

BEGINNING CSS

INTRODUCTION . xxiii

 � PART I THE BASICS

CHAPTER 1 Introducing Cascading Style Sheets . 3

CHAPTER 2 The Bits that Make Up a Style Sheet .17

CHAPTER 3 Selectors . 39

CHAPTER 4 The Cascade and Inheritance . 57

 � PART II PROPERTIES

CHAPTER 5 Applying Font Faces . 73

CHAPTER 6 Manipulating the Display of Text . 93

CHAPTER 7 Background Colors and Images . 115

CHAPTER 8 The Box Model: Controlling Margins, Borders, Padding,

Width, and Height .137

CHAPTER 9 Floating and Vertical Alignment . 175

CHAPTER 10 Styling Lists . 203

CHAPTER 11 Positioning . 219

CHAPTER 12 Styling Tables . 249

CHAPTER 13 Create a Complete Layout . 271

 � PART III ADVANCED CSS AND ALTERNATIVE MEDIA

CHAPTER 14 Advanced Selectors . 297

CHAPTER 15 Styling for Print . 323

CHAPTER 16 Customizing the Mouse Cursor . 337

CHAPTER 17 Controlling Opacity and Visibility . 345

CHAPTER 18 Styling Content for Mobile Devices . 355

CHAPTER 19 Closing Comments . 367

Continues

ffirs.indd iffirs.indd i 12/05/11 11:27 AM12/05/11 11:27 AM

APPENDIX A Answers to Exercises . 369

APPENDIX B Additional CSS Resources . 383

APPENDIX C CSS Reference . 385

APPENDIX D CSS Colors . 407

INDEX . 415

ffirs.indd iiffirs.indd ii 12/05/11 11:27 AM12/05/11 11:27 AM

BEGINNING

CSS

Third Edition

ffirs.indd iiiffirs.indd iii 12/05/11 11:27 AM12/05/11 11:27 AM

ffirs.indd ivffirs.indd iv 12/05/11 11:27 AM12/05/11 11:27 AM

BEGINNING

CSS

CASCADING STYLE SHEETS FOR WEB DESIGN

Third Edition

Ian Pouncey
Richard York

ffirs.indd vffirs.indd v 12/05/11 11:27 AM12/05/11 11:27 AM

Beginning CSS: Cascading Style Sheets for Web Design, Third Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 978-0-470-89152-0
ISBN: 978-1-118-12177-1 (ebk)
ISBN: 978-1-118-12176-4 (ebk)
ISBN: 978-1-118-12178-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
 promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
 services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available
in standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of
this book that did not include media that is referenced by or accompanies a standard print version, you may request this
media by visiting http://booksupport.wiley.com. For more information about Wiley products, visit us at
www.wiley.com.

Library of Congress Control Number: 2011926318

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
 owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 12/05/11 11:27 AM12/05/11 11:27 AM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://booksupport.wiley.com

To Mum and Dad.

Thank you.

ffirs.indd viiffirs.indd vii 12/05/11 11:27 AM12/05/11 11:27 AM

ffirs.indd viiiffirs.indd viii 12/05/11 11:27 AM12/05/11 11:27 AM

ABOUT THE AUTHORS

IAN POUNCEY, author of this revised edition of the book, is a web developer living in
London, England, and working for the BBC. He has been working on the Web for over
11 years, building a wide range of websites, from small sites for local businesses to
the latest version of the Yahoo! home page. He is a W3C Web Accessibility Initiative
Education and Outreach Working Group member and a web accessibility advocate.
Ian maintains a personal website at http://ianpouncey.com, where he writes about

all aspects of the Web.

RICHARD YORK, author of the previous editions on which this edition is based, is a
web developer for Westlake Design, a company specializing in website design and
development, product branding, marketing and identity. He wrote his fi rst book,
Beginning CSS: Cascading Style Sheets for Web Design (Wrox Press) in 2004.
Richard lives in Camby, Indiana with his wife, Lisa, and three cats: Gandalf, Merlin
and Caesar. He maintains a personal website at www.deadmarshes.com, where you can

learn more about his professional and personal interests.

ffirs.indd ixffirs.indd ix 12/05/11 11:27 AM12/05/11 11:27 AM

ffirs.indd xffirs.indd x 12/05/11 11:27 AM12/05/11 11:27 AM

EXECUTIVE EDITOR

Robert Elliott

PROJECT EDITOR

Tom Dinse

TECHNICAL EDITOR

Steve Webster

PRODUCTION EDITOR

Daniel Scribner

COPY EDITOR

C.M. Jones

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katherine Crocker

PROOFREADER

Nancy Carrasco

INDEXER

Ron Strauss

COVER DESIGNER

Michael Trent

COVER IMAGE

© iStock / Vitalina Rybakova

CREDITS

ffirs.indd xiffirs.indd xi 12/05/11 11:27 AM12/05/11 11:27 AM

ffirs.indd xiiffirs.indd xii 12/05/11 11:27 AM12/05/11 11:27 AM

ACKNOWLEDGMENTS

I MUST FIRST THANK THE PEOPLE who gave me the opportunity to work on this, my fi rst book:
Nicholas Zakas for recommending me and Scott Meyers for taking his advice.

Thanks also to my editor for being so patient with me. Thanks Tom.

Many thanks also to my tech editor and friend, Steve Webster. Possibly the smartest web developer
I have had the pleasure of working with.

Finally, love and thanks to all of my family, especially to my parents, who set me on my path by
buying me my fi rst computer and supporting me no ma tter what.

ffirs.indd xiiiffirs.indd xiii 12/05/11 11:27 AM12/05/11 11:27 AM

ffirs.indd xivffirs.indd xiv 12/05/11 11:27 AM12/05/11 11:27 AM

CONTENTS

INTRODUCTION xxiii

PART I: THE BASICS

CHAPTER 1: INTRODUCING CASCADING STYLE SHEETS 3

Advantages of Using CSS 4

How to Write CSS 5

Your First CSS-Enabled Document 6

Browsers 12

Webkit 12

Trident 13

Gecko 14

Presto 14

CHAPTER 2: THE BITS THAT MAKE UP A STYLE SHEET 17

Rules 17

Selectors 18

Grouping Selectors 18

Declarations 19

Values 19

Keywords 19

Strings 23

Length and Measurement 25

Numbers 29

Colors 31

The URI 33

Including CSS in a Document 34

Including an Embedded Style Sheet 35

Linking to External Style Sheets 35

The Importance of Good HTML 36

Doctypes and Quirks Mode 36

CHAPTER 3: SELECTORS 39

Class and ID Selectors 39

Class Selectors 40

ID Selectors 42

FTOC.indd xvFTOC.indd xv 11/05/11 3:09 PM11/05/11 3:09 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

xvi

CONTENTS

The Universal Selector 48

Descendant Selectors 48

Pseudo-Classes 50

Dynamic Pseudo-Classes 50

CHAPTER 4: THE CASCADE AND INHERITANCE 57

The Cascade 57

Calculating the Specifi city of a Selector 60

!important Rules 66

Inheritance 66

PART II: PROPERTIES

CHAPTER 5: APPLYING FONT FACES 73

Setting Font Faces 73

Font Families 75

Making Text Italic, Bold, or Small Caps 78

Italic Text 78

Bold Text 79

Small Caps Text 79

The font-size Property 82

Absolute Font Sizes 82

Relative Font Sizes 83

Length and Percentage Font Sizes 83

The font Shorthand Property 86

The font Properties 87

CHAPTER 6: MANIPULATING THE DISPLAY OF TEXT 93

Line Height 94

Controlling the Spacing between Letters 97

Controlling the Spacing between Words 98

Indenting Text 101

Horizontally Aligning Text 102

Decorating Text with Underlines, Overlines,
or Strikethrough 104

Transforming Letter-Case to Lowercase or Uppercase or
Capitalizing the Initial Characters of Words 108

Controlling How White Space Is Handled 111

FTOC.indd xviFTOC.indd xvi 11/05/11 3:09 PM11/05/11 3:09 PM

xvii

CONTENTS

CHAPTER 7: BACKGROUND COLORS AND IMAGES 115

Background Colors 115

Background Images 117

Controlling How Background Images Repeat 120

Positioning Background Images 124

Mixing Background Position Values 126

Repeating a Background Image and Controlling Its Position 128

Controlling Position with the Center Keyword 129

Fixing a Background Image in Place 131

Background Shorthand 133

CHAPTER 8: THE BOX MODEL: CONTROLLING MARGINS,
BORDERS, PADDING, WIDTH, AND HEIGHT 137

Overview 137

Margins 138

margin Property with Four Values 138

margin Property with Three Values 140

margin Property with Two Values 141

margin Property with One Value 142

Margin Collapsing 142

Horizontally Aligning Elements with the margin Property 147

Borders 151

border-width 151

border-style 153

border-color 154

Border Shorthand Properties 156

Padding 159

Setting Dimensions 162

width 162

height 163

auto Values for width and height 165

Percentage Measurements 165

Quirks Mode width and height in Internet Explorer 165

Minimum and Maximum Dimensions 166

Overfl owing Content 169

Overfl owing Just the X or Y axis 171

FTOC.indd xviiFTOC.indd xvii 11/05/11 3:09 PM11/05/11 3:09 PM

xviii

CONTENTS

CHAPTER 9: FLOATING AND VERTICAL ALIGNMENT 175

Floating Content 175

Floating Box Model 178

Canceling Floated Content 181

Float Bugs in IE 6 184

The Peek-A-Boo Bug 186

The Guillotine Bug 188

The Three-Pixel Jog 190

The Double-Margin Bug 191

Vertically Aligning Content 193

Subscript and Superscript Text 193

The top, middle, and bottom Keywords 194

The text-top and text-bottom Keywords 195

Percentage and Length Value 197

Vertically Aligning the Contents of Table Cells 198

CHAPTER 10: STYLING LISTS 203

List Markup 203

The list-style-type Property 205

Styling Unordered Lists 205

Styling Ordered Lists 207

The list-style-image Property 212

The list-style-position Property 214

The list-style Shorthand Property 215

CHAPTER 11: POSITIONING 219

Introduction to Positioning 219

Absolute Positioning 220

Relative Positioning 224

Fixed Positioning 229

The z-axis and the z-index Property 235

The IE 6/IE 7 z-index Bug 245

CHAPTER 12: STYLING TABLES 249

Optional Table Elements 249

Table Captions 251

Table Columns 253

Controlling Table Layout 256

Collapsing Borders 261

Controlling Border Spacing 263

FTOC.indd xviiiFTOC.indd xviii 11/05/11 3:09 PM11/05/11 3:09 PM

xix

CONTENTS

CHAPTER 13: CREATE A COMPLETE LAYOUT 271

Creating the Page with HTML 271

Styling Text and Custom Fonts 275

Building the Layout 281

Gradient Backgrounds 285

PART III: ADVANCED CSS AND ALTERNATIVE MEDIA

CHAPTER 14: ADVANCED SELECTORS 297

Direct Child Selectors 297

Next Sibling Selector 300

Attribute Selectors 302

Select by Presence of an Attribute 303

Select by Attribute Value 305

Attribute Substring Selectors 308

Pseudo-Elements :fi rst-letter and :fi rst-line 315

Structural Pseudo-Classes 317

:fi rst-child 318

:last-child 318

:nth-child(n) 318

CHAPTER 15: STYLING FOR PRINT 323

Benefi ts of Print Style Sheets 323

Applying Styles Based on Media 324

Controlling Styles for Media within a Style Sheet 328

Controlling Page Breaks 331

The Content Property 333

CHAPTER 16: CUSTOMIZING THE MOUSE CURSOR 337

The cursor Property 337

Cursor Compatibility 340

CHAPTER 17: CONTROLLING OPACITY AND VISIBILITY 345

The opacity Property 345

The visibility Property 349

FTOC.indd xixFTOC.indd xix 11/05/11 3:09 PM11/05/11 3:09 PM

xx

CONTENTS

CHAPTER 18: STYLING CONTENT FOR
MOBILE DEVICES 355

Why Mobile Is Important 355

Developing for Mobile 356

Testing Mobile Devices 356

Media Queries 357

CHAPTER 19: CLOSING COMMENTS 367

CSS Summary 367

Future of CSS 368

Closing Statement 368

APPENDIX A: ANSWERS TO EXERCISES 369

Chapter 1 369

Chapter 2 369

Chapter 3 370

Chapter 4 371

Chapter 5 372

Chapter 6 373

Chapter 7 374

Chapter 8 375

Chapter 9 375

Chapter 10 376

Chapter 11 376

Chapter 12 377

Chapter 13 377

Chapter 14 378

Chapter 15 379

Chapter 16 380

Chapter 17 380

Chapter 18 381

APPENDIX B: ADDITIONAL CSS RESOURCES 383

Text Editors 383

Windows 383

Mac 383

Other 383

Browsers 383

HTML 384

CSS 384

FTOC.indd xxFTOC.indd xx 11/05/11 3:09 PM11/05/11 3:09 PM

xxi

CONTENTS

APPENDIX C: CSS REFERENCE 385

Reference Conventions 385

Selectors 386

Pseudo-Classes 387

Pseudo-Elements 388

Color Properties 388

Font Properties 389

Background Properties 391

Text Properties 392

Box Model Properties 394

Visual Eff ects 399

Positioning 400

Table Properties 402

User Interface 403

Generated Content, Automatic Numbering, and Lists 404

APPENDIX D: CSS COLORS 407

Reds 407

Blues 409

Greens 410

Yellows 411

Browns 412

Grays 413

INDEX 415

FTOC.indd xxiFTOC.indd xxi 11/05/11 3:09 PM11/05/11 3:09 PM

Flast.indd xxiiFlast.indd xxii 11/05/11 3:10 PM11/05/11 3:10 PM

INTRODUCTION

WELCOME TO BEGINNING CSS: Cascading Style Sheets for Web Design, Third Edition.

Cascading Style Sheets (CSS) are the tool that web designers and developers use alongside markup
languages such as HTML and XHTML to build websites. CSS provides web browsers with the
information they need to control the visual aspect of a web page, such as the position of HTML
elements, text styles, backgrounds, colors and images, and much more.

Advanced C SS techniques give website authors the ability to tailor layouts and designs for mobile
web browsers, as well as the skills they need to create websites for regular desktop browsers. I will
introduce you to the basics of writing CSS for mobile devices.

WHAT’S NEW IN THE THIRD EDITION?

The second edition of this book, written entirely by Richard York, provides very thorough and complete
coverage of CSS at the time of its writing. Possibly no other CSS book for beginners goes into so much
detail and depth.

For the third edition, I have taken Richard’s work and streamlined it to focus on the techniques that
professional authors of CSS use every day to create the wide range of sites on the Web today. My
intention is to provide an introduction to CSS that is easy to dive into and enables you, the reader,
to get up, running, and productive with CSS as quickly as possible.

Many of the words you will read are Richard’s, but I have attempted to mould them around my own
experience as a long-time author of CSS used on websites big and small, complex and simple.

While some attention is paid to the older browsers still in use today, I have chosen to spend more
time on the newer crop of browsers and those likely to be signifi cant in the future, providing you
with up-to-date knowledge and skills.

The code in all of the examples is syntax highlighted for easy readability, and the exercises that you
will encounter are inspired by real-world uses of CSS and HTML, helping you to write CSS in the
right way from the start.

I encourage you to have fun with each exercise, learning not only by following my instructions, but
also by experimenting with the properties and values that I introduce you to.

WHO IS THIS BOOK FOR?

This book is for anyone looking to learn how to use Cascading Style Sheets to style websites.
Designers, in particular, will benefi t from a good grounding in CSS, as it is the key to producing
websites from their designs.

Flast.indd xxiiiFlast.indd xxiii 11/05/11 3:10 PM11/05/11 3:10 PM

xxiv

INTRODUCTION

To get the most from this book, experience with HTML is useful. While all of the HTML you
need to follow the examples is provided, you will gain a greater understanding of the best methods
for using CSS to create websites if you already know how to write markup.

WHAT DOES THIS BOOK COVER?

This book covers portions of the CSS Level 1, 2, 2.1, and 3 specifi cations. These specifi cations are
created by an independent, not-for-profi t Internet standards organization called the World Wide
Web Consortium (W3C) that plans and defi nes how Internet documents work. The majority of the
book is written using what is defi ned in the CSS Level 2.1 specifi cation, with a sprinkling of CSS 3
to make things interesting.

This book leads you through how to write CSS so that it is compatible with all of the most popular
web browsers. I have focused on all of the following popular browsers:

 ➤ Microsoft Internet Explorer 8 and 9 for Windows

 ➤ Mozilla Firefox 3.6 for Mac OS X, Windows, and Linux

 ➤ Google Chrome 10 for Mac OS X and Windows

 ➤ Safari 5 for Mac OS X and Windows

 ➤ Opera 11 for Mac OS X, Windows, and Linux

The preceding browsers make up over 99 percent of the web browser market share at the time
of this writing. For your convenience, this book also includes an integrated CSS feature reference
throughout the book, as well as notes on browser compatibility. A CSS reference is also included in
Appendix C.

HOW THIS BOOK IS STRUCTURED

This book is divided into three parts. The following explains each of these three parts in detail, and
what each chapter covers.

Part I: The Basics

Throughout Chapters 1 through 4, you learn the founding principles of CSS-based web design.

 ➤ Chapter 1, “Introducing Cascading Style Sheets”: In this chapter I talk about what CSS is
and the advantages it has over outdated ways of styling content, give a brief overview of
the history of CSS, and then show you how to make a web page with HTML and CSS. The
chapter fi nishes with an overview of the major web browsers available today.

 ➤ Chapter 2, “The Bits That Make Up a Style Sheet”: In Chapter 2, I look at the component
pieces of CSS and how they fi t together. I introduce rules, selectors, declarations, properties,

Flast.indd xxivFlast.indd xxiv 11/05/11 3:10 PM11/05/11 3:10 PM

xxv

INTRODUCTION

and values, and show you the range of value types that can be used in CSS. Next are the
various methods of including CSS in HTML documents and fi nally a discussion of why good
HTML is important.

 ➤ Chapter 3, “Selectors”: In Chapter 2, I introduce you to the simplest form of selectors. In
Chapter 3, I talk about the other basic selectors that you will use throughout this book.

 ➤ Chapter 4, “The Cascade and Inheritance”: In Chapter 4, I look at the cascade, a
fundamental principle of CSS, and how inheritance and precedence works. You will learn
how to calculate which styles take effect when rules confl ict, and how to use the cascade to
your advantage.

Part II: Properties

Throughout Chapters 5 through 13, you learn about properties that are used to manipulate the
presentation of a document.

 ➤ Chapter 5, “Applying Font Faces”: Part II starts with one of the fi rst things you are likely to
want to do with CSS — style text. Chapter 5 shows you how to set a font and size for text
to be displayed in, and how to make text italic, bold, or small caps.

 ➤ Chapter 6, “Manipulating the Display of Text”: In Chapter 5, I showed you the basics of
styling text. Now I move on to further properties for styling text, such as adjusting the height
of lines of text; controlling the spacing between letters and words; text alignment; and other
variations like underlined, overlined, or strikethrough text. I also show how to control the
case of text by making text all lowercase, uppercase, or capitalized.

 ➤ Chapter 7, “Background Colors and Images”: In Chapter 7, I move on to the CSS properties
that control the setting of background colors and images, as well as properties that allow you
to adjust the position of background images, the way they tile, and how to fi x them in place
so that they remain static even when you scroll the browser window.

 ➤ Chapter 8, “The Box Model: Controlling Margins, Borders, Padding, Width, and Height”:
In Chapter 8, I cover an important part of CSS, and the key to creating layouts: The Box
Model. You will learn how to set margins and padding to elements, as well as borders,
width, and heights.

 ➤ Chapter 9, “Floating and Vertical Alignment”: In Chapter 8, I introduce you to some of
the properties that will allow you to create layouts with CSS. In Chapter 9, I will show you
how to take this a step further, by creating columns of content with float and clear. I
also discuss the vertical-align property, which is used to create effects like subscript or
superscript text, as well as to control vertical alignment in table cells.

 ➤ Chapter 10, “Styling Lists”: Lists are a common element for marking up content, including
creating site navigation. In this chapter, I look at the properties CSS provides to control
presentation of ordered and unordered lists: how to use predefi ned list markers and custom
list markers and how to control the position of list markers.

Flast.indd xxvFlast.indd xxv 11/05/11 3:10 PM11/05/11 3:10 PM

xxvi

INTRODUCTION

 ➤ Chapter 11, “Positioning Content within a Document”: In chapter 11, I cover the fi nal
method for creating layouts, positioning content relative to other page elements or the
viewport itself, as well as show you how to create layers of overlapping content.

 ➤ Chapter 12, “Styling Tables”: In Chapter 12, I present the different properties that CSS
provides for styling HTML tables. The properties presented in this chapter let you control the
spacing between the cells of a table, the placement of the table caption, and whether empty
cells are rendered.

 ➤ Chapter 13, “Create a Complete Layout”: In the fi nal chapter of this Part, I give you an
opportunity to put the CSS that you have learned so far into practice as we create a complete
layout, from HTML to CSS. I also introduce you to some more advanced CSS: using custom
fonts and setting gradient backgrounds.

Part III: Advanced CSS and Alternative Media

In Part II, I cover the basics; in Part III, we move on to advanced techniques, which give you more
fi ne control when styling content, and show you how to style for different media types such as print
and mobile, as well as introduce a few more properties.

 ➤ Chapter 14, “Advanced Selectors”: Chapter 3 introduces you to the basic selectors that you
will use to write CSS. In Chapter 14, I show you more advanced selectors that don’t have
good support in older browsers, such as Internet Explorer 6, but can be a powerful addition
to your toolkit. I cover selectors that allow you to style elements based on their position in a
document and based on the value of HTML attributes.

 ➤ Chapter 15, “Styling for Print”: In this chapter, I discuss what steps to take to use CSS to
provide alternative style sheets to create a printer-friendly version of a web document.

 ➤ Chapter 16, “Customizing the Mouse Cursor”: In this chapter, I show you how you can
change the user’s mouse cursor using CSS, how you can customize the mouse cursor, and
what browsers support which cursor features.

 ➤ Chapter 17, “Controlling Opacity And Visibility”: In Chapter 17, I show you how to make
HTML elements transparent or even invisible, while still affecting the elements around them

 ➤ Chapter 18, “Styling Content for Mobile Devices”: Chapter 18 shows you how to target web
pages displayed in mobile phone browsers, giving mobile users a more tailored experience.

 ➤ Chapter 19, “Closing Comments”: I fi nish Part III with an overview of what you will
have learned by the end of this book, as well as some of my thoughts on the future of CSS.

Appendixes

The fi nal part of the book is the Appendixes:

 ➤ Appendix A, “Answers to Exercises”: Here I give you the answers to all of the questions
asked at the end of each chapter.

Flast.indd xxviFlast.indd xxvi 11/05/11 3:10 PM11/05/11 3:10 PM

xxvii

INTRODUCTION

 ➤ Appendix B, “Additional CSS Resources”: Appendix B provides you will all of the links
contained within each chapter, as well as links to other resources that I think are worth
reading to expand your knowledge of CSS.

 ➤ Appendix C, “CSS Reference”: The CSS reference is where you can look up which browsers
support what properties.

 ➤ Appendix D, “CSS Colors”: Appendix D provides a reference to all of the named colors you
can use within CSS.

WHAT YOU NEED TO USE THIS BOOK

To make use of the examples in this book, you need the following:

 ➤ Several Internet browsers to test your web pages

 ➤ Text-editing software

Designing content for websites requires being able to reach more than one type of audience. Some of
your audience may be using different operating systems or different browsers other than those you
have installed on your computer. This book focuses on the most popular browsers available at the
time of this writing.

I discuss how to obtain and install each of these browsers in Chapter 1. The examples in this book
also require that web page source code be composed using text-editing software. Chapter 1 also
discusses a few different options for the text-editing software available on Windows or Macintosh
operating systems.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, I’ve used a number of
conventions throughout the book:

WARNING Boxes like this one hold important, not-to-be-forgotten information
directly relevant to the surrounding text.

 NOTE The pencil icon indicates notes, tips, hints, tricks, and asides to the cur-
rent discussion.

Flast.indd xxviiFlast.indd xxvii 11/05/11 3:10 PM11/05/11 3:10 PM

xxviii

INTRODUCTION

Examples that you can download and try out for yourself generally appear in a box like this:

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the source code.

How It Works

After each Try It Out, the code you’ve typed will be explained in detail.

As for styles in the text:

 ➤ I italicize important words when I introduce them.

 ➤ I show URLs and code within the text in a special monofont typeface, like this:
persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

Also, code editors like Notepad++ provide a rich color scheme to indicate various parts of code
syntax. That’s a great tool to help you learn language features in the editor and to help prevent
mistakes as you code. The code listings in this book are colorized using colors similar to what you
would see on screen in Notepad++ working with the book’s code. In order to optimize print clarity,
some colors have a slightly different hue in print than what you see on screen. But all of the colors
for the code in this book should be close enough to the default Notepad++ colors to give you an
accurate representation of the colors.

SOURCE CODE

As you work through the examples in this book, you may choose either to type the code yourself or
use the source code fi les that accompany the book. All the source code used in this book is available
for download at www.wrox.com. When at the site, simply locate the book’s title (use the Search box
or one of the title lists) and click the Download Code link on the book’s detail page to obtain all the

Flast.indd xxviiiFlast.indd xxviii 11/05/11 3:10 PM11/05/11 3:10 PM

http://www.wrox.com

xxix

INTRODUCTION

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors.

source code for the book. All the Try It Out example code is included in the download fi les for the
book at Wrox.com. In addition, any other code snippets that are included with the download fi les are
highlighted by the following icon:

Code snippets include the fi lename as it appears in the download fi les in a code note such as this:

code snippet /path/fi lename

 NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-0-470-89152-0.

 NOTE A complete book list, including links to each book’s errata, is also avail-
able at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

Flast.indd xxixFlast.indd xxix 11/05/11 3:10 PM11/05/11 3:10 PM

http://www.wrox.com
http://www.wrox.com

xxx

INTRODUCTION

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

 NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Flast.indd xxxFlast.indd xxx 11/05/11 3:10 PM11/05/11 3:10 PM

PART I

The Basics

 � CHAPTER 1: Introducing Cascading Style Sheets

 � CHAPTER 2: The Bits that Make Up a Style Sheet

 � CHAPTER 3: Selectors

 � CHAPTER 4: The Cascade and Inheritance

c01.indd 1c01.indd 1 12/05/11 11:15 AM12/05/11 11:15 AM

c01.indd 2c01.indd 2 12/05/11 11:15 AM12/05/11 11:15 AM

Introducing Cascading
Style Sheets

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What CSS is

 ➤ The history of CSS

 ➤ How to create a CSS enhanced HTML document

Cascading Style Sheets (CSS) is a language designed for describing the appearance of
documents written in a markup language such as HTML. With CSS you can control the color
of text, the style of fonts, the spacing between paragraphs, how columns are sized and laid
out, what background images or colors are used, and a variety of other visual effects. One of
the major benefi ts is that the same CSS can be used by more than one page, meaning that the
style of an entire website can be adjusted without having to change each page individually.

The most common use for CSS is to style web pages, and in combination with HTML or
XHTML (which is used to describe content) and JavaScript (which is used to add interactivity
to a site), CSS is a very powerful tool.

The history of how CSS came to be isn’t actually all that relevant to CSS authors of today, so
you can skip the next bit if you’re in a hurry. If, like me, you’re interested in the nitty-gritty,
read on.

In the early days of the Web, nine different proposals were made to the World Wide Web
Consortium, the main standards organization for the Web which is more commonly known as
the W3C, for a style sheet language to help separate the visual appearance of a document from its
content. In 1994, Cascading HTML Style Sheets was proposed by Håkon Wium Lie, now CTO of
Opera Software (a company you’ll meet again later in this chapter), but at the time he was working
at CERN with Tim Berners-Lee and Robert Cailliau, the two men who invented the World Wide
Web. CHSS became CSS because CSS can be applied to more than just HTML, and in December
1996 the CSS level 1 Recommendation was published.

1

c01.indd 3c01.indd 3 12/05/11 11:15 AM12/05/11 11:15 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

4 ❘ CHAPTER 1 INTRODUCING CASCADING STYLE SHEETS

Since then, three more CSS specifi cations have been published by the W3C. CSS 2 became a
recommendation in 1998, with CSS 2.1 (which fi xes a few mistakes in 2), and CSS 3 currently
existing as candidate recommendations.

Although CSS 3 is still under development, CSS 2.1 is likely to become a fully fl edged
recommendation in the near future and is well supported by all modern browsers. In this book, you
will cover CSS 2.1 as it stands today and take a look at some of the new features in CSS 3 that you
can use in browsers today.

In the rest of this chapter, you will learn the advantages of using CSS and then get started with your
fi rst Cascading Style Sheet.

ADVANTAGES OF USING CSS

By using CSS for the presentation of a document, you can substantially reduce the amount of time
you spend composing not only a single document but an entire website As you’ll discover, CSS is
much more versatile than the styling mechanisms provided by HTML alone. The versatility of CSS,
when harnessed effectively, can reduce the amount of hard disk space that a website occupies, as
well as the amount of bandwidth required to transmit that website from the server to the browser.
CSS has the following advantages:

 ➤ The presentation of an entire website can be centralized to one or a handful of documents,
enabling the look and feel of a website to be updated at a moment’s notice. In legacy HTML
documents, the presentation is contained entirely in the body of each document. CSS
brings a much needed feature to HTML: the separation of a document’s structure from its
presentation. CSS can be written independently of HTML.

 ➤ Browsers are beginning to support multiple alternative style sheets, a feature that allows
more than one design of a website to be presented at the same time. The user can simply
select the look and feel that he or she likes most. This could only be done previously with the
aid of more complex programming languages.

 ➤ Style sheets allow content to be optimized for more than one type of device. By using the
same HTML document, different versions of a website can be presented for handheld devices
such as PDAs and cell phones or for printing.

 ➤ Style sheets download much more quickly because web documents using CSS commonly
consume less bandwidth. Browsers also use a feature called caching, a process by which your
browser will download a CSS fi le or other web document only once, and not request that fi le
from the web server again unless it’s been updated, further providing your website with the
potential for lightning-fast performance.

 ➤ Users of a website can compose style sheets of their own, a feature that makes websites more
accessible. For example, a user can compose a high-contrast style sheet that makes content
easier to read. Many browsers provide controls for this feature for novice users, but it is CSS
nonetheless.

These features, along with the power of the cascade, which you will read about in Chapter 4, makes
the planning, production, and maintenance of a website simpler with Cascading Style Sheets than

c01.indd 4c01.indd 4 12/05/11 11:15 AM12/05/11 11:15 AM

How to Write CSS ❘ 5

with HTML alone. By using CSS to present your web documents, you can cut days of development
and planning time.

HOW TO WRITE CSS

To write CSS, just as is the case when writing HTML source, you will need a text editor.
Word processing programs such as Microsoft Word aren’t ideally suited for CSS, because they
automatically do lots of things that are helpful when writing a letter or book, such as correct
spelling but get in the way when writing code.

Instead, you want something that doesn’t make any changes that you don’t want to what you
type but lets you write and save plain text.

The Windows Notepad program is one example of a text editor that is ideal for composing source
code. To launch Notepad, choose Start ➪ Run and then type Notepad in the Open textbox.

On Mac OS X, the Notepad equivalent is TextEdit, which can be found in the Mac OS X
Applications folder.

There are more advanced text editors that will do useful things such as color your code so that it is
clear which parts do what (this is known as syntax highlighting) or automatically complete code for
you when you’ve started typing.

Editors available for Windows include:

 ➤ Notepad++: http://sourceforge.net/projects/notepad-plus/ (free)

 ➤ Crimson Editor: www.crimsoneditor.com (free)

 ➤ HTML-kit: www.chami.com/html-kit (free)

And here are some alternative text editors that work with Mac OS X:

 ➤ TextWrangler: www.barebones.com (free)

 ➤ TextMate: http://macromates.com/ (retail with 30 day free trial)

 ➤ You can fi nd more text editors suitable for CSS and HTML at http://en.wikipedia.org/
wiki/List_of_HTML_editors

In addition, there is the very popular Adobe Dreamweaver (www.adobe.com/products/dreamweaver),
which combines a text editor with a WYSIWYG (or What You See Is What You Get) code
generator, which lets you use a graphical interface to create web pages in HTML and CSS. To
follow along with the code in this book, you must use the code view of Dreamweaver or similar
application rather than the WYSIWYG view.

You must create HTML fi les with the .html extension. If you use Notepad or TextEdit, beware
of your fi les being saved with a .txt extension, which will not result in a web browser interpreting
your fi le as ordinary text rather than HTML.

To ensure that your fi les are saved properly on Windows, choose Start ➪ Run and type Explorer
(or right-click Start and choose Explore from the pop-up menu) to open Windows Explorer. After

c01.indd 5c01.indd 5 12/05/11 11:15 AM12/05/11 11:15 AM

6 ❘ CHAPTER 1 INTRODUCING CASCADING STYLE SHEETS

Windows Explorer is open, choose Tools ➪ Folder Options to open the Folder Options window,
click the View tab, and uncheck the Hide Extensions for Known File Types box. Then click OK.

On Mac OS X, open Finder, and go to Finder ➪ Preferences. Select the Advanced tab, and check the
box for Show All File Extensions.

YOUR FIRST CSS-ENABLED DOCUMENT

The following example is designed to introduce you to what CSS is capable of. It will help you get
your feet wet and get straight down to the business of writing style sheets.

 NOTE You can fi nd the images and source code for the following example
at www.wrox.com. While for this example you should obtain the source code
from www.wrox.com, I recommend that for most chapters you type the example
so that you can get used to writing the syntax and take in the diff erent bits that
come together in each example.

TRY IT OUT Create a Web Page with HTML and CSS

Example 1-1

To write your fi rst CSS-enabled document, follow these steps.

1. In your text editor of choice, enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 1-1</title>
 <link rel=”stylesheet” type=”text/css” href=”example_1-1.css”>
</head>
<body>

<h1>The gas giants</h1>

<div class=”planet jupiter”>

 <h2>Jupiter</h2>

 <p>Jupiter is the fifth planet from the Sun and the largest planet within the
 Solar System. The Romans named the planet after the god Jupiter. It is a gas
 giant with a mass two and a half times the mass of all the other planets in
 our Solar System combined.</p>

 <table>
 <caption>Jupiter Facts</caption>
 <tbody>

c01.indd 6c01.indd 6 12/05/11 11:15 AM12/05/11 11:15 AM

http://www.wrox.com
http://www.wrox.com

Your First CSS-Enabled Document ❘ 7

 <tr>
 <th>Distance from the Sun</th>
 <td>78,412,020 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>71,492 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>1,425,500,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>1,898,700,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

 More Jupiter facts

</div>

<div class=”planet saturn”>

 <h2>Saturn</h2>

 <p>Saturn is the sixth planet from the Sun and the second largest planet in the
 Solar System, after Jupiter. Saturn is named after the Roman god Saturn,
 equated to the Greek Cronus (the Titan father of Zeus), the Babylonian
 Ninurta, and the Hindu Shani.</p>

 <table>
 <caption>Saturn Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>1,426,725,400 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>60,268 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>827,130,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>568,510,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

c01.indd 7c01.indd 7 12/05/11 11:15 AM12/05/11 11:15 AM

8 ❘ CHAPTER 1 INTRODUCING CASCADING STYLE SHEETS

 More Saturn facts

</div>

<div class=”planet uranus”>

 <h2>Uranus</h2>

 <p>Uranus is the seventh planet from the Sun, and the third-largest and
 fourth most massive planet in the Solar System. It is named after
 the ancient Greek deity of the sky Uranus the father of Cronus and
 grandfather of Zeus.</p>

 <table>
 <caption>Uranus Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>78,412,020 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>25,559 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>69,142,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>86,849,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

 More Uranus facts

</div>

<div class=”planet neptune”>

 <h2>Neptune</h2>

 <p>Neptune is the eighth and farthest planet from the Sun in our Solar System.
 Named for the Roman god of the sea, it is the fourth-largest planet by
 diameter and the third-largest by mass.</p>

 <table>
 <caption>Neptune Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>4,498,252,900 km</td>

c01.indd 8c01.indd 8 12/05/11 11:15 AM12/05/11 11:15 AM

 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>24,764 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>62,526,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>102,440,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

 More Neptune facts

</div>

</body>

</html>

2. Save the preceding fi le in a new folder of its own as example_1-1.html.

3. Open example_1-1.html in your browser. You will see a page that looks something like the image
in Figure 1-1.

FIGURE 1-1

Your First CSS-Enabled Document ❘ 9

c01.indd 9c01.indd 9 12/05/11 11:15 AM12/05/11 11:15 AM

10 ❘ CHAPTER 1 INTRODUCING CASCADING STYLE SHEETS

4. Create a new, blank document in your text editor, and enter the following CSS:

body {
 width: 650px;
 margin: 0 auto;
 background: #000;
 color: #FFF;
 font: 12px sans-serif;
}

h1 {
 font-size: 24px;
}

h2 {
 font-size: 18px;
 margin-top: 0;
}

a {
 color: #FFF;
}

a:focus,
a:hover {
 text-decoration: none;
}

table {
 margin-bottom: 10px;
 border-spacing: 0;
}

caption {
 margin-bottom: 10px;
 font-size: 14px;
 font-weight: bold;
 text-align: left;
}

th,
td {
 padding: 0 10px 0 0;
 text-align: left;
}

.planet {
 margin: 10px 0;
 padding: 20px 20px 20px 200px;
 border: 1px solid #FFF;
 background-position: 20px 20px;
 background-repeat: no-repeat;
}

.jupiter {

c01.indd 10c01.indd 10 12/05/11 11:15 AM12/05/11 11:15 AM

 background-image: url(jupiter.jpg);
}

.saturn {
 background-image: url(saturn.jpg);
}

.uranus {
 background-image: url(uranus.jpg);
}

.neptune {
 background-image: url(neptune.jpg);
}

5. Save the preceding CSS in the same folder where you saved example_1-1.html, as
example_1-1.css.

This code results in the image shown in Figure 1-2, when loaded into Safari on Mac OS X.

FIGURE 1-2

To see how example_1-1.html looks in other browsers, you can load it up by going to the File menu of
the browser you’d like to view it in, selecting Open or Open File, and locating example_1-1.html on
your hard disk.

Your First CSS-Enabled Document ❘ 11

c01.indd 11c01.indd 11 12/05/11 11:15 AM12/05/11 11:15 AM

12 ❘ CHAPTER 1 INTRODUCING CASCADING STYLE SHEETS

How It Works

Example 1-1 is an introduction to a little of what CSS is capable of. This example is designed to get
your hands dirty up front with CSS, as a preview of what you can expect throughout the rest of the
book. With each new chapter, I introduce and explain the nuts and bolts that come together to make
examples like the preceding one. In Figure 1-2, you see that CSS can be used to specify background
images and other aesthetic aspects of an HTML document. I continue to revisit and explain the CSS
that resulted in Figure 1-2 throughout the book.

If you are feeling adventurous, play around with the CSS used here — try changing some of the
values to see what happens. Don’t worry if things break, that’s all part of learning.

Some times you might fi nd that CSS requires some workarounds specifi cally to get older versions
of Internet Explorer to display content in the same way as Safari, Firefox, Chrome, and Opera.
Throughout this book, you also learn the hacks and workarounds that you need to make CSS-enabled
web pages compatible with IE 6.

BROWSERS

Unlike with many traditional programming languages on the Web, we don’t get to choose the
environment in which CSS and HTML is run; your end users make this decision by selecting which
web browser they use. Although CSS is a standard supported by all major browsers, there are often
differences between them, so it is important to be aware of the top players and to be able to test in
each of them before releasing professional code.

It is worth taking a look at Yahoo!’s Graded Browser Support page at http://developer.yahoo
.com/yui/articles/gbs/, which is regularly updated to show the current range of browsers that
Yahoo! recommends that developers test in. It is based on traffi c analysis to the Yahoo! network and
is quite representative of the Internet as a whole.

You can break down browsers into groups based on the engine that they use for rendering pages;
this means browsers that share the same rendering engine are more likely to display things in the
same way, which can cut down on testing.

Webkit

Webkit is the rendering engine used by the Apple Safari and Google Chrome browsers. It has good
support for CSS 2.1 and supports many features of CSS3.

Safari

Safari is a browser based on the Webkit rendering engine from Apple. It is available for Windows
and Mac OS X from www.apple.com/safari.

The current version of Safari is version 5 and has just under six percent market share.

c01.indd 12c01.indd 12 12/05/11 11:15 AM12/05/11 11:15 AM

Browsers ❘ 13

Google Chrome

Google’s Chrome is also based on the Webkit rendering engine. It is available for Windows and Mac
OS X from www.google.com/chrome.

Chrome (the current version is 10) has just over fourteen percent market share. While Chrome is the
newcomer to the browser market it is showing rapid rates of adoption and is under heavily active
development from Google with new versions released regularly.

Trident

Trident is the engine used by Internet Explorer from Microsoft and comes with the Windows
operating system. After many years of market dominance, there are four versions of Internet
Explorer in wide use today. Overall, Internet Explorer has more than 46 percent market share.
You can download all four versions from windows.microsoft.com/en-US/internet-explorer/
downloads/ie.

Internet Explorer 9

Internet Explorer 9 is the latest version of Microsoft’s browser; at the time of writing it hasn’t even
been released yet but will be available by the time this book is published.

Internet Explorer 9 will have good support for both CSS 2.1 and CSS3.

Internet Explorer 8

Internet Explorer 8 is currently the most widely used version with around a 27 percent market share.

Internet Explorer has decent support for CSS 2.1 but is lagging behind other major browsers in
support for CSS 3.

Internet Explorer 7

While Internet Explorer 7 never built the market share of version 8 or that of its predecessor,
version 6, it still has over 10 percent market share.

While Internet Explorer has decent support for CSS 2.1, it is lacking in support for CSS 3.

Internet Explorer 6

Even though it was released back in 2001, Internet Explorer 6 still has over 16 percent market share.
This is thankfully dropping, but this browser will be around for a while and still needs to be tested
in for good coverage of the market.

Internet Explorer 6 has support for much of CSS 2.1 but is missing parts that would otherwise make
development much easier. It lacks support for CSS 3.

c01.indd 13c01.indd 13 12/05/11 11:15 AM12/05/11 11:15 AM

14 ❘ CHAPTER 1 INTRODUCING CASCADING STYLE SHEETS

Installing Multiple Versions of Internet Explorer for Testing

At the time of this writing, you cannot install different versions of Internet Explorer on the same
copy of Windows. For development, you need a way to test IE 6, IE 7, IE 8, and IE 9, since you’ll
have visitors to your website on all four browsers. The following are a few ways to do this.

 ➤ Use PC virtualization/emulation software such as Virtual PC or VirtualBox which allows you
to install and run different versions of Windows (or other operating systems such as Linux)
from within Windows or Mac OS X. You can load up a new instance of Windows from your
Windows desktop and have that instance of Windows run in a window independently.

 ➤ Another option is setting up multiple different physical computers: one with each version of
Internet Explorer installed. This is obviously a more costly option, but might be possible in a
commercial environment.

Gecko

While there are many uncommon browsers that use the Gecko rendering engine for practical
purposes, you only need to consider one: Mozilla Firefox.

Firefox

You can download Firefox for Windows, Mac OS X, and Linux at www.firefox.com/.

At the time of writing, the current version of Firefox is 3.6 and has just over 30 percent market
share, making it the second most popular browser. By the time this book is published, Firefox 4 will
have been released, which will have similar support for the CSS I cover.

Firefox has good support for CSS 2.1 and supports many features of CSS3.

Presto

The Presto rendering engine is developed by Opera Software for their own range of browsers.

Opera

Opera is a web browser from Opera Software, which has a small marker share of just over 2 percent.
While commanding a small market share for desktop browsers, it is a major player in the rapidly
expanding mobile market.

Opera has good support for CSS 2.1 and supports many features of CSS3.

The current version of the Opera browser is 11. You can download this browser for Windows,
OS X, and Linux from www.opera.com.

EXERCISES

 1. What are the key benefi ts of CSS?

 2. Name the 5 main web browsers used today.

 3. Which is the latest version of Internet Explorer?

c01.indd 14c01.indd 14 12/05/11 11:15 AM12/05/11 11:15 AM

Browsers ❘ 15

 � WHAT YOU LEARNED IN THIS CHAPTER

Cascading Style Sheets are the very necessary solution to a cry for more control over the
presentation of a document. In this chapter, you learned the following:

TOPIC KEY CONCEPTS

Why CSS is needed CSS answers a need for a style sheet language capable of controlling

the presentation of not only HTML documents but also several types of

documents.

Benefi ts of CSS CSS has many advantages. These include accessibility, applicability to more

than one language, and applicability to more than one type of device. CSS

also allows websites to be planned, produced, and maintained in much less

time. CSS enables websites to take up signifi cantly less bandwidth than

formerly possible.

Browsers Safari, Chrome, Internet Explorer, Firefox, and Opera make up the majority

of browsers in use today, with Internet Explorer 8 being the world’s most

popular browser.

c01.indd 15c01.indd 15 12/05/11 11:15 AM12/05/11 11:15 AM

c01.indd 16c01.indd 16 12/05/11 11:15 AM12/05/11 11:15 AM

The Bits that Make Up
a Style Sheet

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The elements that make up a style sheet

 ➤ The type of values that are used in CSS

 ➤ How to include CSS in HTML documents

In Chapter 1 you received a taste of what CSS is capable of in Example 1-1, a web page that
contains the four gas giant planets of our solar system and some facts about them. In this
chapter, you look at the elements that you combine to make a style sheet.

RULES

A style sheet can be broken down into progressively smaller bits. From large to small, those
pieces are:

 ➤ Style sheet

 ➤ Rule

 ➤ Selector

 ➤ Declaration

 ➤ Property

 ➤ Value

2

c02.indd 17c02.indd 17 12/05/11 11:16 AM12/05/11 11:16 AM

D
o

18 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

Special characters — curly braces, colons, and semi-colons — are used to mark the beginning and
ending of each part, separating them from each other. The following rule shows the parts of a style
sheet and the special characters that separate them.

body {
 width: 650px;
 margin: 0 auto;
 background: #000;
 color: #FFF;
 font: 12px sans-serif;
}

You can layout the rule according to your preferences; you can add line breaks and spacing to make
CSS readable, sensible, and organized, or you can put everything on one line if you prefer.

Like HTML, CSS can use white space and line breaks to aid readability. In most cases the
interpreter reading the CSS doesn’t care how much white space appears in the style sheet or how
many line breaks are used; provided you have spaces where they are required you can use one
or 10. Humans, however, must often add some sort of structure to prevent eyestrain, and to
increase maintainability and productivity.

The style used in this book is recommended for readability, but you may fi nd that a different format
makes more sense to you. The important thing is to be consistent — pick one style that suits you and
stick to it.

Within a rule, selectors choose which elements to style in the HTML document. Your browser
already applies a default style to most elements (for example, an h1 element is larger than regular
text) and you only need to write CSS to change those default styles or to add styles.

SELECTORS

In CSS, a selector is the HTML element or elements to which a CSS rule is applied. Put simply, the
selector tells the browser what to style. The simple selector that you saw in the previous section is
called a type selector; it merely references a type of HTML element, and will style all that match.
For example, a p type selector on its own will apply styles to all p elements.

As you saw in the example rule, body is written in the style sheet without the left and right angle
brackets, < >, and the same applies when styling any element, just swap body with the element you
wish to style. This rule applies the CSS properties: width, margin, background, color, and font to
the <body> element. I talk more about what these properties do in later chapters, but you might be
able to guess what they do just by their names.

Grouping Selectors

When more than one selector appears in the same rule, they are said to be grouped. You can group
multiple selectors together in a single rule by providing a comma after each selector; the result is
that a rule applies to more than one selector at a time, as shown in the following code.

c02.indd 18c02.indd 18 12/05/11 11:16 AM12/05/11 11:16 AM

Values ❘ 19

th,
td {
 padding: 0 10px 0 0;
 text-align: left;
}

You group selectors so that you don’t have to repeat the same declarations for each selector. Consider
grouping if two or more selectors repeat all or the majority of their declarations.

For readability it is recommended that each selector goes on its own line.

DECLARATIONS

Declarations are enclosed within curly braces to separate them from selectors. In the rule shown
previously, each line after body between the curly braces ({ and }) is a separate declaration. A
declaration is composed of a property name, a colon, and, depending on the property, one or
more values.

A colon is used to separate the property from the value, and the property appears before the colon.
In our example selector (shown in the “Rules” section) width is a property and 650px is the value
associated with it. A declaration always ends with a semi-colon.

VALUES

While the values for some properties can be quite simple, for example, just a single number in the
case of the z-index property that you will learn about later, CSS can become quite complex in
terms of what it allows a property’s value to be. So far, you have only seen a small number of the
potential types of values that you see in CSS. In the coming sections I discuss each of the different
types of values used in CSS in greater detail, beginning with keyword values.

Keywords

A keyword value is a named value; for example, red, green, and blue are CSS keywords. Color
keywords can be used on any property that accepts a color value.

The keywords in the following code are bold, and left. bold, when used with the font-weight
property, provides the browser with instructions for how to render the text of a caption element,
and left is a keyword that when used with the text-align property tells the browser how text is
to be aligned.

caption {
 margin-bottom: 10px;
 font-size: 14px;
 font-weight: bold;
 text-align: left;
}

c02.indd 19c02.indd 19 12/05/11 11:16 AM12/05/11 11:16 AM

20 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

Many types of keywords are used in CSS, and sometimes a single keyword can apply different styles
depending on the property or element on which it is used. The auto keyword, for example, is used
by CSS to apply some default style or behavior, and although in both of the following examples
its meaning is the same, the resulting effect is different. Try the auto keyword in the following
Try It Out.

TRY IT OUT Adding Auto Width to a Table

Example 2-1

To see the effects of the auto keyword as applied to a <table> element, follow these steps.

 1. Enter the following HTML-compliant markup.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 2-1</title>
 <style type=”text/css”>
 table {
 width: auto;
 background: black;
 color: white;
 }
 </style>
</head>
<body>

 <h1>How will this table react to auto width?</h1>

 <table>
 <caption>Jupiter Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>78,412,020 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>71,492 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>1,425,500,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>1,898,700,000,000,000,000,000,000,000 kg</td>
 </tr>

c02.indd 20c02.indd 20 12/05/11 11:16 AM12/05/11 11:16 AM

Values ❘ 21

 </tbody>
 </table>

</body>

</html>

 2. Save the preceding markup as example_2-1.html, and then load it into a browser. Figure 2-1
shows width: auto; applied to the <table> element.

FIGURE 2-1

How It Works

In Figure 2-1, you can see that the table expands only enough to accommodate the text within it.

When width: auto; is applied to a <table> element, it invokes a different mechanism for width
measurement than when it is applied to a <div> element. In the next Try It Out, see what happens
when auto width is applied to a <div> element.

TRY IT OUT Applying Auto Width to a Div

Example 2-2

To see the effects of the auto keyword as applied to a <div> element, follow these steps.

 1. Enter the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 2-2</title>
 <style type=”text/css”>
 div {
 width: auto;

c02.indd 21c02.indd 21 12/05/11 11:16 AM12/05/11 11:16 AM

22 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

 background: black;
 color: white;
 }
 </style>
</head>
<body>

 <h1>How will this div react to auto width?</h1>

 <div>

 <h2>Jupiter</h2>

 <p>Jupiter is the fifth planet from the Sun and the largest planet within
 the Solar System. The Romans named the planet after the god Jupiter. It
 is a gas giant with a mass two and a half times the mass of all the other
 planets in our Solar System combined.</p>

 </div>

</body>

</html>

 2. Save the preceding markup as example_2-2.html. Figure 2-2 shows width: auto; applied to the
<div> element.

FIGURE 2-2

How It Works

All elements with a width property have an auto value by default, but not all elements behave the
same way when auto width is applied. The <table> element, for instance, only expands horizontally
to accommodate its data, which is a method called shrink-to-fi t. A <div> element, on the other hand,
expands horizontally as far as there is space, which is called expand-to-fi t.

I’ve added a background for each element in Examples 2-1 and 2-2 so that you can see its width. The
border outlines the edges of each element, showing exactly how much space each element occupies. You
learn more about how width works in Chapter 8.

c02.indd 22c02.indd 22 12/05/11 11:16 AM12/05/11 11:16 AM

Values ❘ 23

Keywords always invoke some special, predefi ned behavior. Another example I can present is with
the CSS border property: A border may take three separate keywords that defi ne how it appears
when the browser renders it:

border: thin solid black;

This example defi nes a property with three keyword values: thin, solid, and black. Each value
refers to a different characteristic of the border’s appearance: thin refers to its measurement, solid
to its style, and black to its color.

Sometimes you need to include content from a style sheet, or referencing a fi le path, or including
a font name that has spaces in its name, or referencing an HTML element’s attribute value. To
accomplish these tasks, CSS supports a type of value called strings.

Strings

A string is any sequence of characters. For example, “Hello, World” is a string. As in most
programming languages, strings in CSS are enclosed within either single or double quotation
marks. Strings may contain text, numbers, symbols — any type of character.

NOTE A string is what is known as a data type. Other examples of data types
are integers and real numbers. An integer can be a positive or negative number,
but it can only be a whole number without decimal places. Real numbers are like
integers, but they can have decimal places.

The purpose of data types is to tell us where we can use diff erent types of values.
For example, we can’t use a string or a real number if a property requires an
integer as a value.

One use of strings in CSS is to specify a font that contains spaces in its name.

font-family: ‘Times New Roman’, Times, serif;

Font faces with spaces in the name are enclosed with quotations to keep the program that interprets
CSS from getting confused. The quotes act as marking posts for where the font face’s name begins
and ends.

The following Try It Out shows the result of using a string as a value for the font-family
property.

c02.indd 23c02.indd 23 12/05/11 11:16 AM12/05/11 11:16 AM

24 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

TRY IT OUT Change the Font of a Heading

Example 2-3

 1. Type in the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 2-3</title>
 <style type=”text/css”>
 body {
 font: 12px sans-serif;
 }

 h1 {
 font-family: ‘Times New Roman’, Times, serif;
 }
 </style>
</head>
<body>

 <h1>Gas Giants</h1>

 <p>Information about the 4 gas planets in our solar system.</p>

</body>

</html>

 2. Save the preceding markup as example_2-3.html. Figure 2-3 shows the output.

FIGURE 2-3

How It Works

The fi rst rule in the CSS sets the font-family of all text in the <body> element to your browser’s default
sans-serif font. In the second rule you set the font of the <h1> element by setting the CSS font-family
property to Times New Roman if that font is installed on your computer, falling back to Times if it is not,
and fi nally to the browser’s default serif font if neither Times New Roman or Times fonts are available.

c02.indd 24c02.indd 24 12/05/11 11:16 AM12/05/11 11:16 AM

Values ❘ 25

Length and Measurement

There are two kinds of lengths used in CSS: relative and absolute. Absolute lengths are not
dependent on any other measurement. An absolute measurement retains its length regardless of the
environment (operating system, browser, or screen resolution of a computer monitor) in which it is
applied. Relative lengths, on the other hand, depend on the environment in which they’re used, such
as the computer monitor’s screen resolution or the size of a font.

Absolute measurements are defi ned based on real-world units such as inches, centimeters, points,
and so on. These measurements have been used for centuries in the print industry, and one would be
accustomed to fi nding them on a ruler.

Absolute Measurement

CSS supports a variety of real-world measurements. Each absolute length unit supported by CSS is
defi ned in the following table.

UNIT ABBREVIATION DESCRIPTION

in Inches

cm Centimeters

mm Millimeters

pt Points, 1 point is equal to 1/72nd of an inch

pc Picas, 1 pica is equal to 12 points

Absolute lengths are not intended for the computer screen; they are intended for where a physical
measurement is necessary. For example, printing a document requires real-word measurements. You
cover print styles in Chapter 15. For now you will not be using absolute measurements.

Relative Measurement

Relative measurement is better suited for the purpose of onscreen layout. The following table defi nes
the four types of relative measurement that CSS allows.

UNIT ABBREVIATION DESCRIPTION

em Length relevant to the nearest font size.

ex The x-height of the relevant font (height of the letter x).

px Pixels, relative to the viewing device, for example, a computer monitor.

% Percentage measurement; how percentage length is calculated depends

on what property it is being applied to.

c02.indd 25c02.indd 25 12/05/11 11:16 AM12/05/11 11:16 AM

26 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

The em and ex units are measured relative to the font size of a document, pixels use the real pixels
of the monitor’s screen resolution, and percentage measurement depends on what property it is being
applied to. In the coming sections you explore each type of relative measurement in greater detail.

NOTE While pixels are defi ned in the CSS documentation as an absolute
 measurement, in reality the size of each pixel depends on a number of factors,
most importantly the environment’s screen resolution.

For this reason I will treat pixels as a relative unit of measurement in this book.

Pixel Measurements

As you may have guessed from the discussion in this chapter about absolute measurements, pixels,
the px measurement, are measured relative to the computer monitor’s settings. This measurement
depends on the resolution of the user’s monitor. For instance, a 1px measurement viewed at a
resolution of 800 x 600 is larger than a 1px measurement viewed at a resolution of 1024 x 768.

Pixel measurements are most useful on the screen; for print it is often better to use absolute
measurements or other relative units. I discuss this issue further in Chapter 15.

Try setting the size of text using pixel values yourself in the following Try It Out.

TRY IT OUT Change the Size of a Heading with Pixels

Example 2-4

To see how font sizes in absolute units work, follow these steps.

1. Enter the following markup into your text editor.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 2-4</title>
 <style type=”text/css”>
 body {
 font: 12px sans-serif;
 }

 h1 {
 font-family: ‘Times New Roman’, Times, serif;
 font-size: 46px;
 }
 </style>

c02.indd 26c02.indd 26 12/05/11 11:16 AM12/05/11 11:16 AM

Values ❘ 27

</head>
<body>

 <h1>Gas Giants</h1>

 <p>Information about the 4 gas planets in our solar system.</p>

</body>

</html>

 2. Save the document as example_2-4.html, and load it into your favorite browser. When you load
Example 2-4 into a browser, you should see something like Figure 2-4.

FIGURE 2-4

How It Works

In this example you set the font size of the <body> element and the <h1> element in pixel units by using
the CSS font-size property.

Measurement Based on the Font Size

Measurement in em is one of three favored relative measurements for onscreen layout, for most
measurements alongside pixels and percentages. A measurement that is relative to the font size
allows for designs that scale up and down gracefully with the user’s font size preferences.

All modern browsers provide a mechanism for scaling the font size up or down to the user’s
preference. This causes the size of an em to change as well, so any values based on em units will
also change.

Try setting the size of text using em values yourself in the following Try It Out.

c02.indd 27c02.indd 27 12/05/11 11:16 AM12/05/11 11:16 AM

28 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

TRY IT OUT Change the Size of a Heading with Em Values

Example 2-5

 1. Type in the following document:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 2-5</title>
 <style type=”text/css”>
 body {
 font: 12px sans-serif;
 }

 h1 {
 font-family: ‘Times New Roman’, Times, serif;
 font-size: 2em;
 }
 </style>
</head>
<body>

 <h1>Gas Giants</h1>

 <p>Information about the 4 gas planets in our solar system.</p>

</body>

</html>

 2. Save the preceding markup as example_2-5.html. Figure 2-5 shows the output.

FIGURE 2-5

c02.indd 28c02.indd 28 12/05/11 11:16 AM12/05/11 11:16 AM

Values ❘ 29

How It Works

The fi rst rule is applied to the <body> element, and sets the default size of all text in the document to
12px. Then you set the font size of the <h1> element by using the CSS font-size property to 2em, or
2 times the size of regular text.

Percentage Measurements

Percentage measurements are always dependent on something else; therefore, percentage
measurements are also a form of relative measurement. Specifi cally, they are relative to
another element’s measurement, whether it’s an inherited font size or the width or height of
a containing element. Exactly which element the percentage measurement is relative to depends
on a number of factors, including the property and/or value you’re using a percentage
measurement for, as well as the other CSS applied to the document.

Measurements Based on the Height of the Lowercase Letter “x”

The ex measurement, also known as x-height, is (like the em) based on the font size. However, the
ex measurement is relative to the height of the lowercase letter “x”. The ex measurement is another
unit of measurement derived from typography. This can be inconsistent across different fonts, so it
is best avoided when designing for display on a computer monitor, and for print style sheets you will
most commonly use em or pt values.

Because it’s a presentational language, most of CSS is affected in some way by length and
units of measurement. The fundamental unit for all measurements when you design for display
on a computer monitor is the pixel, because computers display images in pixels. You can defi ne
lengths relative to font sizes, using em units as the most practical and consistent solution.
Absolute lengths, on the other hand, are better suited for print because of the multitude of
inconsistencies that occur when absolutes are used for presentations on a computer monitor.
In the next section, I continue the discussion of CSS property values with a look at how CSS
interprets numbers.

Numbers

CSS allows numbers as values for several properties. Two types of numbers are accepted by CSS:
integers and real numbers. Like strings, integers and real numbers are data types and are often used
in CSS for the measurement of length. Integers are whole numbers without a decimal value. Real
numbers can have a decimal value which increases the precision of measurements in CSS. You can
usually use either type of number anywhere a number is a valid value, but in some cases it doesn’t
make sense — pixel values cannot be more precise than an integer, for example, there is no such
things as 0.5px.

In CSS, numbers may be preceded by a plus (+) or minus (-) to indicate that the number is positive
or negative respectively. Although some properties, for example, font-size, do not accept negative

c02.indd 29c02.indd 29 12/05/11 11:16 AM12/05/11 11:16 AM

30 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

values, many do. As you can see in the following example, one property that allows negative values
is the margin property.

TRY IT OUT Setting a Negative Margin

Example 2-6

To see what happens when the margin property has a negative value, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 2-6</title>
 <style type=”text/css”>
 body {
 font: 12px sans-serif;
 }

 h2 {
 margin-left: -20px;
 }

 div {
 padding-left: 20px;
 }
 </style>
</head>
<body>

 <h1>The gas giants</h1>

 <div class=”planet jupiter”>

 <h2>Jupiter</h2>

 <p>Jupiter is the fifth planet from the Sun and the largest planet within
 the Solar System. The Romans named the planet after the god Jupiter. It
 is a gas giant with a mass two and a half times the mass of all the other
 planets in our Solar System combined.</p>

 </div>

</body>

</html>

 2. Save the markup that you entered as example_2-6.html, and load it into your favorite browser.
You should see something similar to Figure 2-6.

c02.indd 30c02.indd 30 12/05/11 11:16 AM12/05/11 11:16 AM

Values ❘ 31

How It Works

From Figure 2-6, you can see that the text in the div has been shifted to the right by 20px by giving
the padding-left property a value of 20px, but the heading has been shifted back to the left by
using a negative value for margin-left. You learn more about how the margin property works in
Chapter 8.

Colors

CSS has a number of options for specifying colors, ranging from a 216-color, Web-safe palette to
the full range of colors available in the RGB format, a total of 16,777,216 colors! More specifi cally,
those options are as follows:

 ➤ Color keywords: These enable you to specify a color by its name. There are only a small
number of keywords available compared to the millions that you can use with other color
value types.

 ➤ Hexadecimal: This enables you to specify a color by a special hexadecimal number.

 ➤ Shorthand hexadecimal: This is a shortened representation of hexadecimal numbers; it is
limited to a special 216-color, Web-safe palette.

 ➤ RGB values: These enable you to specify a color via a Red, Green, Blue representation, which
provides access to millions of colors.

 ➤ RGB percentage: This option is the same as RGB but uses percentages.

 ➤ RGBA (RGB with alpha channel): The RGB palette is used with the addition of an alpha
channel to specify transparency.

Each method is a means of accomplishing the same thing: specifying a color. You can use these
methods to specify text color, border color, or background color. Next, you see what each of
these methods looks like when used in the context of a style sheet rule.

FIGURE 2-6

c02.indd 31c02.indd 31 12/05/11 11:16 AM12/05/11 11:16 AM

32 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

Color Keywords

The fi rst method for specifying color, mentioned previously, is to use a color keyword. This is the
most intuitive method because all you need to do is reference the name of the color itself. Here
are some examples:

div {
 color: black;
 background-color: red;
 border: thin solid orange;
}

This rule applies to any <div> element contained in the document. I have specifi ed that each
<div> element should have black text, a red background, and a thin, solid orange border around
the element. In this example, black, red, and orange are color keywords, so a color keyword is
simply the name of the color.

NOTE A complete table of CSS-supported color keywords is available in
Appendix D.

Hexadecimal Colors

Hexadecimal refers to a numbering scheme that uses 16 characters as its base, expressed in a
combination of letters and numbers. A hexadecimal system uses 0-9 for the fi rst 10 digits and A-F
to represent the remaining 6 digits. Letter A corresponds to the decimal number 10, B to 11, C to
12, and so on up to 15, which is represented by F. Therefore 10 in hex is equivalent to 16 in decimal,
and FFF in hex is the equivalent of 255 in decimal.

Hexadecimal values are another way of expressing an RGB value. For instance, #FFFFFF refers to
white, which is expressed in RGB as 255, 255, 255.

In CSS, hexadecimal colors are included just as RGB or color keywords are, as shown in the
following example.

div {
 color: #000000;
 background-color: #FF0000;
 border: thin solid #FFA500;
}

#000000 is the hexadecimal representation of black; the same as RGB 0, 0, 0 or simply the black
color keyword. #FF0000 is a hexadecimal representation of red, or RGB 255, 0, 0, or the red color
keyword. Finally, #FFA500 is a hexadecimal representation of orange, or RGB 255, 165, 0, or the
orange color keyword.

c02.indd 32c02.indd 32 12/05/11 11:16 AM12/05/11 11:16 AM

Values ❘ 33

Short Hexadecimal

When a hexadecimal value is made up of 3 pairs of duplicated values you can use a shorthand
notation of the value which uses only a single value for each pair. For example, the hexadecimal
value for white is #FFFFFF. This is 3 pairs of FF and can therefore be shortened to #FFF.

div {
 background-color: #FAB;
}

In this example, #FAB is equivalent to #FFAABB which fans of the 1960s British TV series
Thunderbirds in particular may be interested to know is a rather vivid shade of pink!

RGB Colors

RGB stands for Red, Green, and Blue. These are the primary colors used to display the color of
pixels on a computer monitor. When you use these three colors in various combinations, it is
possible to create every color of the rainbow. Many computer monitors are capable of displaying
millions of colors: 16,777,216 colors, in fact. CSS RGB color is specifi ed using a special three-
number syntax, with each one representing a color channel. This fi rst number is red, the second
green, and the third blue:

body {
 background-color: rgb(128, 128, 128);
}

This produces the same color as the CSS color keyword gray. Equal amounts of all three channels
form a variation of gray, where 0, 0, 0 is black and 255, 255, 255 is white.

RGB values may also be represented using percentages:

body {
 background-color: rgb(50%, 50%, 50%);
}

This also produces the same color as the CSS color keyword gray.

The URI

CSS uses a special term — URI (Universal Resource Indicator) — when the location of a resource or
data fi le must be specifi ed. URIs are most often used in CSS for two purposes:

 ➤ The inclusion of style sheets

 ➤ The inclusion of background images

The URI is referenced using a special method, as shown in the following example:

.jupiter {
 background-image: url(jupiter.jpg);
}

c02.indd 33c02.indd 33 12/05/11 11:16 AM12/05/11 11:16 AM

34 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

The url() syntax is used to enclose the URI of the fi le being referenced. In this example, jupiter
.jpg must exist in the same directory as the style sheet. If the style sheet is named mystyle.css and
it’s located at www.example.com/styles/mystyle.css, the mypicture.jpg fi le must also exist in
the styles directory, where its path is www.example.com/styles/mypicture.jpg. The complete,
absolute path or the shortened relative paths are both acceptable references to the fi le. I address this
topic again in Chapter 7, where I discuss the background property and the syntax it allows.

INCLUDING CSS IN A DOCUMENT

CSS is very fl exible regarding how you call it in a document. You can include CSS in a document in
four ways:

 ➤ CSS can be included in a document by using embedded style sheets, which are included
between <style> and </style> tags directly in an HTML document. These tags must
appear between the <head> and </head> tags.

<style type=”text/css”>
 body {
 font: 12px sans-serif;
 }
 </ style >

 ➤ CSS can be included in its own document and linked to an HTML document by using the
<link> element. Note that as the link element can be used for more than just referencing
CSS fi les, such as linking to RSS feeds for the current site, it is important to include
rel=”stylesheet” so that the browser knows what we want it to do.

<link rel=”stylesheet” type=”text/css” href=”example_1-1.css”>

 ➤ CSS can be imported from within either an embedded or linked style sheet by using an
@import rule.

<style type=”text/css”>
 @import url(example_1-1.css);
 </ style >

 ➤ CSS declarations can be applied directly to an element in an HTML document by using inline
styles with the style attribute.

<body style=”font: 12px sans-serif;”>

So far, you have used embedded style sheets and linked style sheets. I recommend that you continue
to use these unless you have a reason not to. There are benefi ts to the import method for more
advanced authors of CSS, but disadvantages as well, which are beyond the scope of this book
to discuss.

c02.indd 34c02.indd 34 12/05/11 11:16 AM12/05/11 11:16 AM

Including CSS in a Document ❘ 35

Under no circumstances can I recommend that you use style attributes directly on HTML elements.
This approach removes many of the benefi ts of CSS, such as being able to style multiple elements with
a single rule, and also makes your CSS harder to organize and manage as you will see in Chapter 4
when we discuss specifi city.

Including an Embedded Style Sheet

To embed a style sheet in to your document simply add a <style type=”text/css”></style>
element to the <head> element of your document. Inside the <style> tags add CSS in the same way
that you have done throughout this chapter.

Embedded style sheets are very useful for development and debugging. When you are working on a
page, including CSS directly in the document removes browser cache issues, whereas a linked style
sheet may be stored by your browser and not updated when you refresh the page.

They are not recommended when your site is live; however, there are benefi ts to linking to external
style sheets, which we will discuss next.

Linking to External Style Sheets

External style sheets are the preferred method of CSS inclusion in a web document, as a single style
sheet can be shared by multiple pages on a website and can be cached by the user’s browser. Caching
frees the user, who no longer needs to download the website’s style sheet on every page, leading to
faster page load times and less bandwidth used per page request.

Here’s a demonstration of the <link> element method:

<link rel=”stylesheet” type=”text/css” href=”example_1-1.css”>

The following attributes are required to use the <link> element for linking to a CSS document:

 ➤ rel: Defi nes the relation between the external document and the current document. In this
case, the relation is that the external document is the style sheet for the calling document.

 ➤ type: Refers to the MIME type of the external fi le. For CSS this is always text/css.

 ➤ href: Like the anchor tag, <a>, href stands for hyperlink reference. It accepts an absolute or
relative path to the style sheet document.

An absolute path means the complete path to the fi le. For instance, www.example.com is an
absolute path. A relative path triggers the application to fi nd the CSS fi le relative to the requesting
document. So if the example fi le’s URL is www.example.com/example.html and the CSS document
is stored in the stylesheets directory as stylesheet.css, the relative path included in <link> is
stylesheets/stylesheet.css and the full absolute path to the document is www.example.com/
stylesheets/stylesheet.css.

When you are serving your site from a web server rather than just a folder on your computer,
it is recommended that you use an absolute path starting from after your domain name, i.e.,
/stylesheets/stylesheet.css.

c02.indd 35c02.indd 35 12/05/11 11:16 AM12/05/11 11:16 AM

36 ❘ CHAPTER 2 THE BITS THAT MAKE UP A STYLE SHEET

THE IMPORTANCE OF GOOD HTML

Although this book is about CSS, we cannot ignore HTML. While all of the CSS in this book
is used with HTML 4.01, they will also work without alteration with HTML written to other
standards, for example, HTML5 or XHTML standards, such as XHTML 1.0.

Regardless of which fl avor of HTML that you choose to use it cannot be stressed enough how
important good, valid markup is to achieving consistent rendering across browsers. While valid
markup is not an absolute guarantee that you will not encounter rendering problems, your markup
is a good place to check fi rst if you do. You can make use of the W3C markup validator at http://
validator.w3.org/ or your IDE may have validation tools built in.

Doctypes and Quirks Mode

The most important thing to ensure in HTML documents is that you have used a valid modern
doctype. Any of the strict doctypes that are HTML 4.01 or above or any version of XHTML listed
at www.w3.org/QA/2002/04/valid-dtd-list.html will be suitable.

The reason that you must use a valid doctype is that if you don’t, modern browsers will use a
rendering mode know as Quirks Mode. The reason for this is to allow for older code to render as it
was intended, on the assumption that if the code author was following the recommended standards,
then they would have included a valid doctype.

Quirks mode changes the way CSS works, for example, widths of elements are calculated differently,
as are the styles applied to content in tables. This makes it diffi cult to write CSS that works as you
expect in all browsers and greatly increases the amount of time you will need for testing.

EXERCISES

 1. Name the diff erent components that make up a CSS rule.

 2. What’s the diff erence between when width: auto; is applied to a <table> as opposed to a

<div> element?

 3. Complete the sequence: Declaration, Property, ___________

 4. Convert the color RGB(234, 123, 45) to hexadecimal.

 5. What is the shortened hexadecimal notation of #FFFFFF?

 6. If I have a style sheet located at www.example.com/stylesheet.css, and a web page located

at www.example.com/index.html, what markup would I include in index.html to include

stylesheet.css via a relative path?

c02.indd 36c02.indd 36 12/05/11 11:16 AM12/05/11 11:16 AM

The Importance of Good HTML ❘ 37

 � WHAT YOU LEARNED IN THIS CHAPTER

Throughout this chapter, you learned about the bits and pieces that make CSS work. To recap,
in this chapter you learned the following:

TOPIC KEY CONCEPTS

Elements of a style

sheet

Style sheets are made up of rules; rules are made up of selectors and

declarations; declarations are made up of properties and values.

Values Can be keywords, lengths, colors, strings, integers, real numbers, or URIs.

Including CSS in

documents

Style sheets can be embedded in documents, which is useful while developing,

or linked to and included in external fi les, which is good practice in production.

c02.indd 37c02.indd 37 12/05/11 11:16 AM12/05/11 11:16 AM

c02.indd 38c02.indd 38 12/05/11 11:16 AM12/05/11 11:16 AM

Selectors

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to use class and ID selectors

 ➤ How to use the universal selector

 ➤ How descendant selectors can be used

 ➤ The pseudo selectors used to style links

In this chapter, you learn about the different types of selectors that CSS supports. In Chapter 2,
you learned about the type selector, which applies style sheet declarations by using the HTML
element’s name. Selectors in CSS have spotty support with regard to IE 6; therefore, almost of
the examples at this stage are designed to work in all of the browsers you reviewed in Chapter 1.
Don’t worry! Advanced selectors are discussed in Chapter 14 for those brave enough, or lucky
enough , not to have to support IE 6.

We have already seen the type selector in use, that is a selector that references a type of
HTML element, so let’s continue our discussion of selectors with the most common and
widely supported ones: class and ID.

CLASS AND ID SELECTORS

Class and ID selectors are the most widely supported. In fact, they are as widely supported
as the type selector introduced in Chapter 2. There are two types of selectors. The class
selector, which references the class attribute used on HTML elements, is the more generic
of the two, meaning it may encompass many elements in a given document, even elements of
different types or purposes. On the other hand, you can use the id attribute on only one
element in an HTML document, so we use it in CSS to reference an element that is unique
per page. Besides using it in CSS, you can also use an element’s class or ID to access it via a
scripting language such as JavaScript. You can also link to the location of the element with

3

c03.indd 39c03.indd 39 12/05/11 11:42 AM12/05/11 11:42 AM

D
o

40 ❘ CHAPTER 3 SELECTORS

an ID name using fragment identifi ers. Anchors are appended to URLs to force a browser to go to a
specifi c place in a document. You can think of the id attribute as an element’s address inside
a document: No two addresses can be the same.

CLASS SELECTORS

The following code shows an example of a class name selector.

<style type=”text/css”>
 .planet {
 margin: 10px 0;
 padding: 20px 20px 20px 200px;
 border: 1px solid #FFF;
 background-position: 20px 20px;
 background-repeat: no-repeat;
 }
</style>

<div class=”planet jupiter”>
 <h2>Jupiter</h2>
</div>

The class name selector begins with a dot, followed by the class name itself, which you choose.
In the preceding code, the class name selector is .planet. The class name should be comprised of
letters, numbers, and hyphens only, to provide the best compatibility with older browsers. Class
names must start with a letter and cannot include spaces.

The dot appearing before the class name in the CSS rule tells CSS that you are referencing a class
selector. The dot does not need to appear in the class attribute value itself; in fact, it cannot, because
the value of the class attribute is just the class name itself.

When used in this context, the type of element doesn’t matter — in other words, you can also apply
the class to other elements. What if you wanted to give both a <div> and an element the same
class name and have a style sheet rule that applies to <div> elements but not elements? You can
do that, too. Limiting a class selector to a type of element is demonstrated in the following code.

div.planet {
 margin: 10px 0;
 padding: 20px 20px 20px 200px;
 border: 1px solid #FFF;
 background-position: 20px 20px;
 background-repeat: no-repeat;
}

This code shows the combination of two types of selectors that you are already familiar with,
the type selector you learned about in Chapter 2, and the class selector. When you append a type
selector to a class selector, you limit the scope of the style sheet rule to only that type of element.
In this example, the rule is limited so that it only applies to <div> elements and no other type of
element. You can still create additional rules that reference other elements, such as a new rule that
only applies to elements with a class name of planet, such as img.planet, but the rule that
you see in the preceding applies exclusively to <div> elements with a class name of planet.

c03.indd 40c03.indd 40 12/05/11 11:42 AM12/05/11 11:42 AM

Class Selectors ❘ 41

 NOTE There must not be a space between the element name and the class
selector. Including a space gives us a diff erent type of selector, called a
descendant selector, which we will look at later in this chapter.

As you have seen, elements can also be assigned more than one class name, for example,
class=”planet jupiter”. The value of this class attribute actually contains two class names:
planet and jupiter. Each class name in the attribute is separated by a space. In the
corresponding style sheet, the two classes may be referenced by two separate rules, as illustrated
in the following code.

.planet {
 margin: 10px 0;
 padding: 20px 20px 20px 200px;
 border: 1px solid #FFF;
 background-position: 20px 20px;
 background-repeat: no-repeat;
}

.jupiter {
 background-image: url(jupiter.jpg);
}

The two style sheet rules in this code result in the <div> element, with both planet and jupiter
class names receiving the declarations of both rules.

If you’re thinking to yourself that jupiter looks like a good candidate to be an ID — there is only one
Jupiter, but many planets — you’re right. We’ll revisit this in a few minutes when we look at ID selectors.

 NOTE It is considered best practice to use “semantic” class names in HTML
and CSS — that is, class names that describe the function of an element, not
its appearance. In the preceding example we could have used a class of
border-1px-solid-white as follows:

.border-1px-solid-white {
 border: 1px solid #FFF;
}

and it would be perfectly valid. However if we wanted to change the border to a
diff erent color we would either have to change our HTML to use a diff erent class
name, border-1px-solid-yellow perhaps, or have class names that don’t
match the result of applying the style.

By using a class name like planet we describe what we want planet type
elements to look like without tying ourselves to overly descriptive names that
may later become out of date or plain wrong.

You should apply the same principle to IDs — describe an elements function, not
it’s appearance.

c03.indd 41c03.indd 41 12/05/11 11:42 AM12/05/11 11:42 AM

42 ❘ CHAPTER 3 SELECTORS

The class names may also be chained together in the style sheet, as shown here:

.planet.jupiter {
 background-image: url(jupiter.jpg);
}

The preceding rule applies only to elements that reference both class names in their class attribute.

Unfortunately, IE 6 interprets chained class names per the CSS 1 specifi cation, which did not allow
chained class names in the style sheet. In IE 6, only the last class name in the chain is recognized. In
the preceding example, IE 6 would interpret the .planet.jupiter selector as .jupiter only.

While this has been fi xed in later versions of IE it makes the use of chained classes unreliable if
you must support IE6, so while it is a powerful technique it is best avoided by beginners. The
consequence is that all elements with a class of jupiter will be affected by .planet.jupiter even
those that do not also have a class of planet.

Whereas classes are meant to reference more than one element, IDs are meant to reference only one
element in a document.

ID Selectors

ID selectors are unique identifi ers; an ID is meant to be unique, defi ned once per document. Like the
class selectors discussed in the previous section, a special character precedes ID selectors in a style
sheet. To reference an ID, you precede the ID name with a hash mark (or pound sign, #). Like class
names, this name cannot contain spaces and must start with a letter. You should use names that
only include letters, numbers, hyphens and undersores for compatibility with the older browsers.
You see how this is done in the following code.

<style type=”text/css”>
 #jupiter {
 background-image: url(jupiter.jpg);
 }
</style>

<div class=”planet” id=”jupiter”>
 <h2>Jupiter</h2>
</div>

Since there’s only one Jupiter in the solar system, Jupiter lends itself as a good example of the
concept of an ID selector. Just as there is only one Jupiter in the solar system, the ID name jupiter
can be used only once in a document, on one element.

Browsers are forgiving of multiple ID names per document as far as style sheets are concerned.
However, using an ID name more than once in a document can cause confl icts with other
applications of unique ID names. For example, ID names can be used to link to a location within
a document (as HTML anchors), or when referencing an element by ID name from JavaScript.
When you have an ID name appearing more than once in the HTML document, on more than one
element, the browser won’t know which one you’re linking to, or which one you want to refer to
from JavaScript, and will generally select only the fi rst element with the ID. Always use the ID name
for its intended purpose, just once per document.

c03.indd 42c03.indd 42 12/05/11 11:42 AM12/05/11 11:42 AM

Class Selectors ❘ 43

An ID name must be unique in so far as other ID names are concerned, but it may be repeated as
a class name, should you want to do so. It’s generally best to avoid this though as it’s easy to get
confused and use the wrong kind of selector, resulting in styling the wrong element(s).

Although only one element in a HTML document may have an ID of jupiter, the CSS may contain
as many references to an ID as are necessary. The uniqueness rule only applies to naming the
elements, not the references to them.

Now that you’ve had a proper introduction to the different types of things that ID and class name
selectors are capable of, try the following proof-of-concept exercise that lets you see how ID and
class selectors work.

TRY IT OUT Class and ID Selectors

Example 3-1

To see how class and ID selectors work, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 3-1</title>
 <style type=”text/css”>
 body {
 width: 650px;
 margin: 0 auto;
 background: #000;
 color: #FFF;
 font: 12px sans-serif;
 }

 h1 {
 font-size: 24px;
 }

 h2 {
 font-size: 18px;
 margin-top: 0;
 }

 a {
 color: #FFF;
 }

 a:focus,
 a:hover {
 text-decoration: none;
 }

 table {

c03.indd 43c03.indd 43 12/05/11 11:42 AM12/05/11 11:42 AM

44 ❘ CHAPTER 3 SELECTORS

 margin-bottom: 10px;
 border-spacing: 0;
 }

 caption {
 margin-bottom: 10px;
 font-size: 14px;
 font-weight: bold;
 text-align: left;
 }

 th,
 td {
 padding: 0 10px 0 0;
 text-align: left;
 }

 div.planet {
 margin: 10px 0;
 padding: 20px 20px 20px 200px;
 border: 1px solid #FFF;
 background-position: 20px 20px;
 background-repeat: no-repeat;
 }

 #jupiter {
 background-image: url(jupiter.jpg);
 }

 #saturn {
 background-image: url(saturn.jpg);
 }

 #uranus {
 background-image: url(uranus.jpg);
 }

 #neptune {
 background-image: url(neptune.jpg);
 }
 </style>
</head>
<body>

<h1>The gas giants</h1>

<div class=”planet” id=”jupiter”>

 <h2>Jupiter</h2>

 <p>Jupiter is the fifth planet from the Sun and the largest planet within the
 Solar System. The Romans named the planet after the god Jupiter. It is a gas
 giant with a mass two and a half times the mass of all the other planets in
 our Solar System combined.</p>

 <table>

c03.indd 44c03.indd 44 12/05/11 11:42 AM12/05/11 11:42 AM

Class Selectors ❘ 45

 <caption>Jupiter Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>78,412,020 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>71,492 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>1,425,500,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>1,898,700,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

 More Jupiter facts

</div>

<div class=”planet” id=”saturn”>

 <h2>Saturn</h2>

 <p>Saturn is the sixth planet from the Sun and the second largest planet in the
 Solar System, after Jupiter. Saturn is named after the Roman god Saturn,
 equated to the Greek Cronus (the Titan father of Zeus), the Babylonian
 Ninurta, and the Hindu Shani.</p>

 <table>
 <caption>Saturn Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>1,426,725,400 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>60,268 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>827,130,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>568,510,000,000,000,000,000,000,000 kg</td>
 </tr>

c03.indd 45c03.indd 45 12/05/11 11:42 AM12/05/11 11:42 AM

46 ❘ CHAPTER 3 SELECTORS

 </tbody>
 </table>

 More Saturn facts

</div>

<div class=”planet” id=”uranus”>

 <h2>Uranus</h2>

 <p>Uranus is the seventh planet from the Sun, and the third-largest and fourth
 most massive planet in the Solar System. It is named after the ancient Greek
 deity of the sky Uranus the father of Cronus and grandfather of Zeus.</p>

 <table>
 <caption>Uranus Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>78,412,020 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>25,559 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>69,142,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>86,849,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

 More Uranus facts

</div>

<div class=”planet” id=”neptune”>

 <h2>Neptune</h2>

 <p>Neptune is the eighth and farthest planet from the Sun in our Solar System.
 Named for the Roman god of the sea, it is the fourth-largest planet by
 diameter and the third-largest by mass.</p>

 <table>
 <caption>Neptune Facts</caption>
 <tbody>
 <tr>

c03.indd 46c03.indd 46 12/05/11 11:42 AM12/05/11 11:42 AM

Class Selectors ❘ 47

 <th>Distance from the Sun</th>
 <td>4,498,252,900 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>24,764 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>62,526,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>102,440,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

 More Neptune facts

</div>

</body>

</html>

2. Save the preceding document as example_3-1.html. Figure 3-1 shows what Example 3-1 looks
like when rendered in Safari. You should see something similar in Firefox, IE, Chrome and Opera.

FIGURE 3-1

c03.indd 47c03.indd 47 12/05/11 11:42 AM12/05/11 11:42 AM

48 ❘ CHAPTER 3 SELECTORS

How It Works

In Example 3-1, you put your newly acquired class and ID selector skills to use by rewriting our exam-
ple site from Chapter 1 to make use of ID selectors and class selectors qualifi ed by a type selector.

Now that you have worked through this simple, proof-of-concept demonstration of class and ID selec-
tors for yourself, continue to the next section, which discusses the universal, or wildcard selector.

THE UNIVERSAL SELECTOR

The universal selector is an asterisk. When used alone, the universal selector tells the CSS
interpreter to apply the CSS rule to all elements in the document. The following code shows what a
universal selector looks like.

* {
 font-family: Arial, Helvetica,sans-serif;
}

This rule is applied to all elements contained in the document. The universal selector applies to everything,
including form input fi elds and tables of data. It applies style to any and every element present in a
document. In this case all elements would have font-family: Arial, Helvetica,sans-serif;
applied to them.

You probably won’t use the universal selector very often because, as you will see later in this book,
there are better ways of applying styles to the whole document.

DESCENDANT SELECTORS

In CSS, descendant means an element that is a child, grandchild, great grandchild, and so on,
of another element. Descendant selectors apply style based on whether one element contains
another. Take, for example, the following code.

<div class=”planet” id=”jupiter”>

 <h2>Jupiter</h2>

 <p>Jupiter is the fifth planet from the Sun and the largest planet within the
 Solar System. The Romans named the planet after the god Jupiter. It is a gas
 giant with a mass two and a half times the mass of all the other planets in
 our Solar System combined.</p>

 <table>
 <caption>Jupiter Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>

c03.indd 48c03.indd 48 12/05/11 11:42 AM12/05/11 11:42 AM

Descendant Selectors ❘ 49

 <td>78,412,020 km</td>
 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>71,492 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>1,425,500,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>1,898,700,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

 More Jupiter facts

</div>

In this example the <h2>, <p>, <a> and <table> elements are child elements of the <div>; <caption>
and <tbody> are child elements of the <table> but also descendants of <div> (in this case,
grandchildren). The reverse is also true, <h2>, <p>, <a>, <table> and all the elements within the
table have <div> as a common ancestor.

To target an element based on its ancestor we write the CSS that you see in the following code.

div.planet h2 {
 font-size: 18px;
 margin-top: 0;
}

Descendant selectors are used to select an element based on its context within the document.
In the preceding code, you select a <h2> element but only if the <h2> element is a descendant of the
<div> element with a class of planet.

Descendant selectors aren’t limited to just two elements; you can include more elements in the
ancestral lineage, if it suits your needs. Each selector in a descendant selector chain must be
separated by a space. This is demonstrated in the following code.

div.planet table td {
 padding: 0 10px 0 0;
 text-align: left;
}

In fact, the entire lineage from the eldest ancestor, the <html> element, down through the
generations to the element you want to select, can be included in a descendant selector chain.

In the next section, I present another type of selector, pseudo-class selectors.

c03.indd 49c03.indd 49 12/05/11 11:42 AM12/05/11 11:42 AM

50 ❘ CHAPTER 3 SELECTORS

PSEUDO-CLASSES

Pseudo-classes are used to represent dynamic events, a change in state, or a more general condition
present in the document that is not easily accomplished through other means. This may be the user’s
mouse rolling over or clicking on an element. In more general terms, pseudo-classes style a specifi c
state present in the target element, for example, a previously visited hyperlink. Pseudo-classes
allow the author the freedom to dictate how the element should appear under different conditions.
There are many more pseudo-classes than are listed here. I will cover more, such as the nth-child
pseudo class which allows you to select an element based on its position within a document, later in
the book.

Unlike normal classes, pseudo-classes have a single colon before the pseudo-class property.

Dynamic Pseudo-Classes

The following are considered dynamic pseudo-classes. They are a classifi cation of elements only
present after certain user actions have or have not occurred:

 ➤ :link: Signifi es unvisited hyperlinks

 ➤ :visited: Indicates visited hyperlinks

 ➤ :hover: Signifi es an element that currently has the user’s mouse pointer hovering over it

 ➤ :focus: Signifi es an element that currently has focus, for example if the user has used their
keyboard to navigate to a link

 ➤ :active: Signifi es an element on which the user is currently clicking

If you want to apply styles to an anchor regardless of its state you can, of course, still use the good
old type selector without a pseudo class.

The fi rst two dynamic pseudo-classes that I discuss are :link and :visited.

:link and :visited

The :link pseudo-class refers to an unvisited hyperlink, whereas :visited, of course, refers to
visited hyperlinks. These two pseudo-classes are used to separate styles based on user actions. An
unvisited hyperlink may be blue, whereas a visited hyperlink may be purple. Those are the default
styles your browser applies. Using dynamic pseudo-classes it is possible to customize those styles.

In the following code, unvisited links are styled with the :link dynamic pseudo-class. They receive
meduimblue text. Visited links, on the other hand, have magenta text.

There is one exception to this, however. Webkit browsers will apply :link pseudo class styles to all
links, not just unvisited ones. Therefore it is a good idea to defi ne the same properties in :link and
:visited rules so that the correct styles are applied.

 NOTE For obvious reasons, the :link and :visited pseudo-classes apply
only to <a> elements.

c03.indd 50c03.indd 50 12/05/11 11:42 AM12/05/11 11:42 AM

Pseudo-Classes ❘ 51

a:link {
 color: meduimblue;
}

a:visited {
 color: magenta;
}

The order in which dynamic pseudo-classes appear in the style sheet is important and has to do
with the cascade, which I discuss in Chapter 4. If the :link pseudo-class is defi ned after the :focus
pseudo-class in the style sheet, the :link pseudo-class takes precedence: The declarations with the
:link pseudo-class override those defi ned for the :focus pseudo-class. As you see in Chapter 4, this
has to do with how specifi c the selector is; in this example, the specifi city is the same.

WARNING A mnemonic device used to remember the order in which dynamic
pseudo-classes (as applied to links) must appear in style sheets is LoVe HAte, or
:link, :visited, :hover and :active. :focus does not fi t in this mnemonic, but
as you will see you should always include a :focus style alongside :hover styles.

:hover and :focus

The :hover pseudo-class refers to an element over which the user’s mouse pointer is currently
hovering. While the user’s mouse pointer is over the element, the specifi ed style is applied; when
the user’s mouse pointer leaves the element, it returns to the previously specifi ed style. The :focus
pseudo-class behaves in the same way, but for keyboard focus. To provide the same experience to
keyboard and mouse users, it is good practice to include them both and is common for them to
receive the same style.

The :hover and :focus pseudo-classes are applied in the same way that the :link and :visited
pseudo-classes are applied. I like to put :focus fi rst as it stops me forgetting it. An example appears
in the following code.

When the user either hovers over the <a> element with their mouse or uses the keyboard to navigate
to it, this code causes the text within the <a> element to be underlined.

a{
 text-decoration: none;
}

a:focus,
a:hover {
 text-decoration: underline;
}

 NOTE In IE 6, the :hover pseudo-class applies only to hyperlinks (which is
incorrect under the CSS 2 specifi cation), whereas other browsers recognize the
:hover pseudo-class on any rendered element, per the CSS 2 specifi cation. This
problem is fi xed in IE 7 and later.

c03.indd 51c03.indd 51 12/05/11 11:42 AM12/05/11 11:42 AM

52 ❘ CHAPTER 3 SELECTORS

:active

The :active pseudo-class refers to an element that the user is currently clicking and holding down
the mouse button on. The specifi ed style remains in place while the user holds down the mouse
button, and the element does not return to its original state until the user releases the mouse button.

The following code shows the :active pseudo-class in use. When the user clicks an <a> element,
while the mouse button is held down, and before it is released, the element is said to be active, in
which case the styles in the :active pseudo-class rule are applied.

 NOTE In IE 6 and IE 7, :active applies only to hyperlinks; whereas, other
browsers allow it to be applied to any element.

a:active {
 color: red;
}

Now that you have been introduced to dynamic pseudo-class selectors, you can try them out for
yourself in the following example.

TRY IT OUT Dynamic Pseudo-Class Selectors

Example 3-2

To try out dynamic pseudo-class selectors, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 3-2</title>
 <style type=”text/css”>
 a:link {
 text-decoration: none;
 color: meduimblue;
 }

 a:visited {
 color: magenta;
 }

 a:focus,
 a:hover {
 text-decoration: underline;
 }

 a:active {

c03.indd 52c03.indd 52 12/05/11 11:42 AM12/05/11 11:42 AM

Pseudo-Classes ❘ 53

 color: red;
 }
 </style>
</head>
<body>

 <h1>Links to useful sites</h1>

 Wrox
 Wrox P2P
 Yahoo
 Amazon

</body>

</html>

2. Save the preceding markup as example_3-2.html. You should see output in your browser like that
in Figure 3-2.

FIGURE 3-2

How It Works

In Example 3-2, you tried out the dynamic pseudo-classes for yourself. There were four dynamic
pseudo-classes in use.

The fi rst dynamic pseudo-class that you used styles unvisited links. Unvisited links receive the color
meduimblue and have the underline removed.

a:link {
 text-decoration: none;
 color: meduimblue;
}

The second dynamic pseudo-class that you used styles visited links. Visited links receive the color
magenta.

a:visited {
 color: magenta;
}

c03.indd 53c03.indd 53 12/05/11 11:42 AM12/05/11 11:42 AM

54 ❘ CHAPTER 3 SELECTORS

The third selector that you used, the :hover and :focus dynamic pseudo-classes, applies styles when
the user’s mouse cursor hovers over a link or when the link has keyboard focus. When a user’s mouse
cursor comes over a link or has the link has keyboard focus, the link is underlined.

a:focus,
a:hover {
 text-decoration: underline;
}

Last, you used the :active dynamic pseudo-class, which applies style when the user clicks and holds
down the mouse button on a link. When the user clicks and holds down the mouse button, the link is
red.

a:active {
 color: red;
}

EXERCISES

 1. How would you apply a style to an element based on its class?

 2. How many class names can one element have?

 3. How would you apply a style to an element based on its ID?

 4. How would you apply a style to an element based on its class and type?

 5. If you wanted to style a link a diff erent color when the user’s mouse hovers over it, what might the

selector look like?

c03.indd 54c03.indd 54 12/05/11 11:42 AM12/05/11 11:42 AM

Pseudo-Classes ❘ 55

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, you learned about the basic selectors in CSS. To recap, you learned the following:

TOPIC KEY CONCEPTS

Types of selector Class, ID, Universal and Pseudo-classes can be used to target diff erent

elements in HTML.

Class Selectors Classes can be applied to as many elements as you want, and CSS

can be used to target them.

ID Selectors An ID can only be applied to one element in a document, and can be

combined with classes.

Descendant Selectors Descendant selectors can be used to target elements based on the

ancestors, for example a <h2> inside a <div> with a class of planet.

Pseudo-Classes Pseudo-classes can be used to style elements based on user

interaction, for example a link that has been visited.

c03.indd 55c03.indd 55 12/05/11 11:42 AM12/05/11 11:42 AM

c03.indd 56c03.indd 56 12/05/11 11:42 AM12/05/11 11:42 AM

The Cascade and Inheritance

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The cascade and how style sheets and some selectors take

precedence over others

 ➤ Inheritance and why the values of some properties are inherited and

some are not

 ➤ The !important rule and how to force precedence

In Chapter 3, I discussed the various types of selectors that CSS supports. In this chapter,
now that you have an understanding of some of the basic nuts and bolts that make up CSS,
you continue along that path with the cascade and inheritance. In CSS, inheritance and the
cascade are as fundamental as selectors, lengths, and properties. In fact, the importance of
precedence is implied by the name of the language itself: Cascading Style Sheets. Cascading is
a term used to describe precedence. Because a single element may be matched by multiple CSS
declarations, the CSS specifi cation includes a set of guidelines defi ning which declarations can
take precedence over others and how this is decided.

THE CASCADE

Style sheets can come from more than one place. A style sheet can originate from any of the
following sources:

 ➤ From the browser (the browser’s default look and feel)

 ➤ From the user visiting the website (a user-defi ned style sheet)

 ➤ From the web page itself (a style sheet created by the website’s author)

4

c04.indd 57c04.indd 57 12/05/11 11:17 AM12/05/11 11:17 AM

D
o

58 ❘ CHAPTER 4 THE CASCADE AND INHERITANCE

Because a style sheet can originate from more than one source, it is necessary to establish an order
of precedence to determine in which order style sheets apply styles for the page the user is seeing.
The fi rst style sheet comes from the browser, and this style sheet applies some default styles for a
web page, such as the default font and text color, how much space is applied between each line of
text, and how much space is applied between each letter of text. In a nutshell, it controls the look
and feel of the web page by controlling the behavior of each element when no styles are specifi ed.

A style sheet can also be applied by a user visiting the website via a user-defi ned style sheet. This
allows the user to specify his or her own look and feel. This aspect of CSS makes the Web more
accessible: A user with visual disabilities can write a style sheet to accommodate his or her needs.

Finally, the author of the web page can specify a style sheet (of course). The precedence of each style
sheet is as follows:

 ➤ The browser’s style sheet is the weakest.

 ➤ The user’s style sheet takes precedence over the browser’s style sheet.

 ➤ The author’s style sheet is the strongest and takes precedence over the user’s and the
browser’s style sheets.

The HTML style attribute can also be used to apply styles directly to an element, and these styles
are more important than styles defi ned in any style sheet. Because style attributes will override
styles in style sheets, I do not recommend their use.

You might be wondering what kind of styles does the browser apply? The following code
demonstrates this.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 4-1</title>
</head>
<body>

<h1>The gas giants</h1>

<div class=”planet jupiter”>

 <h2>Jupiter</h2>

 <p>Jupiter is the fifth planet from the Sun and the largest planet
within the Solar System. The Romans named the planet after the god
Jupiter. It is a gas giant with a mass two and a half times the mass
of all the other planets in our Solar System combined.</p>

 <table>
 <caption>Jupiter Facts</caption>
 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>78,412,020 km</td>

c04.indd 58c04.indd 58 12/05/11 11:17 AM12/05/11 11:17 AM

The Cascade ❘ 59

 </tr>
 <tr>
 <th>Equatorial Radius</th>
 <td>71,492 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>1,425,500,000,000,000 km³</td>
 </tr>
 <tr>
 <th>Mass</th>
 <td>1,898,700,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

More Jupiter facts

</div>

</body>

</html>

code snippet /chapter4/fi gure_4-1.html

This results in the output shown in Figure 4-1.

FIGURE 4-1

In Figure 4-1, you can see an example of some of the default styles that a browser applies. Examples
include the spacing between styles applied to the heading and the text in the paragraph that follows,
and the text alignment applied to the td elements.

The next code snippet demonstrates a style sheet that removes the default styles shown in Figure 4-1.

c04.indd 59c04.indd 59 12/05/11 11:17 AM12/05/11 11:17 AM

60 ❘ CHAPTER 4 THE CASCADE AND INHERITANCE

* {
 margin: 0;
 padding: 0;
 font-size: 16px;
 font-weight: normal;
}

code snippet /chapter4/fi gure_4-2.html

The style sheet in the preceding code is applied to the markup that produced Figure 4-1, which
results in the output shown in Figure 4-2.

FIGURE 4-2

When you compare Figure 4-2 with Figure 4-1, you get an idea of what kinds of styles a browser
applies by default. The browser applies spacing between elements and depending on the element,
that spacing can be controlled by either the margin or the padding property. You learn more about
those two properties in Chapter 8. Figure 4-2 demonstrates, however, that it is possible to override
the browser’s default styles. Overriding the default styles is made possible by the cascade.

The cascade sets the order of precedence, and in Figure 4-2, it says that my style sheet rules (the
author’s) have stronger precedence (are more important) than the browser’s built-in style sheet rules.
By and large, there are only two situations that a web designer will ever encounter in composing
a style sheet: overriding the browser’s default styles, and overriding styles set in other style sheets
within the same website (that is, overriding the web designer’s own styles set elsewhere in the same
document).

In CSS, the precedence is determined by how specifi c a selector is. That is to say a vague selector
has less precedence than a more specifi c selector. In the next section, I discuss how to fi nd out how
specifi c a selector is using a simple, easy-to-remember formula.

Calculating the Specifi city of a Selector

In addition to style sheet precedence, an order of precedence exists for the selectors contained in
each style sheet. This precedence is determined by how specifi c the selector is. For instance, an
ID selector is the most specifi c, and the universal selector is the most general. Between these, the
specifi city of a selector is calculated using the following formula:

c04.indd 60c04.indd 60 12/05/11 11:17 AM12/05/11 11:17 AM

The Cascade ❘ 61

 1. Count 1 if the styles are applied from the (X)HTML style attribute, and 0 otherwise; this
becomes variable a.

 2. Count the number of ID attributes in the selector; the sum is variable b.

 3. Count the number of attributes, pseudo-classes, and class names in a selector; the sum is
variable c.

 4. Count the number of element names in the selector; this is variable d.

 5. Ignore pseudo-elements.

Now take the four values and put them together in groups of four. In the following table I’ve
demonstrated this, using commas to separate each value.

SELECTOR SELECTOR TYPE SPECIFICITY

* Universal Selector 0,0,0,0, (a = 0, b = 0,

c = 0, d = 0)

li Element Name 0,0,0,1, (a = 0, b = 0,

c = 0, d = 1)

ul li Element Name 0,0,0,2, (a = 0, b = 0,

c = 0, d = 2)

div h1 + p Element Name 0,0,0,3, (a = 0, b = 0,

c = 0, d = 3)

input[type=’text’] Element Name + Attribute 0,0,1,1, (a = 0, b = 0, c = 1, d = 1)

.someclass Class Name 0,0,1,0, (a = 0, b = 0,

c = 1, d = 0)

div.someclass Element Name + Class Name 0,0,1,1, (a = 0, b = 0,

c = 1, d = 1)

div.someclass.someother Element Name + Class Name +

Class Name

0,0,2,1, (a = 0, b = 0,

c = 2, d = 1)

#someid ID Name 0,1,0,0, (a = 0, b = 1,

c = 0, d = 0)

div#someid Element Name + ID Name 0,1,0,1, (a = 0, b = 1,

c = 0, d = 1)

style (attribute) style (attribute) 1,0,0,0, (a = 1, b = 0,

c = 0, d = 0)

Now compare each selector. The selector which has the highest left-most number has the highest
specifi city. In the case of a tie, move to the next number and compare once again.

c04.indd 61c04.indd 61 12/05/11 11:17 AM12/05/11 11:17 AM

62 ❘ CHAPTER 4 THE CASCADE AND INHERITANCE

If two selectors have the same specifi city then they will be applied in the order in which they appear.

Eric Meyer, renowned CSS expert, has written about specifi city, and explains it in a slightly
different way at meyerweb.com/eric/css/link-specificity.html. I recommend you read this
and choose whichever approach makes most sense to you.

In the following Try It Out, you experiment with specifi city.

TRY IT OUT Experimenting with Specifi city

Example 4-1

Follow these steps to experiment with specifi city.

 1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 3-1</title>
 <style type=”text/css”>
 body {
 width: 650px;
 margin: 0 auto;
 background: #000;
 color: #FFF;
 font: 12px sans-serif;
 }

 h1 {
 font-size: 24px;
 }

 h2 {
 font-size: 18px;
 margin-top: 0;
 }

 a {
 color: #FFF;
 }

 a:focus,
 a:hover {
 text-decoration: none;
 }

 table {
 margin-bottom: 10px;
 border-spacing: 0;

c04.indd 62c04.indd 62 12/05/11 11:17 AM12/05/11 11:17 AM

The Cascade ❘ 63

 }

 caption {
 margin-bottom: 10px;
 font-size: 14px;
 font-weight: bold;
 text-align: left;
 }

 th,
 td {
 padding: 0 10px 0 0;
 text-align: left;
 }

 tr.even {
 background: none;
 }

 tr {
 background: #666;
 }

 div.planet {
 background: none;
 }

 div.planet {
 margin: 10px 0;
 padding: 20px 20px 20px 200px;
 border: 1px solid #FFF;
 background-image: none;
 background-position: 20px 20px;
 background-repeat: no-repeat;
 }

 #jupiter {
 background-image: url(jupiter.jpg);
 }
 </style>
</head>
<body>

<h1>The gas giants</h1>

<div class=”planet” id=”jupiter”>

 <h2>Jupiter</h2>

 <p>Jupiter is the fifth planet from the Sun and the largest planet within the
 Solar System. The Romans named the planet after the god Jupiter. It is a gas
 giant with a mass two and a half times the mass of all the other planets in
 our Solar System combined.</p>

 <table>
 <caption>Jupiter Facts</caption>

c04.indd 63c04.indd 63 12/05/11 11:17 AM12/05/11 11:17 AM

64 ❘ CHAPTER 4 THE CASCADE AND INHERITANCE

 <tbody>
 <tr>
 <th>Distance from the Sun</th>
 <td>78,412,020 km</td>
 </tr>
 <tr class=”even”>
 <th>Equatorial Radius</th>
 <td>71,492 km</td>
 </tr>
 <tr>
 <th>Volume</th>
 <td>1,425,500,000,000,000 km³</td>
 </tr>
 <tr class=”even”>
 <th>Mass</th>
 <td>1,898,700,000,000,000,000,000,000,000 kg</td>
 </tr>
 </tbody>
 </table>

 More Jupiter facts

</div>

</body>

</html>

 2. Save the preceding document as example_4-1.html.

Example 4-1 results in the output you see in Figure 4-3.

FIGURE 4-3

How It Works

In Example 4-1, you see an example of the cascade in action. Your HTML should be familiar to you by
now, but there are changes to the CSS which demonstrate specifi city.

c04.indd 64c04.indd 64 12/05/11 11:17 AM12/05/11 11:17 AM

The Cascade ❘ 65

Here you have two rules which apply to the background of table rows:

tr.even {
 background: none;
}

tr {
 background: #666;
}

Even though the default style for each tr is to display background: #666; the preceding rule overrides
it for table rows with a class of even because it has a specifi city of 0,0,1,1 as it consists of both an
element name and a class name, which is higher than the specifi city of an element selector alone.

Your CSS also shows that order matters when selectors have equal specifi city in the following snippet:

div.planet {
 background: none;
}

div.planet {
 margin: 10px 0;
 padding: 20px 20px 20px 200px;
 border: 1px solid #FFF;
 background-image: none;
 background-position: 20px 20px;
 background-repeat: no-repeat;
}

#jupiter {
 background-image: url(jupiter.jpg);
}

You have two identical selectors, div.planet, but here only the second applies any styles.
As you will learn in Chapter 7, background is a special property that combines the values for
background-image, background-position, and background-repeat. If these two rules were
reversed, all of these properties would be set to none.

However, you also have a rule that uses an ID selector #jupiter, which has a specifi city of 100, higher
than the specifi city of div.planet, 10.

When an (X)HTML style attribute is applied, it is considered the most specifi c of any selector on
the page. That’s because according to the CSS specifi cation, it is defi ned as having a specifi city all of
its own, that is higher than any other. The style attribute has a specifi city of 1,0,0,0 therefore, the
style attribute takes precedence over all other rules. It is not recommended that style attributes
are used in your code, as they remove many of the benefi ts of CSS, for example the cascade itself
and the ability to separate content and style.

c04.indd 65c04.indd 65 12/05/11 11:17 AM12/05/11 11:17 AM

66 ❘ CHAPTER 4 THE CASCADE AND INHERITANCE

In the next section, I describe how you can override specifi city by including special syntax within a
CSS declaration.

!important Rules

Along with the need for the cascade in CSS is the need to override it. This is where !important
rules come in. The !important syntax appears within a declaration, after the property value and
before the semicolon that terminates the declaration. Two components make up this syntax: an
exclamation mark, used here as a delimiter; and the important keyword. A delimiter marks the
ending of one thing and the beginning of another. Here the exclamation mark signals the end of the
declaration. The important keyword must appear next, followed by a semicolon to terminate
the declaration; this is demonstrated in the following code.

body {
 background: #000 !important;
}

A declaration containing the !important rule, like the preceding one, takes precedence over any
other declaration even the style attribute.

If more than one !important rule appears in a style sheet, and the style sheet has the same origin —
that is, both rules come from the author’s style sheet or both come from the user’s style sheet — the
latter rule wins out over any specifi ed previously.

For this reason, it is strongly advised that you never use !important rules anywhere in your code.
The only place that there could be a good reason for using one is in user defi ned style sheets when
a specifi c style is required to make a site usable, for example specifi c foreground and background
colors. Using !important rules in author style sheets makes it harder for users to defi ne their own
rules and makes site maintenance much more diffi cult as the only way to override an !important
rule is to include another !important rule later in the author style sheet.

INHERITANCE

CSS is designed to simplify web document creation, enabling a property to be applied to all elements
in a document. To put it another way, after a property has been applied to a particular element, its
children retain those property values as well. This behavior is called inheritance. Not all properties
are inherited, but many are, and you will learn which as you follow the examples in this book.

Many properties in CSS are inheritable; some are not. Where it is supported and appropriate, inheritance
makes writing style sheets a snap. For the most part, two types of properties can be inherited: text and
font properties. You have seen the code shown next in many of our examples so far.

NOTE It is considered good practice to keep the specifi city of each selector as
low as possible. If you don’t do this you, will fi nd that you need to write more and
more complex selectors with unnecessary IDs and classes in order to override
other styles.

c04.indd 66c04.indd 66 12/05/11 11:17 AM12/05/11 11:17 AM

Inheritance ❘ 67

body {
 width: 650px;
 margin: 0 auto;
 background: #000;
 color: #FFF;
 font: 12px sans-serif;
}

In each case, you have seen that the color of your text is white, or #FFFFFF in hexadecimal form
(which can be shortened to #FFF). This is because all of our text has inherited its color from this
style applied to the body element. The font and font sizes used has also been inherited from the same
rule for most of our text, the exception being headings that have browser and author styles applied
to them to change their size.

However, not all of these styles have been inherited; none of the other elements on the page have a
width of 650px or have the same margins as our body element. This is because these properties are not
inherited by other elements; they apply only to the element on which they are placed, not to its children.

This is a very good thing, as otherwise you would have to write additional rules to remove width
and margin on every element that you didn’t want these values to apply to!

NOTE Inheritance for each property is outlined in Appendix C.

Now that you know the background of CSS, Part II will introduce many more CSS properties. In
Chapter 5, you will learn about t ext manipulation properties.

EXERCISES

1. In the following style sheet, determine the specifi city of each selector.

ul#hmenu ul.menu

ul#hmenu li li:hover

ul#hmenu ul.menu ul.menu

ul#hmenu li#menu-204 ul.menu ul.menu

ul#hmenu li#menu-848 ul.menu ul.menu ul.menu ul.menu

ul#hmenu li#menu-990 ul.menu ul.menu

ul#hmenu > li.menu.eas + li.menu.eas ul.menu ul.menu ul.menu

2. According to the following style sheet, what color is the link?

a.context:link {
 color: blue;

c04.indd 67c04.indd 67 12/05/11 11:17 AM12/05/11 11:17 AM

68 ❘ CHAPTER 4 THE CASCADE AND INHERITANCE

}

a.context:visited {
 color: purple;
}

a.context:focus,
a.context:hover {
 color: green;
}

a.context:active {
 color: red;
}

 3. According to the following style sheet, what color is the link?

a.context:visited {
 color: purple;
}

a.context:focus,
a.context:hover {
 color: green;
}

a.context:active {
 color: red;
}

a.context:link {
 color: blue;
}

 4. According to the following style sheet, what color is the link?

a.context:link {
 color: blue;
}

a.context:visited {
 color: purple !important;
}

a.context:focus,
a.context:hover {
 color: green;
}

a.context:active {
 color: red;
}

c04.indd 68c04.indd 68 12/05/11 11:17 AM12/05/11 11:17 AM

Inheritance ❘ 69

 � WHAT YOU LEARNED IN THIS CHAPTER

Throughout this chapter, you learned about inheritance and the cascade, fundamental to CSS. To
recap, in this chapter, you learned the following:

TOPIC KEY CONCEPTS

Specifi city Specifi city is how you calculate which styles are applied to an element when

more than one rule could apply .

Inheritance Some properties are inherited, which reduces redundancy in the document by

eliminating the need for declarations to be written multiple times.

Other properties are not inherited, which also reduces redundancy by preventing

the eff ects of declarations from being applied to the element’s descendants.

!important You have learned to recognize !important rules and understand why they

should not be used in author Style Sheets.

c04.indd 69c04.indd 69 12/05/11 11:17 AM12/05/11 11:17 AM

c04.indd 70c04.indd 70 12/05/11 11:17 AM12/05/11 11:17 AM

PART II

Properties

 � CHAPTER 5: Applying Font Faces

 � CHAPTER 6: Manipulating the Display of Text

 � CHAPTER 7: Background Colors and Images

 � CHAPTER 8: The Box Model: Controlling Margins, Borders, Padding,

Width, and Height

 � CHAPTER 9: Floating and Vertical Alignment

 � CHAPTER 10: Styling Lists

 � CHAPTER 11: Positioning

 � CHAPTER 12: Styling Tables

 � CHAPTER 13: Create a Complete Layout

c05.indd 71c05.indd 71 12/05/11 11:18 AM12/05/11 11:18 AM

c05.indd 72c05.indd 72 12/05/11 11:18 AM12/05/11 11:18 AM

Applying Font Faces

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The font-family property and how it is used to change the face of

a font

 ➤ The font-style property and how it is used to make a font italic

 ➤ The font-variant property and how this property is used to create

a small-caps eff ect

 ➤ The font-weight property and how it is used to increase or

decrease how bold or light a font appears

 ➤ The font-size property and how it is used to increase or decrease

the size of a font

 ➤ The font property and how it is used as shorthand to specify a

number of other font properties

In Chapter 4, you learned how certain properties in CSS are inherited and how the cascade
determines which style rules are the most important. In this and subsequent chapters, you
begin an in-depth look at the individual properties of CSS and how these come together to
style a document.

This chapter begins the discussion of text manipulation with CSS’s font manipulation
properties. CSS includes a variety of properties that change the face, size, and style of a font.

SETTING FONT FACES

The font-family property allows you to specify the typeface used to display a piece of text.
You can specify more than one typeface, and the fi rst one that the user has installed on their
system will be the one used. You can make use of any of the fonts installed on the user’s
operating system, though in practice you’ll generally stick to the set of web safe fonts that we

5

c05.indd 73c05.indd 73 12/05/11 11:18 AM12/05/11 11:18 AM

D
o

74 ❘ CHAPTER 5 APPLYING FONT FACES

discuss later in the chapter. There are also some so-called generic font families that browsers map to
the most appropriate system font, as in the following table.

PROPERTY VALUE

font-family [[<family-name> | <generic-family>] [, <family-name>|

<generic-family>]*]

Initial value: Varies depending on the browser or user agent.

The following code is an example of the basic use of the font-family property.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 5-1</title>
 <style type=”text/css”>
 body {
 font-family: arial, helvetica, sans-serif;
 }

 h1 {
 font-family: “Times New Roman”, Georgia, Serif;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p>Cheese is a remarkably versatile food, available in literally hundreds
of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter5/fi gure_5-1.html

This results in the output shown in Figure 5-1.

FIGURE 5-1

c05.indd 74c05.indd 74 12/05/11 11:18 AM12/05/11 11:18 AM

Setting Font Faces ❘ 75

The example is pretty straightforward, and hopefully by now you are suffi ciently familiar with
CSS to guess what it does. A set of font families, arial, helvetica, sans-serif, out of which
the fi rst installed font is applied to text within the body element, and a different set of font families
“Times New Roman”, Georgia, Serif is applied to any h1 elements.

There are two things to note about the format. First, the names of each font are case insensitive
(that is, they can be uppercase, lowercase, sentence case, or whatever mixture of cases you fi nd most
readable). Second, as you saw in Chapter 2, strings which contain spaces (for example, “Times New
Roman” must be enclosed with quotation marks).

The font-family property can accept one or more fonts for its value, which is what is meant by
the repetition of the syntax in the notation and the presence of the asterisk. The asterisk indicates
that the syntax may be repeated one or more times, and a comma is used to separate each font name
provided. You can specify two types of fonts. The fi rst is documented as <family-name> in the
preceding table. The <family-name> notation refers to fonts installed on the user’s computer, which
means that the available fonts depend on the user’s operating system and the fonts available to that
operating system. The <generic-family> notation refers to a small subset of predefi ned fonts that
can be expected to always be available; this will be discussed shortly.

Don’t worry if you fi nd this syntax diffi cult to read. You will get used to it over the course of
this book, and although it is not essential that you learn it, it will help you read the offi cial CSS
documentation if you do.

Font Families

 The available font families that can be specifi ed vary depending on the operating system. Using a
default installation, Windows does not provide the same fonts as Mac OS X, for instance. Furthermore,
the available fonts also vary depending on the programs installed on the user’s computer. For instance,
Microsoft Offi ce installs a number of extra fonts in addition to those that ship with Mac OS X or
Windows. In fact, with the exception of a few fonts, Mac OS X with Microsoft Offi ce installed provides
pretty much the same fonts as installed on Windows. Without Microsoft Offi ce installed, however,
many Windows fonts are not available on the Mac platform.

There is a huge number of fonts available across platforms, too many to list here. A great resource
which lists many fonts and the likelihood of their being installed on each platform can be found at
www.codestyle.org/css/font-family/index.shtml.

For this reason, there is the possibility of font inconsistencies, that the font-family property can
accept more than one font as its value. The browser will use the fi rst font provided that is installed and
available on the end user’s computer. The browser will fall back to the next font in the list in the event
that previous fonts are not available. Subsequent fonts in the list are called fallback fonts. This capability
is provided because it is diffi cult to foresee which fonts will be available on the user’s computer.

The effect of specifying more than one font is that the browser goes through the list of comma-
separated fonts until it fi nds one that it is capable of displaying.

CSS provides a couple of generic fonts that you can always rely on being installed and for this reason
it is good practice to include a generic font as the last in the list.

The following table outlines the generic font family names defi ned in CSS.

c05.indd 75c05.indd 75 12/05/11 11:18 AM12/05/11 11:18 AM

76 ❘ CHAPTER 5 APPLYING FONT FACES

GENERIC FONT RESEMBLES

serif Times, Times New Roman

sans-serif Helvetica, Arial

cursive Zapf-Chancery

fantasy Western

monospace Courier, Courier New

An example of each generic font family is shown in Figure 5-2.

FIGURE 5-2

You will fi nd that most text on the Web is displayed with a sans-serif font family. This is because
sans-serif fonts tend to be easier to read on screen. Printed materials such as this book often use serif
fonts because most people fi nd them easier to read off screen. Serif fonts can also be used on the
Web but usually only with text which is larger than average such as headings.

Use the following Try It Out to experiment with the font-family property for yourself.

TRY IT OUT Applying the font-family Property

Example 5-1

Follow these steps to experiment with the font-family property.

 1. Write the following markup in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 5-1</title>

c05.indd 76c05.indd 76 12/05/11 11:18 AM12/05/11 11:18 AM

Setting Font Faces ❘ 77

 <style type=”text/css”>
 body {
 font-family: arial, helvetica, sans-serif;
 }

 h1 {
 font-family: “Times New Roman”, Georgia, Serif;
 }

 ol {
 font-family: monospace;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p>Cheese is a remarkably versatile food, available in literally hundreds of
varieties with different flavors and textures.</p>

<h2>Welsh Rarebit</h2>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously until
 it has melted. Add a teaspoon of wholegrain mustard and grind in a little
 pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
 edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

</body>
</html>

 2. Save example_5-1.html. The results of these modifi cations are shown in Figure 5-3.

FIGURE 5-3

c05.indd 77c05.indd 77 12/05/11 11:18 AM12/05/11 11:18 AM

78 ❘ CHAPTER 5 APPLYING FONT FACES

How It Works

In Example 5-1, you made use of several examples of the font-family property. Following is a review
of each of the relevant rules.

The fi rst example of the font-family property you used was arial, helvetica, sans-serif
applied to the body element, setting default fonts for all text on the page.

body {
 font-family: arial, helvetica, sans-serif;
}

Next, you specify “Times New Roman”, Georgia, Serif for all h1 elements.

h1 {
 font-family: “Times New Roman”, Georgia, Serif;
}

Finally, you specify the generic system monospace font for all OL (ordered list) elements.

ol {
 font-family: monospace;
}

In the next section, I discuss how to make text italic, bold, or small caps.

MAKING TEXT ITALIC, BOLD, OR SMALL CAPS

Making your text italic, bold, or displayed as small caps requires three different properties which all
behave in a very similar way. We will cover them all in the following three sections.

Italic Text

The font-style property is used to switch between styles provided by a particular font; those styles
are italic or oblique. For many fonts the information required to render text in an italic version
of the font is included in the font fi le. The oblique style does not use this information, even if it is
available, instead it simulates italicized text, not always to great effect.

The following table outlines the possible values for the font-style property.

PROPERTY VALUE

font-style normal | italic | oblique

Initial value: normal

c05.indd 78c05.indd 78 12/05/11 11:18 AM12/05/11 11:18 AM

Making Text Italic, Bold, or Small Caps ❘ 79

The italic and oblique values are, with most fonts, indistinguishable in how they render; however,
I have never used or seen used the oblique style in real-world code, so we will limit our use of the
font-style to italicizing text.

There is only one gotcha with font-style. Not all fonts have an italic style, and browsers differ in
how they handle this case. IE will render the font in the normal style, whereas other browsers will
fall back to the next specifi ed font that has an italic version.

Bold Text

The font-weight property provides the functionality to specify how bold a font is. The following
table outlines the font-weight property and the values that it allows.

PROPERTY VALUE

font-weight normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 |

600 | 700 | 800 | 900

Initial value: normal

As you can see in the preceding table, the font-weight property has several values. Despite all of
these different values being available for the font-weight property, in real-world web design, a font
is either bold or it isn’t. That is to say, in real-world web design, the only two values that matter in
the preceding table are the normal and bold values. This majority of fonts used on the Web do not
support the variations that the font-weight property allows.

For those interested, normal text usually equates to a font-weight value of 400 and bold text to a
value of 700.

Small Caps Text

The following table outlines the font-variant property and its possible values.

PROPERTY VALUE

font-variant normal | small-caps

Initial value: normal

The font-variant: small-caps; declaration causes letters to appear in uppercase but scaled
slightly smaller than capitalized letters. The capitalized letter maintains its case and size, but all
lowercase letters are displayed as capital letters scaled slightly smaller than any real capital letters
appearing in the markup’s source code. It can be a nice effect to use in headings but can make long
sections of text hard to read.

In the following Try It Out, you experiment with the font-style, font-weight, and
font-variant properties.

c05.indd 79c05.indd 79 12/05/11 11:18 AM12/05/11 11:18 AM

80 ❘ CHAPTER 5 APPLYING FONT FACES

TRY IT OUT Applying the font-style, font-weight, and font-variant Properties

Example 5-2

Follow these steps to try out the font-style, font-weight, and font-variant properties.

 1. Write the following markup in your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 5-2</title>
 <style type=”text/css”>
 body {
 font-family: arial, helvetica, sans-serif;
 }

 h1 {
 font-family: “Times New Roman”, Georgia, Serif;
 font-variant: small-caps;
 }

 .intro {
 font-weight: bold;
 }

 .recipe .intro {
 font-weight: normal;
 font-style: italic;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously until
 it has melted. Add a teaspoon of wholegrain mustard and grind in a little

c05.indd 80c05.indd 80 12/05/11 11:18 AM12/05/11 11:18 AM

Making Text Italic, Bold, or Small Caps ❘ 81

 pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding markup as example_5-2.html. The example results in the output in Figure 5-4.

FIGURE 5-4

How It Works

In Example 5-2, you experimented a bit with the font-style, font-weight, and font-variant
properties.

First, you applied the small-caps font variant to any h1 elements.

h1 {
 font-family: “Times New Roman”, Georgia, Serif;
 font-variant: small-caps;
}

Then you applied the bold font weight to elements with class name intro.

.intro {
 font-weight: bold;
}

c05.indd 81c05.indd 81 12/05/11 11:18 AM12/05/11 11:18 AM

82 ❘ CHAPTER 5 APPLYING FONT FACES

Finally, you applied the normal font weight and italic font variant to elements with the class name of
intro with an ancestor element with a class name of recipe.

.recipe .intro {
 font-weight: normal;
 font-style: italic;
}

In the next section, I introduce the font-size property.

THE FONT-SIZE PROPERTY

The font-size property is, of course, used to control the size of fonts. The following table outlines
the font-size property and its possible values.

PROPERTY VALUE

font-size <absolute-size> | <relative-size> | <length> | <percentage>

Initial value: medium

Of these, you will rarely fi nd any values other than length and percentage in use in real world code,
so let’s briefl y take a look at absolute-size and relative-size before we move on to the practical stuff.

Absolute Font Sizes

The <absolute-size> value notation of the font-size property refers to one of seven keyword
values. Absolute values for the font-size property are defi ned using keywords that range from
xx-large to xx-small. The following table outlines the absolute values and their relation to HTML
heading sizes.

ABSOLUTE

KEYWORD XX-SMALL X-SMALL SMALL MEDIUM LARGE X-LARGE XX-LARGE

HTML n/a <h6> <h5> <h4> <h3> <h2> <h1>Heading

These keywords specify the font size based on a scaling factor of 1.2. Scaling factor is the ratio
between two shapes. The scaling factor is determined by multiplying the font size by 1.2 to
determine the next font size relative to the previous one. For instance, if a font size of 16 pixels is
assumed for the medium keyword value, the large keyword would be approximately 20 pixels,
rounding up from 19.2, because 16 multiplied by 1.2 equals 19.2.

c05.indd 82c05.indd 82 12/05/11 11:18 AM12/05/11 11:18 AM

The font-size Property ❘ 83

Relative Font Sizes

The <relative-size> notation of the font-size property refers to two values: larger and
smaller. When either of these two values is used, the font size is determined by the values appearing
in the table for absolute size. If the value is specifi ed with a length unit — say, for instance, as
pixels — the browser simply applies a 1.2 scaling factor to that size to get the larger size.

Length and Percentage Font Sizes

Length and percentage font sizes are what you will most commonly see and use, and both work in
the same way.

Font sizes can be set in any of the absolute (inches, centimeters, millimeters, points, and picas)
or relative (em, ex, pixels and percentage) measurements that we saw in the “Length and
Measurement” section in Chapter 2. Of these you will rarely see absolute measurements used for
text outside of print style sheets (see Chapter 15) and will rarely see ex used in any context.

Let’s start with the easiest to understand, pixels, demonstrated in the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 5-5</title>
 <style type=”text/css”>
 body {
 font-family: arial, helvetica, sans-serif;
 font-size: 12px;
 }

 h1 {
 font-family: “Times New Roman”, Georgia, Serif;
 font-size: 30px;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p>Cheese is a remarkably versatile food, available in literally hundreds
of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter5/fi gure_5-5.html

This results in the output shown in Figure 5-5.

c05.indd 83c05.indd 83 12/05/11 11:18 AM12/05/11 11:18 AM

84 ❘ CHAPTER 5 APPLYING FONT FACES

If you compare this to previous examples, you will see that the paragraph text is smaller and the
heading text is larger than before. This is very simple and easy to implement and would probably the
most common method of setting font sizes on the Web if it wasn’t for one small wrinkle: Internet
Explorer. All browsers provide a mechanism for users to resize text in their browser. This is an
important accessibility feature, in particular helping those with poor vision to read text in a size
comfortable for them.

Unfortunately, IE does not resize text if the font size is set in pixels or for that matter in any absolute
units. It won’t even resize text if you override the default font size on a child element with a relative
measurement such as a percentage if the initial value is set with pixels. If you want your sites to be
accessible (and you do!), you must look to other measurements, namely percentages and ems.

Percentage font sizes work much like the em units discussed in Chapter 2. Consider this example:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 5-6</title>
 <style type=”text/css”>
 body {
 font-family: arial, helvetica, sans-serif;
 }

 h1 {
 font-size: 1.5em;
 font-weight: normal;
 }

 p {
 font-size: 150%;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p>Cheese is a remarkably versatile food, available in literally hundreds

FIGURE 5-5

c05.indd 84c05.indd 84 12/05/11 11:18 AM12/05/11 11:18 AM

The font-size Property ❘ 85

of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter5/fi gure_5-6.html

This results in the output shown in Figure 5-6.

FIGURE 5-6

Figure 5-6 shows that percentage values are based on the element’s ancestry. The font size for the h1
element is 1.5em, which means 1.5 times the default font size. The font size of the p element is made
150% larger than the default font, and you can see that they are both the same size. This means that
1em is interchangeable with 100%, with 2em being the same as 200% etc.

As long as you set your font sizes with ems or percentages, all browsers, including IE, will allow
your users to resize text. It is therefore common to see styles such as the one in the following code.

body {
 font-size: 62.5%;
}

Based on the default font size of 16px, common to all modern web browsers, this sets the size of 1em
to 10px, making it much easier to calculate the value required to set font sizes of other values (for
example, 13px would be 1.3em or 130%).

There is one gotcha with relative measurements: They are cumulative. In other words, if you nest
two elements that both have styles changing the font size of the text, both changes will be applied.
The following code shows this.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 5-7</title>
 <style type=”text/css”>
 .intro {
 font-size: 1.2em;

c05.indd 85c05.indd 85 12/05/11 11:18 AM12/05/11 11:18 AM

86 ❘ CHAPTER 5 APPLYING FONT FACES

 }

 .recipe {
 font-size: 1.1em;
 }
 </style>
</head>
<body>

<p class=”intro”>Cheese is a remarkably versatile food, available in
literally hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Cheese is a remarkably versatile food, available in
literally hundreds of varieties with different flavors and textures.</p>

</div>

</body>
</html>

code snippet /chapter5/fi gure_5-7.html

This results in the output shown in Figure 5-7.

FIGURE 5-7

The result in Figure 5-7 is that the p element inside the div with class name of recipe has been
increased in size by 10% because it is of the .recipe selector and by a further 20% on top of the
10% because of the .intro selector! This makes the text much bigger than expected.

The next section examines a special shorthand property used to specify several font properties in one.

THE FONT SHORTHAND PROPERTY

font is a shorthand property that allows you to write several font-related properties in a single
property. The following table outlines the font property and the values that it allows.

c05.indd 86c05.indd 86 12/05/11 11:18 AM12/05/11 11:18 AM

The font Shorthand Property ❘ 87

PROPERTY VALUE

font [<’font-style’> || <’font-variant’> || <’font-weight’>]?

<’font-size’> [/ <’line-height’>]? <’font-family’>] caption |

icon | menu | message-box | small-caption | status-bar

The notation for the font property is somewhat more complicated than that presented in
previous examples. For now, just ignore the caption, icon, menu, message-box, small-caption,
and status-bar values — these are called system fonts, and you will rarely see them used in
real-world code.

The font Properties

As for the fi rst part of the notation, here’s a breakdown of each portion:

[<’font-style’> || <’font-variant’> || <’font-weight’>]?

This indicates that a font-style, font-variant, or font-weight value can be provided. The
question mark indicates that this part is optional; you don’t have to include a font-style,
font-variant, or a font-weight. The double vertical bars in the notation indicate that each value
is optional, and they also indicate that any combination of the three can appear. You can include
just a font-style, just a font-variant, just a font-weight, all three, or any combination of the
three. The next part indicates that a font size must be specifi ed:

<’font-size’>

The font size is not optional, so a font-size value must always be provided.

The next part indicates that a line-height (discussed in Chapter 6) may be specifi ed, but because a
question mark follows it, the line height is optional:

[/ <’line-height’>]?

The forward slash in the notation indicates that if a line height is specifi ed, a forward slash must
separate the font-size and line-height properties. The question mark after the closing square
bracket indicates that this portion of the syntax is optional.

NOTE Line height controls the spacing between lines of text, and is covered in
detail in the next chapter.

The last portion indicates that a font-family must be specifi ed:

<’font-family’>

So at the very least, a font-size value and a font-family value must be specifi ed.

c05.indd 87c05.indd 87 12/05/11 11:18 AM12/05/11 11:18 AM

88 ❘ CHAPTER 5 APPLYING FONT FACES

It’s important to note that using shorthand properties of any kind resets to their default the values of
any of the individual properties that haven’t been specifi ed in the shorthand property. The following
code gives an example:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 5-8</title>
 <style type=”text/css”>
 body {
 font-weight: bold;
 }

 p {
 font: 100% arial, helvetica, sans-serif;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p>Cheese is a remarkably versatile food, available in literally hundreds
of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter5/fi gure_5-8.html

In Figure 5-8 you can see that although the fi rst rule applied to the body sets all text on the page to
be bold, the rule targeting the paragraph does not specify a font-weight and therefore the default
font-weight style of normal has been applied.

FIGURE 5-8

Now that you understand the notation (I hope!), you can try the font property for yourself in the
following Try It Out.

c05.indd 88c05.indd 88 12/05/11 11:18 AM12/05/11 11:18 AM

The font Shorthand Property ❘ 89

TRY IT OUT Applying the font Property

Example 5-3

Follow these steps to try out the font property.

 1. In your text editor, type the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 5-3</title>
 <style type=”text/css”>
 body {
 font: 62.5% arial, helvetica, sans-serif;
 }

 h1 {
 font: small-caps 1.6em “Times New Roman”, Georgia, Serif;
 }

 .recipe .intro {
 font: italic 1em arial, helvetica, sans-serif;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously until
 it has melted. Add a teaspoon of wholegrain mustard and grind in a little
 pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

c05.indd 89c05.indd 89 12/05/11 11:18 AM12/05/11 11:18 AM

90 ❘ CHAPTER 5 APPLYING FONT FACES

</div>

</body>
</html>

 2. Save the markup as example_5-3.html. The results of these modifi cations are shown in Figure 5-9.

FIGURE 5-9

How It Works

In Example 5-3, you saw three examples of the font shorthand property. The fi rst example sets the font
for the whole document. Because the font property is inherited, the font will stay 16px and sans-serif
unless specifi ed otherwise for a child element.

body {
 font: 62.5% arial, helvetica, sans-serif;
}

You then set the font of all h1 elements to be small caps, 1.6em (which is equivalent to 16px thanks to
the rule on the body element), and with a font family of “Times New Roman”, Georgia, Serif.

h1 {
 font: small-caps 1.6em “Times New Roman”, Georgia, Serif;
}

Finally, you set the font style to italic, the font size to 1em, and the font family to arial, helvetica,
sans-serif for all elements with a class of intro that are also ancestors of an element with class of recipe.

.recipe .intro {
 font: italic 1em arial, helvetica, sans-serif;
}

You may think that the last rule is pointlessly complicated, and you would be right. All you are really
changing here is the font-syle property, all other values are duplicating the style on the body element.
This shows that short hand properties are not always the right choice, but in many cases can reduce the
amount of code that you have to write. Ultimately I would advise you to write CSS in the style that is
most comfortable for you — use short hand notation where appropriate if you want to, but don’t feel
that you have to.

c05.indd 90c05.indd 90 12/05/11 11:18 AM12/05/11 11:18 AM

The font Shorthand Property ❘ 91

EXERCISES

 1. Why aren’t the values of the font-weight property 100 through 900, bolder, and lighter used

in real-world web design?

 2. How could the following rules be better written?

p {
 font-family: Arial, sans-serif;
 font-weight: bold;
 font-size: 24px;
 color: crimson;
}
p.copy {
 font-style: italic;
 font-weight: bold;
 line-height: 2em;
}
p#footer {
 font-size: 12px;
 line-height: 2em;
 font-family: Helvetica, Arial, sans-serif;
}

 3. What’s wrong with the following rule?

p {
 font-size: 24;
}

 4. Would the declaration font-size: 75%; make the font size larger or smaller?

c05.indd 91c05.indd 91 12/05/11 11:18 AM12/05/11 11:18 AM

92 ❘ CHAPTER 5 APPLYING FONT FACES

 � WHAT YOU LEARNED IN THIS CHAPTER

Throughout this chapter, you learned about inheritance and the cascade, fundamental to CSS. To
recap, in this chapter you learned the following:

TOPIC KEY CONCEPTS

font-family Setting font faces with the font-family property

Font styles How to make text italic with font-style, bold with font-weight and

small-caps with font-variant

Font sizes The various ways of setting the size of text with font-size and the

problems each unit of measurement has

Font shorthand How to use the font shorthand and when it is appropriate to do so

c05.indd 92c05.indd 92 12/05/11 11:18 AM12/05/11 11:18 AM

Manipulating the Display of Text

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The line-height property and how it is used control the space

between lines of text

 ➤ The letter-spacing property and how it is used to add or subtract

space between the letters that make up a word

 ➤ The word-spacing property and how it is used to add or subtract

space between the words of a sentence

 ➤ The text-indent property and how it is used to indent the text of a

paragraph

 ➤ The text-align property and how it is used to align the text of a

document

 ➤ The text-decoration property and how it is used to underline,

overline, and strikethrough text

 ➤ The text-transform property and how it is used to capitalize text

or convert text to uppercase or lowercase letters

 ➤ The white-space property and how it is used to control the fl ow

and formatting of text

In this chapter, I look specifi cally at properties that manipulate the presentation of text. You
can manipulate text in a variety of ways, from the length of space between letters in words of
text, to the length of space between the words of a sentence, to the spacing between sentences
in a paragraph, to how much space is used to indent the text contained in a paragraph.

The text manipulation properties of CSS allow you to design the layout of a document in
much the same way as you use a word processing application.

6

c06.indd 93c06.indd 93 12/05/11 11:18 AM12/05/11 11:18 AM

D
o

94 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

LINE HEIGHT

The line-height property refers to the height of the line on which each line of text appears. The
line-height property and its values are outlined in the following table.

PROPERTY VALUE

line-height normal | <number> | <length> | <percentage> | inherit

initial value: normal

No matter which value type is used, line-height works in the same way: The value refers to the height
of a line of text, from which the vertical space that the charters in the text take up is deducted. The
remainder is then split in two, with half added to the top of the line of text and half to the bottom.

The best way to specify line-height is with the number value type as you see in the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-1</title>
 <style type=”text/css”>
 .intro {
 line-height: 3;
 }
 </style>
</head>
<body>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

</body>
</html>

code snippet /chapter6/fi gure_6-1.html

Figure 6-1 shows that each line of text is contained in a line-height of 3, which means each line is
3 times the height of the text.

FIGURE 6-1

c06.indd 94c06.indd 94 12/05/11 11:18 AM12/05/11 11:18 AM

Line Height ❘ 95

Length and percentage values work in the same way (for example, a line-height of 3em is
equivalent to a line-height of 3, as is a line-height of 30px on text that has a font-size of 10px).
However, the way the value is inherited is different because it is only calculated once. If you were
to set a line-height of 1.5em at a font-size of 10px on the body element, the inherited
line-height of all text in the document would be 15px, even if the font-size was different.
For this reason, it is a good idea to use only the number value option.

In the following example, you try the line-height property out for yourself.

TRY IT OUT Change the Spacing Between Lines of Text

Example 6-1

To see the line-height property in action, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 6-1</title>
 <style type=”text/css”>
 body {
 font: 13px arial,helvetica,clean,sans-serif;
 }

 .recipe .intro {
 font-style: italic;
 line-height: 3;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.

c06.indd 95c06.indd 95 12/05/11 11:18 AM12/05/11 11:18 AM

96 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in a
 little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS as example_6-1.html. The preceding example results in the output in
Figure 6-2.

FIGURE 6-2

How It Works

In this Try It Out, you typed an example of the line-height property so that you could see it work in a
browser for yourself. You applied two relevant style sheet rules. The second rule refers to elements with
the class name of recipe inside an element with the class name of intro. Text in these elements will
have a line-height three times the height of the font-size.

The fi rst rule is on the body element and looks like:

font: 13px/1.231 arial,helvetica,clean,sans-serif;

So the calculated line height of the targeted element is 3 x 13px, or 39px.

As mentioned in Chapter 5, line-height can follow the setting of the font size on the shorthand font
property.

c06.indd 96c06.indd 96 12/05/11 11:18 AM12/05/11 11:18 AM

Controlling the Spacing between Letters ❘ 97

CONTROLLING THE SPACING BETWEEN LETTERS

The letter-spacing property, as demonstrated briefl y in previous chapters, controls the amount of
space between letters. The following table shows its values.

PROPERTY VALUE

letter-spacing normal | <length> | inherit

Initial value: normal

letter-spacing is a simple property that accepts a length as its value. A <length> value is any
length value supported by CSS, as discussed in Chapter 2. normal is the default value and is
determined by the font being used. This is equal to a zero length value.

The following code shows an example of the letter-spacing property.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-3</title>
 <style type=”text/css”>
 .intro {
 letter-spacing: 0.2em;
 }
 </style>
</head>
<body>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

</body>
</html>

code snippet /chapter6/fi gure_6-3.html

This code shows how the letter-spacing property would be specifi ed.

Figure 6-3 shows the output of the code in the Safari browser.

FIGURE 6-3

c06.indd 97c06.indd 97 12/05/11 11:18 AM12/05/11 11:18 AM

98 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

The letter-spacing property may have either a positive or negative value. When given a negative
value, letters are rendered closer together.

In the next section, I present a property similar to letter-spacing: word-spacing.

CONTROLLING THE SPACING BETWEEN WORDS

The word-spacing property functions identically to the letter-spacing property. However,
instead of controlling the space between letters, the word-spacing property controls the space
between words. The following table shows its values.

PROPERTY VALUE

word-spacing normal | <length> | inherit

Initial value: normal

To demonstrate the effect of the word-spacing property, consider the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-4</title>
 <style type=”text/css”>
 .intro {
 word-spacing: 0.2em;
 }
 </style>
</head>
<body>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

</body>
</html>

code snippet /chapter6/fi gure_6-4.html

This results in the output shown in Figure 6-4; the spacing between words has been increased.

c06.indd 98c06.indd 98 12/05/11 11:18 AM12/05/11 11:18 AM

Controlling the Spacing between Words ❘ 99

Additionally, like the letter-spacing property, the word-spacing property can contain a negative
value. If given a negative value, the effect is less space between each word.

As you did with the letter-spacing property in Example 6-1, in the following Try It Out, you
experiment with the word-spacing property for yourself.

FIGURE 6-4

TRY IT OUT The Letter-Spacing and Word-Spacing Properties

Example 6-2

To see the letter-spacing and word-spacing properties in action, follow these steps.

 1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 6-2</title>
 <style type=”text/css”>
 body {
 font: 13px/1.231 arial,helvetica,clean,sans-serif;
 }

 h1 {
 font-family: “Times New Roman”, Georgia, Serif;
 font-variant: small-caps;
 letter-spacing: -0.1em;
 }

 .intro {
 font-weight: bold;
 word-spacing: 0.2em;
 }

 .recipe .intro {
 font-weight: normal;
 font-style: italic;
 word-spacing: normal;
 }

c06.indd 99c06.indd 99 12/05/11 11:18 AM12/05/11 11:18 AM

100 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in a
 little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS as example_6-2.html. The preceding markup and CSS result in the
output shown in Figure 6-5.

FIGURE 6-5

c06.indd 100c06.indd 100 12/05/11 11:18 AM12/05/11 11:18 AM

Indenting Text ❘ 101

How It Works

In Example 6-2, you experimented with the letter-spacing and word-spacing properties. Following
is a recap of the relevant rules.

The fi rst rule you applied to h1 elements applying the letter-spacing property with a value of -0.1em,
meaning that each letter in the heading will be slightly closer together.

Then, in a subsequent rule, you applied a word-spacing value of 0.2em to elements with an intro
class name. This time, the space between words is slightly increased.

Now that you have seen how to control the space between letters and words, the next section
describes how to indent text within a paragraph.

INDENTING TEXT

Indenting text in CSS is done using the text-indent property. The text-indent property applied
to a paragraph or any other element inserts the specifi ed length before the fi rst line of text, thus
indenting the text. The following table shows this property’s values.

PROPERTY VALUE

text-indent <length> | <percentage> | inherit

Initial value: 0

The text-indent property accepts either a normal length value or a percentage value. The
following code demonstrates the text-indent property with a normal length value in ems applied.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-6</title>
 <style type=”text/css”>
 .intro {
 text-indent: 2em;
 }
 </style>
</head>
<body>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

</body>
</html>

code snippet /chapter6/fi gure_6-6.html

c06.indd 101c06.indd 101 12/05/11 11:18 AM12/05/11 11:18 AM

102 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

Figure 6-6 shows the result of the preceding rule and markup.

FIGURE 6-6

Figure 6-6 demonstrates the most common use of the text-indent property, with a normal length
value, used to indent the text of the target element.

The text-indent property can also accept a percentage width. The percentage width assigned
by the text-indent property depends on the width of the element’s parent. For instance, if a <p>
element were to be assigned a fi xed width of 200 pixels and is inside a <div> with a width of 800px,
the indention of the fi rst line of the <p> element would be 80 pixels. It is rare to use percentage
values because, as you can see, they are harder to control.

Like the letter-spacing and word-spacing properties, the text-indent property can accept a
negative value. In that case, the text will be shifted to the outside of the text, to the left in left-to-
right languages such as English.

In the next section, I discuss the text-align property.

HORIZONTALLY ALIGNING TEXT

The purpose of the text-align property is simple: It aligns text! The following table outlines each
of the values for the text-align property.

PROPERTY VALUE

text-align left | right | center | justify

Initial value: left

The text-align property has a number of keyword values that align text left or right or center it
or justify it.

The following code demonstrates what the center and justify keyword values of the text-align
property do.

c06.indd 102c06.indd 102 12/05/11 11:18 AM12/05/11 11:18 AM

Horizontally Aligning Text ❘ 103

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-7</title>
 <style type=”text/css”>
 h2 {
 text-align: center;
 }

 .intro {
 text-align: justify;
 }
 </style>
</head>
<body>

<h2>Welsh Rarebit</h2>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

</body>
</html>

code snippet /chapter6/fi gure_6-7.html

The CSS and markup from this code results in the output displayed in Figure 6-7. You see that
center has aligned the heading text in the center.

FIGURE 6-7

You may not be familiar with the justify keyword. As you see in Figure 6-7, padding has been
added to the text so that the right hand edge lines up. This is commonly seen in newspapers, but on
websites it can make text hard to read and can produce uncertain results; it’s best to avoid it.

Vertically aligning content, including text, is a little more complicated. You will learn how to do this
in Chapter 9.

c06.indd 103c06.indd 103 12/05/11 11:18 AM12/05/11 11:18 AM

104 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

DECORATING TEXT WITH UNDERLINES, OVERLINES,

OR STRIKETHROUGH

The text-decoration property applies underlining, overlining, and strikethrough to text. The
following table outlines the text-decoration property and the values it allows.

PROPERTY VALUE

text-decoration none | [underline || overline || line-through || blink]

Initial value: none

The text-decoration property is quite straightforward, so let’s go through the three values you
might want to use.

The following code shows the CSS for underlining text as shown in Figure 6-8.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-8</title>
 <style type=”text/css”>
 .intro {
 text-decoration: underline;
 }
 </style>
</head>
<body>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

</body>
</html>

code snippet /chapter6/fi gure_6-8.html

FIGURE 6-8

c06.indd 104c06.indd 104 12/05/11 11:18 AM12/05/11 11:18 AM

Decorating Text with Underlines, Overlines, or Strikethrough ❘ 105

The next code shows the CSS for adding a line over the text as shown in Figure 6-9.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-9</title>
 <style type=”text/css”>
 .intro {
 text-decoration: overline;
 }
 </style>
</head>
<body>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

</body>
</html>

code snippet /chapter6/fi gure_6-9.html

FIGURE 6-9

The following code shows the CSS for adding a strikethrough to the text as shown in Figure 6-10.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-10</title>
 <style type=”text/css”>
 .intro {
 text-decoration: line-through;
 }
 </style>
</head>

c06.indd 105c06.indd 105 12/05/11 11:18 AM12/05/11 11:18 AM

106 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

<body>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

</body>
</html>

code snippet /chapter6/fi gure_6-10.html

FIGURE 6-10

The last value is blink, the usage of which has thankfully died out on most of the Web. Its purpose
is to make text fl ash on and off. As you can imagine, this can be very annoying, not to mention an
accessibility problem. Support for blink is poor in modern browsers and long may it stay that way!

It is possible to apply more than one text-decoration value; simply list them with a space between
each (for example, text-decoration: underline line-through;). I strongly advise careful use
of text-decoration; however, too much decoration makes text hard to read, and you should be
careful not to confuse your website’s users. It is common for underlined text to be a link, so making
non-link text underlined can be frustrating when users try to click it.

The following Try It Out gives an example of how you may use text-decoration to style links.

TRY IT OUT Decorate Links

Example 6-3

To experiment with the text-decoration property, follow these steps.

 1. Enter the following into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 6-3</title>
 <style type=”text/css”>

c06.indd 106c06.indd 106 12/05/11 11:18 AM12/05/11 11:18 AM

Decorating Text with Underlines, Overlines, or Strikethrough ❘ 107

 body {
 font: 13px/1.231 arial,helvetica,clean,sans-serif;
 }

 a:link {
 text-decoration: none;
 }

 a:focus,
 a:hover {
 text-decoration: underline;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 <p>More Welsh Rarebit recipes</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in a
 little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding code as example_6-3.html. The aforementioned CSS and markup result in
the output in Figure 6-11.

c06.indd 107c06.indd 107 12/05/11 11:18 AM12/05/11 11:18 AM

108 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

How It Works

In Example 6-3, you removed the underline from links in their default state, but on hover or focus
added it back. You will see styles like this on many websites.

FIGURE 6-11

In the next section, I discuss the text-transform property, which allows you to control the case of
text via CSS.

TRANSFORMING LETTER-CASE TO LOWERCASE

OR UPPERCASE OR CAPITALIZING THE INITIAL

CHARACTERS OF WORDS

The text-transform property exists purely to manipulate the case of text (for instance, to
capitalize or make all characters uppercase or lowercase). The following table shows the
text-transform property and its values.

PROPERTY VALUE

text-transform capitalize | uppercase | lowercase | none

Initial value: none

The text-transform property is also quite straightforward, so again we’ll go through each value
in turn.

The next code snippet shows the CSS for capitalizing text (that is the fi rst letter of each word is
capitalized, as shown in Figure 6-12).

c06.indd 108c06.indd 108 12/05/11 11:18 AM12/05/11 11:18 AM

Transforming Letter-Case to Lowercase or Uppercase or Capitalizing the Initial Characters of Words ❘ 109

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-12</title>
 <style type=”text/css”>
 h1 {
 text-transform: capitalize;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

</body>
</html>

code snippet /chapter6/fi gure_6-12.html

FIGURE 6-12

The following code shows the CSS for making text uppercase, as shown in Figure 6-13.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-13</title>
 <style type=”text/css”>
 h1 {
 text-transform: uppercase;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

</body>
</html>

code snippet /chapter6/fi gure_6-13.html

c06.indd 109c06.indd 109 12/05/11 11:18 AM12/05/11 11:18 AM

110 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

The next code shows the CSS for making text lowercase, as shown in Figure 6-14.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-14</title>
 <style type=”text/css”>
 h1 {
 text-transform: lowercase;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

</body>
</html>

code snippet /chapter6/fi gure_6-14.html

FIGURE 6-13

FIGURE 6-14

It is good practice to write all text in markup in the way you normally would if you were ignoring
whatever typographical style your design demands. This way if the design changes it is a simple
matter to change the CSS rather than having to change content, which could be spread throughout
your site.

c06.indd 110c06.indd 110 12/05/11 11:18 AM12/05/11 11:18 AM

Controlling How White Space Is Handled ❘ 111

In the next section, I present CSS’s white-space property, which controls whether or not spaces
and line breaks in the source code are recognized and whether or not text wraps automatically.

CONTROLLING HOW WHITE SPACE IS HANDLED

The white-space property allows you to control text formatting in the source code of the web
document. The following table outlines the keyword values of the white-space property as of CSS 2.

PROPERTY VALUE

white-space normal | pre | nowrap

Initial value: normal

The white-space property is mainly used with the pre keyword value, and it used to output
content exactly as it appears in your markup.

The following code snippet is an example of the white-space: pre; declaration applied to a
<code> element.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 6-15</title>
 <style type=”text/css”>
 code {
 white-space: pre;
 }
 </style>
</head>
<body>

<code>
<script type=”text/javascript”>
 document.documentElement.className = ‘js’;
</script>
</code>

</body>
</html>

code snippet /chapter6/fi gure_6-15.html

The result looks like Figure 6-15.

c06.indd 111c06.indd 111 12/05/11 11:18 AM12/05/11 11:18 AM

112 ❘ CHAPTER 6 MANIPULATING THE DISPLAY OF TEXT

With the white-space: pre; declaration, spaces and line breaks are preserved in the browser’s
rendered output.

By default, the browser will collapse the extra spaces between words and ignore the line breaks,
which is the behavior of the white-space: normal; declaration. The white-space: pre;
declaration preserves that extra space and keeps the line breaks where they appear in the source
code.

Under normal circumstances, if there is too much text to appear on a single line, the extra text
overfl ows onto the following line or lines. The white-space: nowrap; declaration prevents
that overfl ow from happening and forces the text to stay on one line, unless an HTML line break

 element is encountered. While it is not unheard of to see this declaration used, it is advisable
that you don’t use it, as it can cause layout problems when your text overlaps or pushes other
content out of the way!

EXERCISES

 1. If you want to reduce the spacing between letters, how will you do so? Provide an example

declaration.

 2. How do you remove the underlines from links but restore the underlines when the links are

focused on or hovered over?

 3. When indenting text in a paragraph, how is a percentage value calculated?

 4. What are the keywords that CSS off ers for changing the case of text within an element?

 5. If you want to preserve line breaks and spacing as formatted in the source code, what CSS

declaration will you use?

FIGURE 6-15

c06.indd 112c06.indd 112 12/05/11 11:18 AM12/05/11 11:18 AM

Controlling How White Space Is Handled ❘ 113

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, I discussed a variety of CSS text-manipulation properties. To recap, in this chapter
you learned the following:

TOPIC KEY CONCEPTS

line-height Controlling the spacing between lines of text

letter-spacing and word-spacing Controlling the spacing between letters and words

text-indent How to indent the fi rst line of a block of text

text-align How to horizontally align text

text-decoration How to apply underlines, overlines, and strikethrough styles

text-transform How to control the case of text, making it uppercase,

lowercase or sentence case

white-space How to control how white space is handled in text,

allowing it to be displayed according to the source format

c06.indd 113c06.indd 113 12/05/11 11:18 AM12/05/11 11:18 AM

c06.indd 114c06.indd 114 12/05/11 11:18 AM12/05/11 11:18 AM

Background Colors and Images

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to use the background-color property to set a background color

 ➤ How to use the background-image property to specify a

background image

 ➤ How to use the background-repeat property to control

background tiling

 ➤ How to use the background-position property to control how the

background is positioned

 ➤ How to use the background-attachment property to control

whether the background scrolls with the page or remains fi xed in

place with respect to the view port

 ➤ How to use the background shorthand property to combine all the

separate background properties into a single property

Backgrounds play a large role in CSS design and are often the bread and butter of the overall
aesthetic presentation of a web page. This chapter begins the discussion of background
properties by exploring the background-color property.

BACKGROUND COLORS

The background-color property is used to specify a solid background color. The following
table shows the possible values for the background-color property.

PROPERTY VALUE

background-color <color> | transparent

Initial value: transparent

7

c07.indd 115c07.indd 115 12/05/11 11:20 AM12/05/11 11:20 AM

D
o

116 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

The background-color property allows any of the color values supported by CSS that I covered
in chapter 2, such as a color keyword, an RGB value, or a hexadecimal, or short hexadecimal
value. It may also be given the transparent keyword, which indicates that no color should be
used. This is straightforward, so let’s Try It Out right away. The following exercise applies the
background-color property to a style sheet.

TRY IT OUT Applying a Background Color

Example 7-1

To see the background-color property in action, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 7-1</title>
 <style type=”text/css”>
 body {
 background-color: #000;
 color: #FFF;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

 2. Save the preceding CSS and markup as example_7-1.html. This example results in the rendered
output in Figure 7-1.

FIGURE 7-1

c07.indd 116c07.indd 116 12/05/11 11:20 AM12/05/11 11:20 AM

Background Images ❘ 117

In the next section I discuss the background-image property.

BACKGROUND IMAGES

As you probably guessed, the background-image property enables you to provide an image for the
background. The following table outlines the values available for the background-image property.

PROPERTY VALUE

background-image <uri> | none

Initial value: none

The background-image property allows you to reference a URL, which is indicated by the <uri>
notation in the preceding table, or a keyword of none. When you specify a background image, by
default the image tiles across the entire area available to it, that is the area encompassing the content
and padding of the element being styled. In the following Try It Out, you try the background-image
property for yourself. The images and source code for this and all the other examples in this book
can be found online at www.wrox.com.

How It Works

In Example 7-1, you applied the background-color property to the body element, with a short
hexadecimal value of #000, making the background black. A color of #FFF, which represents white, is
also specifi ed, to ensure that the text is readable against the background color.

NOTE It is good practice to specify a color when you set a background-color
as it helps to ensure that any text within the element you’re applying the styles
to will be readable. You should also always set a background and text color,
even if they are white and black, on the body element of documents, to ensure
that your text will display as you expect—don’t rely on browser defaults.

TRY IT OUT Applying a Background Image

Example 7-2

To see the background-image property in action, follow these steps.

c07.indd 117c07.indd 117 12/05/11 11:20 AM12/05/11 11:20 AM

http://www.wrox.com

118 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 7-2</title>
 <style type=”text/css”>
 body {
 background-image: url(bg-page.png);
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_7-2.html. This example results in the output in
Figure 7-2.

c07.indd 118c07.indd 118 12/05/11 11:20 AM12/05/11 11:20 AM

Background Images ❘ 119

How It Works

In Example 7-2, you applied the background-image property with a <uri> value, which outputs the
tiled background of a light grey square.

Interestingly, the background image is applied to the entire document, not just the area that the <body>
element takes up, as you can see in Figure 7-3.

FIGURE 7-2

FIGURE 7-3

c07.indd 119c07.indd 119 12/05/11 11:20 AM12/05/11 11:20 AM

120 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

This is because all background properties applied to the body element are considered to be applied to
the html element, unless the <html> element also has a background property of any type set. This can
allow some interesting effects, as you can see in Figure 7-4.

FIGURE 7-4

As you saw with the background-image property, the image is tiled by default. In the next section, I
describe how to control tiling with the background-repeat property.

CONTROLLING HOW BACKGROUND IMAGES REPEAT

The background-repeat property is used to control how an image is tiled, or if it is tiled at all. The
following table shows the values for the background-repeat property.

NOTE One good use for background images is for sprites. If your site
used several small icons (for example, a magnifying glass icon next to a search
fi eld or the appropriate fl ag next to each item in a list of countries), you can
combine them into one image with plenty of empty space between each one.
You can then use the background-image property in combination with the
background-repeat and background-position properties, which you will look
at next, to show the icon that you need in each circumstance.

Done right, this can have the benefi t of making your site load faster for your
users, as they will only have to download one image instead of many.

For a great article on using sprites see www.alistapart.com/articles/
sprites.

c07.indd 120c07.indd 120 12/05/11 11:20 AM12/05/11 11:20 AM

Controlling How Background Images Repeat ❘ 121

PROPERTY VALUE

background-repeat repeat | repeat-x | repeat-y | no-repeat

Initial value: repeat

As you saw in the last section, by default, a background is tiled vertically and horizontally. The
background-repeat property offers control over this. The repeat-x keyword limits tiling to
the horizontal or x-axis, and the repeat-y keyword limits tiling to the vertical or y-axis. As you
have already seen, the default keyword of repeat tiles the image in both the x-axis and the y-axis.
The no-repeat keyword turns off tiling altogether, and the background image will be displayed
only once, as demonstrated in the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 7-5</title>
 <style type=”text/css”>
 body {
 background-image: url(bg-page.png);
 background-repeat: no-repeat;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to

c07.indd 121c07.indd 121 12/05/11 11:20 AM12/05/11 11:20 AM

122 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter7/fi gure_7-5.html

This CSS and markup results in the output you see in Figure 7-5.

FIGURE 7-5

Now let’s see how the background-repeat property is used to tile a background image in one
direction only.

TRY IT OUT Controlling Background Repetition

Example 7-3

To see the background-repeat property in action, follow these steps.

 1. Enter the following markup:

c07.indd 122c07.indd 122 12/05/11 11:20 AM12/05/11 11:20 AM

Controlling How Background Images Repeat ❘ 123

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 7-3</title>
 <style type=”text/css”>
 body {
 background-image: url(bg-page.png);
 background-repeat: repeat-x;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_7-3.html.This example results in the rendered
output in Figure 7-6.

c07.indd 123c07.indd 123 12/05/11 11:20 AM12/05/11 11:20 AM

124 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

How It Works

In Example 7-3, you used the background-repeat property to tile the background image in only the
horizontal, or x-axis. The image no longer tiles in the vertical, or y-axis, so it appears as a single ‘row’
of images.

FIGURE 7-6

In the next section, I discuss the background-position property.

POSITIONING BACKGROUND IMAGES

The background-position property, as its name implies, allows you to control the placement of the
background. The following table shows the values for the background-position property.

PROPERTY VALUE

background-

position

[[<percentage> | <length> | left | center | right] [

<percentage> | <length> | top | center | bottom]?] | [[left

| center | right] || [top | center | bottom]] | inherit

Initial value: 0% 0%

At fi rst glance, this property looks a little complicated; in truth, it isn’t all that complex. The
notation boils down to this: The property allows one value that applies the same value to both the
horizontal and vertical background position, or two values that express the horizontal and vertical
position of the background separately. Square brackets are used to group the values. The following
is the fi rst subgrouping of values within the fi rst grouping:

[<percentage> | <length>]{1,2}

c07.indd 124c07.indd 124 12/05/11 11:20 AM12/05/11 11:20 AM

Positioning Background Images ❘ 125

The fi rst grouping indicates that the value may be a percentage or length value. Either one or two
values may be provided.

The second subgrouping is preceded by a vertical bar, which indicates another possibility for the value:

| [[top | center | bottom] || [left | center | right]]

The second grouping indicates that either one or two keyword values may be provided. If two values
are provided, it may be any keyword from the fi rst grouping combined with any of the keywords
from the second grouping. In addition, any of the keyword values can be mixed with either a
<length> or <percentage> value.

The following code demonstrates some possible values for the background-position property.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 7-7</title>
 <style type=”text/css”>
 body {
 background-image: url(bg-page.png);
 background-repeat: no-repeat;
 background-position: bottom right;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

c07.indd 125c07.indd 125 12/05/11 11:20 AM12/05/11 11:20 AM

126 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

</div>

</body>
</html>

code snippet /chapter7/fi gure_7-7.html

This CSS and markup results in the output you see in Figure 7-7.

FIGURE 7-7

In Figure 7-7, you see what the background-position property with two values looks like. In this
case, the background image (including the white space that is part of the image that allows for the
spacing between the tiles) is positioned to the bottom right of the document. This fi gure shows what
happens when both values are of the same ilk (that is, both length values both percentage values, or
both keyword values).

Mixing Background Position Values

What happens when you mix length with percentage or percentage with a keyword? This question is
answered by the example in the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 7-8</title>
 <style type=”text/css”>
 body {
 background-image: url(bg-page.png);
 background-repeat: no-repeat;
 background-position: right 100%;
 }
 </style>

c07.indd 126c07.indd 126 12/05/11 11:20 AM12/05/11 11:20 AM

Positioning Background Images ❘ 127

</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter7/fi gure_7-8.html

This CSS and markup results in the output you see in Figure 7-8.

FIGURE 7-8

c07.indd 127c07.indd 127 12/05/11 11:20 AM12/05/11 11:20 AM

128 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

Repeating a Background Image and Controlling Its Position

What happens when the background is tiled and a position is set? You see an example of positioning
a tiled background with a length measurement in the following example.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 7-9</title>
 <style type=”text/css”>
 body {
 background-image: url(bg-page.png);
 background-repeat: repeat-x;
 background-position: bottom right;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously

WARNING If at least one value is not a keyword, then the fi rst value represents
the horizontal position and the second represents the vertical position

That is to say, when you use two keywords it’s obvious which one applies to the
horizontal positioning and which one applies to the vertical positioning based
on the keyword name (left and right are horizontal, top and bottom are vertical)
so they can be specifi ed in any order and the browser will understand what that
means. However, this is not necessarily the case when using one or two length/
percentage values, so you have to specify them in order.

c07.indd 128c07.indd 128 12/05/11 11:20 AM12/05/11 11:20 AM

Positioning Background Images ❘ 129

 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter7/fi gure_7-9.html

This CSS and markup results in the output you see in Figure 7-9.

FIGURE 7-9

In Figure 7-9, you see how specifying a background position affects the tiling of a background
image. When both axes are tiled, the position that you specify determines where the image tiling
begins. Note that tiling happens in both directions: left to right and right to left, top to bottom and
bottom to top.

Controlling Position with the Center Keyword

 The center keyword has an interesting side effect. Background images are positioned at the center
point of the container from the center of point of the image, not the edge of the image as we have
seen previously. This means that our background image, with its white space to add a space between
tiles, will actually be positioned slightly to the right rather than slightly to the left as would be the
case if it had been positioned relative to the left hand edge. The following code illustrates this effect.

c07.indd 129c07.indd 129 12/05/11 11:20 AM12/05/11 11:20 AM

130 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 7-10</title>
 <style type=”text/css”>
 body {
 background-image: url(bg-page.png);
 background-repeat: no-repeat;
 background-position: center center;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter7/fi gure_7-10.html

This CSS and markup results in the output you see in Figure 7-10.

c07.indd 130c07.indd 130 12/05/11 11:20 AM12/05/11 11:20 AM

Fixing a Background Image in Place ❘ 131

In Figure 7-10 you used the center keyword instead of a length measurement. When the tiling
is along the x-axis, one center keyword centers the tiled images along the y-axis, and the other
center keyword causes the tiling of each image to begin with the center of the image, rather than
the left border of the image. This result is the same in every browser.

In the next section, I describe how to control the background-position when the page is scrolled
with the background-attachment property.

FIXING A BACKGROUND IMAGE IN PLACE

You can use the background-attachment property to control whether a background image scrolls
with the content of a web page (when scroll bars are activated because that content is larger than the
browser window). The following table outlines the possible values for the background-attachment
property.

PROPERTY VALUE

background-attachment scroll | fixed

Initial value: scroll

FIGURE 7-10

NOTE IE 6 supports the fixed keyword only if applied to the <body> element;
all other browsers support the fixed keyword as applied to any element.

The background-attachment property provides one very cool effect. By default, the background
image scrolls with the content of the web page; this is the behavior of the
background-attachment: scroll; declaration, as you can see in Figure 7-11.

c07.indd 131c07.indd 131 12/05/11 11:20 AM12/05/11 11:20 AM

132 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

If the fixed keyword is provided, the background image remains in place while the page scrolls.
The following code shows an example of this scenario.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 7-12</title>
 <style type=”text/css”>
 body {
 background-image: url(bg-page.png);
 background-attachment: fixed;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to

FIGURE 7-11

c07.indd 132c07.indd 132 12/05/11 11:20 AM12/05/11 11:20 AM

Background Shorthand ❘ 133

 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter7/fi gure_7-12.html

This CSS and markup results in the output you see in Figure 7-12.

FIGURE 7-12

In the next section, I describe how to simplify the plethora of separate background properties into
just one property using the background shorthand property.

BACKGROUND SHORTHAND

Like the shorthand properties I introduced in previous chapters, the background property combines
each of the individual background properties into a single property. The following table outlines the
values allowed by the background property.

PROPERTY VALUE

background <’background-color’> || <’background-image’> || <’background-

repeat’> || <’background-attachment’> || <’background-position’>

Initial value: n/a

NOTE When the fixed keyword is provided, the background image’s position is
off set relative to the viewport, no matter what element the background image
is applied to.

c07.indd 133c07.indd 133 12/05/11 11:20 AM12/05/11 11:20 AM

134 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

With the background property, you can specify anywhere from one to fi ve separate background
properties. An example of how the background property combines different background properties
appears in the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 7-13</title>
 <style type=”text/css”>
 body {
 background: #CCC url(bg-page.png) repeat-x fixed top right;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter7/fi gure_7-13.html

This CSS and markup results in the output you see in Figure 7-13.

c07.indd 134c07.indd 134 12/05/11 11:20 AM12/05/11 11:20 AM

Background Shorthand ❘ 135

In Figure 7-13, you see how to use the background shorthand property to combine the fi ve
separate background properties, background-color, background-image, background-repeat,
background-attachment, and background-position into just one single background property.
Using the background property, you can include all fi ve properties, or any combination of the other
properties, in any order.

EXERCISES

 1. What are two properties that you can use to specify a background color in a web page?

 2. What declaration causes a background image to be tiled only along the x-axis?

 3. What keyword value can you use to turn off tiling of a background image?

 4. If you wanted to off set an image ten pixels from the left and ten pixels from the top, what

declaration would you use?

 5. If you wanted a background image to scroll with the document, what declaration would you use?

 6. When a background image is said to be “fi xed,” what HTML element is the background image

position relative to?

 7. Write a declaration that contains all fi ve background properties in one.

FIGURE 7-13

c07.indd 135c07.indd 135 12/05/11 11:20 AM12/05/11 11:20 AM

136 ❘ CHAPTER 7 BACKGROUND COLORS AND IMAGES

 � WHAT YOU LEARNED IN THIS CHAPTER

The CSS background properties provide a fi ne-grained control over the presentation of backgrounds
in a web document, which allows interesting aesthetic possibilities. To recap, in this chapter you
learned the following:

TOPIC KEY CONCEPTS

background-color Specifying a solid background color using the

background-color property

gradient Creating gradient color eff ects with the gradient property

background-image How to use an image as a background with the

background-image property

background-repeat Controlling how background images repeat with the

background-repeat property

background-position How to off set the position of a background image using the

background-position property

background-attachment How to fi x a background image to the browser window instead

of scrolling with the page using the background-attachment

property

background How the background shorthand property can be used to write

more concise CSS by combining background properties into

one declaration

c07.indd 136c07.indd 136 12/05/11 11:20 AM12/05/11 11:20 AM

The Box Model: Controlling
Margins, Borders, Padding,
Width, and Height

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The box model

 ➤ Setti ng margins

 ➤ Setting padding

 ➤ Setting borders

 ➤ Setting width and height

 ➤ Specifying minimum and maximum width and height

 ➤ Determining how overfl owing content behaves

In this chapter, I discuss one of the most important concepts in CSS-based web design, the
box model. The box model is a set of rules that dictate how width, height, padding, borders,
and margin are measured on HTML elements. We’ll start with an overview of what the
box model is.

OVERVIEW

The CSS box model is a collection of properties that defi ne the amount of space around
an element, its dimensions, its margins, its borders, and padding between the content of the
element and the borders. In Figure 8-1, you see a diagram of the box model.

8

c08.indd 137c08.indd 137 12/05/11 11:54 AM12/05/11 11:54 AM

D
o

138 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

margin Property with Four Values

The following code shows a comparison between individual margin properties.

In Figure 8-1 you see what the different
components that come together to make the
box model look like. Around the outside
of an element is space called the margin,
inside of the margin is the border, inside of
the border is the padding, and inside of the
padding is the content of the element.

In the coming sections, I pick apart the
various properties that comprise the box
model in CSS, beginning with margin.

MARGINS

The margin property applies space
outside the box, between the box and the browser window, or between the box and the other
elements in the document. The following table shows the various margin properties.

PROPERTY VALUE

margin [<length> | <percentage> | auto] {1,4}

margin-top

margin-right

margin-bottom

margin-left

<length> | <percentage> | auto

The margin property is a shorthand property for the four individual margin properties,
margin-top, margin-right, margin-bottom, and margin-left.

margin–top

border–top
padding–top

margin–bottom

border–bottom
padding–bottom

m
a
r
g
i
n
–
l
e
f
t

b
o
r
d
e
r
–
l
e
f
t

p
a
d
d
i
n
g
–
l
e
f
t

m
a
r
g
i
n
–
r
i
g
h
t

b
o
r
d
e
r
–
r
i
g
h
t

p
a
d
d
i
n
g
–
r
i
g
h
t

h
e
i
g
h
t

width

FIGURE 8-1

NOTE Box model shorthand properties are always specifi ed in a clockwise
order, from the top: top, right, bottom, and left.

c08.indd 138c08.indd 138 12/05/11 11:54 AM12/05/11 11:54 AM

Margins ❘ 139

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-2</title>
 <style type=”text/css”>
 .intro {
 margin-top: 70px;
 margin-left: 100px;
 margin-bottom: 50px;
 margin-right: 100px;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter8/fi gure_8-2.html

c08.indd 139c08.indd 139 12/05/11 11:54 AM12/05/11 11:54 AM

140 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

This CSS and markup results in the output you see in Figure 8-2.

FIGURE 8-2

As you can see, there is a 70px margin above the intro paragraph, 100px left and right margins, and
there is a 50px margin between the intro paragraph and the next heading.

The four declarations in the .intro rule could be combined into one as follows:

margin: 70px 100px 50px 100px;

margin Property with Three Values

In Figure 8-2, you saw an example of specifying margin using four values, but because the left
and right margin values are the same, you can also specify only three values for the margin shorthand
property. The same declaration can be written as:

margin: 70px 100px 50px;

WARNING Box model shorthand properties with three values always follow the
convention top, right and left, bottom.

The fi rst value is the top value as usual, the second is the value for both left and right margins,
and the third is the value for the bottom margin. It is common to want equal left and right
margins, and this makes it easy to do, especially if you need to change the value later as you
won’t forget the other.

c08.indd 140c08.indd 140 12/05/11 11:54 AM12/05/11 11:54 AM

Margins ❘ 141

margin Property with Two Values

The margin shorthand property also supports two values. When two values are specifi ed, the fi rst
value refers to the top and bottom sides, and the second value refers to the right and left sides. This
is demonstrated in Figure 8-3.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-3</title>
 <style type=”text/css”>
 .intro {
 margin: 50px 100px;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to

WARNING Because it can be easy to confuse the order in which values in the
three value form should come, you won’t see it used as much as the four or two
value versions.

Although, as mentioned, there is a benefi t to using the three value form,
I recommend against its use for this reason.

c08.indd 141c08.indd 141 12/05/11 11:54 AM12/05/11 11:54 AM

142 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter8/fi gure_8-3.html

This CSS and markup results in the output you see in Figure 8-3.

FIGURE 8-3

margin Property with One Value

You can specify just one value for the margin property, which simultaneously sets all four sides of
an element’s margin to the same value.

margin: 50px;

Margin Collapsing

In CSS, margin collapsing occurs when the top or bottom margin of one element comes into contact
with the top or bottom margin of another element. Only vertical margins collapse, horizontal

NOTE Box model shorthand properties with two values always follow the
convention top and bottom, right and left — for example, margin: 15px 10px;.

c08.indd 142c08.indd 142 12/05/11 11:54 AM12/05/11 11:54 AM

Margins ❘ 143

margins do not. The concept is simple: When two margins are collapsed, the distance between
the two boxes will use whichever margin value is greater. Margin collapsing is demonstrated in the
following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-4</title>
 <style type=”text/css”>
 .h1 {
 margin-bottom: 100px;
 }

 .intro {
 margin-top: 100px;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-4.html

This CSS and markup results in the output you see in Figure 8-4.

FIGURE 8-4

c08.indd 143c08.indd 143 12/05/11 11:54 AM12/05/11 11:54 AM

144 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

In Figure 8-4, you see the most common form of margin collapsing; the top margin of one element
comes into contact with the bottom margin of another element. When this happens, the element with
the bigger margin wins.

Margin collapsing also happens when an element is contained inside of another element. It doesn’t
matter where the two margins come into contact, even an element inside of another element
will margin collapse with its parent if the two margins come into contact. An example of this
appears in the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-5</title>
 <style type=”text/css”>
 h2 {
 margin-top: 50px;
 }

 .recipe {
 margin-top: 50px;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.

c08.indd 144c08.indd 144 12/05/11 11:54 AM12/05/11 11:54 AM

Margins ❘ 145

 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter8/fi gure_8-5.html

This CSS and markup results in the output you see in Figure 8-5.

FIGURE 8-5

In Figure 8-5, you see how margin collapsing works between a parent and child element. If a
child’s margin comes into direct contact with the margin of a parent, the margins collapse. Like
the example in Figure 8-4 that contained adjacent sibling margins collapsing, the larger margin
is the winning margin. The winning margin is always applied to the parent element, and the child
element’s margin always collapses. In this scenario, margin collapsing can be stopped if you prevent
the two margins from coming into contact with one another. You can prevent the two margins from
coming into contact with one another by applying padding or a border to the parent element.
An example of this appears in the following snippet.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>

c08.indd 145c08.indd 145 12/05/11 11:54 AM12/05/11 11:54 AM

146 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

 <title>Figure 8-6</title>
 <style type=”text/css”>
 h2 {
 margin-top: 50px;
 }

 .recipe {
 margin-top: 50px;
 border-top: 1px solid #000;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter8/fi gure_8-6.html

This CSS and markup results in the output you see in Figure 8-6.

c08.indd 146c08.indd 146 12/05/11 11:54 AM12/05/11 11:54 AM

Margins ❘ 147

In Figure 8-6, you see how to stop margin collapsing from happening. You must give the parent
element a border or padding to prevent the top and bottom margin of the child element from coming
into contact with the top and bottom margin of the parent element.

Horizontally Aligning Elements with the margin Property

The margin property has one other useful function: It can be used to center or align elements. An
example of this concept appears in the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-7</title>
 <style type=”text/css”>
 h1 {
 width: 200px;
 margin-right: auto;
 }

 .intro {
 width: 200px;
 margin-right: auto;
 margin-left: auto;
 }

 .recipe {
 width: 200px;
 margin-left: auto;
 }
 </style>

FIGURE 8-6

c08.indd 147c08.indd 147 12/05/11 11:54 AM12/05/11 11:54 AM

148 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter8/fi gure_8-7.html

This CSS and markup results in the output you see in Figure 8-7.

FIGURE 8-7

c08.indd 148c08.indd 148 12/05/11 11:54 AM12/05/11 11:54 AM

Margins ❘ 149

In Figure 8-7, you see a technique used to align elements in a document via the combination of the
auto keyword with the left or right margin of an element. The margin that is specifi ed must be
either the left or the right margin, because the auto keyword is ignored when applied to the top
or bottom margin.

ALIGNING ELEMENTS IN IE QUIRKS RENDERING MODE

Every modern browser today supports the DOCTYPE switch, a method of selecting
the rendering mode of your browser based on the Document Type Declaration that
appears at the top of an HTML document. If you structure your documents like
the examples you see here in this book, you’ll never encounter quirks rendering
mode, but if you are working with legacy websites that must maintain backward
compatibility with the Web of yesterday, chances are you’ll encounter a quirks
mode site sooner or later.

If you encounter quirks mode, you’ll also discover that some CSS features don’t
work in quirks mode, but do work in standards mode. Aligning an element using
the auto keyword in conjunction with the margin property is one such quirks
mode incompatibility. In IE, this feature is only implemented in standards mode.

There is a workaround due to a bug in IE, using the text-align property on an
element with values of left, center and right as appropriate.

The following Try It Out shows you how to center a page with the margin property.

TRY IT OUT Center a Page with the margin Property

Example 8-1

To see the margin property in action, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 8-1</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }
 </style>

c08.indd 149c08.indd 149 12/05/11 11:54 AM12/05/11 11:54 AM

150 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_8-1.html. This example results in the output
in Figure 8-8.

FIGURE 8-8

c08.indd 150c08.indd 150 12/05/11 11:54 AM12/05/11 11:54 AM

Borders ❘ 151

How It Works

In Example 8-1, you set the margin of the body element to have values of 1em for top and bottom and
auto for left and right. Combined with a width this has the consequence of centering the body with the
document.

In the next section I discuss the box model properties that control borders.

BORDERS

Borders appear between the margin and padding in the box model depicted in Figure 8-1. Borders
put lines around boxes. Applying borders usually makes the other box model properties easier
to see. The following sections examine each border property.

border-width

The border-width properties all control the width of a box border in some fashion. The following
table outlines each border-width property.

PROPERTY VALUE

border-top-width

border-right-width

border-bottom-width

border-left-width

<border-width>

Initial value: medium

border-width <border-width> {1,4}

Initial value: medium

A <border-width> value refers to one of the following: thin | medium | thick | <length>

The individual border-top-width, border-right-width, border-bottom-width, and
border-left-width properties exist for setting the width of the individual sides of a box. Each of
these properties can be combined into the single border-width shorthand property.

Borders aren’t allowed to have percentage values; however, they are capable of accepting any length
measurement supported by CSS (em, pixel, centimeter, and so on). In addition to length units, the
border width may also be specifi ed using one of three keywords: thin, medium, and thick. These
are rarely (if ever) used in professional code, however.

Most commonly the border-width properties will be given a length value in pixels. An example of
this concept appears in the following snippet.

c08.indd 151c08.indd 151 12/05/11 11:54 AM12/05/11 11:54 AM

152 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-9</title>
 <style type=”text/css”>
 .intro {
 border-top-width: 1px;
 border-right-width: 3px;
 border-bottom-width: 5px;
 border-left-width: 7px;
 border-style: solid;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-9.html

This CSS and markup results in the output you see in Figure 8-9.

FIGURE 8-9

This could also be expressed as:

border-width: 1px 3px 5px 7px;

c08.indd 152c08.indd 152 12/05/11 11:54 AM12/05/11 11:54 AM

Borders ❘ 153

Three-value, two-value, and one-value shorthand syntax is also supported.

In the next section I discuss the border-style property, and how it is used to change the style
of border.

border-style

You use the border-style property to specify the style of border to be used. The border-style
property is very similar to the border-width property presented in the previous section in that
it uses an identical syntax to specify the style of border to be used for each side of the box.
The following table outlines the border-style family of properties.

PROPERTY VALUE

border-style

A <border-style> value refers to one of the

following:

none | hidden | dotted | dashed | solid |

double | groove | ridge | inset | outset

<border-style> {1,4}

Initial value: none

border-top-style

border-right-style

border-bottom-style

border-left-style

<border-style>

Initial value: none

Like the border-width property, the border-style property is also a shorthand property, which
combines the individual border-top-style, border-right-style, border-bottom-style, and
border-left-style properties into the single border-style property. The following code shows
the rendered representation of some of the border-style keywords.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-10</title>
 <style type=”text/css”>
 body {
 border-width: 3px;
 border-top-style: ridge;
 border-right-style: dashed;
 border-bottom-style: dotted;
 border-left-style: double;
 }
 </style>
</head>

c08.indd 153c08.indd 153 12/05/11 11:54 AM12/05/11 11:54 AM

154 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-10.html

This CSS and markup results in the output you see in Figure 8-10.

FIGURE 8-10

Like the border-width property, the border-style property can accept up to four values to specify
the style for each side of the box:

border-style: ridge dashed dotted double;

As is the case for the margin and border-width properties, the shorthand is specifi ed as top,
right, bottom, and left, and border-style also supports the three-value, two-value, and one-value
shorthand syntax as the border-width and margin properties.

border-color

The border-color property is yet another shorthand property. Like the border-style and
border-width properties, you can use border-color to control how a border is styled.
The border-color property, as you may have guessed, specifi es the border color for each side
of the box. The following table outlines the border-color family of properties.

c08.indd 154c08.indd 154 12/05/11 11:54 AM12/05/11 11:54 AM

Borders ❘ 155

PROPERTY VALUE

border-color [<color> | transparent] {1,4}

Initial value: the value of the ‘color’ property

border-top-color

border-right-color

border-bottom-color

border-left-color

<color> | transparent

Initial value: the value of the ‘color’ property

NOTE IE 6 and IE 7 do not support the transparent keyword as applied to
border color; in IE, the transparent keyword is rendered black.

Like border-style, margin, and border-width, the border-color property can accept up to
four values. This property accepts a <color> value, meaning that it can accept a color keyword, a
hexadecimal value, a short hexadecimal value, or an RGB value; any color value accepted by the
color property is also acceptable to the border-color properties.

WARNING When the border-color property is not specifi ed, the border-color
is the same color as specifi ed for the color property, i.e., the text color.

The following code shows an example of the border-color keywords.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-11</title>
 <style type=”text/css”>
 body {
 border-width: 3px;
 border-style: dashed;
 border-top-color: red;
 border-right-color: blue;
 border-bottom-color: green;
 border-left-color: purple;
 }
 </style>
</head>

c08.indd 155c08.indd 155 12/05/11 11:54 AM12/05/11 11:54 AM

156 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-11.html

This CSS and markup results in the output you see in Figure 8-11.

FIGURE 8-11

Now that you’ve seen an overview of what is possible with borders, the upcoming sections discuss
the border shorthand properties.

Border Shorthand Properties

The border-top, border-right, border-bottom, border-left, and border properties combine the
border-width, border-style, and border-color properties into single properties for each side of
the box, or all sides of the box. The following table outlines the possible values for these fi ve properties.

PROPERTY VALUE

border-top

border-right

border-bottom

border-left

<border-width> || <border-style> || <color>border-right

border <border-width> || <border-style> || <color>

c08.indd 156c08.indd 156 12/05/11 11:54 AM12/05/11 11:54 AM

Borders ❘ 157

The notation for the border-top, border-right, border-bottom, border-left, and border
properties indicates that one to three values are possible; each value refers to a border-width value,
a border-style value, and a border-color value. The following code demonstrates the border
shorthand property.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-12</title>
 <style type=”text/css”>
 body {
 border: 3px dashed red;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-12.html

This CSS and markup results in the output you see in Figure 8-12.

FIGURE 8-12

c08.indd 157c08.indd 157 12/05/11 11:54 AM12/05/11 11:54 AM

158 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

In Figure 8-12, you see the use of the border shorthand property, which specifi es the border for all
four sides of the box at once.

Unlike the margin shorthand property, the border property may only be used to specify all four
sides of the box at once. If you want a different style, or width, or color for the different sides, you’ll
need to use the individual shorthand properties.

In the following Try It Out, you recap what is possible with CSS border properties.

TRY IT OUT Adding a Border around Content

Example 8-2

To see the border property in action, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 8-2</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 border: 1px solid #666;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in

c08.indd 158c08.indd 158 12/05/11 11:54 AM12/05/11 11:54 AM

Padding ❘ 159

 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_8-2.html. This example results in the output
in Figure 8-13.

FIGURE 8-13

How It Works

In Example 8-2, you built on example 8-1 by adding a border property on the body element.

In the next section, you examine box padding.

PADDING

Padding is the space between the content of an element and its borders, as has been mentioned
briefl y in previous examples. Refer to the diagram in Figure 8-1 to see where padding appears in the
box model. The following table shows the various padding properties.

c08.indd 159c08.indd 159 12/05/11 11:55 AM12/05/11 11:55 AM

160 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

PROPERTY VALUE

padding [<length> | <percentage>] {1,4}

padding-top

padding-right

padding-bottom

padding-left

<length> | <percentage>

Like margin, border-width, border-style, and border-color, the padding property is a
shorthand property, meaning that it is a simplifi ed representation of the other padding properties,
padding-top, padding-right, padding-bottom, and padding-left. In the preceding table, the
square brackets are used to group the values. In this context, the padding property can accept either
a length or a percentage value, and can have one to four space-separated values. We’ve seen this
same effect with margins and borders, so let’s Try It Out.

TRY IT OUT Adding Padding to a Layout

Example 8-3

To see the padding property in action, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 8-3</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 border: 1px solid #666;
 padding: 10px;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often

c08.indd 160c08.indd 160 12/05/11 11:55 AM12/05/11 11:55 AM

Padding ❘ 161

 cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_8-3.html. This example results in the output
in Figure 8-14.

FIGURE 8-14

How It Works

In Example 8-3, you added a padding property on the body element, adding space between the content
and the border in your new layout.

c08.indd 161c08.indd 161 12/05/11 11:55 AM12/05/11 11:55 AM

162 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

In Figure 8-14, you see that the padding property is similar to the margin property. The main
differences with the padding property are as follows:

 ➤ The padding area is the area between the inside edge of the border and the outer edge of the
content.

 ➤ The auto keyword has no effect with the padding property.

 ➤ The padding property cannot accept a negative value (the margin property can).

 ➤ There is no collapsing padding; only margins can collapse.

In the next section, I examine the different length properties supported by CSS.

SETTING DIMENSIONS

CSS 1 introduced the width and height properties as part of the CSS box model. CSS 2 expands on
those properties, providing minimum and maximum dimensions when variable lengths are involved,
as is the case with percentage width and height values.

The following sections examine each of CSS’s dimension properties individually.

width

The width property is a pretty simple property; it sets the width of an element. According to the
CSS box model diagram presented in Figure 8-1, width is the space measured from inside padding
edge to inside padding edge. The following table outlines the width property and its possible values.

PROPERTY VALUE

width <length> | <percentage> | auto

initial value: auto

The width property accepts a length unit, which is indicated in the preceding table with the
<length> notation. You’ve already seen the width property in use in your examples so far. In
the following code, you see a simple example of the width property using a length unit.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-15</title>
 <style type=”text/css”>
 body {
 width: 600px;
 }
 </style>

c08.indd 162c08.indd 162 12/05/11 11:55 AM12/05/11 11:55 AM

Setting Dimensions ❘ 163

</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-15.html

This CSS and markup results in the output you see in Figure 8-15.

FIGURE 8-15

When you apply a width to an element, you must also take into account the borders and padding
as part of the overall horizontal area that the element will occupy, as well as the space between
elements determined by their margins.

In the next section, I talk about the height property.

height

Like the width property, the height property sets the amount of space between the top-inside
padding edge and the bottom-inside padding edge. The following table outlines the height property
and its possible values.

PROPERTY VALUE

height <length> | <percentage> | auto

initial value: auto

c08.indd 163c08.indd 163 12/05/11 11:55 AM12/05/11 11:55 AM

164 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

The height property works in the same way as the width property, but is less commonly used as
most web pages are designed to scroll vertically, and setting a fi xed height causes some strange
effects, as you will see in the following snippet.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-16</title>
 <style type=”text/css”>
 body {
 width: 600px;
 height: 75px;
 border: 1px solid #666;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-16.html

This CSS and markup results in the output you see in Figure 8-16.

FIGURE 8-16

c08.indd 164c08.indd 164 12/05/11 11:55 AM12/05/11 11:55 AM

Setting Dimensions ❘ 165

As you can see, specifying a fi xed height causes content larger than that height to overfl ow outside
of the container, in this case the body element. You will most commonly see this when a height has
been specifi ed, but the same applies to width if a container contains an element, such as an image,
that is wider than it; part of the image would appear outside of the container.

The exception to this rule is IE 6, which will expand a container to fi t the size of its content.

I’ll cover overfl owing content and the quirks of IE 6 in more detail later in this chapter.

The next section continues the discussion of dimensions with auto values for width and height.

auto Values for width and height

By default, width and height properties have an auto value. So, when you do not specify a width
or height, the value is the auto keyword. The meaning of the auto keyword changes depending on
the type of element that it is applied to. When used on a <div> element, the element spans all the
horizontal space available to it and expands vertically to accommodate any content inside of it,
including text, images, or other boxes. Elements with this behavior are called block elements. Some
examples of block elements are <div>, <p>, <h1> through <h6>, <form> and elements.

The <table> element is an example of an element where the auto value has a different meaning than
as, for example, that applied to a block element. Unlike block-level elements, <table> elements
don’t take up all the horizontal space available to them. Instead, they only take up as much room as
needed based on the content they contain. In other words, they take the vertical expanding behavior
of block-level elements and apply that to their width too.

Percentage Measurements

When a percentage measurement is used, the size that the percentage is based on is the parent
element of the element the percentage width is applied to.

For example, an element with a width value of 50% that has a parent with a width value of 600px
will have a computed width of 300px.

In the next section, I describe what happens to the box model when IE is in quirks mode.

Quirks Mode width and height in Internet Explorer

As I mentioned earlier in this chapter, IE is a very different browser in quirks rendering mode.

When discussing width, I said that the horizontal space taken up by an element was equal to
width + padding + border + margin. IE in quirks mode behaves a little differently by including
padding and border sizes in the width value, so that adding padding and borders actually
makes the content area smaller, and the space taken up by the element is equal to width + margin.
While there are ways to normalize this across browsers, it requires that you make all browsers
behave like IE in quirks mode rather than fi xing this problem and so is beyond the scope of this
book. I provide a link to documentation on this problem in Appendix B.

c08.indd 165c08.indd 165 12/05/11 11:55 AM12/05/11 11:55 AM

166 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

Minimum and Maximum Dimensions

The min-width, max-width, min-height, and max-height properties defi ne minimum and
maximum boundaries when it is necessary to constrain a width or height from expanding or
contracting past a certain point. In a variable width design, where you design content to adapt to
multiple screen resolutions, it is sometimes helpful to defi ne where you want the document to stop
stretching or stop contracting. For instance, if you have designed primarily with an 800 � 600 or
1024 � 768 screen resolution in mind, a user viewing your website at 1600 � 1200 pixels may see
the content stretched pretty thin if an auto keyword or percentage values are used to defi ne the
width. This is where the CSS properties min-width, max-width, min-height, and max-height
come into play.

min-width and min-height

The min-width property defi nes a lower-size constraint on an element. The available values for the
min-width property are outlined in the following table.

PROPERTY VALUE

min-width

min-height

<length> | <percentage>

initial value: 0

NOTE IE 6 and less do not support the min-width or min-height properties.

The min-width and min-height properties defi ne when an element should stop shrinking to fi t the
user’s window or its content. Consider the example in the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-17</title>
 <style type=”text/css”>
 body {
 min-width: 1000px;
 min-height: 250px;
 border: 1px solid #666;
 }
 </style>
</head>

c08.indd 166c08.indd 166 12/05/11 11:55 AM12/05/11 11:55 AM

Setting Dimensions ❘ 167

<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-17.html

This CSS and markup results in the output you see in Figure 8-17.

FIGURE 8-17

Figure 8-17 demonstrates that when the browser window or containing element becomes narrower
than 1000 pixels, the <body> stops shrinking and a scroll bar appears across the bottom of the
browser window, and if the content is less than 500px in height, the <body> will expand to
the min-height value.

min-width and min-height in IE 6

IE 6 does not support the min-width or min-height properties, but support for these properties
was introduced in IE 7.0.

Instead width and height behave just like the min-width and min-height properties in other
browsers. Elements with a width or height value applied will always expand to the size of their
content, even if the content is bigger than the width or height value. Using conditional comments
as explained in Chapter 2 (and see Appendix B for links to more techniques to target IE 6) you can
exploit this by providing a min-width or min-height to more modern browsers and a width or
height property to IE 6.

c08.indd 167c08.indd 167 12/05/11 11:55 AM12/05/11 11:55 AM

168 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

max-width and max-height

In contrast to the min-width property, the max-width and max-height properties are used to set an
upper constraint for width and height for elements.

PROPERTY VALUE

max-width

max-height

<length> | <percentage> | none

initial value: none

NOTE As is the case for min-width and min-height, IE 6.0 does not support
the max-width or max-height properties.

The max-width and max-height properties allow you to defi ne a maximum length if the area
available to the element becomes larger. Consider the example in the following snippet.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-18</title>
 <style type=”text/css”>
 body {
 width: 600px;
 max-height: 100px;
 border: 1px solid #666;
 }

 .intro {
 max-width: 200px;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter8/fi gure_8-18.html

c08.indd 168c08.indd 168 12/05/11 11:55 AM12/05/11 11:55 AM

Overfl owing Content ❘ 169

This CSS and markup results in the output you see in Figure 8-18.

FIGURE 8-18

Figure 8-18 demonstrates that when the browser window or containing element becomes taller
than 100 pixels, the <body> element will remain at 100 pixels in height and remaining content
will overfl ow, and if the content of an element with the class of intro is wider than 200px it will
wrap or overfl ow its container.

In the next section, I discuss the overflow property.

OVERFLOWING CONTENT

The CSS overflow property exists to manage content that is susceptible to dimensional constraints,
where the content could possibly overfl ow the boundaries of those dimensional constraints. The
following table outlines the overflow property and its possible values.

PROPERTY VALUE

overflow visible | hidden | scroll | auto

initial value: visible

The two most common uses of the overflow property are to hide content when more content than
space is available, or to apply scroll bars so that the extra content can be accessed. By default, the
value of the overflow property is the visible keyword, the effects of which you have seen in

c08.indd 169c08.indd 169 12/05/11 11:55 AM12/05/11 11:55 AM

170 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

previous examples. These fi gures show that when the width and height specifi ed are smaller than the
content allows, the content overfl ows the edges of the box containing it. It is possible to control that
overfl ow by causing scroll bars to appear, or the overfl owing content to be invisible.

The following code demonstrates two of the possible values for the overflow property.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 8-19</title>
 <style type=”text/css”>
 body {
 width: 600px;
 }

 h1 {
 width: 50px;
 overflow: hidden;
 }

 .recipe {
 height: 200px;
 overflow: auto;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.

c08.indd 170c08.indd 170 12/05/11 11:55 AM12/05/11 11:55 AM

Overfl owing Content ❘ 171

 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter8/fi gure_8-19.html

This CSS and markup results in the output you see in Figure 8-19.

FIGURE 8-19

In Figure 8-19, you can see that even though the h1 text wraps when it is wider than 50 pixels,
words that are longer than this width are cropped; the content is hidden. Also the element with
the class of recipe scrolls when it’s height is more than 200 pixels. The difference between the
auto and the scroll keywords is that scroll will always display scroll bars, even if the content is
smaller than the specifi ed width or height. auto will only show scroll bars when they are necessary.

Overfl owing Just the X or Y axis

Like the overflow property, overflow-x and overflow-y control overfl ow content, but they also
allow users to control the overfl owing content with a scroll bar: only a vertical scroll bar for the
overflow-y property, and only a horizontal scroll bar for the overflow-x property. Each property
accepts the same values as the overflow property, as in the following table.

c08.indd 171c08.indd 171 12/05/11 11:55 AM12/05/11 11:55 AM

172 ❘ CHAPTER 8 THE BOX MODEL: CONTROLLING MARGINS, BORDERS, PADDING, WIDTH, AND HEIGHT

PROPERTY VALUE

overflow-x visible | hidden | scroll | auto

initial value: visible

overflow-y visible | hidden | scroll | auto

initial value: visible

NOTE IE 6 and IE 7 only support the overflow-x and overflow-y properties
when in standards compliant mode.

EXERCISES

1. From left to right, what are the seven box model properties that make up the left, center, and right

sides of a box?

2. How do you left-, center-, and right-align a block-level box (using the standard method)?

3. When the margin shorthand property has four values, what side of the target element does each

value apply margin to, in order?

4. What are the three keyword values of the border-width property?

5. If the border-color shorthand property has three values, what side of the target element does

each value apply to, in order?

6. Name the shorthand properties that encompass the border-width, border-style, and

border-color properties.

7. Describe briefl y the two situations in which margin collapsing occurs?

8. What are the four keywords of the overflow property?

c08.indd 172c08.indd 172 12/05/11 11:55 AM12/05/11 11:55 AM

Overfl owing Content ❘ 173

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, I discussed how the box model works in CSS. To recap, in this chapter you learned
the following:

TOPIC KEY CONCEPTS

margin, border,

padding

How to apply the box model to page elements with margins, borders, and

padding properties

Width, height How to specify the width and height of elements, and how content is

displayed by default if it is larger than its container

overflow How to control how content is displayed when it is larger than its container

c08.indd 173c08.indd 173 12/05/11 11:55 AM12/05/11 11:55 AM

c08.indd 174c08.indd 174 12/05/11 11:55 AM12/05/11 11:55 AM

Floating and Vertical Alignment

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The float property and how it is used to change the fl ow of elements

in a document — for instance, to place text beside an image

 ➤ The clear property and how this property is used to cancel the

eff ects of the fl oat property

 ➤ The vertical-align property and how this property is used to control

the vertical alignment of text to create subscript or superscript text or

control vertical alignment in table cells

In Chapter 8, I presented a subset of properties that combine to defi ne a concept known as
the CSS box model. In this chapter, I continue introducing new properties, this time focusing
on two properties most often misunderstood by users new to CSS design: float and clear.
These properties are often misunderstood because of their unique effect on the elements in a
document.

I’ll begin with a discussion of the float property.

FLOATING CONTENT

A simple explanation of the float property is that it is used to put content side-by-side. In the
coming sections, you look in depth at the float property, its idiosyncrasies, and how you can
use it to lay out a web page. The following table outlines the float property and its values.

PROPERTY VALUE

float left | right | none

Initial value: none

9

c09.indd 175c09.indd 175 12/05/11 11:21 AM12/05/11 11:21 AM

D
o

176 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

At this point, the float property appears fairly simple. It accepts keyword values of left, right,
and none. The effects of the float property are intrinsically tied to the CSS box model that you
read about in Chapter 8, and specifi cally as described in the next section. After the float property
is applied to an element, regardless of the type of element, that element takes on the behavior of a
block element, where its dimensions are defi ned by width, height, padding, borders, and margins.
Before you see some examples of this, the following code shows you how the float property affects
a document’s layout.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-1</title>
 <style type=”text/css”>
 h1 {
 float: left;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter9/fi gure_9-1.html

This CSS and markup results in the output in Figure 9-1.

FIGURE 9-1

As you can see, the heading has been fl oated and so the following paragraph wraps around it. The
following code shows a more useful example, creating columns out of content.

c09.indd 176c09.indd 176 12/05/11 11:21 AM12/05/11 11:21 AM

Floating Content ❘ 177

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-2</title>
 <style type=”text/css”>
 .recipe h2 {
 float: left;
 }

 .recipe .intro,
 .recipe ol {
 float: right;
 width: 500px;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter9/fi gure_9-2.html

c09.indd 177c09.indd 177 12/05/11 11:21 AM12/05/11 11:21 AM

178 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

In Figure 9-2, you can see what happens when there is both a left and right fl oat; the left fl oated
heading is positioned alongside the right fl oated recipe intro and instructions.

On the surface, the concept of fl oating is pretty simple, and for most things that you set out to
accomplish, this is about as complicated as it will get, but there is quite a complex set of rules under
the surface of the float property. To understand what happens when an element is fl oated, you need
to know about how the box model is affected and what happens when certain types of elements are
fl oated. These concepts are explored in the coming sections.

Floating Box Model

Because fl oated elements are repositioned to allow other content to fl ow around them, they exhibit
unique behavior. This behavior is outlined here:

 ➤ The margins of fl oated elements do not collapse, no matter what they are next to.

 ➤ Only the contents of elements following a fl oated element are affected by the fl oated element.
That is, the backgrounds, margins, borders, padding, and width (the box model and
dimensions) of elements following a fl oated element are not affected.

 ➤ A fl oated element is always treated like a block element.

Each rule is important in determining how fl oated elements are positioned and rendered.

Consider the diagram in Figure 9-3, which shows how the box model is incorporated when an
element has been fl oated.

FIGURE 9-2

This CSS and markup results in the output in Figure 9-2.

c09.indd 178c09.indd 178 12/05/11 11:21 AM12/05/11 11:21 AM

Floating Content ❘ 179

FIGURE 9-3

When an element is fl oated, it takes on the behavior of a block element, with one major difference:
Its sizing becomes shrink-to-fi t horizontally and vertically unless you specify width and height
properties. That means that if you fl oat a <div> element, its dimensions change such that it only
expands enough to accommodate the content within it. In Chapter 8, you learned that the default
dimensions of a <div> element are expand-to-fi t horizontally, meaning the <div> takes up the whole
line, but not so when a <div> element is fl oated.

Elements within a fl oated container that are not themselves fl oated retain their original width
unless a width is applied to them, e.g., a paragraph will still take up 100% of the space available to
it. If no width had been set on the fl oated elements in Figure 9-2, the layout would have remained
unchanged as the text in the paragraph and the list elements would have retained a width of 100%
of the available space.

Now that you’ve had an overview of the float property, the following Try It Out is a recap of what
is possible with the float property.

c09.indd 179c09.indd 179 12/05/11 11:21 AM12/05/11 11:21 AM

180 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

TRY IT OUT Create a Page Header with Floated Navigation

Example 9-1

To see the float property in action, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 9-1</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0;
 }

 .navigation {
 float: right;
 margin: 0;
 list-style: none;
 }

 .navigation li {
 float: left;
 }

 .navigation a {
 display: block;
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 color: #233;
 text-decoration: none;
 }

 .navigation a:focus,
 .navigation a:hover {
 background: #233;
 color: #FFF;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<ul class=”navigation”>

c09.indd 180c09.indd 180 12/05/11 11:21 AM12/05/11 11:21 AM

Canceling Floated Content ❘ 181

 Home
 Recipes
 Suggestions

</body>
</html>

 2. Save the preceding CSS and markup as example_9-1.html. This example results in the output in
Figure 9-4.

FIGURE 9-4

How It Works

In Example 9-1, you fl oated the h1 element left and the element with the class of navigation right. This
positioned the navigation list alongside the heading, aligned to the right of the body.

In the next section, I present a property that allows you to control fl oated elements, the clear
property.

CANCELING FLOATED CONTENT

In this section, I discuss a property intrinsically related to the float property: the clear property.
The clear property is used to control fl oating content. The following table outlines the clear
property and its possible values.

PROPERTY VALUE

clear none | left | right | both

Initial value: none

c09.indd 181c09.indd 181 12/05/11 11:21 AM12/05/11 11:21 AM

182 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

The simplest explanation for the clear property is that it is used to cancel the effects of one or more
fl oated elements. Figure 9-5 shows what will happen to the example shown in Figure 9-4 when the
heading and navigation are followed by further content.

FIGURE 9-5

As you can see, the text in the paragraph falls through the gap between the fl oated elements instead
of appearing after it, as you would want. The following code shows how we clear fl oated elements
to ensure that subsequent content follows them.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-6</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0;
 }

 .navigation {
 float: right;
 margin: 0;
 list-style: none;
 }

 .navigation li {
 float: left;
 }

 .navigation a {
 display: block;
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;

c09.indd 182c09.indd 182 12/05/11 11:21 AM12/05/11 11:21 AM

Canceling Floated Content ❘ 183

 color: #233;
 text-decoration: none;
 }

 .navigation a:focus,
 .navigation a:hover {
 background: #233;
 color: #FFF;
 }

 .intro {
 clear: both;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<ul class=”navigation”>
 Home
 Recipes
 Suggestions

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

</body>
</html>

code snippet /chapter9/fi gure_9-6.html

This CSS and markup results in the output you see in Figure 9-6.

FIGURE 9-6

In Figure 9-6, you see the results of the application of the clear: both; declaration on the element
with the class name intro. The effects of the float applied to the heading elements have been
canceled, and the text is dropped down below the drawing of the heading.

c09.indd 183c09.indd 183 12/05/11 11:21 AM12/05/11 11:21 AM

184 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

So the clear property is used to control what happens when elements are fl oated. When you use
the clear property, you can cancel a float on a particular element. Here, I have used clear: both;
but clear: left; and clear: right; can be used to clear only left and right fl oated elements
respectively.

In the next section I look at some fl oat bugs in IE 6.

FLOAT BUGS IN IE 6

The following section takes a look at fl oat bugs that arise in IE 6 and a few of the techniques you
can use to work around these bugs. The bugs that I discuss here are as follows:

 ➤ Peek-a-boo bug: As the name implies, this bug involves the use of fl oats where certain content
on a page disappears and occasionally reappears.

 ➤ Guillotine bug: This is another bug that comes up in IE when using fl oats, where content is
cut in half.

 ➤ Three-pixel jog: This bug causes 3 pixels of space to mysteriously appear when using
fl oats in IE.

 ➤ Double-margin bug: This bug causes the left or right margins of a fl oated box to double
when using fl oats in IE.

Even though the following bugs are a problem in IE 6, all of them have been fi xed in IE 7.

TARGETING INTERNET EXPLORER

While in most circumstances you will want to write CSS that works in all browsers,
in some cases this may not be possible. The most common possibility is that you
will experience bugs that only exist in Internet Explorer, like the ones I will show
you here.

These bugs often have solutions that cause no harm when applied to all browsers,
but this is not always the case, and you may feel that it makes your CSS less
readable. In these cases, being able to target CSS or individual declarations at
Internet Explorer can be advantageous.

There are two main techniques that I will cover here: conditional comments and
hacks.

Conditional Comments

Conditional comments are just like ordinary HTML comments, but with an extra
piece of information:

<!--[if lte IE 6]>
<![endif]-->

c09.indd 184c09.indd 184 12/05/11 11:21 AM12/05/11 11:21 AM

Float Bugs in IE 6 ❘ 185

The if part of the comment is followed by an equation, which in this case it reads
“if less than or equal to IE 6”. This means that if the browser this code is
viewed in is Internet Explorer, and the version is 6 or less, then whatever is inside
the comment block will be output instead of being a normal comment. Any other
browser will treat this as a comment and ignore it. In our example, whatever we
put inside the comment (which could be a link or style element for IE only CSS)
will only be output for Internet Explorer versions 6 or less.

You can read more about conditional comments at www.quirksmode.org/css/
condcom.html.

Hacks

Hacks are tricks you can use to take advantage of bugs in CSS parsers to include
CSS that only works in certain browsers. I will show you two hacks here that you
may fi nd useful.

First is the underscore hack, which allows you to write CSS that only works in IE 6.
This works as follows:

 p {
 _height: 1px;
 }

As you can see, the normal height property has been prefi xed with an underscore.
Because this is not a valid CSS property, most browsers will ignore it altogehter,
but IE 6 does something different. It ignores just the underscore, so to IE 6 this rule
looks like:

 p {
 height: 1px;
 }

Because IE 6 has ignored the underscore, it will interpret the declaration.

The second hack is the star hack. This works in exactly the same way, but targets
both IE 6 and IE 7. It works as follows:

 p {
 *width: 100px;
 }

The same thing happens here as with the underscore hack. Most browsers will
ignore the invalid property, but IE6 and IE7 will ignore the star instead.

With these two hacks you can also target IE7 on its own by using the star hack to
apply declarations that apply to both IE6 and IE7, and then using the underscore
hack to reset the declaration for IE6:

 p {
 *width: 100px;
 _width: auto;
 }

continues

c09.indd 185c09.indd 185 12/05/11 11:21 AM12/05/11 11:21 AM

186 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

(continued)

Notice that the order is important here, and that each declaration is hacked
independently. You can include non-prefi xed declarations alongside hacks within a
rule, and the non-hacked declarations will apply to all browsers, as follows:

 p {
 width: 100px;
 _width: 97px;
 }

This rule will apply a width of 100px to the paragraph in all browsers except
for IE6, which would receive a width of 97px. Again, order is important as IE6
will accept either property declaration. The hacked version must be last for it to
be applied.

Hacks can be a powerful tool in your arsenal, but use them with care and as
little as possible. Overuse will make your CSS hard to read and diffi cult to
maintain. If you fi nd that you need to write a lot of CSS specifi c to Internet
Explorer or a version of IE then consider using conditional comments to include
a separate style sheet.

You can read more about hacks at http://webstandardstips.com/2008/11/18/
css-hacks-for-ie-only-style-rules/.

The Peek-A-Boo Bug

The peek-a-boo bug can come up in several different contexts — in fact, in far too many to list here. It
involves content that disappears and reappears seemingly at random (hence, its aptly applied name).

Three properties present in the style sheet trigger this bug:

 ➤ Floating an element by applying a float: left; or float: right;.

 ➤ Including a background on the containing element

 ➤ Including a clear on an element following the fl oat, where the margins of the clearing element
come into contact with the fl oating element.

The following code demonstrates the problem.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-7</title>
 <style type=”text/css”>
 #container {
 background: #EEE;

c09.indd 186c09.indd 186 12/05/11 11:21 AM12/05/11 11:21 AM

Float Bugs in IE 6 ❘ 187

 }

 .float {
 float: left;
 width: 150px;
 height: 150px;
 border: 1px solid #000;
 }

 .clear {
 clear: left;
 }
 </style>
</head>
<body>

<h1>Peek-A-Boo</h1>

<div id=”container”>
 <p class=”float”>Floated text</p>
 <p>Content text 1</p>
 <p>Content text 2</p>
 <p>Content text 3</p>
 <p class=”clear”>Cleared text</p>
</div>

</body>
</html>

code snippet /chapter9/fi gure_9-7.html

This CSS and markup results in the output you see in Figure 9-7. As you can see, the elements
between the fi rst and last line of text are missing. Switch to a different window and back and the
missing text may reappear!

FIGURE 9-7

c09.indd 187c09.indd 187 12/05/11 11:21 AM12/05/11 11:21 AM

188 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

So, with an overview of what causes the peek-a-boo bug and what it is, what do you do to work
around the bug? You have more than one option:

 ➤ Apply a position: relative; declaration to the containing element and fl oating element.

 ➤ Prevent the margins of the clearing element from coming into contact with the fl oating element.

 ➤ Avoid applying a background to the containing element.

 ➤ Apply the declaration zoom: 1; to the containing element.

 ➤ Apply the declaration display: inline-block; to the containing element.

 ➤ Apply a fi xed width to the containing element.

The Guillotine Bug

Guillotine is another aptly named bug where only part of the content disappears.

The guillotine bug occurs when the following conditions are present:

 ➤ IE is in standards-compliant rendering mode.

 ➤ An element is fl oated inside of a container element.

 ➤ Links exist inside the container element in non-fl oated content that appears after the fl oat.

 ➤ a:hover pseudo-class is applied to <a> elements that change certain properties.

The following code demonstrates the problem.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-8</title>
 <style type=”text/css”>
 #container {
 border: 1px solid #000;
 }

 .float {
 float: left;
 border: 1px solid #000;
 }

 ul {
 margin: 0;
 list-style: none;
 }

 a:hover {
 background: #EEE;
 }
 </style>

c09.indd 188c09.indd 188 12/05/11 11:21 AM12/05/11 11:21 AM

Float Bugs in IE 6 ❘ 189

</head>
<body>

<h1>Guillotine</h1>

<div id=”container”>
 <div class=”float”>
 <p>Content text 1</p>
 <p>Content text 2</p>
 <p>Content text 3</p>
 <p>Content text 4</p>
 <p>Content text 5</p>
 </div>

 Link
 Link
 Link
 Link

</div>

</body>
</html>

code snippet /chapter9/fi gure_9-8.html

This CSS and markup results in the output you see in Figure 9-8. As you can see, the elements after
the fi rst two lines of text are missing, chopped off at the edge of the container element.

FIGURE 9-8

The guillotine bug is yet another bizarre IE rendering bug. The fi x is not nearly as elegant as that for
the peek-a-boo bug. To fi x the guillotine bug, a clearing element must appear after the containing
element. The best method to apply this clearing element without affecting the original design is to
apply the following rule to the clearing element:

.clear {
 clear: both;
 visibility: hidden;
}

c09.indd 189c09.indd 189 12/05/11 11:21 AM12/05/11 11:21 AM

190 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

Then in the markup, add the clearing element:

<div class=”float”>Floated Content</div>
<div class=”clear”></div>

The Three-Pixel Jog

The next Internet Explorer rendering bug, which also involves fl oated elements, is called the three-
pixel jog. As the name implies, this bug causes 3 pixels of space to appear between text inside an
element that follows a fl oated element and the inner border of that element.

The following code demonstrates the problem.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-9</title>
 <style type=”text/css”>
 .float {
 float: left;
 border: 1px solid #000;
 }
 </style>
</head>
<body>

<h1>Three-Pixel Jog</h1>

<div id=”container”>
 <div class=”float”>
 <p>Content text 1</p>
 <p>Content text 2</p>
 <p>Content text 3</p>
 <p>Content text 4</p>
 <p>Content text 5</p>
 </div>
 <div>
 <p>Content text 6</p>
 <p>Content text 7</p>
 <p>Content text 8</p>
 <p>Content text 9</p>
 <p>Content text 10</p>
 </div>
</div>

</body>
</html>

code snippet /chapter9/fi gure_9-9.html

This CSS and markup results in the output you see in Figure 9-9. As you can see, there is a space of
3 pixels between the text in the second column and the border of the fi rst column.

c09.indd 190c09.indd 190 12/05/11 11:21 AM12/05/11 11:21 AM

Float Bugs in IE 6 ❘ 191

FIGURE 9-9

The three-pixel jog can be corrected by applying either a width or height (other than auto) to the
element that follows the fl oat.

<!--[if lte IE 6]>
<style type=”text/css”>
 p {
 height: 1px;
 }
</style>
<![endif]-->

You must use conditional comments or the hacks I showed you earlier to target IE 6 only. Because
IE 6 and earlier versions have incorrect support for the height property, the content isn’t adversely
affected by including this declaration. Other browsers won’t be so forgiving, however, so this
solution must be applied only to Internet Explorer to avoid complications.

In most cases, it is best to not worry about this bug, though, other than you, no one is looking at your
site in more than one browser side-by-side, so it is unlikely that such a minor issue will be noticed.

The Double-Margin Bug

Here’s yet another Internet Explorer rendering bug involving fl oated elements. Under certain
circumstances left margins on fl oated elements are doubled.

Three ingredients are required to reproduce this bug:

 ➤ A containing element

 ➤ A fl oated element inside the containing element

 ➤ A left margin specifi ed on the fl oated element

The following code demonstrates the problem.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-10</title>

c09.indd 191c09.indd 191 12/05/11 11:21 AM12/05/11 11:21 AM

192 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

 <style type=”text/css”>
 #container {
 border: 1px solid #000;
 float: left;
 }
 .float {
 float: left;
 margin-left: 50px;
 padding-left: 50px;
 border: 1px solid #000;
 }
 </style>
</head>
<body>

<h1>Double-Margin</h1>

<div id=”container”>
 <div class=”float”>
 <p>Content text 1</p>
 <p>Content text 2</p>
 <p>Content text 3</p>
 <p>Content text 4</p>
 <p>Content text 5</p>
 </div>
</div>

</body>
</html>

code snippet /chapter9/fi gure_9-10.html

This CSS and markup results in the output you see in Figure 9-10. As you can see, even though the
padding between the inner element and its border should be the same as between it and the border
of the outer element, the margin is actually double that of the padding.

FIGURE 9-10

c09.indd 192c09.indd 192 12/05/11 11:21 AM12/05/11 11:21 AM

Vertically Aligning Content ❘ 193

When these ingredients are present, the left margin of the fl oated element doubles. The fi x for this
bug is very simple. All you need to do is apply a display: inline; declaration to the fl oated element.
If you recall from earlier in this chapter, all fl oated elements are always block elements. Using the
display: inline; declaration tricks IE 6 into correct behavior. As is the case with the three-pixel
jog, you can target IE 6 specifi cally by including this declaration within a rule inside of a style sheet
that resides in conditional comments.

VERTICALLY ALIGNING CONTENT

The vertical-align property is used primarily in two contexts. In one context, it is used to
vertically align text appearing within the lines of a paragraph. One example of this creates subscript
or superscript text. The vertical-align property may also be used to align the content appearing
inside a table cell. The following table outlines the vertical-align property and its possible values.

PROPERTY VALUE

vertical-align baseline | sub | super | top | text-top | middle |

bottom | text-bottom | <percentage> | <length>

Initial value: baseline

The vertical-align property applies exclusively to inline elements, such as and . It
has different meaning when applied to table cells. I discuss its use in cells in an upcoming section. In
the next section, however, I look at how to format subscript text with the vertical-align property.

Subscript and Superscript Text

Within a paragraph, you may need several different types of styles that are only applied to snippets
of the text, such as bold or italic fonts. Subscript text is an example of styles that often apply only
to a selection of text, rather than to a whole paragraph. Subscript text is text that appears slightly
smaller than the text surrounding it and slightly lower than the baseline of the surrounding text.
The baseline is the invisible line created for each line of text against which the bottom of each letter
is aligned. In other words, the baseline is the line that letters “sit” on. Superscript text, on the other
hand, is text raised above the baseline and that appears slightly smaller than the surrounding text.
The following code demonstrates subscript and superscript text.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-11</title>
 <style type=”text/css”>
 h1 span {
 font-size: 0.5em;
 }

 .superscript {

c09.indd 193c09.indd 193 12/05/11 11:21 AM12/05/11 11:21 AM

194 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

 vertical-align: super;
 }

 .subscript {
 vertical-align: sub;
 }
 </style>
</head>
<body>

<h1>Tasty Recipes for
Tasty Cheese</h1>

</body>
</html>

code snippet /chapter9/fi gure_9-11.html

This CSS and markup results in the output in Figure 9-11.

FIGURE 9-11

Figure 9-11 shows that the content of the element with the class of superscript appears
slightly higher, which is a result of applying the vertical-align: super; declaration. The fi gure
also shows that the content of the element with the class of subscript appears slightly lower,
which is a result of applying the vertical-align: sub; declaration.

The next section continues the discussion of the vertical-align property with top, middle, and
bottom vertical alignment text.

The top, middle, and bottom Keywords

The top, middle, and bottom keywords are used to control vertical alignment of selections of
text that are slightly smaller than the surrounding text. The top keyword is demonstrated in the
following snippet.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-12</title>

c09.indd 194c09.indd 194 12/05/11 11:21 AM12/05/11 11:21 AM

Vertically Aligning Content ❘ 195

 <style type=”text/css”>
 h1 span {
 font-size: 0.5em;
 }

 .top {
 vertical-align: top;
 }

 .middle {
 vertical-align: middle;
 }

 .bottom {
 vertical-align: bottom;
 }
 </style>
</head>
<body>

<h1>Super Tasty Recipes for
Tasty Cheese</h1>

</body>
</html>

code snippet /chapter9/fi gure_9-12.html

This CSS and markup results in the output in Figure 9-12.

FIGURE 9-12

In Figure 9-12, you see that each element is aligned to the top, middle, and bottom of the
line box.

The text-top and text-bottom Keywords

Like the top, middle, and bottom values, the text-top and text-bottom keywords raise or lower a
subset of text. The difference in the text-top keyword as opposed to the top keyword is that the
text-top keyword causes alignment to happen with respect to the tallest character of the font of the
surrounding text. Likewise, the text-bottom keyword aligns with respect to the lowest character,

c09.indd 195c09.indd 195 12/05/11 11:21 AM12/05/11 11:21 AM

196 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

for instance the letters p, y, or g, which drop below the baseline. The text-top and text-bottom
keyword values produce output similar to that produced by the top and bottom keywords. The most
important difference between top and text-top is that top causes the top of the text to align with
the top of the line containing that inline box, determined by the line-height (see chapter 6 for a
recap), whereas text-top aligns with respect to the tallest character in the font. You can see this in
the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-13</title>
 <style type=”text/css”>
 h1 span {
 font-size: 0.5em;
 }

 .text-top {
 vertical-align: top;
 }

 .text-bottom {
 vertical-align: bottom;
 }
 </style>
</head>
<body>

<h1>Tasty Recipes for
Tasty Cheese</h1>

</body>
</html>

code snippet /chapter9/fi gure_9-13.html

This CSS and markup results in the output you see in Figure 9-13.

FIGURE 9-13

c09.indd 196c09.indd 196 12/05/11 11:21 AM12/05/11 11:21 AM

Vertically Aligning Content ❘ 197

The next section discusses percentage and length values as applied to the vertical-align property.

Percentage and Length Value

If the selection of keywords I presented in the previous sections weren’t enough for you, the
vertical-align property also allows percentage and length values to be applied. The following code
demonstrates this:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 9-14</title>
 <style type=”text/css”>
 h1 span {
 font-size: 0.5em;
 line-height: 10px;
 }

 .align-pixel {
 vertical-align: 5px;
 }

 .align-percent {
 vertical-align: 50%;
 }
 </style>
</head>
<body>

<h1>Tasty Recipes for
Tasty Cheese</h1>

</body>
</html>

code snippet /chapter9/fi gure_9-14.html

This CSS and markup results in the output in Figure 9-14.

FIGURE 9-14

c09.indd 197c09.indd 197 12/05/11 11:21 AM12/05/11 11:21 AM

198 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

Giving the vertical-align property percentage or length values positioned text above the text base
line by the value given. In the case of percentage values, the distance is based on the line-height
of the positioned element. In Figure 9-14, the line-height of each element has been set to 10px, and
the vertical-align value of the second span to 50%. 50% of 10px is 5px, so it will have the same
offset as the fi rst span.

Vertically Aligning the Contents of Table Cells

The vertical-align property has a completely different meaning when it is applied to table cells.
When applied to table cells, only the baseline, top, middle, and bottom keywords are applicable,
and the vertical-align property is used to align the entire contents of the cell. As these keywords
behave in the same way as we have seen before, but with the context of the table cell rather than the
bounding box determined by line-height, let’s Try It Out!

TRY IT OUT Vertically Aligning Text in a Table

Example 9-2

To see the vertical-align property in action, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 9-2</title>
 <style type=”text/css”>
 table {
 width: 200px;
 text-align: left;
 }

 th {
 vertical-align: bottom;
 border-bottom: 2px solid #666;
 }

 td {
 vertical-align: top;
 border-bottom: 1px solid #666;
 }
 </style>
</head>
<body>

<table>
 <caption>Ingredients</caption>
 <thead>

c09.indd 198c09.indd 198 12/05/11 11:21 AM12/05/11 11:21 AM

Vertically Aligning Content ❘ 199

 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Bread</th>
 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

 2. Save the preceding CSS and markup as example_9-2.html. This example results in the output in
Figure 9-15

FIGURE 9-15

c09.indd 199c09.indd 199 12/05/11 11:21 AM12/05/11 11:21 AM

200 ❘ CHAPTER 9 FLOATING AND VERTICAL ALIGNMENT

EXERCISES

 1. When an element is fl oated, what rule governs its dimensions?

 2. What happens when an inline element, such as a element, is fl oated?

 3. What are the three keywords of the float property?

 4. If an element is fl oated to the right, and you don’t want the following element to wrap around it,

what declaration would you apply to that element?

 5. What declarations would you use to create subscript and superscript text?

 6. When vertically aligning an inline element to the middle, ho w is the element positioned on the line?

 7. What is the diff erence between the text-top and top keywords of the vertical-align property?

 8. If you are aligning table cells to the baseline, what determines the baseline?

How It Works

In Example 9-2, you set the text in <th> elements to align to the bottom of the cell and the text in <td>
elements to align to the top of the cell.

c09.indd 200c09.indd 200 12/05/11 11:21 AM12/05/11 11:21 AM

Vertically Aligning Content ❘ 201

 � WHAT YOU LEARNED IN THIS CHAPTER

This chapter focused on three key areas of CSS design. In this chapter, you learned the following:

TOPIC KEY CONCEPTS

float The float property is a seemingly complex property that has a unique place

in CSS design. The float property is used for layout — for instance, to include

content in the fl ow of paragraph text in such a way that text wraps around the

fl oated element.

clear The clear property is used to control the eff ects of the float property in

situations where you don’t want all the content following a fl oated element to

fl oat beside it.

vertical-align The vertical-align property is used to vertically align inline elements such

as the element or the element relative to the line containing

those inline elements; this property can be used, for instance, to create

subscript or superscript text.

The vertical-align property may also be applied to table cells to control

vertical alignment of the content within table cells. If the vertical-align

property is applied to table cells, only a subset of properties are applicable.

These include the baseline, top, middle, and bottom properties. The behavior

of these properties is completely diff erent when applied to table cells as

opposed to normal inline content.

c09.indd 201c09.indd 201 12/05/11 11:21 AM12/05/11 11:21 AM

c09.indd 202c09.indd 202 12/05/11 11:21 AM12/05/11 11:21 AM

Styling Lists

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The markup for basic ordered and unordered lists

 ➤ The list-style-type property and how it’s used to present diff erent

types of lists through a variety of marker styles for bulleted lists and

numbered lists

 ➤ The list-style-image property and how it’s used to provide a

custom marker for each list item

 ➤ The list-style-position property and how it’s used to control the

positioning of list item markers

Lists are a very versatile group of elements in HTML, used for all sort of things, such as site
and page navigation, tab controls, and simple lists of items such as for tasks or shopping basket
contents.

LIST MARKUP

Lists consist of two parts. The fi rst is the list container element, which is either for lists
without any particular order or for lists that have a specifi c order to the items within it,
and in which the order matters.

The second part of a list is one or more elements, which contains each item. There must
be at least one in every list. There is no maximum number of items, but very long lists
can be hard to read and are best broken up into sections.

The most common example of an unordered list in modern websites is site navigation.
Navigation is a list of links, but while they will have a visual order, they don’t usually have a
fi xed order that is integral to the content — they make sense in any order.

10

c10.indd 203c10.indd 203 12/05/11 11:21 AM12/05/11 11:21 AM

D
o

204 ❘ CHAPTER 10 STYLING LISTS

 Home
 About Us
 Products
 Contact Us

code snippet /chapter10/fi gure10-1.html

As Figure 10-1 shows, by default each item is preceded by a bullet.

FIGURE 10-1

An example of an ordered list is a recipe, in which each step must be followed in order.

 Lightly toast the bread. Place on a baking tray, and spread with
 butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
 edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

code snippet /chapter10/fi gure10-2.html

As Figure 10.2 shows, by default each item is preceded by a number.

 FIGURE 10-2

c10.indd 204c10.indd 204 12/05/11 11:21 AM12/05/11 11:21 AM

The list-style-type Property ❘ 205

THE LIST-STYLE-TYPE PROPERTY

The list-style-type property changes the style of the bullet or format of the number that precedes
each list item. You can change an ordered list to a list using Roman numerals for markers, or you
can change a bulleted list to one using squares instead of circles for markers. The following table
outlines the list-style-type property and its possible values (as of CSS 2.1).

PROPERTY VALUE

list-style-type disc | circle | square | decimal | decimal-leading-zero | lower-roman

| upper-roman | lower-greek | lower-latin | upper-latin | armenian |

georgian | none

Initial value for unordered list: disc

Initial value for unordered list: decimal

NOTE It is possible to style an unordered list with styles that suggest an order
(for example list-style-type: decimal); but I strongly advise against this, as
the styling of an element should follow the semantics implied in the markup. If it
looks like an ordered list, it should be an ordered list.

Styling Unordered Lists

There are four styles for unordered list bullets: di sc, circle, square, and none. The default value is
disc. All major browsers support these values.

The syntax for these unordered list types is shown in the following code, and the result of running
this code is shown in Figure 10-3.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 10-3</title>
 <style type=”text/css”>
 .demo-disc {
 list-style-type: disc;
 }

 .demo-circle {
 list-style-type: circle;
 }

 .demo-square {

c10.indd 205c10.indd 205 12/05/11 11:21 AM12/05/11 11:21 AM

206 ❘ CHAPTER 10 STYLING LISTS

 list-style-type: square;
 }

 .demo-none {
 list-style-type: none;
 }
 </style>
</head>
<body>

<h1>Unordered list bullet styles</h1>

<h2>Disc</h2>

<ul class=”demo-disc”>
 Home
 About Us
 Products
 Contact Us

<h2>Circle</h2>

<ul class=”demo-circle”>
 Home
 About Us
 Products
 Contact Us

<h2>Square</h2>

<ul class=”demo-square”>
 Home
 About Us
 Products
 Contact Us

<h2>None</h2>

<ul class=”demo-none”>
 Home
 About Us
 Products
 Contact Us

</body>
</html>

code snippet /chapter10/fi gure10-3.html

c10.indd 206c10.indd 206 12/05/11 11:21 AM12/05/11 11:21 AM

The list-style-type Property ❘ 207

FIGURE 10-3

Styling Ordered Lists

The number that precedes list items in an ordered list can be formatted with the following
keywords: de cimal, decimal-leading-zero, lower-roman, upper-roman, lower-greek, lower-latin,
upper-latin, Armenian, georgian, none. The default value is decimal.

Support for the full range of ordered list styles is not as complete as the styles for ordered lists:

 ➤ armenian is not supported by Safari, Firefox, or Opera for Mac OS X.

 ➤ decimal-leading-zero, lower-greek, lower-latin, upper-latin, armenian, and Georgian
are not supported by IE6 or IE7.

This means that just like unordered lists, there are ultimately four keywords that can be reliably
used across all major browsers: decimal, lower-roman, upper-roman, none.

The syntax for these ordered list types is shown in the following code, and the result of running this
code is shown in Figure 10-4.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 10-4</title>
 <style type=”text/css”>
 .demo-decimal {

c10.indd 207c10.indd 207 12/05/11 11:21 AM12/05/11 11:21 AM

208 ❘ CHAPTER 10 STYLING LISTS

 list-style-type: decimal;
 }

 .demo-lower-roman {
 list-style-type: lower-roman;
 }

 .demo-upper-roman {
 list-style-type: upper-roman;
 }

 .demo-none {
 list-style-type: none;
 }
 </style>
</head>
<body>

<h1>Ordered list number styles</h1>

<h2>Decimal</h2>

<ol class=”demo-decimal”>
 Lightly toast the bread. Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
Place the saucepan over a medium heat, and stir the cheese continuously until it
has melted. Add a teaspoon of wholegrain mustard and grind in a little pepper. Keep
stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

<h2>Lower Roman</h2>

<ol class=”demo-lower-roman”>
 Lightly toast the bread. Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
Place the saucepan over a medium heat, and stir the cheese continuously until it
has melted. Add a teaspoon of wholegrain mustard and grind in a little pepper. Keep
stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

<h2>Upper Roman</h2>

<ol class=”demo-upper-roman”>
 Lightly toast the bread. Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
Place the saucepan over a medium heat, and stir the cheese continuously until it
has melted. Add a teaspoon of wholegrain mustard and grind in a little pepper. Keep
stirring.

c10.indd 208c10.indd 208 12/05/11 11:21 AM12/05/11 11:21 AM

The list-style-type Property ❘ 209

 When thick and smooth, pour over each piece of toast spreading it to the
edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

<h2>None</h2>

<ol class=”demo-none”>
 Lightly toast the bread. Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
Place the saucepan over a medium heat, and stir the cheese continuously until it
has melted. Add a teaspoon of wholegrain mustard and grind in a little pepper. Keep
stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

</body>

</html>

code snippet /chapter10/fi gure10-4.html

FIGURE 10-4

c10.indd 209c10.indd 209 12/05/11 11:21 AM12/05/11 11:21 AM

210 ❘ CHAPTER 10 STYLING LISTS

Now we’ll put this together in a more practical Try It Out example, changing the list-style-type
property to create a site navigation.

TRY IT OUT Change the Marker Style of a List

Example 10-1

To apply the list-style-type property, follow these steps.

 1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 10-1</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 padding-top: 3em;
 }

 #header-wrapper {
 position: fixed;
 top: 0;
 left: 0;
 width: 100%;
 padding-bottom: 0.5em;
 background: #FFF;
 }

 #header {
 width: 600px;
 margin: 0 auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 display: inline;
 }

 .navigation a {
 margin-left: 0.5em;

c10.indd 210c10.indd 210 12/05/11 11:21 AM12/05/11 11:21 AM

The list-style-type Property ❘ 211

 padding: 0.5em;
 border: 1px solid #CCC;
 }

 .recipe ol {
 list-style-type: upper-roman;
 }

 .recipe ol ol {
 list-style-type: lower-roman;
 }
 </style>
</head>
<body>

<div id=”header-wrapper”>

 <div id=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>
 Home
 Recipes
 Suggestions

 </div>

</div>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard, egg, or
bacon. Here is one take on this classic.</p>

 Lightly toast the bread:

 Turn grill to medium heat.
 Place bread under the grill.
 When golden brown, remove the toasted bread from the grill.

 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
Place the saucepan over a medium heat, and stir the cheese continuously until it

c10.indd 211c10.indd 211 12/05/11 11:21 AM12/05/11 11:21 AM

212 ❘ CHAPTER 10 STYLING LISTS

How It Works

Example 10-1 shows two uses of the list-style-type property: The fi rst shows that you can suppress
the default bullet display so you can use unordered lists for site navigation, and the second shows that
you can set a different format of the number that precedes the ordered list and that a child list can have
a format different from that of its parent.

FIGURE 10-5

has melted. Add a teaspoon of wholegrain mustard and grind in a little pepper. Keep
stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

</div>

</body>

</html>

 2. Save the preceding CSS and markup as example_10-1.html. This example results in the rendered
output in Figure 10-5.

THE LIST-STYLE-IMAGE PROPERTY

As with the li st-style-type property, you can use the list-style-image property to change the marker
used for list items. The following table outlines the list-style-image property and its possible values.

c10.indd 212c10.indd 212 12/05/11 11:21 AM12/05/11 11:21 AM

The list-style-image Property ❘ 213

PROPERTY VALUE

list-style-image <uri> | none

Initial value: none

The list-style-image property is quite straightforward; it accepts the URLof the image, which is
denoted in the preceding table by the <uri> notation.

The syntax for using images as list markers is shown in the following code, and the result of running
this code is shown in Figure 10-6.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 10-6</title>
 <style type=”text/css”>
 li {
 list-style-image: url(arrow.png);
 }

 .alternate {
 list-style-image: url(arrow2.png);
 }
 </style>
</head>
<body>

<h1>List Style Image</h1>

 List markers can be customized!
 You can use any image you like.
 <li class=”alternate”>Size and position, however, cannot be controlled.

</body>
</html>

code snippet /chapter10/fi gure10-6.html

FIGURE 10-6

As you can see in Figure 10-6, the arrow.png and arrow2.png icons have replaced the list bullets.

c10.indd 213c10.indd 213 12/05/11 11:21 AM12/05/11 11:21 AM

214 ❘ CHAPTER 10 STYLING LISTS

THE LIST-STYLE-POSITION PROPERTY

You can use the list-style-position property to control the placement of list item markers and
whether the list item marker appears on the inside of the list item element or outside of it. Where
the list marker is placed is only obvious when the element has a border. The following table
outlines the list-style-position property and its possible values.

PROPERTY VALUE

list-style-position inside | outside

Initial value: outside

You can highlight the effects of the list-style-position property.

The syntax for positioning list markers is shown in the following code, and the result of running
this code is shown in Figure 10-7.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 10-7</title>
 <style type=”text/css”>
 li li {
 background: #CCF;
 }

 .inside {
 list-style-position: inside;
 }

 .outside {
 list-style-position: outside;
 }
 </style>
</head>
<body>

<h1>List Style Position</h1>

 The markers for these list items are on the inside.
 <ul class=”inside”>
 One
 Two

 The markers for these list items are on the outside.
 <ul class=”outside”>

c10.indd 214c10.indd 214 12/05/11 11:21 AM12/05/11 11:21 AM

The list-style Shorthand Property ❘ 215

 One
 Two

</body>
</html>

code snippet /chapter10/fi gure10-7.html

FIGURE 10-7

In Figure 10-7, you can see that the list-style-position property is used to control whether the
list marker appears on the inside of the element’s borders or on the outside.

The next section wraps up the discussion of CSS list properties with the list-style shorthand
property. Using this property, you can combine several properties into one.

THE LIST-STYLE SHORTHAND PROPERTY

Like the shorthand properties I presented in previous chapters, the list-style shorthand property
allows multiple properties to be combined into one property. The following table outlines the
list-style shorthand property and the values it allows.

PROPERTY VALUE

list-style <’list-style-type’> || <’list-style-position’> || <’list-style-image’>

Initial value: n/a

The list-style property enables you to specify from one to three values, with each value
corresponding to the list style properties I have discussed throughout this chapter: list-style-type,
list-style-image, and list-style-position.

The following Try It Out shows you how the list-style property works.

c10.indd 215c10.indd 215 12/05/11 11:21 AM12/05/11 11:21 AM

216 ❘ CHAPTER 10 STYLING LISTS

TRY IT OUT Applying the list-style Property

Example 10-2.

To try out the list-style property, follow these steps.

 1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 10-2</title>
 <style type=”text/css”>
 li {
 background: #CCF;
 }

 .arrow {
 list-style: square url(arrow.png) outside;
 }

 .arrow-inside {
 list-style: url(arrow.png) inside;
 }

 .marker-inside {
 list-style: square inside;
 }

 .marker-image {
 list-style: square url(arrow.png);
 }

 .arrow-only {
 list-style: url(arrow.png);
 }

 .marker {
 list-style: circle;
 }

 .position {
 list-style: inside;
 }
 </style>
</head>
<body>

 <li class=”arrow”>All three styles can be provided.
 <li class=”arrow-inside”>The image and the position.
 <li class=”marker-inside”>The marker and the position.

c10.indd 216c10.indd 216 12/05/11 11:21 AM12/05/11 11:21 AM

The list-style Shorthand Property ❘ 217

 <li class=”marker-image”>The marker and the image.
 <li class=”arrow-only”>Just the image.
 <li class=”marker”>Just the marker.
 <li class=”position”>Just the position.

</body>
</html>

 2. Save the preceding CSS and markup as example_10-2.html. This example results in the rendered
output in Figure 10-8.

FIGURE 10-8

How It Works

The list-style property exists as a shortcut for specifying list styles. It can still be useful to use
list-style-type, list-style-image, and list-style-position properties, as sometimes you just want
to change one property at a time. In other cases, however, you will want to change all three and can use
the list-style short hand.

In Example 10-2, you recapped what’s possible with the list-style property by writing out an
example that implements every possible combination of the list-style-type, list-style-image, and
list-style-position properties.

EXERCISES

 1. Name the keywords of the list-style-type property supported by all major browsers.

 2. What properties does the list-style property allow you to specify in a single declaration?

 3. Can size and position be controlled with the list-style-image property? If so, how?

c10.indd 217c10.indd 217 12/05/11 11:21 AM12/05/11 11:21 AM

218 ❘ CHAPTER 10 STYLING LISTS

 � WHAT YOU LEARNED IN THIS CHAPTER

The CSS list properties provide complete control over how list elements are presented. To recap, in
this chapter you learned the following:

TOPIC KEY CONCEPTS

List types There are two types of lists: ordered and unordered.

list-style-type This property is used the most; it is for changing the marker displayed before

each item.

list-style This property can be used as a short hand for all three of the list properties.

c10.indd 218c10.indd 218 12/05/11 11:21 AM12/05/11 11:21 AM

Positioning

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The position property and the four types of positioning that CSS

has to off er: static, relative, absolute, and fi xed

 ➤ The off set properties top, right, bottom, and left, and how these are

used to deliver an element to a specifi c position in a web document

 ➤ The z-index property and how this property is used to layer the

elements of a document

This chapter examines the various properties that CSS provides to position elements in a
document. Positioning can be thought of as layering, in that the various elements of a page can
be layered on top of others and given specifi c places to appear in the browser’s window.

Like fl oating elements, positioning offers some unique characteristics that allow behavior you
might not always expect. This chapter begins the discussion of positioning with none other
than the position property.

INTRODUCTION TO POSITIONING

The position property is used to give elements different types of positioning. Positioning gives
you the ability to dictate with precision where in a document you want an element to appear.
You can choose whether an element appears relative to a container element, or relative to the
browser window. You can layer elements one on top of another.

The following table outlines the position property and its values, and the four offset
properties, top, right, bottom, and left, and their possible values.

11

c11.indd 219c11.indd 219 12/05/11 11:22 AM12/05/11 11:22 AM

D
o

220 ❘ CHAPTER 11 POSITIONING

PROPERTY VALUE

position static | relative | absolute | fixed

Initial value: static

top <length> | <percentage> | auto

Initial value: auto

right <length> | <percentage> | auto

Initial value: auto

bottom <length> | <percentage> | auto

Initial value: auto

left <length> | <percentage> | auto

Initial value: auto

In the next section, I begin the discussion of positioning with absolute positioning.

Absolute Positioning

Absolute positioning allows you to render an element to a particular place in a document. The best
way to grasp this concept is to see a demonstration of it in action, as shown in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-1</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 display: inline;

c11.indd 220c11.indd 220 12/05/11 11:22 AM12/05/11 11:22 AM

Introduction to Positioning ❘ 221

 }

 .navigation a {
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 }

 .navigation ul a {
 display: block;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<ul class=”navigation”>
 Home

 Recipes

 Snacks
 Meals
 Desserts

 Suggestions

</body>
</html>

code snippet /chapter11/fi gure_11-1.html

The result is shown in Figure 11-1.

FIGURE 11-1

In the code for Figure 11-1, you can see that I have added a sub-list to the navigation that you fi rst
saw in Chapter 9. The rule with selector .navigation ul a applies display: block; to the links

c11.indd 221c11.indd 221 12/05/11 11:22 AM12/05/11 11:22 AM

222 ❘ CHAPTER 11 POSITIONING

inside the sub-list, so that they appear vertically. The sub-list has the default static position and has
broken our layout, but this is a great example of where absolute positioning is useful. Let’s add a
little more CSS:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-2</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 display: inline;
 }

 .navigation a {
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 }

 .navigation ul {
 position: absolute;
 top: 20px;
 left: 40px;
 }

 .navigation ul a {
 display: block;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<ul class=”navigation”>
 Home

 Recipes

c11.indd 222c11.indd 222 12/05/11 11:22 AM12/05/11 11:22 AM

Introduction to Positioning ❘ 223

 Snacks
 Meals
 Desserts

 Suggestions

</body>
</html>

code snippet /chapter11/fi gure_11-2.html

In Figure 11-2, you see what the document looks like when I add position: absolute;, top: 20px;,
and left: 40px; to the sub-list.

FIGURE 11-2

A number of things have happened here.

 1. The list has been taken out of the document fl ow (that is, it no longer takes up space in the
document or infl uences the positioning of other elements).

 2. It has been positioned 20px from the top and 40px from the left of the top left-hand corner of the
viewport. By default, all absolutely positioned elements are positioned relative to the viewport.

 3. It has been given a position on the z-axis; in other words, it appears above other elements,
in this case the h1. I’ll cover this in more detail later in the chapter.

bottom and right work in the same way; however in their case, the bottom edge of the positioned
element is positioned relative to the bottom of the viewport and the right-hand edge to the right of
the viewport, as you can see in Figure 11-3.

FIGURE 11-3

c11.indd 223c11.indd 223 12/05/11 11:22 AM12/05/11 11:22 AM

224 ❘ CHAPTER 11 POSITIONING

It is important to note that the list is positioned relative to the viewport as it appears when you fi rst
load the page — it will scroll with the rest of the content, as you can see in Figure 11-4, in which
more content has been added.

FIGURE 11-4

In Figure 11-4, you can see that when you scroll down, the boxes stay where they were initially
positioned when the page was loaded up.

You can modify what element is used as the point of reference for absolutely positioned elements.
The rules are pretty simple: If an absolutely positioned element is contained within another
element that has a position other than static, then that element is used as the point of reference for
positioned elements. One common way to change the point of reference for positioned elements is to
give the containing element a “relative” position, and that is the topic of the next section.

Relative Positioning

Relative positioning is very similar to the default static positioning; elements to which relative
positioning is applied do not leave the document fl ow. There are three differences between relative
positioning and static positioning:

 1. Elements with a relative position can be used as a point of reference for elements nested
within them that are absolutely positioned.

 2. The position of a relatively positioned element can be adjusted using the offset properties.

 3. A relatively positioned element can have a position on the z-axis.

To observe how a relatively positioned element can be used as a point of reference for absolutely
positioned descendant elements, I’ll continue in the following Try It Out with the navigation example.
In the navigation example, you don't want the sub-list positioned relative to the viewport, but instead
relative to the list element that it is a child of. I’ll demonstrate how a relatively positioned element can be
used as a point of reference for absolutely positioned descendant elements in the following Try It Out.

TRY IT OUT Positioning Sub-Navigation

Example 11-1

To position the sub-navigation list using position: absolute; and position: relative;, follow these
steps.

c11.indd 224c11.indd 224 12/05/11 11:22 AM12/05/11 11:22 AM

Introduction to Positioning ❘ 225

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 11-1</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 position: relative;
 display: inline;
 }

 .navigation a {
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 }

 .navigation ul {
 position: absolute;
 top: 2em;
 left: 0;
 width: 8em;
 padding: 0;
 }

 .navigation ul a {
 display: block;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<ul class=”navigation”>

c11.indd 225c11.indd 225 12/05/11 11:22 AM12/05/11 11:22 AM

226 ❘ CHAPTER 11 POSITIONING

 Home

 Recipes

 Snacks
 Meals
 Desserts

 Suggestions

</body>
</html>

2. Save the preceding CSS and markup as example_11-1.html. This example results in the output in
Figure 11-5.

FIGURE 11-5

How It Works

In Figure 11-5, you can see that with the addition of a position: relative; declaration to
the li elements in the navigation list, the sub-navigation list is now positioned relative to its container
li instead of the viewport. top: 2em; shifts it from the top of the container li to just below it and
left: 0; positions it to the left hand edge. You will note that other than providing a point of reference
for the absolutely positioned element that position: relative; has had no effect on any of the li
elements.

NOTE When no position is defi ned for any of an element’s ancestors, all elements
are positioned relative to the browser’s viewport by default. If an element does
have a relative, absolute, or fi xed position and is the ancestor of an element
with absolute positioning, that element is used as the point of reference for the
absolutely positioned element.

c11.indd 226c11.indd 226 12/05/11 11:22 AM12/05/11 11:22 AM

Introduction to Positioning ❘ 227

Applying Off set Positioning to Relatively Positioned Elements

The position of elements with relative positioning can be adjusted using combinations of the four
offset properties, top, right, bottom, and left. For example, the top and left properties can be
used to adjust the position of a relatively positioned element. This works similarly to the margin
property that you saw in Chapter 8 with one important difference — the space reserved by the
element is not changed or moved within the document. This will be made clearer with the following
example:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-6</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 display: inline;
 }

 .navigation a {
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 }

 .intro {
 clear: both;
 }

 .recipe {
 border: 1px solid #CCC;
 }

 .recipe h2 {
 position: relative;
 top: 75px;
 left: -50px;
 }

c11.indd 227c11.indd 227 12/05/11 11:22 AM12/05/11 11:22 AM

228 ❘ CHAPTER 11 POSITIONING

 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<ul class=”navigation”>
 Home
 Recipes
 Suggestions

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet /chapter11/fi gure_11-6.html

In Figure 11-6, you see what happens when the offset properties top and left are applied to a
relatively positioned h2 element. Just as with absolute positioning the relatively positioned element
appears above statically positioned content, but the top: 75px; and left: -50px; declarations
move the h2 relative to its original starting position, and the space that it would normally take up in
the document still remains.

c11.indd 228c11.indd 228 12/05/11 11:22 AM12/05/11 11:22 AM

Introduction to Positioning ❘ 229

A recap of relative positioning:

 ➤ Relative positioning is just like static positioning, in that the elements remain in the normal
document fl ow, but that’s where the similarities end.

 ➤ Relatively positioned elements can be used as a point of reference for absolutely positioned
elements.

 ➤ Relatively positioned elements can accept combinations of the four offset properties, top
and left, top and right, bottom and left, and bottom and right. The browser will ignore
combinations of the offset properties beyond those mentioned here. For example, you can’t
combine the top and bottom offset properties on the same relatively positioned element.

 ➤ Relatively positioned content can be stacked and layered along the z-axis (more on this later
in this chapter).

In the next section, I continue the concept of positioning with fi xed positioning, which is similar to
absolute positioning, in that the element leaves the normal fl ow of the document, but unlike absolute
positioning, the context of a fi xed positioned element cannot be altered by nesting the element in
a relatively positioned element or another absolutely positioned element. Fixed position elements
are always positioned relative to the browser’s viewport, and remain in that position, even if the
document is scrolled.

Fixed Positioning

Fixed positioning is used to make an element remain in the same fi xed position, even if the document
is being scrolled. Alas, IE 6 does not support fi xed positioning, so the examples that follow will not
work in IE 6. My advice is to accept this limitation and not utilize fi xed position content in IE 6;
however, Appendix B has links to resources that will allow you to emulate its affect.

FIGURE 11-6

c11.indd 229c11.indd 229 12/05/11 11:22 AM12/05/11 11:22 AM

230 ❘ CHAPTER 11 POSITIONING

Elements with a fi xed position are always positioned relative to the viewport, regardless of whether
they are contained in an element with relative or absolute positioning applied. Here is an example of
fi xed positioning:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-7</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 #header {
 position: fixed;
 width: 600px;
 margin: 0 auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 display: inline;
 }

 .navigation a {
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 }
 </style>
</head>
<body>

<div id=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>
 Home
 Recipes
 Suggestions

c11.indd 230c11.indd 230 12/05/11 11:22 AM12/05/11 11:22 AM

Introduction to Positioning ❘ 231

</div>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

code snippet/chapter11/fi gure_11-7.html

In Figure 11-7, you can see how fi xed position is similar to absolute positioning — both remove the
positioned element from the normal document.

FIGURE 11-7

For this to be a useful technique, you will have to reserve space for the positioned content, which
you’ll do in the following exercise.

c11.indd 231c11.indd 231 12/05/11 11:22 AM12/05/11 11:22 AM

232 ❘ CHAPTER 11 POSITIONING

TRY IT OUT Using Fixed Positioning

Example 11-2

To position the page header so it remains in place even when the page scrolls, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 11-2</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 padding-top: 3em;
 }

 #header-wrapper {
 position: fixed;
 top: 0;
 left: 0;
 width: 100%;
 padding-bottom: 0.5em;
 background: #FFF;
 }

 #header {
 width: 600px;
 margin: 0 auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 display: inline;
 }

 .navigation a {
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 }
 </style>

c11.indd 232c11.indd 232 12/05/11 11:22 AM12/05/11 11:22 AM

Introduction to Positioning ❘ 233

</head>
<body>

<div id=”header-wrapper”>

 <div id=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>
 Home
 Recipes
 Suggestions

 </div>

</div>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in
 a little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_11-2.html. This example results in the output in
Figures 11-8 and 11-9.

c11.indd 233c11.indd 233 12/05/11 11:22 AM12/05/11 11:22 AM

234 ❘ CHAPTER 11 POSITIONING

How It Works

In Figure 11-8 and Figure 11-9, you can see that with the addition of a position: fixed; declaration to
the element with id header-wrapper, the page heading and navigation become fi xed to the viewport.

top: 0; and left: 0; are applied to fi x header-wrapper to the top left of the viewport, while width:
100%; and background: #FFF; ensure that it takes up the full width of the screen and has a solid white
background to prevent other content showing through.

To reserve space in the document for the fi xed content, padding is applied to the top of the body element
with padding-top: 3em;. The amount of padding required is determined by the height of the content
being positioned. It is best to be conservative and allow for a little more than you think. By using em
units, you can be confi dent that if the text is resized that there will still be enough space reserved, and
your fi xed position element will not cover any content before the page is scrolled.

Finally, the element with the id of header is centered using width: 600px; and margin: 0 auto;.

As you can see in Figure 11-9, even when you scroll down the page, the content remains in place.

FIGURE 11-8

FIGURE 11-9

In the next section, I discuss how you can control layering of positioned elements with the z-index
property.

c11.indd 234c11.indd 234 12/05/11 11:22 AM12/05/11 11:22 AM

The z-axis and the z-index Property ❘ 235

THE Z-AXIS AND THE Z-INDEX PROPERTY

The z-index property is used to control layering of positioned elements along an invisible z-axis,
which you might imagine as an invisible line coming out of the computer screen. The following table
outlines the z-index property and its possible values.

PROPERTY VALUE

z-index auto | <integer>

Initial value: auto

The z-index property controls elements’ positions along the invisible z-axis, if those elements are
positioned relative, absolute, or fi xed. To explain how this works, I’ll use the following markup with
a few basic styles to make things clear:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-10</title>
 <style type=”text/css”>
 div {
 width: 100px;
 height: 100px;
 border: 1px solid #000;
 font-size: 25px;
 text-align: center;
 }

 .z1 {
 background: #CC5;
 }

 .z2 {
 background: #CCF;
 }

 .z3 {
 width: 50px;
 height: 50px;
 background: #FCC;
 }

 .z4 {
 background: #5CC;
 }
 </style>
</head>
<body>

c11.indd 235c11.indd 235 12/05/11 11:22 AM12/05/11 11:22 AM

236 ❘ CHAPTER 11 POSITIONING

<div class=”z1”>1</div>

<div class=”z2”>
 2
 <div class=”z3”>
 3
 </div>
</div>

<div class=”z4”>4</div>

</body>
</html>

code snippet /chapter11/fi gure_11-10.html

This will look like Figure 11-10.

FIGURE 11-10

In Figure 11-10, the content is positioned much as you might expect. Each of the div elements is one
after each other in order, with the nested div with class z3 inside the div with class z2. Now I’ll add
absolute positioning with the default z-index value of auto:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-11</title>
 <style type=”text/css”>
 div {
 position: absolute;
 z-index: auto;
 width: 100px;
 height: 100px;

c11.indd 236c11.indd 236 12/05/11 11:22 AM12/05/11 11:22 AM

The z-axis and the z-index Property ❘ 237

 border: 1px solid #000;
 font-size: 25px;
 text-align: center;
 }

 .z1 {
 top: 10px;
 left: 50px;
 background: #CC5;
 }

 .z2 {
 top: 70px;
 left: 120px;
 background: #CCF;
 }

 .z3 {
 top: -10px;
 left: -30px;
 width: 50px;
 height: 50px;
 background: #FCC;
 }

 .z4 {
 top: 90px;
 left: 30px;
 background: #5CC;
 }
 </style>
</head>
<body>

<div class=”z1”>1</div>

<div class=”z2”>
 2
 <div class=”z3”>
 3
 </div>
</div>

<div class=”z4”>4</div>

</body>
</html>

code snippet /chapter11/fi gure_11-11.html

In Figure 11-11, you can see that positioned elements with the default z-index value of auto are
layered over each other in order, with the fi rst element in the source order on the bottom and each
subsequent positioned element, including nested positioned elements, appearing above the previous
positioned element.

c11.indd 237c11.indd 237 12/05/11 11:22 AM12/05/11 11:22 AM

238 ❘ CHAPTER 11 POSITIONING

You can change this stacking order using an integer value for the z-index property:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-12</title>
 <style type=”text/css”>
 div {
 position: absolute;
 z-index: auto;
 width: 100px;
 height: 100px;
 border: 1px solid #000;
 font-size: 25px;
 text-align: center;
 }

 .z1 {
 top: 10px;
 left: 50px;
 background: #CC5;
 }

 .z2 {
 top: 70px;
 left: 120px;
 background: #CCF;
 }

 .z3 {
 z-index: 1;
 top: -10px;
 left: -30px;
 width: 50px;
 height: 50px;
 background: #FCC;
 }

 .z4 {

FIGURE 11-11

c11.indd 238c11.indd 238 12/05/11 11:22 AM12/05/11 11:22 AM

The z-axis and the z-index Property ❘ 239

 top: 90px;
 left: 30px;
 background: #5CC;
 }
 </style>
</head>
<body>

<div class=”z1”>1</div>

<div class=”z2”>
 2
 <div class=”z3”>
 3
 </div>
</div>

<div class=”z4”>4</div>

</body>
</html>

code snippet /chapter11/fi gure_11-12.html

The result is shown in Figure 11-12.

FIGURE 11-12

In Figure 11-12 I have added a z-index value of 1 to the div with class z3. This has had the effect
of creating what is known as a stacking context, and positions the div above the other div elements
with a value of auto. Only elements with an integer value z-index create stacking contexts, and to
explain what that means in the next example, fi rst I will apply an integer z-index to the fourth div:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-13</title>
 <style type=”text/css”>

c11.indd 239c11.indd 239 12/05/11 11:22 AM12/05/11 11:22 AM

240 ❘ CHAPTER 11 POSITIONING

 div {
 position: absolute;
 z-index: auto;
 width: 100px;
 height: 100px;
 border: 1px solid #000;
 font-size: 25px;
 text-align: center;
 }

 .z1 {
 top: 10px;
 left: 50px;
 background: #CC5;
 }

 .z2 {
 top: 70px;
 left: 120px;
 background: #CCF;
 }

 .z3 {
 z-index: 1;
 top: -10px;
 left: -30px;
 width: 50px;
 height: 50px;
 background: #FCC;
 }

 .z4 {
 z-index: 3;
 top: 90px;
 left: 30px;
 background: #5CC;
 }
 </style>
</head>
<body>

<div class=”z1”>1</div>

<div class=”z2”>
 2
 <div class=”z3”>
 3
 </div>
</div>

<div class=”z4”>4</div>

</body>
</html>

code snippet /chapter11/fi gure_11-13.html

c11.indd 240c11.indd 240 12/05/11 11:22 AM12/05/11 11:22 AM

The z-axis and the z-index Property ❘ 241

As you might expect, the fourth div in Figure 11-13 is now above the second and third div elements,
as it has a z-index value of 3 compared to their values of auto and 1, respectively.

FIGURE 11-13

Now I’m going to add z-index values to the remaining div elements: 1 to z1, and 2 to z2. I’ll also
increase the z-index of z3 to 4, one higher than the z-index of z4.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-14</title>
 <style type=”text/css”>
 div {
 position: absolute;
 z-index: auto;
 width: 100px;
 height: 100px;
 border: 1px solid #000;
 font-size: 25px;
 text-align: center;
 }

 .z1 {
 z-index: 1;
 top: 10px;
 left: 50px;
 background: #CC5;
 }

 .z2 {
 z-index: 2;
 top: 70px;
 left: 120px;
 background: #CCF;
 }

 .z3 {
 z-index: 4;
 top: -10px;
 left: -30px;

c11.indd 241c11.indd 241 12/05/11 11:22 AM12/05/11 11:22 AM

242 ❘ CHAPTER 11 POSITIONING

 width: 50px;
 height: 50px;
 background: #FCC;
 }

 .z4 {
 z-index: 3;
 top: 90px;
 left: 30px;
 background: #5CC;
 }
 </style>
</head>
<body>

<div class=”z1”>1</div>

<div class=”z2”>
 2
 <div class=”z3”>
 3
 </div>
</div>

<div class=”z4”>4</div>

</body>
</html>

code snippet /chapter11/fi gure_11-14.html

Figure 11-14 might not be what you expected! Although z1 and z2 are layered in the order specifi ed by
their z1 values, the fourth div is still positioned above the third div, even though it has a lower value.

FIGURE 11-14

This is the stacking context in action. Because the div with class z2 is an absolutely positioned
element with an integer z-index value, it creates a new stacking context. All elements within a
stacking context are fi rst layered according to the context, and then by their z-index value within

c11.indd 242c11.indd 242 12/05/11 11:22 AM12/05/11 11:22 AM

The z-axis and the z-index Property ❘ 243

the context. No elements within a stacking context will appear above the z-index of the element
that created the context.

Within a static context, positioned elements behave as if elements outside of the context don’t exist
for stacking purposes, that is we can add another div element to the element with the class of z2 and
specify the order of stacking with respect to the element with the class of z3, but not with any of the
elements outside of z2:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-15</title>
 <style type=”text/css”>
 div {
 position: absolute;
 z-index: auto;
 width: 100px;
 height: 100px;
 border: 1px solid #000;
 font-size: 25px;
 text-align: center;
 }

 .z1 {
 z-index: 1;
 top: 10px;
 left: 50px;
 background: #CC5;
 }

 .z2 {
 z-index: 2;
 top: 70px;
 left: 120px;
 background: #CCF;
 }

 .z3 {
 z-index: 99;
 top: -10px;
 left: -30px;
 width: 50px;
 height: 50px;
 background: #FCC;
 }

 .z3b {
 z-index: 1;
 top: -30px;

c11.indd 243c11.indd 243 12/05/11 11:22 AM12/05/11 11:22 AM

244 ❘ CHAPTER 11 POSITIONING

 left: -65px;
 width: 50px;
 height: 50px;
 background: #FCC;
 }

 .z4 {
 z-index: 3;
 top: 90px;
 left: 30px;
 background: #5CC;
 }
 </style>
</head>
<body>

<div class=”z1”>1</div>

<div class=”z2”>
 2
 <div class=”z3”>
 3
 </div>
 <div class=”z3b”>
 3b
 </div>
</div>

<div class=”z4”>4</div>

</body>
</html>

code snippet /chapter11/fi gure_11-15.html

In Figure 11-15, you can see this in action. The new div element is positioned behind its sibling as
it has a lower z-index value. The third div is still not positioned above the div with the class of z3,
despite having a much higher z-index value of 99.

FIGURE 11-15

c11.indd 244c11.indd 244 12/05/11 11:22 AM12/05/11 11:22 AM

The z-axis and the z-index Property ❘ 245

The IE 6/IE 7 z-index Bug

IE 6 and IE 7 support the z-index property but with a bug that was fi xed for IE 8. Positioned
elements with a z-index value of auto are given a z-index value anyway, starting at 0 and increasing
by 1 for each positioned element in order. This means that every positioned element generates
a stacking context, as you can see in Figure 11-16 when you look at the code I showed you for
Figure 11-12 in IE 6:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 11-16</title>
 <style type=”text/css”>
 div {
 position: absolute;
 z-index: auto;
 width: 100px;
 height: 100px;
 border: 1px solid #000;
 font-size: 25px;
 text-align: center;
 }

 .z1 {
 top: 10px;
 left: 50px;
 background: #CC5;
 }

 .z2 {
 top: 70px;

NOTE It is easy to get to the point where you have to specify very large z-index
values if you don’t carefully keep control — as each new element must be placed
above another, values go from 10 or less, to hundreds and then thousands! It is
best to rely on management of z-index values than just having a free-for-all over
which content appears on top. If you are working with other people to develop a
site, decide from the start what content needs to appear on top and determine
values accordingly. Remember that elements inside a stacking context are
isolated from the z-index values outside the context, so you can start back at 1.

There is a good reason to keep z-index values below 100. Assistive technologies
such as the speech recognition software Dragon NaturallySpeaking insert
elements into the page which show the user the text that the software has
recognized. These elements have a z-index of 100, so positioning content
above this could interfere with your users’ ability to browse your site.

c11.indd 245c11.indd 245 12/05/11 11:22 AM12/05/11 11:22 AM

246 ❘ CHAPTER 11 POSITIONING

 left: 120px;
 background: #CCF;
 }

 .z3 {
 z-index: 1;
 top: -10px;
 left: -30px;
 width: 50px;
 height: 50px;
 background: #FCC;
 }

 .z4 {
 top: 90px;
 left: 30px;
 background: #5CC;
 }
 </style>
</head>
<body>

<div class=”z1”>1</div>

<div class=”z2”>
 2
 <div class=”z3”>
 3
 </div>
</div>

<div class=”z4”>4</div>

</body>
</html>

code snippet /chapter11/fi gure_11-16.html

FIGURE 11-16

c11.indd 246c11.indd 246 12/05/11 11:22 AM12/05/11 11:22 AM

The z-axis and the z-index Property ❘ 247

Even though only the div with the class of z3 has an integer z-index value, all of the positioned div
elements have a stacking context in IE 6 and IE 7, so the third div is not stacked above the fourth as
it would be in all other browsers, but within the stacking context of the second div.

Unfortunately, there is no solution to this problem, other than to be aware of the limitations that
positioning has in these browsers. Most of the time when you nest positioned elements you will also
want to take advantage of a new stacking context as well, so fortunately this is not as big an issue as
it may seem.

EXERCISES

 1. What is the default value of the top, right, bottom, and left properties?

 2. What are off set properties used for?

 3. If the <body> element has a sole child that is positioned absolutely, what point of reference is used

for its positioning?

 4. If the <body> element has a sole child that is positioned relatively, with an id name of relative-
element, and that relatively positioned element has a child that is absolutely positioned, what

point of reference is used for the absolutely positioned element?

 5. If the element from Exercise 4, relative-element, has a fi xed position child, what point of reference

is used for its positioning?

 6. You have fi ve elements that are all absolutely positioned siblings, but no z-index is specifi ed for

any of them. In what order will they be stacked?

c11.indd 247c11.indd 247 12/05/11 11:22 AM12/05/11 11:22 AM

248 ❘ CHAPTER 11 POSITIONING

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, you saw the power of positioning in web design. Positioning offers web designers
solutions to challenges both simple and complex. In this chapter, you learned the following:

TOPIC KEY CONCEPTS

Absolute positioning Absolute positioned elements are positioned relative to the viewport, by

default.

Relative positioning Relative positioning allows you to change the point of reference used for

absolute positioning. In addition, the four off set properties can be used on

relatively positioned content to adjust its position with respect to its static

origin.

Fixed positioning Fixed position elements remain in the same place when a document is

scrolled, and fi xed position elements are always positioned relative to the

viewport.

z-index By default, elements are stacked in ascending order, but this layering can

be controlled with the z-index property.

c11.indd 248c11.indd 248 12/05/11 11:22 AM12/05/11 11:22 AM

Styling Tables

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The optional table elements that can make it easier to style a table

and that make the structure more intuitive

 ➤ Controlling placement of the table caption

 ➤ Controlling the layout of the table

 ➤ Controlling the spacing between table cells

Tables are primarily a method to show the relationship between data, much as a spreadsheet
application does. Tables can be complex creatures in HTML, but if used properly, they allow
information to be presented in a neat, organized, and consistent manner.

OPTIONAL TABLE ELEMENTS

The <table> element has several optional elements that can be used to enhance the presentation
and semantic value of a table, including captions, columns, headings, and footers. Take a look at
a <table> element that makes use of all these optional elements. When I get into the discussion
of styling tables, beginning with the section “Table Captions,” you’ll need to understand what
is possible in a table. The following markup shows a table complete with all the required and
optional elements.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 12-1</title>
</head>

12

c12.indd 249c12.indd 249 12/05/11 11:23 AM12/05/11 11:23 AM

D
o

250 ❘ CHAPTER 12 STYLING TABLES

<body>

<table>
 <caption>Ingredients</caption>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

code snippet /chapter12/fi gure_12-1.html

Figure 12-1 shows what this table looks like with no additional styling.

c12.indd 250c12.indd 250 12/05/11 11:23 AM12/05/11 11:23 AM

Table Captions ❘ 251

In the preceding markup, you can see that HTML tables support many additional, optional elements.

 ➤ The <caption> element is used to provide the table with a caption or the name of the table.

 ➤ The <colgroup> element is used to enclose each of the table <col> elements. <colgroup>
elements are not displayed.

 ➤ <col> elements are used to control certain properties of each table column, the most
common being the column width. <col> elements are not displayed and contain no content.

 ➤ The <thead> element encloses information about column headers. If you print a table that
spans more than one page, the information in the <thead> element is repeated at the top of
each page.

 ➤ The <tbody> element contains the main table data.

 ➤ The <tfoot> element is similar to the <thead> element, and is sometimes used to repeat
column headers in long tables but may contain summary or footnote content. When you
print a table that spans more than one page, the information in the <tfoot> element is
repeated at the bottom of each page.

In the coming sections, you learn more about what properties CSS offers for tweaking the visual
presentation of HTML tables.

TABLE CAPTIONS

Captions are presented in the <caption> element. By default, they are rendered above the table in
the document. You use the caption-side property to control the placement of the table caption.

The following table shows the caption-side property and its values.

PROPERTY VALUE

caption-side top | bottom

Initial value: top

FIGURE 12-1

c12.indd 251c12.indd 251 12/05/11 11:23 AM12/05/11 11:23 AM

252 ❘ CHAPTER 12 STYLING TABLES

Using the caption-side property, you can control whether the caption appears above or below the
table. The following is a demonstration of the caption-side property positioning the caption at the
bottom of the table.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 12-2</title>
 <style type=”text/css”>
 table {
 caption-side: bottom;
 }
 </style>
</head>
<body>

<table>
 <caption>Ingredients</caption>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>

NOTE Although IE 6 and IE 7 support the <caption> element for tables, neither
IE 6 nor IE 7 supports the CSS caption-side property. The <caption> element
is displayed but is always positioned above the table.

All other browsers (including IE 8 and 9) have full support.

c12.indd 252c12.indd 252 12/05/11 11:23 AM12/05/11 11:23 AM

Table Columns ❘ 253

 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

code snippet /chapter12/fi gure_12-2.html

In Figure 12-2, you see how the caption-side property works; the table caption appears beneath
the table.

In the next section, I continue the discussion of tables with the styles allowed in table columns.

TABLE COLUMNS

In HTML, the <colgroup> and <col> elements allow the vertical columns of a table to be controlled.
This is useful for controlling the width of a column of data, background color, or text color.

FIGURE 12-2

c12.indd 253c12.indd 253 12/05/11 11:23 AM12/05/11 11:23 AM

254 ❘ CHAPTER 12 STYLING TABLES

I have already shown how to use the width and background-color properties in previous chapters,
and they work in exactly the same way on <col> elements. Even though the <col> elements
themselves are not visible, the styles applied to them carry over to the cells that appear in those
columns in the table. In the following Try It Out, I show how width and background-color can be
applied to <col> elements.

NOTE IE is the only browser that supports the setting of text color on <col>
elements. This is non-standard behavior, so don’t expect to see it in other
browsers in the future.

All browsers have support for width and background color properties.

TRY IT OUT Styling Columns

Example 12-1

To apply styles to <col> elements, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 12-1</title>
 <style type=”text/css”>
 .ingredient {
 width: 200px;
 background-color: #CC5;
 color: red;
 }

 .quantity {
 width: 400px;
 background-color: #CCF;
 }
 </style>
</head>
<body>

<table>
 <caption>Ingredients</caption>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>

c12.indd 254c12.indd 254 12/05/11 11:23 AM12/05/11 11:23 AM

Table Columns ❘ 255

 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

 2. Save the preceding CSS and markup as example_12-1.html. This example results in the output
in Figure 12-3.

FIGURE 12-3

c12.indd 255c12.indd 255 12/05/11 11:23 AM12/05/11 11:23 AM

256 ❘ CHAPTER 12 STYLING TABLES

How It Works

In Example 12-1, we gave each <col> element a class and used this class to apply styles that affected
the column they were associated with. The <col> element with class ingredient is given a width of
200px and a light green background-color. The <col> element with class quantity is given a width
of 400px and a light blue background-color.

These styles are applied to each cell within the <thead>, <tbody>, and <tfoot> elements.

Now that you have seen the various elements available for use in a <table> element, the following
section explores how you control table width with the table-layout property.

CONTROLLING TABLE LAYOUT

The following table outlines the table-layout property and its values.

PROPERTY VALUE

table-layout auto | fixed

Initial value: auto

As you learned in Chapter 8, by default, a table expands and contracts to accommodate the data
contained inside. As data fi lls the table, it continues to expand as long as there is space. When you
look at them this way, tables are inherently fl uid.

By adding borders, you can see in Figure 12-4 that, by default, table cells and the table itself
expands to the width of the content.

FIGURE 12-4

Sometimes, however, it is necessary to force a table into a fi xed width for both the table and the cells.
The following is a demonstration of what happens when you specify a fi xed width for the table.

c12.indd 256c12.indd 256 12/05/11 11:23 AM12/05/11 11:23 AM

Controlling Table Layout ❘ 257

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 12-5</title>
 <style type=”text/css”>
 table,
 .control {
 width: 100px;
 }

 table,
 th,
 td,
 .control {
 border: 1px solid #000;
 }
 </style>
</head>
<body>

<div class=”control”>
 <p>100px wide</p>
</div>

<table>
 <caption>Ingredients</caption>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>
 </tr>
 <tr>

c12.indd 257c12.indd 257 12/05/11 11:23 AM12/05/11 11:23 AM

258 ❘ CHAPTER 12 STYLING TABLES

 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

code snippet /chapter12/fi gure_12-5.html

I’ve given the table a width of 100px and added a snippet of markup to show what a 100px width
should look like, as you can see in Figure 12-5

FIGURE 12-5

As you can see in Figure 12-5, the table is wider than 100px because the text contained in the cells
is too wide.

c12.indd 258c12.indd 258 12/05/11 11:23 AM12/05/11 11:23 AM

Controlling Table Layout ❘ 259

Should it be a requirement that a table does not expand to fi t its contents, you can use the
table-layout: fixed; declaration to force the width as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 12-6</title>
 <style type=”text/css”>
 table {
 table-layout: fixed;
 }

 table,
 .control {
 width: 100px;
 }

 table,
 th,
 td,
 .control {
 border: 1px solid #000;
 }
 </style>
</head>
<body>

<div class=”control”>
 <p>100px wide</p>
</div>

<table>
 <caption>Ingredients</caption>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Bread</td>

c12.indd 259c12.indd 259 12/05/11 11:23 AM12/05/11 11:23 AM

260 ❘ CHAPTER 12 STYLING TABLES

 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

code snippet /chapter12/fi gure_12-6.html

This results in the output in Figure 12-6.

FIGURE 12-6

c12.indd 260c12.indd 260 12/05/11 11:23 AM12/05/11 11:23 AM

Collapsing Borders ❘ 261

Now that I’ve explored the table-layout property, in the following sections I examine the other
CSS properties that exist for controlling table layout.

COLLAPSING BORDERS

Tables, by default, include some spacing between each of the cells appearing in the table. As you
have seen in the previous examples, each cell has its own border with a space between the borders
of its neighboring cells. The border-collapse property allows you to remove this space completely,
and for fi ner control, the border-spacing property allows you to specify the spacing.

The following table outlines the border-collapse property and its values.

PROPERTY VALUE

border-collapse collapse | separate

Initial value: separate

By default, the border-collapse property has a value of separate. If you set the value
to collapse, you remove the spacing between each cell. The following demonstrates the
border-collapse property in action:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 12-7</title>
 <style type=”text/css”>
 table {
 border-collapse: collapse;
 }

 table,
 th,
 td {

The table is forced to maintain its width of 100 pixels, regardless of how much data is contained
in its table cells. If the content inside the cells results in a width larger than 100 pixels, the content
overfl ows.

NOTE When content overfl ows in all versions of IE the content is clipped, as if a
overflow: hidden; declaration has been applied to each th and td.

All other browsers display the content as per Figure 12-6. By applying the
overflow property, which I covered in Chapter 8, whenever you use
table-layout: fixed; you can avoid inconsistencies across browsers.

c12.indd 261c12.indd 261 12/05/11 11:23 AM12/05/11 11:23 AM

262 ❘ CHAPTER 12 STYLING TABLES

 border: 1px solid #000;
 }
 </style>
</head>
<body>

<table>
 <caption>Ingredients</caption>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

code snippet /chapter12/fi gure_12-7.html

c12.indd 262c12.indd 262 12/05/11 11:23 AM12/05/11 11:23 AM

Controlling Border Spacing ❘ 263

If you apply the collapse value, all the cells are squeezed together, and the borders between cells
are combined. Figure 12-7 shows what happens.

Notice that the border on the <table> element is also collapsed.

The next section talks about how you can control spacing between table cells with greater precision
with the border-spacing property.

CONTROLLING BORDER SPACING

The following table outlines the border-spacing property and its values.

PROPERTY VALUE

border-spacing <length> <length>?

Initial value: 0

FIGURE 12-7

NOTE IE 6 and IE 7 do not support the border-spacing property. Instead,
if you must support these browsers, a common workaround is to remove
borders from the table cells completely, and instead wrap the contents of
each cell in a <div> element, to which you apply the borders and padding
you need.

The border-spacing property allows more control over cell spacing than border-collapse
because it allows the length to be specifi ed.

c12.indd 263c12.indd 263 12/05/11 11:23 AM12/05/11 11:23 AM

264 ❘ CHAPTER 12 STYLING TABLES

If, as in the following example, you provide a single length value of 15px, 15 pixels of space are
added between each cell, both vertically and horizontally:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 12-8</title>
 <style type=”text/css”>
 table {
 border-spacing: 15px;
 }

 table,
 th,
 td {
 border: 1px solid #000;
 }
 </style>
</head>
<body>

<table>
 <caption>Ingredients</caption>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>

c12.indd 264c12.indd 264 12/05/11 11:23 AM12/05/11 11:23 AM

Controlling Border Spacing ❘ 265

 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

code snippet /chapter12/fi gure_12-8.html

The result is shown in Figure 12-8.

You can see that the space between cells in <thead> and <tbody>, and between cells in <tfoot>
and <tbody>, is doubled as their containing element (<thead>, <tfoot> or <tbody>) sets a new
context for cell boundaries.

The border-spacing property has the following syntax:

border-spacing: <horizontal spacing length> <vertical spacing length>;

FIGURE 12-8

c12.indd 265c12.indd 265 12/05/11 11:23 AM12/05/11 11:23 AM

266 ❘ CHAPTER 12 STYLING TABLES

If the optional second value is present, this property allows the vertical and horizontal spacing to be
specifi ed. For our fi nal example of this chapter, let’s Try It Out.

TRY IT OUT Style Borders for Separating Rows and Columns

Example 12-2

To see the border-spacing property in action, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 12-2</title>
 <style type=”text/css”>
 table {
 border-spacing: 15px 5px;
 }

 table,
 th,
 td {
 border: 1px solid #000;
 }
 </style>
</head>
<body>

<table>
 <caption>Ingredients</caption>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Ingredient</th>
 <th>Quantity of Ingredient</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Bread</td>

c12.indd 266c12.indd 266 12/05/11 11:23 AM12/05/11 11:23 AM

Controlling Border Spacing ❘ 267

 <td>2 medium thickness slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>Enough for 2 slices of bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
</table>

</body>
</html>

 2. Save the preceding CSS and markup as example_12-2.html. This example results in the output
in Figure 12-9.

FIGURE 12-9

How It Works

In Example 12-2, we applied a border-spacing: 15px 5px; declaration to the <table> element,
which added 15px of horizontal spacing and 5px vertical spacing between each cell.

c12.indd 267c12.indd 267 12/05/11 11:23 AM12/05/11 11:23 AM

268 ❘ CHAPTER 12 STYLING TABLES

EXERCISES

 1. Describe what the table-layout: fixed; declaration does.

 2. When sizing using the table-layout: fixed; declaration, how does the browser determine the

width of table columns?

 3. What purpose does the optional <thead> element serve?

 4. In what containing element does the main table data appear?

c12.indd 268c12.indd 268 12/05/11 11:23 AM12/05/11 11:23 AM

Controlling Border Spacing ❘ 269

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, I showed you what is possible with HTML tables and CSS. You learned the following:

TOPIC KEY CONCEPTS

Table structure and

optional elements

Tables have a lot of optional elements that make the structure easier to

style. These include columns, heading groupings, body groupings, and

footer groupings.

Positioning of table

caption elements

You control the placement of a table’s caption by using the

caption-side property.

Table layout You control a table’s layout by using the table-layout property. With

this property, it is possible to force a table into a certain width.

Controlling border

spacing

You can remove the spacing between table cells by using the

border-collapse property.

You can also adjust the spacing between table cells by using the

border-spacing property.

c12.indd 269c12.indd 269 12/05/11 11:23 AM12/05/11 11:23 AM

c12.indd 270c12.indd 270 12/05/11 11:23 AM12/05/11 11:23 AM

Create a Complete Layout

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to create a complete layout from scratch

 ➤ How to add gradient backgrounds with CSS

 ➤ How to use custom fonts

Throughout this book, you have learned everything you need to create a complete layout for
a website. In this chapter, I go through this process from HTML to CSS, and show you a few
new tricks.

CREATING THE PAGE WITH HTML

Throughout this chapter, I show you how to build the page you see in Figure 13-1.

Many parts of this layout should be familiar to you from previous chapters, but you may
notice that the page has a gradient background from dark gray to white, and the h1 element
uses a non-standard font. I’ll show you how this is done later in the chapter, but the fi rst thing
you will do in the following example is create the markup.

13

c13.indd 271c13.indd 271 12/05/11 11:24 AM12/05/11 11:24 AM

D
o

272 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

FIGURE 13-1

TRY IT OUT Markup Content before Adding CSS

Example 13-1

To create the markup that the complete layout uses, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 13-1</title>
</head>
<body>

<div class=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>
 Home
 Recipes
 Suggestions

c13.indd 272c13.indd 272 12/05/11 11:24 AM12/05/11 11:24 AM

Creating the Page with HTML ❘ 273

 <p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

</div>

<h2>Welsh Rarebit</h2>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

<div class=”ingredients”>

 <h3>Ingredients</h3>

 <table>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>For bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>

c13.indd 273c13.indd 273 12/05/11 11:24 AM12/05/11 11:24 AM

274 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

 </table>

</div>

<h3>Instructions</h3>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously until
 it has melted. Add a teaspoon of wholegrain mustard and grind in a little
 pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
 edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

</body>
</html>

 2. Save the preceding CSS and markup as example_13-1.html. This example results in the output in
Figure 13-2 in Safari and other desktop browsers.

FIGURE 13-2

c13.indd 274c13.indd 274 12/05/11 11:24 AM12/05/11 11:24 AM

Styling Text and Custom Fonts ❘ 275

Next, you’re going to start adding CSS, specifi cally styling the text to match the fonts used in the
design.

STYLING TEXT AND CUSTOM FONTS

In Chapter 5, I showed you how to apply font faces to text, so you may want to take a look back if
you can’t remember how.

There are three fonts used on the page:

 ➤ Verdana for the main text

 ➤ Georgia for the headings that are part of the main page content

 ➤ Raleway for the site title in the example element.

The fi rst two fonts are fairly common, and a large number of visitors to a site can be expected to
have them, so let’s deal with them fi rst.

body {
 font: 82%/1.4 Verdana, Arial, Helvetica, sans-serif;
}

h2,
h3 {
 font-family: Georgia, Times, Times New Roman, serif;
}

In Figure 13-3, you can see the results of this code.

How It Works

In Example 13-1, you have written the basic HTML for the page. I’ve kept the markup as simple as
possible, but with a few concessions to the design you will have to implement, such as wrapping the page
header elements and the ingredients section in div elements with classes of header and ingredients,
respectively, as I know that you will need to add specifi c styles to these elements to achieve the
positioning you need.

The most important thing at this stage is that the content in Figure 13-2 works with only
the default browser styles, particularly that the meaning of each section is clear and in the correct
order.

c13.indd 275c13.indd 275 12/05/11 11:24 AM12/05/11 11:24 AM

276 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

Figure 13-3 shows the result of applying default fonts; already the page is cleaner and easier to read,
because I am using sans-serif fonts for the main content that most people fi nd more readable on
screen. Also of note is that on the body element I have also set a font size of 82%, and a line-height
of 1.4, which makes the main text 13px in size, and gives each line a little more spacing, again
making the page more readable for most visitors. By specifying the font size with a percentage value
I have not broken the font resizing facility in Internet Explorer.

The third font, Raleway, is a bit more diffi cult, as it is not a commonly installed font. Fortunately, you can
make fonts available to visitors of your site that they may not have installed with the @font-face rule:

@font-face {
 font-family: Raleway;
 src: url(raleway_thin.eot);
 src: local(raleway_thin), url(raleway_thin.ttf) format(opentype);
}

This creates a new font-face reference that you can use in your CSS. There are two parts to this rule.

First is the font-family property; in this case, it behaves slightly differently than you are used to.
Instead of applying a font to an element in the page, it provides a label you can use to reference the
font later. It can be any string that is valid in CSS (see Chapter 2), but you should make sure that it
identifi es the font so that you don’t get confused later. I have given this font the label Raleway.

Next is the src attribute. There are two src attributes in this rule because Internet Explorer requires
a different fi le format for fonts than other browsers do. The fi rst src declaration is for Internet

FIGURE 13-3

c13.indd 276c13.indd 276 12/05/11 11:24 AM12/05/11 11:24 AM

Styling Text and Custom Fonts ❘ 277

Explorer, and the value is simply the URI of the font fi le. The second src declaration is for all other
browsers, which support the Open Type format for fonts. This declaration must come second so
that it overrides the fi rst src declaration for supporting browsers. There are two extra parts to this
declaration: local, which indicates that the font should be looked for in the user’s installed fonts fi rst,
and so should be given the fi lename of the font without an extension (in this case, raleway_thin) as
the value; and format, which should be given the value opentype. format is optional, but because
Internet Explorer doesn’t support it, it will ignore the second src declaration.

The following Try It Out puts this into action

TRY IT OUT Using Custom Fonts

Example 13-2

To use a font that is not installed on a user’s computer, follow these steps. You should download the
fi les for this example as they include the font fi les you will need.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 13-2</title>
 <style type=”text/css”>
 @font-face {
 font-family: Raleway;
 src: url(raleway_thin.eot);
 src: local(raleway_thin), url(raleway_thin.ttf) format(opentype);
 }

 body {
 font: 82%/1.4 Verdana, Arial, Helvetica, sans-serif;
 }

 h1 {
 font-family: Raleway, Georgia, Times, Times New Roman, serif;
 }

 h2,
 h3 {
 font-family: Georgia, Times, Times New Roman, serif;
 }
 </style>
</head>
<body>

<div class=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>

c13.indd 277c13.indd 277 12/05/11 11:24 AM12/05/11 11:24 AM

278 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

 Home
 Recipes
 Suggestions

 <p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

</div>

<h2>Welsh Rarebit</h2>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

<div class=”ingredients”>

 <h3>Ingredients</h3>

 <table>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>For bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>

c13.indd 278c13.indd 278 12/05/11 11:24 AM12/05/11 11:24 AM

Styling Text and Custom Fonts ❘ 279

 </tbody>
 </table>

</div>

<h3>Instructions</h3>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously until
 it has melted. Add a teaspoon of wholegrain mustard and grind in a little
 pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
 edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

</body>
</html>

 2. Save the preceding CSS and markup as example_13-2.html. This example results in the output in
Figure 13-4 in Safari and other desktop browsers.

FIGURE 13-4

c13.indd 279c13.indd 279 12/05/11 11:24 AM12/05/11 11:24 AM

280 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

How It Works

In Example 13-2, you have added font styling to the page.

First you’ve applied a font size, line height, and font family to the body element, with the following
declaration:

body {
 font: 82%/1.4 Verdana, Arial, Helvetica, sans-serif;
}

Next, you set a font family to all h1 and h3 elements:

h2,
h3 {
 font-family: Georgia, Times, Times New Roman, serif;
}

Finally, you add an @font-face rule to make the Raleway font available to use in the same way that you
normally would:

@font-face {
 font-family: Raleway;
 src: url(raleway_thin.eot);
 src: local(raleway_thin), url(raleway_thin.ttf) format(opentype);
}

h1 {
 font-family: Raleway, Georgia, Times, Times New Roman, serif;
}

As you can see, you still specify fallback fonts, which in this case would be used by older browsers that
don’t support the @font-face rule or if the font fi le has not downloaded.

NOTE Use custom fonts with caution. Each fi le needs to be downloaded from
the server hosting your website, and adds to the overall size of a page. The
Raleway font fi les are 74KB, for example, and could account for a signifi cant
proportion of the user’s download time. Until the fi le has downloaded, the text
using the font will not be displayed.

There aren’t many fonts available that are free for you to use in this way.
You will fi nd Raleway by Matt McIneney, and other free-to-use fonts at www
.theleagueofmoveabletype.com.

Next I will add the CSS that forms the layout of the page.

c13.indd 280c13.indd 280 12/05/11 11:24 AM12/05/11 11:24 AM

Building the Layout ❘ 281

BUILDING THE LAYOUT

 You will have already learned everything required to create the layout for the site, so instead of
going through each part, instead I encourage you to Try It Out straight away. Experiment with the
styles to come up with your own variations, and to help you fi gure out if there are any aspects of
CSS that you don’t fully understand yet. At the end, I will show you where to look in the book to
refresh your memory or if you need to re-read any chapters.

TRY IT OUT Building a Layout

Example 13-3

To complete the layout of the example page, follow these steps. You should download the fi les for this
example, as they include the font fi les you will need.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 13-3</title>
 <style type=”text/css”>
 @font-face {
 font-family: Raleway;
 src: url(raleway_thin.eot);
 src: local(raleway_thin), url(raleway_thin.ttf) format(opentype);
 }

 body {
 width: 700px;
 margin: 0 auto;
 padding: 29px;
 border: 1px solid #233;
 border-top: none;
 background: #FFF;
 font: 82%/1.4 Verdana, Arial, Helvetica, sans-serif;
 }

 h1 {
 float: left;
 margin-top: 0;
 font-family: Raleway, Georgia, Times, Times New Roman, serif;
 }

 h2,

c13.indd 281c13.indd 281 12/05/11 11:24 AM12/05/11 11:24 AM

282 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

 h3 {
 font-family: Georgia, Times, Times New Roman, serif;
 }

 .header {
 border-bottom: 6px solid #233;
 }

 .navigation {
 float: right;
 margin: 0;
 list-style: none;
 }

 .navigation li {
 float: left;
 }

 .navigation a {
 display: block;
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 color: #233;
 text-decoration: none;
 }

 .navigation a:focus,
 .navigation a:hover {
 background: #233;
 color: #FFF;
 }

 .header .intro {
 clear: both;
 font-weight: bold;
 }

 .intro {
 font-style: italic;
 }

 .ingredients {
 float: right;
 margin: 0 0 15px 15px;
 padding-left: 15px;
 border-left: 1px solid #CCC;
 }

 .ingredients h3 {
 margin-top: 0;
 }

 .ingredients th {

c13.indd 282c13.indd 282 12/05/11 11:24 AM12/05/11 11:24 AM

Building the Layout ❘ 283

 text-align: left;
 }

 .ingredients th,
 .ingredients td {
 padding: 2px 5px;
 }

 .ingredients .ingredient {
 background-color: #CC5;
 }

 .ingredients .quantity {
 background-color: #CCF;
 }
 </style>
</head>
<body>

<div class=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>
 Home
 Recipes
 Suggestions

 <p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

</div>

<h2>Welsh Rarebit</h2>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

<div class=”ingredients”>

 <h3>Ingredients</h3>

 <table>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity</th>
 </tr>

c13.indd 283c13.indd 283 12/05/11 11:24 AM12/05/11 11:24 AM

284 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

 </thead>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>For bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>
 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
 </table>

</div>

<h3>Instructions</h3>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously until
 it has melted. Add a teaspoon of wholegrain mustard and grind in a little
 pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
 edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

</body>
</html>

 2. Save the preceding CSS and markup as example_13-3.html. This example results in the output in
Figure 13-5 in Safari and other desktop browsers.

c13.indd 284c13.indd 284 12/05/11 11:24 AM12/05/11 11:24 AM

Gradient Backgrounds ❘ 285

How It Works

In Example 13-3, you have completed the layout of the example page.

If you don't understand any aspects of the CSS used here, you should review the following chapters:

Chapter 3 for using selectors and pseudo-classes

Chapter 7 for setting background colors

Chapter 8 for understanding widths, margins, and padding

Chapter 10 for styling lists

Chapter 12 for styling tables

FIGURE 13-5

Last in this chapter, I will show you how to create gradient backgrounds with CSS.

GRADIENT BACKGROUNDS

In Chapter 7 you learned how to set solid background colors and background images, but you
can also create gradient backgrounds with CSS. There are different types of gradient, but here I
will cover a linear gradient of two colors from top to bottom. See Appendix B for links to further
information about creating gradient backgrounds.

c13.indd 285c13.indd 285 12/05/11 11:24 AM12/05/11 11:24 AM

286 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

As with the @font-face rule you saw earlier in this chapter, you need to write different declarations
for different browsers as follows:

background-image: -moz-linear-gradient(top, #233, #FFF);
background-image: -webkit-gradient(linear, left top, left bottom, from(#233),
to(#FFF));
-ms-filter: “progid:DXImageTransform.Microsoft.Gradient(StartColorStr=#223333,
EndColorStr=#FFFFFF)”;
background-image: linear-gradient(top, #233, #FFF);

Three of the four the previous declarations apply to the background-image property, and I will cover
these fi rst.

The fi rst and second declarations apply the gradient to Mozilla Firefox and to webkit browsers
(Apple Safari and Google Chrome). The values for the background-image property in both cases are
prefi xed with –moz- and –webkit- respectively, which are known as vendor prefi xes. Vendor prefi xes
allow browsers to implement the unfi nished CSS3 specifi cation without having to worry if the fi nal
recommendation is different. As you can see, the values that follow each vendor prefi x are different,
which demonstrates that there is still uncertainty about how gradients will be implemented.

The fi nal of the four declarations does not have a vendor prefi x, and this is because this is the currently
proposed format in the CSS3 recommendation. You will see a similar use of vendor prefi xes for other
CSS3 properties, and it is common practice for the non-prefi xed version of a declaration to be added
last so that as browsers fi nalize support the browser neutral declaration will take precedence.

The other common vendor prefi xes are –o- for the Opera browser (which doesn’t support CSS3
gradients at the time of writing) and –ms- for Internet Explorer.

The –ms- prefi x is used in the third of the four declarations and follows a very different format; instead,
you can implement gradient using proprietary Microsoft fi lters. This fi lter works in both IE8 and IE9.

Despite the differences, each of these declarations works the same way. They all require two RGB or
hexadecimal color values, in this case #233 and #FFF for Firefox, Chrome, and Safari, and #223333
and #FFFFFF for Internet Explorer, which does not correctly support short hexadecimal form.

Let’s Try It Out to put this into practice.

TRY IT OUT Adding a Gradient Background

Example 13-4

To fi nish the page by adding a gradient background, follow these steps. You should download the fi les
for this example, as they include the font fi les you will need.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 13-4</title>

c13.indd 286c13.indd 286 12/05/11 11:24 AM12/05/11 11:24 AM

Gradient Backgrounds ❘ 287

 <style type=”text/css”>
 @font-face {
 font-family: Raleway;
 src: url(raleway_thin.eot);
 src: local(raleway_thin), url(raleway_thin.ttf) format(opentype);
 }

 html {
 height: 100%;
 background-color: #233;
 background-image: -moz-linear-gradient(top, #233, #FFF);
 background-image: -webkit-gradient(linear, left top, left bottom,
 from(#233), to(#FFF));
 -ms-filter: “progid:DXImageTransform.Microsoft.Gradient
 (StartColorStr=#223333, EndColorStr=#FFFFFF)”;
 background-image: linear-gradient(top, #233, #FFF);
 }

 body {
 width: 700px;
 margin: 0 auto;
 padding: 29px;
 border: 1px solid #233;
 border-top: none;
 background: #FFF;
 font: 82%/1.4 Verdana, Arial, Helvetica, sans-serif;
 }

 h1 {
 float: left;
 margin-top: 0;
 font-family: Raleway, Georgia, Times, Times New Roman, serif;
 }

 h2,
 h3 {
 font-family: Georgia, Times, Times New Roman, serif;
 }

 .header {
 border-bottom: 6px solid #233;
 }

 .navigation {
 float: right;
 margin: 0;
 list-style: none;
 }

 .navigation li {
 float: left;
 }

 .navigation a {
 display: block;
 margin-left: 0.5em;

c13.indd 287c13.indd 287 12/05/11 11:24 AM12/05/11 11:24 AM

288 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

 padding: 0.5em;
 border: 1px solid #CCC;
 color: #233;
 text-decoration: none;
 }

 .navigation a:focus,
 .navigation a:hover {
 background: #233;
 color: #FFF;
 }

 .header .intro {
 clear: both;
 font-weight: bold;
 }

 .intro {
 font-style: italic;
 }

 .ingredients {
 float: right;
 margin: 0 0 15px 15px;
 padding-left: 15px;
 border-left: 1px solid #CCC;
 }

 .ingredients h3 {
 margin-top: 0;
 }

 .ingredients th {
 text-align: left;
 }

 .ingredients th,
 .ingredients td {
 padding: 2px 5px;
 }

 .ingredients .ingredient {
 background-color: #CC5;
 }

 .ingredients .quantity {
 background-color: #CCF;
 }
 </style>
</head>
<body>

<div class=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>

c13.indd 288c13.indd 288 12/05/11 11:24 AM12/05/11 11:24 AM

Gradient Backgrounds ❘ 289

 Home
 Recipes
 Suggestions

 <p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

</div>

<h2>Welsh Rarebit</h2>

<p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
egg, or bacon. Here is one take on this classic.</p>

<div class=”ingredients”>

 <h3>Ingredients</h3>

 <table>
 <colgroup>
 <col class=”ingredient”>
 <col class=”quantity”>
 </colgroup>
 <thead>
 <tr>
 <th>Ingredient</th>
 <th>Quantity</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Bread</td>
 <td>2 medium slices</td>
 </tr>
 <tr>
 <td>Butter</td>
 <td>For bread</td>
 </tr>
 <tr>
 <td>Grated Cheddar</td>
 <td>1.5 handfuls</td>
 </tr>
 <tr>
 <td>Beer</td>
 <td>One splash</td>
 </tr>
 <tr>
 <td>Wholegrain mustard</td>
 <td>One dollop</td>
 </tr>

c13.indd 289c13.indd 289 12/05/11 11:24 AM12/05/11 11:24 AM

290 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

 <tr>
 <td>Pepper</td>
 <td>To taste</td>
 </tr>
 </tbody>
 </table>

</div>

<h3>Instructions</h3>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously until
 it has melted. Add a teaspoon of wholegrain mustard and grind in a little
 pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to the
 edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden brown.

</body>
</html>

 2. Save the preceding CSS and markup as example_13-4.html. This example results in the output in
Figure 13-6 in Safari and other desktop browsers.

FIGURE 13-6

c13.indd 290c13.indd 290 12/05/11 11:24 AM12/05/11 11:24 AM

Gradient Backgrounds ❘ 291

How It Works

In Example 13-4,you added a gradient background to the html element with the following rule:

html {
 height: 100%;
 background-color: #233;
 background-image: -moz-linear-gradient(top, #233, #FFF);
 background-image: -webkit-gradient(linear, left top, left bottom, from(#233),
 to(#FFF));
 -ms-filter: “progid:DXImageTransform.Microsoft.Gradient
 (StartColorStr=#223333, EndColorStr=#FFFFFF)”;
 background-image: linear-grad ient(top, #233, #FFF);
}

In addition to applying the gradient, you’ve also added a height declaration, making the html element take
up the full height of the browser window (if the content is shorter) and a background-color declaration.

The height makes the gradient apply to the full height of the page and doesn’t stop at the end of the
content. You can see the result in Figure 13-6.

The background-color declaration is important for browsers that don’t support gradient backgrounds.
In IE6, for example, you will see a solid background instead of a gradient, as in Figure 13-7.

FIGURE 13-7

c13.indd 291c13.indd 291 12/05/11 11:24 AM12/05/11 11:24 AM

292 ❘ CHAPTER 13 CREATE A COMPLETE LAYOUT

That is the end of this section on CSS properties. In the next part of this book, you’ll look at
advanced selectors, styling for print, customizing the mouse cursor, controlling opacity and
visibility, and styling content for mobile devices.

EXERCISES

 1. What is the fi rst step in implementing a web page from a design?

 2. Which rule is used to add support for custom fonts?

 3. What are the drawbacks to using custom fonts?

 4. What are vendor prefi xes?

 5. How would you apply a gradient background, and what must you do to support browsers that

don’t implement gradient backgrounds?

c13.indd 292c13.indd 292 12/05/11 11:24 AM12/05/11 11:24 AM

Gradient Backgrounds ❘ 293

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, I showed you some of the challenges of writing CSS for mobile devices. You learned
the following:

TOPIC KEY CONCEPTS

Custom fonts How to use the @font-face rule to specify custom fonts, and

the drawbacks to using them in designs.

Vendor prefi xes Vendor prefi xes allow browser vendors to implement features

of CSS that have yet to be fi nalized.

Applying gradient backgrounds How to implement gradient backgrounds in four diff erent ways

to support a wide range of browsers.

c13.indd 293c13.indd 293 12/05/11 11:24 AM12/05/11 11:24 AM

c13.indd 294c13.indd 294 12/05/11 11:24 AM12/05/11 11:24 AM

PART III

Advanced CSS and
Alternative Media

 � CHAPTER 14: Advanced Selectors

 � CHAPTER 15: Styling for Print

 � CHAPTER 16: Customizing the Mouse Cursor

 � CHAPTER 17: Controlling Opacity and Visibility

 � CHAPTER 18: Styling Content for Mobile Devices

 � CHAPTER 19: Closing Comments

c14.indd 295c14.indd 295 12/05/11 11:24 AM12/05/11 11:24 AM

c14.indd 296c14.indd 296 12/05/11 11:24 AM12/05/11 11:24 AM

Advanced Selectors

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to use direct child selectors

 ➤ How to use next sibling selectors

 ➤ How to use attribute selectors

 ➤ How to use pseudo-elements

 ➤ How to use structural pseudo-classes

In Chapter 3, I covered the basic selectors in CSS. There I discussed the most common and
widely supported selectors, class and ID selectors, which target elements based on their
class and ID attributes. I also covered the universal selector, which targets everything, and
descendant selectors, which target elements that are ancestors of other elements. In addition,
I covered a small range of pseudo-classes, :link, :visited, :focus, :hover, and :active,
used for styling links and other interactive elements.

In this chapter I show you a range of advanced selectors that can be used to more precisely target
elements of a web page, a greater range of pseudo-classes, and I introduce pseudo-elements.

DIRECT CHILD SELECTORS

Direct child selectors operate much like descendant selectors in that they also rely on an ancestral
relationship to decide where to apply style. Descendant selectors, however, are more ambiguous
because they apply to any descendant of an element; the descendant can be a grandchild or a
great-grandchild, or a great-great-grandchild, and so on. Direct child selectors apply only to
immediate children of the element. This is achieved by introducing a new syntax for the selector:

body > .intro {
 font-weight: bold;
}

14

c14.indd 297c14.indd 297 12/05/11 11:24 AM12/05/11 11:24 AM

D
o

298 ❘ CHAPTER 14 ADVANCED SELECTORS

Like descendant selectors, direct child selectors are chained together, but instead of a space, a
greater than, or right angled bracket, is used to separate each element in the selector.

NOTE All major browsers except for IE 6 support direct child selectors.

The following Try It Out shows how to use direct child selectors.

TRY IT OUT Direct Child Selectors

Example 14-1

To use a direct child selector, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-1</title>
 <style type=”text/css”>
 .intro {
 font-style: italic;
 }

 body > .intro {
 font-weight: bold;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>

c14.indd 298c14.indd 298 12/05/11 11:24 AM12/05/11 11:24 AM

Direct Child Selectors ❘ 299

 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

2. Save the preceding CSS and markup as example_14-1.html. This example results in the output
in Figure 14-1.

FIGURE 14-1

c14.indd 299c14.indd 299 12/05/11 11:24 AM12/05/11 11:24 AM

300 ❘ CHAPTER 14 ADVANCED SELECTORS

How It Works

In Example 14-1, you made each element with the class name intro italic with font-style: italic;,
and used a descendent selector body > .into to make only the elements with the class name of intro,
which are also a direct child of the body element bold with font-weight: bold;.

You can see in the fi gure that while both paragraphs are italic only the fi rst is bold, because the second
paragraph is a child of the element with the class name content and not the body.

NEXT SIBLING SELECTOR

The offi cial name of the selector I discuss in this section, according to the W3C, is the adjacent
sibling combinator. I think that’s too long and complicated, so I’ve shortened it to just next sibling.
The next sibling selector selects an element’s next sibling, in other words the element following
another element if it matches the second part of the selector.

This syntax for this selector is:

h1 + .intro {
 font-weight: bold;

}

This will select any elements with the class name intro that immediately follow an h1 element.

Next sibling selectors are chained together with a plus sign.

The following Try It Out shows how to use next sibling selectors.

NOTE All major browsers except for IE 6 support next sibling selectors.

TRY IT OUT Next Sibling Selector

Example 14-2

To use a next sibling selector, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-2</title>
 <style type=”text/css”>
 .intro {

c14.indd 300c14.indd 300 12/05/11 11:24 AM12/05/11 11:24 AM

Next Sibling Selector ❘ 301

 font-style: italic;
 }

 h1 + .intro {
 font-weight: bold;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

c14.indd 301c14.indd 301 12/05/11 11:24 AM12/05/11 11:24 AM

302 ❘ CHAPTER 14 ADVANCED SELECTORS

2. Save the preceding CSS and markup as example_14-2.html. This example results in the output in
Figure 14-2.

FIGURE 14-2

How It Works

In Example 14-2, you made each element with the class name intro italic with font-style: italic;
and used a next sibling selector h1 + .intro to make only the elements with the class name of intro that
immediately follow an h1 element bold with font-weight: bold;.

You will see that this results in the same output as Example 1, giving you two ways to achieve the same
effect under different circumstances.

ATTRIBUTE SELECTORS

Attribute selectors are used to apply style sheet declarations based on the presence of attributes or
attribute values of an HTML element.

There are several types of attribute selectors, and CSS is capable of detecting attributes based on the
following criteria:

 ➤ The presence of an attribute

 ➤ The value of an attribute

 ➤ Whether the attribute value begins with a specifi c string

c14.indd 302c14.indd 302 12/05/11 11:24 AM12/05/11 11:24 AM

Attribute Selectors ❘ 303

 ➤ Whether the attribute value ends with a specifi c string

 ➤ Whether the attribute value contains a specifi c string anywhere in the value, be it at the
beginning, end, or middle

The following sections examine each type of attribute selector in greater depth and provide
examples of the syntax for each.

Select by Presence of an Attribute

The simplest attribute selector is one that applies a style sheet rule based on the presence of an
attribute. It doesn’t matter what the value given to the attribute is, just that the element has the
specifi ed attribute.

This syntax for attribute selectors is:

input[name] {
 border: 2px dashed #000;

}

The following Try It Out shows how to select by presence of an attribute.

NOTE All major browsers except for IE 6 support attribute selectors.

TRY IT OUT Attribute Selector: Presence of an Attribute

Example 14-3

To use a select based on the presence of an attribute, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-3</title>
 <style type=”text/css”>
 input {
 background: #CC5;
 }

 input[name] {
 border: 2px dashed #000;
 }

c14.indd 303c14.indd 303 12/05/11 11:24 AM12/05/11 11:24 AM

304 ❘ CHAPTER 14 ADVANCED SELECTORS

 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

2. Save the preceding CSS and markup as example_14-3.html. This example results in the output in
Figure 14-3.

c14.indd 304c14.indd 304 12/05/11 11:24 AM12/05/11 11:24 AM

Attribute Selectors ❘ 305

FIGURE 14-3

How It Works

In Example 14-3, you used a simple type selector to give all input elements a green background. Then
using a combined type and attribute selector, input[name], you added a dashed border to only those
inputs that have a name attribute — the fi nal input, <input type=”submit” value=”Send recipe”>,
does not have a name attribute and therefore does not have a dotted border.

Select by Attribute Value

You are not limited to detecting the presence of an attribute, attribute value selectors delegate style
declarations based on an attribute’s presence and value.

The syntax is very similar:

input[name=”email”] {
 border: 2px dashed #000;

}

Here you have specifi ed both an attribute (name) and a value for that attribute (email) to select on —
only input elements with name attribute values of email will match this selector.

The following Try It Out shows how to select by attribute value.

c14.indd 305c14.indd 305 12/05/11 11:24 AM12/05/11 11:24 AM

306 ❘ CHAPTER 14 ADVANCED SELECTORS

TRY IT OUT Attribute Selector: Attribute Value

Example 14-4

To use a selector based on the presence of an attribute with a specifi c value, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-4</title>
 <style type=”text/css”>
 input {
 background: #CC5;
 }

 input[name=”email”] {
 border: 2px dashed #000;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>

c14.indd 306c14.indd 306 12/05/11 11:24 AM12/05/11 11:24 AM

Attribute Selectors ❘ 307

 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

2. Save the preceding CSS and markup as example_14-4.html. This example results in the output in
Figure 14-4.

FIGURE 14-4

How It Works

In Example 14-4, you used a simple type selector to give all input elements a green background as you
did in Example 14-3. Then using a combined type, attribute, and value selector, input[name=”email”],
you added a dashed border to only those input elements that have a name attribute value equal to email.

c14.indd 307c14.indd 307 12/05/11 11:24 AM12/05/11 11:24 AM

308 ❘ CHAPTER 14 ADVANCED SELECTORS

Attribute Substring Selectors

Taking the fl exibility of attribute selectors even further, the selectors in the following sections
choose elements based on whether a particular string appears at the beginning of an attribute’s
value, at the end of an attribute’s value, or anywhere inside an attribute’s value. You can select an
element based on what appears at the beginning of an attribute’s value.

Selection Based on Attribute Values That Begin with a String

The fi rst type of substring attribute selector chooses elements with an attribute value that begins
with a particular string.

The syntax for this selector is:

a[href^=”mailto:”] {
 padding-left: 23px;
 background: transparent url(icon-email.png) no-repeat center left;

}

The ^ character following the href attribute means to select elements where the value of the
preceding attribute begins with the value that follows.

The following Try It Out shows how to use attributes that begin with a string as a selector.

NOTE A string that appears inside another string is referred to as a substring.

TRY IT OUT Attribute Selector: Attribute Begins with a String

Example 14-5

To use a selector based on the presence of an attribute with a value that starts with a given string,
follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-5</title>
 <style type=”text/css”>
 a[href^=”mailto:”] {

c14.indd 308c14.indd 308 12/05/11 11:24 AM12/05/11 11:24 AM

Attribute Selectors ❘ 309

 padding-left: 23px;
 background: transparent url(icon-email.png) no-repeat center left;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

c14.indd 309c14.indd 309 12/05/11 11:24 AM12/05/11 11:24 AM

310 ❘ CHAPTER 14 ADVANCED SELECTORS

2. Save the preceding CSS and markup as example_14-5.html. This example results in the output in
Figure 14-5.

FIGURE 14-5

How It Works

In Example 14-5, you used a combined type, attribute, and a value selector with the ^ character indicating
that you want to match the start of the value with your string, a[href^=”mailto:”]; you added an
envelope icon as a background image.

Selection Based on Attribute Values That End with a String

The next substring attribute selector chooses elements with attributes whose value ends with a
string. The syntax is:

input[id$=”name”] {
 border: 2px dashed #000;

}

The selector of the preceding rule uses the dollar sign to signify that the selector matches the end
of the attribute value. This changes all input elements with an id attribute value that ends in the
string name.

The following Try It Out shows how to use attributes that end with a string as a selector.

c14.indd 310c14.indd 310 12/05/11 11:24 AM12/05/11 11:24 AM

Attribute Selectors ❘ 311

TRY IT OUT Attribute Selector: Attribute Ends with a String

Example 14-6

To use a selector based on the presence of an attribute with a value that ends with a given string, follow
these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-6</title>
 <style type=”text/css”>
 input[id$=”name”] {
 border: 2px dashed #000;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>

c14.indd 311c14.indd 311 12/05/11 11:24 AM12/05/11 11:24 AM

312 ❘ CHAPTER 14 ADVANCED SELECTORS

 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

2. Save the preceding CSS and markup as example_14-6.html. This example results in the output
in Figure 14-6.

FIGURE 14-6

How It Works

In Example 14-6, you used a combined type, attribute, and a value selector with the $ character,
indicating that you want to match the end of the value with your string, input[id$=”name”]; you
added a border to all input elements with id attribute values ending in name.

Selection Based on Attribute Values That Contain a String

The fi nal type of attribute substring selector is a wildcard attribute substring selector. It selects
an element that contains an attribute whose value contains a string anywhere in the value: at the

c14.indd 312c14.indd 312 12/05/11 11:24 AM12/05/11 11:24 AM

Attribute Selectors ❘ 313

beginning, the end, or anywhere in the middle. This attribute substring selector uses an asterisk in
the syntax to indicate that the selector is looking anywhere inside the value:

[name*=”recipe”] {
 border: 2px dashed #000;

}

The following Try It Out shows how to use attributes that contain a string as a selector.

TRY IT OUT Attribute Selector: Attribute Contains a String

Example 14-7

To use a selector based on the presence of an attribute with a value that contains a given string, follow
these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-7</title>
 <style type=”text/css”>
 [name*=”recipe”] {
 border: 2px dashed #000;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>

c14.indd 313c14.indd 313 12/05/11 11:24 AM12/05/11 11:24 AM

314 ❘ CHAPTER 14 ADVANCED SELECTORS

 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

2. Save the preceding CSS and markup as example_14-7.html. This example results in the output
in Figure 14-7.

FIGURE 14-7

c14.indd 314c14.indd 314 12/05/11 11:24 AM12/05/11 11:24 AM

Pseudo-Elements :fi rst-letter and :fi rst-line ❘ 315

How It Works

In Example 14-7, you used a combined attribute and value selector with the * character indicating that
you want to match values that contain the given string, [name*=”recipe”]; you added a border to all
elements with name attribute values containing the string recipe.

PSEUDO-ELEMENTS :FIRST-LETTER AND :FIRST-LINE

Pseudo-elements represent certain aspects of a document not easily modifi able with plain markup. Pseudo-
elements may be used to modify the formatting of the fi rst letter of a paragraph, or the fi rst line of a
paragraph, for example.

The pseudo-elements :first-letter and :first-line refer to the fi rst letter and fi rst line of
an element containing text. When you design a website, it is helpful to have control over how you
present content. With the :first-letter and :first-line pseudo-elements, you can control the
formatting of the fi rst letter and fi rst line of a paragraph completely from CSS. You may add an
increased font size or other font effects, apply a background color or image, or use just about any
text effect supported by CSS and the browser.

WARNING CSS 3 changes pseudo-element syntax to use a double colon (::)
preceding each pseudo-element. For example, p::first-letter refers to the
fi rst letter of a paragraph instead of p:first-letter. This syntax distinguishes
pseudo-elements from pseudo-classes, which use a single colon syntax, as in
a:hover, which is a reference to a pseudo-class.

However, this form is not supported in any version of IE, but the single colon
version is, and also continues to be supported by all other major browsers so it is
my recommendation that you use :first-letter and :first-line instead of
::first-letter and ::first-line.

The following Try It Out shows how to use :first-letter and :first-line pseudo-elements to
style content.

TRY IT OUT :fi rst-letter and :fi rst-line Pseudo-elements

Example 14-8

To style the fi rst letter or fi rst line of text, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>

c14.indd 315c14.indd 315 12/05/11 11:24 AM12/05/11 11:24 AM

316 ❘ CHAPTER 14 ADVANCED SELECTORS

<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-8</title>
 <style type=”text/css”>
 .intro:first-letter {
 font-size: 1.7em;
 }

 .intro:first-line {
 font-style: italic;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <input type=”submit” value=”Send recipe”>

c14.indd 316c14.indd 316 12/05/11 11:24 AM12/05/11 11:24 AM

Structural Pseudo-Classes ❘ 317

 </div>
 </form>

</div>

</body>
</html>

2. Save the preceding CSS and markup as example_14-8.html. This example results in the output in
Figure 14-8.

FIGURE 14-8

How It Works

In Example 14-8, you used :first-letter to increase the text size of the fi rst letter and :first-line
to italicize the fi rst line of each intro paragraph.

STRUCTURAL PSEUDO-CLASSES

Much like the direct child and next sibling selectors earlier in this chapter, structural pseudo-classes
are used to refer to an element’s position in a document.

c14.indd 317c14.indd 317 12/05/11 11:24 AM12/05/11 11:24 AM

318 ❘ CHAPTER 14 ADVANCED SELECTORS

:fi rst-child

The :first-child structural pseudo-class applies only when an element is the fi rst child of
another element.

NOTE All major browsers except for IE 6 support the :first-child structural
pseudo-class.

NOTE IE 6, 7, and 8 do not support the :last-child structural pseudo-class.
All other major browsers, including IE9, do.

NOTE IE 6, 7, and 8 do not support the :nth-child(n) structural pseudo-class.
All other major browsers, including IE9, do.

:last-child

The :last-child structural pseudo-class applies only when an element is the last child of another
element.

:nth-child(n)

The :nth-child(n) structural pseudo-class applies only when an element is the nth child of another
element; in other words, if the value in the brackets is 3, the third child element will be selected.

The following Try It Out shows how to use :first-child, :last-child and :nth-child(n)
pseudo-classes to style content.

TRY IT OUT Using Child Structural Pseudo-Classes

Example 14-9

To use a selector based on the presence of an attribute with a value that starts with a given string,
follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>

c14.indd 318c14.indd 318 12/05/11 11:24 AM12/05/11 11:24 AM

Structural Pseudo-Classes ❘ 319

<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 14-9</title>
 <style type=”text/css”>
 form div:first-child {
 background: #CC5;
 }

 form div:last-child {
 background: #000;
 }

 form div:nth-child(4) {
 background: #CCF;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5” cols=”50”>
 </textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5” cols=”50”>
 </textarea>

c14.indd 319c14.indd 319 12/05/11 11:24 AM12/05/11 11:24 AM

320 ❘ CHAPTER 14 ADVANCED SELECTORS

 </div>
 <div>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

2. Save the preceding CSS and markup as example_14-9.html. This example results in the output in
Figure 14-9.

FIGURE 14-9

How It Works

In Example 14-9, you used :first-child, :last-child and :nth-child(n) structural pseudo-classes
to apply background colors to the fi rst, last, and fourth child div elements of the form.

It is important to understand which way these pseudo-classes work:

div:first-child

This selector targets a div element that is the fi rst child of another element, not an element that is the
fi rst child of a div.

c14.indd 320c14.indd 320 12/05/11 11:24 AM12/05/11 11:24 AM

Structural Pseudo-Classes ❘ 321

EXERCISES

 1. What is the syntax for using direct child selectors?

 2. What is the syntax for using next sibling selectors?

 3. How would you select an element based on an attribute value?

 4. How would you select an element based only on the start of an attribute value string?

 5. How would you style the fi rst letter and fi rst line of a paragraph of text?

 6. How would you style only the fi rst link in a list of links?

c14.indd 321c14.indd 321 12/05/11 11:24 AM12/05/11 11:24 AM

322 ❘ CHAPTER 14 ADVANCED SELECTORS

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, I showed you what is possible with advanced CSS selectors. You learned the
following:

TOPIC KEY CONCEPTS

Direct child

selectors

Direct child selectors make descendant selectors more specifi c, applying styles

only to direct child elements instead of all descendant elements.

Next sibling

selectors

Direct adjacent sibling combinators, or as I have termed them, next sibling

selectors, apply style if two elements, appearing back-to-back in a document as

siblings, have the same parent.

Attribute

selectors

Attribute selectors delegate style depending on the presence of attributes or

attribute values.

Pseudo-

elements

Pseudo-elements are used for situations where it would be diffi cult to use real

markup, such as in the styling of the fi rst letter or fi rst line of a paragraph.

Structural

pseudo-classes

Structural pseudo-classes are used to style elements based on their position in

the document.

c14.indd 322c14.indd 322 12/05/11 11:24 AM12/05/11 11:24 AM

Styling for Print

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The benefi ts of print style sheets

 ➤ Applying styles based on media types

 ➤ Controlling page breaks

 ➤ The content property in print

You can use a specifi c style sheet to style content for print. In Chapter 2, you saw the
differences between length units used for a computer screen and length units used for print.
This is one of the key reasons that separate style sheets for print exist. Specifying measurements
designated for computer screens, such as pixel units, can potentially be inconsistent in printed
documents, whereas real-world, absolute length units, such as inches, centimeters, points, and
so on are ideally suited for print.

BENEFITS OF PRINT STYLE SHEETS

A style sheet written explicitly for print enables developers to exclude irrelevant portions of a
web document from the printed version. For example, no document navigation is required in
a printed version. Additionally, because color documents have some expense associated with
them, depending on the type of printer and what type of ink or toner the printer uses, it is also
often better to exclude background images or other aspects of the design that result in greater
consumption of expensive ink or toner. For these reasons, print versions of web documents
are often simplifi ed to simple black and white productions of the original document. Only
foreground images relevant to the document are retained. In fact browsers, by default, strip out
all background images and background color; to print these, the user must specifi cally enable
them before printing.

15

c15.indd 323c15.indd 323 12/05/11 11:25 AM12/05/11 11:25 AM

D
o

324 ❘ CHAPTER 15 STYLING FOR PRINT

CSS provides several properties for controlling the presentation of paged media, such things as
where page breaks occur, the size of the page margins, and the size of the page itself. At the time of
this writing, a sparse selection of those properties is actually implemented in current browsers, and
there is no sign that browsers are going to improve any time soon.

APPLYING STYLES BASED ON MEDIA

In order to print in CSS, you need a way of differentiating styles intended for print from styles
intended for the computer screen. CSS can apply to a variety of documents, not just HTML, and
CSS can be used on a variety of different devices and media.

To target different media, you use the media attribute, which is applied to the <link /> element, or
the <style> element. Or, from within a style sheet, you can target different media using @media rules.
You see examples of these later in this section. First, let’s examine the different types of media that
CSS can theoretically be applied to. The different types of media are outlined in the following table.

MEDIA PURPOSE

all Suitable for all devices

braille Intended for Braille tactical feedback devices

embossed Intended for paged Braille printers

handheld Intended for handheld devices

print Intended for presentation to a printer (In a browser, use print preview to view the

print style sheet.)

projection Intended for projected presentations

screen Intended for presentation on a color computer screen

speech | aural Intended for presentation to a speech synthesizer (called aural in CSS 2, changed to

speech in CSS 2.1)

tty Intended for media using a fi xed-pitch character grid (such as teletypes, terminals, or

portable devices with limited display capabilities)

tv Intended for television (low resolution, low color, limited scrollability)

The default value is all.

NOTE Only screen, print, and all values are widely supported in desktop
browsers.

c15.indd 324c15.indd 324 12/05/11 11:25 AM12/05/11 11:25 AM

Applying Styles Based on Media ❘ 325

As you can see in the preceding table, CSS can target a wide variety of media types. For this chapter,
you need only be concerned with the screen, print, and all media. Each medium can be supplied
as a value to the media attribute. For example, if you wanted a style sheet to apply only to styles
presented in a PC or Mac browser, or smartphone browsers such as those on iPhone or Android
devices, you would add the attribute media= “screen” to either the <link /> or <style> elements:

<style type=”text/css” media=”screen”></style>

<link rel=”stylesheet” type=”text/css” href=”print.css” media=”print”>

The following Try It Out shows the media attribute in action.

TRY IT OUT Applying Styles for Print

Example 15-1

To use a direct child selector, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 15-2</title>
 <style type=”text/css” media=”print”>
 label {
 float: left;
 display: block;
 width: 3cm;
 }

 input {
 width: 7cm;
 border: none;
 border-bottom: 1px solid #000;
 }

 textarea {
 display: block;
 width: 10cm;
 height: 6cm;
 margin-top: 1cm;
 border-bottom: 1px solid #000;
 }

 form div {
 overflow: hidden;
 margin: 0.5cm 0;
 }

 .submit {

c15.indd 325c15.indd 325 12/05/11 11:25 AM12/05/11 11:25 AM

326 ❘ CHAPTER 15 STYLING FOR PRINT

 display: none;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5”
 cols=”50”></textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5”
 cols=”50”></textarea>
 </div>
 <div class=”submit”>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_15-1.html. This example results in the output
in Figure 15-1.

c15.indd 326c15.indd 326 12/05/11 11:25 AM12/05/11 11:25 AM

Applying Styles Based on Media ❘ 327

 3. In your browser menu, select the print
command, and, when given the option, select
preview. This will show you what the page
will look like when it is printed, and is a much
cheaper way to test than to print each page out
every time you make a change. You will see
output similar to that in Figure 15-2.

How It Works

In Example 15-1, you applied your styles to print only
by adding a media attribute with a value of print to
your style element.

In Figure 15-1 you can see that the page in our
browser just has the browser default styling; but for
print, shown in Figure 15-2, you have used a variety
of familiar properties to position the form labels and
give your input and textarea elements styles that
you would expect in a printed document.

You have also hidden the div that contains the submit
input because this is content that does not make sense
outside of a web browser.

FIGURE 15-1

FIGURE 15-2

c15.indd 327c15.indd 327 12/05/11 11:25 AM12/05/11 11:25 AM

328 ❘ CHAPTER 15 STYLING FOR PRINT

CONTROLLING STYLES FOR MEDIA WITHIN A STYLE SHEET

Another way to target styles for a particular media type is the @media rule. This is used within
a style sheet to enclose rules where you can make style sheet adjustments based on medium, for
example:

@media print {
 h1 {
 font-size: 50pt;
 text-align: center;
 }
}

You can see that a new syntax is enclosing the two rules that refer to the body element; these are the
@media rules. The top @media rule applies to onscreen display, and the bottom @media rule applies
to print display.

NOTE It is widely thought that most people fi nd sans-serif fonts more readable
on screen but serif fonts more readable in print. This is why most websites use a
sans-serif font for body copy whereas most books and newspapers are printed
with a serif font.

In the following Try It Out, you review @media rules.

TRY IT OUT Applying Styles for Print

Example 15-2

To use a direct child selector, follow these steps.

1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 15-2</title>
 <style type=”text/css”>
 @media screen {
 h1 {
 font-size: 3em;
 color: #A00;
 }
 }
 @media print {
 h1 {
 font-size: 50pt;
 text-align: center;

c15.indd 328c15.indd 328 12/05/11 11:25 AM12/05/11 11:25 AM

Controlling Styles for Media within a Style Sheet ❘ 329

 }
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5”
 cols=”50”></textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5”
 cols=”50”></textarea>
 </div>
 <div class=”submit”>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_15-2.html. This example results in the output
in Figure 15-3.

c15.indd 329c15.indd 329 12/05/11 11:25 AM12/05/11 11:25 AM

330 ❘ CHAPTER 15 STYLING FOR PRINT

 3. In your browser menu, select the print
command, and, when given the option, select
preview. You will see output similar to that
in Figure 15-4.

How It Works

In Example 15-2, you applied separate styles to
screen and print using @media rules.

In Figure 15-3 you can see that the page in our
browser shows that the font-size: 3em; and
color: #A00; declarations have been picked up,
making the h1 larger and dark red in color. This
is because this rule is itself wrapped in an
@media screen rule.

In Figure 15-4, you will see that the same h1
element has not been made red by the previous
rule, but that the font-size: 50pt; and text-align: center; declarations have been picked up,
making the h1 even larger and the text centered. This rule is wrapped in an @media screen rule,
meaning that the styles will only apply in print.

FIGURE 15-3

FIGURE 15-4

c15.indd 330c15.indd 330 12/05/11 11:25 AM12/05/11 11:25 AM

Controlling Page Breaks ❘ 331

In the next section, I describe how to control page breaks in printed content.

CONTROLLING PAGE BREAKS

Two print properties, or paged media properties, as they are referred to by the W3C, that all
popular browsers have in common are page-break-before and page-break-after. These
properties are outlined in the following table.

PROPERTY VALUE

page-break-before auto | always | avoid | left | right

Initial value: auto

page-break-after auto | always | avoid | left | right

Initial value: auto

The page-break-before and page-break-after properties dictate where a page break should be
made depending on where an element appears in a document.

NOTE The only keywords reliably supported across all browsers are always
and auto.

A value of always for page-break-before and page-break-after means that a page break must
occur before or after the selected block level elements generated box (for example, the following
declaration will force a page break after the element, as you will see in Figure 15-5 when you apply
the following rule):

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 15-5</title>
 <style type=”text/css” media=”print”>
 h1 {
 page-break-after: always;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally

c15.indd 331c15.indd 331 12/05/11 11:25 AM12/05/11 11:25 AM

332 ❘ CHAPTER 15 STYLING FOR PRINT

hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

 <p class=”intro”>We would love to hear from you about your delicious recipes
 for cheese. Please complete our form (all fields required) or email us at
 recipes@example.com.</p>

 <form method=”post” action=””>
 <div>
 <label for=”submit-name”>Name</label>
 <input type=”text” name=”name” id=”submit-name”>
 </div>
 <div>
 <label for=”submit-email”>Email</label>
 <input type=”text” name=”email” id=”submit-email”>
 </div>
 <div>
 <label for=”submit-recipe-name”>Recipe Name</label>
 <input type=”text” name=”recipe-name” id=”submit-recipe-name”>
 </div>
 <div>
 <label for=”submit-ingredients”>Ingredients</label>
 <textarea name=”ingredients” id=”submit-ingredients” rows=”5”
 cols=”50”></textarea>
 </div>
 <div>
 <label for=”submit-recipe”>Recipe</label>
 <textarea name=”recipe” id=”submit-recipe” rows=”5”
 cols=”50”></textarea>
 </div>
 <div class=”submit”>
 <input type=”submit” value=”Send recipe”>
 </div>
 </form>

</div>

</body>
</html>

code snippet /chapter15/fi gure_15-5.html

In the style sheet that you see in Figure 15-5, you apply the declaration
page-break-after: always; to the h1 element, forcing a page break after the h1 so that
subsequent content appears on a new page.

c15.indd 332c15.indd 332 12/05/11 11:25 AM12/05/11 11:25 AM

The content Property ❘ 333

The page-break-before property works the same way as page-break-after, but it forces a page
break before an element.

THE CONTENT PROPERTY

The content property is a way for us to insert content into a page using CSS. This content is not
strictly part of the page, so it is not accessible to most assistive technology such as screen readers,
which read out the content of pages. While it has applications beyond print that are outside of the
scope of this book, it has one particular use which warrants its inclusion here.

FIGURE 15-5

NOTE All major browsers except for IE 6 support the content property.

There is one interesting trick you can use when printing web pages that makes use of the content
property that I will cover in brief.

One of the main drawbacks of printing web pages is that, by default, the URLs of any links are lost
to us; for example:

<h1>Recipes for Cheese</h1>

This results in Figure 15-6

FIGURE 15-6

c15.indd 333c15.indd 333 12/05/11 11:25 AM12/05/11 11:25 AM

334 ❘ CHAPTER 15 STYLING FOR PRINT

You can guess from the style of the heading that this is a link, but there is no way other than going
back to the site in your browser of knowing where the link goes. With a little bit of CSS magic, you
can fi x this problem:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 15-7</title>
 <style type=”text/css” media=”print”>
 a:link:after,
 a:link:after {
 content: “ (http://example.com” attr(href) “) “;
 }
 </style>
</head>
<body>

<h1>Recipes for Cheese</h1>

<p class=”intro”>Cheese is a remarkably versatile food, available in literally
hundreds of varieties with different flavors and textures.</p>

<div class=”content”>

 <h2>Submit a recipe</h2>

</div>

</body>
</html>

code snippet /chapter15/fi gure_15-7.html

This results in Figure 15-7.

FIGURE 15-7

As you can see, the text is now followed by the URL of the link. This makes use of the :after
pseudo-class, which allows us to insert content using the content property. attr(href) takes the
href property from our link and uses it in the content. We prefi x it with the domain our site is

c15.indd 334c15.indd 334 12/05/11 11:25 AM12/05/11 11:25 AM

The content Property ❘ 335

hosted on (here I’ve used http://example.com), and added some brackets to separate the link from
the main text.

Don’t worry if this is hard to understand; this is code that you can copy and paste to your own print
style sheets. I hope it will encourage you to delve deeper into CSS to fi nd further useful tricks.

EXERCISES

 1. Which media values apply to desktop browsers?

 2. Write the opening tag for the <style> element, targeting the styles to print.

 3. What does the page-break-before property do?

 4. Write a sample style sheet that includes three rules; the fi rst rule applies to all media types, the

second rule applies to onscreen layout, and the third applies to print.

c15.indd 335c15.indd 335 12/05/11 11:25 AM12/05/11 11:25 AM

336 ❘ CHAPTER 15 STYLING FOR PRINT

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, I showed you what is possible with advanced CSS selectors. You learned the
following:

TOPIC KEY CONCEPTS

Applying styles for a

specifi c media type

Use the media property on style and link elements, or the @media

rule within style sheets.

Controlling page breaks

when printing

You can use page-break-before and page-break-after to

specify where page breaks should be made.

Inserting content with CSS Use the content property to add content such as the URLs for links

when printing.

c15.indd 336c15.indd 336 12/05/11 11:25 AM12/05/11 11:25 AM

Customizing the Mouse Cursor

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to customize the cursor

 ➤ The diff erent cursors that can be used

CSS provides the cursor property to control the type of cursor displayed for a particular element.
When you build advanced web applications, it can be useful to change the cursor to indicate to
users when they can perform certain actions, such as re-sizing or dragging elements. This should
always be done with care because to use an inappropriate cursor would be confusing to your
users. Done correctly it can potentially make custom interactions more usable.

THE CURSOR PROPERTY

The following table outlines the cursor property and its possible values.

PROPERTY VALUE

cursor [<uri> ,]* [auto | crosshair | default | pointer |

move | e-resize | ne-resize | nw-resize | n-resize |

se-resize | sw-resize | s-resize | w-resize | text |

wait | help | progress]

Initial value: auto

Non-standard extensions

to cursor

hand | all-scroll | col-resize | row-resize | no-drop |

not-allowed | vertical-text

16

c16.indd 337c16.indd 337 12/05/11 11:26 AM12/05/11 11:26 AM

D
o

338 ❘ CHAPTER 16 CUSTOMIZING THE MOUSE CURSOR

The notation in the preceding table shows that you can provide a keyword to change the cursor
displayed while the user’s mouse pointer is hovering over an element.

NOTE Safari and Chrome do not support non-standard cursor keywords. Opera for
the Mac does not support *-resize keywords, or non-standard cursor keywords.
Opera for Windows supports *-resize keywords, but not non-standard keywords.
Firefox for the Mac does not support the all-scroll keyword, but Firefox for
Windows does. IE supports all possible options.

CUSTOM POINTERS

It is possible with the use of the uri value to specify a custom cursor based on an
image. In practice this is almost never done, and it is not recommended as the user
is better served by using familiar mouse cursors. Custom cursors are not covered in
this book.

To demonstrate how the cursor can be changed using a keyword, consider the example in the
following Try It Out.

TRY IT OUT Changing the Mouse Cursor

Example 16-1.

To see the different mouse cursors that can be displayed, follow these steps.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 16-2</title>
 <style type=”text/css”>
 .crosshair {
 cursor: crosshair;
 }
 .pointer {
 cursor: pointer;
 }
 .move {
 cursor: move;
 }
 .e-resize {
 cursor: e-resize;
 }
 .w-resize {

c16.indd 338c16.indd 338 12/05/11 11:26 AM12/05/11 11:26 AM

 cursor: w-resize;
 }
 .ne-resize {
 cursor: ne-resize;
 }
 .sw-resize {
 cursor: sw-resize;
 }
 .n-resize {
 cursor: n-resize;
 }
 .s-resize {
 cursor: s-resize;
 }
 .nw-resize {
 cursor: nw-resize;
 }
 .se-resize {
 cursor: se-resize;
 }
 .text {
 cursor: text;
 }
 .wait {
 cursor: wait;
 }
 .help {
 cursor: help;
 }
 .progress {
 cursor: progress;
 }
 .hand {
 cursor: hand;
 }
 .all-scroll {
 cursor: all-scroll;
 }
 .col-resize {
 cursor: col-resize;
 }
 .row-resize {
 cursor: row-resize;
 }
 .no-drop {
 cursor: no-drop;
 }
 .not-allowed {
 cursor: not-allowed;
 }
 .vertical-text {
 cursor: vertical-text
 }
 </style>
</head>

The cursor Property ❘ 339

c16.indd 339c16.indd 339 12/05/11 11:26 AM12/05/11 11:26 AM

340 ❘ CHAPTER 16 CUSTOMIZING THE MOUSE CURSOR

<body>

 <h1>Cursor Types</h1>

 <li class=”crosshair”>Crosshair
 <li class=”pointer”>Pointer
 <li class=”move”>Move
 <li class=”e-resize”>E-Resize
 <li class=”w-resize”>W-Resize
 <li class=”ne-resize”>NE-Resize
 <li class=”sw-resize”>SW-Resize
 <li class=”n-resize”>N-Resize
 <li class=”s-resize”>S-Resize
 <li class=”nw-resize”>NW-Resize
 <li class=”se-resize”>SE-Resize
 <li class=”text”>Text
 <li class=”wait”>Wait
 <li class=”help”>Help
 <li class=”progress”>Progress
 <li class=”hand”>Hand
 <li class=”all-scroll”>All-Scroll
 <li class=”col-resize”>Col-Resize
 <li class=”row-resize”>Row-Resize
 <li class=”no-drop”>No-Drop
 <li class=”not-allowed”>Not-Allowed
 <li class=”vertical-text”>Vertical-Text

</body>

</html>

 2. Save the preceding markup as example_16-1.html, and then load it into a browser.

How It Works

Hovering over each of the list items triggers a different cursor as specifi ed for the associated class.

CURSOR COMPATIBILITY

To assist you in anticipating the differences in cursors between browsers and operating systems, I’ve
prepared the following table. The cursors in the following table indicate what cursor is used for that
browser when the keyword is supported. This is just a sample. The cursors displayed often have as
much to do with the operating system as the browser, and it is possible for users to change themes
within operating systems to use different cursors. Chrome support is the same as for Safari.

c16.indd 340c16.indd 340 12/05/11 11:26 AM12/05/11 11:26 AM

Cursor Compatibility ❘ 341

CURSOR

IE 6

WIN XP

IE 7

VISTA

FIREFOX

MAC

FIREFOX

WIN

SAFARI

MAC

OPERA

MAC

OPERA

WIN

default

crosshair

pointer

move

e-resize

w-resize

ne-resize

sw-resize

n-resize

s-resize

nw-resize

se-resize

text

wait

help

progress

hand

continues

c16.indd 341c16.indd 341 12/05/11 11:26 AM12/05/11 11:26 AM

342 ❘ CHAPTER 16 CUSTOMIZING THE MOUSE CURSOR

CURSOR

IE 6

WIN XP

IE 7

VISTA

FIREFOX

MAC

FIREFOX

WIN

SAFARI

MAC

OPERA

MAC

OPERA

WIN

all-scroll

col-resize

row-resize

no-drop

not-allowed

vertical-text

NOTE In the preceding table, where a cell is empty, the cursor keyword is
unsupported by that browser on that platform.

By far the most commonly used cursor is pointer, which is particularly useful for indicating that an
element is interactive when functionality is added with JavaScript. It is also quite common to see the
pointer cursor used on button and input submit elements as they behave in a similar way to links
but don’t have this style by default.

EXERCISES

1. What is the syntax for specifying a cursor?

2. What browser(s) supports all cursor keywords?

(continued)

c16.indd 342c16.indd 342 12/05/11 11:26 AM12/05/11 11:26 AM

Cursor Compatibility ❘ 343

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter you learned how to customize the mouse cursor. To recap, in this chapter you learned
the following:

TOPIC KEY CONCEPTS

Applying cursors How to apply cursor styles to an element

Support for cursors Which browsers support which cursors

c16.indd 343c16.indd 343 12/05/11 11:26 AM12/05/11 11:26 AM

c16.indd 344c16.indd 344 12/05/11 11:26 AM12/05/11 11:26 AM

Controlling Opacity and Visibility

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to modify the opacity of an element

 ➤ How to set the visibility of an element

The last CSS I will teach you is how to change the opacity of an element, that is how transparent
an element is, and also how to set the visibility of an element, allowing you to hide it from view.

THE OPACITY PROPERTY

First, you’ll look at the opacity property; it has a very simple syntax, as you can see from the
following table.

PROPERTY VALUE

opacity <number>

Initial value: 1

An opacity value of 1 indicates that an element is fully opaque. An opacity value of 0 on the
other hand makes the element completely invisible. You can specify opacity to two decimal places.

17

NOTE All major browsers, except IE 6, 7, and 8, support the opacity property.
There are proprietary methods of setting opacity in IE versions less than 9 that I
won’t cover here, but see Appendix B for links to more information.

You should make sure that transparency is an optional part of the visual design,
so that users of modern browsers are rewarded with a prettier visual experience,
but the site remains attractive and usable in older browsers.

c17.indd 345c17.indd 345 12/05/11 11:26 AM12/05/11 11:26 AM

D
o

346 ❘ CHAPTER 17 CONTROLLING OPACITY AND VISIBILITY

Let’s Try It Out!

TRY IT OUT Using the opacity Property

Example 17-1

To demonstrate the use of the opacity property, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 17-1</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0;
 }

 .header {
 background: #000;
 color: #FFF;
 padding: 1em;
 }

 .header .intro {
 clear: both;
 }

 .navigation {
 float: right;
 margin: 0;
 list-style: none;
 }

 .navigation li {
 float: left;
 }

 .navigation a {
 display: block;
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 background: #FFF;

c17.indd 346c17.indd 346 12/05/11 11:26 AM12/05/11 11:26 AM

The opacity Property ❘ 347

 color: #233;
 text-decoration: none;
 }

 li {
 opacity: 1;
 }

 li.current {
 opacity: 0.5;
 }

 li.last {
 opacity: 0;
 }
 </style>

</head>
<body>

<div class=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>
 Home
 <li class=”current”>Recipes
 <li class=”last”>Suggestions

 <p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

</div>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in a
 little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

c17.indd 347c17.indd 347 12/05/11 11:26 AM12/05/11 11:26 AM

348 ❘ CHAPTER 17 CONTROLLING OPACITY AND VISIBILITY

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_17-1.html. This example results in the output in
Figure 17-1 in Safari and other desktop browsers.

FIGURE 17-1

How It Works

In Example 17-1, I have added a black background to elements with the class of header and a white
background to each of the opacity elements in the navigation. I have also added classes of current and
last to the navigation li elements.

All li elements are styled as follows:

li {
 opacity: 1;
}

An opacity value of 1 is the default, and so in normal cicumstances you would specify this unless you
needed to override an inherited opacity value. As you can see in Figure 17-1, the background to the fi rst
navigation link remains a solid white.

c17.indd 348c17.indd 348 12/05/11 11:26 AM12/05/11 11:26 AM

The visibility Property ❘ 349

The second li element with a class of current is styled as follows:

li.current {
 opacity: 0.5;
}

An opacity value of 0.5 makes the li element 50% transparent. Figure 17-1 shows that the background
to the link is now gray, as you would expect with a black background behind a semi-transparent white
background.

The third li element with a class of last is styled as follows:

li.last {
 opacity: 0;
}

An opacity value of 0 makes the li element completely transparent; in Figure 17-1, the link has been
made invisible.

Play around with the opacity values to see opacity levels between these three levels of transparency.

Example 17-1 shows that an opacity value of 0 makes elements invisible, but there is a property
that gives you much more control over the visibility of elements: the imaginatively named
visibility property.

THE VISIBILITY PROPERTY

The visibility property has a very simple syntax, as you can see from the following table.

PROPERTY VALUE

visibility visible | hidden

Initial value: visible

There isn’t much that should surprise you here; the following code will make an element invisible:

visibility: hidden;

While this code will make an element visible:

visibility: visible

An element with a visibility value of hidden still remains in the normal document fl ow and takes
up space; it is just not visible on screen and is ignored by most assistive technologies such as screen
readers. Interactive elements such as links and buttons are no longer clickable or accessible by
screen reader. Other than the space it takes up on the page, a hidden element is effectively not there.

To see this in action, and for the last time in this book, let’s Try It Out.

c17.indd 349c17.indd 349 12/05/11 11:26 AM12/05/11 11:26 AM

350 ❘ CHAPTER 17 CONTROLLING OPACITY AND VISIBILITY

TRY IT OUT Using the visibility Property

Example 17-2

To demonstrate the use of the visibility property, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 17-2</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0;
 }

 .header .intro {
 clear: both;
 }

 .navigation {
 float: right;
 margin: 0;
 list-style: none;
 }

 .navigation li {
 float: left;
 }

 .navigation a {
 display: block;
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 background: #FFF;
 color: #233;
 text-decoration: none;
 }

 .recipe {
 visibility: hidden;
 border: 1px solid #000;

c17.indd 350c17.indd 350 12/05/11 11:26 AM12/05/11 11:26 AM

The visibility Property ❘ 351

 }

 .recipe ol {
 visibility: visible;
 }
 </style>

</head>
<body>

<div class=”header”>

 <h1>Recipes for Cheese</h1>

 <ul class=”navigation”>
 Home
 Recipes
 Suggestions

 <p class=”intro”>Cheese is a remarkably versatile food, available in literally
 hundreds of varieties with different flavors and textures.</p>

</div>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted cheese, often
 Cheddar, on toasted bread, and a variety of other ingredients such as mustard,
 egg, or bacon. Here is one take on this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to a saucepan.
 Place the saucepan over a medium heat, and stir the cheese continuously
 until it has melted. Add a teaspoon of wholegrain mustard and grind in a
 little pepper. Keep stirring.
 When thick and smooth, pour over each piece of toast spreading it to
 the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until golden
 brown.

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_17-2.html. This example results in the output in
Figure 17-2 in Safari and other desktop browsers.

c17.indd 351c17.indd 351 12/05/11 11:26 AM12/05/11 11:26 AM

352 ❘ CHAPTER 17 CONTROLLING OPACITY AND VISIBILITY

How It Works

In Example 17-2, I have applied a style of visibility: hidden; to elements with the class of recipe.
This makes this element and its descendants invisible. As you (can’t!) see in Figure 17-2, the h2 and p
elements that are children of the div with the class of recipe are no longer displayed but still take up
space in the layout.

The ol element that is also a child of the div with the class of recipe is visible, and that is because I have
also applied the following rule:

.recipe ol {
 visibility: visible;
}

That’s right; you can make elements inside invisible elements visible again!

FIGURE 17-2

In the next chapter, you look at styling content for mobile devices.

EXERCISES

 1. What range of values is valid for the opacity property?

 2. What value would you give the opacity property to make an element fully transparent, eff ectively

making it invisible?

 3. What other property can you use to make an element invisible, and what value would you use?

c17.indd 352c17.indd 352 12/05/11 11:26 AM12/05/11 11:26 AM

The visibility Property ❘ 353

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, I showed you some of the challenges of writing CSS for mobile devices. You learned
the following:

TOPIC KEY CONCEPTS

Opacity The opacity property can be used with a range of values, from 0, which makes an

element completely transparent; to 1, which makes an element fully opaque.

Visibility The visibility of an element can be controlled with the font property. Invisible

elements reserve space in a page.

c17.indd 353c17.indd 353 12/05/11 11:26 AM12/05/11 11:26 AM

c17.indd 354c17.indd 354 12/05/11 11:26 AM12/05/11 11:26 AM

Styling Content for
Mobile Devices

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The diff erences between desktop and mobile development

 ➤ How to apply styles based on screen size

In Chapter 15 you saw how you could apply styles that applied only when printed with the
media attribute and @media rule. Mobile browsers offer a similar challenge to developers as
their capabilities and limitations can be very different to those of desktop browsers.

WHY MOBILE IS IMPORTANT

A February 2011 report for YouGov revealed that in the US one in fi ve mobile phone users
access the Internet on their phone every day, while in the UK the proportion was even higher
with one in three accessing the Web with their mobile phone every day. Similar usage patterns
can be found the world over, with the trend towards mobile use increasing every year as devices
become more sophisticated. The future of the Web may well be on a small screen device such
as a mobile phone.

The same report also found that over a quarter of mobile phone users in both the US and
the UK were discouraged from accessing the Web on their mobile phones, not because their
devices were hard to use, but because the websites that they wanted to access did not display
or function correctly on their phones.

With such large numbers of potential users, but so many being put off by poor user
experience, there is a great and increasing need to write CSS in such a way as to be mobile
friendly.

18

c18.indd 355c18.indd 355 12/05/11 11:26 AM12/05/11 11:26 AM

D
o

356 ❘ CHAPTER 18 STYLING CONTENT FOR MOBILE DEVICES

DEVELOPING FOR MOBILE

Interacting with a mobile device is very different from using a browser on a desktop computer. On a
desktop, you mostly rely on two input devices: the mouse and the keyboard. On a mobile device, the
keyboard is not applicable to general browsing (for example, you can’t scroll down a page by hitting
the space bar in a mobile browser), and the mouse is replaced with either a keypad or joystick-like
device for moving around a page or with a touch interface.

With the keypad method of input, you control a cursor in the same way as with a mouse on the
desktop, so interactions such as hover states on links will function. With a touch-screen device, hovering
doesn’t have an equivalent; under most circumstances, tapping on a link will activate it immediately.

The small screen of a mobile device also changes the way users interact with a site. Most modern
mobile browsers support zooming in one form or another, either by tapping on the screen to enlarge
a certain area or using gestures to change the zoom level on devices that support multi-touch events
(that is, actions where more than one fi nger is used).

Until the user zooms in to the area of the page they are interested in, content may be too small to
read or easily identify, and navigating the page can be particularly cumbersome for keypad users.

All of these issues mean that you have to give some specifi c attention to the design and layouts of
sites on mobile devices, in particular:

 ➤ Do not set an absolute size on the width of your site.

 ➤ Display the main content in a single column.

 ➤ Clearly indicate links, buttons, and other interactive controls.

 ➤ Do not assume a hover state.

In the next section, I briefl y cover testing for mobile devices.

TESTING MOBILE DEVICES

As you read in Chapter 1, there are 4 main families of desktop browser rendering engines:

 ➤ Webkit used by Safari and Chrome

 ➤ Trident used by Internet Explorer

 ➤ Gecko used by Firefox

 ➤ Presto used by Opera

Of these, Webkit and Presto are the most strongly represented in the mobile browser space, with the
mobile Safari browser from Apple and the Android browser from Google using the Webkit rendering
engine, and Opera Mobile and Opera Mini using Presto. The Windows Phone 7 had the Mobile IE
7 browser using the Trident rendering engine. Mozilla has a Firefox mobile browser that uses the
Gecko rendering engine, as you might expect.

So far mobile and desktop browsers look very similar, but these common browsers are just the tip of
the iceberg. Peter-Paul Koch, an expert on mobile browsers, maintains a table of the most common

c18.indd 356c18.indd 356 12/05/11 11:27 AM12/05/11 11:27 AM

Media Queries ❘ 357

mobile browsers, a table that at the time of writing includes 20 browsers, 14 Operating Systems,
and 14 different device vendors! Take a look for yourself at www.quirksmode.org/mobile/
mobilemarket.html.

Testing for all of the different browsers is not practical for most people, and the reality is that, as
with desktop browsers, you need to be able to identify which browsers and devices will give you
good coverage of the market.

This is a much too complicated subject for this book, and anything I might write would soon be
out-of-date, so instead I will give you a link to an article Mr. Koch wrote for the A List Apart
website, which, as well as giving an excellent overview of the mobile market as of November 2010,
includes advice on testing.

The article lives at www.alistapart.com/articles/smartphone-browser-landscape/.

Of particular interest to you as you read this chapter may be the guide to mobile phone emulators at
http://mobiforge.com/emulators/page/mobile-emulators, which will give you links to both
online and installable emulators.

The screen shots in this chapter use the iPhone Simulator supplied by Apple for application development.

In the next section, I will show you how to apply styles specifi cally to mobile devices.

MEDIA QUERIES

As you saw in Chapter 15, you can in theory target different media using the media attribute,
which is applied to the link or style element, or from within a style sheet, using @media rules. The
different types of media are repeated in the following table.

MEDIA PURPOSE

all Suitable for all devices.

braille Intended for Braille tactical feedback devices.

embossed Intended for paged Braille printers.

handheld Intended for handheld devices.

print Intended for presentation when printed. Use print preview to view the result of

using a print style sheet.

projection Intended for projected presentations.

screen Intended for presentation on a color computer screen.

speech | aural Intended for presentation to a speech synthesizer (called aural in CSS 2,

changed to speech in CSS 2.1).

tty Intended for media using a fi xed-pitch character grid (such as teletypes,

terminals, or portable devices with limited display capabilities).

tv Intended for television (low resolution, low color, limited scrollability).

c18.indd 357c18.indd 357 12/05/11 11:27 AM12/05/11 11:27 AM

358 ❘ CHAPTER 18 STYLING CONTENT FOR MOBILE DEVICES

The default value is all.

As you found in Chapter 15, only the screen, print, and all values are widely supported on
desktop browsers, but you may have noticed a handheld value is available, intended for use for
handheld devices.

Unfortunately, support for media types is no better in the mobile world, and virtually all mobile
browsers ignore the handheld media type.

All is not lost, however. In modern mobile browsers, the media attribute and @media rule support
more than just basic media types; enter media queries!

<style type=”text/css” media=”screen and (max-device-width: 480px)”>
</style>

<link rel=”stylesheet” type=”text/css” href=”mobile.css”
 media=”screen and (max-device-width: 480px)”>

<style type=”text/css”>
 @media screen and (max-device-width: 480px) {

 }
</style>

As you can see from the preceding code, we can use media queries anywhere that we can use the
media attribute or @media rule. Here I am targeting screen devices, a media type that modern
mobile phones support, in order to avoid confl icting CSS on any other type of device that also uses a
small screen, and additionally specifying a max-device-width with a value of 480px.

device-width is a media feature, which describes the width of the screen of a device; using the
max prefi x I am targeting my CSS at devices that have a screen width up to a maximum of 480px.
This targets most mobile phones with modern browsers and provides good support coverage. Let’s
Try It Out.

TRY IT OUT Applying Styles for Mobile Devices

Example 18-1

To use styles only for mobile devices, follow these steps.

 1. Enter the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Example 18-1</title>
 <style type=”text/css”>
 body {

c18.indd 358c18.indd 358 12/05/11 11:27 AM12/05/11 11:27 AM

Media Queries ❘ 359

 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 display: inline;
 }

 .navigation a {
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 }

 .intro {
 clear: both;
 }

 @media screen and (max-device-width: 480px) {
 body {
 width: auto;
 margin: 1em;
 }

 h1,
 .navigation {
 float: none;
 }
 }
 </style>

</head>
<body>

<h1>Recipes for Cheese</h1>

<ul class=”navigation”>
 Home
 Recipes
 Suggestions

<p class=”intro”>Cheese is a remarkably versatile food, available in

c18.indd 359c18.indd 359 12/05/11 11:27 AM12/05/11 11:27 AM

360 ❘ CHAPTER 18 STYLING CONTENT FOR MOBILE DEVICES

literally hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted
 cheese, often Cheddar, on toasted bread, and a variety of other
 ingredients such as mustard, egg, or bacon. Here is one take on
 this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to
 a saucepan. Place the saucepan over a medium heat, and stir the
 cheese continuously until it has melted. Add a teaspoon of
 wholegrain mustard and grind in a little pepper. Keep
 stirring.
 When thick and smooth, pour over each piece of toast
 spreading it to the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until
 golden brown.

</div>

</body>
</html>

 2. Save the preceding CSS and markup as example_18-1.html. This example results in the rendered
output in Figure 18-1 in Safari and other desktop browsers.

FIGURE 18-1

c18.indd 360c18.indd 360 12/05/11 11:27 AM12/05/11 11:27 AM

Media Queries ❘ 361

 3. Now open the same page in a browser on a mobile device or a mobile
browser simulator (see earlier in this chapter or in Appendix B for
links to available simulators). You will see output similar to that in
Figure 18-2.

How It Works

In Example 18-1, you applied separate styles to desktop browsers and mobile
browsers using @media rules.

In Figure 18-1, you can see that the page in your browser looks much the
same as it has in examples in previous chapters, with the page title on the
left and the navigation on the right.

Figure 18-2 shows the same page in the iPhone simulator. Here the page
title and navigation have been put on separate lines, and unlike the desktop
version the content fi lls the full width of the page.

You can see this more clearly when you compare Figure 18-2 to
Figure 18-3, which is the page without the addition of mobile device media
queries.

In Figure 18-3 you will see that without the addition of mobile-targeted CSS there is a lot of wasted
space, as the content does not fi t the full width of the screen, making the navigation links in particular
virtually unreadable unless the user zooms in.

FIGURE 18-2

FIGURE 18-3

c18.indd 361c18.indd 361 12/05/11 11:27 AM12/05/11 11:27 AM

362 ❘ CHAPTER 18 STYLING CONTENT FOR MOBILE DEVICES

Another interesting media feature is orientation, which accepts values of portrait and
landscape. portrait is defi ned as the screen width less than or equal to the height; landscape is
when the screen width is more than the height.

Adding orientation queries means that we can display different content depending on which way
a device is being held, so in the following code I only position the navigation on a separate line if the
orientation is portrait.

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html lang=”en”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Figure 18-4</title>
 <style type=”text/css”>
 body {
 width: 600px;
 margin: 1em auto;
 }

 h1 {
 float: left;
 margin-top: 0.2em;
 }

 .navigation {
 float: right;
 }

 .navigation li {
 display: inline;
 }

 .navigation a {
 margin-left: 0.5em;
 padding: 0.5em;
 border: 1px solid #CCC;
 }

 .intro {
 clear: both;
 }

 @media screen and (max-device-width: 480px) {
 body {
 width: auto;
 margin: 1em;
 }
 }

 @media screen and (max-device-width: 480px) and
 (orientation: portrait) {
 h1,
 .navigation {

c18.indd 362c18.indd 362 12/05/11 11:27 AM12/05/11 11:27 AM

Media Queries ❘ 363

 float: none;
 }
 }
 </style>

</head>
<body>

<h1>Recipes for Cheese</h1>

<ul class=”navigation”>
 Home
 Recipes
 Suggestions

<p class=”intro”>Cheese is a remarkably versatile food, available in
literally hundreds of varieties with different flavors and textures.</p>

<div class=”recipe”>

 <h2>Welsh Rarebit</h2>

 <p class=”intro”>Welsh Rarebit is a savory dish made from melted
 cheese, often Cheddar, on toasted bread, and a variety of other
 ingredients such as mustard, egg, or bacon. Here is one take on
 this classic.</p>

 Lightly toast the bread
 Place on a baking tray, and spread with butter.
 Add the grated Cheddar cheese and 2 tablespoons of beer to
 a saucepan. Place the saucepan over a medium heat, and stir the
 cheese continuously until it has melted. Add a teaspoon of
 wholegrain mustard and grind in a little pepper. Keep
 stirring.
 When thick and smooth, pour over each piece of toast
 spreading it to the edges to stop the toast from burning.
 Place under the grill for a couple of minutes or until
 golden brown.

</div>

</body>
</html>

Figure 18-4 shows my iPhone simulator in portrait orientation, and it looks as before. The content
fi lls the full width of the screen and the navigation is below the page title. Now see what happens
when I fl ip the orientation to landscape.

In Figure 18-5 the content still fi ts the fi ll width of the screen, but the navigation and page title are
on the same line as in the desktop browser version.

c18.indd 363c18.indd 363 12/05/11 11:27 AM12/05/11 11:27 AM

364 ❘ CHAPTER 18 STYLING CONTENT FOR MOBILE DEVICES

 There are many other media features available to developers; see Appendix B for a link to a full
list. Media queries aren’t just about supporting mobile devices. They’re a key aspect in what’s being
called Responsive Design, where the CSS is mixed with media queries to create several layouts
depending on the media properties. As you progress in your knowledge of CSS you will see them
used in different ways, but I hope this chapter gives you a good basic knowledge.

That’s the end of this chap ter and almost the end of the book. In the fi nal chapter, I close with a
summary of what I’ve covered and some of my thoughts on the future of CSS.

EXERCISES

 1. Which media value was intended to apply to mobile devices but which has poor real world

support?

 2. Write a sample style sheet that includes two rules; the fi rst rule applies to all media types, and the

second rule applies to mobile.

FIGURE 18-5FIGURE 18-4

c18.indd 364c18.indd 364 12/05/11 11:27 AM12/05/11 11:27 AM

Media Queries ❘ 365

 � WHAT YOU LEARNED IN THIS CHAPTER

In this chapter, I showed you some of the challenges of writing CSS for mobile devices. You learned
the following:

TOPIC KEY CONCEPTS

The benefi ts of

writing mobile

specifi c CSS

The Web is widely accessed on mobile devices, with more people using the

mobile Web every year. Sites designed for desktop browsers can be diffi cult

to use on a mobile, but some simple changes can help enormously.

The state of the

mobile landscape

There are a wide variety of mobile browsers, operating systems and devices

in wide use, and it is impossible for most developers to test on them all.

Using media queries media attributes on link and style tags, and @media rules in CSS fi les and

style elements can be used to write CSS for mobile devices.

c18.indd 365c18.indd 365 12/05/11 11:27 AM12/05/11 11:27 AM

c18.indd 366c18.indd 366 12/05/11 11:27 AM12/05/11 11:27 AM

Closing Comments
In this fi nal chapter of the book, I will give a brief summary of what I hope you have learned,
as well as my thoughts on the future of CSS.

CSS SUMMARY

CSS is a key technology for developing websites, the language by which you apply styles to pages
to make them more attractive and usable. Without CSS, the Web would be a less beautiful place!

We’ve covered a lot of CSS in this book, and I hope you now have a fi rm grounding in the
basics, as well as a few advanced tricks in your toolbox.

You should now know:

 ➤ What Cascading Style Sheets are, and the benefi ts to using them (Chapter 1)

 ➤ The parts that make up CSS, and how to add style sheets to web pages (Chapter 2)

 ➤ How to target elements for styling in HTML with CSS (Chapter 3)

 ➤ What the C in CSS stands for, and how to determine which of confl icting rules will
apply (Chapter 4)

 ➤ How to style text, determining the font and size, and modifying text in many other
ways (Chapters 5 and 6)

 ➤ How to apply background colors and images to web pages (Chapter 7 and Appendix D)

 ➤ The principles of the box model, and how to use margins, padding and borders to
create the basics of a layout (Chapter 8)

 ➤ How to create more complex layouts by fl oating content (Chapter 9)

 ➤ The ways that HTML lists can be styled, and used to create navigation for a website
(Chapter 10)

 ➤ Further ways to create layouts by positioning content relative to HTML elements or the
browser viewport, and how to layer content (Chapter 11)

19

CH019.indd 367CH019.indd 367 11/05/11 2:37 PM11/05/11 2:37 PM

D
o

368 ❘ CHAPTER 19 CLOSING COMMENTS

 ➤ How to style HTML tables, controlling borders and the presentation of individual table cells
(Chapter 12)

 ➤ How to create a complete layout with HTML and CSS, and how to use custom fonts and add
gradient backgrounds (Chapter 13)

 ➤ The advanced selectors available to you in the most modern browsers to allow even more fi ne
control over the styling of content (Chapter 14)

 ➤ How to style printed content, including outputting text that only appears in the printed
version (Chapter 15)

 ➤ The different mouse cursors that can be applied using CSS (Chapter 16)

 ➤ Making content transparent or invisible with CSS (Chapter 17)

 ➤ How to apply styles that only take effect in Mobile phone browsers (Chapter 18)

FUTURE OF CSS

Browser support in the current age of rapid browser releases is ever improving, with browser
vendors competing to be the most up-to-date, and experimenting with new features that might go on
to become part of future CSS recommendations.

As the older versions of Internet Explorer fall out of use, you will be able to write leaner and meaner
CSS; until then, you will go through a painful period of supporting out-of-date technologies, but be
heartened by the fact that even before you are able to put IE 6 to rest, the expectation that websites
must look the same in all browsers is fading. As I promote in this book, CSS will be written in a
progressive manner, with users of older browsers seeing a basic design, allowing them to focus more
on cutting-edge browsers, giving users the best possible experience.

The Web is going mobile, and CSS authors will increasingly be creating and implementing layouts
tailored for mobile devices and designing mobile applications.

Exciting innovations, such as animation in CSS, will encourage talented designers to push the boundaries
of what web browsers are capable of, and, as CSS authors, you and I will be the ones that get to build
beautiful and engaging sites with a potential audience greater than that of any other form of art.

The future is bright for CSS.

CLOSING STATEMENT

My aim in this book is to teach you the fundamentals of CSS in the way professional web designers
and developers use it. From the start, my intention is that not only will you complete this book able
to implement the design for a website but that you will be able to do so in a robust, professional, and
standards-aware way.

With this foundation, I hope you enjoy writing CSS as much as I do and are able to experience the
same great feeling of satisfaction I get when seeing a webs ite come to life in a browser.

CH019.indd 368CH019.indd 368 11/05/11 2:37 PM11/05/11 2:37 PM

Answers to Exercises

CHAPTER 1

 1. What are the key benefi ts of CSS?

A. Benefi ts include:

 ➤ Separation of styling from HTML with CSS enables the appearance of an entire
site to be updated from a single fi le or set of fi les.

 ➤ Using external CSS fi les, the styles for a site need only be downloaded once,
instead of once for every page.

 ➤ Users of a website can compose style sheets of their own, potentially making
websites more accessible.

 ➤ Support for multiple style sheets can enable a developer to provide more than one
look for a website to users.

 ➤ Style sheets allow content to be targeted towards specifi c devices, for example,
printers or mobile phones.

 2. Name the fi ve main web browsers used today.

A. Internet Explorer, Firefox, Chrome, Safari and Opera.

 3. Which is the latest version of Internet Explorer?

A. Internet Explorer 9.

CHAPTER 2

 1. Name the different components that make up a CSS rule?

A. Rules are made up of selectors and declarations, and declarations are further
made up of properties and values.

A

bapp01.indd 369bapp01.indd 369 11/05/11 2:50 PM11/05/11 2:50 PM

D
o

370 ❘ APPENDIX A ANSWERS TO EXERCISES

 2. What’s the difference between when width: auto; is applied to a <table> as opposed to a
<div> element?

 A. A <table> shrinks to fi t its contents, a <div> expands to fi ll its container.

 3. Complete the sequence: Declaration, Property,

 A. Value.

 4. Convert the color RGB(234, 123, 45) to hexadecimal.

 A. #EA7B2D.

 5. What is the shortened hexadecimal notation of #FFFFFF?

 A. #FFF.

 6. If I have a style sheet located at www.example.com/stylesheet.css, and a web page located
at www.example.com/index.html, what markup would I include in index.html to include
stylesheet.css via a relative path?

 A. You would include a link element with a div attribute which points to the fi le, using a
relative path:

 <link rel=”stylesheet” type=”text/css” href=”stylesheet.css”>

or an absolute path:

 <link rel=”stylesheet” type=”text/css” href=”/stylesheet.css”>

CHAPTER 3

 1. How would you apply a style to an element based on its class?

 A. By preceding the class name in a selector with a dot:

 .example-class {
 }

 2. How many class names can one element have?

 A. As many as you like.

 3. How would you apply a style to an element based on its ID?

 A. By preceding the class name in a selector with a hash mark or pound sign:

 #example-id {
 }

 4. How would you apply a style to an element based on its class and type?

 A. Add the class name, with the preceding dot to the end of the element name, with no
space in between:

 div.example-class {
 }

bapp01.indd 370bapp01.indd 370 11/05/11 2:50 PM11/05/11 2:50 PM

Chapter 4 ❘ 371

 5. If you wanted to style a link a different color when the user’s mouse hovers over it, what
might the selector look like?

 A. The selector would at minimum look like a:hover, though a.classname:hover,
a#idname:hover, and so on, are acceptable answers as well.

CHAPTER 4

 1. In the following style sheet, determine the specifi city of each selector.

 A.

ul#hmenu ul.menu /* 1,1,2 */
ul#hmenu li li:hover /* 1,1,3 */
ul#hmenu ul.menu ul.menu /* 1,2,3 */
ul#hmenu li#menu-204 ul.menu ul.menu /* 2,2,4 */
ul#hmenu li#menu-848 ul.menu ul.menu ul.menu ul.menu /* 2,4,6 */
ul#hmenu li#menu-990 ul.menu ul.menu /* 2,2,4 */
ul#hmenu > li.menu.eas + li.menu.eas ul.menu ul.menu ul.menu /* 1,7,6 */
li.menu /* 11 */
li.menu-highlight /* 11 */
ul.menu li a /* 13 */
ul.menu li a span /* 14 */
ul.menu span.arrow /* 22 */

 2. According to the following style sheet, what color is the link?

a.context:link {
 color: blue;
}
a.context:visited {
 color: purple;
}
a.context:hover {
 color: green;
}
a.context:active {
 color: red;
}

 A. It depends on what state the link is in. If the link is unvisited, the link is blue. If the
link is visited, it’s purple. If the user is hovering their mouse over the link, it’s green,
and if the user is clicking on the link, it’s red regardless of whether it has been visited
or not.

 3. According to the following style sheet, what color is the link?

a.context:visited {
 color: purple;
}
a.context:hover {
 color: green;
}

bapp01.indd 371bapp01.indd 371 11/05/11 2:50 PM11/05/11 2:50 PM

372 ❘ APPENDIX A ANSWERS TO EXERCISES

a.context:active {
 color: red;
}
a.context:link {
 color: blue;
}

 A. The link is blue, regardless of its state, since the :link selector appears last and it has
the same specifi city as the other selectors.

 4. According to the following style sheet, what color is the link?

a.context:link {
 color: blue;
}
a.context:visited {
 color: purple !important;
}
a.context:hover {
 color: green;
}
a.context:active {
 color: red;
}

 A. It depends on the state; if the link is unvisited, it’s blue. If the link is unvisited and the
user is hovering their mouse over the link, it’s green. If the link is unvisited and the user
is clicking on the link, it’s red. If the link is visited, it’s purple, regardless of whether the
user is hovering over the link or clicking it.

CHAPTER 5

 1. Why aren’t the values of the font-weight property 100 through 900, bolder, and lighter
used in real-world web design?

 A. Because commonly available fonts are either bold or they aren’t, and since there is only
one variation, bold and normal, the other values aren’t used.

 2. How could the following rules be better written?

p {
 font-family: Arial, sans-serif;
 font-weight: bold;
 font-size: 24px;
 color: crimson;
}
p.copy {
 font-style: italic;
 font-weight: bold;
 line-height: 2em;
}
p#footer {
 font-size: 12px;
 line-height: 2em;
 font-family: Helvetica, Arial, sans-serif;
}

bapp01.indd 372bapp01.indd 372 11/05/11 2:50 PM11/05/11 2:50 PM

Chapter 6 ❘ 373

 A.

p {
 font: bold 24px Arial, sans-serif;
 color: crimson;
}
p.copy {
 font-style: italic;
 font-weight: bold;
 line-height: 2em;
}
p#footer {
 font: 12px/2em Helvetica, Arial, sans-serif;
}

The second rule, which begins with the selector p.copy, had no change, because there
is no font-size and no font-family specifi ed in the rule, which are both required
for the font shorthand property. Another acceptable approach would be to repeat
the font-size and font-family as defi ned in the fi rst rule, since it applies to all <p>
elements. If you repeated the font-size and font-family from the fi rst rule, another
acceptable answer would be:

p.copy {
 font: italic bold 24px/2em Arial, sans-serif;
}

 3. What’s wrong with the following rule?

p {
 font-size: 24;
}

 A. It is missing a length unit. Measurements that don’t include a length unit are illegal,
unless the specifi cation specifi cally says it is allowed.

 4. Would the declaration font-size: 75%; make the font size larger or smaller?

 A. Smaller. Values under 100% result in a smaller font size, and values larger than 100%
result in a larger font size.

CHAPTER 6

 1. If you wanted to reduce the spacing between letters, how will you do so? Provide an
example declaration.

 A. Provide a negative length value to the letter-spacing property, such as
letter-spacing: -1px;

 2. How do you remove the underlines from links, but restore the underlines when the links
are focused on or hovered over?

 A. With the following rules:

a {
 text-decoration: none;

bapp01.indd 373bapp01.indd 373 11/05/11 2:50 PM11/05/11 2:50 PM

374 ❘ APPENDIX A ANSWERS TO EXERCISES

}

a:focus,
a:hover {
 text-decoration: underline;
}

 3. When indenting text in a paragraph, how is a percentage value calculated?

 A. Providing a percentage value to the text-indent property causes the indentation to be
calculated based on the width of the parent element of the target element.

 4. What are the keywords that CSS offers for changing the case of text within an element?

 A. lowercase, uppercase, and capitalize.

 5. If you wanted to preserve line breaks and spacing as formatted in the source code, what
CSS declaration would you use?

 A. white-space: pre;

CHAPTER 7

 1. What are two properties that you can use to specify a background color in a web page?

 A. The background-color and background properties.

 2. What declaration causes a background image to be tiled only along the x-axis?

 A. background-repeat: repeat-x;.

 3. What keyword value can you use to turn off tiling of a background image?

 A. no-repeat.

 4. If you wanted to offset an image ten pixels from the left and ten pixels from the top, what
declaration would you use?

 A. background-position: 10px 10px;

 5. If you wanted a background image to scroll with the document, what declaration would
you use?

 A. background-attachment: scroll;

 6. When a background image is said to be “fi xed,” what HTML element is the background
image position relative to?

 A. The viewport.

 7. Write a declaration that contains all fi ve background properties in one.

 A. The declaration should look something like:

 background: white url(image.png) repeat scroll center center;

The individual components of the value are background-color, background-image,
background-repeat, background-attachment, and background-position (vertical and
horizontal).

bapp01.indd 374bapp01.indd 374 11/05/11 2:50 PM11/05/11 2:50 PM

Chapter 9 ❘ 375

CHAPTER 8

 1. From left to right, what are the seven box model properties that make up the left, center,
and right sides of a box?

 A. margin-left, border-left, padding-left, width, padding-right, border-right,
margin-right.

 2. How do you left-, center-, and right-align a block-level box (using the standard method)?

 A. To left-align: margin-right: auto; or margin: 0 auto 0 0;

To center-align: margin: 0 auto; or margin: 0 auto 0 auto; or margin-left: auto;
margin-right: auto;

To right-align: margin-left: auto; or margin: 0 0 0 auto;

 3. When the margin shorthand property has four values, what side of the target element does
each value apply margin to, in order?

 A. Top, right, bottom, left.

 4. What are the three keyword values of the border-width property?

 A. thin, medium, and thick.

 5. If the border-color shorthand property has three values, what side of the target element
does each value apply to, in order?

 A. Top, right and left, bottom.

 6. Name the shorthand properties that encompass the border-width, border-style, and
border-color properties.

 A. border-top, border-right, border-bottom, border-left, and border.

 7. Describe briefl y the two situations in which margin collapsing occurs?

 A. Between adjacent sibling elements where the bottom margin of the top element comes
into contact with the top margin of the bottom element, or between nested elements
where the top margin of any nested element comes into contact with the top margin of
its container element, and likewise when the bottom margin of a nested element comes
into contact with the bottom margin of its container element.

 8. What are the four keywords of the overflow property?

 A. visible, auto, scroll, and hidden.

CHAPTER 9

 1. When an element is fl oated, what rule governs its dimensions?

 A. The shrink-to-fi t rules; the element only expands enough to accommodate the content
inside.

 2. What happens when an inline element, such as a element, is fl oated?

bapp01.indd 375bapp01.indd 375 11/05/11 2:50 PM11/05/11 2:50 PM

376 ❘ APPENDIX A ANSWERS TO EXERCISES

 A. It becomes a block element with shrink-to-fi t sizing.

 3. What are the three keywords of the float property?

 A. left, right, and none.

 4. If an element is fl oated to the right, and you don’t want the following element to wrap
around it, what declaration would you apply to that element?

 A. clear: right; or clear: both;

 5. What declarations would you use to create subscript and superscript text?

 A. vertical-align: sub; and vertical-align: super;

 6. When vertically aligning an inline element to the middle, how is the element positioned on
the line?

 A. It is centered at the center point of the lowercase letter x.

 7. What is the difference between the text-top and top keywords of the vertical-align
property?

 A. In some browsers, nothing. The text-top keyword aligns to the top of the tallest
lowercase letter, and the top keyword aligns to the top of the line box.

 8. If you are aligning table cells to the baseline, what determines the baseline?

 A. The tallest content in the fi rst row of the table.

CHAPTER 10

 1. Name the keywords of the list-style-type property supported by all major browsers?

 A. disc, circle, square, decimal, lower-roman, upper-roman, none.

 2. What properties does the list-style property allow you to specify in a single declaration?

 A. list-style-type, list-style-image, list-style-position.

 3 Can size and position be controlled with the list-style-image property? If so, how?

 A. No, size and position cannot be controlled with the list-style-image property.

CHAPTER 11

 1. What is the default value of the top, right, bottom, and left properties?

 A. The auto keyword.

 2. What are offset properties used for?

 A. To control the position of elements with a position value of absolute, relative, or fi xed.

bapp01.indd 376bapp01.indd 376 11/05/11 2:50 PM11/05/11 2:50 PM

Chapter 13 ❘ 377

 3. If the <body> element has a sole child that is positioned absolutely, what point of reference is
used for its positioning?

 A. The browser’s viewport.

 4. If the <body> element has a sole child that is positioned relatively, with an id name of
relative-element, and that relatively positioned element has a child that is absolutely
positioned, what point of reference is used for the absolutely positioned element?

 A. The element with the id name relative-element.

 5. If the element from Exercise 4, relative-element, has a fi xed position child, what point of
reference is used for its positioning?

 A. The browser’s viewport.

 6. You have fi ve elements that are all absolutely positioned siblings, but no z-index is specifi ed
for any of them. In what order will they be stacked? Provide the z-index declaration for
each element, in order.

 A. z-index: 1;, z-index: 2;, z-index: 3;, z-index: 4;, z-index: 5;.

CHAPTER 12

 1. Describe what the table-layout: fixed; declaration does.

 A. It forces an HTML table to honor explicitly defi ned widths, instead of auto sizing to
accommodate content.

 2. When sizing using the table-layout: fixed; declaration, how does the browser determine
the width of table columns?

 A. First the browser takes into account the width property as applied to the <table> element,
then the browser takes into account the width property as applied to <col /> elements. If
none is found, it goes to the width property as applied to the <td> or <th> elements that
appear in the fi rst row of the table. If no width is defi ned, each column is given equal width.

 3. What purpose does the optional <thead> element serve?

 A. It contains table headers, when you print a table that spans multiple pages. Its contents
are repeated at the top of each printed page.

 4. In what containing element does the main table data appear?

 A. The <tbody> element.

CHAPTER 13

 1. What is the fi rst step in implementing a web page from a design?

 A. Start with good, semantic, and valid HTML. Use a validator to make sure you have
not made any mistakes in your markup, and view the page with only the default
browser styles to check if all of the content makes sense and is in a logical order.

bapp01.indd 377bapp01.indd 377 11/05/11 2:50 PM11/05/11 2:50 PM

378 ❘ APPENDIX A ANSWERS TO EXERCISES

 2. Which rule is used to add support for custom fonts?

 A. The @font-face rule.

 3. What are the drawbacks to using custom fonts?

 A. They need to be downloaded with the page, which will make the overall page
download longer. Until the font has been downloaded, text that uses the custom font
may not be displayed.

 4. What are vendor prefi xes?

 A. Vendor prefi xes are strings that preface not yet fi nalized or experimental CSS
properties or values, so that browser vendors can implement new features that may be
subject to change. The main prefi xes are –ms- for Internet Explorer, -moz- for Firefox,
-webkit- for Chrome and Safari, and –o- for Opera.

 5. How would you apply a gradient background, and what must you do to support browsers
that don’t implement gradient backgrounds?

 A. You would add a gradient using the two vendor prefi xed background-image property
values, -moz-linear-gradient and –webkit-gradient, the proprietary Internet
Explorer –ms-filter property, and the non-prefi xed linear-gradient value for the
background-image property that is likely to become the standard, as follows:

html {
 height: 100%;
 background-color: #233;
 background-image: -moz-linear-gradient(top, #233, #FFF);
 background-image: -webkit-gradient(linear, left top, left bottom,
 from(#233), to(#FFF));
 -ms-filter: "progid:DXImageTransform.Microsoft.Gradient
 (StartColorStr=#223333, EndColorStr=#FFFFFF)";
 background-image: linear-gradient(top, #233, #FFF);
}

You should always specify a background-color for browsers that do not support
background gradients.

CHAPTER 14

 1. What is the syntax for using direct child selectors?

 A. A direct child selector looks like:

body > .intro {
}

This selector targets elements with the class of intro that are direct children of the
body element.

 2. What is the syntax for using next sibling selectors?

bapp01.indd 378bapp01.indd 378 11/05/11 2:50 PM11/05/11 2:50 PM

Chapter 15 ❘ 379

 A. A next sibling selector looks like:

h1 + .intro {
}

This selector targets elements with class of intro that directly follow an h1 element.

 3. How would you select an element based on an attribute value?

 A. An attribute value selector looks like:

element[attribute=”value”]

 4. How would you select an element based only on the start of an attribute value string?

 A. With a caret character following the attribute string, and before the equals character
as follows:

element[attribute^=”value”]

 5. How would you style the fi rst letter and fi rst line of a paragraph of text?

 A. With the :first-letter and :first-line pseudo-element selectors as follows:

.intro:first-letter,

.intro:first-line {
}

 6. How would you style only the fi rst link in a list of links?

 A. With the :first-child structural pseudo-class:

ul:first-child a {
}

CHAPTER 15

 1. Which media values apply to desktop browsers?

 A. Screen, print, and all.

 2. Write the opening tag for the <style> element, targeting the styles to print.

 A. <style type=’text/css’ media=’print’>

 3. What does the page-break-before property do?

 A. It forces a page break to happen before the beginning of an element.

 4. Write a sample style sheet that includes three rules; the fi rst rule applies to all media types,
the second rule applies to onscreen layout, and the third applies to print.

 A. Your style sheet may differ, but it should look something like the following.

@media all {
 p {
 /* Your declarations appear here */
 }
}
@media screen {

bapp01.indd 379bapp01.indd 379 11/05/11 2:50 PM11/05/11 2:50 PM

380 ❘ APPENDIX A ANSWERS TO EXERCISES

 p {
 /* Your declarations appear here */
 }
}
@media print {
 p {
 /* Your declarations appear here */
 }
}

The following is also a valid answer:

p {
 /* Your declarations appear here */
}
@media screen {
 p {
 /* Your declarations appear here */
 }
}
@media print {
 p {
 /* Your declarations appear here */
 }
}

CHAPTER 16

 1. What is the syntax for specifying a cursor?

 A. The syntax is as follows:

cursor: pointer;

 2. What browser(s) supports all cursor keywords?

 A. Internet Explorer.

CHAPTER 17

 1. What range of values is valid for the opacity property?

 A. opacity values can range from 0 to 1.

 2. What value would you give the opacity property to make an element fully transparent,
effectively making it invisible?

 A. You would give it a value of 0. To make the element completely opaque you would use
a value of 1.

 3. What other property can you use to make an element invisible, and what value would you use?

 A. You would use the visibility property with a value of hidden as follows:

visibility: hidden;

bapp01.indd 380bapp01.indd 380 11/05/11 2:50 PM11/05/11 2:50 PM

Chapter 18 ❘ 381

CHAPTER 18

 1. Which media value was intended to apply to mobile devices but which has poor real-world
support?

 A. The handheld value.

 2. Write a sample style sheet that includes two rules; the fi rst rule applies to all media types,
and the second rule applies to mobile.

 A. A style sheet that looks something like the following would apply styles to all media
types, and separate rules for mobile browsers or other small screen devices.

body {
}

@media screen and (max-device-width: 480px) {
 body {
 }
}

bapp01.indd 381bapp01.indd 381 11/05/11 2:50 PM11/05/11 2:50 PM

bapp01.indd 382bapp01.indd 382 11/05/11 2:50 PM11/05/11 2:50 PM

Additional CSS Resources

TEXT EDITORS

Windows

Notepad++: http://sourceforge.net/projects/notepad-plus/

Crimson Editor: www.crimsoneditor.com

HTML-kit: www.chami.com/html-kit

Mac

TextWrangler: www.barebones.com

TextMate: http://macromates.com/

Other

List of editors: http://en.wikipedia.org/wiki/List_of_HTML_editors

Adobe Dreamweaver: www.adobe.com/products/dreamweaver

BROWSERS

Internet Explorer: www.microsoft.com/uk/windows/internet-explorer/

Internet Explorer test browser images: www.microsoft.com/downloads/en/details.
aspx?FamilyID=21eabb90-958f-4b64-b5f1-73d0a413c8ef&displaylang=en

Firefox: www.firefox.com/

Chrome: www.google.com/chrome

B

BAPP02.indd 383BAPP02.indd 383 11/05/11 2:51 PM11/05/11 2:51 PM

D
o

384 ❘ APPENDIX B ADDITIONAL CSS RESOURCES

Safari: www.apple.com/safari

Opera: www.opera.com/

Yahoo! Graded Browser Support: http://developer.yahoo.com/yui/articles/gbs/

HTML

W3C HTML Validator: http://validator.w3.org/

Valid Doctype list: www.w3.org/QA/2002/04/valid-dtd-list.html

CSS

W3C CSS2.1 recommendation: www.w3.org/TR/CSS2/

W3C CSS3 recommendation: www.w3.org/Style/CSS/current-work

W3C CSS Validator: jigsaw.w3.org/css-validator/

CSS3 support information: www.css3.info/

Specifi city: http://meyerweb.com/eric/css/link-specificity.html

Commonly installed Font Families: www.codestyle.org/css/font-family/index.shtml

Font Family stacks: www.codestyle.org/css/font-family/BuildBetterCSSFontStacks.shtml

Box model switching: www.quirksmode.org/css/box.html

Conditional Comments: www.quirksmode.org/css/condcom.html

IE hacks: http://webstandardstips.com/2008/11/18/css-hacks-for-ie-only-style-rules/

position: fi xed; in IE6: www.gunlaug.no/contents/wd_additions_15.html

http://ryanfait.com/resources/fixed-positioning-in-internet-explorer/

Sprites: www.alistapart.com/articles/sprites

Gradient Backgrounds for all browsers: http://robertnyman.com/2010/02/15/
css-gradients-for-all-web-browsers-without-using-images/

Gradient Background generator: http://gradients.glrzad.com/

Free embeddable fonts: www.theleagueofmoveabletype.com/

Print style sheets: www.alistapart.com/articles/goingtoprint/

Cross browser opacity: www.impressivewebs.com/css-opacity-reference/

http://blogs.msdn.com/b/ie/archive/2010/08/17/ie9-opacity-and-alpha.aspx

The mobile landscape: www.alistapart.com/articles/smartphone-browser-landscape/

Mobile Emulators: http://mobiforge.com/emulators/page/mobile-emulators

CSS Media Queries: www.w3.org/TR/css3-mediaqueries/

BAPP02.indd 384BAPP02.indd 384 11/05/11 2:51 PM11/05/11 2:51 PM

CSS Reference

REFERENCE CONVENTIONS

The following conventions are used to outline browser compatibility for each CSS feature:

 ➤ Y = Yes. The feature is implemented completely per the W3C specifi cation of what that
feature is.

 ➤ N = No. The feature is not implemented.

 ➤ B = Buggy. The feature is implemented but has unexpected side effects.

 ➤ P = Partial. The feature is partially implemented.

 ➤ A = Alternative. The feature is not implemented but an alternative proprietary feature
is available that provides the same functionality.

 ➤ I = Incorrect. The feature is implemented but does not conform to the W3C defi nition
of what that feature provides.

The CSS level that reference material refers to is provided in the CSS column. At the time of
this writing, there are four CSS specifi cations:

 ➤ CSS Level 1: The reference material provided is outlined in the CSS Level 1
Recommendation made 17 December 1996.

 ➤ CSS Level 2: The reference material provided is outlined in the W3C CSS Level 2
Recommendation made 12 May 1998.

 ➤ CSS Level 2.1: The reference material provided is outlined in the W3C CSS Level 2.1
Working Draft made 11 April 2006.

 ➤ CSS Level 3: The reference material provided refers to a W3C CSS Level 3 Candidate
Recommendation (at the time of this writing portions of CSS 3 are still in development;
references refer to those parts of CSS 3 in Candidate Recommendation status).

C

BAPP03.indd 385BAPP03.indd 385 11/05/11 2:52 PM11/05/11 2:52 PM

D
o

386 ❘ APPENDIX C CSS REFERENCE

SELECTORS

SELECTOR CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Universal

* { color: blue; }

3 Y Y Y Y Y Y Y

Type

div { color: blue; }

3 Y Y Y Y Y Y Y

Descendant

div p { color: blue; }

3 Y Y Y Y Y Y Y

Direct Child

div > p { color: blue; }

3 N Y Y Y Y Y Y

Direct Adjacent Sibling

p + p { color: blue; }

3 N Y Y Y Y Y Y

Indirect Adjacent Sibling

p ~ p { color: blue; }

3 N B B Y Y Y Y

Attribute Existence

input[type] { color: blue; }

3 N Y Y Y Y Y Y

Attribute’s value matches value

exactly

input[type=text]

{ color: blue; }

3 N Y Y Y Y Y Y

Attribute’s value is a space-

separated list of words, e.g.,

rel=”copyright copyleft

copyeditor

”a[rel~=”copyright”]

{ color: blue; }

3 N Y Y Y Y Y Y

Attribute’s value begins with

a value or is the value exactly;

value provided may be a hyphen-

separated list of words, e.g.,

hreflang=”en-us”

link[hreflang|=”en”]

{ color: blue; }

3 N Y Y Y Y Y Y

Attribute’s value begins with . . .

a[href^=http://www.somesite

.com] { color: blue; }

3 N Y Y Y Y Y Y

BAPP03.indd 386BAPP03.indd 386 11/05/11 2:52 PM11/05/11 2:52 PM

Pseudo-Classes ❘ 387

SELECTOR CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Attribute’s value contains . . .

a[href*=somesite]

{ color: blue; }

3 N Y Y Y Y Y Y

Attribute’s value ends with . . .

a[href$=html]

{ color: blue; }

3 N Y Y Y Y Y Y

Class

div.class { color: blue; }

3 Y Y Y Y Y Y Y

Multiple classes, e.g.,

class=”class1 class2”

.class1.class2 { color: blue; }

3 N Y Y Y Y Y Y

IE 6 supports multiple class syntax on the element, but not chaining class selectors in the style sheet.

ID

div#id { color: blue; }

3 Y Y Y Y Y Y Y

PSEUDO-CLASSES

PSEUDO-CLASS CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

:link 3 Y Y Y Y Y Y Y

:visited 3 Y Y Y Y Y Y Y

:hover 3 P Y Y Y Y Y Y

:active 3 P P P Y Y Y Y

:focus 3 P Y Y Y Y Y Y

:target 3 N N N Y Y Y Y

:lang 3 N N N Y Y Y N

:root 3 N N N Y Y Y Y

:first-child 3 N Y Y Y Y Y Y

:last-child 3 N N N Y Y Y Y

:empty 3 N N N Y Y Y Y

:not 3 N N N Y Y Y Y

BAPP03.indd 387BAPP03.indd 387 11/05/11 2:52 PM11/05/11 2:52 PM

388 ❘ APPENDIX C CSS REFERENCE

PSEUDO-ELEMENTS

PSEUDO-ELEMENT CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

CSS 3 :: (double-colon) syntax 3 Y N N Y Y Y Y

:first-line 3 Y Y Y Y Y Y Y

:first-letter 3 Y Y Y Y Y Y Y

:before 3 N N Y Y Y Y Y

:after 3 N N Y Y Y Y Y

:selection 3 N N N Y A N Y

COLOR PROPERTIES

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

color 2.1 Y Y Y Y Y Y Y

Value: <color>

Initial value: Depends on browser

Applies to: All elements

Inherited: Yes

<color> refers to one of the following:

 ➤ A color keyword: body { color: black; }

 ➤ A hexadecimal value: body { color: #000000; }

 ➤ Short hexadecimal value: body { color: #000; }

 ➤ RGB value: body { color: rgb(0, 0, 0); }

 ➤ RGB percentage: body { color: rgb(0% ,0%, 0%); }

opacity 3 A A A Y Y Y Y

Value: <alphavalue>

Initial value: 1

Applies to: All elements

Inherited: No

BAPP03.indd 388BAPP03.indd 388 11/05/11 2:52 PM11/05/11 2:52 PM

Font Properties ❘ 389

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Introduced in CSS 3, the opacity property accepts a fl oating-point value between 0.0

(fully transparent) and 1.0 (fully opaque).

IE 6 and IE 7 provide an alternative, proprietary filter property to achieve a similar eff ect.

FONT PROPERTIES

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

font-family 2.1 Y Y Y Y Y Y Y

Value: [[<family-name> | <generic-family>] [, <family-name>|

<generic-family>]*]

Initial value: Varies from browser to browser

Applies to: All elements

Inherited: Yes

<family-name> Refers to the name of a font installed on the user’s operating system and supported

by the browser, for instance: Arial and Times New Roman. A comma-separated list of fonts may be

provided; font names containing spaces must be enclosed with quotations.

<generic-family> Refers to fonts not native to a particular operating system and provided by the

browser. The following are all of the generic font families:

 ➤ serif (Times New Roman, or Times)

 ➤ sans-serif (Arial or Helvetica)

 ➤ cursive (Zapf-Chancery)

 ➤ fantasy (Western)

 ➤ monospace (Courier)

font-style 2.1 Y Y Y Y Y Y Y

Value: normal | italic | oblique

Initial value: normal

Applies to: All elements

Inherited: Yes

continues

BAPP03.indd 389BAPP03.indd 389 11/05/11 2:52 PM11/05/11 2:52 PM

390 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

font-variant 2.1 Y Y Y Y Y Y Y

Value: normal | small-caps

Initial value: normal

Applies to: All elements

Inherited: Yes

font-weight 2.1 Y Y Y Y Y Y Y

Value: normal | bold | bolder | lighter | 100 | 200 | 300 |

400 | 500 | 600 | 700 | 800 | 900

Initial value: normal

Applies to: All elements

Inherited: Yes

font-size 2.1 Y Y Y Y Y Y Y

Value: <absolute-size> | <relative-size> | <length> |

<percentage>

Initial value: medium

Applies to: All elements

Inherited: Yes

Percentage value: Refers to parent element’s font size

<absolute-size> refers to one of the keywords: xx-small | x-small | small | medium | large |

xx-large

<relative-size> refers to one of the keywords: larger | smaller

font 2.1 Y Y Y Y Y Y Y

Value: [[<font-style> || <font-variant> || <font-weight>]?

<font-size> [/ <line-height>]? <font-family>] |

caption | icon | menu | message-box | small-caption |

status-bar

Initial value: Not defi ned for shorthand properties

Applies to: All elements

Inherited: Yes

(continued)

BAPP03.indd 390BAPP03.indd 390 11/05/11 2:52 PM11/05/11 2:52 PM

Background Properties ❘ 391

BACKGROUND PROPERTIES

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

background-color 2.1 Y Y Y Y Y Y Y

Value: <color> | transparent

Initial value: transparent

Applies to: All elements

Inherited: No

background-image 2.1 Y Y Y Y Y Y Y

Value: <uri> | none

Initial value: none

Applies to: All elements

Inherited: No

background-repeat 2.1 Y Y Y Y Y Y Y

Value: repeat | repeat-x | repeat-y | no-repeat

Initial value: repeat

Applies to: All elements

Inherited: No

background-attachment 2.1 P Y Y Y Y Y Y

Value: scroll | fixed

Initial value: repeat

Applies to: All elements

Inherited: No

IE 6 only supports the fixed keyword when applied to the <body> element. The fixed keyword may

be applied to any element in IE 7 and above.

background-position 3 Y Y Y Y Y Y Y

Value: [<percentage> | <length>]{1,2} | [[top | center |

bottom] || [left | center | right]]

Initial value: 0% 0%

Applies to: All elements

continues

BAPP03.indd 391BAPP03.indd 391 11/05/11 2:52 PM11/05/11 2:52 PM

392 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Inherited: No

Percentage values: Are determined based on the size of the element itself

background 2.1 Y Y Y Y Y Y Y

Value: <background-color> || <background-image> ||

<background-repeat> || <background-attachment> ||

<background-position>

Initial value: Not defi ned for shorthand properties

Applies to: All elements

Inherited: No

Percentage values: Are determined based on the size of the element itself

TEXT PROPERTIES

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

word-spacing 2.1 Y Y Y Y Y Y Y

Value: normal | <length>

Initial value: normal

Applies to: All elements

Inherited: Yes

letter-spacing 2.1 Y Y Y Y Y Y Y

Value: normal | <length>

Initial value: normal

Applies to: All elements

Inherited: Yes

text-decoration 2.1 Y Y Y Y Y Y Y

Value: none | [underline || overline || line-through ||

blink]

Initial value: none

(continued)

BAPP03.indd 392BAPP03.indd 392 11/05/11 2:52 PM11/05/11 2:52 PM

Text Properties ❘ 393

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Applies to: All elements

Inherited: No

text-transform 2.1 Y Y Y Y Y Y Y

Value: capitalize | uppercase | lowercase | none

Initial value: none

Applies to: All elements

Inherited: Yes

text-align 2.1 Y Y Y Y Y Y Y

Value: left | right | center | justify

Initial value: left

Applies to: Block-level elements, table cells, and inline blocks

Inherited: Yes

text-indent 2.1 Y Y Y Y Y Y Y

Value: <length> | <percentage>

Initial value: 0

Applies to: Block-level elements, table cells, and inline blocks

Inherited: Yes

Percentage value: Refers to the width of the containing block

line-height 2.1 Y Y Y Y Y Y Y

Value: normal | <number> | <length> | <percentage>

Initial value: normal

Applies to: All elements

Inherited: Yes

Percentage value: Refers to the font size of the element the line-height is applied to

vertical-align 2.1 Y Y Y Y Y Y Y

Value: baseline | sub | super | top | text-top | middle |

bottom | text-bottom | <percentage> | <length>

continues

BAPP03.indd 393BAPP03.indd 393 11/05/11 2:52 PM11/05/11 2:52 PM

394 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Initial value: baseline

Applies to: Inline-level and ‘table-cell’ elements

Inherited: No

Percentage value: Is determined by the line-height of the element

white-space 2 Y Y Y Y Y Y Y

Value: normal | pre | nowrap

Initial value: normal

Applies to: All elements

Inherited: Yes

BOX MODEL PROPERTIES

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

margin-top

margin-right

margin-bottom

margin-left

2.1 Y Y Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: 0

Applies to: All elements

Inherited: No

Percentage value: Refers to the width of the containing block

margin 2.1 Y Y Y Y Y Y Y

Value: [<length> | <percentage> | auto] {1, 4}

Initial value: Not defi ned for shorthand properties

Applies to: All elements

Inherited: No

Percentage value: Refers to the width of the containing block

(continued)

BAPP03.indd 394BAPP03.indd 394 11/05/11 2:52 PM11/05/11 2:52 PM

Box Model Properties ❘ 395

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

padding-top

padding-right

padding-bottom

padding-left

2.1 Y Y Y Y Y Y Y

Value: <length> | <percentage>

Initial value: 0

Applies to: All elements

Inherited: No

Percentage value: Refers to the width of the containing block

padding 2.1 Y Y Y Y Y Y Y

Value: [<length> | <percentage>] {1,4}

Initial value: Not defi ned for shorthand properties

Applies to: All elements

Inherited: No

Percentage value: Refers to the width of the containing block

border-top-width

border-right-width

border-bottom-width

border-left-width

2.1 Y Y Y Y Y Y Y

Value: thin | medium | thick | <length>

Initial value: medium

Applies to: All elements

Inherited: No

border-width 2.1 Y Y Y Y Y Y Y

Value: [thin | medium | thick | <length>] {1,4}

Initial value: Not defi ned for shorthand properties

Applies to: All elements

Inherited: No

continues

BAPP03.indd 395BAPP03.indd 395 11/05/11 2:52 PM11/05/11 2:52 PM

396 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

border-top-color

border-right-color

border-bottom-color

border-left-color

2.1 P Y Y Y Y Y Y

Value: <color> | transparent

Initial value: The value of the color property

Applies to: All elements

Inherited: No

IE 6 does not support the transparent keyword.

border-color 2.1 P Y Y Y Y Y Y

Value: [<color> | transparent] {1,4}

Initial value: See individual properties

Applies to: All elements

Inherited: No

IE 6 does not support the transparent keyword.

border-top-style

border-right-style

border-bottom-style

border-left-style

2.1 P P Y Y Y Y Y

Value: none | dotted | dashed | solid | double | groove |

ridge | inset | outset

Initial value: none

Applies to: All elements

Inherited: No

IE 6 renders the dotted keyword as dashed.

border-style 2.1 P P Y Y Y Y Y

Value: [none | dotted | dashed | solid | double | groove |

ridge | inset | outset] {1,4}

Initial value: Not defi ned for shorthand properties

(continued)

BAPP03.indd 396BAPP03.indd 396 11/05/11 2:52 PM11/05/11 2:52 PM

Box Model Properties ❘ 397

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Applies to: All elements

Inherited: No

IE 6 renders the dotted keyword as dashed.

border-top

border-right

border-bottom

border-left

2.1 Y Y Y Y Y Y Y

Value: <border-width> || <border-style> || <border-color>

Initial value: Not defi ned for shorthand properties

Applies to: All elements

Inherited: No

border 2.1 Y Y Y Y Y Y Y

Value: <border-width> || <border-style> || <border-color>

Initial value: Not defi ned for shorthand properties

Applies to: All elements

Inherited: No

width 2.1 I Y Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: All elements, but non-replaced inline elements, table rows, and

row groups

Inherited: No

IE 6 incorrectly resizes elements if the content inside of the element is larger than its width; this is

fi xed in IE 7 and above.

min-width 2.1 N Y Y Y Y Y Y

Value: <length> | <percentage>

Initial value: 0

continues

BAPP03.indd 397BAPP03.indd 397 11/05/11 2:52 PM11/05/11 2:52 PM

398 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Applies to: All elements, but non-replaced inline elements and table

elements

Inherited: No

max-width 2.1 N Y Y Y Y Y Y

Value: <length> | <percentage> | none

Initial value: none

Applies to: All elements, but non-replaced inline elements and table

elements

Inherited: No

height 2.1 I Y Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: All elements, but non-replaced inline elements, table rows, and

row groups

Inherited: No

IE 6 incorrectly resizes elements if the content inside of the element is larger than its height.

min-height 2.1 P Y Y Y Y Y Y

Value: <length> | <percentage>

Initial value: 0

Applies to: All elements, but non-replaced inline elements, table rows, and

row groups

Inherited: No

IE 6 only supports the min-height property when applied to <td>, <th>, or <tr> elements.

max-height 2.1 N Y Y Y Y Y Y

Value: <length> | <percentage> | none

Initial value: none

Applies to: All elements, but non-replaced inline elements, table rows, and

row groups

Inherited: No

(continued)

BAPP03.indd 398BAPP03.indd 398 11/05/11 2:52 PM11/05/11 2:52 PM

Visual Eff ects ❘ 399

VISUAL EFFECTS

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

overflow 2.1 I Y Y Y Y Y Y

Value: visible | hidden | scroll | auto

Initial value: visible

Applies to: Block-level and replaced elements

Inherited: No

IE 6 incorrectly resizes element width / height when overflow: visible; is applied in addition to

explicit width or height, and the contents overfl ow. This is fi xed in IE 7 and above.

overflow-x 3 Y Y Y Y Y N N

Value: visible | hidden | scroll | auto

Initial value: visible

Applies to: Block-level and replaced elements

Inherited: No

overflow-y 3 Y Y Y Y Y N N

Value: visible | hidden | scroll | auto

Initial value: visible

Applies to: Block-level and replaced elements

Inherited: No

clip 2.1 Y Y Y Y Y Y Y

Value: <shape> | auto

Initial value: auto

Applies to: Absolutely positioned elements

Inherited: No

Under CSS 2 the only valid <shape> value is rect(<top>, <right>, <bottom>, <left>), where rect()

provides the dimensions of a rectangle and <top>, <right>, <bottom>, <left> are <length> values.

visibility 2.1 P P P P P P P

Value: visible | hidden | collapse

Initial value: visible

continues

BAPP03.indd 399BAPP03.indd 399 11/05/11 2:52 PM11/05/11 2:52 PM

400 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Applies to: All elements

Inherited: Yes

No browser supports the collapse keyword, presumably because it essentially provides the same

eff ect as display: none;

POSITIONING

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

display 2.1 P P Y Y Y Y Y

Values: inline | block | list-item | run-in | inline-block |

table | inline-table | table-row-group | table-header-

group | table-footer-group | table-row | table-column-

group | table-column | table-cell | table-caption |

none

Initial value: inline

Applies to: All elements

Inherited: No

IE 5.5 and 6 only support the keywords block, none, inline, inline-block, table-header-group

and table-footer-group. IE 6 additionally supports the list-item keyword. Firefox does not support

the keywords inline-block, run-in, or compact.

position 2.1 P Y Y Y Y Y Y

Value: static | relative | absolute | fixed

Initial value: static

Applies to: All elements

Inherited: No

IE 6 does not support the fixed keyword.

top 2.1 Y Y Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

(continued)

BAPP03.indd 400BAPP03.indd 400 11/05/11 2:52 PM11/05/11 2:52 PM

Positioning ❘ 401

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Applies to: Positioned elements

Inherited: No

Percentage value: Refers to height of containing block

right 2.1 Y Y Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: Positioned elements

Inherited: No

Percentage value: Refers to width of containing block

bottom 2.1 Y Y Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: Positioned elements

Inherited: No

Percentage value: Refers to height of containing block

left 2.1 Y Y Y Y Y Y Y

Value: <length> | <percentage> | auto

Initial value: auto

Applies to: Positioned elements

Inherited: No

Percentage value: Refers to width of containing block

top + bottom = height 2.1 N Y Y Y Y Y Y

When both the top and bottom off set properties are applied to an element positioned absolutely or

fi xed, height is implied.

left + right = width 2.1 N Y Y Y Y Y Y

When both the left and right off set properties are applied to an element positioned absolutely or

fi xed, width is implied.

continues

BAPP03.indd 401BAPP03.indd 401 11/05/11 2:52 PM11/05/11 2:52 PM

402 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

float 2.1 Y Y Y Y Y Y Y

Value: left | right | none

Initial value: none

Applies to: All elements

Inherited: No

clear 2.1 Y Y Y Y Y Y Y

Value: none | left | right | both

Initial value: none

Applies to: Block-level elements

Inherited: No

z-index 2.1 Y Y Y Y Y Y Y

Value: auto | <integer>

Initial value: auto

Applies to: Positioned elements

Inherited: No

TABLE PROPERTIES

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

caption-side 2.1 N N Y Y Y Y Y

Value: top | bottom

Initial value: top

Applies to: ‘table-caption’ elements

Inherited: Yes

table-layout 2.1 Y Y Y Y Y Y Y

Value: auto | fixed

Initial value: auto

(continued)

BAPP03.indd 402BAPP03.indd 402 11/05/11 2:52 PM11/05/11 2:52 PM

User Interface ❘ 403

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Applies to: ‘table’ and ‘inline-table’ elements

Inherited: No

border-collapse 2.1 Y Y Y Y Y Y Y

Value: collapse | separate

Initial value: separate

Applies to: ‘table’ and ‘inline-table’ elements

Inherited: Yes

border-spacing 2.1 N N Y Y Y Y Y

Value: <length> <length> ?

Initial value: 0

Applies to: ‘table’ and ‘inline-table’ elements

Inherited: Yes

empty-cells 2.1 N N Y Y Y Y Y

Value: show | hide

Initial value: show

Applies to: ‘table-cell’ elements

Inherited: Yes

USER INTERFACE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

cursor 2.1 Y Y Y Y Y P Y

Value: [<uri> ,]* [auto | crosshair | default | pointer |

move | e-resize | ne-resize | nw-resize | n-resize |

se-resize | sw-resize | s-resize | w-resize | text |

wait | help | progress]

Initial value: auto

Applies to: All elements

Inherited: Yes

continues

BAPP03.indd 403BAPP03.indd 403 11/05/11 2:52 PM11/05/11 2:52 PM

404 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

outline-width 2.1 N N Y Y Y Y Y

Value: <border-width>

Initial value: medium

Applies to: All elements

Inherited: No

outline-style 2.1 N N Y Y Y Y Y

Value: <border-style>

Initial value: none

Applies to: All elements

Inherited: No

outline-color 2.1 N N Y Y Y Y Y

Value: <color> | invert

Initial value: invert

Applies to: All elements

Inherited: No

outline 2.1 N N Y Y Y Y Y

Value: <’outline-color’> || <’outline-style’> ||

<’outline-width’>

Initial value: Not defi ned for shorthand properties

Applies to: All elements

Inherited: No

GENERATED CONTENT, AUTOMATIC NUMBERING, AND LISTS

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

content 2.1 N N Y Y Y Y Y

Value: normal | none | [<string> | <uri> | <counter> |

attr(<identifier>) | open-quote | close-quote |

no-open-quote | no-close-quote]+

(continued)

BAPP03.indd 404BAPP03.indd 404 11/05/11 2:52 PM11/05/11 2:52 PM

Generated Content, Automatic Numbering, and Lists ❘ 405

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Initial value: normal

Applies to: ::before and ::after pseudo-elements

Inherited: No

quotes 2.1 N N Y Y Y Y Y

Value: [<string> <string>]+ | none

Initial value: Varies from browser to browser

Applies to: All elements

Inherited: Yes

counter-reset 2.1 N N Y Y N Y Y

Value: [<identifier> <integer>?]+ | none

Initial value: none

Applies to: All elements

Inherited: No

counter-increment 2.1 N N Y Y N Y Y

Value: [<identifier> <integer>?]+ | none

Initial value: none

Applies to: All elements

Inherited: No

list-style-type 2.1 P P P P P P Y

Value: disc | circle | square | decimal | decimal-leading-

zero | lower-roman | upper-roman | lower-greek |

lower-latin | upper-latin | armenian | georgian | none

Initial value: disc

Applies to: Elements with ‘display: list-item’

Inherited: Yes

list-style-image 2.1 Y Y Y Y Y Y Y

Value: <uri> | none

Initial value: none

continues

BAPP03.indd 405BAPP03.indd 405 11/05/11 2:52 PM11/05/11 2:52 PM

406 ❘ APPENDIX C CSS REFERENCE

PROPERTY CSS IE 6.0 IE 7.0 IE 8.0 IE 9.0 FF 3.6 O 11.1 S 5.0

Applies to: Elements with ‘display: list-item’

Inherited: Yes

list-style-position 2.1 Y Y Y Y Y Y Y

Value: inside | outside

Initial value: outside

Applies to: Elements with ‘display: list-item’

Inherited: Yes

list-style 2.1 P P Y Y P P Y

Value: <’list-style-type’> || <’list-style-position’> ||

<’list-style-image’>

Initial value: Not defi ned for shorthand properties.

Applies to: Elements with ‘display: list-item’

Inherited: Yes

(continued)

BAPP03.indd 406BAPP03.indd 406 11/05/11 2:52 PM11/05/11 2:52 PM

CSS Colors

This appendix references the available CSS color keywords as documented in the W3C CSS 3
candidate recommendation. With the exception of IE 6 not supporting the spelling of lightgray
with an a, as in its American spelling, and IE 6 not supporting other gray color keywords
spelled with an “e”, as in the British spelling, all of the following keywords are supported in
all of the major browsers.

The following sections show colors as sorted from light hue to dark hue.

Reds

COLOR KEYWORD HEXADECIMAL RGB

lavenderblush #FFF0F5 255, 240, 245

mistyrose #FFE4E1 255, 228, 225

pink #FFC0CB 255, 192, 203

lightpink #FFB6C1 255, 182, 193

orange #FFA500 255, 165, 0

lightsalmon #FFA07A 255, 160, 122

darkorange #FF8C00 255, 140, 0

coral #FF7F50 255, 127, 80

hotpink #FF69B4 255, 105, 180

D

continues

BAPP04.indd 407BAPP04.indd 407 11/05/11 2:52 PM11/05/11 2:52 PM

D
o

408 ❘ APPENDIX D CSS COLORS

COLOR KEYWORD HEXADECIMAL RGB

tomato #FF6347 255, 99, 71

orangered #FF4500 255, 69, 0

deeppink #FF1493 255, 20, 147

fuchsia #FF00FF 255, 0, 255

magenta #FF00FF 255, 0, 255

red #FF0000 255, 0, 0

salmon #FA8072 250, 128, 114

lightcoral #F08080 240, 128, 128

violet #EE82EE 238, 130, 238

darksalmon #E9967A 233, 150, 122

plum #DDA0DD 221, 160, 221

crimson #DC143C 220, 20, 60

palevioletred #DB7093 219, 112, 147

orchid #DA70D6 218, 112, 214

thistle #D8BFD8 216, 191, 216

indianred #CD5C5C 205, 92, 92

mediumvioletred #C71585 199, 21, 133

mediumorchid #BA55D3 186, 85, 211

firebrick #B22222 178, 34, 34

darkorchid #9932CC 153, 50, 204

darkviolet #9400D3 148, 0, 211

mediumpurple #9370DB 147, 112, 219

darkmagenta #8B008B 139, 0, 139

darkred #8B0000 139, 0, 0

purple #800080 128, 0, 128

maroon #800000 128, 0, 0

(continued)

BAPP04.indd 408BAPP04.indd 408 11/05/11 2:52 PM11/05/11 2:52 PM

CSS Colors ❘ 409

Blues

COLOR KEYWORD HEXADECIMAL RGB

azure #F0FFFF 240, 255, 255

aliceblue #F0F8FF 240, 248, 255

lavender #E6E6FA 230, 230, 250

lightcyan #E0FFFF 224, 255, 255

powderblue #B0E0E6 176, 224, 230

lightsteelblue #B0C4DE 176, 196, 222

paleturquoise #AFEEEE 175, 238, 238

lightblue #ADD8E6 173, 216, 230

blueviolet #8A2BE2 138, 43, 226

lightskyblue #87CEFA 135, 206, 250

skyblue #87CEEB 135, 206, 235

mediumslateblue #7B68EE 123, 104, 238

slateblue #6A5ACD 106, 90, 205

cornflowerblue #6495ED 100, 149, 237

cadetblue #5F9EA0 95, 158, 160

indigo #4B0082 75, 0, 130

mediumturquoise #48D1CC 72, 209, 204

darkslateblue #483D8B 72, 61, 139

steelblue #4682B4 70, 130, 180

royalblue #4169E1 65, 105, 225

turquoise #40E0D0 64, 224, 208

dodgerblue #1E90FF 30, 144, 255

midnightblue #191970 25, 25, 112

aqua #00FFFF 0, 255, 255

cyan #00FFFF 0, 255, 255

continues

BAPP04.indd 409BAPP04.indd 409 11/05/11 2:52 PM11/05/11 2:52 PM

410 ❘ APPENDIX D CSS COLORS

COLOR KEYWORD HEXADECIMAL RGB

darkturquoise #00CED1 0, 206, 209

deepskyblue #00BFFF 0, 191, 255

darkcyan #008B8B 0, 139, 139

blue #0000FF 0, 0, 255

mediumblue #0000CD 0, 0, 205

darkblue #00008B 0, 0, 139

navy #000080 0, 0, 128

Greens

COLOR KEYWORD HEXADECIMAL RGB

mintcream #F5FFFA 245, 255, 250

honeydew #F0FFF0 240, 255, 240

greenyellow #ADFF2F 173, 255, 47

yellowgreen #9ACD32 154, 205, 50

palegreen #98FB98 152, 251, 152

lightgreen #90EE90 144, 238, 144

darkseagreen #8FBC8F 143, 188, 143

olive #808000 128, 128, 0

aquamarine #7FFFD4 127, 255, 212

chartreuse #7FFF00 127, 255, 0

lawngreen #7CFC00 124, 252, 0

olivedrab #6B8E23 107, 142, 35

mediumaquamarine #66CDAA 102, 205, 170

darkolivegreen #556B2F 85, 107, 47

mediumseagreen #3CB371 60, 179, 113

(continued)

BAPP04.indd 410BAPP04.indd 410 11/05/11 2:52 PM11/05/11 2:52 PM

CSS Colors ❘ 411

COLOR KEYWORD HEXADECIMAL RGB

limegreen #32CD32 50, 205, 50

seagreen #2E8B57 46, 139, 87

forestgreen #228B22 34, 139, 34

lightseagreen #20B2AA 32, 178, 170

springgreen #00FF7F 0, 255, 127

lime #00FF00 0, 255, 0

mediumspringgreen #00FA9A 0, 250, 154

teal #008080 0, 128, 128

green #008000 0, 128, 0

darkgreen #006400 0, 100, 0

Yellows

COLOR KEYWORD HEXADECIMAL RGB

lightgoldenrodyellow #FAFAD2 250, 250, 210

ivory #FFFFF0 255, 255, 240

lightyellow #FFFFE0 255, 255, 224

floralwhite #FFFAF0 255, 250, 240

lemonchiffon #FFFACD 255, 250, 205

cornsilk #FFF8DC 255, 248, 220

khaki #F0E68C 240, 230, 140

yellow #FFFF00 255, 255, 0

gold #FFD700 255, 215, 0

darkkhaki #BDB76B 189, 183, 107

BAPP04.indd 411BAPP04.indd 411 11/05/11 2:52 PM11/05/11 2:52 PM

412 ❘ APPENDIX D CSS COLORS

Browns

COLOR KEYWORD HEXADECIMAL RGB

snow #FFFAFA 255, 250, 250

seashell #FFF5EE 255, 245, 238

oldlace #FDF5E6 253, 245, 230

linen #FAF0E6 250, 240, 230

antiquewhite #FAEBD7 250, 235, 215

beige #F5F5DC 245, 245, 220

papayawhip #FFEFD5 255, 239, 213

blanchedalmond #FFEBCD 255, 235, 205

bisque #FFE4C4 255, 228, 196

moccasin #FFE4B5 255, 228, 181

navajowhite #FFDEAD 255, 222, 173

peachpuff #FFDAB9 255, 218, 185

wheat #F5DEB3 245, 222, 179

sandybrown #F4A460 244, 164, 96

palegoldenrod #EEE8AA 238, 232, 170

burlywood #DEB887 222, 184, 135

goldenrod #DAA520 218, 165, 32

tan #D2B48C 210, 180, 140

chocolate #D2691E 210, 105, 30

peru #CD853F 205, 133, 63

rosybrown #BC8F8F 188, 143, 143

darkgoldenrod #B8860B 184, 134, 11

brown #A52A2A 165, 42, 42

sienna #A0522D 160, 82, 45

saddlebrown #8B4513 139, 69, 19

BAPP04.indd 412BAPP04.indd 412 11/05/11 2:52 PM11/05/11 2:52 PM

CSS Colors ❘ 413

Grays

COLOR KEYWORD HEXADECIMAL RGB

white #FFFFFF 255, 255, 255

ghostwhite #F8F8FF 248, 248, 255

whitesmoke #F5F5F5 245, 245, 245

gainsboro #DCDCDC 220, 220, 220

lightgray #D3D3D3 211, 211, 211

lightgrey #D3D3D3 211, 211, 211

silver #C0C0C0 192, 192, 192

darkgray #A9A9A9 169, 169, 169

darkgrey #A9A9A9 169, 169, 169

gray #808080 128, 128, 128

grey #808080 128, 128, 128

lightslategray #778899 119, 136, 153

lightslategrey #778899 119, 136, 153

slategray #708090 112, 128, 144

slategrey #708090 112, 128, 144

dimgray #696969 105, 105, 105

dimgrey #696969 105, 105, 105

darkslategray #2F4F4F 47, 79, 79

darkslategrey #2F4F4F 47, 79, 79

black #000000 0, 0, 0

BAPP04.indd 413BAPP04.indd 413 11/05/11 2:52 PM11/05/11 2:52 PM

BAPP04.indd 414BAPP04.indd 414 11/05/11 2:52 PM11/05/11 2:52 PM

415

INDEX

Symbols

[] (square brackets), for grouping values, 124
^ characters, attribute selectors and, 308, 310
! (exclamation marks), !important rules

and, 66
(hash marks), id selectors and, 42
$ (dollar signs), attribute selectors and,

310, 312
* (asterisks)

attribute selectors and, 313, 315
font-family property and, 75
as universal selector, 48

*-resize keywords, 338
+ (plus signs)

next sibling selectors and, 300
numbers and, 29

- (minus signs), numbers and, 29
. (dots), class name selectors and, 40
/ (forward slashes), font size and, 87
: (colon)

pseudo-classes and, 50, 315
separating parts of style sheets and, 18, 19

:: (double colons), pseudo-element syntax
and, 315

; (semi-colon)
declarations and, 19
!important rules and, 66
separating parts of style sheets and, 18

< > (left and right angle brackets), styling
elements and, 18

> (greater than signs), direct child selectors
and, 298

{ } (curly braces), separating parts of style
sheets and, 18, 19

| (vertical bars), for grouping values, 125
@font-face rule, 276, 280, 286
@import rule, 34
@media rules, 324, 328, 357, 358, 365

A

<a> elements, :link pseudo-classes and, 50
absolute font sizes, 82
absolute keyword, 82
absolute lengths, 25
absolute measurements, 25
absolute path, defi ned, 35
absolute positioning

basics, 220–224, 248
z-index property and, 236–238

absolute size, mobile devices and, 356
:active pseudo-class, 50, 52
adjacent sibling combinators, 300–302
Adobe Dreamweaver, for writing CSS, 5
advanced selectors. See selectors, advanced
aligning. See also vertically aligning content

elements in quirks mode, 149
elements with margin property, 147–151
text horizontally, 102–103
vertical-align property, 175

all-scroll keyword, 338

BINDEX.indd 415BINDEX.indd 415 11/05/11 2:53 PM11/05/11 2:53 PM

416

always keyword – borders

always keyword, 331
Android browser, 356
answers to exercises. See exercise answers
asterisks (*)

attribute selectors and, 313, 315
font-family property and, 75
as universal selector, 48

attribute selectors. See also attribute substring
selectors

basics, 302–303, 322
select by attribute value, 305–307
select by presence of an attribute, 303–305

attribute substring selectors, 308–315
values that begin with strings and, 308–310
values that contain strings and, 312–315
values that end with strings and, 310–312

attribute values, selecting by, 305–307
attributes, for linking to external style

sheets, 35
auto keyword

Adding Auto Width to a Table (example),
20–22

for aligning elements, 149
printing and, 331
vs. scroll keyword, 171
width and height and, 165

auto values, for width and height, 165
Auto Width, Adding to Tables (example), 20–21
Auto Width, Applying to Div (example), 21–22

B

background colors, 115–117
background images

Applying a Background Image (example),
117–120

background shorthand, 133–135
background-attachment property,

131–133
background-image property,

117–120, 286

background-position property. See
background images, positioning

background-repeat property, 120–124
basics, 11, 12, 115
exercises, 135
fi xing in place, 131–133

background images, positioning
background-position property, showing

icons with, 120
basics, 124–126
center keyword and, 129–131
position values, mixing, 126–128
repeating and controlling positioning,

128–129
background properties (listed), 391–392
background-color declaration, 291
backgrounds

gradient, 285–291
peek-a-boo bug and, 188

baseline for text, defi ned, 193
baseline keyword, 198
Berners-Lee, Tim, 3
blink value, 106
block elements, fl oated elements and, 176,

178, 179
blue color keywords, 409–410
body > .into descendent selector, 300
bold keyword, 19
borders, 151–159. See also table borders

Adding Borders Around Content (example),
158–159

border property, 23
border-collapse property, 261–263,

269
border-color family of properties, 155
border-color keywords, 155–156
border-color property, 154–156
border-style family of properties, 153
border-style keywords, 153–154
border-style property, 153–154
border-width properties, 151–153

BINDEX.indd 416BINDEX.indd 416 11/05/11 2:53 PM11/05/11 2:53 PM

417

border-spacing property (tables) – clear property, fl oated elements and

defi ned, 131
preventing collapsing margins with,

145–147
shorthand properties, 156–158

border-spacing property (tables),
261–267, 269

bottom keyword, 194, 196, 198
bottom offset property, 219–220, 227–229
box model, 137–173

borders. See borders
dimensions, setting. See dimensions, setting
exercises, 172
fl oating box model, 178–179
margins. See margins
overview, 137–138
padding basics, 159–162
padding defi ned, 131
properties (listed), 394–398

Braille
media queries and, 357
styling for, 324

brown color keywords, 412
browsers. See also specifi c browsers

mobile. See mobile devices, styling content
for

resources, 383–384
styles applied by, 58–59
support of alternative style sheets and, 4
support of CSS and, 12–14

bugs. See also fl oat bugs in IE 6
IE 6 and 7 z-index bug, 245–247

bullets
showing by default, 204
styles of, 205–207
suppressing default display, 212

C

caching, defi ned, 4
Cilia, Robert, 3
canceling fl oating content, 181–184

capitalizing words, 108–111
captions, positioning (tables), 251–253, 269
caption-side property (tables), 251–253
cascades, 57–69

basics, 57–60, 69
cascading, defi ned, 57
Experimenting with Specifi city (example),

62–65
!important rules, 66
overriding, 66
overriding default styles and, 60
specifi city of selectors, calculating,

60–66
Cascading Style Sheets. See CSS
case insensitivity, fonts and, 75
case of text, transforming, 108–111
cells, vertically aligning content, 198–200
center keyword

positioning background images with,
129–131

value of text align property and,
102–103

centering
Center Pages with Margin (example),

149–151
elements with margin property, 147–151

child and parent margins, collapsing, 145
Child Structural Pseudo-classes, Using

(example), 318–320
Chrome (Google)

basics, 13
cursor keyword support, 338, 340

class names, 40–42
class selectors

basics, 39, 40–42
Class and ID Selectors (example), 43–48

clear: both; declaration, 183, 184
clear: left; and clear: right;

declarations, 184
clear property, fl oated elements and,

181–182

BINDEX.indd 417BINDEX.indd 417 11/05/11 2:53 PM11/05/11 2:53 PM

418

code – delimiters, defi ned

code
source code for examples, 6
text formatting and source code, 111–112

<col> element (tables), 251, 253–256
<colgroup> element (tables), 251, 253
collapsing borders (tables), 261–263
collapsing margins, 142–147
colons (:)

pseudo-classes and, 50, 315
separating parts of style sheets and, 18, 19

colors
background colors, 115–117
basics, 31–33
of borders, 154–156
color keywords, 19, 32
color keywords reference, 407–413
color properties (listed), 388–389
transparent keyword, 116

columns (tables)
Style Borders for Separating Rows and

Columns (example), 266–267
styling, 253–256

columns, mobile devices and, 356
comments, conditional for fl oat bugs, 184–185
computers vs. mobile devices, 356
conditional comments for fl oat bugs, 184–185
content. See also fl oating content; mobile

devices, styling content for
Borders, Adding Around Content

(example), 158–159
in cells, vertically aligning, 198–200
fl oating content, canceling, 181–184
fl oating content, <div> elements and, 179
generated content properties (listed),

404–406
hiding with overflow property, 169–170
inserting with content property,

333–335, 336
Markup Content Before Adding CSS

(example), 272–275
overfl owing content, 169–172

conventions, reference, 385
Crimson Editor, 5
CSS, 3–15

advantages of, 4–5
basics, 3, 15, 367–368
browsers and, 12–14
CSS 3, pseudo-element syntax, 315
future of, 368
history of, 3–4
resources, 384
text editors for writing, 5–6
writing, 6–12

CSS reference, 385–406
automatic numbering properties, 404–406
background properties, 391–393
box model properties, 394–398
color properties, 388–389
font properties, 389–390
generated content properties, 404–406
list properties, 27–29
positioning properties, 400–402
pseudo-classes, 387
pseudo-elements, 388
reference conventions, 385
selectors, 386–387
table properties, 402–403
text properties, 392–394
user interface properties, 403–404
visual effects properties, 399–400

curly braces ({}), separating parts of style sheets
and, 18, 19

cursor property basics, 337–340
cursors. See mouse cursor, customizing
Custom Fonts, Using (example), 277–280

D

data types, strings as, 23
declarations, 19
Decorate Links (example), 106–108
delimiters, defi ned, 66

BINDEX.indd 418BINDEX.indd 418 11/05/11 2:53 PM11/05/11 2:53 PM

419

descendant selectors – examples

descendant selectors
basics, 48–49
body > .into descendent selector, 300
direct child selectors and, 297–298

desktop computers vs. mobile devices, 356
device-width feature, 358
dimensions, setting, 162–169

auto-values, 165
height, 163–165
minimum and maximum, 166–169
overfl owing content, 169–172
percentage measurements, 165
quirks mode and, 165
width, 162–163

direct child selectors, 297–300, 322
display: inline; declaration, double-

margin bug and, 193
display: inline-block; declaration,

peek-a-boo bug and, 188
<div> elements

adding auto-width to (example), 21–22
color keywords and, 32
fl oating content and, 179

doctypes, importance of valid, 36
documents

CSS-enabled, creating, 6–11
including CSS in, 34–35
including embedded style sheets in, 35

dollar sign ($), attribute selectors and, 312
dollar signs ($), attribute selectors and, 310
dots (.), class name selectors and, 40
double colons (::), pseudo-element syntax

and, 315
double-margin bug, 184, 191–193
downloading. See also websites for

downloading
pages, fonts and, 280

Dreamweaver for writing CSS, 5
Dynamic Pseudo-Class Selectors (example),

52–54
dynamic pseudo-classes, 50–54

E

editors. See text editors
elements

horizontally aligning with margin
property, 147–151

margin collapsing and, 143–145
of style sheets. See style sheet elements

em units, 25–26, 27
EM values, Changing Size of Headings with

(example), 28–29
embedded style sheets, 34–35
ex units, 25–26, 29
examples

Attribute Selector: Attribute Begins with
a String, 308–310

Attribute Selector: Attribute Contains a
String, 313–315

Attribute Selector: Attribute Ends with a
String, 311–312

Attribute Selector: Attribute Value,
306–307

Attribute Selector: Presence of an Attribute,
303–305

Auto Width, Adding to Tables, 20–21
Auto Width, Applying to Div, 21–22
Background Color, Applying, 116–117
Background Image, Applying, 117–120
Background Repetition, Controlling,

122–124
Border, Adding Around Content,

158–159
Center Pages with Margin, 149–151
Child Structural Pseudo-classes, Using,

318–320
Class and ID Selectors, 43
class name selector, 40
Custom Fonts, Using, 277–280
Decorate Links, 106–108
Direct Child Selectors, 298–300
Dynamic Pseudo-Class Selectors, 52–54

BINDEX.indd 419BINDEX.indd 419 11/05/11 2:53 PM11/05/11 2:53 PM

420

examples – external style sheets, linking to

examples (continued)
:fi rst-letter and :fi rst-line Pseudo-elements,

315–317
Fixed Positioning, Using, 232–234
Floated Navigation, Creating Page Headers

with, 180–181
Font of Headings, Changing, 24
Font-Family Property, Applying, 76–78
Font-Style, Font-Weight, and Font-Variant

Properties, Applying, 80–82
Gradient Backgrounds, Adding, 286–291
Headings, Changing Size of with Em

Values, 28–29
Headings, Changing Size of with Pixels,

26–27
Layouts, Building, 281–285
Letter-Spacing and Word-Spacing

Properties, 99–101
Lines of Text, Changing Spacing Between,

95–96
Marker Style of Lists, Changing, 210–212
Markup Content Before Adding CSS,

272–275
Mobile Devices, Applying Styles for, 358–361
Mouse Cursor, Changing, 338–340
Negative Margins, Setting, 30–31
Next Sibling Selector, 300–302
Opacity Property, Using, 346–349
Positioning Sub-Navigation, 224–226
Style Borders for Separating Rows and

Columns, 266–267
Styles for Print, Applying, 325–327,

328–330
Text in Tables, Vertically Aligning, 198–200
Visibility Property, Using, 350–352
Web Page, Creating with HTML and CSS,

6–11
exclamation marks (!), !important rules

and, 66
exercise answers

background images, 374

box model, 375
CSS basics, 369
fl oating content, 375–376
font faces, 372–373
layout basics, 377–378
mobile devices, styling content for, 381
mouse cursor, customizing, 380
opacity and visibility, 380
positioning, 376–377
print styling, 379–380
selectors, 370–371
selectors, advanced, 378–379
specifi city of selectors, 371–372
style sheet elements, 369–370
styling lists, 376
tables, styling, 377
text display, manipulating, 373–374
vertically aligning content, 375–376

exercises. See also exercise answers
background images, 135
box model, 172
CSS basics, 14
fl oating content, 200
font faces, 91
layout basics, 292
mobile devices, styling content for, 364
mouse cursor, customizing, 342
opacity and visibility, 12
positioning, 247
print styling, 335
selectors, 55
selectors, advanced, 321
specifi city of selectors, 67–68
style sheet elements, 36
styling lists, 217
tables, styling, 268
text display, manipulating, 112
vertically aligning content, 200

expand-to-fi t, <div> elements and,
22, 179

external style sheets, linking to, 35

BINDEX.indd 420BINDEX.indd 420 11/05/11 2:53 PM11/05/11 2:53 PM

421

fallback fonts, defi ned – Google’s Chrome

F

fallback fonts, defi ned, 75
Firefox

cursor keyword support, 338, 341–342
support for CSS, 14

:first-child structural pseudo-class, 318–320
:first-letter and :first-line

pseudo-elements, 315–317
fixed keyword, 131–133
fi xed positioning, 229–234, 248
fi xed width for tables, 256–261
fl oat bugs in IE 6, 184–193

basics, 184
conditional comments, 184–185
double-margin bug, 184, 191–193
guillotine bug, 184, 188–190
hacks, 185–186
peek-a-boo bug, 184, 186–188
three-pixel jog, 184, 190–191

fl oating content
basics, 201
canceling, 181–184
exercises, 200
fl oat bugs in IE 6. See fl oat bugs in IE 6
float property basics, 175–178
Floated Navigation, Creating Page Headers

with (example), 180–181
fl oating box model, 178–179
unique behavior of fl oated elements, 178

:focus pseudo-class, 50, 51
font faces, 73–92

basics, 73, 92
bold text, 79
cumulative changes, 85–86
exercises, 91
font shorthand property, 86–90
font-size property, 82–86
font-size values, 87
Font-Style, Font-Weight, and Font-Variant

Properties, Applying (example), 80–82

font-style property, 78–79
font-variant property, 79
font-weight property, 79
italic text, 78–79
setting font faces. See font faces, setting
small caps text, 79

font faces, setting
font families, 24, 75–76
font-family property, 23, 73–75, 92, 276
Font-Family Property, Applying (example),

76–78
font families. See font faces, setting
font property

Font Property, Applying (example), 89–90
inheritance and, 66–67
as shorthand property, 87–88

fonts
custom fonts, styling text with, 275–280
Custom Fonts, Using (example), 277–280
default, applying, 276
Font of Headings, Changing (example), 24
font properties (listed), 389–390
font-family property, 23, 73–75, 92, 276
Font-Family Property, Applying (example),

76–78
font-weight property, 19
Headings, Changing Size of with Em Values

(example), 28–29
Headings, Changing Size of with Pixels

(example), 26–27
measurement based on size of, 26–27
sans-serif fonts, 24, 76, 90, 276, 328
serif fonts vs. sans-serif fonts, 328
size in layouts, 276

forward slash (/), font size and, 87

G

Gecko, 14
generic font families, 74, 75, 76
Google’s Chrome, 13

BINDEX.indd 421BINDEX.indd 421 11/05/11 2:53 PM11/05/11 2:53 PM

422

gradient backgrounds – Internet Explorer 6

gradient backgrounds, 285–291
gradient property, 136
gray color

IE 6 support of, 413
keywords, 413

greater than sign (>), direct child selectors
and, 298

green color keywords, 410–411
grouping selectors, 18–19
guillotine bug, 184, 188–190

H

hacks for fl oat bugs, 185–186
handheld value, 358
hash marks (#), id selectors and, 42
headers

header class, 275
Page Headers, Creating with Floated

Navigation (example), 180–181
Headings, Changing Size of with Em Values

(example), 28–29
Headings, Changing Size of with Pixels

(example), 26–27
height

auto values for, 165
of elements, setting, 163–165
min- and max-height, 166–169
percentage measurements and, 165
quirks mode and, 165

height declaration, 291
height property, three-pixel jog

and, 191
hexadecimal colors, 32
hidden value for visibility property,

349, 352
hiding elements, 349, 352
history of CSS, 3–4
horizontal tiling of background images,

121–124
horizontally aligning text, 102–103

:hover pseudo-class
basics, 50, 51
guillotine bug and, 188

hover states, mobile devices and, 356
HTML

creating pages with, 271–275
good markup, importance of, 36
.html extension, 5
resources, 384
Web Pages, Creating with HTML and CSS

(example), 6–11
HTML-kit, 5

I

icons
arrow.png and arrow2.png icons, 213
envelope icon, 310
magnifying glass icon, 120

id selectors, 39, 42–48
images. See also background images

list-style-image property, 212–213
important keyword, 66
!important rules, 66
indenting text, 101–102
ingredients class, 275
inheritance, 66–68, 69
integers

basics, 23, 29
z-index property, integer values and,

238–245
interfaces, user interface properties (listed),

403–404
Internet Explorer

6, 7, and 8, support of opacity property
and, 345

cursor keyword support, 338, 341–342
Internet Explorer 6. See also fl oat bugs in IE 6

color gray, support of, 407
content property and, 333
cursor keyword support, 341–342

BINDEX.indd 422BINDEX.indd 422 11/05/11 2:53 PM11/05/11 2:53 PM

423

Internet Explorer (IE) – Letter-Spacing and Word-Spacing Properties

direct child selectors and, 298
:first-child structural pseudo-class, 318
fi xed positioning and, 229
:last-child structural pseudo-class, 318
:nth-child(n) structural pseudo-class,

318
z-index bug, 245–247

Internet Explorer (IE). See also fl oat bugs in IE
6

attribute selectors and, 303
border-spacing property and, 263
caption-side property support in, 252
gradient backgrounds and, 291
IE 6, 7 and 8, :last-child structural

pseudo-class, 318
IE 6, 7 and 8, :nth-child(n) structural

pseudo-class, 318
IE 6 and 7, z-index bug, 245–247
max-width and max-height properties

and, 168
min-width and min-height properties

and, 166, 167
-ms- vendor prefi x and, 286
next sibling selectors and, 300
overfl owing content in (tables), 261
overflow-x and overflow-y properties

and, 172
quirks mode, aligning elements in, 149
quirks mode, width and height and, 165
text color on <col> elements and, 254
transparent keyword and, 155
versions of, 13
versions of, installing for testing, 14

intro class, 183
invisibility, 349, 352
iPhone Simulator, 357, 361, 363

J

justify keyword (text align property),
102–103

K

keyword values
basics, 19–23
colors and, 31

keywords. See also specifi c keywords
color keywords reference, 407–413
cursor, changing using, 338–340
cursor keyword support, 338, 341–342
for formatting ordered lists, 207–209
specifying values, positioning and, 128

Koch, Peter-Paul, 356, 357

L

landscape orientation for mobile devices, 362
:last-child structural pseudo-class,

318–320
layering of positioning elements. See z-index

property
layout (tables), 256–261, 269
layout fundamentals, 271–293

basics, 292
building layouts, 281–285
exercises, 292
gradient backgrounds, 285–291
Layouts, Building (example), 281–285
pages, creating with HTML, 271–275
text and custom fonts, styling, 275–280

left and right angle brackets (< >), styling
elements and, 18

left keyword, 19, 176
left offset property, 219–220, 227–229
legacy websites, quirks rendering mode and, 149
length font sizes, 83–86
length values, vertical-align property and,

197–198
<length> value, letter spacing and, 97
lengths basics, 25
letter-case, transforming, 108–111
Letter-Spacing and Word-Spacing Properties

(example), 99–101

BINDEX.indd 423BINDEX.indd 423 11/05/11 2:53 PM11/05/11 2:53 PM

424

letter-spacing property – mobile devices, styling content for

letter-spacing property, 97–101
 elements (lists), 203, 226
Lie, Håkon Wium, 3
line breaks, 18
line height, 87, 94–96
:link pseudo-class, 50–51
<link /> element, printing and, 324
<link> element

including CSS in documents and, 34
linking to external style sheets and, 35

links
Decorate Links (example), 106–108
styling for mobile devices and, 356

lists. See also styling lists
basics, 203, 218
list container element, 203
lists properties (listed), 404–406

list-style-type property
basics, 205
Marker Style of Lists, Changing (example),

210–212
ordered lists, styling, 207–209
unordered lists, styling, 205–207

LoVe HAte mnemonic device, 51

M

Mac
Mac OS X, fonts and, 75
Mac OS X, text editors for, 5
resources, 384

magnifying glass icon, 120
margin property

with 1 value, 142
with 2 values, 141–142
with 3 values, 140–141
with 4 values, 138–140
basics, 30–31, 138
vs. padding property, 162
spacing and, 60

margins, 138–151. See also margin property

aligning or centering elements, 147–151
collapsing, 142–147
defi ned, 137, 138
double-margin bug, 191–193
fl oated elements and, 178
Negative Margins, Setting (example),

30–31
Marker Style of Lists, Changing (example),

210–212
markers

list-style-image property and, 212–213
list-style-position property and,

214–215
list-style-type property and, 205
Marker Style of Lists, Changing (example),

210–212
Markup Content Before Adding CSS (example),

272–275
maximum dimensions, 166–169
McIneney, Matt, 280
measurement, 25–29
media

media queries, 357–358
print styles, targeting for media types,

328–330, 336
print styling based on, 324–327

media attribute, 324, 327, 357, 358, 365
media= “screen” attribute, 325
Meyer, Eric, 62
middle keyword, 194, 198
minimum dimensions, 166–169
minus (-) signs, numbers and, 29
mobile devices, styling content for, 355–365

exercises, 364
importance of, 355, 365
media queries, 357–358, 365
mobile vs. desktop computers, 356
orientation and, 362–364
Styles for Mobile Devices, Applying

(example), 358–361
testing mobile devices, 356–357, 365

BINDEX.indd 424BINDEX.indd 424 11/05/11 2:53 PM11/05/11 2:53 PM

425

modes – pages

modes. See quirks mode
mouse cursor, customizing, 337–343

cursor compatibility, 340–342
cursor property basics, 337–340
exercises, 342
Mouse Cursor, Changing (example),

338–340
-moz- vendor prefi x, 286
-ms- vendor prefi x, 286

N

navigation
Floated Navigation, Creating Page Headers

with (example), 180–181
Marker Style of Lists, Changing to create

site navigation (example), 210–212
Page Headers, Creating with Floated

Navigation (example), 180–181
Positioning Sub-Navigation (example),

224–226
unordered lists and, 204

navigation class, 181
.navigation ul a selector, 221
Negative Margins, Setting (example), 30–31
next sibling selectors, 300–302, 322
none keyword, 117, 176
Notepad, writing CSS and, 5
nth child pseudo-class, defi ned, 50
:nth-child(n) structural pseudo-class,

318–320
numbers

automatic numbering, 404–406
basics, 29–31

O

-o- vendor prefi x, 286
offset positioning, 227–229
 element (lists), 203
opacity, controlling, 345–349

Open Type format for fonts, 277
Opera Software, 3
Opera web browser

basics, 14
cursor keyword support, 338, 341–342
mobile market and, 14, 356

ordered lists
markup, 204
styling, 207–209

orientation, styling for mobile devices and,
362–364

overflow: hidden; declaration, 261
overflow property, 169–172, 261
overfl owing content, 169–172
overflow-x property, 171–172
overflow-y property, 171–172
overlining text, 104, 105

P

padding
basics, 159–162
defi ned, 131
preventing collapsing margins with,

145–147
padding property, spacing and, 60
page breaks

page-break-after: always;
declaration, 332

page-break-after property, 331–333
page-break-before property, 331–333
printing and, 331–333

pages
Center Pages with Margin (example),

149–151
creating (example), 6–11
creating with HTML, 271–275
download time, fonts and, 280
inserting content, 333–335, 336
Page Headers, Creating with Floated

Navigation (example), 180–181

BINDEX.indd 425BINDEX.indd 425 11/05/11 2:53 PM11/05/11 2:53 PM

426

paragraphs, formatting of fi rst letter/fi rst line – pseudo-classes

paragraphs, formatting of fi rst letter/fi rst
line, 315

parent margins, collapsing, 145
peek-a-boo bug, 184, 186–188
percentage font sizes, 83–86
percentage measurements

basics, 26, 29
for width and height, 165

pixels
border-width property and, 151–152
Changing Size of Headings with Pixels

(example), 26–27
pixel measurements, 25–26, 29
three-pixel jog, 190–191

plus (+) signs
next sibling selectors and, 300
numbers and, 29

pointer cursors, 338, 342
portrait orientation for mobile devices, 362
position: fixed; declaration, 234
position: relative; declaration, peek-

a-boo bug and, 188
positioning, 219–248

absolute positioning, 220–224
basics, 248
defi ned, 219
exercises, 247
fi xed positioning, 229–234
IE 6/IE 7 z-index bug, 245–247
position property basics, 219–220
position: relative; declaration,

224, 226
positioning properties (listed), 400–402
relative positioning. See relative positioning
table captions, 251–253
z-axis. See z-axis
z-index property. See z-index property

positioning background images. See background
images, positioning

pound signs (#), id selectors and, 42
pre keyword value, 111–112

precedence
basics, 57, 58
specifi city and, 60
styles and, 60

percentage value, vertical-align property
and, 197–198

percentage width (text indents), 102
presence of attributes, selecting by, 303–305
Presto rendering engine, 14, 356
previewing print pages, 327
print styling

exercises, 335
fundamentals of style sheets for, 323–324
inserting content, 333–335
page breaks, 331–333
Styles for Print, Applying (example),

325–327, 328–330
styling based on media, 324–327, 336
targeting styles for media types, 328–330

printing preview page, 327
properties. See also specifi c properties; values

of properties
automatic numbering, 404–406
background properties (listed), 391–392
box model properties (listed), 394–398
color properties (listed), 388–389
font properties (listed), 389–390
generated content properties (listed),

404–406
lists properties (listed), 404–406
positioning properties (listed), 400–402
table properties (listed), 402–403
text properties, 66–67, 392–394
user interface properties (listed),

403–404
visual effects properties (listed),

399–400
pseudo-classes

basics, 50–54
listed, 387
structural pseudo-classes, 317–320

BINDEX.indd 426BINDEX.indd 426 11/05/11 2:53 PM11/05/11 2:53 PM

427

pseudo-elements – specifi city, of selectors

pseudo-elements
:first-letter and :first-line and,

315–317, 322
listed, 388

px units, 25–26

Q

queries, media, 357–358
quirks mode

aligning elements and, 149
basics, 36
height of elements and, 165
quirks rendering mode, legacy websites

and, 149
width of elements and, 165

R

real numbers, 29
red color keywords, 407–408
reference conventions, 385
relative font sizes, 83
relative lengths, 25
relative measurements, 25–26
relative path, defi ned, 35
relative positioning

basics, 224, 229, 248
offset positioning and, 227–229
Positioning Sub-Navigation (example),

224–226
vs. static positioning, 224

repeat keyword, 121
repeating background images, 120–124,

128–129
repeat-x keyword, 121
repeat-y keyword, 121
resources. See websites for further information
Responsive Design, defi ned, 364
RGB colors, 33
right keyword, 176

right offset property, 219–220, 227–229
rows, Style Borders for Separating Rows and

Columns (example), 266–267
rules, 17–18

S

Safari
basics, 12
cursor keyword support, 338, 341–342
gradient background example in, 290

sans-serif fonts, 24, 76, 90, 276, 328
screens, styling for, 324–325
scroll vs. auto keywords, 171
scrolling background images, 131–133
selectors, 39–55

basics, 18–19
Class and ID Selectors (example), 43–48
class selectors basics, 39, 40–43
descendant selectors, 48–49
id selectors, 39, 42–48
listed, 386–387
pseudo-classes, 50–54
specifi city and, 60–62, 65–66
universal selector, 48

selectors, advanced, 297–322
attribute selectors. See attribute selectors;

attribute substring selectors
basics, 322
direct child selectors, 297–300, 322
exercises, 321
next sibling selectors, 300–302, 322
pseudo-elements :first-letter and
:first-line, 315–317, 322

structural pseudo-classes, 317–320, 322
semantic class names, 41
semi-colons (;)

declarations and, 19
!important rules and, 66
separating parts of style sheets and, 18

specifi city, of selectors, 60–66

BINDEX.indd 427BINDEX.indd 427 11/05/11 2:53 PM11/05/11 2:53 PM

428

serif fonts vs. sans-serif fonts – <style> element

serif fonts vs. sans-serif fonts, 328
shorthand, for hexadecimal values, 33
shorthand properties. See also margin

property
background, 133–135
border shorthand properties, 156–158
border-color, 154
border-style, 153–154
border-width, 151
box model shorthand properties with

2 values, 142
font, 86–90
list-style, 215–217

shrink-to-fi t
auto value and, 22
fl oated elements and, 179

single colons (:)
pseudo classes and, 50, 315
separating parts of style sheets and,

18, 19
small caps text, 79
source code

for examples, downloading, 6
text formatting and, 111–112

Spacing Between Lines of Text, Changing
(example), 95–96

spacing table borders, 263–267
special characters, separating parts of style

sheets and, 18
specifi city

defi ned, 69
Experimenting with Specifi city (example),

62–65
precedence and, 60
of selectors (exercise), 67–68

sprites, background images and, 120
square brackets ([]), for grouping

values, 124
src declarations, 276–277
stacking context, 239–243
stacking order, changing, 238–239

standards mode
guillotine bug and, 188
quirks mode incompatibility and, 149

star hack, 185
static positioning vs. relative positioning, 224
strikethrough text, 104, 105–106
strings

attribute substring selectors. See attribute
substring selectors

basics, 23–24
selection based on values that begin with,

308–310
selection based on values that contain,

312–315
selection based on values that end with,

310–312
substrings, defi ned, 308

structural pseudo-classes, 317–320, 322
style attribute

applying style to elements and, 58
including CSS in documents and, 34–35
specifi city and, 65

style sheet elements, 17–37
colors, 31–33
declarations, 19
documents, including CSS in, 34–35
good HTML, importance of, 36
length and measurement, 9
numbers, 29–31
rules, 17–18
selectors, 18–19
strings, 23–24
URIs, 33–34
values, 19–23

style sheets
basics, 58
precedence and, 58
print styles, controlling within, 328–330,

336
for print styling, 323–324

<style> element, 324

BINDEX.indd 428BINDEX.indd 428 11/05/11 2:53 PM11/05/11 2:53 PM

429

styles – text display, manipulating

styles
applied by browsers, 58–60
for printing vs. for computer screens, 324
removing default styles, 59–60

Styles for Print, Applying (example), 325–327
styling

borders, 153–154
for print. See print styling
tables. See tables, styling
text and custom fonts, 275–280

styling lists
exercises, 217
list basics, 203, 218
list-style shorthand property,

215–217
list-style-image property, 212–213
list-style-position property, 214–215
list-style-type property. See list-
style-type property

markup, 203–204
subscript text

aligning content and, 193–194
defi ned, 193

substrings
attribute substring selectors. See attribute

substring selectors
defi ned, 308

superscript text
aligning content and, 193–194
defi ned, 193

T

table borders
collapsing, 261–263
spacing, 263–267
Style Borders for Separating Rows and

Columns (example), 266–267
tables

cells, vertically aligning content, 198–200
properties (listed), 402–403
<table> element, 249–251

table-layout: fixed; declaration,
259–261

tables, styling, 249–269
basics, 269
border spacing, 263–267
captions, 251–253
collapsing borders, 261–263
columns, 253–256
exercises, 268
forcing width, 259–261
layout, controlling, 256–261
optional table elements, 249–251
tables defi ned, 249

<tbody> element, 251, 265
testing mobile devices, 356–357
text. See also font faces; fonts; vertically

aligning content
bold, 79
custom fonts and, 275–280
inserting URLs into, 333–335
italic, 78–79
small caps, 79
text properties, inheritance and, 66–67
text properties (listed), 392–394

text display, manipulating. See also vertically
aligning content

basics, 93, 113
exercises, 112
horizontal alignment, 102–103
Letter-Spacing and Word-Spacing

Properties (example), 99–101
letter-spacing property, 97–98
line-height property, 94–96
text-align property, 19, 149
text-bottom keyword, 194–197
text-decoration property, 104–108
text-indent property, 101–102
text-middle keyword, 194–195
text-top keyword, 194–197
text-transform property, 108–111
white-space property, 111–112
word-spacing property, 98–101

BINDEX.indd 429BINDEX.indd 429 11/05/11 2:53 PM11/05/11 2:53 PM

430

text editors – values of properties

text editors
resources, 383
for writing CSS, 5–6

TextEdit, 5
TextMate, 5
TextWrangler, 5
<tfoot> element (tables), 251, 265
<thead> element (tables), 251, 265
three-pixel jog, 184, 190–191
tiled squares (background images), 120–124,

128–129, 131
time, download time, fonts and, 280
top keyword, 194–196, 198
top offset property, 219–220, 227–229
touch-screen devices, 356
transparency, 345, 349
transparent keyword, 155
Trident, 13–14, 356
.txt extension, writing CSS and, 5
type selectors, 18, 39

U

 element (lists), 203
underlining text, 104
underscore hack, 185
Universal Resource Indicators (URIs), 33–34
universal selector

basics, 48
specifi city of, 61

unordered lists
markup, 203
styling, 205–207

URIs (Universal Resource Indicators), 33–34
URLs, inserting into text, 333–335
users

browser selection and, 12
composing style sheets and, 4
user interface properties (listed),

403–404

V

values
basics, 19–23
selection based on values that begin with

strings, 308–310
selection based on values that contain

strings, 312–315
selection based on values that end with

strings, 310–312
values of properties

background property, 133
background-attachment property, 131
background-color property, 115
background-image property, 117
background-position property, 124
background-repeat property, 121
border-collapse property, 261
border-color properties, 155
border-shorthand properties, 156
border-spacing property, 263
border-style properties, 153
border-width properties, 151
caption-side property, 251
clear property, 181–184
cursor property, 337
float property, 175
font property, 87
font-family property, 74
font-style property, 78
font-variant property, 79, 82
font-weight property, 79
height property, 164
letter-spacing property, 97
line-height property, 94
list-style property, 215
list-style-image property, 213
list-style-position property, 214
list-style-type property, 205
margin properties, 138

BINDEX.indd 430BINDEX.indd 430 11/05/11 2:53 PM11/05/11 2:53 PM

431

vendor prefi xes – width

max-width and max-height properties,
168

offset properties, 220
opacity property, 345–349
overflow property, 169
overflow-x and overflow-y properties,

172
padding properties, 159
page-break-after property, 331
page-break-before property, 331
position property, 219–220
table-layout property, 256
text-align property, 102
text-decoration property, 104
text-indent property, 101
text-transform property, 108
visibility property, 349
white-space property, 111
width property, 162
word-spacing property, 98
z-index property, 235, 245–247

vendor prefi xes, 286, 293
vertical bars (|), for grouping values, 125
vertically aligning content, 193–201

basics, 193, 201
exercises, 200
percentage and length values, 197–198
subscript and superscript text and, 193–194
table cell contents, 198–200
text-top and text-bottom keywords,

195–197
top, middle, and bottom keywords,

194–195
vertical-align property, 175
vertical-align: super; declaration,

194
Virtual PC, installing multiple versions of IE

and, 14
VirtualBox, installing multiple versions of IE

and, 14
visibility property, 349–352

visible keyword, 169
:visited pseudo-class, 50–51
visual effects properties (listed), 399–400

W

web pages. See pages
Webkit, 12–13, 356
-webkit- vendor prefi x, 286
websites, legacy, quirks rendering mode

and, 149
websites for downloading

examples source code, 6
Firefox, 14
free fonts, 280
Google’s Chrome, 13
Internet Explorer, 13
Opera web browser, 14
Safari, 12
text editors, 5

websites for further information
browsers, 383–384
conditional comments, 185
CSS, 384
fonts, 75
hacks, 186
HTML, 384
mobile browsers, 357
mobile phone emulators, 357
specifi city, 62
sprites, 120
text editors, 383
XHTML versions, 36
Yahoo!’s Graded Browser Support

page, 12
white-space: nowrap; declaration, 112
white-space property, 111–112
width

auto values for, 165
Auto Width, Adding to Tables (example),

20–21

BINDEX.indd 431BINDEX.indd 431 11/05/11 2:53 PM11/05/11 2:53 PM

432

width – zooming, touch-screen devices and

width (continued)
Auto Width, Applying to Div (example),

21–22
of borders, 151–153
of elements, setting, 162–163
fi xed width for tables, 256–261
min- and max-width, 166–169
percentage measurements and, 165
quirks mode and, 165

wildcard attribute substring selectors, 312–313
Windows

fonts and, 75
Notepad, writing CSS and, 5
resources, 384
text editors for, 5

Word-Spacing and Letter-Spacing Properties
(example), 99–101

word-spacing property, 98–101
writing CSS, basics of, 6–12

X

x-height, 29

Y

Yahoo!’s Graded Browser Support page, 12
yellow color keywords, 411

Z

z-axis
relative positioning and, 224, 229
z-index property and, 235

z-index bug, 245–247
z-index property

absolute positioning and, 236–238
basics, 235, 248
integer values, using for, 238–245
position, controlling along z-axis,

235–236
stacking order, specifying, 243–244

zoom: 1; declaration, peek-a-boo bug and,
188

zooming, touch-screen devices and,
356, 362

BINDEX.indd 432BINDEX.indd 432 11/05/11 2:53 PM11/05/11 2:53 PM

BINDEX.indd 433BINDEX.indd 433 11/05/11 2:53 PM11/05/11 2:53 PM

BINDEX.indd 434BINDEX.indd 434 11/05/11 2:53 PM11/05/11 2:53 PM

	WroxBooks
	Beginning CSS: Cascading Style Sheets for Web Design
	Contents
	Introduction
	Part I: The Basics
	Chapter 1: Introducing Cascading Style Sheets
	Advantages of Using CSS
	How to Write CSS
	Your First CSS-Enabled Document
	Browsers
	Webkit
	Trident
	Gecko
	Presto

	Chapter 2: The Bits That Make Up a Style Sheet
	Rules
	Selectors
	Grouping Selectors

	Declarations
	Values
	Keywords
	Strings
	Length and Measurement
	Numbers
	Colors
	The URI

	Including CSS in a Document
	Including an Embedded Style Sheet
	Linking to External Style Sheets

	The Importance of Good HTML
	Doctypes and Quirks Mode

	Chapter 3: Selectors
	Class and ID Selectors
	Class Selectors
	ID Selectors

	The Universal Selector
	Descendant Selectors
	Pseudo-Classes
	Dynamic Pseudo-Classes

	Chapter 4: The Cascade and Inheritance
	The Cascade
	Calculating the Specificity of a Selector
	!important Rules

	Inheritance

	Part II: Properties
	Chapter 5: Applying Font Faces
	Setting Font Faces
	Font Families

	Making Text Italic, Bold, or Small Caps
	Italic Text
	Bold Text
	Small Caps Text

	The font-size Property
	Absolute Font Sizes
	Relative Font Sizes
	Length and Percentage Font Sizes

	The font Shorthand Property
	The font Properties

	Chapter 6: Manipulating the Display of Text
	Line Height
	Controlling the Spacing between Letters
	Controlling the Spacing between Words
	Indenting Text
	Horizontally Aligning Text
	Decorating Text with Underlines, Overlines, or Strikethrough
	Transforming Letter-Case to Lowercase or Uppercase or Capitalizing the Initial Characters of Words
	Controlling How White Space Is Handled

	Chapter 7: Background Colors and Images
	Background Colors
	Background Images
	Controlling How Background Images Repeat
	Positioning Background Images
	Mixing Background Position Values
	Repeating a Background Image and Controlling Its Position
	Controlling Position with the Center Keyword

	Fixing a Background Image in Place
	Background Shorthand

	Chapter 8: The Box Model: Controlling Margins, Borders, Padding, Width, and Height
	Overview
	Margins
	margin Property with Four Values
	margin Property with Three Values
	margin Property with Two Values
	margin Property with One Value
	Margin Collapsing
	Horizontally Aligning Elements with the margin Property

	Borders
	border-width
	border-style
	border-color
	Border Shorthand Properties

	Padding
	Setting Dimensions
	width
	height
	auto Values for width and height
	Percentage Measurements
	Quirks Mode width and height in Internet Explorer
	Minimum and Maximum Dimensions

	Overflowing Content
	Overflowing Just the X or Y axis

	Chapter 9: Floating and Vertical Alignment
	Floating Content
	Floating Box Model

	Canceling Floated Content
	Float Bugs in IE 6
	The Peek-A-Boo Bug
	The Guillotine Bug
	The Three-Pixel Jog
	The Double-Margin Bug

	Vertically Aligning Content
	Subscript and Superscript Text
	The top, middle, and bottom Keywords
	The text-top and text-bottom Keywords
	Percentage and Length Value
	Vertically Aligning the Contents of Table Cells

	Chapter 10: Styling Lists
	List Markup
	The list-style-type Property
	Styling Unordered Lists
	Styling Ordered Lists

	The list-style-image Property
	The list-style-position Property
	The list-style Shorthand Property

	Chapter 11: Positioning
	Introduction to Positioning
	Absolute Positioning
	Relative Positioning
	Fixed Positioning

	The z-axis and the z-index Property
	The IE 6/ IE 7 z-index Bug

	Chapter 12: Styling Tables
	Optional Table Elements
	Table Captions
	Table Columns
	Controlling Table Layout
	Collapsing Borders
	Controlling Border Spacing

	Chapter 13: Create a Complete Layout
	Creating the Page with HTML
	Styling Text and Custom Fonts
	Building the Layout
	Gradient Backgrounds

	Part III: Advanced CSS and Alternative Media
	Chapter 14: Advanced Selectors
	Direct Child Selectors
	Next Sibling Selector
	Attribute Selectors
	Select by Presence of an Attribute
	Select by Attribute Value
	Attribute Substring Selectors

	Pseudo-Elements :first-letter and :first-line
	Structural Pseudo-Classes
	:first-child
	:last-child
	:nth-child(n)

	Chapter 15: Styling for Print
	Benefits of Print Style Sheets
	Applying Styles Based on Media
	Controlling Styles for Media within a Style Sheet
	Controlling Page Breaks
	The Content Property

	Chapter 16: Customizing the Mouse Cursor
	The cursor Property
	Cursor Compatibility

	Chapter 17: Controlling Opacity and Visibility
	The opacity Property
	The visibility Property

	Chapter 18: Styling Content for Mobile Devices
	Why Mobile Is Important
	Developing for Mobile
	Testing Mobile Devices
	Media Queries

	Chapter 19: Closing Comments
	CSS Summary
	Future of CSS
	Closing Statement

	Appendix A: Answers to Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18

	Appendix B: Additional CSS Resources
	Text Editors
	Windows
	Mac
	Other

	Browsers
	HTML
	CSS

	Appendix C: CSS Reference
	Reference Conventions
	Selectors
	Pseudo-Classes
	Pseudo-Elements
	Color Properties
	Font Properties
	Background Properties
	Text Properties
	Box Model Properties
	Visual Eff ects
	Positioning
	Table Properties
	User Interface
	Generated Content, Automatic Numbering, and Lists

	Appendix D: CSS Colors
	Reds
	Blues
	Greens
	Yellows
	Browns
	Grays

	Index

