides a placeholder for internal styles that you can use
throughout the document.

Required attributes:
* type: Defines the style type. It is normally set to text/css.
Optional attributes:

¢ media: Defines what media the style should affect. Some of the possible values include
screen, tty, tv, projection, handheld, print, braille, aural, and all. Visit http://
www.w3schools.com/css/css_mediatypes.asp for the specifics on the media types.

Core attributes: dir, lang, title, xml:space
Event attributes: None

See Chapter 3 for usage.

<sub>

The sub element specifies text that is subscript text. Subscript text is typically rendered in
a smaller font below the normal text.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmMouseover, onmouseout, onmouseup

See Chapter 4 for usage.

357

http://www.w3schools.com/css/css_mediatypes.asp
http://www.w3schools.com/css/css_mediatypes.asp

358 APPENDIX A XHTML 1.0 STRICT REFERENCE

<sup>

The sup element specifies text that is superscript text. Superscript text is typically rendered
in a smaller font raised above the text.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<table>

The table element defines where a table will exist. A table is used to hold tabular data. You
can place table headers, rows, cells, and other tables within a table.

Required attributes: None

Optional attributes:
e border: Specifies the width of the border for a table in pixels.

* cellpadding: Specifies the amount of space between the cell walls and the contents
in pixels or as a percent.

* cellspacing: Specifies the amount of space between cells in pixels or as a percent.

e frame: Specifies how the outer borders of a table should be displayed. This attribute
is used along with the border attribute. Possible values are above, below, border, box,
hsides, 1hs, rhs, void, and vsides.

e rules:Specifies the divider lines used for horizontal and vertical lines. This attribute
is used along with the border attribute. Possible values are all, cols, groups, none,
and rows.

APPENDIX A XHTML 1.0 STRICT REFERENCE

* summary: Specifies a summary of what the table is for browsers that provide speech-
synthesizing and nonvisual capabilities.

e width: Specifies the width of the table in pixels or as a percent.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

See Chapter 7 for usage.

<thody>

The tbody element is used to define a table body section. It is contained within a <table>
tag, and you may have multiple tbody elements. The <thead>, <tbody>, and <tfoot> tags
allow you to group rows within a table easily.

Required attributes: None

Optional attributes:

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

* char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be adjusted
to the first character to align on. This requires the use of the align attribute with the
value set as char.

* valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 7 for usage.

359

360

APPENDIX A XHTML 1.0 STRICT REFERENCE

<td>

The td element is used to hold each cell within a row in a table.

Required attributes: None

Optional attributes:

e abbr: Specifies a shortened version of the content in a cell in text.

 align: Specifies the alignment of cell content. Possible values are center, char, justify,

left, and right.

e axis:Associates a cell with a conceptual category.

e char: Specifies which character the text should be aligned on. This requires the use

of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be

adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

* colspan: Specifies the number of columns this cell should occupy as a number.
* rowspan: Indicates the number of rows this cell should occupy as a number.

* valign: Specifies the vertical alignment of cell content. Possible values are baseline,

bottom, middle, and top.

Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 7 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE

<textarea>

The textarea element allows multiple lines of text input. It provides for an unlimited
amount of text.

Required attributes:
¢ cols: Anumber that specifies the number of columns that are visible in the text area
e rows: A number that specifies the number of rows that are visible in the text area

Optional attributes:

* disabled: Makes the <textarea> control disabled and unresponsive to user
interaction

* name: Specifies the unique name for the <textarea> control
* readonly: Sets the <textarea> control so that the user cannot change its content

Core attributes: accesskey, class, dir, id, lang, style, tabindex, title, xml:1lang

Event attributes: onblur, onchange, onclick, ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onmousedown, onmousemove, onmouseover, onmouseout, onmouseup,
onselect

See Chapter 8 for usage.

<tfoot>

A tfoot element is contained within a table element and specifies a table footer. The
<thead>, <tbody>, and <tfoot> tags allow you to group rows within a table easily.

Required attributes: None

Optional attributes:

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

* char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

361

362

APPENDIX A XHTML 1.0 STRICT REFERENCE

charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

See Chapter 7 for usage.

<th>

The th element can be used in place of the td element to mark a row as a header. A header
row is normally bolded and centered within the cell.

Required attributes: None

Optional attributes:

e abbr: Specifies a shortened version of the content in a cell in text.

* align: Specifies the alignment of cell content. Possible values are center, char,

justify, left, and right.

e axis:Associates a cell with a conceptual category.

e char: Specifies which character the text should be aligned on. This requires the use

of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be adjusted

to the first character to align on. This requires the use of the align attribute with the
value set as char.

* colspan: Specifies the number of columns this cell should occupy as a number.

APPENDIX A XHTML 1.0 STRICT REFERENCE 363

* rowspan: Indicates the number of rows this cell should occupy as a number.

» valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

See Chapter 7 for usage.

<thead>

The thead element is used to specify a table header. It is contained within a table element.
The <thead>, <tbody>, and <tfoot> tags allow you to group rows within a table easily.

Required attributes: None

Optional attributes:

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

* char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

» valign: Specifies the vertical alignment of cell content. Possible values are baseline,
bottom, middle, and top.

Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

See Chapter 7 for usage.

364 APPENDIX A XHTML 1.0 STRICT REFERENCE

<title>

The title element allows you to provide a title to your document. Browsers typically
display this value in the title bar of the browser.

Required attributes: None

Optional attributes: None

Core attributes: dir, id, lang, style, xml:1lang
Event attributes: None

See Chapter 3 for usage.

<tr>

The tr element is used to hold a row within a table element.
Required attributes: None

Optional attributes:

* align: Specifies the alignment of the text within a cell. Possible values are center,
char, justify, left, and right.

e char: Specifies which character the text should be aligned on. This requires the use
of the align attribute with the value set as char.

e charoff: Specifies in pixels or as a percentage how far the alignment should be
adjusted to the first character to align on. This requires the use of the align attribute
with the value set as char.

* valign: Specifies the text alignment in vertical cells. Possible values are baseline,
bottom, middle, and top.

Core attributes: class, dir, id, lang, style, title, xml:lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 7 for usage.

APPENDIX A XHTML 1.0 STRICT REFERENCE 365

<tt>

The tt element is used to specify text as teletype or monospaced text. Using CSS is the
preferred method instead of using this element.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

The ul element is used to specify content as an unordered list. An unordered list must be
in the body of the document.

Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

<var>

The var element is used to define a variable within text.
Required attributes: None
Optional attributes: None
Core attributes: class, dir, id, lang, style, title, xml:1lang

Event attributes: onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseover, onmouseout, onmouseup

See Chapter 4 for usage.

APPENDIX B

Color Names and Values

Y)u can apply color to XHTML elements with CSS using either one of a set of descriptive
names or a numeric value indicating the intensities of red, green, and blue required for
that color. Each color is represented internally by a single 8-bit byte, meaning that you
may describe any color by a sequence of six hexadecimal digits. The first two give the
intensity of the red component, the middle two denote the strength of the green, and the
last two give the intensity of blue in the color. Hence, white is indicated by maximum
intensities for each red, green, and blue (RGB) element, or FFFFFF. Conversely, black is
indicated by a zero intensity for each element, or 000000.

A brief word on the web-safe color palette is appropriate at this point. This term describes
a concept originally devised by Netscape backin 1994 in an attempt to reduce the problem
of colors displaying differently when viewed on different systems. This problem occurs
mainly when a browser is running on a system that has only a 256-color setup. The web-
safe palette (or Netscape palette) addresses the issue by restricting the range of available
RGB hexadecimal values for colors in the palette to 00, 33, 66, 99, CC, or FF. So, if your web
page must be reliably viewable on legacy systems, make sure you use color values that
obey this rule. For example, 99FFFF will produce a light blue on any system, and you can
be confident that it will quite closely resemble the color seen on your own screen.

CSS only identifies the following 16 colors as being valid: aqua, black, blue, fuchsia,
gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow. Most
browsers support most of the color names listed below. The safest techniques are to use
these 16 colors, use the hex value, or use the RGB value.

367

368 APPENDIX B COLOR NAMES AND VALUES

Colors Sorted by Name

Color Name Hex Value
aliceblue FOF8FF
antiquewhite FAEBD7
aqua 0OFFFF
aquamarine 7FFFD4
azure FOFFFF
beige F5F5DC
bisque FFE4C4
black 000000
blanchedalmond FFEBCD
blue 0000FF
blueviolet 8A2BE2
brown A52A2A
burlywood DEB887
cadetblue 5F9EAQ
chartreuse 7FFF00
chocolate D2691E
coral FF7F50
cornflowerblue 6495ED
cornsilk FFF8DC
crimson DC143C
cyan 0OFFFF
darkblue 00008B
darkcyan 008B8B
darkgoldenrod B8860B
darkgray A9A9A9
darkgreen 006400
darkkhaki BDB768B
darkmagenta 8B008B
darkolivegreen 556B2F
darkorange FF8C00
darkorchid 9932CC
darkred 8B0000
darksalmon E9967A
darkseagreen 8FBC8F

darkslateblue 483D8B

APPENDIX B COLOR NAMES AND VALUES 369

Color Name Hex Value
darkslategray 2F4F4F
darkturquoise 00CED1
darkviolet 9400D3
deeppink FF1493
deepskyblue 00BFFF
dimgray 696969
dodgerblue 1E90FF
firebrick B22222
floralwhite FFFAFO
forestgreen 228B22
fuchsia FFOOFF
gainsboro DCDCDC
ghostwhite F8F8FF
gold FFD700
goldenrod DAA520
gray 808080
green 008000
greenyellow ADFF2F
honeydew FOFFFO
hotpink FF69B4
indianred CD5C5C
indigo 4B0082
ivory FFFFFO
khaki FOE68C
lavender EGEGFA
lavenderblush FFFOF5
lawngreen 7CFCo0
lemonchiffon FFFACD
lightblue ADD8E6
lightcoral F08080
lightcyan EOFFFF
lightgoldenrodyellow FAFAD2
lightgreen 90EE90
lightgrey D3D3D3
lightpink FFB6C1
lightsalmon FFAO7A
lightseagreen 20B2AA

lightskyblue 87CEFA

370 APPENDIX B COLOR NAMES AND VALUES

Color Name Hex Value
lightslategray 778899
lightsteelblue BoC4DE
lightyellow FFFFEO
lime 00FF00
limegreen 32CD32
linen FAFOE6
magenta FFOOFF
maroon 800000
mediumaquamarine 66CDAA
mediumblue 0000CD
mediumorchid BA55D3
mediumpurple 9370DB
mediumseagreen 3(B371
mediumslateblue 7B68EE
mediumspringgreen 00FA9A
mediumturquoise 48D1CC
mediumvioletred C71585
midnightblue 191970
mintcream F5FFFA
mistyrose FFE4E1
moccasin FFE4B5
navajowhite FFDEAD
navy 000080
oldlace FDF5E6
olive 808000
olivedrab 6B8E23
orange FFA500
orangered FF4500
orchid DA70D6
palegoldenrod EEE8AA
palegreen 98FB98
paleturquoise AFEEEE
palevioletred DB7093
papayawhip FFEFD5
peachpuff FFDAB9
peru CD853F
pink FFCoCB

plum DDAODD

APPENDIX B COLOR NAMES AND VALUES 371

Color Name Hex Value
powderblue BOEOE6
purple 800080
red FF0000
rosybrown BC8F8F
royalblue 4169E1
saddlebrown 8B4513
salmon FA8072
sandybrown F4A460
seagreen 2E8B57
seashell FFFSEE
sienna A0522D
silver CocoCo
skyblue 87CEEB
slateblue 6A5ACD
slategray 708090
snow FFFAFA
springgreen 00FF7F
steelblue 4682B4
tan D2B48C
teal 008080
thistle D8BFD8
tomato FF6347
turquoise 40E0DO
violet EE82EE
wheat F5SDEB3
white FFFFFF
whitesmoke F5F5F5
yellow FFFFOO
yellowgreen 9ACD32

372 APPENDIX B COLOR NAMES AND VALUES

Colors Sorted by Group

Color Name Hex Value
Blues

azure FOFFFF
aliceblue FOF8FF
lavender E6E6FA
lightcyan EOFFFF
powderblue BOEOE6
lightsteelblue BoC4DE
paleturquoise AFEEEE
lightblue ADD8E6
blueviolet 8A2BE2
lightskyblue 87CEFA
skyblue 87CEEB
mediumslateblue 7B6BEE
slateblue 6A5ACD
cornflowerblue 6495ED
cadetblue 5F9EAO
indigo 4B0082
mediumturquoise 48D1CC
darkslateblue 483D8B
steelblue 4682B4
royalblue 4169E1
turquoise 40E0DO
dodgerblue 1E9OFF
midnightblue 191970
aqua 0OFFFF
cyan 0OFFFF
darkturquoise 00CED1
deepskyblue 00BFFF
darkcyan 008B8B
blue 0000FF
mediumblue 0000CD
darkblue 00008B
navy 000080
Greens

mintcream FSFFFA

honeydew FOFFFO

APPENDIX B COLOR NAMES AND VALUES 373

Color Name Hex Value
greenyellow ADFF2F
yellowgreen 9ACD32
palegreen 98FB98
lightgreen 90EE90
darkseagreen 8FBC8F
olive 808000
aquamarine 7FFFD4
chartreuse 7FFF0O
lawngreen 7CFCo0
olivedrab 6B8E23
mediumaquamarine 66CDAA
darkolivegreen 556B2F
mediumseagreen 3CB371
limegreen 32CD32
seagreen 2E8B57
forestgreen 228B22
lightseagreen 20B2AA
springgreen 00FF7F
lime 00FF00
mediumspringgreen 00FA9A
teal 008080
green 008000
darkgreen 006400
Pinks and Reds

lavenderblush FFFOF5
mistyrose FFE4E1
pink FFCOCB
lightpink FFB6C1
orange FFA500
lightsalmon FFAO7A
darkorange FF8C00
coral FF7F50
hotpink FF69B4
tomato FF6347
orangered FF4500
deeppink FF1493
fuchsia FFOOFF
magenta FFOOFF

374 APPENDIX B COLOR NAMES AND VALUES

Color Name Hex Value
red FF0000
salmon FA8072
lightcoral F08080
violet EE82EE
darksalmon E9967A
plum DDAODD
crimson DC143C
palevioletred DB7093
orchid DA70D6
thistle D8BFD8
indianred CD5C5C
mediumvioletred (71585
mediumorchid BA55D3
firebrick B22222
darkorchid 9932CC
darkviolet 9400D3
mediumpurple 9370DB
darkmagenta 8B008B
darkred 8B0000
purple 800080
maroon 800000
Yellows

lightgoldenrodyellow FAFAD2
ivory FFFFFO
lightyellow FFFFEO
yellow FFFF0O
floralwhite FFFAFO
lemonchiffon FFFACD
cornsilk FFF8DC
gold FFD700
khaki FOE68C
darkkhaki BDB76B
Beiges and Browns

snow FFFAFA
seashell FFFSEE
papayawhite FFEFD5

blanchedalmond FFEBCD

APPENDIX B COLOR NAMES AND VALUES 375

Color Name Hex Value
bisque FFE4C4
moccasin FFE4B5
navajowhite FFDEAD
peachpuff FFDAB9
oldlace FDF5E6
linen FAFOE6
antiquewhite FAEBD7
beige F5F5DC
wheat F5SDEB3
sandybrown F4A460
palegoldenrod EEE8AA
burlywood DEB887
goldenrod DAA520
tan D2B48C
chocolate D2691E
peru (D853F
rosybrown BC8F8F
darkgoldenrod B8860B
brown A52A2A
sienna A0522D
saddlebrown 8B4513
Whites and Grays

white FFFFFF
ghostwhite F8F8FF
whitesmoke F5F5F5
gainsboro DCDCDC
lightgrey D3D3D3
silver CocoCo
darkgray A9A9A9
gray 808080
lightslategray 778899
slategray 708090
dimgray 696969
darkslategray 2F4F4F
black 000000

376 APPENDIX B COLOR NAMES AND VALUES

Colors Sorted by Depth

Color Name Hex Value
white FFFFFF
ivory FFFFFO
lightyellow FFFFEO
yellow FFFF0O
snow FFFAFA
floralwhite FFFAFO
lemonchiffon FFFACD
cornsilk FFF8DC
seashell FFFSEE
lavenderblush FFFOF5
papayawhip FFEFD5
blanchedalmond FFEBCD
mistyrose FFE4E1
bisque FFE4C4
moccasin FFE4B5
navajowhite FFDEAD
peachpuff FFDAB9
gold FFD700
pink FFCoCB
lightpink FFB6C1
orange FFA500
lightsalmon FFAO7A
darkorange FF8C00
coral FF7F50
hotpink FF69B4
tomato FF6347
orangered FF4500
deeppink FF1493
fuchsia FFOOFF
magenta FFOOFF
red FF0000
oldlace FDF5E6
lightgoldenrodyellow FAFAD2
linen FAFOE6

antiquewhite FAEBD7

APPENDIX B COLOR NAMES AND VALUES 377

Color Name Hex Value
salmon FA8072
ghostwhite F8F8FF
mintcream FSFFFA
whitesmoke F5F5F5
beige F5F5DC
wheat F5DEB3
sandybrown F4A460
azure FOFFFF
honeydew FOFFFO
aliceblue FOF8FF
khaki FOE68C
lightcoral F08080
palegoldenrod EEE8AA
violet EE82EE
darksalmon E9967A
lavender E6E6FA
lightcyan EOFFFF
burlywood DEB887
plum DDAODD
gainsboro DCDCDC
crimson DC143C
palevioletred DB7093
goldenrod DAA520
orchid DA70D6
thistle D8BFD8
lightgrey D3D3D3
tan D2B48C
chocolate D2691E
peru (D853F
indianred CD5C5C
mediumvioletred C71585
silver CocoCo
darkkhaki BDB76B
rosybrown BC8F8F
mediumorchid BA55D3
darkgoldenrod B8860B
firebrick B22222
powderblue BOEOE6

378 APPENDIX B COLOR NAMES AND VALUES

Color Name Hex Value
lightsteelblue BoC4DE
paleturquoise AFEEEE
greenyellow ADFF2F
lightblue ADD8E6
darkgray A9A9A9
brown A52A2A
sienna A0522D
yellowgreen 9ACD32
darkorchid 9932CC
palegreen 98FB98
darkviolet 9400D3
mediumpurple 9370DB
lightgreen 90EE90
darkseagreen 8FBC8F
saddlebrown 8B4513
darkmagenta 8B008B
darkred 8B0000
blueviolet 8A2BE2
lightskyblue 87CEFA
skyblue 87CEEB
gray 808080
olive 808000
purple 800080
maroon 800000
aquamarine 7FFFD4
chartreuse 7FFFOO
lawngreen 7CFCOO
mediumslateblue 7B6BEE
lightslategray 778899
slategray 708090
olivedrab 6B8E23
slateblue 6A5ACD
dimgray 696969
mediumaquamarine 66CDAA
cornflowerblue 6495ED
cadetblue 5F9EAO
darkolivegreen 556B2F

indigo 4B0082

APPENDIX B COLOR NAMES AND VALUES 379

Color Name Hex Value
mediumturquoise 48D1CC
darkslateblue 433D8B
steelblue 4682B4
royalblue 4169E1
turquoise 40E0DO
mediumseagreen 3CB371
limegreen 32CD32
darkslategray 2F4F4F
seagreen 2E8B57
forestgreen 228B22
lightseagreen 20B2AA
dodgerblue 1E90FF
midnightblue 191970
aqua 00FFFF
cyan 00FFFF
springgreen 00FF7F
lime 00FF00
mediumspringgreen 00FA9A
darkturquoise 00CED1
deepskyblue O0BFFF
darkcyan 008B8B
teal 008080
green 008000
darkgreen 006400
blue 0000FF
mediumblue 0000CD
darkblue 00008B
navy 000080
black 000000

APPENDIX C

Special Characters

Table C-1lists the codes that you can employ in order to use special characters in XHTML
pages. You use either the decimal code or the equivalent XHTML mnemonic to insert the
characters. For example, to insert the registered trademark character, you can use either
® or ®. You can find a cool visual reference athttp://www.digitalmediaminute.com/
reference/entity/index.php.

Table C-1. Inserting Special Characters in XHTML Pages

Character Decimal Gode XHTML Mnemonic Description
" " " Quotation mark
& &138; & Ampersand
< &160; &l1t; Less than
> &162; > Greater than
 Non-breaking space
i ¡ ¡ Inverted exclamation
¢ &1#162; ¢ Cent sign
£ £ £ Pound sterling sign
o ¤ ¤ General currency sign
¥ ¥ ¥ Yen sign
i 81166 ; ¦ Broken vertical bar
S &1#167; § Section sign
81168 ; ¨ Diaeresis/umlaut
© &4#169; © Copyright
a ª ª Feminine ordinal
« « « Left-angle quote
- ¬ ¬ Not sign
- ­ ­ Soft hyphen

381

http://www.digitalmediaminute.com

382 APPENDIX C SPECIAL CHARACTERS

Table C-1. Inserting Special Characters in XHTML Pages (Continued)

Character Decimal Code XHTML Mnemonic Description
® ® ® Registered trademark
- ¯ ¯ Macron accent
° ° ° Degree sign
+ ± ± Plus or minus
2 ² ² Superscript two
3 ³ ³ Superscript three
´ 8acute; Acute accent
i µ µ Micro sign
q ¶ ¶ Paragraph sign
· · Middle dot
, &4#184; ¸ Cedilla
1 ¹ ¹ Superscript one
o º º Masculine ordinal
» » » Right-angle quote
Va ¼ &fraci4; Fraction one-quarter
Ya ½ ½ Fraction one-half
3% ¾ ¾ Fraction three-quarters
: ¿ ¿ Inverted question mark
A À À Capital A, grave accent
A Á Á Capital A, acute accent
A Â &8Acirc; Capital A, circumflex
A Ã Ã Capital A, tilde
A Ä Ä Capital A, diaeresis/umlaut
A 8#197; 8Aring; Capital A, ring
A Æ 8AElig; Capital AE, ligature
C Ç Ç Capital C, cedilla
E È È Capital E, grave accent
E É É Capital E, acute accent
B Ê Ê Capital E, circumflex
B Ë Ë Capital E, diaeresis/umlaut
I Ì Ì Capital I, grave accent
I Í Í Capital I, acute accent

APPENDIX C SPECIAL CHARACTERS 383

Table C-1. Inserting Special Characters in XHTML Pages (Continued)

Character Decimal Gode XHTML Mnemonic Description

i &1206; Î Capital I, circumflex

i Ï Ï Capital I, diaeresis/umlaut
b Ð Ð Capital Eth, Icelandic

N Ñ &N\tilde; Capital N, tilde

0 Ò &0grave; Capital O, grave accent

o) Ó &0acute; Capital O, acute accent

o) Ô &0circ; Capital O, circumflex

0] Õ &0tilde; Capital O, tilde

0 Ö &0uml; Capital O, diaeresis/umlaut
X × × Multiplication sign

(0] Ø &0slash; Capital O, slash

U Ù Ù Capital U, grave accent

U &1#218; Ú Capital U, acute accent

U Û Û Capital U, circumflex

U Ü Ü Capital U, diaeresis/umlaut
Y Ý Ý Capital Y, acute accent

b Þ Þ; Capital Thorn, Icelandic
R ß ß German sz

a à dagrave; Small a, grave accent

a á á Small a, acute accent

a &1226; 8acirc; Small a, circumflex

a ã ã Small a, tilde

a ä ä Small a, diaeresis/umlaut
a å 8aring; Small a, ring

& æ daelig; Small ae, ligature

c ç ç Small c, cedilla

e è degrave; Small e, grave accent

é é é Small e, acute accent

é ê 8ecirc; Small e, circumflex

e ë ë Small e, diaeresis/umlaut
i &1236; digrave; Small i, grave accent

—n

í í Small i, acute accent

384 APPENDIX C SPECIAL CHARACTERS

Table C-1. Inserting Special Characters in XHTML Pages (Continued)

Character Decimal Code XHTML Mnemonic Description

i î î Small i, circumflex

i ï ï Small i, diaeresis/umlaut
0 ð ð Small eth, Icelandic

n ñ ñ Small n, tilde

0 ò 8ograve; Small o, grave accent

o) ó ó Small o, acute accent

o) ô ô Small o, circumflex

0 õ õ Small o, tilde

0 ö ö Small o, diaeresis/umlaut
+ ÷ ÷ Division sign

o ø ø Small o, slash

u ù ù Small u, grave accent

a ú ú Small u, acute accent

a û û Small u, circumflex

ua ü ü Small u, diaeresis/umlaut
y ý ý Small y, acute accent

b þ þ Small thorn, Icelandic

N4 ÿ ÿ Small y, diaeresis/umlaut

The HTML 4 specification (which XHTML 1.0 is based on) defines additional character
references beyond the decimal code range of 0-255, primarily for Greek letters and other
useful symbols for technical documents. Table C-2 shows some of the codes you can use
to create these characters. You can find the full list at http://www.w3.0rg/TR/html401/
sgml/entities.html.

http://www.w3.org/TR/html401

APPENDIX C SPECIAL CHARACTERS 385

Table C-2. Inserting Greek Letters and Technical Symbols in XHTML Pages

Character Decimal Gode XHTML Mnemonic Description

E Œ 80Elig; Capital OE, ligature

ce œ doelig; Small oe, ligature

A Α Α Capital Alpha, Greek

w Ω &0mega; Capital Omega, Greek

a &1945; α Small alpha, Greek

w &1#969; ω Small omega, Greek

€ € € Euro currency sign
∝ ∝ Proportional to

oo &4#8734; ∞ Infinity symbol

@ 8#8773; ≅ Approximately equal to

APPENDIX D

CSS Browser Support

To help you avoid browser-support problems and troubleshoot your style sheets, we've
compiled this simple chart of the majority of common CSS properties, leaving out properties
that don’t work properly in any modern browser. The browsers listed make up the vast
majority in use as of this writing.

In reading the chart, note the following:

e Frepresents Mozilla Firefox (Linux/Mac OS X/Microsoft Windows, version 2.0).
You can use the Firefox column to represent Netscape version 8.0, since it uses the
same rendering engine as Firefox.

* 6represents Internet Explorer version 6 (Windows).
e 7represents Internet Explorer version 7 (Windows).
e Srepresents Safari (OS X, version 2).

* Y means the browser supports the property.

* N means the browser doesn’t support the property.

Note that we’ve split the properties into groups based on usage and placed the groups
into alphabetical order.

387

388 APPENDIX D CSS BROWSER SUPPORT

Background

Property Description F 6 7 S

background Shorthand property that Y Y Y
sets all the the background properties

background-attachment Defines whether the background Y Y Y* Y
image scrolls with the element
when the document is scrolled

background-color Sets a solid color for Y Y Y Y
the background of the element

background-image Sets an image as the Y Y Y Y
background of the element

background-position Sets the position of Y Y Y Y
the background’s image

background-repeat Defines the pattern for Y Y Y Y
the background image

* background-attachment : fixed is supported on all elements in Internet Explorer 7, but only the body
element is supported in Internet Explorer 6.

Border

Property Description F 6 7 S

border Shorthand property that Y Y Y Y
defines the width, color,
and style of a border

border-bottom Shorthand property that defines Y Y Y Y
the width, color, and style
of the bottom border

border-bottom-color Sets the color of the Y Y Y Y
bottom border

border-bottom-style Sets the style of the Y Y Y Y
bottom border

border-bottom-width Sets the width of the Y Y Y Y

bottom border

APPENDIX D CSS BROWSER SUPPORT 389

Property Description F 6 7 S

border-color Shorthand property that Y
sets the color of the top,
bottom, left, and right
borders

border-left Shorthand property that Y Y Y Y
defines the width, color,
and style of the left border

border-left-color Sets the color of the Y Y Y Y
left border

border-left-style Sets the style of the left Y Y Y Y
border

border-left-width Sets the width of the left Y Y Y Y
border

border-right Shorthand property that Y Y Y Y

defines the width, color,
and style of the right border

border-right-color Sets the color of the Y Y Y Y
right border

border-right-style Sets the style of the Y Y Y Y
right border

border-right-width Sets the width of the Y Y Y Y
right border

border-style Shorthand property that Y Y Y Y

sets the styles for each
side individually

border-top Shorthand property that Y Y Y Y
defines the width, color,
and style of the top border

border-top-color Sets the color of the Y Y Y Y
top border

border-top-style Sets the style of the Y Y Y Y
top border

border-top-width Shorthand property that Y Y Y Y

defines the width, color,
and style of the top border

border-width Shorthand property that Y Y Y Y
sets the width of each
side individually

390

APPENDIX D

Classification

Property

CSS BROWSER SUPPORT

Description

clear

cursor

display

float

visibility

Keeps an element from
floating on one or both
sides of an element

Sets the cursor’s shape

Sets how and if an element

should be displayed

Set which side of an
element other elements
are permitted to float on

Hides an element but
leaves it in the flow

Dimension

Property

Description

height

max-height

max-width

min-height

min-width

width

Defines the height of an
element’s content area

Sets a maximum on the
height of the element

Sets a maximum on the
width of the element

Sets a minimum on the
height of the element

Sets a minimum on the
width of the element

Sets the width of an
element’s content area

APPENDIX D CSS BROWSER SUPPORT
Property Description F 7 S
font Shorthand property that Y Y Y
sets multiple properties
of an element
font-family Sets the font family to Y Y Y
be used in the display of
an element’s text
font-size Sets the size of the font Y Y Y
to be used in the display
of an element’s text
font-style Sets an italic, oblique, Y Y Y
or normal font face
font-variant Sets text in Y Y Y
small caps
font-weight Sets or removes bold Y Y Y
formatting of text
List
Property Description F 6 7 S
list-style Shorthand property that sets Y Y
all the properties for a list
list-style-image Sets a graphic to use Y Y Y Y
instead of the bullet in
an unordered list
list-style-position Sets the position of a Y Y Y Y
list’s marker
list-style-type Sets the marker to be used Y Y Y Y

391

APPENDIX D
Margin

Property

CSS BROWSER SUPPORT

Description

margin

margin-bottom

margin-left

margin-right

margin-top

Shorthand property that sets
the width of the element

Sets the amount of space
between the bottom and
its parent element

Sets the amount of space
between the left and
its parent element

Sets the amount of space
between the right and its
parent element

Sets the amount of space
between the top and its
parent element

Qutline

Property

Description

outline

outline-color

outline-style

outline-width

Shorthand property that
sets all the outline
properties

Sets the color of the
outline of an element

Sets the style of the
outline for an element

Sets the width of the
outline for an element

Padding

Property

Description

padding

padding-bottom

Shorthand property that sets
the padding of the element

Sets the distance between
the bottom of an element’s
content area and its border

Property

APPENDIX D

Description

CSS BROWSER SUPPORT

padding-left

padding-right

padding-top

Sets the distance between
the left of an element’s
content area and its border

Sets the distance between
the right of an element’s
content area and its border

Sets the distance between
the top of an element’s
content area and its border

Positioning

Property

Description

bottom

clip

left

overflow

position

right

top

vertical-align

z-index

Sets the distance an
element should be from
its parent element’s bottom

Determines if only a
portion of an element
should be displayed

Sets the distance an
element should be from
its parent element’s left edge

Determines what to do when
content doesn’t fit in
the element’s content area

Sets how an element
should be positioned with
respect to flow

Sets the distance an
element should be from
its parent element’s right edge

Sets the distance an
element should be from its
parent element’s top

Sets the alignment of
elements vertically

Sets the depth of an
element with respect to
other elements

Y* Y Y

* position:absolute is buggy in Internet Explorer 6; position:fixed doesn’t work in Internet Explorer 6.

393

394

APPENDIX D

CSS BROWSER SUPPORT

Pseudo Classes

Property

Description

ractive

:focus

:hover

:1link

:visited

:first-child

:lang

Sets a style to an
activated element

Sets a style to an
element when it has focus

Sets a style to an
element when the mouse
hovers over it

Sets a style to an unvisited
link

Sets a style to a visited
link

Sets a style to an
element that is the first
child of another element

Sets the language to use
in an element

Y*

* hover is only supported for anchors in Internet Explorer 6.

Pseudo Elements

Property

Description

cfirst-letter

cfirst-line

:before

rafter

Sets a style on the first
letter of text

Seta s style to the first line
of text

Adds content before an
element

Adds content after an
element

Table

APPENDIX D

CSS BROWSER SUPPORT

Property Description 6 7 S

border-collapse Sets the border model Y Y
of a table

border-spacing Sets the amount of space N N Y
between borders in a table

caption-side Sets the position of a N N Y
caption for a table

empty-cells Determines whether cells with no N N Y
visible content should have borders

table-layout Sets the algorithm that Y Y Y
should be used to
determine the widths of cells

Property Description 6 7 S

color Sets the foreground color of Y Y Y
an element

direction Sets the direction of the text

letter-spacing Sets the amount of white space
between the characters

line-height Sets the amount of space Y Y Y
between lines of text

text-align Sets the alignment of the text

text-decoration Sets the text decoration
within the element

text-indent Sets the amount of Y Y Y
space the first line of a
paragraph should be indented

text-shadow Sets one or more shadow N N Y
effects to be applied to
the text content

text-transform Sets the case of letters Y Y Y
in an element

white-space Determines how white space within Y Y Y
an element is handled during layout

word-spacing Sets the distance between words Y Y Y

395

Index

SYMBOLS AND NUMERICS

& character reference/entities, 93
& entity, 93
 entity, 94, 168

A
a element see anchor <a> element
abbr attribute
td element, 157, 360
th element, 163, 362
abbr element, 76-77, 329
abbreviations, 76
abort event, JavaScript, 272
absolute links, 134
absolute positioning, CSS containers,
239-240
styling Spaghetti & Cruft masthead, 303
absolute units, CSS font size, 99
absolute URL, 11
accept attribute
file control, 199
form element, 190, 341
input element, 192, 344
accept-charset attribute
form element, 190, 341
accesskey attribute, 18
button element, 203
input element, 192
keyboard attributes, XHTML
elements, 328
legend element, 214, 216
textarea element, 211
acronym element, 76-77, 330
acronyms, 76
action attribute
form element, 189, 190, 341
:active pseudo class, CSS, 28, 394
adding CSS to anchor <a> element,
142, 144
styling links with pseudo classes, 302

acute accent character (´), 382,
383, 384
address element, 59-61, 330
address element with inserted line
breaks, 82
adjacent sibling selectors, CSS, 30
:after pseudo element, CSS, 394
align attribute
col element, 176, 336
colgroup element, 175, 337
div element, 86
headings, 58
hr element, 84
img element, 118
object element, 89
paragraphs, 56
tbody element, 169, 359
td element, 157, 360
tfoot element, 172, 361
th element, 163, 362
thead element, 170, 363
tr element, 156, 364
alignment
text-align property, CSS, 395
vertical-align property, CSS, 393
alink attribute, body element, 54
all media type, CSS, 249
alpha channel, 110
Alpha character (Greek), 385
alt attribute
area element, 148, 331
compensating for missing images, 306
image control, 201
img element, 112-115, 344
description, 111, 112
omitting alt attribute, 114
text alternative for image, 112, 113
input element, 192, 344
tooltips, 113
alt tag, 115

alternate content see noscript element
397

INDEX

ampersand (&) character references, 93, 381

ancestors, XHTML document tree, 24
anchor <a> element, 131-133, 328-329
adding CSS to, 141-146
charset attribute, 132, 328
coords attribute, 132, 328
creating image maps, 146-152
href attribute, 131, 132, 329
linking to another document, 134
hreflang attribute, 132, 329
id attribute, using for linking, 140-141
linking to another document, 133-136
linking to e-mail addresses, 138-139
linking to non-XHTML documents,
136-138
rel attribute, 132, 329
rev attribute, 132, 329
shape attribute, 132, 329
type attribute, 132, 329
using, 133-139
using an image as a link, 139-140
and (&&) operator, JavaScript, 258
angle brackets, HTML tags, 13
animation, GIF, 109
Apple Safari see Safari
approximately equal to (&cong), 385
architecture, Spaghetti & Cruft website, 283
archive attribute, object element, 88, 350
area element, 148-152, 331
alt attribute, 148, 331
coords attribute, 148, 331
determining coordinates of an area, 150
href attribute, 149, 331
nohref attribute, 149, 331
shape attribute, 148, 149, 331
specify hotspots, 150
argument
designating programming argument, 80
arithmetic operators, JavaScript, 257
arrays, JavaScript, 271-272
artifacts, 107
assignment operators, JavaScript, 257
attachEvent function, 275
attachments
background-attachment property,
CSS, 388
attribute selectors, CSS, 30

attributes
attributes requiring quoted value, 192
core attributes, 17, 327
description, 14
focus attributes, 18
internationalization attributes, 18, 327
keyboard attributes, 328
minimized attributes, 14
optional attributes, 41
required attributes, 41
specifying attribute values for columns in
table, 176, 178
XHTML 1.0 Strict specification, 327-365
attributes, list of standard
accesskey attribute, 18
class attribute, 17
dir attribute, 18
id attribute, 17
lang attribute, 18
style attribute, 17
tabindex attribute, 18
title attribute, 17
xml:lang attribute, 18
aural media type, CSS, 249
author style sheets
CSS style sheet cascade order, 35
auto value
margin property, CSS, 299
overflow property, CSS, 234, 235
axis attribute
td element, 157, 360
th element, 164, 362

B

b element, 91, 331

background attribute, body element, 54

background images, 122-128
background bullets, 310
compensating for missing images, 305
large background images, 125
positioning background images, 126-128
reading text over complicated

backgrounds, 125

Spaghetti & Cruft style sheet, 296
tiling, 122-124
updating navigation, 317

background properties, CSS, 185

background property, CSS, 245, 388
background bullets, 311
compensating for missing images, 306
reviews page, 319
Spaghetti & Cruft style sheet, 296
background-attachment property, CSS, 245,
246, 388
background-color property, CSS, 125, 185,
245, 388
background-image attribute
adding CSS to anchor <a> element, 145
setting for elements, 231
background-image property, CSS, 122,
245, 388
background-position property, CSS,
126-128, 245, 246, 388
updating navigation, 317
background-repeat property, CSS, 123, 245,
246, 388
no-repeat/repeat values, 124
repeat-x/repeat-y values, 123
tiling, 123
backgrounds
adding backgrounds to tables, 184-186
background properties available in
CSS, 245
CSS (Cascading Style Sheets), 245-246
base element, 42-43, 332
href attribute, 43, 332
base URLs
specifying for all links in document, 42
baseline, 99
bdo element, 79-80, 332
dir attribute, 79, 80, 332
lang attribute, 79
xml:lang attribute, 79
:before pseudo element, CSS, 394
bgcolor attribute, body element, 54
bidirectional override element, 79
big element, 91, 333
binary code, 110
bitmapped images, 106, 110
bits, 110
black
colors sorted by color groupings, 375
colors sorted by depth, 379
colors sorted by name, 368
six hexadecimal digits describing
color, 367

INDEX

blink value, CSS text-decoration
property, 247
block-level elements, 15
address element, 59
blockquote element, 58
body element, 53
changing alignment of text in, 58
CSS rule treating all labels as, 223
dd element, 69
div element, 85
dl element, 67
dt element, 68
fieldset element, 212
form element, 189
headings, 57
hr element, 83
inline elements and, 191, 222
li element, 65
ol element, 64
paragraphs (p element), 54, 55
pre element, 61
ul element, 62
blockquote element, 58-59, 333
cite attribute, 58, 59, 333
reviews page, 317,318
blue
colors sorted by color groupings, 372
colors sorted by depth, 379
colors sorted by name, 368
six hexadecimal digits describing
color, 367
blur event, JavaScript, 272
body element, 24, 52-54, 334
attributes, 53, 334
centering page with margins, 298
children and block-level elements, 120
color property, CSS, 300
creating map container within, 150
font property, CSS, 299
liquid width/layout, 297
presentational attributes, 54
XHTML document with empty body
element, 53
bold see b element
bold/bolder values, CSS font-weight
property, 248
boldfaced font
designating text to be displayed in, 91
elements applying emphasis, 71

399

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

400

INDEX

Boolean data type, JavaScript, 256
border attribute
img element, 118
object element, 89
table element, 154, 358
adding borders using CSS, 180
border property, CSS, 388
removing border from field sets, 221
border-bottom property, CSS, 309, 388
border-collapse property, CSS, 183, 395
styling menu tables, 315
border-color property, CSS, 232, 233, 389
border-left property, CSS, 389
border-right property, CSS, 389
borders
adding borders using CSS, 178
CSS, 232-233
merging cell borders, 183, 184
removing border from field sets, 221-222
specifying outer border display, 155
specifying width of table border in
pixels, 154
border-spacing property, CSS, 395
border-style property, CSS, 232, 389
adding borders using CSS, 180
border-top property, CSS, 389
styling navigation, 309
border-width property, CSS, 232, 389
replacing border attribute, 118
bottom
border-bottom property, CSS, 388
margin-bottom property, CSS, 392
padding-bottom property, CSS, 392
bottom property, CSS, 393
box model properties, 298
br element, 82-83, 334
clear attribute, 83
braille media type, CSS, 249
break statement, JavaScript, 265
broken vertical bar character (¦), 381
brown
colors sorted by color groupings, 374
browser style sheets
CSS style sheet cascade order, 35
browsers see web browsers
bullets, background, 310
button control
type attribute, input element, 201
specifying type of button control, 203
value attribute, 201

button element, 202-203, 334, 335
accesskey attribute, 203
disabled attribute, 203, 334
name attribute, 334
tabindex attribute, 203
type attribute, 202, 203, 335
value attribute, 203, 335
buttons
adding CSS to anchor <a> element, 144
bytes, 110

(H
caching
external style sheets, 34
caption element, 161-163, 335
adding caption to table, 162
caption-side property, CSS, 395
cascade, CSS
cascade order, 34-36
limportant directive, 36
specificity and, 30-32
case keyword, JavaScript switch
statement, 265
case study see Spaghetti & Cruft website
case-sensitivity, HTML/XHTML tags, 14
case-sensitivity, JavaScript, 255
cedilla character (¸), 382, 383
cellpadding attribute, table element, 154, 358
cells
empty-cells property, CSS, 395
cells (within rows of tables)
see also td element
adding header cell to table, 165
adding padding to, 182-184
creating rows and cells in tables, 173-174
marking as header, 163
setting up basic tables, 154
specifying alignment within, 156, 157, 158,
163,164, 169, 170,172, 175, 176, 177
specifying cell header information, 158
specifying conceptual categories for,
157, 164
specifying list of header cells, 164
specifying number of columns for, 158,
164,166, 175, 177
specifying number of rows for, 158,
164, 166
specifying scope of header
information, 164

specifying shortened version of content in,
157,163
specifying space between, 154

cellspacing attribute

table element, 154, 358

Cent sign (¢), 381

center value, CSS text-align property, 247
change event, JavaScript, 272

char attribute

col element, 176, 336
colgroup element, 175, 337
tbody element, 169, 359

td element, 157, 360

tfoot element, 172, 361

th element, 164, 362

thead element, 170, 363

tr element, 156, 364

character encoding

defining for script, 47
specifying for form, 190

character references

special characters, 93
Spaghetti & Cruft page template, 293

characters

special characters, 92-94, 381-385
subscript/superscript characters, 91

charoff attribute

col element, 177, 336
colgroup element, 175, 337
tbody element, 169, 359

td element, 158, 360

tfoot element, 172, 362

th element, 164, 362

thead element, 170, 363

tr element, 156, 364

charset attribute

anchor <a> element, 132, 328
link element, 44, 348
script element, 47, 355

charts see images
checkbox control

checked attribute, 196

setting initial checked state, 192

type attribute, input element, 195-197
value attribute, 195

checked attribute

checkbox control, 196
input element, 192, 345
radio button control, 197

INDEX

child
first-child property, CSS, 394
child selectors, CSS, 30
child-parent relationship, CSS, 231
circumflex accent, 382, 383, 384
citations
see also cite element
attributing citations, 72
cite attribute
blockquote element, 58, 59, 333
del element, 78, 338
ins element, 78, 346
q element, 75, 354
cite element, 72-73, 335
reviews page, 317, 318, 319
class attribute, 17
considering purpose of element, 290
core attributes, XHTML elements, 327
img element, 120
menu page, 313, 317
class selector, CSS, 27, 31
classes
adding backgrounds to tables, 185
indicating class/classes for elements, 17
pseudo classes, 142, 394
classid attribute, object element, 88, 350
clear attribute, br element, 83
clear property, CSS, 390
clearing floated elements, 308
float positioning of containers, 242
click event, JavaScript, 272
client, 2
client-side scripting, 251-279
clip property, CSS, 234, 235, 393
clipping region, 234, 235
closing tags, XHTML, 14
cm unit of measure, CSS, 229
code
designating portion of code, 80
code element, 80-82, 336
JavaScript function marked up with, 81
nesting within pre element, 81
codebase attribute, object element, 88, 350
codetype attribute, object element, 88, 351
col element, 176-178, 336, 337
align attribute, 176, 336
char attribute, 176, 336
charoff attribute, 177, 336
defining group of tags, 175

401

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

INDEX

span attribute, 177, 178, 336
valign attribute, 177, 336
width attribute, 177, 337

colgroup element, 175, 337

align attribute, 175, 337
char attribute, 175, 337
charoff attribute, 175, 337
span attribute, 175, 337
using, 178

valign attribute, 175, 337
width attribute, 175, 337

comments, XHTML, 19
using comments to hide JavaScript, 253
compacted format, CSS, 37
comparison operators, JavaScript, 257
conditional statements, 259
compatibility mode, browsers
doctype switching, 21
compliance mode, browsers
doctype switching, 21
compression see file compression
conditional statements, JavaScript, 259-265

collapse
border-collapse property, CSS, 395
color
background-color property, CSS, 125, 388
bits per pixel, 110
border-bottom-color property, CSS, 388
border-color property, CSS, 233, 389
border-left-color property, CSS, 389
border-right-color property, CSS, 389
border-top-color property, CSS, 389
colors identified in CSS, 367
colors sorted by color groupings, 372-375
colors sorted by depth, 376-379
colors sorted by name, 368-371
creating changing background color, 143
file compression, 106
outline-color property, CSS, 392
six hexadecimal digits describing, 300, 367
Spaghetti & Cruft style sheet, 300
specifying color in CSS, 230
web-safe color palette, 367
color property, CSS, 248, 395
setting text color, 182
Spaghetti & Cruft style sheet, 300
cols attribute, textarea element, 211, 361
colspan attribute, 166
code for adding to table, 167, 168
td element, 158, 360
th element, 164, 362
columns
see also col element
layout of content area, 307
combined selectors, CSS, 29
specificity, 31
commands
defining commands for user input, 80
comments, CSS, 38
comments, JavaScript, 254

if statement, 259-260

if/else statement, 260-262

if/ else/if statement, 262-263

nesting conditional statements, 261-262
switch statement, 263-265

&cong (approximately equal to), 385
contact page

Spaghetti & Cruft website, 320-324

Contact Us form

JavaScript validating user input, 277

containers, CSS, 230-234

applying backgrounds to, 245
borders, 232-233
clipping region, 234
container positioning, 236-244
absolute positioning, 239-240
default positioning, 236
fixed positioning, 240-242
float positioning, 242-243
relative positioning, 237-238
static positioning, 236-237
container sizing and flow, 234-236
margins, 231
padding, 233-234
parent-child relationship, 231
setting order of containers, 243-244
width and height attributes, 234

content

adding to web pages, 51-90

alternate content, 350

body element, 52

clearing floated elements, 308

content and structure of web page, 51-52
creating horizontal rule, 83

embedding external content, 87-90
grouping related content together, 85
including images in, 111-120

preserving format of, 80

separating content from presentation, 6-7

Spaghetti & Cruft website, 312-324
contact page, 320-324
menu page, 312-317
reviews page, 317-319
specifying language for, 18
styling content with CSS, 94-103
declaring base font styles, 94—-100
styling lists, 100-103
content area
Spaghetti & Cruft page template, 291
Spaghetti & Cruft style sheet, 307-309
content attribute, meta element, 45, 349
content type, 23
specifying content type used to post
form, 191
contextual selector see descendant
selector, CSS
controls, forms see form controls
coords attribute
anchor <a> element, 132, 328
area element, 148, 331
copyright statement
Spaghetti & Cruft website, 292, 308, 311,
312,319
copyright symbol character (©), 381
Spaghetti & Cruft page website, 293
core attributes, XHTML, 17
class attribute, 327
id attribute, 327
style attribute, 327
textarea element, 210
title attribute, 327
XHTML 1.0 Strict specification, 327
counted loop see for loop, JavaScript
cruft, 282

CSS (Cascading Style Sheets), 25-38, 227-250

see also style element

absolute positioning, 303

adding backgrounds to tables, 184-186

adding borders using CSS, 178-180

adding CSS to anchor <a> element,
141-146

adding padding to cells, 182-184

adding style to tables, 178-186

adjacent sibling selectors, 30

aligning text in tables, 180-182

attaching style sheets to documents, 32-34

attribute selectors, 30

INDEX

background bullets, 310
background properties, 185
background properties available in
CSS, 245
background-color property, 185
backgrounds, 245-246
border-collapse property, 183
borders, 232-233
border-style property, 180
cascade order, 34-36
centering page with margins, 297
child selectors, 30
class selector, 27
classes, 185
clearing floated elements, 308
colors, 300
colors identified in CSS, 367
combining selectors, 29
comments, 38
compensating for missing images, 305
containers, 230-234
container positioning, 236-244
container sizing and flow, 234-236
default positioning, 236
setting order of containers, 243-244
creating changing background color, 143
CSS rules, 25-26
aligning labels in form, 223
setting font family for element, 95
treating all labels as block-level, 223
declaring base font styles, 94-100
font family, 95-97
font size, 97-99
line height, 99-100
descendant selector, 28
description, 6
element selector, 27
embedded style sheets, 33
external style sheets, 34
file name extension, 10
fixed or liquid width/layout, 297
fonts, 299
formatting CSS, 36-38
grouping content with div, 85, 86
grouping selectors, 29
ID selector, 28
@import statement, 49
limportant directive, 36
inheritance, 95

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

INDEX

inline styles, 32-33
internal style sheets, creating, 47
managing document layout, 230-244
margins, 231
media attribute specifying, 44
media types, 249-250
modifying text area dimensions, 210
modifying width of select element, 204
modifying width of text field/control, 194
padding, 233-234
padding property, 182
presentational attributes of body
element, 54
pseudo class selector, 28
pseudo element selectors, 30
selectors, 27-30
Spaghetti & Cruft website, 295-312
laying out page, 307-309
styling footer, 311-312
styling links, 301
styling masthead, 302-306
styling menu tables, 314-316
styling navigation, 309-311
styling page body, 296-301
updating navigation, 316-317
specificity, 30-32
specifying color in CSS, 230
specifying MIME type of target URL, 44
styling content with CSS, 94-103
styling forms with CSS, 219-225
aligning labels, 222-223
changing typeface in form controls,
224-225
removing border from field sets,
221-222
styling legend element, 214
styling links, 301
styling lists, 100-103
changing style of ordered lists, 102-103
changing unordered list markers,
100-101
using image as list marker, 101-102
styling text, 246-248
text-align property, 180
units of measure in CSS, 229-230
universal selector, 27
using external sheets within inline style
element, 228
using external style sheets, 227-228

using shortcut property

adding borders using CSS, 180
versions and browser compatibility, 250
working with XHTML and CSS, 7-9

CSS properties, 387-395

:active, 394
:after, 394
background, 388
background-attachment, 388
background-color, 125, 388
background-image, 122, 388
background-position, 126-128, 388
background-repeat, 123, 388
:before, 394
border, 388
border-bottom, 388
border-collapse, 395
border-color/border-left/border-right, 389
border-spacing, 395
border-style/border-top/border-width, 389
bottom, 393
caption-side, 395
clear, 390
clip, 393
color, 395

Spaghetti & Cruft style sheet, 300
cursor, 390
direction, 395
display, 390
empty-cells, 395
first-xyz, 394
float, 390
:focus, 394
font, 391

Spaghetti & Cruft style sheet, 300
font-xyz, 391
height, 390
:hover, 394
:lang, 394
left, 393
letter-spacing, 395
line-height, 395

Spaghetti & Cruft website, 299, 300
:link, 394
list-style, 391
margin/margin-xyz, 392

Spaghetti & Cruft website, 297
max-xyz, 390
min-xyz, 390

outline/outline-xyz, 392

overflow, 393

padding/padding-xyz, 392, 393

Spaghetti & Cruft website, 298

position, 393

right, 393

table-layout, 395

text-xyz, 395

top, 393

vertical-align, 393

visibility, 390

:visited, 394

white-space, 395

width, 390

Spaghetti & Cruft website, 297

word-spacing, 395

z-index, 393
CSS rules, 25-26

cascade order, 35

compacted format, 37

declaration, 26

extended format, 36

selectors, 26

semicompacted format, 38
CSS selectors see selectors, CSS
currency sign (¤), 381
Cursive typeface, 97
cursor property, CSS, 390

D

dashed value, CSS border-style property, 232
data, tabular, 153
data attribute, object element, 88, 351
data types, JavaScript, 256

equals and not equals operators, 257

functions doing data-type conversions, 259
datetime attribute

del element, 78, 79, 338

ins element, 78, 79, 346
dblclick event, JavaScript, 272
dd element, 69-70, 338

definition lists, 67
decimal value

changing style of ordered lists, CSS, 102
declaration, CSS rules, 26
declare attribute, object element, 88, 351
decoration

text-decoration property, CSS, 395
decrement operators, JavaScript, 258

INDEX

defer attribute, script element, 47, 355
definition description see dd element
definition lists, 67-70
see also dl element
definition terms see dt element
definition within text see dfn element
degree sign (°), 382
del element, 78-79, 338
deprecation, HTML, 3
descendant selector, CSS, 28
reviews page, 319
specificity, 31
descendants, XHTML document tree, 24
descenders, 99
design process
Spaghetti & Cruft website, 282-288
destination file
absolute and relative URLs, 11
detachEvent function
IE and W3C event DOM model, 275
dfn element, 75-76, 339
diaeresis character (¨), 381
digital images
how digital images work, 106-111
vector graphics, 107
dir attribute, 18
bdo element, 79, 80, 332
internationalization attributes,
XHTML, 327
direction property, CSS, 395
disabled attribute
button element, 203, 334
input element, 192, 345
optgroup element, 208, 209, 352
option element, 207, 352
select element, 206, 355
textarea element, 211, 361
display property, CSS, 390
CSS rule treating all labels as
block-level, 223
treating inline as block-level elements, 222
div element, 85-86, 339
align attribute, 86
grouping controls with, 213
id attribute, 85
Spaghetti & Cruft page template, 289, 291
structuring forms, 212
division sign (÷), 384
dl element, 67-68, 339

405

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

406 INDEX

do . .. while loop, JavaScript, 268-270 requirement for closing tag, 14
DOCTYPE/doctype, 20-22 setting tab order for, 18

doctype switching, 21-22 specifying inline style for, 17

XHTML documents, 328 specifying unique identifier for, 17
document tree, XHTML, 24 XHTML 1.0 Strict specification, 327-365
documents elements, list of

see also XHTML documents

creating logical division in documents, 85
CSS managing document layout, 230-244
description of term usage, 19

element indicating person responsible

see also elements; tags

a seeanchor <a> element
abbr, 76-77

acronym, 76-77

address, 59-61

for, 59 anchor (a), 131-139, 328-329
linking to non-XHTML documents, area, 148-152
136-138 b, 91
DOM (Document Object Model), 275, 276 base, 42-43
domain name/prefix/suffix, 10 bdo, 79-80
dotted value, CSS border-style property, 232 big, 91
double value, CSS border-style property, 232 blockquote, 58-59
dt element, 68, 340 body, 52-54
definition lists, 67 border, 232
br, 82-83
E button, 202-203
editors caption, 161-163
choosing HTML editor, 7 cite, 72-73
element selector, CSS, 27 code, 80-82
specificity, 31 col, 17-178
elements colgroup, 175
see also elements, list of; tags dd, 69-70
accessing using keyboard shortcuts, 18 del, 78-79
attributes of elements, 17-18 dfn, 75-76
background images, 122 div, 85-86
block-level elements, 15 dl, 67-68
clearing floated elements, 308 dt, 68
definition lists, 67-70 em, 70-71
description, 14 fieldset, 212-213
determining overall size of element, 231, font, 92

232,233
empty elements, 14

form, 189-191
h1/h2/h3/h4/h5/h6, 56-58

font size of current element, 229 head, 41-42
grouping related elements together, 85 hr, 83-84
indicating class or classes for, 17 html, 22-24
inline elements, 15 i, 91

list elements, 62—-66 img, 111-120
multipurpose (generic) elements, 85-87 input, 191-202
nesting elements, 16 ins, 78-79
phrase elements, 70-84 kbd, 80-82

presentational elements, 90-92
pseudo elements, CSS, 394
replaced elements, 14, 111

label, 216-218
legend, 214-216
li, 65-67

link, 44-45

map, 147-148

margin, 231

meta, 45-46

noscript, 253

object, 88-89

ol, 64-65

optgroup, 208-209

option, 206-207

p, 54-56

padding, 233

param, 89-90

pre, 61-62

q, 74-75

samp, 80-82

script, 46-47

select, 203-206

small, 91

span, 86-87

strong, 71-72

style, 47-49

sub, 91-92

sup, 91-92

table, 153, 154

tbody, 168

td, 153, 157

textarea, 210-211

tfoot, 171-174

th, 163-166

thead, 170

title, 49-50

tr, 153, 156

tt, 91

u, 302

ul, 62-63

var, 80-82
else keyword, JavaScript

if/else statement, 260-262

if/else/if statement, 262-263
em element, 70-71, 340

combining strong and em elements, 72

styling menu tables, 315
em unit of measure, 98, 99, 229
e-mail addresses, linking to, 138-139
embedded style sheets, 33, 47
embedding external content, 87-90
embossed media type, CSS, 249
emphasis see em element
empty elements, 14

INDEX

empty-cells property, CSS, 395
encoding special characters, 93
encryption, 195
password control, 194
enctype attribute, form element, 191, 341
equals (=) operator, JavaScript, 257
error event, JavaScript, 272
errors
validating XHTML documents, 5
escaping
encoding special characters, 93
eth character (Icelandic), 383, 384
Euro currency sign (&euro), 385
event attributes, XHTML, 18
events, JavaScript, 272-275
hooking events with DOM, 275
hooking events with inline model, 273
hooking events with traditional
model, 274
listeners, 275
removing an event, 274
ex unit of measure, 98, 229
expressions, JavaScript, 258
functions doing data-type
conversions, 259
extended format, CSS, 36
extensions, file name, 10
external content, embedding, 87-90
external files, using for JavaScript, 252
external style sheets, 34
caching, 34
@import statement, CSS, 49
linking to current document, 44, 45
specifying MIME type of target URL, 44
using, 227-228
using link element to add, 228
using within inline style element, 228

F
family

font-family property, CSS, 391
Fantasy typeface, 97
feminine ordinal character (ª), 381
field sets

form structured with, 217

removing border from, 221-222
fields

indicating required fields, 219

407

=
=]
(=1
=
—
QD
(%]
—
D
=
QD
—
=
=3
=
=
w
(=
=]
D
=
=
Q
@D
x
QD
=]
=
[1°]
(2]
[
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

408

INDEX

fieldset element, 212-213, 340
contact page, 322
legend element, 213, 214
nesting fieldset elements, 212
file compression, 106
artifacts, 107
GIF, 108
JPEG, 107
lossy compression, 107
PNG, 109
file control
accept attribute, 199
file controls in Safari, 199
size attribute, 198
type attribute, input element, 198-199
specifying content type used to post
form, 191
file name extensions, 10
Firefox, 8
first-child pseudo class, CSS, 394
first-letter pseudo element, CSS, 394
first-line pseudo element, CSS, 394
fixed positioning, CSS containers, 240-242
fixed value, CSS background-attachment
property, 246
fixed width/layout
Spaghetti & Cruft style sheet, 297
float positioning, CSS containers, 242-243
float property, CSS, 390
labels as floating blocks, 222
replacing align attribute, 118
wrapping text around images, 120
floating blocks
clearing floated elements, 308
layout of content area, 307
focus
bringing controls into focus, 188
focus attributes, XHTML, 18, 328
focus event, JavaScript, 272
:focus pseudo class, CSS, 394
adding CSS to anchor <a> element,
142, 144
description, 28
styling links with pseudo classes, 302
font element, 92
font family

CSS rule setting font family for element, 95

declaring base font styles, CSS, 95-97
generic font families, 96

font property, CSS, 391
Spaghetti & Cruft style sheet, 300
font size, CSS
absolute units, 99
declaring base font styles, 97-99
font size of current element, 229
relative units, 99
using keywords, 98
x-height of a font, 229
font styles
declaring base font styles, 94-100
font-family property, CSS, 95, 224, 322, 391
fonts
font variation, screen and print, 249
Spaghetti & Cruft style sheet, 299
font-size property, CSS, 97, 322, 391
font-style property, CSS, 248, 319, 391
font-variant property, CSS, 391
font-weight property, CSS, 248, 391
footers
Spaghetti & Cruft page template, 292
Spaghetti & Cruft style sheet, 311-312
for attribute, label element, 216, 218, 347
for loop, JavaScript, 265-267, 270
form controls, 187
bringing controls into focus, 188
changing typeface in form controls,
224-225
declaring control as server-side image
map, 192
displaying fixed value, 192
identifying control, 191
name attribute, 188
not submitting value, 192
specifying initial value, 193
specifying number of characters to display
on line, 211
specifying number of lines to display, 211
specifying position in tabbing order, 192
specifying type, 193
specifying width of, 192
styling form controls with CSS, 220
form data sets, 188
form element, 189-191, 341
accept attribute, 190, 341
accept-charset attribute, 190, 341
action attribute, 189, 190, 341
block-level elements, 189
enctype attribute, 191, 341

input element and, 191
method attribute, 189, 191, 341
nesting form elements, 189
on-screen rendering of, 188
form handlers, 188, 189
action attribute, form element, 189
get/post values, method attribute, 189
specifying URL of form handler, 190
form validation, JavaScript, 276-279
formatting CSS, 36-38
forms, 187-225
components of, 188-211
controls, 187
CSS rule aligning labels in, 223
elements
button, 202-203
fieldset, 212-213
form, 189-191
input, 191-202
label, 189, 190, 216-218
legend, 214-216
optgroup, 208-209
option, 206-207
select, 203-206
textarea, 210-211
indicating required fields, 219
specifying accepted character
encoding, 190
specifying alternative text description, 192
specifying content type used to post
form, 191
specifying HTTP method, 191
specifying maximum number of
characters, 192
structuring forms, 212-219
styling forms with CSS, 219-225
aligning labels, 222-223
changing typeface in form controls,
224-225
removing border from field sets, 221-222
submitting data, 188
fractions
half/quarter/three-quarters, 382
frame attribute, table element, 155, 358
frames, 4
Frameset version see XHTML 1.0 Frameset
function keyword, 270
functions, JavaScript, 270-271
functions doing data-type conversions, 259

INDEX

G
generic elements, XHTML, 85-87
generic font families, 96
get method, 189
get value, method attribute of form
element, 189
GIF (Graphic Interchange Format), 108-109
bits per pixel for color, 111
gif image files
specifying MIME type of target URL, 44
gigabytes, 110
graceful degradation, 220
graphical browsers, 2
graphics
vector graphics, 107
graphs seeimages
grave accent, 382, 383, 384
gray
colors sorted by color groupings, 375
colors sorted by depth, 378
greater than character (>), 93, 381
greater than (>) operators, JavaScript, 257
Greek letters, 384
green
colors sorted by color groupings, 372
colors sorted by depth, 379
colors sorted by name, 369
six hexadecimal digits describing
color, 367
groove value, CSS border-style property, 232
grouping inline elements see span element
gutter, 307

H
h1/h2/h3/h4/h5/h6 elements, 56-58, 341
document tree, XHTML, 24
resizing using font-size property, 98
structuring forms, 212
handheld media type, CSS, 249
head element, 41-42, 342
base element, 42-43
description, 24
document tree, 24
embedded style sheets, 33
link element, 44-45
meta element, 45-46
profile attribute, 42, 342
script element, 46-47
Spaghetti & Cruft page template, 288

409

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

410

INDEX

style element, 47-49
supporting elements, 42-50
title element, 24, 49-50
head section, XHTML documents, 41-42
link element, 227
placement of JavaScript in XHTML
documents, 252
header
Spaghetti & Cruft page template, 289
header cells
marking cell as header, 163
specifying list of header cells, 164
headers attribute, th element, 164
headings seeh1/h2/h3/h4/h5/h6 elements
height
line-height property, CSS, 395
max-height property, CSS, 390
min-height property, CSS, 390
height attribute
img element, 112, 117, 344
object element, 88, 89, 351
height property, CSS, 234, 390
modifying text area dimensions, 210
precedence with height attribute, 117
styling Spaghetti & Cruft masthead, 304
hex numbers
specifying color in CSS, 230, 300
hidden control
type attribute, input element, 202
value attribute, 202
hidden value, CSS border-style property, 232
hidden value, CSS overflow property, 234
horizontal rule see hr element
hostnames, 10
:hover pseudo class, CSS, 28, 394
adding CSS to anchor <a> element,
142, 143
hr element, 83-84, 342
align attribute, 84
creating horizontal rule, 83
noshade attribute, 84
size attribute, 84
width attribute, 84
href attribute
anchor <a> element, 131, 132, 329
linking to another document, 134
linking to e-mail addresses, 138
linking to non-XHTML documents, 136
area element, 149, 331

base element, 43, 332
link element, 44, 348
hreflang attribute, anchor <a> element,
132,329
hspace attribute, object element, 89
hspace attribute, img element, 118
HTML (HyperText Markup Language), 2-6
choosing HTML editor, 7
content type, 23
deprecation of features, 3
evolution of, 3
file name extension, 10
HTML 4.01 and HTML 5, 4
hypertext, 2
presentational markup, 6
rules for authoring HTML documents, 2
separating content from presentation, 6-7
structuring text, 6
tags, 2
technical specifications for versions of, 3
validating documents, 5-6
versions of HTML, 3
HTML 4.01 Strict
XHTML 1.0 Strict compared, 39
html element, 22-24, 343
applying background to, 296
Spaghetti & Cruft style sheet, 296
xmlns attribute, 22, 343
HTTP (HyperText Transfer Protocol), 189
hostname, 10
protocols, 9
specifying HTTP method to submit
forms, 191
http-equiv attribute, meta element, 45,
46, 349
hypertext, 2
hyphen
soft hyphen character (­), 381

|
i element, 91, 343

icons seeimages

id attribute, 17
anchor <a> element, 140-141
considering purpose of element, 290
core attributes, XHTML elements, 327
div element, 85, 290, 291
map element, 147, 349
radio button control, 197
using IDs for linking, 140-141

ID selector, CSS, 28

specificity, 31
if statement, JavaScript, 259-260
if/else statement, JavaScript, 260-262

nesting conditional statements, 261-262

if/else/if statement, JavaScript, 262-263
illustrations see images
image control

alt attribute, 201

src attribute, 201

type attribute, input element, 201
image maps

see also map element

area element, 148-152

creating, 146-152

declaring control as server-side image

map, 192
description, 118
excluding area from, 149
images used for, 147
specifying client-side image map, 147

specifying coordinates to define shape

in, 132

specifying region in, 148

specifying URL of client-side image
map, 193

tools for generation of, 151

images

see also img element

artifacts, 107

image-image property, CSS, 388

background images, 122-128

positioning background images,

126-128

bitmapped images, 106

compensating for missing images, 305

how digital images work, 106-111

including images in content, 111-120

including in XHTML documents, 43

inline with text in paragraph, 119

inside or outside element containing
text, 119

introduction, 105

referencing, 105

reserving space for images in web
page, 117

resizing images for web page, 117

specifying source URL, 192

text alternative for image, 112, 113

INDEX

two or more images appearing
together, 120
using as link, 139-140
using as list marker, CSS, 101-102
vector graphics, 107
web-friendly image formats, 107-111
GIF, 108-109
JPEG, 107-108
PNG, 109-110
wrapping text around images, 120-122
creating space around image, 121
img element, 111-120, 344
align attribute, 118
alt attribute, 111, 112-115, 344
omitting alt attribute, 114
attributes, 112, 344
deprecated presentational
attributes, 118
border attribute, 118
class attribute, 120
containing in block-level elements, 119
height attribute, 112, 117, 344
hspace attribute, 118
ismap attribute, 112, 118, 344
longdesc attribute, 112, 116, 344
lowsrc attribute, 118
src attribute, 111, 112, 344
title attribute, 114
usemap attribute, 112, 118, 151, 344
vspace attribute, 118
width attribute, 112, 117, 344
@import statement, CSS, 49
using external sheets within inline style
element, 228
limportant directive, CSS, 36
in unit of measure, CSS, 229
increment operators, JavaScript, 258
indention
element preserving, 61
text-indent property, CSS, 395
XHTML elements in code, 231
index
z-index property, CSS, 393
index value
arrays, JavaScript, 271
infinity symbol (&infin), 385
inherit keyword, CSS font-family property
overcoming default typeface, 224
inheritance, CSS, 95, 98

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

412 INDEX

initialisms, 76
inline elements, 15
code element, 80
containing, 53
del element, 78
div element, 85
image element, 111
input element, 191
ins element, 78
kbd element, 80
object element, 88
phrase elements, 70-84
g element, 74
samp element, 80
span element, 86
treating as block-level elements in CSS, 222
var element, 80
inline model
hooking events with, 273
inline style attribute, 31
inline styles, 32-33
specifying for elements, 17
input element, 191-202, 344, 345
accept attribute, 192, 344
accesskey attribute, 192
alt attribute, 192, 344
checked attribute, 192, 345
contact page, 322
disabled attribute, 192, 345
inline elements, 191
ismap attribute, 192, 345
maxlength attribute, 192, 345
name attribute, 191, 345
overcoming default typeface, 224
readonly attribute, 192, 345
size attribute, 192, 345
src attribute, 192, 345
tabindex attribute, 192
type attribute, 193, 345
type="button", 201
type="checkbox", 195-197
type="file", 198-199
type="hidden", 202
type="image", 201
type="password", 194-195
type="radio", 197-198
type="reset", 200
type="submit", 200
type="text", 193-194

usemap attribute, 193, 345

value attribute, 193, 345
ins element, 78-79, 346

cite attribute, 78, 346

datetime attribute, 78, 79, 346
inset value, CSS border-style property, 232
internal style sheets, 33, 47
internationalization attributes, 18, 327
internet, 1-2
Internet Explorer, 8

interpreting XHTML with correct content

type, 23
Internet media types, 23
inverted exclamation character (¡), 381
inverted question mark character
(¿), 382

IP address

domain name, 10
ismap attribute

img element, 112, 118, 344

input element, 192, 345
ISP (Internet service provider), 8
italic value, CSS font-style property, 248
italics

see alsoielement

designating text to be displayed in, 91

elements applying emphasis, 70

J

Java and JavaScript, 251
JavaScript
adding scripting language to XHTML
documents, 46

arrays, 271-272

Boolean data type, 256

case-sensitivity, 255

client-side scripting, 251-279

comments, 254

conditional statements, 259-265
if statement, 259-260
if/else statement, 260-262
if/else/if statement, 262-263
switch statement, 263-265

data types, 256

defining MIME type of script included, 47

DOM and, 276

events, 272-275

expressions, 258

file name extension, 10

form validation, 276-279
function marked up with code element, 81
functions, 270-271
grouping content with div, 85
JavaScript disabled or not supported, 253
language constructs and rules, 253-272
length function, 271
locating JavaScript, 252
looping, 265-270
do...whileloop, 268-270
for loop, 265-267, 270
while loop, 267-268, 270
null data type, 256
number data type, 256
object data type, 256
operators, 256-258
placement in XHTML documents,
252-253
removeEventListener function, 275
scripting described, 251
specifying MIME type of target URL, 44
statements, 255, 258-265
string data type, 256
syntax rules, 254-255
using comments to hide JavaScript, 253
using external file for, 252
validating user input, 276-279
variables, 255-256
white space, 255
JPEG (Joint Photographic Experts Group),
107-108
bits per pixel for color, 111
.js file extension, 252
justify value, CSS text-align property, 247

K
kbd element, 80-82, 346
keyboard attributes, 18, 328
keyboard shortcuts see accesskey attribute
keyboard text seekbd element
keydown/keypress/keyup events,
JavaScript, 272
keywords
associating XHTML document with, 46
kilobytes, 110
Konqueror, 8

INDEX

L
label attribute
optgroup element, 208, 209, 352
option element, 207, 352
label element, 216-218, 346, 347
contact page, 322
for attribute, 216, 218, 347
forms, 189, 190
labels
aligning labels, CSS, 222-223
CSS rule aligning labels in form, 223
CSS rule treating all labels as block-
level, 223
form structured with field sets and
labels, 217
labels as floating blocks, 222
lang attribute, 18, 23
bdo element, 79
:lang pseudo class, CSS, 394
language attributes seeinternationalization
attributes
layout
CSS managing document layout, 230-244
fixed or liquid width/layout, 297
table-layout property, CSS, 395
leading, 99
left
border-left property, CSS, 389
margin-left property, CSS, 392
padding-left property, CSS, 393
left property, CSS, 393
absolute positioning of containers, 240
relative positioning of containers, 238
left value, CSS text-align property, 247
left-angle quote character («), 381
leftmargin attribute, body element, 54
legend element, 214-216, 347
accesskey attribute, 214, 216
contact page, 322
fieldset element, 213, 214
styling with CSS, 214
length function, JavaScript, 271
less than character (&It), 93, 381
less than (<) operators, JavaScript, 258
letter
first-letter property, CSS, 394

413

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

414

INDEX

letter-spacing property, CSS, 395
li element, 65-67, 347
contact page, 322
structuring forms, 212
lighter value, CSS font-weight property, 248
line
first-line property, CSS, 394
line breaks
see also br element
address element with inserted line
breaks, 82
element preserving, 61
line height, CSS
confusing with leading, 99
declaring base font styles, 99-100
line-height property, CSS, 395
adding line-height declaration to body
rule, 99
Spaghetti & Cruft website, 299, 300
line-through value, CSS text-decoration
property, 247
link attribute, body element, 54
link element, 44-45, 348
adding external style sheets, 227-228
charset attribute, 44, 348
external style sheets, 34
head section, 227
href attribute, 44, 348
media attribute, 44, 348
rel attribute, 44, 348
rev attribute, 44, 348
type attribute, 44, 348
:link pseudo class, CSS, 28, 394
adding CSS to anchor <a> element, 142
linked documents
relationships between linked/current
documents, 44
links
absolute links, 134
adding CSS to anchor <a> element,
141-146
anchor <a> element, 131-139
checks when links fail, 136
creating image maps, 146-152
default behavior, 131
linking to another document, 133-136
linking to e-mail addresses, 138-139
linking to non-XHTML documents,
136-138

relative links, 135, 136
Spaghetti & Cruft website, 301
specifying base URL for all links in
document, 42
styling links with pseudo classes, 302
URL pointing to linked document, 44
URL specifying link of area, 149
using images as, 139-140
using id attribute for linking, 140-141
Linux
choosing HTML editor, 7
choosing web browser, 8
liquid width/layout, 297
list elements, 62-66
list items seeli element
list marker
using image as, 101-102
listeners, 275
lists
description, 62
list items, 65-67
ordered lists, 64-65
styling lists, CSS, 100-103
changing style of ordered lists, 102-103
changing unordered list markers,
100-101
using image as list marker, 101-102
unordered lists, 62—-63
list-style property, CSS, 391
list-style-image property, CSS, 391
background bullets, 310
using image as list marker, 101
list-style-position property, CSS, 391
list-style-type property, CSS, 391
changing style of ordered lists, 102
changing unordered list markers, 100
load event, JavaScript, 272, 273
logos seeimages
longdesc attribute, img element, 112,
116, 344
looping, JavaScript, 265-270
do ... whileloop, 268-270
for loop, 265-267, 270
increment/decrement operators, 258
types of loop, 265
while loop, 267-268, 270
lossless file compression, 108
lossy file compression, 107

lower-alpha value

changing style of ordered lists, 102
lower-roman value

changing style of ordered lists, 102
lowsrc attribute, img element, 118

M

Mac

choosing HTML editor, 7

choosing web browser, 8
macron accent character (¯), 382
mailto: link, 138
map element, 147-148, 349

see also image maps

id attribute, 147, 349

name attribute, 147, 150, 349

specifying unique ID for, 147

specifying unique name for, 147
margin property, CSS, 231, 392

auto value, 299

centering page with margins, 298

reviews page, 318

styling Spaghetti & Cruft masthead, 305
margin-bottom property, CSS, 231, 392

replacing vspace attribute, 118

styling Spaghetti & Cruft masthead, 304
marginheight attribute, body element, 54
margin-left/margin-right properties,

231, 392

centering page with margins, 297

replacing hspace attribute, 118
margins, CSS, 231

centering page with margins, 297
margin-top property, CSS, 231, 392

replacing vspace attribute, 118
marginwidth attribute, body element, 54
markup, presentational, 6
masculine ordinal character (º), 382
masthead

compensating for missing images, 305

Spaghetti & Cruft page template, 289-290

Spaghetti & Cruft style sheet, 302-306
max-height property, CSS, 390
maxlength attribute

input element, 192, 345

password control, 195

text control, 193
max-width property, CSS, 390

INDEX

media attribute
link element, 44, 348
specifying styles for media types, 249
style element, 47, 48, 357
@media rule, 48, 249
media types, CSS, 249-250
megabytes, 110
menu page, Spaghetti & Cruft website,
312-317
styling menu tables, 314-316
updating navigation, 316-317
meta element, 45-46, 349, 350
content attribute, 45, 349
http-equiv attribute, 45, 46, 349
name attribute, 45, 350
scheme attribute, 45, 350
Spaghetti & Cruft page template, 289
metadata, 42, 45
see also meta element
method attribute, form element, 189,
191, 341
micro sign character (µ), 382
Microsoft Internet Explorer, 8, 23
middle dot character (&kmiddot), 382
MIME (Multipurpose Internet Mail
Extensions)
defining MIME type of script included, 47
listing of MIME types, 44, 192
specifying MIME type of target URL,
44,132
min-height property, CSS, 390
minimized attribute, 14
min-width property, CSS, 390
mm unit of measure, CSS, 229
Monospace typeface, 81
generic font families, 96, 97
tt element, 91
mousexyz events, JavaScript, 272, 273
Mozilla Firefox, 8
MPEG video
embedding onto page, 90
multiline comments, JavaScript, 254
multiple attribute, select element, 204, 205,
206, 355
multiplication sign (×), 383
multipurpose (generic) elements, XHTML,
85-87

415

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

INDEX

N
name attribute
button element, 334
controls, 188
input element, 191, 345
map element, 147, 150, 349
meta element, 45, 350
object element, 351
param element, 89, 353
radio button control, 197
select element, 204, 205, 355
textarea element, 211, 361
namespaces, 23
navigation
persistent navigation, 316
Spaghetti & Cruft page template, 292
Spaghetti & Cruft style sheet, 309-311
updating navigation, 316-317
nesting conditional statements, JavaScript,
261-262
nesting elements, XHTML, 16
Netscape Navigator, 8
new line
wrapping text to, 82
nohref attribute, area element, 149, 331
non-breaking space character (), 381
caution using, 94
creating table with empty cell, 168
none value
border property, CSS, 221
border-style property, CSS, 232
text-decoration property, CSS, 247
no-repeat value
background-repeat property, CSS,
124, 246
normal value
font-style property, CSS, 248
font-weight property, CSS, 248
noscript element, 350
JavaScript disabled or not supported, 253
noshade attribute, hr element, 84
not equals (=) operator, JavaScript, 257
not sign (¬), 381
Notepad
choosing HTML editor, 7
null data type, JavaScript, 256
number data type, JavaScript, 256

0
object, description of, 271
object data type, JavaScript, 256
object element, 88-89, 350, 351
align attribute, 89
archive attribute, 88, 350
border attribute, 89
classid attribute, 88, 350
codebase attribute, 88, 350
codetype attribute, 88, 351
data attribute, 88, 351
declare attribute, 88, 351
height attribute, 88, 89, 351
hspace attribute, 89
name attribute, 351
referencing images from XHTML
documents, 105
standby attribute, 88, 351
tabindex attribute, 88
type attribute, 88, 351
usemap attribute, 88, 351
vspace attribute, 89
width attribute, 88, 89, 351
oblique value, CSS font-style property, 248
OE (capital)/oe (small), 385
ol element, 64-65, 351
structuring forms, 212
Omega character (Greek), 385
OmniWeb, 8
onload event, JavaScript, 273
onxyz attributes, XHTML, 18
opening tags, XHTML, 14
Opera, 8
operators, JavaScript, 256-258
arithmetic, 257
assignment, 257
comparison, 257
decrement, 258
increment, 258
optgroup element, 208-209, 352
disabled attribute, 208, 209, 352
label attribute, 208, 209, 352
select element, 204
option element, 206-207, 352
disabled attribute, 207, 352
label attribute, 207, 352
optgroup element, 208
select element, 204

selected attribute, 206, 207, 352

value attribute, 206, 207, 352
option groups see optgroup element
or (/) operator, JavaScript, 258
ordered lists, 64—65

see also ol element

changing style of, 102-103
outline property, CSS, 392
outline-xyz properties, CSS, 392
outset value, CSS border-style property, 232
overflow property, CSS, 234, 393
overline value, CSS text-decoration

property, 247

P
p element, 54-56, 353
document tree, XHTML, 24
injecting empty paragraphs, 55
structuring forms, 212
padding property, CSS, 233, 392
adding padding to cells, 182, 183
shorthand to remove padding, 221
Spaghetti & Cruft website, 298
padding, CSS, 233-234
padding-xyz properties, CSS, 392, 393
page body
Spaghetti & Cruft style sheet, 296-301
layout of content area, 307-309
page template
Spaghetti & Cruft website, 288-294
basic XHTML document, 288-289
completed markup template, 293-294
content area, 291
footer, 292
masthead, 289-290
navigation, 292
planning design, 284-287
tag line, 292
styling Spaghetti & Cruft masthead, 303
pages
see alsoweb pages
description of term’s usage, 19
paragraph sign (¶), 382
paragraphs seep element
param element, 89-90, 353
name attribute, 89, 353
type attribute, 89, 353
value attribute, 89, 353
valuetype attribute, 89, 353

INDEX

parent-child relationship, CSS
containers, 231
parents, XHTML document tree, 24
password control
maxlength attribute, 195
size attribute, 195
specifying maximum number of
characters, 192
type attribute, input element, 194-195
value attribute, 195
path, URL, 10
pc unit of measure, CSS, 229
persistent navigation, 316
phrase elements, 70-84
pica unit of measure, CSS, 229
pictures seeimages
pixel unit of measure, CSS, 229
pixels, 106
bitmapped images, 110
plus or minus sign (±), 382
PNG (Portable Network Graphic), 109-110
alpha channel, 110
bits per pixel for color, 111
point unit of measure, CSS, 229
position
position-position property, CSS, 388
list-style-position property, CSS, 391
position property, CSS, 393
styling Spaghetti & Cruft masthead,
303, 304
positioning
background images, 126-128
container positioning, CSS, 236-244
absolute positioning, 239-240
default positioning, 236
fixed positioning, 240-242
float positioning, 242-243
relative positioning, 237-238
static positioning, 236-237
post value, method attribute of form
element, 189
specifying content type used to post
form, 191
postcondition loop seedo . . . while loop,
JavaScript
Pound sterling sign (£), 381
pre element, 61-62, 354
nesting code element within, 81
preserving format of content, 80

47

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

418

INDEX

preserving white space, 17

width attribute, 62
precedence

CSS style sheet cascade order, 34-36
precondition loop see while loop, JavaScript
preformatted text see pre element
presentation

CSS (Cascading Style Sheets), 25-38

separating content from presentation, 6-7
presentational attributes, body element, 54
presentational elements, 90-92
presentational markup, 6
print media type, CSS, 249
profile attribute, head element, 42, 342
programming languages

JavaScript, 251-279
projection media type, CSS, 249
properties, CSS, 387-395

description, 26

inheritance, 95
proportional to character (&prop), 385
protocols (HTTP, FTP, ...),9
pseudo class selector, CSS, 28

specificity, 31
pseudo classes, CSS, 394

:active property, 394

adding CSS to anchor <a> element, 142

first-child property, 394

:focus property, 394

:hover property, 394

:lang property, 394

:link property, 394

styling links with, 302

:visited property, 394
pseudo element selectors, CSS, 30
pseudo elements, CSS, 394

:after property, 394

:before property, 394

first-letter property, 394

first-line property, 394
pt unit of measure, CSS, 229
px unit of measure, CSS, 229

Q

g element, 74-75, 354
cite attribute, 75, 354
quirks mode, browsers
doctype switching, 21
quotation mark character, 381

quotations
see also blockquote element; q element
attributing quotations, 72
short inline quotations, 74

R
radio button control
checked attribute, 197
name attribute, 197
setting initial checked state, 192
type attribute, input element, 197-198
value attribute, 197
readonly attribute
input element, 192, 345
textarea element, 211, 361
red
colors sorted by color groupings, 373
colors sorted by depth, 376
colors sorted by name, 371
six hexadecimal digits describing
color, 367
references, attributing, 72
regions
specifying type of region for mapping, 132
registered trademark character (®), 382
regular expressions
JavaScript validating user input, 279
rel attribute
anchor <a> element, 132, 329
link element, 44, 348
relative links
linking to another document, 135, 136
relative positioning, CSS containers, 237-238
relative units
font size, CSS, 99
relative URL, 11
removeEventListener function,
JavaScript, 275
rendering
creating large tables, 154
helping to speed up, 175
on-screen rendering of form elements, 188
study of rendering form elements, 221
repeat value
background-repeat property, CSS,
124, 246
repeat-x/repeat-y values
background-repeat property, CSS,
123, 246

replaced elements, 14, 111
required fields, indicating, 219
reserved words, JavaScript, 256
reset control
type attribute, input element, 200
value attribute, 200
reset event, JavaScript, 273
resize event, JavaScript, 273
rev attribute
anchor <a> element, 132, 329
link element, 44, 348
reviews page
Spaghetti & Cruft website, 317-319
rgb value
specifying color in CSS, 230
ridge value, CSS border-style property, 232
right
border-right property, CSS, 389
margin-right property, CSS, 392
padding-right property, CSS, 393
right property, CSS, 393
right value, CSS text-align property, 247
right-angle quote character (»), 382
Roman numerals
changing style of ordered lists, CSS, 102
root element, XHTML documents, 22-24
Trows
see also tr element
creating rows and cells in tables, 173-174
setting up basic tables, 154
rows attribute, textarea element, 210, 211, 361
rowspan attribute, 166
code for adding to table, 167, 168
td element, 158, 360
th element, 164, 363
rules
CSS rules, 25-26
@import statement, CSS, 49
rules attribute, table element, 155, 358

S
Safari, 8
file controls in Safari, 199
samp element, 80-82, 354
Sans serif typeface, 95, 96, 97
scheme attribute, meta element, 45, 350
scope attribute
td element, 158, 160
th element, 164, 313

INDEX

screen media type, CSS, 249
script element, 46-47, 355
charset attribute, 47, 355
defer attribute, 47, 355
placement of JavaScript in XHTML
documents, 252-253
src attribute, 47, 252, 355
type attribute, 47, 355
scripting, JavaScript, 251-279
client-side scripting, 251-279
JavaScript disabled or not supported, 253
server-side scripting, 251
scroll value
background-attachment property,
CSS, 246
overflow property, CSS, 234
search engines
associating XHTML document with
keywords, 46
section sign (§), 381
security
see also password control
encryption, 195
select element, 203-206, 355
disabled attribute, 206, 355
JavaScript, 273
multiple attribute, 204, 205, 206, 355
name attribute, 204, 205, 355
optgroup element, 204, 208
option element, 204, 206
overcoming default typeface, 224
size attribute, 203, 205, 355
tabindex attribute, 206
selected attribute, option element, 206,
207,352
selection control see select element
selectors, CSS, 27
adding CSS to anchor <a> element, 142
adjacent sibling selectors, 30
attribute selectors, 30
child selectors, 30
class selector, 27
combining selectors, 29
CSS rules, 26, 30
descendant selector, 28
element selector, 27
grouping selectors, 29
pseudo class selector, 28
pseudo element selectors, 30

419

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

420

INDEX

specificity, 27, 30-32
universal selector, 27
using with pseudo classes, 142
semantics, 54
semicompacted format, CSS, 38
Serif typeface, 96, 97
servers seeweb servers
server-side scripting technologies, 251
service providers
hosting web site, 8
SGML (Standard Generalized Markup
Language), 3
shadow
text-shadow property, CSS, 395
shape attribute
anchor <a> element, 132, 329
area element, 148, 149, 331
shortcuts see keyboard shortcuts
siblings
adjacent sibling selectors, CSS, 30
document tree, XHTML, 24
side
caption-side property, CSS, 395
single-line comments, JavaScript, 254
site root directory, 10, 11
sites see web sites
size
font-size property, CSS, 391
size attribute
file control, 198
hr element, 84
input element, 192, 345
password control, 195
select element, 203, 205, 355
text control, 194
slash character, 383, 384
small element, 91, 356
soft hyphen character (­), 381
solid value, CSS border-style property, 232
space
white-space property, CSS, 395
spacing
border-spacing property, CSS, 395
letter-spacing property, CSS, 395
word-spacing property, CSS, 395
Spaghetti & Cruft page template, 288-294
completed markup template, 293-294
content area, 291
default web browser styling, 295

footer, 292
masthead, 289-290
navigation, 292
tag line, 292

Spaghetti & Cruft style sheet, 295-312
absolute positioning, 303
background bullets, 310
centering page with margins, 297
clearing floated elements, 308
colors, 300
compensating for missing images, 305
content area, layout of, 307-309
fixed or liquid width/layout, 297
fonts, 299
footer, 311-312
masthead, 302-306
navigation, 309-311
page body, 296-301

Spaghetti & Cruft website, 281-324
architecture, 283
assembling pages with content, 312
basic XHTML document, 288-289
contact page, 320-324
creating pages with content, 324
design process, 282-288
links, 301
menu page, 312-317

styling menu tables, 314-316
updating navigation, 316-317

page template design, 284-287
reviews page, 317-319
testing, 288

spaghetti code, 282

span attribute
col element, 177, 178, 336
colgroup element, 175, 337

span element, 86-87, 356

special characters, 92-94, 381-385
ampersand (&) character references, 93
encoding, 93
Greek letters, 384
technical symbols, 384
Unicode numbers for, 93

specificity, CSS selectors, 27, 30-32
cascade order, 35
limportant directive, 36

src attribute
image control, 201
img element, 111, 112, 344

input element, 192, 345
script element, 47, 355
locating JavaScript, 252
standby attribute, object element, 88, 351
statements, JavaScript, 255, 258-265
conditional statements, 259-265
expressions, 258
functions doing data-type
conversions, 259
static positioning, CSS containers, 236-237
strict mode, browsers
doctype switching, 21
Strict version see XHTML 1.0 Strict
string data type, JavaScript, 256
strong element, 71-72, 356
combining strong and em elements, 72
structure
content and structure of web page, 51-52
style
border-bottom-style property, CSS, 388
border-left-style property, CSS, 389
border-right-style property, CSS, 389
border-style property, CSS, 389
border-top-style property, CSS, 389
font-style property, CSS, 391
list-style property, CSS, 391
list-style-image property, CSS, 391
outline-style property, CSS, 392
style attribute, 17
inline styles, 32-33
XHTML elements, 327
style element, 47-49, 357
embedded style sheets, 33
media attribute, 47, 48, 357
type attribute, 47, 357
using external sheets within, 228
style sheets see CSS (Cascading Style Sheets)
sub element, 91-92, 357
submit control, 200
submit event, JavaScript, 272, 273
subscript characters, 91
subscript text see sub element
summary attribute, table element, 155,
160, 359
sup element, 91-92, 358
superscript characters, 91, 382
superscript text see sup element
SVG (Scalable Vector Graphics), 107

switch statement, JavaScript, 263-265

break statement, 265
case keyword, 265

T

tab order

setting tab order for elements, 18

tabindex attribute, 18
button element, 203
input element, 192
object element, 88
select element, 206
textarea element, 211
XHTML elements, 328
table body see tbody element
table cell seetd element
table element, 154, 358, 359
border attribute, 154, 180, 358
cellpadding attribute, 154, 358
cellspacing attribute, 154, 358
coding basic tables, 160
defining group of tags, 175
frame attribute, 155, 358
rules attribute, 155, 358
setting up basic tables, 153, 154
summary attribute, 155, 359
width attribute, 155, 359
table footer see tfoot element
table headers see thead element
table row see tr element
table row as header see th element
table-footer-group property, 171
table-header-group property, 171
table-layout property, CSS, 395
tables, 153-186
adding backgrounds to, 184-186
adding caption to, 162
adding header cell to, 165
adding padding to cells, 182-184
advanced use of, 166-178
aligning text in, 180-182
basic tag layout of, 153

INDEX

code for adding colspan/rowspan to,

167, 168
coding basic tables, 159-166

creating rows and cells in, 173-174
creating table with empty cell, 168

CSS properties, 395

defining start/end of table body, 168

421

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

INDEX

defining start/end of table footer, 171
defining start/end of table head, 170
rendering large tables, 154
setting up basic tables, 153
specifying alignment of text within cell,
156, 169, 170, 172
specifying attribute values for columns
in, 176
specifying divider lines, 155
specifying outer border display, 155
specifying space between cells, 154
specifying summary of tables, 155
specifying width of table border in
pixels, 154
specifying width of, 155, 175, 177
using CSS to add style to, 178-186
using for document layout, 186
tag line
Spaghetti & Cruft page template, 292
tags
see also elements; elements, list of
angle brackets, 13
attributes, 17-18
basic tag layout of tables, 153
case-sensitivity, 14
closing tag, 14
description, 2, 13
opening tag, 14
tbody element, 168, 359
align attribute, 169, 359
char attribute, 169, 359
charoff attribute, 169, 359

order of thead/tfoot/tbody elements, 168

using, 173-174
using with modern browsers, 168
valign attribute, 169, 359
td element, 157, 360
abbr attribute, 157, 360
align attribute, 157, 360
axis attribute, 157, 360
char attribute, 157, 360
charoff attribute, 158, 360
colspan attribute, 158, 360
rowspan attribute, 158, 360
scope attribute, 158, 160
setting up basic tables, 153, 154
styling menu tables, 315
valign attribute, 158, 360
technical symbols, 384

teletype typeface, 91
tt element, 91, 365
template page see page template
testing
Spaghetti & Cruft website, 288
text
aligning text in tables, 180-182
bi-directional override element, 79
CSS properties, 395
defining text for user input, 80
defining variables in, 365
element indicating deleted text, 78
element indicating inserted text, 78
elements applying emphasis, 70, 71
increasing/decreasing text size, 91
keyboard text, 346
preformatted text, 354
special characters, 92-94
specifying alternate text, 148
specifying text direction, 18
styling text, CSS, 246-248
subscript text, 357
superscript text, 358
wrapping text around images, 120-122
creating space around image, 121
wrapping text to new line, 82
text attribute, body element, 54
text control
maxlength attribute, 193
size attribute, 194
specifying maximum number of
characters, 192
type attribute, input element, 193-194
value attribute, 194
text deletions see del element
text editors
choosing HTML editor, 7
text insertions seeins element
text-align property, CSS, 247, 395
aligning text in tables, 180
specifying alignment of text within
cell, 156
styling Spaghetti & Cruft masthead, 305
values for, 247
textarea element, 210-211, 361
accesskey attribute, 211
cols attribute, 211, 361
disabled attribute, 211, 361
name attribute, 211, 361

overcoming default typeface, 224
readonly attribute, 211, 361
rows attribute, 210, 211, 361
tabindex attribute, 211
text-decoration property, CSS, 246, 247, 395
TextEdit
choosing HTML editor, 7
text-indent property, CSS, 247, 395
text-shadow property, CSS, 395
text-transform property, CSS, 395
tfoot element, 171-174, 361, 362
align attribute, 172, 361
char attribute, 172, 361
charoff attribute, 172, 362
displaying content on each page, 171
order of thead/tfoot/tbody elements, 168
using with modern browsers, 168
valign attribute, 172, 362
th element, 163-166, 362, 363
abbr attribute, 163, 362
adding header cell to table, 165
align attribute, 163, 362
axis attribute, 164, 362
char attribute, 164, 362
charoff attribute, 164, 362
colspan attribute, 164, 362
headers attribute, 164
rowspan attribute, 164, 363
scope attribute, 164, 313
styling menu tables, 314
valign attribute, 164, 363
thead element, 170, 363
align attribute, 170, 363
char attribute, 170, 363
charoff attribute, 170, 363
displaying content on each page, 171
order of thead/tfoot/tbody elements, 168
using, 173-174
using with modern browsers, 168
valign attribute, 170, 363
thorn character (Icelandic), 383, 384
tilde (~) character, 382, 383, 384
tiling
background images, 122-124
title attribute, 17
abbr element, 77
acronym element, 77
img element, 114
reviews page, 318
XHTML elements, 327

INDEX

title element, 49-50, 364
head element and, 24
tooltips, 113
rendering text as, 17
top
border-top property, CSS, 389
border-top-width property, CSS, 389
margin-top property, CSS, 392
padding-top property, CSS, 393
top property, CSS, 393
relative positioning of containers, 238
styling Spaghetti & Cruft masthead, 304
topmargin attribute, body element, 54
tr element, 156, 364
align attribute, 156, 364
char attribute, 156, 364
charoff attribute, 156, 364
coding basic tables, 160
setting up basic tables, 153, 154
valign attribute, 156, 364
traditional model
hooking events with, 274
transform
text-transform property, CSS, 395
Transitional version seeXHTML 1.0
Transitional
transparency
GIF, 109
PNG, 110
tt element, 91, 365
tty media type, CSS, 249
tvmedia type, CSS, 249
type
list-style-type property, CSS, 391
type attribute
anchor <a> element, 132, 329
button element, 202, 203, 335
input element, 193, 345
type="button", 201
type="checkbox", 195-197
type="file", 198-199
type="hidden", 202
type="image", 201
type="password", 194-195
type="radio", 197-198
type="reset", 200
type="submit", 200
type="text", 193-194
link element, 44, 348
object element, 88, 351

423

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

INDEX

param element, 89, 353
script element, 47, 355
style element, 47, 357

type selector, CSS, 27, 31

typeface seefont family

typefaces
changing in form controls, 224-225
Cursive typeface, 97
Fantasy typeface, 97
Monospace typeface, 81, 96, 97
Sans-serif typeface, 96, 97
Serif typeface, 95, 96, 97

U

u element, 302
ul element, 62-63, 365
changing unordered list markers, 100-101
Spaghetti & Cruft page template, 292
umlaut character (¨), 381, 382, 383, 384
underline value, CSS text-decoration
property, 247
Unicode numbers for special characters, 93
unique identifier
specifying for elements, 17
units of measure in CSS, 229-230
universal selector, CSS, 27
specificity, 31
unordered lists see ul element
upper-alpha/upper-roman values
changing style of ordered lists, CSS, 102
URI (Uniform Resource Identifier), 9
URL (Uniform Resource Locator), 9-11
see alsobase element
absolute links, 134
absolute URL, 11
components of URLs, 9-11
domain name, 10
hostname, 10
linking to another document, 134
path, 10
pointing to linked document, 44
protocols, 9
relative links, 135, 136
relative URL, 11
specifying base language used in, 132
specifying base URL for all links in
document, 42
specifying character set used in encoding
of, 132

specifying link of area, 149
specifying MIME type of target URL,
44,132
specifying relationship, document and
target URL, 132
specifying source URL of image file, 192
specifying URL for browser to open, 132
specifying URL of client-side image
map, 193
specifying URL of form handler, 190
url keyword
background-image property, 122
list-style-image property, 101
usemap attribute
img element, 112, 118, 151, 344
input element, 193, 345
object element, 88, 351
user input
JavaScript validating, 276-279
user style sheets
CSS style sheet cascade order, 35
user-agents see web browsers

'}
validation
form validation, JavaScript, 276-279
JavaScript validating user input, 276-279
validating HTML/XHTML documents, 5-6
valign attribute
col element, 177, 336
colgroup element, 175, 337
tbody element, 169, 359
td element, 158, 360
tfoot element, 172, 362
th element, 164, 363
thead element, 170, 363
tr element, 156, 364
value attribute
button control, 201
button element, 203, 335
checkbox control, 195
hidden control, 202
input element, 193, 345
option element, 206, 207, 352
param element, 89, 353
password control, 195
radio button control, 197
reset control, 200
submit control, 200
text control, 194

valuetype attribute, param element, 89, 353
var element, 80-82, 365
variables

see also var element

designating programming variable, 80

JavaScript, 255-256

setting value of variables, 256
variable naming, 255

variant

font-variant property, CSS, 391
vector graphics, 107
vertical bar character, broken (¦), 381
vertical-align property, CSS, 393

replacing align attribute, 118
visibility property, CSS, 390
visible value, CSS overflow property, 234, 235
:visited pseudo class, CSS, 28, 394

adding CSS to anchor <a> element, 142
vlink attribute, body element, 54
vspace attribute

img element, 118

object element, 89

w
W3C (World Wide Web Consortium)
rules for authoring HTML documents, 2
technical specifications for versions of
HTML, 3
W3C Markup Validation Service website, 5
warnings
validating XHTML documents, 5
web browsers
automated refreshes of document in, 45
choosing, 8
CSS versions and browser
compatibility, 250
description, 1
determining document type, 20
graceful degradation, 220
graphical browsers, 2
helping to speed up rendering in, 175
ignoring white space, 16
interpreting tags, 13
JavaScript disabled or not supported, 253
JavaScript validating user input, 276
rendering invalid documents, 6
study of rendering form elements, 221
styling form controls with CSS, 220
styling forms with CSS, 219
web standards, 3

INDEX

web forms see forms
web hosting, 8-9
web pages
adding content to, 51-90
cataloging pages on Internet, 45
centering page with margins, 297
content and structure of, 51-52
description of term usage, 19
helping to speed up rendering of, 175
reserving space for images in, 117
resizing images for, 117
Spaghetti & Cruft page template, 288-294
Spaghetti & Cruft style sheet, 295-312
footer, 311-312
layout of content area, 307-309
masthead, 302-306
navigation, 309-311
page body, 296-301
web-friendly image formats, 107-111
GIF, 108-109
JPEG, 107-108
PNG, 109-110
working with XHTML and CSS, 7-9
web servers
description, 2
hosting web site, 8-9
web sites
hosting web site, 8-9
site root directory, 10
Spaghetti & Cruft website, 312-324
contact page, 320-324
menu page, 312-317
reviews page, 317-319
web standards, 3
web-safe color palette, 367
weight
font-weight property, CSS, 391
well-formed documents, 5
while condition
do ... while loop, JavaScript, 269
while loop, JavaScript, 267-268, 270
white
colors sorted by color groupings, 375
colors sorted by depth, 376
colors sorted by name, 371
six hexadecimal digits describing
color, 367
white space
browsers collapsing extra spaces, 16
element preserving, 61

425

=
=]
o
=
—
QD
(%]
—
oD
=
QD
=
=
=3
=
=
w
(=
=}
D
=
=}
(=X
)
B
QD
=
D
(2]
oo
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

426 INDEX

JavaScript, 255
nesting conditional statements, 262
XHTML, 16
white-space property, CSS, 395
width
border-bottom-width property, CSS, 388
border-left-width property, CSS, 389
border-right-width property, CSS, 389
border-top-width property, CSS, 389
border-width property, CSS, 389
fixed or liquid width/layout, 297
max-width property, CSS, 390
min-width property, CSS, 390
outline-width property, CSS, 392
width attribute
col element, 177, 337
colgroup element, 175, 337
hr element, 84
img element, 112, 117, 344
menu page, 313
object element, 88, 89, 351
pre element, 62
table element, 155, 359
width property, CSS, 234, 390
modifying text area dimensions, 210
modifying width of select element, 204
modifying width of text field/control, 194
precedence with width attribute, 117
Spaghetti & Cruft website, 297
styling menu tables, 314
specifying width of tables, 155
wild cards
universal selector, CSS, 27, 31
Windows
choosing HTML editor, 7
choosing web browser, 8
word-spacing property, CSS, 395
wrapping
creating space around image, 121
wrapping text around images, 120-122
wrapping text to new line, 82
WWW (World Wide Web), 1-2
WYSIWYG editors, 7

X
XHTML (eXtensible HTML)
attributes, 14, 17-18
attributes requiring quoted value in, 192
comments, 19

content type, 23, 24
description, 3
elements, 14
block-level elements, 15
inline elements, 15
nesting elements, 16
event attributes, 18
focus attributes, 18
html element, 22-24
internationalization attributes, 18
tags, 13
validating documents, 5-6
versions of HTML, 3
versions of XHTML, 4
white space, 16
working with XHTML and CSS, 7-9
XHTML 1.0 Frameset, 4
DOCTYPE declaration, 20
XHTML 1.0 Strict, 4
DOCTYPE declaration, 20
elements and attributes reference,
327-365
HTML 4.01 Strict compared, 39
XHTML 1.0 Transitional, 4
DOCTYPE declaration, 20
XHTML documents, 19-24
adding scripting language to, 46
adding title to, 50
assigning extra information to, 45
associating with keywords on search
site, 46
attaching style sheets to, 32-34
automated refreshes in browser, 45
body element, 24
with empty body element, 53
choosing HTML editor, 7
choosing web browser, 8
client-side scripting, 251
comments, 19
compatibility mode, 21
compliance mode, 21
defining MIME type of script included, 47
defining relationship between, 44
defining style type, 47
description of term usage, 19
doctype switching, 21-22
document tree, 24
Document Type Declaration (DOCTYPE),
20-22

element containing information about, 41

external style sheet added to, 229

file name extension, 10

head element, 24

html element, 22-24

including images in, 43

IE interpreting when content type
correct, 23

JavaScript manipulating content of, 276

linking to another document, 133-136

linking to e-mail addresses, 138-139

linking to non-XHTML documents,
136-138

metadata information about, 42, 45

placement of JavaScript in, 252-253

quirks mode, 21

referencing external information about, 45

referencing images from, 105

referring to different media types, 44

relationships between linked/current
documents, 44

relative links, 136

setting character set, 44

Spaghetti & Cruft page template, 288-289

special characters, 381-385

specifying base URL for all links in, 42

INDEX

specifying MIME type of target URL, 44
specifying refresh rate for, 46
specifying relationship with target
URL, 132
strict mode, 21
URL pointing to linked document, 44
validating, 5-6
well-formed documents, 5
XML declaration, 22
XML declaration, 22
XML namespaces, 23
xmlns attribute, html element, 22, 343
xml:lang attribute, 18, 23
bdo element, 79
internationalization attributes, 327

Y
yellow
colors sorted by color groupings, 374
colors sorted by depth, 376
colors sorted by name, 371
Yen sign (¥), 381

Z
z-index property, CSS, 393
setting order of containers, 243

=
=]
(=1
=
—
QD
(%]
—
D
=
QD
—
=
=3
=
=
w
(=
=]
D
=
=
Q
@D
x
QD
=]
=
[1°]
(2]
[
Q
(=]
3

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

