

Django for Beginners

Build websites with Python & Django

William S. Vincent

© 2018 - 2020 William S. Vincent

Also ByWilliam S. Vincent
Django for APIs

Django for Professionals

http://leanpub.com/u/wsvincent
http://leanpub.com/djangoforapis
http://leanpub.com/djangoforprofessionals

Contents

Introduction 1

Why Django 1

Why This Book 3

Book Structure 4

Book Layout 5

Official Source Code 6

Conclusion 7

Chapter 1: Initial Set Up 8

The Command Line 8

Install Python 3 11

Virtual Environments 11

Install Django 12

Install Git 17

Text Editors 18

Conclusion 18

Chapter 2: Hello World App 19

Initial Set Up 19

Create An App 24

URLs, Views, Models, Templates 27

Hello, World! 30

Git 31

CONTENTS

GitHub 32

SSH Keys 38

Conclusion 39

Chapter 3: Pages App 40

Initial Set Up 40

Templates 42

Class-Based Views 45

URLs 46

Add an About Page 47

Extending Templates 49

Tests 52

Git and GitHub 54

Local vs Production 55

Heroku 56

Additional Files 57

Deployment 60

Conclusion 62

Chapter 4: Message Board App 63

Initial Set Up 63

Create a database model 66

Activating models 67

Django Admin 68

Views/Templates/URLs 74

Adding New Posts 79

Tests 81

GitHub 86

Heroku Configuration 86

Heroku Deployment 88

CONTENTS

SQLite vs PostgreSQL 90

Conclusion 90

Chapter 5: Blog App 91

Initial Set Up 91

Database Models 93

Admin 95

URLs 100

Views 101

Templates 102

Static Files 105

Individual Blog Pages 110

Tests 115

Git 118

Conclusion 118

Chapter 6: Forms 119

Forms 119

Update Form 129

Delete View 135

Tests 141

Conclusion 145

Chapter 7: User Accounts 146

Log In 146

Updated Homepage 149

Log Out Link 151

Sign Up 154

GitHub 159

Heroku Config 160

CONTENTS

Heroku Deployment 162

Conclusion 166

Chapter 8: Custom User Model 167

Set Up 167

Custom User Model 169

Forms 171

Superuser 174

Conclusion 178

Chapter 9: User Authentication 179

Templates 179

URLs 183

Admin 188

Conclusion 192

Chapter 10: Bootstrap 193

Pages App 193

Tests 197

Bootstrap 200

Sign Up Form 209

Conclusion 215

Chapter 11: Password Change and Reset 216

Password Change 216

Customizing Password Change 218

Password Reset 221

Custom Templates 225

Conclusion 229

Chapter 12: Email 230

CONTENTS

SendGrid 230

Custom Emails 239

Conclusion 243

Chapter 13: Newspaper App 244

Articles App 244

URLs and Views 250

Edit/Delete 255

Create Page 262

Conclusion 270

Chapter 14: Permissions and Authorization 271

Improved CreateView 271

Authorizations 273

Mixins 275

LoginRequiredMixin 278

UpdateView and DeleteView 280

Conclusion 282

Chapter 15: Comments 283

Model 283

Admin 285

Template 292

Conclusion 297

Conclusion 298

APIs 299

Learning Resources 299

Python Books 300

Feedback 300

Introduction
Welcome to Django for Beginners, a project-based approach to learning web devel-

opment with the Django web framework. In this book you will build five progressively

more complex web applications, starting with a simple Hello, World app, progressing

to a Pages app,Message Board app, Blog app with forms and user accounts, and finally

a Newspaper app that uses a custom user model, email integration, foreign keys,

authorization, permissions, and more.

By the end of this book youwill feel confident creating your ownDjango projects from

scratch using current best practices.

Django is a free, open source web framework written in the Python programming

language and used by millions of programmers every year. Its popularity is due to its

friendliness to both beginners and advanced programmers: Django is robust enough

to be used by the largest websites in the world–Instagram, Pinterest, Bitbucket,

Disqus–but also flexible enough to be a good choice for early-stage startups and

prototyping personal projects.

This book is regularly updated and features the latest versions of both Django (3.0)

and Python (3.7). It also uses Pipenv for managing Python packages and virtual

environments. Throughout we’ll be using modern best practices from the Django,

Python, and web development communities, especially the thorough use of testing.

Why Django

A web framework is a collection of modular tools that abstracts away much of the

difficulty–and repetition–inherent in web development. For example, most websites

https://djangoproject.com/
https://www.python.org/
https://docs.pipenv.org/

Introduction 2

need the same basic functionality: the ability to connect to a database, set URL routes,

display content on a page, handle security properly, and so on. Rather than recreate

all of this from scratch, programmers over the years have created web frameworks in

all the major programming languages: Django and Flask in Python, Rails in Ruby, and

Express in JavaScript among many, many others.

Django inherited Python’s “batteries-included” approach and includes out-of-the box

support for common tasks in web development:

• user authentication

• templates, routes, and views

• admin interface

• robust security

• support for multiple database backends

• and much much more

This approach allows web developers to focus on what makes a web application

unique rather than reinventing the wheel every time for standard, secure web

application functionality.

In contrast, several popular frameworks–most notably Flask in Python and Express in

JavaScript–adopt a “microframework” approach. They provide only the bareminimum

required for a simpleweb page and leave it up to the developer to install and configure

third-party packages to replicate basic website functionality. This approach provides

more flexibility to the developer but also yields more opportunities for mistakes.

As of 2019 Django has been under active development for over 14 years which makes

it a grizzled veteran in software years. Millions of programmers have already used

Django to build their websites, which is undeniably a good thing. Web development

is hard. It doesn’t make sense to repeat the same code–and mistakes–when a large

community of brilliant developers has already solved these problems for us.

http://flask.pocoo.org/
http://rubyonrails.org/
https://expressjs.com/

Introduction 3

At the same time, Django remains under active development and has a yearly release

schedule. The Django community is constantly adding new features and security

improvements. And best of all it’s written in thewonderfully readable yet still powerful

Python programming language. In short, if you’re building a website from scratch

Django is a fantastic choice.

Why This Book

I wrote this book becausewhile Django is extremelywell documented there is a severe

lack of beginner-friendly tutorials available. When I first learned Django years ago, I

struggled to even complete the official polls tutorial.Whywas this so hard I remember

thinking?

With more experience, I now recognize that the writers of the Django docs faced a

difficult choice: they could emphasize Django’s ease-of-use or its depth, but not both.

They choose the latter and as a professional developer I appreciate the choice, but as

a beginner I found it so…frustrating! My goal with this book is to fill in the gaps and

showcase how beginner-friendly Django really can be.

You don’t need previous Python or web development experience to complete this

book. It is intentionally written so that even a total beginner can follow along and

feel the magic of writing their own web applications from scratch. However if you

are serious about a career in web development, you will eventually need to invest the

time to properly learn Python, HTML, and CSS. A list of recommended resources for

further study is included in the Conclusion.

https://www.djangoproject.com/download/#supported-versions
https://docs.djangoproject.com/en/3.0/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/

Introduction 4

Book Structure

We start by properly covering how to configure a local development environment in

Chapter 1. We’re using bleeding edge tools in this book: the most recent version of

Django (3.0), Python (3.7), and Pipenv to manage our virtual environments. We also

introduce the command line and discuss how to work with a modern text editor.

In Chapter 2 we build our first project, a minimal Hello, World app that demonstrates

how to set up new Django projects. Because establishing good software practices

is important, we’ll also save our work with git and upload a copy to a remote code

repository on GitHub.

In Chapter 3 we make, test, and deploy a Pages app that introduces templates and

class-based views. Templates are how Django allows for DRY (Don’t Repeat Yourself)

development with HTML and CSS while class-based views are quite powerful yet

require a minimal amount of code. We also add our first tests and deploy to Heroku,

which has a free tier we’ll use throughout this book. Using platform-as-a-service

providers like Heroku transforms development from a painful, time-consuming pro-

cess into something that takes just a few mouse clicks.

In Chapter 4we build our first database-backed project, aMessage Board app. Django

provides a powerful ORM that allows us to write concise Python for our database

tables. We’ll explore the built-in admin app which provides a graphical way to interact

with our data and can be even used as a Content Management System (CMS) similar

to Wordpress. Of course, we also write tests for all our code, store a remote copy on

GitHub, and deploy to Heroku.

In Chapters 5-7 we’re ready for our final project: a robust Blog app that implements

CRUD (Create-Read-Update-Delete) functionality. By using Django’s generic class-

based views we only have to write only a small amount of actual code for this. Then

we’ll add forms and integrate Django’s built-in user authentication system for sign up,

https://docs.pipenv.org/
https://github.com/
https://www.heroku.com/
https://en.wikipedia.org/wiki/Object-relational_mapping

Introduction 5

log in, and log out functionality.

Over the course of Chapters 8-15we build out a robustNewspaper site, starting with

the introduction to custom user models in Chapter 8, a Django best practice that is

rarely addressed in tutorials. Chapter 9 covers user authentication, Chapter 10 adds

Bootstrap for styling, and Chapters 11-12 implement password reset and change via

email. With Chapters 13-15 we add articles and comments to our project, along with

proper permissions and authorizations. We even learn some tricks for customizing

the admin to display our growing data.

The Conclusion provides an overview of the major concepts introduced in the book

and a list of recommended resources for further learning.

While you could pick and choose chapters to read, the book’s structure is deliberate.

Each app/chapter introduces a new concept and reinforces past teachings. I highly

recommend reading the book in order, even if you’re eager to skip ahead. Later

chapters won’t cover previous material in the same depth as earlier chapters.

By the end of this book you’ll have a solid understanding of how Django works, the

ability to build apps on your own, and the background needed to fully take advantage

of additional resources for learning intermediate and advanced Django techniques.

Book Layout

There are many code examples in this book, which are denoted as follows:

Code

This is Python code

print(Hello, World)

For brevity we will use dots ... to denote existing code that remains unchanged, for

example, in a function we are updating.

Introduction 6

Code

def make_my_website:

...

print("All done!")

We will also use the command line console frequently to execute commands, which

take the form of a $ prefix in traditional Unix style.

Command Line

$ echo "hello, world"

The result of this particular command is the next line will state:

Command Line

"hello, world"

We will typically combine a command and its output. The command will always be

prefaced by a $ and the output will not. For example, the command and result above

will be represented as follows:

Command Line

$ echo "hello, world"

hello, world

Official Source Code

Complete source code for all chapters can be found in the official GitHub repository.

While it’s best to type all the code by hand yourself, if you do find yourself stuck with

https://github.com/wsvincent/djangoforbeginners

Introduction 7

a coding example or seeing a strange error, make sure to check your code against the

official repo. And if you’re still stuck, try copy and pasting the official source code. A

common error is subtle white spacing differences that are almost impossible to detect

to the naked eye.

Conclusion

Django is an excellent choice for any developer who wants to build modern, robust

web applications with a minimal amount of code. It is popular, under active develop-

ment, and thoroughly battle-tested by the largest websites in the world. In the next

chapter we’ll learn how to configure any computer for Django development.

Chapter 1: Initial Set Up
This chapter covers how to properly configure your computer to work on Django

projects. We start with an overview of the command line and how to install the latest

versions of both Django (3.0) and Python (3.7). Then we discuss virtual environments,

git, and working with a text editor. By the end of this chapter you’ll be ready to create

and modify new Django projects in just a few keystrokes.

The Command Line

The command line is a powerful, text-only view of your computer. As developers

we will use it extensively throughout this book to install and configure each Django

project.

On a Mac, the command line is found in a program called Terminal located at

/Applications/Utilities. To find it, open a new Finder window, open the Applications

directory, scroll down to open the Utilities directory, and double-click the application

called Terminal.

OnWindows machines there are actually two built-in command shells: the Command

shell and PowerShell. You should use PowerShell, which is the more powerful of the

two.

Going forward when the book refers to the “command line” it means to open a new

console on your computer, using either Terminal or PowerShell.

While there are many possible commands we can use, in practice there are six used

most frequently in Django development:

Chapter 1: Initial Set Up 9

• cd (change down a directory)

• cd .. (change up a directory)

• ls (list files in your current directory)

• pwd (print working directory)

• mkdir (make directory)

• touch (create a new file)

Open your command line and try them out. The dollar sign ($) is our command line

prompt: all commands in this book are intended to be typed after the $ prompt.

For example, assuming you’re on a Mac, let’s change into our Desktop directory.

Command Line

$ cd ~/Desktop

Note that our current location, ∼/Desktop, is automatically added before our com-

mand line prompt. To confirm we’re in the proper location we can use pwd which will

print out the path of our current directory.

Command Line

~/Desktop $ pwd

/Users/wsv/desktop

On my Mac computer this shows that I’m using the user wsv and on the desktop for

that account.

Now let’s create a new directory with mkdir, cd into it, and add a new file index.html

with the touch command. Note that Windows machines unfortunately do not support

a native touch command. In future chapters when instructed to create a new file, do

so within your text editor of choice.

Chapter 1: Initial Set Up 10

Command Line

~/Desktop $ mkdir new_dir && cd new_dir

~/Desktop/new_dir $ touch index.html

Now use ls to list all current files in our directory. You’ll see there’s just the newly

created index.html.

Command Line

~/Desktop/new_dir $ ls

index.html

As a final step, return to the Desktop directory with cd .. and use pwd to confirm the

location.

Command Line

~/Desktop/new_dir $ cd ..

~/Desktop $ pwd

/Users/wsv/desktop

Advanced developers can use their keyboard and command line to navigate through

their computer with ease. With practice this approach is much faster than using a

mouse.

In this book I’ll give you the exact instructions to run–you don’t need to be an expert

on the command line–but over time it’s a good skill for any professional software

developer to develop. A good free resource for further study is the Command Line

Crash Course.

https://learnpythonthehardway.org/book/appendixa.html
https://learnpythonthehardway.org/book/appendixa.html

Chapter 1: Initial Set Up 11

Install Python 3

It takes some configuration to properly install Python 3 on a Mac, Windows, Linux,

or Chromebook computer and there are multiple approaches. Many developers–

especially beginners–follow the advice on the official Python website to download

distinct versions of Python directly onto their computer and then adjust the PATH

variable accordingly.

The problem with this approach is that updating the PATH variable correctly is tricky,

by downloading Python directly updates are harder to maintain, and there are now

much easier ways to install and start using Python quickly.

I host a dedicated website, InstallPython3.com, with up-to-date guides for installing

Python 3 on Mac, Windows, or Linux computers. Please refer there to install Python

correctly on your local machine.

Virtual Environments

Virtual environments are an indispensable part of Python programming. They are an

isolated container containing all the software dependencies for a given project. This

is important because by default software like Python and Django is installed in the

same directory. This causes a problem when you want to work on multiple projects

on the same computer. What if ProjectA uses Django 3.0 but ProjectB from last year

is still on Django 1.11? Without virtual environments this becomes very difficult; with

virtual environments it’s no problem at all.

There are many areas of software development that are hotly debated, but using

virtual environments for Python development is not one. You should use a dedicated

virtual environment for each new Python project.

In this book we will use Pipenv to manage virtual environments. Pipenv is similar to

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://installpython3.com/
https://en.wikipedia.org/wiki/Virtual_environment_software
https://docs.pipenv.org/

Chapter 1: Initial Set Up 12

npm and yarn from the JavaScript/Node ecosystem: it creates a Pipfile containing

software dependencies and a Pipfile.lock for ensuring deterministic builds. “Deter-

minism” means that each and every time you download the software in a new virtual

environment, you will have exactly the same configuration.

Sebastian McKenzie, the creator of Yarn which first introduced this concept to

JavaScript packaging, has a concise blog post explaining what determinism is andwhy

it matters. The end result is that we will create a new virtual environment with Pipenv

for each new Django Project.

To install Pipenv we can use pip3 which Homebrew automatically installed for us

alongside Python 3.

Command Line

$ pip3 install pipenv

Install Django

To see Pipenv in action, let’s create a new directory and install Django. First, navigate

to the Desktop, create a new directory django, and enter it with cd.

Command Line

$ cd ~/Desktop

$ mkdir django

$ cd django

Now use Pipenv to install Django.

https://yarnpkg.com/en/
https://yarnpkg.com/blog/2017/05/31/determinism/
https://yarnpkg.com/blog/2017/05/31/determinism/

Chapter 1: Initial Set Up 13

Command Line

$ pipenv install django==3.0

If you lookwithin our directory, there are now twonew files: Pipfile and Pipfile.lock.

We have the information we need for a new virtual environment but we have not

activated it yet. Let’s do that with pipenv shell.

Command Line

$ pipenv shell

If you are on a Mac you should now see parentheses around the name of your current

directory on your command line which indicates the virtual environment is activated.

Since we’re in a django directory that means we should see (django) at the beginning

of the command line prompt.

Note that due to an open bugWindows users will not see visual feedback of the virtual

environment at this time. But if you can run django-admin startproject in the next

section then you know your virtual environment has Django installed properly.

Command Line

(django) $

This means it’s working! Create a new Django project called test_project with the

following command. Don’t forget that period . at the end.

Command Line

(django) $ django-admin startproject test_project .

It’s worth pausing here to explain why you should add a period (.) to the command.

If you just run django-admin startproject test_project then by default Django will

create this directory structure:

https://github.com/pypa/pipenv/issues/1036#issuecomment-342666411

Chapter 1: Initial Set Up 14

Layout

└── test_project

├── manage.py

└── test_project

├── __init__.py

├── settings.py

├── urls.py

└── wsgi.py

See how it creates a new directory test_project and then within it a manage.py file

and a test_project directory? That feels redundant to me since we already created

and navigated into a django directory on our Desktop. By running django-admin

startproject test_project . with the period at the end–which says, install in the

current directory–the result is instead this:

Layout

├── manage.py

└── test_project

├── __init__.py

├── settings.py

├── urls.py

└── wsgi.py

The takeaway is that it doesn’t really matter if you include the period or not at the

end of the command, but I prefer to include the period and so that’s how we’ll do it in

this book.

Chapter 1: Initial Set Up 15

As you progress in your journey learning Django, you’ll start to bump up more and

more into similar situations where there are different opinions within the Django

community on the correct best practice. Django is eminently customizable, which

is a great strength, however the tradeoff is that this flexibility comes at the cost of

seeming complexity. Generally speaking it’s a good idea to research any such issues

that arise, make a decision, and then stick with it!

Now let’s confirm everything is working by running Django’s local web server.

Command Line

(django) $ python manage.py runserver

Watching for file changes with StatReloader

Performing system checks...

System check identified no issues (0 silenced).

You have 17 unapplied migration(s). Your project may not work properly until

you apply the migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

December 09, 2019 - 14:52:27

Django version 3.0, using settings 'test_project.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Don’t worry about the text in red about “17 unapplied migrations.” We’ll get to that

shortly but the important part, for now, is to visit http://127.0.0.1:8000/ and make

sure the following image is visible:

http://127.0.0.1:8000/

Chapter 1: Initial Set Up 16

Django welcome page

To stop our local server type Control+c. Then exit our virtual environment using the

command exit.

Command Line

(django) $ exit

We can always reactivate the virtual environment again using pipenv shell at any

time.

We’ll get lots of practice with virtual environments in this book so don’t worry if it’s

a little confusing right now. The basic pattern is to install new packages with pipenv,

activate them with pipenv shell, and then exit when done.

It’s worth noting that only one virtual environment can be active in a command line

Chapter 1: Initial Set Up 17

tab at a time. In future chapters we will be creating a brand new virtual environment

for each new project so either make sure to exit your current environment or open

up a new tab for new projects.

Install Git

Git is an indispensable part of modern software development. It is a version control

system which can be thought of as an extremely powerful version of track changes in

Microsoft Word or Google Docs. With git, you can collaborate with other developers,

track all your work via commits, and revert to any previous version of your code even

if you accidentally delete something important!

On a Mac, because Homebrew is already installed, we can simply type brew install

git on the command line:

Command Line

$ brew install git

On Windows you should download git from Git for Windows. Click the “Download”

button and follow the prompts for installation.

Once installed, we need to do a one-time system set up to configure it by declaring

the name and email address you want associated with all your git commits. Within the

command line console type the following two lines. Make sure to update them your

name and email address.

https://git-scm.com/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
https://gitforwindows.org/

Chapter 1: Initial Set Up 18

Command Line

$ git config --global user.name "Your Name"

$ git config --global user.email "yourname@email.com"

You can always change these configs later if you desire by retyping the same com-

mands with a new name or email address.

Text Editors

The final step is our text editor. While the command line is where we execute

commands for our programs, a text editor is where the actual code is written. The

computer doesn’t care what text editor you use–the end result is just code–but a

good text editor can provide helpful hints and catch typos for you.

Experienced developers often prefer using either Vim or Emacs, both decades-old,

text-only editors with loyal followings. However each has a steep learning curve

and requires memorizing many different keystroke combinations. I don’t recommend

them for newcomers.

Modern text editors combine the same powerful features with an appealing visual

interface. My current favorite is Visual Studio Code which is free, easy to install, and

enjoys widespread popularity. If you’re not already using a text editor, download and

install Visual Studio Code now.

Conclusion

Phew! Nobody really likes configuring a local development environment but fortu-

nately it’s a one-time pain. We have now learned how to work with virtual environ-

ments and installed the latest version of Python and git. Everything is ready for our

first Django app.

https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Emacs
https://code.visualstudio.com/
https://code.visualstudio.com/

Chapter 2: Hello World App
In this chapter we’ll build a Django project that simply says “Hello, World” on the

homepage. This is the traditional way to start a new programming language or

framework. We’ll also work with git for the first time and deploy our code to GitHub.

If you become stuck at any point, complete source code for this and all future chapters

is available online in the official GitHub repo.

Initial Set Up

To begin, navigate to a new directory on your computer. For example, we can create

a helloworld directory on the Desktop with the following commands.

Command Line

$ cd ~/Desktop

$ mkdir helloworld && cd helloworld

Make sure you’re not already in an existing virtual environment at this point. If you see

text in parentheses () before the dollar sign ($) then you are. To exit it, type exit and

hit Return. The parentheses should disappear which means that virtual environment

is no longer active.

We’ll use pipenv to create a new virtual environment, install Django, and then activate

it.

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://github.com/wsvincent/djangoforbeginners

Chapter 2: Hello World App 20

Command Line

$ pipenv install django==3.0.1

$ pipenv shell

If you are on aMac you should see parentheses nowat the beginning of your command

line prompt in the form (helloworld). If you are on Windows you will not see a visual

prompt at this time.

Create a new Django project called helloworld_project making sure to include the

period (.) at the end of the command so that it is installed in our current directory.

Command Line

(helloworld) $ django-admin startproject helloworld_project .

If you use the tree command you can seewhat our Django project structure now looks

like. (Note: If tree doesn’t work for you, install it with Homebrew: brew install tree.)

Command Line

(helloworld) $ tree

.

├── Pipfile

├── Pipfile.lock

├── helloworld_project

│ ├── __init__.py

│ ├── settings.py

│ ├── urls.py

│ └── wsgi.py

└── manage.py

1 directory, 7 files

Chapter 2: Hello World App 21

The settings.py file controls our project’s settings, urls.py tells Django which pages

to build in response to a browser or URL request, and wsgi.py, which stands for Web

Server Gateway Interface, helps Django serve our eventual web pages. The last file,

manage.py, is used to execute various Django commands such as running the local web

server or creating a new app.

Django comes with a built-in web server for local development purposes which we

can start with the runserver command.

Command Line

(helloworld) $ python manage.py runserver

If you visit http://127.0.0.1:8000/ you should see the following image:

Django welcome page

https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
http://127.0.0.1:8000/

Chapter 2: Hello World App 22

Note that the full command line output will contain additional information including

a warning about 17 unapplied migrations.

Command Line

Watching for file changes with StatReloader

Performing system checks...

System check identified no issues (0 silenced).

You have 17 unapplied migration(s). Your project may not work properly until

you apply the migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

December 09, 2019 - 14:57:42

Django version 3.0, using settings 'test_project.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Technically this warning doesn’t matter at this point. Django is complaining that we

have not yet “migrated,” or configured, our initial database. Since we won’t actually

use a database in this chapter, the warning won’t affect the end result.

However, since warnings are still annoying to see, we can remove it by first stopping

the local server with the Control+c command and then running python manage.py

migrate.

Chapter 2: Hello World App 23

Command Line

$ python manage.py migrate

Operations to perform:

Apply all migrations: admin, auth, contenttypes, sessions

Running migrations:

Applying contenttypes.0001_initial... OK

Applying auth.0001_initial... OK

Applying admin.0001_initial... OK

Applying admin.0002_logentry_remove_auto_add... OK

Applying admin.0003_logentry_add_action_flag_choices... OK

Applying contenttypes.0002_remove_content_type_name... OK

Applying auth.0002_alter_permission_name_max_length... OK

Applying auth.0003_alter_user_email_max_length... OK

Applying auth.0004_alter_user_username_opts... OK

Applying auth.0005_alter_user_last_login_null... OK

Applying auth.0006_require_contenttypes_0002... OK

Applying auth.0007_alter_validators_add_error_messages... OK

Applying auth.0008_alter_user_username_max_length... OK

Applying auth.0009_alter_user_last_name_max_length... OK

Applying auth.0010_alter_group_name_max_length... OK

Applying auth.0011_update_proxy_permissions... OK

Applying sessions.0001_initial... OK

What Django has done here is migrate the built-in apps provided for us which we’ll

cover properly later in the book. But now, if you execute python manage.py runserver

again, you should see the following clean output on the command line:

Chapter 2: Hello World App 24

Command Line

$ python manage.py runserver

Watching for file changes with StatReloader

Performing system checks...

System check identified no issues (0 silenced).

December 09, 2019 - 15:23:14

Django version 3.0, using settings 'helloworld_project.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Create An App

Django uses the concept of projects and apps to keep code clean and readable. A single

Django project contains one or more apps within it that all work together to power a

web application. This is why the command for a new Django project is startproject.

For example, a real-world Django e-commerce site might have one app for user

authentication, another app for payments, and a third app to power item listing

details: each focuses on an isolated piece of functionality. That’s three distinct apps

that all live within one top-level project.

How andwhen you split functionality into apps is somewhat subjective, but in general,

each app should have a clear function.

Now it’s time to create our first app. From the command line, quit the server with

Control+c. Then use the startapp command followed by the name of our app, which

will be pages.

Chapter 2: Hello World App 25

Command Line

(helloworld) $ python manage.py startapp pages

If you look again inside the directory with the tree command you’ll see Django has

created a pages directory with the following files:

Command Line

(helloworld) $ tree

├── pages

│ ├── __init__.py

│ ├── admin.py

│ ├── apps.py

│ ├── migrations

│ │ └── __init__.py

│ ├── models.py

│ ├── tests.py

│ └── views.py

Let’s review what each new pages app file does:

• admin.py is a configuration file for the built-in Django Admin app

• apps.py is a configuration file for the app itself

• migrations/ keeps track of any changes to our models.py file so our database and

models.py stay in sync

• models.py is where we define our database models which Django automatically

translates into database tables

• tests.py is for our app-specific tests

• views.py is where we handle the request/response logic for our web app

Chapter 2: Hello World App 26

Even though our new app exists within the Django project, Django doesn’t “know”

about it until we explicitly add it. In your text editor, open the settings.py file and

scroll down to INSTALLED_APPSwhere you’ll see six built-in Django apps already there.

Add our new pages app at the bottom.

Code

helloworld_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'pages.apps.PagesConfig', # new

]

Local apps should always be added at the bottom because Django executes the

INSTALLED_APPS setting from top to bottom. Therefore the internal admin app is loaded

first, then auth, and so on.Wewant the core Django apps to be available since it’s quite

likely our own apps will rely on their functionality.

Another thing to note is you might be wondering why we can’t just list the app

name, pages, here instead of the much longer pages.apps.PagesConfig? The reason

is that Django creates an apps.py file with each new app and it’s possible to add

additional information there, especially with the Signals framework which is an

advanced technique. For our relatively basic app, using just pages would probably

work, but we’d miss out on additional options, so as a best practice always use the

full app config name within the INSTALLED_APPS setting.

Don’t worry if you are confused at this point. It takes practice to internalize how

https://docs.djangoproject.com/en/3.0/topics/signals/

Chapter 2: Hello World App 27

Django projects and apps are structured. Over the course of this book we will build

many projects and apps and the pattern will become more familiar over time.

URLs, Views, Models, Templates

In Django, at least three (often four) separate files are required to power one single

page. Within an app these are the urls.py file, the views.py file, the models.py file, and

finally an HTML template such as index.html.

This interaction is fundamental to Django yet very confusing to newcomers so let’s

map out the order of a given HTTP request/response cycle. When you type in a

URL, such as https://djangoforbeginners.com, the first thing that happens within our

Django project is a URLpattern is found that matches the homepage. The URLpattern

specifies a view which then determines the content for the page (usually from a

database model) and then ultimately a template for styling and basic logic. The end

result is sent back to the user as an HTTP response.

The complete flow looks something like this:

Django request/response cycle

URL -> View -> Model (typically) -> Template

Remember how I said it can take three or four files for a given page? That’s because

a model is not always needed, in which case three files are enough. But generally

speaking four will be used as we’ll see later in this book.

The main takeaway here is that in Django views determine what content is displayed

on a given page while URLConfs determine where that content is going. The model

contains the content from the database and the template provides styling for it.

When a user requests a specific page, like the homepage, the urls.py file uses a regular

expression to map that request to the appropriate view function which then returns

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

Chapter 2: Hello World App 28

the correct data. In other words, our view will output the text “Hello, World” while

our url will ensure that when the user visits the homepage they are redirected to the

correct view.

To see this in action, let’s start by updating the views.py file in our pages app to look

as follows:

Code

pages/views.py

from django.http import HttpResponse

def homePageView(request):

return HttpResponse('Hello, World!')

Basically, we’re saying whenever the view function homePageView is called, return

the text “Hello, World!” More specifically, we’ve imported the built-in HttpResponse

method sowe can return a response object to the user.We’ve created a function called

homePageView that accepts the request object and returns a response with the string

“Hello, World!”

Now we need to configure our urls. Within the pages app, create a new urls.py file.

Command Line

(helloworld) $ touch pages/urls.py

Then update it with the following code:

https://docs.djangoproject.com/en/3.0/ref/request-response/#django.http.HttpResponse

Chapter 2: Hello World App 29

Code

pages/urls.py

from django.urls import path

from .views import homePageView

urlpatterns = [

path('', homePageView, name='home')

]

On the top line we import path from Django to power our URLpattern and on the next

line we import our views. By referring to the views.py file as .views we are telling

Django, Look within the current directory for a views.py file.

Our URLpattern has three parts:

• a Python regular expression for the empty string ''

• a reference to the view called homePageView

• an optional named URL pattern called 'home'

In other words, if the user requests the homepage, represented by the empty string

'', then use the view called homePageView.

We’re almostdone at this point. The last step is to update our helloworld_project/urls.py

file. It’s common to have multiple apps within a single Django project, like pages here,

and they each need their own dedicated URL path.

https://docs.djangoproject.com/en/3.0/topics/http/urls/#naming-url-patterns

Chapter 2: Hello World App 30

Code

helloworld_project/urls.py

from django.contrib import admin

from django.urls import path, include # new

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('pages.urls')), # new

]

We’ve imported include on the second line next to path and then created a new

URLpattern for our pages app. Now whenever a user visits the homepage at they

will first be routed to the pages app and then to the homePageView view set in the

pages/urls.py file.

This need for two separate urls.py files is often confusing to beginners. Think of the

top-level helloworld_project/urls.py as the gateway to various url patterns distinct

to each app.

Hello, World!

We have all the code we need now. To confirm everything works as expected, restart

our Django server:

Command Line

(helloworld) $ python manage.py runserver

If you refresh the browser for http://127.0.0.1:8000/ it now displays the text “Hello,

world!”

http://127.0.0.1:8000/

Chapter 2: Hello World App 31

Hello world homepage

Git

In the previous chapter we also installed git which is a version control system. Let’s

use it here. The first step is to initialize (or add) git to our repository.

Command Line

(helloworld) $ git init

If you then type git status you’ll see a list of changes since the last git commit. Since

this is our first commit, this list is all of our changes so far.

Command Line

(helloworld) $ git status

On branch master

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

Pipfile

Pipfile.lock

db.sqlite3

helloworld_project/

Chapter 2: Hello World App 32

manage.py

pages/

nothing added to commit but untracked files present (use "git add" to track)

We next want to add all changes by using the command add -A and then commit the

changes along with a message (-m) describing what has changed.

Command Line

(helloworld) $ git add -A

(helloworld) $ git commit -m 'initial commit'

Please note Windows users may receive an error git commit error: pathspec ‘commit’

did not match any file(s) known to git which appears to be related to using single

quotes '' as opposed to double quotes "". If you see this error, just use double quotes

for all commit messages going forward.

GitHub

It’s a good habit to create a remote repository of your code for each project. This

way you have a backup in case anything happens to your computer and more

importantly, it allows for collaboration with other software developers. The two most

popular choices are GitHub and Bitbucket, which both offer free private repositories

for individual developers. When you’re learning web development, it’s best to stick

to private rather than public repositories so you don’t inadvertently post critical

information such as passwords online.

https://stackoverflow.com/questions/16951207/git-commit-error-pathspec-commit-did-not-match-any-files-known-to-git
https://stackoverflow.com/questions/16951207/git-commit-error-pathspec-commit-did-not-match-any-files-known-to-git
https://github.com/
https://bitbucket.org/

Chapter 2: Hello World App 33

To get started on GitHub, sign up for a free account on the homepage. Next you’ll be

asked to verify your account by solving a simple puzzlemeant to discourage automatic

signups by bots.

GitHub verify

Then confirm you want a Free subscription which is the default selection. Click the

“Continue” button at the bottom of the page.

https://github.com/

Chapter 2: Hello World App 34

GitHub subscription

The third step asks several questions to tailor your experience on Github. Check the

boxes that apply or scroll to the bottom of the page and select “Skip this step” to

continue.

Chapter 2: Hello World App 35

GitHub customize

The final step will be a page asking that you verify your email address. Go into your

inbox, find the email from Github, and click the appropriate link which will take you

back to the Github website now logged in.

Create our first repository by navigating to https://github.com/new.

https://github.com/new

Chapter 2: Hello World App 36

GitHub new repository

Enter the repository name hello-world and click on the radio button next to “Private”

rather than “Public.” Then click on the button at the bottom for “Create Repository.”

Your first repository is now created! However there is no code in it yet. Scroll down

on the page to where it says “…or push an existing repository from the command line.”

That’s what we want.

Chapter 2: Hello World App 37

GitHub Hello, World repository

Copy the text immediately under this headline and paste it into your command line.

Note that my username is stillriverpress here; yours will be different so if you copy

my snippet below it won’t work! This syncs the local directory on our computer with

the remote repository on the GitHub website.

Command Line

(helloworld) $ git remote add origin

https://github.com/stillriverpress/hello-world.git

The last step is to “push” our code to GitHub.

Chapter 2: Hello World App 38

Command Line

(helloworld) $ git push -u origin master

Hopefully this command works and you can go back to your GitHub page and refresh

it to see your local code now hosted online.

SSH Keys

Unfortunately there is a good chance that last command yielded an error if you are a

new developer and do not have SSH keys already configured.

Command Line

ERROR: Repository not found.

fatal: Could not read from remote repository.

Please make sure you have the correct access rights

and the repository exists.

This cryptic message means we need to configure SSH keys. This is a one-time thing

but a bit of a hassle to be honest.

SSH is a protocol used to ensure private connections with a remote server. Think of it

as an additional layer of privacy on top of username/password. The process involves

generating unique SSH keys and storing them on your computer so only GitHub can

access them.

First, check whether you have existing SSH keys. Github has a guide to this that works

for Mac, Windows, and Linux. If you don’t have existing public and private keys, you’ll

need to generate them. GitHub, again, has a guide on doing this.

https://help.github.com/en/articles/checking-for-existing-ssh-keys
https://help.github.com/en/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

Chapter 2: Hello World App 39

Once complete you should be able to execute the git push -u origin master command

successfully!

It’s normal to feel overwhelmed and frustrated if you become stuck with SSH keys.

GitHub has a lot of resources to walk you through it but the reality is its very

intimidating the first time. If you’re truly stuck, continue with the book and come

back to SSH Keys and GitHub with a full nights sleep. I can’t count the number of

times a clear head has helped me process a difficult programming issue.

Assuming success with GitHub, go ahead and exit our virtual environment with the

exit command.

Command Line

(helloworld) $ exit

You should no longer see parentheses on your command line, indicating the virtual

environment is no longer active.

Conclusion

Congratulations! We’ve covered a lot of fundamental concepts in this chapter. We

built our first Django application and learned about Django’s project/app structure.

We started to learn about views, urls, and the internal Django web server. And we

worked with git to track our changes and pushed our code into a private repo on

GitHub.

Continue on to Chapter 3: Pages app where we’ll build and deploy a more complex

Django application using templates and class-based views.

Chapter 3: Pages App
In this chapter we’ll build, test, and deploy a Pages app that has a homepage and an

about page.We’ll also learn about Django’s class-based views and templates which are

the building blocks for the more complex web applications built later on in the book.

Initial Set Up

As in Chapter 2: Hello World App, our initial set up involves the following steps:

• create a directory for our code

• install Django in a new virtual environment

• create a new Django project

• create a new pages app

• update settings.py

On the command linemake sure you’re notworking in an existing virtual environment.

If there is text before the dollar sign ($) in parentheses, then you are! Make sure to

type exit to leave it.

We will again create a new directory called pages for our project on the Desktop, but,

truthfully you can put your code anywhere you like on your computer. It just needs

to be in its own directory that is easily accessible.

Within a new command line console start by typing the following:

Chapter 3: Pages App 41

Command Line

$ cd ~/Desktop

$ mkdir pages && cd pages

$ pipenv install django==3.0.1

$ pipenv shell

(pages) $ django-admin startproject pages_project .

(pages) $ python manage.py startapp pages

Open your text editor and navigate to the file settings.py. Add the pages app at the

bottom of our project under INSTALLED_APPS:

Code

pages_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'pages.apps.PagesConfig', # new

]

Start the local web server with runserver.

Chapter 3: Pages App 42

Command Line

(pages) $ python manage.py runserver

And then navigate to http://127.0.0.1:8000/.

Django welcome page

Templates

Every web framework needs a convenient way to generate HTML files and in Django

the approach is to use templates: individual HTML files that can be linked together

and also include basic logic.

Recall that in the previous chapter our “Hello, World” site had the phrase hardcoded

Chapter 3: Pages App 43

into a views.py file as a string. That technically works but doesn’t scale well! A better

approach is to link a view to a template, thereby separating the information contained

in each.

In this chapter we’ll learn how to use templates to more easily create our desired

homepage and about page. And in future chapters, the use of templates will support

buildingwebsites that can support hundreds, thousands, or evenmillions ofwebpages

with a minimal amount of code.

The first consideration is where to place templates within the structure of a Django

project. There are two options. By default, Django’s template loader will look within

each app for related templates. However the structure is somewhat confusing: each

app needs a new templates directory, another directory with the same name as the

app, and then the template file.

Therefore in our pages app, Django would expect the following layout:

Layout

└── pages

├── templates

├── pages

├── home.html

This means we would need to create a new templates directory, a new directory with

the name of the app, pages, and finally our template itself which is home.html.

Why this seemingly repetitive approach? The short answer is that theDjango template

loader wants to be really sure it finds the correct template! What happens if there are

home.html files within two separate apps? This structuremakes sure there are no such

conflicts.

There is, however, another approach which is to instead create a single project-level

templates directory and place all templates within there. By making a small tweak to

Chapter 3: Pages App 44

our settings.py file we can tell Django to also look in this directory for templates.

That is the approach we’ll use.

First, quit the running server with the Control+c command. Then create a directory

called templates and an HTML file called home.html.

Command Line

(pages) $ mkdir templates

(pages) $ touch templates/home.html

Next we need to update settings.py to tell Django the location of our new templates

directory. This is a one-line change to the setting 'DIRS' under TEMPLATES.

Code

pages_project/settings.py

TEMPLATES = [

{

...

'DIRS': [os.path.join(BASE_DIR, 'templates')], # new

...

},

]

Then we can add a simple headline to our home.html file.

Code

<!-- templates/home.html -->

<h1>Homepage</h1>

Ok, our template is complete! The next step is to configure our URL and view files.

Chapter 3: Pages App 45

Class-Based Views

Early versions of Django only shippedwith function-based views, but developers soon

found themselves repeating the same patterns over and over again. Write a view that

lists all objects in a model. Write a view that displays only one detailed item from a

model. And so on.

Function-based generic viewswere introduced to abstract these patterns and stream-

line development of common patterns. However there was no easy way to extend or

customize these views. As a result, Django introduced class-based generic views that

make it easy to use and also extend views covering common use cases.

Classes are a fundamental part of Python but a thorough discussion of them is beyond

the scope of this book. If you need an introduction or refresher, I suggest reviewing

the official Python docs which have an excellent tutorial on classes and their usage.

In our view we’ll use the built-in TemplateView to display our template. Update the

pages/views.py file.

Code

pages/views.py

from django.views.generic import TemplateView

class HomePageView(TemplateView):

template_name = 'home.html'

Note that we’ve capitalized our view, HomePageView, since it’s now a Python class.

Classes, unlike functions, should always be capitalized. The TemplateView already

contains all the logic needed to display our template, we just need to specify the

template’s name.

https://docs.djangoproject.com/en/3.0/topics/class-based-views/intro/
https://docs.djangoproject.com/en/3.0/topics/class-based-views/intro/
https://docs.python.org/3.7/tutorial/classes.html
https://docs.djangoproject.com/en/3.0/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://www.python.org/dev/peps/pep-0008/#class-names

Chapter 3: Pages App 46

URLs

The last step is to update our URLConfs. Recall from Chapter 2 that we need to make

updates in two locations. First, we update the pages_project/urls.py file to point at

our pages app and then within pages we match views to URL routes.

Let’s start with the pages_project/urls.py file.

Code

pages_project/urls.py

from django.contrib import admin

from django.urls import path, include # new

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('pages.urls')), # new

]

The code here should look familiar at this point. We add include on the second line

to point the existing URL to the pages app. Next create an app-level urls.py file.

Command Line

(pages) $ touch pages/urls.py

And add the following code.

Chapter 3: Pages App 47

Code

pages/urls.py

from django.urls import path

from .views import HomePageView

urlpatterns = [

path('', HomePageView.as_view(), name='home'),

]

This pattern is almost identical to what we did in Chapter 2 with onemajor difference:

when using Class-Based Views, you always add as_view() at the end of the view name.

And we’re done! If you start up the web server with python manage.py runserver and

navigate to http://127.0.0.1:8000/ you can see our new homepage.

Homepage

Add an About Page

The process for adding an about page is very similar to what we just did. We’ll create

a new template file, a new view, and a new url route.

Quit the server with Control+c and create a new template called about.html.

Chapter 3: Pages App 48

Command Line

(pages) $ touch templates/about.html

Then populate it with a short HTML headline.

Code

<!-- templates/about.html -->

<h1>About page</h1>

Create a new view for the page.

Code

pages/views.py

from django.views.generic import TemplateView

class HomePageView(TemplateView):

template_name = 'home.html'

class AboutPageView(TemplateView): # new

template_name = 'about.html'

And then connect it to a URL at about/.

Chapter 3: Pages App 49

Code

pages/urls.py

from django.urls import path

from .views import HomePageView, AboutPageView # new

urlpatterns = [

path('about/', AboutPageView.as_view(), name='about'), # new

path('', HomePageView.as_view(), name='home'),

]

Start up the web server with python manage.py runserver.

Navigate to http://127.0.0.1:8000/about and you can see our new “About page”.

About page

Extending Templates

The real power of templates is their ability to be extended. If you think aboutmostweb

sites, there is content that is repeated on every page (header, footer, etc). Wouldn’t it

be nice if we, as developers, could have one canonical place for our header code that

would be inherited by all other templates?

Well we can! Let’s create a base.html file containing a header with links to our two

pages. We could name this file anything but using base.html is a common convention.

Type Control+c and then create the new file.

http://127.0.0.1:8000/about

Chapter 3: Pages App 50

Command Line

(pages) $ touch templates/base.html

Django has a minimal templating language for adding links and basic logic in our

templates. You can see the full list of built-in template tags here in the official docs.

Template tags take the form of {% something %}where the “something” is the template

tag itself. You can even create your own custom template tags, though we won’t do

that in this book.

To add URL links in our project we can use the built-in url template tag which takes

the URL pattern name as an argument. Remember howwe added optional URL names

to our two routes in pages/urls.py? This is why. The url tag uses these names to

automatically create links for us.

The URL route for our homepage is called home therefore to configure a link to it we

would use the following: {% url 'home' %}.

Code

<!-- templates/base.html -->

<header>

Home | About

</header>

{% block content %}

{% endblock content %}

At the bottom we’ve added a block tag called content. Blocks can be overwritten by

child templates via inheritance. While it’s optional to name our closing endblock–you

can just write {% endblock %} if you prefer–doing so helps with readability, especially

in larger template files.

https://docs.djangoproject.com/en/3.0/ref/templates/builtins/#built-in-template-tags-and-filters
https://docs.djangoproject.com/en/3.0/ref/templates/builtins/#url

Chapter 3: Pages App 51

Let’s update our home.html and about.html files to extend the base.html template.

That means we can reuse the same code from one template in another template. The

Django templating language comes with an extends method that we can use for this.

Code

<!-- templates/home.html -->

{% extends 'base.html' %}

{% block content %}

<h1>Homepage</h1>

{% endblock content %}

Code

<!-- templates/about.html -->

{% extends 'base.html' %}

{% block content %}

<h1>About page</h1>

{% endblock content %}

Now if you start up the server with python manage.py runserver and open up our

webpages again at http://127.0.0.1:8000/ and http://127.0.0.1:8000/about you’ll

see the header is magically included in both locations.

Nice, right?

https://docs.djangoproject.com/en/3.0/ref/templates/builtins/#extends

Chapter 3: Pages App 52

Homepage with header

About page with header

There’s a lot more we can do with templates and in practice you’ll typically create a

base.html file and then add additional templates on top of it in a robust Django project.

We’ll do this later on in the book.

Tests

Finally we come to tests. Even in an application this basic, it’s important to add tests

and get in the habit of always adding them to our Django projects. In the words of

Django co-creator Jacob Kaplan-Moss, “Code without tests is broken as designed.”

Writing tests is important because it automates the process of confirming that the

code works as expected. In an app like this one, we can manually look and see that

the home page and about page exist and contain the intended content. But as a Django

project grows in size there can be hundreds if not thousands of individual web pages

and the idea of manually going through each page is not possible. Further, whenever

we make changes to the code–adding new features, updating existing ones, deleting

unused areas of the site–we want to be sure that we have not inadvertently broken

https://jacobian.org/

Chapter 3: Pages App 53

some other piece of the site. Automated tests let us write one time how we expect a

specific piece of our project to behave and then let the computer do the checking for

us.

And fortunately Django comes with robust, built-in testing tools for writing and

running tests.

If you look within our pages app, Django already provided a tests.py file we can use.

Open it and add the following code:

Code

pages/tests.py

from django.test import SimpleTestCase

class SimpleTests(SimpleTestCase):

def test_home_page_status_code(self):

response = self.client.get('/')

self.assertEqual(response.status_code, 200)

def test_about_page_status_code(self):

response = self.client.get('/about/')

self.assertEqual(response.status_code, 200)

We’re using SimpleTestCase here since we aren’t using a database. If we were using

a database, we’d instead use TestCase. Then we perform a check if the status code

for each page is 200, which is the standard response for a successful HTTP request.

That’s a fancy way of saying it ensures that a given webpage actually exists, but says

nothing about the content of said page.

To run the tests quit the server Control+c and type python manage.py test on the

command line:

https://docs.djangoproject.com/en/3.0/topics/testing/overview/
https://docs.djangoproject.com/en/3.0/topics/testing/tools/#django.test.SimpleTestCase
https://docs.djangoproject.com/en/3.0/topics/testing/tools/#django.test.TestCase
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 3: Pages App 54

Command Line

(pages) $ python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

..

--

Ran 2 tests in 0.014s

OK

Destroying test database for alias 'default'...

Success! We’ll do much more with testing in the future, especially once we start

working with databases. For now, it’s important to see how easy it is to add tests

each and every time we add new functionality to our Django project.

Git and GitHub

It’s time to track our changes with git and push them up to GitHub. We’ll start by

initializing our directory.

Command Line

(pages) $ git init

Use git status to see all our code changes then git add -A to add them all. Finally

we’ll add our first commit message.

Chapter 3: Pages App 55

Command Line

(pages) $ git status

(pages) $ git add -A

(pages) $ git commit -m 'initial commit'

Over on GitHub create a new repo. Its repository name will be pages-app. Make sure

to select the “Private” radio button and then click on the “Create repository” button.

On the next page, scroll down to where it says “…or push an existing repository from

the command line.” Copy and paste the two commands there into your terminal.

It should look like the below albeit instead of wsvincent as the username it will be your

GitHub username.

Command Line

(pages) $ git remote add origin https://github.com/wsvincent/pages-app.git

(pages) $ git push -u origin master

Local vs Production

Up to this point we’ve been using Django’s own internal web server to power our

Pages application locally on our computer. But you can’t share a localhost address

with someone else. To make our site available on the Internet where everyone can

see it, we need to deploy our code to an external server that anyone can use to see

our site. This is called putting our code into production. Local code lives only on our

computer; production code lives on an external server available to everyone.

There aremany server providers available but wewill use Heroku because it is free for

small projects, widely-used, and has a relatively straightforward deployment process.

https://github.com/new
https://www.heroku.com/

Chapter 3: Pages App 56

Heroku

You can sign up for a free Heroku account on their website. After you confirm your

email Heroku will redirect you to the dashboard section of the site.

Heroku dashboard

Now we need to install Heroku’s Command Line Interface (CLI) so we can deploy from

the command line. We want to install Heroku globally so it is available across our

entire computer. Open up a new command line tab: Command+t on a Mac, Control+t

on Windows. If we installed Heroku within our virtual environment, it would only be

available there.

Within this new tab, on a Mac use Homebrew to install Heroku:

https://www.heroku.com/

Chapter 3: Pages App 57

Command Line

$ brew install heroku/brew/heroku

On Windows, see the Heroku CLI page to correctly install either the 32-bit or 64-bit

version. If you are using Linux there are specific install instructions available on the

Heroku website.

Once installation is complete you can close our new command line tab and return to

the initial tab with the pages virtual environment active.

Type the command heroku login and use the email and password for Heroku you just

set.

Command Line

(pages) $ heroku login

Enter your Heroku credentials:

Email: will@wsvincent.com

Password: *********************************

Logged in as will@wsvincent.com

Additional Files

Weneed tomake the following four changes to our Pagesproject so it’s ready to deploy

online with Heroku:

• update Pipfile.lock

• make a new Procfile file

• install Gunicorn as our web server

• make a one-line change to settings.py file

https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://devcenter.heroku.com/articles/heroku-cli

Chapter 3: Pages App 58

Within your existing Pipfile specify the version of Python we’re using, which is 3.7.

Add these two lines at the bottom of the file.

Pipfile

[requires]

python_version = "3.7"

Then run pipenv lock to generate the appropriate Pipfile.lock.

Command Line

(pages) $ pipenv lock

Heroku actually looks in our Pipfile.lock for information on our virtual environment,

which is why we add the language setting here.

Next create a Procfile, which is configuration file specific to Heroku.

Command Line

(pages) $ touch Procfile

Open the Procfile with your text editor and add the following:

Procfile

web: gunicorn pages_project.wsgi --log-file -

This says to use Gunicorn, which is a web server suitable for production, instead

of Django’s own server which is only suitable for local development. Install it using

Pipenv.

http://gunicorn.org/

Chapter 3: Pages App 59

Command Line

(pages) $ pipenv install gunicorn==19.9.0

The configuration for the server is contained in a wsgi.py file that Django automati-

cally creates for every newproject. It resides at the top-most, project level of our code.

Since our project’s name is pages_project the file is located at pages_project/wsgi.py

file.

The final step is a one-line change to settings.py. Scroll down to the section called

ALLOWED_HOSTS and add a '*' so it looks as follows:

Code

pages_project/settings.py

ALLOWED_HOSTS = ['*']

The ALLOWED_HOSTS setting representswhich host/domain names ourDjango site

can serve. This is a security measure to prevent HTTP Host header attacks, which are

possible even under many seemingly-safe web server configurations. However we’ve

used the wildcard asterisk, *, which means all domains are acceptable to keep things

simple. In a production-level Django site youwould explicitly list which domains were

allowed instead!

Use git status to check our changes, add the new files, and then commit them:

Command Line

(pages) $ git status

(pages) $ git add -A

(pages) $ git commit -m "New updates for Heroku deployment"

Finally push to GitHub so we have an online backup of our code changes.

https://docs.djangoproject.com/en/3.0/ref/settings/#allowed-hosts

Chapter 3: Pages App 60

Command Line

(pages) $ git push -u origin master

Deployment

The last step is to actually deploy with Heroku. If you’ve ever configured a server

yourself in the past, you’ll be amazed at how much simpler the process is with a

platform-as-a-service provider like Heroku.

Our process will be as follows:

• create a new app on Heroku and push our code to it

• add a git remote “hook” for Heroku

• configure the app to ignore static files, which we’ll cover in later chapters

• start the Heroku server so the app is live

• visit the app on Heroku’s provided URL

We can do the first step, creating a new Heroku app, from the command line

with heroku create. Heroku will create a random name for our app, in my case

fathomless-hamlet-26076. Your name will be different.

Command Line

(pages) $ heroku create

Creating app... done, � fathomless-hamlet-26076

https://fathomless-hamlet-26076.herokuapp.com/ |

https://git.heroku.com/fathomless-hamlet-26076.git

We only need to do one set of Heroku configurations at this point, which is to tell

Heroku to ignore static files like CSS and JavaScript which Django by default tries to

optimize for us. We’ll cover this in later chapters so for now just run the following

command.

Chapter 3: Pages App 61

Command Line

(pages) $ heroku config:set DISABLE_COLLECTSTATIC=1

Now we can push our code to Heroku.

Command Line

(pages) $ git push heroku master

If we had just typed git push origin master, then the codewould have been pushed to

GitHub, not Heroku. Adding heroku to the command sends the code to Heroku. This

is a little confusing the first few times.

Finally, we need to make our Heroku app live. As websites grow in traffic they need

additional Heroku services but for our basic example we can use the lowest level,

web=1, which also happens to be free!

Type the following command.

Command Line

(pages) $ heroku ps:scale web=1

We’re done! The last step is to confirm our app is live and online. If you use the

command heroku open your web browser will open a new tab with the URL of your

app:

Command Line

(pages) $ heroku open

Mine is at https://fathomless-hamlet-26076.herokuapp.com/. You can see the home-

page is up:

Chapter 3: Pages App 62

Homepage on Heroku

As is the about page:

About page on Heroku

You do not have to log out or exit from your Heroku app. It will continue running at

this free tier on its own.

Conclusion

Congratulations on building and deploying your second Django project! This time we

used templates, class-based views, explored URLConfs more fully, added basic tests,

and used Heroku. Next up we’ll move on to our first database-backed project and see

where Django really shines.

Chapter 4: Message Board App
In this chapter we will use a database for the first time to build a basicMessage Board

application where users can post and read short messages. We’ll explore Django’s

powerful built-in admin interface which provides a visual way to make changes to

our data. And after adding tests we will push our code to GitHub and deploy the app

on Heroku.

Thanks to the powerful Django ORM (Object-Relational Mapper), there is built-in

support for multiple database backends: PostgreSQL, MySQL, MariaDB, Oracle, or

SQLite. This means that we, as developers, can write the same code in a models.py

file and it will automatically be translated into each database correctly. The only

configuration required is to update the DATABASES section of our settings.py file.

This is truly an impressive feature!

For local development, Django defaults to using SQLite because it is file-based and

therefore by far the simplest backend to use. It does not require complex installation.

By contrast, all of the other backendsmust be run on a dedicated server separate from

Django itself, which can be quite complex to set up properly.

In this chapter we will start by using SQLite as our local database and later switch

over to using PostgreSQL as our production database on Heroku.

Initial Set Up

Since we’ve already set up several Django projects at this point in the book, we can

quickly run through the standard commands to begin a new one. We need to do the

following:

https://docs.djangoproject.com/en/3.0/ref/databases/
https://www.sqlite.org/

Chapter 4: Message Board App 64

• create a new directory for our code on the Desktop called mb

• install Django in a new virtual environment

• create a new project called mb_project

• create a new app call posts

• update settings.py

In a new command line console, enter the following commands.

Command Line

$ cd ~/Desktop

$ mkdir mb && cd mb

$ pipenv install django==3.0.1

$ pipenv shell

(mb) $ django-admin startproject mb_project .

(mb) $ python manage.py startapp posts

Next we must alert Django to the new app, posts, by adding it to the bottom of the

INSTALLED_APPS section of our settings.py file.

Code

mb_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'posts.apps.PostsConfig', # new

]

Chapter 4: Message Board App 65

Then execute the migrate command to create an initial database based on Django’s

default settings.

Command Line

(mb) $ python manage.py migrate

If you look inside our directory with the ls command, you’ll see there’s now a

db.sqlite3 file representing our SQLite database.

Command Line

(mb) $ ls

Pipfile db.sqlite3 mb_project

Pipfile.lock manage.py posts

Technically a db.sqlite3 file is created the first time you run either migrate or

runserver, however migrate will sync the database with the current state of any

databasemodels contained in the project and listed in INSTALLED_APPS. In other words,

to make sure the database reflects the current state of your project you’ll need to run

migrate (and also makemigrations) each time you update amodel. More on this shortly.

To confirm everything works correctly, spin up our local server.

Command Line

(mb) $ python manage.py runserver

And navigate to http://127.0.0.1:8000/ to see the familiar Django installed correctly

page.

https://www.sqlite.org/

Chapter 4: Message Board App 66

Django welcome page

Create a database model

Our first task is to create a database model where we can store and display posts

from our users. Django’s ORMwill automatically turn this model into a database table

for us. In a real-world Django project, there are often many complex, interconnected

database models but in our simple message board app we only need one.

I won’t cover database design in this book but I have written a short guide which you

can find here if this is all new to you.

Open the posts/models.py file and look at the default code which Django provides:

https://wsvincent.com/database-design-tutorial-for-beginners/
https://wsvincent.com/database-design-tutorial-for-beginners/

Chapter 4: Message Board App 67

Code

posts/models.py

from django.db import models

Create your models here

Django imports a module, models, to help us build new database models, which will

“model” the characteristics of the data in our database. We want to create a model to

store the textual content of a message board post, which we can do as follows:

Code

posts/models.py

from django.db import models

class Post(models.Model):

text = models.TextField()

Note that we’ve created a new database model called Post which has the database

field text. We’ve also specified the type of content it will hold, TextField(). Django

provides many model fields supporting common types of content such as characters,

dates, integers, emails, and so on.

Activating models

Now that our newmodel is createdweneed to activate it. Going forward,wheneverwe

create or modify an existing model we’ll need to update Django in a two-step process:

https://docs.djangoproject.com/en/3.0/ref/models/fields/

Chapter 4: Message Board App 68

1. First, we create a migrations file with the makemigrations command. Migration

files create a reference of any changes to the database models which means we

can track changes–and debug errors as necessary–over time.

2. Second, we build the actual database with the migrate command which executes

the instructions in our migrations file.

Make sure the local server is stopped by typing Control+c on the command line and

then run the following two commands:

Command Line

(mb) $ python manage.py makemigrations posts

(mb) $ python manage.py migrate

Note that you don’t have to include a name after makemigrations. If you simply run

python manage.py makemigrations then amigrations file will be created for all available

changes throughout theDjango project. That’s fine in a small project such as ourswith

only a single app, but most Django projects have more than one app! Therefore if you

made model changes in multiple apps the resulting migrations file would include all

those changes! This is not ideal. Migrations file should be as small and concise as

possible as this makes it easier to debug in the future or even roll back changes as

needed.

As a best practice, adopt the habit of always including the name of an app when

executing the makemigrations command!

Django Admin

One of Django’s killer features is its robust built-in admin interface that provides a

visual way to interact with data. It came about because Django was originally built as

a newspaper CMS (Content Management System). The idea was that journalists could

https://docs.djangoproject.com/en/3.0/faq/general/

Chapter 4: Message Board App 69

write and edit their stories in the admin without needing to touch “code.” Over time,

the built-in admin app has evolved into a fantastic, out-of-the-box tool for managing

all aspects of a Django project.

To use the Django admin, we first need to create a superuser who can log in. In your

command line console, type python manage.py createsuperuser and respond to the

prompts for a username, email, and password:

Command Line

(mb) $ python manage.py createsuperuser

Username (leave blank to use 'wsv'): wsv

Email:

Password:

Password (again):

Superuser created successfully.

When you type your password, it will not appear visible in the command line console

for security reasons.

Restart the Django server with python manage.py runserver and in your web browser

go to http://127.0.0.1:8000/admin/. You should see the log in screen for the admin:

Chapter 4: Message Board App 70

Admin login page

Log in by entering the username and password you just created. You will see the

Django admin homepage next:

Admin homepage

But where’s our posts app? It’s not displayed on the main admin page!

Just as we must explicitly add new apps to the INSTALLED_APPS config, so too must we

update an app’s admin.py file for it to appear in the admin.

In your text editor open up posts/admin.py and add the following code so that the

Chapter 4: Message Board App 71

Post model is displayed.

Code

posts/admin.py

from django.contrib import admin

from .models import Post

admin.site.register(Post)

Django now knows that it should display our posts app and its database model Post

on the admin page. If you refresh your browser you’ll see that it appears:

Admin homepage updated

Let’s create our first message board post for our database. Click on the + Add button

opposite Posts and enter your own content in the Text form field.

Chapter 4: Message Board App 72

Admin new entry

Then click the “Save” button, which will redirect you to the main Post page. However

if you look closely, there’s a problem: our new entry is called “Post object,” which isn’t

very descriptive!

Chapter 4: Message Board App 73

Admin new entry

Let’s change that. Within the posts/models.py file, add a new function __str__ as

follows:

Code

posts/models.py

from django.db import models

class Post(models.Model):

text = models.TextField()

def __str__(self):

return self.text[:50]

This will display the first 50 characters of the text field. If you refresh your Admin

page in the browser, you’ll see it’s changed to a much more descriptive and helpful

representation of our database entry.

Chapter 4: Message Board App 74

Admin new entry

Much better! It’s a best practice to add str()methods to all of yourmodels to improve

their readability.

Views/Templates/URLs

In order to display our database content on our homepage, we have to wire up our

views, templates, and URLConfs. This pattern should start to feel familiar now.

Let’s begin with the view. Earlier in the book we used the built-in generic Template-

View to display a template file on our homepage. Now we want to list the contents of

our database model. Fortunately this is also a common task in web development and

Django comes equipped with the generic class-based ListView.

In the posts/views.py file enter the Python code below:

https://docs.djangoproject.com/en/3.0/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/3.0/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/3.0/ref/class-based-views/generic-display/#listview

Chapter 4: Message Board App 75

Code

posts/views.py

from django.views.generic import ListView

from .models import Post

class HomePageView(ListView):

model = Post

template_name = 'home.html'

On the first line we’re importing ListView and in the second line we import the Post

model. In the view, HomePageView, we subclass ListView and specify the correct model

and template.

Our view is complete which means we still need to configure our URLs and make our

template. Let’s start with the template. Create a new directory called templates and

within it a home.html template file.

Command Line

(mb) $ mkdir templates

(mb) $ touch templates/home.html

Then update the DIRS field in our settings.py file so that Django knows to look in this

templates directory.

Chapter 4: Message Board App 76

Code

mb_project/settings.py

TEMPLATES = [

{

...

'DIRS': [os.path.join(BASE_DIR, 'templates')], # new

...

},

]

ListView automatically returns to us a context variable called object_list that we can

loop over via the built-in for template tag. We’ll create our own variable called post

and can then access the desired field we want displayed, text, as post.text.

Code

<!-- templates/home.html -->

<h1>Message board homepage</h1>

{% for post in object_list %}

{{ post.text }}

{% endfor %}

However the name object_list isn’t very friendly is it? Instead we can provide

an explicit name via context_object_name attribute. Django is, as ever, eminently

customizable.

Back in our posts/views.py file add the following:

https://docs.djangoproject.com/en/3.0/ref/templates/builtins/#std:templatetag-for
https://docs.djangoproject.com/en/3.0/topics/class-based-views/generic-display/#making-friendly-template-contexts

Chapter 4: Message Board App 77

Code

posts/views.py

from django.views.generic import ListView

from .models import Post

class HomePageView(ListView):

model = Post

template_name = 'home.html'

context_object_name = 'all_posts_list' # new

Adding an explicit name in this way makes it easier for other members of a team, for

example a designer, to understand and reason about what is available in the template

context.

Don’t forget to update our template, too, so that it references all_posts_list rather

than object_list.

Code

<!-- templates/home.html -->

<h1>Message board homepage</h1>

{% for post in all_posts_list %}

{{ post.text }}

{% endfor %}

The last step is to set up our URLConfs. Let’s start with the mb_project/urls.py file

where we simply include our posts and add include on the second line.

Chapter 4: Message Board App 78

Code

mb_project/urls.py

from django.contrib import admin

from django.urls import path, include # new

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('posts.urls')), # new

]

Then create an app-level urls.py file.

Command Line

(mb) $ touch posts/urls.py

And update it like so:

Code

posts/urls.py

from django.urls import path

from .views import HomePageView

urlpatterns = [

path('', HomePageView.as_view(), name='home'),

]

Restart the server with python manage.py runserver and navigate to our homepage

http://127.0.0.1:8000/ which now lists out our message board posts.

Chapter 4: Message Board App 79

Homepage with posts

We’re basically done at this point, but let’s create a few more message board posts in

the Django admin to confirm that they will display correctly on the homepage.

Adding New Posts

To add new posts to our message board, go back into the Admin and create two more

posts. Here’s what mine look like:

Admin entry

Chapter 4: Message Board App 80

Admin entry

Updated admin entries section

If you return to the homepage you’ll see it automatically displays our formatted posts.

Woohoo!

Chapter 4: Message Board App 81

Homepage with three entries

Everything works so it’s a good time to initialize our directory, add the new code, and

include our first git commit.

Command Line

(mb) $ git init

(mb) $ git add -A

(mb) $ git commit -m 'initial commit'

Tests

Previously we were only testing static pages so we used SimpleTestCase. But now

that our homepage works with a database, we need to use TestCase, which will let us

create a “test” database we can check against. In other words, we don’t need to run

tests on our actual database but instead can make a separate test database, fill it with

sample data, and then test against that which is a must safer and more performant

approach.

Let’s start by adding a sample post to the text database field and then check that it

is stored correctly in the database. It’s important that all our test methods start with

the phrase test_ so that Django knows to test them! The code will look like this:

https://docs.djangoproject.com/en/3.0/topics/testing/tools/#django.test.SimpleTestCase
https://docs.djangoproject.com/en/3.0/topics/testing/tools/#django.test.TestCase

Chapter 4: Message Board App 82

Code

posts/tests.py

from django.test import TestCase

from .models import Post

class PostModelTest(TestCase):

def setUp(self):

Post.objects.create(text='just a test')

def test_text_content(self):

post=Post.objects.get(id=1)

expected_object_name = f'{post.text}'

self.assertEqual(expected_object_name, 'just a test')

At the top we imported the TestCase module which lets us create a sample database

and our Postmodel.We created a new class, PostModelTest, and added a setUpmethod

to create a new database that has just one entry: a post with a text field containing

the string ‘just a test.’

Then we can run our first test, test_text_content, to check that the database field

actually contains just a test. We created a variable called post that represents the

first id on our Post model.

Remember that Django automatically sets this id for us. If we created another entry

it would have an id of 2, the next one would be 3, and so on.

The next line uses f strings, a very cool addition to Python 3.6, which let us put

variables directly in our strings as long as the variables are surrounded by brackets

https://www.python.org/dev/peps/pep-0498/

Chapter 4: Message Board App 83

{}. Here we’re setting expected_object_name to be the string of the value in post.text,

which should be just a test.

On the final line we use assertEqual to check that our newly created entry does in

fact match what we input at the top. Go ahead and run the test on the command line

with command python manage.py test.

Command Line

(mb) $ python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.

--

Ran 1 test in 0.001s

OK

Destroying test database for alias 'default'...

It passed!

Don’t worry if the previous explanation felt like information overload. That’s natural

the first time you start writing tests, but you’ll soon find that most tests you write are

actually quite repetitive.

Time for our next group of tests. The first test looked at the model but now we want

evaluate the homepage itself:

• does it actually exist and return a HTTP 200 response?

• does it use HomePageView as the view?

• does it use home.html as the template?

https://docs.python.org/3.5/library/unittest.html#unittest.TestCase.assertEqual

Chapter 4: Message Board App 84

We can include all of these tests in a new class called HomePageViewTest. Note that

rather than access the view name directly we will instead import reverse and refer to

the named URL of home.Why do it this way? URL schemes can and do change over the

course of a project, but the named URL likely will not so this is a way to future-proof

your tests.

We’ll need to add one more import at the top for reverse and a brand new class

HomePageViewTest for our test.

Code

posts/tests.py

from django.test import TestCase

from django.urls import reverse # new

from .models import Post

class PostModelTest(TestCase):

...

class HomePageViewTest(TestCase): # new

def setUp(self):

Post.objects.create(text='this is another test')

def test_view_url_exists_at_proper_location(self):

resp = self.client.get('/')

self.assertEqual(resp.status_code, 200)

def test_view_url_by_name(self):

resp = self.client.get(reverse('home'))

https://docs.djangoproject.com/en/3.0/ref/urlresolvers/#reverse

Chapter 4: Message Board App 85

self.assertEqual(resp.status_code, 200)

def test_view_uses_correct_template(self):

resp = self.client.get(reverse('home'))

self.assertEqual(resp.status_code, 200)

self.assertTemplateUsed(resp, 'home.html')

If you run our tests again you should see that they pass.

Command Line

(mb) $ python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.

--

Ran 4 tests in 0.036s

OK

Destroying test database for alias 'default'...

Why does the output say four tests and not six? The answer is that our setUpmethods

are not actually tests, they are helper functions. Only functions that start with the

name test* and exist in a tests.py file will be run as tests when we execute the python

manage.py test command.

We’re done adding code for our testing so it’s time to commit the changes to git.

Chapter 4: Message Board App 86

Command Line

(mb) $ git add -A

(mb) $ git commit -m 'added tests'

GitHub

We also need to store our code on GitHub. You should already have a GitHub account

from previous chapters so go ahead and create a new repo which we’ll call mb-app.

Select the “Private” radio button.

On the next page scroll down to where it says “â€¦or push an existing repository from

the command line.” Copy and paste the two commands there into your terminal, which

should look like like the below after replacing wsvincent (my username) with your

GitHub username:

Command Line

(mb) $ git remote add origin https://github.com/wsvincent/mb-app.git

(mb) $ git push -u origin master

Heroku Configuration

You should already have a Heroku account set up and installed from Chapter 3. We

need to make the following changes to ourMessage Board project to deploy it online:

• update Pipfile.lock

• add a new Procfile

• install Gunicorn

https://github.com/new

Chapter 4: Message Board App 87

• update settings.py

Within your Pipfile specify the version of Python we’re using, which is 3.7. Add these

two lines at the bottom of the file.

Pipfile

[requires]

python_version = "3.7"

Run pipenv lock to generate the appropriate Pipfile.lock.

Command Line

(mb) $ pipenv lock

Then create a Procfile which tells Heroku how to run the remote server where our

code will live.

Command Line

(mb) $ touch Procfile

For nowwe’re telling Heroku to use Gunicorn as our production server and look in our

mb_project.wsgi file for further instructions.

Procfile

web: gunicorn mb_project.wsgi --log-file -

Next install Gunicorn which we’ll use in production while still using Django’s internal

server for local development use.

http://gunicorn.org/

Chapter 4: Message Board App 88

Command Line

(mb) $ pipenv install gunicorn==19.9.0

Finally update ALLOWED_HOSTS in our settings.py file.

Code

mb_project/settings.py

ALLOWED_HOSTS = ['*']

We’re all done! Add and commit our new changes to git and then push them up to

GitHub.

Command Line

(mb) $ git status

(mb) $ git add -A

(mb) $ git commit -m 'New updates for Heroku deployment'

(mb) $ git push -u origin master

Heroku Deployment

Make sure you’re logged into your correct Heroku account.

Command Line

(mb) $ heroku login

Then run the create command and Heroku will randomly generate an app name.

Chapter 4: Message Board App 89

Command Line

(mb) $ heroku create

Creating app... done, â¬¢ sleepy-brook-64719

https://sleepy-brook-64719.herokuapp.com/ |

https://git.heroku.com/sleepy-brook-64719.git

For now, tell Heroku to ignore static files. We’ll cover them at length later on in the

book when deploying our Blog app.

Command Line

(mb) $ heroku config:set DISABLE_COLLECTSTATIC=1

Push the code to Heroku and add free scaling so it’s actually running online, otherwise

the code is just sitting there!

Command Line

(mb) $ git push heroku master

(mb) $ heroku ps:scale web=1

You can open the URL of the new project from the command line by typing heroku

open which will launch a new browser window. For example, mine can be seen below:

Live site

Chapter 4: Message Board App 90

SQLite vs PostgreSQL

Currently, our app is running on SQLite both locally and in production on Heroku.

However there is a problem: SQLite is easy to use because it relies on the filesystem,

but this is cleared once every 24 hours on Heroku! That means that any data added to

the live database will be deleted quite often.

For a real-world application the solution is to switch to a production-ready backend,

such as PostgreSQL, both locally and in production. Using it in production on Heroku

is straightforward via the Postgres add-on, which even has a free “Hobby Dev” tier.

The challenge is that using PostgreSQL locally requires far more configuration than

is appropriate for a beginner book. I cover how to use PostgreSQL properly as well as

more advanced Django topics in my book Django for Professionals.

Conclusion

We’ve now built, tested, and deployed our first database-driven app. While it’s

deliberately quite basic, we learned how to create a databasemodel, update it with the

admin panel, and then display the contents on a web page. But something is missing,

no?

In the real-world, users need forms to interact with our site. After all, not everyone

should have access to the admin panel. In the next chapter we’ll build a Blog appli-

cation that uses forms so that users can create, edit, and delete posts. And we’ll add

styling via CSS so it looks better.

https://devcenter.heroku.com/articles/sqlite3#disk-backed-storage
https://elements.heroku.com/addons/heroku-postgresql
https://djangoforprofessionals.com/

Chapter 5: Blog App
In this chapterwe’ll build a Blog application that allows users to create, edit, and delete

posts. The homepage will list all blog posts and there will be a dedicated detail page

for each individual post. We’ll also introduce CSS for styling and learn how Django

works with static files.

Initial Set Up

As covered in previous chapters, our steps for setting up a new Django project are as

follows:

• create a new directory for our code on the Desktop called blog

• install Django in a new virtual environment

• create a new Django project called blog_project

• create a new app blog

• perform a migration to set up the database

• update settings.py

And don’t forget to include the period . at the end of the command for creating our

new blog_project.

Chapter 5: Blog App 92

Command Line

$ cd ~/Desktop

$ mkdir blog

$ cd blog

$ pipenv install django==3.0.1

$ pipenv shell

(blog) $ django-admin startproject blog_project .

(blog) $ python manage.py startapp blog

(blog) $ python manage.py migrate

(blog) $ python manage.py runserver

To ensure Django knows about our new app, open your text editor and add the new

app to INSTALLED_APPS in our settings.py file:

Code

blog_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'blog.apps.BlogConfig', # new

]

If you navigate to http://127.0.0.1:8000/ in your browser you should see the following

page.

http://127.0.0.1:8000/

Chapter 5: Blog App 93

Django welcome page

Ok, initial installation complete! Next we’ll create our database model for blog posts.

Database Models

What are the characteristics of a typical blog application? In our case let’s keep things

simple and assume each post has a title, author, and body. We can turn this into a

database model by opening the blog/models.py file and entering the code below:

Chapter 5: Blog App 94

Code

blog/models.py

from django.db import models

class Post(models.Model):

title = models.CharField(max_length=200)

author = models.ForeignKey(

'auth.User',

on_delete=models.CASCADE,

)

body = models.TextField()

def __str__(self):

return self.title

At the topwe’re importing the class models and then creating a subclass of models.Model

called Post. Using this subclass functionality we automatically have access to every-

thing within django.db.models.Models and can add additional fields and methods as

desired.

For title we’re limiting the length to 200 characters and for body we’re using a

TextField which will automatically expand as needed to fit the user’s text. There are

many field types available in Django; you can see the full list here.

For the author field we’re using a ForeignKey which allows for a many-to-one rela-

tionship. This means that a given user can be the author of many different blog posts

but not the other way around. The reference is to the built-in Usermodel that Django

provides for authentication. For all many-to-one relationships such as a ForeignKey

we must also specify an on_delete option.

https://docs.djangoproject.com/en/3.0/topics/db/models/
https://docs.djangoproject.com/en/3.0/topics/db/models/#fields
https://docs.djangoproject.com/en/3.0/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/3.0/ref/models/fields/#django.db.models.ForeignKey.on_delete

Chapter 5: Blog App 95

Now that our newdatabasemodel is createdweneed to create a newmigration record

for it and migrate the change into our database. Stop the server with Control+c. This

two-step process can be completed with the commands below:

Command Line

(blog) $ python manage.py makemigrations blog

(blog) $ python manage.py migrate blog

Our database is configured! What’s next?

Admin

We need a way to access our data. Enter the Django admin! First, create a superuser

account by typing the command below and following the prompts to set up an email

and password. Note that when typing your password, it will not appear on the screen

for security reasons.

Command Line

(blog) $ python manage.py createsuperuser

Username (leave blank to use 'wsv'): wsv

Email:

Password:

Password (again):

Superuser created successfully.

Now start running the Django server again with the command python manage.py

runserver and open up the Django admin at http://127.0.0.1:8000/admin/. Log in with

your new superuser account.

Oops! Where’s our new Post model?

http://127.0.0.1:8000/admin/

Chapter 5: Blog App 96

Admin homepage

We forgot to update blog/admin.py so let’s do that now.

Code

blog/admin.py

from django.contrib import admin

from .models import Post

admin.site.register(Post)

If you refresh the page you’ll see the update.

Chapter 5: Blog App 97

Admin homepage

Let’s add two blog posts so we have some sample data to work with. Click on the + Add

button next to Posts to create a new entry. Make sure to add an “author” to each post

too since by default all model fields are required. If you try to enter a post without an

author you will see an error. If we wanted to change this, we could add field options

to our model to make a given field optional or fill it with a default value.

https://docs.djangoproject.com/en/3.0/ref/models/fields/#field-options

Chapter 5: Blog App 98

Admin first post

Chapter 5: Blog App 99

Admin second post

Admin homepage with two posts

Chapter 5: Blog App 100

Now that our database model is complete we need to create the necessary views,

URLs, and templates so we can display the information on our web application.

URLs

We want to display our blog posts on the homepage so, as in previous chapters, we’ll

first configure our blog_project/urls.py file and then our app-level blog/urls.py file

to achieve this.

On the command line quit the existing server with Control+c and create a new urls.py

file within our blog:

Command Line

(blog) $ touch blog/urls.py

Now update it with the code below.

Code

blog/urls.py

from django.urls import path

from .views import BlogListView

urlpatterns = [

path('', BlogListView.as_view(), name='home'),

]

We’re importing our soon-to-be-created views at the top. The empty string '' tells

Python to match all values and we make it a named URL, home, which we can refer to

Chapter 5: Blog App 101

in our views later on. While it’s optional to add a named URL it’s a best practice you

should adopt as it helps keep things organized as your number of URLs grows.

We also should update our blog_project/urls.py file so that it knows to forward all

requests directly to the blog app.

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import path, include # new

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('blog.urls')), # new

]

We’ve added include on the second line and a URLpattern using an empty string

regular expression '' indicating that URL requests should be redirected as is to blog’s

URLs for further instructions.

Views

We’re going to use class-based views but if you want to see a function-based way to

build a blog application, I highly recommend the Django Girls Tutorial. It is excellent.

In our views file, add the code below to display the contents of our Post model using

ListView.

https://docs.djangoproject.com/en/3.0/topics/http/urls/#reverse-resolution-of-urls
https://tutorial.djangogirls.org/en/

Chapter 5: Blog App 102

Code

blog/views.py

from django.views.generic import ListView

from .models import Post

class BlogListView(ListView):

model = Post

template_name = 'home.html'

On the top two lines we import ListView and our database model Post. Then we

subclass ListView and add links to our model and template. This saves us a lot of code

versus implementing it all from scratch.

Templates

With our URLConfs and views now complete, we’re only missing the third piece of

the puzzle: templates. As we already saw in Chapter 4, we can inherit from other

templates to keep our code clean. Thus we’ll start off with a base.html file and a

home.html file that inherits from it. Then later when we add templates for creating

and editing blog posts, they too can inherit from base.html.

Start by creating our new templates directory with the two template files.

https://docs.djangoproject.com/en/3.0/ref/class-based-views/generic-display/#listview

Chapter 5: Blog App 103

Command Line

(blog) $ mkdir templates

(blog) $ touch templates/base.html

(blog) $ touch templates/home.html

Then update settings.py so Django knows to look there for our templates.

Code

blog_project/settings.py

TEMPLATES = [

{

...

'DIRS': [os.path.join(BASE_DIR, 'templates')], # new

...

},

]

Then update the base.html template as follows.

Code

<!-- templates/base.html -->

<html>

<head>

<title>Django blog</title>

</head>

<body>

<header>

<h1>Django blog</h1>

</header>

Chapter 5: Blog App 104

<div>

{% block content %}

{% endblock content %}

</div>

</body>

</html>

Note that code between {% block content %} and {% endblock content %} can be filled

by other templates. Speaking of which, here is the code for home.html.

Code

<!-- templates/home.html -->

{% extends 'base.html' %}

{% block content %}

{% for post in object_list %}

<div class="post-entry">

<h2>{{ post.title }}</h2>

<p>{{ post.body }}</p>

</div>

{% endfor %}

{% endblock content %}

At the top we note that this template extends base.html and then wraps our desired

code with content blocks. We use the Django Templating Language to set up a simple

for loop for each blog post. Note that object_list comes from ListView and contains

all the objects in our view.

If you start the Django server again: python manage.py runserver.

And refresh http://127.0.0.1:8000/ we can see it’s working.

http://127.0.0.1:8000/

Chapter 5: Blog App 105

Blog homepage with two posts

But it looks terrible. Let’s fix that!

Static Files

We need to add some CSS which is referred to as a static file because, unlike our

dynamic database content, it doesn’t change. Fortunately it’s straightforward to add

static files like CSS, JavaScript, and images to our Django project.

In a production-ready Django project you would typically store this on a Content

Delivery Network (CDN) for better performance, but for our purposes storing the

files locally is fine.

First, quit our local server with Control+c. Then create a new directory called static.

Command Line

(blog) $ mkdir static

Just as we did with our templates directory we need to update settings.py to tell

Django where to look for these static files. We can update settings.py with a one-

line change for STATICFILES_DIRS. Add it at the bottom of the file below the entry for

STATIC_URL.

Chapter 5: Blog App 106

Code

blog_project/settings.py

STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')]

Now create a css directory within static and add a new base.css file in it.

Command Line

(blog) $ mkdir static/css

(blog) $ touch static/css/base.css

What should we put in our file? How about changing the title to be red?

Code

/* static/css/base.css */

header h1 a {

color: red;

}

Last step now. We need to add the static files to our templates by adding {% load

static %} to the top of base.html. Because our other templates inherit from base.html

we only have to add this once. Include a new line at the bottom of the <head></head>

code that explicitly references our new base.css file.

Chapter 5: Blog App 107

Code

<!-- templates/base.html -->

{% load static %}

<html>

<head>

<title>Django blog</title>

<link href="{% static 'css/base.css' %}" rel="stylesheet">

</head>

...

Phew! That was a bit of a pain but it’s a one-time pain. Now we can add static files to

our static directory and they’ll automatically appear in all our templates.

Start up the server again with python manage.py runserver and look at our updated

homepage at http://127.0.0.1:8000/.

Blog homepage with red title

We can do a little better though. How about if we add a custom font and some more

CSS? Since this book is not a tutorial on CSS simply insert the following between

<head></head> tags to add Source Sans Pro, a free font from Google.

http://127.0.0.1:8000/
https://fonts.google.com/specimen/Source+Sans+Pro

Chapter 5: Blog App 108

Code

<!-- templates/base.html -->

{% load static %}

<html>

<head>

<title>Django blog</title>

<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400"

rel="stylesheet">

<link href="{% static 'css/base.css' %}" rel="stylesheet">

</head>

...

Then update our css file by copy and pasting the following code:

Code

/* static/css/base.css */

body {

font-family: 'Source Sans Pro', sans-serif;

font-size: 18px;

}

header {

border-bottom: 1px solid #999;

margin-bottom: 2rem;

display: flex;

}

header h1 a {

color: red;

Chapter 5: Blog App 109

text-decoration: none;

}

.nav-left {

margin-right: auto;

}

.nav-right {

display: flex;

padding-top: 2rem;

}

.post-entry {

margin-bottom: 2rem;

}

.post-entry h2 {

margin: 0.5rem 0;

}

.post-entry h2 a,

.post-entry h2 a:visited {

color: blue;

text-decoration: none;

}

.post-entry p {

margin: 0;

font-weight: 400;

Chapter 5: Blog App 110

}

.post-entry h2 a:hover {

color: red;

}

Refresh the homepage at http://127.0.0.1:8000/ and you should see the following.

Blog homepage with CSS

Individual Blog Pages

Now we can add the functionality for individual blog pages. How do we do that?

We need to create a new view, url, and template. I hope you’re noticing a pattern

in development with Django now!

Start with the view. We can use the generic class-based DetailView to simplify things.

At the top of the file add DetailView to the list of imports and then create our new

view called BlogDetailView.

http://127.0.0.1:8000/
https://docs.djangoproject.com/en/3.0/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView

Chapter 5: Blog App 111

Code

blog/views.py

from django.views.generic import ListView, DetailView # new

from .models import Post

class BlogListView(ListView):

model = Post

template_name = 'home.html'

class BlogDetailView(DetailView): # new

model = Post

template_name = 'post_detail.html'

In this new view we define the model we’re using, Post, and the template we want it

associated with, post_detail.html. By default DetailViewwill provide a context object

we can use in our template called either object or the lowercased name of our model,

which would be post. Also, DetailView expects either a primary key or a slug passed

to it as the identifier. More on this shortly.

Now exit the local server Control+c and create our new template for a post detail as

follows:

Command Line

(blog) $ touch templates/post_detail.html

Then type in the following code:

Chapter 5: Blog App 112

Code

<!-- templates/post_detail.html -->

{% extends 'base.html' %}

{% block content %}

<div class="post-entry">

<h2>{{ post.title }}</h2>

<p>{{ post.body }}</p>

</div>

{% endblock content %}

At the top we specify that this template inherits from base.html. Then display the

title and body from our context object, which DetailView makes accessible as post.

Personally I found the naming of context objects in generic views extremely confusing

when first learning Django. Because our context object from DetailView is either our

model name post or objectwe could also update our template as follows and it would

work exactly the same.

Code

<!-- templates/post_detail.html -->

{% extends 'base.html' %}

{% block content %}

<div class="post-entry">

<h2>{{ object.title }}</h2>

<p>{{ object.body }}</p>

</div>

Chapter 5: Blog App 113

{% endblock content %}

If you find using post or object confusing, it’s possible to explicitly name the context

object in our view using context_object_name.

The “magic” naming of the context object is a price you pay for the ease and simplicity

of using generic views. They’re great if you know what they’re doing but take a little

research in the official documentation to customize.

Ok, what’s next? How about adding a new URLConf for our view, which we can do as

follows.

Code

blog/urls.py

from django.urls import path

from .views import BlogListView, BlogDetailView # new

urlpatterns = [

path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'), # new

path('', BlogListView.as_view(), name='home'),

]

All blog post entries will start with post/. Next is the primary key for our post entry

which will be represented as an integer <int:pk>. What’s the primary key you’re

probably asking? Django automatically adds an auto-incrementing primary key to our

database models. So while we only declared the fields title, author, and body on our

Post model, under-the-hood Django also added another field called id, which is our

primary key. We can access it as either id or pk.

https://docs.djangoproject.com/en/3.0/topics/class-based-views/generic-display/#making-friendly-template-contexts
https://docs.djangoproject.com/en/3.0/topics/db/models/#automatic-primary-key-fields

Chapter 5: Blog App 114

The pk for our first “Hello, World” post is 1. For the second post, it is 2. And so on.

Therefore when we go to the individual entry page for our first post, we can expect

that its urlpattern will be post/1.

Understanding how primary keys work with DetailView is a very common place of

confusion for beginners. It’s worth re-reading the previous two paragraphs a few

times if it doesn’t click. With practice it will become second nature.

If you now start up the server with python manage.py runserver and go directly to

http://127.0.0.1:8000/post/1/ you’ll see a dedicated page for our first blog post.

Blog post one detail

Woohoo! You can also go to http://127.0.0.1:8000/post/2/ to see the second entry.

Tomake our life easier, we should update the link on the homepage so we can directly

access individual blog posts from there. Currently, in home.html our link is empty: . Update it to .

http://127.0.0.1:8000/post/1/
http://127.0.0.1:8000/post/2/

Chapter 5: Blog App 115

Code

<!-- templates/home.html -->

{% extends 'base.html' %}

{% block content %}

{% for post in object_list %}

<div class="post-entry">

<h2>{{ post.title }}</h2>

<p>{{ post.body }}</p>

</div>

{% endfor %}

{% endblock content %}

We start off by telling our Django template we want to reference a URLConf by using

the code {% url ... %}. Which URL? The one named post_detail, which is the name

we gave BlogDetailView in our URLConf just a moment ago. If we look at post_detail

in our URLConf, we see that it expects to be passed an argument pk representing the

primary key for the blog post. Fortunately, Django has already created and included

this pk field on our post object.Wepass it into theURLConf by adding it in the template

as post.pk.

To confirm everything works, refresh the main page at http://127.0.0.1:8000/ and

click on the title of each blog post to confirm the new links work.

Tests

We need to test our model and views now. We want to ensure that the Post model

works as expected, including its str representation. Andwewant to test both ListView

and DetailView.

http://127.0.0.1:8000/

Chapter 5: Blog App 116

Here’s what sample tests look like in the blog/tests.py file.

Code

blog/tests.py

from django.contrib.auth import get_user_model

from django.test import TestCase

from django.urls import reverse

from .models import Post

class BlogTests(TestCase):

def setUp(self):

self.user = get_user_model().objects.create_user(

username='testuser',

email='test@email.com',

password='secret'

)

self.post = Post.objects.create(

title='A good title',

body='Nice body content',

author=self.user,

)

def test_string_representation(self):

post = Post(title='A sample title')

self.assertEqual(str(post), post.title)

Chapter 5: Blog App 117

def test_post_content(self):

self.assertEqual(f'{self.post.title}', 'A good title')

self.assertEqual(f'{self.post.author}', 'testuser')

self.assertEqual(f'{self.post.body}', 'Nice body content')

def test_post_list_view(self):

response = self.client.get(reverse('home'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, 'Nice body content')

self.assertTemplateUsed(response, 'home.html')

def test_post_detail_view(self):

response = self.client.get('/post/1/')

no_response = self.client.get('/post/100000/')

self.assertEqual(response.status_code, 200)

self.assertEqual(no_response.status_code, 404)

self.assertContains(response, 'A good title')

self.assertTemplateUsed(response, 'post_detail.html')

There’s a lot that’s new in these tests so we’ll walk through them slowly. At the top we

import both get_user_model to reference our active User and TestCase which we’ve

seen before.

In our setUpmethod we add a sample blog post to test and then confirm that both its

string representation and content are correct. Then we use test_post_list_view to

confirm that our homepage returns a 200 HTTP status code, contains our body text,

and uses the correct home.html template. Finally test_post_detail_view tests that our

detail page works as expected and that an incorrect page returns a 404. It’s always

https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 5: Blog App 118

good to both test that something does exist and that something incorrect doesn’t

exist in your tests.

Go ahead and run these tests now. They should all pass.

Command Line

(blog) $ python manage.py test

Git

Now is also a good time for our first git commit. First, initialize our directory.

Command Line

(blog) $ git init

Then review all the content we’ve added by checking the status. Add all new files. And

make our first commit.

Command Line

(blog) $ git status

(blog) $ git add -A

(blog) $ git commit -m 'initial commit'

Conclusion

We’ve now built a basic blog application from scratch! Using the Django admin we can

create, edit, or delete the content. And we used DetailView for the first time to create

a detailed individual view of each blog post entry.

In the next section Chapter 6: Blog app with forms, we’ll add forms so we don’t have

to use the Django admin at all for these changes.

Chapter 6: Forms
In this chapter we’ll continue working on our blog application from Chapter 5 by

adding forms so a user can create, edit, or delete any of their blog entries.

Forms

Forms are very common and very complicated to implement correctly. Any time you

are accepting user input there are security concerns (XSS Attacks), proper error

handling is required, and there are UI considerations around how to alert the user

to problems with the form. Not to mention the need for redirects on success.

Fortunately for us Django’s built-in Forms abstract away much of the difficulty and

provide a rich set of tools to handle common use cases working with forms.

To start, update our base template to display a link to a page for entering new blog

posts. It will take the form where post_new is

the name for our URL.

Your updated file should look as follows:

https://en.wikipedia.org/wiki/Cross-site_scripting
https://docs.djangoproject.com/en/3.0/topics/forms/

Chapter 6: Forms 120

Code

<!-- templates/base.html -->

{% load static %}

<html>

<head>

<title>Django blog</title>

<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400"

rel="stylesheet">

<link href="{% static 'css/base.css' %}" rel="stylesheet">

</head>

<body>

<div>

<header>

<div class="nav-left">

<h1>Django blog</h1>

</div>

<div class="nav-right">

+ New Blog Post

</div>

</header>

{% block content %}

{% endblock content %}

</div>

</body>

</html>

Let’s add a new URLConf for post_new now. Import our not-yet-created view called

BlogCreateView at the top. And thenmake the URL which will start with post/new/ and

be named post_new.

Chapter 6: Forms 121

Code

blog/urls.py

from django.urls import path

from .views import BlogListView, BlogDetailView, BlogCreateView # new

urlpatterns = [

path('post/new/', BlogCreateView.as_view(), name='post_new'), # new

path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'),

path('', BlogListView.as_view(), name='home'),

]

Simple, right? It’s the same url, views, template pattern we’ve seen before.

Now let’s create our view by importing a new generic class called CreateView at the

top and then subclass it to create a new view called BlogCreateView.

Code

blog/views.py

from django.views.generic import ListView, DetailView

from django.views.generic.edit import CreateView # new

from .models import Post

class BlogListView(ListView):

model = Post

template_name = 'home.html'

Chapter 6: Forms 122

class BlogDetailView(DetailView):

model = Post

template_name = 'post_detail.html'

class BlogCreateView(CreateView): # new

model = Post

template_name = 'post_new.html'

fields = ['title', 'author', 'body']

Within BlogCreateViewwe specify our database model Post, the name of our template

post_new.html. For fields we explicitly set the database fields we want to expose

which are title, author, and body.

The last step is to create our template, which we will call post_new.html.

Command Line

(blog) $ touch templates/post_new.html

And then add the following code:

Chapter 6: Forms 123

Code

<!-- templates/post_new.html -->

{% extends 'base.html' %}

{% block content %}

<h1>New post</h1>

<form action="" method="post">{% csrf_token %}

{{ form.as_p }}

<input type="submit" value="Save">

</form>

{% endblock content %}

Let’s breakdown what we’ve done:

• On the top line we inherit from our base template.

• UseHTML <form> tags with the POSTmethod sincewe’re sending data. If wewere

receiving data from a form, for example in a search box, we would use GET.

• Add a {% csrf_token %} which Django provides to protect our form from cross-

site scripting attacks. You should use it for all your Django forms.

• Then to output our form data we use {{ form.as_p }} which renders it within

paragraph <p> tags.

• Finally specify an input type of submit and assign it the value “Save”.

To view our work, start the server with python manage.py runserver and go to the

homepage at http://127.0.0.1:8000/.

https://docs.djangoproject.com/en/3.0/ref/csrf/
http://127.0.0.1:8000/

Chapter 6: Forms 124

Homepage with new button

Click on our link for “+ New Blog Post” which will redirect you to:

http://127.0.0.1:8000/post/new/.

Blog new page

Go ahead and try to create a new blog post and submit it.

http://127.0.0.1:8000/post/new/

Chapter 6: Forms 125

Blog new page

Oops! What happened?

Blog new page

Chapter 6: Forms 126

Django’s error message is quite helpful. It’s complaining that we did not specify where

to send the user after successfully submitting the form. Let’s send a user to the detail

page after success; that way they can see their completed post.

We can follow Django’s suggestion and add a get_absolute_url to our model. This is a

best practice that you should always do. It sets a canonical URL for an object so even if

the structure of your URLs changes in the future, the reference to the specific object

is the same. In short, you should add a get_absolute_url() and __str__() method to

each model you write.

Open the models.py file. Add an import on the second line for reverse and a new get_-

absolute_url method.

Code

blog/models.py

from django.db import models

from django.urls import reverse # new

class Post(models.Model):

title = models.CharField(max_length=200)

author = models.ForeignKey(

'auth.User',

on_delete=models.CASCADE,

)

body = models.TextField()

def __str__(self):

return self.title

def get_absolute_url(self): # new

https://docs.djangoproject.com/en/3.0/ref/models/instances/#django.db.models.Model.get_absolute_url
https://docs.djangoproject.com/en/3.0/ref/urlresolvers/#reverse

Chapter 6: Forms 127

return reverse('post_detail', args=[str(self.id)])

Reverse is a very handy utility function Django provides us to reference an object by

its URL template name, in this case post_detail. If you recall our URL pattern is the

following:

Code

path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'),

That means in order for this route to work we must also pass in an argument with the

pk or primary key of the object. Confusingly, pk and id are interchangeable in Django

though the Django docs recommend using self.id with get_absolute_url. So we’re

telling Django that the ultimate location of a Post entry is its post_detail view which

is posts/<int:pk>/ so the route for the first entry we’ve made will be at posts/1.

Try to create a new blog post again at http://127.0.0.1:8000/post/new/.

Blog new page with fourth post

https://docs.djangoproject.com/en/3.0/ref/urlresolvers/#reverse
http://127.0.0.1:8000/post/new/

Chapter 6: Forms 128

Upon clicking the “Save” button you are now redirected to the detailed view page

where the post appears.

Blog individual page

Go over to the homepage at http://127.0.0.1:8000/ and you’ll also notice that our

earlier blog post is also there. It was successfully sent to the database, but Django

didn’t know how to redirect us after that.

Blog homepage with four posts

While we could go into the Django admin to delete unwanted posts, it’s better if we

http://127.0.0.1:8000/

Chapter 6: Forms 129

add forms so a user can update and delete existing posts directly from the site.

Update Form

The process for creating an update form so users can edit blog posts should feel

familiar. We’ll again use a built-in Django class-based generic view, UpdateView, and

create the requisite template, url, and view.

To start, let’s add a new link to post_detail.html so that the option to edit a blog post

appears on an individual blog page.

Code

<!-- templates/post_detail.html -->

{% extends 'base.html' %}

{% block content %}

<div class="post-entry">

<h2>{{ post.title }}</h2>

<p>{{ post.body }}</p>

</div>

+ Edit Blog Post

{% endblock content %}

We’ve added a link using <a href>... and the Django template engine’s {% url

... %} tag. Within it we’ve specified the target name of our url, which will be called

post_edit and also passed the parameter needed, which is the primary key of the post

post.pk.

Next we create the template for our edit page called post_edit.html.

https://docs.djangoproject.com/en/3.0/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView

Chapter 6: Forms 130

Command Line

(blog) $ touch templates/post_edit.html

And add the following code:

Code

<!-- templates/post_edit.html -->

{% extends 'base.html' %}

{% block content %}

<h1>Edit post</h1>

<form action="" method="post">{% csrf_token %}

{{ form.as_p }}

<input type="submit" value="Update">

</form>

{% endblock content %}

We again use HTML <form></form> tags, Django’s csrf_token for security, form.as_p

to display our form fields with paragraph tags, and finally give it the value “Update”

on the submit button.

Now to our view. We need to import UpdateView on the second-from-the-top line and

then subclass it in our new view BlogUpdateView.

Chapter 6: Forms 131

Code

blog/views.py

from django.views.generic import ListView, DetailView

from django.views.generic.edit import CreateView, UpdateView # new

from .models import Post

class BlogListView(ListView):

model = Post

template_name = 'home.html'

class BlogDetailView(DetailView):

model = Post

template_name = 'post_detail.html'

class BlogCreateView(CreateView):

model = Post

template_name = 'post_new.html'

fields = ['title', 'author', 'body']

class BlogUpdateView(UpdateView): # new

model = Post

template_name = 'post_edit.html'

fields = ['title', 'body']

Chapter 6: Forms 132

Notice that in BlogUpdateView we are explicitly listing the fields we want to use

['title', 'body'] rather than using '__all__'. This is because we assume that the

author of the post is not changing; we only want the title and text to be editable.

The final step is to update our urls.py file as follows. Add the BlogUpdateView up top

and then the new route at the top of the existing URLpatterns.

Code

blog/urls.py

from django.urls import path

from .views import (

BlogListView,

BlogDetailView,

BlogCreateView,

BlogUpdateView, # new

)

urlpatterns = [

path('post/<int:pk>/edit/',

BlogUpdateView.as_view(), name='post_edit'), # new

path('post/new/', BlogCreateView.as_view(), name='post_new'),

path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'),

path('', BlogListView.as_view(), name='home'),

]

At the top we add our view BlogUpdateView to the list of imported views, then created

a new url pattern for /post/pk/edit and given it the name post_edit.

Now if you click on a blog entry you’ll see our new Edit button.

Chapter 6: Forms 133

Blog page with edit button

If you click on “+ Edit Blog Post” you’ll be redirected to http://127.0.0.1:8000/post/1/edit/

if it’s your first blog post.

Blog edit page

Note that the form is pre-filled with our database’s existing data for the post. Let’s

make a change…

http://127.0.0.1:8000/post/1/edit/

Chapter 6: Forms 134

Blog edit page

And after clicking the “Update” button we are redirected to the detail view of the

post where you can see the change. This is because of our get_absolute_url setting.

Navigate to the homepage and you can see the change next to all the other entries.

Chapter 6: Forms 135

Blog homepage with edited post

Delete View

The process for creating a form to delete blog posts is very similar to that for updating

a post. We’ll use yet another generic class-based view, DeleteView, to help and need

to create a view, url, and template for the functionality.

Let’s start by adding a link to delete blog posts on our individual blog page, post_-

detail.html.

https://docs.djangoproject.com/en/3.0/ref/class-based-views/generic-editing/#deleteview

Chapter 6: Forms 136

Code

<!-- templates/post_detail.html -->

{% extends 'base.html' %}

{% block content %}

<div class="post-entry">

<h2>{{ post.title }}</h2>

<p>{{ post.body }}</p>

</div>

<p>+ Edit Blog Post</p>

<p>+ Delete Blog Post</p>

{% endblock content %}

Then create a new file for our delete page template. First, quit the local server

Control+c and then type the following command:

Command Line

(blog) $ touch templates/post_delete.html

And fill it with this code:

Chapter 6: Forms 137

Code

<!-- templates/post_delete.html -->

{% extends 'base.html' %}

{% block content %}

<h1>Delete post</h1>

<form action="" method="post">{% csrf_token %}

<p>Are you sure you want to delete "{{ post.title }}"?</p>

<input type="submit" value="Confirm">

</form>

{% endblock content %}

Note we are using post.title here to display the title of our blog post. We could also

just use object.title as it too is provided by DetailView.

Now update our views.py file, by importing DeleteView and reverse_lazy at the top,

then create a new view that subclasses DeleteView.

Code

blog/views.py

from django.views.generic import ListView, DetailView

from django.views.generic.edit import CreateView, UpdateView, DeleteView # new

from django.urls import reverse_lazy # new

from .models import Post

class BlogListView(ListView):

model = Post

template_name = 'home.html'

Chapter 6: Forms 138

class BlogDetailView(DetailView):

model = Post

template_name = 'post_detail.html'

class BlogCreateView(CreateView):

model = Post

template_name = 'post_new.html'

fields = ['title', 'author', 'body']

class BlogUpdateView(UpdateView):

model = Post

template_name = 'post_edit.html'

fields = ['title', 'body']

class BlogDeleteView(DeleteView): # new

model = Post

template_name = 'post_delete.html'

success_url = reverse_lazy('home')

We use reverse_lazy as opposed to just reverse so that it won’t execute the URL

redirect until our view has finished deleting the blog post.

Finally create a URL by importing our view BlogDeleteView and adding a new pattern:

https://docs.djangoproject.com/en/3.0/ref/urlresolvers/#reverse-lazy
https://docs.djangoproject.com/en/3.0/ref/urlresolvers/#reverse

Chapter 6: Forms 139

Code

blog/urls.py

from django.urls import path

from .views import (

BlogListView,

BlogUpdateView,

BlogDetailView,

BlogCreateView,

BlogDeleteView, # new

)

urlpatterns = [

path('post/<int:pk>/delete/', # new

BlogDeleteView.as_view(), name='post_delete'),

path('post/new/', BlogCreateView.as_view(), name='post_new'),

path('post/<int:pk>/', BlogDetailView.as_view(), name='post_detail'),

path('post/<int:pk>/edit/',

BlogUpdateView.as_view(), name='post_edit'),

path('', BlogListView.as_view(), name='home'),

]

If you start the server again python manage.py runserver and refresh the individual

post page you’ll see our “Delete Blog Post” link.

Chapter 6: Forms 140

Blog delete post

Clicking on the link takes us to the delete page for the blog post, which displays the

name of the blog post.

Blog delete post page

If you click on the “Confirm” button, it redirects you to the homepage where the blog

post has been deleted!

Chapter 6: Forms 141

Homepage with post deleted

So it works!

Tests

Time for tests to make sure everything works now–and in the future–as expected.

We’ve added a get_absolute_url method to our model and new views for create,

update, and edit posts. That means we need four new tests:

• def test_get_absolute_url

• def test_post_create_view

• def test_post_update_view

• def test_post_delete_view

Update your existing tests.py file as follows.

Chapter 6: Forms 142

Code

blog/tests.py

from django.contrib.auth import get_user_model

from django.test import TestCase

from django.urls import reverse

from .models import Post

class BlogTests(TestCase):

def setUp(self):

self.user = get_user_model().objects.create_user(

username='testuser',

email='test@email.com',

password='secret'

)

self.post = Post.objects.create(

title='A good title',

body='Nice body content',

author=self.user,

)

def test_string_representation(self):

post = Post(title='A sample title')

self.assertEqual(str(post), post.title)

def test_get_absolute_url(self): # new

Chapter 6: Forms 143

self.assertEqual(self.post.get_absolute_url(), '/post/1/')

def test_post_content(self):

self.assertEqual(f'{self.post.title}', 'A good title')

self.assertEqual(f'{self.post.author}', 'testuser')

self.assertEqual(f'{self.post.body}', 'Nice body content')

def test_post_list_view(self):

response = self.client.get(reverse('home'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, 'Nice body content')

self.assertTemplateUsed(response, 'home.html')

def test_post_detail_view(self):

response = self.client.get('/post/1/')

no_response = self.client.get('/post/100000/')

self.assertEqual(response.status_code, 200)

self.assertEqual(no_response.status_code, 404)

self.assertContains(response, 'A good title')

self.assertTemplateUsed(response, 'post_detail.html')

def test_post_create_view(self): # new

response = self.client.post(reverse('post_new'), {

'title': 'New title',

'body': 'New text',

'author': self.user,

})

self.assertEqual(response.status_code, 200)

self.assertContains(response, 'New title')

Chapter 6: Forms 144

self.assertContains(response, 'New text')

def test_post_update_view(self): # new

response = self.client.post(reverse('post_edit', args='1'), {

'title': 'Updated title',

'body': 'Updated text',

})

self.assertEqual(response.status_code, 302)

def test_post_delete_view(self): # new

response = self.client.post(

reverse('post_delete', args='1'))

self.assertEqual(response.status_code, 302)

We expect the URL of our test to be at post/1/ since there’s only one post and the

1 is its primary key Django adds automatically for us. To test create view we make a

new response and then ensure that the response goes through (status code 200) and

contains our new title and body text. For update view we access the first post–which

has a pk of 1which is passed in as the only argument–and we confirm that it results in

a 302 redirect. Finally, we test our delete view by confirming that if we delete a post,

the status code is 302, a redirect since the item no longer exists.

There’s always more tests that can be added but this at least has coverage on all our

new functionality. Run these tests now; they should all pass.

Command Line

(blog) $ python manage.py test

Chapter 6: Forms 145

Conclusion

In a small amount of code we’ve built a blog application that allows for creating,

reading, updating, and deleting blog posts. This core functionality is known by

the acronym CRUD: Create-Read-Update-Delete. While there are multiple ways to

achieve this same functionality–we could have used function-based views or written

our own class-based views–we’ve demonstrated how little code it takes in Django to

make this happen.

Note however a potential security concern: currently any user can update or delete

blog entries, not just the creator! This is not ideal and indeed Django comes with

built-in features to restrict access based on permissions, which we’ll cover in-depth

in Chapter 14.

But for now our blog application is working and in the next chapter we’ll add user

accounts and log in, log out, and sign up functionality.

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Chapter 7: User Accounts
So far we’ve built a working blog application that uses forms, but we’remissing amajor

piece of most web applications: user authentication.

Implementing proper user authentication is famously hard; there are many security

gotchas along the way so you really don’t want to implement this yourself. Fortunately

Django comes with a powerful, built-in user authentication system that we can use.

Whenever you create a new project, by default Django installs the auth app, which

provides us with a User object containing:

• username

• password

• email

• first_name

• last_name

We will use this User object to implement log in, log out, and sign up in our blog

application.

Log In

Django provides us with a default view for a log in page via LoginView. All we need to

add are a urlpattern for the auth system, a log in template, and a small update to our

settings.py file.

First, update the blog_project/urls.py file. We’ll place our log in and log out pages at

the accounts/ URL. This is a one-line addition on the next-to-last line.

https://docs.djangoproject.com/en/3.0/topics/auth/
https://docs.djangoproject.com/en/3.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.0/topics/auth/default/#django.contrib.auth.views.LoginView

Chapter 7: User Accounts 147

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path('admin/', admin.site.urls),

path('accounts/', include('django.contrib.auth.urls')), # new

path('', include('blog.urls')),

]

As the LoginView documentation notes, by default Djangowill look within a templates

directory called registration for a file called login.html for a log in form. So we need

to create a new directory called registration and the requisite file within it. From the

command line type Control+c to quit our local server. Then enter the following:

Command Line

(blog) $ mkdir templates/registration

(blog) $ touch templates/registration/login.html

Now type the following template code for our newly-created file.

https://docs.djangoproject.com/en/3.0/topics/auth/default/#django.contrib.auth.views.LoginView

Chapter 7: User Accounts 148

Code

<!-- templates/registration/login.html -->

{% extends 'base.html' %}

{% block content %}

<h2>Log In</h2>

<form method="post">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Log In</button>

</form>

{% endblock content %}

We’re using HTML <form></form> tags and specifying the POST method since we’re

sending data to the server (we’d use GET if we were requesting data, such as in a

search engine form). We add {% csrf_token %} for security concerns, namely to

prevent a XSS Attack. The form’s contents are outputted between paragraph tags

thanks to {{ form.as_p }} and then we add a “submit” button.

The final step is we need to specifywhere to redirect the user upon a successful log in.

We can set this with the LOGIN_REDIRECT_URL setting. At the bottom of the settings.py

file add the following:

Code

blog_project/settings.py

LOGIN_REDIRECT_URL = 'home'

Now the user will be redirected to the 'home' template which is our homepage.

We’re actually done at this point! If you now start up the Django server again with

python manage.py runserver and navigate to our log in page:

Chapter 7: User Accounts 149

http://127.0.0.1:8000/accounts/login/

You’ll see the following:

Log in page

Upon entering the log in info for our superuser account, we are redirected to the

homepage. Notice that we didn’t add any view logic or create a database model

because the Django auth system provided both for us automatically. Thanks Django!

Updated Homepage

Let’s update our base.html template so we display a message to users whether they

are logged in or not. We can use the is_authenticated attribute for this.

For now, we can simply place this code in a prominent position. Later on we can style

it more appropriately. Update the base.html file with new code starting beneath the

closing </header> tag.

http://127.0.0.1:8000/accounts/login/
https://docs.djangoproject.com/en/3.0/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated

Chapter 7: User Accounts 150

Code

<!-- templates/base.html -->

{% load static %}

<html>

<head>

<title>Django blog</title>

<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400"

rel="stylesheet">

<link href="{% static 'css/base.css' %}" rel="stylesheet">

</head>

<body>

<div>

<header>

<div class="nav-left">

<h1>Django blog</h1>

</div>

<div class="nav-right">

+ New Blog Post

</div>

</header>

{% if user.is_authenticated %}

<p>Hi {{ user.username }}!</p>

{% else %}

<p>You are not logged in.</p>

Log In

{% endif %}

{% block content %}

{% endblock content %}

</div>

Chapter 7: User Accounts 151

</body>

</html>

If the user is logged in we say hello to them by name, if not we provide a link to our

newly created log in page.

Homepage logged in

It worked! My superuser name is wsv so that’s what I see on the page.

Log Out Link

We added template page logic for logged out users but…how do we log out now? We

could go into the Admin panel and do it manually, but there’s a better way. Let’s add a

log out link instead that redirects to the homepage. Thanks to theDjango auth system,

this is dead-simple to achieve.

In our base.html file add a one-line {% url 'logout' %} link for logging out just below

our user greeting.

Chapter 7: User Accounts 152

Command Line

<!-- templates/base.html-->

...

{% if user.is_authenticated %}

<p>Hi {{ user.username }}!</p>

<p>Log out</p>

{% else %}

...

That’s all we need to do as the necessary view is provided to us by the Django auth

app. We do need to specify where to redirect a user upon log out though.

Update settings.py to provide a redirect link which is called, appropriately, LOGOUT_-

REDIRECT_URL. We can add it right next to our log in redirect so the bottom of the file

should look as follows:

Code

blog_project/settings.py

LOGIN_REDIRECT_URL = 'home'

LOGOUT_REDIRECT_URL = 'home' # new

If you refresh the homepage you’ll see it now has a “log out” link for logged in users.

Chapter 7: User Accounts 153

Homepage log out link

And clicking it takes you back to the homepage with a login link.

Homepage logged out

Chapter 7: User Accounts 154

Go ahead and try logging in and out several times with your user account.

Sign Up

We need to write our own view for a sign up page to register new users, but Django

provides us with a form class, UserCreationForm, to make things easier. By default it

comes with three fields: username, password1, and password2.

There are many ways to organize your code and URL structure for a robust user

authentication system. Here we will create a dedicated new app, accounts, for our

sign up page.

Command Line

(blog) $ python manage.py startapp accounts

Add the new app to the INSTALLED_APPS setting in our settings.py file.

Code

blog_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'blog.apps.BlogConfig',

'accounts.apps.AccountsConfig', # new

]

https://docs.djangoproject.com/en/3.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm

Chapter 7: User Accounts 155

Next add a new URL path in blog_project/urls.py pointing to this new app directly

below where we include the built-in auth app.

Code

blog_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path('admin/', admin.site.urls),

path('accounts/', include('django.contrib.auth.urls')),

path('accounts/', include('accounts.urls')), # new

path('', include('blog.urls')),

]

The order of our urls matters here because Django reads this file top-to-bottom.

Therefore when we request the /accounts/signup url, Django will first look in auth,

not find it, and then proceed to the accounts app.

Let’s go ahead and create our accounts/urls.py file.

Command Line

(blog) $ touch accounts/urls.py

And add the following code:

Chapter 7: User Accounts 156

Code

accounts/urls.py

from django.urls import path

from .views import SignUpView

urlpatterns = [

path('signup/', SignUpView.as_view(), name='signup'),

]

We’re using a not-yet-created view called SignupViewwhich we already know is class-

based since it is capitalized and has the as_view() suffix. Its path is just signup/ so the

overall URL path will be accounts/signup/.

Now for the view which uses the built-in UserCreationForm and generic CreateView.

Code

accounts/views.py

from django.contrib.auth.forms import UserCreationForm

from django.urls import reverse_lazy

from django.views import generic

class SignUpView(generic.CreateView):

form_class = UserCreationForm

success_url = reverse_lazy('login')

template_name = 'signup.html'

We’re subclassing the generic class-based view CreateView in our SignUpView class.We

specify the use of the built-in UserCreationForm and the not-yet-created template at

Chapter 7: User Accounts 157

signup.html. And we use reverse_lazy to redirect the user to the log in page upon

successful registration.

Why use reverse_lazy here instead of reverse? The reason is that for all generic class-

based views the URLs are not loaded when the file is imported, so we have to use the

lazy form of reverse to load them later when they’re available.

Now let’s add signup.html to our templates directory:

Command Line

(blog) $ touch templates/signup.html

Add then populate it with the code below.

Code

<!-- templates/signup.html -->

{% extends 'base.html' %}

{% block content %}

<h2>Sign up</h2>

<form method="post">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Sign up</button>

</form>

{% endblock content %}

This format is very similar to what we’ve done before. We extend our base template at

the top, place our logic between <form></form> tags, use the csrf_token for security,

display the form’s content in paragraph tags with form.as_p, and include a submit

button.

Chapter 7: User Accounts 158

We’re now done! To test it out start up the local server with python manage.py

runserver and navigate to our newly created page:

http://127.0.0.1:8000/accounts/signup/

Django sign up page

Notice there is a lot of extra text that Django includes by default. We can customize

this using something like the built-in messages framework but for now try out the

form.

I’ve created a new user called “william” and upon submission was redirected to the

log in page. Then after logging in successfully with my new user and password, I was

redirected to the homepage with our personalized “Hi username” greeting.

http://127.0.0.1:8000/accounts/signup/
https://docs.djangoproject.com/en/3.0/ref/contrib/messages/

Chapter 7: User Accounts 159

Homepage for user william

Our ultimate flow is therefore: Signup -> Login -> Homepage. And of course we

can tweak this however we want. The SignupView redirects to login because we set

success_url = reverse_lazy('login'). The Login page redirects to the homepage

because in our blog_project/settings.py file we set LOGIN_REDIRECT_URL = 'home'.

It can seem overwhelming at first to keep track of all the various parts of a Django

project. That’s normal. But I promise with time they’ll start to make more sense.

GitHub

It’s been a while since we made a git commit. Let’s do that and then push a copy of

our code onto GitHub. First check all the new work that we’ve done with git status.

Chapter 7: User Accounts 160

Command Line

(blog) $ git status

Then add the new content and enter a commit message.

Command Line

(blog) $ git add -A

(blog) $ git commit -m 'forms and user accounts'

Create a new repo on GitHub which you can call anything you like. I’ll choose the

name blog-app. Therefore after creating the new repo on the GitHub site I can type the

following two commands. Make sure to replace my username stillriverpress with

your own from GitHub.

Command Line

(blog) $ git remote add origin https://github.com/stillriverpress/blog-app.git

(blog) $ git push -u origin master

All done! Now we can deploy our new app on Heroku.

Heroku Config

This is our third time deploying an app. As with ourMessage Board app, there are four

changes we need to make so it can be deployed on Heroku.

• update Pipfile.lock

• new Procfile

• install Gunicorn

• update settings.py

https://github.com/new

Chapter 7: User Accounts 161

We’ll specify a Python version in our Pipfile and then run pipenv lock to apply it to

the Pipfile.lock. We’ll add a Procfile which is a Heroku-specific configuration file,

install gunicorn to run as our production web server in place of Django’s local server,

and finally update the ALLOWED_HOSTS so anyone can view our app.

Open the Pipfilewith your text editor and at the bottom add the following two lines.

Pipfile

[requires]

python_version = "3.7"

We’re using 3.7 here rather than the more specific 3.7.3 so that our app is automat-

ically updated to the most recent version of Python 3.7x on Heroku.

Now run pipenv lock to update our Pipfile.lock since Heroku will use it to generate

a new environment on Heroku servers for our app.

Command Line

(blog) $ pipenv lock

Create a new Procfile file.

Command Line

(blog) $ touch Procfile

Within your text editor add the following line to Procfile. This tells tells Heroku to

use Gunicorn rather than the local server which is not suitable for production.

Chapter 7: User Accounts 162

Procfile

web: gunicorn blog_project.wsgi --log-file -

Now install Gunicorn.

Command Line

(blog) $ pipenv install gunicorn==19.9.0

Finally update ALLOWED_HOSTS to accept all domains, which is represented by the

asterisk *.

Code

blog_project/settings.py

ALLOWED_HOSTS = ['*']

We can commit our new changes and push them up to GitHub.

Command Line

(blog) $ git status

(blog) $ git add -A

(blog) $ git commit -m 'Heroku config files and updates'

(blog) $ git push -u origin master

Heroku Deployment

To deploy on Heroku first confirm that you’re logged in to your existing Heroku

account.

http://gunicorn.org/

Chapter 7: User Accounts 163

Command Line

(blog) $ heroku login

Then run the create command which tells Heroku to make a new container for our

app to live in. If you just run heroku create then Heroku will assign you a random

name, however you can specify a custom name but it must be unique on Heroku. In

other words, since I’m picking the name dfb-blog you can’t. You need some other

combination of letters and numbers.

Command Line

(blog) $ heroku create dfb-blog

Now configure git so that when you push to Heroku, it goes to your new app name

(replacing dfb-blog with your custom name).

Command Line

(blog) $ heroku git:remote -a dfb-blog

There’s one more step we need to take now that we have static files, which in our

case is CSS. Django does not support serving static files in production however the

WhiteNoise project does. So let’s install it.

Command Line

(blog) $ pipenv install whitenoise==4.1.4

Then we need to update our static settings so it will be used in production. In your

text editor open settings.py. Add whitenoise to the INSTALLED_APPS above the built-

in staticfiles app and also to MIDDLEWARE on the third line. Order matters for both

INSTALLED_APPS and MIDDLEWARE.

At the bottom of the file add new lines for both STATIC_ROOT and STATICFILES_STORAGE.

It should look like the following.

http://whitenoise.evans.io/en/stable/

Chapter 7: User Accounts 164

Code

blog_project/settings.py

INSTALLED_APPS = [

'blog.apps.BlogConfig',

'accounts.apps.AccountsConfig',

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'whitenoise.runserver_nostatic', # new!

'django.contrib.staticfiles',

]

MIDDLEWARE = [

'django.middleware.security.SecurityMiddleware',

'django.contrib.sessions.middleware.SessionMiddleware',

'whitenoise.middleware.WhiteNoiseMiddleware', # new!

'django.middleware.common.CommonMiddleware',

'django.middleware.csrf.CsrfViewMiddleware',

'django.contrib.auth.middleware.AuthenticationMiddleware',

'django.contrib.messages.middleware.MessageMiddleware',

'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

...

STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') # new!

STATIC_URL = '/static/'

Chapter 7: User Accounts 165

STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')]

STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage'

Make sure to add and commit your new changes. Then push it to GitHub.

Command Line

(blog) $ git add -A

(blog) $ git commit -m 'Heroku config'

(blog) $ git push origin master

Finally we can push our code to Heroku and add a web process so the dyno is running.

Command Line

(blog) $ git push heroku master

(blog) $ heroku ps:scale web=1

The URL of your new app will be in the command line output or you can run heroku

open to find it. Mine is located at https://dfb-blog.herokuapp.com/.

https://dfb-blog.herokuapp.com/

Chapter 7: User Accounts 166

Heroku site

Conclusion

With a minimal amount of code, the Django framework has allowed us to create a

log in, log out, and sign up user authentication flow. Under-the-hood it has taken

care of the many security gotchas that can crop up if you try to create your own user

authentication flow from scratch.

Astute readers will note that currently there are no permissions so any user can

add/edit/delete blog posts. Thiswill be addressed in theNewspaper project that takes

up the remainder of the book, Chapters 8-15. If you’re curious now, you can peak at

Chapter 14 to see how it is implemented!

Chapter 8: Custom User Model
Django’s built-in User model allows us to start working with users right away, as

we just did with our Blog app in the previous chapters. However the official Django

documentation highly recommends using a custom user model for new projects. The

reason is that if you want to make any changes to the User model down the road–-for

example adding an age field-–using a custom user model from the beginning makes

this quite easy. But if you do not create a custom user model, updating the default

User model in an existing Django project is very, very challenging.

So always use a custom user model for all new Django projects. But the approach

demonstrated in the official documentation example is actually notwhatmanyDjango

experts recommend. It uses the quite complex AbstractBaseUser when if we just use

AbstractUser instead things are far simpler and still customizable.

Thus we will use AbstractUser in this chapter where we start a new Newspaper app

properly with a custom user model. The choice of a newspaper app pays homage to

Django’s roots as a web framework built for editors and journalists at the Lawrence

Journal-World.

Set Up

The first step is to create a new Django project from the command line. We need to

do several things:

• create and navigate into a new directory for our code

• create a new virtual environment news

https://docs.djangoproject.com/en/3.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#a-full-example

Chapter 8: Custom User Model 168

• install Django

• make a new Django project newspaper_project

• make a new app users

We’re calling our app for managing users users here but you’ll also see it frequently

called accounts in open source code. The actual name doesn’t matter as long as you

are consistent when referring to it throughout the project.

Here are the commands to run:

Command Line

$ cd ~/Desktop

$ mkdir news

$ cd news

$ pipenv install django==3.0.1

$ pipenv shell

(news) $ django-admin startproject newspaper_project .

(news) $ python manage.py startapp users

(news) $ python manage.py runserver

Note that we did not run migrate to configure our database. It’s important towait until

after we’ve created our new custom user model before doing so given how tightly

connected the user model is to the rest of Django.

If you navigate to http://127.0.0.1:8000 you’ll see the familiar Django welcome screen.

http://127.0.0.1:8000/

Chapter 8: Custom User Model 169

Welcome page

Custom User Model

Creating our custom user model requires four steps:

• update settings.py

• create a new CustomUser model

• create new forms for UserCreationForm and UserChangeForm

• update users/admin.py

In settings.pywe’ll add the users app to our INSTALLED_APPS. Then at the bottomof the

file use the AUTH_USER_MODEL config to tell Django to use our new custom user model

Chapter 8: Custom User Model 170

in place of the built-in User model. We’ll call our custom user model CustomUser so,

since it exists within our users app we refer to it as users.CustomUser.

Code

newspaper_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'users.apps.UsersConfig', # new

]

...

AUTH_USER_MODEL = 'users.CustomUser' # new

Now update users/models.py with a new User model which we’ll call CustomUser that

extends the existing AbstractUser. We also include our first custom field, age, here.

Code

users/models.py

from django.contrib.auth.models import AbstractUser

from django.db import models

class CustomUser(AbstractUser):

age = models.PositiveIntegerField(null=True, blank=True)

If you read the official documentation on custom user models it recommends using

AbstractBaseUser not AbstractUser. This needlessly complicates things in my opinion,

especially for beginners.

https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#specifying-a-custom-user-model

Chapter 8: Custom User Model 171

AbstractBaseUser vs AbstractUser
AbstractBaseUser requires a very fine level of control and customization. We essen-

tially rewrite Django. This can be helpful, but if we just want a custom user model

that can be updated with additional fields, the better choice is AbstractUser which

subclasses AbstractBaseUser. In other words, we write much less code and have less

opportunity to mess things up. It’s the better choice unless you really know what

you’re doing with Django!

Note that we use both null and blank with our age field. These two terms are easy to

confuse but quite distinct:

• null is database-related. When a field has null=True it can store a database entry

as NULL, meaning no value.

• blank is validation-related, if blank=True then a form will allow an empty value,

whereas if blank=False then a value is required.

In practice, null and blank are commonly used together in this fashion so that a form

allows an empty value and the database stores that value as NULL.

A common gotcha to be aware of is that the field type dictates how to use these values.

Whenever you have a string-based field like CharField or TextField, setting both null

and blank as we’ve done will result in two possible values for “no data” in the database.

Which is a bad idea. The Django convention is instead to use the empty string '', not

NULL.

Forms

If we step back for a moment, what are the two ways in which we would interact with

our new CustomUsermodel? One case is when a user signs up for a new account on our

https://docs.djangoproject.com/en/3.0/ref/models/fields/#null
https://docs.djangoproject.com/en/3.0/ref/models/fields/#blank

Chapter 8: Custom User Model 172

website. The other is within the admin app which allows us, as superusers, to modify

existing users. So we’ll need to update the two built-in forms for this functionality:

UserCreationForm and UserChangeForm.

Stop the local server with Control+c and create a new file in the users app called

forms.py.

Command Line

(news) $ touch users/forms.py

We’ll update it with the following code to extend the existing UserCreationForm and

UserChangeForm forms.

Code

users/forms.py

from django import forms

from django.contrib.auth.forms import UserCreationForm, UserChangeForm

from .models import CustomUser

class CustomUserCreationForm(UserCreationForm):

class Meta(UserCreationForm):

model = CustomUser

fields = UserCreationForm.Meta.fields + ('age',)

class CustomUserChangeForm(UserChangeForm):

https://docs.djangoproject.com/en/3.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/3.0/topics/auth/default/#django.contrib.auth.forms.UserChangeForm

Chapter 8: Custom User Model 173

class Meta:

model = CustomUser

fields = UserChangeForm.Meta.fields

For both new formswe are using theMeta class to override the default fields by setting

the model to our CustomUser and using the default fields via Meta.fieldswhich includes

all default fields. To add our custom age field we simply tack it on at the end and it

will display automatically on our future sign up page. Pretty slick, no?

The concept of fields on a form can be confusing at first so let’s take a moment to

explore it further. Our CustomUser model contains all the fields of the default User

model and our additional age field which we set.

But what are these default fields? It turns out there are many including username,

first_name, last_name, email, password, groups, and more. Yet when a user signs up

for a new account on Django the default form only asks for a username, email, and

password. This tells us that the default setting for fields on UserCreationForm is just

username, email, and password even though there are many more fields available.

This might not click for you since understanding forms and models properly takes

some time. In the next chapter we will create our own sign up, log in, and log out

pages which will tie together our CustomUser model and forms more clearly. So hang

tight!

The only other step we need is to update our admin.py file since Admin is tightly

coupled to the default User model. We will extend the existing UserAdmin class to

use our new CustomUser model.

https://docs.djangoproject.com/en/3.0/topics/forms/modelforms/#overriding-the-default-fields
https://docs.djangoproject.com/en/3.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#extending-the-existing-user-model

Chapter 8: Custom User Model 174

Code

users/admin.py

from django.contrib import admin

from django.contrib.auth.admin import UserAdmin

from .forms import CustomUserCreationForm, CustomUserChangeForm

from .models import CustomUser

class CustomUserAdmin(UserAdmin):

add_form = CustomUserCreationForm

form = CustomUserChangeForm

model = CustomUser

admin.site.register(CustomUser, CustomUserAdmin)

Ok we’re done! Type Control+c to stop the local server and go ahead and run

makemigrations and migrate for the first time to create a new database that uses the

custom user model.

Command Line

(news) $ python manage.py makemigrations users

(news) $ python manage.py migrate

Superuser

Let’s create a superuser account to confirm that everything is working as expected.

Chapter 8: Custom User Model 175

On the command line type the following command and go through the prompts.

Command Line

(news) $ python manage.py createsuperuser

The fact that this works is the first proof our custom user model works as expected.

Let’s view things in the admin too to be extra sure.

Start up the web server.

Command Line

(news) $ python manage.py runserver

Then navigate to the admin at http://127.0.0.1:8000/admin and log in.

Admin page

If you click on the link for “Users” you should see your superuser account aswell as the

default fields of Username, Email Address, First Name, Last Name, and Staff Status.

http://127.0.0.1:8000/admin

Chapter 8: Custom User Model 176

Admin one user

We can control the fields listed here via the list_display setting for CustomUserAdmin.

Let’s do that now so that it displays email, username, age, and staff status. This is a

one-line change.

Code

users/admin.py

from django.contrib import admin

from django.contrib.auth.admin import UserAdmin

from .forms import CustomUserCreationForm, CustomUserChangeForm

from .models import CustomUser

class CustomUserAdmin(UserAdmin):

Chapter 8: Custom User Model 177

add_form = CustomUserCreationForm

form = CustomUserChangeForm

model = CustomUser

list_display = ['email', 'username', 'age', 'is_staff',] # new

admin.site.register(CustomUser, CustomUserAdmin)

Refresh the page and you should see the update.

Admin custom list display

Chapter 8: Custom User Model 178

Conclusion

With our custom user model complete, we can now focus on building out the rest of

our Newspaper app. In the next chapter we will configure and customize sign up, log

in, and log out pages.

Chapter 9: User Authentication
Now that we have a working custom user model we can add the functionality every

website needs: the ability to sign up, log in, and log out users. Django provides

everything we need for log in and log out but we will need to create our own form

to sign up new users. We’ll also build a basic homepage with links to all three features

so we don’t have to type in the URLs by hand every time.

Templates

By default the Django template loader looks for templates in a nested structure

within each app. So a home.html template in users would need to be located at

users/templates/users/home.html. But a single templates directorywithin newspaper_-

project approach is cleaner and scales better so that’s what we’ll use.

Let’s create a new templates directory and within it a registration directory as that’s

where Django will look for the log in template.

Command Line

(news) $ mkdir templates

(news) $ mkdir templates/registration

Now we need to tell Django about this new directory by updating the configuration

for 'DIRS' in settings.py. This is a one-line change.

Chapter 9: User Authentication 180

Code

newspaper_project/settings.py

TEMPLATES = [

{

...

'DIRS': [os.path.join(BASE_DIR, 'templates')], # new

...

}

]

If you think about what happens when you log in or log out of a site, you are

immediately redirected to a subsequent page. We need to tell Django where to send

users in each case. The LOGIN_REDIRECT_URL and LOGOUT_REDIRECT_URL settings do that.

We’ll configure both to redirect to our homepage which will have the named URL of

'home'.

Remember that when we create our URL routes we have the option to add a name to

each one. So when we make the homepage URL we’ll make sure to call it 'home'.

Add these two lines at the bottom of the settings.py file.

Code

newspaper_project/settings.py

LOGIN_REDIRECT_URL = 'home'

LOGOUT_REDIRECT_URL = 'home'

Now we can create four new templates:

Chapter 9: User Authentication 181

Command Line

(news) $ touch templates/registration/login.html

(news) $ touch templates/base.html

(news) $ touch templates/home.html

(news) $ touch templates/signup.html

Here’s the HTML code for each file to use. The base.html will be inherited by every

other template in our project. By using a block like {% block content %} we can later

override the content just in this place in other templates.

Code

<!-- templates/base.html -->

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>{% block title %}Newspaper App{% endblock title %}</title>

</head>

<body>

<main>

{% block content %}

{% endblock content %}

</main>

</body>

</html>

Chapter 9: User Authentication 182

Code

<!-- templates/home.html -->

{% extends 'base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}

{% if user.is_authenticated %}

Hi {{ user.username }}!

<p>Log Out</p>

{% else %}

<p>You are not logged in</p>

Log In |

Sign Up

{% endif %}

{% endblock content %}

Code

<!-- templates/registration/login.html -->

{% extends 'base.html' %}

{% block title %}Log In{% endblock title %}

{% block content %}

<h2>Log In</h2>

<form method="post">

{% csrf_token %}

{{ form.as_p }}

Chapter 9: User Authentication 183

<button type="submit">Log In</button>

</form>

{% endblock content %}

Code

<!-- templates/signup.html -->

{% extends 'base.html' %}

{% block title %}Sign Up{% endblock title %}

{% block content %}

<h2>Sign Up</h2>

<form method="post">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Sign Up</button>

</form>

{% endblock content %}

Our templates are now all set. Still to go are our URLs and views.

URLs

Let’s start with the url routes. In our newspaper_project/urls.py file we want to

have our home.html template appear as the homepage. But we don’t want to build a

dedicated pages app just yet, so we can use the shortcut of importing TemplateView

and setting the template_name right in our url pattern.

Chapter 9: User Authentication 184

Next we want to “include” both the users app and the built-in auth app. The reason is

that the built-in auth app already provides views and urls for log in and log out. But for

sign upwewill need to create our own view and url. To ensure that our URL routes are

consistent we place them both at users/ so the eventual URLS will be /users/login,

/users/logout, and /users/signup.

Code

newspaper_project/urls.py

from django.contrib import admin

from django.urls import path, include # new

from django.views.generic.base import TemplateView # new

urlpatterns = [

path('admin/', admin.site.urls),

path('users/', include('users.urls')), # new

path('users/', include('django.contrib.auth.urls')), # new

path('', TemplateView.as_view(template_name='home.html'),

name='home'), # new

]

Now create a urls.py file in the users app.

Command Line

(news) $ touch users/urls.py

Update users/urls.py with the following code:

Chapter 9: User Authentication 185

Code

users/urls.py

from django.urls import path

from .views import SignUpView

urlpatterns = [

path('signup/', SignUpView.as_view(), name='signup'),

]

The last step is our views.py filewhichwill contain the logic for our sign up form.We’re

usingDjango’s generic CreateViewhere and telling it to use our CustomUserCreationForm,

to redirect to login once a user signs up successfully, and that our template is named

signup.html.

Code

users/views.py

from django.urls import reverse_lazy

from django.views.generic import CreateView

from .forms import CustomUserCreationForm

class SignUpView(CreateView):

form_class = CustomUserCreationForm

success_url = reverse_lazy('login')

template_name = 'signup.html'

Ok, phew! We’re done. Let’s test things out.

Chapter 9: User Authentication 186

Start up the server with python manage.py runserver and go to the homepage at

http://127.0.0.1:8000/.

Homepage logged in

We logged in to the admin in the previous chapter so you should see a personalized

greeting here. Click on the “Log Out” link.

Homepage logged out

Nowwe’re on the logged out homepage. Go ahead and click on login link and use your

superuser credentials.

Log in

Upon successfully logging in you’ll be redirected back to the homepage and see the

same personalized greeting. It works!

http://127.0.0.1:8000/

Chapter 9: User Authentication 187

Homepage logged in

Now use the “Log Out” link to return to the homepage and this time click on the “Sign

Up” link.

Homepage logged out

You’ll be redirected to our signup page. See that the age field is included!

Sign up page

Create a new user. Mine is called testuser and I’ve set the age to 25. After successfully

submitting the form you’ll be redirected to the log in page. Log in with your new user

and you’ll again be redirected to the homepage with a personalized greeting for the

Chapter 9: User Authentication 188

new user.

Homepage for testuser

Everything works as expected.

Admin

Let’s also log in to the admin to view our two user accounts. Navigate to:

http://127.0.0.1:8000/admin and …

Admin log in wrong

What’s this! Why can’t we log in?

Well we’re logged in with our new testuser account not our superuser account. Only

a superuser account has the permissions to log in to the admin! So use your superuser

account to log in instead.

http://127.0.0.1:8000/admin

Chapter 9: User Authentication 189

After you’ve done that you should see the normal admin homepage. Click on Users

and you can see our two users: the one we just created and your previous superuser

name (mine is wsv).

Users in the Admin

Everything is working but you may notice that there is no “Email address” for our

testuser. Why is that? Well, look back at the sign up page at:

http://127.0.0.1:8000/users/signup/

You’ll see that it asks for username, age, and password but not an email! However we

can easily change it. Let’s return to our users/forms.py file.

Currently, under fields we’re using Meta.fields which just displays the default

settings of username/password. But we can also explicitly set which fields we want

displayed so let’s update it to ask for a username/email/password by setting it to

('username', 'email',). We don’t need to include the password fields because they

http://127.0.0.1:8000/users/signup/

Chapter 9: User Authentication 190

are required! However all the other fields can be configured however we choose.

Code

users/forms.py

from django import forms

from django.contrib.auth.forms import UserCreationForm, UserChangeForm

from .models import CustomUser

class CustomUserCreationForm(UserCreationForm):

class Meta(UserCreationForm):

model = CustomUser

fields = ('username', 'email', 'age',) # new

class CustomUserChangeForm(UserChangeForm):

class Meta:

model = CustomUser

fields = ('username', 'email', 'age',) # new

The Python programming community agrees that “explicit is better than implicit” so

naming our fields in this fashion is a good idea.

Now if you try out the sign up page again at http://127.0.0.1:8000/users/signup/ you

can see the additional “Email address” field is there.

https://www.python.org/dev/peps/pep-0020/
http://127.0.0.1:8000/users/signup/

Chapter 9: User Authentication 191

New sign up page

Sign up with a new user account. I’ve named mine testuser2 with an age of 18 and an

email address of testuser2@email.com. Continue to log in and you’ll see a personalized

greeting on the homepage.

testuser2 homepage greeting

Then switch back to the admin page–log in using our superuser account to do so–and

all three users are on display.

Chapter 9: User Authentication 192

Three users in the Admin

Django’s user authentication flow requires a little bit of set up but you should be

starting to see that it also provides us incredible flexibility to configure sign up and

log in exactly how we want.

Conclusion

So far our Newspaper app has a custom user model and working sign up, log in, and

log out pages. But you may have noticed our site doesn’t look very good. In the next

chapter we’ll add Bootstrap for styling and create a dedicated pages app.

https://getbootstrap.com/

Chapter 10: Bootstrap
Web development requires a lot of skills. Not only do you have to program the website

to work correctly, users expect it to look good, too. When you’re creating everything

from scratch, it can be overwhelming to also add all the necessary HTML/CSS for a

beautiful site.

Fortunately there’s Bootstrap, the most popular framework for building responsive,

mobile-first projects. Rather than write all our own CSS and JavaScript for common

website layout features, we can instead rely on Bootstrap to do the heavy lifting. This

means with only a small amount of code on our part we can quickly have great looking

websites. And if we want to make custom changes as a project progresses, it’s easy to

override Bootstrap where needed, too.

When youwant to focus on the functionality of a project and not the design, Bootstrap

is a great choice. That’s why we’ll use it here.

Pages App

In the previous chapter we displayed our homepage by including view logic in our

urls.py file. While this approach works, it feels somewhat hackish to me and it

certainly doesn’t scale as a website grows over time. It is also probably somewhat

confusing to Django newcomers. Instead we can and should create a dedicated pages

app for all our static pages. This will keep our code nice and organized going forward.

On the command line use the startapp command to create our new pages app. If the

server is still running you may need to type Control+c first to quit it.

https://getbootstrap.com/

Chapter 10: Bootstrap 194

Command Line

(news) $ python manage.py startapp pages

Then immediately update our settings.py file. I often forget to do this so it is a good

practice to just think of creating a new app as a two-step process: run the startapp

command then update INSTALLED_APPS.

Code

newspaper_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'users.apps.UsersConfig',

'pages.apps.PagesConfig', # new

]

Now we can update our urls.py file inside the newspaper_project directory. Go ahead

and remove the import of TemplateView. We will also update the '' route to include

the pages app.

Chapter 10: Bootstrap 195

Code

newspaper_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path('admin/', admin.site.urls),

path('users/', include('users.urls')),

path('users/', include('django.contrib.auth.urls')),

path('', include('pages.urls')), # new

]

It’s time to add our homepage which means Django’s standard urls/views/templates

dance. We’ll start with the pages/urls.py file. First create it.

Command Line

(news) $ touch pages/urls.py

Then import our not-yet-created views, set the route paths, and make sure to name

each url, too.

Chapter 10: Bootstrap 196

Code

pages/urls.py

from django.urls import path

from .views import HomePageView

urlpatterns = [

path('', HomePageView.as_view(), name='home'),

]

The views.py code should look familiar at this point.We’re usingDjango’s TemplateView

generic class-based view which means we only need to specify our template_name to

use it.

Code

pages/views.py

from django.views.generic import TemplateView

class HomePageView(TemplateView):

template_name = 'home.html'

We already have an existing home.html template. Let’s confirm it still works as

expected with our new url and view. Start up the local server python manage.py

runserver and navigate to the homepage at http://127.0.0.1:8000/ to confirm it

remains unchanged.

http://127.0.0.1:8000/

Chapter 10: Bootstrap 197

Homepage logged in

It should show the name of your logged in superuser account which we used at the

end of the last chapter.

Tests

We’ve added new code and functionality whichmeans it’s time for tests. You can never

have enough tests in your projects. Even though they take some upfront time towrite,

they always save you time down the road and give confidence as a project grows in

complexity.

There are two ideal times to add tests: either before you write any code (test-driven-

development) or immediately after you’ve added new functionality and it’s clear in

your mind.

Currently, our project has four pages:

• home

• sign up

• log in

• log out

However we only need to test the first two. Log in and log out are part of Django and

rely on internal views and url routes. They therefore already have test coverage. If we

made substantial changes to them in the future, we would want to add tests for that.

But as a general rule, you do not need to add tests for core Django functionality.

Chapter 10: Bootstrap 198

Since we have urls, templates, and views for each of our two new pages we’ll add tests

for each. Django’s SimpleTestCase will suffice for testing the homepage but the sign

up page uses the database so we’ll need to use TestCase too.

Here’s what the code should look like in your pages/tests.py file.

Code

pages/tests.py

from django.contrib.auth import get_user_model

from django.test import SimpleTestCase, TestCase

from django.urls import reverse

class HomePageTests(SimpleTestCase):

def test_home_page_status_code(self):

response = self.client.get('/')

self.assertEqual(response.status_code, 200)

def test_view_url_by_name(self):

response = self.client.get(reverse('home'))

self.assertEqual(response.status_code, 200)

def test_view_uses_correct_template(self):

response = self.client.get(reverse('home'))

self.assertEqual(response.status_code, 200)

self.assertTemplateUsed(response, 'home.html')

class SignupPageTests(TestCase):

https://docs.djangoproject.com/en/3.0/topics/testing/tools/#simpletestcase
https://docs.djangoproject.com/en/3.0/topics/testing/tools/#testcase

Chapter 10: Bootstrap 199

username = 'newuser'

email = 'newuser@email.com'

def test_signup_page_status_code(self):

response = self.client.get('/users/signup/')

self.assertEqual(response.status_code, 200)

def test_view_url_by_name(self):

response = self.client.get(reverse('signup'))

self.assertEqual(response.status_code, 200)

def test_view_uses_correct_template(self):

response = self.client.get(reverse('signup'))

self.assertEqual(response.status_code, 200)

self.assertTemplateUsed(response, 'signup.html')

def test_signup_form(self):

new_user = get_user_model().objects.create_user(

self.username, self.email)

self.assertEqual(get_user_model().objects.all().count(), 1)

self.assertEqual(get_user_model().objects.all()

[0].username, self.username)

self.assertEqual(get_user_model().objects.all()

[0].email, self.email)

On the top line we use get_user_model() to reference our custom user model. Then

for both pages we test three things:

https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 10: Bootstrap 200

• the page exists and returns a HTTP 200 status code

• the page uses the correct url name in the view

• the proper template is being used

Our sign up page also has a form so we should test that, too. In the test test_signup_-

formwe’re verifying that when a username and email address are POSTed (sent to the

database), they match what is stored on the CustomUser model.

Note that there are two ways to specify a page: either hardcoded as in test_signup_-

page_status_code where we set the response to /users/signup/ or via the URL name

of signup which is done for test_view_url_by_name and test_view_uses_correct_-

template.

Quit the local server with Control+c and then run our tests to confirm everything

passes.

Command Line

(news) $ python manage.py test

Bootstrap

If you’ve never used Bootstrap before you’re in for a real treat. It accomplishes so

much in so little code.

There are two ways to add Bootstrap to a project: you can download all the files and

serve them locally or rely on a Content Delivery Network (CDN). The second approach

is simpler to implement provided you have a consistent internet connection so that’s

what we’ll use here.

Bootstrap comes with a starter template that includes the basic files needed. Notably

there are four that we incorporate:

https://getbootstrap.com/docs/4.1/getting-started/introduction/

Chapter 10: Bootstrap 201

• Bootstrap.css

• jQuery.js

• Popper.js

• Bootstrap.js

Here’s what the updated base.html file should look like. Generally you should type

all code examples yourself but as this is one is quite long and error-prone, it’s

recommended to copy and paste from the official source code.

Code

<!-- templates/base.html -->

<!doctype html>

<html lang="en">

<head>

<!-- Required meta tags -->

<meta charset="utf-8">

<meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS -->

<link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/\

bootstrap.min.css"

integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81i\

uXoPkFOJwJ8ERdknLPMO"

crossorigin="anonymous">

<title>Hello, world!</title>

</head>

<body>

https://github.com/wsvincent/djangoforbeginners/tree/master/ch10-bootstrap

Chapter 10: Bootstrap 202

<h1>Hello, world!</h1>

<!-- Optional JavaScript -->

<!-- jQuery first, then Popper.js, then Bootstrap JS -->

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"

integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4\

YfRvH+8abtTE1Pi6jizo"

crossorigin="anonymous"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/\

1.14.3/

umd/popper.min.js"

integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbB\

JiSnjAK/

l8WvCWPIPm49"

crossorigin="anonymous"></script>

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/\

js/bootstrap.min.js"

integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ\

6OW/JmZQ5stwEULTy"

crossorigin="anonymous"></script>

</body>

</html>

If you start the server again with python manage.py runserver and refresh the

homepage at http://127.0.0.1:8000/ you’ll see that only the font size has changed at

the moment.

http://127.0.0.1:8000/

Chapter 10: Bootstrap 203

Homepage with Bootstrap

Let’s add a navigation bar at the top of the page which contains our links for the

homepage, log in, log out, and sign up. Notably we can use the if/else tags in the

Django templating engine to add some basic logic. We want to show a “log in” and

“sign up” button to users who are logged out, but a “log out” and “change password”

button to users logged in.

Here’s what the code looks like. Again, it’s ok to copy/paste here since the focus of

this book is on learning Django not HTML, CSS, and Bootstrap.

Code

<!-- templates/base.html -->

<!doctype html>

<html lang="en">

<head>

<!-- Required meta tags -->

<meta charset="utf-8">

<meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">

<!-- Bootstrap CSS -->

<link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/\

bootstrap.min.css"

integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81i\

uXoPkFOJwJ8ERdknLPMO"

https://docs.djangoproject.com/en/3.0/ref/templates/language/#tags

Chapter 10: Bootstrap 204

crossorigin="anonymous">

<title>{% block title %}Newspaper App{% endblock title %}</title>

</head>

<body>

<nav class="navbar navbar-expand-md navbar-dark bg-dark mb-4">

Newspaper

<button class="navbar-toggler" type="button" data-toggle="collapse"

data-target="#navbarCollapse" aria-controls="navbarCollapse"

aria-expanded="false" aria-label="Toggle navigation">

</button>

<div class="collapse navbar-collapse" id="navbarCollapse">

{% if user.is_authenticated %}

<ul class="navbar-nav ml-auto">

<li class="nav-item">

<a class="nav-link dropdown-toggle" href="#" id="userMenu"

data-toggle="dropdown" aria-haspopup="true"

aria-expanded="false">

{{ user.username }}

<div class="dropdown-menu dropdown-menu-right"

aria-labelledby="userMenu">

<a class="dropdown-item"

href="{% url 'password_change'%}">Change password

<div class="dropdown-divider"></div>

Log Out

</div>

Chapter 10: Bootstrap 205

{% else %}

<form class="form-inline ml-auto">

Log In

Sign up

</form>

{% endif %}

</div>

</nav>

<div class="container">

{% block content %}

{% endblock content %}

</div>

<!-- Optional JavaScript -->

<!-- jQuery first, then Popper.js, then Bootstrap JS -->

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"

integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4\

YfRvH+8abtTE1Pi6jizo"

crossorigin="anonymous"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/\

1.14.3/

umd/popper.min.js"

integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbB\

JiSnjAK/

l8WvCWPIPm49"

Chapter 10: Bootstrap 206

crossorigin="anonymous"></script>

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/\

js/bootstrap.min.js"

integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ\

6OW/JmZQ5stwEULTy"

crossorigin="anonymous"></script>

</body>

</html>

If you refresh the homepage at http://127.0.0.1:8000/ our new nav has magically

appeared! We’ve also added in our {% block content %} tags so the user greeting

has returned, as has our “Newspaper App” in the title.

Homepage with Bootstrap nav logged in

Click on the username in the upper right hand corner–wsv in my case–to see the nice

dropdown menu Bootstrap provides.

Homepage with Bootstrap nav logged in and dropdown

If you click on the “Log Out” link then our nav bar changes offering links to either “Log

http://127.0.0.1:8000/

Chapter 10: Bootstrap 207

In” or “Sign Up.”

Homepage with Bootstrap nav logged out

Better yet if you shrink the size of your browser window Bootstrap automatically

resizes and makes adjustments so it looks good on a mobile device, too.

Homepage mobile with hamburger icon

You can even change thewidth of thewebbrowser to see how the sidemargins change

as the screen size increases and decreases.

If you click on the “Log Out” button and then “Log In” from the top nav you can also

see that our log in page http://127.0.0.1:8000/users/login looks better too.

http://127.0.0.1:8000/users/login

Chapter 10: Bootstrap 208

Bootstrap login

The only thing that looks off is our “Login” button. We can use Bootstrap to add some

nice styling such as making it green and inviting.

Change the “button” line in templates/registration/login.html as follows.

Code

<!-- templates/registration/login.html -->

...

<button class="btn btn-success ml-2" type="submit">Log In</button>

...

Now refresh the page to see our new button.

Chapter 10: Bootstrap 209

Bootstrap log in with new button

Sign Up Form

Our sign up page at http://127.0.0.1:8000/users/signup/ has Bootstrap stylings but

also distracting helper text. For example after “Username” it says “Required. 150

characters or fewer. Letters, digits and @/./+/-/_ only.”

http://127.0.0.1:8000/users/signup/

Chapter 10: Bootstrap 210

Updated navbar logged out

Where did that text come from, right? Whenever something feels like “magic” in

Django rest assured that it is decidedly not. Likely the code came from an internal

piece of Django.

The fastest method I’ve found to figure out what’s happening under-the-hood in

Django is to simply go to the Django source code on Github, use the search bar and

try to find the specific piece of text.

For example, if you do a search for “150 characters or fewer” you’ll find yourself on

the django/contrib/auth/models.py page located here on line 301. The text comes as

part of the auth app, on the username field for AbstractUser.

We have three options now:

• override the existing help_text

• hide the help_text

https://github.com/django/django
https://github.com/django/django/blob/4c599ece57fa009cf3615f09497f81bfa6a585a7/django/contrib/auth/models.py

Chapter 10: Bootstrap 211

• restyle the help_text

We’ll choose the third option since it’s a good way to introduce the excellent 3rd party

package django-crispy-forms.

Working with forms is a challenge and django-crispy-forms makes it easier to write

DRY code.

First, stop the local server with Control+c. Then use Pipenv to install the package in

our project.

Command Line

(news) $ pipenv install django-crispy-forms==1.8.1

Add the new app to our INSTALLED_APPS list in the settings.py file. As the number of

apps starts to grow, I find it helpful to distinguish between 3rd party apps and local

apps I’ve added myself. Here’s what the code looks like now.

Code

newspaper_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd Party

'crispy_forms', # new

https://github.com/django-crispy-forms/django-crispy-forms

Chapter 10: Bootstrap 212

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig',

]

Since we’re using Bootstrap4 we should also add that config to our settings.py file.

This goes on the bottom of the file.

Code

newspaper_project/settings.py

CRISPY_TEMPLATE_PACK = 'bootstrap4'

Now in our signup.html template we can quickly use crispy forms. First, we load

crispy_forms_tags at the top and then swap out {{ form.as_p }} for {{ form|crispy

}}.

Code

<!-- templates/signup.html -->

{% extends 'base.html' %}

{% load crispy_forms_tags %}

{% block title %}Sign Up{% endblock title%}

{% block content %}

<h2>Sign up</h2>

<form method="post">

{% csrf_token %}

{{ form|crispy }}

<button type="submit">Sign Up</button>

Chapter 10: Bootstrap 213

</form>

{% endblock content %}

If you start up the server again with python manage.py runserver and refresh the sign

up page we can see the new changes.

Crispy sign up page

Much better. Although how about if our “Sign Up” button was a little more inviting?

Maybe make it green? Bootstrap has all sorts of button styling options we can choose

from. Let’s use the “success” one which has a green background and white text.

Update the signup.html file on the line for the sign up button.

https://getbootstrap.com/docs/4.1/components/buttons/

Chapter 10: Bootstrap 214

Code

<!-- templates/signup.html -->

...

<button class="btn btn-success" type="submit">Sign Up</button>

...

Refresh the page and you can see our updated work.

Crispy sign up page green button

Chapter 10: Bootstrap 215

Conclusion

OurNewspaper app is starting to look pretty good. The last step of our user auth flow

is to configure password change and reset. Here again Django has taken care of the

heavy lifting for us so it requires a minimal amount of code on our part.

Chapter 11: Password Change and Reset
In this chapter we will complete the authorization flow of our Newspaper app by

adding password change and reset functionality. Users will be able to change their

current password or, if they’ve forgotten it, to reset it via email.

Initially wewill implement Django’s built-in views andURLs for both password change

and password reset before then customizing them with our own Bootstrap-powered

templates and email service.

Password Change

Letting users change their passwords is a common feature on many websites. Django

provides a default implementation that already works at this stage. To try it out first

click on the “Log In” button to make sure you’re logged in. Then navigate to the

“Password change” page at http://127.0.0.1:8000/users/password_change/.

http://127.0.0.1:8000/users/password_change/

Chapter 11: Password Change and Reset 217

Password change

Enter in both your old password and then a new one. Then click the “Change My

Password” button.

You’ll be redirected to the “Password change successful” page located at:

http://127.0.0.1:8000/users/password_change/done/.

Password change done

http://127.0.0.1:8000/users/password_change/done/

Chapter 11: Password Change and Reset 218

Customizing Password Change

Let’s customize these two password change pages so that they match the look and

feel of our Newspaper site. Because Django already has created the views and URLs

for us, we only need to add new templates.

On the command line stop the local server Control+c and create two new template

files in the registration directory.

Command Line

(news) $ touch templates/registration/password_change_form.html

(news) $ touch templates/registration/password_change_done.html

Update password_change_form.html with the following code.

Code

<!-- templates/registration/password_change_form.html -->

{% extends 'base.html' %}

{% block title %}Password Change{% endblock title %}

{% block content %}

<h1>Password change</h1>

<p>Please enter your old password, for security's sake, and then enter your

new password twice so we can verify you typed it in correctly.</p>

<form method="POST">

{% csrf_token %}

{{ form.as_p }}

<input class="btn btn-success" type="submit" value="Change my password">

Chapter 11: Password Change and Reset 219

</form>

{% endblock content %}

At the topwe extend base.html and set our page title. Becausewe used “block” titles in

our base.html file we can override them here. The form uses POST since we’re sending

data and a csrf_token for security reasons. By using form.as_pwe’re simply displaying

in paragraphs the content of the default password reset form. And finally we include

a submit button that uses Bootstrap’s btn btn-success styling to make it green.

Go ahead and refresh the page at http://127.0.0.1:8000/users/password_change/ to

see our changes.

New password change form

Next up is the password_change_done template.

http://127.0.0.1:8000/users/password_change/

Chapter 11: Password Change and Reset 220

Code

<!-- templates/registration/password_change_done.html -->

{% extends 'base.html' %}

{% block title %}Password Change Successful{% endblock title %}

{% block content %}

<h1>Password change successful</h1>

<p>Your password was changed.</p>

{% endblock content %}

It also extends base.html and includes a new title. However there’s no form on the

page, just new text.

The new page is at http://127.0.0.1:8000/users/password_change/done/.

New password change done

That wasn’t too bad, right? Certainly it was a lot less work than creating everything

from scratch, especially all the code around securely updating a user’s password.

Next up is our password reset functionality.

http://127.0.0.1:8000/users/password_change/done/

Chapter 11: Password Change and Reset 221

Password Reset

Password reset handles the common case of users forgetting their passwords. The

steps are very similar to configuring password change, as we just did. Django already

provides a default implementation that we will use and then customize the templates

so it matches the rest of our site.

The only configuration required is telling Django how to send emails. After all, a user

can only reset a password if they have access to the email linked to the account. In

production we’ll use the email service SendGrid to actually send the emails but for

testing purposes we can rely on Django’s console backend setting which outputs the

email text to our command line console instead.

At the bottom of the settings.py file make the following one-line change.

Code

newspaper_project/settings.py

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

And we’re all set! Django will take care of all the rest for us. Let’s try it out.

Navigate to http://127.0.0.1:8000/users/password_reset/ to view the default pass-

word reset page.

https://sendgrid.com/
https://docs.djangoproject.com/en/3.0/topics/email/#console-backend
http://127.0.0.1:8000/users/password_reset/

Chapter 11: Password Change and Reset 222

Default password reset page

Make sure the email address you enter matches one of your user accounts. Upon

submission you’ll then be redirected to the password reset done page at:

http://127.0.0.1:8000/users/password_reset/done/.

Default password reset done page

Which says to check our email. Sincewe’ve toldDjango to send emails to the command

line console, the email text will now be there. This is what I see in my console.

http://127.0.0.1:8000/users/password_reset/done/

Chapter 11: Password Change and Reset 223

Command Line

Content-Type: text/plain; charset="utf-8"

MIME-Version: 1.0Content-Transfer-Encoding: 7bit

Subject: Password reset on 127.0.0.1:8000

From: webmaster@localhost

To: will@wsvincent.com

Date: Wed, 22 Aug 2018 19:55:15 -0000

Message-ID: <153496771529.17508.13142438928745789128@1.0.0.127.in-addr.arpa>

You're receiving this email because you requested a password reset for your

user account at 127.0.0.1:8000.

Please go to the following page and choose a new password:

http://127.0.0.1:8000/users/reset/MQ/4yy-2dde95cd69631c8d938e/

Your username, in case you've forgotten: wsv

Thanks for using our site!

The 127.0.0.1:8000 team

Your email text should be identical except for three lines:

• the “To” on the sixth line contains the email address of the user

• the URL link contains a secure token that Django randomly generates for us and

can be used only once

• Django helpfully reminds us of our username

We will customize all of the email default text shortly but for now focus on finding

the link provided. In the message above mine is:

Chapter 11: Password Change and Reset 224

http://127.0.0.1:8000/users/reset/MQ/4yy-2dde95cd69631c8d938e/

Enter this link into yourweb browser and you’ll be redirected to the “change password

page”.

Default change password page

Now enter in a new password and click on the “Change my password” button. The

final step is you’ll be redirected to the “Password reset complete” page.

Default password reset complete

To confirm everything worked, click on the “Log in” link and use your new password.

It should work.

http://127.0.0.1:8000/users/reset/MQ/4yy-2dde95cd69631c8d938e/

Chapter 11: Password Change and Reset 225

Custom Templates

As with “Password change” we only need to create new templates to customize the

look and feel of password reset. Stop the local server with Control+c and then create

four new template files.

Command Line

(news) $ touch templates/registration/password_reset_form.html

(news) $ touch templates/registration/password_reset_done.html

(news) $ touch templates/registration/password_reset_confirm.html

(news) $ touch templates/registration/password_reset_complete.html

Start with the password reset form which is password_reset_form.html.

Code

<!-- templates/registration/password_reset_form.html -->

{% extends 'base.html' %}

{% block title %}Forgot Your Password?{% endblock title %}

{% block content %}

<h1>Forgot your password?</h1>

<p>Enter your email address below, and we'll email instructions for setting

a new one.</p>

<form method="POST">

{% csrf_token %}

{{ form.as_p }}

<input class="btn btn-success" type="submit" value="Send me instructions!">

Chapter 11: Password Change and Reset 226

</form>

{% endblock content %}

At the topwe extend base.html and set our page title. Becausewe used “block” titles in

our base.html file we can override them here. The form uses POST since we’re sending

data and a csrf_token for security reasons. By using form.as_pwe’re simply displaying

in paragraphs the content of the default password reset form. Finally we include a

submit button and use Bootstrap’s btn btn-success styling to make it green.

Start up the server again with python manage.py runserver. Navigate to:

http://127.0.0.1:8000/users/password_reset/.

Refresh the page you can see our new page.

New password reset

Now we can update the other three pages. Each takes the same form of extending

base.html, a new title, new content text, and for password_reset_confirm.html an

updated form as well.

http://127.0.0.1:8000/users/password_reset/

Chapter 11: Password Change and Reset 227

Code

<!-- templates/registration/password_reset_done.html -->

{% extends 'base.html' %}

{% block title %}Email Sent{% endblock title %}

{% block content %}

<h1>Check your inbox.</h1>

<p>We've emailed you instructions for setting your password.

You should receive the email shortly!</p>

{% endblock content %}

Confirm the changes by going to http://127.0.0.1:8000/users/password_reset/done/.

New reset done

Next the password reset confirm page.

http://127.0.0.1:8000/users/password_reset/done/

Chapter 11: Password Change and Reset 228

Code

<!-- templates/registration/password_reset_confirm.html -->

{% extends 'base.html' %}

{% block title %}Enter new password{% endblock title %}

{% block content %}

<h1>Set a new password!</h1>

<form method="POST">

{% csrf_token %}

{{ form.as_p }}

<input class="btn btn-success" type="submit" value="Change my password">

</form>

{% endblock content %}

In the command line grab the URL link from the email outputted to the console–mine

was http://127.0.0.1:8000/users/reset/MQ/4yy-2dde95cd69631c8d938e/–and you’ll see

the following.

New set password

Finally here is the password reset complete code.

Chapter 11: Password Change and Reset 229

Code

<!-- templates/registration/password_reset_complete.html -->

{% extends 'base.html' %}

{% block title %}Password reset complete{% endblock title %}

{% block content %}

<h1>Password reset complete</h1>

<p>Your new password has been set. You can log in now on the

<a href=

"{% url 'login' %}">log in page.</p>

{% endblock content %}

You can view it at http://127.0.0.1:8000/users/reset/done/.

New password reset complete

Users can now reset their account password!

Conclusion

In the next chapter we will connect our Newspaper app to the email service SendGrid

to actually send our automated emails to users as opposed to outputting them in our

command line console.

http://127.0.0.1:8000/users/reset/done/
https://sendgrid.com/

Chapter 12: Email
At this point you may be feeling a little overwhelmed by all the user authentication

configuration we’ve done up to this point. That’s normal. After all, we haven’t even

created any core Newspaper app features yet! Everything has been about setting up

custom user accounts and the rest.

The upside to Django’s approach is that it is incredibly easy to customize any piece

of our website. The downside is that Django requires a bit more out-of-the-box code

than some competing web frameworks. As you become more and more experienced

in web development, the wisdom of Django’s approach will ring true.

Currently, emails are outputted to our command line console, they are not actually

sent to users. Let’s change that! First we need to sign up for an account at SendGrid

and then update our settings.py files. Django will take care of the rest. Ready?

SendGrid

SendGrid is a popular service for sending transactional emails so we’ll use it. Django

doesn’t care what service you choose though; you can just as easily use MailGun or

any other service of your choice.

On the SendGrid homepage, click the “Try for free” button in the upper right corner.

Enter in your email address, username, and password to create a free account. Make

sure that the email account you use for SendGrid is not the same email account you

have for your superuser account on theNewspaper project or weird errorsmay result.

Finally, complete the “Tell Us About Yourself” page. The only tricky part might be the

“Company Website” section. I recommend using the URL of a Heroku deployment

https://sendgrid.com/
https://sendgrid.com/
https://www.mailgun.com/

Chapter 12: Email 231

from a previous chapter here as this setting can later be changed. Then on the bottom

of the page click the “Get Started” button.

SendGrid then presents us with a welcome screen that provides three different ways

to send our first email. Select the first option, “Integrate using our Web API or SMTP

relay” and click on the “Start” button next to it.

SendGrid welcome screen

Nowwe have one more choice to make: Web API or SMTP Relay. We’ll use SMTP since

it is the simplest and works well for our basic needs here. In a large-scale website you

likely would want to use the Web API instead but … one thing at a time.

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

Chapter 12: Email 232

You’ll also note the “Verify My Account” banner on the top of the page. If you want

that to go away, log in to the email account you used for the account and confirm your

account.

Click on the “Choose” button under “SMTP Relay” to proceed.

SendGrid Web API vs SMTP Relay

Ok, one more screen to navigate. Under step 1, “Create an API key,” enter in a name

for your first API Key. I’ve chosen the name “Newspaper” here. Then click on the blue

“Create Key” button next to it.

Chapter 12: Email 233

SendGrid Integrate

The page will update and generate a custom API key in part 1. SendGrid is really

pushing us to use API keys, no? But that’s ok, it will also, under part 2, create a

username and password for us that we can use with an SMTP relay. This is what we

want.

Chapter 12: Email 234

SendGrid username and password

The usernamehere, apikey, is the same for everyone but the passwordwill be different

for each account. Now, time to add the new username and password into our Django

project. This won’t take long!

First, in the newspaper_project/settings.py file update the email backend to use

SMTP. We already configured this once before; the line should be at the bottom of

the file. Instead of outputting emails to the console we want to instead send them for

real using SMTP.

Chapter 12: Email 235

Code

newspaper_project/settings.py

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # new

Then, right below it, add the following six lines of email configuration. The DE-

FAULT_FROM_EMAIL field is set, by default, to webmaster@localhost. You should

update it with your intended email account. Make sure to enter your own SendGrid

EMAIL_HOST_PASSWORD here; sendgrid_password is just a placeholder!

Code

newspaper_project/settings.py

DEFAULT_FROM_EMAIL = 'your_custom_email_account'

EMAIL_HOST = 'smtp.sendgrid.net'

EMAIL_HOST_USER = 'apikey'

EMAIL_HOST_PASSWORD = 'sendgrid_password'

EMAIL_PORT = 587

EMAIL_USE_TLS = True

Also, note that ideally you would store secure information like your password in

environment variables, not in plain text. But, to keep things simple, we won’t do that

here. However, in a proper production environment you should.

Once complete, we’re ready to confirm everything is working. The local server should

be already running at this point but if not, type python manage.py runserver to ensure

that it is.

Go back to the SendGrid “Integrate using our Web API or SMTP Relay” page and

select the checkbox next to “I’ve updated my settings.” Then click on “Next: Verify

Integration.”

https://docs.djangoproject.com/en/3.0/ref/settings/#default-from-email
https://docs.djangoproject.com/en/3.0/ref/settings/#default-from-email

Chapter 12: Email 236

SendGrid updated settings

Navigate to the password reset form in your web browser at:

http://127.0.0.1:8000/users/password_reset/

Type in the email address for your superuser account. Do not use the email for your

SendGrid account, which should be different. Fill in the form and submit.

http://127.0.0.1:8000/users/password_reset/

Chapter 12: Email 237

SMTPDataError

Ack, what’s this? If you created a free SendGrid account after April 6, 2020, then single

sender verification is required. Essentially, this is an additional step to help SendGrid

comply with anti-spam laws. To fix it, we’ll need to follow SendGrid’s instructions to

verify an email account. And while previously it was possible to send emails from a

free address at services like gmail.com or yahoo.com, that is no longer the case due to

the DMARC email authentication protocol. So to send actual emails now youmust use

a custom, non-free email account which you can verify ownership of.

After completing this additional step, stop the local web server with Control+c

and start it up again with our handy runserver command. Then navigate back to

http://127.0.0.1:8000/users/password_reset/ and fill out the form again.

Now check your email inbox. You should see a new email there from your DEFAULT_-

FROM_EMAIL email address which was just verified. The text will be exactly the same as

that outputted to our command line console previously.

The final step is to return to SendGrid and click on the blue button to “Verify

Integration.”

https://sendgrid.com/docs/ui/sending-email/sender-verification/
https://sendgrid.com/docs/ui/sending-email/sender-verification/
https://sendgrid.com/docs/ui/sending-email/sender-verification/
https://sendgrid.com/docs/ui/sending-email/dmarc/
http://127.0.0.1:8000/users/password_reset/

Chapter 12: Email 238

SendGrid verify integration

The button will turn grey and display “Checking…” for a moment until displaying “It

worked!”

Chapter 12: Email 239

SendGrid it worked

Phew. We’re done! That was a lot of steps but our real-world email integration is now

working.

Custom Emails

The current email text isn’t very personal, is it? Let’s change things. At this point I

could just show you what steps to take, but I think it’s helpful if I can explain how

I figured out how to do this. After all, you want to be able to customize all parts of

Django as needed.

Chapter 12: Email 240

In this case, I knew what text Django was using by default but it wasn’t clear where

in the Django source code it was written. And since all of Django’s source code is

available on Github we can can just search it.

Github Django

Use the Github search bar and enter a few words from the email text. If you type in

“You’re receiving this email because” you’ll end up at this Github search page.

https://github.com/django/django

Chapter 12: Email 241

Github search

The first result is the one we want. It shows the code is located at django/contrib/\

admin/templates/registration/password_reset_email.html. Thatmeans in the contrib

app the file we want is called password_reset_email.html.

Here is that default text from the Django source code.

Chapter 12: Email 242

Code

{% load i18n %}{% autoescape off %}

{% blocktrans %}You're receiving this email because you requested a password reset f\

or your user account at {{ site_name }}.{% endblocktrans %}

{% trans "Please go to the following page and choose a new password:" %}

{% block reset_link %}

{{ protocol }}://{{ domain }}{% url 'password_reset_confirm' uidb64=uid token=token \

%}

{% endblock %}

{% trans 'Your username, in case you’ve forgotten:' %} {{ user.get_username }}

{% trans "Thanks for using our site!" %}

{% blocktrans %}The {{ site_name }} team{% endblocktrans %}

{% endautoescape %}

To make changes first create a password_reset_email.html file in our registration

directory. Stop the server with Control+c and use touch for the new file.

Command Line

(news) $ touch templates/registration/password_reset_email.html

Then copy and paste the code from the Django repo into it. If you want to customize

the text, you can.

This code might look a little scary so let’s break it down line-by-line. Up top we

load the template tag i18n which means this text is eligible to be translated into

https://docs.djangoproject.com/en/3.0/ref/templates/builtins/#i18n

Chapter 12: Email 243

multiple languages. Django has robust internationalization support though covering

it is beyond the scope of this book.

We’re greeting the user by name thanks to user.get_username. Then we use the

reset_link block to include the custom URL link. You can read more about Django’s

password management approach in the official docs.

Let’s also update the email’s subject title. To do this we’ll create another new file called

password_reset_subject.txt.

Command Line

(news) $ touch templates/registration/password_reset_subject.txt

Then add the following line of code to the password_reset_subject.txt file.

Please reset your password

Andwe’re all set. Go ahead and try out our new flow again by entering a new password

at http://127.0.0.1:8000/users/password_reset/. Then check your email and it will

have the desired content and updated subject.

Conclusion

We’ve now finished implementing a complete user authentication flow. Users can sign

up for a new account, log in, log out, change their password, and reset their password.

It’s time to build out our actual Newspaper app.

https://docs.djangoproject.com/en/3.0/topics/i18n/
https://docs.djangoproject.com/en/3.0/topics/auth/passwords/
http://127.0.0.1:8000/users/password_reset/

Chapter 13: Newspaper App
It’s time to build out our Newspaper app. We’ll have an articles page where journalists

can post articles, set up permissions so only the author of an article can edit or delete

it, and finally add the ability for other users to write comments on each article which

will introduce the concept of foreign keys.

Articles App

To start create an articles app and define our databasemodels. There are no hard and

fast rules aroundwhat to name your apps except that you can’t use the nameof a built-

in app. If you look at the INSTALLED_APPS section of settings.py you can see which app

names are off-limits: admin, auth, contenttypes, sessions, messages, and staticfiles. A

general rule of thumb is to use the plural of an app name–posts, payments, users, etc.–

unless doing so is obviously wrong as in the common case of blog where the singular

makes more sense.

Start by creating our new articles app.

Command Line

(news) $ python manage.py startapp articles

Then add it to our INSTALLED_APPS and update the time zone since we’ll be timestamp-

ing our articles. You can find your time zone in this Wikipedia list. For example, I live

in Boston, MA which is in the Eastern time zone of the United States. Therefore my

entry is America/New_York.

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Chapter 13: Newspaper App 245

Code

newspaper_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

3rd Party

'crispy_forms',

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig',

'articles.apps.ArticlesConfig', # new

]

TIME_ZONE = 'America/New_York' # new

Next up we define our database model which contains four fields: title, body, date,

and author. Note that we’re letting Django automatically set the time and date based

on our TIME_ZONE setting. For the author field we want to reference our custom user

model 'users.CustomUser' which we set in the settings.py file as AUTH_USER_MODEL.

We can do this via get_user_model. And we also implement the best practices of

defining a get_absolute_url from the beginning and a __str__ method for viewing

the model in our admin interface.

https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 13: Newspaper App 246

Code

articles/models.py

from django.conf import settings

from django.contrib.auth import get_user_model

from django.db import models

from django.urls import reverse

class Article(models.Model):

title = models.CharField(max_length=255)

body = models.TextField()

date = models.DateTimeField(auto_now_add=True)

author = models.ForeignKey(

get_user_model(),

on_delete=models.CASCADE,

)

def __str__(self):

return self.title

def get_absolute_url(self):

return reverse('article_detail', args=[str(self.id)])

Since we have a brand new app and model, it’s time to make a new migration file and

then apply it to the database.

Chapter 13: Newspaper App 247

Command Line

(news) $ python manage.py makemigrations articles

(news) $ python manage.py migrate

At this point I like to jump into the admin to play around with the model before

building out the urls/views/templates needed to actually display the data on the

website. But first we need to update admin.py so our new app is displayed.

Code

articles/admin.py

from django.contrib import admin

from .models import Article

admin.site.register(Article)

Now we start the server.

Command Line

(news) $ python manage.py runserver

Navigate to http://127.0.0.1:8000/admin/ and log in.

http://127.0.0.1:8000/admin/

Chapter 13: Newspaper App 248

Admin page

If you click on “+ Add” next to “Articles” at the top of the page we can enter in

some sample data. You’ll likely have three users available at this point: your superuser,

testuser, and testuser2 accounts. Use your superuser account as the author of all

three articles.

Chapter 13: Newspaper App 249

Admin articles add page

I’ve added three new articles as you can see on the updated Articles page.

Chapter 13: Newspaper App 250

Admin three articles

If you click on an individual article you will see that the title, body, and author are

displayed but not the date. That’s because the datewas automatically added by Django

for us and therefore can’t be changed in the admin. We couldmake the date editable–

inmore complex apps it’s common to have both a created_at and updated_at field–but

to keep things simple we’ll just have the date be set upon creation by Django for us

for now. Even though date is not displayed here we will still be able to access it in our

templates so it can be displayed on web pages.

URLs and Views

The next step is to configure our URLs and views. Let’s have our articles appear at

articles/. Add a URL pattern for articles in our newspaper_project/urls.py file.

Chapter 13: Newspaper App 251

Code

newspaper_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path('admin/', admin.site.urls),

path('users/', include('users.urls')),

path('users/', include('django.contrib.auth.urls')),

path('articles/', include('articles.urls')), # new

path('', include('pages.urls')),

]

Next we create an articles/urls.py file.

Command Line

(news) $ touch articles/urls.py

Then populate it with our routes. Let’s start with the page to list all articles at

articles/ which will use the view ArticleListView.

Chapter 13: Newspaper App 252

Code

articles/urls.py

from django.urls import path

from .views import ArticleListView

urlpatterns = [

path('', ArticleListView.as_view(), name='article_list'),

]

Now create our view using the built-in generic ListView from Django.

Code

articles/views.py

from django.views.generic import ListView

from .models import Article

class ArticleListView(ListView):

model = Article

template_name = 'article_list.html'

The only two fields we need to specify are the model Article and our template name

which will be article_list.html.

The last step is to create our template. We canmake an empty file from the command

line.

Chapter 13: Newspaper App 253

Command Line

(news) $ touch templates/article_list.html

Bootstrap has a built-in component called Cards that we can customize for our

individual articles. Recall that ListView returns an object called object_list which

we can iterate over using a for loop.

Within each article we display the title, body, author, and date. We can even provide

links to “edit” and “delete” functionality that we haven’t built yet.

Code

<!-- templates/article_list.html -->

{% extends 'base.html' %}

{% block title %}Articles{% endblock title %}

{% block content %}

{% for article in object_list %}

<div class="card">

<div class="card-header">

{{ article.title }} ·

by {{ article.author }} |

{{ article.date }}

</div>

<div class="card-body">

{{ article.body }}

</div>

<div class="card-footer text-center text-muted">

Edit | Delete

</div>

https://getbootstrap.com/docs/4.1/components/card/

Chapter 13: Newspaper App 254

</div>

{% endfor %}

{% endblock content %}

Spin up the server again with python manage.py runserver and check out our page at

http://127.0.0.1:8000/articles/.

Articles page

Not bad eh? If we wanted to get fancy we could create a custom template filter so

that the date outputted is shown in seconds, minutes, or days. This can be done with

some if/else logic and Django’s date options but we won’t implement it here.

http://127.0.0.1:8000/articles/
https://docs.djangoproject.com/en/3.0/howto/custom-template-tags/
https://docs.djangoproject.com/en/3.0/ref/templates/builtins/#date

Chapter 13: Newspaper App 255

Edit/Delete

How dowe add edit and delete options?We need new urls, views, and templates. Let’s

start with the urls. We can take advantage of the fact that Django automatically adds

a primary key to each database. Therefore our first article with a primary key of 1will

be at articles/1/edit/ and the delete route will be at articles/1/delete/.

Code

articles/urls.py

from django.urls import path

from .views import (

ArticleListView,

ArticleUpdateView,

ArticleDetailView,

ArticleDeleteView, # new

)

urlpatterns = [

path('<int:pk>/edit/',

ArticleUpdateView.as_view(), name='article_edit'), # new

path('<int:pk>/',

ArticleDetailView.as_view(), name='article_detail'), # new

path('<int:pk>/delete/',

ArticleDeleteView.as_view(), name='article_delete'), # new

path('', ArticleListView.as_view(), name='article_list'),

]

Now write up our views which will use Django’s generic class-based views for

Chapter 13: Newspaper App 256

DetailView, UpdateView and DeleteView. We specify which fields can be updated–title

and body–and where to redirect the user after deleting an article: article_list.

Code

articles/views.py

from django.views.generic import ListView, DetailView # new

from django.views.generic.edit import UpdateView, DeleteView # new

from django.urls import reverse_lazy # new

from .models import Article

class ArticleListView(ListView):

model = Article

template_name = 'article_list.html'

class ArticleDetailView(DetailView): # new

model = Article

template_name = 'article_detail.html'

class ArticleUpdateView(UpdateView): # new

model = Article

fields = ('title', 'body',)

template_name = 'article_edit.html'

class ArticleDeleteView(DeleteView): # new

Chapter 13: Newspaper App 257

model = Article

template_name = 'article_delete.html'

success_url = reverse_lazy('article_list')

Finally we need to add our new templates. Stop the server with Control+c and type

the following.

Command Line

(news) $ touch templates/article_detail.html

(news) $ touch templates/article_edit.html

(news) $ touch templates/article_delete.html

We’ll start with the details page which will display the title, date, body, and author

with links to edit and delete. It will also link back to all articles. Recall that the Django

templating language’s url tag wants the URL name and then any arguments passed

in. The name of our edit route is article_edit and we need to pass in its primary

key article.pk. The delete route name is article_delete and it also needs a primary

key article.pk. Our articles page is a ListView so it does not need any additional

arguments passed in.

Code

<!-- templates/article_detail.html -->

{% extends 'base.html' %}

{% block content %}

<div class="article-entry">

<h2>{{ object.title }}</h2>

<p>by {{ object.author }} | {{ object.date }}</p>

<p>{{ object.body }}</p>

</div>

Chapter 13: Newspaper App 258

<p>Edit |

Delete</p>

<p>Back to All Articles.</p>

{% endblock content %}

For the edit and delete pages we can use Bootstrap’s button styling to make the edit

button light blue and the delete button red.

Code

<!-- templates/article_edit.html -->

{% extends 'base.html' %}

{% block content %}

<h1>Edit</h1>

<form action="" method="post">{% csrf_token %}

{{ form.as_p }}

<button class="btn btn-info ml-2" type="submit">Update</button>

</form>

{% endblock content %}

https://getbootstrap.com/docs/4.1/components/buttons/

Chapter 13: Newspaper App 259

Code

<!-- templates/article_delete.html -->

{% extends 'base.html' %}

{% block content %}

<h1>Delete</h1>

<form action="" method="post">{% csrf_token %}

<p>Are you sure you want to delete "{{ article.title }}"?</p>

<button class="btn btn-danger ml-2" type="submit">Confirm</button>

</form>

{% endblock content %}

As a final step we can add the edit and delete links to our lists page at the div class for

card-footer. These will be the same as those added to the detail page.

Code

<!-- templates/article_list.html -->

...

<div class="card-footer text-center text-muted">

Edit |

Delete

</div>

...

Ok, we’re ready to view our work. Start up the server with python manage.py runserver

and navigate to articles page at http://127.0.0.1:8000/articles/. Click on the link for

“edit” on the first article and you’ll be redirected to:

http://127.0.0.1:8000/articles/1/edit/

http://127.0.0.1:8000/articles/
http://127.0.0.1:8000/articles/1/edit/

Chapter 13: Newspaper App 260

Edit page

If you update the “title” field and click update you’ll be redirected to the detail page

which shows the new change.

Detail page

If you click on the “Delete” link you’ll be redirected to the delete page.

Chapter 13: Newspaper App 261

Delete page

Press the scary red button for “Delete” and you’ll be redirected to the articles page

which now only has two entries.

Articles page two entries

Chapter 13: Newspaper App 262

Create Page

The final step is a create page for new articles which we can do with Django’s

CreateView. Our three steps are to create a view, url, and template. This flow should

feel pretty familiar by now.

In our views file add CreateView to the imports at the top and make a new class at

the bottom of the file ArticleCreateView that specifies our model, template, and the

fields available.

Code

articles/views.py

...

from django.views.generic.edit import UpdateView, DeleteView, CreateView # new

...

class ArticleCreateView(CreateView):

model = Article

template_name = 'article_new.html'

fields = ('title', 'body', 'author',)

Note that our fields has author since we want to associate a new article with an

author, however once an article has been created we do not want a user to be able

to change the author which is why ArticleUpdateView only has the fields ['title',

'body',].

Update our urls file with the new route for the view.

Chapter 13: Newspaper App 263

Code

articles/urls.py

from django.urls import path

from .views import (

ArticleListView,

ArticleUpdateView,

ArticleDetailView,

ArticleDeleteView,

ArticleCreateView, # new

)

urlpatterns = [

path('<int:pk>/edit/',

ArticleUpdateView.as_view(), name='article_edit'),

path('<int:pk>/',

ArticleDetailView.as_view(), name='article_detail'),

path('<int:pk>/delete/',

ArticleDeleteView.as_view(), name='article_delete'),

path('new/', ArticleCreateView.as_view(), name='article_new'), # new

path('', ArticleListView.as_view(), name='article_list'),

]

Then quit the server Control+c to create a new template named article_new.html.

Chapter 13: Newspaper App 264

Command Line

(news) $ touch templates/article_new.html

And update it with the following HTML code.

Code

<!-- templates/article_new.html -->

{% extends 'base.html' %}

{% block content %}

<h1>New article</h1>

<form action="" method="post">{% csrf_token %}

{{ form.as_p }}

<button class="btn btn-success ml-2" type="submit">Save</button>

</form>

{% endblock content %}

Finally we should add a link to creating new articles in our navbar so it is accessible

everywhere on the site to logged-in users.

Chapter 13: Newspaper App 265

Code

<!-- templates/base.html -->

...

<body>

<nav class="navbar navbar-expand-md navbar-dark bg-dark mb-4">

Newspaper

{% if user.is_authenticated %}

<ul class="navbar-nav mr-auto">

<li class="nav-item">+ New

{% endif %}

<button class="navbar-toggler" type="button" ...

If you need help to make sure your HTML file is accurate now, please refer to the

official source code.

Refresh the articles page and the change is evident in the top navbar:

https://github.com/wsvincent/djangoforbeginners/blob/master/ch13-newspaper-app/templates/base.html

Chapter 13: Newspaper App 266

Navbar new link

Why not use Bootstrap to improve our original homepage now, too? We can update

templates/home.html as follows.

Code

<!-- templates/home.html -->

{% extends 'base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}

<div class="jumbotron">

<h1 class="display-4">Newspaper app</h1>

<p class="lead">A Newspaper website built with Django.</p>

<p class="lead">

<a class="btn btn-primary btn-lg" href="{% url 'article_list' %}"

role="button">View All Articles

Chapter 13: Newspaper App 267

</p>

</div>

{% endblock content %}

We’re all done. Let’s just confirm everything works as expected. Start up the server

again python manage.py runserver and navigate to our homepage at:

http://127.0.0.1:8000/.

Homepage with new link in nav

Click on the link for “+ New” in the top navbar and you’ll be redirected to our create

page.

http://127.0.0.1:8000/

Chapter 13: Newspaper App 268

Create page

Go ahead and create a new article. Then click on the “Save” button. You will be

redirected to the detail page. Why? Because in our models.py file we set the get_-

absolute_url method to article_detail. This is a good approach because if we later

change the url pattern for the detail page to, say, articles/details/4/, the redirect

will still work. Whatever route is associated with article_detailwill be used; there is

no hardcoding of the route itself.

Chapter 13: Newspaper App 269

Detail page

Note also that the primary key here is 4 in the URL. Even though we’re only displaying

three articles right now, Django doesn’t reorder the primary keys just because we

deleted one. In practice, most real-world sites don’t actually delete anything; instead

they “hide” deleted fields since this makes it easier to maintain the integrity of a

database and gives the option to “undelete” later on if needed. With our current

approach once something is deleted it’s gone for good!

Click on the link for “All Articles” to see our new /articles page.

Chapter 13: Newspaper App 270

Updated articles page

There’s our new article on the bottom as expected.

Conclusion

We have created a dedicated articles app with CRUD functionality. But there are no

permissions or authorizations yet, whichmeans anyone cando anything! A logged-out

user can visit all URLs and any logged-in user can make edits or deletes to an existing

article, even one that’s not their own! In the next chapter we will add permissions and

authorizations to our project to fix this.

Chapter 14: Permissions and

Authorization
There are several issues with our current Newspaper website. For one thing we want

our newspaper to be financially sustainable. With more time we could add a payments

app to charge for access, but for now we will require a user to log in to view any

articles. This is known as authorization. It’s common to set different rules aroundwho

is authorized to view areas of your site. Note that this is different than authentication

which is the process of registering and logging-in users. Authorization restricts

access; authentication enables a user sign up and log in flow.

As a mature web framework, Django has built-in functionality for authorization that

we can quickly use. In this chapter we’ll limit access to various pages only to logged-in

users.

Improved CreateView

At present the author on a new article can be set to any user. Instead it should

be automatically set to the current user. The default CreateView provides a lot of

functionality for us but in order to set the current user to authorweneed to customize

it. We will remove author from the fields and instead set it automatically via the

form_valid method.

Chapter 14: Permissions and Authorization 272

Code

articles/views.py

...

class ArticleCreateView(CreateView):

model = Article

template_name = 'article_new.html'

fields = ('title', 'body') # new

def form_valid(self, form): # new

form.instance.author = self.request.user

return super().form_valid(form)

...

How did I know I could update CreateView like this? The answer is I looked at the

source code and usedGoogle. Generic class-based views are amazing for starting new

projects but when youwant to customize them, it is necessary roll up your sleeves and

start to understand what’s going on under the hood. Themore you use and customize

built-in views, themore comfortable youwill becomemaking customizations like this.

Chances are whatever you are trying to do has already been solved somewhere, either

within Django itself or on a forum like Stack Overflow. Don’t be afraid to ask for help!

Now reload the browser and try clicking on the “+ New” link in the top nav. It will

redirect to the updated create page where author is no longer a field.

https://stackoverflow.com/

Chapter 14: Permissions and Authorization 273

New article link

If you create a new article and then go into the admin you will see it is automatically

set to the current logged-in user.

Authorizations

There are multiple issues around the lack of authorizations in our current project.

Obviously we would like to restrict access to only users so we have the option of one

day charging readers to our newspaper. But beyond that, any random logged-out user

who knows the correct URL can access any part of the site.

Consider what would happen if a logged-out user tried to create a new article? To try

it out, click on your username in the upper right corner of the nav bar, then select

“Log out” from the dropdown options. The “+ New” link disappears from the nav bar

but what happens if you go to it directly: http://127.0.0.1:8000/articles/new/?

http://127.0.0.1:8000/articles/new/

Chapter 14: Permissions and Authorization 274

The page is still there.

Logged out new

Now try to create a new article with a title and body. Click on the “Save” button.

Chapter 14: Permissions and Authorization 275

Create page error

An error! This is because our model expects an author field which is linked to the

current logged-in user. But sincewe are not logged in, there’s no author, and therefore

the submission fails. What to do?

Mixins

We clearly want to set some authorizations so only logged-in users can access the

site. To do this we can use amixin, which is a special kind of multiple inheritance that

Django uses to avoid duplicate code and still allows customization. For example, the

built-in generic ListView needs away to return a template. But so does DetailView and

in fact almost every other view. Rather than repeat the same code in each big generic

view, Django breaks out this functionality into a “mixin” known as TemplateRespon-

seMixin. Both ListView and DetailView use this mixin to render the proper template.

If you read the Django source code, which is freely available on Github, you’ll see

https://docs.djangoproject.com/en/3.0/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/3.0/ref/class-based-views/generic-display/#detailview
https://docs.djangoproject.com/en/3.0/ref/class-based-views/mixins-simple/#templateresponsemixin
https://docs.djangoproject.com/en/3.0/ref/class-based-views/mixins-simple/#templateresponsemixin
https://github.com/django/django

Chapter 14: Permissions and Authorization 276

mixins used all over the place.

To restrict view access to only logged in users, Django has a LoginRequiredmixin that

we can use. It’s powerful and extremely concise.

In the articles/views.py file import it at the top and then add LoginRequiredMixin to

our ArticleCreateView. Make sure that the mixin is to the left of CreateView so it will

be read first. We want the CreateView to already know we intend to restrict access.

And that’s it! We’re done.

Code

articles/views.py

from django.contrib.auth.mixins import LoginRequiredMixin # new

from django.views.generic import ListView, DetailView

from django.views.generic.edit import UpdateView, DeleteView, CreateView

from django.urls import reverse_lazy

from .models import Article

...

class ArticleCreateView(LoginRequiredMixin, CreateView): # new

...

Now return to the homepage briefly at http://127.0.0.1:8000/ so we avoid resubmit-

ting the form. Then go to our new message URL directly again at:

http://127.0.0.1:8000/articles/new/

You’ll see the following “Page not found” error:

https://docs.djangoproject.com/en/3.0/topics/auth/default/#the-loginrequired-mixin
http://127.0.0.1:8000/
http://127.0.0.1:8000/articles/new/

Chapter 14: Permissions and Authorization 277

Error page

What’s happening? Django has automatically redirected us to the default location for

the login page which is at /accounts/login however if you recall, in our newspaper_-

project/urls.py we are using users/ as our route. That’s why our log in page is at

users/login. So how do we tell our ArticleCreateView about this?

The documentation for the LoginRequired mixin tells us the answer. We can add a

login_url to override the default parameter. We’re using the named URL of our login

route here, login.

Code

articles/views.py

...

class ArticleCreateView(LoginRequiredMixin, CreateView):

model = Article

template_name = 'article_new.html'

fields = ('title', 'body',)

login_url = 'login' # new

def form_valid(self, form):

form.instance.author = self.request.user

return super().form_valid(form)

https://docs.djangoproject.com/en/3.0/topics/auth/default/#the-loginrequired-mixin

Chapter 14: Permissions and Authorization 278

Try the link for creating new messages again: http://127.0.0.1:8000/articles/new/.

It now redirects users to the log in page. Just as we desired!

LoginRequiredMixin

Nowwe see that restricting view access is just a matter of adding LoginRequiredMixin

at the beginning of all existing views and specifying the correct login_url. Let’s update

the rest of our articles views since we don’t want a user to be able to create, read,

update, or delete a message if they aren’t logged in.

The complete views.py file should now look like this:

Code

articles/views.py

from django.contrib.auth.mixins import LoginRequiredMixin

from django.views.generic import ListView, DetailView

from django.views.generic.edit import CreateView, UpdateView, DeleteView

from django.urls import reverse_lazy

from .models import Article

class ArticleListView(LoginRequiredMixin, ListView): # new

model = Article

template_name = 'article_list.html'

login_url = 'login' # new

http://127.0.0.1:8000/articles/new/

Chapter 14: Permissions and Authorization 279

class ArticleDetailView(LoginRequiredMixin, DetailView): # new

model = Article

template_name = 'article_detail.html'

login_url = 'login' # new

class ArticleUpdateView(LoginRequiredMixin, UpdateView): # new

model = Article

fields = ('title', 'body',)

template_name = 'article_edit.html'

login_url = 'login' # new

class ArticleDeleteView(LoginRequiredMixin, DeleteView): # new

model = Article

template_name = 'article_delete.html'

success_url = reverse_lazy('article_list')

login_url = 'login' # new

class ArticleCreateView(LoginRequiredMixin, CreateView):

model = Article

template_name = 'article_new.html'

fields = ('title', 'body',)

login_url = 'login'

def form_valid(self, form):

form.instance.author = self.request.user

Chapter 14: Permissions and Authorization 280

return super().form_valid(form)

Go ahead and play around with the site to confirm that the log in redirects now work

as expected. If you need help recalling what the proper URLs are, log in first and write

down the URLs for each of the routes for create, edit, delete, and all articles.

UpdateView and DeleteView

We’re making progress but there’s still the issue of our edit and delete views. Any

logged in user canmake changes to any article. What we want is to restrict this access

so that only the author of an article has this permission.

We could add permissions logic to each view for this but a more elegant solution is to

create a dedicated mixin, a class with a particular feature that we want to reuse in our

Django code. And better yet, Django ships with a built-in mixin, UserPassesTestMixin,

just for this purpose!

To use UserPassesTestMixin we first import it at the top of the articles/views.py file

and then add it to both views where we want this restriction: ArticleUpdateView and

ArticleDeleteView.

The test_func method is used by UserPassesTestMixin for our logic. We need to

override it. In this case we set the variable obj to the current object returned by the

view using get_object(). Then we say, if the author on the current object matches the

current user on the webpage (whoever is logged in and trying to make the change),

then allow it. If false, an error will automatically be thrown.

The code looks like this:

https://docs.djangoproject.com/en/3.0/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin

Chapter 14: Permissions and Authorization 281

Code

articles/views.py

from django.contrib.auth.mixins import (

LoginRequiredMixin,

UserPassesTestMixin # new

)

from django.views.generic import ListView, DetailView

from django.views.generic.edit import UpdateView, DeleteView, CreateView

from django.urls import reverse_lazy

from .models import Article

...

class ArticleUpdateView(LoginRequiredMixin, UserPassesTestMixin, UpdateView): # new

model = Article

fields = ('title', 'body',)

template_name = 'article_edit.html'

login_url = 'login'

def test_func(self): # new

obj = self.get_object()

return obj.author == self.request.user

class ArticleDeleteView(LoginRequiredMixin, UserPassesTestMixin, DeleteView): # new

model = Article

template_name = 'article_delete.html'

success_url = reverse_lazy('article_list')

Chapter 14: Permissions and Authorization 282

login_url = 'login'

def test_func(self): # new

obj = self.get_object()

return obj.author == self.request.user

Now log out of your superuser account and log in with testuser. If the code works,

then you should not be able to edit or delete any posts written by your superuser,

which is all of them right now. Instead you will see a Permission Denied 403 error

page.

403 error page

Conclusion

OurNewspaper app is almost done. There are further stepswe could take at this point,

such as only displaying edit and delete links to the appropriate users, which would

involve custom template tags but overall the app is in good shape.We have our articles

properly configured, set permissions and authorizations, and user authentication is in

order. The last item needed is the ability for fellow logged-in users to leave comments

which we’ll cover in the next chapter.

https://docs.djangoproject.com/en/3.0/howto/custom-template-tags/

Chapter 15: Comments
There are two ways we could add comments to our Newspaper site. The first is to

create a dedicated comments app and link it to articles, however that seems like

over-engineering at this point. Instead we can simply add an additional model called

Comment to our articles app and link it to the Articlemodel through a foreign key. We

will take the simpler approach since it’s always easy to add more complexity later. By

the end of this chapter users will have the ability to leave comments on any other

users articles.

Model

To start we can add another table to our existing database called Comment. This model

will have amany-to-one foreign key relationship to Article: one article can havemany

comments, but not the other way around. Traditionally the name of the foreign key

field is simply the model it links to, so this field will be called article. The other two

fields will be comment and author.

Open up the file articles/models.py and underneath the existing code add the

following.

Chapter 15: Comments 284

Code

articles/models.py

...

class Comment(models.Model): # new

article = models.ForeignKey(Article, on_delete=models.CASCADE)

comment = models.CharField(max_length=140)

author = models.ForeignKey(

get_user_model(),

on_delete=models.CASCADE,

)

def __str__(self):

return self.comment

def get_absolute_url(self):

return reverse('article_list')

Our Comment model also has a __str__ method and a get_absolute_url method that

returns to the main articles/ page.

Since we’ve updated our models it’s time to make a new migration file and then apply

it. Note that by adding articles at the end of the makemigrations command–which is

optional–we are specifying we want to use just the articles app here. This is a good

habit to use. For example, what if we made changes to models in two different apps?

If we did not specify an app, then both apps’ changes would be incorporated in the

same migrations file which makes it harder, in the future, to debug errors. Keep each

migration as small and contained as possible.

Chapter 15: Comments 285

Command Line

(news) $ python manage.py makemigrations articles

(news) $ python manage.py migrate

Admin

After making a new model it’s good to play around with it in the admin app before

displaying it on our actual website. Add Comment to our admin.py file so it will be visible.

Code

articles/admin.py

from django.contrib import admin

from .models import Article, Comment # new

admin.site.register(Article)

admin.site.register(Comment) # new

Then start up the server with python manage.py runserver and navigate to our main

page http://127.0.0.1:8000/admin/

http://127.0.0.1:8000/admin/

Chapter 15: Comments 286

Admin page with Comments

Under our app “Articles” you’ll see our two tables: Comments and Articles. Click on

the “+ Add” next to Comments. You’ll see that under Article is a dropdown of existing

articles, same thing for Author, and there is a text field next to Comment.

Admin Comments

Chapter 15: Comments 287

Select an Article, write a comment, and then select an author that is not your

superuser, perhaps testuser as I’ve done in the picture. Then click on the “Save”

button.

Admin testuser comment

You should next see your comment on the “Comments” page.

Chapter 15: Comments 288

Admin Comment One

At this point we could add an additional admin field so we’d see the comment and the

article on this page. But wouldn’t it be better to just see all Commentmodels related to

a single Post model? It turns out we can with a Django admin feature called inlines

which displays foreign key relationships in a nice, visual way.

There are two main inline views used: TabularInline and StackedInline. The only dif-

ference between the two is the template for displaying information. In a TabularInline

all model fields appear on one line while in a StackedInline each field has its own line.

We’ll implement both so you can decide which one you prefer.

Update articles/admin.py as follows in your text editor.

https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#django.contrib.admin.TabularInline
https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#django.contrib.admin.StackedInline

Chapter 15: Comments 289

Code

articles/admin.py

from django.contrib import admin

from .models import Article, Comment

class CommentInline(admin.StackedInline): # new

model = Comment

class ArticleAdmin(admin.ModelAdmin): # new

inlines = [

CommentInline,

]

admin.site.register(Article, ArticleAdmin) # new

admin.site.register(Comment)

Now go back to the main admin page at http://127.0.0.1:8000/admin/ and click on

“Articles.” Select the article which you just added a comment for which was “4th

article” in my case.

http://127.0.0.1:8000/admin/

Chapter 15: Comments 290

Admin change page

Better, right? We can see and modify all our related articles and comments in one

place. Note that by default, the Django admin will display 3 empty rows here. You can

change the default number that appear with the extra field. So if you wanted no fields

by default, the code would look like this:

Chapter 15: Comments 291

Code

articles/admin.py

...

class CommentInline(admin.StackedInline):

model = Comment

extra = 0 # new

Personally though I prefer using TabularInline as it shows more information in less

space. To switch to itwe only need to change our CommentInline from admin.StackedInline

to admin.TabularInline.

Code

articles/admin.py

from django.contrib import admin

from .models import Article, Comment

class CommentInline(admin.TabularInline): # new

model = Comment

class ArticleAdmin(admin.ModelAdmin):

inlines = [

CommentInline,

]

admin.site.register(Article, ArticleAdmin)

admin.site.register(Comment)

Chapter 15: Comments 292

Refresh the admin page and you’ll see the new change: all fields for each model are

displayed on the same line.

TabularInline page

Much better. Now we need to update our template to display comments.

Template

Since Comment lives within our existing articles app we only need to update the

existing templates for article_list.html and article_detail.html to display our new

Chapter 15: Comments 293

content. We don’t have to create new templates and mess around with URLs and

views.

What we want to do is display all comments related to a specific article. This is

called a “query” as we’re asking the database for a specific bit of information. In our

case, working with a foreign key, we want to follow a relationship backward: for each

Article look up related Comment models.

Django has a built-in syntax for following relationships “backward” known as FOO_set

where FOO is the lowercased source model name. So for our Articlemodel we can use

article_set to access all instances of the model.

But personally I strongly dislike this syntax as I find it confusing and non-intuitive. A

better approach is to add a related_name attribute to ourmodel which lets us explicitly

set the name of this reverse relationship instead. Let’s do that.

To start add a related_name attribute to our Commentmodel. A good default is to name

it the plural of the model holding the ForeignKey.

Code

articles/models.py

...

class Comment(models.Model):

article = models.ForeignKey(

Article,

on_delete=models.CASCADE,

related_name='comments', # new

)

comment = models.CharField(max_length=140)

author = models.ForeignKey(

get_user_model(),

on_delete=models.CASCADE,

https://docs.djangoproject.com/en/3.0/topics/db/queries/#following-relationships-backward
https://docs.djangoproject.com/en/3.0/topics/db/queries/#following-relationships-backward

Chapter 15: Comments 294

)

def __str__(self):

return self.comment

def get_absolute_url(self):

return reverse('article_list')

Since we just made a change to our database model we need to create a migrations

file and update the database. Stop the local server with Control+c and execute the

following two commands. Then spin up the server again as we will be using it shortly.

Command Line

(news) $ python manage.py makemigrations articles

(news) $ python manage.py migrate

(news) $ python manage.py runserver

Understanding queries takes some time so don’t be concerned if the idea of reverse

relationships is confusing. I’ll show you how to implement the code as desired. And

once you’ve mastered these basic cases you can explore how to filter your querysets

in great detail so they return exactly the information you want.

In our article_list.html file we can add our comments to the card-footer. Note

that I’ve moved our edit and delete links up into card-body. To access each comment

we’re calling article.comments.all which means first look at the article model,

then comments which is the related name of the entire Comment model, and select all

included. It can take a little while to become accustomed to this syntax for referencing

foreign key data in a template!

Chapter 15: Comments 295

Code

<!-- template/article_list.html -->

{% extends 'base.html' %}

{% block title %}Articles{% endblock title %}

{% block content %}

{% for article in object_list %}

<div class="card">

<div class="card-header">

{{ article.title }} ·

by {{ article.author }} |

{{ article.date }}

</div>

<div class="card-body">

<p>{{ article.body }}</p>

<!-- Changes start here! -->

Edit |

Delete

</div>

<div class="card-footer">

{% for comment in article.comments.all %}

<p>

{{ comment.author }} ·

{{ comment }}

</p>

{% endfor %}

</div>

</div>

Chapter 15: Comments 296

{% endfor %}

{% endblock content %}

If you refresh the articles page at http://127.0.0.1:8000/articles/ we can see our new

comment displayed on the page.

Articles page with comments

Yoohoo! It works. We can see comments listed underneath the initial message.

http://127.0.0.1:8000/articles/

Chapter 15: Comments 297

Conclusion

With more time we would focus on forms now so a user could write a new article

directly on the articles/ page as well as add comments too. But the main focus of

this chapter is to demonstrate how foreign key relationships work in Django.

Our Newspaper app is now complete. It has a robust user authentication flow

including the use of email for password resets. We are also using a custom user model

so if we want to add additional fields to our CustomUsermodel it is as simple as adding

an additional field. We already have an age field for all users that is currently being set

to 0 by default. If we wanted to, we could add an age dropdown to the sign up form

and restrict user access only to users over age 13. Or we could offer discounts to users

over age 65. Whatever we want to do to our CustomUser model is an option.

Most of web development follows the same patterns and by using a web framework

like Django 99% of what we want in terms of functionality is either already included

or only a small customization of an existing feature away.

Conclusion
Congratulations on finishing Django for Beginners! After starting from absolute zero

we’ve now built five different web applications from scratch and covered all the

major features of Django: templates, views, urls, users, models, security, testing, and

deployment. You now have the knowledge to go off and build your own modern

websites with Django.

As with any new skill, it’s important to practice and apply what you’ve just learned. The

CRUD (Create-Read-Update-Delete) functionality in our Blog and Newspaper sites is

common in many, many other web applications. For example, can you make a Todo

List web application? A Twitter or Facebook clone? You already have all the tools you

need. When you’re starting out I believe the best approach is to build as many small

projects as possible and incrementally add complexity and research new things.

Web development is a very deep field and there’s always something new to learn.

This is especially true for large websites that must handle thousands or millions of

visitors at a time. Django itself is more than capable of this: it is used by Instagram,

for example, one of the largest sites in the world with over a billion users. But the

If you’d like to learn more about all that Django has to offer and understand how to

build web applications that can servemillions of users, I suggest readingmy follow-up

book Django for Professionals. It tackles many of the challenges around building truly

production-ready websites such as using Docker, a production database locally like

PostgreSQL, handling payments, environment variables, advanced user registration,

security, performance, and much more.

https://djangoforprofessionals.com/

Conclusion 299

APIs

Creating a full-stack website is quite the challenge for a single developer. However,

if you talk to professional Django developers, whether they work at a small startup

or a large corporation, most of their time is spent solely on the back-end creating

Django-based web APIs. It is not polishing the front-end.

Thanks to the power of Django REST Framework, a third-party app that is tightly

coupled with Django itself, it is possible to transform any existing Django website into

an API with aminimal amount of code. This allowsDjango towork in combinationwith

any dedicated JavaScript front-end framework such as Vue, React, or Angular. And it

extends to mobile applications, on iOS or Android, which also connect via web API

calls.

If you’d like to learn more, I’ve also written a book on the topic: Django for APIs.

Learning Resources

As you becomemore comfortable with Django and web development in general, you’ll

find the official Django documentation and source code increasingly valuable. I refer

to both on an almost daily basis.

A good source of additional tutorials and courses is the website LearnDjango.com,

which I maintain alongside the awesome-django repo, a free curated list of awesome

things related to Django. There are also starter projects for both Django itself,

DjangoX, and Django REST Framework, DRFX, that speed up the development of new

projects.

If you’re interested in a weekly podcast on Django, I co-host Django Chat, which

features interviews with leading developers and topic deep-dives. And I co-write a

https://www.django-rest-framework.org/
https://vuejs.org/
https://reactjs.org/
https://angularjs.org/
https://djangoforapis.com/
https://www.djangoproject.com/
https://github.com/django/django
https://learndjango.com/
https://github.com/wsvincent/awesome-django
https://github.com/wsvincent/djangox
https://github.com/wsvincent/drfx
https://djangochat.com/

Conclusion 300

weekly newsletter, Django News, filled with news, articles, tutorials, and more all

about Django.

Python Books

Django is, ultimately, just Python so if your Python skills could use improvement there

are two books in particular I recommend. For beginners and those new to Python, it

doesn’t getmuch better than EricMatthes’s PythonCrash Course. For intermediate to

advanced developers, Fluent Python, Effective Python, and Python Tricks are worthy

of additional study.

Feedback

As a final note, I’d love to hear your thoughts about the book. It is a constant work-

in-progress and the detailed feedback from readers helps me continue to improve it.

I respond to every email and can be reached at will@wsvincent.com.

If you purchased this book on Amazon, please consider leaving an honest review.

These reviews make an enormous impact on book sales and help me continue to

produce both books and free Django content which I love doing.

Thank you for reading the book and good luck on your journey with Django!

https://django-news.com/
http://amzn.to/2okggMH
http://amzn.to/2ovfgsR
http://amzn.to/2nCqivT
http://amzn.to/2G4A5S8
mailto:will@wsvincent.com

	Table of Contents
	Introduction
	Why Django
	Why This Book
	Book Structure
	Book Layout
	Official Source Code
	Conclusion

	Chapter 1: Initial Set Up
	The Command Line
	Install Python 3
	Virtual Environments
	Install Django
	Install Git
	Text Editors
	Conclusion

	Chapter 2: Hello World App
	Initial Set Up
	Create An App
	URLs, Views, Models, Templates
	Hello, World!
	Git
	GitHub
	SSH Keys
	Conclusion

	Chapter 3: Pages App
	Initial Set Up
	Templates
	Class-Based Views
	URLs
	Add an About Page
	Extending Templates
	Tests
	Git and GitHub
	Local vs Production
	Heroku
	Additional Files
	Deployment
	Conclusion

	Chapter 4: Message Board App
	Initial Set Up
	Create a database model
	Activating models
	Django Admin
	Views/Templates/URLs
	Adding New Posts
	Tests
	GitHub
	Heroku Configuration
	Heroku Deployment
	SQLite vs PostgreSQL
	Conclusion

	Chapter 5: Blog App
	Initial Set Up
	Database Models
	Admin
	URLs
	Views
	Templates
	Static Files
	Individual Blog Pages
	Tests
	Git
	Conclusion

	Chapter 6: Forms
	Forms
	Update Form
	Delete View
	Tests
	Conclusion

	Chapter 7: User Accounts
	Log In
	Updated Homepage
	Log Out Link
	Sign Up
	GitHub
	Heroku Config
	Heroku Deployment
	Conclusion

	Chapter 8: Custom User Model
	Set Up
	Custom User Model
	Forms
	Superuser
	Conclusion

	Chapter 9: User Authentication
	Templates
	URLs
	Admin
	Conclusion

	Chapter 10: Bootstrap
	Pages App
	Tests
	Bootstrap
	Sign Up Form
	Conclusion

	Chapter 11: Password Change and Reset
	Password Change
	Customizing Password Change
	Password Reset
	Custom Templates
	Conclusion

	Chapter 12: Email
	SendGrid
	Custom Emails
	Conclusion

	Chapter 13: Newspaper App
	Articles App
	URLs and Views
	Edit/Delete
	Create Page
	Conclusion

	Chapter 14: Permissions and Authorization
	Improved CreateView
	Authorizations
	Mixins
	LoginRequiredMixin
	UpdateView and DeleteView
	Conclusion

	Chapter 15: Comments
	Model
	Admin
	Template
	Conclusion

	Conclusion
	APIs
	Learning Resources
	Python Books
	Feedback

