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Introduction

WebGL (Web-based Graphics Language) is a wonderful and exciting new technology that lets you create 
powerful 3D graphics within a web browser. The way that this is achieved is by using a JavaScript API that 
interacts with the Graphics Processing Unit (GPU). This book will quickly get you on your way to demystify 
shaders and render realistic scenes. To ensure enjoyable development, we will show how to use debugging tools 
and survey libraries which can maximize productivity.

Audience
Beginning WebGL for HTML5 is aimed at graphics enthusiasts with a basic knowledge of computer graphics 
techniques. A knowledge of OpenGL, especially a version that uses the programmable pipeline, such as OpenGL 
ES is beneficial, but not essential. We will go through all the relevant material. A JavaScript background will 
certainly help.

When writing a book of this nature, we unfortunately cannot cover all the prerequisite material. Baseline 
assumptions about the reader need to be made. The assumptions that I have made are that the reader has a 
basic knowledge of 2D and 3D computer graphics concepts such as pixels, colors, primitives, and transforms. 
Appendix B quickly refreshes these concepts. It is also assumed that the reader is familiar (though need not be an 
expert) with HTML, CSS, and JavaScript. Although much of the book makes use of plain “vanilla” JavaScript, we 
will use some jQuery. Appendix A discusses newer HTML5 concepts and a quick jQuery crash course that will be 
essential for properly understanding the text. Appendix D provides a complete reference for further reading on 
topics that are presented throughout the book.

What You Will Learn
This book presents theory when necessary and examples whenever possible. You will get a good overview of what 
you can do with WebGL. What you will learn includes the following:

Understanding the model view matrix and setting up a scene

Rendering and manipulating primitives

Understanding shaders and loving their power and flexibility

Exploring techniques to create realistic scenes

Using basic physics to simulate interaction

Using mathematics models to render particle systems, terrain, and fractals

Getting productive with existing models, shaders, and libraries
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Using the Three.js framework

Learning about GLGE and philoGL frameworks and a survey of other frameworks 
available

Debugging and performance tips

Understanding other shader uses, such as image processing and nonphotorealistic 
rendering

Using an alternate framebuffer to implement picking and shadowmaps

Learning about current browser and mobile support and the future of WebGL

Book Structure
It is recommended that you start by reading the first two chapters before moving on to other areas of the book. 
Even though the book does follow a fairly natural progression, you may choose to read the book in order or skip 
around as desired. For example, the debugging section of Chapter 9 is not strictly essential, but is very useful 
information to know as soon as possible.

Chapter 1: Setting the Scene
We go through all the steps to render an image with WebGL, including testing for browser support and setting 
up the WebGL environment, using vertex buffer objects (VBOs), and basic shaders. We start with creating a one 
color static 2D image, and by the end of the chapter have a moving 3D mesh with multiple colors.

Chapter 2: Shaders 101
Shaders are covered in depth. We show an overview of graphics pipelines (fixed and programmable), give a 
background of the GL Shading Language (GLSL), and explain the roles of vertex and fragment shaders. Next we 
go over the primitive types and language details of GLSL and how our WebGL application will interact with our 
shaders. Finally, we show several examples of GLSL usage.

Chapter 3: Textures and Lighting
We show how to apply texture and simple lighting. We explain texture objects and how to set up and configure 
them and combine texture lookups with a lighting model in our shader.

Chapter 4: Increasing Realism
A more realistic lighting model—Phong illumination—is explained and implemented. We discuss the difference 
between flat and smooth shading and vertex and fragment calculations. We show how to add fog and blend 
objects; and discuss shadows, global illumination, and reflection and refraction.

Chapter 5: Physics
This chapter shows how to model gravity, elasticity, and friction. We detect and react to collisions, model 
projectiles and explore both the conservation of momentum and potential and kinetic energy.
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Chapter 6: Fractals, Height Maps, and Particle Systems
In this chapter we show how to paint directly with the GPU, discuss fractals, and model the Mandlebrot and  
Julia sets. We also show how to produce a height map from a texture and generate terrain. We also explore 
particle systems.

Chapter 7: Three.js Framework
The Three.js WebGL framework is introduced. We provide a background and sample usage of the library, 
including how to fall back to the 2D rendering context if necessary, API calls to easily create cameras, objects, and 
lighting. We compare earlier book examples to the equivalent Three.js API calls and introduce tQuery, a library 
that combines Three.js and jQuery selectors.

Chapter 8: Productivity Tools
We discuss the benefits of using frameworks and the merit of learning core WebGL first. Several available 
frameworks are discussed and the GLGE and philoGL frameworks are given examples. We show how to load 
existing meshes and find other resources. We list available physics libraries and end the chapter with an example 
using the physi.js library.

Chapter 9: Debugging and Performance
An important chapter to help identify and fix erroneous code and improve performance by following known 
WebGL best practices.

Chapter 10: Effects, Tips, and Tricks
Image processing and nonphotorealistic shaders are discussed and implemented. We show how to use offscreen 
framebuffers that enable us to pick objects from the canvas and implement shadow maps.

Afterword: The Future of WebGL
In the afterword, we will speculate on the bright future of WebGL, the current adoption of it within the browser, 
and mobile devices and what features will be added next.

Appendix A: Essential HTML5 and JavaScript
We cover some of the changes between HTML 4 and 5, such as shorter tags, added semantic document structure, 
the <canvas> element, and basic JavaScript and jQuery usage.

Appendix B: Graphics Refresher
This appendix is a graphics refresher covering coordinate systems, elementary transformations and other 
essential topics.
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Appendix C: WebGL Specification Odds and Ends
Contains part of the WebGL specification, available at http://www.khronos.org/registry/webgl/specs/latest/, 
which were not covered in the book, but are nonetheless important.

Appendix D: Additional Resources
A list of references for further reading about topics presented in the book such as HTML5, WebGL, WebGLSL, 
JavaScript, jQuery, server stacks, frameworks, demos, and much more.

WebGL Origins
The origin of WebGL starts 20 years ago, when version 1.0 of OpenGL was released as a nonproprietary alternative 
to Silicon Graphics’ Iris GL. Up until 2004, OpenGL used a fixed functionality pipeline (which is explained in 
Chapter 2). Version 2.0 of OpenGL was released that year and introduced the GL Shading Language (GLSL) 
which lets you program the vertex and fragment shading portions of the pipeline. The current version of OpenGL 
is 4.2, however WebGL is based off of OpenGL Embedded Systems (ES) 2.0, which was released in 2007 and is a 
trimmer version of OpenGL 2.0.

Because OpenGL ES is built for use in embedded devices like mobile phones, which have lower processing 
power and fewer capabilities than a desktop computer, it is more restrictive and has a smaller API than OpenGL. 
For example, with OpenGL you can draw vertices using both a glBegin...glEnd section or VBOs. OpenGL ES 
only uses VBOs, which are the most performance-friendly option. Most things that can be done in OpenGL can 
be done in OpenGL ES.

In 2006, Vladimar Vukićević worked on a Canvas 3D prototype that used OpenGL for the web. In 2009, the 
Khronos group created the WebGL working group and developed a central specification that helps to ensure that 
implementations across browsers are close to one another. The 3D context was modified to WebGL, and version 
1.0 of the specification was completed in spring 2011. Development of the WebGL specification is under active 
development, and the latest revision can be found at http://www.khronos.org/registry/webgl/specs/latest/.

How Does WebGL work?
WebGL is a JavaScript API binding from the CPU to the GPU of a computer’s graphics card. The API context 
is obtained from the HTML5 <canvas> element, which means that no browser plugin is required. The shader 
program uses GLSL, which is a C++ like language, and is compiled at runtime.

Without a framework, setting up a WebGL scene does require quite a bit of work: handling the WebGL 
context, setting buffers, interacting with the shaders, loading textures, and so on. The payoff of using WebGL 
is that it is much faster than the 2D canvas context and offers the ability to produce a degree of realism and 
configurability that is not possible outside of using WebGL.

Uses
Some uses of WebGL are viewing and manipulating models and designs, virtual tours, mapping, gaming, art, data 
visualization, creating videos, manipulating and processing of data and images.

http://www.khronos.org/registry/webgl/specs/latest/
http://dx.doi.org/10.1007/978-1-4302-3996-3_2
http://www.khronos.org/registry/webgl/specs/latest/
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Demonstrations
There are many demos of WebGL, including these:

http://www.chromeexperiments.com/webgl

https://code.google.com/p/webglsamples/

http://aleksandarrodic.com/p/jellyfish/

Google Body (now http://www.zygotebody.com), parts of Google Maps,  
and Google Earth

http://www.ro.me/tech/

http://alteredqualia.com/

Supported Environments
Does your browser support WebGL? It is important to know that WebGL is not currently supported by all 
browsers, computers and/or operating systems (OS). Browser support is the easiest requirement to meet and 
can be done simply by upgrading to a newer version of your browser or switching to a different browser that does 
support WebGL if necessary. The minimum requirements are as follows:

Firefox 4+

Safari 5.1+ (OS X only)

Chrome 9+

Opera 12alpha+

Internet Explorer (IE)—no native support

Although IE currently has no built in support, plugins are available; for example, JebGL (available at  
http://code.google.com/p/jebgl/), Chrome Frame (available at http://www.google.com/chromeframe), and 
IEWebGL (http://iewebgl.com/). JebGL converts WebGL to a Java applet for deficient browsers; Chrome Frame 
allows WebGL usage on IE, but requires that the user have it installed on the client side. Similarly, IEWebGL is  
an IE plugin.

In addition to a current browser, you need a supported OS and newer graphics card. There are also several 
graphics card and OS combinations that have known security vulnerabilities or are highly prone to a severe 
system crash and so are blacklisted by browsers by default.

Chrome supports WebGL on the following operating systems (according to Google Chrome Help  
(http://www.google.com/support/chrome/bin/answer.py?answer=1220892):

Windows Vista and Windows 7 (recommended) with no driver older than 2009–01

Mac OS 10.5 and Mac OS 10.6 (recommended)

Linux

Often, updating your graphics driver to the latest version will enable WebGL usage. Recall that OpenGL  
ES 2.0 is based on OpenGL 2.0, so this is the version of OpenGL that your graphics card should support for 
WebGL usage. There is also a project called ANGLE (Almost Native Graphics Layer Engine) that ironically uses 
Microsoft Direct X to enhance a graphics driver to support OpenGL ES 2.0 API calls through conversions to Direct 
X 9 API calls. The result is that graphics cards that only support OpenGL 1.5 (OpenGL ES 1.0) can still run WebGL. 
Of course, support for WebGL should improve drastically over the next couple of years.

http://www.chromeexperiments.com/webgl
https://code.google.com/p/webglsamples/
http://aleksandarrodic.com/p/jellyfish/
http://www.zygotebody.com
http://www.ro.me/tech/
http://alteredqualia.com/
http://code.google.com/p/jebgl/
http://www.google.com/chromeframe
http://iewebgl.com/
http://www.google.com/support/chrome/bin/answer.py?answer=1220892
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Testing for WebGL Support
To check for browser support of WebGL. there are several websites such as http://get.webgl.org/, which 
displays a spinning cube on success; and http://doesmybrowsersupportwebgl.com/, which gives a large “Yay” 
or “Nay” and specific details if the webgl context is supported. We can also programmatically check for WebGL 
support using modernizr (http://www.modernizr.com).

Companion Site
Along with the Apress webpage at http://www.apress.com/9781430239963, this book has a companion website at 
http://www.beginningwebgl.com. This site demonstrates the examples found in the book, and offers an area to make 
comments and add suggestions directly to the author. Your constructive feedback is both welcome and appreciated.

Downloading the code
The code for the examples shown in this book is available on the Apress website, http://www.apress.com. A link 
can be found on the book’s information page, http://www.apress.com/9781430239963, under the Source Code/
Downloads tab. This tab is located underneath the Related Titles section of the page. Updated code will also be 
hosted on github at https://github.com/bdanchilla/beginningwebgl.

Contacting the Author
If you have any questions or comments—or even spot a mistake you think I should know about—you can contact 
the author directly at bdanchilla@gmail.com or on the contact form at http://www.beginningwebgl.com/contact.

http://get.webgl.org/
http://doesmybrowsersupportwebgl.com/
http://www.modernizr.com
http://www.apress.com/9781430239963
http://www.beginningwebgl.com
http://www.apress.com
http://www.apress.com/9781430239963
https://github.com/bdanchilla/beginningwebgl
http://www.beginningwebgl.com/contact
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CHAPTER 1

Setting the Scene

In this chapter we will go through all the steps of creating a scene rendered with WebGL. We will show you how to 

obtain a WebGL context 

create different primitive types in WebGL 

understand and create vertex buffer objects (VBOs) and attributes 

do static two-dimensional rendering 

create a program and shaders 

set up the view matrices 

add animation and movement 

render a three-dimensional model

A Blank Canvas
Let’s start by creating a HTML5 document with a single <canvas> element (see Listing 1-1).

Listing 1-1. A basic blank canvas

<!doctype html>
<html>
  <head>
              <title>A blank canvas</title>
              <style>
   body{ background-color: grey; }
   canvas{ background-color: white; }
  </style>
 </head>
 <body>
  <canvas id="my-canvas" width="400" height="300">
   Your browser does not support the HTML5 canvas element.
  </canvas>
 </body>
</html>

The HTML5 document in Listing 1-1 uses the shorter <!doctype html> and <html> declaration available 
in HTML5. In the <head> section, we set the browser title bar contents and then add some basic styling that will 

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012
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change the <body> background to gray and the <canvas> background to white. This is not necessary but helps us 
to easily see the canvas boundary. The content of the body is a single canvas element. If viewing the document 
with an old browser that does not support the HTML 5 canvas element, the message “Your browser does not 
support the HTML5 canvas element.” will be displayed. Otherwise, we see the image in Figure 1-1.

Figure 1-1. A blank canvas

Note  If you need a refresher on HTML5, please see Appendix A. Additional reference links are provided in 
 Appendix D.

Getting Context
When we draw inside of a canvas element, we have more than one option of how we produce our image. Each 
option corresponds to a different application programming interface (API) with different available functionality 
and implementation details and is known as a particular context of the canvas. At the moment there are two 
canvas contexts: "2D" and "webgl". The canvas element does not really care which context we use, but it needs to 
explicitly know so that it can provide us with an appropriate object that exposes the desired API.

To obtain a context, we call the canvas method getContext. This method takes a context name as a first 
parameter and an optional second argument. The WebGL context name will eventually be "webgl", but for now, 
most browsers use the context name "experimental-webgl". The optional second argument can contain buffer 
settings and may vary by browser implementation. A full list of the optional WebGLContextAttributes and how to 
set them is shown in Appendix C.

Listing 1-2. Establishing a WebGL context

<!doctype html>
<html>



CHAPTER 1  SETTING THE SCENE

3

 <head>
  <title>WebGL Context</title>
  <style>
   body{ background-color: grey; }
     canvas{ background-color: white; }
  </style>
  <script>
   window.onload = setupWebGL;
   var gl = null;

   function setupWebGL()
   {
    var canvas = document.getElementById("my-canvas");
    try{
     gl = canvas.getContext("experimental-webgl");
    }catch(e){
    }

    if(gl)
    {
     //set the clear color to red
     gl.clearColor(1.0, 0.0, 0.0, 1.0);   
     gl.clear(gl.COLOR_BUFFER_BIT);
    }else{
     alert( "Error: Your browser does not appear to support  
    WebGL.");
    }
   }
  </script>
 </head>
 <body>
  <canvas id="my-canvas" width="400" height="300">
   Your browser does not support the HTML5 canvas element.
  </canvas>
 </body>
</html>

In Listing 1-2, we define a JavaScript setup function that is called once the window’s Document Object 
Model (DOM) has loaded:

window.onload = setupWebGL;

We initiate a variable to store the WebGL context with var gl = null. We use 
gl = canvas.getContext("experimental-webgl");  to try to get the experimental-webgl context from our 
canvas element, catching any exceptions that may be thrown.

Note  The name "gl" is conventionally used in WebGL to refer to the context object. This is because OpenGL and 
OpenGL ES constants begin with GL_ such as GL_DEPTH_TEST; and functions begin with gl, such as glClearColor.

WebGL does not use these prefixes, but when using the name "gl" for the context object, the code looks very 
similar: gl.DEPTH_TEST and gl.clearColor

This similarity makes it easier for programmers who are already familiar with OpenGL to learn WebGL.



CHAPTER 1  SETTING THE SCENE

4

On success, gl is a reference to the WebGL context. However, if a browser does not support WebGL, or if a 
canvas element has already been initialized with an incompatible context type, the getContext call will return 
null. In Listing 1-2, we test for gl to be non-null; if this is the case, we then set the clear color (the default value 
to set the color buffer) to red. If your browser supports WebGL, the browser output should be the same as 
Figure 1-1, but with a red canvas now instead of white. If not, we output an alert as shown in Figure 1-2. You can 
simulate this by misspelling the context, to "zzexperimental-webgl" for instance.

Figure 1-2. Error alert if WebGL is not supported

Being able to detect when the WebGL context is not supported is beneficial because it gives us the 
opportunity to program an appropriate alternative such as redirecting the user to http://get.webgl.org or falling 
back to a supported context such as "2D". We show how to do the latter approach with Three.js in Chapter 7.

Note  There is usually more than one way of doing things in JavaScript. For instance, to load the  
setupWebGL function in code Listing 1-2, we could have written the onload event in our HTML instead:  
<body onload="setupWebGL();">  
If we were using jQuery, we would use the document ready function:  
$(document).ready(function(){ setupWebGL(); });  
We may make use of these differing forms throughout the book.

With jQuery, we can also shorten our canvas element retrieval to: var canvas = $("#my-canvas").get(0);

WebGL Components
In this section we will give an overview of the drawing buffers, primitive types, and vertex storage mechanisms 
that WebGL provides.

The Drawing Buffers
WebGL has a color buffer, depth buffer, and stencil buffer. A buffer is a block of memory that can be written to 
and read from, and temporarily stores data. The color buffer holds color information—red, green, and blue 

http://get.webgl.org
http://dx.doi.org/10.1007/978-1-4302-3996-3_8
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values—and optionally an alpha value that stores the amount of transparency/opacity. The depth buffer stores 
information on a pixel’s depth component (z-value). As the map from 3D world space to 2D screen space can 
result in several points being projected to the same (x,y) canvas value, the z-values are compared and only 
one point, usually the nearest, is kept and rendered. For those seeking a quick refresher, Appendix B discusses 
coordinate systems.

The stencil buffer is used to outline areas to render or not render. When an area of an image is marked off to 
not render, it is known as masking that area. The entire image, including the masked portions, is known as a stencil. 
The stencil buffer can also be used in combination with the depth buffer to optimize performance by not attempting 
to render portions of a scene that are determined to be not viewable. By default, the color buffer’s alpha channel 
is enabled and so is the depth buffer, but the stencil buffer is disabled. As previously mentioned, these can be 
modified by specifying the second optional parameter when obtaining the WebGL context as shown in Appendix C.

Primitive Types
Primitives are the graphical building blocks that all models in a particular graphics language are built with. In 
WebGL, there are three primitive types: points, lines and triangles and seven ways to render them: POINTS, 
LINES, LINE_STRIP, LINE_LOOP, TRIANGLES, TRIANGLE_STRIP, and TRIANGLE_FAN (see Figure 1-3).

Figure 1-3. WebGL Primitive Types (top row, l—r: POINTS, LINES, LINE_STRIP, and LINE_LOOP; bottom row, l—r: 
TRIANGLES, TRIANGLE_STRIP, and TRIANGLE_FAN)

POINTS are vertices (spatial coordinates) rendered one at a time. LINES are formed along pairs of vertices. 
In Figure 1-3 two of the lines share a common vertex, but as each line is defined separately, it would still require 
six vertices to render these three lines. A LINE_STRIP is a collection of vertices in which, except for the first line, 
the starting point of each line is the end point of the previous line. With a LINE_STRIP, we reuse some vertices on 
multiple lines, so it would take just five vertices to draw the four lines in Figure 1-3. A LINE_LOOP is similar to a 
LINE_STRIP except that it is a closed off loop with the last vertex connecting back to the very first. As we are again 
reusing vertices among lines, we can produce five lines this time with just five vertices.

TRIANGLES are vertex trios. Like LINES, any shared vertices are purely coincidental and the example in Figure 
1-3 requires nine vertices, three for each of the three triangles. A TRIANGLE_STRIP uses the last two vertices along 
with the next vertex to form triangles. In Figure 1-3 the triangles are formed by vertices ABC, (BC)D, (CD)E, (DE)
F, (EF)G, (FG)H, and (GH)I. This lets us render seven triangles with just nine vertices as we reuse some vertices in 
multiple triangles. Finally, a TRIANGLE_FAN uses the first vertex specified as part of each triangle. In the preceding 
example this is vertex A, allowing us to render seven triangles with just eight vertices. Vertex A is used a total of 
seven times, while every other vertex is used twice.

Note  Unlike OpenGL and some other graphics languages, a quad is not a primitive type. Some WebGL frame-
works provide it as a “basic” type and also offer geometric solids built in, but at the core level these are all rendered 
from triangles.
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Vertex Data
Unlike old versions of OpenGL or “the ‘2D’ canvas context”, you can’t directly set the color or location of a vertex 
directly into a scene. This is because WebGL does not have fixed functionality but uses programmable shaders 
instead. All data associated with a vertex needs to be streamed (passed along) from the JavaScript API to the 
Graphics Processing Unit (GPU). With WebGL, you have to create vertex buffer objects (VBOs) that will hold 
vertex attributes such as position, color, normal, and texture coordinates.

These vertex buffers are then sent to a shader program that can use and manipulate the passed-in data in 
any way you see fit. Using shaders instead of having fixed functionality is central to WebGL and will be covered in 
depth in the next chapter.

We will now turn our attention to what vertex attributes and uniform values are and show how to transport 
data with VBOs.

Vertex Buffer Objects (VBOs)
Each VBO stores data about a particular attribute of your vertices. This could be position, color, a normal vector, 
texture coordinates, or something else. A buffer can also have multiple attributes interleaved (as we will discuss 
in Chapter 9).

Looking at the WebGL API calls (which can be found at http://www.khronos.org/files/webgl/webgl-
reference-card-1_0.pdf or at http://www.khronos.org/registry/webgl/specs/latest/), to create a buffer, you call 
WebGLBuffer createBuffer()and store the returned object, like so:

var myBuffer = gl.createBuffer();

Next you bind the buffer using void bindBuffer(GLenum target, WebGLBuffer buffer) like this:

gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, myBuffer);

The target parameter is either gl.ARRAY_BUFFER or gl.ELEMENT_ARRAY_BUFFER. The target ELEMENT_ARRAY_
BUFFER is used when the buffer contains vertex indices, and ARRAY_BUFFER is used for vertex attributes such as 
position and color.

Once a buffer is bound and the type is set, we can place data into it with this function:

void bufferData(GLenum target, ArrayBuffer data, GLenum usage)

The usage parameter of the bufferData call can be one of STATIC_DRAW, DYNAMIC_DRAW, or STREAM_DRAW. 
STATIC_DRAW will set the data once and never change throughout the application’s use of it, which will be many 
times. DYNAMIC_DRAW will also use the data many times in the application but will respecify the contents to be 
used each time. STREAM_DRAW is similar to STATIC_DRAW in never changing the data, but it will be used at most a 
few times by the application. Using this function looks like the following:

var data = [  1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 1.0, 1.0

];
gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);

Altogether the procedure of creating, binding and storing data inside of a buffer looks like:

var data = [ 1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 1.0, 1.0

];

http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
http://www.khronos.org/registry/webgl/specs/latest/
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var myBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, myBuffer);
gl.bufferData(gl.ARRAY_BUFFER, data, STATIC_DRAW);

Notice that in the gl.bufferData line, we do not explicitly specify the buffer to place the data into. WebGL 
implicitly uses the currently bound buffer.

When you are done with a buffer you can delete it with a call to this:

void deleteBuffer(WebGLBuffer buffer);

As the chapter progresses, we will show how to setup a shader program and pass VBO data into it.

Attributes and Uniforms
As mentioned, vertices have attributes which can be passed to shaders. We can also pass uniform values to 
the shader which will be constant for each vertex. Shader attributes and uniforms can get complex and will be 
covered in more depth in the next chapter but touched upon here. As the shader is a compiled external program, 
we need to be able to reference the location of all variables within the program. Once we obtain the location of a 
variable, we can send data to the shader from our web application. To get the location of an attribute or uniform 
within the WebGL program, we use these API calls:

GLint getAttribLocation(WebGLProgram program, DOMString name)
WebGLUniformLocation getUniformLocation(WebGLProgram program, DOMString name)

The GLint and WebGLUniformLocation return values are references to the location of the attribute or uniform 
within the shader program. The first parameter is our WebGLProgram object and the second parameter is the 
attribute name as found in the vertex or fragment shader source. If we have an attribute in a shader by the name 
of "aVertexPosition", we obtain its position within our JavaScript like this:

var vertexPositionAttribute = gl.getAttribLocation(glProgram, "aVertexPosition");

If we are sending an array of data to an attribute, we have to enable array data with a call to this:

void enableVertexAttribArray(GLuint index)

Here, the index is the attribute location that we previously obtained and stored. The return value is void 
because the function returns no value.

With our previously defined attribute location, this call looks like the following:

gl.enableVertexAttribArray(vertexPositionAttribute);

Now that we have the location of an attribute and have told our shader that we will be using an array of 
values, we assign the currently bound ARRAY_BUFFER target to this vertex attribute as we have demonstrated in the 
previous section:

gl.bindBuffer(gl.ARRAY_BUFFER, myBuffer);

Finally, we let our shader know how to interpret our data. We need to remember that the shader knows nothing 
about the incoming data. Just because we name an array to help us understand what data it contains, such as 
myColorData, the shader just sees data without any context. The API call to explain our data format is as follows:

void vertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei 
stride, GLintptr offset)

size is the number of components per attribute. For example, with RGB colors, it would be 3; and with an 
alpha channel, RGBA, it would be 4. If we have location data with (x,y,z) attributes, it would be 3; and if we 
had a fourth parameter w, (x,y,z,w), it would be 4. Texture parameters (s,t) would be 2. type is the datatype, 
stride and offset can be set to the default of 0 for now and will be reexamined in Chapter 9 when we discuss 
interleaved arrays.
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Altogether, the process of assigning values to a shader attribute looks like the following:

vertexPositionAttribute = gl.getAttribLocation(glProgram, "aVertexPosition");
gl.enableVertexAttribArray(vertexPositionAttribute);
gl.bindBuffer(gl.ARRAY_BUFFER, myBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);

Now that we have gone over some of the relevant theory and methods, we can render our first example.

Rendering in Two Dimensions
In our first example, we will output two white triangles that look similar to a bowtie (see Figure 1-4). In order 
to get our feet wet and not overwhelm the reader, I have narrowed the focus of this example to have very 
minimalistic shaders and also not perform any transforms or setup of the view. Listing 1-3 builds upon the code 
of Listing 1-2. New code is shown in bold.

Listing 1-3. Partial code for rendering two triangles

<!doctype html>
<html>
 <head>
  <title>A Triangle</title>
  <style>
   body{ background-color: grey; }
   canvas{ background-color: white; }
  </style>
  <script id="shader-vs" type="x-shader/x-vertex">
    attribute vec3 aVertexPosition;
    void main(void) {
            gl_Position = vec4(aVertexPosition, 1.0);
    }
  </script>
  <script id="shader-fs" type="x-shader/x-fragment">
    void main(void) {
           gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
   }
  </script>
  <script>
   var  gl = null,
    canvas = null,
    glProgram = null,
    fragmentShader = null,
    vertexShader = null;

   var  vertexPositionAttribute = null,
    trianglesVerticeBuffer = null;

   function initWebGL()
   {
    canvas = document.getElementById("my-canvas");
    try{

gl =  canvas.getContext("webgl") ||
 canvas.getContext("experimental-webgl");

    }catch(e){
    }
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    if(gl)
    {
     setupWebGL();
     initShaders();
     setupBuffers();
     drawScene();
    }else{
     alert( "Error: Your browser does not appear to" +
 "support WebGL.");
 }
   }

   function setupWebGL()
   {
     //set the clear color to a shade of green
     gl.clearColor(0.1, 0.5, 0.1, 1.0);
     gl.clear(gl.COLOR_BUFFER_BIT);
   }

   function initShaders(){}
   function setupBuffers(){}
   function drawScene(){}
  </script>
 </head>
 <body onload="initWebGL()">
  <canvas id="my-canvas" width="400" height="300">
  Your browser does not support the HTML5 canvas element.
  </canvas>
 </body>
</html>

If you run the code at this point, you will still see a green rectangle because we defined shaders but have not 
hooked them into our application yet. The first new parts of Listing 1-3 are our vertex and fragment shaders. As 
mentioned earlier, shaders can get complex and are covered in detail in Chapter 2. Right now, you simply need to 
know that the vertex shader will set the final position of a vertex while the fragment shader (also known as a pixel 
shader) will set the final color of each pixel.

The following vertex shader takes each (x,y,z) vertex point that we will pass in to it and sets the final 
position to the homogeneous coordinate (x,y,z,1.0).

<script id="shader-vs" type="x-shader/x-vertex">
  attribute vec3 aVertexPosition;
  void main(void) {
       gl_Position = vec4(aVertexPosition, 1.0);
  }
</script>

The fragment shader will simply set each fragment that it receives to the color white (1.0, 1.0, 1.0, 1.0). The 
fourth component is the alpha value.

<script id="shader-fs" type="x-shader/x-fragment">
  void main(void) {
   gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
  }
</script>
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Eventually, we will pass in vertex points that correspond to the two triangles that we are rendering, but right 
now nothing is passed in and so we still see only the green clear color. In Listing 1-3 we have also added new 
variables that will store our WebGL shading language program, fragment and vertex shaders, vertex position 
attribute that will be passed to the vertex shader, and the vertex buffer object that will store our triangle vertices 
as shown in this code:

var gl = null,
 canvas = null,
 glProgram = null,
 fragmentShader = null,
 vertexShader = null;

var  vertexPositionAttribute = null,
 trianglesVerticeBuffer = null;

Note  Our modified line in Listing 1-3 to get the WebGL context is future compatible. It will check for the “webgl” 
context first. If this is not supported, it will try the “experimental-webgl” context next, as shown in the following 
code:

gl = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");

Once we successfully obtain a WebGL context, we call four functions:

setupWebGL();
initShaders();
setupBuffers();
drawScene();

We currently have these functions defined as follows:

function setupWebGL()
{
 //set the clear color to a shade of green 
 gl.clearColor(0.1, 0.5, 0.1, 1.0); 
 gl.clear(gl.COLOR_BUFFER_BIT);
}

function initShaders(){}
function setupBuffers(){}
function drawScene(){}

The first function sets the clear color to green, and the other three at this point are stub functions so that 
the program runs without error. The next bit of functionality that we will implement is the creation of the shader 
program and shaders. This involves using several functions to set up each shader and the program.

For each shader, we call the API function createShader to create a WebGLShader object, in which the type 
parameter is either VERTEX_SHADER or FRAGMENT_SHADER for the vertex and fragment shaders, respectively:

WebGLShader createShader(GLenum type)

These calls look like this:

var vertexShader = gl.createShader(gl.VERTEX_SHADER);
var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);

Next we attach the source to each shader with API calls to:
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void shaderSource(WebGLShader shader, DOMString source)

In practice, this can look like:

var  vs_source = document.getElementById('shader-vs').html(),
 fs_source = document.getElementById('shader-fs').html();
gl.shaderSource(vertexShader, vs_source);
gl.shaderSource(fragmentShader, fs_source);

Last, we compile each shader with the API call:

void compileShader(WebGLShader shader)

It looks like this:

gl.compileShader(vertexShader);
gl.compileShader(fragmentShader);

At this point we have compiled shaders but need a program to attach them into. We will create a 
WebGLProgram object with the API call:

WebGLProgram createProgram()

Next we attach each shader to our program with calls to:

void attachShader(WebGLProgram program, WebGLShader shader)

In an application, these two calls would look like:

var glProgram = gl.createProgram();
gl.attachShader(glProgram, vertexShader);
gl.attachShader(glProgram, fragmentShader);

After this we link the program and tell WebGL to use it with API calls to:

void linkProgram(WebGLProgram program) and
void useProgram(WebGLProgram program).

Our code for this would be the following:

gl.linkProgram(glProgram);
gl.useProgram(glProgram);

When we are finished with a shader or program, we can delete them with API calls to:

void deleteShader(WebGLShader shader) and

void deleteProgram(WebGLProgram program) respectively.

This will look like:

gl.deleteShader(vertexShader);
gl.deleteShader(vertexShader);
gl.deleteProgram(glProgram);

In Listing 1-4, we show the initialization of our shaders and program. We still are not displaying triangles at 
this point because we have not defined the vertices or passed them on to the shader.

Listing 1-4. Initializing our shaders and program

function initShaders()
{
 //get shader source
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 var   fs_source = document.getElementById('shader-fs').html(),
   vs_source = document.getElementById('shader-vs').html();

 //compile shaders
     vertexShader = makeShader(vs_source, gl.VERTEX_SHADER);
 fragmentShader = makeShader(fs_source, gl.FRAGMENT_SHADER);
 //create program
 glProgram = gl.createProgram();

 //attach and link shaders to the program
     gl.attachShader(glProgram, vertexShader);
     gl.attachShader(glProgram, fragmentShader);
     gl.linkProgram(glProgram);

     if (!gl.getProgramParameter(glProgram, gl.LINK_STATUS)) {
      alert("Unable to initialize the shader program.");
     }

 //use program
 gl.useProgram(glProgram);
}

function makeShader(src, type)
{
 //compile the vertex shader
 var shader = gl.createShader(type);
     gl.shaderSource(shader, src);
     gl.compileShader(shader);

    if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
        alert("Error compiling shader: " + gl.getShaderInfoLog(shader));
    }
 return shader;
}

The preceding code contains all the steps that are involved in the usage of a shader program which we have 
just gone through. We first retrieve our shader sources from the DOM of our HTML document and compile each. 
We have added a utility function makeShader, which takes a source string and shader type that can be VERTEX_
SHADER or FRAGMENT_SHADER. This function then sets the shader source, compiles it, and returns the compiled 
shader. After obtaining compiled shaders, we create a program, attach our shaders to it, link them, and then tell 
our WebGL context to use this shader program. An extra step that we have added in Listing 1-4 is to check for 
errors after compiling each shader and linking them together.

Now we have shaders and a program, but we still do not have any primitives defined in our program. Recall 
that primitives in WebGL are composed of points, lines, or triangles. Our next step is to define and place the 
triangle vertex positions into a VBO that will then be passed in as data to our vertex shader. This is shown in 
Listing 1-5.

Listing 1-5. Setting up our vertex buffer and vertex position attribute

function setupBuffers()
{
 var triangleVertices = [
 //left triangle
 -0.5, 0.5, 0.0,
  0.0, 0.0, 0.0,
 -0.5, -0.5, 0.0,
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 //right triangle
  0.5, 0.5, 0.0,
  0.0, 0.0, 0.0,
  0.5, -0.5, 0.0
 ];

 trianglesVerticeBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVertices), gl.STATIC_DRAW);
}

In the setupBuffers method, we define an array of six vertices—three for each triangle. Then we call gl.
createBuffer() to create a new VBO. We then bind our data to this buffer. We now need to tell our application 
which buffer to pass to the aVertexPosition attribute of our shader and then write to the draw buffer.

There are three ways to write to the draw buffer. These API function calls are the following:

void clear(GLbitfield mask)
void drawArrays(GLenum mode, GLint first, GLsizei count)
void drawElements(GLenum mode, GLsizei count, GLenum type, GLintptr offset)

The clear method mask parameter determines which buffer(s) are cleared. The drawArrays function is called 
on each enabled VBO array. The drawElements function is called on a VBO of indices that, as you may recall, is of 
type ELEMENT_ARRAY_BUFFER.

In this example, we will use the drawArrays method to render our two triangles:

function drawScene()
{
 vertexPositionAttribute = gl.getAttribLocation(glProgram, "aVertexPosition");
     gl.enableVertexAttribArray(vertexPositionAttribute);

 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
 gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);
 gl.drawArrays(gl.TRIANGLES, 0, 6);
}

In the drawScene method, we assign the vertex shader attribute aVertexPosition’s location to a variable—
vertexPositionAttribute. We enable array data for the attribute and bind our array to the current buffer. Then 
we point our trianglesVerticeBuffer data to the value stored in our vertexPositionAttribute variable. We 
tell the vertexAttribPointer that our data has three components (x,y,z) per vertex. Finally, we call drawArrays 
with a primitive type of gl.TRIANGLES, the starting vertex and the total number of vertices to render. You can see 
the output of this example with various primitive types in Figure 1-4.

Figure 1-4. The output of our first program: (left) two white triangles; (center) lines; (right) points
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To render lines instead of triangles, you just need to change the drawArrays call to:

gl.drawArrays(gl.LINES, 0, 6);

Note that because two of the lines connect at the central vertex, it appears that only two lines are rendered. 
However if you view the lines piecewise, you can see the three individual lines by running separately three times:

gl.drawArrays(gl.LINES, 0, 2);
gl.drawArrays(gl.LINES, 2, 2);
gl.drawArrays(gl.LINES, 4, 2);

This will show you the line between the first two points, then the next two points, and finally the last pair of 
points. To render just the vertex points, you can adjust the drawArrays call to:

gl.drawArrays(gl.POINTS, 0, 6);

You will only see five vertex points because the center point is used twice. To increase the size of the points 
you can add the following line to your vertex shader:

gl_PointSize = 5.0;

The complete code of our first example is shown in Listing 1-6.

Listing 1-6. Code to show two triangles on a white background

<!doctype html>
<html>
  <head>
  <title>Two Triangles</title>
  <style>
   body{ background-color: grey; }
   canvas{ background-color: white; }
  </style>
  <script id="shader-vs" type="x-shader/x-vertex">
    attribute vec3 aVertexPosition;
    void main(void) {
              gl_Position = vec4(aVertexPosition, 1.0);
    }
  </script>
  <script id="shader-fs" type="x-shader/x-fragment">
    void main(void) {
           gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
    }
  </script>
  <script>
   var  gl = null,
    canvas = null,
    glProgram = null,
    fragmentShader = null,
    vertexShader = null;

   var  vertexPositionAttribute = null,
    trianglesVerticeBuffer = null;

   function initWebGL()
   {
    canvas = document.getElementById("my-canvas");
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    try{
 gl = canvas.getContext("webgl") ||
 canvas.getContext("experimental-webgl");

    }catch(e){
    }

    if(gl)
    {
 setupWebGL();
 initShaders();
 setupBuffers();
 drawScene();
    }else{
 alert( "Error: Your browser does not appear to" +
    "support WebGL.");
    }
   }

   function setupWebGL()
   {
     //set the clear color to a shade of green
     gl.clearColor(0.1, 0.5, 0.1, 1.0);
     gl.clear(gl.COLOR_BUFFER_BIT);
   }

   function initShaders()
   {
    //get shader source
   var  fs_source = document.getElementById('shader-fs').innerHTML,
    vs_source = document.getElementById('shader-vs').innerHTML;

    //compile shaders
           vertexShader = makeShader(vs_source, gl.VERTEX_SHADER);
    fragmentShader = makeShader(fs_source, gl.FRAGMENT_SHADER);

    //create program
    glProgram = gl.createProgram();

    //attach and link shaders to the program
           gl.attachShader(glProgram, vertexShader);
           gl.attachShader(glProgram, fragmentShader);
           gl.linkProgram(glProgram);

           if (!gl.getProgramParameter(glProgram, gl.LINK_STATUS)) {
             alert("Unable to initialize the shader program.");
           }

    //use program
    gl.useProgram(glProgram);
   }

   function makeShader(src, type)
   {
    //compile the vertex shader
    var shader = gl.createShader(type);
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           gl.shaderSource(shader, src);
    gl.compileShader(shader);

           if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
                    alert("Error compiling shader: " +
   gl.getShaderInfoLog(shader));
           }
 return shader;
   }

   function setupBuffers()
   {
 var triangleVertices = [
     //left triangle
     -0.5, 0.5, 0.0,
      0.0, 0.0, 0.0,
     -0.5, -0.5, 0.0,

     //right triangle
     0.5, 0.5, 0.0,
      0.0, 0.0, 0.0,
     0.5, -0.5, 0.0
     ];

     trianglesVerticeBuffer = gl.createBuffer();
     gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
     gl.bufferData(gl.ARRAY_BUFFER, new
 Float32Array(triangleVertices), gl.STATIC_DRAW);
   }

   function drawScene()
   {
     vertexPositionAttribute = gl.getAttribLocation(glProgram,
                   "aVertexPosition");
     gl.enableVertexAttribArray(vertexPositionAttribute);

 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
 gl.vertexAttribPointer(vertexPositionAttribute, 3,    
     gl.FLOAT, false, 0, 0);

 gl.drawArrays(gl.TRIANGLES, 0, 6);
   }
  </script>
 </head>
 <body onload="initWebGL()">
  <canvas id="my-canvas" width="400" height="300">
  Your browser does not support the HTML5 canvas element.
  </canvas>
 </body>
</html>

The View: Part I
Just as we can’t see all parts of the world in our everyday life, but instead have a limited field of vision, we 
can view only part of a 3D world at once with WebGL. The view in WebGL refers to what region of our scene 
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that we are observing—the viewing volume, along with the virtual camera—our viewing location and angle 
relative to what we are observing, and perspective rules—whether an object will appear smaller when farther 
away or not.

In the previous example of Listing 1-6, we did not alter our view at all. We defined (x,y,z) coordinates that 
were rendered by our shader to the canvas as final (x,y) coordinates. In that example, the z-coordinate was 
not a factor to our final view (as long as it was within our clipspace, as we will discuss next). However, in most 
instances, we will need to explicitly define our view and how to map coordinates from 3D to 2D space.

Clip Coordinates
In Listing 1-6, our triangle coordinates all fell between -0.5 and 0.5 in the x, y, and z directions. As an experiment, 
change the vertices of the last example to these:

var triangleVertices = [
    //left triangle
    -1.5, 1.5, 0.0,
    0.0, 0.0, 0.0,
    -1.5, -1.5, 0.0,

 //right triangle
 1.5, 1.5, 0.0,
 1.0, 1.0, 0.0,
 1.5, -1.5, 0.0
];

You might expect to see two triangles of differing appeareance to those on the left of Figure 1-4. But in fact, 
you will only get one white triangle as shown in Figure 1-5 as output.

Figure 1-5. Only one triangle is visible after modifying our vertices

What is the reason for this? Well, by default WebGL has a clip volume centered at the origin (0,0,0) and 
extending +/- 1 along each of the x,y, and z axes. The clip volume defines the (x,y,z) points that will be 
rendered by the fragment shader. Any fragment (pixel) within the clipping volume is rendered, and points outside 
of it are discarded (clipped). The vertex shader transforms points to a final gl_Position. Then a clip test is done 
on each fragment, with those falling within the clip volume continuing on to the fragment shader.
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In the vertex shader of Listing 1-6, we use the input position as the output position. When we modified the 
vertex points to those values that produce Figure 1-5, the left triangle has one point (0,0,0) within the clipping 
volume while the other two lie outside. Fragments of the left triangle will get clipped if they are past +/- 1. On the 
right triangle, no point lies within the clipping volume (well, just the single point [1.0, 1.0, 0.0]), so we don’t see 
any fragment of the triangle.

Why Manipulate Coordinates? 
One reason to manipulate 3D coordinates is because it allows us to deal with more intuitive values. We are not 
limited to stay within the clip volume range. Instead we could have a viewing volume of any dimension and scale 
the vertex positions when we pass them on to our shader. It usually makes more sense dealing with coordinates 
such as (30, 5, 10) then (0.36, 0.06, 0.12). Manipulating coordinates allows us to use friendlier numbers and 
transform them to values that are still within the clipping volume.

The main reason to manipulate coordinates is because we deal with different coordinate spaces. We have 
coordinates relative to a particular model, relative to the world and relative to the virtual camera. We need to be 
able to represent our scene and objects in a meaningful manner that transforms a model from its original size 
and location to a relative size and location within our scene and then take this scene and only view a particular 
portion of it with our virtual camera.

As an example, suppose you have a 3D model of a shipping crate (box) that is perfectly cubic and centered 
around the origin. Perhaps you would like to model a scene of a shipping yard with hundreds of shipping 
containers. In the scene, these containers can vary in size, position, and orientation. They could be cubic or 
rectangular. Except for a box of the exact same dimensions as the original model, centered around the origin of 
your scene, you would want to manipulate this model.

To accomplish this, our first step is to move from model to world coordinates. This will involve basic 
transformations of scaling, rotating, and translating. If you have many boxes, these transformations would be 
distinct among each box instance. After you have placed all your boxes around your world, our next step is to 
adjust our view. The view is like a camera pointed at the world. The camera can be positioned and rotated to 
point a certain direction in our scene.

We set our projection type, which determines whether elements further away look smaller then same-sized 
objects that are nearer to the camera (perspective projection) or appear to be the same size no matter their 
distance (orthogonal projection). Lastly, the viewport defines what part of a screen (the <canvas>) is rendered to 
and the dimensions of this area.

This multistep process that involves transforming a model’s local coordinates to “world” coordinates, then 
to “view” coordinates, is commonly known as the Model-View-Projection (MVP) matrix transformation. We will 
now show how to set up the viewport before returning to the MVP setup.

The Viewport
The viewport defines where the origin (lower-left) point (x,y) to render on the canvas should be located, and 
what width and height of the canvas to render onto. We set the viewport with the API call:

void viewport(GLint x, GLint y, GLsizei width, GLsizei height);

Setting the origin to (0, 0) and the width and height equal to the canvas dimensions will fill the entire 
canvas. This is done with the following code:

gl.viewport(0, 0, canvas.width, canvas.height);

You can see the result in Figure 1-6.
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Figure 1-6. Viewport coordinates that fill our entire 400¥300 canvas element

Alternatively, you could decide to render to only part of the canvas. Some reasons to do this might be to tile 
the same rendering multiple times in the viewport or display a unique image in each region of the viewport. This 
technique is used in the image processing examples of Chapter 10. Using only a quarter of the rendering area is 
shown in Listing 1-7.

Listing 1-7. Rendering to part of the canvas

//top right quadrant
gl.viewport(canvas.width/2.0, canvas.height/2.0, canvas.width/2.0, canvas.height/2.0);

//top left quadrant
gl.viewport(0, canvas.height/2.0, canvas.width/2.0, canvas.height/2.0);

//bottom left quadrant
gl.viewport(0, 0, canvas.width/2.0, canvas.height/2.0);

//bottom right quadrant
gl.viewport(canvas.width/2.0, 0, canvas.width/2.0, canvas.height/2.0);

Adjusting Listing 1-6 to use the top left quadrant viewport in the setupWebGL method:

function setupWebGL()
{
 //set the clear color to a shade of green
 gl.clearColor(0.1, 0.5, 0.1, 1.0);
 gl.clear(gl.COLOR_BUFFER_BIT);
 //gl.viewport(0, 0, canvas.width, canvas.height);
 gl.viewport(0, canvas.height/2.0, canvas.width/2.0, canvas.height/2.0);
}

This will produce the output shown in Figure 1-7.
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Note  Although WebGL will initialize the viewport to the full canvas, it will not adjust the viewport if the canvas is 
resized because automatically adjusting the viewport can interfere with applications that manually set it. For  
this reason, it is best to always explicitly set the viewport before rendering with the current canvas dimensions:  
gl.viewport(0, 0, canvas.width, canvas.height);. Alternatively, you can listen for canvas size changes by 
setting an onresize event handler and only adjust the viewport when necessary.

To keep the examples as simple as possible, we will now show how to define color per vertex and set up an 
animation loop. Then we will return to working with the view, as we explain how to set up the MVP matrix.

Adding Color
In our next example, we will add a color attribute to our vertices. Starting from the code shown in Listing 1-6, we 
will modify our shaders (where new code is shown in bold) to be as follows:

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;

varying highp vec4 vColor;
void main(void) {
  gl_Position = vec4(aVertexPosition, 1.0);

vColor = vec4(aVertexColor, 1.0);
}

</script>
<script id="shader-fs" type="x-shader/x-fragment">

varying highp vec4 vColor;
void main(void) {

gl_FragColor = vColor;
}

</script>

Figure 1-7. Setting our triangle example to a top-left quadrant viewport
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Even though the fragment shader controls the final color, we can’t pass vertex attribute data directly to it. So we 
create a new attribute, aVertexColor, in the vertex shader and pass the input data to the fragment shader by 
assigning it to a varying variable:

varying highp vec4 vColor;

The qualifier highp sets the floating point precision to high. The focus of this chapter is general application 
setup and not shaders, but these concepts and keywords will be expanded upon in Chapter 2. We declare vColor 
in both the vertex and fragment shader as the output value of the vertex shader becomes the input to the fragment 
shader. Then we add a variable to our application to store the color attribute and the color data buffer:

var  vertexPositionAttribute = null,
 trianglesVerticeBuffer = null,
 vertexColorAttribute = null,
 trianglesColorBuffer = null;

In our setupBuffers method, we will add the following code:

var triangleVerticeColors = [
 //red left triangle
 1.0, 0.0, 0.0,
 1.0, 1.0, 1.0,
 1.0, 0.0, 0.0,

 //blue right triangle
 0.0, 0.0, 1.0,
 1.0, 1.0, 1.0,
 0.0, 0.0, 1.0
];

trianglesColorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesColorBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVerticeColors), gl.STATIC_DRAW);

Notice that the center vertex of each triangle is white. In Figure 1-8, the color is interpolated between 
vertices. Finally we need to connect the color buffer to the shader attribute in our drawScene method:

function drawScene()
{
 vertexPositionAttribute = gl.getAttribLocation(glProgram, "aVertexPosition");
     gl.enableVertexAttribArray(vertexPositionAttribute);
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
 gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);

 vertexColorAttribute = gl.getAttribLocation(glProgram, "aVertexColor");
     gl.enableVertexAttribArray(vertexColorAttribute);
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesColorBuffer);
 gl.vertexAttribPointer(vertexColorAttribute, 3, gl.FLOAT, false, 0, 0);

 gl.drawArrays(gl.TRIANGLES, 0, 6);
}

The full code listing for this example and all other code listings in the book is available online at the Apress 
website http://www.apress.com/9781430239963 and on the companion website at http://beginningwebgl.
com/code. The file of this example is 01/ch1_colored-triangles.html. You can see the output of this in Figure 1-8.

http://www.apress.com/9781430239963
http://beginningwebgl.com/code
http://beginningwebgl.com/code
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Animation and Model Movement
Let’s now add some movement to our triangles. To do this we first need to set up an animation loop.

Using requestAnimationFrame
For animation, the newer browser method window.requestAnimationFrame is better than the older methods 
window.setTimeout(which calls a function once after a fixed delay) and window.setInterval(which repeatedly 
calls a function with a fixed delay between calls). These two functions can be used to adjust the framerate when 
rendering. The reason that the new method, window.requestAnimationFrame, is better than the older methods is 
because it is more accurate and also will not animate a scene when you are in a different browser tab. The second 
benefit means that using requestAnimationFrame will help prevent battery life from being wasted on mobile 
devices.

However, support for requestAnimationFrame is still browser-dependent. As such, we should test 
for it, reverting to the window.setTimeout fallback if it is not available. This is done by using a shim (it 
transparently intercepts an API call and redirects the underlying calls to a supported method) or polyfill 
(code designed to provide additional technology that is not natively provided) to wrap the function, such as 
the one by Opera engineer Erik Möller and modified by Paul Irish at his blog http://paulirish.com/2011/
requestanimationframe-for-smart-animating/. The polyfill is also fairly actively edited at https://gist.
github.com/1579671.

Download a recent version of the file (Google "requestAnimationFrame polyfill") and place it inside of a 
separate file that we will call raf_polyfill.js:

<script src="raf_polyfill.js"></script>

This file should be placed in the same directory as your webroot or else you will need to adjust the path 
accordingly.

We now just need to place our setupWebGL and drawScene functions within an animation loop, as shown in 
Listing 1-8.

Figure 1-8. Per vertex color attributes

http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://https://gist.github.com/1579671
http://https://gist.github.com/1579671
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Listing 1-8. Animation loop

initShaders();
setupBuffers();
 (function animLoop(){
  setupWebGL();
  setupDynamicBuffers();
      drawScene();
      requestAnimFrame(animLoop, canvas);
 })();

The first parameter of requestAnimFrame is the callback function, and the second argument is the element 
to act upon. Because requestAnimFrame calls animLoop, the function will continue calling itself again and again 
as long as the application is running. We also have added a new function, setupDynamicBuffers, which is shown 
fully in Listing 1-9 in the next section. We have repeated animation calls now, but our scene will still appear static. 
This is because we have not changed any of our vertices or the view between animation frames.

Creating Movement
There are two ways to create movement—either you move an object in a scene or you move the view of the scene. 
We will not be adjusting the view in this example, but instead will be adjusting the coordinates of the model. The 
reason why we are moving the model instead of the view is simple; we do not yet know how to adjust our view.

Our first change is to modify the vertices VBO type from STATIC_DRAW to DYNAMIC_DRAW:

 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVertices), gl.DYNAMIC_DRAW);

A simple way to alter the x values of our triangles and keep them in the clipspace range (-1, 1) is to set the 
x value equal to the cosine or sine of an angle. If you need a trigonometric refresher, please refer to the diagrams 
in Appendix B and the links provided in Appendix D.

In Listing 1-9, we extract the vertice buffer creation code out of setupBuffers and into a new function 
setupDynamicBuffers, which will be called every time through the animation loop. The setupDynamicBuffers 
method shown in bold is new code.

Listing 1-9. Splitting up our buffers into static and dynamic data calls

function setupBuffers()
{
 var triangleVerticeColors = [
  //left triangle
   1.0, 0.0, 0.0,
   1.0, 1.0, 1.0,
   1.0, 0.0, 0.0,

  //right triangle
  0.0, 0.0, 1.0,
   1.0, 1.0, 1.0,
  0.0, 0.0, 1.0,
 ];

 trianglesColorBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesColorBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVerticeColors), gl.STATIC_DRAW);
}
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function setupDynamicBuffers()
{
 //limit translation amount to -0.5 to 0.5
 var x_translation = Math.sin(angle)/2.0;

 var triangleVertices = [
  //left triangle
  -0.5 + x_translation, 0.5, 0.0,
   0.0 + x_translation, 0.0, 0.0,
  -0.5 + x_translation, -0.5, 0.0,

  //right triangle
   0.5 + x_translation, 0.5, 0.0,
   0.0 + x_translation, 0.0, 0.0,
  0.5 + x_translation, -0.5, 0.0
 ];
 angle += 0.01;

 trianglesVerticeBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVertices), gl.DYNAMIC_DRAW);
}

If you run the application now, you will see the triangles move from side to side, stopping at the edges. 
Notice that the animation slows toward the edges, as a natural consequence of using the sine function. The full 
code of this example is found online in the file 01/2d_movement.html.

The View: Part II
In this section, we will show how to generate the MVP matrix to transform our original vertices into values that 
fall within the clip space range.

As a precursor to see why we need to modify our coordinates by the MVP matrix, look at what happens next 
when we try to naively make the scene 3D in appearance by having differing z-values. Adjust the right triangle 
coordinates of the 2d_movement.html file to:

//right triangle
0.5 + x_translation, 0.5, 0.0,
 0.0 + x_translation, 0.0, -0.5,
0.5 + x_translation, -0.5, 0.5,

Rerun the program and see that nothing has changed. As long as the z-values are between -1 and 1, the clip 
volume, it will appear the same no matter what the actual z-value.

So then how do we get a scene that looks 3D and has perspective? We have to multiply our original 
coordinates by the MVP matrices. We do this by setting a model-view matrix and a projection matrix in our 
application and passing them as uniforms to our shader, in which they will be multiplied by our original position 
to find a final position in the fragment shader.

Model-View Matrix
The model-view matrix combines two transformations—the model-to-world coordinate transformation and the 
world-to-view coordinate transformation—into one matrix. Recall that the model-to-world transformation takes 
a model within its local coordinates and transforms it into its spot within the world, as shown in Figure 1-9.
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The world coordinate to view coordinate transform positions the camera view in the scene, as shown in 
Figure 1-10.

Figure 1-9. Model coordinates on the left transformed to world coordinates on the right

Figure 1-10. World coordinates transformed to camera view

Projection Matrix
The projection matrix can be orthogonal or perspective. In a perspective matrix, objects farther away that are 
the same dimension as nearer objects will appear smaller, making the view seem realistic. With perspective, all 
lines reach a central vanishing point that gives the illusion of depth. In an orthogonal (parallel) projection matrix, 
objects of the same dimensions will always appear to be the same size. The orthogonal projection is also known 
as a parallel projection because lines do not converge but remain parallel (see Figure 1-11).
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Choosing a Matrix Library
It is a good idea to use an existing matrix library instead of creating your own. Existing matrix libraries are 
usually well-tested, -documented and -thought out. The operations within are fairly elementary and rigid. In 
other words, you would not be providing anything unique, and you do not want to spend time reinventing the 
wheel. (There are many libraries to choose from and references are listed in Appendix D. I prefer gl-matrix.js, 
written by Brandon Jones and Colin MacKenzie IV, available at https://github.com/toji/gl-matrix and will use it 
throughout the book).

Three-Dimensional Rendering
We will now extend upon our two-dimensional example to add depth and make it appear three-dimensional.

2D Models in a 3D World
Working from our previous example (2d_movement.html) as a basis, we will implement MVP matrices. First, we 
need to download and include the gl-matrix library:

<script src="gl-matrix-min.js"></script>

We also need to declare two new variables to store our model-view and projection matrices:

var  mvMatrix = mat4.create(),
 pMatrix = mat4.create();

Our setupWebGL function is updated to be:

function setupWebGL()
{
 //set the clear color to a shade of green
 gl.clearColor(0.1, 0.5, 0.1, 1.0);
 gl.clear(gl.COLOR_BUFFER_BIT);

 gl.viewport(0, 0, canvas.width, canvas.height);
 mat4.perspective(45, canvas.width / canvas.height, 0.1, 100.0, pMatrix);
 mat4.identity(mvMatrix);
 mat4.translate(mvMatrix, [0, 0, -2.0]);
}

Figure 1-11. Camera coordinates transformed to screen view; left is orthogonal (parallel) and right is perspective

http://https://github.com/toji/gl-matrix
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mat4.perspective is a helper function of the gl-matrix library, which takes field of view, aspect ratio, 
and near and far bounds as arguments. There is also a mat4.ortho call in the library, which can produce an 
orthogonal projection. When we create our mvMatrix, we simply adjust the z-coordinate because the camera lies 
at the origin by default (0,0,0), so we move back in order to see our triangles that also lie on the z-axis.

Next we need to find the location of these uniforms within our shader and also be able to update the 
values. The matrices are uniforms because they are applied with the same values for every vertex. We add two 
new helper methods, getMatrixUniforms and setMatrixUniforms. We call getMatrixUniforms outside of our 
animation loop as the location within the shader will always stay the same, while we call setMatrixUniforms 
each animation loop as it could be different between one animation frame and the next:

function getMatrixUniforms(){
     glProgram.pMatrixUniform = gl.getUniformLocation(glProgram, "uPMatrix");
     glProgram.mvMatrixUniform = gl.getUniformLocation(glProgram, "uMVMatrix");
}

function setMatrixUniforms() {
     gl.uniformMatrix4fv(glProgram.pMatrixUniform, false, pMatrix);
     gl.uniformMatrix4fv(glProgram.mvMatrixUniform, false, mvMatrix);
}
  …
  …

 initShaders();
 setupBuffers();
 getMatrixUniforms();
 (function animLoop(){
   setupWebGL();
   setupDynamicBuffers();
   setMatrixUniforms();
   drawScene();
   requestAnimationFrame(animLoop, canvas);
 })();

We also need to update our vertex shader to have these new uniform values:

<script id="shader-vs" type="x-shader/x-vertex">
  attribute vec3 aVertexPosition;
  attribute vec3 aVertexColor;

  uniform mat4 uMVMatrix;
  uniform mat4 uPMatrix;

  varying highp vec4 vColor;
  void main(void) {
 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
 vColor = vec4(aVertexColor, 1.0);
  }
</script>

The final position is calculated as the projection matrix multiplied by the model-view matrix and then finally 
the original vertex position. Let’s adjust the depth coordinates of our two triangles:

var triangleVertices = [
  //left triangle
  -0.5 + x_translation, 0.5, -0.5,
   0.0 + x_translation, 0.0, -0.5,
  -0.5 + x_translation, -0.5, -0.5,
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  //right triangle
  0.5 + x_translation, 0.5, 0.5,
  0.0 + x_translation, 0.0, 0.5,
  0.5 + x_translation, -0.5, 0.5,
];

The full code of this example is in the file 01/3d_movement.html. You can see the output of this in Figure 
1-12.

Figure 1-12. Composite image of animation. The triangles now have different depths

An Example with Depth
For the last example in this chapter, we will render a 3D solid of a triangular prism. It can often help to sketch up 
the vertices of such a figure and label the vertices, as shown in Figures 1-13 and 1-14.

Figure 1-13. A prism sketch with some of the key points labeled
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Using an Index Buffer
A quick count of Figures 1-13 and 1-14 shows that there will be 18 distinct triangles (including two on the bottom 
face) and 12 distinct vertices needed. Rather than explicitly set all the vertices for the triangles that would take 54 
(x,y,z) values (18 triangles with 3 vertices per triangle), we can just declare our 12 vertices and then declare the 
54 indices to use as shown in the bold part of Listing 1-10.

Listing 1-10. Using vertice indices to reuse vertices for multiple triangles

function setupBuffers()
{
  var triangleVerticeColors = [
  //front face
  0.0, 0.0, 1.0,
  1.0, 1.0, 1.0,
  0.0, 0.0, 1.0,
  0.0, 0.0, 1.0,
  0.0, 0.0, 1.0,
  1.0, 1.0, 1.0,

  //rear face
  0.0, 1.0, 1.0,
  1.0, 1.0, 1.0,
  0.0, 1.0, 1.0,
  0.0, 1.0, 1.0,
  0.0, 1.0, 1.0,
  1.0, 1.0, 1.0
 ];

 trianglesColorBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesColorBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVerticeColors), gl.STATIC_DRAW);

 //12 vertices
 var triangleVertices = [

Figure 1-14. The vertex numbers of the prism labeled
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  //front face
  //bottom left to right, to top
  0.0, 0.0, 0.0,
  1.0, 0.0, 0.0,
  2.0, 0.0, 0.0,
  0.5, 1.0, 0.0,
  1.5, 1.0, 0.0,
  1.0, 2.0, 0.0,

  //rear face
  0.0, 0.0, -2.0,
  1.0, 0.0, -2.0,
  2.0, 0.0, -2.0,
  0.5, 1.0, -2.0,
  1.5, 1.0, -2.0,
  1.0, 2.0, -2.0
 ];

 trianglesVerticeBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVertices), gl.STATIC_DRAW);

 //setup vertice buffers
 //18 triangles
 var triangleVertexIndices = [
 //front face
 0,1,3,
  1,3,4,
 1,2,4,
 3,4,5,

 //rear face
 6,7,9,
 7,9,10,
 7,8,10,
 9,10,11,

 //left side
 0,3,6,
 3,6,9,
 3,5,9,
 5,9,11,

 //right side
 2,4,8,
 4,8,10,
 4,5,10,
 5,10,11,

 //bottom faces
 0,6,8,
 8,2,0
 ];
 triangleVerticesIndexBuffer = gl.createBuffer();
 triangleVerticesIndexBuffer.number_vertex_points = triangleVertexIndices.length;   
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 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, triangleVerticesIndexBuffer);
 gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(triangleVertexIndices), 
gl.STATIC_DRAW);
}

Notice that we are no longer dynamically setting the vertices. We will produce movement by altering the 
mvMatrix instead—alterations can be translations, rotations, and/or scaling. Also note that the indice buffer type 
is gl.ELEMENT_ARRAY_BUFFER.

To produce movement we initialize a variable, angle, to store an angle and then increment it each frame to 
rotate our mvMatrix a little more each animation frame:

mat4.identity(mvMatrix);
mat4.translate(mvMatrix, [-1.0, -1.0, -7.0]);
mat4.rotate(mvMatrix, angle, [0.0, 1.0, 0.0]);
angle += 0.01;

When we draw our scene, we use gl.drawElements instead of gl.drawArrays:

gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, triangleVerticesIndexBuffer);
gl.drawElements(gl.TRIANGLES, triangleVerticesIndexBuffer.number_vertex_points, gl.UNSIGNED_
SHORT, 0);

The primitive type in this example is still gl.TRIANGLES, and we have the value of 
triangleVerticesIndexBuffer.number_vertex_points, which is 54, to draw. The result of this example is 
shown in Figure 1-15, and the full code is in the file 01/3D_triangles.html.

Figure 1-15. Not enabling the depth test can produce strange results

Depth Testing
Unless we check the depth of our primitives, some faces that should be hidden from view might not be. This can 
produce unexpected results, as we saw in Figure 1-15. Enabling depth testing is easy and involves calling this:

  gl.enable(gl.DEPTH_TEST);
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We will also clear the depth buffer in our setupWebGL function:

gl.clear(gl.COLOR_BUFFER_BIT|gl.DEPTH_BUFFER_BIT);

In Figure 1-16, you can see a more expected result.

Figure 1-16. After enabling the depth test, everything looks as it should

In this chapter we have shown how to color a 3D mesh. In Chapter 3, we will come back to this last example 
and apply texture and lighting to it.

Summary
In this chapter, we have made great strides going from a blank canvas to a moving 3D object. Even though this 
was the first chapter, in a lot of ways it was a tough one because we needed to introduce so many new concepts 
at once. So congratulations on making it this far and now we can build upon our new skills in the forthcoming 
chapters. In the next chapter, we will dive into the details of the OpenGL Shading Language (GLSL) and start 
exploring the capabilities of vertex and fragment shaders. We’re just getting started with what WebGL can do!
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CHAPTER 2

Shaders 101

In this chapter, we will be covering the GL Shading Language (GLSL) in depth. Topics that we will cover include

an overview of the WebGL graphics pipeline 

the difference between fixed functionality and modern-day programmable shaders 

the role of vertex shaders and fragment shaders within the GLSL 

how to create and use shaders within a WebGL application 

a detailed overview of the GLSL including its primitive types and built-in functions 

examples of procedural fragment shaders

Graphics Pipelines
A graphics pipeline consists of the steps that an image goes through from initial definition to final screen 
rendering. This pipeline is composed of several steps done in a predefined order. Components of the pipeline can 
be either fixed in functionality or programmable.

Fixed Functionality or Programmable Shaders
The more traditional graphics pipeline has a fixed implementation. The initial image definition would be the set 
of vertex location points and information associated with these points such as color, a normal vector, and texture 
coordinates. With fixed functionality, operations are done in a set order. You can disable some elements such as 
lighting or texturing, but not modify how the underlying lighting or texturing calculations are done. The graphics 
pipeline of OpenGL before version 2.0 used fixed functionality only.

Fixed functionality, as its name suggests, is quite rigid. It allows for quicker and easier generation of 
images because lighting formulas and shading are already built into the system. However, it limits what we can 
accomplish because we cannot override these settings. OpenGL Fixed functionality had separate pipeline steps 
for vertex transformations and lighting. This is now all done within the vertex shader (VS) and fragment shader 
(FS). Similarly, texture application, color summation, fog, and alpha testing were all discrete steps. Now these 
components are done within the FS.

A high-level view of how the WebGL API, programmable and nonprogrammable components of the pipeline 
interact is shown in Figure 2-1.

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012
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A programmable pipeline can display a greater range of effects because you can define parts of the pipeline 
(not all of it) and override the calculations used for computing color, position, texture coordinates or the lighting 
model. The programmable pipeline components use a vertex program and a fragment program which are known 
collectively as shaders. These shaders are run on the powerful Graphics Processing Units (GPU) found in modern 
computers. OpenGL versions 2.0 to 3.0 allowed the use of either fixed functionality or shaders. The slimmed 
down API of OpenGL ES and WebGL only supports shaders and not fixed functionality.

Why Shaders?
If shaders are much more work to set up, why do we bother using them? What are their benefits?

Well, with shaders you can create effects that add increased realism to a scene. You can create 
nonphotorealistic images that look cartoonish. You can also create convolution filters and masks in shaders; and 
do additional antialiasing, blending, shadow creation, and advanced texture manipulation within the shader, and 
pretty much anything else you can think of and implement.

You can also program the Graphics Processing Unit (GPU) to do side calculations. The power of the GPU can 
be used to offset browser calculations and is much faster and better for general computing.

The WebGL Graphics Pipeline
In WebGL, the rendering process is the following:

Take vertex array data and place it into vertex buffer objects (VBOs).

Stream the VBO data to the VS and send indice information using a call to either 
drawArrays with implicit index ordering or with drawElements and an index array.

The VS runs, minimally setting the screen position of each vertex and optionally 
performing additional calculations, which are then passed on to the FS.

Output data from the VS continues down the fixed portion of the pipeline.

The GPU produces primitives using vertices and indices.

The rasterizer discards any primitive part that lies outside of the viewport. Parts within the 
viewport are then broken up into pixel-sized fragments.

WebGL API

VBOs

Vertex
Shader

Frame Buffer

Per Pixel Operations
& Primitive Assembly

Viewport Clipping
& Rasterization

Per Fragment
Operations

Blending, Depth
& Stencil Tests

Fragment
Shader

Textures

Figure 2-1. Simplified diagram of the WebGL programmable pipeline. Steps with a shaded background are 
editable
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Vertice values are then interpolated across each fragment.

Fragments with these interpolated values are passed on to the FS.

The FS minimally sets the color value, but can also do texture and lighting operations.

Fragments can be discarded or passed on to the framebuffer, which stores a 2D image 
and optionally also uses a depth and stencil buffer. In this case, depth testing and stencil 
testing can discard some fragments from being rendered in the final image. This image is 
either passed on to the drawing buffer and shown to the user or alternatively saved to an 
offscreen buffer for later usage such as to save as texture data.

A high-level view of the WebGL rendering process is shown in Figure 2-2.

Figure 2-2. WebGL rendering process overview

In Figure 2-2, we start with vertex positions that are in model coordinate space. The VS then transforms the 
vertices to a final position. Appropriate primitive types are formed, the image clipped, rasterized, and passed on 
to the FS. The FS interpolates values and sends the result optionally through the depth and stencil buffers and 
finally the framebuffer.

GL Shading Language
Learning the GL Shading Language (GLSL) is essential to learning WebGL. I like to reference the Khronos WebGL 
wiki, which aptly states: 

“Nothing happens in WebGL without shaders.”

Background
The shading language used in WebGL is actually the OpenGL ES Shading Language (also known as GLSL ES 
or ESSL) and is based on the OpenGL Shading Language (GLSL) version 1.20. The complete specification 
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of OpenGL ESSL can be downloaded from http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_
Specification_1.0.17.pdf.

GLSL is based on C++ and is actually two separate but closely related languages for vertex and fragment 
processors. The compiled source on each processor is known as a VS or FS, respectively. The VS and FS are linked 
together to form a single program that is run on the GPU.

The VS acts on one vertex at a time, and each vertex can have various attributes associated with it. The 
FS acts on a part of the rasterized image and can interpolate vertex data. It cannot change the position of the 
fragment or view the data of neighboring fragments. The VS can send data on to the FS. The ultimate goal of the 
shader program is to update the frame (drawing) buffer or a texture buffer.

WebGL uses the JavaScript scripting language to bind our shaders to the GLSL application programming 
interface (API). It can be a little confusing to realize that we are embedding the GLSL, which has a C++ like 
syntax, inside of a <script> tag. We do this with either of the following:

Embedding the VS and FS sources within the same web file in a <script> tag of type 
"x-shader/x-vertex" or "x-shader/x-fragment", respectively

Placing the VS and FS in external files and loading them with Ajax

Note  By default, the <script> tag sets the type attribute to javascript or text/javascript. The types 
"x-shader/x-vertex" and "x-shader/x-fragment" are actually not recognized by the browser and ignored. 
The content is still loaded within the Document Object Model (DOM) for later retrieval but is otherwise not used.

We will come back to the GLSL later in the chapter. For now, let us discuss the roles of the shaders.

Shader Roles
The VS and FS have distinct roles that work together to render a finished image. Essentially, the VS acts on every 
vertex and is responsible for setting the final vertex location while the FS acts upon each pixel and sets the final 
color.

Vertex Shader (VS)
The VS is responsible for all vertex coordinate transformations. This includes model view and projection matrix 
view calculations. It also calculates normal vector and texture coordinate generation and transformations. The VS 
can perform per-vertex lighting calculations and pass these values on to the FS for a per-pixel computation.

In summary, the VS is responsible for

final vertex position

and optionally

per vertex normal, texture, lighting, and color

passing values on to the FS

Minimally, a VS needs to set the gl_Position, which as we will discuss later in the chapter, is a built-in VS 
variable (see Listing 2-1).

Listing 2-1. Simple vertex shader, which passes the input vertex positions to the fragment shader

<script id="shader-vs" type="x-shader/x-vertex">
     attribute vec3 aVertexPosition;

http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
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     void main(void) {
        gl_Position = aVertexPosition;
    }
</script>

Fragment Shader (FS)
The FS operates on a pixel, which is a rasterized portion of a primitive(s). It computes final per-pixel color can 
perform texture lookups, and can also be used to produce effects such as fog. You can think of the VS and FS as 
a team. The VS passes values to the FS, but the FS gets final say and could choose to not use these values. The FS 
also does not render portions of an image that are obscured by another object or fall outside of the viewport by 
choosing to discard them.

In summary, the FS is responsible for

setting the final color of each pixel

and optionally

performing texture lookups

discarding fragments

Minimally, the FS needs to set the fragment color, as shown in Listing 2-2.

Listing 2-2. A fragment shader that sets every fragment to blue

<script id="shader-fs" type="x-shader/x-fragment">
    void main(void) {
        gl_FragColor = vec4(0.0, 0.0, 1.0, 1.0);
    }
</script>

Basic Usage
We have gone over the steps of creating a shader program in Chapter 1 and also shown the API signatures of each 
method that we used. Here we will briefly recap how to set up and clean up a shader program in WebGL.

Setting Up a Shader Program
Within a WebGL application, the program is a WebGLProgram object, and each shader is a WebGLShader object. 
We define variables to hold our shaders and program:

var vertexShader  = null,
  fragmentShader = null,
  shaderProgram  = null;

Here are the steps to use shaders within a WebGL program:

1. Create the shaders:

 vertexShader = gl.createShader(GL.VERTEX_SHADER);
 fragmentShader = gl.createShader(GL.FRAGMENT_SHADER);
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2. Set the source code of each shader:

  <script id="shader-vs" type="x-shader/x-vertex">
   …
  </script>

 <script id="shader-fs" type="x-shader/x-fragment">
  …
 </script>

 var vertex_source = document.getElementById('shader-vs').innerHTML
 var fragment_source = document.getElementById('shader-fs').innerHTML,

 gl.shaderSource(vertexShader, vertex_source);
  gl.shaderSource(fragmentShader, fragment_source);

3. Compile each shader and check for errors:

       gl.compileShader(vertexShader);
       if (!gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS)) {
           alert( "Error compiling vertex shader: " +

      gl.getShaderInfoLog(vertexShader));
  }

       gl.compileShader(fragmentShader);
       if (!gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS)) {
           alert( "Error compiling fragment shader: " +

      gl.getShaderInfoLog(fragmentShader));
  }

4. Create a program:

      shaderProgram = gl.createProgram();

5. Attach our shaders to the program:

       gl.attachShader(shaderProgram, vertexShader);
       gl.attachShader(shaderProgram, fragmentShader);

6. Link the program and check for errors:

       gl.linkProgram(shaderProgram);

       if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
           alert("Unable to initialize the shader program.");
       } 

7. Tell WebGL to use our program:

       gl.useProgram(shaderProgram);

Clean Up
To remove the shaders from our program, we perform the opposite procedure:

1. Detach the shaders from the program:

     gl.detachShader(shaderProgram, vertexShader);
     gl.detachShader(shaderProgram, fragmentShader);
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2. Delete each shader:

     gl.deleteShader(vertexShader);
          gl.deleteShader(fragmentShader);

3. Delete the program:

      gl.deleteProgram(shaderProgram);

The preceding quickly recaps the steps to create and use a shader program in WebGL. If we need to, we can 
create multiple shader programs within an application and switch between them by calling useProgram with the 
appropriate shader: gl.useProgram(shaderProgram). As discussed in Chapter 9, it is an expensive operation, so 
switching should be used as much as possible.

We will now show you how to load shaders from external sources instead of embedded within the same 
document as our main program.

Loading Shaders with Ajax
We have shown how to include our shader programs within the same file that holds our WebGL application. 
To keep our application file shorter and more modular, we can use Ajax to load in our shaders from separate 
external files.

Note  Due to WebGL security restrictions and the same origin policy, to include an external shader, we need to 
be running a web server. Setting up a local web server is beyond the scope of this book, but does not need to be 
difficult. Some great LAMP, MAMP, and WAMP (Linux/Mac/Windows, Apache, MySQL and PHP/Perl/Python) stacks are 
listed in Appendix D. There is also an increasing number of cloud platforms available that offer free accounts.

Loading external sources is optional, and if you cannot get a local server setup or prefer embedded shaders, by 
all means stick with that approach.

XMLHttpRequestObject
To load Ajax content from an external file we can use regular JavaScript to directly use the XMLHttpRequestObject 
(XHR). The XHR is used to send a request from the client to the server and receive a response without requiring 
reloading the page or interrupting a user’s browsing experience.

Briefly, we can think of the XMLHttpRequestObject by the components in its name:

XML: The document format sent; can also be JSON, HTML or plain text

HTTP: The protocol used; can also be HTTPS

Request: The action; can also refer to responses

In addition, the requests may be asynchronous calls that do not block other calls, or synchronous calls that 
do. With an asynchronous call, other requests can take place in parallel while with a synchronous call; all other 
requests need to wait for completion of the current request before starting processing. Synchronous calls take 
place in serial order. Usually asynchronous calls are done on websites for improved loading times. However, there 
are times when a synchronous call is needed to ensure the proper order of events. In Listing 2-3, setting the third 
parameter of the open method to false tells the XMLHttpRequestObject not to do an asynchronous call.

In Listing 2-3 we create a new instance of the XMLHttpRequestObject, set up the details of the document that 
we want to retrieve with the open method, actually send out the request with the send method, and then observe 
the readyState and status properties. We will not go into great detail about the XMLHttpRequestObject, but 
additional resources are listed in Appendix D.
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Listing 2-3. Loading shaders with the XMLHttpRequestObject

//get shader sources with XMLHttpRequestObject
var  fs_source = null,
 vs_source = null;

var xhr = new XMLHttpRequest();
//synchronous request requires a false third parameter
xhr.open('GET', './shader.vs', false);
//overriding the mime type is required
xhr.overrideMimeType('text/xml');
xhr.send(null);

if (xhr.readyState == xhr.DONE) {
 if(xhr.status === 200)
 {
 vs_source = xhr.responseXML.documentElement.firstChild.data;
 } else {
 console. error("Error: " + xhr.statusText);
 }
}
xhr.open('GET', './shader.fs', false);
xhr.send(null);

if (xhr.readyState == xhr.DONE) {
 if(xhr.status === 200)
 {
 fs_source = xhr.responseXML.documentElement.firstChild.data;
 } else {
 console. error("Error: " + xhr.statusText);
 }
}

In Listing 2-3 we are sending synchronous requests. Alternatively, we could use asynchronous calls and 
callback functions to signal that we are ready to move on with our program. In Listing 2-3 we also have to 
override the mime type to XML because the browser may not otherwise recognize the content of our shaders as 
a XML document. When the readyState is equal to XMLHttpRequestObject.DONE, then we check the status. 
A status of 200 means success and we can grab the data we need from the responseXML object: responseXML.
documentElement.firstChild.data. If the status is not 200, we output an error message to the console.

Starting with a copy of the 01/3D_triangles_depth_test.html file that was the last example of Chapter 1, 
remove the inline shader scripts at the top of the file and swap out these lines with those found in Listing 2-3:

//get shader source
var fs_source = document.getElementById('shader-fs').innerHTML,
vs_source = document.getElementById('shader-vs').innerHTML;

When you run the modified application, you will see that it works exactly the same as before. This can be 
found in the 02/vanilla_ajax.html file.

Note  Remember that you must be running a web server to use this approach. In Figure 2-3, I naively try run-
ning my file directly in the browser. You can see in the Chrome developer tools console the error that this causes. 
Developer and debugging tools are very useful and are covered in depth in Chapter 9.
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Figure 2-3. Error caused by trying to load an external file without a web server

Using jQuery
If we use a higher-level JavaScript API such as the very popular jQuery, there are a couple of advantages. First, 
it is easier because some of the low-level code is obscured for us. Second, it is more cross-browser compatible. 
A quick background of jQuery can be found in Appendix A. The equivalent jQuery functionality of Listing 2-3 is 
shown in Listing 2-4:

Listing 2-4. Loading shaders with jQuery

//get shader sources with jQuery Ajax
$.ajax({
  async: false,
  url: './shader.vs',
  success: function (data) {
    vs_source = data.firstChild.textContent;
  },
  dataType: 'xml'
});

$.ajax({
  async: false,
  url: './shader.fs',
  success: function (data) {
    fs_source = data.firstChild.textContent;
  },
  dataType: 'xml'
});

Because jQuery extracts away the underlying XHR calls and the $.ajax method explicitly states the 
parameters that it is using, Listing 2-4 is both more concise and easier to understand than Listing 2-3.

Remember to also include a link to the jQuery library. The latest version of the jQuery library hosted on the 
jQuery CDN is available for development usage from http://code.jquery.com/jquery-latest.js and for production 
usage, the minified form can be found at http://code.jquery.com/jquery-latest.min.js. The full source code for 
this example is available on the books companion sites and is available in the file 02/jquery_ajax.html. There is 
an issue associated with including the full shader source, including script tags, externally and then parsing. The 
issue and solution are discussed in Chapter 9.

http://code.jquery.com/jquery-latest.js
http://code.jquery.com/jquery-latest.min.js
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GLSL Specification in More Detail
Earlier, I mentioned that the GLSL is similar to C++. It uses a subset of ASCII characters and carriage return and/
or line feeds to terminate each line. The language is case sensitive and it is interesting to note that unlike C/C++, 
there are no character or string types used. As such, there are also no characters used for quoting. Variable and 
function names must start with an alphabet character or underscore, but cannot start with gl_ or be a reserved 
language word. Each shader program can have only one main method, which is the same as C/C++.

Primitive Types
The available basic types that are inherited from C++ are shown in Table 2-1.

Table 2-1. C++ Inherited Types and Descriptions

C++ types Description
void Used to specify a function with no return value and/or no 

parameters

bool Boolean true or false

int Signed integers. Example: 1, 7, 13

float Floating point number. Example: 1.3, 7.0, 13.445

GLSL defines new primitive types that are shown in Table 2-2.

Table 2-2. GLSL Types and Descriptions

GLSL types Description
vec2, vec3, vec4, ivec2, ivec3, vec4, bvec2,  
bvec3, bvec4

Vector of size 1×2, 1x3, or 1x4; and of type float, integer, 
or bool, respectively

mat2, mat3, mat4 Floating point matrix of size 2x2, 3x3, or 4x4

sampler2D, samplerCube Handles to 2D or cube mapped textures

We can also create structures that can hold more complex composite types. For instance:

struct myStruct{
 vec3 something;
 mat4 somethingElse;
}

Qualifiers
GLSL has several optional qualifiers for variables. These fall into the categories of storage, parameter, precision 
and invariant qualifiers.

Storage Qualifiers
Storage qualifiers describe both the variable scope and relation to the WebGL program.
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A variable might be declared with attribute storage as attribute vec3 aColor;.

Note  Prefixes are not required, but are commonly used to help represent the storage type of variables to other 
programmers: v for varying, u for uniform, and a for attribute. For example:

attribute vec3 aVertexNormals; 

uniform uSampler; 

varying vOriginalPosition;

Table 2-3. Storage Qualifiers

Qualifier Description
[none] The default for a variable is to have no storage qualifier. Local variables and function input 

parameters have no storage qualifiers.

const Constant throughout the program. Read only.

uniform Constant value across an entire primitive.

attribute VS per vertex information from our WebGL application.

varying VS write, FS read.

Table 2-4. Parameter Qualifiers

Qualifier Description
[none] The default, which is the same thing as specifying the in qualifier

In Parameters passed into a function

Out Parameters to be passed out of a function, but were not initialized

Inout Initialized parameter that will also be passed out of a function

Parameter Qualifiers 
Parameter qualifiers are used for function parameters (see Table 2-4).

A function in WebGL might look like this:

vec3 a = (0, 1, 0);
vec3 c;

void myFunction(a, out c){
    c = a * 2;
}

Precision Qualifiers
There are three different precision qualifiers for the GLSL: highp, mediump, and lowp. highp satisfies the 
minimum requirements for the vertex language. mediump satisfies the minimum precision for the FS. lowp is less 
than medium but still fully represents the values of a color channel.
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Invariant Qualifier
Lastly, there is the invariant qualifier. It ensures that a variable can no longer be modified.

Qualifier Order
The order of qualifiers is important. For variables it is:

invariant, storage, precision for example: invariant uniform highp mat4 m;

For parameters, the order is:

storage, parameter, precision For example: void myFunc(const in lowp c){ ; }

Built-in Variables
The GLSL has a number of built-in variables that are shown in Table 2-5.

Table 2-5. Built-in Shader Variables

Variable Type Description Used In Input/Output
gl_Position vec4 Vertex position VS output

gl_PointSize float Point size VS output

gl_FragCoord vec4 Fragment position within the frame buffer FS input

gl_FrontFacing bool Whether the fragment is part of a front or back 
facing primitive

FS input

gl_PointCoord vec2 Fragment position within a point FS input

gl_FragColor vec4 Final fragment color FS output

gl_FragData[n] vec4 Fragment color for a color attachment, n FS output

Built-in Constants
There are also built-in constants in WebGL. They have implementation-dependent values, but the minimum 
requirement of each is listed here:

const mediump int gl_MaxVertexAttribs = 8;
const mediump int gl_MaxVertexUniformVectors = 128;
const mediump int gl_MaxVaryingVectors = 8;
const mediump int gl_MaxVertexTextureImageUnits = 0;
const mediump int gl_MaxCombinedTextureImageUnits = 8;
const mediump int gl_MaxTextureImageUnits = 8;
const mediump int gl_MaxFragmentUniformVectors = 16;
const mediump int gl_MaxDrawBuffers = 1;

Vector Components
For convenience, besides numeric array subscripts, vector components can be accessed by a single letter. These 
letters vary based on the vector type, as displayed in Table 2-6.
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The usual third component of a texture, r, is renamed p to be distinct from the red color component. With 
vector components you can do assignments and calculations such as:

vec4 green = vec4(0.0, 1.0, 0.0, 1.0);
vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);
vec4 final_color;

final_color = vec4(green.rg, blue.ba); //use red, green from one vector and blue, alpha from  
      another
final_color.rgb = green.rrr; //use only the red channel
final_color.rg = green.gr; //swap red, green
final_color.g = green.gr; //average green, blue

Vector and Matrix Operations
GLSL has built-in support for vector and matrix operations. When a scalar operates on a vector or matrix, or 
the operation is addition or subtraction, then calculation is done component-wise. When performing vector or 
matrix multiplication, then we follow regular linear algebra multiplication rules. Some example declarations:

vec3 u, v, w;
float f;
mat3 m;

We can also initialize scalar variables, vectors and matrices on declaration:

float f = 1.4;
vec4 color = vec4(1.0, 0.0, 0.0, 1.0); //red
vec4 a = vec2(1.0, 2.0);
vec2 b = vec2(3.0, 4.0);

mat2 m = mat2(a, b);
//column major order – columns are listed in sequence. So the above
//produces a matrix with values:
//    1.0 3.0
//    2.0 4.0
//
//and stored in memory as 1.0 2.0 3.0 4.0

mat2 m = mat2(1.0, 0.0, 0.0, 1.0);  //2x2 identity matrix
mat2 m = mat2(1.0); //also 2x2 identity matrix

v = u + f;

is the same as:

v.x = u.x + f;
v.y = u.y + f;

Table 2-6. Vector Components

Usage Shorthand Notation
Coordinate positions and normals {x,y,z,w}

Colors {r,g,b,a}

Textures {s,t,p,q}
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v.z = u.z + f;
w = u - v;

is the same as:

w.x = u.x - v.x;
w.y = u.y - v.y;
w.z = u.z - v.z;

The GLSL also has functions for performing dot products and cross products, which are dot and cross 
respectively.

w = dot(u, v);

is the same as:

w.x = u.x*v.x;
w.y = u.y*v.y;
w.z = u.z*v.z;

and:

w = cross(u, v);

is the same as:

w.x = u.y * v.z* - u.z * v.y;
w.y = u.z * v.x* - u.x * v.z;
w.z = u.x * v.y* - u.y * v.x;

Built-in Functions
The GLSL defines many built-in functions for common operations. We have just seen two: dot and cross. There 
are many more and should always be used over equivalent user-defined functions as the built-in versions will be 
optimized.

For all the functions to be listed, the input and output types can be float, vec2, vec3, or vec4. To avoid 
redundancy and for a cleaner appearance, we will use T to signify any one of these types. Just keep in mind that if 
an input parameter is of a certain type, all other inputs and outputs must be that type as well. For example:

T sin(T angle) can represent
float sin(float angle) or
vec2 sin(vec2 angle) but not
vec2 sin(float angle)

For the vec2, vec3, or vec4 instances of a function, the operation is done on each component. Also note that 
if the divisor of one of these functions is 0, the result will be undefined, but there will be no divide by zero error 
produced.

Angle and Trigonometry Functions
GLSL functionality to convert between degrees and radians and calculate trigonometric values are shown in 
Table 2-7. Recall that degrees = radians * 180/ , so one radian  57.3 degrees. 
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Table 2-7. Trigonometric Functions in GLSL

GLSL Function Description
T radians(T degrees) Convert degrees to radians; radians = degrees/57.3

T degrees(T angle) Convert angle (in radians) to degrees; degrees = angle*57.3

T sin(T angle) Sine function (Opposite/hypotenuse); angle in radians, output is in the range [–1, 1]

T cos(T angle) Cosine function (Adjacent/hypotenuse); angle in radians, output is in the range [–1, 1]

T tan(T angle) Tangent function (Opposite/adjacent); angle in radians, range is +/- infinity; 
undefined when angle is a multiple of /2

T asin(T x) Arcsine function; given input in [–1, 1] produces an angle in the range [– /2, /2]; 
undefined for |x| > 1.

T acos(T x) Arccosine function; given input in [-1, 1] produces an angle in the range [0, ]; 
undefined for |x| > 1.

T atan(T y, T x) Arctangent; undefined if both x and y are 0; Output is [– , ]

T atan(T y_over_x) Arctangent; output range is [– /2, /2].

Table 2-8. Exponential Functions in GLSL

GLSL Function Math Function Description
T pow(T x, T y) xy Returns x raised to the power of y, xy. Results 

are undefined for x < 0 or x=0 and y<=0

T exp(T x) ex Natural exponentiation of x, ex.

T exp2(T x) 2x 2 to the power of x, 2x.

T log(T x) y = log
e
x Natural logarithm x, x = ey, y = log

e
x. 

Undefined if x <= 0.

T log2(T x) y = log
2
x Logarithm of base 2, x = 2y, y = log

2
x. 

Undefined if x <= 0.

T sqrt(T x) x Returns the positive square root of x, x1/2 or 
x . Undefined if x < 0.

T inversesqrt(T x) 1
x

The reciprocal of the positive square root of 
x, x-1/2 or 1

x . Undefined if x <= 0.

Exponential Functions
Functionality to handle exponential powers and their inverses, logarithms, along with powers of +/– ½, which are 
square root and inverse square root, are shown in Table 2-8.

Common Functions
Some other commonly used math functions are shown in Table 2-9. These include operations that grab the whole 
or fractional part of a number or perform other numeric manipulation.
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Table 2-9. Common Functions in GLSL

GLSL Function Description
T abs(T x) Returns -x if x<0; otherwise returns x.

T sign(T x) Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0.

T floor(T x) Returns the nearest integer below or equal to x. floor(4.7) 
= 4.0 = floor(4.0)

T ceil(T x) Returns the nearest integer above or equal to 
x. ceil(4.7) = 5.0 = ceil(5.0)

T fract(T x) Returns the decimal part of a number. 
fract(x) = x – floor(x).

T mod(T x, T y) Modulus operator. Returns x – y*floor(x/y) 
using the corresponding component of y.

T mod(T x, float y) Modulus operator. Returns x – y*floor(x/y) using a 
single provided floating point value.

T min(T x, T y) 
T min(T x, float y)

Returns y if y<x; otherwise x. Component-wise or single 
float y version of function.

T max(T x, T y) 
T max(T x, float y)

Returns y if y>x; otherwise x. Component-wise or single 
float y version of function.

T clamp( T x, T minVal, T maxVal) 
T clamp( T x, float minVal, float maxVal)

Returns (min(max(x, minVal), maxVal)). Ensures that 
minVal <= x <= maxVal. Component-wise or single min 
and max value versions. Undefined if minVal > maxVal.

T mix(T x, T y, T a) 
T mix(T x, T y, float a)

Returns a linear blend of x and y corresponding to the 
equation x(1-a) + y*a. Component-wise or single min 
and max value versions.

T step(T edge, T x) 
T step(T float edge, T x)

Returns 0.0 if x < edge, 1.0 otherwise. Component-wise 
or single min and max value versions.

T smoothstep( T edge0, T edge1, T x) 
T smoothstep( float edge0, float edge1, T x)

Returns 0.0 if x < edge, 1.0 if x >= edge1 and uses 
smooth interpolation (Hermite) between 0 and 1 
otherwise. Undefined if edge0 >= edge1.

Geometric Functions
The following GLSL functions in Table 2-10 are not calculated component-wise but follow vector-on-vector 
operation rules to compute geometric results.
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Matrix and Vector Functions
The following matrix function can use mat2, mat3, or mat4 so long as all inputs and the output are of the same 
type:

mat matrixCompMult (mat x, mat y)

Normally when two matrices are multiplied, (x*y), the computation of the result[i][j] = dot(x
row_j

, 
y
column_i

). However, this function computes just the scalar product of each matrix element, result[i][j] = x[i]
[j] * y[i][j].

For component-wise value comparisons of vectors, we have the following functions that return a Boolean 
valued vector. In the following code, bvec can represent bvec2, bvec3, or bvec4. Similarly vec can be vec2, vec3, 
vec4, ivec2, ivec3,or ivec4 as long as both parameters are the same type.

bvec lessThan(vec x, vec y)
bvec lessThanEqual(vec x, vec y)
bvec greaterThan(vec x, vec y)
bvec greaterThanEqual(vecx, vec y)

This does component-wise comparision of x < y, x <= y, x > y or x >=y, respectively.

bvec equal(vec x, vec y)
bvec notEqual(vec x, vec y)

These functions can also take bvec parameters and return the component-wise comparision of x == y or 
 x != y, respectively.

Table 2-10. Geometric Functions in GLSL

GLSL Function Description
float length(T x) Returns the length of the vector.

float distance(T x, T y) Returns the distance between vectors x and y, length(x – y).

float dot(T x, T y) Returns the dot product of vectors x and y, x
o
*y

o
 + x

1
*y

1
+ …

vec3 cross(vec3 x, vec3 y) Returns the cross product of vectors x and y. This operation is available only for 
three-dimensional vectors.

T normalize(T x) Returns a vector with the same direction as the input x, but with a new length 
of 1, (x

0
/length(x), x

1
(length(x)), …)

T faceforward 
(T N, T I, T Nref)

Used to adjust a vertex normal to face the scene camera. N is a normal vector, 
I is the incidence vector(direction from the camera to a vertex), Nref is a 
reference vector. 
Determines the direction of a primitive face, by calculating dot 
(Nref, I). Returns N if the dot product is smaller than 0.0 and –N otherwise.

T reflect(T I, T N) Returns the reflection direction. N is a normal vector, I is the incidence vector 
(direction from the camera to a vertex). Returns I – 2*dot(N, I)*N.

T refract(T I, T N, float eta) Returns the refraction direction. N is a normal vector; I is the incidence vector 
(direction from the camera to a vertex), eta is the ratio of indices of refraction. 
I and N must be normalized to obtain correct results.
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bool any(bvec x)
bool all(bvec x)
bvec not(bvec x)

The first function returns true if any component of x is true. The second returns true only if all components 
are true. The third function returns the complementary Boolean vector: input true components are set to false in 
the output vector and false components to true.

Texture Lookup Functions
Lastly, there are built-in functions for textures. Level of detail (Lod) suffixed functions are only available in the VS.

2D Texture Functions
vec4 texture2D (sampler2D sampler,vec2 coord )
vec4 texture2D (sampler2D sampler,vec2 coord, float bias)
vec4 texture2DProj (sampler2D sampler,vec3 coord )
vec4 texture2DProj (sampler2D sampler,vec3 coord, float bias)
vec4 texture2DProj (sampler2D sampler,vec4 coord)
vec4 texture2DProj (sampler2D sampler,vec4 coord, float bias)
vec4 texture2DLod (sampler2D sampler,vec2 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,vec3 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,vec4 coord, float lod)

coord is a texture coordinate that looks at the current texture bound to the sampler variable. A suffix containing 
Proj means the projective version of the function. In this case, the texture coordinates (coord.st) are divided 
by the last component of coord. If you use a coord of type vec4with the projective version, the third coordinate is 
simply ignored.

3D Texture Functions
vec4 textureCube (samplerCube sampler, vec3 coord )
vec4 textureCube (samplerCube sampler,vec3 coord, float bias )
vec4 textureCubeLod (samplerCube sampler,vec3 coord, float lod)

coord is a texture coordinate that looks at the current texture which is bound to the sampler. The direction of 
coord determines which face of the 3D cube to do a 2D texture lookup on.

Noise Functions
Unlike recent versions of the GLSL, the OpenGLES SL that WebGL uses does not have built-in noise functions for 
generating noise. Using noise can be very useful to add the appearance of randomness or grittiness to textures. 
We can also simulate clouds, fog, wood and marble, among other materials using noise. Though beyond the 
scope of this book, noise can be generated using algorithms such as Perlin noise in a shader program and stored 
in texture images for later use.

Interactive GLSL Environs
A good place to dive into the GLSL functions is an interactive editor that lets you adjust the VSs and FSs without 
needing to worry about the WebGL application code.
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Several desktop programs to manipulate the GLSL exist, but are primarily geared toward OpenGL 
implementations and versions of the GLSL that are higher than WebGL supports. As such, they can still be useful 
but the reader should be warned that functionality that may work within these programs may not function 
properly when used as WebGL specific vertex and fragment shaders.

There are several websites that offer shader manipulation and also control the WebGL application, models, 
and program interaction for you. This lets you concentrate on the GLSL source. The number of useful programs 
and websites for WebGL shader development will increase with the maturity of the language and the community. 
At the moment, three good sites are:

KickJS Shader Editor 
http://www.kickjs.org/example/shader_editor/shader_editor.html

WebGL Playground 
http://webglplayground.net/

SpiderGL MeShader 
http://spidergl.org/meshade/

You can see MeShade in action in Figure 2-4.

Figure 2-4. Using the gargoyle mesh and editable shader source of MeShade

Of the three sites lists, KickJS is the easiest to start using and has a nice real-time error console and 
adjustable settings.

Procedural Shaders
For the following examples, we will use an interactive shader environment to explore some procedural shaders, 
which produce effects through algorithms within the shaders instead of precomputed stored data passed in from 
our application. They are sometimes referred to as procedural texture shaders. We will cover stored textures in 
the next chapter.

http://www.kickjs.org/example/shader_editor/shader_editor.html
http://webglplayground.net/
http://spidergl.org/meshade/
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Procedural shaders do not require memory to store an image and scale better than using normal textures. 
However, using procedural shaders requires an understanding of the algorithms used, which can be complex and 
also require much more computing power than a stored texture. The results of a procedural shader can also be 
rendered to a texture file for later static usage.

Procedural shaders can be written using both the VS and FS. In most of these examples, we will only use the 
VS to pass the final coordinates of each vertex on to the FS. The algorithms that will determine the final pixel color 
will be written within the FS.

Gradient Color
Our first example will produce a gradient color using the mix function and a component of the position or texture 
coordinate defined within our interactive environment. In Listing 2-5 we show the relevant FS code for the KickJS 
environment and in Listing 2-6 for the webglplayground.net editor (see Figure 2-5). As you can see, the only 
difference is the variable that we use for our mix amount.

Listing 2-5. Gradient FS at KickJS

varying vec2 uv;

void main(void)
{
 vec3 blue = vec3(0.0, 0.0, 1.0);
 vec3 green = vec3(0.0, 1.0, 0.0);
 gl_FragColor = vec4(mix(blue, green, uv.s), 1.0);
}

Listing 2-6. Gradient FS at webglplayground.net/

@glsl_fs1
varying vec2 pos;

void main() {
 vec3 blue = vec3(0.0, 0.0, 1.0);
 vec3 green = vec3(0.0, 1.0, 0.0);
 gl_FragColor = vec4(mix(blue, green, pos.y), 1.0);
}

Figure 2-5. Gradient teapot on the left (KickJS); gradient plane on the right
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Stripes
Next we will show how to use the mod function to generate repetition and create stripes. In Listing 2-7 we take a 
texture parameter and multiply it by a variable, repetition, which determines the frequency of alternation. Then 
we test the output, setting the color value equally dependent on a threshold of 0.5. If this is set unevenly, toward 
0.0 or 1.0, one color of stripes will be much wider than the other, resulting in more of a pinstriping appearance. 
In the center teapot of Figure 2-6, we use uv.t instead of uv.s, and in the right teapot we use (uv.s * uv.t).

Listing 2-7. Fragment shader code to generate black and white stripes

varying vec2 uv;
void main(void)
{
 float repetition = 15.0;
 vec3 black = vec3(0.0, 0.0, 0.0);
 vec3 white = vec3(1.0, 1.0, 1.0);
 bool color = (mod(uv.s * repetition, 1.0) > 0.5);

 if(color){
    gl_FragColor = vec4(black, 1.0);
 }else{
    gl_FragColor = vec4(white, 1.0);
 }
}

Figure 2-6. Teapots with vertical, horizontal, and curved striping

Notice the aliasing artifacts in Figure 2-6.

Discarding
We will explore the GLSL keyword, discard, which is used in the FS to not draw fragments. We will also use 
a few of the functions defined previously to produce grid point and lattice drawings. The nice thing with 
interactive shaders is that the models are rendered for us. We just worry about the VS and FS details. I have 
chosen the sphere mesh, but disabled lighting to simplify the shaders. The variable names are specific to the 
KickJS environment, but will work with any WebGL application as long as you rename the attributes and uniform 
variables to appropriate values.

http://dx.doi.org/10.1007/978-1-4302-3996-3_10


CHAPTER 2  SHADERS 101

54

Listing 2-8. The VS for use within the kickjs.org shader editor

attribute vec3 vertex;
attribute vec2 uv1;

uniform mat4 _mvProj;

varying vec2 uv;
varying vec3 vColor;

void main(void) {
 gl_Position = _mvProj * vec4(vertex, 1.0);
 uv = uv1;
 vColor = vec3(1.0,0.7,0.8);
}

Listing 2-9. The matching FS for use within the kickjs.org shader editor

varying vec3 highp vColor;
varying vec2 highp uv;

uniform sampler2D tex;

void main(void)
{
  gl_FragColor = texture2D(tex,uv)*vec4(vColor, 1.0);
}

The FS makes use of a texture that is stored in the sampler2D tex. We cover textures in the next chapter, but 
the shader editor loads it for us here. We just need to know that 2D textures have coordinates s and t, which lie in 
the range [0,1]. The default image produced is shown on the left of Figure 2-7.

We adjust the FS now to include the lines in Listing 2-10.

Figure 2-7. Original image on the left, using discard on the right
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Listing 2-10. Using the discard function

const float scale = 20.0;
const vec2 latticeSize = vec2(0.1, 0.1);
vec2 fractional = fract(uv * scale);
bvec2 toDiscard = (greaterThan(fractional, latticeSize ));

if( any(toDiscard) )
{
    discard;
}

Adding the above code to the main function in Listing 2-9 produces the image on the right of Figure 2-7. In 
Listing 2-10, uv holds the texture coordinates passed in from the VS. These values will fall between 0.0 and 1.0. 
Multiplying by our scaling factor adjusts the range and determines how many sections we have. Next we use 
fract to get the fractional part of both scaled components. The greaterThan function will do a component-wise 
compare of fractional and latticeSize vector values and store the Boolean results in the toDiscard vector. 
Explicitly, it looks like this:

toDiscard = bvec2( fractional.x > latticeSize.x, fractional.y > latticeSize.y)

For a varying input uv value of (0.401, 0.32),

fractional = fract(8.02, 6.4) = (0.02, 0.4)

and

toDiscard = greaterThan( (0.02, 0.4), (0.1, 0.1) ) = (false, true)

We then check the Boolean vector of comparision results with the any function that returns true if any of 
the components of an input Boolean vector is true. With the previous example instance, toDiscard = (false, 
true), so the any function will return true.

When the function returns true we call the GLSL keyword discard, which tells the GPU not to render the 
fragment. In Listing 2-10, only parts of the image that are within a certain distance of regular grid points will be 
rendered.

You can decrease/increase the grid point size by decreasing/increasing one or both components of 
latticeSize. You can decrease/increase the total number of grid points by decreasing/increasing scale.

Now suppose we want to show latitude and longitude type lines along the sphere. That is easy; we simply use 
the all function instead of the any function used in Listing 2-10. This reduces what we discard because both the 
texture components must be greater than our lattice size to return true (see the left side of Figure 2-8). Finally, we 

Figure 2-8. A full lattice shown on the left, and half a lattice shown on the right
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can also specify that in addition to our lattice check that we also do not want to discard any part of the image that 
lies within a certain region. We can do this with an additional conditional test such as the following, which checks 
the t value of the texture:

if(uv.t < 0.5){ toDiscard.x = false; }

The output of adding this conditional test is shown on the right of Figure 2-8.

Summary
This chapter looked at the WebGL graphics pipeline, the role of shaders, and the GLSL in depth. We showed 
online interactive sites that let you easily play around with shaders without needing to create the mesh or 
viewport, and showed some procedural shading techniques. We will come back to procedural produced images 
in Chapter 6. We will build upon the knowledge gained in this chapter in more elaborate examples throughout 
the book, starting with the next chapter. In the next chapter, we will look at how to manipulate and apply texture 
to our meshes as well as discuss lighting models and surface normals.
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CHAPTER 3

Textures and Lighting

In this chapter we will cover two topics that are fundamental to producing realistic scenes, texture and lighting. 
Specifically, we will 

discuss what textures are and how to apply them 

show what texture options are available and how to configure these 

use multiple textures in a shader 

present a basic lighting model 

create a directional light shader

By the end of the chapter, we will produce the textured and lit mesh on the right of Figure 3-1.

Figure 3-1. Left - No texture or lighting; Right - both texture and lighting

The left image in Figure 3-1 is a concrete example of why we need to use texture and lighting. In the last 
example of Chapter 1, a triangle mesh was visible as a 3D figure. The reason it appeared three-dimensional was 
only because the vertex colors were distinct and interpolated by our fragment shader. This provided depth cues 
for us. As you can see, when all the vertex points have the same color, and no lighting or texture is applied, the 
image looks like a flat two-dimensional polygon. It is actually still 3D; the reason that it appears flat is that there 
are no context clues to let us know that this is in fact a solid figure.

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012
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When we look at an image, we depend on clues such as variance on the faces of a solid in terms of lighting: 
darkness/illumination, reflection, shadows, and directional pattern changes from textures to inform us where 
one face ends and another begins. In the image on the right of Figure 3-1, we have added texture and lighting 
clues, and you can clearly tell that this is a solid.

Textures
Textures are images that are applied to surfaces within our program. Images used as textures may be bitmapped 
in origin or generated procedurally. Textures must be applied (mapped) to our image and in doing so are usually 
stretched, scaled, distorted, and/or repeated.

The width and height of a texture are usually the same and a power of 2, 2n, such as 64, 128, 256, and 512. 
Each basic element of a texture is known as a texel which stands for texture elementor texture pixel.

Texture Coordinates
In two dimensions, texture coordinates are referred to in (s,t) pairs instead of (x,y) pairs like vertex positions. 
Normally, texture coordinates are also limited to the range (0,0) to (1,1). For a texture size of 128x128 pixels, all 
points will be divided by 128 in order to lie within this range. The texture coordinate (0.5, 0.25) for a 128x128 
texture would refer to the texel (64, 32).

Figure 3-2 shows the coordinates of a source image on the left and the equivalent texture coordinates on the right.

Figure 3-2. Left - a square 128¥128 pixel image with vertex coordinates; Right - the equivalent texture coordinates

Texture coordinates are usually sent to the shader program as vertex attribute values, but (as we saw in the 
previous chapter) we can also manipulate them within our shader program.

Texture Objects
In WebGL, a texture is stored within a WebGLTexture object. To create and bind a WebGLTexture object, the API 
functions used are:

WebGLTexture createTexture();
void bindTexture(GLenum target, WebGLTexture texture);

The target for 2D textures will be TEXTURE_2D. Other target types are listed in Appendix C.
The code to create and bind a WebGLTexture will look like this:

var texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);

To check that a certain texture has loaded properly, you can use the API call:
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GLboolean isTexture(WebGLTexture texture);

Code to check a texture will look like this:

if( !gl.isTexture(texture) )
{
       console.log("Error: Texture is invalid");
}

This is important to check because if no WebGLTexture is currently bound (by passing null or 0 to 
bindTexture), then further operation attempts on the texture will produce an INVALID_OPERATION error.

When you are done with a texture, you can delete it with a call to:

void deleteTexture(WebGLTexture texture);

It will look like this:

gl.deleteTexture(texture);

Now that we have initialized a WebGLTexture object, we are ready to load data into it.

texImage2D
The API call to load data into a texture is the texImage2D function. This function has five signature variations. The 
first four are of this form:

void texImage2D(  GLenum target, GLint level, GLenum internalformat,
                  GLenum format, GLenum type, [source]);

In this code, [source] may be one of ImageData, HTMLImageElement, HTMLCanvasElement, or 
HTMLVideoElement. The latter three may throw a DOMException.

The other form of the call is for specifying the data from a typed array:

void texImage2D(  GLenum target, GLint level, GLenum internalformat,
                  GLsizei width, GLsizei height, GLint border, GLenum format,
                  GLenum type, ArrayBufferView? pixels);

Example usage of this form of the function can be found in Chapter 6.
The level parameter refers to the level of detail used in mipmaps, which are discussed later in the chapter. 

This parameter is usually set to 0. The internalformat and format are usually RGBA. And the type is often 
UNSIGNED_BYTE. All the available formats and types are shown in Appendix C.

Loading Images into a Texture Object
The most common way to populate texture data is from an image file. We can also set the data or use other 
objects such as a HTMLCanvasElement or HTMLVideoElement.

We will declare a variable to hold our texture image data:

var textureImage = null;

We use an HTML Image object to load our texture image:

function loadTexture()
{
       textureImage = new Image();
       textureImage.onload = function() {
              setupTexture();

}
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       textureImage.src = "./textures/smiley-128px.jpg";
}

In the loadTexture method, we create a HTML Image object and set up the onload event. What this does is 
wait until the Image has been loaded through the textureImage.src assignment and then call the setupTexture 
method. The details of our texture setup are shown in Listing 3-1.

Note  We are storing the Image in the textureImage variable and not the texture variable which holds the 
WebGLTexture object.

Listing 3-1. Setting up the WebGLTexture object

function setupTexture()
{
 texture = gl.createTexture();
 gl.bindTexture(gl.TEXTURE_2D, texture);

   gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
   gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, textureImage);
   gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
   gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

   if( !gl.isTexture(texture) )
   {
       console.log("Error: Texture is invalid");
   }

}

In the texture setup method of Listing 3-1 we create a WebGLTextureObject and then bind it. We then set the 
texture data by calling texImage2D with our loaded HTML Image object. The pixelStorei function tells WebGL 
how to store our data, and texParameteri sets options for how to handle texture filtering and wrapping. We will 
cover these two new functions in more detail later on in the chapter. Finally, we check that our texture object is 
valid and print an error message to the console if it is not.

Note  This is just one way to load image data. You can also use the image in an existing <img> tag:

<img src="./textures/smiley-128px.jpg" id="smiley-image" /> 
function loadTexture() 
{ 
  textureImage = $("#smiley-image").get(0); 
  setupTexture(); 
}

You can also use an image from an HTMLCanvasElement or HTMLVideoElement, or load raw data as your texture image.

Texture images must also follow the rules of Cross-Origin Resource Sharing (CORS). If your texture source(s) are in the same lo-
cation as your JavaScript files, you don’t need to worry about CORS. More information about the exact restrictions of CORS can be 
found at http://www.w3.org/TR/cors, and the stricter WebGL CORS restrictions can be found at http://www.khronos.
org/registry/webgl/specs/latest/#4.2

http://www.w3.org/TR/cors
http://www.khronos.org/registry/webgl/specs/latest/#4.2
http://www.khronos.org/registry/webgl/specs/latest/#4.2
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Application and Shader Interaction
We need to send our loaded texture object from our application to the shader program. In our setupTexture 
function, we will add code to get the location of our uSampler uniform and set its value for use with our program.

glProgram.samplerUniform = gl.getUniformLocation(glProgram, "uSampler");
gl.uniform1i(glProgram.samplerUniform, 0);

The second parameter 0 refers to the TEXTURE0 texture unit that is currently bound. TEXTURE0 is the default 
texture unit.

For this example, we will define vertex points for a plane composed of two triangles with these data points:

var triangleVertices = [
 -0.5, -0.5, 0.0,
 0.5, -0.5, 0.0,
 0.5, 0.5, 0.0,

 0.5, 0.5, 0.0,
 -0.5, 0.5, 0.0,
 -0.5, -0.5, 0.0
];

These vertex points are sent to the shader using a normal vertex buffer object (VBO), just like we did in the 
Chapter 1 example of Listing 1-6.

Using a Texture in Our Shader
To use textures, we need to adjust our shaders to have access to the texture data. In this example, we are not using 
a separate texture coordinate attribute for each vertex. Instead, in our vertex shader we use the x,y coordinates of 
the position as our texture coordinate for each vertex. Each vertex coordinate passed in will be in the range [-0.5, 
0.5], so we add 0.5 to both coordinates to map to the [0,1] range when we use them as texture coordinates.  
A varying variable stores the texture coordinate and is passed on to the fragment shader, as shown in Listing 3-2.

Listing 3-2. A Basic Vertex Shader to Compute and Pass Along a Texture Coordinate

<script type="x-shader/x-vertex">
    attribute vec3 aVertexPosition;
    varying highp vec2 vTextureCoord;

    void main(void) {
      gl_Position = vec4(aVertexPosition, 1.0);
      vTextureCoord = aVertexPosition.xy + 0.5;
    }
</script>

Texture data is accessible to our fragment shader through the use of a uniform sampler2D variable, as shown 
in Listing 3-3. In the texture2D function, the first parameter is our texture sampler and the second is the lookup 
location that was passed in from the vertex shader.

Listing 3-3. A Basic Fragment Shader that looks up texture values

<script id="shader-fs" type="x-shader/x-fragment">
    varying highp vec2 vTextureCoord;
    uniform sampler2D uSampler;
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    void main(void) {
 gl_FragColor = texture2D(uSampler, vec2(vTextureCoord.s, vTextureCoord.t));
    }
</script>

The output of running our first program is shown in Figure 3-3. The left image is centered but looks skewed 
because the viewport is proportional to the canvas size. The right image has a viewport with height and width 

Figure 3-3. Basic texturing: left - viewport proportional to the canvas dimensions; right - a square viewport

both set to the canvas.height and so is proportioned properly, but is no longer centered. The code of this 
example is available on the book companion sites in the 03/basic_texture.html file.

Texture Options
When we use textures, we do a lookup of stored data to find an appropriate return value to use. When the lookup 
value corresponds to exactly one texel, the return value is straightforward. However, when we are trying to find a 
texture value that overlaps texels, the value that we will get back is determined by the filter settings of our texture. 
How WebGL handles coordinates specified that lie outside of the [0,1] range of the texture or mapping to larger or 
smaller images than the texture size depends on the wrap settings. Enabling mipmaps can also impact the return 
value for a specific coordinate lookup. In addition, we can modify the storage format of our data.

Texture Filtering
When texels of noninteger position are requested (relative to the 0 to 1 range values multiplied by the actual 
texture size), such as, (64.35, 19.8) in a 128px texture, we need to perform texture filtering to obtain an 
appropriate value.

Filter parameters can either handle the stretching of a texture (TEXTURE_MAG_FILTER) or shrinking  
(TEXTURE_MIN_FILTER) to fit an image. For TEXTURE_MAG_FILTER we have two options, LINEAR and NEAREST, with 
LINEAR being an averaged value of nearby texels and producing fairly smooth interpolated results, and NEAREST 
being the closest texel so is fastest to compute but not as smooth. For TEXTURE_MIN_FILTER, we have more 
options. From quickest and roughest to slowest but smoothest are the following:
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LINEAR, NEAREST,
NEAREST_MIPMAP_NEAREST, LINEAR_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_LINEAR

The last four options require having set mipmaps by calling gl.generateMipmap(gl.TEXTURE_2D)first. We 
will cover mipmaps later on in the chapter.

Texture filter parameters can be set by calling one of:

void texParameterf(GLenum target, GLenum param_name, GLfloat param);
void texParameteri(GLenum target, GLenum param_name, GLint param);

The result of shrinking a texture of a dog and varying the TEXTURE_MIN_FILTER setting can be seen in the 
difference of sharpness of the two resulting images in Figure 3-4.

Figure 3-4. Left - NEAREST filtering; Right - LINEAR_MIPMAP_LINEAR filtering

The left image uses

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

The right image uses

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR_MIPMAP_LINEAR);

Texture Wrapping
Texture wrapping is the way we handle coordinates (s,t) that fall outside of our normal texture coordinate range 
of [0,1]. Wrapping parameter names, pname, can be either TEXTURE_WRAP_S or TEXTURE_WRAP_T.

The default wrapping mode is to REPEAT the texture (it uses only the fractional part of the texture coordinate). 
Two other options are CLAMP_TO_EDGE, which samples only coordinates that are within the range [0,1], and 
MIRRORED_REPEAT which is the same as REPEAT for coordinates with an even integer component (2.3 and 4.3 
are both mapped to 0.3). For odd integer components, the fractional part of the coordinate is mapped to 
(1- coordinate_fractional_value), so 1.3 and 3.3 end up being both mapped to 0.7. Adjustments to the wrapping 
modes are shown in Figures 3-5 to Figure 3-7.

To find the current value of a texture parameter, you can use this function:

getTexParameter(GLenum target, GLenum pname)
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Figure 3-6. Left - TEX_WRAP_S set to CLAMP_TO_EDGE; Center - TEX_WRAP_T set to CLAMP_TO_EDGE; Right - both S and 
T set to CLAMP_TO_EDGE

Figure 3-7. Left - TEX_WRAP_S set to MIRRORED_REPEAT; Center - TEX_WRAP_T set to MIRRORED_REPEAT; Right - both S 
and T set to MIRRORED_REPEAT

Figure 3-5. Left – original texture image; Center - texture application onto a triangle with default REPEAT; Right - 
multiplying the texture coordinate values in the shader to pronounce the repetition

Data Storage
We can adjust the way texture data is stored in WebGL through calls to this function:

void pixelStorei(GLenum pname, GLint param);

In Listing 3-1, we flipped the texture vertically using this:

gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
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The options we have for pname are UNPACK_FLIP_Y_WEBGL, UNPACK_PREMULTIPLY_ALPHA_WEBGL, and  
UNPACK_COLORSPACE_CONVERSION_WEBGL. For the first two options, any nonzero param value is interpreted as true.

UNPACK_FLIP_Y_WEBGL flips the source data along the vertical y-axis if set to true. This makes the last row 
of data to be the first row transferred. The reason to set this option to true is that data loaded from other HTML 
images have the y-axis naturally point in the opposite direction from WebGL. Without the call, the image will 
appear to be upside down.

If UNPACK_PREMULTIPLY_ALPHA_WEBGL is set to true, and the source data has an alpha channel, it will be 
multiplied against all the other channels during transfer: (r,g,b,a) => (r*a, g*a, b*a, a).

Finally, UNPACK_COLORSPACE_CONVERSION_WEBGL converts the source data to the browser’s default 
colorspace. For this option, param is set to either BROWSER_DEFAULT_WEBGL or NONE.

Mipmaps
To aid in accurate texture filtering, mipmaps are a precalculated optimized set of decreasingly sized versions of 
a texture. They are one place where the power of 2 comes in to play for textures. Each image in a mipmap is a 
smaller version of the last—starting with half the dimension size, then a quarter, an eighth, and so on.

For example, if the original texture was 256x256 pixels in dimension, we would have smaller textures in the 
mipmap of sizes 128x128, 64x64, 32x32, […], 2x2, 1x1.

Because the size of each texture is only 25 percent (½ * ½) the size of the previous, the total size of a mipmap 
is only one-third larger than that of the original texture. Mipmaps improve accuracy when the surface that we are 
applying our texture to is smaller than our original texture.

To generate the mipmap for the currently bound texture, all you have to do is call this function:

void generateMipmap(GLenum target)

As we have shown in our code, the function looks like this:

gl.generateMipmap(gl.TEXTURE_2D);

Note  Calling generateMipmap with no WebGLTexture bound or a Non-Power-Of-Two (NPOT) texture will gener-
ate an INVALID_OPERATION error.

The texture image of our dog along with a decreasing series of texture sizes is shown in Figure 3-8. This image 
represents a mipmap.

Figure 3-8. Mipmap representation of a dog texture
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Texturing a 3D Object
Now that we have a background of texturing and some 2D practice, we will texture a 3-D object. We will start with 
the last example from Chapter 1, found in the 01/3D_triangles_depth_test.html file. As you may recall, that 
example is of a rotating triangular prism. We will now texture it as a first step to producing the image on the right 
of Figure 3-1. We will use a separate attribute for texture coordinates. We shall see that 3D texturing can be more 
complex than 2D texturing. The texture we will load, textures/stone-128px.jpg, will display stone bricks.

Texture Coordinate Attribute
We need to calculate texture coordinates per vertex and send them on to our shader program. First, we add two 
new variables:

vertexTexCoordAttribute = null,
trianglesTexCoordBuffer = null,

Next we define texture coordinates for each vertex as shown in Listing 3-4.

Listing 3-4. Providing texture coordinates

var triangleTexCoords = [
 //front face
 0.0, 0.0,
 1.0, 0.0,
 2.0, 0.0,
 0.5, 1.0,
 1.5, 1.0,
 1.0, 2.0,

 //rear face
 0.0, 0.0,
 1.0, 0.0,
 2.0, 0.0,
 0.5, 1.0,
 1.5, 1.0,
 1.0, 2.0
];

trianglesTexCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesTexCoordBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleTexCoords), gl.STATIC_DRAW);

Here I have been lazy and just used the x and y values of the vertex points. Note that even though values lie 
past the [0.0, 1.0] range of texture coordinates, the coordinates we provide still work. This can be seen on the 
front face of the prism in Figure 3-9. The reason it still works is because, as mentioned above, the default WebGL 
wrap mode is gl.REPEAT and we are using a seamless tiled texture.

Finally, in our drawScene method, we need to use our buffer data:

vertexTexCoordAttribute = gl.getAttribLocation(glProgram, "aVertexTexCoord");
gl.enableVertexAttribArray(vertexTexCoordAttribute);
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesTexCoordBuffer);
gl.vertexAttribPointer(vertexTexCoordAttribute, 2, gl.FLOAT, false, 0, 0);
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Adjusting Our Shaders
In our vertex shader we now have an attribute that stores the texture coordinate data for each vertex. We also 
reintroduce the uPMatrix and uMVMatrix for setting up our 3D view. The vertex shader is shown in Listing 3-5 
while the fragment shader stays the same as it was in Listing 3-3.

Listing 3-5. Vertex shader that has a separate texture coordinate attribute

<script type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec2 aVertexTextureCoord;

 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

 varying highp vec2 vTextureCoord;

 void main(void) {
       gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
            vTextureCoord = aVertexTextureCoord;
 }
</script>

The full code for the example at this point is in the file 03/texture-example1.html. The result of this first 
attempt to texture map the triangular prism is shown in Figure 3-9. Two of the faces look good, whereas the faces 
with differing z values have texture values that are clamped and linearly stretched across.

Figure 3-9. Our first try at texture mapping the triangular prism

What is happening here? Well let’s look at the left-side vertices:

//left side
0,3,6,
3,6,9,
3,5,9,
5,9,11
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Vertices (0,3,6) correspond to texture coordinates:

0.0, 0.0,
0.5, 1.0,
0.0, 0.0

Two of the three vertices are identical. This flattens the normally triangular texture region into just a line. 
Let’s look at the vertices (3,6,9):

0.5, 1.0,
0.0, 0.0,
0.5, 1.0

Two of three are identical as well. This is obviously also true for vertices (3,x,9), so vertices (3,5,9) have 
only two unique texture coordinate pairs. Vertices (5,9,11) has only two unique coordinate pairs as well.

Data Changes
How do we avoid the problem discussed here and illustrated in Figure 3-9? What if we picked (x,z) or (y,z) as 
our coordinates instead? Well that might fix the left and right sides, but then there is repetition in the z coordinate 
for our front and back sides. In general, this is an issue with using the same texture coordinate values for a vertex 
that is used on more than one face.

The solution here is to assign a texture coordinate and a vertex for every single vertex point, which is a lot of 
coordinates. We can avoid explicitly having to list all the points by procedurally generating the vertex and texture 
coordinates for each triangle.

We will get rid of our indice buffer, triangleVerticesIndexBuffer, but we can still make use of the indice 
information to generate our points as shown in Listing 3-6.

Listing 3-6. Generating 54 vertices using 12 distinct vertices and indice order arrays

function setupBuffers()
{
 //12 vertices
 var triangleVerticesOriginal = [
 //front face
 //bottom left to right, to top
 0.0, 0.0, 0.0,
 1.0, 0.0, 0.0,
 2.0, 0.0, 0.0,
 0.5, 1.0, 0.0,
 1.5, 1.0, 0.0,
 1.0, 2.0, 0.0,

 //rear face
 0.0, 0.0, -2.0,
 1.0, 0.0, -2.0,
 2.0, 0.0, -2.0,
 0.5, 1.0, -2.0,
 1.5, 1.0, -2.0,
 1.0, 2.0, -2.0
 ];



CHAPTER 3  TEXTURES AND LIGHTING

69

 //18 triangles
 var triangleVertexIndices = [
 0,1,3, //front face
 1,3,4,
 1,2,4,
 3,4,5,

 6,7,9, //rear face
 7,9,10,
 7,8,10,
 9,10,11,

 0,3,6, //left side
 3,6,9,
 3,5,9,
 5,9,11,

 2,4,8, //right side
 4,8,10,
 4,5,10,
 5,10,11,

 0,6,8, //bottom faces
 8,2,0
];

 //54 vertices
 var triangleVertices = [];
 var triangleTexCoords = [];

 for(var i=0; i<triangleVertexIndices.length; ++i)
 {
 var a = triangleVertexIndices[i];

 triangleVertices.push(triangleVerticesOriginal[a*3]);
 triangleVertices.push(triangleVerticesOriginal[a*3 + 1]);
 triangleVertices.push(triangleVerticesOriginal[a*3 + 2]);

 if(i >= 24)
 {
 triangleTexCoords.push(triangleVerticesOriginal[a*3 + 2]);
 triangleTexCoords.push(triangleVerticesOriginal[a*3 + 1]);
 }else{
 triangleTexCoords.push(triangleVerticesOriginal[a*3]);
 triangleTexCoords.push(triangleVerticesOriginal[a*3 + 1]);
 }
 }

 trianglesVerticeBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVertices), gl.STATIC_DRAW);
 trianglesTexCoordBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesTexCoordBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleTexCoords), gl.STATIC_DRAW);
}
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Note  There are a few ways to combine arrays in JavaScript. The following flattens array b before adding it to a:

var a = [1,2,3]; 

var b = [4,5]; 

a.push.apply(a, b);

The contents of a will be [1,2,3,4,5] after this operation. Alternatively, a = a.concat(b) will also produce the same result.

Finally, we need to call drawArrays instead of drawElements in our drawScene function:

//gl.drawElements(gl.TRIANGLES, 18*3, gl.UNSIGNED_SHORT, 0);
gl.drawArrays(gl.TRIANGLES, 0, 18*3);

For our prism, we know that the last two sides that we render do not work well with xy coordinates as texture 
values. Instead, we use the xz coordinates. Alternatively, yz would work as well. Both of these coordinates are 
shown in Figure 3-10. The adjusted source code is in the file 03/texture-example1-fixed.html.

Figure 3-10. Left - using xz coordinates for the sides; Right - using yz coordinates

Toggling State
We will start our code in this next example by copying the 02/jquery_ajax.html file from the previous chapter. 
We are going to add some variables to toggle our program state through keyboard input. Keyboard actions could 
be used, for instance, to control movement in a game. Here, we will use them to toggle texture and lighting state 
in our shaders. This allows us to modify the program state without needing to modify the code and rerun the 
application. Personally, I find the ability to pause a scene and toggle the shader state useful for taking screenshots 
at the exact same scene location, but with varying effects.

We add new variables to keep track of our texture and lighting state:

var  paused  = false,
 useTexture = false,
 useLighting = false;

To get keyboard input and toggle these values we will attach a handler to the document keyup event using 
jQuery. We check the event keyCode property value and toggle the appropriate variable as shown in Listing 3-7.
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Note  There is no real authoritative keycode list. I recommend simply outputting the result of a key typed to the 
console with console.log(evt.keyCode). For advanced keyCode values, you can perform a browser search.

Listing 3-7. Handling keyboard events with jQuery

$(document).keyup(function(evt){
   switch(evt.keyCode){
     case 80: //'p'
         paused =!paused;
         break;
     case 84: //'t'
         useTexture =!useTexture;
         break;
     case 76: //'l'
         useLighting =!useLighting;
         break;
     default:
         break;
   }
});

Now that we can toggle these state variables, we will check the paused variable to determine whether to 
redraw our scene or not. We will do nothing with the useTexture or useLighting variables for the time being.

(function animLoop(){
 if( !paused ){
 setupWebGL();
 setMatrixUniforms();
 drawScene();
 }
 requestAnimationFrame(animLoop, canvas);
})();

You can run the modified program in the browser and verify that the pause toggle works. Next we will add 
the option of being able to toggle the texture.

Toggling Textures On and Off
We will now add a uniform in our fragment shader and adjust it using our useTexture flag. Alternatively, we can 
define multiple shaders and switch them. We will do this latter approach in Chapter 10.

We will add a uniform uDoTexturing to our fragment shader and toggle it within our keyup event handler:

case 84: //'t'
useTexture =!useTexture;
 if(useTexture)
{
      gl.uniform1i(glProgram.uDoTexturing, 1);
}else{
     gl.uniform1i(glProgram.uDoTexturing, 0);
}
break;
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In our setupTexture method, we get the uniform location and initially set its value to 1:

glProgram.uDoTexturing = gl.getUniformLocation(glProgram, "uDoTexturing");   
gl.uniform1i(glProgram.uDoTexturing, 1);

Finally, our fragment shader needs to be adjusted:

…
uniform int uDoTexturing;

void main(void) {
if(uDoTexturing == 1){

gl_FragColor = texture2D(uSampler, vec2(vTextureCoord.st) );

}else{
gl_FragColor = vec4(1.0, 0.1, 0.1, 1.0);

}
}

Now we can toggle the texture by pressing the t key. The source code for these adjustments can be found in 
the 03/texture-example1-toggle.html file. We will not show the setting of a lighting uniform flag, but it can be 
done analogously to the texture flag.

Multiple Textures
In our next example, we will use multiple textures. You can use multitexturing to produce special effects such as 
light or height maps (which are explained in Chapter 6) or bumpmapping (simulating bumps and wrinkles). Here 
we will just take the WebGL logo as a texture and mix it with our stone texture.

Application Changes
In Listing 3-8, we assign constant values to the variables STONE_TEXTURE and WEBGL_LOGO_TEXTURE so that we can 
use them as our new array indices. Then we change our texture variable declarations to be arrays and adjust the 
loadTexture and setupTexture functions to handle multiple textures.

Listing 3-8. Preparing for multiple textures

 STONE_TEXTURE = 0,
 WEBGL_LOGO_TEXTURE = 1,
 texture = [],
 textureImage = [];
…

function loadTexture()
{
 textureImage[STONE_TEXTURE] = new Image();
 textureImage[STONE_TEXTURE].onload = function() {
         setupTexture(STONE_TEXTURE);

gl.uniform1i(glProgram.samplerUniform, 0);
}

 textureImage[STONE_TEXTURE].src = "./textures/stone-128px.jpg";

 textureImage[WEBGL_LOGO_TEXTURE] = new Image();
 textureImage[WEBGL_LOGO_TEXTURE].onload = function() {
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          setupTexture(WEBGL_LOGO_TEXTURE);
          gl.uniform1i(glProgram.samplerUniform2, 1);
 }
 textureImage[WEBGL_LOGO_TEXTURE].src = "./textures/webgl_logo-512px.png";

  glProgram.uDoTexturing = gl.getUniformLocation(glProgram, "uDoTexturing");
  gl.uniform1i(glProgram.uDoTexturing, 1);
}
function setupTexture(i)
{
  gl.activeTexture(gl.TEXTURE0 + i);
  texture[i] = gl.createTexture();
  gl.bindTexture(gl.TEXTURE_2D, texture[i]);
  gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
  gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, textureImage[i]);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

  if( !gl.isTexture(texture[i]) )
  {
   console.error("Error: Texture is invalid");
  }
}

We now have a second sampler uniform, which we set with gl.uniform1i(glProgram.samplerUniform2, 
WEBGL_LOGO_TEXTURE).We also have to tell WebGL which texture is active in the line gl.activeTexture(gl.
TEXTURE0 + i).

Note  I have used the notation gl.TEXTURE0 + i for convenience. This notation can alternately be written as 
follows:

gl.activeTexture( gl.TEXTURE1 ); //same as gl.activeTexture( gl.TEXTURE0 + 1 ); 
gl.activeTexture( gl.TEXTURE2 ); //same as gl.activeTexture( gl.TEXTURE0 + 2 );

Finally, we need to get the location of our new sampler:

function getMatrixUniforms(){
       glProgram.pMatrixUniform = gl.getUniformLocation(glProgram, "uPMatrix");
       glProgram.mvMatrixUniform = gl.getUniformLocation(glProgram, "uMVMatrix");
 glProgram.samplerUniform = gl.getUniformLocation(glProgram, "uSampler");
 glProgram.samplerUniform2 = gl.getUniformLocation(glProgram, "uSampler2");
}

We will use the same texture coordinates in this example for both textures.

Shader Program Changes
Our vertex shader is the same as in the case of a single texture. The fragment shader is changed to this:

<script id="shader-fs" type="x-shader/x-fragment">
    varying highp vec2 vTextureCoord;
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    uniform sampler2D uSampler;
    uniform sampler2D uSampler2;
    uniform int uDoTexturing;

    void main(void) {
       if(uDoTexturing == 1){
  highp vec4 stoneColor = texture2D(uSampler, vec2(vTextureCoord.st));
  highp vec4 webglLogoColor = texture2D(uSampler2, vec2(vTextureCoord.st));

  gl_FragColor = mix(stoneColor, webglLogoColor, 0.5);
  //gl_FragColor = mix(stoneColor, webglLogoColor, webglLogoColor.a);
  //gl_FragColor = mix(stoneColor, webglLogoColor, 1.0 - webglLogoColor.a);
  }else{
  gl_FragColor = vec4(1.0, 0.1, 0.1, 1.0);
  }
  }
</script>

In the above fragment shader is a second sampler2D, uSampler2. We obtain the color of both the 
stone texture and the WebGL logo texture. Finally, we mix this value evenly. When you run the application, 
multitexture.html, you will see that it does not look quite right. Instead of transparent parts of the WebGL logo 
texture being see-through, they appear white in color (see the left side of Figure 3-11). This is not what we wish to 
display. If a pixel is transparent (the alpha value is 0.0), it should not show up. We will use the fragment shader to 
set the blend mode of the textures and hide the WebGL logo areas where there should be transparency.

The way that we do this is by using the alpha channel of the logo texture, webglLogoColor.a, as the amount 
to mix the textures. If the alpha value is 1.0 as in the logo region, the logo texture will be shown at full value while 
the stone texture will not be factored in at all. When the alpha value is 0.0, then only the stone texture will be 
used. This gives us the expected decal result (see the center of Figure 3-11). If we invert the mix ratio by using 
(1.0 – webglLogoColor.a), only the logo region is see-through; everything else is white like a stencil (see the 
right side of Figure 3-11).

Figure 3-11. Left - Mixing two textures evenly; Center - mixing using the WebGL logo alpha value ; Right - mixing 
using one minus the alpha value

Note  In some versions of OpenGL, the function glTexEnvf had presets such as GL_DECAL that would mix  
textures in a specific manner. With shaders, we have the power to specify how textures should be mixed, and as 
such OpenGL ES 2.0 and WebGL no longer use or support this method.
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Lighting
Lighting helps give visual cues to a scene so that it can appear even more recognizably three-dimensional and 
realistic. Lighting gives objects their visual shape. In order to see anything, we rely on light reflecting off of the 
surface of objects. The total reflected light can be made of several different light components.

Light Components
Ambient, diffuse, and specular light are all different components of lighting. Ambient lighting is the global 
illumination in an environment. It hits a surface at all angles and is reflected back at all angles. Diffuse lighting 
and specular lighting reflection depend on the angle of the light to a surface. The difference between diffuse and 
specular reflection is that once light hits a surface, diffuse reflection occurs in all directions, whereas specular 
reflection occurs in a single direction. This is shown in Figure 3-12.

Figure 3-12. Left: specular reflection; right: diffuse reflection

Diffuse lighting is the major reflective component in reflection but is dull like matte materials, while specular 
reflection (also known as a specular highlight) is smaller and produces a shiny glossiness. Specular highlights 
also give a clue to the location of the light(s) in a scene.

Figure 3-13. Sphere (far left); diffuse reflection (left); specular reflection highlight (right); ambient component (far 
right)

Types of Lights
Some light types are ambient (directionless, even distribution), directional (sunlight) and point light (room light). 
Directional lights like the sun are so far away that we can consider all the light coming from one single source 
direction. Light types are shown in Figure 3-14.
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Normal Vectors
As reflective light (diffuse or specular) depends on the incoming angle from the light to the surface, we need to 
know the direction in which each surface is facing. We do this by calculating the normal vector to a surface that 
holds the perpendicular direction to that surface. For a given polygon, there are actually two normal vectors, each 
pointing in a different direction relating to the front or back of the surface, as shown on the right of Figure 3-15. 
We will want to be consistent with our choice of normal. Also, we are usually interested in vectors of unit length 
(normalized normal vectors). Once we calculate the normal of a vertice, we store it in a VBO and send it to our 
shader as a vertex attribute.

Figure 3-15. A triangle with vertex normal vectors (all identical in value) that are perpendicular to the triangle 
surface. Two of the three negative normals are visible on the right

Figure 3-14. Different types of light

Lighting Models
In WebGL we define our own lighting model. This differs from OpenGL where there are several built-in functions 
to help control lighting. In fact, as of this writing, a search for the term “light” within the WebGL specification 
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will produce no results. The flip side is that we are not limited in any way in how we model our lighting. There are 
many existing lighting models that we can implement. We will cover the Phong illumination model in depth in 
the next chapter and build a simpler light model here.

Ambient and Directional Light
The first light components we will implement will have ambient and directional light and diffuse reflection, but 
no specular reflection. We add variables to hold our vertex normal data and a new matrix to convert normal 
vectors into the MVP space.

vertexNormalAttribute = null,
trianglesNormalBuffer = null;
…
normalMatrix = mat3.create();

In the setupWebGL method, we store the inverse matrix of the model view into our new normal matrix. This 
normal matrix will be used in our vertex shader to adjust each normal relative to our model view.

mat4.toInverseMat3(mvMatrix, normalMatrix);
mat3.transpose(normalMatrix);

Note  The normal matrix is 3x3 in dimension and NOT 4x4. We take the upper 3x3 submatrix of the modelview 
matrix and compute the inverse transpose of it to find the normal matrix.

In Listing 3-9 we produce our normal vectors programatically, using the three vertices of each triangle to first 
compute two side vectors and then take the cross-product of these two new vectors. The cross-product produces 
the vector perpendicular to the triangle (the normal vector).

Listing 3-9. Calculating the normal vectors

var triangleNormals = [];
//18 triangles - normal will be the same for each vertex of triangle
for(var i=0; i<triangleVertexIndices.length; i+=3)
{
 var a = triangleVertexIndices[i];
 var b = triangleVertexIndices[i + 1];
 var c = triangleVertexIndices[i + 2];

 //normal is the cross-product
 var v1 = [
 triangleVerticesOriginal[a*3] - triangleVerticesOriginal[b*3],
 triangleVerticesOriginal[a*3 + 1] - triangleVerticesOriginal[b*3 + 1],
 triangleVerticesOriginal[a*3 + 2] - triangleVerticesOriginal[b*3 + 2],
 ];
 var v2 = [
 triangleVerticesOriginal[a*3] - triangleVerticesOriginal[c*3],
 triangleVerticesOriginal[a*3 + 1] - triangleVerticesOriginal[c*3 + 1],
 triangleVerticesOriginal[a*3 + 2] - triangleVerticesOriginal[c*3 + 2],
 ];
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 var cross = [
  v1[1]*v2[2] - v1[2]*v2[1],
  v1[2]*v2[0] - v1[0]*v2[2],
  v1[0]*v2[1] - v1[1]*v2[0]
 ];
 //same value for each of the three vertices
 triangleNormals.push.apply(triangleNormals, cross);
 triangleNormals.push.apply(triangleNormals, cross);
 triangleNormals.push.apply(triangleNormals, cross);
}

trianglesNormalsBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesNormalsBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleNormals), gl.STATIC_DRAW);

In the drawScene method, we get our normal attribute location:

vertexNormalAttribute = gl.getAttribLocation(glProgram, "aVertexNormal");
gl.enableVertexAttribArray(vertexNormalAttribute);
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesNormalBuffer);
gl.vertexAttribPointer(vertexNormalAttribute, 3, gl.FLOAT, false, 0, 0);

We also get and set our normalMatrix:

function getMatrixUniforms(){
glProgram.pMatrixUniform = gl.getUniformLocation(glProgram, "uPMatrix");
  glProgram.mvMatrixUniform = gl.getUniformLocation(glProgram, "uMVMatrix");
  glProgram.normalMatrixUniform = gl.getUniformLocation(glProgram, "uNormalMatrix");

}

function setMatrixUniforms() {
gl.uniformMatrix4fv(glProgram.pMatrixUniform, false, pMatrix);
  gl.uniformMatrix4fv(glProgram.mvMatrixUniform, false, mvMatrix);
  gl.uniformMatrix3fv(glProgram.normalMatrixUniform, false, normalMatrix);

}

This takes care of our application code changes. Now we need to write our shaders. Let’s start with the vertex 
shader in which new functionality is shown in bold:

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;
attribute vec3 aVertexNormal;

uniform mat3 uNormalMatrix;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying highp vec4 vColor;
varying highp vec3 vLight;

void main(void) {
  gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
      vColor = vec4(aVertexColor, 1.0);

  //lighting
      vec3 ambientLight = vec3(0.1, 0.1, 0.1);
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     vec3 diffuseLightColor = vec3(0.5, 0.5, 0.5);
     vec3 directionalLightPosition = normalize( vec3(10.0, 10.0, 5.0) );

      vec3 transformedNormal = uNormalMatrix * aVertexNormal;
      float diffuseLightAmount = max( dot( transformedNormal,
        directionalLightPosition), 0.0);
  vLight = ambientLight + (diffuseLightAmount * diffuseLightColor);
 }
</script>

There is an attribute for the normals in the vertex shader, a normal matrix, and a varying vector that will store 
our total amount of light to pass on to the fragment shader. We set the ambient light amount and diffuse light 
color. Next we set a position for our directional light and normalize it (we are interested only in the direction, 
not the actual position). We calculate the normal vector relative to the model view, which is done by multiplying 
by our normal matrix. To calculate the diffuse light amount, we take the dot product of the normal and the light 
direction. Finally we add the ambient and diffuse light components together.

Our fragment shader is much simpler. In it, we multiply our light vector by the color vector:

<script id="shader-fs" type="x-shader/x-fragment">
    varying highp vec4 vColor;
    varying highp vec3 vLight;

 void main(void) {
       gl_FragColor = vec4(vColor.xyz * vLight, vColor.a);
    }
</script>

Figure 3-16. Left - Basic lighting; Right - With consistent polygon winding

Now if we run the application found in the file 03/ambient_and_directional_light.html, we get the 
figure on the left of Figure 3-16. The figure on the right is produced by making the winding order of our vertices 
consistent.
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Triangular polygon winding refers to the direction that vertices are assembled. Every triangle can be 
assembled clockwise or counterclockwise. Which order you choose is irrelevant as long as you are consistent. The 
winding order affects the direction of normal calculations and also which side of the polygon is considered front 
and which is the back. See Figure 3-17.

For larger meshes, we would want to check the orientation of faces programmatically. The default winding 
order in WebGL is FRONT_FACE CCW. For our mesh we can refer to Figure 1-14 in the first chapter and inspect the 
winding visually to find that 6 vertices are clockwise and 12 are counterclockwise. Reversing the winding of the 
clockwise ones gives this:

//18 triangles
var triangleVertexIndices = [
 0,1,3, //front face
 1,4,3, //flipped
 1,2,4,
 3,4,5,

 6,7,9, //rear face
 7,10,9, //flipped
 7,8,10,
 9,10,11,

 0,6,3, //flipped //left side
 3,6,9,
 3,9,5, //flipped
 5,9,11,

 2,8,4, //flipped //right side
 4,8,10,
 4,10,5, //flipped
 5,10,11,

 0,6,8, //bottom faces
 8,2,0
];

Note  TRIANGLE_STRIP primitives are composed of triangles with alternating winding order. WebGL takes this 
into account when you render using one.

Figure 3-17. Triangle winding can be clockwise (0,2,1) or counterclockwise (0,1,2)
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A Point Light
Since we are not presently calculating specular reflections, all we need to do to adjust our directional light to a 
point light is calculate the direction from the point light location to each point in our scene in our vertex shader. 
Replace the previous vertex shader main method with the following (changes are in bold):

void main(void) {
      gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
       vColor = vec4(aVertexColor, 1.0);

      //lighting
       vec3 ambientLight = vec3(0.1, 0.1, 0.1);

       vec3 pointLightPosition = vec3(1.0,2.0,-1.0);
       vec3 pointLightDirection = normalize(
                   vec3(pointLightPosition.xyz - aVertexPosition.xyz));

       vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
       vec3 N = uNormalMatrix * aVertexNormal;
       float diffuseLightAmount = max( dot(normalize(N), normalize(L)), 0.0);

       vColor = ambientLight + (diffuseLightAmount * aVertexColor);
}

Figure 3-18. Prism rendered with a point light

The result of our point light is shown in the figure above results in smoother gradient lighting.
We have shown how to do basic per-vertex diffuse lighting on our triangular prism and have previously 

shown how to texture our prism. Now let’s combine these two effects.

Texture and Lighting Together
The final example of the chapter will combine the point light and multitexture examples into an application with 
both textures and lighting. Continuing from the code in 03/point_light.html, we will re-add the texture loading 
code and texture coordinate buffer of the earlier multitexture example.
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Our final vertex shader is a straightforward combination of 03/multitexture.vs and 03/point_light.vs 
shaderfiles:

<script type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec3 aVertexColor;
 attribute vec3 aVertexNormal;
 attribute vec2 aVertexTexCoord;

 uniform mat3 uNormalMatrix;
 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

 varying highp vec4 vColor;
 varying highp vec3 vLight;
 varying highp vec2 vTextureCoord;

 void main(void) {
      gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
            vColor = vec4(aVertexColor, 1.0);
       vTextureCoord = aVertexTexCoord;

       //lighting
            vec3 ambientLight = vec3(0.3, 0.3, 0.3);

            vec3 pointLightPosition = vec3(1.0,2.0,-1.0);
            vec3 pointLightDirection = normalize(
                vec3(pointLightPosition.xyz - aVertexPosition.xyz));

      vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
            vec3 N = uNormalMatrix * aVertexNormal;
         float diffuseLightAmount = max( dot(normalize(N), normalize(L)), 0.0);

     vLight = ambientLight + vec3(.8,.8,.8) * diffuseLightAmount;
  }
</script>

Our final fragment shader is:

<script id="shader-fs" type="x-shader/x-fragment">
  varying highp vec4 vColor;
  varying highp vec3 vLight;
  varying highp vec2 vTextureCoord;

  uniform sampler2D uSampler;
  uniform sampler2D uSampler2;
  uniform int uDoTexturing;

  void main(void) {
 if(uDoTexturing == 1){

highp vec4 stoneColor = texture2D(uSampler, vec2(vTextureCoord.st));
highp vec4 webglLogoColor = texture2D(uSampler2, vec2(vTextureCoord.st));
highp vec4 textureColor = mix(stoneColor, webglLogoColor, webglLogoColor.a);
gl_FragColor = vec4(textureColor.xyz * vLight, textureColor.a);

 }else{
gl_FragColor = vec4(vColor.xyz * vLight, vColor.a);
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 }
  }
</script>

And the result is shown in Figure 3-19.

Figure 3-19. Our triangular prism with texturing and a point light

Summary
In this chapter we covered the essentials of texture and lighting within WebGL. This included specifying texture 
coordinates, creating mipmaps, and how to adjust filter and wrapping settings. We showed the components of 
light and how to programmatically create surface normal vectors. By the end of the chapter we had worked up to 
modeling a directional light with multitexturing.

Our lighting model is far from perfect, though. In the next chapter we will add specular highlights, look at the 
Phong lighting model and how to interpolate normal vector values. In addition, we will investigate blending, fog, 
and shadows.



85

CHAPTER 4

Increasing Realism

In this chapter we will present ways to improve the realism of our scenes. As proper lighting is so fundamental 
to our visual perception, much of this chapter will build upon the end of the last chapter and focus on 
improvements to our lighting model. Specifically, we will 

discuss the difference between flat and smooth shading 

explain the Phong illumination model and then implement it as a shader program 

show how to add fog 

discuss techniques to generate shadows and add global illumination 

blend objects and calculate reflection and refraction

As a mental exercise, take notice of your current surroundings. If you are indoors, take a look at the room 
that you are in. Is the lighting soft or hard? If you can see the sun through a window, how does sunlight compare 
to artificial light? Which objects are shiny and which are dull? Do any objects reflect other objects on their 
surface? Identify materials that are more reflective. Are any objects transparent or semitransparent?

If you are outside, what does the atmosphere look like? Is it clear or hazy? Is it windy—are objects being 
blown around? What does the shadow of a fast-moving car look like? What does your shadow look like?

Asking these types of questions and taking a deeper look at commonplace objects and environments will 
help you to appreciate what types of complex interaction take place in nature and give insight into what needs to 
be emulated and improved upon in our renderings to reproduce a realistic appearance.

The final image that we will work toward in this chapter is shown in Figure 4-1.

Figure 4-1. The final scene that we will be building toward in this chapter

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012



CHAPTER 4  INCREASING REALISM

86

Setup
In this chapter, we will display a more visually interesting example than a single mesh floating in space. Instead 
we will set up a scene with a few spherical meshes that rotate above a plane representing the ground. In order to 
do this, we will first create a few reusable utility objects.

In Chapters 1 and 3 we used the matrix objects and functions of the gl-matrix.js library. This library also 
provides vector objects and functions.

A Vector Object
We will perform some common vector operations on our mesh data. We have operations built into our shaders 
for easy vector (x,y,z) notation, but not in JavaScript. The gl-matrix.js library uses numeric indices such as 
[0, 1, 2]:

var n = vec3.create(0.0, 1.0, 0.0);
console.log(n[1]); //the 2nd element

Note  More usage examples of gl-matrix.js can be found online at https://github.com/toji/gl-matrix/blob/master/
README.md

To use x, y, z component notation, we can use a full-featured vector and matrix library like the one 
included in Three.js. Although I am an advocate of code reuse, in this chapter we just need a few minimal 
operations such as the cross-product, length, and normalize functions. Here we can create a small vector object 
of our own like the one shown in Listing 4-1 (which is based on functionality found in the Three.js library).

Listing 4-1. A partial vector object containing only the functionality that we require in this chapter

//vector3.js
Vector3 = function ( x, y, z ) {
 this.x = x || 0;
 this.y = y || 0;
 this.z = z || 0;
};

Vector3.prototype = {
 divide: function ( s ) {
  if ( s ) {
   this.x /= s;
   this.y /= s;
   this.z /= s;
  }
  return this;
 },

 cross: function ( v ) {
 var x = this.x, y = this.y, z = this.z;
 if ( v instanceof Vector3 ) {
 this.x = y * v.z - z * v.y;
 this.y = z * v.x - x * v.z;
       this.z = x * v.y - y * v.x;

http://https://github.com/toji/gl-matrix/blob/master/README.md
http://https://github.com/toji/gl-matrix/blob/master/README.md
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  }
  return this;
 },

 length: function () {
  return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
 },

 normalize: function () {
  var length = this.length();
  return this.divide( length );
 },
};

Notice above that we set default values in our constructor of (0,0,0) and also only divide if the passed in value is 
not 0.

Plane Class
To assist in drawing a single plane, in our case to simulate a surface for other objects to sit on or above, we add a 
function called setupPlaneMesh(see Listing 4-2).

Listing 4-2. Plane mesh with overridable properties and indexed buffers

//plane_mesh.js
function setupPlaneMesh(n, size, translation, color, textured)
{
 size = (typeof size !== 'undefined') ? size : 10.0;
 color = (typeof color !== 'undefined') ? color : [0.5, 0.5, 1.0, 1.0];
 translation = (typeof translation !== 'undefined') ? translation : [0.0, 0.0, 0.0];
 textured = (typeof textured !== 'undefined') ? textured : false;
…
 trianglesNormalBuffers[n] = gl.createBuffer();
…
}

In Listing 4-2, n is the index of a global array of VBOs. The size, translation, and color arguments refer 
to the length and width of the plane, the initial translation amount, and the color. If no arguments are provided, 
then we use the defaults that we have specified in the ternary operations.

To add a mesh we would make a call like this:

setupPlaneMesh(3, 10.0, [0.0, -1.0, 0.0]);

The number of parameters to the plane setup function is five, and for more complex meshes, it could be even 
more. A large number of parameters in a function signature is hard to remember and easy to mix up and cause 
errors. Instead of the code in Listing 4-2, we will still set default parameters but pass in a JSON object that is more 
flexible and verbose to encapsulate our data. It is assumed that the reader is familiar with JSON. If you are not, 
please refer to http://json.org.

We will change the code in Listing 4-2 to this:

function setupPlaneMesh(n, options)
{
 options = options || {}; //ensures that we have a JSON object

 size = (typeof options.size !== 'undefined') ? options.size : 10.0;
 color = (typeof options.color !== 'undefined') ? options.color : [0.5, 0.5, 1.0, 1.0];

http://json.org
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  translation = (typeof options.translation !== 'undefined') ? options.translation : [0.0, 
0.0, 0.0];

 textured = (typeof options.textured !== 'undefined') ? options.textured : false;
…
}

And we now add a new plane mesh with a call like this:

setupPlaneMesh(3, { "translation": [0.0, -1.0, 0.0],
 "size": 20.0
 }
    );

With a set parameter order, if you want to change textured to true, you need to specify any and all 
parameters in between—size, translation, and color—even if you are using the defaults. This second way of 
using a JSON object lets us omit parameters that we do not need to override and also not require the parameters 
to be in any set order.

Note  The code in this chapter is not optimized for performance. Because we only have a few meshes, this will 
not matter. However, with more complex scenes involving many draw calls, we will need to write optimized code. 
Please refer to Chapter 9 for best practices and ways to improve performance.

Spheres
To generate a sphere mesh, the function setupSphereMesh is shown in Listing 4-3. The first part lets us set the 
buffer index, radius, translation, color, divisions, and to use smooth shading or not. Next we generate our mesh 
using spherical coordinates. When we render a sphere, it is composed of horizontal lines of latitude (if earth is 
modeled as a sphere, think of lines of latitude as being parallel to the equator) and vertical lines of longitude 
(think of them running from the North Pole to the South Pole and representing time zones). Where the latitude 
and longitude lines intersect will be the vertex points. Vertex points will be spaced closer together toward the 
“poles” and further from each other toward the “equator.” The more subdivisions that we have, the closer our 
approximation to a true sphere the mesh becomes.

Note  The normal value at each point on a unit sphere is the point itself (before scaling or translating). Remember 
that the normal vector is the direction pointing perpendicularly into or out of a surface, and starting from the origin this 
direction is the vector itself. The spherical coordinates are of unit length, so this vector is already normalized for us.

Listing 4-3. The file sphere_mesh.js, which generates a sphere mesh

function setupSphereMesh(n, options)
{
 options = options || {}; //ensures that we have a JSON object

 color = (typeof options.color !== 'undefined') ? options.color : [1.0, 0.0, 0.0, 1.0];
  translation = (typeof options.translation !== 'undefined') ? options.translation : [0.0, 

0.0, 0.0];
 radius = (typeof options.radius !== 'undefined') ? options.radius : 1.0;
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 divisions = (typeof options.divisions !== 'undefined') ? options.divisions : 30;
  smooth_shading = (typeof options.smooth_shading !== 'undefined') ? options.smooth_shading 

: true;
 textured = (typeof options.textured !== 'undefined') ? options.textured : false;

 //mesh generation modified from //http://learningwebgl.com/cookbook/index.php/How_to_ 
 draw_a_sphere
 var  latitudeBands = divisions,
  longitudeBands = divisions;

 var  vertexPositionData = [],
  normalData = [],
  colorData = [],
  textureData = [],
    indexData = [];

 for (var latNumber = 0; latNumber <= latitudeBands; latNumber++) {
   var theta = latNumber * Math.PI / latitudeBands;
   var sinTheta = Math.sin(theta);
   var cosTheta = Math.cos(theta);

 for (var longNumber = 0; longNumber <= longitudeBands; longNumber++) {
   var phi = longNumber * 2 * Math.PI / longitudeBands;
   var sinPhi = Math.sin(phi);
   var cosPhi = Math.cos(phi);

   var x = cosPhi * sinTheta;
   var y = cosTheta;
   var z = sinPhi * sinTheta;
   var u = 1- (longNumber / longitudeBands);
   var v = latNumber / latitudeBands;

 textureData.push((x + 1.0) * .5);
        textureData.push((y + 1.0) * .5);

    normalData.push(x);
 normalData.push(y);
 normalData.push(z);
 colorData.push(color[0]);
 colorData.push(color[1]);
 colorData.push(color[2]);
 colorData.push(color[3]);
 vertexPositionData.push(radius * x + translation[0]);
 vertexPositionData.push(radius * y + translation[1]);
 vertexPositionData.push(radius * z + translation[2]);
 }
 }

 for (var latNumber = 0; latNumber < latitudeBands; latNumber++) {
   for (var longNumber = 0; longNumber < longitudeBands; longNumber++) {
     var first = (latNumber * (longitudeBands + 1)) + longNumber;
 var second = first + longitudeBands + 1;
 indexData.push(first);
 indexData.push(second);
 indexData.push(first + 1);
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 indexData.push(second);
 indexData.push(second + 1);
 indexData.push(first + 1);
  }
 }

  if(!smooth_shading)
  {

//calculate flat shading normals
  }

  trianglesNormalBuffers[n] = gl.createBuffer();
  gl.bindBuffer(gl.ARRAY_BUFFER, trianglesNormalBuffers[n]);
  gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(normalData), gl.STATIC_DRAW);
  trianglesNormalBuffers[n].itemSize = 3;
  trianglesNormalBuffers[n].numItems = normalData.length / 3;

  trianglesColorBuffers[n] = gl.createBuffer();
  gl.bindBuffer(gl.ARRAY_BUFFER, trianglesColorBuffers[n]);
  gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colorData), gl.STATIC_DRAW);
  trianglesColorBuffers[n].itemSize = 4;
  trianglesColorBuffers[n].numItems = colorData.length / 4;

  trianglesVerticeBuffers[n] = gl.createBuffer();
  gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffers[n]);
   gl.bufferData(gl.ARRAY_BUFFER,
       new Float32Array(vertexPositionData), gl.STATIC_DRAW);
  trianglesVerticeBuffers[n].itemSize = 3;
  trianglesVerticeBuffers[n].numItems = vertexPositionData.length / 3;

  if(textured)
  {
 trianglesTexCoordBuffers[n] = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesTexCoordBuffers[n]);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureData),

 gl.STATIC_DRAW);
trianglesTexCoordBuffers[n].itemSize = 2;

  trianglesTexCoordBuffers[n].numItems = textureData.length / 2;
  }

  vertexIndexBuffers[n] = gl.createBuffer();
  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, vertexIndexBuffers[n]);
  gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,
 new Uint16Array(indexData), gl.STREAM_DRAW);
  vertexIndexBuffers[n].itemSize = 3;
  vertexIndexBuffers[n].numItems = indexData.length;
}
…

We would create a new sphere in our scene like this:

setupSphereMesh(0, { "translation": [-1.0, -0.75, 0.0],
 "color": [1.0, 0.0, 0.0, 1.0],
 "divisions": 20,
 "smooth_shading": false
  });
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Meshes with 5, 10, and 20 subdivisions, as shown within the WebGL Inspector (covered in Chapter 9), are 
shown in Figure 4-2.

Figure 4-2. Spheres with 5, 10, and 20 latitude and longitude divisions

In Listing 4-3, we have omitted the flat shading code. We will come back to this code after we discuss the 
difference between flat and smooth shading.

Lighting Revisited
Lighting is central to graphics, and we will cover more light implementation details in this chapter starting with 
shading models, the traditional Phong illumination model, and finally global radiance models.

Shading Models
There are two basic ways to shade a polygon: flatly and smoothly. Flat shading means that the entire polygon 
is one color. We use the same normal vector for all the vertices. As a result, the normals where edges meet may 
be different for the same vertex depending on what the normal vector value for the entire face is. This variance 
means that the lighting values on adjacent edges will differ harshly and so you will see where one edge ends and 
another begins. Contrarily, smooth shading means that the color and normal values are interpolated. This can be 
done in the vertex shader (VS) as in Gouraud shading or in the fragment shader (FS) as in Phong shading. Both of 
these shading techniques will be covered in detail later on in the chapter.

Normal Vectors Revisited
Let us first examine what the normal vectors of flat shading look like where polygon edges meet and vertices are 
shared (see Figure 4-3).

As you can see in Figure 4-3, the normals at shared vertices are disjointed. There will be sharp visible jumps 
between values of adjacent polygons. With flat shading, the specular highlight (recall that specular reflection is 
light reflected in a specific direction) is omitted if the incoming specular light does not strike a vertex. As such, 
flat shading usually does not calculate specular reflection at all.
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There are two main types of smooth shading: Gouraud shading and Phong shading. Gouraud shading is 
performed per vertex, while Phong shading is done per pixel and as such captures specular highlights better.

Flat Shading
We will now return to the 04/sphere_mesh.js code and look at the flat shading method that we previously 
omitted. In WebGL, as the FS interpolates results automatically, it can actually be harder to perform flat shading 
than smooth shading. For the spheres, we must alter our triangles to have identical normals for each vertex (see 
Listing 4-4).

Listing 4-4. Calculating flat shading normals

 if(!smooth_shading)
 {
  vertexPositionData = calculateFlattenedVertices(
 vertexPositionData, indexData);
  colorData = [];

Figure 4-3. Flat shading: one color, one normal per surface

Figure 4-4. Smooth shading: averaged normals and interpolated color

With smooth shading, shared vertices are averaged with all the faces it is shared with. The right of Figure 4-4 
shows how a new normal vector that is an average of the two shared sides is used. Of course, the left figure also 
has some vertices that are not shared across multiple triangles and some that are shared by three.
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 for(var i=0; i<indexData.length;++i)
 {
  colorData.push(color[0]);
    colorData.push(color[1]);
 colorData.push(color[2]);
 colorData.push(color[3]);
  }
  normalData = calculatePerFaceNormals(normalData, indexData);
 } 
…

function calculateFlattenedVertices(origVertices, indices)
{
 var vertices = [];
 for(var i=0; i<indices.length; ++i)
 {
 a = indices[i]*3;
 vertices.push(origVertices[a]);
 vertices.push(origVertices[a + 1]);
 vertices.push(origVertices[a + 2]);
 }
 return vertices;
}

function calculatePerFaceNormals(origNormals, indices)
{
 var normals = [];
 for(var i=0; i<indices.length; i+=3)
 {
 var a = indices[i]*3;
 var b = indices[i+1]*3;
 var c = indices[i+2]*3;

 n1 = new Vector3(origNormals[a], origNormals[a+1], origNormals[a+2]);
 n2 = new Vector3(origNormals[b], origNormals[b+1], origNormals[b+2]);
 n3 = new Vector3(origNormals[c], origNormals[c+1], origNormals[c+2]);

 nx = (n1.x + n2.x + n3.x)/3;
 ny = (n1.y + n2.y + n3.y)/3;
 nz = (n1.z + n2.z + n3.z)/3;

 v3 = new Vector3(nx,ny,nz);
 normals.push(v3.x);
 normals.push(v3.y);
 normals.push(v3.z);

 normals.push(v3.x);
 normals.push(v3.y);
 normals.push(v3.z);

 normals.push(v3.x);
 normals.push(v3.y);
 normals.push(v3.z);
 }
 return normals;
}
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In Listing 4-4, we are expanding our data to include color, position, and normal data per each index instead 
of only each vertex. We are using a constant color, so expanding the color data is trivial. For our vertex positions 
we pass in the original vertice information that we then use to produce a longer array of all vertex positions 
(including duplicate values) by looking up the vertice associated with each index. For the normal, we take the 
average of all three triangle vertex normals and use this new value for each vertex in the triangle. See Figure 4-5.

When we render our spheres, we will use the drawArrays method instead of drawElements because we are 
no longer using the index buffer. We still use the drawElements method to render the plane:

if(i==3){
 gl.drawElements(gl.TRIANGLES, vertexIndexBuffers[i].numItems, gl.UNSIGNED_SHORT, 0);
}else{
 gl.drawArrays(gl.TRIANGLES, 0, trianglesVerticeBuffers[i].numItems);
}

Figure 4-5. Flat shading of spheres with varying subdivisions

The flat shader example is in the file 04/01_flat.html.

Lambert Reflection
Lambert reflection gives the intensity of diffuse light at any point of an object. Recall that diffuse light depends on 
the angle of the incoming light to a surface point, but that the reflection is in all directions. Calculating Lambert 
reflection involves taking the normal vector N and the direction of the light to the surface L and then computing 
the cosine of the angle between these vectors. The higher the angle (up to 90 degrees), the lower the cosine will 
be. As the angle approaches 0, the cosine approaches 1. All other angle values will be between -1 and 1, with 0 
occurring when the normal and lighting vectors are perpendicular. Angles in the range of (90, 270) will return 
negative values because this means that the light is on the opposite side of the surface then the normal vector.

Usually negative values are clamped to 0. To calculate the cosine, we can take the dot product of normalized 
N and normalized L, which is the Lambert term, dot(N, L). The diffuse component of light is then calculated as 
the following, where M

D
 and L

D
 correspond to the material diffuse component and the light diffuse component:
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Diffuse = dot(N, L)*M
D
*L

D

When only diffuse color and an optional global ambient light factor are used, this is sometimes referred to as 
Lambert illumination (see Figure 4-6).

Figure 4-6. The normal (N) and lighting (L) vectors of a Lambert reflection

A VS using Lambert illumination is shown in Listing 4-5.

Listing 4-5. Computing Lambert amount

<script type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec3 aVertexColor;
 attribute vec3 aVertexNormal;

 uniform mat3 uNormalMatrix;
 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

 varying highp vec3 vColor;

 void main(void) {
 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

     vec3 pointLightPosition = vec3(1.0,2.0,-1.0);
     vec3 pointLightDirection = normalize(
  vec3(pointLightPosition.xyz - aVertexPosition.xyz));
     vec3 ambientColor = vec3(0.1, 0.1, 0.1);

 vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
 vec3 N = uNormalMatrix * aVertexNormal;
             float lambert = max(dot(normalize(N), normalize(L)), 0.0);
 vColor = aVertexColor * lambert;
 }
</script>

Our FS trivially uses the passed in color from the VS:

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec3 vColor;

 void main(void) {
    gl_FragColor = vec4(vColor, 1.0);
   }
</script>
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Note  In these examples, it would be better to use a uniform value for constants. However, I am trying to keep 
the application logic the same and vary only the shaders. This lets me more easily show the changes between light-
ing model improvements, so I am hard-coding constant values within the shader.

The VS in Listing 4-5 and the FS shown previously are also used for the Gouraud shading example that we 
will show next. The only difference is the normal vector attribute values that are passed into the shaders from the 
application.

Smooth Shading
Unlike flat shading that uses the same normal value for the entire polygon, in smooth shading every vertex 
normal and color may be different. The color and normal value used at each pixel is interpolated to produce 
a smoother, more gradient result. Smooth shading gives the illusion of polygons being curved instead of 
completely flat.

Note  It is possible to use the same geometry multiple times in an application with elementary transformations. 
However, our sphere geometry calculates the type of normal in the object itself and stores it there. So, if we want to 
use smooth shading and flat shading at the same time on different instances of the same object, we would have to 
recalculate the normals in between draw calls.

Gouraud Shading

Gouraud shading, which is named after Henri Gouraud, was the default smooth shading used in early fixed 
functionality versions of OpenGL. In Gouraud shading, each vertex takes the (normalized) average of surface 
normals of adjacent polygons that share that vertex as a normal. Lighting calculations are done per vertex and 
then final values are interpolated. The left of Figure 4-7 is an example of Gouraud shading. The Gouraud shader 
example is in the file 04/02_gouraud.html.

Phong shading

Phong shading is named after Bui Tuong Phong, who developed an interpolation method (Phong shading) 
and reflection model (Phong illumination) in his 1973 Ph.D thesis. It is similar to Gouraud shading because the 
normals are interpolated in the VS, but the lighting calculations are done inside of the FS. For this reason, Phong 
shading is more computationally expensive then Gouraud shading, but it also produces better results.

To demonstrate this, imagine a large polygon such as the floor plane found in our chapter examples. It is 
composed of only four triangles. If a light shines in the middle of a triangle, far away from any corner, the vertex 
light amounts will be low and so the polygon will be dark with Gouraud shading. However, with Phong shading, 
the lighting calculation is done per fragment, so the area in which the light is shining will not be missed. The 
more we subdivide into smaller polygons, the lower the difference between Gouraud and Phong will appear.

The Phong shader with Lambert illumination example is in the file 04/03_phong_lambert.html(see Listing 4-6).
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Listing 4-6. Shader pair with lighting calculation moved to the FS

<script type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec3 aVertexColor;
 attribute vec3 aVertexNormal;

 varying highp vec3 vColor;
 varying highp vec3 vPosition;
 varying highp vec3 N;

 void main(void) {
 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

 vColor = aVertexColor;
     vPosition = aVertexPosition;
     N = aVertexNormal;
 }
</script>

<script id="shader-fs" type="x-shader/x-fragment">
 uniform highp mat3 uNormalMatrix;
 uniform highp mat4 uMVMatrix;
 uniform highp mat4 uPMatrix;

 varying highp vec3 vColor;
 varying highp vec3 vPosition;
 varying highp vec3 N;

 void main(void) {
 highp vec3 n = uNormalMatrix * N;

     highp vec3 pointLightPosition = vec3(1.0,2.0,-1.0);
     highp vec3 pointLightDirection = normalize(
  vec3(pointLightPosition.xyz - vPosition.xyz));
 highp vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));

Figure 4-7. Gouraud shading on the left, and Phong on the right. Nearly identical with the Phong shader, providing 
a little more detail in the plane. Adding a specular component will lead to more variance
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 highp float lambert = max(dot(normalize(n), normalize(L)), 0.0);
   gl_FragColor = vec4(vColor * lambert, 1.0);
 }
</script>

We will now cover adding a specular reflection component in our illumination model.

Phong Illumination Model
We have shown how Lambert illumination can produce decent results. The Phong illumination model (also 
known as the Phong reflection model) takes into account the specular reflection of objects. In the model, surfaces 
have diffuse and specular reflection. The diffuse reflection acts more on rough surfaces; the specular reflection 
occurs more on shiny surfaces. Recall that diffuse reflection is scattered in all directions, while specular reflection 
is more intense and in a particular direction. Phong noticed that the specular highlights on shiny surfaces are 
small but intense, while duller surfaces have larger highlights of less-intense value.

With Phong illumination, each light has a RGB specular and diffuse intensity component denoted is, id. The 
overall scene has a single ambient component, ia.

Each material in the scene has RGB reflection values for specular, diffuse, and ambient light corresponding 
to the parameters k

s
, k

d
, and k

a
. Each material also has a shininess constant, a, which is larger for smoother, more 

reflective surfaces. Normally, the constant is set to range from 0 to 128 and is used as an exponent for the specular 
term.

The calculation of a single point I
p
, using the Phong reflection model with one light is:

I
p
 = k

a
i
a
 + [k

d
*dot(L, N)*i

d
 + k

s
*dot(R, V) *i

s
]

For more lights, the calculation becomes k
a
i

a
 plus the sum of the diffuse and specular calculation for each 

light (which is the part in square brackets). V is the direction to the viewer, which is sometimes referred to as the 
eye vector. R is the perfect reflection of the light vector. Given L, the direction of the light to the surface point; and 
N, the normal vector of the point, R is calculated as:

R = 2*dot(L,N)*N – L

In GLSL, the function reflect can compute this value for us. The Gouraud shader with Phong illumination 
example (see Figure 4-8) is in the file 04/04_gouraud_phong.html.

Figure 4-8. Gouraud shading (VS), Phong illumination
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The VS for Gouraud-Phong example is shown in Listing 4-7.

Listing 4-7. Gouraud-Phong illumination lighting calculations done in VS

<script type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec3 aVertexColor;
 attribute vec3 aVertexNormal;

 uniform mat3 uNormalMatrix;
 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

 varying vec3 vColor;
   varying float diffuseLambert;
   varying float specular;

 void main(void) {
  gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
     vColor = aVertexColor;

     vec3 pointLightPosition = vec3(1.0,2.0,-1.0);
      vec3 pointLightDirection = vec3(
    pointLightPosition.xyz - aVertexPosition.xyz);
     vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
 vec3 N = normalize(uNormalMatrix * aVertexNormal);
 vec3 V = -vec3(uPMatrix * uMVMatrix * vec4(aVertexPosition,1.0));

  L = normalize(L);
    V = normalize(V);

  vec3 R = reflect(-L, N);
  float shininess = 128.0;

  specular = pow( max(0.0,dot(R,V)), shininess);
  diffuseLambert = dot(L,N);
 }
</script>

In Listing 4-7, we calculate the lighting, normal, position, and eye vectors. Then we calculate the reflection 
vector and Lambert term from the lighting and normal vectors. We then pass these two values to the FS that is 
shown in Listing 4-8.

Listing 4-8. Gouraud-Phong FS

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec3 vColor;
   varying highp float diffuseLambert;
   varying highp float specular;

 void main(void) {
 highp float AmbientIntensity = 0.3;
 highp vec3 DiffuseLightIntensity = 0.9;
 highp float SpecularIntensity = 0.5;
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 highp vec3 AmbientColour = vec3(0.1, 0.1, 0.1);
 highp vec3 DiffuseMaterialColour = vColor;
 highp vec3 SpecularColour = vec3(1.0, 1.0, 1.0);

 gl_FragColor = vec4(AmbientColour*AmbientIntensity +
             diffuseLambert * DiffuseMaterialColour*DiffuseLightIntensity +
            SpecularColour * specular*SpecularIntensity,1.0);
  }
</script>

In Listing 4-8, we take the ambient, diffuse, and specular intensities; light colors; and our specular and 
Lambert amounts to produce a final color.

For much better specular results, we can move the lighting calculation to the FS. Recall that the VS operates 
per vertex, so when we pass results to the FS it is a linear interpolation between vertex points that is used for each 
pixel. However, when we perform the calculation in the FS, the calculation is done at every single pixel. This can 
produce a more accurate, independent, and detailed range of final values. The result of Phong illumination and 
shading is shown in Figure 4-9.

Figure 4-9. Phong shader and illumination

It is quite remarkable how a little specular highlight can make a scene much more vivid and realistic. The 
Phong shader with Phong illumination example is in the file 04/05_phong_phong.html.

The VS becomes much simpler. We just pass along the vertex color, position, and normal (see Listing 4-9).

Listing 4-9. Phong VS

<script type="x-shader/x-vertex">
 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

 attribute vec3 aVertexPosition;
 attribute vec4 aVertexColor;
 attribute vec3 aVertexNormal;
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 varying highp vec4 vColor;
 varying highp vec3 vPosition;
 varying highp vec3 N;

 void main(void) {
 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

     vColor = aVertexColor;
      vPosition = aVertexPosition;
 N = aVertexNormal;
 }
</script>

Of course, this means that our FS will do the heavy lifting now. In Listing 4-10 we calculate the diffuse and 
specular reflection light components inside of the FS.

Listing 4-10. Phong FS

<script id="shader-fs" type="x-shader/x-fragment">
 uniform highp mat3 uNormalMatrix;
 uniform highp mat4 uMVMatrix;
 uniform highp mat4 uPMatrix;

 varying highp vec4 vColor;
 varying highp vec3 vPosition;
 varying highp vec3 N;

 void main(void) {
      highp vec3 pointLightPosition = vec3(5.0,1.0,5.0);

      highp vec3 pointLightDirection = vec3(
  pointLightPosition.xyz - vPosition.xyz);

  highp mat4 mvp = uPMatrix * uMVMatrix;

      highp vec3 L = vec3(mvp * vec4(pointLightDirection, 1.0));
  highp vec3 V = -vec3(mvp * vec4(vPosition,1.0));

    highp vec3 l = normalize(L);
    highp vec3 n = normalize(uNormalMatrix * N);
    highp vec3 v = normalize(V);

  highp vec3 R = reflect(l, n);

  highp float diffuseLambert = dot(l,n);
  highp float Roughness = 1.0;
  highp float AmbientIntensity = 0.3;
  highp vec3 DiffuseLightIntensity = vec3(0.9, 0.9, 0.9);
  highp float SpecularIntensity = 0.5;
  highp float shininess = 128.0;

  highp float specular = pow( max(0.0,dot(R,v)), shininess);

    gl_FragColor = vec4(AmbientColour*AmbientIntensity +
             diffuseLambert * DiffuseMaterialColour*DiffuseLightIntensity +
             SpecularColour * specular*SpecularIntensity, vColor.a);
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 }
</script>

By adjusting the shininess, we can alter the specular highlight as shown in Figure 4-10.

Figure 4-11. All the vectors used in Phong and Blinn-Phong lighting calculations

Figure 4-10. Shininess values of 32, 8, and 2 (using the attenuation shader)

In Listing 4-10, v is our eye vector. To use Blinn-Phong we calculate the half angle vector as  
H = (L + v)/length(L + v), that is the normalized sum of L + V. We then compute the specular term as  
highp float specular = pow( max(0.0,dot(H,N)), shininess);. The Phong and Blinn-Phong specular term 
will be similar, but produce a slightly different specular highlight.

A variation of the Phong lighting model uses the half angle H and normal vector N to calculate the specular 
term. The half angle bisects the angle between the viewer’s eye and the lighting vector L.

This variation is known as Blinn-Phong illumination and is the OpenGL 3.1 fixed functionality default. There 
are times when using the Blinn-Phong lighting model is more computationally expensive than the Phong model 
because it involves a square root. However, in some cases it only needs to be computed once per light instead 
of at each pixel and is thus more optimal than the Phong model. Figure 4-11 shows all of the vectors involved in 
lighting calculations at a given point. The angle between the reflection vector R and normal N will be equal to the 
angle between the incoming light vector L and N.
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The VS is the same as in the last example, shown in Listing 4-9. The FS now adds a per-pixel distance 
calculation and attenuation factor (see Listing 4-11).

Listing 4-11. Modifications to the FS Which Add an Attenuation Factor

highp vec3 pointLightDirection = vec3(pointLightPosition.xyz - vPosition.xyz);
highp float d = length(pointLightDirection);
highp float attenuation = 1.0/(.01 + .01*d+.02*d*d);
…

highp vec3 AmbientColour = vec3(0.1, 0.1, 0.1)*attenuation;
highp vec3 DiffuseMaterialColour = vColor.xyz*attenuation;
highp vec3 SpecularColour = vec3(1.0, 1.0, 1.0)*attenuation;

Figure 4-12. Light attenuation

Attenuation
When we have a point light or spotlight, the light is brightest closest to the light position and decreases as the 
distance from a point to the light position increases. To emulate this we need to find the length of a point to 
the light position at every vertex (or pixel for increased accuracy). Then we compute an attenuation factor that 
is used to model the gradual loss of intensity of the light (see Figure 4-12). Typically, the attenuation factor 
is 1/(a + b*distance + c*distance2) where a,b, and c are constant, linear, and quadratic constants, 
respectively. Experiment with values to see what looks good. I have chosen 0.01, 0.01, and 0.02, respectively, 
in the example found in the file 04/06_attenuation.html.
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Note  With additional lights and a high shininess term, it can be easy to have the lighting intensity set too high. 
The result will look white like an overexposed photo, as shown in Figure 4-13.

Figure 4-13. Setting light values too high

Spotlights
A spotlight can be viewed as a cone of light emulating from a point. To model a spotlight, we need to set the 
angular range of the cone and then determine whether a point lies within it. If it does, we do our lighting 
calculation; otherwise we do not light the point. Code for a spotlight example can be found in the file 04/07_
spotlight.html.

The VS for the spotlight example does not change from Listing 4-9. The FS adds four variables that 
correspond to the total angle of the beam, the difference in intensity from the center of the beam to the edges, the 
direction of the spotlight (in addition to the light position), and a variable to test whether the current light beam 
is within the spotlight area:

//spotlight
highp float spotCosCutoff = -0.1;
highp float spotExponent = 2.0;
highp vec3 spotDirection = vec3(2.0,5.0,1.0);
highp float spotEffect = dot(normalize(spotDirection), l);

The new part of the FS involves two tests. The first checks if the Lambert term is greater than 0 (the light is on 
the proper side of the polygon face), and the second checks if the light to surface point direction falls within the 
spotlight beam. If either of these tests fails, we paint the pixel black.

… 
highp float diffuseLambert = dot(l,n);
 //spotlight
 highp float spotCosCutoff = 0.6;
 highp float spotExponent = 2.0;
 highp vec3 spotDirection = vec3(2.5,12.0,1.5);
 highp float spotEffect = dot(normalize(spotDirection), l);
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 if(diffuseLambert > 0.0){
 if(spotEffect > spotCosCutoff){
 highp float shininess = 32.0;
 highp float specular = pow( max(0.0,dot(R,v)), shininess);

 spotEffect = pow(spotEffect, spotExponent);
 attenuation *= spotEffect;

 highp float AmbientIntensity = 0.3;
 highp vec3 DiffuseLightIntensity = vec3(0.9, 0.9, 0.9);

 highp float SpecularIntensity = 0.5;

 highp vec3 AmbientColour = vec3(0.1, 0.1, 0.1)*attenuation;

 highp vec3 DiffuseMaterialColour = vColor.xyz*attenuation;
 highp vec3 SpecularColour = vec3(1.0, 1.0, 1.0)*attenuation;

 gl_FragColor = vec4(AmbientColour*AmbientIntensity +
                   diffuseLambert * DiffuseMaterialColour *
        DiffuseLightIntensity +
      SpecularColour * specular * SpecularIntensity,  
             vColor.a);
   }else{
 gl_FragColor = vec4(0.0,0.0,0.0, 1.0);
   }
    }else{
     gl_FragColor = vec4(0.0,0.0,0.0, 1.0);
    }
…

You can further enhance this example by dynamically moving the spotlight like a prison search light or 
lighthouse beam (see Figure 4-14). Instead of a harsh transition to complete black, you can also use another 
attenuation factor to ease into darkness.

Figure 4-14. A spotlight
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This covers the traditional approach to lighting with an ambient, diffuse, and specular component along 
with a directional spotlight. Next we will look at additional enhancements that we can make to global light and 
object interaction.

More Advanced Lighting
The Phong illumination model is fairly good, but it has some shortcomings. Direct illumination models such as 
Phong (which are traditional in computer graphics) take a small number of light sources and possibly a global 
ambient term to calculate lighting. What direct illumination fails to account for are the interreflections between 
objects and self-occlusion.

With global illumination models such as ray tracing, ambient occlusion, hemisphere lighting, and spherical 
harmonics, a higher degree of realism is achieved by taking these interactions into account and varying the 
ambient term accordingly. Global illumination models by themselves can look a little dull. A hybrid approach, 
using direct lights in conjunction with a global illumination model can be optimal. Global illumination can 
produce vastly more realistic results compared with direct illumination. However, it is slower and much more 
computationally intensive than direct lighting. For this reason, calculations are often done and then stored for 
later use.

Global illumination implementation is beyond the scope of this book, but there are several references in 
Appendix D for those who are interested. The OpenGLSL “Orange” book also discusses several advanced global 
illumination models.

Lastly, what if a material radiates light? Then we would also need to factor in the emissive light component of 
the object. We will now show how to model environmental fog and direct shadows with WebGL.

Fog
To produce atmospheric fog (see Figure 4-15), generally one of three equations are used: a linear equation or one 
of two exponential ones. The linear equation is Fog = (End

Z
 – z)/(End

Z
 – Start

Z
). End and Start are between 0 and 

1 in the clip space. The first exponential equation is Fog = e-(density * z) and the second exponential equation is Fog = 
e-(density * z)^2.

Figure 4-15. Adding fog
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To use the second exponential equation, we add one varying to our VS, which stores the length of our 
position from the origin. We could also have just stored the z-coordinate:

varying float fog_z;
fog_z = length(gl_Position.xyz);

In our FS, we set the fog density and color, and then mix the final lighting and material color with the fog 
color:

varying highp float fog_z;
…
//calculate fog
highp float fog_density = 0.25;
highp vec4 fog_color = vec4(0.1, 0.2, 0.1, 0.6);

highp float fogFactor = exp( -fog_density * fog_density * fog_z * fog_z);
fogFactor = clamp(fogFactor, 0.0, 1.0);

highp vec4 materialColor = vec4(AmbientColour*AmbientIntensity +
              diffuseLambert * DiffuseMaterialColour * DiffuseLightIntensity +
                SpecularColour * specular * SpecularIntensity, vColor.a);

gl_FragColor = mix( fog_color, materialColor, fogFactor );

The fog example can be found in the file 04/08_fog.html. Another example that combines fog and a 
spotlight is shown in Figure 4-16 and is in the file 04/09_fog_spotlight.html.

Figure 4-16. Fog with a spotlight

Fog is an effect that is fairly easy to implement and can help add character and atmosphere to a scene.

Shadows
The complement of light is darkness, so proper shadows are essential to a realistic scene. With illumination 
models such as the Phong illumination model, each object has areas of light or darkness. However, objects do 
not affect one another, which does not look natural. There are several ways to generate shadows and correct this 
issue. We will discuss two of the most common approaches: ambient occlusion and shadow maps.
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Ambient Occlusion
We mentioned that ambient occlusion is a global illumination technique. In direct lighting models, ambient light 
is modeled as constant throughout a scene. In reality, this is not the case. Ambient light at a point can be blocked 
by other objects in the scene or another part of the object. As an example, the back of your ears, the creases in 
your palms, wrinkles, and your belly button all receive less light than other areas such as your forehead, the tip of 
your nose, and your cheeks.

To determine how accessible light is to a point on an object, we can cast rays from the point and keep track 
of how many times they reach the boundary of our scene versus how many times they are blocked along the way. 
The less intersection by other objects, the more visible light gets to the point. The ratio of unblocked rays to total 
rays is the “occlusion factor” and will vary between 0 for always blocked to 1 for never blocked. By multiplying the 
occlusion factor with our diffuse light, we darken the resulting image.

The process of sending out light and it being blocked or not is similar to how sonar works. When sound 
waves hit an object and reflect back, we know that there is an object there. If all our emitted sound waves return, 
we must be completely enclosed. Going back from this analogy to light rays, if we are completely enclosed than 
no outside light gets to us.

Ambient occlusion produces soft shadows. By itself it can make an object look dull like the scenery on an 
overcast day. For this reason it is usually used in combination with a direct lighting model. We will not implement 
ambient occlusion in this book, but references are provided in Appendix D.

Shadow Maps
A shadow map produces harder shadows than ambient occlusion. By harder shadows I mean that the luminance 
of the shadow does not vary much and has well-defined edges, whereas a softer shadow has more gradual and 
subtle edges. To generate the shadow map for a light, we need to view the scene from the light’s perspective and 
then store the nearest depth value of each point, as seen from this view into a buffer for later lookup. When we 
render the scene, we compare the depth value of the current pixel with that of the stored map and perform the 
lighting calculation if it is closer than the depth map value. If there are multiple lights, we need to store depth 
values for each one. In practice, even if a scene has many lights, using the shadow maps of a couple of them is 
probably sufficient. Because implementing a shadow map involves knowledge of the frame and render buffers, 
we will explain how to implement a shadow map in Chapter 10. The shadow map of our scene shown from the 
light’s perspective is shown in Figure 4-17.

Figure 4-17. Shadow map of the scene

http://dx.doi.org/10.1007/978-1-4302-3996-3_10
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Note  Desktop versions of the GLSL have a special type for shadows, but the version of GLSL that is currently 
used for WebGL does not.

Shadows represent the absence of light and so are equally as important as rendering light. However, 
shadows are often more difficult to render in a visually appealing manner.

Depth Buffer
Our three-dimensional scene is transformed to two dimensions when it is rendered to the <canvas>. As such, 
many (x,y,z) coordinates may share the same (x,y) value. However there is only one pixel that corresponds to 
this value when we render to the canvas. So which one do we render?

The answer is determined by the depth buffer (aka the z-buffer), which stores a z-component for each pixel. 
By default, when WebGL encounters a pixel at (x,y,z), it tests whether the z-value stored at (x,y) in the buffer is 
farther away and replaces it if the new pixel is nearer. All z-values are clamped to the range [0,1]; 0 is the closest; 
1 is the farthest away. So if the viewport z direction is from [40, -40], 40 would be 0.0, 20 would be .25, 0 would 
be 0.5, -20 would be 0.75, and -40 would be 1.0.

We can set the range of depth values with void depthRange(GLclampf zNear, GLclampf zFar);. zNear 
needs to be smaller than zFar and both values are clamped to the range [0,1].Imagine we clamp our depth 
range to the range (0, 5)and that we pass the vertex points (3,-4, 4), (3,-4, 2), (3,-4,5), (3, -4, 1) to our FS. All 
(x,y) coordinate values in the depth-buffer are initialized to a value of 1.0. The first point (3,-4,4) has a z value 
of 4, which corresponds to 0.2 in the range [0, 5]. This is lower than 1.0, so it replaces the previous value in the 
depth buffer. The next z-value for the point, 2, is clamped to a higher value (0.6), so it fails to replace the current 
pixel. Continuing, the z-value of 5 is clamped to a lower value (0.0), so it replaces the current depth buffer value. 
Finally, 1 is clamped to (0.8), which does not replace the stored depth value. The final pixel rendered at (3, -4) 
corresponds to the one at (3, -4, 5).

The depth buffer comparison function is specified with a call to depthFunc(comparision_type), and the 
default comparision_type is LESS. As we have shown, the LESS comparision test passes if an input z-value is 
less than the previous pixel stored at the same (x,y)location within the depth buffer. When it passes, the input 
z-value replaces the stored value.

LESS is the default comparison function. However, we can change how WebGL compares values in the buffer 
to any one of the values: NEVER, LESS, EQUAL, LEQUAL, GREATER, NOTEQUAL, GEQUAL, or ALWAYS.

We can initialize the value stored in the depth buffer at each pixel with a call to void clearDepth(GLclampf 
depth).The valid range is 0 to 1, and the default is 1. To enable and disable writing to the depth buffer, you can 
use the function void depthMask(GLboolean flag);

An alternative to the depth test is blending, as we will cover next.

Blending
Blending lets us determine how to handle pixels that overlap in an alternative manner to the depth test. The 
depth test discards either the existing pixel or the new pixel, but blending combines the existing fragment color 
and incoming fragment into a new fragment. Blending can produce transparency, but it is not the same as 
transparency. To perform blending, you need to disable depth testing and enable blending:

gl.enable(gl.BLEND);
gl.disable(gl.DEPTH_TEST);
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When blending we have a source color (Rs, Gs, Bs, As) and a destination color (Rd, Gd, Bd, Ad). We 
then can define rules on how to combine the source and destination colors for our new fragment. We do this by 
using this function:

void blendFunc(GLenum sfactor, GLenum dfactor);

The first argument is the source factor, and the second is the destination factor. Our resultant color will 
be Source * sfactor + Destination *dfactor. Our available options for the source factor are ZERO, ONE, 
DST_COLOR, ONE_MINUS_DST_COLOR, SRC_ALPHA_SATURATE, SRC_ALPHA, ONE_MINUS_SRC_ALPHA, DST_ALPHA 
and ONE_MINUS_DST_ALPHA and the destination factors are ZERO, ONE, SRC_COLOR, ONE_MINUS_SRC_COLOR, 
SRC_ALPHA, ONE_MINUS_SRC_ALPHA, DST_ALPHA and ONE_MINUS_DST_ALPHA.

Note  Two nice online applications to play around with blend settings are available at http://mrdoob.com/lab/
javascript/webgl/blending/blendfunc.html and http://alteredqualia.com/three/examples/webgl_materials_blending_
custom.html. The application at the first link is written by the creator of the Three.js framework and the second one 
is written by the most active contributor to the library. In addition, http://www.khronos.org/registry/gles/specs/2.0/
es_full_spec_2.0.25.pdf#nameddest=section-4.1.6 explicitly states the result of each blending factor setting.

Using a blend function value of gl.blendFunc(gl.SRC_ALPHA, gl.ONE) will result in the red component 
being calculated as follows:

Rr = Rs*sfactor + Rd*dfactor
Rr = Rs*As + Rd*1 = Rs*As + Rd

The other components (G, B, A) are computed in the same manner. A second example which calculates 
based on SRC_ALPHA and ONE_MINUS_SRC_ALPHA is:

gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);

Rr = Rs*As + Rd*(1-As);
Rr = Rd + As(Rs-Rd);

We can also set the blend function to be additive or subtractive by calling void blendEquation(GLenum 
mode); or void blendEquationSeparate(GLenum modeRGB, GLenum modeAlpha); with FUNC_ADD, FUNC_
SUBTRACT or FUNC_REVERSE_SUBTRACT as parameter(s).

FUNC_ADD produces R = Rs*Sr + Rd*Dr, as shown previously for the final red component. FUNC_SUBTRACT 
produces R = Rs*Sr – Rd*Dr and FUNC_REVERSE_SUBTRACT produces R = Rd*Dr – Rs*Sr.

We can blend with a constant color by using void blendColor(GLclampf red, GLclampf green, 
GLclampf blue, GLclampf alpha);. To blend RGB and alpha values separately, we can use this function:

void blendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha);

The order of blending is important. Because the depth test and blending are mutually exclusive, we generally 
need to render completely opaque objects first, followed by semitransparent ones.

An example of blending can be seen in Figure 4-18 and found in the file 04/10_blending.html.
To produce the image in Figure 4-18, only the application changes. The shaders are the same as in the 

attenuation example, which is shown in code Listings 4-9 to 4-11. In Listing 4-12 the order of rendering is 
adjusted to render our semitransparent object last. For the plane and first two opaque spheres we enable the 
depth test and disable blending. Then we alternate these settings, disabling the depth test and enabling blending 
for our final sphere.

http://mrdoob.com/lab/javascript/webgl/blending/blendfunc.html
http://mrdoob.com/lab/javascript/webgl/blending/blendfunc.html
http://alteredqualia.com/three/examples/webgl_materials_blending_custom.html
http://alteredqualia.com/three/examples/webgl_materials_blending_custom.html
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf#nameddest=section-4.1.6
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf#nameddest=section-4.1.6
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Listing 4-12. Using blending

var drawOrder = [1,2,3,0];
for(var n=0; n < drawOrder.length; ++n)
{
 var i = drawOrder[n];

 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffers[i]);
 gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);

 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesColorBuffers[i]);
 gl.vertexAttribPointer(vertexColorAttribute, 4, gl.FLOAT, false, 0, 0);

 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesNormalBuffers[i]);
 gl.vertexAttribPointer(vertexNormalAttribute, 3, gl.FLOAT, false, 0, 0);

 if(i==0){
 gl.disable(gl.DEPTH_TEST);
 gl.enable(gl.BLEND);
 gl.blendFunc(gl.SRC_ALPHA, gl.ONE);
 gl.blendEquation(gl.FUNC_ADD);
 }else{
 gl.disable(gl.BLEND);
 gl.enable(gl.DEPTH_TEST);
 }
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, vertexIndexBuffers[i]);
 gl.drawElements(gl.TRIANGLES, vertexIndexBuffers[i].numItems, gl.UNSIGNED_SHORT, 0);
}

Figure 4-18. Blending applied to the closest sphere
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There are many combinations of blend factors and varying results obtainable by adjusting them. I encourage 
the reader to play around with the interactive demos listed in the previous note and/or to calculate the final color 
of a pixel based on a source and destination color and blend modes.

Reflection and Refraction
To render semitransparent objects such as glass or water, we need to model reflection and refraction. We have 
shown that when light is reflected off of a surface that the angle between the incoming incident light and surface 
normal will be equal to the angle between the reflected light ray and the surface normal. For this reason, the 
larger the light angle to the normal, the duller the specular reflection will be.

Refraction is a change in the direction of light (bending of light) where two varying mediums (of differing 
optical density) meet. Simple examples of refraction are when air and water or water and glass meet. Consider 
looking at an object, such as a straw, in a glass of water. The straw will appear to be bent where the water and air 
meet.

Snell’s Law, named after the Dutch astronomer Willebrord Snell who discovered it in the 17th century, 
describes what happens during refraction as follows:

1 1 2

2 2 1

sin v n
sin v n

Where 
1
, 

2
 are angles from the normal, v

1
, v

2
 are velocities, and n

1
, n

2
 are refractive indices. Refractive 

indices have no unit of measurement. The faster light travels through a given medium, the lower the medium’s 
refractive index. Because light in a vacuum is the highest speed obtainable, its refractive index is the base of all 
others to compare against and is given a value of 1. A sampling of increasing refractive indices, are air at standard 
temperature and pressure, water, glass, and diamond. Figure 4-19 illustrates Snell’s Law as we have two distinct 
mediums meeting. In the diagram, we have the surface normal N, the incoming angle 

1
 and the bent angle 

2
.

Note  Snell’s Law was actually first discovered by the Iranian mathematician Ibn Sahl in the 10th century, though 
this was not widely known until many centuries later.

Figure 4-19. Refraction between two different mediums such as air and water
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Fresnel effect
As we already know, in addition to refraction between mediums, there is also reflection. The Fresnel effect, named 
after Augustin-Jean Fresnel, states that the amount of specular reflection you see depends on your viewing angle. 
A viewing angle close to the surface normal (looking down at a surface such as water) will produce low reflection 
and have high refraction. A greater angle between the viewer and normal (looking across a surface such as water) 
will result in more reflection and less refraction. In Figure 4-20, part of the incident light ray is reflected as specular 
reflection off of the surface of the second medium while part of it is refracted into the second medium.

Figure 4-20. Fresnel effect which shows the relation between incident angle and reflection and refraction 
components

Fresnel Shader
A Fresnel shader calculates the reflective and refractive components of light using the GLSL functions reflect and 
refract. It uses a texture cube map for the environment. Although covering the complete implementation details 
of a Fresnel shader is beyond the scope of this book, good examples of Fresnel shaders in action are as follows:

Bubbles: http://alteredqualia.com/three/examples/materials_shaders_fresnel.html

Skull: http://www.everyday3d.com/j3d/demo/004_Glass.html

Putting it All Together
We can combine everything that we have learned in this chapter along with texturing to produce a nice final 
image. Our last example files 04/11_all_techniques.html contains blending, texturing, atmospheric fog, and 
Phong illumination, and is shown in Figure 4-21.

http://alteredqualia.com/three/examples/materials_shaders_fresnel.html
http://www.everyday3d.com/j3d/demo/004_Glass.html
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Summary
In this chapter we made vast improvements to our lighting model, which made rendering more realistic. Fog, 
spotlights, and blending added to the quality of our images. We also discussed more-advanced techniques such 
as global illumination, shadows, and reflection and refraction. The next chapter on physics introduces making 
the motion of our objects appear more realistic.

Figure 4-21. Image showing all the techniques discussed in this chapter along with texturing from the last chapter
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CHAPTER 5

Physics

In this chapter, we will introduce modeling physical interactions among objects in our scene. Topics that we will 
cover in this chapter are:

Position, velocity, acceleration

Forces such as gravity and friction

Projectile motion

Detecting and reacting to collisions

Elasticity and the conservation of momentum

Potential and kinetic energy

Background
In addition to lighting, texturing, and other visual cues of realism, how objects physically interact with their 
surroundings can give credence to the believability of our animations. Interaction that does not follow physical 
laws can look strange and unrealistic. Of course, this could be the effect that we are after. However, in this chapter, 
we will concentrate on trying to get our scene to act physically like we would expect objects to interact.

The scope of physical simulation is huge. We could model the ripples and waves of water or the buoyancy 
of an object, the rotation of tires, the flight of an airplane, and so on. In this chapter we will narrow our scope to 
basic kinematics: gravity, simple collisions, potential and kinetic energy, and projectiles.

A central requirement when modeling multiple moving objects within a scene is to be able to detect when the 
objects come into contact with one another. We will build upon methods to detect collisions throughout the chapter.

Forces Acting Upon Us
Every second of every day, we have forces acting upon us. These forces can include gravity, which pulls us 
down toward the earth; surface normals, which prop us up; friction, which stops us from continually moving; 
centripetal forces of rotation, wind, objects or people pushing or pulling upon us; and so on. When the sum of 
these forces balance each other out, we are said to be at rest.

Scalars and Vectors
In physics, we deal with two types of quantities: scalars and vectors. Scalar quantities have a magnitude but no 
direction, while vectors have both a magnitude and a direction. For example, speed is a scalar, as is mass and 
time. We can say that the speed of a car is 50 miles per hour, which is a scalar quantity. If we say that the car is 
travelling 50 miles an hour east, it is a vector.

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012
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Rates of Change
For applications of physics, we are usually interested in vectors. We can measure the vector position or 
displacement of an object such as 20 m along the x-axis. To calculate the velocity of the object, we take the 
difference of displacement of the object over a period of time. In other words, velocity is the rate of change of 
displacement. Acceleration is the rate of change of velocity. Displacement is usually symbolized as d, while velocity 
is represented as a v, and acceleration is an a. A basic equation to compute the average velocity of an object in the 
time range from Time

A
 to Time

B
, with respective displacements at the endpoints of this range, d

A
 and d

B
, is:

v = (d
B
 – d

A
)/(Time

B
 − Time

A
)

For example, if d
A
 = 20m, Time

A
 = 1s and d

B
 = 30m, Time

B
 = 5s then:

 v = (30m − 20m)/(5s − 1s) = 10m/4s = 2.5m/s

Similarly, to calculate the average acceleration over a time interval, we take the velocity at each 
corresponding time endpoint, v

A
 and v

B
:

a = (v
B
−v

A
)/(Time

B
 − Time

A
)

If v
A
 = 2.5m/s, Time

A
 = 1s and v

B
 = 3.0m/s, Time

B
 = 2s then:

a = (3.0m/s − 2.5m/s)/(2s − 1s) = 0.5m/s2

Figure 5-1 shows a sample graph of displacement against time, followed by the velocity plotted against time, 
and then the acceleration plotted against time. Notice, for example, that we can be moving forward while slowing 
down and can be moving fast while having zero acceleration.

Figure 5-1. Left: position of an object; center: velocity of the object; right: acceleration of the object

Our first code example will simulate objects free falling because of the effect of gravity. Here, when we 
speak of gravity, we are not modeling the universal attraction between all objects. This type of gravity is essential 
to modeling accurate orbits in astronomy, but in our day-to-day lives while these gravitational forces between 
objects such as two different people or cars on a road are present, they are negligibly small and not noticed. 
Instead we will be modeling the type of gravity that we are most familiar with: free fall from an object such as a 
ball (or human) downward to the surface of the earth.

Code Setup
We will need to be able to keep track of scene elements in a manner that is more conducive to updates and is 
more flexible by being independent of vertex buffer object (VBO) data. In previous chapters, we used isolated 
mesh(es) that did not interact. In this chapter, we will have interactions between objects and will need to be able 
to keep track of physical properties and adjust them. For this, we will create a new sphere object, as shown in 
Listing 5-1.
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Listing 5-1. Object to keep track of physical properties of a sphere

SphereObject = function SphereObject (properties) {
  var radius = (properties.radius === undefined) ?  1.0 : properties.radius;
  var position = (properties.position === undefined) ? new Vector3(0.0, 0.0, 0.0) :
  properties.position;
  var velocity = (properties.velocity === undefined) ? new Vector3(0.0, 0.0, 0.0) :
 properties.velocity;
  var acceleration = (properties.acceleration === undefined) ? new Vector3(0.0, 0.0, 0.0) :
 properties.acceleration;

  this.radius = radius;
  this.position = position;
  this.velocity = velocity;
  this.acceleration = acceleration;
  this.vbo_index = properties.vbo_index;
}

In the SphereObject of Listing 5-1, we keep track of the radius, position, velocity, and acceleration of a 
sphere. We also have a vbo_index property that we will use to tie each physical sphere object with the relevant 
VBO object.

Storing Information
We will store all our SphereObject elements in an array:

var sceneElements = [];

We declare three spheres and plane mesh as:

setupSphereMesh(0,  {
                        "translation": [−1.0, −0.75, 0.0],
                        "color": [1.0, 0.0, 0.0, 1.0],
                    }
                );

setupSphereMesh(1,  {
                        "translation": [0.0, 0.0, 1.0],
                        "color": [0.0, 1.0, 0.0, 1.0]
                    }
                );

setupSphereMesh(2,  {
                        "translation": [1.0, 0.25, −1.0],
                        "color": [1.0, 1.0, 0.0, 1.0]
                    }
                );

setupPlaneMesh(3, {"translation": [0.0, −1.0, 0.0]} );

sceneElements.push(new SphereObject( {"vbo_index": 0} ) );
sceneElements.push(new SphereObject( {"vbo_index": 1} ) );
sceneElements.push(new SphereObject( {"vbo_index": 2} ) );

We will be modifying this starting layout as the chapter progresses to a more generic and flexible system. 
Keeping track of elements is similar to when we create particle systems that are covered in Chapter 6, with the key 

http://dx.doi.org/10.1007/978-1-4302-3996-3_6
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difference that interactions here are determinalistic, while particle systems are partially unknown or stochastic  
in nature.

To assist in viewing the scene, we will show how to set up a camera that is adjustable through mouse clicks, 
drags, and scroll events.

Interactively Adjusting the Camera
First we will zoom out by backing up our viewport along the z-axis:

mat4.identity(mvMatrix);
mat4.translate(mvMatrix, [0.0, 0.0, −20.0]);
//other camera transforms

We will now demonstrate how to capture the mouse down, up, and move events to adjust the view. Being 
able to change the view this way will let us look around our scene dynamically.

Using the Mouse to Rotate the View
To implement changing the view with mouse movement, first we need to attach event handlers to our canvas, as 
shown in Listing 5-2.

Listing 5-2. Capturing mouse events to control the view

var     capture = false,
        start = [],
        angleX = 0,
        angleY = 0;

$(document).ready(function(){
        $("#my-canvas").on("mousedown", function(e){
                capture = true;
                start = [e.pageX, e.pageY];
                console.log("start:" + start);
        });

        $("#my-canvas").on("mouseup", function(e){
                capture = false;
                console.log("end capture");
        });

        $("#my-canvas").mousemove(function(e) {
                if(capture)
                {
                    var x = (e.pageX − start[0]);
                    var y = (e.pageY − start[1]);

                    //update start position
                    start[0] = e.pageX;
                    start[1] = e.pageY;

                    angleX + = x;
                    angleY + = y;
                    //console.log("Angle: (" + angleX + "," + angleY + ")");
                }
        });
});
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In Listing 5-2, the mousedown event signals a boolean flag called capture that should capture data on 
subsequent mousemove events as well as the current mouse position. When the mouseup event occurs, we let the 
flag know it should stop capturing data. The mousemove event computes the offset from the start position when 
the mousedown event started. Then we update the start position. This is important; otherwise, we will get very 
jerky, erratic results. Finally, we increment variables that store the x and y rotation angles.

Then in our application, we update our mvMatrix on each frame, setting the translation amount and then 
rotation values:

mat4.identity(mvMatrix);
mat4.translate(mvMatrix, [0.0, 0.0, −20.0]);
mat4.rotate(mvMatrix, angleX*2*Math.PI/180.0, [0.0, 1.0, 0.0]);
mat4.rotate(mvMatrix, angleY*2*Math.PI/180.0, [1.0, 0.0, 0.0]);

Note  As an alternative to attaching mouse handlers to the canvas, we can attach them to the entire document. 
This can be useful in the previous example because moving off of the canvas will currently stop the mouse event 
capturing and produce unexpected and undesirable results when we move back in to the canvas. The mouse button 
may still be down, but we will need to first release it and then click and hold it again before events are recaptured.

It is generally best to do scene-wide transformations first, followed by object specific transforms.

Using the Mouse Wheel to Control Zoom
Scrolling the mouse wheel is often used to control zooming in and out of a scene. To do this, we will attach a 
handler to the mousewheel event:

var zoom = 1.0;

. . .
$(document).ready(function(evt){
    $("#my-canvas").on("mousewheel", function (e){
        var delta = window.event.wheelDelta;
        if(delta > 0)
        {
            zoom + = 0.1;
        }else{
            zoom −= 0.1;
            //prevent a negative zoom
            if(zoom < 0.01)
            {
                zoom = 0.1;
            }
        }
    });
. . .
mat4.scale(mvMatrix, [zoom, zoom, zoom]);
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Now, because of browser differences, the above code will not work with Firefox, which uses the 
DOMMouseScroll event instead of the mousewheel event. To account for this, we can add multiple event handlers:

function adjustZoom(delta)
{
    if(delta > 0)
    {
        zoom + = 0.1;
    }else{
        zoom − = 0.1;
        if(zoom < 0.01)
       {
            zoom = 0.1;
        }
    }
}

$(document).ready(function(evt){
    $("#my-canvas").on("mousewheel", function (e){
        adjustZoom(window.event.wheelDelta);
    }).on("DOMMouseScroll", function (e){
        //firefox
        adjustZoom(e.originalEvent.detail * −1.0);
    });
. . .

Note  The target of the mousewheel and DOMMouseScroll events is the DOM element underneath the current 
position of the mouse pointer, similar to click events.

The detail property has a reverse orientation to the wheelDelta, so we multiply by negative 1 for 
consistency. The magnitudes of these properties is also different, but we are only concerned with the sign that 
indicates an up or down scrolling direction. More-robust handling of mouse wheel events can be found in the 
jQuery mousewheel plugin from https://github.com/brandonaaron/jquery-mousewheel/blob/master/
jquery.mousewheel.js.

The shader program for all the examples in this chapter will be the same as the Phong illumination model 
and shader found in the 04/05_phong_phong.html demo. We are ready to start simulating physical interaction 
and the first thing we will do is simulate gravity.

Gravity
Gravity, as most nonphysicists are used to, is simply the force that pulls things downward toward the earth. As the 
saying goes, “What goes up, must come down.” We will model dropping three spherical balls toward the ground 
and make some successive improvements.

Free Falling
Our first attempt to model gravity will simply lower the position of all three spheres each frame. For this example, we 
will use the code in the 04/05_phong_phong.html file as a starting point, along with the changes outlined previously 

https://github.com/brandonaaron/jquery-mousewheel/blob/master/jquery.mousewheel.js
https://github.com/brandonaaron/jquery-mousewheel/blob/master/jquery.mousewheel.js
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to keep track of the scene elements. In Listing 5−3, we show how we adjust each sphere by searching for an 
appropriate vbo_index to determine which objects are spheres and then translating the model view matrix for each.

Listing 5-3. Adjusting select scene elements

function searchForObject(arr, index)
{
    for(var i in arr)
    {
        if(arr[i].vbo_index == index)
        {
            return i;
        }
    }
    return −1;
}

function drawScene()
{
    for(var i = 0; i < vertexIndexBuffers.length; ++i)
    {
        mat4.identity(mvMatrix);
        mat4.translate(mvMatrix, [0.0, −1.0, −15.5]);

        var n = searchForObject(sceneElements, i);
        if( n ! = −1)
        {
            mat4.translate(mvMatrix, [ 0.0, 5.0 − sceneElements[n].position.y, 0.0 ]);
            sceneElements[n].position.y + = 0.1;
        }
        mat4.toInverseMat3(mvMatrix, normalMatrix);
        mat3.transpose(normalMatrix);
        setMatrixUniforms();

        . . .
    }
}

In Listing 5-3, we have a helper method, searchForObject, which takes an input array of SphereObjects and 
finds an appropriate object index based on the input vbo_index value or −1 if no match is found. Extending this 
approach would allow us to potentially have many different object types in our scene but be able to affect only 
the VBO objects that match a certain criteria—in this case, being a sphere. If the current VBO index is a match, we 
translate its model-view matrix and increase the stored y position. The VBO index for the ground mesh will result 
in a −1 being returned from the search, so it will be stationary.

The result of running this code, which can be found in the 05/01a_gravity.html file, is that the spheres fall 
indefinitely. They go past the ground, as shown on the left of Figure 5-2. So now let’s add our first case of collision 
detection to prevent this.
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Figure 5-2. Far left: starting position of spheres; left: free falling with no collision with the ground; right: collision 
detection not including the radius; far right: proper collision detection

Falling and Colliding With the Ground
First, we will formalize the initial height of the spheres and ground:

var INITIAL_HEIGHT_TRANSLATION_OF_SPHERES = 5.0;
var GROUND_Y = −1.0;

. . .
setupPlaneMesh(3, { "translation": [0.0, GROUND_Y, 0.0]} );

To test whether an object hits the ground, we need to test whether the starting translation amount of our 
sphere minus the translated y-position is greater than the ground height. If it is not, we stop incrementing  
the position:

. . .
var n = searchForObject(sceneElements, i);
if( n ! = −1)
{
    if(INITIAL_HEIGHT_TRANSLATION_OF_SPHERES - sceneElements[n].position.y > GROUND_Y)
    {
        sceneElements[n].position.y + = 0.1;
    }
    mat4.translate(  mvMatrix,
        [0.0, INITIAL_HEIGHT_TRANSLATION_OF_SPHERES - sceneElements[n].position.y, 0.0] );
}
. . .

Running this code stops the spheres, but they get stuck part way through the plane, as shown in the right of 
Figure 5-2. So let’s improve our collision detection to factor in the radius of the sphere:

if( ( INITIAL_HEIGHT_TRANSLATION_OF_SPHERES –
    (sceneElements[n].position.y + sceneElements[n].radius) ) > GROUND_Y)
{
    sceneElements[n].position.y + = 0.1;
}

The result of this adjustment is shown on the far right of Figure 5-2.
Let’s make one more code improvement and set the initial translation of the sphere directly in our 

SphereObject instead of in the setupSphereMesh call:

setupSphereMesh(0, { "color": [1.0, 0.0, 0.0, 1.0] } );
setupSphereMesh(1, { "color": [0.0, 1.0, 0.0, 1.0] } );
setupSphereMesh(2, { "color": [1.0, 1.0, 0.0, 1.0] } );
setupPlaneMesh(3, { "translation": [0.0, GROUND_Y, 0.0]} );
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sceneElements.push(new SphereObject( { "vbo_index": 0,
     "position": new Vector3(−1.0, −0.75, 0.0)}) );
sceneElements.push(new SphereObject( { "vbo_index": 1,
     "position": new Vector3(0.0, 0.0, 1.0)}) );
sceneElements.push(new SphereObject( { "vbo_index": 2,
     "position": new Vector3(1.0, 0.25, −1.0)}) );

This adjustment lets us keep the local mesh coordinates and color details in the VBO code and the world 
position in the SphereObject. Because it is outside of the VBO, we can now easily adjust the position without 
modifying our buffer. We now need to also adjust our x and z positions in the translate call:

mat4.translate(mvMatrix,
     [  sceneElements[n].position.x,
        INITIAL_HEIGHT_TRANSLATION_OF_SPHERES  - sceneElements[n].position.y,
        sceneElements[n].position.z
     ]);

Our next step is to have the spheres bounce back up.

Falling Down, but Bouncing Back Up
Let’s put some spring into these spheres and have them bounce back up upon impact of the plane. So how do 
we do this? Well if the ground is hit, we need to reverse the direction. One naïve approach to this is to flip the 
direction of position adjustments upon impact:

function isAboveGround(n)
{
    return ( INITIAL_HEIGHT_TRANSLATION_OF_SPHERES –
             (sceneElements[n].position.y + sceneElements[n].radius) > GROUND_Y);
}
. . .
var n = searchForObject(sceneElements, i);
if( n ! = −1)
{
    if( isAboveGround(n) )
    {
        sceneElements[n].position.y + = 0.1;
    }else{
        sceneElements[n].position.y − = 0.1;
 
    }
. . .
}

The problem with this approach is that the sphere will start traveling upward, but because it is above the 
ground, it will immediately travel back down on the next iteration. The ground will be reached again, and the 
sphere will start upward again. It will do this indefinitely and get caught in an alternating loop that makes the 
object shake slightly but not move much.
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A further addition to this approach  would be to add a flag signaling that the ground has been hit so that we 
never pass the test condition to continue falling once the ground has been hit:

var flip_direction = [false, false, false];
. . .
if( isAboveGround(n) &&
    !flip_direction[n]
  )
{
    sceneElements[n].position.y + = 0.1;
}else{
    flip_direction[n] = true;
    sceneElements[n].position.y − = 0.1;
}

This does eliminate the previous problem, and the ball will bounce back upward upon collision. However, 
this approach is not a robust or useful solution because once the ball starts traveling upward, it will continue 
upward forever, never coming back down.

We will now look at how to use velocity and acceleration to properly model a bouncing object.

Falling and Bouncing Up; Repeat
Until now, we have not made use of the velocity or acceleration properties of our SphereObject.

We can rewrite the equation  a = (v
B
 − v

A
)/(Time

B
 − Time

A
) as:

v
b
 = v

a
 + a(Time

B
 − Time

A
)

Or equivalently as follows, where f stands for final, i for initial, and t for the time interval:

v
f
 = v

i
 + at

This equation can be used to model our free fall. Until now, the pace of descent has been constant 
throughout. This is not accurate as objects speed up as they fall—so using this equation will also be an 
improvement in the realism of the descent. The flexibility of storing information in the SphereObject will present 
itself when we bounce the balls back upward.

Let’s take a closer look at the equation v
f
 = v

i
 + at. The time, t, can be set to 1 as we can use frame value 

offset instead of an actual time. Gravity will be the acceleration, a. Usually, gravity has the value of 9.8 m/s2 
downward, but our scene is not using any specific scale or unit of measurement, so the value that we choose can 
be anything that looks good—too high a value will make the descent occur too rapidly, and too low will result in it 
being too slow. Experimentation of values is the key here. With our current scene setup, 0.01 for the acceleration 
works well. One of the sphere initializations is shown here:

sceneElements.push(new SphereObject(
                        {
                            "vbo_index": 0,
                            "position": new Vector3(−1.0, −0.75, 0.0),
                            "acceleration": new Vector3(0.0, 0.01, 0.0)
                        }
                    )
                 );

Normally, the acceleration is represented as a negative number, but because of the way we are translating 
each sphere, we are using a positive value. If you want to use a negative value, you can adjust the sign of the 
translation.

Our initial velocity vector of each sphere is (0, 0, 0), which makes the y-velocity after the next frame:

v
fy
 = v

iy
 + a

y
t = v

iy
 + 0.01(1) = v

iy
 + 0.01 = 0.01
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So it’s v
fy
 = 0.01 after the first frame, 0.02 after the second, 0.03 after the third, and so on linearly. When 

we apply the velocity to our distance equation of d
fy
 = d

iy
 + v

y
t, This will produce displacements relative to the 

initial displacement of 0.01 after the first frame, 0.03 after the second, 0.06 after the third, and so on increasing 
and nonlinearly.

In our code, instead of incrementing the position directly, we instead adjust the velocity first and then adjust 
the position. This allows us to reverse the velocity when contact with the plane is made without getting stuck into 
a loop:

if( isAboveGround(n) )
{
    sceneElements[n].velocity.y + = sceneElements[n].acceleration.y;
}else{
    sceneElements[n].velocity.y *= −1.0;
}
sceneElements[n].position.y + = sceneElements[n].velocity.y;

When you run the program 05/01e_gravity.html, the three balls will continue to bounce up and down 
indefinitely.

Nonperfect Elasticity
When the balls in the previous example bounce, they do so perfectly elastically. Perfect elasticity means that the 
speed at which they move upward after collision is the same as the speed at which they were falling with at that 
moment. No momentum is lost to friction or other forms of energy. Except in theory, objects are not perfectly 
elastic, so we can make the example more realistic by decreasing the elasticity. This will mean that the bouncing 
will come to a stop at some point. This is very easy to model; we just add the elasticity as a variable and multiply it 
by the velocity when a collision is made with the ground:

var ELASTICITY = −0.8;
. . .
if( isAboveGround(n) )
{
    sceneElements[n].velocity.y + = sceneElements[n].acceleration.y;
    sceneElements[n].position.y + = sceneElements[n].velocity.y;
}else{
    //subtract velocity first, which helps prevent getting stuck
    sceneElements[n].position.y − = sceneElements[n].velocity.y;
    sceneElements[n].velocity.y *= ELASTICITY;
}

The elasticity value can range from 0.0 for no elasticity (stops dead; think of hitting a brick wall) to 1.0 for 
perfectly elastic (the greatest rubber ball ever, only theoretically possible). In the previous code, we also made 
sure to adjust the position before the elasticity factor is multiplied with the velocity. This is to help prevent the 
ball from coming to a dead stop.

To show why this is necessary, consider an object that is a temporary distance of −0.6 into the ground and 
has a current velocity of −1.0. It should be able to make its way back above in the next iteration when the direction 
of velocity switches to 1.0. However, if the object has an elasticity value of 0.4, this dampens the return velocity 
to a value of 0.4 instead of 1.0. The next position calculated will be −0.2, which means that it is still 0.2 below the 
surface. This means that the next time through the above ground test, it fails again, and the velocity gets flipped. 
This is bad news because the object is below the ground and travelling downward again. The velocity is reversed 
and dampened again to −0.16, which sends it lower into the ground to −0.36, and then flipped to a velocity 
of 0.064, and so on. The result of this situation is that after a few iterations, an object which could have been 
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travelling fast can stop seemingly dead in its tracks. This looks very odd—to say the least. Adding the velocity 
to the position before the elasticity is multiplied eliminates this issue. The final version of the bouncing balls is 
shown in Figure 5-3.

For the next example, we will unleash an arbitrary number of spheres into the world and have initial x, y, and 
z velocities.

Velocity in Three Dimensions
We will check for hitting the invisible boundaries of our plane and bounce the balls back within our area if they 
are exceeded. Once we have this set up, we will also test for collisions among the spheres.

Detecting Collisions with Many Walls
We will be adding an arbitrary number of spheres to our scene. First, we will add some code to keep the objects 
that will have x and z velocity now from going outside of our viewing area. We will test for intersection with our 
virtual walls of the ground mesh:

if(sceneElements[n].position.x > PLANE_SIZE || sceneElements[n].position.x < −PLANE_SIZE)
{
    sceneElements[n].position.x + = (−1.0*sceneElements[n].velocity.x);
    sceneElements[n].velocity.x * = −1.0;
}else{
    sceneElements[n].position.x + = sceneElements[n].velocity.x;
}

if(sceneElements[n].position.z > PLANE_SIZE || sceneElements[n].position.z < −PLANE_SIZE)
{
    sceneElements[n].position.z + = (−1.0*sceneElements[n].velocity.z);
    sceneElements[n].velocity.z * = −1.0;
}else{
    sceneElements[n].position.z + = sceneElements[n].velocity.z;
}

So far, we have detected collisions with a moving object and an immovable object. Now we will model 
moving objects colliding with one another.

Figure 5-3. Bouncing balls
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Intercollisions
When we want to know whether two objects have collided, it is simpler to test bounding volumes using  
well-defined shapes. These will be much less computationally expensive. Other volumes exist, such as ellipsoids 
and cylinders, but boxes and spheres are most commonly used.

Bounding Boxes and Spheres
The bounding volume we choose depends on the shape of the underlying object. Fairly round objects are naturally 
represented well with a sphere, while many other objects are a much closer fit to a square box. Figure 5-4 shows 
that a cube does not fit well in a sphere, and vice versa. (We wouldn’t want to do either of these things.)

Figure 5-4. Left: cube in a bounding sphere; right: sphere in a bounding box

Note  For a refresher on sphere and cube geometries please refer to http://en.wikipedia.org/wiki/Sphere 
and http://en.wikipedia.org/wiki/Cube

With bounding volumes, we can use simple geometry to handle objects when they are close to one another. 
For example, we know that two bounding spheres have intersected each other if the distance between their 
centers is less than the sum of their radii. With bounding volumes, we are guaranteed not to have a collision 
without knowing about it. If the bounding volume exactly represents the object, the collision is always accurate. 
However, if the bounding volume is larger than the object being held, there will be some false positives when we 
think a collision has taken place (but has not). The closer the encapsulated object is to its bounding volume, the 
fewer false positives of intersection we will encounter.

One way to limit this error is to break an irregularly shaped mesh into smaller bounding boxes or spheres. 
As the number of smaller bounding volumes (or areas in the 2D case) increases, the amount of error decreases 
and will approach zero. A 2D irregular shape and bounding rectangles are shown in Figure 5-5, along with several 
bounding rectangles that more closely approximate the shape but also increase the number of computational 
checks that we must perform. White space within a bounding rectangle shows areas of collision false positive.

Figure 5-5. Left: single bounding box; right: four bounding rectangles

http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Cube
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Now we are ready to detect collisions among spheres. First to handle the collisions realistically, we’ll need to 
know a little about momentum and the conservation of it.

Conservation of Momentum
Momentum, p, is the product of an object’s mass, m, and velocity, v:

p = mv

When two objects collide, the overall momentum of the system stays the same in theory. In reality, there is 
friction that also occurs, so no collision is completely elastic.

The equation of the conservation of momentum is the following:

P
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 + p
2_initial

 = p
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It can be rewritten as this:
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When the mass of m
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, the first equation simplifies to the following:
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And likewise:
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So the velocities are simply swapped!

This equation is specific to one dimension, but it also applies to orthogonal (perpendicular) components, so 
we can apply the equation separately to all three of the x, y, and z dimensions.

Uniform Mass Collisions
As mentioned, when the masses are exactly the same like billiard balls, we can swap the velocities.

For each frame, we will check all the spheres in our scene for collision with other objects in the scene (see 
Listing 5-4).

Listing 5-4. Checking for collisions among spheres with equal masses

checkForCollisions(sceneElements, n);
. . .

function checkForCollisions(arr, n)
{
    for(var i in arr)
    {
        if(i ! = n)
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        {
            var p1 = arr[n].position;
            var p2 = arr[i].position;
            var v = new Vector3( p1.x − p2.x, p1.y − p2.y, p1.z − p2.z );

            if(v.length() < (2.0 * arr[n].radius) )
            {
                //swap velocities of two vectors
                var tmp = arr[n].velocity;
                arr[n].velocity = arr[i].velocity;
                arr[i].velocity = tmp;

                //move positions so they don't get stuck
                arr[n].position.x + = arr[n].velocity.x;
                arr[n].position.y + = arr[n].velocity.y;
                arr[n].position.z + = arr[n].velocity.z;

                arr[i].position.x + = arr[i].velocity.x;
                arr[i].position.y + = arr[i].velocity.y;
                arr[i].position.z + = arr[i].velocity.z;
            }
        }
    }
}

In Listing 5-4, we check for the distance to be less than twice the radius because the radii are the same. If a 
collision occurs, we swap velocities using a temporary variable. The result of this is shown on the left of Figure 5-6.

Figure 5-6. Left: collisions of uniform mass; right: collisions of varying mass

We will now create spheres with varying radii and masses and compute collisions among them.
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Collisions of Different Mass
In our next example, we will now use spheres of varying radii. We will assume that the material of all the spheres 
is the same and that they are solid. This lets us use the volume to proportionally compare the masses without 
actually setting or knowing the mass of any sphere. Recall that the volume of a sphere is V = 4/3*π*r3.

Suppose we have two spheres: V
1
 = 4/3*π*r

1
3 and V

2
 = 4/3*π*r

2
3. The ratio of these two volumes is  

V
1
/V

2
 = (r

1
/r

2
)3.

If r
1
 = 1 and r

2
 = 1, the ratio = 13 = 1. The volumes and (because they are the same material) the masses are 

also the same. If r
1
 = 2 and r

2
 = 1, the ratio = (2/1)3 = 8. So the first sphere has eight times more volume then the 

second sphere and eight times more mass as well. We can generically use the radii of the two spheres to set our 
two masses to the following:

m
1
/m

2
 = (r

1
/r

2
)3/1

m
1
 = (r

1
/r

2
)3

m
2
 = 1

Note  For more involved calculations, we can use existing physics libraries such as those discussed in  
Chapter 8.

We can calculate our final velocity values for each sphere given initial velocities and radius, as shown in 
Listing 5-5.

Listing 5-5. Checking for collisions among spheres with varying mass

function checkForCollisions(arr, n)
{
    for(var i in arr)
    {
        if(i ! = n)
        {
            var p1 = arr[n].position;
            var p2 = arr[i].position;
            var v = new Vector3( p1.x − p2.x, p1.y − p2.y, p1.z − p2.z );

            if(v.length() < (arr[i].radius +  arr[n].radius) )
            {
                //swap velocities of two vectors
                var tmp1 = arr[n].velocity;
                var tmp2 = arr[i].velocity;
                var r1 = arr[n].radius;
                var r2 = arr[i].radius;

                var finalX = findFinalVelocities( tmp1.x, tmp2.x, r1, r2 );
                var finalY = findFinalVelocities( tmp1.y, tmp2.y, r1, r2 );
                var finalZ = findFinalVelocities( tmp1.z, tmp2.z, r1, r2 );

                arr[n].velocity = new Vector3( finalX[0], finalY[0], finalZ[0] );
                arr[i].velocity = new Vector3( finalX[1], finalY[1], finalZ[1] );

                //move positions so they don't get stuck
                arr[n].position.x + = arr[n].velocity.x;

http://dx.doi.org/10.1007/978-1-4302-3996-3_8
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                arr[n].position.y + = arr[n].velocity.y;
                arr[n].position.z + = arr[n].velocity.z;

                arr[i].position.x + = arr[i].velocity.x;
                arr[i].position.y + = arr[i].velocity.y;
                arr[i].position.z + = arr[i].velocity.z;

            }
        }
    }
}

function findFinalVelocities(v1, v2, r1, r2)
{
    var m1 = (r1*r1*r1)/(r2*r2*r2);
    var m2 = 1.0;
    var f1 = (m1−m2)/(m1 + m2)*v1 + 2*m2/(m1 + m2)*v2;
    var f2 = (m2−m1)/(m2 + m1)*v2 + 2*m1/(m2 + m1)*v1;
    return [f1, f2];
}

In Listing 5-5, we added a helper method findFinalVelocities which takes in two initial velocities and radii 
and computes and returns the final velocity values. We do this calculation component-wise. Spheres of unequal 
size are shown interacting on the right of Figure 5-6.

Our next example looks at the path of projectiles.

Projectiles
We are all familiar with the projectile motion of objects, whether it be a cannon ball being fired, an archer’s 
arrow, a baseball being hit or thrown, and so on. Projectiles have a parabolic arc that the object travels along, as 
shown in Figure 5-7.

Figure 5-7. A typical projectile path

Unless there is a wind or other horizontal force, the horizontal velocity component, v
x
, stays constant 

throughout the flight of the object. The vertical velocity decreases with time due to the force of gravity and is 
calculated as (v

y
 + a

y
t).
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Note  Given an initial velocity vector, v, once we calculate the initial orthogonal x and y velocity components, v
x
 

and v
y
, we can calculate future velocities separately using these equations: 

v
fx
 = v

ix
 + a

x
t and v

fy
 = v

iy
 + a

y
t

There are two basic factors that affect the flight of a projectile (as I am sure anyone who has played “Angry 
Birds” is familiar with): the angle and magnitude of the initial velocity. An angle of 45 degrees will have an equal 
initial horizontal and vertical velocity. Between 0 and 90 degrees, any angle higher than 45 degrees will have 
more vertical velocity while any angle lower will have more horizontal velocity. Given an angle of theta between 
the velocity vector and the ground, the initial vertical component, v

y
 is sin(theta), while the initial horizontal 

component, v
x
 is cos(theta).

Suppose our initial velocity is 25 m/s, and the angle is 60 degrees. Then v
y
 = 21.65m/s and v

x
 = 12.5m/s. On 

a flat surface, an object with this initial velocity will hit the ground when the displacement of the y-component 
distance equation is 0:

d = v
yi
*t + 1/2*a

y
*t2

This occurs by solving the following:

0 = t(v
iy
 + 1/2*ay*t)

The first solution occurs trivially at t = 0s. The second solution occurs when:

t = −2v
iy
/a

y

  = − 2(21.65m/s)/(−9.8 m/s2)
  = 4.42s

From the hangtime that we just calculated, we can determine the vertical distance that the object will travel 
as follows:

d = v
xi
*t + 1/2*a

x
*t2

  = 12.5m/s*4.42s + 0
  = 55.25m

Note  To find out the maximum height of a projectile, you can take the initial y velocity, V
iy

, and solve the 
 equation V

fy
2 = V

iy
2 + 2ad for when V

fy
 = 0. This will correspond to the apex of the projectile path where it starts 

travelling back downward: d = −V
iy
2/2a = V

iy
2/19.6m/s2

We will now implement a demo that fires a projectile. The main new component of the demo is listening to 
keystrokes to adjust the angle of a semiopen box mesh that represents the angle of our initial velocity and the 
speed of our initial velocity. We also listen for a key to fire a sphere from this box. The key shortcuts are  
shown here:

$(document).keyup(function(evt){
    switch(evt.keyCode){
        case 80: //'p'
            paused = !paused;
     break;
        case 83: //'s'
            --angle;
            break;
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        case 68: //'d'
            ++angle;
            break;
        case 37: //'left'
            speed − = 0.1;
            break;
        case 40: //'right'
            speed + = 0.1;
     break;
        case 70:
     fire = true;
            console.log("fire!");
            sceneElements[0].position = new Vector3(0.0, 0.0, 0.0);
            sceneElements[0].velocity = new Vector3(
                                  speed*Math.cos(angle*.1), speed*Math.sin(angle*.1), 0.0);
            break;
        default:
            break;
    }
});

The fire event resets the position of the sphere and then sets the velocity based on the angle. When we 
perform transformations to our scene, the order in which the translations, rotations, and scalings are performed 
is important. One new method from the gl-matrix.js library that we perform here is to scale our scene smaller 
so that it is easier to see the path of the projectile:

var SCALE = 0.2;
. . .

mat4.scale(mvMatrix, [SCALE, SCALE, SCALE]);

When the f key is pressed and the fire flag is set, we update our sphere position:

if(fire){
    sceneElements[0].velocity.y + = sceneElements[0].acceleration.y;

    sceneElements[0].position.x + = sceneElements[0].velocity.x;
    sceneElements[0].position.y + = sceneElements[0].velocity.y;
    sceneElements[0].position.z + = sceneElements[0].velocity.z;
}

To see the full path of the projectile without clearing the browser along the way, we can tell WebGL to 
preserve the drawing buffer upon initialization and not call gl.clear between frames:

gl = canvas.getContext("webgl",  {preserveDrawingBuffer: true}) ||
    canvas.getContext("experimental-webgl",  {preserveDrawingBuffer: true});

Output showing the full projectile paths is shown on the right of Figure 5-8.
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The full code of this demo is in the 05/05_projectile.html file. I encourage you to play around with 
projectiles and momentum further. With the knowledge gained here, you could program a simplified version of 
tennis, for example.

Our final example of the chapter investigates the relation between potential and kinetic energy.

Potential Energy
So far, we have been looking at examples that have kinetic energy, which is the energy of motion. On the other 
hand, potential energy is stored energy, often because of the height of an object and the force that gravity will 
exert when the object free falls. A classic example of potential energy is a roller coaster. At the top of the coaster, 
when the cars are static, the energy in the system is pure potential energy (PE). As each car starts its descent, PE is 
converted to kinetic energy (KE), and the coaster cars gain velocity. The ratio of KE increases as a car reaches the 
ground and decreases when the cars travel back upward.

In theory, the total energy of the system is maintained, as shown in Figure 5-9. In the real world, however, 
energy is lost along the way due to friction.

Figure 5-8. Left: a projectile in flight; right:  projectiles without clearing the drawing context

Figure 5-9. Without friction, the PE and KE of a system are conserved

For our next example, we will create a small ramp with a jump and have a sphere travel down it. We can 
adjust the height to determine a value that will produce sufficient velocity to make it across. Figure 5-10 shows 
a 2D planned outline of the ramp. The actual ramp will be three-dimensional, but a diagram like this is useful to 
plan the mesh.
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The first step to modeling this is to define some variables so that we can easily adjust the dimensions:

//ramp dimensions
var HEIGHT_1 = 65.0,
 HEIGHT_2 = 15.0,
 HEIGHT_3 = 20.0,
 HEIGHT_4 = 15.0,
 LENGTH = 60.0,
 LENGTH_2 = 60.0 * 0.5,
 LENGTH_3 = 60.0 * 0.75,
 LANDING_RAMP_START = LENGTH * 2.0,
 LANDING_RAMP_END = LENGTH * 3.0,
 DEPTH = 25.0;

The previous heights correspond to the initial maximum height, the height of the flat part of the ramp, and 
the last peak before the jump/gap and the initial height of the landing ramp. The diagram in Figure 5-10 is not to 
this scale; it is a guideline that can be resized to any dimensions. The LENGTH determines the distance of the first 
ramp up to the gap, and the SCALE is used to scale the model into a size that fits better with the rest of our scene.

We will make the ramp all one color, and a way to do this without requiring color data for each vertex is to 
disable the attribute array for the mesh and specify a single vector instead:

gl.disableVertexAttribArray(vertexColorAttribute);
gl.vertexAttrib4f(vertexColorAttribute, 1.0, 0.9, 0.7, 1.0);

The full vertex and indice values for the mesh are in the 05/06_ramp.html file, and normals are generated 
procedurally as in the first four chapters of the book. The ramp mesh and sphere position, along with views of the 
full path, are shown in Figure 5-11.

Figure 5-11. Left:rendered ramp and moving sphere; center: viewing the full path of the sphere; right: an alternate 
view of the path

Figure 5-10. Left: side view of ramp; center: side view dissected into triangles; right: side view with edges that will 
test for collision with the ball

What remains is to calculate the collisions with the four edges shown on the right of Figure 5-10 and also 
calculate the velocity components relating to the cosine and sine values of each edge angle. In order to achieve 
this, we will first create a new object to represent a 2D wall that the sphere may encounter as shown in Listing 5-6.
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Listing 5-6. An object to store wall properties

WallObject = function WallObject (properties) {
  var start_x = (properties.start_x === undefined) ?  0.0 : properties.start_x;
  var start_y = (properties.start_y === undefined) ?  0.0 : properties.start_y;

  var end_x = (properties.end_x === undefined) ?  0.0 : properties.end_x;
  var end_y = (properties.end_y === undefined) ?  0.0 : properties.end_y;

  this.slope = 0.0;
  if( (end_x − start_x) > 0.0001 || (end_x − start_x) < −0.001){
   this.slope = (end_y − start_y)/(end_x − start_x);
  }
  this.start_x = start_x;
  this.start_y = start_y;
  this.end_x = end_x;
  this.end_y = end_y;

  var a = [start_x − end_x, start_y − end_y];
  this.angle = 0.0;
  this.angle = Math.atan2( a[1], a[0]);
}

We keep track of the two endpoints of each wall line: its slope and angle. We add all four wall representations 
to an array called ramp_walls. Each insertion into this structure looks like this:

var p = {
            "start_x": 0.0,
            "start_y": HEIGHT_1,
            "end_x": LENGTH_2,
            "end_y": HEIGHT_2
       };
ramp_walls.push(new WallObject(p));

On each animation frame, check for collisions with each wall, keep track of the total velocity of our sphere, and 
calculate the x and y velocities and positions as shown in Listing 5-7.

Listing 5-7. Checking for wall collisions and calculating total and component velocity and position

function checkForCollisions()
{
    var x = sphere.position.x/SCALE;
    var y = sphere.position.y/SCALE;
    if( sphere.position.y < 0.0){ return; } //check for ground contact

    var found = false;
    for(var i in ramp_walls)
    {
        if( x > = ramp_walls[i].start_x && x < = ramp_walls[i].end_x )
        {
            found = true;
            if(ramp_walls[i].slope < −0.001 || ramp_walls[i].slope > 0.001)
            {
                if(ramp_walls[i].slope > 0.001)
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                {
                    sphere.total_velocity − = sphere.acceleration.y;
                }else{
                    sphere.total_velocity + = sphere.acceleration.y;
                }
                //console.log(sphere.total_velocity);
                sphere.velocity.x = sphere.total_velocity * Math.cos(ramp_walls[i].angle);
                sphere.velocity.y = sphere.total_velocity * Math.sin(ramp_walls[i].angle);

                sphere.position.y + = sphere.velocity.y;
            }
            sphere.position.x + = sphere.velocity.x;
        }
    }

    if(!found){
        sphere.velocity.y + = sphere.acceleration.y;
        sphere.position.x + = sphere.velocity.x;
        sphere.position.y + = sphere.velocity.y;
    }
}

In the preceding code, if we are not in a walled area, found is false and we model freefall. If we are over a 
walled section, we check the slope and add appropriately to the total_velocity. A slope of zero results in purely 
horizontal movement with no acceleration (because we are ignoring friction). We calculate the component x 
and y velocities by taking the sine and cosine of the wall angle multiplied by the total velocity. From Figure 5-11, 
you can see that the path is close but not entirely precise. Higher velocities would show a more abrupt change 
between free fall and position on the landing ramp. One way to improve accuracy is to check that the sphere is 
intersecting a wall before exiting free fall. The sign of the number returned from this function indicates what side 
of a line that a point is on (zero is on the line):

function getSideOfWall(wall, x, y)
{
    var delta = 0.00001;
    var v = (wall.end_x − wall.start_x) * (y − wall.start_y) –
             (wall.end_y − wall.start_y) * (x − wall.start_x);

    if( v < (0.0 − delta) ){
 return −1;
    }elseif( v > (0.0 + delta) ){
 return 1;
    }
    return 0;
}

It is left to the reader to implement this check. If you are ambitious and want to model a roller coaster, there 
are even more elements to factor into your calculations, such as centripetal force.

Summary
This chapter introduced some physical properties of objects and modeled gravity, collisions, and projectiles. In 
the next chapter, we cover the mathematically themed subjects of fractals, height maps, and particle systems. In 
Chapter 8, we will come back to physics when we introduce some physics libraries that can perform much more 
complicated calculations.

http://dx.doi.org/10.1007/978-1-4302-3996-3_8
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CHAPTER 6

Fractals, Height Maps, and Particle 
Systems

This chapter presents a hodgepodge of effects that we can achieve with mathematics. Topics that we will cover 
include:

painting directly with the GPU

an introduction to fractals and the Mandelbrot set

height maps and terrain generation

rotating the camera with the mouse

particle systems

Because I have long been enamored with the strong intersection of mathematics and beautiful imagery 
that it produces, this chapter is particularly fun for me to write about. Even if you do not particularly enjoy 
mathematics, you can still brush past most of the details/technical explanation and experiment directly with the 
code. I am sure that the examples and techniques presented here will be of interest to you and can be modified 
for use inside any WebGL program.

Painting Directly with the GPU
Prior to going over fractal images and the Mandelbrot set, we will show how to paint an image with logic purely 
contained within the shader program. The only geometry that our WebGL application will use is four triangles 
from five vertices, which will form a plane. We will then use the fragment shader of the Graphics Processing Unit 
(GPU) to programmatically set each individual pixel color on the plane. No manipulation of the view will be 
done. The setup of the square plane is shown in Listing 6-1.

Listing 6-1. Function to create a square in the xy plane composed of two triangles

function createSquare(size){
 size = (typeof size !== 'undefined') ? size : 2.0;  

 var vertexPositionData = [
 0.0, 0.0, 0.0,
 -size/2.0, -size/2.0, 0.0,
 size/2.0, -size/2.0, 0.0,
 size/2.0, size/2.0, 0.0,
 -size/2.0,size/2.0, 0.0,
 ];  

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012
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 var indexData = [0,1,2,0,2,3,0,3,4,0,4,1];  

 trianglesVerticeBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexPositionData),
        gl.STATIC_DRAW);
 trianglesVerticeBuffer.itemSize = 3;
 trianglesVerticeBuffer.numItems = vertexPositionData.length / 3;  

 vertexIndexBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, vertexIndexBuffer);
 gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indexData), gl.STREAM_DRAW);
 vertexIndexBuffer.itemSize = 3;
 vertexIndexBuffer.numItems = indexData.length;
}  

The default dimensions of the plane in Listing 6-1 is 2.0 x 2.0.

Our vertex shader takes the x,y input coordinates and passes them on to the fragment shader. The z-value is 
fixed at 0.0.

<script type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;  

 varying vec2 position;
 void main(void) {
 position = vec2(aVertexPosition.xy);
 gl_Position = vec4(position, 0.0, 1.0);
 }
</script>  

Each fragment (pixel) location is interpolated between the five distinct vertice points, and the fragment 
shader determines the actual color of each pixel. Even though we have only five vertice points, the fragment 
shader acts on each pixel individually, and we can use any algorithm we want to choose the color.

In our first example, we will draw a circle that has gradient color ranging from pure red at the center to 
darker toward the edges. The fragment shader to accomplish this is shown here:  

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec2 position;
 void main(void) {
 highp float d = length(position);
 gl_FragColor = vec4(max(0.0, 1.0 - d), 0.0, 0.0, 1.0);
 }
</script>  

This fragment shader takes the length of each position, which is 2 2x y . Then this value is subtracted from 
the red component of the color. Even though d can be greater than 1, we ensure that the red component is atleast 
0.0 by using the max function. This will produce a gradient circle of radius 1 (anything larger than 1 will appear 
black), as shown on the left of Figure 6-1.
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Figure 6-1. Circle with gradient luminosity (left); concentric rings of varying luminosity (right)

To draw concentric rings ranging from brightest at the center to darker going out eventually to black, as 
shown on the right of Figure 6-1, we modify our shader to have discrete steps:

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec2 position;
 void main(void) {
  highp float d = length(position);
  highp float c = floor( d * 10.0 ) * 0.1;
  gl_FragColor = vec4(max(0.0, 1.0 - c), 0.0, 0.0, 1.0);
 }
</script>

Instead of a smooth gradient, we produce ten different color bands with our new fragment shader. To 
accomplish this, we take our initial distance value d, multiply by 10, and then round to the nearest integer below. 
For example, a distance of 0.783 will become 7.83, and then the floor function will produce 7. We divide by the 
same factor of 10 (we multiply by 0.1 in the code) to get a final value of 0.7. In this manner, distances between 0.7 
and 0.79999 will all be given a final value of 0.7.

The full source code for this example can be found in the file 06/01_circles.html.

Color Lookups
With the desktop version of the GLSL there is a one-dimensional sampler type, sampler1D, which is often used 
to store colors for later lookup in a shader. However, this type is not available with the version of GLSL used in 
OpenGL ES or WebGL. Nonetheless, we can simulate this functionality with a two-dimensional texture.

To create a two-dimensional texture of colors, we need to specify RGBA color values and store them in a 
texture object, which will then be passed as a uniform to our fragment shader. In Listing 6-2 we specify RGBA 
integer values in the range 0 to 255.

Listing 6-2. Setting a uniform of color values

function setUniforms() {
 var color_data = [



CHAPTER 6  FRACTALS, HEIGHT MAPS, AND PARTICLE SYSTEMS

142

 255, 0, 0, 255,
 255, 0, 0, 255,
 255, 0, 0, 255,
 255, 0, 0, 255,  

 255, 255, 0, 255,
 255, 255, 0, 255,
 255, 255, 0, 255,
 255, 255, 0, 255,  

 0, 255, 0, 255,
 0, 255, 0, 255,
 0, 255, 0, 255,
 0, 255, 0, 255,  

 0, 0, 255, 255,
 0, 0, 255, 255,
 0, 0, 255, 255,
 0, 0, 255, 255
 ];
 var colors = new Uint8Array(color_data);  

 var colorsTexture = gl.createTexture();
 gl.activeTexture(gl.TEXTURE0);
 gl.bindTexture(gl.TEXTURE_2D, colorsTexture);
 gl.texImage2D(      gl.TEXTURE_2D, 0, gl.RGBA, 4, 4, 0,
              gl.RGBA, gl.UNSIGNED_BYTE, colors);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
   gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
 gl.uniform1i(gl.getUniformLocation(glProgram, "sColors"), colorsTexture);
 }

In Listing 6-2 we use a typed array of Uint8Array. This will produce four distinct colors - red, yellow, green 
and blue - represented four times each.

Note  When we pass in an array of pixel data to the texImage2D function, we must make sure to use a legal 
WebGL type and JavaScript typed array combo, or else it will generate an INVALID_OPERATION error.

Legal combos are Uint8Array for UNSIGNED_BYTE and Uint16Array for the types: UNSIGNED_SHORT_5_6_5,  
UNSIGNED_SHORT_4_4_4_4, UNSIGNED_SHORT_5_5_5_1.

Remember that textures need to be powers of 2 in length and width, so we specify our 16 colors to be stored 
in a texture of dimensions 4  4. Lastly, we obtain the uniform location and set its value all within one step:

gl.uniform1i(gl.getUniformLocation(glProgram, "sColors"), colorsTexture);  

By using the WebGL Inspector, which is covered extensively in Chapter 9, you can verify that our texture is 
indeed 4x4 and visually see what the stored data looks like, as shown in Figure 6-2. For any fixed horizontal s 
coordinate of our texture, the color will vary as the vertical coordinate t changes. This changing of color looks 
gradient because of the texture filter settings.
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Our vertex shader remains the same as in our last example; however, the fragment shader changes to make 
use of our sampler:

<script id="shader-fs" type="x-shader/x-fragment">
 uniform sampler2D sColors;
 varying highp vec2 position;  

 void main(void) {
 highp float t = length(position);
 gl_FragColor = vec4(texture2D(sColors, vec2(0.0, t)).rgb, 1.0);
 }
</script>

The result of this shader is seen on the left of Figure 6-3. The s coordinate is fixed as 0.0, and the t coordinate 
corresponds to the length of the current point.

Figure 6-3. Color lookup (left); playing around with coordinate manipulation (right)

Figure 6-2. Viewing our generated texture of colors

On the right of Figure 6-3 I have played around with the coordinate generation function to produce a more 
interesting figure:

<script id="shader-fs" type="x-shader/x-fragment">
 uniform sampler2D sColors;
 varying highp vec2 position;  
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 void main(void) {
 highp float t = length(position);
 highp float x = sin(-position.y)*tan(length(position.xx));
 t = t+x;
 gl_FragColor = mix( vec4(0.0,0.0,0.0,1.0),
 vec4(texture2D(sColors, vec2(0.0, t)).rgb, 1.0),
 t);
 }
</script>

There is no real rhyme or reason about how I came across the equations to use sin, tan, and mix. I played 
around with settings until I found something I liked. I encourage you to play around with output and see what 
other interesting results you generate.

Having produced some images by defining equations in the fragment shader, we will now look at fractals 
that are capable of producing intricate and complex patterns that can be used to model some natural organisms, 
terrain, and phenomenon.

Fractals
Informally, fractals are images that exhibit self-similarity to the larger structure when zooming in to smaller 
and smaller regions within. Smaller regions of the object do not have to be identical to the larger structure, only 
similar. This self-similarity should happen indefinitely, although we are limited by how small a region that we can 
visualize or calculate, of course. To generate fractal images, repetitive iterations or recursion are often used.

As you shall see, fractals can be pretty cool-looking. However they also have widespread application in and 
out of graphics; and are used to generate terrain, coastlines, cityscape heights, noise functions, clouds, certain 
plants and flowers, and patterns found in nature such as seashells. They are also used in image-compression 
algorithms and other external uses.

Mandelbrot Set
One of the most famous and iconic fractals is the image of the Mandelbrot set, a set of points popularized by 
mathematician Benoit Mandelbrot in the 1970s that relate to this sequence:

z
n+1
 = z

n
2+ c

In the equation, z
o
 = 0 and c is a complex number of form (a + ib) with real part a and imaginary 

component b. A starting point c is said to be in the Mandelbrot set if its sequence remains bounded. For example, 
with c=2=(2+0i), z

1
=2, z

2
=6, z

3
=38…, the sequence clearly goes toward infinity. So c=2 is not in the Mandelbrot set. 

If we look at c=0, z
1
=0, z

2
=0, z

3
=0… each successive term in the series is always 0 and so the sequence is bounded. 

Hence, c=0 lies in the set. It can also be shown that when the magnitude (squareroot(a2 + b2)) of a number z
i
 in 

the sequence becomes greater than 2, the sequence will become unbounded. Hence, points in the set are limited 
to the range +/- 2 for both the real and imaginary component.

It is easy to calculate terms in  the sequence for numbers with no imaginary component. When there is 
also an imaginary component, the calculation of the next term is a little more involved. The theory of imaginary 
numbers is beyond the scope of this book, but further resources are listed in Appendix D for those interested.

What we need to know is that a purely imaginary number multiplied by another imaginary number results 
in a real number with the opposite sign as you would get if you were multiplying the same two real number 
magnitudes. For example, 1i*1i=i*i= - 1, 6i * 3i = 18*i2=-18, and 7i * -2i = 14.
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When performing addition, subtraction, and multiplication of complex numbers, real components are 
grouped together and acted upon separately from the imaginary components. For any c = a + bi, and starting 
term z

o
 = 0 + 0i, the next two terms in the sequence are:

z
1
 = z

o
2 + c = (0 + 0i)2 + (a + bi) = a + bi

z
2
 = z

1
2 + c = (a + bi)2 + (a + bi) = a2 + (b2*i2) + 2*a*bi + (a+bi)

And grouping together real and imaginary terms, this can be expressed as:

z
2
 =[a2 – b2 + a] + i[2*a*b + b]

An alternative way to write this, which is more useful for programming the calculation and keeps the c term 
separate, is as follows:

=[a2 – b2] + i[2*a*b] + c

Using this form, we can express each successive term in the sequence in terms of the previous z-value’s real 
and imaginary components:

Z
n+1
.real = [z

n
.real2 – z

n
.im2] + c.real

z
n+1
.imaginary = [2*z

n
.real * z

n
.im] + c.im

In our shader, the real value is notated by the x component of the vector, and the imaginary value is the y 
component.

Listing 6-3. Calculating the next iteration in the Mandelbrot set generation function

z
n+1
.x = z

n
.x*z

n
.x – z

n
.y*z

n
.y + c.x;

z
n+1
.y = 2*z

n
.x*z

n
.y + c.y;

Hopefully I haven’t lost you. Depending on your level of mathematics this might be nothing new, or it could 
be Greek to you. Regardless of how the iteration equation in Listing 6-3 is derived, you can now plug it into your 
fragment shader and use it as shown in Listing 6-4. The vertex shader is unchanged from the previous example, it 
still simply passes the input point on to the fragment shader.

Listing 6-4. Mandelbrot set fragment shader

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec2 position;
 const int MAX_ITERATIONS = 250;
 const highp float LIGHTNESS_FACTOR = 1.0;  

 void main(void) {
      highp vec2 c = vec2(position.x-0.5, position.y);
      highp vec2 z = c;
      highp vec4 color = vec4(0.0, 0.0, 0.0, 1.0);  

      for (int i = 0; i < MAX_ITERATIONS; i++)
      {
             z = vec2(z.x*z.x - z.y*z.y, 2.0*z.x*z.y) + c;  

             if (dot(z, z) > 4.0)
             {
                    highp float f = LIGHTNESS_FACTOR*float(i) / float(MAX_ITERATIONS);
                    color = vec4(vec3(0.1, 0.1, 1.0)*f, 1.0);
                    break;
             }
      }



CHAPTER 6  FRACTALS, HEIGHT MAPS, AND PARTICLE SYSTEMS

146

 gl_FragColor = color;
}
</script>

When we plot the values of c with the real values of the x-axis and the imaginary component of the y-axis, 
the diagram of the numbers that are part of the Mandelbrot set form the (probably) familiar fractal pattern shown 
in Figure 6-4. In the diagram, the boundary points are what is interesting. Parts of the boundary are visually 
similar to the overall boundary of the set. As we zoom in closer, smaller regions still have similarity to the overall 
structure.

Figure 6-4. Mandelbrot set (left); some regions of self-similarity highlighted (right)

In Listing 6-4, we set constants of the number of iterations to test for each point being in the set and the 
amount to multiply the color of the boundary points based on the iteration number when a number leaves the 
set. When setting the c-value, the x coordinate has been moved 0.5 in the negative direction just to center the 
image better. The first z-value, z

1
, equals c,so we set z initially equal to c. We initialize the pixel color to black 

and start our loop. The next z-value is calculated from the equations that we have derived in Listing 6-3 and 
then we test the dot product for being over 4. Recall that the dot product is x2 + y2, which is the magnitude (or 
length) squared. We know that a magnitude larger than 2 means that the point is outside the set. As 22 = 4, using 
the squared value is an equivalent but less-expensive calculation because it does not require us to compute a 
square root. Finally we shade our pixel a value of blue between 0 and 1 based on the current iteration when the 
pixel becomes unbound in the sequence to the maximum number of iterations. However, it can be hard to see 
the boundary, so setting the constant LIGHTNESS_FACTOR to a higher value such as 10.0 will help visualize the 
boundary. Doing so increases the number of white-colored iterations, but this does provide much better contrast.

Note  If the fragment shader is not loading externally, try placing it inline. I have experienced errors with the for 
loop when placed in an external file, but have the program working when inline. The actual reason for this is that the 
comparision sign “<” needs to be escaped in the shader if it is read in as XML. A couple ways to resolve this issue 
are shown in the debugging section of Chapter 9.The for loop in GLSL is much more restrictive than in JavaScript or 
C/C++ and requires a constant as the limit condition.

http://dx.doi.org/10.1007/978-1-4302-3996-3_9
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Julia Set
The Julia set is named after French mathematician Gaston Julia, who first wrote about it in a 1918 paper. It is is 
closely related to the Mandelbrot set and can be generated with the same function:

z
n+1
 = z

n
2 + c

However, the Julia set restricts the values of c to be those values that lie within the Mandelbrot set and z
o
 is a 

coordinate on the complex plane (the xy plane in our shader). The initialization of z and c in our fragment shader 
becomes this:  

highp vec2 z = vec2(position.x, position.y);
highp vec2 c = vec2(-0.8, -0.2);  

c can be any valid point in the Mandelbrot set, and every point will produce a different image! Two such c 
seed points are (-0.8, 0.2), which produces the left image of Figure 6-5; and (-0.5, 0.62), which produces the 
right image of Figure 6-5.

Figure 6-5. Two fractals produced in the Julia set: left - seed value of (-0.8, -0.2); right – seed value of (-0.5, 0.62)

Adding Interactivity
As the fragment shader runs on the GPU, its calculations for the Mandelbrot set will be much faster than 
calculations implemented on the client side with pure JavaScript. This allows us to add interaction that will have 
smooth, responsive animation.

The Mandelbrot and Julia sets are pretty cool, and it would be much more enjoyable to explore them if we 
could adjust the settings with a graphical user interface (GUI) instead of hard-coding values in our fragment 
shader and rerunning the program to see different results. We will do this now. First we need to think of things 
that we want to be able to adjust on the fly:

//uniform options
var  julia = 0,
 c_seed = [0.0, 0.0],
 zoom = 1.0,
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 offset = [0.0, 0.0],
 color = [0.1, 0.1, 1.0],
 lightness = 1.0;

With these variables we are setting up our program to hold options that will allow us to switch between 
displaying the Mandelbrot and Julia sets, change the c-value when displaying the Julia set, adjust our zoom 
(magnification) our initial x and y offsets, the highlight color of the fractal, and the brightness.

Adding an HTML Form
Next we will add an HTML form. First we will make some basic styling changes. The form and GUI are not 
exceptional, but they do the trick. Here I set the canvas and form CSS to float left and the table cells to be 
vertically aligned:

<style>
 body{ background-color: grey; }
 canvas{ background-color: white; float: left; }
 form{ float: left; }
 td{ vertical-align: top; }
</style>

Next we set up our form, which uses the HTML5 range type and is shown in Figure 6-6.

Figure 6-6. Our WebGL output on the left and form components on the right

The form consists of several inputs of type submit, several of type range, a select box, a textarea, and some 
span elements used as labels to show the current values. The code is shown in Listing 6-5.
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Listing 6-5. HTML form to adjust Mandelbrot/Julia set settings

<form id='fractal-options'>
 <table border="0">
 <tr>
 <td>
 <select id="sets">
 <option value="mandelbrot">Mandelbrot</option>
 <option value="julia">Julia</option>
 </select>
 </td>
 <td>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit" name="up" value="Up"/><br/>
 <input type="submit" name="left" value="<-"/>
 <input type="submit" name="right" value="->"/><br/>
 <input type="submit" name="down" value="Down"/>
 </td>
 <td rowspan="2">
 <textarea cols="30" rows="2" id="output-text">Offset: (0.00, 0.00)
Zoom level: x1</textarea>
 </tr>
 <tr>
 <td>
 <input type="submit" name="zoom-in" value="Zoom in"/><br/>
 <input type="submit" name="zoom-out" value="Zoom out"/>
 </td>  

 </tr>
 <tr>
 <td>
 C value: (<span id="c-value-label">0.00, 0.00</span>)<br/>
 Real: <input type="range" step="0.01" id="c-real" name="c-real" value="0.0" 
min="-2" max="2"/><br/>
 Imaginary: <input type="range" step="0.01" id="c-imaginary" name="c-
imaginary" value="0.0" min="-2" max="2"/>
 </td>
 <td>
 Color: (<span id="color-label">0.1, 0.1, 1.0</span>)<br/>
 R: <input type="range" step="0.1" class="color-slider" id="color-r" 
name="color-r" value="0.1" min="0.0" max="1.0"/><br/>
 G: <input type="range" step="0.1" class="color-slider" id="color-g" 
name="color-g" value="0.1" min="0.0" max="1.0"/><br/>
 B: <input type="range" step="0.1" class="color-slider" id="color-b" 
name="color-b" value="1.0" min="0.0" max="1.0"/><br/>
 <br/><br/>
 Lightness: <input type="range" step="1.0" class="color-slider" 
id="lightness" name="lightness" value="10.0" min="1.0" max="50.0"/>

 </td>
 </tr>
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 <tr>
 <td colspan="2">
 <input type="submit" name="reset" value="Reset"/>
 </td>
 </tr>
</form>

After adding the markup of Listing 6-5, our labels and textarea are currently not adjusted when GUI events 
occur and our JavaScript global variables that we earlier declared do not get updated.

Adding JavaScript Event Listeners
To add this functionality, we will need to add JavaScript event listeners. They can be written in plain JavaScript, 
but doing so with jQuery can be more concise and is shown in Listing 6-6.

Listing 6-6. jQuery event listeners for our form

<script>
$("#sets").change(function(){
 if($(this).val() == "mandelbrot"){
 julia = 0;
 }else{
 julia = 1;
 }
});  

$("#c-real, #c-imaginary").change(function(){
 var range = $(this);
 var value = parseFloat(range.val());
 if(range.attr("id") == "c-real")
 {
 c_seed[0] = value;
 }else if(range.attr("id") == "c-imaginary")
 {
 c_seed[1] = value;
 }  

 setCLabel();
});  

$(".color-slider").change(function(){
 var range = $(this);
 var value = parseFloat(range.val());  

 if(range.attr("id") == "color-r")
 {
 color[0] = value;
 }else if(range.attr("id") == "color-g")
 {
 color[1] = value;
 }else if(range.attr("id") == "color-b")
 {
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 color[2] = value;
 }else if(range.attr("id") == "lightness")
 {
  lightness = value;
 }  

 setColorLabel();
});  

$("form").on("click", "input:submit", function(evt){
 var name = $(this).attr("name");  

 switch(name){
 case 'up':
 offset[1] += (0.1 * zoom);
 break;
 case 'down':
 offset[1] -= (0.1 * zoom);
 break;
 case 'left':
 offset[0] -= (0.1 * zoom);
 break;
 case 'right':
 offset[0] += (0.1 * zoom);
 break;
 case 'zoom-in':
 zoom /= 1.5;
 break;
 case 'zoom-out':
 zoom *= 1.5;
 break;
 case 'reset':
 resetUniformVariables();
 $("#c-real").val(0.00);
 $("#c-imaginary").val(0.00);
 $("#color-r").val(0.1);
 $("#color-g").val(0.1);
 $("#color-b").val(1.0);
 $("#lightness").val(10.0);
 $("#sets").val("mandelbrot");
 setColorLabel();
 setCLabel();
 break;
 default:
 break;
 }
  
 setTextArea();  

 evt.preventDefault();
});
</script>
</body> 
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As you can see, the JavaScript in Listing 6-6 comes immediately before the end </body> tag. This lets us be 
sure that the full Document Object Model (DOM) has loaded and that we can work with it right away. We have 
three different change listeners and a delegated click listener. We grab DOM elements with the id selector “#” or 
the class selector “ . ”.

The first change listener is for the select component with id of “sets”. The values of the select box can be 
“mandelbrot” or “julia”, corresponding to displaying the Mandelbrot or Julia set. We find the current selected 
value with the val function of $(this) - a keyword that stores the currently found jQuery object of the select 
element.

The next change listener is for the real and imaginary c-value sliders. We parse the float value of the returned 
string and update the relevant index of our c_seed array by comparing the id attribute of the current object. Then 
we update the C label. We will come back to this and other helper methods in Listing 6-7.

The third change function grabs elements that have a class of “color-slider”. We compare the id of the 
changed object with the ids “color-r”, “color-b”, and “color-b”, and change our color variable value accordingly. 
Then we update the color label.

Our last event handler matches the form and handles all clicked submit inputs. This is an alternative to 
defining a separate click handler for each submit input and is preferable as it lets jQuery delegate event handling 
to the appropriate subitem. In this handler we get the value of the name attribute and use a switch statement to 
adjust our variables accordingly. One case of note within the switch is the “reset” block, which restores our form 
to the original state.

No matter which submit button is clicked, the textarea is updated and evt.preventDefault is called. This 
latter action is very important because without the preventDefault call the form will do a full page refresh, and 
we won’t be able to maintain state. Alternatively, we can return false; to not submit the form.

Listing 6-7 shows the resetUniformVariables, setColorLabel, setCLabel, and setTextArea methods that 
are called in our event listeners.

Listing 6-7. Helper functions to reset our variables, adjust our labels, and textarea

function resetUniformVariables()
{
 c_seed = [0.0, 0.0];
 zoom = 1.0;
 offset = [0.0, 0.0];
 julia = 0;
 color = [0.1, 0.1, 1.0];
 lightness = 10.0;
}  

function setColorLabel()
{
 $("#color-label").html( color[0].toFixed(1) + ", " + color[1].toFixed(1) + ", " +
 color[2].toFixed(1));
}  

function setCLabel()
{
 $("#c-value-label").html(c_seed[0].toFixed(2) + ", " + c_seed[1].toFixed(2));
}  

function setTextArea()
{
 var zoom_reciprocal = 'MAX_ZOOM';
 if(zoom > 0.00000000001)
 {
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  zoom_reciprocal = 1.0/zoom;
 }
 var settings = "Offset: (" + offset[0].toFixed(2) + "," +offset[1].toFixed(2) + ")\n";
 settings += "Zoom level: x" + zoom_reciprocal;
 $("#output-text").html(settings) ;
}  

In Listing 6-7 we set the innerHTML of the component with the html function call. The toFixed(2) call 
formats decimal output to exactly two decimal places.

Passing Information and Animating
At this point, we have listeners for all our form components and update the GUI display to show the current 
settings. Now we need to pass this information to our shaders and reintroduce an animation loop. We will store 
the uniform locations as variables within our program so we won’t need to repoll the GPU for these locations 
every time we reanimate the scene:

//uniform locations
var  c_seed_uniform = null,
 zoom_uniform = null,
 offset_uniform = null,
 julia_uniform = null,
 color_uniform = null,
 lightness_uniform = null;  

Limiting GPU get/set calls is a best practice, as will be explained in Chapter 9. The main part of our 
program now looks like this:

getUniformLocations();
(function animLoop(){
 setUniforms();
 setupWebGL();
 drawScene();
 requestAnimationFrame(animLoop, canvas);
})();

Where our getUniformLocations helper function is:

function getUniformLocations()
{
 c_seed_uniform = gl.getUniformLocation(glProgram, "uCseed");
 zoom_uniform = gl.getUniformLocation(glProgram, "uZoom");
 offset_uniform = gl.getUniformLocation(glProgram, "uOffset");
 julia_uniform = gl.getUniformLocation(glProgram, "uJulia");
 color_uniform = gl.getUniformLocation(glProgram, "uColor");
 lightness_uniform = gl.getUniformLocation(glProgram, "uLightness");
}  

The first part of our fragment shader now declares our uniforms and their types:

<script id="shader-fs" type="x-shader/x-fragment">
     uniform highp vec2 uCseed;
 uniform highp float uZoom;
 uniform highp vec2 uOffset;
 uniform int uJulia;
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 uniform highp vec3 uColor;
 uniform highp float uLightness;  

All that is left is implementing our setUniforms function and updating the rest of our fragment shader. Here 
is our setUniforms method:

function setUniforms() {
     gl.uniform2fv(c_seed_uniform, c_seed);
     gl.uniform1f(zoom_uniform, zoom);
     gl.uniform2fv(offset_uniform, offset);
     gl.uniform1i(julia_uniform, julia);
     gl.uniform3fv(color_uniform, color);
     gl.uniform1f(lightness_uniform, lightness);
}

Note  When defining uniform values, you must always specify the variable size, even if it is 1. For example, in the 
previous code, 2fv means float vec2, while 1i means int.

Our final fragment shader is shown in Listing 6-8. With the exception of the number of iterations, everything 
else is configurable by our application passing in uniform values.

Listing 6-8. Configurable fragment shader for Mandelbrot and Julia sets

<script id="shader-fs" type="x-shader/x-fragment">
 uniform highp vec2 uCseed;
 uniform highp float uZoom;
 uniform highp vec2 uOffset;
 uniform int uJulia;
 uniform highp vec3 uColor;
 uniform highp float uLightness;  

 varying highp vec2 position;
 const int MAX_ITERATIONS = 250;
 void main(void) {

 highp vec2 z = vec2(position.x, position.y) * uZoom + uOffset;
 highp vec2 c = z;
 if(uJulia == 1)
 {
     c = uCseed;
 }  

 highp vec4 color = vec4(0.0, 0.0, 0.0, 1.0);  

 for (int i = 0; i < MAX_ITERATIONS; i++)
 {
 z = vec2(z.x*z.x - z.y*z.y, 2.0*z.x*z.y) + c;  

 if (dot(z, z) > 4.0)
 {
  highp float f = uLightness*float(i) /
 float(MAX_ITERATIONS);
 color = vec4(uColor*f, 1.0);
 break;
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 }
 }
 gl_FragColor = color;
 }
</script>

In Figure 6-7 you can see a small region of the Mandelbrot set zoomed in at more than 16,000 times 
magnification is still similar to the overall shape (and most likely limited by numeric precision).

Figure 6-7. Small region of the Mandelbrot set zoomed in

In Figure 6-8 you can see two screenshots of the application displaying the Julia set with different C-seed 
values and magnification levels.

Figure 6-8. Two screenshots of the Julia set with different c-seed values and magnification levels

It is left to the reader to extend the program by setting the number of iterations to be adjustable in the GUI 
and performing other enhancements such as saving and reloading settings or being able to drag the current 
location around with the mouse or use the mouse wheel for zooming.
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Generation of Fractals
There are a number of techniques to generate fractals. Two of these are iterated function systems (IFSs) and 
Lindenmayer systems (L-systems). In the former, an image is composed of several copies of itself that decrease 
each iteration in size and possibly involve affine transforms.

In L-systems, a formal grammar is used with a starting point and replacement rules. For example, the 
“Sierpinski triangle” has the following rules:  

Axiom (Start): A
Rules: A->B-A-B, B->A+B+A

Where - means turn left 60 degrees, and + means turn right 60 degrees. The first few iterations of this 
L-system would be:

A
(B-A-B)
(A+B+A)-(B-A-B)+(A+B+A)

And the resulting images after 1, 2, 3, 4, and 8 iterations are shown in Figure 6-9.

Figure 6-9. Sierpinski Triangle after the first four iterations on the left and after the eighth iteration on the right

Similarly, many plants can be graphically represented by L-systems. A fern can be generated with the 
following L-system rules, where the angle here is 20 degrees and [] means to push the operation onto a stack for 
operator order precedence (see Figure 6-10):

Axiom: X
Rules: X -> F[+X]F[-X]+X, F -> FF
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Rendering a Grid Mesh with One TRIANGLE_STRIP Call
To generate terrain or use a height map (which will be explained later in the chapter), we first need a mesh of 
points. We will investigate how to render a regular grid mesh of triangles with a single TRIANGLE_STRIP draw call. 
In Figure 6-11 we have a 2x2 square mesh with triangles subdivided as you might expect, with all divisions along 
the same diagonal direction (top right to bottom left in this case).

If you attempt to render this with a single triangle strip call, however, your indices would need to be these:

0,3,1,4,2,5,8,7,5,4,…

This presents a problem because vertices 5 and 4 form a triangle with only vertice 7 or 2. So there would 
need to be repetition of the triangle 5,4,7 and then vertice 6 followed by repeating triangle 7,6,4 again, and so on.

Figure 6-10. Plant leaf produced from an L-system fractal
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However, if you switch the diagonal cuts on alternating rows, as shown in Figure 6-12, you get a more natural 
index progression:

0,4,1,5,2,6,3,7,11,6,10,5,9,4,8,12,9,13,10,14,11,15

Figure 6-11. A 2 x 2 square mesh with the diagonal direction of each triangular bisection consistently being from the 
lower left corner to upper right corner

Figure 6-12. A 3 x 3 square mesh with triangles having inverted orientation on alternate rows
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We are cheating a little when we switch rows because 3,7,11 is a straight line and not a true triangle, as with 
4,8,12. However, you most likely will not see these lines when the grid is rendered, and if you do they will occur at 
the edges of the mesh.

We want to have meshes with many more subdivisions, but do not want to enter in these vertices or 
indices manually, so next we need to figure out how to programmatically create this mesh for any number of 
subdivisions.

First, observe that an nxn grid has (n+1)2 vertice points. In the 3x3 example, notice that we can split the 
indices into the following groupings:

 0, 4, 1, 5, 2, 6, 3, 7,
11, 6,10, 5, 9, 4, 8,
12, 9,13,10,14,11,15

If we place the first vertex 0 by itself, we can start to see the pattern emerge:

0,
4, 1, 5, 2, 6, 3, 7,
11, 6,10, 5, 9, 4, 8,
12, 9,13,10,14,11,15

The triangles formed by these separate groupings are highlighted in Figure 6-13.

Figure 6-13. Grouping row vertices

From Figure 6-13 we can create the following pseudocode:

Add 0 to indices
For each row
 If row is odd:

 Alternate bottom and top indices, starting at bottom row (and column indice 0) and 
then top row (starting at column indice 1) and working toward the right
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 Else
Alternate bottom and top indices, starting at bottom row (and last column indice) 
and then top row (starting at second-last column indice) and working toward the 
left

A JavaScript implementation is shown in Listing 6-9, which will produce a flat plane.

Listing 6-9. An arbitrarily divided mesh

function createGrid(size, divisions){
 size = (typeof size !== 'undefined') ? size : 1.0;
 divisions = (typeof divisions !== 'undefined') ? divisions : 10;  

 var segment_size = size/divisions;
 var vertexPositionData = [];
 for(var i=0;i<=divisions;++i)
 {
 for(var j=0;j<=divisions;++j)
 {
 vertexPositionData.push(i*segment_size);
 vertexPositionData.push(0.0);
 vertexPositionData.push(j*segment_size);
 }
 }  

 var indexData = [0];
 for(var row=0;row<divisions;++row)
 {
 if(row%2 == 0)
 {
 for(var i=0;i<=divisions;++i)
 {
 if(i!=0)
 {
 indexData.push( row*(divisions+1) + i);
 }
 indexData.push( (row+1)*(divisions+1) + i);
 }
 }else{
 for(var i=0;i<=divisions;++i)
 {
 if(i!=0)
 {
 indexData.push( (row+1)*(divisions+1) - (i+1) );
 }
 indexData.push( (row+2)*(divisions+1) -(i+1) );  

 }
 }
 }  

       //assign to buffers
}  
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In Listing 6-9, we set our vertex points evenly spaced along our grid based on the number of divisions. We 
use the modulus operator, %, to determine whether we are on an even or odd row and push indices into our array 
appropriately.

Height Maps
A height map (aka heightfield) is a texture image that stores displacement information, typically for the y-value of 
an object. Height maps are used in terrain generation but can be used to alter any object or simulate extra detail, 
as discussed in the bump mapping section.

Taking the grid creation code in Listing 6-9, we can use a texture and our shaders to alter the height of each y 
point on the xz plane grid. Our vertex and fragment shader pair is shown in Listing 6-10.

Listing 6-10. Vertex and fragment shader to read texture heightfield data

<script type="x-shader/x-vertex">
      attribute vec3 aVertexPosition;  

      uniform mat4 uPMatrix;
      uniform mat4 uMVMatrix;
      uniform sampler2D uSampler;  

      varying highp float height;  

      void main(void) {
            height = texture2D( uSampler, vec2(aVertexPosition.xz )).r;
            gl_Position = uPMatrix * uMVMatrix *
                          vec4(aVertexPosition.x, height, aVertexPosition.z, 1.0);
      }
</script>  

<script id="shader-fs" type="x-shader/x-fragment">
      varying highp float height;
      void main(void) {  

            gl_FragColor = vec4(height, height, height, 1.0);
      }
</script>  

In the vertex shader of Listing 6-10, we use the x and z coordinate to look up a value in the texture to use 
as the height value. In the fragment shader, we use the height value to also shade our image, though this is not 
required. We could have used a lighting model or texturing or have colored the mesh in any other way that we 
saw fit. The full source of this example is in the file 06/heightmap.html.

Note  The texture used in this example has gray values using RGBA channels. As such, the luminance can be 
found by using any of the channels separately. A true grayscale image would have the same result but the texture 
file used will be physically smaller. If we require a greater range of height values, a RGBA texture can provide this.
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In Figure 6-14, we show a texture on the left and the heightfields produced with increasing mesh divisions on 
the right.

Figure 6-14. Left: a black-and-white texture; right: using the luminance as a height amount with 3  3, 10  10, and 
200  200 grid sizes

Bump/Normal Mapping
Bump mapping is a technique introduced by Jim Blinn in 1978, which uses a heightmap to simulate extra detail 
and roughness on a surface without actually changing the geometry of the surface. This is the way bump mapping 
works:

Height values of bumps along the surface are stored in a texture

Surface normals of the height map are calculated

These normals are combined with the real surface normal and used with a lighting model

Because bump mapping does not actually change the geometry of the object, it is often less computationally 
expensive then rendering a more complex mesh with actual indentations.

Terrain
There are many ways to model terrain. One way is to use a static heightmap like the one we have just investigated, 
but using a more appropriate texture. Another method is to dynamically create terrain using fractal generation. 
We will now show an example of this technique using the midpoint displacement algorithm.

Midpoint Displacement
Midpoint displacement starts with a mesh with four corner points and associated heights. Then the mesh is 
subdivided between each corner midpoint and then a middle point. In Figure 6-15 you can see that the average of 
points A and B becomes the value of its midpoint F. Similarly, G = (A+C)/2, H = (B+D)/2, I = (C+D)/2, and point 
E = (A+B+C+D)/4.

Then each new square is subdivided again. In the second subdivision (bottom left of Figure 6-15), only the 
top-left points are labeled, but these calculations are done to all four squares.

This process of subdividing can continue as long as you want (and can computationally handle). In practice, 
when computing the midpoint, a random offset is usually added, which is proportional to the size of the 
midpoint region. So point E could be calculated as (A + B + C + D)/4 + ( Math.Random() -0.5), and point J 
could be (A + F + G + E)/4 +( Math.Random() -0.5) *0.5.
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Notice that the dimension of a midpoint displaced grid is always n*n, where n is strictly a power of 2. We 
can either test that the dimension is in fact a power of 2 and throw an error if it is not, or we can ensure it by 
modifying the start of our createGrid function to this:  

function createGrid(size, power){
        size = (typeof size !== 'undefined') ? size : 1.0;
 divisions = (typeof power !== 'undefined') ? (Math.pow(2.0, power) ) : 8;
 divisions = (int)divisions;

Every square in the grid will be rendered as two triangles, but we can still use a single TRIANGLE_STRIP call as 
we have in our height map example. We just need to compute the height of each vertex point. Our first step is to 
specify heights for the four corners of the mesh:

For each element of an nxn grid, where n = divisions, i is the row index and j is the column index, the 
array index for the y value of each (x,y,z) point will be calculated as: [(i + j*(n+1))*3 + 1]. Here 3 represents 
the number of coordinates in the vertex position, (x,y,z). The reason that we add 1 is because we are looking for 
the middle component, y (x would be an offset of 0, while z would be 2).

//seed the corners. Here we will use the values [1.5, 3.5, 2.0, 1.0]
//but these could be randomly generated seed values
vertexPositionData[(0 + 0*(divisions+1))*3+1] = 1.5;  //top-left
vertexPositionData[(divisions + 0*(divisions+1))*3+1] = 3.5; //top-right

Figure 6-15. First few iterations of the midpoint displacement algorithm with vertice values shown
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vertexPositionData[(0 + divisions*(divisions+1))*3+1] = 2.0; //bottom-left
vertexPositionData[(divisions + divisions*(divisions+1))*3+1] = 1.0; //bottom-right  

midpointDisplacement(
 [0,0],
 [divisions, 0],
 [0, divisions],
 [divisions, divrisions],
 divisions,
 0
);

We call the method midpointDisplacement, which takes four corner coordinates as arguments, the number 
of divisions, and the current iteration of the algorithm. The full method is shown in Listing 6-12.

Listing 6-12. Midpoint displacement recursive function 

function midpointDisplacement(tl, tr, bl, br, divisions,iteration)

{
 if( (tl[0] + 1) == br[0] || (tl[1] + 1) == br[1] )
 {
  return;
 }  

 //array indices
 var midpoint = [(tl[0] + br[0])/2,
        (tl[1] + br[1])/2
        ];  

 var left_mp = [ tl[0],
        (tl[1] + bl[1])/2
        ];
 var right_mp = [ tr[0],
        (tr[1] + br[1])/2
        ];
 var top_mp = [ (tl[0] + tr[0])/2,
        tl[1]
       ];
 var bottom_mp = [ (bl[0] + br[0])/2,
    bl[1]
    ];  

 //current height values
 var tl_height = vertexPositionData[(tl[0] + tl[1] * (divisions+1))*3+1];
 var tr_height = vertexPositionData[(tr[0] + tr[1] * (divisions+1))*3+1];
 var bl_height = vertexPositionData[(bl[0] + bl[1] * (divisions+1))*3+1];
 var br_height = vertexPositionData[(br[0] + br[1] * (divisions+1))*3+1];  

 //compute five new points
 var top_value = (tl_height + tr_height)/2.0;
 vertexPositionData[(top_mp[0] + top_mp[1] * (divisions+1))*3+1] = top_value;
 var bottom_value = (bl_height + br_height)/2.0;
 vertexPositionData[(bottom_mp[0] + bottom_mp[1] * (d ivisions+1))*3+1] = 

bottom_value;  
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 var left_value = (tl_height + bl_height)/2.0;
 vertexPositionData[(left_mp[0] + left_mp[1] * (divisions+1))*3+1] = left_value;
 var right_value = (tr_height + br_height)/2.0;
 vertexPositionData[(right_mp[0] + right_mp[1] * (divisions+1))*3+1] = right_value;  

 //midpoint has random term
 vertexPositionData[(midpoint[0] + midpoint[1] * (divisions+1)) * 3 + 1] =
                (tl_height+tr_height+bl_height+br_height)/4.0
  +(-0.5+Math.random())*Math.pow(0.65, iteration-2.0);  

 //repeat with four quads
 midpointDisplacement( tl, top_mp, left_mp, midpoint, divisions, iteration+1 );
 midpointDisplacement( top_mp, tr, midpoint, right_mp, divisions, iteration+1 );
 midpointDisplacement( left_mp, midpoint, bl, bottom_mp, divisions, iteration+1 );
 midpointDisplacement( midpoint, right_mp, bottom_mp, br, divisions, iteration+1 );
}

In Listing 6-12, if the top-left and bottom-right corners are only one column and row away from each other, 
we return immediately. Otherwise, we look up the corner heights and then compute the five new points that 
we will be adding in this iteration. We then use these new points to recursively call the midpointDisplacement 
function four more times, once for each quadrant of the original region. In these new calls, we pass in updated 
corner coordinates and increase the iteration value. The iteration value is used to generate the random portion 
added to the midpoint height. Sample output from the program is shown in Figure 6-16.

Figure 6-16. Sample fractal terrain generation

Once a terrain is dynamically rendered, the height values can be saved to an output texture for later static 
usage. The full source of this example is in the file 06/fractal_terrain.html.

Note  The midpoint displacement algorithm has visual square–shaped artifacts, and other algorithms such as 
the diamond-square algorithm produce better results. In Figure 6-16, no lighting or texture data has been applied. 
Both of these would also dramatically add to the rendered image.
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Particle Systems
Particle systems refer to modeling dynamic fluid objects such as smoke, fire, blood splatter, sparks, electricity, 
dust, glow, sparkle, rain, snow, hail, and clouds. Particle systems were formalized in a landmark paper entitled 
“Particle Systems: A Technique for Modeling a Class of Fuzzy Objects,” by William Reeves in 1983 (while he was 
working at Lucasfilm).

The phenomena that particle systems model have no fixed shape or rigidity, so they are difficult to model 
by traditional polygonal methods. Instead they are modeled by clouds of primitive particles that make up the 
volume of the object.

Each particle in the system is dynamic. It has a lifespan with a birth and a death. It also has attributes that 
may change throughout its lifespan. Attributes that a particle may have include:

Position

Velocity

Color

Transparency

Age

Size

There can be any other attribute that we want to model and keep track of such as shape, lifetime, previous 
position and velocity, acceleration, spin, and so on.

Particle system primitives may be points; static lines (rendering the full parametric path of a point particle) 
for particles such as hair, fur, or grass; triangle primitives; or more advanced primitives such as a falling leaf in a 
fall forest scene or a fish in a school of fish. Primitives may or may not detect and handle collisions. Particles are 
usually small and are affected by outside forces like gravity and wind, but not affected by lighting equations or 
shadows.

A set of rules governs a particle system, but the exact details of each particle are nondeterministic, and the 
process is stochastic. This means that the overall shape of the object will be unknown until the system is run and 
will most likely vary when rerun.

The life cycle of a particle in the system is:

1. Generation/birth: Initialized within a location of the ‘fuzzy object’ shape or from 
within a regular mesh object such as a cube with an added amount of randomness.

2. Dynamic life: Attributes vary over time. Often the attribute is defined by a parametric 
equation using time as the parameter.

3. Extinction/death: When the particle’s age (which starts at 0 and traditionally is 
measured in number of frames) reaches a preset lifespan; or the particle hits the 
ground, another boundary, leaves the frame of view, or some other rule is met, the 
particle is destroyed.

Particle systems are similar to fractals in that at higher zoom levels, more detail is shown than from far away. 
An initial seeding of a particle’s attribute x is often defined as the average value of that attribute plus a random 
amount based on a variance:

initial
x
 = average

x
 + random * variance

x

Particle systems offer controlled chaos as we set guidelines for particles, but offer an amount of randomness 
within. We can keep track of a particle’s exact state or use parametric equations to calculate new values.

We will now create a particle system with WebGL using point primitives. For this example, we will set the 
initial position and velocity of each particle at random in the range +/- 1 for each coordinate. We will create a 
new object type of Particle to hold information, as shown in Listing 6-13.
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Listing 6-13. Object to hold particle properties 

function Particle(position, color){
  if (position === undefined) {
          position = [ ((Math.random()-.5)*.1),
               ((Math.random()-.5)*.1),
               ((Math.random()-.5)*.1),
           ];
 }
 if (color === undefined) { color = [1.0, 0.0, 0.0, 0.5]; }  

 this.position = position;
 this.color = color;  

 this.velocity = [ ((Math.random()-.5)*.1),
            ((Math.random()-.5)*.1),
            ((Math.random()-.5)*.1),
   ];
 if(
  (Math.abs(this.velocity[0]) < 0.01) &&
  (Math.abs(this.velocity[1]) < 0.01) &&
  (Math.abs(this.velocity[2]) < 0.01)
 )
 {
  //ensure particle is not stagnant
  this.velocity[0] = 0.1;
 }
 this.age = 0;
 this.lifespan = 20;
 this.size = 1.0;
}  

In Listing 6-13 we set the position and velocity and initialize the color to red by default. We also set the 
alpha to 0.5 so that we can blend our particles. We initialize the age to 0 and set the lifespan to 20. Next we define 
a function to control how our particles are updated in Listing 6-14.

Listing 6-14. Our particle update function

Particle.prototype.update = function(){
        this.position[0] += (0.1 * this.velocity[0]);
        this.position[1] += (0.1 * this.velocity[1]);
        this.position[2] += (0.1 * this.velocity[2]);  
        var x = Math.abs(this.position[0]);
        var y = Math.abs(this.position[1]);
        var z = Math.abs(this.position[2]);  

 var distance = x*x + y*y + z*z;
 if(distance > 4)
 {
   this.position = [ (Math.random()*2.0)-1.0,
             (Math.random()*2.0)-1.0,
             (Math.random()*2.0)-1.0
  ];
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  this.velocity = [ (Math.random()*2.0)-1.0,
      (Math.random()*2.0)-1.0,
      (Math.random()*2.0)-1.0
  ];
  if(this.age < 10)
  {
   this.color = [1.0, 1.0, 1.0, 0.75];
  }else if(this.age < this.lifespan)
  {
   this.color = [0.0, 0.0, 1.0, 0.75];
  }else
  {
   this.color = [1.0, 1.0, 1.0, 0.0];
  }
  this.age++;
 }
}

There is more than one way to model a system. Here I check the squared distance of each point to the origin. 
If it is over some set amount, we increment the age of the particle and rerandomize the position and velocity. On 
the first increment of the age up until the age of 10, the color is set to white. Between 10 and the lifespan of the 
particle, it is then blue. When the particle reaches the lifespan, the alpha channel is set to 0 so that the particle 
does not show (but is still stored in memory). The range of the velocity once the age increments is much higher 
than for the red particles. As such, red particles often exist longer then older white and blue counterparts at the 
end of the animation. The full code can be found in the file 06/particle_systems.html, and screenshots during 
the life of the program are shown in Figure 6-17.

Figure 6-17. A basic particle system with slow-moving red particles that give way to faster white and blue particles 
and then eventually disperse

Enhancements
There are several enhancements that we can make to our previous example:

Limiting how many particles are spawned at once

Using time for parametric movement

Having a more controlled model instead of complete randomness

Having particles die and fade away

When using particle systems in WebGL, remember that the GPU is much faster than JavaScript for 
calculations and offset as much of the calculation to it as possible. In the previous example, if you increase the 
number of particles to an amount that your computer cannot easily handle; for me 1,000,000 grinds it to a halt, 
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then we can see that using the GPU for calculation would be an improvement. The downside of using the GPU is 
that it does not maintain as much state, so our effects need to be simpler or pass in extra data that is stored in a 
vertex buffer object (VBO) or texture.

For our next example, we will pass the frame count of each particle to use as time into the GPU. We will use 
parametric equations in our shader to define the path of each particle according to the basic physics equation of 
position = initial position + velocity*time + 0.5*acceleration*time2, (Df = Di + v*t + 0.5*a*t^2), which was discussed 
in the previous chapter. This allows us to calculate the point of each particle purely from the time value passed to 
the shader instead of using JavaScript and the Particle object that we previously used.

We will define a total of seven properties that are passed to the shader each frame:

x,y,z, age (in frames), velocity X, velocity Y, size

In each frame, our JavaScript removes old particles, updates the age of particles, and spawns new ones, as 
shown in Listing 6-15. We will be simulating a stream of water initially travelling upwards.

Listing 6-15. JavaScript to spawn, update, and remove particles 

function adjustParticles(){
 var particles_old = particles.slice(); //copy
 particles = [];
 for( var i=0; i<particles_old.length; i+=PARTICLE_COMPONENTS )
 {
  //remove old particles
    //if past lifespan or below the start position, do not readd particle
    if(     (particles_old[i+3] < LIFESPAN) &&
     (particles_old[i+1] > (START_Y - 0.001) )
            )
    {       var old = particles_old.slice(i, i+PARTICLE_COMPONENTS );
     old[3] += 1.0; //age
            particles = particles.concat(old);
           }
        }  

   currentNumberParticles = particles.length/PARTICLE_COMPONENTS;  

   //spawn new particles
 if( currentNumberParticles + MAX_SPAWN_PER_FRAME < MAX_NUMBER_OF_PARTICLES )
 {
  for( var n=0; n<MAX_SPAWN_PER_FRAME; ++n )
  {
  particles.push(.5*Math.random()-.25);     //X
  particles.push(START_Y);             //Y
  particles.push(Math.random() - .5);     //Z
  particles.push(0.0);   //age  

  particles.push(5.0*Math.random() - 10.0);  //velX
  particles.push(14.0 + 12.0*Math.random()); //velY
  particles.push(0.5 + Math.random() *4.0);  //size
  ++currentNumberParticles;
  }
 }
}



CHAPTER 6  FRACTALS, HEIGHT MAPS, AND PARTICLE SYSTEMS

170

The x,y,z, and age component are stored in one attribute, aVertexPosition, with the age accessible via the w 
component. The x,y velocity and size are stored in another attribute called aVertexVelocity, with the size the z 
component. The vertex and fragment shader are shown in Listing 6-16.

Listing 6-16. Parametric vertex and fragment shader for particle system 

<script type="x-shader/x-vertex">
 attribute vec4 aVertexPosition;
 attribute vec4 aVertexVelocity;  

 uniform mat4 uPMatrix;
 uniform mat4 uMVMatrix;  

 varying highp float parametricTime;
 void main(void) {
  parametricTime = (aVertexPosition.w/100.0);  

   vec3 currentPosition = vec3(aVertexPosition.x + (aVertexVelocity.x * 
parametricTime),  

      aVertexPosition.y + (aVertexVelocity.y * parametricTime),
      aVertexPosition.z + (aVertexVelocity.x * parametricTime)
  );  

  currentPosition.y -= 4.9*parametricTime*parametricTime;  

  gl_Position = uPMatrix * uMVMatrix * vec4(currentPosition.xyz, 1.0);
  gl_PointSize = aVertexVelocity.z;
 }
</script>  

<script id="shader-fs" type="x-shader/x-fragment">
      varying highp float parametricTime;
      void main(void) {
     gl_FragColor = vec4(parametricTime*.8, parametricTime*.8, 1.0,
                           0.9-(parametricTime*.4));
 }
</script>  

The shader code has the particles change from blue to white with age and is used to model a stream of water, 
as shown in Figure 6-18. The full source of this example is in the file 06/particle_systems_gpu.html.

Figure 6-18. Water stream with varying parameters modeled as a particle system
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Summary
This chapter showed that we can use algorithms directly in the GPU to render complex images. We demonstrated 
how cool and useful fractals can be and we generated terrain. We investigated particle systems, discussed how to 
use height maps, and explained how bump mapping can create the illusion of more noise on a surface.

The next chapter will look at the popular WebGL framework Three.js. We will show how to get started 
developing with it and demonstrate how its API abstraction can simplify and expediate development.
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CHAPTER 7

Three.js Framework

There are many WebGL frameworks that are available to abstract away the lower-level application programming 
interface (API) calls that we have covered in the first six chapters of the book. This abstraction helps to make 
WebGL development easier and more productive. We will discuss several WebGL frameworks in the next chapter. 
In this chapter we will concentrate on one of the most widely used frameworks – Three.js. We will cover the 
following:

A background of the library

How to start development with Three.js

Falling back to a 2D canvas context for rendering if WebGL is not supported

Three.js API calls to easily create cameras, objects, and use lighting models

Show the equivalent Three.js code to some examples found in previous chapters, which 
used direct low-level WebGL API calls

Introduce tQuery, a library that blends Three.js with jQuery selectors

Background
Three.js was created by Ricardo Cabello, aka Mr.Doob, and has been on gitHub since 2010. Since that time, it has 
received added help from many contributors and its user base has grown to a large size.

Three.js provides several different draw modes and can fall back to the 2D rendering context if WebGL 
is not supported. Three.js is a well-designed library and fairly intuitive to use. Default settings reduce the 
amount of initial work or “boilerplate” needed. Settings can be overridden as parameters passed in upon object 
construction or by calling the appropriate object methods afterwards.

Note  There can be a mistaken notion among people starting out with WebGL that Three.js and WebGL 
development are one and the same. Just as the JavaScript framework, jQuery, is not the same as JavaScript, Three.
js (or any other framework) is not the same as pure WebGL development.

If you are adept with an underlying language, you can usually understand framework code for it. The reverse is not 
true. Knowing a framework in no way guarantees that you know a language, so learning the low-level language is 
highly beneficial.

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012
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Features
Here are some of the many features of the Three.js framework:

Gracefully falls back to 2D context when WebGL is not supported

Built-in vector and matrix operators

API wrapper implementation of cameras, lights, materials, shaders, objects, and common 
geometries

Import and export utilities

Good documentation and examples

Setup
We will now go over how to obtain the Three.js library code, its directory structure, and core objects.

Obtaining the Library
The Three.js project is hosted on github at https://github.com/mrdoob/three.js. The latest release can be 
downloaded from https://github.com/mrdoob/three.js/downloads. Or if you are familiar with git, you can 
clone the repository:

git clone https://github.com/mrdoob/three.js.git.

The library is under active development, and changes to the API are not uncommon. The latest complete API 
documentation can be found at the URL mrdoob.github.com/three.js/docs/latest/, which will redirect to the 
current version. There is a wiki page at https://github.com/mrdoob/three.js/wiki/, and there is no shortage 
of demos that use Three.js or articles about Three.js development on the Web. Some of the better articles are 
listed in Appendix D.

Directory Structure
Once you download or clone the repository, you can place the files within your active development folder. The 
directory structure shows the following folder layout:

/build compressed versions of the source files
/docs API documentation
/examples examples
/gui a drag-and-drop GUI builder that exports Three.js source
/src source code, including the central Three.js file
/utils utility scripts such as exporters

Within the src directory, components are split up nicely into the following subfolders:

/src
   /cameras camera objects
   /core core functionality such as color, vertex, face, vector, matrix, math   
 definitions, and so on
   /extra utilities, helper methods, built-in effects, functionality, and plugins
   /lights light objects
   /materials    mesh and particle material objects such as Lambert and Phong
   /objects      physical objects

https://github.com/mrdoob/three.js
https://github.com/mrdoob/Three.js/downloads
https://github.com/mrdoob/Three.js.git
https://github.com/mrdoob/Three.js/wiki/
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   /renderers render mode objects
   /scenes scene graph object and fog functions
   /textures texture object
   Three.js central file

Basic Elements
There are several core object types in Three.js (see Table 7-1).

Table 7-1. Core Objects in Three.js

Base Object Description

THREE.Renderer The object that actually renders the scene. Implementations can be CanvasRenderer, 
DOMRenderer,SVGRenderer, or WebGLRenderer.

THREE.Scene Scene graph that stores the objects and lights contained within a scene.

THREE.Camera Virtual camera; can be PerspectiveCamera or OrthographicCamera.

THREE.Object3D Many object types, including Mesh, Line, Particle, Bone and Sprite.

THREE.Light Light model. Types can be AmbientLight, DirectionalLight, PointLight, or SpotLight

Two other notes about the object hierarchy: THREE.Mesh objects have an associated THREE.Geometry and 
THREE.Material objects, and in turn each THREE.Geometry contains THREE.Vertex and THREE.Face objects.

Basic Usage
Now that we have obtained the Three.js library, we are ready to start using it. We need to include the script, either 
from local sources, as follows:

<script src = "./three.js/build/Three.js" > </script>

Or remotely—from github, for example:

<script src = "https://raw.github.com/mrdoob/three.js/master/build/Three.js"></script>

Hello World!
Using Three.js is very easy compared with the low-level coding that we have done so far. Having learned the base 
WebGL API calls already, though, we can fully appreciate the speedup of a framework while knowing (or at least 
presuming to know without actually checking the library code) what is going on underneath the surface Three.js 
API calls.

In our first example, shown in Figure 7-1, we will render an unlit rectangular cuboid in Three.js.
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The full code of the example is fairly short compared with pure WebGL (see Listing 7-1). We will go into each 
section of the code in detail after the listing.

Listing 7-1. Rendering an unlit rectangular cuboid

<!doctype html>
<html>
 <head>
  <title>Three.js Cube Test</title>
  <style>
   body{ background-color: grey; }
   canvas{ background-color: white; }
  </style>
  <script src=”./Three.js/build/Three.js”></script>
  <script>
   var  CANVAS_WIDTH = 400,
    CANVAS_HEIGHT= 300;

   var  renderer = null, //WebGL or 2D
    scene = null,  //scene object
    camera = null;  //camera object

   function initWebGL()
   {
    setupRenderer();
    setupScene();
    setupCamera();

    renderer.render(scene, camera);
   }

   function setupRenderer()
   {
    renderer = new THREE.WebGLRenderer();
    renderer.setSize( CANVAS_WIDTH, CANVAS_HEIGHT );

Figure 7-1. A rectangular cuboid rendered with Three.js. No light makes the cuboid appear flat
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    //where to add the canvas element
    document.body.appendChild( renderer.domElement );
   }

   function setupScene()
   {
    scene = new THREE.Scene();
    addMesh();
   }

   function setupCamera()
   {
    camera = new THREE.PerspectiveCamera(
      35,       // Field of view
      CANVAS_WIDTH / CANVAS_HEIGHT,  // Aspect ratio
      .1,         // Near clip plane
      10000      // Far clip plane
    );
    camera.position.set( -15, 10, 10 );
    camera.lookAt( scene.position );
    scene.add( camera );
   }

   function addMesh()
   {
    var cube = new THREE.Mesh(
     new THREE.CubeGeometry( 5, 7, 5 ),
     new THREE.MeshBasicMaterial( { color: 0x0000FF } )
    );
    scene.add(cube);
   }
  </script>
 </head>
 <body onload=”initWebGL()”></body>

</html>

The code in Listing 7-1 is very straightforward. When scanning the listing, notice that we have not written 
vertex or fragment shaders or included a < canvas > tag. The shaders have been written for us by the library when 
the code is rendered and are based on our scene and camera setup. We will show later in the chapter how to 
specify shaders if needed.

Going through Listing 7-1, the first thing we do is add variables that will be used to set the size of our canvas 
and hold Three.js WebGLRenderer, Scene, and PerspectiveCamera objects:

var  CANVAS_WIDTH = 400,
    CANVAS_HEIGHT = 300;

var  renderer = null,   //WebGL or 2D
    scene = null,   //scene object
    camera = null;   //camera object

Then, as with low-level WebGL, we have an onload event. In Listing 7-1, the onload event calls the 
initWebGL function:
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function initWebGL()
{
     setupRenderer();
     setupScene();
     setupCamera();

     renderer.render(scene, camera);
}

The names of the function give hints that we are going to set up a WebGLRenderer object, a Scene object,  
and a Camera object; and then run the renderer with our scene and camera objects. Each of the setup function 
calls are small and straightforward, starting with setupRenderer:

function setupRenderer()
{
    renderer = new THREE.WebGLRenderer();
    renderer.setSize( CANVAS_WIDTH, CANVAS_HEIGHT );

    //where to add the canvas element
    document.body.appendChild( renderer.domElement );
}

We choose the WebGLRenderer object as our renderer type and create a new instance of it. Then we set the 
renderer size to our canvas dimensions and attach the domElement of the renderer (a < canvas > element) to our 
document < body > tag.

Next we call setupScene:

function setupScene()
{
    scene = new THREE.Scene();
    addMesh();
}

We create a new Scene object that will store objects such as meshes and lighting. The addMesh function is 
this:

function addMesh()
{
     var cube = new THREE.Mesh(
      new THREE.CubeGeometry( 5, 7, 5 ),
      new THREE.MeshBasicMaterial( { color: 0x0000FF } )
     );
     scene.add(cube);
}

In this example, we create a cuboid mesh of dimensions 5x7x5. We create a MeshBasicMaterial object with 
color property set to blue and do not add any lighting. Cuboid faces are not distinct in the rendering of Figure 7-1 
because each face is the same color, and no lighting means that no normal vectors are used. Finally, in the 
addMesh function, we add this mesh to our scene object.

The setupCamera method creates and sets up a PerspectiveCamera object:

function setupCamera()
{
  camera = new THREE.PerspectiveCamera(
  45,          // Field of view
   CANVAS_WIDTH / CANVAS_HEIGHT,    // Aspect ratio
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  .1,       // Near clip plane
  10000       // Far clip plane
  );
     camera.position.set( 10, 10, 10 );
     camera.lookAt( scene.position );
     scene.add( camera );
}

We position our camera and tell it which direction to look. Then we add the camera object to the scene.

Note  There is an equivalent orthogonal camera API call: THREE.OrthogonalCamera(float left, float right, float 
top, float bottom, float near, float far). Recall that an orthogonal camera is useful if we want objects with same-sized 
dimensions to appear the same size regardless of their distances within a scene.

Lastly we have the call:

renderer.render(scene, camera);

This call will render the scene using the scene graph object, which contains all the physical objects in the 
scene along and with the virtual camera object. The renderer object takes care of context handling and drawing 
to the underlying canvas element.

Let’s examine all the details in Listing 7-1 that have been abstracted:

No vertex points were specified; just the dimensions of the cuboid.

The modelview or perspective matrices were not explicitly set. The PerspectiveCamera 
position and lookAt functions, along with the scene.position vector, were used to 
calculate them and pass along to the shaders for us.

The shader pair in this example is completely computed for us.

The < canvas > element is automatically added to our document.

No vertex buffer objects or draw call is made by us. Which is used: drawArrays or 
drawElements? We cannot tell without looking at the source code of the library.

These are some nice abstractions for a basic scene to help an absolute beginner get started with three-
dimensional animation. For more complex scenes, the amount of abstraction is even greater and can further 
increase productivity. Having a knowledge of the underlying workings of WebGL as we now do is also great 
because it allows us to understand the library code to help us troubleshoot when things do not work as expected.

Adding Some Details
We will now look at adjusting color, lighting, and mesh objects with Three.js.

Color
In Three.js, colors are initialized with hex values, which look similar to CSS but are numeric values prefixed with 
0x instead of a hash (#) tag. So pure red would be 0xFF0000, and we would create a new red Color object with:

var myColor = new THREE.Color( 0xff0000 );
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After initialization, color components are converted to RGB values between 0 and 1, and are available as the 
object properties r, g, and b. If you want to set the color component-wise yourself, you can use the function 
setRGB. To change the color to blue looks like this:

myColor.setRGB(0.0, 1.0, 0.0);

The Clear Color

To set the clear color in Three.js, we use the renderer method setClearColor or setClearColorHex:

var alpha = 1.0;
renderer.setClearColor(myColor, alpha);

Or equivalently:

renderer.setClearColorHex(0x00ff00, 1.0);

Note  We can also specify the clear color in the WebGLRenderer constructor, along with other options. The 
default properties are shown here:

new THREE.WebGLRenderer({
antialias: false,
canvas: document.createElement( 'canvas' ),
clearColor: 0x000000,
clearAlpha: 0,
maxLights: 4,
stencil: true,
preserveDrawingBuffer: false

});

When setting the clearColor in this manner, make sure to also set the clearAlpha to a nonzero value, such 
as this:

renderer = new THREE.WebGLRenderer( { clearColor: 0x007700, clearAlpha: 1 } );

Lighting
We will now add a light to our scene by adjusting setupScene and addMesh and adding a new method called 
addLight, which is shown in Listing 7-2. Changes are shown in bold.

Listing 7-2. Adding a light to the scene

function setupScene()
{
    scene = new THREE.Scene();
    addMesh();
    addLight();
}
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function addMesh()
{
    var cube = new THREE.Mesh(
      new THREE.CubeGeometry( 5, 7, 5 ),
      new THREE.MeshLambertMaterial( { color: 0x0000FF } )
   );
     scene.add(cube);
}

function addLight()
{
 var light = new THREE.PointLight( 0xFFFFFF );
 light.position.set( 20, 20, 20 );
 scene.add(light);
}

The result of our code modifications can be seen in Figure 7-2 and are in the 07/basic_lighting.html 
file. In the addLight method of Listing 7-2 it takes only three lines of code to add a point light, specify the color 
and location of the light, and add it to our scene. It only takes changing the type of our Mesh material from 
MeshBasicMaterial to MeshLambertMaterial to use the Lambert shading model that was discussed in Chapter 4. 
We still have not needed to adjust the shader code.

Figure 7-2. Cuboid with clear color set to gray and a light that makes the 3D shape visible

So far, we have used only the built-in CubeGeometry object. We will now cover the Geometry and Mesh objects 
in more detail.

Meshes
The basic THREE.Mesh object extends THREE.Object3D and stores a Geometry object and a Material object 
(among other things):

var myMesh = new THREE.Mesh(geometry, material);

As shown in Listing 7-1 and Listing 7-2, the material can be a Lambert model and created like this:

var material = new THREE.MeshLambertMaterial( { color: 0x0000FF } );
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Preset geometry objects can be found in the /src/extras/geometries folder similar to the one we have used so 
far: CubeGeometry. If you look at the TorusGeometry.js source, the function signature is:

THREE.TorusGeometry = function ( radius, tube, segmentsR, segmentsT, arc ){ … }

To render a torus, we simply change the Geometry object in the addMesh code of Listing 7-2 to this:

function addMesh()
{
    var mesh = new THREE.Mesh(
     new THREE.TorusGeometry( 4, 1.5, 20, 20 ),
     new THREE.MeshLambertMaterial( { color: 0x0000FF } )
     );
    scene.add(mesh);
}

Figure 7-3 shows a torus geometry obtained by switching the Geometry object of a mesh.

Figure 7-3. A torus geometry rendered in Three.js

Having existing geometries available is really nice. You do not need to understand or implement the math 
involved; someone has already done this for you! Each of these geometries extends the THREE.Geometry object 
found in /src/core/Geometry.js. In the base Geometry object are many properties such as vertices, colors, 
and faces along with built-in functionality such as computing normal vectors and bounding boxes, which are 
useful for collision detection.

Smooth shading is the default shading model, but we can also perform flat shading and show wireframe 
models very easily, as shown in Figure 7-4. To perform flat shading we adjust the material properties like so:

new THREE.MeshLambertMaterial( {
 color: 0x0000FF,
 shading: THREE.FlatShading
} )

Similarly to show the wireframe, we adjust the material properties to:

new THREE.MeshLambertMaterial( {
 color: 0x0000FF,
  wireframe: true
} )

On the left of Figure 7-4 is a flat shaded torus geometry; the wireframe of a torus is displayed on the right.
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Three.js caches values for performance improvements. If you change a Geometry object’s properties, you 
need to inform Three.js to use the new values as we will now discuss.

Updating Objects
In Three.js, some values are updated automatically when adjusted, such as matrix transforms and cameras. 
However, for performance some values are not automatically updated. Instead you need to set a flag telling Three.
js that the object needs updating.

For a Geometry object, update flag properties are verticesNeedUpdate, elementsNeedUpdate, 
morphTargetsNeedUpdate, uvsNeedUpdate, normalsNeedUpdate, colorsNeedUpdate, and 
tangentsNeedUpdate. For instance, you would tell Three.js that the normal vectors have been changed on an 
object named geometry by setting the normalsNeedUpdate flag with this:

geometry.normalsNeedUpdate ;

Meshes also need their dynamic flag set:

geometry.dynamic = true;

Other objects such as textures may require flags as well. To update a texture you would set this:

texture.needsUpdate = true;

Complete details of how to update Three.js objects are available at https://github.com/mrdoob/Three.js/
wiki/Updates.

Falling Back to the 2D Canvas Context
One of the really nice things about Three.js is the ability to fall back to the 2D canvas context if WebGL is not 
supported. We can do this with the new code shown in bold text in Listing 7-3.

Listing 7-3. Testing for WebGL support and falling back to the 2D canvas context if needed

function setupRenderer()
{
 var test_canvas = document.createElement('canvas');
 var gl = null;
 try{

Figure 7-4. Left: flat shading; right: wireframe

https://github.com/mrdoob/Three.js/wiki/Updates
https://github.com/mrdoob/Three.js/wiki/Updates
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  gl = ( test_canvas.getContext("webgl") ||
   test_canvas.getContext("experimental-webgl")
       );
 }catch(e){
 }

 if(gl)
 {
  renderer = new THREE.WebGLRenderer();
  console.log('webgl!');
 }else{
  renderer = new THREE.CanvasRenderer();
  console.log('canvas');
 }
 test_canvas = undefined;

 renderer.setSize( CANVAS_WIDTH, CANVAS_HEIGHT );
 renderer.setClearColorHex(0x777777, 1.0);

 //where to add the canvas element
 document.body.appendChild( renderer.domElement );
}

 This output of the code in Listing 7-3 run in two browsers, one with and one without WebGL support, is 
shown in Figure 7-5. The images are not identical, but compared to not rendering anything, this ability to fall back 
with no code alterations other than that of Listing 7-3 is fantastic! It provides graceful degradation for users who 
do not have a browser with WebGL capabilities.

Figure 7-5. Left: browser supporting WebGL; right: falling back to canvas context

Shaders
To use shaders in Three.js, set the object material to be of type ShaderMaterial, where vs_source and fs_source 
are loaded sources from either embedded code or external files:

var material = new THREE.ShaderMaterial({
        vertexShader: vs_source,
        fragmentShader: fs_source
});

In addition, the constructor takes other optional parameters such as attributes and uniforms, which we 
will examine later on in the chapter.
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Revisiting Earlier Book Code
We will now reproduce some of the earlier examples of the book using Three.js so that an adequate comparison 
can be made in terms of using a framework versus lower-level API usage. Along the way, we will uncover new 
Three.js API functions and configuration parameters, so porting our existing code is a great way to get our feet wet 
in a new API.

2D Rendering
Remember the “bowtie” two-triangle example of Chapter 1 (Figure 1-4)? Let’s reproduce it with Three.js. At this 
point, we have used only built-in meshes, but we do not know how to create a custom mesh, even a simple one, 
with Three.js.

Custom Mesh
To build a custom mesh, we first create a new Geometry object. Then we create Vector3 objects for each vertice 
and add them to the Geometry object’s vertices property array. We then add vertice triplets to the faces array 
property of the Geometry object. Finally, we add our Geometry object to a new Mesh object. This is shown in 
Listing 7-4.

Listing 7-4. Creating a custom mesh with Three.js

function addMesh()
{
 var triangleVertices = [
  //left triangle
  -0.5, 0.5, 0.0,
   0.0, 0.0, 0.0,
  -0.5, -0.5, 0.0,

   //right triangle
  0.5, 0.5, 0.0,
  0.0, 0.0, 0.0,
  0.5, -0.5, 0.0
 ];

 var geometry = new THREE.Geometry();
 for(var i=0; i<triangleVertices.length; i += 3)
 {
  var vertex = new THREE.Vector3(
    triangleVertices[i],
    triangleVertices[i + 1],
    triangleVertices[i + 2]      
    );
  geometry.vertices.push(vertex);
 }
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Separate Vertex Colors
To have separate colors per vertex, we need to assign them to the geometry.faces[n].vertexColors attributes 
and NOT the geometry.colors attribute. The geometry.colors attribute is used for other objects such 
as particles, but not for meshes. Instead of setting the color property of our mesh material, we now set the 
vertexColors property:

new THREE.MeshBasicMaterial(
{
     vertexColors: THREE.VertexColors

Note  If we do not need per vertex coloring, we can also set the color of each face with geometry.faces[n].
color and using vertexColors: THREE.FaceColors in our Material setup.

Figure 7-6. Left: triangle faces with opposite winding order, only one is visible; right: triangle faces with the same 
winding order

 geometry.faces.push( new THREE.Face3(0, 1, 2) );
 geometry.faces.push( new THREE.Face3(3, 4, 5) );

 var mesh = new THREE.Mesh(
  geometry,
  new THREE.MeshBasicMaterial( { color: 0xFFFFFF } )
 );

 scene.add(mesh);
}

Now when we run the code, we produce the image on the left of Figure 7-6. Only one triangle is rendered. 
This is because the winding order is opposite in our triangles. To fix this, we have two options. First, we can 
render both sides of the mesh:

mesh.doubleSided = true;

However, this is a performance hit and we do not want to get into the habit of doing this. The other option is 
to fix the winding order of the second face:

geometry.faces.push( new THREE.Face3(3, 5, 4) );

After this adjustment, we get the image on the right of Figure 7-6. The full code is in the file 07/bowtie.html. 
Notice that even though we have specified the vertex data, we are not responsible to bind it to a VBO.
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Changing the addMesh code to that in Listing 7-5 will produce the same colored output as in Figure 1-8. A working 
example can be found in the 07/bowtie_color.html file.

Listing 7-5. Per vertex color values

function addMesh()
{
 var triangleVertices = [
  //left triangle
  -0.5, 0.5, 0.0,
   0.0, 0.0, 0.0,
  -0.5, -0.5, 0.0,

   //right triangle
  0.5, 0.5, 0.0,
  0.0, 0.0, 0.0,
  0.5, -0.5, 0.0
 ];

 var triangleVerticeColors = [
  //left triangle
   1.0, 0.0, 0.0,
   1.0, 1.0, 1.0,
   1.0, 0.0, 0.0,
 
  //right triangle
  0.0, 0.0, 1.0,
  0.0, 0.0, 1.0,  //these two colors are switched
  1.0, 1.0, 1.0,  //from the chapter 1 example as the
     //vertice order is changed here
 ];

 var geometry = new THREE.Geometry();
 var colors = [];

 for(var i=0; i<triangleVertices.length; i += 3)
 {
  var vertex = new THREE.Vector3();
  vertex.set(
    triangleVertices[i],
    triangleVertices[i + 1],
    triangleVertices[i + 2]
   );
  geometry.vertices.push(vertex);
 
  var color = new THREE.Color();
  color.setRGB(
   triangleVerticeColors[i],
   triangleVerticeColors[i + 1],
   triangleVerticeColors[i + 2]  );
  colors.push(color);
 }
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 geometry.faces.push( new THREE.Face3(0, 1, 2) );
 geometry.faces.push( new THREE.Face3(3, 5, 4) );

 var f = 0;
 for(var i=0; i < colors.length; i+=3)
 {
  geometry.faces[f].vertexColors.push(colors[i]);
  geometry.faces[f].vertexColors.push(colors[i+1]);
  geometry.faces[f].vertexColors.push(colors[i+2]);
  ++f;
 }

 var mesh = new THREE.Mesh(
  geometry,
  new THREE.MeshBasicMaterial(
    {
     vertexColors: THREE.VertexColors
    }
   )
 );
 scene.add(mesh);
}

The next component of Chapter 1’s bowtie example was adding movement, which we will now cover with 
Three.js.

Movement
We will now move our two triangles, as we did in the first chapter. We do this a little differently from how we did 
in Listing 1-9. First, we will make the geometry, mesh, and triangleVertices that were local variables in Listing 
7-5 globally available:

var   mesh = null,
       geometry = null,
       triangleVertices = [],
       angle = 0;

We also have added a variable to keep track of an angle. To animate the scene, we can use the same 
animation loop using the renderAnimationFrame polyfill that we discussed in Chapter 1 and have been using 
since. However, Three.js includes the polyfill, so we do not need to include an extra file just for it:

function initWebGL()
{
 setupRenderer();
 setupScene();
 setupCamera();

 (function animLoop(){
  updateGeometry();
  renderer.render(scene, camera);
  requestAnimationFrame( animLoop );
 })();
}

In our addMesh method of Listing 7-5, we need to add this line:
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geometry.dynamic = true;

This informs Three.js that properties of the geometry will change. Lastly, we define the updateGeometry 
function, which controls how the vertices change:

function updateGeometry()
{
 var x_translation = Math.sin(angle)/2.0;

 for (var i = 0; i < geometry.vertices.length; i++) {
  geometry.vertices[i].x = triangleVertices[i*3] + x_translation;
 }

 angle += 0.01;
 geometry.verticesNeedUpdate = true;
}

The preceding code loops through each vertex and adjusts the x component to its original value from the 
triangleVertices array plus a translation amount. We will look at a simpler way to move an entire mesh in the 
next example. To see movement, it is essential that we tell Three.js that the vertices need to be updated with this 
line:

geometry.verticesNeedUpdate = true;

The Triangular Prism
Our next code revisits producing the triangular prism shown in Figure 1-16 and found in the file 01/triangular_
prism_depth_test.html. Our array data is the same as in Listing 1-11, and we will not relist it here. The rest of 
the addMesh method for a triangular prism is shown in Listing 7-6.

Listing 7-6. Add mesh function for triangular prism

function addMesh()
{
 
 var triangleVertices,  //same as in Listing 1-11
   triangleVerticeColors, //same as in Listing 1-11
   triangleVertexIndices;  //same as in Listing 1-11
 …

 var colors = [];

 for(var i=0; i<triangleVertexIndices.length; i += 3)
 {
  var vertex = new THREE.Vector3();
  var color = new THREE.Color();
  vertex.set(
   triangleVertices[i],
   triangleVertices[i + 1],
   triangleVertices[i + 2]
  );
  geometry.vertices.push(vertex);

   color.setRGB(
   triangleVerticeColors[i],
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   triangleVerticeColors[i + 1],
   triangleVerticeColors[i + 2]       
  );
  colors.push(color);
 }
 for(var i=0; i<triangleVertexIndices.length; i += 3)
 {
  geometry.faces.push( new THREE.Face3(
   triangleVertexIndices[i],
   triangleVertexIndices[i + 1],
   triangleVertexIndices[i + 2]
  ) );
 }

 var f = 0;
 for(var i=0; i<triangleVertexIndices.length; i +=3 )
 {
  geometry.faces[f].vertexColors.push(colors[triangleVertexIndices[i]]);
  geometry.faces[f].vertexColors.push(colors[triangleVertexIndices[i + 1]]);
  geometry.faces[f].vertexColors.push(colors[triangleVertexIndices[i + 2]]);
  ++f;
 }

 geometry.dynamic = true;

 mesh = new THREE.Mesh(
  geometry,
  new THREE.MeshBasicMaterial(
   {
    vertexColors: THREE.VertexColors      
   }
  )
 );
 mesh.doubleSided = true;

 scene.add(mesh);
}

The code in Listing 7-6 generates our vertices, faces, and vertexColors properties of our geometry. 
We also set the mesh to doubleSided for this example instead of making the winding consistent. To rotate and 
translate the mesh, we will act directly on the Mesh object instead of each vertice property, as we did in the 
previous example:

function initWebGL()
{
 setupRenderer();
 setupScene();
 setupCamera();

 var original_mesh_x = mesh.position.x;

 (function animLoop(){
  //rotate mesh round y-axis
  mesh.position.x = original_mesh_x + 2.0*Math.cos(angle);
  mesh.rotation.y = angle;
  angle += 0.05;
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  renderer.render(scene, camera);
  requestAnimationFrame( animLoop );
 })();
}

The key to this technique is storing the original x position. A working implementation can be found in the 
07/triangular_prism.html file.

Texturing
Our next example will texture the triangular prism as we did in Chapter 3, in the 03/multitexture.html file. 
Some of the built-in geometries will automatically calculate default texture coordinates. This is not the case for 
our custom mesh, but we will now go over how to assign custom coordinates.

First, we load our textures:

var  texture = [],
  textureImage = [],
 STONE_TEXTURE = 0,
 WEBGL_LOGO_TEXTURE = 1;
…
setupTexture();
…
function setupTexture()
{
 texture[STONE_TEXTURE] = THREE.ImageUtils.loadTexture(
     "textures/stone-128px.jpg");
 texture[WEBGL_LOGO_TEXTURE] = THREE.ImageUtils.loadTexture(
     "textures/webgl_logo-512px.png");

 for(var i=0; i<texture.length;++i)
 {
  texture[i].wrapT = texture[i].wrapS = THREE.RepeatWrapping;
  texture[i].needsUpdate = true;
 }
}

Note  We need to ensure that THREE.ImageUtils.loadTexture() finishes before our scene is rendered. We 
show a couple approaches to guarantee this later in the chapter.

And now we will set our per vertex texture coordinates, which are stored as an array in the geometry’s 
faceVertexUvs property:

function addMesh()
{
 …
 var uvs = [];
 for(var i=0; i<triangleVertexIndices.length; i += 3)
 {
  var vertex = new THREE.Vector3();
  var color = new THREE.Color();
  vertex.set(
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    triangleVertices[i],
    triangleVertices[i + 1],
    triangleVertices[i + 2]
   );
  geometry.vertices.push(vertex);

  var tex = [];
  for(var j=0; j<3;++j)
  {
   var a = triangleVertexIndices[i+j];
   var s = null,
       t = null;

   if(i >= 24)
   {
    s = triangleVertices[a*3 + 1];
    t = triangleVertices[a*3 + 2];
   }else{
    s = triangleVertices[a*3];
    t = triangleVertices[a*3 + 1];
   }
   s = (s+2.0) * .25;
   t = (t+2.0) * .25;
   tex.push(new THREE.UV(s, t));
  }
  uvs.push(tex);

  color.setRGB(
   triangleVerticeColors[i],
   triangleVerticeColors[i + 1],
   triangleVerticeColors[i + 2]
  );
  colors.push(color);
 }

 …

 geometry.faceVertexUvs = [];
 for(var z=0;z<uvs.length;z++){
  geometry.faceVertexUvs.push(uvs);
 }

 …

 mesh = new THREE.Mesh(
  geometry,
  new THREE.MeshBasicMaterial(
    {
     map: texture[STONE_TEXTURE]      
    }
   )
 );

 mesh.doubleSided = true;
 scene.add(mesh);
}
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The preceding code applies the stone texture, and the example can be run from the 07/triangular_prism_
textured.html file.

How do we use two textures, one as a decal as we did in Chapter 3? To accomplish this, we will have to do 
our only shader coding with Three.js in this chapter, using the ShaderMaterial object.

ShaderMaterial
As mentioned earlier, the ShaderMaterial requires vertex and fragment shader sources. We also can provide 
uniform and attribute values. Three.js automatically sets many mesh properties such as vertex position and 
texture coordinates assigned as program attributes from our object properties. In addition, the model view and 
perspective uniforms are also assigned. This is nice, but may appear a little magical as well.

To decal a texture on top of another texture, as we did in the 03/multitexture.html file, we first assign 
variables for our uniforms and shader material:

var   uniforms = null,
     shaderMaterial = null;

Next we adjust our addMesh method:

function addMesh()
{
  …
  setupShaderMaterial();
 mesh = new THREE.Mesh(
  geometry,
  shaderMaterial
 );

 mesh.doubleSided = true;
 scene.add(mesh);
}

The setupShaderMaterial method is shown in Listing 7-7. In the method we set our textures as uniform 
variables. The type parameter represents the variable type: texture, int, float, and so on. Then we load our sources 
with Ajax (again, this could be embedded sources instead) and then create and store a new ShaderMaterial 
object.

Listing 7-7. Using a ShaderMaterial

function setupShaderMaterial()
{
 uniforms = {
  uSampler: { type: "t", value: 0, texture: texture[STONE_TEXTURE] },
  uSampler2: { type: "t", value: 1, texture: texture[WEBGL_LOGO_TEXTURE] }
 };

 var  vs_source = null,
  fs_source = null;

 //get shader sources with jQuery Ajax

 $.ajax({
    async: false,
    url: './multitexture.vs',
    success: function (data) {
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      vs_source = data.firstChild.textContent;
    },
    dataType: 'xml'
 });

 $.ajax({
    async: false,
    url: './multitexture.fs',
    success: function (data) {
      fs_source = data.firstChild.textContent;
    },
    dataType: 'xml'
 });

 shaderMaterial = new THREE.ShaderMaterial( {
  uniforms: uniforms,
  vertexShader: vs_source,
  fragmentShader: fs_source
 } );

}

We define our shaders, which are different from the ones written in Chapter 3. The shader program pair is 
shorter now and uses some “magically set” attributes and uniforms in Listing 7-8.

Listing 7-8. A Three.js shader program for two textures

<script type="x-shader/x-vertex">
 varying highp vec2 vTextureCoord;

 void main(void) {
  gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
      vTextureCoord = uv;
 }
</script>

<script id="shader-fs" type="x-shader/x-fragment">
   varying highp vec2 vTextureCoord;
   uniform sampler2D uSampler;
   uniform sampler2D uSampler2;
 
  void main(void) {
  highp vec4 stoneColor = texture2D(uSampler, vec2(vTextureCoord.st));
  highp vec4 webglLogoColor = texture2D(uSampler2, vec2(vTextureCoord.st));
  gl_FragColor = mix(stoneColor, webglLogoColor, webglLogoColor.a);
 }
</script>

In Listing 7-8, the projectionMatrix and modelViewMatrix variables are uniforms passed in from Three.js for our 
projection and model view transforms. The vertex positions values are passed in as the position variable attribute.

Note  It is important to realize that Listing 7-8 is not a valid shader program on its own. These sources are not 
passed directly to the shaderSource, and compileShader WebGL methods. Instead, behind the scenes, Three.
js checks for set values and inserts attributes and uniforms into the shader source before finalizing the source and 
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compiling it. You can observe this by viewing the source of your browser and demonstrated in Figures 7-7 and 7-8. 
Then Three.js attaches and links the shader program and selects to use it as we manually do in other book chapters.

Part of the vertex shader produced is shown in Figure 7-7.

Figure 7-7. Part of the final vertex shader produced by Three.js from the initial vertex shader in Listing 7-8

The full fragment shader generated code is shown in Figure 7-8. Compare the source code in these two figures 
with what we specify in Listing 7-8.
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Finally, we make setupTexture the document onload event now. In the setupTexture function, I have 
nested callbacks in the loadTexture function calls to ensure that the textures are loaded before initializing 
WebGL:

function setupTexture()
{
 texture[STONE_TEXTURE] = THREE.ImageUtils.loadTexture(
  "textures/stone-128px.jpg",
  {}, function() {
  texture[WEBGL_LOGO_TEXTURE] = THREE.ImageUtils.loadTexture(
   "textures/webgl_logo-512px.png",
   {}, function() {
    for(var i=0; i<texture.length;++i)
    {
     texture[i].wrapT = texture[i].wrapS =
      THREE.RepeatWrapping;
     texture[i].needsUpdate = true;
    }
    initWebGL();
    }
   );
  }
 );
}

Obviously, if we had more than a couple of textures, this approach would be very hard to read, and an 
alternate code structure would be preferable. We will show an alternate code structure later in the chapter. The 
full code of this example can be found in the 07/triangular_prism_textured_decal.html file.

Figure 7-8. Final fragment shader produced by Three.js from initial fragment shader in Listing 7-8
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Figure 7-9. Achieving a similar result to the examples in Chapter 4; this time with Three.js

Lighting and Texturing
Our next example will be to re-create the three spheres and plane demonstrated in Chapter 4. We will use 
Phong lighting, blending, fog, and texturing. In this example, we do not use multiple textures per object and can 
accomplish everything without explicitly setting our shaders in Three.js. The final result is shown in Figure 7-9.

Here are the new variables that we will use in this example:

var texture = [],
 STONE_TEXTURE = 0,
 GLASS_TEXTURE = 1,
 WATER_TEXTURE = 2,
 number_textures = 3,
 loaded_textures = 0,
 meshes = [],
 NUM_SPHERES = 3,
 PLANE_INDEX = 3;

To load our textures instead of nested callbacks, we now use the code in Listing 7-9. The advantage of it is 
that it is easier to read and adjust if we add more textures. Each time the callback is called, a global counter of 
loaded textures is incremented. When the expected number of textures loaded is reached, we call the initWebGL 
method.

Listing 7-9. Callback to adjust our loaded textures

function adjustLoadedTexture( tex )
{
 loaded_textures++;

 tex.wrapS = THREE.RepeatWrapping;
 tex.wrapT = THREE.RepeatWrapping;
 tex.needsUpdate = true;

 if( loaded_textures == number_textures )
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 {
  initWebGL();
 }
}

function setupTexture()

{
 var texture_files = [
  "textures/stone-256px.jpg",
  "textures/glass-256px.jpg",
  "textures/water-256px.jpg"
 ];

 loaded_textures = 0;
 for(var i=0; i<texture_files.length;++i)
 {
  texture[i] = THREE.ImageUtils.loadTexture(
   texture_files[i], {}, adjustLoadedTexture
  );
 }
}

Note  The callback automatically passes the object returned from the loadTexture call as a parameter in the 
callback function, adjustLoadedTexture. Both of the following alternate function calls will not work:

texture[i] = THREE.ImageUtils.loadTexture(
 texture_files[i], {}, adjustLoadedTexture()
);
texture[i] = THREE.ImageUtils.loadTexture(
 texture_files[i], {}, adjustLoadedTexture( texture[i] )
);

To add fog to our scene, we do not need to implement this within a shader. We just assign a value to the 
scene.fog parameter by calling the method THREE.FogExp2:

scene.fog = new THREE.FogExp2( 0x775555, 0.11 );

The second parameter is the density of the fog. FogExp2 is the exponent version of the fog equations that we 
discussed in Chapter 4. To perform the linear version, we would use THREE.Fog(color, near, far).

Other interesting adjustments that we have made for this example are to change the material used:

var material = new THREE.MeshPhongMaterial(
  {  ambient: 0xffffff,
   color: colors[i],
   specular: 0x555555,
   shininess: 30,
   map: tex
  }
 );
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In this declaration, tex is a texture object. We specify blending on one of the spheres with this:

if(i == 2)
{
 material.blending = THREE.AdditiveBlending;
 material.blendSrc = THREE.SrcAlphaFactor;
 material.blendDst = THREE.OneFactor;
 material.transparent = true;
 material.depthTest = false;
}

Lastly, we have added a few more lights:

function addLight()
{
 var ambientLight = new THREE.AmbientLight( 0x111111 );
 scene.add(ambientLight);

 var pointLight = new THREE.PointLight( 0xFFFFFF );
 pointLight.position.set( 0, 10, 0 );
 scene.add(pointLight);

 var directionalLight = new THREE.DirectionalLight( 0xFFFFFF );
 directionalLight.position.set( 1, 2, 1 ).normalize();
 scene.add( directionalLight );
}

The point and directional light can have attenuation and intensity variations as with the lighting models that 
we implemented in Chapter 4.

Particle System
For our last example of the chapter, we will produce a particle system with Three.js similar to the one we created 
in Chapter 6. The result of the code is shown in Figure 7-10.

Figure 7-10. Particle system produced with Three.js

Creating our particle system is similar to the way we implemented it in Chapter 6, except now we place our 
particles inside of a Geometry as shown in Listing 7-10. Remember that particles are usually represented as single 
points, and we can also use a texture image mapped onto each point.
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Listing 7-10. Initializing particles

function setupParticles()
{
  particleGeometry = new THREE.Geometry(),
   particleMaterial =
     new THREE.ParticleBasicMaterial({
      color: 0xFFFFFF,
      size: (Math.random() + 1.0) * .25
   });

   //fill empty data to capacity
   for( var i=0; i<MAX_NUMBER_OF_PARTICLES; ++i )
 {
  particleGeometry.vertices.push( initializeParticle() );
   }
}

function initializeParticle()
{
 var particle = new THREE.Vector3(
    .5 * Math.random() - .25,
    START_Y,
    3.0);

 //add extra data
 particle.age = 0;
 particle.original = new THREE.Vector3(particle.x, particle.y, particle.z);
 particle.velocity = new THREE.Vector3(
   5.0 * Math.random() - 10.0,
   12.0 * Math.random() + 14.0,
   0.5 + Math.random() * 4.0); //velocity [x,y,z]
 }
 return particle;
}

Next we set up a particle system that is basically a wrapper for a mesh and material:

//particle system
particleSystem = new THREE.ParticleSystem(
   particleGeometry,
   particleMaterial
  );
scene.add(particleSystem);

Note  The object THREE.Particle also exists, but is used for CanvasRenderer, whereas THREE.ParticleSystem 
is used for the WebGLRenderer.

Finally, we adjust the particles during each iteration of the render loop, as shown in Listing 7-11.
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Listing 7-11. Updating particles in the render loop

function adjustParticles(){
 var particles_old = particleGeometry.vertices.slice(); //copy
 particleGeometry.vertices = [];
 for( var i=0; i<particles_old.length; ++i )
 {
    //remove old particles
    //if past lifespan or below the start position, do not readd particle
    if(  ( particles_old[i].age < LIFESPAN ) &&
     ( particles_old[i].y > (START_Y - 0.001) )
      )
    {
     particles_old[i].age += 1.0; //age
     var pTime = particles_old[i].age/100.0;
     particles_old[i].x = particles_old[i].original.x
        + particles_old[i].velocity.x * pTime;
     particles_old[i].y = particles_old[i].original.y
       + particles_old[i].velocity.y * pTime
       - 4.9 * pTime * pTime;
     particleGeometry.vertices =
     particleGeometry.vertices.concat(particles_old[i]);
    }
   }

  currentNumberParticles = particleGeometry.vertices.length;

   //spawn new particles
  if( currentNumberParticles + MAX_SPAWN_PER_FRAME < MAX_NUMBER_OF_PARTICLES )
 {
  for( var n=0; n<MAX_SPAWN_PER_FRAME; ++n )
  {
   var particle = initializeParticle();

     particleGeometry.vertices.push(particle);
     ++currentNumberParticles;
  }
 }
 particleGeometry.verticesNeedUpdate = true;
}

The working example can be found in the file 07/particle_system.html.

Advanced Usage
There are many advanced built-in functions and algorithms in the Three.js library and currently more than 150 
included examples that demonstrate usage. We cannot cover them in this book, but I encourage you to explore 
the API, examples, and source code of the library.
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Import/Export
Files to import mesh files are available in the /src/loaders and /src/extra/loaders directories while files to 
export are in the /utils/exporters directory. We will show how to import a mesh which is converted to a JSON 
format specifically for Three.js in the next chapter.

tQuery
A promising looking project in development is called tQuery, which stands for: Three.js + jQuery. This library is 
written by Jerome Eteinne, who also writes the blog http://learningthreejs.com. tQuery is a thin wrapper on 
top of the Three.js library, which mimics jQuery chainability and can produce scenes with even less boilerplate 
code to get up and running than using Three.js alone. The project is available on gitHub at https://github.com/
jeromeetienne/tquery.

The following code with tQuery produces the cylinder in Figure 7-11:

<!doctype html>
<html>
 <head>
  <title>tQuery Cylinder Example</title>
  <script
src="https://raw.github.com/jeromeetienne/tquery/master/build/tquery-all.js">
   </script>
 </head>
 <body>
  <script>
   var world = tQuery.createWorld().boilerplate().start();
   var object = tQuery.createCylinder().addTo(world);
  </script>
 </body>

</html>

Figure 7-11. Cylinder modelled with tQuery

http://learningthreejs.com
https://github.com/jeromeetienne/tquery
https://github.com/jeromeetienne/tquery
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Of course, the previous example above is fairly stock, and the amount of flexibility that tQuery offers to 
customize meshes and scene details is very important.

Summary
This chapter showed the great power that a framework like Three.js combined with existing WebGL API 
knowledge can provide and how quickly we can develop code by using one.

In the next chapter, we will survey other WebGL frameworks and physics libraries. We will also show how to 
find and use existing mesh, shader and texture resources.
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CHAPTER 8

Productivity Tools

In the previous chapter we looked at the excellent Three.js WebGL framework and showed how it abstracts lower-
level WebGL API calls. This abstraction simplifies and expedites development. This chapter introduces additional 
tools that can help your development be productive and enjoyable. Topics that we will cover in this chapter are 
the following:

The merits of using a WebGL framework and the benefits of learning core WebGL

Currently available frameworks

Basic “Hello World” philoGL and GLGE framework examples

Loading existing meshes and models

File formats and import/export tools

Finding and modifying existing shaders and textures

JavaScript physics frameworks

A physics demo using the physi.js library with Three.js

Frameworks
A framework abstracts lower-level API calls and also extends built-in functionality. WebGL frameworks get you 
started with less initial setup and boilerplate code. This makes it quicker to start programming and easier to 
develop complex applications. Frameworks can abstract vertex buffer object (VBO) and shader handling, ease 
camera manipulation, perform matrix math operations, and load meshes—among other things.

The trade-off of using a framework is that the abstraction of the lower-level details can limit configurability 
and performance (without hacking the framework source code). Usually, though, the amount of time savings 
outweighs what is lost in configurability.

However, it is beneficial not to get attached to any one framework and learn the basic WebGL API first. The 
rationale for this is that knowing how core WebGL works should enable switching between frameworks fairly 
easily. The opposite is not true. If you learn a framework first (no matter how good it is) and then need to use the 
base WebGL API or switch frameworks, you could be quite lost. Furthermore, if you understand core WebGL and 
want to understand a particular frameworks’ nuances, you can view the source code and see and understand the 
basic WebGL API calls.

Many Choices
There are many, many frameworks available for WebGL. At present there are twenty five frameworks available 
according to http://www.khronos.org/webgl/wiki/User_Contributions. Which one(s) should you use?

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012

http://www.khronos.org/webgl/wiki/User_Contributions
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To stand out in the crowd, several frameworks are built to provide specific niche usage such as general 
usage, game development, data visualization, globes and maps, and high performance. Apart from different 
focuses, what other factors determine which framework to use? Well as with other software projects, here are 
some criteria to evaluate:

Power and function: It works and allows you to quickly create scenes that use advanced 
techniques. The code is well written and extendable, crashes infrequently, and does not 
have many critical bugs.

Usability: Clear API and good documentation, wiki, FAQ, and so on.

Support and activity: The author(s) and community are actively involved. Bug fixes 
are fairly quick, and new feature requests are being made (the code base is not stalled 
indefinitely). Some questions to ask are these: How many commits have been made to the 
project? How many contributors? How long has the project been around? When was the 
last commit? Release? Stable release? Is there a forum or user group?

Popularity: This applies more to the low and high end of the spectrum. If no one uses 
something, it is hard to get support for a library. There is also more of a chance that the 
framework will become defunct and abandoned. On the flip side, if something is widely 
popular, resources are easy to come by and you can be sure that the framework will have 
a bright future.

Personal preference: You just like it better. When all other things are near equal, your 
own gut preference is important.

One place to compare some project metrics for activity is at https://www.ohloh.net/p/compare, where you 
can compare statistics for up to three projects at once.

Available Frameworks
Here I present a selection of several of the most promising–looking frameworks (to me), with a synopsis and 
website locations. Afterward, we will give a basic “Hello World!” example with two of the frameworks: GLGE and 
philoGL.

Note  I do not see much value in listing all the current frameworks because many lack the necessary criteria 
specified previously (support, features, users) that are needed for longevity. Displaying them all will only muddy the 
waters when trying to choose one to use. This list contains some of the top frameworks at the time of writing. The 
list is somewhat subjective, so I do apologize if I have omitted a framework that you feel is worthy.

C3DL
C3DL stands for Canvas 3D Library. The library is intended for providing “a set of math, scene, and 3d object 
classes that makes WebGL more accessible for developers that want to develop 3D content in browser but do not 
want to have to deal in depth with the 3D math needed to make it work.”

The C3DL webpage has several tutorials and good documentation. You can find it here: http://www.c3dl.org/

https://www.ohloh.net/p/compare
http://www.c3dl.org/
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CopperLicht
CopperLicht can be used for 3D applications and games. Features include fast rendering, a world editor, and 
importing of many model formats. You can find out more about it here:  
http://www.ambiera.com/copperlicht/index.html

GLGE
The main goal of GLGE is simplification. “WebGL for the lazy” and “The aim of GLGE is to mask the involved 
nature of WebGL from the web developer, who can then spend his/her time creating richer content for the web.” 
We will show an example with GLGE later on in the chapter. You can find GLGE here: http://www.glge.org/

Jax
Jax is designed with rapid development in mind. It is “a one-stop shop for building robust, high-quality WebGL 
applications—fast.” Jax uses the Ruby language and the model-view-controller (MVC) pattern to separate 
components. Some of the built-in functionality includes keyboard and mouse input handling, and unit testing 
capability. You can find the Jax website at http://jaxgl.com/ and the source code on github at  
https://github.com/sinisterchipmunk/jax

KickJS
KickJS is focused on game development with WebGL. KickJS also features an online interactive GLSL editor as 
demonstrated in Chapter 2 and an online editor (currently in beta). You can find the KickJS website here:  
http://www.kickjs.org/, and the source code hosted on github here: https://github.com/mortennobel/KickJS/

PhiloGL
PhiloGL is focused for data visualizations and game development. An aim of the framework is to be written with 
best JavaScript practices in mind as well as to thinly abstract the basic WebGL calls. We will show an example 
with philoGL later on in the chapter. You can find out more about it here: http://www.senchalabs.org/philogl/

SceneJS
SceneJS specializes in rendering a large number of pickable objects such as those used in engineering and 
medical applications. This is possible because the framework (as its name suggests) provides a scene graph 
engine that uses an efficient optimized draw list internally and is JSON-based. You can find out more about it 
here: http://www.scenejs.com/

TDL
Threedlibrary (TDL) is focused on low-level usage and performance over ease of use. Google body and many 
high-performance demos use TDL. You can find out more about it here:  
http://code.google.com/p/threedlibrary/

http://www.ambiera.com/copperlicht/index.html
http://www.glge.org/
http://jaxgl.com/
https://github.com/sinisterchipmunk/jax
http://dx.doi.org/10.1007/978-1-4302-3996-3_2
http://www.kickjs.org/
https://github.com/mortennobel/KickJS/
http://www.senchalabs.org/philogl/
http://www.scenejs.com/
http://code.google.com/p/threedlibrary/
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Three.js
As mentioned in the previous chapter, Three.js is a general-purpose 3D engine that abstracts away a lot of the 
details making it easier to develop WebGL. Three.js is currently the most popular WebGL framework, and some 
people think that WebGL and Three.js are one and the same. This is not the case, but it is a great framework to try 
out as the previous chapter has demonstrated. You can find the Three.js library on github here:  
https://github.com/mrdoob/three.js

In this chapter, we will show how to import meshes and use a physics engine with Three.js.

A philoGL “Hello World!” Example
philoGL is a framework from Sencha Labs, and the main developer on the project is Nicolas Garcia Belmonte. 
The framework website is at http://www.senchalabs.org/philogl/, and its source code is on github at:  
https://github.com/senchalabs/philogl.

To get started, download the library and include it either locally

<script src = "./build/PhiloGL.js" > </script>, or from a remote location such as
<script src = "https://raw.github.com/senchalabs/philogl/master/build/PhiloGL.cls.js"></script>

The \examples folder of the philoGL library presents philoGL versions of the core WebGL lessons of the 
popular site “Learning WebGL” by Giles Thomas at http://learningwebgl.com/blog/?page_id=1217. The 
library is split into a core and modules. Documentation is available at  
http://www.senchalabs.org/philogl/doc/index.html

Listing 8-1 shows a modified version of the ported “Learning WebGL” Lesson 4 example that is included 
with the library, for us to further analyze. As you can see from the listing, philoGL uses a very object-oriented 
approach to JavaScript. Mesh data is omitted for brevity, but can be found in the full file online at  
/08/01_philogl_cube.html

Listing 8-1. Code to rotate a cube with philoGL

<!doctype html>
<html>
    <head>
        <title>PhiloGL Cube Test</title>
        <style>
            body{ background-color: grey; }
            canvas{ background-color: white; }
        </style>
        <script src="./PhiloGL-1.5.1/build/PhiloGL.js"></script>
        <script id="shader-vs" type="x-shader/x-vertex">
            attribute vec3 aVertexPosition;
            attribute vec4 aVertexColor;
 
            uniform mat4 uMVMatrix;
            uniform mat4 uPMatrix;
 
            varying vec4 vColor;
 
            void main(void) {
                gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

https://github.com/mrdoob/three.js
http://www.senchalabs.org/philogl/
https://github.com/senchalabs/philogl
https://raw.github.com/senchalabs/philogl/master/build/PhiloGL.cls.js"></script
http://learningwebgl.com/blog/?page_id=1217
http://www.senchalabs.org/philogl/doc/index.html
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                vColor = aVertexColor;
            }
        </script>
        <script id="shader-fs" type="x-shader/x-fragment">
            varying highp vec4 vColor;
 
            void main(void) {
                gl_FragColor = vColor;
            }
        </script>
        <script>
            //modified from
            //https://github.com/senchalabs/philogl/blob/master/examples/lessons/4/

            function webGLStart() {
                //Load model
                var cube = new PhiloGL.O3D.Model({
                vertices: [-1, . . .],
                colors: [1, . . .],
                indices: [0, . . .]
            });
 
            PhiloGL('my-canvas', {
                program: {
                    from: 'ids',
                    vs: 'shader-vs',
                    fs: 'shader-fs'
                },
                onError: function() {
             alert("An error ocurred while loading the application");
                },
                onLoad: function(app) {
                    var gl = app.gl,
                    canvas = app.canvas,
                    program = app.program,
                    camera = app.camera,
                    view = new PhiloGL.Mat4,
                    rCube = 0;
 
                    gl.viewport(0, 0, canvas.width, canvas.height);
                    gl.clearColor(0, 0, 0, 1);
                    gl.clearDepth(1);
                    gl.enable(gl.DEPTH_TEST);
                    gl.depthFunc(gl.LEQUAL);

                    camera.view.id();

                    function setupElement(elem) {
                        //update element matrix
                        elem.update();
                        //get new view matrix out of element and camera matrices
                        view.mulMat42(camera.view, elem.matrix);
                        //set buffers with element data
                        program.setBuffers({
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                            'aVertexPosition': {
                                value: elem.vertices,
                                size: 3
                            },
                            'aVertexColor': {
                                value: elem.colors,
                                size: 4
                            }
                        });
                        //set uniforms
                        program.setUniform('uMVMatrix', view);
                        program.setUniform('uPMatrix', camera.projection);
                    }
 
                    function animate() {
                        rCube += 0.01;
                    }
 
                    function tick() {
                        drawScene();
                        animate();
                        PhiloGL.Fx.requestAnimationFrame(tick);
                    }
 
                    function drawScene() {
                        gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

                        //Draw Cube
                        cube.position.set(1.5, 0, -8);
                        cube.rotation.set(rCube, rCube, rCube);
                        setupElement(cube);
                        program.setBuffer('indices', {
                            value: cube.indices,
                            bufferType: gl.ELEMENT_ARRAY_BUFFER,
                            size: 1
                        });
                        gl.drawElements(gl.TRIANGLES, cube.indices.length,
                                        gl.UNSIGNED_SHORT, 0);
                    }
                    tick();
                }
            });
        }
        </script>
    </head>
    <body onload="webGLStart();">
        <canvas id="my-canvas" width="400" height="300">
            Your browser does not support the HTML5 canvas element.
        </canvas>
    </body>
</html>
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In Listing 8-1, the first thing to notice is that the shader programs are not abstracted away by default as in 
other frameworks such as ThreeJS (this was shown in the previous chapter and will later be shown for GLGE). On 
page load, the function webGLStart is called, which loads our mesh data and initializes our shaders. As you can 
see, philoGL does have its own matrix functionality, requestAnimationFrame defined, and partial abstraction of 
the view and VBOs built in. philoGL has a nice mix of core WebGL abstraction and visibility. The output of the 
program is shown in Figure 8-1.

Figure 8-1. A cube rendered with philoGL

A GLGE “Hello World!” Example
GLGE was written by Paul Brunt. The project’s web page is http://www.glge.org, and the source code is on 
github at https://github.com/supereggbert/GLGE. Obtain the sources Zip file and unzip the archive. Add the 
main library file to your code with either

<script src = "./glge-compiled.js" > </script > for a local file or from an online source such as < script 
src = "https://raw.github.com/supereggbert/GLGE/master/glge-compiled-min.js"></script>.

The API for GLGE has documentation at http://www.glge.org/api-docs/, but not much for quick start tips 
or tutorials. There are several examples in the /examples folder to inspect the code and build from.

Unlike core WebGL, the Three.js or philoGL frameworks, GLGE uses XML to represent the scene objects. 
Listing 8-2 shows a minimal example using GLGE. Later in the chapter, we will show that loading complex 
meshes with GLGE is very easy.

Listing 8-2. GLGE code to render a cube

<!doctype html>
<html>
    <head>
        <title>GLGE Cube Test</title>
        <style>
            body{ background-color: grey; }
            canvas{ background-color: white; }
        </style>
        <script src="./GLGEv0.9/glge-compiled-min.js"></script>
        <script src="./raf_polyfill.js"></script>
        <script>
            //create a GLGE document

http://www.glge.org
https://github.com/supereggbert/GLGE
https://raw.github.com/supereggbert/GLGE/master/glge-compiled-min.js"></script
http://www.glge.org/api-docs/
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            var doc = new GLGE.Document();
            var angle = 0.0;
            //load scene data from XML file. This scene file is modified from the demo at:
            //http://www.rozengain.com/blog/2010/06/23/hands-on-//webgl-basic-glge-tutorial/
            doc.load("02_glge_scene.xml");
 
            //callback when the scene is finished loading
            doc.onLoad = function() {
                //get a reference to the canvas element
                var canvas = document.getElementById("my-canvas");

                //create a GLGE renderer
                var renderer = new GLGE.Renderer(canvas);

                //set the scene for the renderer from the <scene> element of the XML file
                renderer.setScene( doc.getElement("mainscene") );

                 //get the box object, not the box mesh
                var box = doc.getElement("box");

                //the rendering loop
                (function animLoop(){
             box.setRotX(angle);
             box.setRotY(angle);
             box.setRotZ(angle);
             angle += 0.005;
 
                    renderer.render();
             requestAnimationFrame(animLoop, canvas);
         })();
     }
        </script>
    </head>
    <body>
        <canvas id="my-canvas" width="400" height="300">
            Your browser does not support the HTML5 canvas element.
        </canvas>
    </body>
</html>

The scene file is shown in Listing 8-3 (mesh data has been omitted for brevity) and can be found in the file 
/08/02_glge_scene.xml.

Listing 8-3. GLGE Scene file with a custom mesh
<?xml version="1.0" ?>
<glge>
    <mesh id="box-mesh">
        <positions>1.00000, . . .</positions>
        <normals>0.00000, . . .</normals>
        <uv1>0.33333, . . .</uv1>
        <faces>0, . . .</faces>
    </mesh>
 
    <camera id="maincamera" loc_z="20" />
    <material id="boxmaterial" color="#900" />



CHAPTER 8  PRODUCTIVITY TOOLS

213

    <scene id="mainscene" camera="#maincamera" ambient_color="#fff">
        <light id="mainlight" loc_y="5" type="L_POINT" />
        <object id="box" mesh="#box-mesh" rot_x="-.8" rot_y=".5" material="#boxmaterial" />
    </scene>
</glge>

Listing 8-3 has a custom mesh defined inline. The output of this code that uses a cube mesh is shown in 
Figure 8-2.

Figure 8-2. A spinning cube rendered with GLGE

In Listing 8-2, we did not have to write code for the shader program or bind the VBO data. We specify the 
mesh data in our scene file, and the framework takes care of the rest. The nice part of the scene being represented 
with XML is that it is easy to traverse elements and has a well-formed hierarchy.

Going into details of advanced usage of philoGL or GLGE is beyond the scope of this book, but if you like the 
object–oriented partial abstraction of philoGL or the XML scene–based GLGE style, I urge you to follow up with 
these WebGL frameworks on your own or any other framework(s) that you are interested in.

Meshes
As you have no doubt noticed, defining even a trivial mesh in WebGL takes effort. For complex objects such 
as the classic teapot, an animal, a building, or anything else, we’ll most likely want to load in our data from a 
rendering program such as Blender or Mesa, or an open–source online repository. Models can come in many 
formats with two of the most popular being OBJ (Wavefront) and DAE (Collada).

Loading Existing Meshes
As developers, we may or may not also be artistically talented. Even if you are, you probably do not want to spend 
hours creating a model that someone else has already made and is readily available for usage. If possible, we can 
download existing models and use them in WebGL.
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Note  There are several places to download free or variably priced meshes such as the following: 
http://sketchup.google.com/3dwarehouse/ 

http://www.blender-models.com/ 

http://artist-3d.com/ 

http://thefree3dmodels.com/ 

http://www.oyonale.com/modeles.php 

http://www.3dvia.com/ 

http://www.3dcadbrowser.com/ 

http://www.3d02.com/ 

http://www.turbosquid.com/

Modeling Resources
In addition to downloading existing meshes, we may want to create our own, though defining vertex points by 
hand is error prone and not ideal. Instead, there are many existing modeling programs available for us:

Trimble, available at http://ww2.trimble.com/3d/, used to be called SketchUp and was 
recently purchased from Google. As of June 1, 2012 on its FAQ section, Trimble says it will 
continue to support SketchUp customers and offer free and professional versions of its 
software. At the moment, the SketchUp modeling program is available at  
http://sketchup.google.com/.

Blender, available at http://www.blender.org/, is an open-source 3D modeling and 
rendering program.

Many other commercial programs such as Maya, Unity, Shade 3D, and 3DS Max.

File Formats
There are many different file formats that represent meshes. Whatever format a mesh is originally represented 
as, our ultimate goal is to convert the existing mesh format to something readable by our application. Because 
WebGL uses JavaScript, an obvious choice for this is JavaScript Object Notation (JSON). Some frameworks can 
convert models to JSON on the fly. However, best performance will be achieved by converting the mesh to a 
stored JSON formatted file first and then using the static file data.

We will discuss a couple of popular file formats to store mesh data and how to import these formats for usage 
with WebGL.

Wavefront Format (.obj)
The .obj 3D format was developed by Wavefront technologies more than 20 years ago. It is a fairly simple format 
that stores vertex, normal, texture coordinates, and polygon faces. By default, each face has counterclockwise 
winding.

The faces in a wavefront file do not need to be only triangles; they can contain polygons with more than 
three vertices. We must make sure that all faces are triangles when importing/exporting a wavefront model. 
Otherwise, we need to triangulate the mesh, which involves splitting up a single polygon into multiple triangle 
pieces. A very simple .obj file might look like this:

http://sketchup.google.com/3dwarehouse/
http://www.blender-models.com/
http://artist-3d.com/
http://thefree3dmodels.com/
http://www.oyonale.com/modeles.php
http://www.3dvia.com/
http://www.3dcadbrowser.com/
http://www.3d02.com/
http://www.turbosquid.com/
http://ww2.trimble.com/3d/
http://sketchup.google.com/
http://www.blender.org/
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#lines with "#" are comments
#vertex lines start with "v". 4th homogeneous coordinate component is optional
v 0.5 1.0 0.25 1.0
v 0.25 1.5 0.25
v 0.5 0.0 0.25
v 0.25 1.0 0.25 1.0
v 0.75 1.5 0.25
v 0.75 0.0 0.25
#texture coordinates start with "vt"
vt 0.25 0.5
vt 0.125 0.75
vt 0.25 0.0
#normal coordinates start with "vn"
vn 0.0 0.0 1.0
#simple face – only vertex coordinates
f  1 2 3
#more complex face – vertex/texture coord/normal
f  4/1/1 5/2/1 6/3/1

The obj format can get a little more complex, but we don’t need to worry about that because obj importers, 
exporters and converters already exist for us as we will show later in the chapter. The obj format also supports 
material property files that can use different illumination models from simple color and no ambient light to full 
lighting components of the form Ka, Kd, Ks for ambient, diffuse, and specular, respectively, and whether it casts 
shadows, or uses transparencies or reflections.

Collada Format (.dae)
Collada stands for COLLAborative Design Activity and was introduced in 2004. It is an XML schema to transport 
3D assets such as models and shaders between different authoring applications without losing data in the 
exchange. The XML files that describe the assets have a .dae extension, which stands for Digital Asset Exchange. 
Many formats can be interchanged, and as such the schema is large and beyond the scope of this book. Collada is 
overseen by the Khronos group, the same consortium that oversees WebGL.

JSON
A JSON object of arrays is perfect for loading data into VBOs. The exact object properties can vary. For example, 
we could have an object with attribute data separated, as follows:

var our_data = {
    "positions": [],
    "normals": [],
    "texture_coords":[],
    "indices": []
}
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You could load the preceding data into four separate VBOs or into an interleaved array for the first three sets 
of data and another VBO for the indices. The data passed in could also be preinterleaved; for example:

var our_data2 = {
    "interleaved_data": [],
    "indices": []
}

Interleaved arrays are discussed in Chapter 9.
With the first JSON data above, we can assign our data to a VBO like:
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(our_data.positions), gl.STATIC_DRAW);
. . .
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(our_data.normals), gl.STATIC_DRAW);
. . .
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(our_data.texture_coords), gl.STATIC_DRAW);
. . .
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(our_data.indices), gl.STATIC_DRAW);

Note  There is a limit to the size of meshes that WebGL buffers can hold. The current limit is 216 = 65,536 indices 
per mesh. To get around these limits, a large mesh could be split into smaller meshes. There are also programs that 
can reduce the number of polygons in a mesh (by combining smaller triangles into larger triangles), which may not 
be that noticeable depending on the amount of reduction, the shape of the mesh, and the lighting model used.

Importing, Exporting, and Format Conversion
Regardless of the format initially used, remember that WebGL renders with triangle primitives. So if a model uses 
polygons, they will need to be broken down into triangles. And although WebGL refers to texture coordinates as 
st, a lot of programs refer to them as uv coordinates.

If you do a web search for convertors to JSON format, you will come across a few scripts. One of these scripts 
is http://code.google.com/p/blender-machete/, which aims to add JSON export capability to Blender. Maya 
users can use Inka available at http://www.inka3d.com/ to export data directly to a WebGL useable format.

There is no built-in way of loading mesh data with WebGL. We will show how to load meshes, starting with a 
multiple-step process using Blender to loading in model data directly if the framework supports it.

Using the Three.js Blender Import/Export Addon
We will use a Blender module that Three.js provides to export mesh data into a JSON format that the Three.js 
framework uses.

Note  With some adjustment, you can use the Three.js–specific JSON format outside of the Three.js framework.

The Three.js library has a Python add-on module for Blender in this folder:  
\three.js\utils\exporters\blender\2.63\scripts\addons\io_mesh_threejs. If you do not already have 
Blender, download and install it. Then copy the entire io_mesh_threejs folder into your Blender Python script 
add-on directory. The path of this folder will vary by operating system, version of Blender and your chosen 
installation directory. Using Blender 2.63 on a Windows 7 machine, the folder could be  
C:\Program Files (x86)\Blender Foundation\Blender\2.63\scripts\addons\. If you need  

http://dx.doi.org/10.1007/978-1-4302-3996-3_9
http://code.google.com/p/blender-machete/
http://www.inka3d.com/
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help finding the folder location for your installation, search the user forum at http://www.blender.org/forum/ 
for steps to find this information. To load the plugin, start Blender and go to the File > > User Preferences menu 
item, as shown in Figure 8-3.

Figure 8-3. Accessing the user preferences window in Blender

http://www.blender.org/forum/
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Now that we have enabled the three.js Blender module, after we import meshes using the File >> Import 
menu item (as shown on the left of Figure 8-5) we can now export the mesh at the File >> Export menu item into a 
Three.js JSON–formatted file.

Figure 8-4. Top: Addons tab within User Preferences window of Blender; bottom: finding the Three.js addon

Next, locate the Addons tab and search for “three”, as shown in Figure 8-4. Click the checkbox to the right of 
the search result to enable it.
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We will now show how to export a mesh with this plugin and load it into a Three.js program.

Exporting a Mesh into the Three.JS JSON Format
Obtain some meshes of anything you desire. For these examples, I have obtained Collada models of the Taj 
Mahal by Kevin Girard and various animals by a user named mandun from the sketchup warehouse. I have also 
downloaded a duck model from http://ourbricks.com/khronos/colladarepository.

I then import each mesh into Blender one at a time and export into Three.js format.

Note  If a mesh is not working with a script, but others load and display properly with the same code, there 
could be indice, vertex, or normal data wrong within the model. The mesh could also be too large.

Loading the Mesh with Three.JS
To load a mesh in Three.js JSON format, we use the THREE.JSONLoader object as shown in Listing 8-4.

Listing 8-4. Loading a Three.js JSON format mesh

function addDuckMesh()
{
    var loader = new THREE.JSONLoader();
    loader.load("./meshes/duck_three.js", function(geometry){
        mesh = new THREE.Mesh(

Figure 8-5. Left: importing a model such as a dae or obj file; right: exporting as a Three.js JSON–formatted file

http://ourbricks.com/khronos/colladarepository
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           geometry,
           geometry.materials[0]
        );
 
        //mesh transforms if necessary
        scene.add(mesh);
 
        //make sure mesh is loaded before renderering
        loadRestOfScene()
    });
}
 
function loadRestOfScene()
{
    addLight();
    setupCamera();

    (function animLoop(){
        mesh.rotation.z = angle;
        angle += 0.005;
 
        renderer.render(scene, camera);
        requestAnimationFrame( animLoop );
    })();
}
. . .

In Listing 8-4, we make sure that the mesh has loaded before rendering the scene. Loading the mesh object 
is done asynchronously, so we are not otherwise guaranteed that the mesh will finish loading before the scene 
is rendered. The first parameter of the loader.load function is the mesh filename, and the second is a callback 
function when the mesh has loaded. The loaded mesh object is passed in and we have the materials and textures 
of the original mesh available in the geometry.materials[0] property. After we have added the mesh, we load 
the rest of our scene and render. The output of this is shown on the left of Figure 8-6.

Figure 8-6. Left: rendering of a rubber duck; right: wireframe overlayed on image, showing hundreds of triangles 
that comprise it

We showed last chapter how to generate a wireframe with Three.js. The duck on the right of Figure 8-6 is a 
wireframe on top of the regular material. To generate this image, we use multiple materials with the function 
THREE.SceneUtils.createMultiMaterialObject, as shown here:

var materials = [
            geometry.materials[0],
            new THREE.MeshBasicMaterial(
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                {
                    color: 0x000000,
                    wireframe: true
                }
            )
    ];
mesh = new THREE.SceneUtils.createMultiMaterialObject(
                geometry,
                materials
        );

We could also vary the transparency of each material by adding the properties to our material:

transparency: true,
opacity: 0.5 //or other value between 0 and 1

Using a Three.js JSON Model with Core WebGL
What if you don’t want to use the Three.js framework, but do find their JSON mesh generation Blender plugin 
useful? How can we use the exported file in regular old WebGL. Well, open up a file output with the Blender 
addon and examine it. Listing 8-5 shows the essentials of the file with the really important information in bold 
text.

Listing 8-5. Three.js JSON mesh File

{
    "metadata" :
    {
     //format, what generated this file
     //counts for vertices, faces, normals, uvs, materials, colors
    },
 
    "scale" : 1.000000,
 
    "materials": [ {
     //material color, blending, depth tests, textures, etc.
        . . .
 "blending" : "NormalBlending",
 "colorAmbient" : [0.0, 0.0, 0.0],
 "colorDiffuse" : [0.6400000190734865, 0.6400000190734865, 0.6400000190734865],
 "colorSpecular" : [0.0, 0.0, 0.0],
 "depthTest" : true,
 "depthWrite" : true,
 "mapDiffuse" : "duckCM_fix.jpg",
 "mapDiffuseWrap" : ["repeat", "repeat"],
 . . .
    }],
 
    "vertices": [35.022598,. . .],
    "morphTargets": [],
    "normals": [-0.194006,. . .],
    "colors": [],



CHAPTER 8  PRODUCTIVITY TOOLS

222

    "uvs": [[0.866606,. . .]],
    "faces": [42,. . .]
}

Note  The format of the file is liable to change and is currently in its third incarnation. Refer to the companion 
website at http://www.beginningwebgl.com for an updated specification and usage with core WebGL.

The properties that we are interested in here are the vertices, normal, uvs (texture coordinates), and faces 
arrays; and also colorDiffuse and mapDiffuse, which tell us the material color and texture file to load.

Now the vertices, normal, and uvs arrays are straightforward, and we can pass them directly into vertex 
buffer objects, but the faces array does not correspond to the indices array, as you might expect. For the duck 
model, the first items of the array are these:

"faces": [42, 89,243,6, 0,0,1,2,0,1,2,42. . .]

With a simple cube mesh exported from Blender to the Three.js JSON format, the first few items are the 
following:

"faces": [35,0,1,2,3,0,0,1,2,3,35,. . .]

A cube only has six faces, so why is 35 an index value? To understand what is going on, you need to take a 
look at the three.js JSONLoader.js source:

. . .
 isQuad              = isBitSet( type, 0 );
 hasMaterial         = isBitSet( type, 1 );
 hasFaceUv           = isBitSet( type, 2 );
 hasFaceVertexUv     = isBitSet( type, 3 );
 hasFaceNormal       = isBitSet( type, 4 );
 hasFaceVertexNormal = isBitSet( type, 5 );
 hasFaceColor     = isBitSet( type, 6 );
 hasFaceVertexColor  = isBitSet( type, 7 );
. . .

The first item of the face array gives information about the type of data contained in the next array elements 
by using binary bit checks. For example, 42 = 0010 1010 in binary, so it has a vertex normal, vertex uvs, and a 
material. Then the next numbers in the sequence 89,243,6, 0,0,1,2,0,1,2 point to appropriate array indices 
in the JSON object. A new number is checked for format information—in this case, 42 again—and this process 
repeats for each item in the array. As such, while it is possible to program handling of the face array data to 
determine indices, it is not a straightforward process. The full format used by Three.js is explained at  
https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3.0.

Loading a Collada File Directly with GLGE
With GLGE, we can load Collada files directly by adding them to our XML scene file, as shown in Listing 8-6. Very 
simple!

http://www.beginningwebgl.com
https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3.0
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Listing 8-6. Loading Collada files with GLGE

<?xml version="1.0" ?>
<glge>
    <camera id="maincamera" loc_z="20" />
    <scene id="mainscene" camera="#maincamera" ambient_color="#fff">
        <light id="mainlight" loc_y="5" type="L_POINT" />
        <collada document="./meshes/Gorilla/models/Gorilla.dae" loc_x="0.8"
     loc_y="-3.0" rot_x="0.0" rot_y="0.9" scale=".0012" />
        <collada document="./meshes/Elephant/models/Elephant.dae"
    loc_x="11.0" loc_y="-4.0" rot_x="0.0" rot_y="0.0" scale="0.8" />
    </scene>
</glge>

The output of Listing 8-6 is shown on the left of Figure 8-7.

Figure 8-7. Left: gorilla and elephant meshes loaded with GLGE; right: dolphin and orca meshes

We can also load Collada meshes with Three.js using the THREE.ColladaLoader object:

var loader = new THREE.ColladaLoader();
loader.load("./meshes/Orca/models/Orca.dae", function(collada){
    dae = collada.scene;
    scene.add(dae);
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A model of the Taj Mahal loaded with Three.js is shown in Figure 8-8.
As you can see, we can use elaborate meshes easily with these frameworks. Now we will look at finding 

existing shader and texture resources.

Shaders
We don’t always want to reinvent the wheel creating a new shader if someone has already figured out one that is 
similar. Rather, we can reuse existing (uncopyrighted) vertex and fragment shaders and modify them to fit our 
program needs.

You are free to find inspiration from existing shaders that you come across, such as the ones at
http://code.google.com/p/glslang-library/source/browse/trunk/trunk/glslang/shaders. Keep in 

mind that the shading language used might be a version of GLSL that is higher than the version that WebGL uses 
and could have features that WebGL does not support or be in a different shading language such as Cg (Nvidia) or 
HLSL (Microsoft) and need some conversion.

Nvidia also offers their excellent GPU Gems books online such as the third book which is available at  
http://developer.nvidia.com/content/gpu-gems-3.

Textures
There are a lot of places online to browse and download free high-quality textures, including these:

http://texturez.com/

http://www.textureking.com

http://www.texturelovers.com

Figure 8-8. The Taj Mahal, loaded with Three.js

http://code.google.com/p/glslang-library/source/browse/trunk/trunk/glslang/shaders
http://developer.nvidia.com/content/gpu-gems-3
http://texturez.com/
http://www.textureking.com
http://www.texturelovers.com
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http://cgtextures.com/

http://freestocktextures.com/

http://psd.tutsplus.com/category/freebies/texture/

Physics Engines
In Chapter 5, we showed how to model some simple physical interactions such as gravity, velocity, and collisions. 
There are existing physics engines that can perform much more complex calculations. While these libraries are 
not necessarily geared exclusively to WebGL, they are written in JavaScript and can be used with WebGL.

The popular physics libraries Box2D (http://box2d.org/) and Bullet (http://bulletphysics.org/), which 
were originally written in C++ are available in JavaScript as the ports shown in Table 8–1.

Table 8-1. Relevant Ports for Box2D and Bullet

Library Port

Box2D based http://code.google.com/p/box2dweb/

https://github.com/kripken/box2d.js

Bullet based https://github.com/kripken/ammo.js/

Box2D is a 2D physics engine; Bullet is a 3D physics engine. Box2D has been used by games such as Angry 
Birds; Bullet has been used in games such as Toy Story 3 and movies such as Megamind and Sherlock Holmes. 
Other physics engines include cannon.js and physi.js. cannon.js is inspired by ammo.js and three.js and available 
at https://github.com/schteppe/cannon.js. The physi.js library, available at http://chandlerprall.github.
com/Physijs/, is a plugin for three.js, which uses the ammo.js physics library. A demo of the game Jenga is at 
http://chandlerprall.github.com/Physijs/examples/jenga.html. There is a nice wiki for getting started with 
physi.js at https://github.com/chandlerprall/Physijs/wiki.

Revisiting Old Code with physi.js and Three.js
We will look at coding the colliding and bouncing spheres demo from Chapter 5, this time using the physi.js 
library for physics together with Three.js. I choose to use physi.js, which is a newcomer to the physics scene, 
because it is very, very easy to use. It really does a nice job in letting you quickly get started simulating physics. 
Download the physi.js library and include it in the source:

. . .
<script src = "https://raw.github.com/mrdoob/three.js/master/build/Three.js"></script>
<script src = "./physi.js/physi.js" > </script>
<script>
    Physijs.scripts.worker = './physi.js/physijs_worker.js';
    Physijs.scripts.ammo = '/08/ammo.js/builds/ammo.js';
. . .

http://cgtextures.com/
http://freestocktextures.com/
http://psd.tutsplus.com/category/freebies/texture/
http://dx.doi.org/10.1007/978-1-4302-3996-3_5
http://box2d.org/
http://bulletphysics.org/
http://code.google.com/p/box2dweb/
https://github.com/kripken/box2d.js
https://github.com/kripken/ammo.js/
https://github.com/schteppe/cannon.js
http://chandlerprall.github.com/Physijs/
http://chandlerprall.github.com/Physijs/
http://chandlerprall.github.com/Physijs/examples/jenga.html
https://github.com/chandlerprall/Physijs/wiki
http://dx.doi.org/10.1007/978-1-4302-3996-3_5
https://raw.github.com/mrdoob/three.js/master/build/Three.js"></script
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Here we also set the path to the ammo.js library (which you will also need to download) and the  
physijs_worker.js file. The main difference in setup is using Physijs versions of the Scene object and  
Mesh objects:

scene = new Physijs.Scene;
. . .
var geometry = new THREE.SphereGeometry(Math.random() + .25);
var material = Physijs.createMaterial(new THREE.MeshLambertMaterial(

{
color:  new THREE.Color().setRGB(Math.random(), Math.random(),

Math.random()).getHex()
}),
0.1, //friction
0.9 //bounce

);
var mesh = new Physijs.SphereMesh(

geometry,
material

);

The material is a Physijs material, which is a normal material along with friction and bounce properties. 
The SphereMesh is one of a few mesh shapes available, such as boxes, cylinders, cones, and convex geometry 
(generic to match custom meshes). In our render loop, we call scene.simulate() each time through:

(function animLoop(){
if(!paused)
{

scene.simulate(); //run the physics
renderer.render(scene, camera);
requestAnimationFrame( animLoop );

}
})();

The simulate call is what calculates the physical interactions of our objects. If we run the program at 
this point, the spheres will all fall. We need to add a ground and some walls as bounds. Once these are added, 
collision detection against them will be automatic. We did not have to specify any rules for the velocity—the 
effects of gravity are modeled for us. When we add the ground, we set the mass of it to 0. This means that other 
objects have no effect on it and it will not fall from gravity:

function addGround()
{
    var material = Physijs.createMaterial(
                                new THREE.MeshLambertMaterial({ "color": "0xffdddd" }),
                                .1, // low friction
                                .9  // high restitution
                   );
 
    var ground = new Physijs.BoxMesh(
                                new THREE.CubeGeometry(ROOM_SIZE, 1, ROOM_SIZE),
                                material,
                                0 // mass



CHAPTER 8  PRODUCTIVITY TOOLS

227

                   );
    ground.position.y = −HALF_ROOM_SIZE/2.0;
    ground.receiveShadow = true;
    scene.add( ground );
}

We also add walls, which are shown in the output of the demo in Figure 8-9.

Figure 8-9. Sphere collisions using Three.js and physi.js

The full code that is shown in Listing 8-7 is very small compared with our home-brewed example of Chapter 
5. However, the simulation is slower and less responsive than our Chapter 5 example. As this is a new library,  
I expect that some performance improvements will be made for it.

Listing 8-7. Full code of Three.js and physi.js sphere collision demo

<!doctype html>
<html>
<head>
<title>Three.js and Physi.js Test</title>
<style>
 body{ background-color: grey; }
 canvas{ background-color: white; }
</style>
<script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
<script src="https://raw.github.com/mrdoob/three.js/master/build/Three.js"></script>
<script src="./physi.js/physi.js"></script>
<script>
    Physijs.scripts.worker = './physi.js/physijs_worker.js';
    Physijs.scripts.ammo = '/08/ammo.js/builds/ammo.js';

    var CANVAS_WIDTH = 500,
        CANVAS_HEIGHT= 500,
        ROOM_SIZE = 20.0,
        HALF_ROOM_SIZE = ROOM_SIZE * 0.5,

http://dx.doi.org/10.1007/978-1-4302-3996-3_5
http://dx.doi.org/10.1007/978-1-4302-3996-3_5
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        NUM_SPHERES = 50,
        paused = false;
 
 var renderer = null,  //WebGL or 2D
            scene = null,  //scene object
            camera = null;  //camera object

        $(document).keyup(function(evt){
            switch(evt.keyCode){
                case 80: //'p'
                    paused =!paused;
                    break;
                default:
                    break;
            }
        });
 
        function initWebGL()
        {
            setupRenderer();
            setupScene();
            setupCamera();

            (function animLoop(){
                if(!paused)
                {
                    scene.simulate(); //run the physics
                    renderer.render(scene, camera);
                    requestAnimationFrame( animLoop );
                }
            })();
        }
 
        function setupRenderer()
        {
        renderer = new THREE.WebGLRenderer( {clearColor: 0x007700, clearAlpha: 1} );
        renderer.setSize( CANVAS_WIDTH, CANVAS_HEIGHT );
        document.body.appendChild(  renderer.domElement );
    }
 
    function setupScene()
    {
        scene = new Physijs.Scene();
        addMeshes();
        addLight();
    }
 
    function setupCamera()
    {
        camera = new THREE.PerspectiveCamera(
                        45,          // Field of view
                        CANVAS_WIDTH / CANVAS_HEIGHT,   // Aspect ratio
                        .1,        // Near clip plane
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                        10000             // Far clip plane
                );
 
        camera.position.set( ROOM_SIZE, ROOM_SIZE*1.5, ROOM_SIZE );
        camera.lookAt( scene.position );
        scene.add( camera );
    }
 
    function addMeshes()
    {
        addGround();
        addWalls();
 
        for(var i=1; i<=NUM_SPHERES;++i)
        {
            var geometry = new THREE.SphereGeometry(Math.random() + .25);
            var material = Physijs.createMaterial(
                                new THREE.MeshLambertMaterial(
                                 {
                                 color:  new THREE.Color().setRGB(
                                                                Math.random(),
                                                                Math.random(),
                                                                Math.random()
                                                            ).getHex()
                             }
                         ),
                                0.1, //friction
                                0.9 //bounce
                            );
            var mesh = new Physijs.SphereMesh(
                                geometry,
                                material
            );
            mesh.position.x = HALF_ROOM_SIZE*Math.random()-HALF_ROOM_SIZE*.5;
            mesh.position.y = HALF_ROOM_SIZE*Math.random()-HALF_ROOM_SIZE*.5;
            mesh.position.z = HALF_ROOM_SIZE*Math.random()-HALF_ROOM_SIZE*.5;
            mesh.castShadow = true;
            scene.add(mesh);
        }
    }
 
    function addGround()
    {
        var material = Physijs.createMaterial(
                            new THREE.MeshLambertMaterial({ "color": "0xffdddd" }),
                            .1, // low friction
                            .9  // high restitution
                       );
 
        var ground = new Physijs.BoxMesh(
                            new THREE.CubeGeometry(ROOM_SIZE, 1, ROOM_SIZE),
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                            material,
                            0 // mass
                    );
        ground.position.y = -HALF_ROOM_SIZE/2.0;
        ground.receiveShadow = true;
        scene.add( ground );
    }
 
    function addWalls()
    {
        var material = Physijs.createMaterial(
                            new THREE.MeshLambertMaterial({ "color": "0xaaaaff" }),
                            .1, // low friction
                            .9  // high restitution
      );
 
        var wall = new Physijs.BoxMesh(
                            new THREE.CubeGeometry(ROOM_SIZE, HALF_ROOM_SIZE, 1),
                            material,
                            0 // mass
                    );
        wall.position.z = -HALF_ROOM_SIZE;
        scene.add( wall );
 
        wall = new Physijs.BoxMesh(
                            new THREE.CubeGeometry(ROOM_SIZE, HALF_ROOM_SIZE, 1),
                            material,
                            0 // mass
                    );
        wall.position.z = HALF_ROOM_SIZE;
        wall.receiveShadow = true;
        scene.add( wall );
 
        wall = new Physijs.BoxMesh(
                        new THREE.CubeGeometry(1, HALF_ROOM_SIZE, ROOM_SIZE),
                        material,
                        0 // mass
        );
        wall.position.x = -HALF_ROOM_SIZE;
        scene.add( wall );
 
        wall = new Physijs.BoxMesh(
                        new THREE.CubeGeometry(1, HALF_ROOM_SIZE, ROOM_SIZE),
                        material,
                        0 // mass
        );
        wall.position.x = HALF_ROOM_SIZE;
        wall.receiveShadow = true;
        scene.add( wall );
    }
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    function addLight()
    {
        var light = new THREE.PointLight( 0xFFFFFF );
        light.position.set( 10, 10, 10 );
        scene.add(light);
    }
</script>
</head>
<body onload="initWebGL()"></body>
</html>

Summary
This chapter introduced several more frameworks available for WebGL and showed basic usage examples for 
GLGE and philoGL. We showed how to import complex meshes into our scene and listed shader and texture 
resources. Finally we showed how to use Three.js and physi.js to recode an example from the physics chapter.

Chapter 9 will show what to do when things go wrong and how to debug WebGL code. We also show 
performance best practices. Even with a framework, if we are not following best practices, complex scenes can 
grind to a halt. As such, it is important to know how to improve rendering performance.

http://dx.doi.org/10.1007/978-1-4302-3996-3_9
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CHAPTER 9

Debugging and Performance

In this chapter we will show how to troubleshoot errors and improve application performance. We will: 

present helpful tools for debugging WebGL code and shaders 

go over some common errors and their solutions 

show ways to get more performance out of WebGL by optimizing our code to remove 
common bottlenecks

identify WebGL best practices

Debugging
When our program is producing erroneous results, as computer programmers we say that the program has bugs 
in it or is acting buggy. The process of identifying the source of the bug(s)/error(s) and fixing them is known as 
debugging.

Why should we aim to be proficient at debugging code? Although debugging is often the most time-
consuming and frustrating part of programming, it is also a natural part of development. Using tools and 
techniques that can pinpoint the source of error, and a knowledge of common errors, are essential to minimizing 
the time we spend debugging.

Integrated Development Environment (IDE)
The first place that we should look for assistance is where we code. Although we could use a plain text editor with 
no syntax highlighting or code intelligence, why would we want to? Most modern IDEs will give near-immediate 
feedback through coloring and/or other syntax highlighting, and display warnings or notices. There are many, 
many IDEs and text editors available, each with a variety of features. Some are lightweight, while others are 
memory-intensive, some are robust out of the box, while others have plugins or modules to add functionality. 
IDEs also range in price from free to very expensive. Some suitable text editors and IDEs for JavaScript and web 
development include Sublime, Notepad++, Netbeans, Eclipse, WebStorm, Zend Studio, Aptana, Cloud9, and 
Komodo. Of these, it is interesting to note that Cloud9, as its name suggests, is hosted in the cloud. There is no 
local installation, which of course has advantages and disadvantages.

Minimally, your IDE or text editor should be able to detect JavaScript and HTML syntax, have some color 
coding, visually match up braces and parentheses, have line numbering, and search/replace support. On 
the other end of the spectrum, IDEs can have built-in version control and remote file support, unit testing, 
refactoring, code completion, API intelligence, and much more. You can see an example of an IDE in action in 
Figure 9-1.

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012
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I won’t try to convince you to use a particular IDE or text editor. The choice is yours and ultimately should be 
what you feel most comfortable and productive using. Some factors to consider are:

Active development and community base: Don’t invest the time to learn something that 
will soon be a relic or that no one else uses.

Power and productivity: Can you do amazing things with a few keystrokes/macros or does 
the vastness of the IDE actually hinder your productivity? Remember that the purpose of 
an IDE is to increase your productivity and ease of use by offering tools that assist your 
development.

Extendibility: Does the IDE have plugins, modules, and third-party integration support?

Intuitiveness: Is the IDE well designed and easy to navigate?

Configurability: If the initial settings are not to your liking, how much of the editor/IDE is 
customizable?

Resource usage and stability: Does it take seconds or minutes to load up the IDE; is it 
responsive; does it take too much RAM; does it crash often?

Focus: Is the IDE tailored toward one language or many? To a specific task or many? There 
are pros and cons of each of these. Often if an IDE is tailored to one language it will be sleeker 
and more optimal than software designed for use by a plethora of languages and may also 
have advanced tools. However, the tradeoff of an IDE geared toward several languages 
means that if you regularly code in many languages, you have to learn only one GUI.

Browser Developer Tools
WebGL is run inside a browser, and the API used is written with JavaScript. The next place that we should look for 
assistance when debugging is within the browser, as each of the major browsers has its own built-in developer 
tools. These developer tools have a varying level of usability and features, but do share the common functionality 
of: the ability to view and manipulate the Document Object Model (DOM), resources, network traffic, and an 
interactive console that outputs JavaScript debug and error information.

Chrome/Safari both offer developer tools. Firefox has the Firebug and Developer extensions, Internet 
Explorer has the developer toolbar, and Opera has Dragonfly. Internet Explorer developer tools have improved 
quite a lot between versions 8 and 9 in terms of baked-in support. However, in my opinion Chrome and Firefox 
remain the most feature-rich of the browser tools.

Figure 9-1.  jQuery library autocompletion inside of the Webstorm IDE
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Safari by default has their developer tools disabled. To enable them, you need to go to the Preferences 
> > Advanced tab and click the “Show Develop menu in menu bar” check box. The Firefox extensions are available 
at http://getfirebug.com/ and https://addons.mozilla.org/en-US/firefox/addon/web-developer/.

In Figure 9-2 we demonstrate how to find a DOM element interactively through the Chrome Developer Tools 
console tab.

Figure 9-3. Viewing network statistics with Opera Dragonfly

Figure 9-2. Using the console in Chrome Developer Tools to search for the < header > tag

In Figure 9-3 we show the Network traffic tab of Opera’s Dragonfly developer tools. This tab shows a timeline 
of the loaded and loading resources for a webpage.

In Figure 9-4, we show a rather cool new feature of Firefox: the ability to visualize the DOM in three 
dimensions. This tool is made possible by WebGL.

http://getfirebug.com/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
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Two other specific browser tools are:  Typing ‘about:config’ into the address bar in Firefox and searching 
for ‘webgl’ lets you adjust Firefox’s webgl settings. Typing the address ‘about:tracing’ in Chrome lets you profile 
WebGL applications in that browser.

Debug Messages to the Console
To output information to ourselves or other developers about the state of our program or if there are warnings 
or errors that we should know about, instead of displaying potentially annoying alert boxes for nonsevere errors 
or muddying up the DOM document with our status updates we can print messages to the JavaScript console 
screen. As mentioned, all the browsers have developer tools that include a console screen for the input and 
output of commands and messages. There is also a console object in JavaScript that has methods to output 
messages to the developer console.

For instance, we can write log messages and error messages to the developer console with JavaScript code 
like this:

var myVar = 42;
console.log("just some helpful information");  //just some helpful information
console.error("something more severe: " + myVar); //something more severe: 42

The main difference displayed in the console for these two messages will be that error messages usually 
have a red font color while log messages are black. There are many more methods of the console object, and the 
application programming interface (API) for the Firebug console is available at http://getfirebug.com/wiki/index.
php/Console_API. Although the exact implementation of the console object is browser-dependent, others (such 
as those based on WebKit) support most of the implementation that Firebug uses.

View Other People’s Code
Because WebGL uses a client-side API written in JavaScript, we can view other people’s code easily. Doing so 
can give insight into techniques that we may not have previously considered. There are a couple of ways to view 
JavaScript code: right-clicking and accessing the menu item “View Page Source” or “View Source”, or looking 
at the Resources tab of Developer Tools. For a shader source, we can also view the raw source. However, as 
we showed in Chapter 7, frameworks can modify the final shader source. As such, using a tool such as WebGL 
inspector, which we will cover later on in the chapter, can prove to be more useful.

Figure 9-4. 3D visualization of DOM elements in Firefox, made possible by WebGL

http://getfirebug.com/wiki/index.php/Console_API
http://getfirebug.com/wiki/index.php/Console_API
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Online Sandboxes
A sandbox is a safe environment that children are known to play within and toy around with their imagination. In 
development terms, a sandbox is an isolated testing environment that we can play around with our code without 
harming production code.

There are many places online that we can quickly and safely tinker around with our JavaScript code. jsFiddle 
at http://jsfiddle.net/ lets you run JavaScript code (optionally with HTML and CSS) and view the output. It 
offers toggling of the inclusion of common JavaScript libraries with a simple select box and has integrated JSLint 
support to check the validity of your code. A similar site to jsFiddle is JS Bin and its site at http://jsbin.com.

Shaders can be modified at several sites online, such as KickJS (which you can find at http://www.kickjs.org/
example/shader_editor/shader_editor.html). We covered online shader tools in Chapter 2, and some additional 
sites are listed in Appendix D.

The main usefulness of online sandboxes is the ability to quickly test a small amount of code with much of 
the environment configured for you and the ability to safely share your code as a link for other developers to view, 
tweak, and collaborate with.

Generic WebGL Error Codes
An issue with WebGL that makes it fairly tough to debug is that there are only five major error codes (including 
the code to signal no error). These codes are numeric constants. An example from the WebGL specification is:
const GLenum INVALID_ENUM =  0x0500;

The main error codes are:

NO_ERROR - we are good to go

INVALID_ENUM - an unacceptable value is specified for an enumerated argument

INVALID_VALUE - a numeric argument is out of range (such as trying to specify a shader 
location of -1)

INVALID_OPERATION - the specified operation is not allowed in the current state (such 
as trying to generate a mipmap with no bound texture)

OUT_OF_MEMORY - application has exhausted memory

The main errors are shared for the many function calls of WebGL. This makes it essential that we can trigger 
and detect exactly where and when an error occurs. Refer to the WebGL specification for a complete list of which 
error code(s) each function can throw.

There are also many WebGL states that we can check for, such as when we check the framebuffer status with:

GLenum checkFramebufferStatus(GLenum target);

We may receive the following among other possible return values:
FRAMEBUFFER_INCOMPLETE_ATTACHMENT //0x8CD6

Context Errors
The WebGL rendering context associated with a HTMLCanvasElement can have errors when created or throughout 
the life of the application. We will now show how to check for these errors and handle them appropriately when 
encountered.

http://jsfiddle.net/
http://jsbin.com
http://www.kickjs.org/example/shader_editor/shader_editor.html
http://www.kickjs.org/example/shader_editor/shader_editor.html
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Context Creation
If the request fails when we attempt to obtain a WebGL context, the browser is required to fire a WebGL context 
event named "webglcontextcreationerror" to the canvas. To listen for this event we can add a listener as 
demonstrated in the WebGL specification Example VII and shown in Listing 9-1.

Listing 9-1. Checking for a context-creation error

var errorInfo = "";
function onContextCreationError(event) {

 canvas.removeEventListener(
   "webglcontextcreationerror",
   onContextCreationError, false);

 errorInfo = e.statusMessage || "Unknown";
}

canvas.addEventListener(
  "webglcontextcreationerror",
  onContextCreationError, false);

var gl = canvas.getContext("experimental-webgl");
if(!gl) {
  alert("A WebGL context could not be created.\nReason: " +
    errorInfo);
}

The code in Listing 9-1 creates an error listener, attempts to get a WebGL context, and if there is an error will 
display the reason and then remove the error event listener. The benefit of adding the listener is that we can gain 
insight into the reason why the context could not be created.

Context Loss and Restoration
If the browser loses context with WebGL, we can detect this and restore it. However, any resources such as 
textures or buffers will need to be re-created. Context can be lost because of a mobile power event, GPU 
reset, a client dropping a background tab or being low on resources. Part of Example VI from the WebGL 
specification is shown in Listing 9-2 and demonstrates how to listen for the "webglcontextlost" and 
"webglcontextrestored"events.

Listing 9-2. Listening for context lost and restoring context

canvas.addEventListener(
  "webglcontextlost", function (event) {

 // inform WebGL that we handle context restoration
 event.preventDefault();

 // Stop rendering
 window.cancelAnimationFrame(requestId);
}, false);

canvas.addEventListener(
  "webglcontextrestored", function (event) {

 initializeResources();
}, false);
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In Listing 9-2, we register context lost and restored listeners. If the context is lost, we stop animating. On 
restoration, we reload our resources.

Note:  The loss of context is one of the main security concerns with WebGL and  
the OpessnGL GL_ARB_robustness extension aims to add the ability for applications to detect lost contexts.  
This will help graphics cards “watchdog” malicious intentions such as denial of service attacks.

Continuously Checking For Errors
While developing we can use the webgl-debug.js library that was created by the Khronos group (the consortium 
that oversees WebGL) and is available at https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/
debug/webgl-debug.js. Usage is outlined at http://www.khronos.org/webgl/wiki/Debugging. This library will 
make a call to getError between every WebGL call and output error results to the console. We can convert the 
error numbers to more readable strings with the call:

WebGLDebugUtils.glEnumToString( gl.getError() );

 Calling getError is expensive because it polls the GPU, effectively blocking further communication between 
the WebGL API and GPU until a result is returned. As such, this library should not be used in production code.

Download the webgl-debug.js file locally. Starting with the 03/texture_and_lighting.html file of Chapter 
3, we will slightly modify the code to make use of this library. First we include the new script file:

<script src  = "webgl-debug.js" > </script>

Now let’s cause an error so that we can demonstrate the library. In the setupWebGL function, change the 
enabling of the depth test from gl.enable(gl.DEPTH_TEST) to gl.enable(gl.DEPTH_TEST_FOOBAR). If we run the 
program, it looks strange, but we get no indication in our console that there is a WebGL error as shown in Figure 9-5.

Figure 9-5. No error produced in our console

https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/debug/webgl-debug.js
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/debug/webgl-debug.js
http://www.khronos.org/webgl/wiki/Debugging
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Now we will wrap our WebGL context in the webgl-debug.js library in our initWebGL function:

if(gl)
{ gl  = WebGLDebugUtils.makeDebugContext(gl);

The result (found in the 09/texture_and_lighting_debug.html file) is that no image is produced, but useful 
debug information is output to the console. It tells us exactly what function and line are erroneous—line 132 in 
the setupWebGL function—as shown in Figure 9-6.

Figure 9-6. The debug information from webgl-debug.js

WebGL Inspector
By far the best in-browser debug tool currently available is WebGL Inspector, which is a useful tool to see view 
shader program information, loaded textures, the current states of our application, the contents of our buffers, 
capture a snapshot along with thorough trace data of a frame and much more. WebGL inspector was written 
by Ben Vanik and James Darpinian and is available from http://benvanik.github.com/WebGL-Inspector/. It is 
billed as

“An advanced WebGL debugging toolkit…inspired by gDEBugger and PIX with the goal of making the 
development of advanced WebGL applications easier. What Firebug and Developer Tools are to HTML/JS, WebGL 
Inspector is to WebGL.”

http://benvanik.github.com/WebGL-Inspector/
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WebGL inspector can be used by embedding a script into a web page or by installing the Chrome extension. 
Once it is installed, pages with WebGL content will have a GL icon show up in the address bar and two buttons on 
the web page, “Capture” and “UI” as shown in Figure 9-7.

Figure 9-8. Texture data of WebGL inspector

Figure 9-7. The Buffers tab of WebGL inspector

In Figure 9-7, the Buffers tab is displayed that shows the contents of our vertex buffer objects (VBOs). We can 
use the Textures tab to ensure that our textures have properly loaded, view filter and clamping parameters, and 
other information about the textures (see Figure 9-8).
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The Programs tab will show us the status of our program along with the attributes and uniforms and our 
vertex and fragment shader source code, as seen in Figure 9-9.

Figure 9-9. Programs tab of WebGL inspector

The State tab shows us all our adjustable state settings such as if blending is enabled, the blend color, the 
clear color, which orientation is used for front faces of our polygons, and so on, as shown in Figure 9-10.

The Timeline tab will display real-time data on various metrics such as frame time, primitives/frame, and 
buffer memory. The timeline is one area of this otherwise very useful program that could use some work in 
producing more scalable and readable results (see Figure 9-11).

Until now we have not discussed the Capture button. In my opinion, this is the most useful feature of WebGL 
inspector. When you click the button, WebGL inspector will capture the screen and a complete trace of the frame 
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Figure 9-10. WebGL state settings as displayed in the State tab of WebGL inspector

Figure 9-11. The timeline metrics of the WebGL inspector



CHAPTER 9  DEBUGGING AND PERFORMANCE

244

In line 19 of Figure 9-12 there are two icons on the right. The first, with a right-facing arrow, lets us run 
isolated output from a single draw command. In our sample application, this is the entire scene. However, in 
more complex applications with several draw calls, it can be quite useful to show what specific part of the scene 
was rendered. When the second link (that looks like an i) is clicked, a new window will pop up with complete 
draw information. The popup is extensive and first shows a mesh of the element drawn that can be zoomed in 
and out with the mouse wheel and rotated while holding down a mouse button. This mesh is useful to visually 
confirm that our vertices have rendered in the proper order and also so that we can ensure consistent winding of 
our polygon faces; the luminance of red in clockwise and counter-clockwise faces is different. We can also show 
a grid of texture coordinates used. Next, a list of program uniforms and current values are displayed followed by 
attributes. Finally we see the state of WebGL settings: vertex, fragment, depth/stencil and output. The first part of 
this popup is shown in Figure 9-13.

If we click a pixel of the image displayed to the right of the trace log (not shown in Figure 9-12), we get all the 
information about the color components and how the final pixel color is obtained in a new popup window. There 
is no blending for our example, so the final color calculation is straightforward, as shown in Figure 9-14. However, 
when blending with nonopaque alpha values, this information can be quite useful.

Lastly, WebGL inspector is also useful for indicating errors. Re-adding the gl.enable(gl.DEPTH_TEST_
FOOBAR) line makes an erroneous line of the trace show up highlighted red, as displayed in Figure 9-15.

If we try to obtain an attribute location that does not exist (for example, by trying to get the mistyped 
attribute aVertexPosition2 instead of aVertexPosition), getAttribLocation returns (-1), which is an invalid 
value (see Figure 9-16).

Figure 9-12. Trace tab shows frame captures with WebGL inspector

will be generated as shown in the Trace tab in Figure 9-12 . Our sample program is small and has only 19 lines, 
but complex WebGL applications can have thousands of lines as we will later demonstrate. The lines highlighted 
yellow are redundant. This is great information to help improve performance as shown in the next section. You 
have the option to not highlight redundant calls, but will probably find the feedback useful. WebGL inspector also 
lets us slow or pause frame advancement.
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Figure 9-13. Information about a specific draw call in WebGL inspector

Note   If a variable does exist in your vertex shader but you never use it, the compiler will mark it as not used 
and remove it when compiling and linking your program. If you try to get its location later, you will receive (-1) and 
produce the same error.

Lastly, suppose we have called gl.bindBuffer with a null value binded to the WebGLBuffer parameter. This 
can easily happen, for instance, by writing data to a variable when generating or reading in data from a file, but 
using a different variable when binding that has been initialized to null and is never written to. The highlighted 
error is shown in Figure 9-17.

As you have seen, WebGL inspector is a tool with multiple uses, and I urge the reader to become familiar 
with it—you will thank yourself.
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Figure 9-14. Pixel history of WebGL inspector

Figure 9-16. WebGL inspector error caused by invalid attribute location value

Figure 9-15. WebGL inspector error caused by invalid keyword
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Testing with glsl-unit
Unit testing code—isolating parts of a program into small units and running automated tests on each unit—is a 
valuable way to ensure that a program functions the way that is expected and to detect errors brought on to code 
when refactoring (making structural but not behavioral changes to the code, to improve code design and quality).

There is a fairly new unit testing framework for the GLSL available at http://code.google.com/p/glsl-unit/. To 
clone the git repository you can use this:

git clone 
https://code.google.com/p/glsl-unit/

Common Pitfalls
There are certain errors when programming with WebGL that are more commonly encountered than others. Here 
are some pitfalls to avoid.

Cached Content
File changes are not being used. The browser is instead still using an old version. Do a hard browser refresh with 
Shift-F5 or make the browser notice by renaming the resource file or purposely adding an error (temporarily) to 
your shader program or javascript file.

Reusing a Canvas for Incompatible Contexts
"2D" and "webgl" contexts are incompatible. Trying to use one and then call canvas.getContext with the other 
will return null instead of obtaining a valid context.

Mobile Device Fragment Precision Support
WebGL only requires that fragment shader floating values support mediump. Many phones and mobile devices 
only support this precision. If you are targeting mobile users, do not use highp. We can also poll the supported 
precision of a device with a call to the function getShaderPrecisionFormat. This can allow you to serve different 
shaders based on the device capabilities.

Camera View Is Facing a Wrong Way
Make sure that the virtual camera is pointed in the right direction of the scene and also that vertice points lie 
within the clipspace and the viewport.

Figure 9-17. WebGL inspector error caused by binding a VBO to null

http://code.google.com/p/glsl-unit/
https://code.google.com/p/glsl-unit/
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Texture Issues
Using non power of two (NPOT) textures when trying to generate a mipmap is a fatal error. There is also a limit of 
the number of texture units that are available. If you run the webglreport shown in Figure 9-18, you can easily see 
the exact number supported on your current browser and GPU.

Performance Varies by GPU
GPUs have different hardware setups and optimizations. What is optimal on one GPU may be very slow on 
another GPU.

Loading the Wrong Resource
Check that you are loading the correct file, whether it be a texture image, mesh, or shader file. Also ensure that 
you are not violating cross-original resource sharing rules.

Browser Differences
It is advisable to try your code in different browsers when debugging because results may vary or work only 
in some browsers. The reason for this is that some of the WebGL specification is client-dependent. There are 
minimum requirements, but not all implementations are the same. Not all extensions are supported, either. To 
poll the list of available extensions supported in a browser, you can use these functions:

DOMString[] getSupportedExtensions()
object getExtension(DOMString name)

The getSupportedExtensions function returns an array of supported extension names. Every string in the 
returned array will return a valid object from getExtension, while any string name not in the supported array 
will return null.The objects that are returned signal that the extension has been properly enabled but are not 
required to contain any functions or constants.

We can also use the function getParameter(GLenum pname) to find other browser support information, 
such as checking the maximum supported texture size with: 

gl.getParameter(gl.MAX_TEXTURE_SIZE).

Even without WebGL browser differences, there are JavaScript browser differences that need to be tested. 
For example, a trailing comma in a JavaScript object or array is fine in most browsers, but will be erroneous in 
Internet Explorer.

ie) [1,2,3,] is bad in IE while [1,2,3] is good in all browsers.
And {"a":"1","b":"2",} is bad in IE while {"a":"1","b":"2"} is good in all browsers.
A nice utility to view the WebGL constants of your browser is available at http://analyticalgraphicsinc.github.

com/webglreport/, and example Chrome output is shown in Figure 9-18.

http://analyticalgraphicsinc.github.com/webglreport/
http://analyticalgraphicsinc.github.com/webglreport/
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External Shader Parse Errors
When loading in a shader from an external file, you might notice a statement that seems to be valid, such as 
either of the following:

if ( a< b ){ ; }

if( a && b ){ ; }

Each line will cause the shader to not load because the XML entities " < " and "&" need escaping. To correct 
this, try use the entities &lt; and &amp; directly in the shader source files:

if ( a &lt; b ){ ; }
if( a &amp;&amp; b ){ ; }

Alternatively, you can adjust the dataType returned from the Ajax call to HTML and then parse out the script 
tag with jQuery:

$.ajax({
 async: false,
 url: './my_shader.fs',
     success: function (data) {
       fs_source = $(data).html();
 },
 dataType: 'html'
});

Figure 9-18. Using webglreport to see your browser WebGL support
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Performance
For simple applications, following WebGL best practices for optimization will not be that important. Browsers 
and the GPU can perform calculations extremely quickly, so a small number of draw calls will render fast and 
appear at a good framerate, regardless of whether our code is optimized or not. However, as our applications 
become more complex and involve more WebGL and GPU interaction, they will quickly slow down, and the 
effect can range from slightly noticeable to debilitating usage. Luckily for us, there are known ways to take 
existing code and optimize it.

Measuring Framerate
In order to see whether what we are doing is actually improving processing, we need to measure the framerate 
(the number of frames per second) that we are rendering. A lower framerate will appear choppy, while a higher 
framerate will appear smooth and natural. The framerate is usually measured in frames per second (fps). Silent 
films had variable framerates of around 14–26 fps as the cameras were hand-cranked. Early projectors set the fps 
at a constant 24 fps that of course appears much smoother. Some newer films are using 48 fps, and a computer 
monitor refresh rate is typically 60 Hz (Hz, Hertz, is the number of cycles per second), though larger digital 
displays now are over 100 Hz. So the higher the framerate you can achieve, the better.

To measure framerate, we will use the stats.js library available on Github at https://github.com/mrdoob/
stats.js. This library is written by the author of the three.js framework that was covered in Chapter 7. Download 
the stats.js file and include it in the code using this:

<script src= "stats.js" ></script>

Next we need to attach the stats < div > to our document and call its update method every time through the 
requestAnimationFrame loop. Note that the update method is not called if our scene is paused. This is a personal 
preference, as otherwise the fps will just fluctuate to a much higher, but irrelevant value when the application is 
paused. Code that uses the stats.js library is shown in Listing 9-3.

Listing 9-3. Adding the Stats calculator to our application

var stats = new Stats();
…
function initWebGL()
{
 …
 …
  attachStats();

  (function animLoop(){
   if( !paused ){
    setupWebGL();
    setMatrixUniforms();

    drawScene();
    stats.update();
   }
   requestAnimationFrame(animLoop, canvas);
  })();
}else{
  alert( "Error: Your browser does not appear to support WebGL.");
 }
}

https://github.com/mrdoob/stats.js
https://github.com/mrdoob/stats.js
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function attachStats()
{
 stats.getDomElement().style.position = 'absolute';
 stats.getDomElement().style.left = '0px';
 stats.getDomElement().style.top = '0px';

 document.body.appendChild( stats.getDomElement() );
}

Note:  You can view the milliseconds it took to render the frame instead of fps by using the setMode method: 
stats.setMode(1); // 0: fps, 1: ms

The stats widget is shown in the top-left corner of Figure 9-19.

Figure 9-19. Displaying the fps metric of stats.js

When we use stats.js and have multiple browser tabs open, if we switch to a different tab and then back, 
the framerate decreases dramatically when we return. This is good, as it shows that requestAnimationFrame is 
working as promised, and unnecessary animations are not being performed.

Complexity in Optimizations
It is very hard to determine how to optimize GPUs because there are many different hardware implementations, 
and some optimizations that help certain GPUs will actually hinder performance on others.
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Bottlenecks
In order to optimize code, you generally need to find the bottleneck(s)—the places where the performance of a 
system is being most restricted—and fix them.

An example that will be familiar to many people is washing and drying clothes. Suppose you have three 
clothes washers and one dryer. Each washer takes 30 minutes per load and the dryer takes twice as long: 60 
minutes per load. The capacity of the washer and dryer are the same. We need to wait for the dryer to finish and 
are limited by the time it takes; it is the bottleneck of our system.

Suppose that we have three loads of clothes to launder. The total time to do 3 loads is 210 minutes (30 
minutes for the concurrent washes + 60*3 for each dry). We can improve the performance of the system by 
limiting or removing the bottleneck in these ways:

decreasing the drying time

increasing the capacity of the machine

buying more dryers

With the first improvement, suppose that you can fiddle around with the machine and get the drying time 
down to 45 minutes. The total time of 3 loads will then be 165 minutes (30 + 45*3).

For the second improvement (but no speed improvement), suppose that you can modify the dryer to take 
two full loads instead of one. You still need to do 2 full dryer cycles (1 at half capacity = 1 washer load and then 1 
at full capacity = 2 washer loads), but the total time is decreased to 150 minutes (30 + 60*2).

For the third option, if you can buy two extra machines, your total time is reduced to just 90 minutes 
(30 + 60).

In the washer/dryer example, buying more hardware (analogous to having more computing power or RAM) 
leads to the most improvement. However, in other cases a bottleneck can be improved upon most by a more 
efficient algorithm.

For example, if you have a computation that takes 1,000 numbers, and the current complexity of the 
computation increases in the order n3, it will take 1,000,000,000 computing units to finish. If you buy 4 machines 
and distribute the calculation among them, it will still take 250,000,000 calculations per machine. However, if you 
can reduce the complexity of the algorithm to n2 without buying anything new, you reduce the computing cost by 
1,000 to 1,000,000.

WebGL Bottlenecks
While optimizations are not absolute, there are some general best practice guidelines for maximum performance 
and to limit bottlenecks. Expensive operations include things that block communication of the browser and 
GPU and unnecessary calculations and lookups. The fragment shader has the most calculations to perform as 
it operates on every pixel in a scene. For this reason, the fragment shader can also often be the bottleneck in an 
application.

Fragment Shader
The fragment shader works on every pixel. As such, it is a possible source of computational bottlenecks and 
performance loss. One way to judge whether the fragment shader is in fact a bottleneck is to reduce the size of 
your canvas and compare the framerate. If there is significant performance improvement, it is because there are 
fewer pixels that need to be computed on, so you should try to optimize the fragment shader.

One tip is to do the reverse: After the fragment shader is done, stretch the canvas to a larger size. This will 
not require any more GPU computation and should be a relatively inexpensive client-side operation. Of course, 
this is viable only if stretching produces an acceptable number of artifacts or aliasing marks (that is, it still looks 
good).
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Browser Resources
Even before we start rendering our scene, we need to load resources. There are several ways to reduce the 
physical size of resources that will improve the initial loading time of our web page.

Minify JavaScript Files
When our code is ready for production, we can combine multiple files and minify them into a compressed file. 
There are a number of tools available for this, from direct cutting/pasting of the source or uploading of files:

http://www.minifyjavascript.com/
http://jscompress.com/

To command line usage:

http://html5boilerplate.com/docs/Build-script/
http://developer.yahoo.com/yui/compressor/

Textures
We should keep texture sizes as small as possible. If a smaller 128 x 128 texture looks nearly identical to a larger 
512 x 512 one, we should use it instead. It will be 16 times smaller in memory. Second we should choose an 
appropriate image format. BMP images are usually larger than PNGs, which are larger than JPEGs, which are 
larger than WEBPs. Which format you choose also depends on whether you need an alpha channel and how 
much image data you can afford to lose and still obtain a satisfactory level of image quality.

Browser vs. GPU Power

The GPU can calculate orders of magnitude faster than JavaScript in the client. On the GPU, many, many 
operations can be done in parallel and using compiled native code. As such, any “heavy lifting” should be offset 
to the GPU if possible.

Blocking the GPU
The GPU takes stream(s) of data from the application associated with vertex attributes. These streams then go 
to the vertex processor and then the fragment processor. The GPU computes in parallel but the communication 
between the JavaScript API and the GPU is more serial. Naturally we do not want to block this browser to GPU 
communication as much as possible. Doing so will lead to our program appearing to stall and the framerate 
decrease. So what can we do to limit unnecessary browser to GPU communication?

Batch Draw Calls
We should limit draw calls as much as possible (drawArrays, drawElements) by batching them together. The 
GPU can easily handle hundreds or thousands of triangles at once. However, there is also an upper limit to how 
large a single VBO can be.

http://www.minifyjavascript.com/
http://jscompress.com/
http://html5boilerplate.com/docs/Build-script/
http://developer.yahoo.com/yui/compressor/
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Note:  Three.js has a utility to merge disjoint geometries in order to reduce the number of separate draw calls 
needed. Details are in the /src/extras/GeometryUtils.js file and the function THREE.GeometryUtils.merge.

Reduce Buffer Switching
Instead of having separate VBOs for vertex attributes such as color, normal, and position we should combine 
them into interleaved arrays. We will discuss interleaved arrays later on in the chapter.

Reduce Shader Program Switching
If we have a few shader programs in use and several objects, we want to group the elements that use each shader 
if possible so that we can limit how often we need to change our active shader program.

Cache State Changes (gl.getX/gl.readX)
Every time you need to poll a state component of WebGL, the browser needs to interrupt the GPU and obtain 
information. Some calls to avoid as much as possible are getAttachedShaders, getProgramParameter, 
getProgramInfoLog, getShaderParameter, getShaderInfoLog, getShaderSource, getTexParameter, 
getParameter, getError, getActiveAttrib, getActiveUniform, getAttribLocation, 
getUniform, getUniformLocation, getVertexAttrib, getVertexAttribOffset, getTexParameter, 
getRenderbufferParameter, getFramebufferAttachmentParameter, getBufferParameter, and associated 
set X calls. If possible we should store cached versions of this information in JavaScript instead. We also want 
to limit uniform changes because they require interactions to the GPU. Additional WebGL calls to limit are 
readPixel and finish.

Do Not Use getError in Production
As mentioned above, using getError queries the GPU which is expensive. Use it continuously while developing 
but not once your code is in a production environment.

Remove Redundant Calls
We have showed how WebGL inspector is very helpful at showing you unnecessary API calls. An example of an 
unnecessary call is setting a state every frame when nothing changes it. This can be remedied by moving the 
particular state setting code into an initialization function outside of the rendering loop.

Another example of needless redundancy is generating 1,000 spheres by recalculating the vertice points 
for each one and then transposing them in the scene. Instead, calculate the vertices once for a unit length 
(1 = x^2 + y^2 + z^2) sphere and store them. Then for the other spheres, scale and transform all the generated 
points to produce variance. This greatly reduces the number of trigonometric operations required and replaces 
them with the much less expensive elementary operations of multiplication and addition.

Limit Active Texture Changes
We can reduce how often we need to change the active texture by combining small textures into a single larger 
texture. This resultant image is known as a texture atlas. A texture atlas of some planets, the sun, and the moon is 
shown in Figure 9-20.
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We will use this texture atlas for performance optimization later in the chapter. For performance, also ensure 
that you generate mipmaps as outlined in Chapter 3.

Use it or Lose it
If you are not using features such as blending or the depth test, disable them. For example, if you are only 
rendering to two dimensions with no MVP transform or if you are rendering 2D objects that you know are being 
drawn in order from furthest away to nearest, you can safely disable depth testing.

Faster Arrays
WebGL arrays are naturally faster than traditional JavaScript arrays because they make use of new JavaScript 
typed arrays. Combining this with the use of interleaved arrays will improve VBO and attribute performance, as 
we will now explain.

Typed Arrays

Traditionally raw data transferred in JavaScript is treated as a string. As WebGL passes data to the GPU in large 
quantities, typed arrays are used to increase performance. Typed arrays use raw binary data and have a fixed byte 
size and type, which increases streaming efficiency.

Figure 9-20. Texture atlas of the moon, sun, and some planets
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WebGL uses the primitive sizes:

gl.BYTE - 1 byte
gl.SHORT - 2 bytes
gl.FLOAT - 4 bytes

The kinds of typed arrays available in JavaScript are these:

ArrayBuffer, ArrayBufferView, DataView
Float32Array, Float64Array
Int16Array, Int32Array, Int8Array
Uint16Array, Uint32Array, Uint8Array

Typed arrays are required in WebGL. You can view more information about them at https://developer.
mozilla.org/en/JavaScript_typed_arrays.

Interleaved arrays

Switching VBOs is expensive. Often attribute data is separated for simplicity. However, instead of using a separate 
array for color, texture, position and normals, we can combine some or all of this data into an interleaved array. 
This will be much better performance-wise because it is not the size of data passed to our GPU at one time, but 
the number of separate draw calls required that hinders performance.

Interleaved arrays simply mix data together per vertex. In Figure 9-21 each row of array data has the RGBA 
color data followed by the XYZ position data (W is omitted). The total number of elements per row is seven: 

Color Data

R0 G0 B0 A0 X0 Y0 Z0

X1

X2

Y1 Z2R1

R2

G1 B1 A1

R0 G0 B0 A0 X0 Y0 Z0

X1 Y1 Z2R1 G1

R2 G2

B1 A1

Interleaved Color and Position Data

Position Data

Figure 9-21. Using separate data arrays versus an interleaved array

RGBAXYZ. The size and order will be needed when we tell WebGL how to interpret our data. WebGL is not 
concerned by the actual contents of the data, and it is up to us to provide the proper context of our data. We could 
just as validly interleave the array in XYZRGBA order instead.

Let’s look at the actual code we need in order to use an interleaved array. In Listing 9-4 we show the array 
declaration for two attribute arrays and then that of an interleaved array below it.

Listing 9-4. Separate position and color arrays and an interleaved array

//a square with separated arrays
var vertexPositionArray = [

https://developer.mozilla.org/en/JavaScript_typed_arrays
https://developer.mozilla.org/en/JavaScript_typed_arrays
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 10.0, 10.0, 0.0,
 10.0, -10.0, 0.0,
 -10.0, -10.0, 0.0,
 -10.0, 10.0, 0.0
];

var vertexColorArray = [
 1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 1.0, 1.0,
 0.0, 0.0, 1.0
];

//a square with interleaved array data
var vertexInterleavedArray = [
  //x,  y,  z,  r,  g,  b
 10.0, 10.0, 0.0, 1.0, 0.0, 0.0,
 10.0, -10.0, 0.0, 0.0, 1.0, 0.0,
 -10.0, -10.0, 0.0, 0.0, 1.0, 1.0,
 -10.0, 10.0, 0.0, 0.0, 0.0, 1.0
];

Now that we have data, we can bind it to a buffer(s) and then point our attributes to the buffer(s) when we later 
draw our scene. Separate buffers are shown in Listing 9-5.

Listing 9-5. Binding separate buffers and later pointing attributes to

//two buffers for position and color data
var vertexPositionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vertexPositionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexPositionArray), gl.STATIC_DRAW);

var vertexColorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexColorArray), gl.STATIC_DRAW);

…
gl.bindBuffer(gl.ARRAY_BUFFER, vertexPositionBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);

gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer);
gl.vertexAttribPointer(vertexColorAttribute, 3, gl.FLOAT, false, 0, 0);

The last two parameters of vertexAttribPointer are the stride and offset. These are measured in bytes and 
the defaults are both 0.

Stride
The stride lets WebGL know how far apart each row of vertex data is in the array. So for vertexPositionArray, 
this is 3 * Float32Array.BYTES_PER_ELEMENT = 12. The following statement would produce the same result as 
using the default stride of 0.

gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 12, 0);

For our interleaved array, we have a stride of 6 * Float32Array.BYTES_PER_ELEMENT = 24. Note that we 
could also use an array with “garbage data” that we are not using or later using in each row such as://[r, g, b, 
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x, y, z, some_extra_value]In this case, the stride would be 7 * Float32Array.BYTES_PER_ELEMENT = 28 even 
though we are still only using 24 of the bytes per row.

Offset
The offset tells WebGL what byte to start reading data from. With the vertexPositionArray in Listing 9-4, if we 
wanted to discard the first two numbers and start with the third, we would use an offset of 2 * Float32Array.
BYTES_PER_ELEMENT = 8. Our first three vertices would then be:

(0.0,10.0,-10.0)
(0.0,-10.0,-10.0)
(0.0,-10.0,10.0)

Where stride and offset really come in handy is when we need to point to the specific data attributes in 
an interleaved array. Using the same buffer, we can set the offsets of our attributes to varying appropriate 
values. With the interleaved data of Listing 9-4 the position data has no offset, while the color data comes 3 * 
Float32Array.BYTES_PER_ELEMENT = 12 bytes later so we set its offset to this value as shown in Listing 9-6.

Listing 9-6. Using a single buffer with interleaved data

//interleaved data using a single buffer
var vertexInterleavedBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vertexInterleavedBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexInterleavedArray), gl.STATIC_DRAW);

…

gl.bindBuffer(gl.ARRAY_BUFFER, vertexInterleavedBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 24, 0);
gl.vertexAttribPointer(vertexColorAttribute, 3, gl.FLOAT, false, 24, 12);

Index Buffers

When possible, use index buffers as the GPU is optimized for their usage. Index buffers allow us to reuse vertices, 
so require less data to be transferred between the CPU and GPU.

Estimating Calculations Early
You would not calculate the value of PI to 100 decimal places every time you needed to use it—you would use a 
precomputed value instead. Further, the precision of PI to 100 decimals is most likely not necessary and would 
not produce any difference in the final result. This demonstrates two important concepts in computing:

The fastest calculation is the one that does not have to be made.

Estimates and simplifications are often better than accuracy if the (visual) results are 
approximately equal.

Reusing a precomputed value is better than performing the calculation many times. For example, if each 
vertice calculates the cos(time), it is much better to compute this value once per frame in our JavaScript and 
pass in to the vertex shader as a uniform value than compute it every single vertex.

In order from least- to most-expensive:

External calculations done that are set as constants inside of the code

Calculations done during application setup

Calculations redone each frame of the application
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Calculations done every vertex in the vertex shader

Calculations done every single pixel in the fragment shader

Of course we must also consider that the GPU is much more powerful than JavaScript, so there are situations 
where doing a complex calculation in JavaScript early will be just as bad if not worse than doing it more than 
once in the GPU.

Best Practice Summary
The following are techniques that are widely regarded as best practice usage for WebGL:

Batch as much as possible, reduce the number of draw calls

Interleave attribute data

Reduce state change queries

Do not call getError in production

Keep texture sizes as small as possible; use mipmaps and batch textures

Offload as much calculation from the browser to the GPU as it is magnitudes faster

Ensure that the fragment shader is optimized as it is used most frequently

Use requestAnimationFrame

Further resources can be found in Appendix D.

A Cooked-up Example
We tend to forget (or not fully understand) what we learn unless we dig in and try it for ourselves. So we will now 
cook up an example that has many objects moving randomly around in the scene in order to get WebGL to be 
slow enough to notice optimization improvements. We will increase the number of objects until we obtain a poor 
framerate and then we will use the debug and performance knowledge that we have obtained to optimize it.

I have created an example, 09/spheres_original.html, that uses six textures (of the Sun, Earth, Moon, 
Mars, Jupiter, and Saturn) with a basic lighting model and random movement. Initially there will be a separate 
draw call per spherical object and non-interleaved data used. By adjusting the number of objects rendered, we 
can lower the framerate. On my machine, 6 objects runs at 60 fps, 50 runs at around 35 fps, 100 is at around 30 
fps which is still ok. A thousand objects reduces the framerate to a crawl at around 4 fps. I attempted 10,000, but 
my browser just hung for a while. You can see 50 objects on the left of Figure 9-22 and 1,000 on the right. You 

Figure 9-22. Fifty objects on the left; 1,000 on the right
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can adjust the number of objects rendered on your machine by changing the following line and can observe the 
framerate by using the stats.js widget displayed in the top-left corner of the canvas:

var num_spheres  = 1000;

A low-4 fps is a great starting point to see performance improvements in action. Opening up WebGL 
Inspector, we can capture a frame and see in the Trace tab that there are more than 18,000 lines executed per 
frame; and 1,000 total draw calls as shown in Figure 9-23; 4,000 separate buffers in the Buffers tab; and more than 
40 MB of buffer data being used.

Figure 9-23. Trace capture showing more than 18,000 lines and redundant calls highlighted

Capturing a frame and using the trace to identify redundancies for us, we can see that the viewport is being 
set and the perspective matrix is being recalculated every frame. Our view does not change and our camera does 
not move, so this is a waste. We can move the following lines to be placed before our render loop:

gl.viewport(0, 0, canvas.width, canvas.height);
mat4.perspective(45, canvas.width / canvas.height, 0.1, 100.0, pMatrix);
gl.uniformMatrix4fv(glProgram.pMatrixUniform, false, pMatrix);

This change improves the fps slightly. We will work through the trace until we get rid of as many 
redundancies as possible. Next we can see that we are reenabling vertex array attributes every time that we 
render an object. We can move these lines to be placed before our render loop as well.

vertexPositionAttribute  =  gl.getAttribLocation(glProgram, "aVertexPosition");
vertexNormalAttributel  =  gl.getAttribLocation(glProgram, "aVertexNormal");
vertexTexCoordAttributel  =  gl.getAttribLocation(glProgram, "aVertexTexCoord");

gl.enableVertexAttribArray(vertexPositionAttribute);
gl.enableVertexAttribArray(vertexNormalAttribute);
gl.enableVertexAttribArray(vertexTexCoordAttribute);

Amazingly, this code increases the framerate all the way to 50 fps! There are no more redundancies marked 
in the trace, with the total number of calls being reduced from 18,000 to 11,000. Now let’s see how many objects 
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we can push this application to display. Increase the number of objects rendered until your framerate lowers to a 
number below 15. The full code with redundancies removed is in the 09/optimized_1_removed_redundancies.
html file, and output is shown in Figure 9-24.

Figure 9-24. Three thousand objects at 16 fps

Note:  With too many buffers you may experience misleading results. With 100,000 objects I got a high framer-
ate, but after looking in the WebGL inspector, there were only 12,000 VBOs not the 400,000 that there should have 
been. There were also only 33,000 lines in the trace; we would need at least 100,000 for the separate draw calls.
The biggest evidence that we did not actually have 100,000 objects was that the result of 3,000 objects looked 
identical to 100,000.

Later after interleaving my vertex attributes, I could see 20,000 VBOs and the much fuller image shown in 
 Figure 9-25.

In addition to limits for the number of total VBOs, there is also a limit to the number of elements per single VBO. 
The maximum number of indices is  2^16 = 66536.

When optimizing, if a result seems too good to be true use your intuition and determine whether an upper 
browser limit has been reached or results have been cached somewhere.

Our next optimization is interleaving the vertex position, texture coordinate, and normal arrays into 1 array, 
so this should enable us to draw more elements as the number of buffers we use per object is reduced from 4 
to 2 (1 buffer is for the index array). Interleaving the arrays cleans up the drawScene function nicely. Listing 9-7 
shows our code to use our interleaved data (the generation is not shown but is viewable in the 09/optimized_2_
interleaved.html file) and send it on to the GPU.
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Figure 9-25. Interleaved arrays gone wrong. These objects are not very spherical

Listing 9-7. Interleaved array attribute pointing

function drawScene()
{
 for( var i=0; i<num_spheres;++i ){
 setMvMatrix(spherePositions[i])
 setMatrixUniforms();
 var active_num = i%textures.length;

 gl.activeTexture(gl.TEXTURE0 + active_num);
 gl.uniform1i(glProgram.samplerUniform, active_num);

 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesInterleavedBuffers[i]);
 gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false,
 8 * Float32Array.BYTES_PER_ELEMENT, 0);
 gl.vertexAttribPointer(vertexNormalAttribute, 3, gl.FLOAT, false,
 8 * Float32Array.BYTES_PER_ELEMENT,
 3 * Float32Array.BYTES_PER_ELEMENT);
 gl.vertexAttribPointer(vertexTexCoordAttribute, 2, gl.FLOAT, false,
 8 * Float32Array.BYTES_PER_ELEMENT,
 6 * Float32Array.BYTES_PER_ELEMENT);

 gl.drawElements(gl.TRIANGLES, vertexIndexBuffers[i].numItems,
    gl.UNSIGNED_SHORT, 0);
 }
}

Now if you put in the wrong stride, such as just 8 instead of 8 * Float32Array.BYTES_PER_ELEMENT (the 
total number of bytes) in the preceding code, you will get unexpected results, as shown in Figure 9-25.
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However, using the correct stride values produces the expected result shown in Figure 9-26.

Figure 9-26. Interleaved arrays gone right; 10,000 objects but at a low framerate

Next we will combine our six 256 x 256 textures into a single 512 x 512 texture atlas. You will remember 
that the texture atlas image was shown earlier, in Figure 9-20. Using the texture atlas will mean that instead of 
changing the active texture every object, we will never need to change the uniform sampler value!

The hardest part of using a texture atlas is generating the coordinates. This is actually fairly easy for a texture 
atlas with each inner image also having dimensions a power of 2, though the width and height do not have to be 
equal. We keep track of the x and y offset of each image and the scale (from 0 to 1) that the image lengths will be 
relative to the overall texture atlas dimensions as shown here:

//x_offset, y_offset, x_scale, y_scale
var textureAtlasAreas = [
 [0.0, 0.0, 0.5, 0.5],  //moon
 [0.5, 0.0, 0.5, 0.5],  //sun
 [0.0, 0.5, 0.25, 0.25],  //saturn
 [0.0, 0.75, 0.25, 0.25], //jupiter
 [0.5, 0.5, 0.25, 0.25],  //earth
 [0.5, 0.75, 0.25, 0.25]  //mars
];

Then when we set up our sphere data, we can access this information like so:

var num_textures = textureAtlasAreas.length;
for(var i=0; i<num_spheres;++i){
 var active_num  = i%num_textures;
 var  tex_start_x = textureAtlasAreas[active_num][0],
  tex_start_y  = textureAtlasAreas[active_num][1],
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  tex_scale_x  = textureAtlasAreas[active_num][2],
  tex_scale_y = textureAtlasAreas[active_num][3];    
 …
 //texture coordinates
 interleavedData.push(u * tex_scale_x + tex_start_x);
 interleavedData.push(v * tex_scale_y + tex_start_y);
…
}

Note  A potential drawback of texture atlases is the possibility of color bleeds at texture boundaries.

We will generate a mipmap with a call to gl.generateMipmap(gl.TEXTURE_2D); The final optimization we 
will make and the most important is to batch draw calls.

Instead of looping through all the spheres we are to draw, we will perform a double loop of batches and 
spheres per batch when we generate our meshes in the setupSphereData method of our example and then use 
the number of batches in our drawScene method.

However, there is at least one issue we face now. Previously, we changed the model view matrix per sphere 
object. However, now we are batching several object draws together and still only adjusting the modelview matrix 
once per batch. That means that every sphere in a batch will be drawn at the same location. We will only see 
the largest sphere per batch, and the smaller ones will be hidden inside of it. For example, with 10,000 spheres 
batched at 40 at once, we will render all 10,000 but see only 250. We need to be able to set the model view per 
sphere. We also do not want to update uniforms unnecessarily. Instead of calculating the model view for every 
object in JavaScript we can offset this calculation to the GPU. This will actually be a performance improvement as 
the GPU is much faster. We will also have to update a uniform of translation and rotation amounts once per draw 
instead of for every object. Our original JavaScript code to calculate the per object model view matrix is shown in 
Listing 9-8.

Listing 9-8. JavaScript code for calculating per object model view matrix values

function setMvMatrix(sp)
{
 mat4.identity(mvMatrix);
 mat4.identity(normalMatrix);
 mat4.translate(mvMatrix, [sp.x_offset, sp.y_offset, sp.z_offset]);
 mat4.rotate(mvMatrix, sp.angle, [sp.x_angle, sp.y_angle, sp.z_angle]);
 mat4.inverse(mvMatrix, normalMatrix);

 sp.x_angle += Math.random();
 sp.y_angle += Math.random();
 sp.z_angle += Math.random();
 sp.x_offset = (Math.cos(sp.angle) * sp.x_offset_orig);
 sp.y_offset = (Math.sin(sp.angle) * sp.y_offset_orig);
 sp.z_offset = -25.0 + 12.0 * Math.sin(sp.angle);
 sp.angle += 0.005;
}

Instead of recalculating cosine and sine values which are constant across all the spheres, we can create 
uniform variables to store these values and use them in our vertex shader:

uniform float uCosTime;
uniform float uSinTime;
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We will now also calculate the sphere geometry only once and store it as shown in Listing 9-9.

Listing 9-9. Calculating the points on a unit sphere

var unit_sphere = null;
…
function calculateUnitSpherePoints(latitudeBands, longitudeBands)
{
 //O(n^2) trig operations - costly!
 unit_sphere = {
  "vertices": [],
  "uvs": []
 };

 for (var latNumber = 0; latNumber <= latitudeBands; latNumber++) {
   var theta = latNumber * Math.PI / latitudeBands;
   var sinTheta = Math.sin(theta);
   var cosTheta = Math.cos(theta);

   for (var longNumber = 0; longNumber <= longitudeBands; longNumber++) {
    var phi = longNumber * 2 * Math.PI / longitudeBands;
    var sinPhi = Math.sin(phi);
    var cosPhi = Math.cos(phi);

    var x = cosPhi * sinTheta;
    var y = cosTheta;
    var z = sinPhi * sinTheta;
    var u = 1- (longNumber / longitudeBands);
    var v = latNumber / latitudeBands;

    //position
    unit_sphere.vertices.push({"x": x, "y": y, "z": z});
    //texture coordinates
    unit_sphere.uvs.push({"u": u, "v": v});
   }
 }
}

And we can use the stored coordinates to generate all the other spheres in our scene:

//position
interleavedData.push(radius * vertex.x + spherePositions[mesh_number].x_offset_orig);
interleavedData.push(radius * vertex.y + spherePositions[mesh_number].y_offset_orig);
interleavedData.push(radius * vertex.z + spherePositions[mesh_number].z_offset_orig);

//normal
interleavedData.push(vertex.x);
interleavedData.push(vertex.y);
interleavedData.push(vertex.z);

//texture coordinates
interleavedData.push(uv.u * tex_scale_x + tex_start_x);
interleavedData.push(uv.v * tex_scale_y + tex_start_y);

This allows us to not change the MVP matrices or need to use the spherePositions array data after 
generation. We can now draw our objects in batches with the code of Listing 9-10.
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Listing 9-10. Drawing our objects in batches

var num_spheres = 15000;
var num_per_batch = 250;
var batches = num_spheres/num_per_batch;

…

function drawScene()
{
   gl.uniform1f(glProgram.cosTimeUniform, Math.cos(currentTime) );
   gl.uniform1f(glProgram.sinTimeUniform, Math.sin(currentTime) );
 for(var i=0; i<batches;++i){
 gl.bindBuffer(gl.ARRAY_BUFFER, trianglesInterleavedBuffers[i]);
  gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false,
 8 * Float32Array.BYTES_PER_ELEMENT, 0);
 gl.vertexAttribPointer(vertexNormalAttribute, 3, gl.FLOAT, false,
 8 * Float32Array.BYTES_PER_ELEMENT,
 3 * Float32Array.BYTES_PER_ELEMENT);
 gl.vertexAttribPointer(vertexTexCoordAttribute, 2, gl.FLOAT, false,
 8 * Float32Array.BYTES_PER_ELEMENT,
 6 * Float32Array.BYTES_PER_ELEMENT);
 gl.drawElements(gl.TRIANGLES, vertexIndexBuffers[i].numItems,
 gl.UNSIGNED_SHORT, 0);
 }
 currentTime += 0.01;
}  

As we are limited in how big a single VBO can be, we will use spheres of 10 divisions (600 indices per sphere) 
instead of 30 (5,400 indices per sphere) to demonstrate the speedup by batching. Rendering 15,000 of these 
spheres one at a time results in 3 fps. Rendering 15,000 but batching 250 at a time produces a much better 45 fps 
as shown in Figure 9-27.

Figure 9-27. Left: a batch size of 1 renders at 3 fps; right:- a batch size of 250 renders at 47 fps

Summary
This chapter discussed how to debug WebGL applications and improve performance. These are two important 
topics that will benefit your WebGL development and the user’s enjoyment of your application. The difference 
between a complex scene crawling at 3 fps and one moving nicely along at 40 fps is remarkable and could be the 
difference between a user enjoying your application or abandoning it. WebGL can be difficult to debug as many 
elements are at play: the specific browser, computer, and GPU used; the JavaScript API; shader programs; and 
resources such as textures. Each one of these can be the source of error. Luckily for us, there are powerful tools to 
assist us, starting from the IDE we use, to browser developer tools, and using WebGL inspector.

In the next and final chapter, we will present a diverse range of effects, tips and tricks—image processing, 
non-photorealistic shaders, and using framebuffer objects to both determine which element in our scene is 
currently picked by the mouse and to implement a shadowmap.
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CHAPTER 10

Effects, Tips, and Tricks

In this chapter, we will introduce a variety of WebGL effects, tips, and tricks such as these:

Basic image processing

Image processing using convolution filters

Antialiasing

Nonphotorealistic shaders

Framebuffers and renderbuffers

Picking objects from the canvas

Shadow map implementation

Effects
A wide variety of effects can be achieved through image-processing and convolution filters such as sharpening, 
blurring, grayscale, sepia tone, color adjustments, and edge detection.

To apply these effects, we will start by loading a texture image. Then we will alter the raw color values at each 
pixel in the texture within the fragment shader. For these examples, the setup is similar to some of the Chapter 6 
examples in which algorithms were used to create images purely within the fragment shader. This time around, 
we have a starting texture image to alter. In practice, the texture image could be from a HTMLVideoElement object, 
so we could alter streaming video on the fly using these same techniques. We will concentrate on static image 
processing.

Basic Image Manipulation
Our first example of image manipulation will show grayscale, inverted color values and a green tinted image next 
to the original texture image. We do this by first setting some effect constants and a variable to store a uniform 
value that will inform our shader which effect to use:

var  NO_EFFECT = 0,
 GRAYSCALE_EFFECT = 1,
 NEGATIVE_EFFECT = 2,
 GREEN_TINT_EFFECT = 3;
var  effectUniform = null;

When we render to the canvas, we will actually draw our scene four times, using a quarter of the 
viewport and changing the effect each time. The rendering is shown in Figure 10-1. Unfortunately, it is hard 

B. Danchilla, Beginning WebGL for HTML5
© Brian Danchilla 2012
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to see any difference in black and white print, so please visit the site http://www.beginningwebgl.com/ for a 
full colour version.

Figure 10-1. Top left: original image; top right: grayscale; bottom right: inverted colors; bottom left: tinted more green

Adjusting the viewport and rerendering allows us to easily view several variations at once and is an 
application of using multiple viewports in the same scene as discussed in Chapter 1. The code for the viewport 
setup is shown in Listing 10-1. In it, we draw four times to different areas of the viewport  and inform the fragment 
shader which effect to apply each time by changing the uniform value.

Listing 10-1. Code for the viewport setup

. . .
//top left
gl.uniform1i(effectUniform, NO_EFFECT);
gl.viewport(0, canvas.height/2.0, canvas.height/2.0, canvas.height/2.0);
drawScene();
 
//bottom left
gl.uniform1i(effectUniform, GREEN_TINT_EFFECT);
gl.viewport(0, 0, canvas.height/2.0, canvas.height/2.0);
drawScene(); 

http://www.codeproject.com/Articles/6534/Convolution-of-Bitmaps
http://dx.doi.org/10.1007/978-1-4302-3996-3_1
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//top right
gl.uniform1i(effectUniform, GRAYSCALE_EFFECT);
gl.viewport(canvas.height/2.0, 0, canvas.height/2.0, canvas.height/2.0);
drawScene();
 
//bottom right
gl.uniform1i(effectUniform, NEGATIVE_EFFECT);
gl.viewport(canvas.height/2.0, canvas.height/2.0, canvas.height/2.0, canvas.height/2.0);
drawScene();
. . .

The full code can be found in the 10/01_image_processing.html file. The vertex shader is very simple and 
passes only the original x and y coordinates onto the fragment shader:

<script type = "x-shader/x-vertex">
 attribute vec3 aVertexPosition;

 varying vec2 position;
 void main(void) {
  position = vec2(aVertexPosition.xy);
  gl_Position = vec4(position, 0.0, 1.0);
 }
</script>

The fragment shader is also simple, but may appear complex due to the if/else if branches. It is shown in 
Listing 10-2.

Listing 10-2. Fragment shader to apply no effect or one of three different image modifications

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec2 position;
 uniform sampler2D uSampler;
 uniform int uEffect;

 void main(void) {
  //convert texture coordinates from [-1, 1] clipspace to [0, 1]
  highp vec2 texCoords = position * 0.5 + .5; 

  highp vec4 texColor = texture2D( uSampler, vec2(texCoords.s, texCoords.t) );
  highp vec4 finalColor; 

  if(uEffect == 0){ //no effect
   finalColor = texColor;
  }else if(uEffect == 1){ //inverted colors
   finalColor = vec4( vec3(1.0, 1.0, 1.0) - texColor.rgb, 1.0 );
  }else if(uEffect == 2){ //grayscale
   highp float gray = (texColor.r  + texColor.g + texColor.b)/3.0;
   finalColor = vec4( gray, gray, gray, 1.0);
  }else if(uEffect == 3){ //reduced red, blue
   texColor.rb *= 0.8;
   finalColor = texColor;
  }
 
  gl_FragColor = finalColor;
 }
</script>
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In Listing 10-2, we take in the varying position from the vertex shader, which we then convert from the 
clipspace coordinate range [−1,1] to the texture range [0,1] and store in texCoords. No matter what effect is being 
applied, we first perform a texture lookup and store the result in texColor. Now we check the value of uEffect 
that was passed in and determine a final color value accordingly. If uEffect is 0 (no effect), we simply set the final 
color, finalColor, to the texColor value. If uEffect is 1 (inverted color), we compute the color as (1 – RGB). If 
uEffect is 2 (grayscale), we take the average of the sum of the individual RGB components. Finally, if uEffect is 
3, we lower the red and blue channel values. This increases the green tint of the image.

Note  In Chapter 6, when we loaded in a texture image that was used as a height map, only one of the channels 
was read from to find the grayscale color. This worked because the image was grayscale to begin with. Here, though, 
the image is full color. While using only one input color channel such as red may still produce a grayscale image, we 
can sample more input data by using a summed average of all three RGB channels. This can produce an image with 
more detail. For example, consider an input image that always has a red component of 0.0 and only the green and 
blue channels vary in value. In this case, the grayscale image produced using only the red channel will be completely 
black.

There are many other advanced methods to convert an image to grayscale. For instance, it is said that the  human 
eye does not weigh the three color channels evenly, so RGB weights of (0.3, 0.59, 0.11), respectively, are better. 
GrayValue = dot( vec3(0.3, 0.59, 0.11), color.rgb);

We will perform two more direct pixel adjustments before moving on to convolution filters. The first direct 
adjustment will swap color channels, and the second direct adjustment will create a sepia-toned image. Our 
application is nearly the same, with the following modifications:

var  COLORS_SWAPPED_EFFECT = 0,
  SEPIA_EFFECT = 1;
. . .
//rendering to just the bottom half of the viewport
//bottom left
gl.viewport(0, 0, canvas.height/2.0, canvas.height/2.0);
gl.uniform1i(effectUniform, COLORS_SWAPPED_EFFECT);
drawScene();
 
 
//bottom right
gl.viewport(canvas.height/2.0, 0, canvas.height/2.0, canvas.height/2.0);
gl.uniform1i(effectUniform, SEPIA_EFFECT);
drawScene();
. . .

And our fragment shader code for these operations now contains the following:

. . .
if(uEffect == 0){
 finalColor = texColor.gbra;
}else if(uEffect == 1){
 highp vec3 sepia = vec3(
  min( (texColor.r * .393) + (texColor.g *.769) + (texColor.b * .189), 1.0),

http://dx.doi.org/10.1007/978-1-4302-3996-3_6
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  min( (texColor.r * .349) + (texColor.g *.686) + (texColor.b * .168), 1.0),
  min( (texColor.r * .272) + (texColor.g *.534) + (texColor.b * .131), 1.0)
    );
 finalColor = vec4(sepia, 1.0);
}
. . .

If uEffect is 0 (colors swapped), we map the RGB channels around to GBR, producing the image on the 
left of Figure 10-2. If uEffect is 1(sepia tone), we use the Microsoft recommended color values to multiply the 
original RGB values with to create the sepia tone, as shown on the right of Figure 10-2.

Figure 10-2. Left: color channels swapped; right: sepia tone

We could also adjust the brightness of the image simply by multiplying all channels by a factor:

finalColor = color.rgb * brightnessFactor

Setting the brightnessFactor to 1.0 maintains the same brightness; above this value brightens the image, 
and below it darkens the image.

The preceding direct pixel adjustments are pretty cool, but also simple as they affect pixel data looked up 
from a texture directly. To produce more-complex effects, we need to look at the surrounding pixel area around 
each pixel as we will do next.

Convolution Filters
For more-complex effects, we need to look at the region around each pixel in the original image. This region 
will be an n x n matrix, where n is odd, typically of sizes 3 x 3 or 5 x 5. This smaller image region consisting of a 
weighted matrix of neighboring pixel values is known as a convolution kernel or filter. 

The weighted values of the matrix will determine the final value of the pixel. We may include the original 
pixel in the calculation or omit it completely and use only neighboring values. In Figure 10-3, the latter is the 
case, and we take an equal average of neighboring pixels, which blurs the image.

For example, the highlighted pixel in row 2 and column 2 has its final value computed as follows:

FinalColor2,2 = ( 1 * color
1,1
 + 1 * color

1,2
 + 1 * color

1,3
 +

 1 * color
2,1
 + 0 * color

2,2
 + 1 * color

2,3
 +

 1 * color
3,1
 + 1 * color

3,2
 + 1 * color

3,3

  )/8
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For a pixel near the edge, we compute the pixels in the neighborhood and average appropriately. For 
instance, the value of the top left pixel is this:

FinalColor1,1 = ( color
1,2
 + color

2,1
 + color

2,2
 )/3

In the preceding example, the original values are black or white, so the computation is easy. For color values, 
the RGB channels need to be computed separately. Above, each pixel’s value is from neighboring pixels in the 
original image. There are also filters in which neighboring values are not from the original image, but from the 
modified results. In these cases, the order of traversal is important.

To compute the final value of each pixel that a convolution matrix is applied to we also have to factor in the 
total weight of the matrix values: the sum of each individual (w1, w2. ., w9). Then we multiply the final result by 
the reciprocal of the total weight if it is nonzero or 1 if it is zero:

Figure 10-3. Top left: original image; top right: convolution filter around a single pixel; bottom left: the final color 
value of a target pixel; bottom right: the final image after each pixel has been processed

Multiplying the matrix by the reciprocal of the total weight keeps the output values within an appropriate 
range. The matrix used to compute the final image of Figure 10-3 can be represented as follows:
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As another example (shown in Figure 10-4), consider the following 4 x 5 matrix of input values shown on the 
left, the 3 x 3 kernel shown in the center, and the final value produced for one example cell shown on the right. 
The kernel only keeps the factor from the top-left corner of the neighboring matrix.

Figure 10-4. A convolution filter that only keeps the top-left value

We have enough theory now that we can start to experiment with different convolution kernels.

Sharpen
To sharpen an image, we want to increase the contrast between bordering colors. One filter that accomplishes 
this is the following:

[  0, -1,  0,
  -1,  4, -1,
   0, -1,  0 ]

We need to know the total weight of the kernel which is the sum of its, elements. Above the total weight is 
calculated as (0 – 1 + 0–1 + 4–1 + 0–1 + 0) = 0. Usually the total weight equals 1, so we do not need to do anything 
further.

This sharpening mask works by putting more weight on the center pixel and negative weight on edge values. 
When the center and edge values are the same color, the calculation will cancel each other out, while edges that 
differ from the center pixel will have their differences highlighted.

An even sharper kernel is this:

[ −1, -1, -1,
  -1,  8, -1,
  -1, -1, -1 ]

Here the total weight is also 0. If you output the image produced from this kernel, with the input image on 
the left of Figure 10-6 you get the mostly black image of Figure 10-5.
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To apply the sharpened output, we need to add this result to our original image by adding this result to our 
input image. This can be achieved directly as follows:

 [ −1, -1, -1,  [ 0,  0, 0,  [ −1, -1, -1,
   -1,  8, -1,  +   0,  1, 0, =   -1,  9, -1,
   -1, -1, -1 ]     0,  0, 0 ]     -1, -1, -1 ]

A fairly blurry image is shown on the left of Figure 10-6 along with applying both sharpen kernels to the 
original image.

Figure 10-5. Image produced from sharpen kernel

Figure 10-6. Left: original; center: sharpened; right: second sharper kernel

The matrices used to produce Figure 10-5 and the right of Figure 10-6 illustrate how a small kernel 
modification that changes the total weight can produce vastly different results.
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Blur
When we blur an image, we are essentially losing contrast. An easy way to do this is to average all the neighboring 
values for each pixel, which is known as a “box” blur. First, we set our matrix to factor in all neighboring pixels 
evenly:

var blurKernel = [
        1, 1, 1,
        1, 1, 1,
        1, 1, 1
            ];

Then we calculate the total weight, which is 9 for this matrix, and use it to produce our final matrix:

var blurKernel = [

        1/9, 1/9, 1/9,
        1/9, 1/9, 1/9,
        1/9, 1/9, 1/9
            ];

Now the total weight of this matrix is 1. A box blur will produce quick results. Another kind of blur that 
produces better results uses a Gaussian statistical distribution and is known as a Gaussian blur. The 3 x 3 kernel  
is this:

[0.045, 0.122, 0.045,
 0.122, 0.332, 0.122,
 0.045, 0.122, 0.045]

A very interesting blur filter is the Kuwahara filter, which reduces noise while preserving edges. This filter 
produces an image that looks painted.

We will now look at some filters that detect edges.

Sobel Edge Detection
A well-known filter, known as the Sobel operator, detects horizontal or vertical images (you can view the theory 
behind it at http://en.wikipedia.org/wiki/Sobel_operator). To find horizontal edges, we can use this kernel:

[ −1, 0, 1,
  -2, 0, 2,
  -1, 0, 1 ]

And to find vertical edges we can use this:

[ −1, -2, -1,
   0,  0,  0,
   1,  2,  1 ]

Notice that both these kernels do not factor in the original (central) pixel value. In Figure 10-7, we apply 
the horizontal, vertical, and combined Sobel edge detectors to the input image that is shown on the right of 
Figure 10-6.

http://en.wikipedia.org/wiki/Sobel_operator
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Lastly, we will demonstrate the emboss kernel before we show how to implement these filters within WebGL 
and build a small application to switch filters.

Emboss
Embossing can make an image look raised like bump mapping by replacing each source pixel with either a 
highlight or shadow. Embossing is often used in printing and metal work to produce raised highlights of a 
graphic. An embossed image is shown in Figure 10-8.

Figure 10-7. Sobel edge detectors—left: horizontal; center: vertical; right: both

To achieve this effect, we first take both the Sobel horizontal and vertical kernels and add them together:

var embossKernel = [
        -2, -2, 0,
        -2,  0, 2,
         0,  2, 2
             ];

Figure 10-8. An embossed image
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We can adjust the intensity of the edge detection effect by multiplying this matrix. There are four different 
effects that we can achieve by swapping the direction of the 0 diagonal and the side of this diagonal in which the 
positive/negative signs reside. The four possibilities are these:

 [    [
      -1, -1, 0,   1,  1,  0,
      -1,  0, 1,   1,  0, -1,
       0,  1, 1    0, -1, -1,
 ],    ],

[    [
       0,  1, 1,   0, -1, -1,
      -1,  0, 1,   1,  0, -1,
      -1, -1, 0    1,  1,  0,
 ],    ]

Each of these kernels will alter the direction that shadows and highlights face—either out from the surface or 
into the surface. Once we apply the kernel to our image, we then convert it to grayscale and add 0.5 to each RGB 
value. This makes the image mainly gray except for where the shadows and highlights occur.

A demo that allows you to toggle these various emboss settings is in the file 10/emboss.html.
Other common convolution filter values can be found at http://www.codeproject.com/Articles/6534/

Convolution-of-Bitmaps. Another cool interactive demo that lets you adjust many effects in real time is 
available to view at http://evanw.github.com/webgl-filter/.

In Figure 10-9, we show the simple graphical user interface (GUI) that shows an original image, effect in the 
middle, and final combined image on the right along with a select box of various effects. We will now show how 
to build this application.

Figure 10-9. A simple GUI that we will build—left: original image; center: kernel matrix effect; right: the effect 
combined with the original image

We will now show how to build the application in Figure 10-9 that displays our original image on the left, an 
image kernel by itself in the middle, and after the image filter is combined with the original image on the right. 
It also has a drop-down select list that will change the filter. The first thing we will do is define a new variable to 
store the kernel weight, the current kernel and an object containing various kernel names and values. We will 
also add an initially empty < select > element:

var  kernelUniform = null,
 kernelWeightUniform = null,
 kernels = null,
 current_kernel = "no_effect";
. . .
<select id = "filters" > </select>

http://www.codeproject.com/Articles/6534/Convolution-of-Bitmaps
http://www.codeproject.com/Articles/6534/Convolution-of-Bitmaps
http://evanw.github.com/webgl-filter/
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We attach an event listener to our select element that will store the filter value that has been selected:

$(document).ready(function(){
 $("#filters").on('change', function(evt){
  current_kernel = $(this).find(":selected").text();
 });
});

We will create a function called setKernels in which we can add properties that correspond to convolution 
arrays within our kernels JSON object (see Listing 10-3).

Listing 10-3. Declaring our kernel filters

function setKernels()
{
 kernels = {
  "no_effect": [
   0, 0, 0,
   0, 1, 0,
   0, 0, 0
  ],
  "sharpen": [
   0, -1, 0,
         -1,  4,-1,
   0, -1, 0
  ],
  "sharpen2":  [
   -1, -1, -1,
   -1,  8, -1,
   -1, -1, -1
  ],
  "sobel_edges_y":  [
   -1, 0, 1,
   -2, 0, 2,
   -1, 0, 1
  ],
  "sobel_edges_x": [
   -1, -2, -1,
    0,  0,  0,
    1,  2,  1
  ],
  "sobel_both": [
   -2, -2, 0,
   -2,  0, 2,
    0,  2, 2
  ],
  "blur": [
   1, 1, 1,
   1, 1, 1,
   1, 1, 1
  ],
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  "gaussian_blur":[
   0.045, 0.122, 0.045,
   0.122, 0.332, 0.122,
   0.045, 0.122, 0.045
  ],
  "edge_detect":[
   0,  1, 0,
   1, -4, 1,
   0,  1, 0
  ]
 };
 
 var sel = $("#filters").get(0);
 sel.options.length = 0;
 $.each(kernels, function (x) {
  sel.options[sel.options.length] = new Option(x, x);
 });
}

In Listing 10-3, we add properties that correspond to filters. Each property name is added as an option in our 
select drop-down. The core of our application now displays three viewports. The first one is constant, while the 
second one displays the result of the selected kernel, and the third one displays the sum of these two images.

When we initialize our texture, we pass its dimensions to the fragment shader :

function loadTexture()
{
 textureImage = new Image();
 textureImage.src = "./textures/sample.jpg";
}
. . .

gl.uniform2f(
 gl.getUniformLocation(glProgram, "uTexDimensions"),
 textureImage.width,
 textureImage.height
);

We shall see later in Listing 10-5 that the dimension information is needed to calculate the size of each texel 
within the [0, 1] range that it should be.

We pass the kernel array to our shader as a 1fv type: a one-dimensional float vector. Lastly, we change the 
dimensions of our canvas for this example to 768px by 256px as shown in Listing 10-4.

Listing 10-4. Passing kernels to our fragment shader

. . .
kernelUniform = gl.getUniformLocation(glProgram, "uKernel");
kernelWeightUniform = gl.getUniformLocation(glProgram, "uKernelWeight");

loadTexture();
textureImage.onload = function() {
 setupTexture();
 setKernels();

 (function animLoop(){
  setupWebGL();
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  //left
  gl.uniform1fv(kernelUniform, kernels.no_effect);
  gl.uniform1f(kernelWeightUniform, sum_array(kernels.no_effect) ) ;
  gl.viewport(0, 0, canvas.width/3.0, canvas.height);
  drawScene();
 
  var currentKernel = kernels[current_kernel].slice();
  var currentKernelWeight = sum_array(currentKernel);
 
  //center
  gl.uniform1fv(kernelUniform, currentKernel);
  gl.uniform1f(kernelWeightUniform, currentKernelWeight ) ;
  gl.viewport(canvas.width/3.0, 0, canvas.width/3.0, canvas.height);
  drawScene();
 
  //right
  //kernel result added to our original image (central pixel)
  if(current_kernel ! = "no_effect")
  {
   currentKernel[4] + = 1;
  }
 
  gl.uniform1fv(kernelUniform, currentKernel);
  gl.uniform1f(kernelWeightUniform, currentKernelWeight + 1 );
  gl.viewport(2.0 * canvas.width/3.0, 0, canvas.width/3.0, canvas.height);
  drawScene();
 
  requestAnimationFrame(animLoop, canvas);
 })();
}
. . .
 <body onload = "initWebGL()">
  <canvas id = "my-canvas" width = "768" height = "256">
  Your browser does not support the HTML5 canvas element.
  </canvas>
  <select id = "filters" > </select>
 </body>
</html> 

The sum_array function is:

 function sum_array(a)
{
 var key, sum = 0;
 for (key in a) {
  sum + = a[key];
 }
 return sum;
}
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Last but not least, let us look at our fragment shader code that takes 3 x 3 kernels and returns a final color 
value (shown in Listing 10-5):

Listing 10-5. Fragment shader code

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec2 position;
 uniform sampler2D uSampler;
 uniform highp vec2 uTexDimensions;
 uniform highp float uKernel[9];
 uniform highp float uKernelWeight;

 void main(void) {
  //convert texture coordinates from [-1, 1] to [0, 1]
  highp vec2 texCoords = position * 0.5 + .5; 

  //find the size of each pixel relative to the [0, 1] range
  highp vec2 texelSize = vec2(1.0, 1.0) / uTexDimensions; 

  //modified from http://games.greggman.com/game/webgl-image-processing/
  highp vec4 colorSum =
  texture2D(uSampler, texCoords + texelSize * vec2(-1, -1)) * uKernel[0] +
       texture2D(uSampler, texCoords + texelSize * vec2( 0, -1)) * uKernel[1] +
       texture2D(uSampler, texCoords + texelSize * vec2( 1, -1)) * uKernel[2] + 

  texture2D(uSampler, texCoords + texelSize * vec2(-1,  0)) * uKernel[3] +
       //current pixel, central in the kernel
       texture2D(uSampler, texCoords) * uKernel[4] +
       texture2D(uSampler, texCoords + texelSize * vec2( 1,  0)) * uKernel[5] + 

       texture2D(uSampler, texCoords + texelSize * vec2(-1,  1)) * uKernel[6] +
       texture2D(uSampler, texCoords + texelSize * vec2( 0,  1)) * uKernel[7] +
       texture2D(uSampler, texCoords + texelSize * vec2( 1,  1)) * uKernel[8];

  highp float weight;
     weight = uKernelWeight;
     if (0.01 > weight) {
        weight = 1.0;
  }
 
  gl_FragColor = vec4( (colorSum / weight).rgb, 1.0 );
 }
</script>

The fragment shader in Listing 10-5 computes the size of each texel based on the dimensions of the texture 
that we passed in. Then it looks up the nine locations corresponding to the kernel matrix within our texture. If the 
total kernel weight that we pass in is close to zero, we set it to 1. Finally, the fragment color is set to the weighted 
sum of the kernel values.

Combining Filters
You could very easily create a fragment shader that chains or combines operations. For example, you could 
sharpen an image and then set it to sepia tone. Or you could find edges with the Sobel filter and then add the 
results to the original image.

http://games.greggman.com/game/webgl-image-processing/
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The emboss filter in the 10/emboss.html example with output shown in Figure 10-8 is similar to Listing 10-5, 
but also does a grayscale operation and bias:

//to grayscale and bias
highp float gray = dot( (colorSum/weight).rgb, vec3(.3,.59,.11) )  + .5;
highp vec3 finalColor = vec3( gray, gray, gray );
gl_FragColor = vec4( finalColor, 1.0 );

As a final example of image filtering, we will set an image to grayscale except for hues that are close to a 
certain value. You have probably seen this effect before on TV or in photos. It makes the colored part of the image 
really stand out.

The first and third photos in Figure 10-9 are the original; the second and fourth are grayscale except for very 
red areas such as the chair material in the second image and the blue of the scarf, blanket pattern, parts of the 
sled and gloves. (see Figure 10-10). The contrast of the final image was adjusted in order to see the changes in a 
grayscale printing.

Figure 10-10. Producing grayscale images except for certain colors

The code to produce the effect in Figure 10-10 within the fragment shader is simply the following which tests 
color channel values:

. . .
//equivalent to dot( texColor.rgb, vec3(.3,.59,.11) )
highp float gray = texColor.r * .3 +  texColor.g * .59 + texColor.b * .11;

finalColor = vec3( gray, gray, gray );

if( texColor.r > 0.3 && texColor.g < 0.2 && texColor.b > 0.2 )
{
 
 finalColor = texColor.rgb;
}
. . .

We will now look at built-in antialiasing that blurs edges to be less jagged within WebGL.

Antialiasing
Aliasing refers to distortion or artifacts that result because sampling or resolution is too low. With visual images, 
this is most often caused because we are limited in the number of pixels that monitors display, and the result 
is the appearance of jagged edges. In addition to our hardware limitations, the human eye is extremely good 
at picking out edges—look away from the text in this book for a minute at the objects surrounding you and pay 
attention to how quickly and accurately you can discern the edges of these objects. When you combine these two 
factors (image limitations and the acuity of our vision), aliasing will always be an issue with graphics.
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Methods that we have at our disposal in WebGL to antialias include multisampling/supersampling, which  
take the average of multiple rendering passes with slightly different coordinate offsets. When we do this to a 
texture, it is analogous to using a blur kernel. We can also use more gradual function variations when possible; for 
instance, using smoothstep instead of step. Most antialiasing involves blurring of edges in one form or another.

By default, antialiasing is performed in the drawing buffer with the implementation dictated by the 
particular browser client. To override the defaults and set antialiasing to false, you can provide a second 
argument when obtaining a canvas context with this:

gl =  canvas.getContext("webgl", {"antialias":false}) ||
 canvas.getContext("experimental-webgl", {"antialias":false});

Of course, you would probably not want to do this unless you had a very intensive application in which 
framerate was very important or you wanted to perform your own aliasing implementation. The difference 
between turning antialiasing on and off is shown on the left of Figure 10-11 and with antialiasing turned off on 
the right.

Figure 10-11. Left: an image rendered with WebGL; right: an image rendered with WebGL and antialiasing 
disabled

The above uses the file 04/11_all_techniques.html, and a highlighted region of the image is zoomed to 
show jagged edges.

Nonphotorealistic Rendering
Usually, when we render graphics we are attempting to produce highly realistic scenes that accurately model 
the world. These types of renderings attempt to be indistinguishable from a photograph and are thus known as 
photorealistic rendering.

However, there are times when we do not want this at all, and simpler is better. Two such applications of 
nonphotorealistic rendering (NPR) are when we are trying to produce a high-contrast, cartoon-like effect and 
when we are trying to convey technical diagrams in which the details are not important, but the shapes of the 
objects are. We will discuss these two techniques now.

Cartoon Shading
Cartoon shading, also known as cel-shading, is used to mimic the look of a hand-drawn image. It is prevalent in 
many current cartoons, such as Futurama, and in films as well. To shade something with a cartoon appearance, 
we select a limited number of tones that an object can have and then pick the tone based upon the diffuse light 
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angle. There is a good interactive demo of toon-shading at http://webglsamples.googlecode.com/hg/ 
toon-shading/toon-shading.html.

Implementation of cartoon shading is straightforward once we have the diffuse term calculated. If we start 
with the shaders of the the 04/04_gouraud_phong.html example as our basis, we already have the diffuse term 
calculated in our vertex shader and passed along to our fragment shader. Now we can set the final color based on 
discrete diffuse values, as shown in the fragment shader of Listing 10-6.

Listing 10-6. Fragment shader for toon shading

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec3 vColor;
    varying highp float diffuseLambert;
 
 void main(void) {
   highp vec4 color = vec4( vColor * .1, 1.0);
 
   if (diffuseLambert > 0.9)
   {
       color = vec4( vColor * .8, 1.0);
   }else if (diffuseLambert > 0.6){
       color = vec4( vColor * .5, 1.0);
   }else if (diffuseLambert > 0.3){
       color = vec4( vColor * .3, 1.0);
  }

      gl_FragColor = color;
      //gl_FragColor = vec4(vColor * floor(diffuseLambert*10.0)*.1, 1.0);
 }
</script>

In Listing 10-6, based on the diffuse light component that was passed into the fragment shader, we set the 
component to a percentage of the original color. This produces four distinct colors for each object. The result is 
shown in the center of Figure 10-12, and uncommenting the last line produces ten distinct bands (as shown on 
the right of the figure).

Figure 10-12. Cartoon shading—left: two bands; center: four distinct colors; right: ten distinct colors

http://webglsamples.googlecode.com/hg/toon-shading/toon-shading.html
http://webglsamples.googlecode.com/hg/toon-shading/toon-shading.html
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Note  Listing 10-6 works only because each object is a constant color to begin with. If it were not, we need to 
explicitly set our constant colors between the conditions, such as the following:

  highp vec4 color = vec4( 0.1, 0.0, 0.0, 1.0);

 
  if (diffuseLambert > 0.9)
  {
      color = vec4(1.0, 0.0, 0.0, 1.0);
  }else if (diffuseLambert > 0.6){
      color = vec4(0.5, 0.0, 0.0, 1.0);
  }else if (diffuseLambert > 0.3){
      color = vec4(0.3, 0.0, 0.0, 1.0);
  }

Technical Diagrams
For technical drawings, such as those used in engineering and computer-aided design (CAD) software, details 
such as shadows and reflections are not important. In fact, they might distract from what we are trying to present. 
Instead, we want to convey a simple, consistent 3D shading. One way to accomplish this is to use the Gooch 
shader, which is named after Bruce and Amy Gooch.

The Gooch shader defines boundaries and edges in black, specular highlights in white and all other shades 
as varying from a “cold” to a “warm” color. The cold color can be blue, purple, or green; while the warm color can 
be yellow, orange, or red. The value of the color in the range can convey depth and curvature hints. Everything 
else in the scene is kept simple; there is one light which is usually above the objects.

We will use an existing implementation of the Phong lighting model, either 04/04_gouraud_phong.html 
or 04/05_phong_phong.html from Chapter 4 as our starting point. With this base, the Gooch shader is easy to 
implement because we already have all our lighting calculations in place and only need to set the final color to a 
value within our range of cold to warm hues. The only difference of these two Chapter 4 starting files is whether 
the lighting calculations occur per vertex or per fragment. A Gooch fragment shader with a per–vertex lighting 
calculation passed in is shown in Listing 10-7.

Listing 10-7. Gooch shading in the fragment shader

<script id="shader-fs" type="x-shader/x-fragment">
 varying highp vec3 vColor;
     varying highp float diffuseLambert;
     varying highp float specular;
 
 void main(void) {
   //below is modified from http://3dshaders.com/shaders/CH15-Gooch.frag.txt
  highp vec3  SurfaceColor = vec3(0.75, 0.75, 0.75);
  highp vec3  WarmColor = vec3(0.6, 0.6, 0.0);
  highp vec3  CoolColor = vec3(0.0, 0.0, 0.6);
  highp float DiffuseWarm = 0.45;
  highp float DiffuseCool = 0.45;
 

http://dx.doi.org/10.1007/978-1-4302-3996-3_4
http://dx.doi.org/10.1007/978-1-4302-3996-3_4
http://3dshaders.com/shaders/CH15-Gooch.frag.txt
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   highp vec3 kcool    = min(CoolColor + DiffuseCool * SurfaceColor, 1.0);
      highp vec3 kwarm    = min(WarmColor + DiffuseWarm * SurfaceColor, 1.0);
      highp vec3 kfinal   = mix( kcool, kwarm, diffuseLambert ); 

      gl_FragColor = vec4 ( min(kfinal + specular, 1.0), 1.0 );
 }
</script>

The per–fragment light version is similar, and full code for both can be found in the files  
10/06_gooch_vs.html and 10/07_gooch_fs.html.

The amount of cool and warm color used at each pixel in the Gooch shader depends on the diffuse light 
component, which we have calculated in our vertex shader and passed in. We also apply the specular value that 
we have calculated for the light. You can see the outcome in Figure 10-13.

Figure 10-13. Gooch shading of our Chapter 4 scene—left: vertex shader lighting; right: fragment shader

We will shift gears now and talk about the framebuffer, which is memory that stores a full frame of image 
data that can be written to and read from.

Framebuffers
The framebuffer is a type of buffer—a region of physical memory in the GPU used to temporarily hold data—that 
stores an image for rendering. A framebuffer can also have attachments, such as a color buffer, depth buffer, and 
stencil buffer. In WebGL the drawing buffer of the canvas element uses the default framebuffer, but we can also 
have extra framebuffers that are rendered “off-screen.” These alternate framebuffers are not shown to the user, 
but instead are used to store additional information such as depth or color information for later lookup. When 
we initialize our WebGL context, we can specify the depth or stencil attachments of the default framebuffer (see 
Appendix C).

To use a framebuffer, first we will create variables to store our data:

var  fbo = null,
 fboTexture = null,
 fboUniform = null;

http://dx.doi.org/10.1007/978-1-4302-3996-3_4
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Now we are ready to setup a Framebuffer object.  We will show the steps to render to an alternate 
framebuffer and some applications of using an extra framebuffer.

Creating a Framebuffer Object
To create a Framebuffer object (FBO), we call the API methods createFrameBuffer:

WebGLFramebuffer createFramebuffer();

In practice, it will look like this:

//create a framebuffer object
fbo = gl.createFramebuffer();

If we are to save the framebuffer image for use as a texture, we need to make the dimensions a power of 2. 
We can either set the dimensions in variables or as object properties of our newly created fbo object:

fbo.width = 256;
fbo.height = 256;

The preceding two lines do nothing to the FBO by themselves; they are just a convenient place to set data for 
later retrieval. If we are working on a copy of the rendering, it is useful to set the dimensions of the framebuffer 
to the size of the canvas viewport. This way, we can look up values from the alternate framebuffer on a direct 
mapping with the size of the framebuffer of the canvas.

The framebuffer itself does not allocate memory. To do this, we attach a memory buffer to it, which can be in 
the form of a WebGLTexture object or WebGLRenderbuffer object.

Attaching a Texture to the Framebuffer
The initialization of using a texture with a framebuffer differs from regular usage in that the the data is set to null 
instead of actual values. This is because we do not have the data until we render the scene:

//create the texture
fboTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, fboTexture);
gl.texImage2D(
       gl.TEXTURE_2D, 0, gl.RGBA, fbo.width, fbo.height, 0,
 gl.RGBA, gl.UNSIGNED_BYTE, null);

//attach the texture to the framebuffer
gl.framebufferTexture2D(
 gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, fboTexture, 0);
 

The API call to attach the texture to the framebuffer has this signature:
 
void framebufferTexture2D(    GLenum target, GLenum attachment, GLenum textarget,
                              WebGLTexture texture, GLint level);
 

The target is FRAMEBUFFER, and the attachment can be COLOR_ATTACHMENT0, DEPTH_ATTACHMENT, STENCIL_
ATTACHMENT, or DEPTH_STENCIL_ATTACHMENT. In the preceding code, we are storing color information in the 
texture and so use a COLOR_ATTACHMENT0 attachment.
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Binding the Framebuffer
We now have to tell WebGL which framebuffer to render output to by binding it with an API call to this:

void bindFramebuffer(GLenum target, WebGLFramebuffer framebuffer);

The target is FRAMEBUFFER. If the framebuffer object value is null, WebGL will use the default framebuffer 
of the canvas element.

To set rendering to our new framebuffer, we would use this:

gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);

Using an alternate framebuffer has the effect that the current rendering is not visible on the screen. Our full 
code to set up an alternate framebuffer and render to it is shown in Listing 10-8.

Listing 10-8. Setting up and rendering to an alternate framebuffer object

    var fbo = null,
 fboTexture = null;
 . . .
 glProgram.fboUniform = gl.getUniformLocation(glProgram, "uFBO");
 createFBO();
 
 (function animLoop(){
  . . .
 })();
 
 function createFBO()
 {
  //create frambuffer object
  fbo.width = 256;
  fbo.height = 256;
  gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);
 
  //create the texture
  gl.bindTexture(gl.TEXTURE_2D, fboTexture);
  gl.texImage2D(
        gl.TEXTURE_2D, 0, gl.RGBA, fbo.width, fbo.height, 0,
    gl.RGBA, gl.UNSIGNED_BYTE, null);
         gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
      gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
      gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
      gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
 
  //attach the texture
   gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0,
   gl.TEXTURE_2D, fboTexture, 0);

  //render the scene to the fbo
  setupWebGL();
  gl.uniform1i(glProgram[0].fboUniform, 1);
  gl.viewport(0, 0, fbo.width, fbo.height);
  drawScene();
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  //attach the texture to the framebuffer object
  gl.bindTexture(gl.TEXTURE_2D, null);
  gl.bindFramebuffer(gl.FRAMEBUFFER, null);
 }

The glProgram[0].fboUniform variable in Listing 10-8 will be used to switch our fragment shader 
functionality, as we will now show.

Note   The createFBO call is outside of the render loop, but if we move our scene around, we need to rerender 
to the FBO each time the scene shifts positions in our view. If you place the createFBO( ) call inside of the render 
loop, make sure that you keep these lines outside or you will create a new WebGLFramebuffer and WebGLTexture 
object each time through:
fbo = gl.createFramebuffer();

fboTexture = gl.createTexture();

Changing Shader Functionality per Framebuffer
We can now render to either the regular drawing buffer or to extra framebuffers. We will have our fragment 
shader either perform Phong lighting or simply  use the color passed in from the vertex shader, depending on the 
uFBO integer uniform:

<script id = "shader-fs" type = "x-shader/x-fragment">
 . . .
 uniform int uFBO;
     varying highp vec4 vColor;
 
 void main(void) {
  //initialize the color to the varying value passed in
  highp vec4 color = vColor;

  if(uFBO == 0)
  {
   //apply complex Phong lighting calculations
   . . .
   color = phongBasedColor;
      }
      gl_FragColor = color;
}
</script>

We will render our scene twice. The first time it will be to the canvas framebuffer context and use the Phong 
lighting model. The second time we will render to the FBO that we have set up with basic color rendering.

We cannot actually see what is rendered to the alternate framebuffer. To demonstrate what it contains, we will 
render to the canvas a second time, as shown in Figure 10-14, this time using the framebuffer texture. However, 
the image does not look right because we can see only part of two of the spheres. This is occurring because a 
framebuffer by default does not perform depth testing as it does not have a depth component. The image on the 
right of Figure 10-14 is produced by reversing the order of rendering, which improves the viewed objects; but the 
front sphere is completely visible even though the bottom should be hidden. We will fix depth testing for the entire 
scene by adding a DEPTH_ATTACHMENT to the framebuffer which already has a COLOR_ATTACHMENT0.
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You can see in Figure 10-14 that there is aliasing going. We can limit the aliasing artifacts by performing 
better texture filtering with this:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR_MIPMAP_NEAREST);
gl.generateMipmap(gl.TEXTURE_2D);

To render using the framebuffer texture, we have defined two programs and switch between them as you can 
see if you examine the full source code of the file 10/08_framebuffer_lookup.html.

Listing 10-9 shows the current render loop, which renders to the canvas twice and the alternate  
framebuffer once.

Listing 10-9. Rendering the same scene representing multiple FBOs by splitting the viewport

(function animLoop(){
 if( !paused ){ 
  setupWebGL();

  //draw to canvas twice
  gl.bindFramebuffer(gl.FRAMEBUFFER, null);
  gl.uniform1i(glProgram[0].fboUniform, 0);
     gl.viewport(0, 0, canvas.width/2.0, canvas.height);
  drawScene();

  //we will draw the framebuffer texture once to the regular canvas
  //as well, just so that we can see what is going on
  gl.useProgram(glProgram[1]);
  gl.bindTexture(gl.TEXTURE_2D, fboTexture);
  gl.viewport(canvas.width/2.0, 0, canvas.width/2.0, canvas.height);
  drawFBOContents();
  gl.bindTexture(gl.TEXTURE_2D, null);
  gl.useProgram(glProgram[0]);
 }
 requestAnimationFrame(animLoop, canvas);
})();

The example at this point can be found in the 10/08_framebuffer_lookup.html file. Now we will add a 
DEPTH_ATTACHMENT so that we can do depth testing in the framebuffer.

Figure 10-14. Left: Phong shading; center: basic color FBO with no depth buffer; right: basic color FBO with no 
depth buffer and object render order adjusted
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Adding a Depth Attachment
As mentioned, we can provide attachments to a framebuffer in the form of textures or a WebGLRenderbuffer 
object. We have shown how to store the color information in a texture. It could have alternatively been stored 
in a WebGLRenderbuffer object. For the depth information, we will use a WebGLRenderbuffer attachment to the 
framebuffer.

As with textures and framebuffers, you must bind a renderbuffer to override the default value.The API calls 
to create and bind a WebGLRenderbuffer are these:

WebGLRenderbuffer createRenderbuffer()
void bindRenderbuffer(GLenum target, WebGLRenderbuffer renderbuffer)

In our code, it will look like this:

var rbo = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER, rbo);

Setting the renderbuffer to null will unbound the current object from the RENDERBUFFER target. Next we 
have to tell WebGL how much size to allocate for the renderbuffer with the API call:

void renderbufferStorage(GLenum target, GLenum internalformat, GLsizei width, GLsizei height)

The target will be RENDERBUFFER, and the format we will use will be DEPTH_COMPONENT16. All possible 
internalformat values are listed in Appendix C. In our code, this declaration will look like this:

    gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, fbo.width, fbo.height);

The preceding code tells WebGL to allocate enough memory in the currently bound renderbuffer to hold 
(fbo.width*fbo.height) 16–bit depth values.

Analogously to how we set up our texture as an attachment to the framebuffer, we now set up the 
renderbuffer as an attachment of the framebuffer:

//setup attachments
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, fboTexture, 0);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, rbo)

The API signature for the new method above is this:

void framebufferRenderbuffer( GLenum target, GLenum attachment,
                                GLenum renderbuffertarget,
                                WebGLRenderbuffer renderbuffer );

Rerunning the code now, which is in the 10/09_framebuffer_with_depth.html file, produces the expected 
result on the right of Figure 10-15.
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You might be thinking that this was quite a bit of work to produce an image less impressive than the original. 
Why bother? Well, remember that the offscreen framebuffer can be used to look up values. We will discuss two 
applications of this next.

Picking Objects
So far, we have discussed throughout the book how to project 3D coordinates onto 2D canvas space. But how 
do we find the 3D coordinates from a 2D canvas point? An application of this is “picking”—being able to grab 
the proper object associated with a point. But how do we do this? There could be several objects sharing the 
same (x,y) coordinate. One method for complex scenes is to use a scene graph that is basically a tree-like 
representation of objects that helps keep track of spatial relationships of objects. This is one of the features that 
the SceneJS framework (scenejs.org) is centered around.

Another technique is to assign (and keep track of) a distinct color for each object and render it to an  
off-screen buffer. Then when the user clicks the mouse in the scene, we can look up the color value of the  
pixel and immediately know what object was clicked. Pretty cool, eh? In the example that produced  
Figure 10-15, we already have a distinct color for each object, so do not need to add code for this part  
of the technique. In practice, you would just store an object mapping and pass in different uniform colors  
to the shader, such as these:

var myObjectColors = {
       0: {"name": "sphere1", "color": [0, 255, 0]},
       1: {"name": "cube", "color": [255, 0, 0], },
       2:. . .
     };

This lets you have up to 2553 unique colors that should be more than enough to use this technique  
especially if you can restrict selection to a particular region and subset of objects within your scene. The name 
property is mostly for the programmer/users benefit, while the numeric index could map to VBOs, and the  
color property would be passed in as a vec3 uniform to the fragment shader for the offscreen FBO  
rendering pass.

Figure 10-15. Left: Phong shading; right: basic colored FBO with a depth attachment
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Looking Up a Value
To look up the current color of a location on the canvas, we can use the API call:

void readPixels( GLint x, GLint y, GLsizei width, GLsizei height,
                 GLenum format, GLenum type, ArrayBufferView pixels);

Note  The value (0,0,0,0) is returned by readPixels for any pixel outside of the bound framebuffer.

The code to capture a click event and look up the pixel value of the mouse position is not that long and is 
shown in Listing 10-10. We just need to switch the active framebuffer and then restore it to the default canvas 
framebuffer after we are done with our readPixels call.

Listing 10-10. Code to look up the color value from an alternate framebuffer

$(this).on("click", "canvas", function(evt){
 gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);
 var status = gl.checkFramebufferStatus(gl.FRAMEBUFFER);

 if (status == gl.FRAMEBUFFER_COMPLETE)
 {
  var pixelValues = new Uint8Array(4);
  gl.readPixels(evt.clientX, 255 - evt.clientY, 1, 1, gl.RGBA,
   gl.UNSIGNED_BYTE, pixelValues);
 
  if(pixelValues[0] == 255 && pixelValues[1] == 0 && pixelValues[2] == 0)
  {
   console.log( "Location: (" + evt.clientX + ", " + evt.clientY +
     ") is in the RED sphere!");
  }else if( pixelValues[0] == 255 && pixelValues[1] == 255 &&
    pixelValues[2] == 0)
  {
   console.log( "Location: (" + evt.clientX + ", " + evt.clientY +
     ") is in the YELLOW sphere!");
  }else if( pixelValues[0] == 0 && pixelValues[1] == 255 &&
    pixelValues[2] == 0)
  {
   console.log( "Location: (" + evt.clientX + ", " + evt.clientY +
     ") is in the GREEN sphere!");
  }
 }
 gl.bindFramebuffer(gl.FRAMEBUFFER, null);
});

Console log messages will look like those in Figure 10-16 when using the application.
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The working program is in the 10/10_picking.html file. The 10/11_picking_moving.html file demonstrates 
the scene being animated and the FBO being regenerated in each frame. You can extend the example by 
changing the active sphere color while it is clicked or allowing the sphere to be moved or thrown when picked.

Shadow Map Implementation
To implement the shadow map that we discussed in Chapter 4, we look at the scene from the lights perspective 
and render to an off-screen framebuffer. The framebuffer setup is the same as it was for the picking example (see 
Listing 10-8), as outlined in the framebuffers section of the chapter. This involves using a separate MVP matrix for 
the light’s perspective such as this:

var lightMVMatrix = mat4.lookAt([5, 0, 5], [0, 0, 0], [0, 1, 0]);

This function call will return the model view matrix representation obtained by setting the light’s camera 
position to [5,0,5], telling it to look at the origin [0,0,0], and that the “up” direction of the camera is [0,1,0]. Our 
shader program for the first pass, which will calculate and store the nearest depth value of each (x,y) coordinate 
as seen from the light, is shown in Listing 10-11.

Listing 10-11. Depth storage shader program

<script type="x-shader/x-vertex">
 uniform mat4 uLightMVMatrix;
 uniform mat4 uPMatrix;
 
 attribute vec3 aVertexPosition;
 
 void main(void) {
  gl_Position = uPMatrix * uLightMVMatrix * vec4(aVertexPosition, 1.0);
 }
</script>
 

Figure 10-16. Clicking a sphere now logs a message to the console

http://dx.doi.org/10.1007/978-1-4302-3996-3_4
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<script id="shader-fs" type="x-shader/x-fragment">
 //http://spidergl.org/example.php?id=6
 highp vec4 pack_depth( const in highp float depth ) {
  const highp vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0,
         256.0 * 256.0,
         256.0,
         1.0 );
  const highp vec4 bit_mask  = vec4( 0.0,
         1.0 / 256.0,
         1.0 / 256.0,
          1.0 / 256.0 );
  highp vec4 res = fract( depth * bit_shift );
  res -= res.xxyz * bit_mask;
  return res;
 }
 
 //http://www.nutty.ca/?page_id=352&amp;link=shadow_map
 highp vec4 pack_depth2 (highp float depth)
 {
  const highp vec4 bias = vec4(
            1.0 / 255.0,
            1.0 / 255.0,
            1.0 / 255.0,
            0.0
                                                  );
 
  highp float r = depth;
  highp float g = fract(r * 255.0);
  highp float b = fract(g * 255.0);
  highp float a = fract(b * 255.0);
  highp vec4 colour = vec4(r, g, b, a);

  return colour - (colour.yzww * bias);
 }
 
 void main()
 {
     gl_FragColor = pack_depth( gl_FragCoord.z );
     //gl_FragColor = pack_depth2( gl_FragCoord.z );
 }
</script>

In Listing 10-11, the vertex shader is a basic MVP transform, but this time uses the light model view matrix. 
The fragment shader, although long, has one main line that takes the z coordinate after transformation and stores 
it as a color value. I have shown two similar packing functions that use the bits of each color channel to store a 
broader range of depth values. Since the packing functions use a different channel order, the colors of the image, 
if rendered to the canvas (as shown on the center and right of Figure 10-17), will vary. The first function results in 
green-blue values and the second results in white-red values.

http://spidergl.org/example.php?id=6
http://www.nutty.ca/?page_id=352&amp;link=shadow_map


CHAPTER 10  EFFECTS, TIPS, AND TRICKS

296

Next, we render the scene a second time and look up the stored depth value for each fragment. If the current 
fragment is closer than the value stored in the texture, we render it as normal; otherwise, we darken it or make 
it completely black to represent that it is shadowed. In our application we need to add one more matrix, which 
converts clipspace coordinates to texture coordinates:

shadowBiasMatrix = mat4.create();
mat4.identity(shadowBiasMatrix);
mat4.scale(shadowBiasMatrix, [0.5, 0.5, 0.5], shadowBiasMatrix);
mat4.translate(shadowBiasMatrix, [1.0, 1.0, 1.0, 1.0], shadowBiasMatrix);

The contents of the shadowBiasMatrix will be the following:

   [ 0.5, 0.0, 0.0, 0.5,
 0.0, 0.5, 0.0, 0.5,
 0.0, 0.0, 0.5, 0.5,
 0.0, 0.0, 0.0, 1.0
   ]

In the vertex shader, we calculate the shadow coordinate by transforming each input coordinate by the light 
model view matrix, projection matrix, and then light bias:

shadowPosition = uShadowBiasMatrix * uPMatrix * uLightMVMatrix * vec4(vertexShifted, 1.0);

This vector is passed on to the fragment shader, in which it is compared with the stored depth value that we 
pass in as a FBO texture attachment:

///////////////////////   shadowmap specific code   ///////////////////////
highp vec3 shadowCoordZDivide = shadowPosition.xyz/shadowPosition.w;
 
highp vec4 rgba_depth = texture2D( uFBOTexture, shadowCoordZDivide.xy );
highp float depth = unpack_depth( rgba_depth );
//highp float depth = unpack_depth2( rgba_depth );
 
highp float visibility = 1.0;
highp float bias = 0.00005; //used to reduce self shadow, "shadow acne"

if( shadowCoordZDivide.z > (depth - bias) )
{
 visibility = 0.5;
}

Figure 10-17. Left: a rendered shadow map; center: first pack function depth map; right: second pack function 
depth map
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///////////////////////   end shadowmap specific code   ///////////////////////
. . .
gl_FragColor = vec4(color.rgb * visibility, color.a);

The first thing we do here is divide the shadowPosition by the homogeneous w coordinate in order to get 
Cartesian coordinates in the clipspace range. Then we look up the stored depth value for this (x,y) coordinate 
from our texture uniform. As we packed the depth values in the first shader pass, we now need to unpack the 
values in order for comparisions to make sense. We will show the implementation of the unpack functions after 
explaining the rest of the preceding code. Finally, we compare the current fragment z-value, which has been 
converted to the light projection with the stored value minus a small bias amount. If the input fragment is greater 
than the stored value, it means that it lies behind a closer fragment that the light can see and so is in shadow.

You can use either pack/unpack function in combination but cannot mix them. The code for the unpack 
functions is this:

//http://spidergl.org/example.php?id=6
highp float unpack_depth( const in highp vec4 rgba_depth ) {
 const highp vec4 bit_shift = vec4(
  1.0 / ( 256.0 * 256.0 * 256.0 ),
  1.0 / ( 256.0 * 256.0 ),
  1.0 / 256.0,
  1.0
    );
 highp float depth = dot( rgba_depth, bit_shift );
 return depth;
}

//http://www.nutty.ca/?page_id=352&amp;link=shadow_map
highp float unpack_depth2 (highp vec4 colour)
{
 const highp vec4 bitShifts = vec4(
  1.0,
  1.0 / 255.0,
  1.0 / (255.0 * 255.0),
  1.0 / (255.0 * 255.0 * 255.0)
 );
 return dot(colour, bitShifts);
}

The result of this program is displayed on the left of Figure 10-17. The full code is in the 10/12_shadow.html 
file. Applying a shadow map to the textured, blended, foggy image at the end of Chapter 4 has been demonstrated 
in the 10/13_all_techniques.html file and is shown in Figure 10-18.

http://spidergl.org/example.php?id=6
http://www.nutty.ca/?page_id=352&amp;link=shadow_map
http://dx.doi.org/10.1007/978-1-4302-3996-3_4
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In Figure 10-18, the left image enables blending and disables the depth test during the depth pass. On 
the right, all objects produce shadows. Alternatively, you could pass in a uniform value that varies the shadow 
visibility based on the amount of transparency.

It is left to the reader to implement this and investigate further techniques such as percentage-closer filtering 
(PCF), which produces softer shadows and less aliasing.

Summary
This chapter demonstrated a variety of image-processing techniques that can be extended for real-time video 
processing and animation usage. We have also presented nonphotorealistic rendering and gone over framebuffer 
basics and setup. Finally, we have shown two applications of using an off-screen framebuffer: picking and a 
shadow map.

I sincerely hope that you have enjoyed the material presented in this book. There are many more advanced 
topics that you can now look forward to moving on to, and the knowledge that you gained here should help you 
on your quest.

Stop by the companion website at http://www.beginningwebgl.com if you have not already done so to give 
your feedback on the book, report errata, and request and view other tutorials and examples.

In the afterword, we will discuss the future of WebGL—at least as much as can be predicted at this point—
based on current browser and mobile support and scheduled feature additions.

Figure 10-18. Left: semitransparent objects do not cast a shadow; right: all objects cast a shadow

http://www.beginningwebgl.com
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AFTERWORD

The Future of WebGL

What does the future hold for WebGL? In this afterword, we will discuss both what WebGL has going for it and 
some concerns, and speculate on its future.

In order for WebGL to have a bright future and not fail like other past 3D browser attempts such as the 
Virtual Reality Markup Language (VRML), it needs the following:

Support

Adoption from the development community, especially game developers

Improvements and active development

Support
Here we will look at support from browsers and devices.

Browser support
As mentioned in the book introduction, Chrome and Firefox do a very good job of supporting WebGL. Safari and 
Opera are improving, and IE does not have plans to natively support WebGL anytime soon. While five years ago 
this could be a disaster, IE does not command the market share that it used to enjoy—Chrome has surpassed it 
and Firefox is not far behind.

Mobile Device support 
The level of mobile devices that currently support WebGL is small but will improve with each new device released 
and should be much higher in 2013.

Right now, there are several mobile browsers that support WebGL: Firefox Mobile, Android Browser, Opera 
Mobile (Android only), BlackBerry Playbook, and iOS Mobile Safari (supported for only iAd at the moment).

The mobile market share is growing and is an important area in which to gain ground. As Adobe recently 
announced that it will be discontinuing mobile Flash support, WebGL has an even better opportunity to establish 
itself as the go-to technology for mobile 3D.

The site http://webglstats.com/ by Florian Boesch has some very interesting statistics on the current 
support of various WebGL metrics across browsers, devices, and operating systems.

http://webglstats.com/
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Adoption
As mentioned in this book, Google has used WebGL for its Body, Map, and Earth applications.

We showed in Chapter 9 that Firefox is using WebGL for a new 3D debugging visualization of the 
Document Object Model (DOM). It is important to get support and usage from the big name companies, and 
this is happening with support from Google, Mozilla, Apple and Opera. It is also important to get well-written 
frameworks that lower the bar to 3D coding. Frameworks such as Three.js are already easy to use and will 
continue to get better.

What WebGL Has Going for It

No plugin needed.

The timing is right. 3D in the browser is more useful now than back when VRML tried. 
GPUs are more powerful. WebGL is part of the larger movement of HTML5 and related 
technologies, which adds many browser enhancements which are making it possible to 
create applications previously only possible on the desktop.

“For a couple of decades, the web has been sipping that power through a straw but with 
WebGL, it’s as if the straw had been replaced by a fire hose when it comes to graphic 
processing power . . .” http://www.tnl.net/blog/2011/10/23/webgl-and-the-future-
of-the-web/

Web applications do not have platform compatibility issues or need to be installed.

WebGL frameworks are making it easier all the time to get started with WebGL.

For the experienced graphics programmers, the ability to tweak WebGL at a low level is 
extremely useful.

Many awe-inspiring demos.

Transparent development of the specification.

Experience and existing developers. Khronos is also in charge of OpenGL and Collada. 
There are many current OpenGL and OpenGL ES developers who can fairly easily pick 
up/transition to the WebGL API.

Concerns
WebGL is powerful and very promising. However it is a relatively new language and has some concerns which 
include these:

Lack of Microsoft support. As mentioned previously, this is not as big a deal as it would 
have been when Microsoft dominated the browser demographic. Whether it is not 
supporting WebGL because of security concerns or because of interest in its own DirectX 
technology, only Microsoft can say for certain.

Security concerns.  GPU blacklists, and newer graphics cards with improved security 
will help with GPU concerns. Other web security measures such as cross-origin resource 
sharing will enable flexibility while maintaining security.

Flash or other technology being used for 3D instead. As mentioned, Flash discontinuing 
mobile support helps alleviate this concern.

http://www.tnl.net/blog/2011/10/23/webgl-and-the-future-of-the-web/
http://www.tnl.net/blog/2011/10/23/webgl-and-the-future-of-the-web/
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Performance issues with JavaScript . JavaScript is slow. Improvements have been made 
such as typed arrays, and more optimizations are being investigated.

Game developers need to get on board. This point will now be expanded upon.

Game Developers 
An excellent blog entry at http://codeflow.org/entries/2011/sep/11/webgl-and-html5-challenges-for- 
the-future/ by Florian Boesch explains how WebGL needs game developers to adopt it. In the entry several 
features that are needed by game developers are listed with those relating to WebGL specifically being: multiple 
render targets, geometry instancing, texture lookup in the vertex shader, and floating-point textures. Current 
support for these features by browser can be found at the webglstats.com link mentioned here.

Active Development
The WebGL specification, future extensions, and browser implementations are all under active development. 

Extensions
The WebGL language has extensions to the core that are in development and can be viewed at  
http://www.khronos.org/registry/webgl/extensions/. Of the extensions currently listed, three in  
particular that will be useful are these:

Anisotropic filtering, which improves the quality of textures that are viewed at an  
oblique angle

Depth textures for shadow maps

Compressed textures

Future features that could be added soon include these:

More extensions, such as cross-context sharing or multiple render targets.

Multithreading in web workers. This would allow uploading textures and data without 
blocking the main thread.

Asynchronous context creation and resource sharing between contexts.

The Final Word
Nothing in technology is certain, but I firmly believe that WebGL is here to stay—or I wouldn’t have taken the 
time and energy to write this book. WebGL is a very promising technology being developed at the right time 
when browsers are under rapid release cycles and are supporting more advanced features daily. It is also a time 
when more and more powerful computers are being crammed into mobile devices everywhere. WebGL is already 
a very useable technology. Framework improvements will help lower the bar for new developers, more debug 
and utility tools will be created, and performance will continue to improve.

http://codeflow.org/entries/2011/sep/11/webgl-and-html5-challenges-for-the-future/
http://codeflow.org/entries/2011/sep/11/webgl-and-html5-challenges-for-the-future/
http://www.khronos.org/registry/webgl/extensions/
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APPENDIX A

Essential HTML5 and JavaScript

There are many, many improvements and features that are either part of HTML5 or associated with it: 
geolocation, new input types, form validation, local storage, and web sockets (to name a few). Covering 
everything new is both not feasible and not desired here—there are recent large books that do so in depth.

Essential HTML5
While you will not need to know everything new and great about HTML5 to follow along with this book, to 
maximize your understanding of the code samples we will present the relevant differences from HTML 4 that you 
need to be aware of.

Brevity
First, HTML5 allows more compact writing of a document by standardizing the opening tags and having 
shorthand for scripts and styles. In HTML 4, you would have something like code Listing A-1 below:

Listing A-1. A minimalistic HTML 4 document

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
      <TITLE>Example</TITLE>
      <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
      <style type="text/css">
       body{ color: #222222; }
      </style>
      <script type="text/javascript">
                        . . .
       </script>
 </head>
 <body>
  <p>Some text</p>
 </body>
</html>
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With HTML5, the equivalent document is shorter and clearer to write, as shown in Listing A-2. You do not 
have to declare transitional or strict in your doctype, just the simple and clean <!doctype html>. We can also 
leave out the type attribute for the style and script tags because JavaScript and CSS are the default.

Listing A-2. A minimalistic HTML5 document

<!doctype html>
<html>
 <head>
      <meta charset="UTF-8">
      <title>Example</title>
      <style>
              body{ color: #222222; }
      </style>
      <script>
                      . . .
      </script>
 </head>
 <body>
      <p>Some text</p>
 </body>
</html>

Semantic Areas
We just showed that HTML5 has some nice shorthand over HTML 4. HTML 5 also lets you outline your document 
in a more natural and expressive manner. In the past, if you wanted a header and footer area of your page, one 
way of styling would be to group the relevant content in a <div> with an appropriately expressive id attribute 
value such as that shown in Listing A-3.

Listing A-3. HTML 4 document with id used to mark major sections

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
      <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
      <title>Example</title>
 </head>
 <body>
      <div id="header">
   my header stuff
      </div>
      <div id="main-content">
   <p>Some text</p>
      </div>
      <div id="footer">
   my footer stuff
      </div>
 </body>
</html>
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With HTML5, we have many new included tags such as <header> and <footer>, which make this markup 
cleaner and the sections more natural as shown in Listing A-4.

Listing A-4. HTML5 document with new semantic tags for major page sections

<!doctype html>
<html>
 <head>
      <meta charset="UTF-8">
  <title>Example</title>
 </head>
 <body>
      <header>
   my header stuff
      </header>
      <div id="main-content">
   <p>Some text</p>
      </div>
      <footer>
   my footer stuff
      </footer>
 </body>
</html>

Other new structural elements are article, aside, figcaption, figure, hgroup, nav, and section. There are 
new non-structural elements as well—such as audio, canvas, time, and video—and new attributes for existing 
elements, but we will cover only the new canvas element in this book.

The <canvas> Element
For graphics programming within the browser, the most important difference between HTML 4 and 5 is the 
addition of the <canvas> element. This new element allows the scriptable rendering of graphics within the 
browser. The canvas element has width, height, and id attributes. The area within a canvas element can be 
manipulated with the JavaScript language. Most modern browsers support the <canvas> element, which has 
markup like this:

      <canvas id="my-canvas" width="600" height="400">
          Your browser does not support the HTML5 canvas element.
      </canvas>

The text within the tag is displayed only if the browser does not support the <canvas> tag.

<canvas> Context
Because canvas supports more than one graphics API, to start rendering in a canvas, we must first specify the  
API we wish to use. We do this with the getContext(contextId, args. . .) function, where the first argument is the 
context name such as ‘2d’ or ‘webgl’, and additional arguments are optional and dependent on which API is used.

<script>
         var canvas = document.getElementById("my-canvas");
         var context = canvas.getContext('webgl');
   //draw something awesome
</script>
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<canvas id="my-canvas" width="600" height="400">
 Your browser does not support the HTML5 canvas element.
</canvas>

Essential JavaScript
Ideally the reader has some JavaScript experience. However, some readers will have zero JavaScript experience—
possibly coming from the world of OpenGL. If this describes you, I highly recommend doing some independent 
JavaScript research on a site such as https://developer.mozilla.org/en/JavaScript, which presents many 
very good learning references. In this section, we recap a few basic JavaScript concepts, but it is not intended to 
be used as a thorough reference.

JavaScript variables are typeless. Variables are declared with var:

var name = "Brian";
var age = 30;

Although typeless, certain operations are dependent on the stored value. Here the "+"operator is used as 
either addition or string concatenation depending on the context:

var one = 1;
console.log(15 + one); //16
console.log("15" + one); //"151"
  

To declare an array:
  
var color = [1.0, 0.0, 0.0];  //or
  
var color = [];
color.push(1.0);
color.push(0.0);
color.push(0.0);
console.log(color); //[1, 0, 0]

To declare an JavaScript Object Notation (JSON) object:

var my_object = {};
my_object.name = "Brian";
my_object.age = 30;
my_object.color =  [0.0, 0.2, 1.0]
  

or equivalently:
  
var my_object = {
 name: "Brian",
 age: 30,
 color:  [0.0, 0.2, 1.0]
};

Although JavaScript has objects, it does not have classes. Objects can simulate class behavior and contain 
functions:

var my_object = {
 name: "Brian",
 age: 30,
 color:  [0.0, 0.2, 1.0],

https://developer.mozilla.org/en/JavaScript
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        getName: function (){
               return "My name is " + this.name;
        }
};

my_object.getName(); //"My name is Brian"

Self-invoking Anonymous Functions
We will sometimes make use of self-invoking anonymous functions, which look like this:

(function (){
 //executed immediately
 //not global scope for variables
})();

The previous function calls itself (self-invoking) and is nameless (anonymous). An advantage of this type 
of method is that the scope of all variables declared within it are not global. In this way, it is considered a best 
practice to wrap part or all of our JavaScript code in a self-invoking function.

A variation of the self-invoking anonymous function is a self-invoking function. For example, in the book we 
use a named function called animLoop and call it again within each loop—creating an endlessly running loop:

 (function animLoop (){
 if ( !paused ){
 setupWebGL();
 setMatrixUniforms ();
 drawScene();
 }
 requestAnimationFrame(animLoop, canvas);
 })();

Note  The applications in the book use many global variables. This is not a good practice, but easiest and most 
practical for the types of fairly small standalone applications presented in the book.

jQuery
jQuery is a hugely popular JavaScript library available at http://jquery.com/. There is nothing you can do with 
jQuery that you cannot do with core JavaScript, but you will probably be able to achieve the result quicker and 
using less but more-readable code.

First, we need to include the jQuery library in our code:

<script src="http://code.jquery.com/jquery-latest.js"></script>

jQuery enables easy Document Object Model (DOM) traversal. With regular JavaScript, to find an element 
with id value "super-dog" you would use this:

document.getElementById("super-dog");  

With jQuery you would use one of the following:

  $ ("#super-dog");
  

http://jquery.com/
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or  

jQuery("#super-dog");

To find the third td cell of the fifth row of an HTML <table> with an id of "super-dog" with jQuery you 
would use this:

$("#super-dog tr:5 td:3");

So, you can also use CSS selectors! To find all the links on an HTML page with class "menu" and store the 
href values with jQuery, you would use the following:

var links = [];
$ ("a.menu").each (function(){
 links.push ( $(this).attr("href") );
});

Both of these operations are not nearly as straightforward with regular JavaScript.

You need to ensure that the entire DOM has loaded before traversing it. Two ways to accomplish this are to 
place the jQuery code just before the closing </body> tag or to wrap code in a document ready block:

$(document).ready(function(){
 var links = [];
 $ ("a.menu").each (function(){
   links.push ( $(this).attr("href") );
 });
 console.log(links);
});  

Two more features of jQuery that make it popular are its abstraction of Ajax calls, which we cover in the 
book, and also its chainability. We can call a function and then call a function on that function, and so on. For 
example:

$ ("#super-dog tr").each (function(){
         $(this).find("td span.new").
                 addClass("old").
                 removeClass("new").
                 closest("tr").
                 next().
                 find("td span.old").
                 addClass("dead").
                 removeClass("old");
});  

This is a contrived example, but it is valid and illustrates the power of jQuery. For each row in the table, we 
find spans with class "new" and switch them to "old". Then we find the closest tr parent element (we could have 
nested tables where we have multiple tr parents), find the next sibling row, and this time find spans with "old" 
classes and change them to "dead" classes.
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Graphics Refresher

It is assumed throughout this book that the reader has a basic understanding of 3D graphics but we will refresh 
memories of some relevant topics in this appendix.

Pixels
When we digitally represent an image on a computer screen, it is composed of a rectangular grid of individual 
points of color known as pixels. This type of a representation is known as a raster graphic or bitmap. How true to 
the original image the displayed image appears depends on the number of pixels on the screen: the resolution. 
In Figure B-1, we show an input image on the left, a 4 × 4 pixel grid representation in the center and a 16 × 16 
grid representation on the right. As the resolution increases, the difference between the original image to the 
rendered image decreases.

Figure B-1. Left: an input image; center: 4 × 4 pixel output; Right: 16 × 16 pixel output

Primitives
Graphics primitives are the smallest building blocks that we can compose images and scenes with. The 
primitives available to us depend on the language used and can be points, lines, polygons such as triangles and 
quadrilaterals, or solid shapes in some higher-level languages.
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Colors
A color has several properties, including hue (tint), saturation (darkness), and value (intensity). In fact, colors can 
be represented by these three properties in the Hue-Saturation-Value (HSV) color model. There is more than one 
way to represent colors, though, depending on whether we are using additive or subtractive color theory, and the 
application usage such as printing an image or displaying it to a screen.

When we print images, the subtractive CMYK model is often used, which has four channels comprised of 
Cyan, Magenta, Yellow, and a darkness (K). This is why some printers have a color CMY cartridge and a black 
cartridge.

On computer monitors, color values are typically expressed using the additive RGBA scheme that has four 
channels that comprise Red, Green, Blue, and Alpha (transparency) values. Each channel value can range from 
0.0 to 1.0 in floating point, 0 to 255 in integer values, or 0×000000 to 0×ffffff in hexadecimal values.

To convert from CMY to RGB we take [(1.0, 1.0, 1.0) – CMY]. So yellow in CMY is (0.0, 0.0, 1.0) and 
in RGB is (1.0, 1.0, 0.0). In this book, we will exclusively use the RGB(A) color model.

Note  More information on the RGBA color format can be found on Wikipedia at  
http://en.wikipedia.org/wiki/RGBA_color_space.

Coordinate Systems
The Cartesian coordinate system is named after the mathematician, philosopher, and writer Rene Descartes and 
uses (x,y) pairs in two dimensions and (x,y,z) triplets in three dimensions. The origin is the intersection of all the 
axes. In two dimensions, this is (0,0), and in three dimensions it is (0, 0, 0). For each axis, values increase on one 
side of the origin and decrease on the other. There are two separate 3D coordinate system orientations, as shown 
in Figure B-2. The difference between them is the z direction in relation to the x and y axes.

Figure B-2. Two distinct 3D coordinate system orientations
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Transforms
Elementary or affine transforms alter the vertices of a figure. There are three elementary transforms: translation, 
rotation, and scaling, as shown in Figure B-3.

http://en.wikipedia.org/wiki/RGBA_color_space
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A translation of a painted region 3 positions to the right and 2 positions up is shown in Figure B-4.

Figure B-3. Transforms of a translation (left), a rotation (middle), and a scale (right)

Figure B-4. Translation of an image

A rotation of an image subregion 90 degrees clockwise around its center pixel is shown in Figure B-5.

Figure B-5. Rotation of an image

A scaling of two times the original size of a painted subregion is shown in Figure B-6.
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Graphics programming uses a lot of mathematics, and although libraries can abstract away much of the 
calculations, it is good to know some essentials.

Math
The first things that we should know are angles, degrees, pi, and radians.

Angles
An angle is formed when two rays intersect, as shown on the left of Figure B-7. Technically, an angle is a measure 
of the quotient of the arc length of the two rays and the radius when inscribed inside of a circle, as shown on the 
right of Figure B-7. A circle has 360 degrees, so angles are sometimes measured in degrees.

Figure B-6. Scaling of an image

Figure B-7. Left: two rays forming an inner angle; right: angle inside of a circle

Pi
The constant number pi, represented as π, is approximately 3.14159 which is the ratio of a circle’s circumference 
to its diameter. Pi is used extensively in trigonometry, geometry, and other branches of mathematics.
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Radians
In addition to degrees, we have radians which are defined as 360 degrees = 2π radians. This means that 1 radian 
is about 57.3 degrees. Figure B-8, shows various angles and the radian values of the four quadrant right angles. 
Angle A looks to be about 45 degrees and E is about 150 degrees, which makes angle B about 30 degrees. Angle D 
looks like it is -60 degrees, which would make angle C about 30 degrees.

Figure B-8. Various angles of rotation
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The relations of the angles and sides of a triangle are studied in the branch of mathematics known  
as trigonometry.

Trigonometry
For a right-angled triangle (one angle is exactly 90 degrees) and another angle in the triangle, we can know the 
ratio of the side lengths. Figure B-9 shows the hypotenuse (side opposite the right angle), opposite and adjacent 
sides in relation to the angle.

Figure B-9. The sides of a right-angled triangle
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Given these sides and angle, , we can express the angle in terms of the sides as follows:

sin  = opposite/hypotenuse
cos  = adjacent/hypotenuse
tan  = opposite/adjacent

These relations are often memorized as soh, cah, and toa, which are the acronyms of the relation names  
and sides.

Rotations
In two dimensions, a rotation uses the rotation matrix:

    [cosA –sinA] [x] = [xcosA - ysinA]
    [sinA  cosA] [y] = [xsinA + ycosA]

We can use these equations to calculate the new x, y coordinates after a rotation of A degrees.

Vectors
With two points with coordinates (x

1
,y

1
,z

1
), (x

2
,y

2
,z

2
) we will now define some useful calculations.

Dot Product
The dot product returns a scalar value by returning the sum of component-wise multiplications of two input 
vectors:
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Cross Product
The cross product (x,y,z) returns a vector perpendicular to the plane formed by two input vectors. As such, we 
use it to find normal vectors. The cross product is computed as follows:
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Length
The length between two points can be calculated as the square root of the sum of the squares of each component 
difference:
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APPENDIX C

WebGL Spec. Odds and Ends

This appendix contains some parts of the specification that we mentioned but did not fully cover and are listed 
here for reference.

WebGLContextAttributes
When we obtain our WebGL context, we can optionally pass it an object containing some or all of the following 
properties:
  
dictionary WebGLContextAttributes {
    boolean alpha = true;
    boolean depth = true;
    boolean stencil = false;
    boolean antialias = true;
    boolean premultipliedAlpha = true;
    boolean preserveDrawingBuffer = false;
};
  

We showed how to preserve the drawing buffer in a Chapter 5 projectile example using this:

gl = canvas.getContext("webgl",  {preserveDrawingBuffer: true}) ||
     canvas.getContext("experimental-webgl",  {preserveDrawingBuffer: true});

By preserving the buffer contents instead of automatically swapping buffers, we can see the trail of object 
movement and also produce effects such as motion blur. If performance is key and we do not need alpha or 
depth testing, we can disable those attributes. If we need the stencil buffer, we can enable it. We showed in 
Chapter 10 how to disable antialiasing. The premultipliedAlpha value affects how the alpha component of the 
canvas affects the overall color of the image. Setting this value to false makes the WebGL color calculation of the 
canvas element the same as the 2D context does.

Texture Properties
In Chapter 3, we glossed over some texture options.
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Cube Map Targets
For cube mapped textures, the target property can be one of these:
  
TEXTURE_CUBE_MAP, TEXTURE_BINDING_CUBE_MAP,
TEXTURE_CUBE_MAP_POSITIVE_X,TEXTURE_CUBE_MAP_NEGATIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y,TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z,TEXTURE_CUBE_MAP_NEGATIVE_Z,
MAX_CUBE_MAP_TEXTURE_SIZE

texImage2D
Formats for the texture can be as follows:

ALPHA:    Alpha
RGB:    R, G, B color
RGBA:   R, G, B color and alpha
LUMINANCE:  Luminance
LUMINANCE_ALPHA:  Luminance, alpha

And the types can be these:

UNSIGNED_BYTE
UNSIGNED_SHORT_4_4_4_4
UNSIGNED_SHORT_5_5_5_1
UNSIGNED_SHORT_5_6_5

With the following combinations being legal:

UNSIGNED_BYTE / RGBA, RGB, LUMINANCE, LUMINANCE_ALPHA
UNSIGNED_SHORT_4_4_4_4 / RGBA
UNSIGNED_SHORT_5_5_5_1 / RGBA
UNSIGNED_SHORT_5_6_5 / RGB

Framebuffer and RenderBuffer Targets and Attachments
In Chapter 10, we introduced framebuffers and renderbuffers. Additional legal attachment/format combinations 
are these:
  
DEPTH_ATTACHMENT/DEPTH_COMPONENT_16
STENCIL_ATTACHMENT/STENCIL_INDEX8
DEPTH_STENCIL_ATTACHMENT/DEPTH_STENCIL
  
Color attachment: COLOR_ATTACHMENT0
Addition formats: RGBA, RGBA4, RGB5_A1, RGB565, STENCIL_INDEX

The following concurrent attachment combinations are illegal:

DEPTH_ATTACHMENT / DEPTH_STENCIL_ATTACHMENT
STENCIL_ATTACHMENT / DEPTH_STENCIL_ATTACHMENT
DEPTH_ATTACHMENT / STENCIL_ATTACHMENT
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Additional Resources

WebGL is an emerging technology with many aspects. I have done my best to compile good supplemental 
learning resources in this appendix.

Companion Website
You can find companion websites to this book at the following addresses:

Beginning WebGL
http://www.beginningwebgl.com/

gitHub Page
https://github.com/bdanchilla/beginningwebgl

Due to the volatile nature of the web quickly creating deadlinks, and resources that become obsolete or new 
resources that spring up, please refer to the companion website for up-to-date revisions of the resources listed in 
this appendix.

Topics
Further resources for many of the technologies mentioned in this book are listed here (alphabetically).

Ajax
XMLHttpRequest Specification
http://www.w3.org/TR/XMLHttpRequest/

Mozilla XMLHttpRequest Page
https://developer.mozilla.org/En/XMLHttpRequest/Using_XMLHttpRequest

Debugging
Khronos debugging wiki page
http://www.khronos.org/webgl/wiki/Debugging

WebGL Inspector
http://benvanik.github.com/WebGL-Inspector/

http://www.beginningwebgl.com/
https://github.com/bdanchilla/beginningwebgl
http://www.w3.org/TR/XMLHttpRequest/
https://developer.mozilla.org/En/XMLHttpRequest/Using_XMLHttpRequest
http://www.khronos.org/webgl/wiki/Debugging
http://benvanik.github.com/WebGL-Inspector/
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Demos
Cutting-edge Chrome WebGL experiments
http://www.chromeexperiments.com/webgl

Khronos demo repository
http://www.khronos.org/webgl/wiki/Demo_Repository

Nice water demo
http://madebyevan.com/webgl-water/

HTML
HTML 5 and 4 differences
http://www.w3.org/TR/html5-diff/

Canvas Element
http://www.w3.org/TR/html5/the-canvas-element.html

JavaScript
Douglas Crockford site
http://javascript.crockford.com/

jQuery
http://jquery.com/

JSON
http://www.json.org/

LAMP, MAMP, and WAMP
MAMP
http://www.mamp.info/en/index.html

XAMPP
http://www.apachefriends.org/en/index.html

EasyPHP
http://www.easyphp.org/

Bitnami
http://bitnami.org/

OPEW
http://sourceforge.net/projects/opew/

Browser Setting Adjustment
https://github.com/mrdoob/three.js/wiki/How-to-run-things-locally

Libraries and Frameworks
Framework listings
http://www.khronos.org/webgl/wiki/User_Contributions

http://www.chromeexperiments.com/webgl
http://www.khronos.org/webgl/wiki/Demo_Repository
http://madebyevan.com/webgl-water/
http://www.w3.org/TR/html5-diff/
http://www.w3.org/TR/html5/the-canvas-element.html
http://javascript.crockford.com/
http://jquery.com/
http://www.json.org/
http://www.mamp.info/en/index.html
http://www.apachefriends.org/en/index.html
http://www.apachefriends.org/en/index.html
http://bitnami.org/
http://sourceforge.net/projects/opew/
https://github.com/mrdoob/three.js/wiki/How-to-run-things-locally
http://www.khronos.org/webgl/wiki/User_Contributions
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GLGE
Project Page
http://www.glge.org

Tutorial
http://www.rozengain.com/blog/2010/06/23/hands-on-webgl-basic-glge-tutorial/

PhiloGL
Project Page
http://www.senchalabs.org/philogl/

Resources
http://www.slideshare.net/philogb/leaving-flatland-getting-started-with-webgl-sxsw-2012

Three.JS
Project page
https://mrdoob.github.com/three.js/

Documentation
http://mrdoob.github.com/three.js/docs/latest/

Wiki
https://github.com/mrdoob/three.js/wiki

Learning Resources: Paul Lewis
http://aerotwist.com/tutorials/

Learning Resources: Jerome Etienne
http://learningthreejs.com/

Nice Diagrams of Overall Objects
http://ushiroad.com/3j/
http://www.12devsofxmas.co.uk/2012/01/webgl-and-three-js/

Lighting
Direct Illumination models
http://www.lighthouse3d.com/tutorials/glsl-tutorial/directional-lights-ii/
http://www.ozone3d.net/tutorials/glsl_lighting_phong_p3.php

Phong Reflection Model
http://en.wikipedia.org/wiki/Phong_reflection_model

 Figure 3-13 is a variation of http://en.wikipedia.org/wiki/File:Phong_components_version_4.png  
which is Licensed under the GNU Free Documentation License

Global Illumination Models
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter38.html

http://www.glge.org
http://www.rozengain.com/blog/2010/06/23/hands-on-webgl-basic-glge-tutorial/
http://www.senchalabs.org/philogl/
http://www.slideshare.net/philogb/leaving-flatland-getting-started-with-webgl-sxsw-2012
https://mrdoob.github.com/three.js/
http://mrdoob.github.com/three.js/docs/latest/
https://github.com/mrdoob/three.js/wiki
http://aerotwist.com/tutorials/
http://learningthreejs.com/
http://ushiroad.com/3j/
http://www.12devsofxmas.co.uk/2012/01/webgl-and-three-js/
http://www.lighthouse3d.com/tutorials/glsl-tutorial/directional-lights-ii/
http://www.ozone3d.net/tutorials/glsl_lighting_phong_p3.php/
http://en.wikipedia.org/wiki/Phong_reflection_model/
http://en.wikipedia.org/wiki/File:Phong_components_version_4.png
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter38.html
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Ambient Occlusion
http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch14.pdf
http://en.wikipedia.org/wiki/Screen_Space_Ambient_Occlusion
http://www.gamerendering.com/category/lighting/ssao-lighting/

Reflection and Refraction
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch17.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter19.html

Shadow Mapping
http://fabiensanglard.net/shadowmapping/index.php

Mathematics
Wolfram Mathworld
http://mathworld.wolfram.com

Fractals
http://users.erols.com/ziring/mandel.html
http://66.39.71.195/Derbyshire/manguide.html
http://davis.wpi.edu/~matt/courses/fractals/index.htm
http://www.fractalforums.com/

Matrix and Vector Libraries
gl-matrix.js
https://github.com/toji/gl-matrix

sylvester
http://sylvester.jcoglan.com/

webgl-mjs
http://code.google.com/p/webgl-mjs/

Benchmarks
http://stepheneb.github.com/webgl-matrix-benchmarks/matrix_benchmark.html

Mesh File Formats
Wavefront (obj) format
http://en.wikipedia.org/wiki/Wavefront_OBJ

Collada format
http://en.wikipedia.org/wiki/COLLADA

Three.js internal JSON format
https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3.0

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch14.pdf
http://en.wikipedia.org/wiki/Screen_Space_Ambient_Occlusion
http://www.gamerendering.com/category/lighting/ssao-lighting/
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch17.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter19.html
http://fabiensanglard.net/shadowmapping/index.php
http://mathworld.wolfram.com
http://users.erols.com/ziring/mandel.html
http://66.39.71.195/Derbyshire/manguide.html
http://davis.wpi.edu/~matt/courses/fractals/index.htm
http://www.fractalforums.com/
https://github.com/toji/gl-matrix
http://sylvester.jcoglan.com/
http://code.google.com/p/webgl-mjs/
http://stepheneb.github.com/webgl-matrix-benchmarks/matrix_benchmark.html
http://en.wikipedia.org/wiki/Wavefront_OBJ
http://en.wikipedia.org/wiki/COLLADA
https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3.0
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Performance and Best Practices
Mozilla Developer Network Best Practices
https://developer.mozilla.org/en/WebGL/WebGL_best_practices

Gregg Tavares Google I/O 2011
http://www.youtube.com/watch?v=rfQ8rKGTVlg
http://games.greggman.com/game/webgl-techniques-and-performance/
 http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en//
events/io/2011/static/notesfiles/WebGLTechniquesandPerformancenotes.pdf

Profiling with about: tracing
http://www.html5rocks.com/en/tutorials/games/abouttracing/

Physics
Learning
http://www.physicsclassroom.com

WebGL Demos
http://www.ibiblio.org/e-notes/webgl/gpu/contents.htm

Javascript Libraries:

Box 2D Ports
http://code.google.com/p/box2dweb/
https://github.com/kripken/box2d.js

Bullet Port
https://github.com/kripken/ammo.js/

Cannon
https://github.com/schteppe/cannon.js

physi.js
http://chandlerprall.github.com/Physijs/

Tutorials
http://creativejs.com/2011/09/box2d-javascript-tutorial-series-by-seth-ladd/
http://learningthreejs.com/blog/2012/06/05/3d-physics-with-three-js-and-physijs/
 http://www.html5gamedevs.com/2012/01/18/webgl-bullet-js-experiences-history-programming-
slides/

WebGL
Current browser support
http://caniuse.com/#search=webgl

Khronos group wiki
http://www.khronos.org/webgl/wiki/Main_Page
http://www.khronos.org/webgl/wiki/Tutorial#Creating_the_Shaders

WebGL Specification
http://www.khronos.org/registry/webgl/specs/latest/

https://developer.mozilla.org/en/WebGL/WebGL_best_practices
http://www.youtube.com/watch?v=rfQ8rKGTVlg
http://games.greggman.com/game/webgl-techniques-and-performance/
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en//events/io/2011/static/notesfiles/WebGLTechniquesandPerformancenotes.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en//events/io/2011/static/notesfiles/WebGLTechniquesandPerformancenotes.pdf
http://www.html5rocks.com/en/tutorials/games/abouttracing/
http://www.physicsclassroom.com
http://www.ibiblio.org/e-notes/webgl/gpu/contents.htm
http://code.google.com/p/box2dweb/
https://github.com/kripken/box2d.js
https://github.com/kripken/ammo.js/
https://github.com/schteppe/cannon.js
http://chandlerprall.github.com/Physijs/
http://creativejs.com/2011/09/box2d-javascript-tutorial-series-by-seth-ladd/
http://learningthreejs.com/blog/2012/06/05/3d-physics-with-three-js-and-physijs/
http://www.html5gamedevs.com/2012/01/18/webgl-bullet-js-experiences-history-programming-slides/
http://www.html5gamedevs.com/2012/01/18/webgl-bullet-js-experiences-history-programming-slides/
http://caniuse.com/#search=webgl
http://www.khronos.org/webgl/wiki/Main_Page
http://www.khronos.org/webgl/wiki/Tutorial#Creating_the_Shaders
http://www.khronos.org/registry/webgl/specs/latest/


APPENDIX D  ADDITIONAL RESOURCES

322

Learning WebGL
http://learningwebgl.com/blog/

Mozilla Developer area
https://developer.mozilla.org/en/WebGL

Opera Developer area
http://dev.opera.com/articles/view/porting-3d-graphics-to-the-web-webgl-intro-part-2/

Reference Card
http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf

Presentations
http://www.khronos.org/webgl/wiki/Presentations

Tutorials
http://www.html5rocks.com/en/features/graphics

Blending
http://mrdoob.com/lab/javascript/webgl/blending/blendfunc.html

WebGL Future
Challenges and predictions
http://www.irrlicht3d.org/pivot/entry.php?id=1255
http://codeflow.org/entries/2011/sep/11/webgl-and-html5-challenges-for-the-future/
http://www.tnl.net/blog/2011/10/23/webgl-and-the-future-of-the-web/

Support statistics
http://www.riastats.com/
http://webglstats.com/

Extension Registry
http://www.khronos.org/registry/webgl/extensions/

WebGL SL (OpenGL ES SL)
OpenGL ES 2.0 Shading Language version 1.0
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

WebGL quick reference card available
http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf

Online GLSL editors
http://webglplayground.net/
http://spidergl.org/meshade/
http://www.kickjs.org/example/shader_editor/shader_editor.html

Existing shaders
 http://code.google.com/p/glslang-library/source/browse/trunk/trunk/glslang/shaders/material/

http://learningwebgl.com/blog/
https://developer.mozilla.org/en/WebGL
http://dev.opera.com/articles/view/porting-3d-graphics-to-the-web-webgl-intro-part-2/
http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
http://www.khronos.org/webgl/wiki/Presentations
http://www.html5rocks.com/en/features/graphics
http://mrdoob.com/lab/javascript/webgl/blending/blendfunc.html
http://www.irrlicht3d.org/pivot/entry.php?id=1255
http://codeflow.org/entries/2011/sep/11/webgl-and-html5-challenges-for-the-future/
http://www.tnl.net/blog/2011/10/23/webgl-and-the-future-of-the-web/
http://www.riastats.com/
http://webglstats.com/
http://www.khronos.org/registry/webgl/extensions/
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
http://webglplayground.net/
http://spidergl.org/meshade/
http://www.kickjs.org/example/shader_editor/shader_editor.html
http://code.google.com/p/glslang-library/source/browse/trunk/trunk/glslang/shaders/material/(/Literal
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Index

� A
Ajax, 317
Anisotropic filtering, 301
Antialiasing, 282–283

� B
Bitmap. See Raster graphics
Box2D physics engines, 225
Bui Tuong Phong. See Phong shading
Bullet physics engines, 225
Bump mapping, 162

� C
Camera

capture, 119
control zoom, 119
mouse wheel, 119–120
rotate, mouse movement, 118–119
shader program, 120

Canvas 3D Library, 206
Cartesian coordinate system, 310
Cartoon shading, 283–285
Cel-shading. See Cartoon shading
Collaborative design activity file  

format, 215
Companion websites, 317
Convolution filters, 271

blur, 275
combining filters, 281–282
description, 271–273
emboss, 276–281
sharpen, 273–274
Sobel edge detection, 275–276

CopperLicht, 207
Cross-Origin Resource Sharing  

(CORS), 60

� D
Debugging, 317
Debugging and performance, 233. See also Graphical 

processing unit (GPU)
browser developer tools

console tab, 235
3D visualization, 236
log messages and error messages, 236
network statistics, 235
sandbox, 237
source code, 236

browser resources
browser vs. GPU power, 253
JavaScript files, 253
textures, 253

bugs/buggy, 233
common pitfalls

browser differences, 248
external shader errors, 249
GPUs, 248
incompatible contexts, 247
mobile device precision, 247
resource, 248
textures, 248
virtual camera, 247

context errors
creation, 238
loss and restoration, 238–239

fragment shader, 252
integrated development environment,  

233–234
jQuery, 234
measuring framerate, 250–251
optimizations, 251
unit testing code, 247
WebGL

attribute location, 246
binding, 247
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bottlenecks, 252
buffers tab, 241
draw calls, 245
error codes, 237
invalid keyword, 246
pixel history, 246
programs tab, 242
state tab, 243
textures, 241
timeline metrics, 243
trace tab, 244

webgl-debug.js, 239–240
Demos, 318

� E
Effects, 267

convolution filters, 271
blur, 275
combining filters, 281–282
description, 271–273
emboss, 276–281
sharpen, 273–274
Sobel edge detection, 275–276

description, 267
image manipulation, 267

description, 267
fragment shader, 269
uEffect, 270–271
viewport setup code, 268–269

Emboss filter, 276–281

� F
File formats, 214

Collada format (.dae), 215
JSON, 215–216
Wavefront format (.obj), 214–215

Fog, 106–107
Fractals, 139, 144

IFSs, 156
Julia set, 147
L-systems, 156–157
Mandelbrot and Julia sets interaction, 147

HTML form, 148–150
JavaScript Event Listeners, 150–153
passing information and animation, 153–155

Mandelbrot set, 144–146
TRIANGLE_STRIP call, grid mesh, 157–161

Framebuffer object (FBO), 287
Framebuffers, 286

binding, 288–289
depth attachment, 291–292
description, 286

FBO creation, 287
and renderbuffers, 316
shader functionality, 289–290
texture attachment, 287
WebGLRenderbuffer attachment,  

291–292
Frameworks, 205

C3DL, 206
CopperLicht, 207
description, 205
GLGE, 207
Jax, 207
KickJS, 207
personal preference, 206
philoGL

cube rotation code, 208–211
description, 207

popularity, 206
power and function, 206
SceneJS, 207
support and activity, 206
TDL, 207
Three.js, 208
usability, 206

� G
GLGE, 319

Collada file loading, meshes, 222–224
cube render code, 211–213
description, 207

GL Shading Language (GLSL), 33
angle and trigonometric functions,  

46–47
built-in constants, 44
built-in variables, 44
exponential functions, 47
geometric functions, 48–49
graphics pipelines (see Graphics pipelines)
KickJS Shader Editor, 51
math functions, 47–48
matrix and vector functions, 49–50
primitive types, 42
procedural shaders, 51

discard function, 53–56
gradient color, 52
stripes, 53

qualifiers
invariant, 44
order, 44
parameter, 43
precision, 43
storage, 42–43

SpiderGL MeShader, 51
texture and lookup functions

Debugging and performance (cont.)
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2D texture functions, 50
3D texture functions, 50
noise functions, 50

vector and matrix operations, 45–46
vector components, 44–45
WebGL Playground, 51

Gooch shading, 285–286
Gouraud shading, 96
Graphical processing unit (GPU)

batch draw calls, 253
buffer switching, 254
cache state (gl.getX/gl.readX), 254
calculations, 258–259
cooked-up

draw calls, 260
interleaved data, 261–262
matrix values, 264
multiple objects, 259
render loop, 260–261
sphere data, 263–264
textures, 263
three thousand objects, 261

features, 255
getError queries, 254
index buffers, 258
interleaved arrays

offset, 258
separate data, 256–257
stride, 257–258

painting, 139
color lookups, 141–144
gradient and varying luminosity, 141
square plane, 139–140

redundancy, 254
shader programs, 254
techniques, 259
texture atlas, 254–255
typed arrays, 255–256

Graphics pipelines
fixed functionality, 33–34
OpenGL ESSL, 35
programmable pipelines, 34
rendering process, 34–35
shaders, 34

clean up, 38–39
fragment shader, 37
setting up, 37–38
using jQuery, 41
vertex shader, 36–37
with Ajax, 39
XMLHttpRequestObject, 39–40

Graphics refresher, 309
cartesian coordinate system, 310
color, 310
math

angles, 312
pi, 312
radians, 313
rotations, 314
trigonometry, 313–314
vectors, 314

pixels, 309
primitives, 309
transforms

rotation, 311
scaling, 311
translation, 311

� H
Height maps, 139, 161

bump/normal mapping, 162
vertex and fragment shader, 161

Henri Gouraud. See Gouraud shading
HTML5, 303

brevity, 303–304
<canvas> element

context, 305–306
marup, 305

resources, 318
semantic areas, 304–305

� I
Image manipulation, 267

description, 267
fragment shader, 269
uEffect, 270–271
viewport setup code, 268–269

Integrated development environment (IDE), 233–234
Intercollisions

bounding boxes and spheres, 127–128
conservation of momentum, 128
different mass, 130–131
mass, 129
rectangle, 127
uniform mass collisions, 128–129

Iterated function systems (IFSs), 156

� J
JavaScript

jQuery, 307–308
JSON, 306
resources, 318
self-invoking anonymous functions, 307
variables, 306–307

JavaScript Object Notation (JSON), 306
description, 215
Three.js
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with core WebGL, 221–222
exporting a mesh, 219
mesh loading, 219–221

Jax, 207
jQuery, 307–308

� K
KickJS, 207
Kinetic energy (KE). See Potential energy (PE)

� L
LAMP, 318
Libraies and Frameworks, 318
Lindenmayer systems (L-systems),  

156–157
Lighting, 57, 75

ambient, 7576, 77–80
diffuse, 75
directional, 75, 77–80
normal vectors, 76
point, 76, 81
specular, 75
vs. textures, 81–83

� M
MAMP, 318
Math

angles, 312
pi, 312
radians, 313
rotations, 314
trigonometry, 313–314
vectors

cross product, 314
dot product, 314
length, 314

Meshes, 213
Collada file loading, with GLGE,  

222–224
existing models, 214
file formats, 214

Collada format (.dae), 215
description, 214
JSON, 215–216
Wavefront format (.obj), 214–215

modeling resources, 214
Three.js, 216

Blender module, 216–219
JSON format, 219–224

� N
Nonphotorealistic rendering (NPR), 283

cartoon shading, 283–285
description, 283
technical diagrams, 285–286

� O
.obj 3D file format, 14–15

� P, Q
Particle systems, 139, 166

attributes, 166
enhancements, 168–170
life cycle, 166
update function, 167–168
with WebGL, 166

Performance. See Debugging and performance
PhiloGL, 319

cube rotation code, 208–211
description, 207

Phong reflection/illumination model
Blinn-Phong calculations, 102
Gouraud shader, 98–100
Phong shader, 100–102
shininess values, 102
specular reflection, 98

Phong shading, 96–98
Physics, 115, 321

code setup
interacts, 118
mouse wheel, 119–120
rotate, mouse events, 118–119
sphere properties, 117
storing information, 117–118
VBO, 116

collisions, 126
forces acts

acceleration, 116
rates, 116
scalars and vectors, 115

gravity
acceleration properties, 124–125
bounce back up, 123–124
bouncing balls, 126
colliding and falling, 122–123
free falling, 120–122
nonperfect elasticity, 125–126

intercollisions
bounding boxes and spheres, 127–128
conservation of momentum, 128

JavaScript Object Notation (JSON) (cont.)
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different mass, 130–131
uniform mass collisions,  

128–129
kinematics, 115
potential energy

collisions, 136–137
friction, 134
properties, 136
three-dimensional, 134
variables, 135
velocities, 137
vertex and indice values, 135

projectiles
drawing context, 134
equations, 132
factors, 132
gl-matrix.js, 133
key shortcuts, 132–133
path, 131
velocity vector, 132

scope, 115
velocity, three dimensions, 126

Physics engines, 225
Box2D, 225
Bullet, 225
sphere collisions code, 227–231

Picking objects, 292
color value look up code, 293
console log messages, 294
description, 292

Pixels, 309
Potential energy (PE)

collisions, 136–137
friction, 134
properties, 136
three-dimensional, 134
velocities, 137
vertex and indice values, 135

Productivity tools, 205
frameworks, 205

C3DL, 206
CopperLicht, 207
description, 205
GLGE, 207, 211–213
Jax, 207
KickJS, 207
personal preference, 206
PhiloGL, 207–211
popularity, 206
power and function, 206
SceneJS, 207
support and activity, 206
TDL, 207
Three.js, 208
usability, 206

meshes, 213
existing models, 214
file formats, 214–216
importing, exporting and format  

conversion, 216–224
modeling resources, 214

physics engines, 225
Box2D, 225
Bullet, 225
sphere collisions code, 227–231

shaders, 224
textures, 224–225

Projectiles
drawing context, 134
equations, 132
factors, 132
gl-matrix.js, 133
key shortcuts, 132–133
path, 131
velocity vector, 132

� R
Raster graphics, 309
Realism, 85

ambient occlusion, 108
atmospheric fog, 106–107
blending, 109–112
depth buffer, 109
final image, 85
harder shadows, 108
light implementation

attenuation, 103–104
direct illumination models, 106
global illumination models, 106
Phong illumination model, 98–102
shading models, 91–98
spotlights, 104–106

reflection and refraction
final image, 113
fresnel effect, 113
fresnel shader, 113
glass/water, 112

setup
plane class, 87–88
spheres, 88–91
vector operations, 86–87

shadow maps, 108–109
softer shadow, 108

Renderbuffers. See Framebuffers
Resources, 317

Ajax, 317
companion websites, 317
debugging, 317
Demos, 318
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GLGE, 319
HTML, 318
JavaScript, 318
LAMP, MAMP and WAMP, 318
libraies and framwork, 318
lighting, 319–320
mathematics, 320
matrix and vector libraries, 320
mesh file formats, 320
performance and best practices, 321
PhiloGL, 319
physics, 321
Three.JS, 319
WebGL

browser, 321–322
future, 322
SL, GL and ES, 322

� S
SceneJS, 207
Shaders, 224
Shading models

flat shading method, 91–94
lambert reflection, 94–96
normal vectors, 91–92
smooth shading, 91, 96–98

Gouraud shading, 96
Phong shading, 96–98

Shadow map implementation, 294
depth storage shader program, 294–295
description, 294
packing functions, 295
percentage-closer filtering (PCF), 298
unpack function code, 297

Sobel operator, 275

� T, U
Terrain, midpoint displacement, 162

iterations of, 163
recursive function, 164–165

texImage2D, 316
Texture properties

cube map targets, 316
texImage2D, 316

Textures, 57, 58, 224–225
application and shader interaction, 61
coordinates, 58
data storage, 64–65
3D object, 66

coordinates, 66
data changes, 68–70

uPMatrix and uMVMatrix, 67–68
useTexture flag, 71–72

filtering, 62–63
images, 59–60
vs. lighting, 81–83
mipmaps, 65
multiple textures, 72

application changes, 72–73
shader program changes, 73–74

objects, 58–59
texel, 58
texImage2D, 59
toggling state, 70–72
vertex shader, 61–62
width and height, 58
wrapping, 63–64

Three dimensions. See Velocity
Threedlibrary (TDL), 207
Three.js framework, 173, 319

Blender module, 216–219
background, 173
color

clear color, 180
object creation, 179
RGB values, 180

core object types, 175
custom mesh

geometry object, 185–186
movement, 188–189
separate vertex colors, 186–188

2D canvas context, 183–184
description, 208
directory structure, 174–175
2D Rendering, 185
features, 174
Hello World

addMesh function, 178
initWebGL function, 178
queries, 176–177
rectangular cuboid, 176
renderer object, 179
setupRenderer, 178

import/export, 202
JSON format

with core WebGL, 221–224
exporting a mesh, 219
mesh loading, 219–221

library code, 174
lighting, 180–181
lighting and textures

addLight( ), 199
initWebGL method, 197–198
parameter, 198
particle system, 199–201

Resources (cont.)
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shaders, 197
variables, 197

meshes
flat shading, 182
THREE.Mesh, 181
torus geometry, 182
wireframe, 183

object updates, 183
ShaderMaterial

setupShaderMaterial method, 193–194
setupTexture ( ), 196
shader program, 194
source code, 195
variables, 193
vertex shader, 196

shaders, 184
textures

custom coordinates, 191–193
ShaderMaterial, 193–196

tQuery, 202–203
triangular prism, 189–191
usage, 175

Transforms
rotation, 311
scaling, 312
translation, 311

� V
Velocity, 126
Vertex buffer object (VBO), 61, 116

� W, X, Y, Z
WAMP, 318
WebGL, 1

animation and model movement, 22
movement creation, 23–24
using requestAnimationFrame, 22–23

blank canvas, 1–2
browser, 321–322
color attributes, 20–22
color buffers, 4

context, 2–4
depth buffers, 5
framework (see Frameworks)
future, 299, 322

active developments, 301
adoption, 300
browser support, 299
extensions, active developments, 301
features, 300
Flash technology, 300
for gamers, 301
framework improvements, 301
JavaScript performance concerns,  

301
lack of Microsoft support, 300
mobile device support, 299
security concerns, 300

primitive types, 5
shaders, 8–16
SL, GL and SL, 322
stencil buffers, 5
three-dimensional rendering, 26

depth testing, 31–32
gl-matrix library, 26–28
using Index buffer, 29–31

vertex data, 6
attributes and uniforms, 7–8
Vertex Buffer Objects (VBOs), 6–7

view, 16
clip coordinates, 17–18
manipulate coordinates, 18
matrix library, 26
model-view matrix, 24–25
projection matrix, 25
viewport, 18–20

WebGLContextAttributes, 315
WebGL spec. odds and ends, 315

framebuffers and renderbuffers, 316
texture properties

cube map targets, 316
texImage2D, 316

WebGLContextAttributes, 315
Web workers, multithreading, 301
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