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Introduction

WebGL (Web-based Graphics Language) is a wonderful and exciting new technology that lets you create
powerful 3D graphics within a web browser. The way that this is achieved is by using a JavaScript API that
interacts with the Graphics Processing Unit (GPU). This book will quickly get you on your way to demystify
shaders and render realistic scenes. To ensure enjoyable development, we will show how to use debugging tools
and survey libraries which can maximize productivity.

Audience

Beginning WebGL for HTMLS5 is aimed at graphics enthusiasts with a basic knowledge of computer graphics
techniques. A knowledge of OpenGL, especially a version that uses the programmable pipeline, such as OpenGL
ES is beneficial, but not essential. We will go through all the relevant material. A JavaScript background will
certainly help.

When writing a book of this nature, we unfortunately cannot cover all the prerequisite material. Baseline
assumptions about the reader need to be made. The assumptions that I have made are that the reader has a
basic knowledge of 2D and 3D computer graphics concepts such as pixels, colors, primitives, and transforms.
Appendix B quickly refreshes these concepts. It is also assumed that the reader is familiar (though need not be an
expert) with HTML, CSS, and JavaScript. Although much of the book makes use of plain “vanilla” JavaScript, we
will use some jQuery. Appendix A discusses newer HTML5 concepts and a quick jQuery crash course that will be
essential for properly understanding the text. Appendix D provides a complete reference for further reading on
topics that are presented throughout the book.

What You Will Learn

This book presents theory when necessary and examples whenever possible. You will get a good overview of what
you can do with WebGL. What you will learn includes the following:

e  Understanding the model view matrix and setting up a scene

¢ Rendering and manipulating primitives

e  Understanding shaders and loving their power and flexibility

e Exploring techniques to create realistic scenes

e  Using basic physics to simulate interaction

e  Using mathematics models to render particle systems, terrain, and fractals

e  Getting productive with existing models, shaders, and libraries

xviii




INTRODUCTION

e  Using the Three.js framework

e Learning about GLGE and philoGL frameworks and a survey of other frameworks
available

e Debugging and performance tips

e  Understanding other shader uses, such as image processing and nonphotorealistic
rendering

e  Using an alternate framebuffer to implement picking and shadowmaps

e Learning about current browser and mobile support and the future of WebGL

Book Structure

It is recommended that you start by reading the first two chapters before moving on to other areas of the book.
Even though the book does follow a fairly natural progression, you may choose to read the book in order or skip
around as desired. For example, the debugging section of Chapter 9 is not strictly essential, but is very useful
information to know as soon as possible.

Chapter 1: Setting the Scene

We go through all the steps to render an image with WebGL, including testing for browser support and setting
up the WebGL environment, using vertex buffer objects (VBOs), and basic shaders. We start with creating a one
color static 2D image, and by the end of the chapter have a moving 3D mesh with multiple colors.

Chapter 2: Shaders 101

Shaders are covered in depth. We show an overview of graphics pipelines (fixed and programmable), give a
background of the GL Shading Language (GLSL), and explain the roles of vertex and fragment shaders. Next we
go over the primitive types and language details of GLSL and how our WebGL application will interact with our
shaders. Finally, we show several examples of GLSL usage.

Chapter 3: Textures and Lighting

We show how to apply texture and simple lighting. We explain texture objects and how to set up and configure
them and combine texture lookups with a lighting model in our shader.

Chapter 4: Increasing Realism

A more realistic lighting model—Phong illumination—is explained and implemented. We discuss the difference
between flat and smooth shading and vertex and fragment calculations. We show how to add fog and blend
objects; and discuss shadows, global illumination, and reflection and refraction.

Chapter 5: Physics

This chapter shows how to model gravity, elasticity, and friction. We detect and react to collisions, model
projectiles and explore both the conservation of momentum and potential and kinetic energy.
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Chapter 6: Fractals, Height Maps, and Particle Systems

In this chapter we show how to paint directly with the GPU, discuss fractals, and model the Mandlebrot and
Julia sets. We also show how to produce a height map from a texture and generate terrain. We also explore
particle systems.

Chapter 7: Three.js Framework

The Three.js WebGL framework is introduced. We provide a background and sample usage of the library,
including how to fall back to the 2D rendering context if necessary, API calls to easily create cameras, objects, and
lighting. We compare earlier book examples to the equivalent Three.js API calls and introduce tQuery, a library
that combines Three.js and jQuery selectors.

Chapter 8: Productivity Tools

We discuss the benefits of using frameworks and the merit of learning core WebGL first. Several available
frameworks are discussed and the GLGE and philoGL frameworks are given examples. We show how to load
existing meshes and find other resources. We list available physics libraries and end the chapter with an example
using the physi.js library.

Chapter 9: Debugging and Performance

An important chapter to help identify and fix erroneous code and improve performance by following known
WebGL best practices.

Chapter 10: Effects, Tips, and Tricks

Image processing and nonphotorealistic shaders are discussed and implemented. We show how to use offscreen
framebuffers that enable us to pick objects from the canvas and implement shadow maps.

Afterword: The Future of WebGL

In the afterword, we will speculate on the bright future of WebGL, the current adoption of it within the browser,
and mobile devices and what features will be added next.

Appendix A: Essential HTML5 and JavaScript

We cover some of the changes between HTML 4 and 5, such as shorter tags, added semantic document structure,
the <canvas> element, and basic JavaScript and jQuery usage.

Appendix B: Graphics Refresher

This appendix is a graphics refresher covering coordinate systems, elementary transformations and other
essential topics.
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Appendix C: WebGL Specification 0dds and Ends

Contains part of the WebGL specification, available at http://www.khronos.org/registry/webgl/specs/latest/,
which were not covered in the book, but are nonetheless important.

Appendix D: Additional Resources

A list of references for further reading about topics presented in the book such as HTML5, WebGL, WebGLSL,
JavaScript, jQuery, server stacks, frameworks, demos, and much more.

WebGL Origins

The origin of WebGL starts 20 years ago, when version 1.0 of OpenGL was released as a nonproprietary alternative
to Silicon Graphics’ Iris GL. Up until 2004, OpenGL used a fixed functionality pipeline (which is explained in
Chapter 2). Version 2.0 of OpenGL was released that year and introduced the GL Shading Language (GLSL)
which lets you program the vertex and fragment shading portions of the pipeline. The current version of OpenGL
is 4.2, however WebGL is based off of OpenGL Embedded Systems (ES) 2.0, which was released in 2007 and is a
trimmer version of OpenGL 2.0.

Because OpenGL ES is built for use in embedded devices like mobile phones, which have lower processing
power and fewer capabilities than a desktop computer, it is more restrictive and has a smaller API than OpenGL.
For example, with OpenGL you can draw vertices using both a glBegin. . .glEnd section or VBOs. OpenGL ES
only uses VBOs, which are the most performance-friendly option. Most things that can be done in OpenGL can
be done in OpenGL ES.

In 2006, Vladimar Vukiéevi¢ worked on a Canvas 3D prototype that used OpenGL for the web. In 2009, the
Khronos group created the WebGL working group and developed a central specification that helps to ensure that
implementations across browsers are close to one another. The 3D context was modified to WebGL, and version
1.0 of the specification was completed in spring 2011. Development of the WebGL specification is under active
development, and the latest revision can be found at http://www.khronos.org/registry/webgl/specs/latest/.

How Does WebGL work?

WebGL is a JavaScript API binding from the CPU to the GPU of a computer’s graphics card. The API context
is obtained from the HTML5 <canvas> element, which means that no browser plugin is required. The shader
program uses GLSL, which is a C++ like language, and is compiled at runtime.

Without a framework, setting up a WebGL scene does require quite a bit of work: handling the WebGL
context, setting buffers, interacting with the shaders, loading textures, and so on. The payoff of using WebGL
is that it is much faster than the 2D canvas context and offers the ability to produce a degree of realism and
configurability that is not possible outside of using WebGL.

Uses

Some uses of WebGL are viewing and manipulating models and designs, virtual tours, mapping, gaming, art, data
visualization, creating videos, manipulating and processing of data and images.
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Demonstrations

There are many demos of WebGL, including these:
e http://www.chromeexperiments.com/webgl
e https://code.google.com/p/webglsamples/
e http://aleksandarrodic.com/p/jellyfish/

e  Google Body (now http://www.zygotebody.com), parts of Google Maps,
and Google Earth

e http://www.ro.me/tech/
e http://alteredqualia.com/

Supported Environments

Does your browser support WebGL? It is important to know that WebGL is not currently supported by all
browsers, computers and/or operating systems (OS). Browser support is the easiest requirement to meet and
can be done simply by upgrading to a newer version of your browser or switching to a different browser that does
support WebGL if necessary. The minimum requirements are as follows:

e  Firefox 4+

e  Safari5.1+ (OS X only)

e  Chrome 9+

e  Opera l2alpha+

e Internet Explorer (IE)—no native support

Although IE currently has no built in support, plugins are available; for example, JebGL (available at
http://code.google.com/p/jebgl/), Chrome Frame (available at http://www.google.com/chromeframe), and
IEWebGL (http://iewebgl.com/). JebGL converts WebGL to a Java applet for deficient browsers; Chrome Frame
allows WebGL usage on IE, but requires that the user have it installed on the client side. Similarly, IEWebGL is
an [E plugin.

In addition to a current browser, you need a supported OS and newer graphics card. There are also several
graphics card and OS combinations that have known security vulnerabilities or are highly prone to a severe
system crash and so are blacklisted by browsers by default.

Chrome supports WebGL on the following operating systems (according to Google Chrome Help
(http://www.google.com/support/chrome/bin/answer.py?answer=1220892):

e  Windows Vista and Windows 7 (recommended) with no driver older than 2009-01
e  Mac 0S 10.5 and Mac OS 10.6 (recommended)
e Linux

Often, updating your graphics driver to the latest version will enable WebGL usage. Recall that OpenGL
ES 2.0 is based on OpenGL 2.0, so this is the version of OpenGL that your graphics card should support for
WebGL usage. There is also a project called ANGLE (Almost Native Graphics Layer Engine) that ironically uses
Microsoft Direct X to enhance a graphics driver to support OpenGL ES 2.0 API calls through conversions to Direct
X 9 API calls. The result is that graphics cards that only support OpenGL 1.5 (OpenGL ES 1.0) can still run WebGL.
Of course, support for WebGL should improve drastically over the next couple of years.
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Testing for WebGL Support

To check for browser support of WebGL. there are several websites such as http://get.webgl.org/, which
displays a spinning cube on success; and http://doesmybrowsersupportwebgl.com/, which gives a large “Yay”
or “Nay” and specific details if the webgl context is supported. We can also programmatically check for WebGL
support using modernizr (http://www.modernizr. com).

Companion Site

Along with the Apress webpage at http://www.apress.com/9781430239963, this book has a companion website at
http://www.beginningwebgl.com. This site demonstrates the examples found in the book, and offers an area to make
comments and add suggestions directly to the author. Your constructive feedback is both welcome and appreciated.

Downloading the code

The code for the examples shown in this book is available on the Apress website, http://www.apress.com. A link
can be found on the book’s information page, http://www.apress.com/9781430239963, under the Source Code/
Downloads tab. This tab is located underneath the Related Titles section of the page. Updated code will also be
hosted on github at https://github.com/bdanchilla/beginningwebgl.

Contacting the Author

If you have any questions or comments—or even spot a mistake you think I should know about—you can contact
the author directly at bdanchilla@gmail.com or on the contact form at http://www.beginningwebgl.com/contact.
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CHAPTER 1

Setting the Scene

In this chapter we will go through all the steps of creating a scene rendered with WebGL. We will show you how to
e obtain a WebGL context
e  create different primitive types in WebGL
e understand and create vertex buffer objects (VBOs) and attributes
e do static two-dimensional rendering
e create a program and shaders
e setup the view matrices
¢ add animation and movement

¢ render a three-dimensional model

A Blank Canvas

Let's start by creating a HTML5 document with a single <canvas> element (see Listing 1-1).

Listing 1-1. A basic blank canvas

<ldoctype html>
<html>
<head>
<title>A blank canvas</title>
<style>
body{ background-color: grey; }
canvas{ background-color: white; }
</style>
</head>
<body>
<canvas id="my-canvas" width="400" height="300">
Your browser does not support the HTML5 canvas element.
</canvas>
</body>
</html>

The HTML5 document in Listing 1-1 uses the shorter <!doctype html> and <html> declaration available
in HTML5. In the <head> section, we set the browser title bar contents and then add some basic styling that will

B. Danchilla, Beginning WebGL for HTML5 1
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change the <body> background to gray and the <canvas> background to white. This is not necessary but helps us
to easily see the canvas boundary. The content of the body is a single canvas element. If viewing the document
with an old browser that does not support the HTML 5 canvas element, the message “Your browser does not
support the HTML5 canvas element.” will be displayed. Otherwise, we see the image in Figure 1-1.

Figure 1-1. A blank canvas

Note If you need a refresher on HTML5, please see Appendix A. Additional reference links are provided in
Appendix D.

Getting Context

When we draw inside of a canvas element, we have more than one option of how we produce our image. Each
option corresponds to a different application programming interface (API) with different available functionality
and implementation details and is known as a particular context of the canvas. At the moment there are two
canvas contexts: "2D" and "webgl". The canvas element does not really care which context we use, but it needs to
explicitly know so that it can provide us with an appropriate object that exposes the desired API.

To obtain a context, we call the canvas method getContext. This method takes a context name as a first
parameter and an optional second argument. The WebGL context name will eventually be "webgl", but for now,
most browsers use the context name "experimental-webgl". The optional second argument can contain buffer
settings and may vary by browser implementation. A full list of the optional WebGLContextAttributes and how to
set them is shown in Appendix C.

Listing 1-2. Establishing a WebGL context

<!doctype html>
<html>
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<head>
<title>WebGL Context</title>
<style>
body{ background-color: grey; }
canvas{ background-color: white; }
</style>
<script>
window.onload = setupWebGL;
var gl = null;
function setupWebGL()
{
var canvas = document.getElementById("my-canvas");
try{
gl = canvas.getContext("experimental-webgl");
}catch(e){
}
if(gl)
{
//set the clear color to red
gl.clearColor(1.0, 0.0, 0.0, 1.0);
gl.clear(gl.COLOR_BUFFER BIT);
}else{
alert( "Error: Your browser does not appear to support
WebGL.");
}
}
</script>
</head>
<body>

<canvas id="my-canvas" width="400" height="300">
Your browser does not support the HTML5 canvas element.
</canvas>
</body>
</html>

In Listing 1-2, we define a JavaScript setup function that is called once the window’s Document Object
Model (DOM) has loaded:

window.onload = setupWebGL;

We initiate a variable to store the WebGL context with var gl = null. We use
gl = canvas.getContext("experimental-webgl"); to try to get the experimental-webgl context from our
canvas element, catching any exceptions that may be thrown.

Note The name "gl1" is conventionally used in WebGL to refer to the context object. This is because OpenGL and
OpenGL ES constants begin with GL_ such as GL_DEPTH_TEST; and functions begin with g1, such as glClearColor.
WebGL does not use these prefixes, but when using the name "g1" for the context object, the code looks very

similar: g1.DEPTH_TEST and gl.clearColor
This similarity makes it easier for programmers who are already familiar with OpenGL to learn WebGL.
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On success, gl is a reference to the WebGL context. However, if a browser does not support WebGL, or if a
canvas element has already been initialized with an incompatible context type, the getContext call will return
null.In Listing 1-2, we test for gl to be non-null; if this is the case, we then set the clear color (the default value
to set the color buffer) to red. If your browser supports WebGL, the browser output should be the same as
Figure 1-1, but with a red canvas now instead of white. If not, we output an alert as shown in Figure 1-2. You can
simulate this by misspelling the context, to "zzexperimental-webgl" for instance.

Error: Your browser does not appear to support WebGL

Figure 1-2. Error alert if WebGL is not supported

Being able to detect when the WebGL context is not supported is beneficial because it gives us the
opportunity to program an appropriate alternative such as redirecting the user to http://get.webgl.org or falling
back to a supported context such as "2D". We show how to do the latter approach with Three.js in Chapter 7.

Note There is usually more than one way of doing things in JavaScript. For instance, to load the
setupWebGL function in code Listing 1-2, we could have written the onload event in our HTML instead:
<body onload="setupWebGL();">
If we were using jQuery, we would use the document ready function:
$(document).ready(function(){ setupWebGL(); });
We may make use of these differing forms throughout the book.
With jQuery, we can also shorten our canvas element retrieval to: var canvas = $("#my-canvas").get(0);

WebGL Components

In this section we will give an overview of the drawing buffers, primitive types, and vertex storage mechanisms
that WebGL provides.

The Drawing Buffers

WebGL has a color buffer, depth buffer, and stencil buffer. A buffer is a block of memory that can be written to
and read from, and temporarily stores data. The color buffer holds color information—red, green, and blue
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values—and optionally an alpha value that stores the amount of transparency/opacity. The depth buffer stores
information on a pixel’s depth component (z-value). As the map from 3D world space to 2D screen space can
result in several points being projected to the same (x,y) canvas value, the z-values are compared and only
one point, usually the nearest, is kept and rendered. For those seeking a quick refresher, Appendix B discusses
coordinate systems.

The stencil buffer is used to outline areas to render or not render. When an area of an image is marked off to
not render, it is known as masking that area. The entire image, including the masked portions, is known as a stencil.
The stencil buffer can also be used in combination with the depth buffer to optimize performance by not attempting
to render portions of a scene that are determined to be not viewable. By default, the color buffer’s alpha channel
is enabled and so is the depth buffer, but the stencil buffer is disabled. As previously mentioned, these can be
modified by specifying the second optional parameter when obtaining the WebGL context as shown in Appendix C.

Primitive Types

Primitives are the graphical building blocks that all models in a particular graphics language are built with. In
WebGL, there are three primitive types: points, lines and triangles and seven ways to render them: POINTS,
LINES, LINE_STRIP, LINE_LOOP, TRIANGLES, TRIANGLE_STRIP, and TRIANGLE_FAN (see Figure 1-3).
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Figure 1-3. WebGL Primitive Types (top row, I—r: POINTS, LINES, LINE_STRIP, and LINE_LOOP; bottom row, l—r:
TRIANGLES, TRIANGLE_STRIP, and TRIANGLE_FAN)

[os}

POINTS are vertices (spatial coordinates) rendered one at a time. LINES are formed along pairs of vertices.
In Figure 1-3 two of the lines share a common vertex, but as each line is defined separately, it would still require
six vertices to render these three lines. A LINE_STRIP is a collection of vertices in which, except for the first line,
the starting point of each line is the end point of the previous line. With a LINE_STRIP, we reuse some vertices on
multiple lines, so it would take just five vertices to draw the four lines in Figure 1-3. A LINE_LOOP is similar to a
LINE_STRIP except that it is a closed off loop with the last vertex connecting back to the very first. As we are again
reusing vertices among lines, we can produce five lines this time with just five vertices.

TRIANGLES are vertex trios. Like LINES, any shared vertices are purely coincidental and the example in Figure
1-3 requires nine vertices, three for each of the three triangles. A TRIANGLE_STRIP uses the last two vertices along
with the next vertex to form triangles. In Figure 1-3 the triangles are formed by vertices ABC, (BC)D, (CD)E, (DE)
E, (EF)G, (FG)H, and (GH)L This lets us render seven triangles with just nine vertices as we reuse some vertices in
multiple triangles. Finally, a TRIANGLE_FAN uses the first vertex specified as part of each triangle. In the preceding
example this is vertex A, allowing us to render seven triangles with just eight vertices. Vertex A is used a total of
seven times, while every other vertex is used twice.

Note Unlike OpenGL and some other graphics languages, a quad is not a primitive type. Some WebGL frame-
works provide it as a “basic” type and also offer geometric solids built in, but at the core level these are all rendered
from triangles.
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Vertex Data

Unlike old versions of OpenGL or “the ‘2D’ canvas context’, you can’t directly set the color or location of a vertex
directly into a scene. This is because WebGL does not have fixed functionality but uses programmable shaders
instead. All data associated with a vertex needs to be streamed (passed along) from the JavaScript API to the
Graphics Processing Unit (GPU). With WebGL, you have to create vertex buffer objects (VBOs) that will hold
vertex attributes such as position, color, normal, and texture coordinates.

These vertex buffers are then sent to a shader program that can use and manipulate the passed-in data in
any way you see fit. Using shaders instead of having fixed functionality is central to WebGL and will be covered in
depth in the next chapter.

We will now turn our attention to what vertex attributes and uniform values are and show how to transport
data with VBOs.

Vertex Buffer Objects (VBOs)

Each VBO stores data about a particular attribute of your vertices. This could be position, color, a normal vector,
texture coordinates, or something else. A buffer can also have multiple attributes interleaved (as we will discuss
in Chapter 9).

Looking at the WebGL API calls (which can be found at http://www.khronos.org/files/webgl/webgl-
reference-card-1_0.pdf or at http://www.khronos.org/registry/webgl/specs/latest/), to create a buffer, you call
WebGLBuffer createBuffer()and store the returned object, like so:

var myBuffer = gl.createBuffer();
Next you bind the buffer using void bindBuffer(GLenum target, WebGLBuffer buffer) like this:
gl.bindBuffer(gl.ELEMENT ARRAY BUFFER, myBuffer);

The target parameter is either g1.ARRAY_BUFFER or g1.ELEMENT_ARRAY_BUFFER. The target ELEMENT_ARRAY_
BUFFER is used when the buffer contains vertex indices, and ARRAY_BUFFER is used for vertex attributes such as
position and color.

Once a buffer is bound and the type is set, we can place data into it with this function:

void bufferData(GLenum target, ArrayBuffer data, GLenum usage)

The usage parameter of the bufferData call can be one of STATIC_DRAW, DYNAMIC DRAW, or STREAM_DRAW.
STATIC_DRAW will set the data once and never change throughout the application’s use of it, which will be many
times. DYNAMIC_DRAW will also use the data many times in the application but will respecify the contents to be
used each time. STREAM_DRAW is similar to STATIC_DRAW in never changing the data, but it will be used at most a
few times by the application. Using this function looks like the following:

var data = [ 1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 1.0
I
gl.bufferData(gl.ARRAY BUFFER, data, gl.STATIC DRAW);

Altogether the procedure of creating, binding and storing data inside of a buffer looks like:

var data = [ 1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 1.0

I


http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
http://www.khronos.org/registry/webgl/specs/latest/
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var myBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, myBuffer);
gl.bufferData(gl.ARRAY BUFFER, data, STATIC DRAW);

Notice that in the gl.bufferData line, we do not explicitly specify the buffer to place the data into. WebGL
implicitly uses the currently bound buffer.
When you are done with a buffer you can delete it with a call to this:

void deleteBuffer(WebGLBuffer buffer);

As the chapter progresses, we will show how to setup a shader program and pass VBO data into it.

Attributes and Uniforms

As mentioned, vertices have attributes which can be passed to shaders. We can also pass uniform values to

the shader which will be constant for each vertex. Shader attributes and uniforms can get complex and will be
covered in more depth in the next chapter but touched upon here. As the shader is a compiled external program,
we need to be able to reference the location of all variables within the program. Once we obtain the location of a
variable, we can send data to the shader from our web application. To get the location of an attribute or uniform
within the WebGL program, we use these API calls:

GLint getAttriblLocation(WebGLProgram program, DOMString name)
WebGLUniformLocation getUniformLocation(WebGLProgram program, DOMString name)

The GLint and WebGLUniformLocation return values are references to the location of the attribute or uniform
within the shader program. The first parameter is our WebGLProgram object and the second parameter is the
attribute name as found in the vertex or fragment shader source. If we have an attribute in a shader by the name
of "aVertexPosition", we obtain its position within our JavaScript like this:

var vertexPositionAttribute = gl.getAttriblocation(glProgram, "aVertexPosition");
If we are sending an array of data to an attribute, we have to enable array data with a call to this:
void enableVertexAttribArray(GLuint index)

Here, the index is the attribute location that we previously obtained and stored. The return value is void
because the function returns no value.
With our previously defined attribute location, this call looks like the following:

gl.enableVertexAttribArray(vertexPositionAttribute);

Now that we have the location of an attribute and have told our shader that we will be using an array of
values, we assign the currently bound ARRAY_BUFFER target to this vertex attribute as we have demonstrated in the
previous section:

gl.bindBuffer(gl.ARRAY_BUFFER, myBuffer);

Finally, we let our shader know how to interpret our data. We need to remember that the shader knows nothing
about the incoming data. Just because we name an array to help us understand what data it contains, such as
myColorData, the shader just sees data without any context. The API call to explain our data format is as follows:

void vertexAttribPointer(GLuint index, GLint size, GlLenum type, GLboolean normalized, GLsizei
stride, GLintptr offset)

size is the number of components per attribute. For example, with RGB colors, it would be 3; and with an
alpha channel, RGBA, it would be 4. If we have location data with (x,y,z) attributes, it would be 3; and if we
had a fourth parameter w, (x,y,z,w), it would be 4. Texture parameters (s,t) would be 2. type is the datatype,
stride and offset can be set to the default of 0 for now and will be reexamined in Chapter 9 when we discuss
interleaved arrays.
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Altogether, the process of assigning values to a shader attribute looks like the following:

vertexPositionAttribute = gl.getAttribLocation(glProgram, "aVertexPosition");
gl.enableVertexAttribArray(vertexPositionAttribute);
gl.bindBuffer(gl.ARRAY_BUFFER, myBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);

Now that we have gone over some of the relevant theory and methods, we can render our first example.

Rendering in Two Dimensions

In our first example, we will output two white triangles that look similar to a bowtie (see Figure 1-4). In order

to get our feet wet and not overwhelm the reader, I have narrowed the focus of this example to have very
minimalistic shaders and also not perform any transforms or setup of the view. Listing 1-3 builds upon the code
of Listing 1-2. New code is shown in bold.

Listing 1-3. Partial code for rendering two triangles

<!doctype html>
<html>
<head>
<title>A Triangle</title>
<style>
body{ background-color: grey; }
canvas{ background-color: white; }
</style>
<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
void main(void) {
gl Position = vec4(aVertexPosition, 1.0);
}

</script>
<script id="shader-fs" type="x-shader/x-fragment">
void main(void) {
gl FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

</script>
<script>
var gl = null,
canvas = null,
glProgram = null,
fragmentShader = null,
vertexShader = null;

var vertexPositionAttribute = null,
trianglesVerticeBuffer = null;

function initWebGL()

{
canvas = document.getElementById("my-canvas");
try{
gl = canvas.getContext("webgl") ||
canvas.getContext ("experimental-webgl");
}catch(e){
}
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if(gl)

{
setupllebGL();
initShaders();
setupBuffers();
drawScene();

telse{

alert( "Error: Your browser does not appear to" +
"support WebGL.");

}

}

function setupWebGL()

{
//set the clear color to a shade of green
gl.clearColor(0.1, 0.5, 0.1, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);

}

function initShaders(){}
function setupBuffers(){}
function drawScene(){}
</script>
</head>
<body onload="initWebGL()">
<canvas id="my-canvas" width="400" height="300">
Your browser does not support the HTML5 canvas element.
</canvas>
</body>
</html>

If you run the code at this point, you will still see a green rectangle because we defined shaders but have not
hooked them into our application yet. The first new parts of Listing 1-3 are our vertex and fragment shaders. As
mentioned earlier, shaders can get complex and are covered in detail in Chapter 2. Right now, you simply need to
know that the vertex shader will set the final position of a vertex while the fragment shader (also known as a pixel
shader) will set the final color of each pixel.

The following vertex shader takes each (x,y, z) vertex point that we will pass in to it and sets the final
position to the homogeneous coordinate (x,y,z,1.0).

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
void main(void) {
gl Position = vec4(aVertexPosition, 1.0);
}

</script>

The fragment shader will simply set each fragment that it receives to the color white (1.0, 1.0, 1.0, 1.0). The
fourth component is the alpha value.

<script id="shader-fs" type="x-shader/x-fragment">
void main(void) {
gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

</script>
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Eventually, we will pass in vertex points that correspond to the two triangles that we are rendering, but right
now nothing is passed in and so we still see only the green clear color. In Listing 1-3 we have also added new
variables that will store our WebGL shading language program, fragment and vertex shaders, vertex position
attribute that will be passed to the vertex shader, and the vertex buffer object that will store our triangle vertices
as shown in this code:

var gl = null,
canvas = null,
glProgram = null,
fragmentShader = null,
vertexShader = null;

var vertexPositionAttribute = null,
trianglesVerticeBuffer = null;

Note Our modified line in Listing 1-3 to get the WebGL context is future compatible. It will check for the “webgl”
context first. If this is not supported, it will try the “experimental-webgl” context next, as shown in the following
code:

gl = canvas.getContext("webgl") Il canvas.getContext("experimental-webgl");

Once we successfully obtain a WebGL context, we call four functions:

setupWebGL();
initShaders();
setupBuffers();
drawScene();

We currently have these functions defined as follows:

function setupWebGL()

{
//set the clear color to a shade of green
gl.clearColor(0.1, 0.5, 0.1, 1.0);
gl.clear(gl.COLOR_BUFFER BIT);

}

function initShaders(){}
function setupBuffers(){}
function drawScene(){}

The first function sets the clear color to green, and the other three at this point are stub functions so that
the program runs without error. The next bit of functionality that we will implement is the creation of the shader
program and shaders. This involves using several functions to set up each shader and the program.

For each shader, we call the API function createShader to create a WebGLShader object, in which the type
parameter is either VERTEX_SHADER or FRAGMENT_SHADER for the vertex and fragment shaders, respectively:

WebGLShader createShader(GLenum type)
These calls look like this:

var vertexShader = gl.createShader(gl.VERTEX SHADER);
var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);

Next we attach the source to each shader with API calls to:

10
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void shaderSource(WebGLShader shader, DOMString source)
In practice, this can look like:

var vs_source = document.getElementById('shader-vs').html(),
fs_source = document.getElementById('shader-fs').html();

gl.shaderSource(vertexShader, vs_source);

gl.shaderSource(fragmentShader, fs_source);

Last, we compile each shader with the API call:
void compileShader (WebGLShader shader)
It looks like this:

gl.compileShader(vertexShader);
gl.compileShader(fragmentShader);

At this point we have compiled shaders but need a program to attach them into. We will create a
WebGLProgram object with the API call:

WebGLProgram createProgram()
Next we attach each shader to our program with calls to:

void attachShader (WebGLProgram program, WebGLShader shader)
In an application, these two calls would look like:

var glProgram = gl.createProgram();
gl.attachShader(glProgram, vertexShader);
gl.attachShader(glProgram, fragmentShader);

After this we link the program and tell WebGL to use it with API calls to:

void linkProgram(WebGLProgram program) and
void useProgram(WebGLProgram program).

Our code for this would be the following:

gl.linkProgram(glProgram);
gl.useProgram(glProgram);

When we are finished with a shader or program, we can delete them with API calls to:
void deleteShader(WebGLShader shader) and
void deleteProgram(WebGLProgram program) respectively.

This will look like:

gl.deleteShader(vertexShader);
gl.deleteShader(vertexShader);
gl.deleteProgram(glProgram);

In Listing 1-4, we show the initialization of our shaders and program. We still are not displaying triangles at
this point because we have not defined the vertices or passed them on to the shader.

Listing 1-4. Initializing our shaders and program

function initShaders()

{

//get shader source
11
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var fs_source = document.getElementById('shader-fs').html(),
vs_source = document.getElementById('shader-vs').html();

//compile shaders

vertexShader = makeShader(vs_source, gl.VERTEX SHADER);
fragmentShader = makeShader(fs_source, gl.FRAGMENT SHADER);
//create program

glProgram = gl.createProgram();

//attach and link shaders to the program
gl.attachShader(glProgram, vertexShader);
gl.attachShader(glProgram, fragmentShader);
gl.linkProgram(glProgram);

if (!gl.getProgramParameter(glProgram, gl.LINK_STATUS)) {
alert("Unable to initialize the shader program.");
}

//use program
gl.useProgram(glProgram);

}
function makeShader(src, type)
{
//compile the vertex shader
var shader = gl.createShader(type);
gl.shaderSource(shader, src);
gl.compileShader(shader);
if (!gl.getShaderParameter(shader, gl.COMPILE STATUS)) {
alert("Error compiling shader: " + gl.getShaderInfolLog(shader));
}
return shader;
}

The preceding code contains all the steps that are involved in the usage of a shader program which we have
just gone through. We first retrieve our shader sources from the DOM of our HTML document and compile each.
We have added a utility function makeShader, which takes a source string and shader type that can be VERTEX _
SHADER or FRAGMENT_SHADER. This function then sets the shader source, compiles it, and returns the compiled
shader. After obtaining compiled shaders, we create a program, attach our shaders to it, link them, and then tell
our WebGL context to use this shader program. An extra step that we have added in Listing 1-4 is to check for
errors after compiling each shader and linking them together.

Now we have shaders and a program, but we still do not have any primitives defined in our program. Recall
that primitives in WebGL are composed of points, lines, or triangles. Our next step is to define and place the
triangle vertex positions into a VBO that will then be passed in as data to our vertex shader. This is shown in
Listing 1-5.

Listing 1-5. Setting up our vertex buffer and vertex position attribute

function setupBuffers()
{
var triangleVertices = [
//1left triangle
-0.5, 0.5, 0.0,
0.0, 0.0, 0.0,
-0.5, -0.5, 0.0,

12
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//right triangle

0.5, 0.5, 0.0,

0.0, 0.0, 0.0,

0.5, -0.5, 0.0
I

trianglesVerticeBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesVerticeBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVertices), gl.STATIC_DRAW);

In the setupBuffers method, we define an array of six vertices—three for each triangle. Then we call g1.
createBuffer() to create a new VBO. We then bind our data to this buffer. We now need to tell our application
which buffer to pass to the aVertexPosition attribute of our shader and then write to the draw buffer.

There are three ways to write to the draw buffer. These API function calls are the following:

void clear(GLbitfield mask)
void drawArrays(GLenum mode, GLint first, GLsizei count)
void drawElements(GLenum mode, GLsizei count, GLenum type, GLintptr offset)

The clear method mask parameter determines which buffer(s) are cleared. The drawArrays function is called
on each enabled VBO array. The drawElements function is called on a VBO of indices that, as you may recall, is of
type ELEMENT_ARRAY_BUFFER.

In this example, we will use the drawArrays method to render our two triangles:

function drawScene()

{
vertexPositionAttribute = gl.getAttribLocation(glProgram, "aVertexPosition");
gl.enableVertexAttribArray(vertexPositionAttribute);
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);
gl.drawArrays(gl.TRIANGLES, 0, 6);

}

In the drawScene method, we assign the vertex shader attribute aVertexPosition’s location to a variable—
vertexPositionAttribute. We enable array data for the attribute and bind our array to the current buffer. Then
we point our trianglesVerticeBuffer data to the value stored in our vertexPositionAttribute variable. We
tell the vertexAttribPointer that our data has three components (x,y,z) per vertex. Finally, we call drawArrays
with a primitive type of g1. TRIANGLES, the starting vertex and the total number of vertices to render. You can see
the output of this example with various primitive types in Figure 1-4.

Figure 1-4. The output of our first program: (left) two white triangles; (center) lines; (right) points

13
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To render lines instead of triangles, you just need to change the drawArrays call to:
gl.drawArrays(gl.LINES, 0, 6);

Note that because two of the lines connect at the central vertex, it appears that only two lines are rendered.
However if you view the lines piecewise, you can see the three individual lines by running separately three times:

gl.drawArrays(gl.LINES, 0, 2);
gl.drawArrays(gl.LINES, 2, 2);
gl.drawArrays(gl.LINES, 4, 2);

This will show you the line between the first two points, then the next two points, and finally the last pair of
points. To render just the vertex points, you can adjust the drawArrays call to:

gl.drawArrays(gl.POINTS, 0, 6);

You will only see five vertex points because the center point is used twice. To increase the size of the points
you can add the following line to your vertex shader:

gl PointSize = 5.0;

The complete code of our first example is shown in Listing 1-6.

Listing 1-6. Code to show two triangles on a white background

<!doctype html>
<html>
<head>
<title>Two Triangles</title>
<style>
body{ background-color: grey; }
canvas{ background-color: white; }
</style>
<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
void main(void) {
gl Position = vec4(aVertexPosition, 1.0);
}

</script>
<script id="shader-fs" type="x-shader/x-fragment">
void main(void) {
gl FragColor = vec4(1.0, 1.0, 1.0, 1.0);

</script>
<script>
var gl = null,
canvas = null,
glProgram = null,
fragmentShader = null,
vertexShader = null;

var vertexPositionAttribute = null,
trianglesVerticeBuffer = null;

function initWebGL()
{

canvas = document.getElementById("my-canvas");

14
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try{
gl = canvas.getContext("webgl") ||
canvas.getContext ("experimental-webgl");
}catch(e){
}
if(gl)
{
setupWebGL();
initShaders();
setupBuffers();
drawScene();
Yelse{
alert( "Error: Your browser does not appear to" +
"support WebGL.");
}

function setupWebGL()

{

}

//set the clear color to a shade of green
gl.clearColor(0.1, 0.5, 0.1, 1.0);
gl.clear(gl.COLOR_BUFFER BIT);

function initShaders()

{

var

}

//get shader source
fs_source = document.getElementById('shader-fs').innerHTML,
vs_source = document.getElementById('shader-vs').innerHTML;

//compile shaders
vertexShader = makeShader(vs_source, gl.VERTEX SHADER);
fragmentShader = makeShader(fs_source, gl.FRAGMENT SHADER);

//create program
glProgram = gl.createProgram();

//attach and link shaders to the program
gl.attachShader(glProgram, vertexShader);
gl.attachShader(glProgram, fragmentShader);
gl.linkProgram(glProgram);

if (!gl.getProgramParameter(glProgram, gl.LINK STATUS)) {
alert("Unable to initialize the shader program.");

}

//use program
gl.useProgram(glProgram);

function makeShader(src, type)

{

//compile the vertex shader
var shader = gl.createShader(type);

15
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gl.shaderSource(shader, src);
gl.compileShader(shader);

if (!gl.getShaderParameter(shader, gl.COMPILE STATUS)) {

alert("Error compiling shader: " +
gl.getShaderInfolog(shader));

}
return shader;
}
function setupBuffers()
{
var triangleVertices = [
//1left triangle
-0.5, 0.5, 0.0,
0.0, 0.0, 0.0,
-0.5, -0.5, 0.0,
//right triangle
0.5, 0.5, 0.0,
0.0, 0.0, 0.0,
0.5, -0.5, 0.0
15
trianglesVerticeBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesVerticeBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new
Float32Array(triangleVertices), gl.STATIC DRAW);
}
function drawScene()
{
vertexPositionAttribute = gl.getAttriblLocation(glProgram,
"aVertexPosition");
gl.enableVertexAttribArray(vertexPositionAttribute);
gl.bindBuffer(gl.ARRAY BUFFER, trianglesVerticeBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3,
gl.FLOAT, false, 0, 0);
gl.drawArrays(gl.TRIANGLES, 0, 6);
}
</script>

</head>
<body onload="initWebGL()">
<canvas id="my-canvas" width="400" height="300">
Your browser does not support the HTML5 canvas element.
</canvas>
</body>
</html>

The View: Part |

Just as we can'’t see all parts of the world in our everyday life, but instead have a limited field of vision, we
can view only part of a 3D world at once with WebGL. The view in WebGL refers to what region of our scene
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that we are observing—the viewing volume, along with the virtual camera—our viewing location and angle
relative to what we are observing, and perspective rules—whether an object will appear smaller when farther
away or not.

In the previous example of Listing 1-6, we did not alter our view at all. We defined (x,y,z) coordinates that
were rendered by our shader to the canvas as final (x,y) coordinates. In that example, the z-coordinate was
not a factor to our final view (as long as it was within our clipspace, as we will discuss next). However, in most
instances, we will need to explicitly define our view and how to map coordinates from 3D to 2D space.

Clip Coordinates

In Listing 1-6, our triangle coordinates all fell between -0.5 and 0.5 in the X, y, and z directions. As an experiment,
change the vertices of the last example to these:

var triangleVertices = [
//1left triangle
-1.5, 1.5, 0.0,
0.0, 0.0, 0.0,
-1.5, -1.5, 0.0,

//right triangle
1.5, 1.5, 0.0,
1.0, 1.0, 0.0,
1.5, -1.5, 0.0

Is

You might expect to see two triangles of differing appeareance to those on the left of Figure 1-4. But in fact,
you will only get one white triangle as shown in Figure 1-5 as output.

Figure 1-5. Only one triangle is visible after modifying our vertices

What is the reason for this? Well, by default WebGL has a clip volume centered at the origin (0,0,0) and
extending +/- 1 along each of the x,y, and z axes. The clip volume defines the (x,y,z) points that will be
rendered by the fragment shader. Any fragment (pixel) within the clipping volume is rendered, and points outside
of it are discarded (clipped). The vertex shader transforms points to a final gl_Position. Then a clip test is done
on each fragment, with those falling within the clip volume continuing on to the fragment shader.
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In the vertex shader of Listing 1-6, we use the input position as the output position. When we modified the
vertex points to those values that produce Figure 1-5, the left triangle has one point (0,0,0) within the clipping
volume while the other two lie outside. Fragments of the left triangle will get clipped if they are past+/- 1. On the
right triangle, no point lies within the clipping volume (well, just the single point [1.0, 1.0, 0.0]), so we don’t see
any fragment of the triangle.

Why Manipulate Coordinates?

One reason to manipulate 3D coordinates is because it allows us to deal with more intuitive values. We are not
limited to stay within the clip volume range. Instead we could have a viewing volume of any dimension and scale
the vertex positions when we pass them on to our shader. It usually makes more sense dealing with coordinates
such as (30, 5, 10) then (0.36, 0.06, 0.12). Manipulating coordinates allows us to use friendlier numbers and
transform them to values that are still within the clipping volume.

The main reason to manipulate coordinates is because we deal with different coordinate spaces. We have
coordinates relative to a particular model, relative to the world and relative to the virtual camera. We need to be
able to represent our scene and objects in a meaningful manner that transforms a model from its original size
and location to a relative size and location within our scene and then take this scene and only view a particular
portion of it with our virtual camera.

As an example, suppose you have a 3D model of a shipping crate (box) that is perfectly cubic and centered
around the origin. Perhaps you would like to model a scene of a shipping yard with hundreds of shipping
containers. In the scene, these containers can vary in size, position, and orientation. They could be cubic or
rectangular. Except for a box of the exact same dimensions as the original model, centered around the origin of
your scene, you would want to manipulate this model.

To accomplish this, our first step is to move from model to world coordinates. This will involve basic
transformations of scaling, rotating, and translating. If you have many boxes, these transformations would be
distinct among each box instance. After you have placed all your boxes around your world, our next step is to
adjust our view. The view is like a camera pointed at the world. The camera can be positioned and rotated to
point a certain direction in our scene.

We set our projection type, which determines whether elements further away look smaller then same-sized
objects that are nearer to the camera (perspective projection) or appear to be the same size no matter their
distance (orthogonal projection). Lastly, the viewport defines what part of a screen (the <canvas>) is rendered to
and the dimensions of this area.

This multistep process that involves transforming a model’s local coordinates to “world” coordinates, then
to “view” coordinates, is commonly known as the Model-View-Projection (MVP) matrix transformation. We will
now show how to set up the viewport before returning to the MVP setup.

The Viewport

The viewport defines where the origin (lower-left) point (x,y) to render on the canvas should be located, and
what width and height of the canvas to render onto. We set the viewport with the API call:

void viewport(GLint x, GLint y, GlLsizei width, GLsizei height);

Setting the origin to (0, 0) and the width and height equal to the canvas dimensions will fill the entire
canvas. This is done with the following code:

gl.viewport(0, 0, canvas.width, canvas.height);

You can see the result in Figure 1-6.
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(400, 300)

(0, 300)
(0,0)

Figure 1-6. Viewport coordinates that fill our entire 400300 canvas element

Alternatively, you could decide to render to only part of the canvas. Some reasons to do this might be to tile
the same rendering multiple times in the viewport or display a unique image in each region of the viewport. This
technique is used in the image processing examples of Chapter 10. Using only a quarter of the rendering area is
shown in Listing 1-7.

Listing 1-7. Rendering to part of the canvas

//top right quadrant
gl.viewport(canvas.width/2.0, canvas.height/2.0, canvas.width/2.0, canvas.height/2.0);

//top left quadrant
gl.viewport(0, canvas.height/2.0, canvas.width/2.0, canvas.height/2.0);

//bottom left quadrant
gl.viewport(0, 0, canvas.width/2.0, canvas.height/2.0);

//bottom right quadrant
gl.viewport(canvas.width/2.0, 0, canvas.width/2.0, canvas.height/2.0);

Adjusting Listing 1-6 to use the top left quadrant viewport in the setupWebGL method:
function setupWebGL()

{

//set the clear color to a shade of green

gl.clearColor(0.1, 0.5, 0.1, 1.0);

gl.clear(gl.COLOR_BUFFER BIT);

//gl.viewport(0, 0, canvas.width, canvas.height);

gl.viewport(0, canvas.height/2.0, canvas.width/2.0, canvas.height/2.0);
}

This will produce the output shown in Figure 1-7.
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Figure 1-7. Setting our triangle example to a top-left quadrant viewport

Note Although WebGL will initialize the viewport to the full canvas, it will not adjust the viewport if the canvas is
resized because automatically adjusting the viewport can interfere with applications that manually set it. For
this reason, it is best to always explicitly set the viewport before rendering with the current canvas dimensions:
gl.viewport(0, 0, canvas.width, canvas.height);.Alternatively, you can listen for canvas size changes by
setting an onresize event handler and only adjust the viewport when necessary.

To keep the examples as simple as possible, we will now show how to define color per vertex and set up an
animation loop. Then we will return to working with the view, as we explain how to set up the MVP matrix.

Adding Color

In our next example, we will add a color attribute to our vertices. Starting from the code shown in Listing 1-6, we
will modify our shaders (where new code is shown in bold) to be as follows:

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;

varying highp vec4 vColor;
void main(void) {
gl Position = vec4(aVertexPosition, 1.0);
vColor = vec4(aVertexColor, 1.0);
}
</script>
<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec4 vColor;
void main(void) {
gl FragColor = vColor;

</script>
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Even though the fragment shader controls the final color, we can’t pass vertex attribute data directly to it. So we
create a new attribute, aVertexColor, in the vertex shader and pass the input data to the fragment shader by
assigning it to a varying variable:

varying highp vec4 vColor;

The qualifier highp sets the floating point precision to high. The focus of this chapter is general application

setup and not shaders, but these concepts and keywords will be expanded upon in Chapter 2. We declare vColor
in both the vertex and fragment shader as the output value of the vertex shader becomes the input to the fragment
shader. Then we add a variable to our application to store the color attribute and the color data buffer:

var

vertexPositionAttribute = null,
trianglesVerticeBuffer = null,
vertexColorAttribute = null,
trianglesColorBuffer = null;

In our setupBuffers method, we will add the following code:

var triangleVerticeColors = [

I

//red left triangle
1.0, 0.0, 0.0,
1.0, 1.0, 1.0,
1.0, 0.0, 0.0,

//blue right triangle
0.0, 0.0, 1.0,
1.0, 1.0, 1.0,
0.0, 0.0, 1.0

trianglesColorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesColorBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVerticeColors), gl.STATIC_DRAW);

Notice that the center vertex of each triangle is white. In Figure 1-8, the color is interpolated between

vertices. Finally we need to connect the color buffer to the shader attribute in our drawScene method:

function drawScene()

{

vertexPositionAttribute = gl.getAttriblLocation(glProgram, "aVertexPosition");
gl.enableVertexAttribArray(vertexPositionAttribute);
gl.bindBuffer(gl.ARRAY BUFFER, trianglesVerticeBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);

vertexColorAttribute = gl.getAttriblLocation(glProgram, "aVertexColor");
gl.enableVertexAttribArray(vertexColorAttribute);
gl.bindBuffer(gl.ARRAY BUFFER, trianglesColorBuffer);
gl.vertexAttribPointer(vertexColorAttribute, 3, gl.FLOAT, false, 0, 0);

gl.drawArrays(gl.TRIANGLES, 0, 6);

The full code listing for this example and all other code listings in the book is available online at the Apress

website http://www.apress.com/9781430239963 and on the companion website at http://beginningwebgl.
com/code. The file of this example is 01/ch1_colored-triangles.html. You can see the output of this in Figure 1-8.
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Figure 1-8. Per vertex color attributes

Animation and Model Movement

Let’s now add some movement to our triangles. To do this we first need to set up an animation loop.

Using requestAnimationFrame

For animation, the newer browser method window.requestAnimationFrame is better than the older methods
window.setTimeout(which calls a function once after a fixed delay) and window.setInterval(which repeatedly
calls a function with a fixed delay between calls). These two functions can be used to adjust the framerate when
rendering. The reason that the new method, window.requestAnimationFrame, is better than the older methods is
because it is more accurate and also will not animate a scene when you are in a different browser tab. The second
benefit means that using requestAnimationFrame will help prevent battery life from being wasted on mobile
devices.

However, support for requestAnimationFrame is still browser-dependent. As such, we should test
for it, reverting to the window. setTimeout fallback if it is not available. This is done by using a shim (it
transparently intercepts an API call and redirects the underlying calls to a supported method) or polyfill
(code designed to provide additional technology that is not natively provided) to wrap the function, such as
the one by Opera engineer Erik Moller and modified by Paul Irish at his blog http://paulirish.com/2011/
requestanimationframe-for-smart-animating/. The polyfill is also fairly actively edited at https://gist.
github.com/1579671.

Download a recent version of the file (Google "requestAnimationFrame polyfill") and place it inside of a
separate file that we will call raf_polyfill. js:

<script src="raf_polyfill.js"></script>

This file should be placed in the same directory as your webroot or else you will need to adjust the path
accordingly.

We now just need to place our setupWebGL and drawScene functions within an animation loop, as shown in
Listing 1-8.
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Listing 1-8. Animation loop

initShaders();
setupBuffers();
(function animLoop(){
setupWebGL();
setupDynamicBuffers();
drawScene();
requestAnimFrame(animLoop, canvas);

NO;

The first parameter of requestAnimFrame is the callback function, and the second argument is the element
to act upon. Because requestAnimFrame calls animLoop, the function will continue calling itself again and again
as long as the application is running. We also have added a new function, setupDynamicBuffers, which is shown
fully in Listing 1-9 in the next section. We have repeated animation calls now, but our scene will still appear static.
This is because we have not changed any of our vertices or the view between animation frames.

Creating Movement

There are two ways to create movement—either you move an object in a scene or you move the view of the scene.

We will not be adjusting the view in this example, but instead will be adjusting the coordinates of the model. The

reason why we are moving the model instead of the view is simple; we do not yet know how to adjust our view.
Our first change is to modify the vertices VBO type from STATIC_DRAW to DYNAMIC_DRAW:

gl.bufferData(gl.ARRAY BUFFER, new Float32Array(triangleVertices), gl.DYNAMIC DRAW);

A simple way to alter the x values of our triangles and keep them in the clipspace range (-1, 1) is to set the
x value equal to the cosine or sine of an angle. If you need a trigonometric refresher, please refer to the diagrams
in Appendix B and the links provided in Appendix D.

In Listing 1-9, we extract the vertice buffer creation code out of setupBuffers and into a new function
setupDynamicBuffers, which will be called every time through the animation loop. The setupDynamicBuffers
method shown in bold is new code.

Listing 1-9. Splitting up our buffers into static and dynamic data calls

function setupBuffers()
{
var triangleVerticeColors = [
//1eft triangle
1.0, 0.0, 0.0,
1.0, 1.0, 1.0,
1.0, 0.0, 0.0,

//right triangle
0.0, 0.0, 1.0,
1.0, 1.0, 1.0,
0.0, 0.0, 1.0,

I

trianglesColorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesColorBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVerticeColors), gl.STATIC_DRAW);
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function setupDynamicBuffers()

{
//1imit translation amount to -0.5 to 0.5
var x_translation = Math.sin(angle)/2.0;

var triangleVertices = [
//1left triangle
-0.5 + x_translation, 0.5, 0.0,
0.0 + x_translation, 0.0, 0.0,
-0.5 + x_translation, -0.5, 0.0,

//right triangle

0.5 + x_translation, 0.5, 0.0,

0.0 + x_translation, 0.0, 0.0,

0.5 + x_translation, -0.5, 0.0
15

angle += 0.01;

trianglesVerticeBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);
gl.bufferData(gl.ARRAY BUFFER, new Float32Array(triangleVertices), gl.DYNAMIC_DRAW);

If you run the application now, you will see the triangles move from side to side, stopping at the edges.
Notice that the animation slows toward the edges, as a natural consequence of using the sine function. The full
code of this example is found online in the file 01/2d_movement.html.

The View: Part Il

In this section, we will show how to generate the MVP matrix to transform our original vertices into values that
fall within the clip space range.

As a precursor to see why we need to modify our coordinates by the MVP matrix, look at what happens next
when we try to naively make the scene 3D in appearance by having differing z-values. Adjust the right triangle
coordinates of the 2d_movement.html file to:

//right triangle

0.5 + x_translation, 0.5, 0.0,
0.0 + x_translation, 0.0, -0.5,
0.5 + x_translation, -0.5, 0.5,

Rerun the program and see that nothing has changed. As long as the z-values are between -1 and 1, the clip
volume, it will appear the same no matter what the actual z-value.

So then how do we get a scene that looks 3D and has perspective? We have to multiply our original
coordinates by the MVP matrices. We do this by setting a model-view matrix and a projection matrix in our
application and passing them as uniforms to our shader, in which they will be multiplied by our original position
to find a final position in the fragment shader.

Model-View Matrix

The model-view matrix combines two transformations—the model-to-world coordinate transformation and the
world-to-view coordinate transformation—into one matrix. Recall that the model-to-world transformation takes
a model within its local coordinates and transforms it into its spot within the world, as shown in Figure 1-9.
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Figure 1-9. Model coordinates on the left transformed to world coordinates on the right

The world coordinate to view coordinate transform positions the camera view in the scene, as shown in
Figure 1-10.
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\

Figure 1-10. World coordinates transformed to camera view

Projection Matrix

The projection matrix can be orthogonal or perspective. In a perspective matrix, objects farther away that are

the same dimension as nearer objects will appear smaller, making the view seem realistic. With perspective, all
lines reach a central vanishing point that gives the illusion of depth. In an orthogonal (parallel) projection matrix,
objects of the same dimensions will always appear to be the same size. The orthogonal projection is also known
as a parallel projection because lines do not converge but remain parallel (see Figure 1-11).
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|

Figure 1-11. Camera coordinates transformed to screen view; left is orthogonal (parallel) and right is perspective

Choosing a Matrix Library

Itis a good idea to use an existing matrix library instead of creating your own. Existing matrix libraries are
usually well-tested, -documented and -thought out. The operations within are fairly elementary and rigid. In
other words, you would not be providing anything unique, and you do not want to spend time reinventing the
wheel. (There are many libraries to choose from and references are listed in Appendix D. I prefer gl-matrix. js,
written by Brandon Jones and Colin MacKenzie IV, available at https://github.com/toji/gl-matrix and will use it
throughout the book).

Three-Dimensional Rendering

We will now extend upon our two-dimensional example to add depth and make it appear three-dimensional.

2D Models in a 3D World

Working from our previous example (2d_movement.html) as a basis, we will implement MVP matrices. First, we
need to download and include the gl-matrix library:

<script src="gl-matrix-min.js"></script>
We also need to declare two new variables to store our model-view and projection matrices:

var mvMatrix = mat4.create(),
pMatrix = mat4.create();

Our setupWebGL function is updated to be:

function setupWebGL()

{
//set the clear color to a shade of green
gl.clearColor(0.1, 0.5, 0.1, 1.0);
gl.clear(gl.COLOR_BUFFER BIT);
gl.viewport(0, 0, canvas.width, canvas.height);
mat4.perspective(45, canvas.width / canvas.height, 0.1, 100.0, pMatrix);
mat4.identity(mvMatrix);
mat4.translate(mvMatrix, [0, 0, -2.0]);
}
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mat4.perspective is a helper function of the gl-matrix library, which takes field of view, aspect ratio,
and near and far bounds as arguments. There is also amat4.ortho call in the library, which can produce an
orthogonal projection. When we create our mvMatrix, we simply adjust the z-coordinate because the camera lies
at the origin by default (0,0,0), so we move back in order to see our triangles that also lie on the z-axis.

Next we need to find the location of these uniforms within our shader and also be able to update the
values. The matrices are uniforms because they are applied with the same values for every vertex. We add two
new helper methods, getMatrixUniforms and setMatrixUniforms. We call getMatrixUniforms outside of our
animation loop as the location within the shader will always stay the same, while we call setMatrixUniforms
each animation loop as it could be different between one animation frame and the next:

function getMatrixUniforms(){
glProgram.pMatrixUniform = gl.getUniformLocation(glProgram, "uPMatrix");
glProgram.mvMatrixUniform = gl.getUniformLocation(glProgram, "uMVMatrix");

function setMatrixUniforms() {
gl.uniformMatrix4fv(glProgram.pMatrixUniform, false, pMatrix);
gl.uniformMatrix4fv(glProgram.mvMatrixUniform, false, mvMatrix);

initShaders();

setupBuffers();

getMatrixUniforms();

(function animLoop(){
setuplWebGL();
setupDynamicBuffers();
setMatrixUniforms();
drawScene();
requestAnimationFrame(animLoop, canvas);

IOF

We also need to update our vertex shader to have these new uniform values:

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying highp vec4 vColor;

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vColor = vec4(aVertexColor, 1.0);

}

</script>

The final position is calculated as the projection matrix multiplied by the model-view matrix and then finally
the original vertex position. Let’s adjust the depth coordinates of our two triangles:

var triangleVertices = [
//1left triangle
-0.5 + x_translation, 0.5, -0.5,
0.0 + x_translation, 0.0, -0.5,
-0.5 + x_translation, -0.5, -0.5,
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//right triangle

0.5 + x_translation, 0.5, 0.5,
0.0 + x_translation, 0.0, 0.5,
0.5 + x_translation, -0.5, 0.5,

The full code of this example is in the file 01/3d_movement.html. You can see the output of this in Figure
1-12.

Figure 1-12. Composite image of animation. The triangles now have different depths

An Example with Depth

For the last example in this chapter, we will render a 3D solid of a triangular prism. It can often help to sketch up
the vertices of such a figure and label the vertices, as shown in Figures 1-13 and 1-14.

(-1.0, 2.0, -2.0)

(1.5,-1.0,-2.0)

(2.0, 0.0, -2.0)

(0.0,0.0,0.0) (1.0,0.0,00) (2.0,0.0,0.0)
Figure 1-13. A prism sketch with some of the key points labeled
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10

0 1 2

Figure 1-14. The vertex numbers of the prism labeled

Using an Index Buffer

A quick count of Figures 1-13 and 1-14 shows that there will be 18 distinct triangles (including two on the bottom
face) and 12 distinct vertices needed. Rather than explicitly set all the vertices for the triangles that would take 54
(x,Y,2) values (18 triangles with 3 vertices per triangle), we can just declare our 12 vertices and then declare the
54 indices to use as shown in the bold part of Listing 1-10.

Listing 1-10. Using vertice indices to reuse vertices for multiple triangles

function setupBuffers()
{
var triangleVerticeColors = [
//front face
0.0, 0.0, 1.0,

1.0, 1.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
0.0, 0.0, 1.0,
1.0, 1.0, 1.0,
//rear face

0.0, 1.0, 1.0,
1.0, 1.0, 1.0,
0.0, 1.0, 1.0,
0.0, 1.0, 1.0,
0.0, 1.0, 1.0,
1.0, 1.0, 1.0

I

trianglesColorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesColorBuffer);
gl.bufferData(gl.ARRAY BUFFER, new Float32Array(triangleVerticeColors), gl.STATIC DRAW);

//12 vertices
var triangleVertices = [
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//front face
//bottom left to right, to top
0.0, 0.0, 0.0,

1.0, 0.0, 0.0,
2.0, 0.0, 0.0,
0.5, 1.0, 0.0,
1.5, 1.0, 0.0,
1.0, 2.0, 0.0,
//rear face

0.0, 0.0, -2.0,
1.0, 0.0, -2.0,
2.0, 0.0, -2.0,
0.5, 1.0, -2.0,
1.5, 1.0, -2.0,
1.0, 2.0, -2.0

I;

trianglesVerticeBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesVerticeBuffer);
gl.bufferData(gl.ARRAY BUFFER, new Float32Array(triangleVertices), gl.STATIC DRAW);

//setup vertice buffers
//18 triangles
var triangleVertexIndices = [
//front face
0,1,3,
1,3,4,
1,2,4,
3,45,

//rear face
617)91
7,9,10,
7,8,10,
9,10,11,

//1left side
013’61
3)6)9)
3,559,
5,9,11,

//right side
214}81
4,8,10,
4,5,10,
5,10,11,

//bottom faces

0)6’8)

8,2,0
15
triangleVerticesIndexBuffer = gl.createBuffer();
triangleVerticesIndexBuffer.number_vertex_points = triangleVertexIndices.length;
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gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, triangleVerticesIndexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(triangleVertexIndices),
gl.STATIC_DRAW);

}

Notice that we are no longer dynamically setting the vertices. We will produce movement by altering the
mvMatrix instead—alterations can be translations, rotations, and/or scaling. Also note that the indice buffer type
is gl.ELEMENT ARRAY_ BUFFER.

To produce movement we initialize a variable, angle, to store an angle and then increment it each frame to
rotate our mvMatrix a little more each animation frame:

mat4.identity(mvMatrix);
mat4.translate(mvMatrix, [-1.0, -1.0, -7.0]);
mat4.rotate(mvMatrix, angle, [0.0, 1.0, 0.0]);
angle += 0.01;

When we draw our scene, we use gl.drawElements instead of gl.drawArrays:

gl.bindBuffer(gl.ELEMENT ARRAY BUFFER, triangleVerticesIndexBuffer);
gl.drawElements(gl.TRIANGLES, triangleVerticesIndexBuffer.number vertex points, gl.UNSIGNED
SHORT, 0);

The primitive type in this example is still g1. TRIANGLES, and we have the value of
triangleVerticesIndexBuffer.number vertex points, which is 54, to draw. The result of this example is
shown in Figure 1-15, and the full code is in the file 01/3D_triangles.html.

Figure 1-15. Not enabling the depth test can produce strange results

Depth Testing

Unless we check the depth of our primitives, some faces that should be hidden from view might not be. This can
produce unexpected results, as we saw in Figure 1-15. Enabling depth testing is easy and involves calling this:

gl.enable(gl.DEPTH_TEST);
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We will also clear the depth buffer in our setupWebGL function:
gl.clear(gl.COLOR_BUFFER_BIT|gl.DEPTH_BUFFER_BIT);

In Figure 1-16, you can see a more expected result.

__

Figure 1-16. After enabling the depth test, everything looks as it should

In this chapter we have shown how to color a 3D mesh. In Chapter 3, we will come back to this last example
and apply texture and lighting to it.

Summary

In this chapter, we have made great strides going from a blank canvas to a moving 3D object. Even though this
was the first chapter, in a lot of ways it was a tough one because we needed to introduce so many new concepts
at once. So congratulations on making it this far and now we can build upon our new skills in the forthcoming
chapters. In the next chapter, we will dive into the details of the OpenGL Shading Language (GLSL) and start
exploring the capabilities of vertex and fragment shaders. We're just getting started with what WebGL can do!
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Shaders 101

In this chapter, we will be covering the GL Shading Language (GLSL) in depth. Topics that we will cover include
e an overview of the WebGL graphics pipeline
e the difference between fixed functionality and modern-day programmable shaders
e therole of vertex shaders and fragment shaders within the GLSL
e  howto create and use shaders within a WebGL application
e adetailed overview of the GLSL including its primitive types and built-in functions

e examples of procedural fragment shaders

Graphics Pipelines

A graphics pipeline consists of the steps that an image goes through from initial definition to final screen
rendering. This pipeline is composed of several steps done in a predefined order. Components of the pipeline can
be either fixed in functionality or programmable.

Fixed Functionality or Programmable Shaders

The more traditional graphics pipeline has a fixed implementation. The initial image definition would be the set
of vertex location points and information associated with these points such as color, a normal vector, and texture
coordinates. With fixed functionality, operations are done in a set order. You can disable some elements such as
lighting or texturing, but not modify how the underlying lighting or texturing calculations are done. The graphics
pipeline of OpenGL before version 2.0 used fixed functionality only.

Fixed functionality, as its name suggests, is quite rigid. It allows for quicker and easier generation of
images because lighting formulas and shading are already built into the system. However, it limits what we can
accomplish because we cannot override these settings. OpenGL Fixed functionality had separate pipeline steps
for vertex transformations and lighting. This is now all done within the vertex shader (VS) and fragment shader
(FS). Similarly, texture application, color summation, fog, and alpha testing were all discrete steps. Now these
components are done within the FS.

A high-level view of how the WebGL API, programmable and nonprogrammable components of the pipeline
interact is shown in Figure 2-1.
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Figure 2-1. Simplified diagram of the WebGL programmable pipeline. Steps with a shaded background are
editable

A programmable pipeline can display a greater range of effects because you can define parts of the pipeline
(not all of it) and override the calculations used for computing color, position, texture coordinates or the lighting
model. The programmable pipeline components use a vertex program and a fragment program which are known
collectively as shaders. These shaders are run on the powerful Graphics Processing Units (GPU) found in modern
computers. OpenGL versions 2.0 to 3.0 allowed the use of either fixed functionality or shaders. The slimmed
down API of OpenGL ES and WebGL only supports shaders and not fixed functionality.

Why Shaders?

If shaders are much more work to set up, why do we bother using them? What are their benefits?

Well, with shaders you can create effects that add increased realism to a scene. You can create
nonphotorealistic images that look cartoonish. You can also create convolution filters and masks in shaders; and
do additional antialiasing, blending, shadow creation, and advanced texture manipulation within the shader, and
pretty much anything else you can think of and implement.

You can also program the Graphics Processing Unit (GPU) to do side calculations. The power of the GPU can
be used to offset browser calculations and is much faster and better for general computing.

'The WebGL Graphics Pipeline

In WebGL, the rendering process is the following:
e  Take vertex array data and place it into vertex buffer objects (VBOs).

e  Stream the VBO data to the VS and send indice information using a call to either
drawArrays with implicit index ordering or with drawElements and an index array.

¢  The VSruns, minimally setting the screen position of each vertex and optionally
performing additional calculations, which are then passed on to the FS.

e  Output data from the VS continues down the fixed portion of the pipeline.
e The GPU produces primitives using vertices and indices.

e Therasterizer discards any primitive part that lies outside of the viewport. Parts within the
viewport are then broken up into pixel-sized fragments.
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e  Vertice values are then interpolated across each fragment.
e  Fragments with these interpolated values are passed on to the FS.
e  The FS minimally sets the color value, but can also do texture and lighting operations.

e  Fragments can be discarded or passed on to the framebuffer, which stores a 2D image
and optionally also uses a depth and stencil buffer. In this case, depth testing and stencil
testing can discard some fragments from being rendered in the final image. This image is
either passed on to the drawing buffer and shown to the user or alternatively saved to an
offscreen buffer for later usage such as to save as texture data.

A high-level view of the WebGL rendering process is shown in Figure 2-2.

Primitive
VBO Data Vertex Shader (position) Assembly

- I\
Ty A

Rasterization ¢

Final Image

\ — |\
A ﬁ‘ﬁ

Fragment Shader (Pixel Color)
Figure 2-2. WebGL rendering process overview

In Figure 2-2, we start with vertex positions that are in model coordinate space. The VS then transforms the
vertices to a final position. Appropriate primitive types are formed, the image clipped, rasterized, and passed on

to the FS. The FS interpolates values and sends the result optionally through the depth and stencil buffers and
finally the framebuffer.

GL Shading Language

Learning the GL Shading Language (GLSL) is essential to learning WebGL. I like to reference the Khronos WebGL
wiki, which aptly states:

“Nothing happens in WebGL without shaders.”

Background

The shading language used in WebGL is actually the OpenGL ES Shading Language (also known as GLSL ES
or ESSL) and is based on the OpenGL Shading Language (GLSL) version 1.20. The complete specification
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of OpenGL ESSL can be downloaded from http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES _
Specification_1.0.17.pdf.

GLSL is based on C++ and is actually two separate but closely related languages for vertex and fragment
processors. The compiled source on each processor is known as a VS or FS, respectively. The VS and FS are linked
together to form a single program that is run on the GPU.

The VS acts on one vertex at a time, and each vertex can have various attributes associated with it. The
FS acts on a part of the rasterized image and can interpolate vertex data. It cannot change the position of the
fragment or view the data of neighboring fragments. The VS can send data on to the FS. The ultimate goal of the
shader program is to update the frame (drawing) buffer or a texture buffer.

WebGL uses the JavaScript scripting language to bind our shaders to the GLSL application programming
interface (API). It can be a little confusing to realize that we are embedding the GLSL, which has a C++ like
syntax, inside of a <script> tag. We do this with either of the following:

¢ Embedding the VS and FS sources within the same web file in a <script> tag of type
"x-shader/x-vertex" or "x-shader/x-fragment", respectively

e  Placing the VS and FS in external files and loading them with Ajax

Note By default, the <script> tag sets the type attribute to javascript or text/javascript. The types
"x-shader/x-vertex" and "x-shader/x-fragment" are actually not recognized by the browser and ignored.
The content is still loaded within the Document Object Model (DOM) for later retrieval but is otherwise not used.

We will come back to the GLSL later in the chapter. For now, let us discuss the roles of the shaders.

Shader Roles

The VS and FS have distinct roles that work together to render a finished image. Essentially, the VS acts on every
vertex and is responsible for setting the final vertex location while the FS acts upon each pixel and sets the final
color.

Vertex Shader (VS)

The VS is responsible for all vertex coordinate transformations. This includes model view and projection matrix
view calculations. It also calculates normal vector and texture coordinate generation and transformations. The VS
can perform per-vertex lighting calculations and pass these values on to the FS for a per-pixel computation.

In summary, the VS is responsible for

e final vertex position
and optionally
e  per vertex normal, texture, lighting, and color
e  passing values on to the FS
Minimally, a VS needs to set the gl _Position, which as we will discuss later in the chapter, is a built-in VS
variable (see Listing 2-1).
Listing 2-1. Simple vertex shader, which passes the input vertex positions to the fragment shader

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
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void main(void) {
gl Position = aVertexPosition;
}

</script>

Fragment Shader (FS)

The FS operates on a pixel, which is a rasterized portion of a primitive(s). It computes final per-pixel color can
perform texture lookups, and can also be used to produce effects such as fog. You can think of the VS and FS as
a team. The VS passes values to the FS, but the FS gets final say and could choose to not use these values. The FS
also does not render portions of an image that are obscured by another object or fall outside of the viewport by
choosing to discard them.

In summary, the FS is responsible for

e  setting the final color of each pixel
and optionally

e performing texture lookups

e  discarding fragments

Minimally, the FS needs to set the fragment color, as shown in Listing 2-2.

Listing 2-2. A fragment shader that sets every fragment to blue

<script id="shader-fs" type="x-shader/x-fragment">
void main(void) {
gl FragColor = vec4(0.0, 0.0, 1.0, 1.0);

</script>

Basic Usage

We have gone over the steps of creating a shader program in Chapter 1 and also shown the API signatures of each
method that we used. Here we will briefly recap how to set up and clean up a shader program in WebGL.

Setting Up a Shader Program

Within a WebGL application, the program is a WebGLProgram object, and each shader is a WebGLShader object.
We define variables to hold our shaders and program:

var vertexShader = null,
fragmentShader = null,
shaderProgram = null;

Here are the steps to use shaders within a WebGL program:
1. Create the shaders:

vertexShader = gl.createShader(GL.VERTEX_ SHADER);
fragmentShader = gl.createShader(GL.FRAGMENT SHADER);
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2. Set the source code of each shader:

<script id="shader-vs" type="x-shader/x-vertex">

</script>

<script id="shader-fs" type="x-shader/x-fragment">

</script>

var vertex_source = document.getElementById('shader-vs').innerHTML
var fragment source = document.getElementById('shader-fs').innerHTML,

gl.shaderSource(vertexShader, vertex source);
gl.shaderSource(fragmentShader, fragment source);

3. Compile each shader and check for errors:

gl.compileShader (vertexShader);
if (!gl.getShaderParameter(vertexShader, gl.COMPILE STATUS)) {

alert( "Error compiling vertex shader: " +
gl.getShaderInfolLog(vertexShader));
}

gl.compileShader (fragmentShader);
if (!gl.getShaderParameter(fragmentShader, gl.COMPILE STATUS)) {

alert( "Error compiling fragment shader: " +
gl.getShaderInfolLog(fragmentShader));
}

4. Create a program:
shaderProgram = gl.createProgram();
5.  Attach our shaders to the program:

gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);

6. Link the program and check for errors:
gl.linkProgram(shaderProgram);

if (!gl.getProgramParameter(shaderProgram, gl.LINK STATUS)) {
alert("Unable to initialize the shader program.");
}

7. Tell WebGL to use our program:

gl.useProgram(shaderProgram);

Clean Up

To remove the shaders from our program, we perform the opposite procedure:
1. Detach the shaders from the program:

gl.detachShader(shaderProgram, vertexShader);
gl.detachShader(shaderProgram, fragmentShader);
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2. Delete each shader:

gl.deleteShader(vertexShader);
gl.deleteShader(fragmentShader);

3. Delete the program:
gl.deleteProgram(shaderProgram);

The preceding quickly recaps the steps to create and use a shader program in WebGL. If we need to, we can
create multiple shader programs within an application and switch between them by calling useProgram with the
appropriate shader: gl.useProgram(shaderProgram). As discussed in Chapter 9, it is an expensive operation, so
switching should be used as much as possible.

We will now show you how to load shaders from external sources instead of embedded within the same
document as our main program.

Loading Shaders with Ajax

We have shown how to include our shader programs within the same file that holds our WebGL application.
To keep our application file shorter and more modular, we can use Ajax to load in our shaders from separate
external files.

Note Due to WebGL security restrictions and the same origin policy, to include an external shader, we need to
be running a web server. Setting up a local web server is beyond the scope of this book, but does not need to be
difficult. Some great LAMP, MAMP, and WAMP (Linux/Mac/Windows, Apache, MySQL and PHP/Perl/Python) stacks are
listed in Appendix D. There is also an increasing number of cloud platforms available that offer free accounts.

Loading external sources is optional, and if you cannot get a local server setup or prefer embedded shaders, by
all means stick with that approach.

XMLHttpRequestObject

To load Ajax content from an external file we can use regular JavaScript to directly use the XMLHttpRequestObject
(XHR). The XHR is used to send a request from the client to the server and receive a response without requiring
reloading the page or interrupting a user’s browsing experience.

Briefly, we can think of the XMLHttpRequestObject by the components in its name:

e  XML: The document format sent; can also be JSON, HTML or plain text
e  HTTP: The protocol used; can also be HTTPS
e Request: The action; can also refer to responses

In addition, the requests may be asynchronous calls that do not block other calls, or synchronous calls that
do. With an asynchronous call, other requests can take place in parallel while with a synchronous call; all other
requests need to wait for completion of the current request before starting processing. Synchronous calls take
place in serial order. Usually asynchronous calls are done on websites for improved loading times. However, there
are times when a synchronous call is needed to ensure the proper order of events. In Listing 2-3, setting the third
parameter of the open method to false tells the XMLHttpRequestObject not to do an asynchronous call.

In Listing 2-3 we create a new instance of the XMLHttpRequestObject, set up the details of the document that
we want to retrieve with the open method, actually send out the request with the send method, and then observe
the readyState and status properties. We will not go into great detail about the XMLHttpRequestObject, but
additional resources are listed in Appendix D.
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Listing 2-3. Loading shaders with the XMLHttpRequestObject

//get shader sources with XMLHttpRequestObject
var fs_source = null,
vs_source = null;

var xhr = new XMLHttpRequest();

//synchronous request requires a false third parameter
xhr.open('GET', './shader.vs', false);

//overriding the mime type is required
xhr.overrideMimeType('text/xml");

xhr.send(null);

if (xhr.readyState == xhr.DONE) {
if(xhr.status === 200)

{

vs_source = xhr.responseXML.documentElement.firstChild.data;
} else {

console. error("Error: " + xhr.statusText);
}

}
xhr.open('GET', './shader.fs', false);

xhr.send(null);

if (xhr.readyState == xhr.DONE) {
if(xhr.status === 200)

{

fs_source = xhr.responseXML.documentElement.firstChild.data;
} else {

console. error("Error: " + xhr.statusText);
}

In Listing 2-3 we are sending synchronous requests. Alternatively, we could use asynchronous calls and
callback functions to signal that we are ready to move on with our program. In Listing 2-3 we also have to
override the mime type to XML because the browser may not otherwise recognize the content of our shaders as
a XML document. When the readyState is equal to XMLHttpRequestObject.DONE, then we check the status.
A status of 200 means success and we can grab the data we need from the responseXML object: responseXML.
documentElement.firstChild.data. If the status is not 200, we output an error message to the console.

Starting with a copy of the 01/3D_triangles_depth_test.html file that was the last example of Chapter 1,
remove the inline shader scripts at the top of the file and swap out these lines with those found in Listing 2-3:

//get shader source
var fs_source = document.getElementById('shader-fs').innerHTML,
vs_source = document.getElementById('shader-vs').innerHTML;

When you run the modified application, you will see that it works exactly the same as before. This can be
found in the 02/vanilla_ajax.html file.

Note Remember that you must be running a web server to use this approach. In Figure 2-3, | naively try run-
ning my file directly in the browser. You can see in the Chrome developer tools console the error that this causes.
Developer and debugging tools are very useful and are covered in depth in Chapter 9.
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C # O filey//Dywebgl/apress_book/code/02/ch2_vanilla_ajax.htmi T ™MANA
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Figure 2-3. Error caused by trying to load an external file without a web server

Using jQuery

If we use a higher-level JavaScript API such as the very popular jQuery, there are a couple of advantages. First,
itis easier because some of the low-level code is obscured for us. Second, it is more cross-browser compatible.
A quick background of jQuery can be found in Appendix A. The equivalent jQuery functionality of Listing 2-3 is
shown in Listing 2-4:

Listing 2-4. Loading shaders with jQuery

//get shader sources with jQuery Ajax
$.ajax({

async: false,

url: './shader.vs',

success: function (data) {

vs_source = data.firstChild.textContent;

1
dataType:
D;

$.ajax({
async: false,
url: './shader.fs',
success: function (data) {
fs_source = data.firstChild.textContent;
}
dataType: 'xml'
1;

xml'

Because jQuery extracts away the underlying XHR calls and the $.ajax method explicitly states the
parameters that it is using, Listing 2-4 is both more concise and easier to understand than Listing 2-3.

Remember to also include a link to the jQuery library. The latest version of the jQuery library hosted on the
jQuery CDN is available for development usage from http://code.jquery.com/jquery-latest.js and for production
usage, the minified form can be found at http://code.jquery.com/jquery-latest.min.js. The full source code for
this example is available on the books companion sites and is available in the file 02/jquery_ajax.html. There is
an issue associated with including the full shader source, including script tags, externally and then parsing. The
issue and solution are discussed in Chapter 9.
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GLSL Specification in More Detail

Earlier, I mentioned that the GLSL is similar to C++. It uses a subset of ASCII characters and carriage return and/
or line feeds to terminate each line. The language is case sensitive and it is interesting to note that unlike C/C++,
there are no character or string types used. As such, there are also no characters used for quoting. Variable and
function names must start with an alphabet character or underscore, but cannot start with gl _ or be a reserved
language word. Each shader program can have only one main method, which is the same as C/C++.

Primitive Types

The available basic types that are inherited from C++ are shown in Table 2-1.

Table 2-1. C++ Inherited Types and Descriptions

C++ types Description

void Used to specify a function with no return value and/or no
parameters

bool Boolean true or false

int Signed integers. Example: 1, 7, 13

float Floating point number. Example: 1.3, 7.0, 13.445

GLSL defines new primitive types that are shown in Table 2-2.

Table 2-2. GLSL Types and Descriptions

GLSL types Description

vec2, vec3, vec4, ivec2, ivec3, vec4, bvec2, Vector of size 1x2, 1x3, or 1x4; and of type float, integer,
bvec3, bvec4 or bool, respectively

mat2, mat3, mat4 Floating point matrix of size 2x2, 3x3, or 4x4
sampler2D, samplerCube Handles to 2D or cube mapped textures

We can also create structures that can hold more complex composite types. For instance:

struct myStruct{
vec3 something;
mat4 somethingElse;

Qualifiers

GLSL has several optional qualifiers for variables. These fall into the categories of storage, parameter, precision
and invariant qualifiers.

Storage Qualifiers

Storage qualifiers describe both the variable scope and relation to the WebGL program.
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A variable might be declared with attribute storage as attribute vec3 aColor;.

Table 2-3. Storage Qualifiers

Qualifier Description

[none] The default for a variable is to have no storage qualifier. Local variables and function input
parameters have no storage qualifiers.

const Constant throughout the program. Read only.

uniform Constant value across an entire primitive.

attribute VS per vertex information from our WebGL application.
varying VS write, FS read.

Note Prefixes are not required, but are commonly used to help represent the storage type of variables to other
programmers: v for varying, u for uniform, and a for attribute. For example:

attribute vec3 aVertexNormals;
uniform uSampler;
varying vOriginalPosition;

Parameter Qualifiers

Parameter qualifiers are used for function parameters (see Table 2-4).
A function in WebGL might look like this:

vec3 a = (0, 1, 0);

vec3 c;
void myFunction(a, out c){
c=a*2;
}
Table 2-4. Parameter Qualifiers
Qualifier Description
[none] The default, which is the same thing as specifying the in qualifier
In Parameters passed into a function
Out Parameters to be passed out of a function, but were not initialized
Inout Initialized parameter that will also be passed out of a function

Precision Qualifiers

There are three different precision qualifiers for the GLSL: highp, mediump, and lowp. highp satisfies the
minimum requirements for the vertex language. mediump satisfies the minimum precision for the FS. Lowp is less
than medium but still fully represents the values of a color channel.
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Invariant Qualifier

Lastly, there is the invariant qualifier. It ensures that a variable can no longer be modified.

Qualifier Order

The order of qualifiers is important. For variables it is:

invariant, storage, precision for example: invariant uniform highp mat4 m;

For parameters, the order is:

storage, parameter, precision For example: void myFunc(const in lowp c){ ; }

Built-in Variables

The GLSL has a number of built-in variables that are shown in Table 2-5.

Table 2-5. Built-in Shader Variables

Variable Type Description Used In Input/Output
gl Position vecd Vertex position VS output

gl PointSize float Point size VS output

gl FragCoord vec4 Fragment position within the frame buffer FS input

gl FrontFacing bool Whether the fragment is part of a front orback ~ FS input

facing primitive

gl PointCoord vec2 Fragment position within a point FS input

gl FragColor vec4 Final fragment color FS output

gl FragData[n] vec4 Fragment color for a color attachment, n FS output

Built-in Constants

There are also built-in constants in WebGL. They have implementation-dependent values, but the minimum

requirement of each is listed here:

const mediump int gl MaxVertexAttribs = 8;

const mediump int gl MaxVertexUniformVectors = 128;
const mediump int gl MaxVaryingVectors = 8;

const mediump int gl MaxVertexTextureImageUnits = 0;
const mediump int gl MaxCombinedTextureImageUnits =
const mediump int gl MaxTextureImageUnits = 8;

const mediump int gl MaxFragmentUniformVectors = 16;
const mediump int gl MaxDrawBuffers = 1;

8;

Vector Components

For convenience, besides numeric array subscripts, vector components can be accessed by a single letter. These

letters vary based on the vector type, as displayed in Table 2-6.
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Table 2-6. Vector Components

Usage Shorthand Notation
Coordinate positions and normals {x,y,z,w}
Colors {r,g,b,a}
Textures {s,t,p,q}

The usual third component of a texture, 1, is renamed p to be distinct from the red color component. With
vector components you can do assignments and calculations such as:

vec4 green = vec4(0.0, 1.0, 0.0, 1.0);
vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);
vec4 final color;

final_color = vec4(green.rg, blue.ba); //use red, green from one vector and blue, alpha from
another

final_color.rgh = green.rrr; //use only the red channel

final_color.rg = green.gr; //swap red, green

final_color.g = green.gr; //average green, blue

Vector and Matrix Operations

GLSL has built-in support for vector and matrix operations. When a scalar operates on a vector or matrix, or
the operation is addition or subtraction, then calculation is done component-wise. When performing vector or
matrix multiplication, then we follow regular linear algebra multiplication rules. Some example declarations:

vec3 u, Vv, W,
float f;
mat3 m;

We can also initialize scalar variables, vectors and matrices on declaration:

float f = 1.4;

vec4 color = vec4(1.0, 0.0, 0.0, 1.0); //red
vecd a = vec2(1.0, 2.0);

vec2 b = vec2(3.0, 4.0);

mat2 m = mat2(a, b);
//column major order - columns are listed in sequence. So the above
//produces a matrix with values:

// 1.0 3.0
// 2.0 4.0
//

//and stored in memory as 1.0 2.0 3.0 4.0

mat2 m = mat2(1.0, 0.0, 0.0, 1.0); //2x2 identity matrix
mat2 m = mat2(1.0); //also 2x2 identity matrix

v=u+f;
is the same as:

V.X = U.X + f;
v.y = u.y + f;
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u.z + f;
- V;

n N
< n

V.
W

is the same as:

W.X = U.X - V.X;
W.y = U.y - V.y;
W.Z = U.Z - V.Z;

The GLSL also has functions for performing dot products and cross products, which are dot and cross
respectively.

w = dot(u, v);

is the same as:

W.X = U.x*v.x;
W.y = u.y*v.y;
W.Z = U.z*v.z;
and:

w = cross(u, Vv);
is the same as:

W.X = u.y ¥ v.z¥ - u.z ¥ v.y;
Ww.y = u.z * vox* - u.x * v.z;
W.z = u.x * viy* - uy ¥ v.x;

Built-in Functions

The GLSL defines many built-in functions for common operations. We have just seen two: dot and cross. There
are many more and should always be used over equivalent user-defined functions as the built-in versions will be
optimized.

For all the functions to be listed, the input and output types can be float, vec2, vec3, or vec4. To avoid
redundancy and for a cleaner appearance, we will use T to signify any one of these types. Just keep in mind that if
an input parameter is of a certain type, all other inputs and outputs must be that type as well. For example:

T sin(T angle) canrepresent
float sin(float angle) or
vec2 sin(vec2 angle) but not
vec2 sin(float angle)

For the vec2, vec3, or vec4 instances of a function, the operation is done on each component. Also note that
if the divisor of one of these functions is 0, the result will be undefined, but there will be no divide by zero error
produced.

Angle and Trigonometry Functions

GLSL functionality to convert between degrees and radians and calculate trigonometric values are shown in
Table 2-7. Recall that degrees = radians * 180/, so one radian =~ 57.3 degrees.
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Table 2-7. Trigonometric Functions in GLSL

GLSL Function

Description

T radians(T degrees)
T degrees(T angle)
Tsin(T angle)
Tcos(T angle)
Ttan(T angle)

Tasin(T x)
Tacos(T x)

Tatan(T y, T x)
Tatan(T y over x)

Convert degrees to radians; radians = degrees/57.3

Convert angle (in radians) to degrees; degrees = angle*57.3

Sine function (Opposite/hypotenuse); angle in radians, output is in the range [-1, 1]
Cosine function (Adjacent/hypotenuse); angle in radians, output is in the range [-1, 1]

Tangent function (Opposite/adjacent); angle in radians, range is +/- infinity;
undefined when angle is a multiple of /2

Arcsine function; given input in [-1, 1] produces an angle in the range [-n/2, ©t/2];
undefined for [x| > 1.

Arccosine function; given input in [-1, 1] produces an angle in the range [0, n];
undefined for [x| > 1.

Arctangent; undefined if both x and y are 0; Output is [-7, 7]

Arctangent; output range is [-n/2,7/2].

Exponential Functions

Functionality to handle exponential powers and their inverses, logarithms, along with powers of +/- %2, which are
square root and inverse square root, are shown in Table 2-8.

Table 2-8. Exponential Functions in GLSL

GLSL Function

Math Function Description

Tpow(T x, Ty)

Texp(T x)
Texp2(T x)
Tlog(T x)

Tlog2(T x)
Tsqrt(T x)

T inversesqrt(T x)

bl Returns x raised to the power of y, x*. Results
are undefined for x < 0 or x=0 and y<=0

e Natural exponentiation of x, e*.

2% 2 to the power of x, 2~

y=logx Natural logarithm x, x = €%, y = log x.
Undefined if x <= 0.

y=logx Logarithm of base 2, x = 2, y =log x.
Undefined ifx <= 0.

\/; Returns the positive square root of x, x/?or
\/; .Undefined ifx < 0.

% The reciprocal of the positive square root of

X, XY2or %.Undeﬁnedifx <= 0.

Common Functions

Some other commonly used math functions are shown in Table 2-9. These include operations that grab the whole
or fractional part of a number or perform other numeric manipulation.
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Table 2-9. Common Functions in GLSL

GLSL Function Description

Tabs(T x) Returns -x if x<0; otherwise returns x.

Tsign(T x) Returns 1.0ifx > 0, 0.0ifx = 0,0r-1.0ifx < 0.

Tflooxr(T x) Returns the nearest integer below or equal to x. floor (4.7)
= 4.0 = floor(4.0)

Tceil(T x) Returns the nearest integer above or equal to
x.ceil(4.7) = 5.0 = ceil(5.0)

T fract(T x) Returns the decimal part of a number.
fract(x) = x - floor(x).

Tmod(T x, Ty) Modulus operator. Returns x - y*floor(x/y)
using the corresponding component of y.

Tmod(T x, float y) Modulus operator. Returns x - y*floor(x/y) using a
single provided floating point value.

Tmin(T x, Ty) Returns y if y<x; otherwise x. Component-wise or single

Tmin(T x, float y) float y version of function.

Tmax(T x, Ty) Returns y if y>x; otherwise x. Component-wise or single

Tmax(T x, float y) float y version of function.

Tclamp( T x, T minvVal, T maxVal) Returns (min(max(x, minVal), maxVal)).Ensures that

Tclamp( T x, float minVal, float maxVal) minVal <= x <= maxVal. Component-wise or single min
and max value versions. Undefined ifminvVal > maxVal.

Tmix(T x, Ty, T a) Returns a linear blend of x and y corresponding to the

Tmix(T x, Ty, float a) equation x(1-a) + y*a. Component-wise or single min
and max value versions.

Tstep(T edge, T x) Returns 0.0ifx < edge, 1.0 otherwise. Component-wise

Tstep(T float edge, T x) or single min and max value versions.

T smoothstep( T edge0, T edgel, T x) Returns 0.0if x < edge, 1.0ifx >= edgel and uses

T smoothstep( float edge0, float edgel, T x)  smooth interpolation (Hermite) between 0 and 1
otherwise. Undefined if edge0 >= edgel.

Geometric Functions

The following GLSL functions in Table 2-10 are not calculated component-wise but follow vector-on-vector
operation rules to compute geometric results.
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Table 2-10. Geometric Functions in GLSL

GLSL Function Description

float length(T x) Returns the length of the vector.

float distance(T x, T y) Returns the distance between vectors x and y, length(x - y).

float dot(T x, T y) Returns the dot product of vectors x and y, x *y_ + X, *y,+ ...

vec3 cross(vec3 x, vec3 y) Returns the cross product of vectors x and y. This operation is available only for

three-dimensional vectors.

T normalize(T x) Returns a vector with the same direction as the input x, but with a new length
of 1, (x,/length(x), x,(length(x)), ...)

T faceforward Used to adjust a vertex normal to face the scene camera. N is a normal vector,
(TN, TI, T Nref) I is the incidence vector(direction from the camera to a vertex), Nref is a
reference vector.

Determines the direction of a primitive face, by calculating dot
(Nref, I).ReturnsN ifthe dot product is smaller than 0.0 and -N otherwise.

Treflect(T I, T N) Returns the reflection direction. N is a normal vector, I is the incidence vector
(direction from the camera to a vertex). Returns I - 2*dot(N, I)*N.

Trefract(T I, T N, float eta) Returns the refraction direction. N is a normal vector; I is the incidence vector
(direction from the camera to a vertex), eta is the ratio of indices of refraction.
I and N must be normalized to obtain correct results.

Matrix and Vector Functions

The following matrix function can use mat2, mat3, or mat4 solongas all inputs and the output are of the same
type:
mat matrixCompMult (mat x, mat y)

Normally when two matrices are multiplied, (x*y), the computation of the result[i][j] = dot(x_, i
Y.onmn 1)- However, this function computes just the scalar product of each matrix element, result[i][j] = x[i]
[31 * ylil(5].

For component-wise value comparisons of vectors, we have the following functions that return a Boolean
valued vector. In the following code, bvec can represent bvec2, bvec3, or bvec4. Similarly vec can be vec2, vec3s,

vec4, ivec?, ivec3,or ivec4 as long as both parameters are the same type.

bvec lessThan(vec x, vec y)

bvec lessThanEqual(vec x, vec y)
bvec greaterThan(vec x, vec y)
bvec greaterThanEqual(vecx, vec y)

This does component-wise comparision ofx < y, x <=y, x > yorx >=y, respectively.

bvec equal(vec x, vec y)
bvec notEqual(vec x, vec y)

These functions can also take bvec parameters and return the component-wise comparision of x == y or
x l=y, respectively.
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bool any(bvec x)
bool all(bvec x)
bvec not(bvec x)

The first function returns true if any component of x is true. The second returns true only if all components
are true. The third function returns the complementary Boolean vector: input true components are set to false in
the output vector and false components to true.

Texture Lookup Functions

Lastly, there are built-in functions for textures. Level of detail (Lod) suffixed functions are only available in the VS.

2D Texture Functions

vec4 texture2D (sampler2D sampler,vec2 coord )

vec4 texture2D (sampler2D sampler,vec2 coord, float bias)

vec4 texture2DProj (sampler2D sampler,vec3 coord )

vec4 texture2DProj (sampler2D sampler,vec3 coord, float bias)
vec4 texture2DProj (sampler2D sampler,vecd coord)

vec4 texture2DProj (sampler2D sampler,vecd coord, float bias)
vec4 texture2DLod (sampler2D sampler,vec2 coord, float lod)
vec4 texture2DProjlLod (sampler2D sampler,vec3 coord, float lod)
vec4 texture2DProjLod (sampler2D sampler,vec4 coord, float lod)

coord is a texture coordinate that looks at the current texture bound to the sampler variable. A suffix containing
Proj means the projective version of the function. In this case, the texture coordinates (coord. st) are divided
by the last component of coord. If you use a coord of type vec4with the projective version, the third coordinate is
simply ignored.

3D Texture Functions

vec4 textureCube (samplerCube sampler, vec3 coord )
vec4 textureCube (samplerCube sampler,vec3 coord, float bias )
vec4 textureCubeLod (samplerCube sampler,vec3 coord, float lod)

coord is a texture coordinate that looks at the current texture which is bound to the sampler. The direction of
coord determines which face of the 3D cube to do a 2D texture lookup on.

Noise Functions

Unlike recent versions of the GLSL, the OpenGLES SL that WebGL uses does not have built-in noise functions for
generating noise. Using noise can be very useful to add the appearance of randomness or grittiness to textures.
We can also simulate clouds, fog, wood and marble, among other materials using noise. Though beyond the
scope of this book, noise can be generated using algorithms such as Perlin noise in a shader program and stored
in texture images for later use.

Interactive GLSL Environs

A good place to dive into the GLSL functions is an interactive editor that lets you adjust the VSs and FSs without
needing to worry about the WebGL application code.
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Several desktop programs to manipulate the GLSL exist, but are primarily geared toward OpenGL
implementations and versions of the GLSL that are higher than WebGL supports. As such, they can still be useful
but the reader should be warned that functionality that may work within these programs may not function
properly when used as WebGL specific vertex and fragment shaders.

There are several websites that offer shader manipulation and also control the WebGL application, models,
and program interaction for you. This lets you concentrate on the GLSL source. The number of useful programs
and websites for WebGL shader development will increase with the maturity of the language and the community.
At the moment, three good sites are:

e  Kick]S Shader Editor
http://www.kickjs.org/example/shader_editor/shader_editor.html

e  WebGL Playground
http://webglplayground.net/

e  SpiderGL MeShader
http://spidergl.org/meshade/

You can see MeShade in action in Figure 2-4.

Figure 2-4. Using the gargoyle mesh and editable shader source of MeShade

Of the three sites lists, Kick]JS is the easiest to start using and has a nice real-time error console and
adjustable settings.

Procedural Shaders

For the following examples, we will use an interactive shader environment to explore some procedural shaders,
which produce effects through algorithms within the shaders instead of precomputed stored data passed in from
our application. They are sometimes referred to as procedural texture shaders. We will cover stored textures in
the next chapter.
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Procedural shaders do not require memory to store an image and scale better than using normal textures.
However, using procedural shaders requires an understanding of the algorithms used, which can be complex and
also require much more computing power than a stored texture. The results of a procedural shader can also be
rendered to a texture file for later static usage.

Procedural shaders can be written using both the VS and FS. In most of these examples, we will only use the
VS to pass the final coordinates of each vertex on to the FS. The algorithms that will determine the final pixel color
will be written within the FS.

Gradient Color

Our first example will produce a gradient color using the mix function and a component of the position or texture
coordinate defined within our interactive environment. In Listing 2-5 we show the relevant FS code for the Kick]S
environment and in Listing 2-6 for the webglplayground.net editor (see Figure 2-5). As you can see, the only
difference is the variable that we use for our mix amount.

Listing 2-5. Gradient FS at Kick]S
varying vec2 uv;

void main(void)

{

vec3 blue = vec3(0.0, 0.0, 1.0);

vec3 green = vec3(0.0, 1.0, 0.0);

gl FragColor = vec4(mix(blue, green, uv.s), 1.0);

Listing 2-6. Gradient FS at webglplayground.net/

@glsl fs1
varying vec2 pos;

void main() {

vec3 blue = vec3(0.0, 0.0, 1.0);

vec3 green = vec3(0.0, 1.0, 0.0);

gl FragColor = vec4(mix(blue, green, pos.y), 1.0);

Figure 2-5. Gradient teapot on the left (Kick]S); gradient plane on the right
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Stripes

Next we will show how to use the mod function to generate repetition and create stripes. In Listing 2-7 we take a
texture parameter and multiply it by a variable, repetition, which determines the frequency of alternation. Then
we test the output, setting the color value equally dependent on a threshold of 0. 5. If this is set unevenly, toward
0.0o0r 1.0, one color of stripes will be much wider than the other, resulting in more of a pinstriping appearance.
In the center teapot of Figure 2-6, we use uv.t instead of uv.s, and in the right teapot we use (uv.s * uv.t).

Listing 2-7. Fragment shader code to generate black and white stripes

varying vec2 uv;
void main(void)

{
float repetition = 15.0;
vec3 black = vec3(0.0, 0.0, 0.0);
vec3 white = vec3(1.0, 1.0, 1.0);
bool color = (mod(uv.s * repetition, 1.0) > 0.5);
if(color){
gl FragColor = vec4(black, 1.0);
telse{
gl FragColor = vec4(white, 1.0);
}
}

Figure 2-6. Teapots with vertical, horizontal, and curved striping

Notice the aliasing artifacts in Figure 2-6.

Discarding

We will explore the GLSL keyword, discard, which is used in the FS to not draw fragments. We will also use

a few of the functions defined previously to produce grid point and lattice drawings. The nice thing with
interactive shaders is that the models are rendered for us. We just worry about the VS and FS details. I have
chosen the sphere mesh, but disabled lighting to simplify the shaders. The variable names are specific to the
KickJS environment, but will work with any WebGL application as long as you rename the attributes and uniform
variables to appropriate values.
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Listing 2-8. The VS for use within the kickjs.org shader editor

attribute vec3 vertex;
attribute vec2 uvi;

uniform mat4 _mvProj;

varying vec2 uv;
varying vec3 vColor;

void main(void) {
gl Position = mvProj * vec4(vertex, 1.0);
uv = uvi;
vColor = vec3(1.0,0.7,0.8);

}

Listing 2-9. The matching FS for use within the kickjs.org shader editor

varying vec3 highp vColor;
varying vec2 highp uv;

uniform sampler2D tex;

void main(void)
{

gl FragColor = texture2D(tex,uv)*vec4(vColor, 1.0);

The FS makes use of a texture that is stored in the sampler2D tex. We cover textures in the next chapter, but
the shader editor loads it for us here. We just need to know that 2D textures have coordinates s and t, which lie in
the range [0, 1]. The default image produced is shown on the left of Figure 2-7.

We adjust the FS now to include the lines in Listing 2-10.

Figure 2-7. Original image on the left, using discard on the right
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Listing 2-10. Using the discard function

const float scale = 20.0;

const vec2 latticeSize = vec2(0.1, 0.1);

vec2 fractional = fract(uv * scale);

bvec2 toDiscard = (greaterThan(fractional, latticeSize ));

if( any(toDiscard) )

discard;

Adding the above code to the main function in Listing 2-9 produces the image on the right of Figure 2-7. In
Listing 2-10, uv holds the texture coordinates passed in from the VS. These values will fall between 0.0 and 1.0.
Multiplying by our scaling factor adjusts the range and determines how many sections we have. Next we use
fract to get the fractional part of both scaled components. The greaterThan function will do a component-wise
compare of fractional and latticeSize vector values and store the Boolean results in the toDiscard vector.
Explicitly, it looks like this:

toDiscard = bvec2( fractional.x > latticeSize.x, fractional.y > latticeSize.y)
For a varying input uv value of (0.401, 0.32),

fractional = fract(8.02, 6.4) = (0.02, 0.4)

and

toDiscard = greaterThan( (0.02, 0.4), (0.1, 0.1) ) = (false, true)

We then check the Boolean vector of comparision results with the any function that returns true if any of
the components of an input Boolean vector is true. With the previous example instance, toDiscard = (false,
true), so the any function will return true.

When the function returns true we call the GLSL keyword discard, which tells the GPU not to render the
fragment. In Listing 2-10, only parts of the image that are within a certain distance of regular grid points will be
rendered.

You can decrease/increase the grid point size by decreasing/increasing one or both components of
latticeSize. You can decrease/increase the total number of grid points by decreasing/increasing scale.

Now suppose we want to show latitude and longitude type lines along the sphere. That is easy; we simply use
the all function instead of the any function used in Listing 2-10. This reduces what we discard because both the
texture components must be greater than our lattice size to return true (see the left side of Figure 2-8). Finally, we

Figure 2-8. A full lattice shown on the left, and half a lattice shown on the right
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can also specify that in addition to our lattice check that we also do not want to discard any part of the image that
lies within a certain region. We can do this with an additional conditional test such as the following, which checks
the t value of the texture:

if(uv.t < 0.5){ toDiscard.x = false; }

The output of adding this conditional test is shown on the right of Figure 2-8.

Summary

This chapter looked at the WebGL graphics pipeline, the role of shaders, and the GLSL in depth. We showed
online interactive sites that let you easily play around with shaders without needing to create the mesh or
viewport, and showed some procedural shading techniques. We will come back to procedural produced images
in Chapter 6. We will build upon the knowledge gained in this chapter in more elaborate examples throughout
the book, starting with the next chapter. In the next chapter, we will look at how to manipulate and apply texture
to our meshes as well as discuss lighting models and surface normals.
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CHAPTER 3

Textures and Lighting

In this chapter we will cover two topics that are fundamental to producing realistic scenes, texture and lighting.
Specifically, we will

e discuss what textures are and how to apply them

e  show what texture options are available and how to configure these
e  use multiple textures in a shader

e  present a basic lighting model

e  create a directional light shader

By the end of the chapter, we will produce the textured and lit mesh on the right of Figure 3-1.

Figure 3-1. Left - No texture or lighting; Right - both texture and lighting

The left image in Figure 3-1 is a concrete example of why we need to use texture and lighting. In the last
example of Chapter 1, a triangle mesh was visible as a 3D figure. The reason it appeared three-dimensional was
only because the vertex colors were distinct and interpolated by our fragment shader. This provided depth cues
for us. As you can see, when all the vertex points have the same color, and no lighting or texture is applied, the
image looks like a flat two-dimensional polygon. It is actually still 3D; the reason that it appears flat is that there
are no context clues to let us know that this is in fact a solid figure.
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When we look at an image, we depend on clues such as variance on the faces of a solid in terms of lighting:
darkness/illumination, reflection, shadows, and directional pattern changes from textures to inform us where
one face ends and another begins. In the image on the right of Figure 3-1, we have added texture and lighting
clues, and you can clearly tell that this is a solid.

Textures

Textures are images that are applied to surfaces within our program. Images used as textures may be bitmapped
in origin or generated procedurally. Textures must be applied (mapped) to our image and in doing so are usually
stretched, scaled, distorted, and/or repeated.

The width and height of a texture are usually the same and a power of 2, 2", such as 64, 128, 256, and 512.
Each basic element of a texture is known as a texel which stands for texture elementor texture pixel.

Texture Coordinates

In two dimensions, texture coordinates are referred to in (s,t) pairs instead of (x,y) pairs like vertex positions.
Normally, texture coordinates are also limited to the range (0,0) to (1,1). For a texture size of 128x128 pixels, all
points will be divided by 128 in order to lie within this range. The texture coordinate (0.5, 0.25) for a 128x128
texture would refer to the texel (64, 32).

Figure 3-2 shows the coordinates of a source image on the left and the equivalent texture coordinates on the right.

{(0,128) (128,128) (0,1) (1,1)

-/ -/

(0,0) (128, 0) (0,0) (1,0
Figure 3-2. Left - a square 128x128 pixel image with vertex coordinates; Right - the equivalent texture coordinates

Texture coordinates are usually sent to the shader program as vertex attribute values, but (as we saw in the
previous chapter) we can also manipulate them within our shader program.

Texture Objects

In WebGL, a texture is stored within a WebGLTexture object. To create and bind a WebGLTexture object, the API
functions used are:

WebGLTexture createTexture();
void bindTexture(GLenum target, WebGLTexture texture);

The target for 2D textures will be TEXTURE_2D. Other target types are listed in Appendix C.
The code to create and bind a WebGLTexture will look like this:

var texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);

To check that a certain texture has loaded properly, you can use the API call:
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GLboolean isTexture(WebGLTexture texture);
Code to check a texture will look like this:

if( !gl.isTexture(texture) )

console.log("Error: Texture is invalid");

This is important to check because if no WebGLTexture is currently bound (by passing null or 0 to
bindTexture), then further operation attempts on the texture will produce an INVALID_OPERATION error.
When you are done with a texture, you can delete it with a call to:

void deleteTexture(WebGLTexture texture);
It will look like this:
gl.deleteTexture(texture);

Now that we have initialized a WebGLTextuzre object, we are ready to load data into it.

texImage2D

The API call to load data into a texture is the texImage2D function. This function has five signature variations. The
first four are of this form:

void texImage2D( GLenum target, GLint level, GlLenum internalformat,
GLenum format, GLenum type, [source]);

In this code, [ source] may be one of ImageData, HTMLImageElement, HTMLCanvasElement, or
HTMLVideoElement. The latter three may throw a DOMException.
The other form of the call is for specifying the data from a typed array:

void texImage2D( GLenum target, GLint level, GlLenum internalformat,
GLsizei width, GlLsizei height, GLint border, GLenum format,
GLenum type, ArrayBufferView? pixels);

Example usage of this form of the function can be found in Chapter 6.

The level parameter refers to the level of detail used in mipmaps, which are discussed later in the chapter.
This parameter is usually set to 0. The internalformat and format are usually RGBA. And the type is often
UNSIGNED_BYTE. All the available formats and types are shown in Appendix C.

Loading Images into a Texture Object

The most common way to populate texture data is from an image file. We can also set the data or use other
objects such as a HTMLCanvasElement or HTMLVideoElement.
We will declare a variable to hold our texture image data:

var textureImage = null;
We use an HTML Image object to load our texture image:

function loadTexture()

{
textureImage = new Image();
textureImage.onload = function() {
setupTexture();
}
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textureImage.src = "./textures/smiley-128px.jpg";

In the loadTexture method, we create a HTML Image object and set up the onload event. What this does is
wait until the Image has been loaded through the textureImage.src assignment and then call the setupTexture
method. The details of our texture setup are shown in Listing 3-1.

Note We are storing the Image in the textureImage variable and not the texture variable which holds the
WebGLTexture object.

Listing 3-1. Setting up the WebGLTexture object

function setupTexture()

{
texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.pixelStorei(gl.UNPACK FLIP Y WEBGL, true);
gl.texImage2D(gl.TEXTURE 2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED BYTE, textureImage);
gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE MIN FILTER, gl.NEAREST);
if( !'gl.isTexture(texture) )
{

console.log("Error: Texture is invalid");

}

}

In the texture setup method of Listing 3-1 we create a WebGLTextureObject and then bind it. We then set the
texture data by calling texImage2D with our loaded HTML Image object. The pixelStorei function tells WebGL
how to store our data, and texParameteri sets options for how to handle texture filtering and wrapping. We will
cover these two new functions in more detail later on in the chapter. Finally, we check that our texture object is
valid and print an error message to the console if it is not.

Note This is just one way to load image data. You can also use the image in an existing <img> tag:

<img src="./textures/smiley-128px.jpg" id="smiley-image" />
function loadTexture()

{
textureImage = $("#smiley-image").get(0);
setupTexture();

}

You can also use an image from an HTMLCanvasElement or HTMLVideoElement, or load raw data as your texture image.

Texture images must also follow the rules of Cross-Origin Resource Sharing (CORS). If your texture source(s) are in the same lo-
cation as your JavaScript files, you don’t need to worry about CORS. More information about the exact restrictions of CORS can be
found at http://www.w3.0rg/TR/cors, and the stricter WebGL CORS restrictions can be found at http://www.khronos.
org/registry/webgl/specs/latest/#4.2
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Application and Shader Interaction

We need to send our loaded texture object from our application to the shader program. In our setupTexture
function, we will add code to get the location of our uSampler uniform and set its value for use with our program.

glProgram.samplerUniform = gl.getUniformLocation(glProgram, "uSampler");
gl.uniformii(glProgram.samplerUniform, 0);

The second parameter 0 refers to the TEXTUREO texture unit that is currently bound. TEXTUREO is the default
texture unit.
For this example, we will define vertex points for a plane composed of two triangles with these data points:

var triangleVertices = [
-0.5, -0.5, 0.0,
0.5, -0.5, 0.0,
0.5, 0.5, 0.0,

0.5, 0.5, 0.0,
-0.5, 0.5, 0.0,
-0.5, -0.5, 0.0
Is

These vertex points are sent to the shader using a normal vertex buffer object (VBO), just like we did in the
Chapter 1 example of Listing 1-6.

Using a Texture in Our Shader

To use textures, we need to adjust our shaders to have access to the texture data. In this example, we are not using
a separate texture coordinate attribute for each vertex. Instead, in our vertex shader we use the x,y coordinates of
the position as our texture coordinate for each vertex. Each vertex coordinate passed in will be in the range [-0.5,
0.5], so we add 0.5 to both coordinates to map to the [0,1] range when we use them as texture coordinates.

A varying variable stores the texture coordinate and is passed on to the fragment shader, as shown in Listing 3-2.

Listing 3-2. A Basic Vertex Shader to Compute and Pass Along a Texture Coordinate

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
varying highp vec2 vTextureCoord;

void main(void) {
gl Position = vec4(aVertexPosition, 1.0);
vTextureCoord = aVertexPosition.xy + 0.5;

}

</script>

Texture data is accessible to our fragment shader through the use of a uniform sampler2D variable, as shown
in Listing 3-3. In the texture2D function, the first parameter is our texture sampler and the second is the lookup
location that was passed in from the vertex shader.

Listing 3-3. A Basic Fragment Shader that looks up texture values

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec2 vTextureCoord;
uniform sampler2D uSampler;
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void main(void) {
gl FragColor = texture2D(uSampler, vec2(vTextureCoord.s, vTextureCoord.t));
</script>

The output of running our first program is shown in Figure 3-3. The left image is centered but looks skewed
because the viewport is proportional to the canvas size. The right image has a viewport with height and width

N/ \/

Figure 3-3. Basic texturing: left - viewport proportional to the canvas dimensions; right - a square viewport

both set to the canvas.height and so is proportioned properly, but is no longer centered. The code of this
example is available on the book companion sites in the 03/basic_texture.html file.

Texture Options

When we use textures, we do a lookup of stored data to find an appropriate return value to use. When the lookup
value corresponds to exactly one texel, the return value is straightforward. However, when we are trying to find a
texture value that overlaps texels, the value that we will get back is determined by the filter settings of our texture.
How WebGL handles coordinates specified that lie outside of the [0,1] range of the texture or mapping to larger or
smaller images than the texture size depends on the wrap settings. Enabling mipmaps can also impact the return
value for a specific coordinate lookup. In addition, we can modify the storage format of our data.

Texture Filtering

When texels of noninteger position are requested (relative to the 0 to 1 range values multiplied by the actual
texture size), such as, (64.35, 19.8) in a 128px texture, we need to perform texture filtering to obtain an
appropriate value.

Filter parameters can either handle the stretching of a texture (TEXTURE_MAG_FILTER) or shrinking
(TEXTURE_MIN_FILTER) to fit an image. For TEXTURE_MAG_FILTER we have two options, LINEAR and NEAREST, with
LINEAR being an averaged value of nearby texels and producing fairly smooth interpolated results, and NEAREST
being the closest texel so is fastest to compute but not as smooth. For TEXTURE_MIN_FILTER, we have more
options. From quickest and roughest to slowest but smoothest are the following:
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LINEAR, NEAREST,
NEAREST_MIPMAP_NEAREST, LINEAR_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_LINEAR

The last four options require having set mipmaps by calling g1.generateMipmap(gl.TEXTURE_2D)first. We
will cover mipmaps later on in the chapter.
Texture filter parameters can be set by calling one of:

void texParameterf(GLenum target, GLenum param_name, GLfloat param);
void texParameteri(GLenum target, GLenum param name, GLint param);

The result of shrinking a texture of a dog and varying the TEXTURE_MIN_FILTER setting can be seen in the
difference of sharpness of the two resulting images in Figure 3-4.

Figure 3-4. Left - NEAREST filtering; Right - LINEAR_MIPMAP_LINEAR filtering

The left image uses
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
The right image uses

gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE_MIN FILTER, gl.LINEAR MIPMAP_LINEAR);

Texture Wrapping

Texture wrapping is the way we handle coordinates (s, t) that fall outside of our normal texture coordinate range
of [0,1]. Wrapping parameter names, pname, can be either TEXTURE_WRAP_S or TEXTURE_WRAP_T.

The default wrapping mode is to REPEAT the texture (it uses only the fractional part of the texture coordinate).
Two other options are CLAMP_TO_EDGE, which samples only coordinates that are within the range [0,1], and
MIRRORED_REPEAT which is the same as REPEAT for coordinates with an even integer component (2.3 and 4.3
are both mapped to 0.3). For odd integer components, the fractional part of the coordinate is mapped to
(1- coordinate_fractional_value), so 1.3 and 3.3 end up being both mapped to 0.7. Adjustments to the wrapping
modes are shown in Figures 3-5 to Figure 3-7.

To find the current value of a texture parameter, you can use this function:

getTexParameter(GLenum target, GLenum pname)
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Figure 3-5. Left - original texture image; Center - texture application onto a triangle with default REPEAT; Right -
multiplying the texture coordinate values in the shader to pronounce the repetition

Figure 3-6. Left - TEX_WRAP_S set to CLAMP_TO_EDGE; Center - TEX_WRAP_T set to CLAMP_TO_EDGE; Right - both S and
T set to CLAMP_TO_EDGE

. ¢

B
VLY.

Figure 3-7. Left - TEX_WRAP_S set to MIRRORED _REPEAT; Center - TEX_WRAP_T set to MIRRORED_REPEAT; Right - both S
and T set to MIRRORED REPEAT

Data Storage
We can adjust the way texture data is stored in WebGL through calls to this function:
void pixelStorei(GLenum pname, GLint param);

In Listing 3-1, we flipped the texture vertically using this:
gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
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The options we have for pname are UNPACK_FLIP_Y WEBGL, UNPACK PREMULTIPLY_ ALPHA WEBGL, and
UNPACK_COLORSPACE_CONVERSION WEBGL. For the first two options, any nonzero param value is interpreted as true.
UNPACK_FLIP_Y_WEBGL flips the source data along the vertical y-axis if set to true. This makes the last row
of data to be the first row transferred. The reason to set this option to true is that data loaded from other HTML

images have the y-axis naturally point in the opposite direction from WebGL. Without the call, the image will
appear to be upside down.

If UNPACK_PREMULTIPLY ALPHA WEBGL is set to true, and the source data has an alpha channel, it will be
multiplied against all the other channels during transfer: (r,g,b,a) => (r*a, g*a, b*a, a).

Finally, UNPACK_COLORSPACE_CONVERSION_WEBGL converts the source data to the browser’s default
colorspace. For this option, paramis set to either BROWSER_DEFAULT_WEBGL or NONE.

Mipmaps

To aid in accurate texture filtering, mipmaps are a precalculated optimized set of decreasingly sized versions of
a texture. They are one place where the power of 2 comes in to play for textures. Each image in a mipmap is a
smaller version of the last—starting with half the dimension size, then a quarter, an eighth, and so on.

For example, if the original texture was 256x256 pixels in dimension, we would have smaller textures in the
mipmap of sizes 128x128, 64x64, 32x32, [...], 2x2, 1x1.

Because the size of each texture is only 25 percent (% * 12) the size of the previous, the total size of a mipmap
is only one-third larger than that of the original texture. Mipmaps improve accuracy when the surface that we are
applying our texture to is smaller than our original texture.

To generate the mipmap for the currently bound texture, all you have to do is call this function:

void generateMipmap(GLenum target)
As we have shown in our code, the function looks like this:

gl.generateMipmap(gl.TEXTURE 2D);

Note Calling generateMipmap with no WebGLTexture bound or a Non-Power-0f-Two (NPOT) texture will gener-
ate an INVALID OPERATION error.

The texture image of our dog along with a decreasing series of texture sizes is shown in Figure 3-8. This image
represents a mipmap.

Figure 3-8. Mipmap representation of a dog texture
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Texturing a 3D Object

Now that we have a background of texturing and some 2D practice, we will texture a 3-D object. We will start with
the last example from Chapter 1, found in the 01/3D_triangles_depth_test.html file. As you may recall, that
example is of a rotating triangular prism. We will now texture it as a first step to producing the image on the right
of Figure 3-1. We will use a separate attribute for texture coordinates. We shall see that 3D texturing can be more
complex than 2D texturing. The texture we will load, textures/stone-128px. jpg, will display stone bricks.

Texture Coordinate Attribute

We need to calculate texture coordinates per vertex and send them on to our shader program. First, we add two
new variables:

vertexTexCoordAttribute
trianglesTexCoordBuffer

null,
null,

Next we define texture coordinates for each vertex as shown in Listing 3-4.

Listing 3-4. Providing texture coordinates

var triangleTexCoords = [
//front face
0.0, 0.

)

B R ONR
v
<

N R R OO
=}
<

//rear face

B R, ONRO
=)
<

N R R OOO
=)
<

Is

trianglesTexCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesTexCoordBuffer);
gl.bufferData(gl.ARRAY BUFFER, new Float32Array(triangleTexCoords), gl.STATIC DRAW);

Here I have been lazy and just used the x and y values of the vertex points. Note that even though values lie
past the [0.0, 1.0] range of texture coordinates, the coordinates we provide still work. This can be seen on the
front face of the prism in Figure 3-9. The reason it still works is because, as mentioned above, the default WebGL
wrap mode is gl . REPEAT and we are using a seamless tiled texture.

Finally, in our drawScene method, we need to use our buffer data:

vertexTexCoordAttribute = gl.getAttriblLocation(glProgram, "aVertexTexCoord");
gl.enableVertexAttribArray(vertexTexCoordAttribute);
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesTexCoordBuffer);
gl.vertexAttribPointer(vertexTexCoordAttribute, 2, gl.FLOAT, false, 0, 0);
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Adjusting Our Shaders

In our vertex shader we now have an attribute that stores the texture coordinate data for each vertex. We also
reintroduce the uPMatrix and uMVMatrix for setting up our 3D view. The vertex shader is shown in Listing 3-5
while the fragment shader stays the same as it was in Listing 3-3.

Listing 3-5. Vertex shader that has a separate texture coordinate attribute

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec2 aVertexTextureCoord;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying highp vec2 vTextureCoord;

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vTextureCoord = aVertexTextureCoord;

}

</script>

The full code for the example at this point is in the file 03/texture-examplel.html. The result of this first
attempt to texture map the triangular prism is shown in Figure 3-9. Two of the faces look good, whereas the faces
with differing z values have texture values that are clamped and linearly stretched across.

Figure 3-9. Our first try at texture mapping the triangular prism

What is happening here? Well let’s look at the left-side vertices:

//1left side
0)3)6)
3)6)9)
3,5,9,
5,9,11
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Vertices (0,3,6) correspond to texture coordinates:

0.0, 0.0,
0.5, 1.0,
0.0, 0.0

Two of the three vertices are identical. This flattens the normally triangular texture region into just a line.
Let’s look at the vertices (3,6,9):

0.5, 1.0,
0.0, 0.0,
0.5, 1.0

Two of three are identical as well. This is obviously also true for vertices (3,x,9), so vertices (3,5,9) have
only two unique texture coordinate pairs. Vertices (5,9,11) has only two unique coordinate pairs as well.

Data Changes

How do we avoid the problem discussed here and illustrated in Figure 3-9? What if we picked (x,z) or (y,z) as
our coordinates instead? Well that might fix the left and right sides, but then there is repetition in the z coordinate
for our front and back sides. In general, this is an issue with using the same texture coordinate values for a vertex
that is used on more than one face.

The solution here is to assign a texture coordinate and a vertex for every single vertex point, which is a lot of
coordinates. We can avoid explicitly having to list all the points by procedurally generating the vertex and texture
coordinates for each triangle.

We will get rid of our indice buffer, triangleVerticesIndexBuffer, but we can still make use of the indice
information to generate our points as shown in Listing 3-6.

Listing 3-6. Generating 54 vertices using 12 distinct vertices and indice order arrays

function setupBuffers()
{
//12 vertices
var triangleVerticesOriginal = [
//front face
//bottom left to right, to top
0.0, 0.0, 0.0,

1.0, 0.0, 0.0,
2.0, 0.0, 0.0,
0.5, 1.0, 0.0,
1.5, 1.0, 0.0,
1.0, 2.0, 0.0,
//rear face

0.0, 0.0, -2.0,
1.0, 0.0, -2.0,
2.0, 0.0, -2.0,
0.5, 1.0, -2.0,
1.5, 1.0, -2.0,
1.0, 2.0, -2.0

I
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//18 triangles
var triangleVertexIndices = [
0,1,3, //front face
1,3,4,
1)2)4)
3)41 5)

6,7,9, //rear face
0,3,6, //1eft side
2,4,8, //right side

0,6,8, //bottom faces

//54 vertices
var triangleVertices = [];
var triangleTexCoords = [];

for(var i=0; i<triangleVertexIndices.length; ++i)

{

var a = triangleVertexIndices[i];

triangleVertices.push(triangleVerticesOriginal[a*3]);
triangleVertices.push(triangleVerticesOriginal[a*3 + 1]);
triangleVertices.push(triangleVerticesOriginal[a*3 + 2]);

if(i >= 24)
{
triangleTexCoords.push(triangleVerticesOriginal[a*3 + 2]);
triangleTexCoords.push(triangleVerticesOriginal[a*3 + 1]);
Yelse{
triangleTexCoords.push(triangleVerticesOriginal[a*3]);
triangleTexCoords.push(triangleVerticesOriginal[a*3 + 1]);

}

trianglesVerticeBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesVerticeBuffer);

TEXTURES AND LIGHTING

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleVertices), gl.STATIC DRAW);

trianglesTexCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesTexCoordBuffer);

gl.bufferData(gl.ARRAY BUFFER, new Float32Array(triangleTexCoords), gl.STATIC DRAW);
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Note There are a few ways to combine arrays in JavaScript. The following flattens array b before adding it to a:
[1,2,3];

[4,5];

a.push.apply(a, b);

The contents of a will be [1,2,3,4,5] after this operation. Alternatively, a = a.concat(b) will also produce the same result.

var a

var b

Finally, we need to call drawArrays instead of drawElements in our drawScene function:

//gl.drawElements(gl.TRIANGLES, 18*3, gl.UNSIGNED_SHORT, 0);
gl.drawArrays(gl.TRIANGLES, 0, 18*3);

For our prism, we know that the last two sides that we render do not work well with xy coordinates as texture
values. Instead, we use the xz coordinates. Alternatively, yz would work as well. Both of these coordinates are
shown in Figure 3-10. The adjusted source code is in the file 03/texture-example1-fixed.html.

Figure 3-10. Left - using xz coordinates for the sides; Right - using yz coordinates

Toggling State

We will start our code in this next example by copying the 02/jquery _ajax.html file from the previous chapter.
We are going to add some variables to toggle our program state through keyboard input. Keyboard actions could
be used, for instance, to control movement in a game. Here, we will use them to toggle texture and lighting state
in our shaders. This allows us to modify the program state without needing to modify the code and rerun the
application. Personally, I find the ability to pause a scene and toggle the shader state useful for taking screenshots
at the exact same scene location, but with varying effects.

We add new variables to keep track of our texture and lighting state:

var paused = false,
useTexture = false,
uselighting = false;

To get keyboard input and toggle these values we will attach a handler to the document keyup event using
jQuery. We check the event keyCode property value and toggle the appropriate variable as shown in Listing 3-7.
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Note There is no real authoritative keycode list. | recommend simply outputting the result of a key typed to the
console with console.log(evt.keyCode). For advanced keyCode values, you can perform a browser search.

Listing 3-7. Handling keyboard events with jQuery

$(document) .keyup(function(evt){
switch(evt.keyCode){
case 80: //'p'
paused =!paused;
break;
case 84: //'t'
useTexture =!luseTexture;
break;
case 76: //'1"
uselLighting =luselighting;
break;
default:
break;
}

};

Now that we can toggle these state variables, we will check the paused variable to determine whether to
redraw our scene or not. We will do nothing with the useTexture or useLighting variables for the time being.

(function animLoop(){
if( !paused ){
setupWebGL();
setMatrixUniforms();
drawScene();

}

requestAnimationFrame(animLoop, canvas);

IOF

You can run the modified program in the browser and verify that the pause toggle works. Next we will add
the option of being able to toggle the texture.

Toggling Textures On and Off

We will now add a uniform in our fragment shader and adjust it using our useTexture flag. Alternatively, we can
define multiple shaders and switch them. We will do this latter approach in Chapter 10.
We will add a uniform uDoTexturing to our fragment shader and toggle it within our keyup event handler:

case 84: //'t'
useTexture =!useTexture;
if(useTexture)

{
gl.uniform1i(glProgram.uDoTexturing, 1);
telse{
gl.uniformii(glProgram.uDoTexturing, 0);
}

break;
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In our setupTexture method, we get the uniform location and initially set its value to 1:

glProgram.uDoTexturing = gl.getUniformLocation(glProgram, "uDoTexturing");
gl.uniformii(glProgram.uDoTexturing, 1);

Finally, our fragment shader needs to be adjusted:

uniform int uDoTexturing;

void main(void) {
if(uDoTexturing == 1){
gl FragColor = texture2D(uSampler, vec2(vTextureCoord.st) );

Yelse{
gl_FragColor = vec4(1.0, 0.1, 0.1, 1.0);

Now we can toggle the texture by pressing the ¢ key. The source code for these adjustments can be found in
the 03/texture-examplel-toggle.html file. We will not show the setting of a lighting uniform flag, but it can be
done analogously to the texture flag.

Multiple Textures

In our next example, we will use multiple textures. You can use multitexturing to produce special effects such as
light or height maps (which are explained in Chapter 6) or bumpmapping (simulating bumps and wrinkles). Here
we will just take the WebGL logo as a texture and mix it with our stone texture.

Application Changes

In Listing 3-8, we assign constant values to the variables STONE_TEXTURE and WEBGL_LOGO_TEXTURE so that we can
use them as our new array indices. Then we change our texture variable declarations to be arrays and adjust the
loadTexture and setupTexture functions to handle multiple textures.

Listing 3-8. Preparing for multiple textures

STONE_TEXTURE = 0,
WEBGL_LOGO_TEXTURE = 1,
texture = [],
textureImage = [];

function loadTexture()
{
textureImage[STONE _TEXTURE] = new Image();
textureImage[STONE_TEXTURE].onload = function() {
setupTexture(STONE_TEXTURE);
gl.uniformii(glProgram.samplerUniform, 0);

}
textureImage[ STONE_TEXTURE].src = "./textures/stone-128px.Jjpg";

textureImage[WEBGL _LOGO TEXTURE] = new Image();
textureImage[WEBGL_LOGO TEXTURE].onload = function() {
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setupTexture(WEBGL_LOGO TEXTURE);
gl.uniformii(glProgram.samplerUniform2, 1);

}
textureImage[WEBGL_LOGO TEXTURE].src = "./textures/webgl logo-512px.png";

glProgram.uDoTexturing = gl.getUniformLocation(glProgram, "uDoTexturing");
gl.uniform1i(glProgram.uDoTexturing, 1);

}

function setupTexture(i)

{
gl.activeTexture(gl.TEXTUREO + 1);
texture[i] = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture[i]);
gl.pixelStorei(gl.UNPACK FLIP_Y WEBGL, true);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED BYTE, textureImage[i]);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN FILTER, gl.NEAREST);

if( !gl.isTexture(texture[i]) )

console.error("Exrror: Texture is invalid");

We now have a second sampler uniform, which we set with gl.uniform1i(glProgram.samplerUniformz2,
WEBGL_LOGO_TEXTURE).We also have to tell WebGL which texture is active in the line gl.activeTexture(gl.
TEXTUREO + 1).

Note I have used the notation g1. TEXTUREO + i for convenience. This notation can alternately be written as
follows:
gl.activeTexture( gl. TEXTURE1 ); //same as gl.activeTexture( gl.TEXTUREO + 1);
gl.activeTexture( gl. TEXTURE2 ); //same as gl.activeTexture( gl. TEXTUREQ + 2 );

Finally, we need to get the location of our new sampler:

function getMatrixUniforms(){
glProgram.pMatrixUniform = gl.getUniformLocation(glProgram, "uPMatrix");
glProgram.mvMatrixUniform = gl.getUniformLocation(glProgram, "uMVMatrix");
glProgram.samplerUniform = gl.getUniformLocation(glProgram, "uSampler");
glProgram.samplerUniform2 = gl.getUniformLocation(glProgram, "uSampler2");

We will use the same texture coordinates in this example for both textures.

Shader Program Changes
Our vertex shader is the same as in the case of a single texture. The fragment shader is changed to this:

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec2 vTextureCoord;
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uniform sampler2D uSampler;
uniform sampler2D uSampler2;
uniform int uDoTexturing;

void main(void) {
if(uDoTexturing == 1){
highp vec4 stoneColor = texture2D(uSampler, vec2(vTextureCoord.st));
highp vec4 webglLogoColor = texture2D(uSampler2, vec2(vTextureCoord.st));

gl FragColor = mix(stoneColor, webgllLogoColor, 0.5);
//gl_FragColor = mix(stoneColor, webgllLogoColor, webgllLogoColor.a);
//gl_FragColor = mix(stoneColor, webglLogoColor, 1.0 - webglLogoColor.a);
Yelse{
gl FragColor = vec4(1.0, 0.1, 0.1, 1.0);
}

}

</script>

In the above fragment shader is a second sampler2D, uSampler2. We obtain the color of both the
stone texture and the WebGL logo texture. Finally, we mix this value evenly. When you run the application,
multitexture.html, you will see that it does not look quite right. Instead of transparent parts of the WebGL logo
texture being see-through, they appear white in color (see the left side of Figure 3-11). This is not what we wish to
display. If a pixel is transparent (the alpha value is 0.0), it should not show up. We will use the fragment shader to
set the blend mode of the textures and hide the WebGL logo areas where there should be transparency.

The way that we do this is by using the alpha channel of the logo texture, webglLogoColor. a, as the amount
to mix the textures. If the alpha value is 1.0 as in the logo region, the logo texture will be shown at full value while
the stone texture will not be factored in at all. When the alpha value is 0.0, then only the stone texture will be
used. This gives us the expected decal result (see the center of Figure 3-11). If we invert the mix ratio by using
(1.0 - webgllLogoColor.a), only the logo region is see-through; everything else is white like a stencil (see the
right side of Figure 3-11).

Figure 3-11. Left - Mixing two textures evenly; Center - mixing using the WebGL logo alpha value ; Right - mixing
using one minus the alpha value

Note In some versions of OpenGL, the function glTexEnvf had presets such as GL_DECAL that would mix
textures in a specific manner. With shaders, we have the power to specify how textures should be mixed, and as
such OpenGL ES 2.0 and WebGL no longer use or support this method.
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Lighting

Lighting helps give visual cues to a scene so that it can appear even more recognizably three-dimensional and
realistic. Lighting gives objects their visual shape. In order to see anything, we rely on light reflecting off of the
surface of objects. The total reflected light can be made of several different light components.

Light Components

Ambient, diffuse, and specular light are all different components of lighting. Ambient lighting is the global
illumination in an environment. It hits a surface at all angles and is reflected back at all angles. Diffuse lighting
and specular lighting reflection depend on the angle of the light to a surface. The difference between diffuse and
specular reflection is that once light hits a surface, diffuse reflection occurs in all directions, whereas specular
reflection occurs in a single direction. This is shown in Figure 3-12.

</ il

Figure 3-12. Left: specular reflection; right: diffuse reflection

Diffuse lighting is the major reflective component in reflection but is dull like matte materials, while specular
reflection (also known as a specular highlight) is smaller and produces a shiny glossiness. Specular highlights
also give a clue to the location of the light(s) in a scene.

Figure 3-13. Sphere (far left); diffuse reflection (left); specular reflection highlight (right); ambient component (far
right)

Types of Lights

Some light types are ambient (directionless, even distribution), directional (sunlight) and point light (room light).
Directional lights like the sun are so far away that we can consider all the light coming from one single source
direction. Light types are shown in Figure 3-14.
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Figure 3-14. Different types of light

Normal Vectors

As reflective light (diffuse or specular) depends on the incoming angle from the light to the surface, we need to
know the direction in which each surface is facing. We do this by calculating the normal vector to a surface that
holds the perpendicular direction to that surface. For a given polygon, there are actually two normal vectors, each
pointing in a different direction relating to the front or back of the surface, as shown on the right of Figure 3-15.
We will want to be consistent with our choice of normal. Also, we are usually interested in vectors of unit length
(normalized normal vectors). Once we calculate the normal of a vertice, we store it in a VBO and send it to our
shader as a vertex attribute.

N

Figure 3-15. A triangle with vertex normal vectors (all identical in value) that are perpendicular to the triangle
surface. Two of the three negative normals are visible on the right

Lighting Models

In WebGL we define our own lighting model. This differs from OpenGL where there are several built-in functions
to help control lighting. In fact, as of this writing, a search for the term “light” within the WebGL specification
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will produce no results. The flip side is that we are not limited in any way in how we model our lighting. There are
many existing lighting models that we can implement. We will cover the Phong illumination model in depth in
the next chapter and build a simpler light model here.

Ambient and Directional Light

The first light components we will implement will have ambient and directional light and diffuse reflection, but
no specular reflection. We add variables to hold our vertex normal data and a new matrix to convert normal
vectors into the MVP space.

vertexNormalAttribute = null,
trianglesNormalBuffer = null;
normalMatrix = mat3.create();

In the setupWebGL method, we store the inverse matrix of the model view into our new normal matrix. This
normal matrix will be used in our vertex shader to adjust each normal relative to our model view.

mat4.toInverseMat3(mvMatrix, normalMatrix);
mat3.transpose(normalMatrix);

Note The normal matrix is 3x3 in dimension and NOT 4x4. We take the upper 3x3 submatrix of the modelview
matrix and compute the inverse transpose of it to find the normal matrix.

In Listing 3-9 we produce our normal vectors programatically, using the three vertices of each triangle to first
compute two side vectors and then take the cross-product of these two new vectors. The cross-product produces
the vector perpendicular to the triangle (the normal vector).

Listing 3-9. Calculating the normal vectors

var triangleNormals = [];
//18 triangles - normal will be the same for each vertex of triangle
for(var i=0; i<triangleVertexIndices.length; i+=3)
{
var a = triangleVertexIndices[i];
var b = triangleVertexIndices[i + 1];
var c = triangleVertexIndices[i + 2];

//normal is the cross-product

var vi = [
triangleVerticesOriginal[a*3] - triangleVerticesOriginal[b*3],
triangleVerticesOriginal[a*3 + 1] - triangleVerticesOriginal[b*3 + 1],
triangleVerticesOriginal[a*3 + 2] - triangleVerticesOriginal[b*3 + 2],

15

var v2 = [
triangleVerticesOriginal[a*3] - triangleVerticesOriginal[c*3],
triangleVerticesOriginal[a*3 + 1] - triangleVerticesOriginal[c*3 + 1],
triangleVerticesOriginal[a*3 + 2] - triangleVerticesOriginal[c*3 + 2],

I;
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var cross = [
va[1]*v2[2] - vi[2]*v2[1],

vi[2]*v2[0] - vi[o0]*v2[2],

vi[o]*v2[1] - vi[1]*v2[0]
I
//same value for each of the three vertices
triangleNormals.push.apply(triangleNormals, cross);
triangleNormals.push.apply(triangleNormals, cross);
triangleNormals.push.apply(triangleNormals, cross);

}

trianglesNormalsBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesNormalsBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleNormals), gl.STATIC DRAW);

In the drawScene method, we get our normal attribute location:

vertexNormalAttribute = gl.getAttriblLocation(glProgram, "aVertexNormal");
gl.enableVertexAttribArray(vertexNormalAttribute);
gl.bindBuffer(gl.ARRAY_BUFFER, trianglesNormalBuffer);
gl.vertexAttribPointer(vertexNormalAttribute, 3, gl.FLOAT, false, 0, 0);

We also get and set our normalMatrix:

function getMatrixUniforms(){
glProgram.pMatrixUniform = gl.getUniformLocation(glProgram, "uPMatrix");
glProgram.mvMatrixUniform = gl.getUniformLocation(glProgram, "uMVMatrix");
glProgram.normalMatrixUniform = gl.getUniformLocation(glProgram, "uNormalMatrix");

}

function setMatrixUniforms() {
gl.uniformMatrix4fv(glProgram.pMatrixUniform, false, pMatrix);
gl.uniformMatrix4fv(glProgram.mvMatrixUniform, false, mvMatrix);
gl.uniformMatrix3fv(glProgram.normalMatrixUniform, false, normalMatrix);

This takes care of our application code changes. Now we need to write our shaders. Let’s start with the vertex
shader in which new functionality is shown in bold:

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;
attribute vec3 aVertexNormal;

uniform mat3 uNormalMatrix;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying highp vec4 vColor;
varying highp vec3 vlLight;
void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vColor = vec4(aVertexColor, 1.0);
//1ighting
vec3 ambientlLight = vec3(0.1, 0.1, 0.1);
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vec3 diffuselLightColor = vec3(0.5, 0.5, 0.5);
vec3 directionallightPosition = normalize( vec3(10.0, 10.0, 5.0) );

vec3 transformedNormal = uNormalMatrix * aVertexNormal;
float diffuseLightAmount = max( dot( transformedNormal,
directionallightPosition), 0.0);
vLight = ambientLight + (diffuseLightAmount * diffuselightColor);
}

</script>

There is an attribute for the normals in the vertex shader, a normal matrix, and a varying vector that will store
our total amount of light to pass on to the fragment shader. We set the ambient light amount and diffuse light
color. Next we set a position for our directional light and normalize it (we are interested only in the direction,
not the actual position). We calculate the normal vector relative to the model view, which is done by multiplying
by our normal matrix. To calculate the diffuse light amount, we take the dot product of the normal and the light
direction. Finally we add the ambient and diffuse light components together.

Our fragment shader is much simpler. In it, we multiply our light vector by the color vector:

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec4 vColor;
varying highp vec3 vlight;
void main(void) {
gl FragColor = vec4(vColor.xyz * vlLight, vColor.a);

}

</script>

Figure 3-16. Left - Basic lighting; Right - With consistent polygon winding

Now if we run the application found in the file 03/ambient_and_directional_light.html, we get the
figure on the left of Figure 3-16. The figure on the right is produced by making the winding order of our vertices
consistent.
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Figure 3-17. Triangle winding can be clockwise (0,2,1) or counterclockwise (0,1,2)

Triangular polygon winding refers to the direction that vertices are assembled. Every triangle can be

assembled clockwise or counterclockwise. Which order you choose is irrelevant as long as you are consistent. The
winding order affects the direction of normal calculations and also which side of the polygon is considered front
and which is the back. See Figure 3-17.

For larger meshes, we would want to check the orientation of faces programmatically. The default winding

order in WebGL is FRONT_FACE CCW. For our mesh we can refer to Figure 1-14 in the first chapter and inspect the
winding visually to find that 6 vertices are clockwise and 12 are counterclockwise. Reversing the winding of the
clockwise ones gives this:

//18 triangles

var triangleVertexIndices

I

0)1)3)
1,4,3, //flipped
1,2,4,
3,4,5,

617)9:

7,10,9, //flipped
7,8,10,

9,10,11,

0,6,3, //flipped
3)619)
3,9,5, //flipped
5,9,11,

2,8,4, //flipped
4,8,10,
4,10,5, //flipped

= [
//front face

//rear face

//1left side

//right side

//bottom faces

Note TRIANGLE_STRIP primitives are composed of triangles with alternating winding order. WebGL takes this

into account when you render using one.
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A Point Light

Since we are not presently calculating specular reflections, all we need to do to adjust our directional light to a
point light is calculate the direction from the point light location to each point in our scene in our vertex shader.
Replace the previous vertex shader main method with the following (changes are in bold):

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vColor = vec4(aVertexColor, 1.0);

//1ighting
vec3 ambientlLight = vec3(0.1, 0.1, 0.1);
vec3 pointlLightPosition = vec3(1.0,2.0,-1.0);

vec3 pointlLightDirection = normalize(
vec3(pointLightPosition.xyz - aVertexPosition.xyz));

vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
vec3 N = uNormalMatrix * aVertexNormal;
float diffuselLightAmount = max( dot(normalize(N), normalize(L)), 0.0);

vColor = ambientlLight + (diffuseLightAmount * aVertexColor);

Figure 3-18. Prism rendered with a point light

The result of our point light is shown in the figure above results in smoother gradient lighting.
We have shown how to do basic per-vertex diffuse lighting on our triangular prism and have previously
shown how to texture our prism. Now let’s combine these two effects.

Texture and Lighting Together

The final example of the chapter will combine the point light and multitexture examples into an application with
both textures and lighting. Continuing from the code in 03/point_light.html, we will re-add the texture loading
code and texture coordinate buffer of the earlier multitexture example.

81



CHAPTER 3 © TEXTURES AND LIGHTING

Our final vertex shader is a straightforward combination of 03/multitexture.vs and 03/point_light.

shaderfiles:

<script type="x-shader/x-vertex">

}

attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;
attribute vec3 aVertexNormal;
attribute vec2 aVertexTexCoord;

uniform mat3 uNormalMatrix;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying highp vec4 vColor;
varying highp vec3 vlLight;
varying highp vec2 vTextureCoord;

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vColor = vec4(aVertexColor, 1.0);
vTextureCoord = aVertexTexCoord;

//1ighting
vec3 ambientlLight = vec3(0.3, 0.3, 0.3);
vec3 pointlLightPosition = vec3(1.0,2.0,-1.0);

vec3 pointlLightDirection = normalize(
vec3(pointLightPosition.xyz - aVertexPosition.xyz));

vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
vec3 N = uNormalMatrix * aVertexNormal;
float diffuselLightAmount = max( dot(normalize(N), normalize(L)), 0.0);

vLight = ambientLight + vec3(.8,.8,.8) * diffuseLightAmount;

</script>

Our final fragment shader is:

<script id="shader-fs" type="x-shader/x-fragment">
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varying highp vec4 vColor;
varying highp vec3 vLight;
varying highp vec2 vTextureCoord;

uniform sampler2D uSampler;
uniform sampler2D uSampler2;
uniform int uDoTexturing;

void main(void) {

if(uDoTexturing == 1){
highp vec4 stoneColor = texture2D(uSampler, vec2(vTextureCoord.st));
highp vec4 webglLogoColor = texture2D(uSampler2, vec2(vTextureCoord.st));
highp vec4 textureColor = mix(stoneColor, webglLogoColor, webgllLogoColor.a);
gl FragColor = vec4(textureColor.xyz * vLight, textureColor.a);

telse{
gl FragColor = vec4(vColor.xyz * vLight, vColor.a);

Vs



CHAPTER 3 © TEXTURES AND LIGHTING

}
}

</script>

And the result is shown in Figure 3-19.

Figure 3-19. Our triangular prism with texturing and a point light

Summary

In this chapter we covered the essentials of texture and lighting within WebGL. This included specifying texture
coordinates, creating mipmaps, and how to adjust filter and wrapping settings. We showed the components of
light and how to programmatically create surface normal vectors. By the end of the chapter we had worked up to
modeling a directional light with multitexturing.

Our lighting model is far from perfect, though. In the next chapter we will add specular highlights, look at the
Phong lighting model and how to interpolate normal vector values. In addition, we will investigate blending, fog,
and shadows.
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Increasing Realism

In this chapter we will present ways to improve the realism of our scenes. As proper lighting is so fundamental
to our visual perception, much of this chapter will build upon the end of the last chapter and focus on
improvements to our lighting model. Specifically, we will

e  discuss the difference between flat and smooth shading

e  explain the Phong illumination model and then implement it as a shader program
e showhow to add fog

e  discuss techniques to generate shadows and add global illumination

e blend objects and calculate reflection and refraction

As a mental exercise, take notice of your current surroundings. If you are indoors, take a look at the room
that you are in. Is the lighting soft or hard? If you can see the sun through a window, how does sunlight compare
to artificial light? Which objects are shiny and which are dull? Do any objects reflect other objects on their
surface? Identify materials that are more reflective. Are any objects transparent or semitransparent?

If you are outside, what does the atmosphere look like? Is it clear or hazy? Is it windy—are objects being
blown around? What does the shadow of a fast-moving car look like? What does your shadow look like?

Asking these types of questions and taking a deeper look at commonplace objects and environments will
help you to appreciate what types of complex interaction take place in nature and give insight into what needs to
be emulated and improved upon in our renderings to reproduce a realistic appearance.

The final image that we will work toward in this chapter is shown in Figure 4-1.

Figure 4-1. The final scene that we will be building toward in this chapter
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Setup

In this chapter, we will display a more visually interesting example than a single mesh floating in space. Instead
we will set up a scene with a few spherical meshes that rotate above a plane representing the ground. In order to
do this, we will first create a few reusable utility objects.

In Chapters 1 and 3 we used the matrix objects and functions of the gl-matrix. js library. This library also
provides vector objects and functions.

A Vector Object

We will perform some common vector operations on our mesh data. We have operations built into our shaders
for easy vector (x,Y,z) notation, but not in JavaScript. The gl-matrix. js library uses numeric indices such as
[0, 1, 2]:

var n = vec3.create(0.0, 1.0, 0.0);
console.log(n[1]); //the 2nd element

Note More usage examples of gl-matrix.js can be found online at https://github.com/toji/gl-matrix/blob/master/
README.md

Touse x, y, zcomponent notation, we can use a full-featured vector and matrix library like the one
included in Three. js. Although I am an advocate of code reuse, in this chapter we just need a few minimal
operations such as the cross-product, length, and normalize functions. Here we can create a small vector object
of our own like the one shown in Listing 4-1 (which is based on functionality found in the Three. js library).

Listing 4-1. A partial vector object containing only the functionality that we require in this chapter

//vector3.js
Vector3 = function ( x, y, z ) {
this.x = x |
this.y =y |
this.z = z |

};

Vector3.prototype = {
divide: function (s ) {

if (s){
this.x /= s;
this.y /=s;
this.z /= s;
}

return this;

b

cross: function (v ) {
var x = this.x, y = this.y, z = this.z;
if ( v instanceof Vector3 ) {
this.x =y *v.z - z *
this.y = z ¥ v.x - x ¥ v.z;
this.z = x * v.y -y * v.x;

<
<
[
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}

return this;

1

length: function () {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
b

normalize: function () {
var length = this.length();
return this.divide( length );

b
};

Notice above that we set default values in our constructor of (0,0,0) and also only divide if the passed in value is
not 0.

Plane Class

To assist in drawing a single plane, in our case to simulate a surface for other objects to sit on or above, we add a
function called setupPlaneMesh(see Listing 4-2).

Listing 4-2. Plane mesh with overridable properties and indexed buffers

//plane_mesh.js
function setupPlaneMesh(n, size, translation, color, textured)

{
size = (typeof size !== 'undefined') ? size : 10.0;
color = (typeof color !== 'undefined') ? color : [0.5, 0.5, 1.0, 1.0];
translation = (typeof translation !== 'undefined') ? translation : [0.0, 0.0, 0.0];
textured = (typeof textured !== 'undefined') ? textured : false;
trianglesNormalBuffers[n] = gl.createBuffer();

}

In Listing 4-2, n is the index of a global array of VBOs. The size, translation, and color arguments refer
to the length and width of the plane, the initial translation amount, and the color. If no arguments are provided,
then we use the defaults that we have specified in the ternary operations.

To add a mesh we would make a call like this:

setupPlaneMesh(3, 10.0, [0.0, -1.0, 0.0]);

The number of parameters to the plane setup function is five, and for more complex meshes, it could be even
more. A large number of parameters in a function signature is hard to remember and easy to mix up and cause
errors. Instead of the code in Listing 4-2, we will still set default parameters but pass in a JSON object that is more
flexible and verbose to encapsulate our data. It is assumed that the reader is familiar with JSON. If you are not,
please refer to http://json.org.

We will change the code in Listing 4-2 to this:

function setupPlaneMesh(n, options)

{
options = options || {}; //ensures that we have a JSON object
size = (typeof options.size !== 'undefined') ? options.size : 10.0;
color = (typeof options.color !== 'undefined') ? options.color : [0.5, 0.5, 1.0, 1.0];
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translation = (typeof options.translation !== 'undefined') ? options.translation : [0.0,
0.0, 0.0];
textured = (typeof options.textured !== 'undefined') ? options.textured : false;

And we now add a new plane mesh with a call like this:

setupPlaneMesh(3, { "translation": [0.0, -1.0, 0.0],
"size": 20.0
}

)5

With a set parameter order, if you want to change textured to true, you need to specify any and all
parameters in between—size, translation, and color—even if you are using the defaults. This second way of
using a JSON object lets us omit parameters that we do not need to override and also not require the parameters
to be in any set order.

Note The code in this chapter is not optimized for performance. Because we only have a few meshes, this will
not matter. However, with more complex scenes involving many draw calls, we will need to write optimized code.
Please refer to Chapter 9 for best practices and ways to improve performance.

Spheres

To generate a sphere mesh, the function setupSphereMesh is shown in Listing 4-3. The first part lets us set the
buffer index, radius, translation, color, divisions, and to use smooth shading or not. Next we generate our mesh
using spherical coordinates. When we render a sphere, it is composed of horizontal lines of latitude (if earth is
modeled as a sphere, think of lines of latitude as being parallel to the equator) and vertical lines of longitude
(think of them running from the North Pole to the South Pole and representing time zones). Where the latitude
and longitude lines intersect will be the vertex points. Vertex points will be spaced closer together toward the
“poles” and further from each other toward the “equator” The more subdivisions that we have, the closer our
approximation to a true sphere the mesh becomes.

Note The normal value at each point on a unit sphere is the point itself (before scaling or translating). Remember
that the normal vector is the direction pointing perpendicularly into or out of a surface, and starting from the origin this
direction is the vector itself. The spherical coordinates are of unit length, so this vector is already normalized for us.

Listing 4-3. The file sphere_mesh.js, which generates a sphere mesh

function setupSphereMesh(n, options)

{
options = options || {}; //ensures that we have a JSON object
color = (typeof options.color !== 'undefined') ? options.color : [1.0, 0.0, 0.0, 1.0];
translation = (typeof options.translation !== 'undefined') ? options.translation : [0.0,
0.0, 0.0];
radius = (typeof options.radius !== 'undefined') ? options.radius : 1.0;
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divisions = (typeof options.divisions !== 'undefined') ? options.divisions : 30;
smooth_shading = (typeof options.smooth shading !== 'undefined') ? options.smooth_ shading
: true;

textured = (typeof options.textured !== 'undefined') ? options.textured : false;

//mesh generation modified from //http://learningwebgl.com/cookbook/index.php/How to
draw_a_sphere
var latitudeBands = divisions,
longitudeBands = divisions;

var vertexPositionData = [],
normalData = [],
colorData = [],
textureData = [],
indexData = [];

for (var latNumber = 0; latNumber <= latitudeBands; latNumber++) {
var theta = latNumber * Math.PI / latitudeBands;
var sinTheta = Math.sin(theta);
var cosTheta = Math.cos(theta);

for (var longNumber = 0; longNumber <= longitudeBands; longNumber++) {
var phi = longNumber * 2 * Math.PI / longitudeBands;
var sinPhi = Math.sin(phi);
var cosPhi = Math.cos(phi);

var X = cosPhi * sinTheta;

var y = cosTheta;

var z = sinPhi * sinTheta;

var u = 1- (longNumber / longitudeBands);
var v = latNumber / latitudeBands;

textureData.push((x + 1.0) * .5);
textureData.push((y + 1.0) * .5);

normalData.push(x);

normalData.push(y);

normalData.push(z);

colorData.push(color[0]);

colorData.push(color[1]);

colorData.push(color[2]);

colorData.push(color[3]);
vertexPositionData.push(radius * x + translation[0]);
vertexPositionData.push(radius * y + translation[1]);
vertexPositionData.push(radius * z + translation[2]);

}

for (var latNumber = 0; latNumber < latitudeBands; latNumber++) {
for (var longNumber = 0; longNumber < longitudeBands; longNumber++) {
var first = (latNumber * (longitudeBands + 1)) + longNumber;
var second = first + longitudeBands + 1;
indexData.push(first);
indexData.push(second);
indexData.push(first + 1);

89



CHAPTER 4 " INCREASING REALISM

indexData.push(second);
indexData.push(second + 1);
indexData.push(first + 1);

}
}
if(!smooth_shading)
{
//calculate flat shading normals
}

trianglesNormalBuffers[n] = gl.createBuffer();

gl.bindBuffer(gl.ARRAY BUFFER, trianglesNormalBuffers[n]);
gl.bufferData(gl.ARRAY BUFFER, new Float32Array(normalData), gl.STATIC DRAW);
trianglesNormalBuffers[n].itemSize = 3;

trianglesNormalBuffers[n].numItems = normalData.length / 3;

trianglesColorBuffers[n] = gl.createBuffer();

gl.bindBuffer(gl.ARRAY BUFFER, trianglesColorBuffers[n]);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colorData), gl.STATIC_DRAW);
trianglesColorBuffers[n].itemSize = 4;

trianglesColorBuffers[n].numItems = colorData.length / 4;

trianglesVerticeBuffers[n] = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesVerticeBuffers[n]);
gl.bufferData(gl.ARRAY BUFFER,

new Float32Array(vertexPositionData), gl.STATIC_DRAW);
trianglesVerticeBuffers[n].itemSize = 3;
trianglesVerticeBuffers[n].numItems = vertexPositionData.length / 3;

if(textured)

{
trianglesTexCoordBuffers[n] = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, trianglesTexCoordBuffers[n]);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureData),

gl.STATIC_DRAW);

trianglesTexCoordBuffers[n].itemSize
trianglesTexCoordBuffers[n].numItems

2;
textureData.length / 2;

}

vertexIndexBuffers[n] = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT ARRAY BUFFER, vertexIndexBuffers[n]);
gl.bufferData(gl.ELEMENT ARRAY BUFFER,

new Uinti16Array(indexData), gl.STREAM DRAW);
vertexIndexBuffers[n].itemSize = 3;
vertexIndexBuffers[n].numItems = indexData.length;

We would create a new sphere in our scene like this:

setupSphereMesh(0, { "translation": [-1.0, -0.75, 0.0],
"color": [1.0, 0.0, 0.0, 1.0],
"divisions": 20,
"smooth_shading": false

B;
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Meshes with 5, 10, and 20 subdivisions, as shown within the WebGL Inspector (covered in Chapter 9), are
shown in Figure 4-2.

Figure 4-2. Spheres with 5, 10, and 20 latitude and longitude divisions

In Listing 4-3, we have omitted the flat shading code. We will come back to this code after we discuss the
difference between flat and smooth shading.

Lighting Revisited

Lighting is central to graphics, and we will cover more light implementation details in this chapter starting with
shading models, the traditional Phong illumination model, and finally global radiance models.

Shading Models

There are two basic ways to shade a polygon: flatly and smoothly. Flat shading means that the entire polygon

is one color. We use the same normal vector for all the vertices. As a result, the normals where edges meet may

be different for the same vertex depending on what the normal vector value for the entire face is. This variance
means that the lighting values on adjacent edges will differ harshly and so you will see where one edge ends and
another begins. Contrarily, smooth shading means that the color and normal values are interpolated. This can be
done in the vertex shader (VS) as in Gouraud shading or in the fragment shader (FS) as in Phong shading. Both of
these shading techniques will be covered in detail later on in the chapter.

Normal Vectors Revisited

Let us first examine what the normal vectors of flat shading look like where polygon edges meet and vertices are
shared (see Figure 4-3).

Asyou can see in Figure 4-3, the normals at shared vertices are disjointed. There will be sharp visible jumps
between values of adjacent polygons. With flat shading, the specular highlight (recall that specular reflection is
light reflected in a specific direction) is omitted if the incoming specular light does not strike a vertex. As such,
flat shading usually does not calculate specular reflection at all.
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Figure 4-3. Flat shading: one color, one normal per surface

With smooth shading, shared vertices are averaged with all the faces it is shared with. The right of Figure 4-4
shows how a new normal vector that is an average of the two shared sides is used. Of course, the left figure also
has some vertices that are not shared across multiple triangles and some that are shared by three.

Figure 4-4. Smooth shading: averaged normals and interpolated color

There are two main types of smooth shading: Gouraud shading and Phong shading. Gouraud shading is
performed per vertex, while Phong shading is done per pixel and as such captures specular highlights better.

Flat Shading

We will now return to the 04/sphere_mesh. js code and look at the flat shading method that we previously
omitted. In WebGL, as the FS interpolates results automatically, it can actually be harder to perform flat shading
than smooth shading. For the spheres, we must alter our triangles to have identical normals for each vertex (see
Listing 4-4).

Listing 4-4. Calculating flat shading normals

if(!smooth_shading)
{

vertexPositionData = calculateFlattenedVertices(
vertexPositionData, indexData);
colorData = [];
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for(var i=0; i<indexData.length;++i)
{
colorData.push(color[0
colorData.push(color[1
colorData.push(color[2
colorData.push(color[3

1);
1);
1);
s
}

normalData = calculatePerFaceNormals(normalData, indexData);

function calculateFlattenedVertices(origVertices, indices)
{
var vertices = [];
for(var i=0; i<indices.length; ++i)
{
a = indices[i]*3;
vertices.push(origVertices[a]);
vertices.push(origVertices[a + 1]);
).

vertices.push(origVertices[a + 2]);

}

return vertices;

}

function calculatePerFaceNormals(origNormals, indices)
{

var normals = [];

for(var i=0; i<indices.length; i+=3)

{

indices[i]*3;
indices[i+1]*3;
indices[i+2]*3;

var a
var b
var ¢

nl = new Vector3(origNormals[a], origNormals[a+1], origNormals[a+2]);
n2 = new Vector3(origNormals[b], origNormals[b+1], origNormals[b+2]);
n3 = new Vector3(origNormals[c], origNormals[c+1], origNormals[c+2]);

nx = (n1.x + n2.x + n3.x)/3;
ny = (n1.y + n2.y + n3.y)/3;
nz = (n1.z + n2.z + n3.z)/3;

v3 = new Vector3(nx,ny,nz);
normals.push(v3.x);
normals.push(v3.y);
normals.push(v3.z);

normals.push(v3.x);
normals.push(v3.y);
normals.push(v3.z);

normals.push(v3.x);
normals.push(v3.y);
normals.push(v3.z);

}

return normals;
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In Listing 4-4, we are expanding our data to include color, position, and normal data per each index instead
of only each vertex. We are using a constant color, so expanding the color data is trivial. For our vertex positions
we pass in the original vertice information that we then use to produce a longer array of all vertex positions
(including duplicate values) by looking up the vertice associated with each index. For the normal, we take the
average of all three triangle vertex normals and use this new value for each vertex in the triangle. See Figure 4-5.

When we render our spheres, we will use the drawArrays method instead of drawElements because we are
no longer using the index buffer. We still use the drawElements method to render the plane:

if(i==3){

gl.drawElements(gl.TRIANGLES, vertexIndexBuffers[i].numItems, gl.UNSIGNED SHORT, 0);
}else{

gl.drawArrays(gl.TRIANGLES, 0, trianglesVerticeBuffers[i].numItems);

}

Figure 4-5. Flat shading of spheres with varying subdivisions

The flat shader example is in the file 04/01_flat.html.

Lambert Reflection

Lambert reflection gives the intensity of diffuse light at any point of an object. Recall that diffuse light depends on
the angle of the incoming light to a surface point, but that the reflection is in all directions. Calculating Lambert
reflection involves taking the normal vector N and the direction of the light to the surface L and then computing
the cosine of the angle between these vectors. The higher the angle (up to 90 degrees), the lower the cosine will
be. As the angle approaches 0, the cosine approaches 1. All other angle values will be between -1 and 1, with 0
occurring when the normal and lighting vectors are perpendicular. Angles in the range of (90, 270) will return
negative values because this means that the light is on the opposite side of the surface then the normal vector.
Usually negative values are clamped to 0. To calculate the cosine, we can take the dot product of normalized
N and normalized L, which is the Lambert term, dot(N, L).The diffuse component of light is then calculated as
the following, where M, and L, correspond to the material diffuse component and the light diffuse component:

94



CHAPTER 4 * INCREASING REALISM

Diffuse = dot(N, L)*M*L,

When only diffuse color and an optional global ambient light factor are used, this is sometimes referred to as
Lambert illumination (see Figure 4-6).

Figure 4-6. The normal (N) and lighting (L) vectors of a Lambert reflection

AVS using Lambert illumination is shown in Listing 4-5.

Listing 4-5. Computing Lambert amount

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;
attribute vec3 aVertexNormal;

uniform mat3 uNormalMatrix;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying highp vec3 vColor;

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

vec3 pointlLightPosition = vec3(1.0,2.0,-1.0);

vec3 pointlLightDirection = normalize(
vec3(pointLightPosition.xyz - aVertexPosition.xyz));

vec3 ambientColor = vec3(0.1, 0.1, 0.1);

vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
vec3 N = uNormalMatrix * aVertexNormal;

float lambert = max(dot(normalize(N), normalize(L)), 0.0);

vColor = aVertexColor * lambert;

}

</script>
Our FS trivially uses the passed in color from the VS:

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec3 vColor;

void main(void) {
gl FragColor = vec4(vColor, 1.0);

</script>
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Note In these examples, it would be better to use a uniform value for constants. However, | am trying to keep
the application logic the same and vary only the shaders. This lets me more easily show the changes between light-
ing model improvements, so | am hard-coding constant values within the shader.

The VS in Listing 4-5 and the FS shown previously are also used for the Gouraud shading example that we
will show next. The only difference is the normal vector attribute values that are passed into the shaders from the
application.

Smooth Shading

Unlike flat shading that uses the same normal value for the entire polygon, in smooth shading every vertex
normal and color may be different. The color and normal value used at each pixel is interpolated to produce
a smoother, more gradient result. Smooth shading gives the illusion of polygons being curved instead of
completely flat.

Note It is possible to use the same geometry multiple times in an application with elementary transformations.
However, our sphere geometry calculates the type of normal in the object itself and stores it there. So, if we want to
use smooth shading and flat shading at the same time on different instances of the same object, we would have to
recalculate the normals in between draw calls.

Gouraud Shading

Gouraud shading, which is named after Henri Gouraud, was the default smooth shading used in early fixed
functionality versions of OpenGL. In Gouraud shading, each vertex takes the (normalized) average of surface
normals of adjacent polygons that share that vertex as a normal. Lighting calculations are done per vertex and
then final values are interpolated. The left of Figure 4-7 is an example of Gouraud shading. The Gouraud shader
example is in the file 04/02_gouraud.html.

Phong shading

Phong shading is named after Bui Tuong Phong, who developed an interpolation method (Phong shading)

and reflection model (Phong illumination) in his 1973 Ph.D thesis. It is similar to Gouraud shading because the
normals are interpolated in the VS, but the lighting calculations are done inside of the FS. For this reason, Phong
shading is more computationally expensive then Gouraud shading, but it also produces better results.

To demonstrate this, imagine a large polygon such as the floor plane found in our chapter examples. It is
composed of only four triangles. If a light shines in the middle of a triangle, far away from any corner, the vertex
light amounts will be low and so the polygon will be dark with Gouraud shading. However, with Phong shading,
the lighting calculation is done per fragment, so the area in which the light is shining will not be missed. The
more we subdivide into smaller polygons, the lower the difference between Gouraud and Phong will appear.

The Phong shader with Lambert illumination example is in the file 04/03_phong_lambert.html(see Listing 4-6).
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Figure 4-7. Gouraud shading on the left, and Phong on the right. Nearly identical with the Phong shader, providing
a little more detail in the plane. Adding a specular component will lead to more variance

Listing 4-6. Shader pair with lighting calculation moved to the FS

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;
attribute vec3 aVertexNormal;

varying highp vec3 vColor;
varying highp vec3 vPosition;
varying highp vec3 N;

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

vColor = aVertexColor;
vPosition = aVertexPosition;
N = aVertexNormal;

}

</script>

<script id="shader-fs" type="x-shader/x-fragment">
uniform highp mat3 uNormalMatrix;
uniform highp mat4 uMvMatrix;
uniform highp mat4 uPMatrix;

varying highp vec3 vColor;

varying highp vec3 vPosition;

varying highp vec3 N;

void main(void) {
highp vec3 n = uNormalMatrix * Nj;
highp vec3 pointLightPosition = vec3(1.0,2.0,-1.0);
highp vec3 pointLightDirection = normalize(

vec3(pointLightPosition.xyz - vPosition.xyz));
highp vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
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highp float lambert = max(dot(normalize(n), normalize(L)), 0.0);
gl FragColor = vec4(vColor * lambert, 1.0);

</script>

We will now cover adding a specular reflection component in our illumination model.

Phong [llumination Model

We have shown how Lambert illumination can produce decent results. The Phong illumination model (also
known as the Phong reflection model) takes into account the specular reflection of objects. In the model, surfaces
have diffuse and specular reflection. The diffuse reflection acts more on rough surfaces; the specular reflection
occurs more on shiny surfaces. Recall that diffuse reflection is scattered in all directions, while specular reflection
is more intense and in a particular direction. Phong noticed that the specular highlights on shiny surfaces are
small but intense, while duller surfaces have larger highlights of less-intense value.

With Phong illumination, each light has a RGB specular and diffuse intensity component denoted i, i,. The
overall scene has a single ambient component, i .

Each material in the scene has RGB reflection values for specular, diffuse, and ambient light corresponding
to the parameters k, k, and k . Each material also has a shininess constant, o, which is larger for smoother, more
reflective surfaces. Normally, the constant is set to range from 0 to 128 and is used as an exponent for the specular
term.

The calculation of a single point I , using the Phong reflection model with one light is:
I =ki + [k*dot(L, N)*i, + k*dot(R, V)*i ]

For more lights, the calculation becomes k i, plus the sum of the diffuse and specular calculation for each
light (which is the part in square brackets). V is the direction to the viewer, which is sometimes referred to as the
eye vector. R is the perfect reflection of the light vector. Given L, the direction of the light to the surface point; and
N, the normal vector of the point, R is calculated as:

R = 2*dot(L,N)*N - L

In GLSL, the function reflect can compute this value for us. The Gouraud shader with Phong illumination
example (see Figure 4-8) is in the file 04/04_gouraud_phong.html.

Figure 4-8. Gouraud shading (VS), Phong illumination
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The VS for Gouraud-Phong example is shown in Listing 4-7.

Listing 4-7. Gouraud-Phong illumination lighting calculations done in VS

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;
attribute vec3 aVertexNormal;

uniform mat3 uNormalMatrix;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying vec3 vColor;
varying float diffuselambert;
varying float specular;

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vColor = aVertexColor;

vec3 pointlLightPosition = vec3(1.0,2.0,-1.0);
vec3 pointlLightDirection = vec3(
pointLightPosition.xyz - aVertexPosition.xyz);
vec3 L = vec3(uPMatrix * uMVMatrix * vec4(pointLightDirection, 1.0));
vec3 N = normalize(uNormalMatrix * aVertexNormal);
vec3 V = -vec3(uPMatrix * uMVMatrix * vec4(aVertexPosition,1.0));

L
v

normalize(L);
normalize(V);

vec3 R = reflect(-L, N);
float shininess = 128.0;

specular = pow( max(0.0,dot(R,V)), shininess);
diffuseLambert = dot(L,N);
}

</script>

In Listing 4-7, we calculate the lighting, normal, position, and eye vectors. Then we calculate the reflection
vector and Lambert term from the lighting and normal vectors. We then pass these two values to the FS that is
shown in Listing 4-8.

Listing 4-8. Gouraud-PhongFS

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec3 vColor;
varying highp float diffuseLambert;
varying highp float specular;

void main(void) {
highp float AmbientIntensity = 0.3;
highp vec3 DiffuselightIntensity = 0.9;
highp float SpecularIntensity = 0.5;
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highp vec3 AmbientColour = vec3(0.1, 0.1, 0.1);
highp vec3 DiffuseMaterialColour = vColor;
highp vec3 SpecularColour = vec3(1.0, 1.0, 1.0);

gl FragColor = vec4(AmbientColour*AmbientIntensity +
diffuseLambert * DiffuseMaterialColour*DiffuselightIntensity +
SpecularColour * specular*SpecularIntensity,1.0);

}

</script>

In Listing 4-8, we take the ambient, diffuse, and specular intensities; light colors; and our specular and
Lambert amounts to produce a final color.

For much better specular results, we can move the lighting calculation to the FS. Recall that the VS operates
per vertex, so when we pass results to the FS it is a linear interpolation between vertex points that is used for each
pixel. However, when we perform the calculation in the FS, the calculation is done at every single pixel. This can
produce a more accurate, independent, and detailed range of final values. The result of Phong illumination and
shading is shown in Figure 4-9.

Figure 4-9. Phong shader and illumination

It is quite remarkable how a little specular highlight can make a scene much more vivid and realistic. The
Phong shader with Phong illumination example is in the file 04/05_phong_phong.html.
The VS becomes much simpler. We just pass along the vertex color, position, and normal (see Listing 4-9).

Listing 4-9. Phong VS

<script type="x-shader/x-vertex">
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

attribute vec3 aVertexPosition;
attribute vec4 aVertexColor;
attribute vec3 aVertexNormal;
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varying highp vec4 vColor;
varying highp vec3 vPosition;
varying highp vec3 N;

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

vColor = aVertexColor;
vPosition = aVertexPosition;
N = aVertexNormal;

}

</script>

Of course, this means that our FS will do the heavy lifting now. In Listing 4-10 we calculate the diffuse and
specular reflection light components inside of the FS.

Listing 4-10. Phong FS

<script id="shader-fs" type="x-shader/x-fragment">
uniform highp mat3 uNormalMatrix;
uniform highp mat4 uMVMatrix;
uniform highp mat4 uPMatrix;

varying highp vec4 vColor;
varying highp vec3 vPosition;
varying highp vec3 N;
void main(void) {
highp vec3 pointLightPosition = vec3(5.0,1.0,5.0);

highp vec3 pointlLightDirection = vec3(
pointLightPosition.xyz - vPosition.xyz);

highp mat4 mvp = uPMatrix * uMVMatrix;

highp vec3 L = vec3(mvp * vec4(pointLightDirection, 1.0));

highp vec3 V = -vec3(mvp * vec4(vPosition,1.0));
highp vec3 1 = normalize(L);

highp vec3 n = normalize(uNormalMatrix * N);
highp vec3 v = normalize(V);

highp vec3 R = reflect(1l, n);

highp float diffuselambert = dot(1,n);

highp float Roughness = 1.0;

highp float AmbientIntensity = 0.3;

highp vec3 DiffuselightIntensity = vec3(0.9, 0.9, 0.9);
highp float SpecularIntensity = 0.5;

highp float shininess = 128.0;

highp float specular = pow( max(0.0,dot(R,v)), shininess);

gl FragColor = vec4(AmbientColour*AmbientIntensity +
diffuseLambert * DiffuseMaterialColour*DiffuselightIntensity +
SpecularColour * specular*SpecularIntensity, vColor.a);
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}

</script>

By adjusting the shininess, we can alter the specular highlight as shown in Figure 4-10.

Figure 4-10. Shininess values of 32, 8, and 2 (using the attenuation shader)

A variation of the Phong lighting model uses the half angle H and normal vector N to calculate the specular
term. The half angle bisects the angle between the viewer’s eye and the lighting vector L.

This variation is known as Blinn-Phong illumination and is the OpenGL 3.1 fixed functionality default. There
are times when using the Blinn-Phong lighting model is more computationally expensive than the Phong model
because it involves a square root. However, in some cases it only needs to be computed once per light instead
of at each pixel and is thus more optimal than the Phong model. Figure 4-11 shows all of the vectors involved in
lighting calculations at a given point. The angle between the reflection vector R and normal N will be equal to the
angle between the incoming light vector L and N.

H
Eye R
L
N
3]
Ko L

Figure 4-11. All the vectors used in Phong and Blinn-Phong lighting calculations

In Listing 4-10, v is our eye vector. To use Blinn-Phong we calculate the half angle vector as
H = (L + v)/length(L + v), thatis the normalized sum of L + V. We then compute the specular term as
highp float specular = pow( max(0.0,dot(H,N)), shininess);.The Phongand Blinn-Phong specular term
will be similar, but produce a slightly different specular highlight.

102



CHAPTER 4 * INCREASING REALISM

Attenuation

When we have a point light or spotlight, the light is brightest closest to the light position and decreases as the
distance from a point to the light position increases. To emulate this we need to find the length of a point to

the light position at every vertex (or pixel for increased accuracy). Then we compute an attenuation factor that
is used to model the gradual loss of intensity of the light (see Figure 4-12). Typically, the attenuation factor

is 1/(a + b*distance + c*distance?) where a,b, and c are constant, linear, and quadratic constants,
respectively. Experiment with values to see what looks good. I have chosen 0.01, 0.01, and 0.02, respectively,
in the example found in the file 04/06_attenuation.html.

Figure 4-12. Light attenuation

The VS is the same as in the last example, shown in Listing 4-9. The FS now adds a per-pixel distance
calculation and attenuation factor (see Listing 4-11).

Listing 4-11. Modifications to the FS Which Add an Attenuation Factor

highp vec3 pointlLightDirection = vec3(pointLightPosition.xyz - vPosition.xyz);
highp float d = length(pointLightDirection);
highp float attenuation = 1.0/(.01 + .01*d+.02*d*d);

highp vec3 AmbientColour = vec3(0.1, 0.1, 0.1)*attenuation;
highp vec3 DiffuseMaterialColour = vColor.xyz*attenuation;
highp vec3 SpecularColour = vec3(1.0, 1.0, 1.0)*attenuation;
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Note With additional lights and a high shininess term, it can be easy to have the lighting intensity set too high.
The result will look white like an overexposed photo, as shown in Figure 4-13.

Figure 4-13. Setting light values too high

Spotlights

A spotlight can be viewed as a cone of light emulating from a point. To model a spotlight, we need to set the
angular range of the cone and then determine whether a point lies within it. If it does, we do our lighting
calculation; otherwise we do not light the point. Code for a spotlight example can be found in the file 04/07_
spotlight.html

The VS for the spotlight example does not change from Listing 4-9. The FS adds four variables that
correspond to the total angle of the beam, the difference in intensity from the center of the beam to the edges, the
direction of the spotlight (in addition to the light position), and a variable to test whether the current light beam
is within the spotlight area:

//spotlight

highp float spotCosCutoff = -0.1;

highp float spotExponent = 2.0;

highp vec3 spotDirection = vec3(2.0,5.0,1.0);

highp float spotEffect = dot(normalize(spotDirection), 1);

The new part of the FS involves two tests. The first checks if the Lambert term is greater than 0 (the light is on
the proper side of the polygon face), and the second checks if the light to surface point direction falls within the
spotlight beam. If either of these tests fails, we paint the pixel black.

highp float diffuselambert = dot(1,n);
//spotlight
highp float spotCosCutoff = 0.6;
highp float spotExponent = 2.0;
highp vec3 spotDirection = vec3(2.5,12.0,1.5);
highp float spotEffect = dot(normalize(spotDirection), 1);
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if(diffuselLambert > 0.0){
if(spotEffect > spotCosCutoff){
highp float shininess = 32.0;
highp float specular = pow( max(0.0,dot(R,v)), shininess);

spotEffect = pow(spotEffect, spotExponent);
attenuation *= spotEffect;

highp float AmbientIntensity = 0.3;
highp vec3 DiffuselLightIntensity = vec3(0.9, 0.9, 0.9);

highp float SpecularIntensity = 0.5;
highp vec3 AmbientColour = vec3(0.1, 0.1, 0.1)*attenuation;

highp vec3 DiffuseMaterialColour = vColor.xyz*attenuation;
highp vec3 SpecularColour = vec3(1.0, 1.0, 1.0)*attenuation;

gl FragColor = vec4(AmbientColour*AmbientIntensity +
diffuseLambert * DiffuseMaterialColour *
DiffuselLightIntensity +
SpecularColour * specular * SpecularIntensity,
vColor.a);
Yelse{

}
}else{
gl FragColor = vec4(0.0,0.0,0.0, 1.0);
}

gl FragColor = vec4(0.0,0.0,0.0, 1.0);

You can further enhance this example by dynamically moving the spotlight like a prison search light or
lighthouse beam (see Figure 4-14). Instead of a harsh transition to complete black, you can also use another
attenuation factor to ease into darkness.

Figure 4-14. A spotlight
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This covers the traditional approach to lighting with an ambient, diffuse, and specular component along
with a directional spotlight. Next we will look at additional enhancements that we can make to global light and
object interaction.

More Advanced Lighting

The Phong illumination model is fairly good, but it has some shortcomings. Direct illumination models such as
Phong (which are traditional in computer graphics) take a small number of light sources and possibly a global
ambient term to calculate lighting. What direct illumination fails to account for are the interreflections between
objects and self-occlusion.

With global illumination models such as ray tracing, ambient occlusion, hemisphere lighting, and spherical
harmonics, a higher degree of realism is achieved by taking these interactions into account and varying the
ambient term accordingly. Global illumination models by themselves can look a little dull. A hybrid approach,
using direct lights in conjunction with a global illumination model can be optimal. Global illumination can
produce vastly more realistic results compared with direct illumination. However, it is slower and much more
computationally intensive than direct lighting. For this reason, calculations are often done and then stored for
later use.

Global illumination implementation is beyond the scope of this book, but there are several references in
Appendix D for those who are interested. The OpenGLSL “Orange” book also discusses several advanced global
illumination models.

Lastly, what if a material radiates light? Then we would also need to factor in the emissive light component of
the object. We will now show how to model environmental fog and direct shadows with WebGL.

Fog

To produce atmospheric fog (see Figure 4-15), generally one of three equations are used: a linear equation or one
of two exponential ones. The linear equation is Fog = (End,, - z)/(End, - Start,). End and Start are between 0 and

1in the clip space. The first exponential equation is Fog = e @™v"2 and the second exponential equation is Fog =
-(density * z)A2
e .

Figure 4-15. Adding fog
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To use the second exponential equation, we add one varying to our VS, which stores the length of our
position from the origin. We could also have just stored the z-coordinate:

varying float fog_z;
fog z = length(gl Position.xyz);

In our FS, we set the fog density and color, and then mix the final lighting and material color with the fog
color:

varying highp float fog z;

//calculate fog
highp float fog _density = 0.25;
highp vec4 fog color = vec4(0.1, 0.2, 0.1, 0.6);

highp float fogFactor = exp( -fog_density * fog_density * fog z * fog_z);
fogFactor = clamp(fogFactor, 0.0, 1.0);

highp vec4 materialColor = vec4(AmbientColour*AmbientIntensity +
diffuseLambert * DiffuseMaterialColour * DiffuselightIntensity +
SpecularColour * specular * SpecularIntensity, vColor.a);

gl FragColor = mix( fog color, materialColor, fogFactor );

The fog example can be found in the file 04/08_fog.html. Another example that combines fog and a
spotlight is shown in Figure 4-16 and is in the file 04/09_fog_spotlight.html.

Figure 4-16. Fog with a spotlight

Fog is an effect that is fairly easy to implement and can help add character and atmosphere to a scene.

Shadows

The complement of light is darkness, so proper shadows are essential to a realistic scene. With illumination
models such as the Phong illumination model, each object has areas of light or darkness. However, objects do
not affect one another, which does not look natural. There are several ways to generate shadows and correct this
issue. We will discuss two of the most common approaches: ambient occlusion and shadow maps.
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Ambient Occlusion

We mentioned that ambient occlusion is a global illumination technique. In direct lighting models, ambient light
is modeled as constant throughout a scene. In reality, this is not the case. Ambient light at a point can be blocked
by other objects in the scene or another part of the object. As an example, the back of your ears, the creases in
your palms, wrinkles, and your belly button all receive less light than other areas such as your forehead, the tip of
your nose, and your cheeks.

To determine how accessible light is to a point on an object, we can cast rays from the point and keep track
of how many times they reach the boundary of our scene versus how many times they are blocked along the way.
The less intersection by other objects, the more visible light gets to the point. The ratio of unblocked rays to total
rays is the “occlusion factor” and will vary between 0 for always blocked to 1 for never blocked. By multiplying the
occlusion factor with our diffuse light, we darken the resulting image.

The process of sending out light and it being blocked or not is similar to how sonar works. When sound
waves hit an object and reflect back, we know that there is an object there. If all our emitted sound waves return,
we must be completely enclosed. Going back from this analogy to light rays, if we are completely enclosed than
no outside light gets to us.

Ambient occlusion produces soft shadows. By itself it can make an object look dull like the scenery on an
overcast day. For this reason it is usually used in combination with a direct lighting model. We will not implement
ambient occlusion in this book, but references are provided in Appendix D.

Shadow Maps

A shadow map produces harder shadows than ambient occlusion. By harder shadows I mean that the luminance
of the shadow does not vary much and has well-defined edges, whereas a softer shadow has more gradual and
subtle edges. To generate the shadow map for a light, we need to view the scene from the light’s perspective and
then store the nearest depth value of each point, as seen from this view into a buffer for later lookup. When we
render the scene, we compare the depth value of the current pixel with that of the stored map and perform the
lighting calculation if it is closer than the depth map value. If there are multiple lights, we need to store depth
values for each one. In practice, even if a scene has many lights, using the shadow maps of a couple of them is
probably sufficient. Because implementing a shadow map involves knowledge of the frame and render buffers,
we will explain how to implement a shadow map in Chapter 10. The shadow map of our scene shown from the
light’s perspective is shown in Figure 4-17.

Figure 4-17. Shadow map of the scene
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Note Desktop versions of the GLSL have a special type for shadows, but the version of GLSL that is currently
used for WebGL does not.

Shadows represent the absence of light and so are equally as important as rendering light. However,
shadows are often more difficult to render in a visually appealing manner.

Depth Buffer

Our three-dimensional scene is transformed to two dimensions when it is rendered to the <canvas>. As such,
many (X,Y,z) coordinates may share the same (x,y) value. However there is only one pixel that corresponds to
this value when we render to the canvas. So which one do we render?

The answer is determined by the depth buffer (aka the z-buffer), which stores a z-component for each pixel.
By default, when WebGL encounters a pixel at (x, Y, z), it tests whether the z-value stored at (x,y) in the buffer is
farther away and replaces it if the new pixel is nearer. All z-values are clamped to the range [0,1]; 0 is the closest;
1 is the farthest away. So if the viewport z direction is from [40, -40], 40 would be 0.0, 20 would be .25, 0 would
be 0.5, -20 would be 0.75, and -40 would be 1.0.

We can set the range of depth values with void depthRange(GLclampf zNear, GLclampf zFar);. zNear
needs to be smaller than zFar and both values are clamped to the range [0, 1].Imagine we clamp our depth
range to the range (0, 5)and that we pass the vertex points (3,-4, 4), (3,-4, 2), (3,-4,5), (3, -4, 1) to our FS. All
(x,y) coordinate values in the depth-buffer are initialized to a value of 1.0. The first point (3,-4,4) has a z value
of 4, which corresponds to 0.2 in the range [0, 5]. This is lower than 1.0, so it replaces the previous value in the
depth buffer. The next z-value for the point, 2, is clamped to a higher value (0.6), so it fails to replace the current
pixel. Continuing, the z-value of 5 is clamped to a lower value (0.0), so it replaces the current depth buffer value.
Finally, 1 is clamped to (0.8), which does not replace the stored depth value. The final pixel rendered at (3, -4)
corresponds to the one at (3, -4, 5).

The depth buffer comparison function is specified with a call to depthFunc(comparision_type), and the
default comparision_typeis LESS. As we have shown, the LESS comparision test passes if an input z-value is
less than the previous pixel stored at the same (X, y)location within the depth buffer. When it passes, the input
z-value replaces the stored value.

LESS is the default comparison function. However, we can change how WebGL compares values in the buffer
to any one of the values: NEVER, LESS, EQUAL, LEQUAL, GREATER, NOTEQUAL, GEQUAL, or ALWAYS.

We can initialize the value stored in the depth buffer at each pixel with a call to void clearDepth(GLclampf
depth).The valid range is 0 to 1, and the default is 1. To enable and disable writing to the depth buffer, you can
use the function void depthMask(GLboolean flag);

An alternative to the depth test is blending, as we will cover next.

Blending

Blending lets us determine how to handle pixels that overlap in an alternative manner to the depth test. The
depth test discards either the existing pixel or the new pixel, but blending combines the existing fragment color
and incoming fragment into a new fragment. Blending can produce transparency, but it is not the same as
transparency. To perform blending, you need to disable depth testing and enable blending:

gl.enable(gl.BLEND);
gl.disable(gl.DEPTH TEST);
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When blending we have a source color (Rs, Gs, Bs, As) and a destination color (Rd, Gd, Bd, Ad).We
then can define rules on how to combine the source and destination colors for our new fragment. We do this by
using this function:

void blendFunc(GLenum sfactor, GLenum dfactor);

The first argument is the source factor, and the second is the destination factor. Our resultant color will
be Source * sfactor + Destination *dfactor. Our available options for the source factor are ZERO, ONE,
DST_COLOR, ONE_MINUS DST COLOR, SRC_ALPHA SATURATE, SRC_ALPHA, ONE_MINUS SRC_ALPHA, DST_ ALPHA
and ONE_MINUS_DST_ALPHA and the destination factors are ZERO, ONE, SRC_COLOR, ONE_MINUS_ SRC_COLOR,
SRC_ALPHA, ONE_MINUS_SRC_ALPHA, DST_ALPHA and ONE_MINUS_DST_ALPHA.

Note Two nice online applications to play around with blend settings are available at http://mrdoob.com/lab/
javascript/webgl/blending/blendfunc.html and http://alteredqualia.com/three/examples/webgl_materials_blending_
custom.html. The application at the first link is written by the creator of the Three.js framework and the second one
is written by the most active contributor to the library. In addition, http://www.khronos.org/registry/gles/specs/2.0/
es_full_spec_2.0.25.pdf#nameddest=section-4.1.6 explicitly states the result of each blending factor setting.

Using a blend function value of gl .blendFunc(gl.SRC_ALPHA, gl.ONE) will result in the red component
being calculated as follows:

Rr = Rs*sfactor + Rd*dfactor
Rr = Rs*As + Rd*1 = Rs*As + Rd

The other components (G, B, A) are computed in the same manner. A second example which calculates
based on SRC_ALPHA and ONE_MINUS_SRC_ALPHA is:

gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS SRC ALPHA);

Rs*As + Rd*(1-As);
Rd + As(Rs-Rd);

Rr
Rr

We can also set the blend function to be additive or subtractive by calling void blendEquation(GLenum
mode); or void blendEquationSeparate(GLenum modeRGB, GLenum modeAlpha); with FUNC_ADD, FUNC_
SUBTRACT or FUNC_REVERSE_SUBTRACT as parameter(s).

FUNC_ADD produces R = Rs*Sr + Rd*Dr, as shown previously for the final red component. FUNC_SUBTRACT
producesR = Rs*Sr - Rd*Dr and FUNC_REVERSE_SUBTRACT produces R = Rd*Dr - Rs*Sr.

We can blend with a constant color by using void blendColor(GLclampf red, GLclampf green,
GLclampf blue, GLclampf alpha);. To blend RGB and alpha values separately, we can use this function:

void blendFuncSeparate(GLenum srcRGB, GlLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha);

The order of blending is important. Because the depth test and blending are mutually exclusive, we generally
need to render completely opaque objects first, followed by semitransparent ones.

An example of blending can be seen in Figure 4-18 and found in the file 04/10_blending.html.

To produce the image in Figure 4-18, only the application changes. The shaders are the same as in the
attenuation example, which is shown in code Listings 4-9 to 4-11. In Listing 4-12 the order of rendering is
adjusted to render our semitransparent object last. For the plane and first two opaque spheres we enable the
depth test and disable blending. Then we alternate these settings, disabling the depth test and enabling blending
for our final sphere.
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Figure 4-18. Blending applied to the closest sphere

Listing 4-12. Using blending

var drawOrder = [1,2,3,0];
for(var n=0; n < drawOrder.length; ++n)

{

var i = drawOrder[n];

gl.bindBuffer(gl.ARRAY BUFFER, trianglesVerticeBuffers[i]);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);

gl.bindBuffer(gl.ARRAY BUFFER, trianglesColorBuffers[i]);
gl.vertexAttribPointer(vertexColorAttribute, 4, gl.FLOAT, false, 0, 0);

gl.bindBuffer(gl.ARRAY BUFFER, trianglesNormalBuffers[i]);
gl.vertexAttribPointer(vertexNormalAttribute, 3, gl.FLOAT, false, 0, 0);

if(i==0){
gl.disable(gl.DEPTH TEST);
gl.enable(gl.BLEND);
gl.blendFunc(gl.SRC_ALPHA, gl.ONE);
gl.blendEquation(gl.FUNC_ADD);
telse{
gl.disable(gl.BLEND);
gl.enable(gl.DEPTH_TEST);

gl.bindBuffer(gl.ELEMENT ARRAY BUFFER, vertexIndexBuffers[i]);
gl.drawElements(gl.TRIANGLES, vertexIndexBuffers[i].numItems, gl.UNSIGNED_SHORT, 0);
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There are many combinations of blend factors and varying results obtainable by adjusting them. I encourage
the reader to play around with the interactive demos listed in the previous note and/or to calculate the final color
of a pixel based on a source and destination color and blend modes.

Reflection and Refraction

To render semitransparent objects such as glass or water, we need to model reflection and refraction. We have
shown that when light is reflected off of a surface that the angle between the incoming incident light and surface
normal will be equal to the angle between the reflected light ray and the surface normal. For this reason, the
larger the light angle to the normal, the duller the specular reflection will be.

Refraction is a change in the direction of light (bending of light) where two varying mediums (of differing
optical density) meet. Simple examples of refraction are when air and water or water and glass meet. Consider
looking at an object, such as a straw, in a glass of water. The straw will appear to be bent where the water and air
meet.

Snell’s Law, named after the Dutch astronomer Willebrord Snell who discovered it in the 17th century,
describes what happens during refraction as follows:

$ind, _ v, _n,

sin@, v, n

Where 60 , 0, are angles from the normal, v,, v, are velocities, and n , n, are refractive indices. Refractive
indices have no unit of measurement. The faster light travels through a given medium, the lower the medium’s
refractive index. Because light in a vacuum is the highest speed obtainable, its refractive index is the base of all
others to compare against and is given a value of 1. A sampling of increasing refractive indices, are air at standard
temperature and pressure, water, glass, and diamond. Figure 4-19 illustrates Snell’s Law as we have two distinct
mediums meeting. In the diagram, we have the surface normal N, the incoming angle 0, and the bent angle 0,.

Note Snell’s Law was actually first discovered by the Iranian mathematician Ibn Sahl in the 10th century, though
this was not widely known until many centuries later.

le1/

e2

Figure 4-19. Refraction between two different mediums such as air and water
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Fresnel effect

As we already know, in addition to refraction between mediums, there is also reflection. The Fresnel effect, named
after Augustin-Jean Fresnel, states that the amount of specular reflection you see depends on your viewing angle.
A viewing angle close to the surface normal (looking down at a surface such as water) will produce low reflection
and have high refraction. A greater angle between the viewer and normal (looking across a surface such as water)
will result in more reflection and less refraction. In Figure 4-20, part of the incident light ray is reflected as specular
reflection off of the surface of the second medium while part of it is refracted into the second medium.

»

Reflection o3 o1 Incident

¥

Refraction

e2

r

Figure 4-20. Fresnel effect which shows the relation between incident angle and reflection and refraction
components

Fresnel Shader

A Fresnel shader calculates the reflective and refractive components of light using the GLSL functions reflect and
refract. It uses a texture cube map for the environment. Although covering the complete implementation details
of a Fresnel shader is beyond the scope of this book, good examples of Fresnel shaders in action are as follows:

e  Bubbles: http://alteredqualia.com/three/examples/materials_shaders_fresnel.html

e Skull: http://www.everyday3d.com/j3d/demo/004_Glass.html

Putting it All Together

We can combine everything that we have learned in this chapter along with texturing to produce a nice final
image. Our last example files 04/11_all techniques.html contains blending, texturing, atmospheric fog, and
Phong illumination, and is shown in Figure 4-21.

113


http://alteredqualia.com/three/examples/materials_shaders_fresnel.html
http://www.everyday3d.com/j3d/demo/004_Glass.html

CHAPTER 4~ INCREASING REALISM

Figure 4-21. Image showing all the techniques discussed in this chapter along with texturing from the last chapter

Summary

In this chapter we made vast improvements to our lighting model, which made rendering more realistic. Fog,
spotlights, and blending added to the quality of our images. We also discussed more-advanced techniques such
as global illumination, shadows, and reflection and refraction. The next chapter on physics introduces making
the motion of our objects appear more realistic.
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Physics

In this chapter, we will introduce modeling physical interactions among objects in our scene. Topics that we will
cover in this chapter are:

e Position, velocity, acceleration

e  Forces such as gravity and friction

e  Projectile motion

e Detecting and reacting to collisions

e Elasticity and the conservation of momentum

e Potential and kinetic energy

Background

In addition to lighting, texturing, and other visual cues of realism, how objects physically interact with their
surroundings can give credence to the believability of our animations. Interaction that does not follow physical
laws can look strange and unrealistic. Of course, this could be the effect that we are after. However, in this chapter,
we will concentrate on trying to get our scene to act physically like we would expect objects to interact.

The scope of physical simulation is huge. We could model the ripples and waves of water or the buoyancy
of an object, the rotation of tires, the flight of an airplane, and so on. In this chapter we will narrow our scope to
basic kinematics: gravity, simple collisions, potential and kinetic energy, and projectiles.

A central requirement when modeling multiple moving objects within a scene is to be able to detect when the
objects come into contact with one another. We will build upon methods to detect collisions throughout the chapter.

Forces Acting Upon Us

Every second of every day, we have forces acting upon us. These forces can include gravity, which pulls us
down toward the earth; surface normals, which prop us up; friction, which stops us from continually moving;
centripetal forces of rotation, wind, objects or people pushing or pulling upon us; and so on. When the sum of
these forces balance each other out, we are said to be at rest.

Scalars and Vectors

In physics, we deal with two types of quantities: scalars and vectors. Scalar quantities have a magnitude but no
direction, while vectors have both a magnitude and a direction. For example, speed is a scalar, as is mass and
time. We can say that the speed of a car is 50 miles per hour, which is a scalar quantity. If we say that the car is
travelling 50 miles an hour east, it is a vector.

B. Danchilla, Beginning WebGL for HTML5 115
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Rates of Change

For applications of physics, we are usually interested in vectors. We can measure the vector position or
displacement of an object such as 20 m along the x-axis. To calculate the velocity of the object, we take the
difference of displacement of the object over a period of time. In other words, velocity is the rate of change of
displacement. Acceleration is the rate of change of velocity. Displacement is usually symbolized as d, while velocity
isrepresented as a v, and acceleration is an a. A basic equation to compute the average velocity of an object in the
time range from Time, to Time,, with respective displacements at the endpoints of this range, d, and d,, is:

v = (d, - d,)/(Time, - Time,)
For example, ifd, = 20m, Time,= 1sandd,= 30m, Time,= 5s then:
v = (30m - 20m)/(5s - 1s) = 10m/4s = 2.5m/s

Similarly, to calculate the average acceleration over a time interval, we take the velocity at each
corresponding time endpoint, v, and v;:

a = (v,-v,)/(Time, - Time,)
Ifv, = 2.5m/s, Time, = 1sandv, = 3.0m/s, Time, = 2s then:
a = (3.om/s - 2.5m/s)/(2s - 1s) = 0.5m/s?

Figure 5-1 shows a sample graph of displacement against time, followed by the velocity plotted against time,
and then the acceleration plotted against time. Notice, for example, that we can be moving forward while slowing
down and can be moving fast while having zero acceleration.

e

Figure 5-1. Left: position of an object; center: velocity of the object; right: acceleration of the object

Our first code example will simulate objects free falling because of the effect of gravity. Here, when we
speak of gravity, we are not modeling the universal attraction between all objects. This type of gravity is essential
to modeling accurate orbits in astronomy, but in our day-to-day lives while these gravitational forces between
objects such as two different people or cars on a road are present, they are negligibly small and not noticed.
Instead we will be modeling the type of gravity that we are most familiar with: free fall from an object such as a
ball (or human) downward to the surface of the earth.

Code Setup

We will need to be able to keep track of scene elements in a manner that is more conducive to updates and is
more flexible by being independent of vertex buffer object (VBO) data. In previous chapters, we used isolated
mesh(es) that did not interact. In this chapter, we will have interactions between objects and will need to be able
to keep track of physical properties and adjust them. For this, we will create a new sphere object, as shown in
Listing 5-1.
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Listing 5-1. Object to keep track of physical properties of a sphere
SphereObject = function SphereObject (properties) {

var radius = (properties.radius === undefined) ? 1.0 : properties.radius;

var position = (properties.position === undefined) ? new Vector3(0.0, 0.0, 0.0) :
properties.position;

var velocity = (properties.velocity === undefined) ? new Vector3(0.0, 0.0, 0.0) :
properties.velocity;

var acceleration = (properties.acceleration === undefined) ? new Vector3(0.0, 0.0, 0.0) :

properties.acceleration;

this.radius = radius;

this.position = position;
this.velocity = velocity;
this.acceleration = acceleration;
this.vbo_index = properties.vbo index;

In the SphereObject of Listing 5-1, we keep track of the radius, position, velocity, and acceleration of a
sphere. We also have a vbo_index property that we will use to tie each physical sphere object with the relevant
VBO object.

Storing Information
We will store all our SphereObject elements in an array:
var sceneElements = [];

We declare three spheres and plane mesh as:

setupSphereMesh(0, {
"translation": [-1.0, -0.75, 0.0],
"color": [1.0, 0.0, 0.0, 1.0],

)5

setupSphereMesh(1, {
"translation": [0.0, 0.0, 1.0],
"color": [0.0, 1.0, 0.0, 1.0]

);

setupSphereMesh(2, {
"translation": [1.0, 0.25, -1.0],
"color": [1.0, 1.0, 0.0, 1.0]

)5
setupPlaneMesh(3, {"translation": [0.0, -1.0, 0.0]} );

sceneElements.push(new SphereObject( {"vbo_index": 0} ) );
sceneElements.push(new SphereObject( {"vbo_index": 1} ) );
sceneElements.push(new SphereObject( {"vbo_index": 2} ) );

We will be modifying this starting layout as the chapter progresses to a more generic and flexible system.
Keeping track of elements is similar to when we create particle systems that are covered in Chapter 6, with the key
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difference that interactions here are determinalistic, while particle systems are partially unknown or stochastic
in nature.

To assist in viewing the scene, we will show how to set up a camera that is adjustable through mouse clicks,
drags, and scroll events.

Interactively Adjusting the Camera

First we will zoom out by backing up our viewport along the z-axis:

mat4.identity(mvMatrix);
mat4.translate(mvMatrix, [0.0, 0.0, -20.0]);
//other camera transforms

We will now demonstrate how to capture the mouse down, up, and move events to adjust the view. Being
able to change the view this way will let us look around our scene dynamically.

Using the Mouse to Rotate the View

To implement changing the view with mouse movement, first we need to attach event handlers to our canvas, as
shown in Listing 5-2.

Listing 5-2. Capturing mouse events to control the view

var capture = false,
start = [],
angleX = 0,
angleY = 0;

$(document).ready(function(){
$("#my-canvas").on("mousedown", function(e){
capture = true;
start = [e.pageX, e.pageY];
console.log("start:" +start);

};

$("#my-canvas").on("mouseup”, function(e){
capture = false;
console.log("end capture");

D;
$("#my-canvas") .mousemove(function(e) {
if(capture)
var x = (e.pageX - start[0]);
var y = (e.pageY - start[1]);
//update start position
start[0] = e.pageX;
start[1] = e.pageY;
angleX+= x;
angleY+=y;
//console.log("Angle: ("+angleX+","+angleY+")");
}
1;

};
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In Listing 5-2, the mousedown event signals a boolean flag called capture that should capture data on
subsequent mousemove events as well as the current mouse position. When the mouseup event occurs, we let the
flag know it should stop capturing data. The mousemove event computes the offset from the start position when
the mousedown event started. Then we update the start position. This is important; otherwise, we will get very
jerky, erratic results. Finally, we increment variables that store the x and y rotation angles.

Then in our application, we update our mvMatrix on each frame, setting the translation amount and then
rotation values:

mat4.identity(mvMatrix);

mat4.translate(mvMatrix, [0.0, 0.0, -20.0]);
mat4.rotate(mvMatrix, angleX*2*Math.PI/180.0, [0.0, 1.0, 0.0]);
mat4.rotate(mvMatrix, angleY*2*Math.PI/180.0, [1.0, 0.0, 0.0]);

Note As an alternative to attaching mouse handlers to the canvas, we can attach them to the entire document.
This can be useful in the previous example because moving off of the canvas will currently stop the mouse event
capturing and produce unexpected and undesirable results when we move back in to the canvas. The mouse button
may still be down, but we will need to first release it and then click and hold it again before events are recaptured.

It is generally best to do scene-wide transformations first, followed by object specific transforms.

Using the Mouse Wheel to Control Zoom

Scrolling the mouse wheel is often used to control zooming in and out of a scene. To do this, we will attach a
handler to the mousewheel event:

var zoom = 1.0;

$(document) .ready(function(evt){
$("#my-canvas").on("mousewheel”, function (e){
var delta = window.event.wheelDelta;
if(delta>0)

{
zoom += 0.1;
telse{
zoom -= 0.1;
//prevent a negative zoom
if(zoom<0.01)

{
}

zoom = 0.1;

}
};

mat4.scale(mvMatrix, [zoom, zoom, zoom]);
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Now, because of browser differences, the above code will not work with Firefox, which uses the
DOMMouseScroll event instead of the mousewheel event. To account for this, we can add multiple event handlers:

function adjustZoom(delta)

if(delta>0)
{
zoom += 0.1,
Yelse{
zoom -= 0.1;
if(zoom<0.01)
{
zoom = 0.1;
}
}

}

$(document).ready(function(evt){
$("#my-canvas").on("mousewheel”, function (e){
adjustZoom(window.event.wheelDelta);
}).on("DOMMouseScroll”, function (e){
/ /firefox
adjustZoom(e.originalEvent.detail * -1.0);

1

Note The target of the mousewheel and DOMMouseScroll events is the DOM element underneath the current
position of the mouse pointer, similar to click events.

The detail property has a reverse orientation to the wheelDelta, so we multiply by negative 1 for
consistency. The magnitudes of these properties is also different, but we are only concerned with the sign that
indicates an up or down scrolling direction. More-robust handling of mouse wheel events can be found in the
jQuery mousewheel plugin from https://github.com/brandonaaron/jquery-mousewheel/blob/master/
jquery.mousewheel. js.

The shader program for all the examples in this chapter will be the same as the Phong illumination model
and shader found in the 04/05_phong_phong.html demo. We are ready to start simulating physical interaction
and the first thing we will do is simulate gravity.

Gravity

Gravity, as most nonphysicists are used to, is simply the force that pulls things downward toward the earth. As the
saying goes, “What goes up, must come down.” We will model dropping three spherical balls toward the ground
and make some successive improvements.

Free Falling

Our first attempt to model gravity will simply lower the position of all three spheres each frame. For this example, we
will use the code in the 04/05_phong_phong.html file as a starting point, along with the changes outlined previously
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to keep track of the scene elements. In Listing 5-3, we show how we adjust each sphere by searching for an
appropriate vbo_index to determine which objects are spheres and then translating the model view matrix for each.

Listing 5-3. Adjusting select scene elements

function searchForObject(arr, index)

{
for(var i in arr)
{
if(arr[i].vbo_index == index)
{
return i;
}
}
return -1;
}
function drawScene()
{
for(var i = 0; i<vertexIndexBuffers.length; ++i)
{
mat4.identity(mvMatrix);
mat4.translate(mvMatrix, [0.0, -1.0, -15.5]);
var n = searchForObject(sceneElements, i);
if(n ! = -1)
mat4.translate(mvMatrix, [ 0.0, 5.0 - sceneElements[n].position.y, 0.0 ]);
sceneElements[n].position.y+= 0.1;
}
mat4.toInverseMat3(mvMatrix, normalMatrix);
mat3.transpose(normalMatrix);
setMatrixUniforms();
}
}

In Listing 5-3, we have a helper method, searchForObject, which takes an input array of SphereObjects and
finds an appropriate object index based on the input vbo_index value or -1 if no match is found. Extending this
approach would allow us to potentially have many different object types in our scene but be able to affect only
the VBO objects that match a certain criteria—in this case, being a sphere. If the current VBO index is a match, we
translate its model-view matrix and increase the stored y position. The VBO index for the ground mesh will result
in a -1 being returned from the search, so it will be stationary.

The result of running this code, which can be found in the 05/01a_gravity.html file, is that the spheres fall
indefinitely. They go past the ground, as shown on the left of Figure 5-2. So now let’s add our first case of collision
detection to prevent this.
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Figure 5-2. Far left: starting position of spheres; left: free falling with no collision with the ground; right: collision
detection not including the radius; far right: proper collision detection

Falling and Colliding With the Ground

First, we will formalize the initial height of the spheres and ground:

var INITIAL_HEIGHT_TRANSLATION_OF _SPHERES = 5.0;
var GROUND_Y = -1.0;

setupPlaneMesh(3, { "translation": [0.0, GROUND Y, 0.0]} );

To test whether an object hits the ground, we need to test whether the starting translation amount of our
sphere minus the translated y-position is greater than the ground height. If it is not, we stop incrementing
the position:

var n = searchForObject(sceneElements, i);
if(n! =-1)
{
if(INITIAL_HEIGHT TRANSLATION OF SPHERES - sceneElements[n].position.y>GROUND Y)

{
}

mat4.translate( mvMatrix,
[0.0, INITIAL HEIGHT TRANSLATION OF SPHERES - sceneElements[n].position.y, 0.0] );

sceneElements[n].position.y+= 0.1;

Running this code stops the spheres, but they get stuck part way through the plane, as shown in the right of
Figure 5-2. So let’s improve our collision detection to factor in the radius of the sphere:

if( ( INITIAL HEIGHT TRANSLATION OF SPHERES -
(sceneElements[n].position.y + sceneElements[n].radius) )>GROUND Y)
{

}

sceneElements[n].position.y += 0.1;

The result of this adjustment is shown on the far right of Figure 5-2.
Let’s make one more code improvement and set the initial translation of the sphere directly in our
SphereObject instead of in the setupSphereMesh call:

setupSphereMesh(o, { "color": [1.0, 0.0, 0.0, 1.0] } );
setupSphereMesh(1, { "color": [0.0, 1.0, 0.0, 1.0] } );
setupSphereMesh(2, { "color": [1.0, 1.0, 0.0, 1.0] } );
setupPlaneMesh(3, { "translation": [0.0, GROUND Y, 0.0]} );
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sceneElements.push(new SphereObject( { "vbo_index": o,

"position": new Vector3(-1.0, -0.75, 0.0)}) );
sceneElements.push(new SphereObject( { "vbo_index": 1,

"position": new Vector3(0.0, 0.0, 1.0)}) );
sceneElements.push(new SphereObject( { "vbo_index": 2,

"position": new Vector3(1.0, 0.25, -1.0)}) );

This adjustment lets us keep the local mesh coordinates and color details in the VBO code and the world
position in the SphereObject. Because it is outside of the VBO, we can now easily adjust the position without
modifying our buffer. We now need to also adjust our x and z positions in the translate call:

mat4.translate(mvMatrix,
[ sceneElements[n].position.x,
INITIAL_HEIGHT TRANSLATION OF SPHERES - sceneElements[n].position.y,
sceneElements[n].position.z

1;

Our next step is to have the spheres bounce back up.

Falling Down, but Bouncing Back Up

Let’s put some spring into these spheres and have them bounce back up upon impact of the plane. So how do
we do this? Well if the ground is hit, we need to reverse the direction. One naive approach to this is to flip the
direction of position adjustments upon impact:

function isAboveGround(n)

{ return ( INITIAL HEIGHT TRANSLATION OF SPHERES -
(sceneElements[n].position.y+sceneElements[n].radius) >GROUND Y);

}

var n = searchForObject(sceneElements, 1i);

if(n! =-1)

{

if( isAboveGround(n) )

{

sceneElements[n].position.y += 0.1;
}else{

sceneElements[n].position.y -= 0.1;

The problem with this approach is that the sphere will start traveling upward, but because it is above the
ground, it will immediately travel back down on the next iteration. The ground will be reached again, and the
sphere will start upward again. It will do this indefinitely and get caught in an alternating loop that makes the
object shake slightly but not move much.
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A further addition to this approach would be to add a flag signaling that the ground has been hit so that we
never pass the test condition to continue falling once the ground has been hit:

var flip_direction = [false, false, false];

if( isAboveGround(n) &&
flip_direction[n]

)

{

sceneElements[n].position.y += 0.1;
telse{

flip_direction[n] = true;

sceneElements[n].position.y -= 0.1;

}

This does eliminate the previous problem, and the ball will bounce back upward upon collision. However,
this approach is not a robust or useful solution because once the ball starts traveling upward, it will continue
upward forever, never coming back down.

We will now look at how to use velocity and acceleration to properly model a bouncing object.

Falling and Bouncing Up; Repeat

Until now, we have not made use of the velocity or acceleration properties of our SphereObject.
We can rewrite the equation a = (v, - v,)/(Time, - Time,) as:

v, = v +a(Time,-Time,)

Or equivalently as follows, where f stands for final, i for initial, and t for the time interval:

v, = v,+at
1

This equation can be used to model our free fall. Until now, the pace of descent has been constant
throughout. This is not accurate as objects speed up as they fall—so using this equation will also be an
improvement in the realism of the descent. The flexibility of storing information in the SphereObject will present
itself when we bounce the balls back upward.

Let’s take a closer look at the equation v, = v, +at. The time, t, can be set to 1 as we can use frame value
offset instead of an actual time. Gravity will be the acceleration, a. Usually, gravity has the value 0of 9.8 m/s?
downward, but our scene is not using any specific scale or unit of measurement, so the value that we choose can
be anything that looks good—too high a value will make the descent occur too rapidly, and too low will result in it
being too slow. Experimentation of values is the key here. With our current scene setup, 0.01 for the acceleration
works well. One of the sphere initializations is shown here:

sceneElements.push(new SphereObject(

"vbo_index": 0,
"position": new Vector3(-1.0, -0.75, 0.0),
"acceleration": new Vector3(0.0, 0.01, 0.0)

)
);

Normally, the acceleration is represented as a negative number, but because of the way we are translating
each sphere, we are using a positive value. If you want to use a negative value, you can adjust the sign of the
translation.

Our initial velocity vector of each sphere is (0, 0, 0), which makes the y-velocity after the next frame:

v, = v +at = v +0.01(1) = v, +0.01 = 0.01
Yy iy %y iy iy
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Soit’s vy, = 0.01 after the first frame, 0.02 after the second, 0. 03 after the third, and so on linearly. When
we apply the velocity to our distance equation ofd, = d, +v t, This will produce displacements relative to the
initial displacement of 0.01 after the first frame, 0.03 after the second, 0. 06 after the third, and so on increasing
and nonlinearly.

In our code, instead of incrementing the position directly, we instead adjust the velocity first and then adjust
the position. This allows us to reverse the velocity when contact with the plane is made without getting stuck into
aloop:

if( isAboveGround(n) )

{

sceneElements[n].velocity.y += sceneElements[n].acceleration.y;
Yelse{

sceneElements[n].velocity.y *= -1.0;

sceneElements[n].position.y += sceneElements[n].velocity.y;

When you run the program 05/01e_gravity.html, the three balls will continue to bounce up and down
indefinitely.

Nonperfect Elasticity

When the balls in the previous example bounce, they do so perfectly elastically. Perfect elasticity means that the
speed at which they move upward after collision is the same as the speed at which they were falling with at that
moment. No momentum is lost to friction or other forms of energy. Except in theory, objects are not perfectly
elastic, so we can make the example more realistic by decreasing the elasticity. This will mean that the bouncing
will come to a stop at some point. This is very easy to model; we just add the elasticity as a variable and multiply it
by the velocity when a collision is made with the ground:

var ELASTICITY = -0.8;

if( isAboveGround(n) )

{
sceneElements[n].velocity.y += sceneElements[n].acceleration.y;
sceneElements[n].position.y += sceneElements[n].velocity.y;
telse{
//subtract velocity first, which helps prevent getting stuck
sceneElements[n].position.y -= sceneElements[n].velocity.y;
sceneElements[n].velocity.y *= ELASTICITY;
}

The elasticity value can range from 0.0 for no elasticity (stops dead; think of hitting a brick wall) to 1.0 for
perfectly elastic (the greatest rubber ball ever, only theoretically possible). In the previous code, we also made
sure to adjust the position before the elasticity factor is multiplied with the velocity. This is to help prevent the
ball from coming to a dead stop.

To show why this is necessary, consider an object that is a temporary distance of -0.6 into the ground and
has a current velocity of —1.0. It should be able to make its way back above in the next iteration when the direction
of velocity switches to 1.0. However, if the object has an elasticity value of 0.4, this dampens the return velocity
to a value of 0.4 instead of 1.0. The next position calculated will be —0.2, which means that it is still 0.2 below the
surface. This means that the next time through the above ground test, it fails again, and the velocity gets flipped.
This is bad news because the object is below the ground and travelling downward again. The velocity is reversed
and dampened again to —0.16, which sends it lower into the ground to —0.36, and then flipped to a velocity
0f 0.064, and so on. The result of this situation is that after a few iterations, an object which could have been
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travelling fast can stop seemingly dead in its tracks. This looks very odd—to say the least. Adding the velocity
to the position before the elasticity is multiplied eliminates this issue. The final version of the bouncing balls is
shown in Figure 5-3.

Figure 5-3. Bouncing balls

For the next example, we will unleash an arbitrary number of spheres into the world and have initial x, y, and
z velocities.

Velocity in Three Dimensions

We will check for hitting the invisible boundaries of our plane and bounce the balls back within our area if they
are exceeded. Once we have this set up, we will also test for collisions among the spheres.

Detecting Collisions with Many Walls

We will be adding an arbitrary number of spheres to our scene. First, we will add some code to keep the objects
that will have x and z velocity now from going outside of our viewing area. We will test for intersection with our
virtual walls of the ground mesh:

if(sceneElements[n].position.x>PLANE_SIZE || sceneElements[n].position.x<-PLANE_SIZE)
{
sceneElements[n].position.x+= (-1.0*sceneElements[n].velocity.x);
sceneElements[n].velocity.x * = -1.0;
Yelse{
sceneElements[n].position.x+= sceneElements[n].velocity.x;
}

if(sceneElements[n].position.z>PLANE SIZE || sceneElements[n].position.z<-PLANE SIZE)
{

sceneElements[n].position.z+= (-1.0*sceneElements[n].velocity.z);
sceneElements[n].velocity.z * = -1.0;

telse{
sceneElements[n].position.z+= sceneElements[n].velocity.z;

}

So far, we have detected collisions with a moving object and an immovable object. Now we will model
moving objects colliding with one another.
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Intercollisions

When we want to know whether two objects have collided, it is simpler to test bounding volumes using
well-defined shapes. These will be much less computationally expensive. Other volumes exist, such as ellipsoids
and cylinders, but boxes and spheres are most commonly used.

Bounding Boxes and Spheres

The bounding volume we choose depends on the shape of the underlying object. Fairly round objects are naturally
represented well with a sphere, while many other objects are a much closer fit to a square box. Figure 5-4 shows
that a cube does not fit well in a sphere, and vice versa. (We wouldn’t want to do either of these things.)

- ~.

.,
e .

N

Figure 5-4. Left: cube in a bounding sphere; right: sphere in a bounding box

Note For a refresher on sphere and cube geometries please refer to http://en.wikipedia.org/wiki/Sphere
and http://en.wikipedia.org/wiki/Cube

With bounding volumes, we can use simple geometry to handle objects when they are close to one another.
For example, we know that two bounding spheres have intersected each other if the distance between their
centers is less than the sum of their radii. With bounding volumes, we are guaranteed not to have a collision
without knowing about it. If the bounding volume exactly represents the object, the collision is always accurate.
However, if the bounding volume is larger than the object being held, there will be some false positives when we
think a collision has taken place (but has not). The closer the encapsulated object is to its bounding volume, the
fewer false positives of intersection we will encounter.

One way to limit this error is to break an irregularly shaped mesh into smaller bounding boxes or spheres.
As the number of smaller bounding volumes (or areas in the 2D case) increases, the amount of error decreases
and will approach zero. A 2D irregular shape and bounding rectangles are shown in Figure 5-5, along with several
bounding rectangles that more closely approximate the shape but also increase the number of computational
checks that we must perform. White space within a bounding rectangle shows areas of collision false positive.

N [ AN

Figure 5-5. Left: single bounding box; right: four bounding rectangles
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Now we are ready to detect collisions among spheres. First to handle the collisions realistically, we'll need to
know a little about momentum and the conservation of it.

Conservation of Momentum
Momentum, p, is the product of an object’s mass, m, and velocity, v:
p =mv

When two objects collide, the overall momentum of the system stays the same in theory. In reality, there is
friction that also occurs, so no collision is completely elastic.
The equation of the conservation of momentum is the following:

Pl_initial + pz_initial = pl_ﬁnal + pz_ﬁnal
It can be rewritten as this:
2 2 _ 2 2
MV FMV," = MV MV,
When you solve for v , or v2,, you get this:
v, = [(m - m)/(m+m)]v, +[2m/(m +m)]v,
And similarly:
v, = [(m, - m)/(m+m,)]v, +[2m/(m +m)]v

When the mass ofm, = m,, the first equation simplifies to the following:

_ * * - O% * =

Ve = 0/2m*v  +2m./2m*v, = O*v +1%*v, = v,
And likewise:

vV, =V

2f 1i

So the velocities are simply swapped!

This equation is specific to one dimension, but it also applies to orthogonal (perpendicular) components, so
we can apply the equation separately to all three of the x, y, and z dimensions.

Uniform Mass Collisions

As mentioned, when the masses are exactly the same like billiard balls, we can swap the velocities.
For each frame, we will check all the spheres in our scene for collision with other objects in the scene (see
Listing 5-4).

Listing 5-4. Checking for collisions among spheres with equal masses

checkForCollisions(sceneElements, n);

function checkForCollisions(arr, n)

{

for(var i in arr)

{
if(i ! = n)
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var pl = arr[n].position;
var p2 = arr[i].position;
var v = new Vector3( pil.x - p2.x, pl.y - p2.y, pl.z - p2.z );

if(v.length() < (2.0 * arr[n].radius) )

//swap velocities of two vectors
var tmp = arr[n].velocity;
arr[n].velocity = arr[i].velocity;
arr[i].velocity = tmp;

//move positions so they don't get stuck
arr[n].position.x += arr[n].velocity.x;
arr[n].position.y += arr[n].velocity.y;
arr[n].position.z += arr[n].velocity.z;

arr[i].position.
arr[i].position.
arr[i].position.

arr[i].velocity.x;
arr[i].velocity.y;
arr[i].velocity.z;

N < X
+ + +
1

In Listing 5-4, we check for the distance to be less than twice the radius because the radii are the same. If a
collision occurs, we swap velocities using a temporary variable. The result of this is shown on the left of Figure 5-6.

Figure 5-6. Left: collisions of uniform mass; right: collisions of varying mass

We will now create spheres with varying radii and masses and compute collisions among them.
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Collisions of Different Mass

In our next example, we will now use spheres of varying radii. We will assume that the material of all the spheres
is the same and that they are solid. This lets us use the volume to proportionally compare the masses without
actually setting or knowing the mass of any sphere. Recall that the volume of a sphere is V = 4/3*r*r3.

Suppose we have two spheres: V, = 4/3**r * and V, = 4/3*m*r 2. The ratio of these two volumes is
V.V, = (r,/1,)%

Ifr,=1andr, = 1, the ratio = 1° = 1. The volumes and (because they are the same material) the masses are
also the same. Ifr = 2 and 1, = 1, the ratio = (2/1)? = 8. So the first sphere has eight times more volume then the
second sphere and eight times more mass as well. We can generically use the radii of the two spheres to set our
two masses to the following:

m/m, = (r,/r,)3/1

1

m =

m = (r,/1,)}
, =1

Note For more involved calculations, we can use existing physics libraries such as those discussed in
Chapter 8.

We can calculate our final velocity values for each sphere given initial velocities and radius, as shown in
Listing 5-5.

Listing 5-5. Checking for collisions among spheres with varying mass

function checkForCollisions(arr, n)

{
for(var i in arr)
{
if(i ! =n)
{
var pl = arr[n].position;

var p2 = arr[i].position;
var v = new Vector3( pl.x - p2.x, pl.y - p2.y, pl.z - p2.z );

if(v.length() < (arr[i].radius + arr[n].radius) )

//swap velocities of two vectors
var tmpl = arr[n].velocity;

var tmp2 = arr[i].velocity;

var r1 = arr[n].radius;

var r2 = arr[i].radius;

var finalX = findFinalVelocities( tmpl.x, tmp2.x, r1, 12 );
var finalY = findFinalVelocities( tmpl.y, tmp2.y, r1, 12 );
var finalZ = findFinalVelocities( tmpl.z, tmp2.z, r1, 12 );

arr[n].velocity = new Vector3( finalX[0], finalY[0], finalZ[o0] );
arr[i].velocity = new Vector3( finalX[1], finalY[1], finalZ[1] );

//move positions so they don't get stuck
arr[n].position.x += arr[n].velocity.x;
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arr[i].
arr[i].

= arr[i].

velocity.y;
velocity.z;

velocity.x;
velocity.y;
velocity.z;

arr[n].position.y +
arr[n].position.z +
arr[i].position.x +
arr[i].position.y +
arr[i].position.z +
}
}
}
}
function findFinalVelocities(vi, v2, ri, r2)
{
var m1 = (ri*ri*ri)/(r2*r2*r2);
var m2 = 1.0;
var f1 = (m1-m2)/(mi+m2)*v1+2*m2/(m1+m2)*v2;
var 2 = (m2-m1)/(m2+m1)*v2+2*m1/(m2+mi)*v1;
return [f1, f2];
}
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In Listing 5-5, we added a helper method findFinalVelocities which takes in two initial velocities and radii
and computes and returns the final velocity values. We do this calculation component-wise. Spheres of unequal
size are shown interacting on the right of Figure 5-6.

Our next example looks at the path of projectiles.

Projectiles

We are all familiar with the projectile motion of objects, whether it be a cannon ball being fired, an archer’s
arrow, a baseball being hit or thrown, and so on. Projectiles have a parabolic arc that the object travels along, as

shown in Figure 5-7.

Vy
Y

Vx

Figure 5-7. A typical projectile path

Unless there is a wind or other horizontal force, the horizontal velocity component, v, stays constant
throughout the flight of the object. The vertical velocity decreases with time due to the force of gravity and is

calculated as (vy + ayt).
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Note Given an initial velocity vector, v, once we calculate the initial orthogonal x and y velocity components, v,
and v,, We can calculate future velocities separately using these equations:

v, = v, +atand v, = v +at
X ix X fy iy y

There are two basic factors that affect the flight of a projectile (as I am sure anyone who has played “Angry
Birds” is familiar with): the angle and magnitude of the initial velocity. An angle of 45 degrees will have an equal
initial horizontal and vertical velocity. Between 0 and 90 degrees, any angle higher than 45 degrees will have
more vertical velocity while any angle lower will have more horizontal velocity. Given an angle of theta between
the velocity vector and the ground, the initial vertical component, v, is sin(theta), while the initial horizontal
component, v_is cos(theta).

Suppose our initial velocity is 25 m/s, and the angle is 60 degrees. Then v =21.65m/s and v, = 12.5m/s. On
a flat surface, an object with this initial velocity will hit the ground when the displacement of the y-component
distance equation is 0:

d vyi*t + 1/2*ay""c2

This occurs by solving the following:

o
n

t (viy + 1/2*ay*t)
The first solution occurs trivially at t = 0s. The second solution occurs when:
t=-2v,/a
=-2(21.65m/s)/(-9.8m/s?)
= 4.42s
From the hangtime that we just calculated, we can determine the vertical distance that the object will travel
as follows:
d = v *t+1/2%a *t?
= 12.5m/s*4.42s+0
= 55.25m

Note To find out the maximum height of a projectile, you can take the initial y velocity, Vi, and solve the
equation Vi,2 =V, +2ad for when V,, =0. This will correspond to the apex of the projectile path where it starts
travelling back downward: d = -V, ?/2a =V, */19.6m/s?

We will now implement a demo that fires a projectile. The main new component of the demo is listening to
keystrokes to adjust the angle of a semiopen box mesh that represents the angle of our initial velocity and the
speed of our initial velocity. We also listen for a key to fire a sphere from this box. The key shortcuts are
shown here:

$(document) .keyup(function(evt){
switch(evt.keyCode){

case 80: //'p'
paused = !paused;
break;

case 83: //'s'
--angle;
break;
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case 68: //'d’
++angle;
break;

case 37: //'left’
speed -= 0.1;

break;

case 40: //'right'
speed+= 0.1;
break;

case 70:

fire = true;
console.log("fire!");
sceneElements[0].position = new Vector3(0.0, 0.0, 0.0);
sceneElements[0].velocity = new Vector3(
speed*Math.cos(angle*.1), speed*Math.sin(angle*.1), 0.0);
break;
default:
break;
}
D;

The fire event resets the position of the sphere and then sets the velocity based on the angle. When we
perform transformations to our scene, the order in which the translations, rotations, and scalings are performed
is important. One new method from the gl-matrix. js library that we perform here is to scale our scene smaller
so that it is easier to see the path of the projectile:

var SCALE = 0.2;

mat4.scale(mvMatrix, [SCALE, SCALE, SCALE]);

When the f key is pressed and the fire flag is set, we update our sphere position:
if(fire){

sceneElements[0].velocity.y += sceneElements[0].acceleration.y;

sceneElements[0].position.x += sceneElements[0].velocity.x;
sceneElements[0].position.y += sceneElements[0].velocity.y;
sceneElements[0].position.z += sceneElements[0].velocity.z;

To see the full path of the projectile without clearing the browser along the way, we can tell WebGL to
preserve the drawing buffer upon initialization and not call gl.clear between frames:

gl = canvas.getContext("webgl", {preserveDrawingBuffer: true}) ||
canvas.getContext("experimental-webgl", {preserveDrawingBuffer: true});

Output showing the full projectile paths is shown on the right of Figure 5-8.
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¥ 4

Figure 5-8. Left: a projectile in flight; right: projectiles without clearing the drawing context

The full code of this demo is in the 05/05_projectile.html file. I encourage you to play around with
projectiles and momentum further. With the knowledge gained here, you could program a simplified version of
tennis, for example.

Our final example of the chapter investigates the relation between potential and kinetic energy.

Potential Energy

So far, we have been looking at examples that have kinetic energy, which is the energy of motion. On the other
hand, potential energy is stored energy, often because of the height of an object and the force that gravity will
exert when the object free falls. A classic example of potential energy is a roller coaster. At the top of the coaster,
when the cars are static, the energy in the system is pure potential energy (PE). As each car starts its descent, PE is
converted to kinetic energy (KE), and the coaster cars gain velocity. The ratio of KE increases as a car reaches the
ground and decreases when the cars travel back upward.

In theory, the total energy of the system is maintained, as shown in Figure 5-9. In the real world, however,
energy is lost along the way due to friction.

PE = 40, KE = 10

PE =30, KE = 20

PE=10, KE=40

Figure 5-9. Without friction, the PE and KE of a system are conserved

For our next example, we will create a small ramp with a jump and have a sphere travel down it. We can
adjust the height to determine a value that will produce sufficient velocity to make it across. Figure 5-10 shows
a 2D planned outline of the ramp. The actual ramp will be three-dimensional, but a diagram like this is useful to
plan the mesh.
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Figure 5-10. Left: side view of ramp; center: side view dissected into triangles; right: side view with edges that will
test for collision with the ball

The first step to modeling this is to define some variables so that we can easily adjust the dimensions:

//ramp dimensions

var HEIGHT 1 = 65.0,
HEIGHT 2 = 15.0,
HEICGHT_3 = 20.0,

HEIGHT 4 = 15.0,

LENGTH = 60.0,

LENGTH 2 = 60.0 * 0.5,

LENGTH 3 = 60.0 * 0.75,

LANDING RAMP_START = LENGTH * 2.0,
LANDING RAMP_END = LENGTH * 3.0,
DEPTH = 25.0;

The previous heights correspond to the initial maximum height, the height of the flat part of the ramp, and
the last peak before the jump/gap and the initial height of the landing ramp. The diagram in Figure 5-10 is not to
this scale; it is a guideline that can be resized to any dimensions. The LENGTH determines the distance of the first
ramp up to the gap, and the SCALE is used to scale the model into a size that fits better with the rest of our scene.

We will make the ramp all one color, and a way to do this without requiring color data for each vertex is to
disable the attribute array for the mesh and specify a single vector instead:

gl.disableVertexAttribArray(vertexColorAttribute);
gl.vertexAttrib4f(vertexColorAttribute, 1.0, 0.9, 0.7, 1.0);

The full vertex and indice values for the mesh are in the 05/06_ramp.html file, and normals are generated
procedurally as in the first four chapters of the book. The ramp mesh and sphere position, along with views of the
full path, are shown in Figure 5-11.

Figure 5-11. Left:rendered ramp and moving sphere; center: viewing the full path of the sphere; right: an alternate
view of the path

What remains is to calculate the collisions with the four edges shown on the right of Figure 5-10 and also

calculate the velocity components relating to the cosine and sine values of each edge angle. In order to achieve
this, we will first create a new object to represent a 2D wall that the sphere may encounter as shown in Listing 5-6.
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Listing 5-6. An object to store wall properties

WallObject = function WallObject (properties) {
var start x = (properties.start x === undefined) ? 0.0 : properties.start x;
var start y = (properties.start y === undefined) ? 0.0 : properties.start y;

var end x = (properties.end x === undefined) ? 0.0 : properties.end x;
var end y = (properties.end y === undefined) ? 0.0 : properties.end y;

this.slope = 0.0;

if( (end x - start x)>0.0001 || (end x - start x)<-0.001){
this.slope = (end_y - start_y)/(end x - start x);

}

this.start_x = start_x;
this.start_y = start_y;
this.end_x = end_x;
this.end y = end_y;

var a = [start x - end x, start y - end y];
this.angle = 0.0;
this.angle = Math.atan2( a[1], a[0]);

We keep track of the two endpoints of each wall line: its slope and angle. We add all four wall representations
to an array called ramp_walls. Each insertion into this structure looks like this:

var p = {
"start_x": 0.0,
"start_y": HEIGHT 1,
"end x": LENGTH_2,
"end_y": HEIGHT 2
b
ramp_walls.push(new WallObject(p));

On each animation frame, check for collisions with each wall, keep track of the total velocity of our sphere, and
calculate the x and y velocities and positions as shown in Listing 5-7.

Listing 5-7. Checking for wall collisions and calculating total and component velocity and position

function checkForCollisions()

{

var x = sphere.position.x/SCALE;
var y = sphere.position.y/SCALE;
if( sphere.position.y<0.0){ return; } //check for ground contact

var found = false;
for(var i in ramp walls)
{

if( x>= ramp_walls[i].start x && x<= ramp walls[i].end x )

found = true;
if(ramp_walls[i].slope<-0.001 || ramp walls[i].slope>0.001)

if(ramp_walls[i].slope>0.001)
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{

sphere.total velocity -= sphere.acceleration.y;
}else{

sphere.total_velocity += sphere.acceleration.y;
}

//console.log(sphere.total_velocity);
sphere.velocity.x = sphere.total velocity * Math.cos(ramp walls[i].angle);
sphere.velocity.y = sphere.total velocity * Math.sin(ramp walls[i].angle);

sphere.position.y += sphere.velocity.y;

}

sphere.position.x += sphere.velocity.x;

}

if(!found){
sphere.velocity.y += sphere.acceleration.y;
sphere.position.x += sphere.velocity.x;
sphere.position.y += sphere.velocity.y;

In the preceding code, if we are not in a walled area, found is false and we model freefall. If we are over a
walled section, we check the slope and add appropriately to the total velocity. A slope of zero results in purely
horizontal movement with no acceleration (because we are ignoring friction). We calculate the component x
and y velocities by taking the sine and cosine of the wall angle multiplied by the total velocity. From Figure 5-11,
you can see that the path is close but not entirely precise. Higher velocities would show a more abrupt change
between free fall and position on the landing ramp. One way to improve accuracy is to check that the sphere is
intersecting a wall before exiting free fall. The sign of the number returned from this function indicates what side
of a line that a point is on (zero is on the line):

function getSideOfWall(wall, x, y)
{

var delta = 0.00001;
var v = (wall.end x - wall.start x) * (y - wall.start y) -
(wall.end y - wall.start y) * (x - wall.start x);

if( v< (0.0 - delta) ){
return -1;

}elseif( v> (0.0+delta) ){
return 1;

}

return 0;

It is left to the reader to implement this check. If you are ambitious and want to model a roller coaster, there
are even more elements to factor into your calculations, such as centripetal force.

Summary

This chapter introduced some physical properties of objects and modeled gravity, collisions, and projectiles. In
the next chapter, we cover the mathematically themed subjects of fractals, height maps, and particle systems. In
Chapter 8, we will come back to physics when we introduce some physics libraries that can perform much more
complicated calculations.
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CHAPTER 6

Fractals, Height Maps, and Particle
Systems

This chapter presents a hodgepodge of effects that we can achieve with mathematics. Topics that we will cover
include:

e painting directly with the GPU

e anintroduction to fractals and the Mandelbrot set
e height maps and terrain generation

e  rotating the camera with the mouse

e  particle systems

Because I have long been enamored with the strong intersection of mathematics and beautiful imagery
that it produces, this chapter is particularly fun for me to write about. Even if you do not particularly enjoy
mathematics, you can still brush past most of the details/technical explanation and experiment directly with the
code. I am sure that the examples and techniques presented here will be of interest to you and can be modified
for use inside any WebGL program.

Painting Directly with the GPU

Prior to going over fractal images and the Mandelbrot set, we will show how to paint an image with logic purely
contained within the shader program. The only geometry that our WebGL application will use is four triangles
from five vertices, which will form a plane. We will then use the fragment shader of the Graphics Processing Unit
(GPU) to programmatically set each individual pixel color on the plane. No manipulation of the view will be
done. The setup of the square plane is shown in Listing 6-1.

Listing 6-1. Function to create a square in the xy plane composed of two triangles

function createSquare(size){
size = (typeof size !== 'undefined') ? size : 2.0;

var vertexPositionData = [
0.0, 0.0, 0.0,
-size/2.0, -size/2.0, 0.0,
size/2.0, -size/2.0, 0.0,
size/2.0, size/2.0, 0.0,
-size/2.0,size/2.0, 0.0,

I
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var indexData = [0,1,2,0,2,3,0,3,4,0,4,1];

trianglesVerticeBuffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY BUFFER, trianglesVerticeBuffer);

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexPositionData),
gl.STATIC DRAW);

trianglesVerticeBuffer.itemSize = 3;

trianglesVerticeBuffer.numItems = vertexPositionData.length / 3;

vertexIndexBuffer = gl.createBuffer();

gl.bindBuffer(gl.ELEMENT ARRAY BUFFER, vertexIndexBuffer);
gl.bufferData(gl.ELEMENT ARRAY BUFFER, new Uinti6Array(indexData), gl.STREAM DRAW);
vertexIndexBuffer.itemSize = 3;

vertexIndexBuffer.numItems = indexData.length;

The default dimensions of the plane in Listing 6-1 is 2.0 x 2.0.

Our vertex shader takes the x, y input coordinates and passes them on to the fragment shader. The z-value is
fixed at 0.0.

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;

varying vec2 position;
void main(void) {

position = vec2(aVertexPosition.xy);

gl Position = vec4(position, 0.0, 1.0);
}

</script>

Each fragment (pixel) location is interpolated between the five distinct vertice points, and the fragment
shader determines the actual color of each pixel. Even though we have only five vertice points, the fragment
shader acts on each pixel individually, and we can use any algorithm we want to choose the color.

In our first example, we will draw a circle that has gradient color ranging from pure red at the center to
darker toward the edges. The fragment shader to accomplish this is shown here:

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec2 position;
void main(void) {
highp float d
gl FragColor

length(position);
vec4(max(0.0, 1.0 - d), 0.0, 0.0, 1.0);

</script>

This fragment shader takes the length of each position, which is /x> + y* . Then this value is subtracted from
the red component of the color. Even though d can be greater than 1, we ensure that the red component is atleast
0.0 by using the max function. This will produce a gradient circle of radius 1 (anything larger than 1 will appear
black), as shown on the left of Figure 6-1.
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Figure 6-1. Circle with gradient luminosity (left); concentric rings of varying luminosity (right)

To draw concentric rings ranging from brightest at the center to darker going out eventually to black, as
shown on the right of Figure 6-1, we modify our shader to have discrete steps:

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec2 position;
void main(void) {
highp float d
highp float ¢
gl FragColor

length(position);
floor( d * 10.0 ) * 0.1;
vec4(max(0.0, 1.0 - ¢), 0.0, 0.0, 1.0);

</script>

Instead of a smooth gradient, we produce ten different color bands with our new fragment shader. To
accomplish this, we take our initial distance value d, multiply by 10, and then round to the nearest integer below.
For example, a distance of 0.783 will become 7.83, and then the floor function will produce 7. We divide by the
same factor of 10 (we multiply by 0.1 in the code) to get a final value of 0.7. In this manner, distances between 0.7
and 0.79999 will all be given a final value of 0.7.

The full source code for this example can be found in the file 06/01_circles.html.

Color Lookups

With the desktop version of the GLSL there is a one-dimensional sampler type, sampler1D, which is often used
to store colors for later lookup in a shader. However, this type is not available with the version of GLSL used in
OpenGL ES or WebGL. Nonetheless, we can simulate this functionality with a two-dimensional texture.

To create a two-dimensional texture of colors, we need to specify RGBA color values and store them in a
texture object, which will then be passed as a uniform to our fragment shader. In Listing 6-2 we specify RGBA
integer values in the range 0 to 255.

Listing 6-2. Setting a uniform of color values

function setUniforms() {
var color data = [
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255, 0, 0, 255,
255, 0, 0, 255,
255, 0, 0, 255,
255, 0, 0, 255,

255, 255, 0, 255,
255, 255, 0, 255,
255, 255, 0, 255,
255, 255, 0, 255,

0, 255, 0, 255,
0, 255, 0, 255,
0, 255, 0, 255,
0, 255, 0, 255,

0, 0, 255, 255,
0, 0, 255, 255,
0, 0, 255, 255,
0, 0, 255, 255
I

var colors = new Uint8Array(color data);

var colorsTexture = gl.createTexture();
gl.activeTexture(gl.TEXTUREO);
gl.bindTexture(gl.TEXTURE_2D, colorsTexture);
gl.texImage2D( gl.TEXTURE_2D, 0, gl.RGBA, 4, 4, 0,

gl.RGBA, gl.UNSIGNED BYTE, colors);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);

gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE_MIN FILTER, gl.NEAREST);

gl.uniform1i(gl.getUniformLocation(glProgram, "sColors"), colorsTexture);

In Listing 6-2 we use a typed array of Uint8Array. This will produce four distinct colors - red, yellow, green
and blue - represented four times each.

Note When we pass in an array of pixel data to the texImage2D function, we must make sure to use a legal
WebGL type and JavaScript typed array combo, or else it will generate an INVALID_OPERATION error.
Legal combos are Uint8Array for UNSIGNED BYTE and Uint16Array for the types: UNSIGNED SHORT 5 6 5,
UNSIGNED_SHORT 4 4 4 4, UNSIGNED_SHORT 5 5 5 1.

Remember that textures need to be powers of 2 in length and width, so we specify our 16 colors to be stored
in a texture of dimensions 4 x 4. Lastly, we obtain the uniform location and set its value all within one step:

gl.uniform1i(gl.getUniformLocation(glProgram, "sColors"), colorsTexture);

By using the WebGL Inspector, which is covered extensively in Chapter 9, you can verify that our texture is
indeed 4x4 and visually see what the stored data looks like, as shown in Figure 6-2. For any fixed horizontal s
coordinate of our texture, the color will vary as the vertical coordinate t changes. This changing of color looks
gradient because of the texture filter settings.
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Figure 6-2. Viewing our generated texture of colors

Our vertex shader remains the same as in our last example; however, the fragment shader changes to make
use of our sampler:

<script id="shader-fs" type="x-shader/x-fragment">
uniform sampler2D sColors;
varying highp vec2 position;
void main(void) {
highp float t = length(position);
gl FragColor = vec4(texture2D(sColors, vec2(0.0, t)).rgbh, 1.0);

}

</script>

The result of this shader is seen on the left of Figure 6-3. The s coordinate is fixed as 0.0, and the t coordinate
corresponds to the length of the current point.

Figure 6-3. Color lookup (left); playing around with coordinate manipulation (right)

On the right of Figure 6-3 I have played around with the coordinate generation function to produce a more
interesting figure:

<script id="shader-fs" type="x-shader/x-fragment">
uniform sampler2D sColors;
varying highp vec2 position;
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void main(void) {
highp float t = length(position);
highp float x = sin(-position.y)*tan(length(position.xx));
t = t+x;
gl FragColor

mix( vec4(0.0,0.0,0.0,1.0),
vec4(texture2D(sColors, vec2(0.0, t)).rgb, 1.0),
t);

}

</script>

There is no real rhyme or reason about how I came across the equations to use sin, tan, and mix. I played
around with settings until I found something I liked. I encourage you to play around with output and see what
other interesting results you generate.

Having produced some images by defining equations in the fragment shader, we will now look at fractals
that are capable of producing intricate and complex patterns that can be used to model some natural organisms,
terrain, and phenomenon.

Fractals

Informally, fractals are images that exhibit self-similarity to the larger structure when zooming in to smaller
and smaller regions within. Smaller regions of the object do not have to be identical to the larger structure, only
similar. This self-similarity should happen indefinitely, although we are limited by how small a region that we can
visualize or calculate, of course. To generate fractal images, repetitive iterations or recursion are often used.
Asyou shall see, fractals can be pretty cool-looking. However they also have widespread application in and
out of graphics; and are used to generate terrain, coastlines, cityscape heights, noise functions, clouds, certain
plants and flowers, and patterns found in nature such as seashells. They are also used in image-compression
algorithms and other external uses.

Mandelbrot Set

One of the most famous and iconic fractals is the image of the Mandelbrot set, a set of points popularized by
mathematician Benoit Mandelbrot in the 1970s that relate to this sequence:

Z =Z%*cC
n+1 n

In the equation, z = 0 and cis a complex number of form (a + ib) with real part a and imaginary
component b. A starting point c is said to be in the Mandelbrot set if its sequence remains bounded. For example,
with c=2=(2+0i), z,=2, z,=6, z,=38..., the sequence clearly goes toward infinity. So c=2 is not in the Mandelbrot set.
If we look at c=0, z =0, z,=0, z,=0... each successive term in the series is always 0 and so the sequence is bounded.
Hence, c=0 lies in the set. It can also be shown that when the magnitude (squareroot(a® + b*)) of a number z in
the sequence becomes greater than 2, the sequence will become unbounded. Hence, points in the set are limited
to the range +/- 2 for both the real and imaginary component.

It is easy to calculate terms in the sequence for numbers with no imaginary component. When there is
also an imaginary component, the calculation of the next term is a little more involved. The theory of imaginary
numbers is beyond the scope of this book, but further resources are listed in Appendix D for those interested.

What we need to know is that a purely imaginary number multiplied by another imaginary number results
in a real number with the opposite sign as you would get if you were multiplying the same two real number
magnitudes. For example, 1i*1i=i*i= - 1, 6i * 3i = 18*{?*=-18, and 7i * -2i = 14.
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When performing addition, subtraction, and multiplication of complex numbers, real components are
grouped together and acted upon separately from the imaginary components. For any c = a + bi, and starting
term z = 0 + 0i, the next two terms in the sequence are:

z,=z?+c=(0+0i)*+ (a+bi) =a+bi

z,=z?+c=(a+bi)*+ (a+bi) = a>+ (b*i?) + 2*a*bi + (a+bi)

And grouping together real and imaginary terms, this can be expressed as:
z, =[a? - b* + a] + i[2*a*b + b]

An alternative way to write this, which is more useful for programming the calculation and keeps the ¢ term
separate, is as follows:

=[a? - b?] + i[2*a*b] + C

Using this form, we can express each successive term in the sequence in terms of the previous z-value’s real
and imaginary components:

Z . .real = [z .real’ - z .im’] + c.real
z .imaginary = [2*z .real * z .im] + c.im
n+1 n n

In our shader, the real value is notated by the x component of the vector, and the imaginary value is the y
component.

Listing 6-3. Calculating the next iteration in the Mandelbrot set generation function

- * - * .
Zn+1'X = Zn.X Zn.X Zn'y Zn'y + C.X;

z, ..y = 2%z .x¥*z .y + c.y;

Hopefully I haven’t lost you. Depending on your level of mathematics this might be nothing new, or it could
be Greek to you. Regardless of how the iteration equation in Listing 6-3 is derived, you can now plug it into your
fragment shader and use it as shown in Listing 6-4. The vertex shader is unchanged from the previous example, it
still simply passes the input point on to the fragment shader.

Listing 6-4. Mandelbrot set fragment shader

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec2 position;
const int MAX_ITERATIONS = 250;
const highp float LIGHTNESS FACTOR = 1.0;

void main(void) {
highp vec2 c = vec2(position.x-0.5, position.y);
highp vec2 z = c;
highp vec4 color = vec4(0.0, 0.0, 0.0, 1.0);

for (int i = 0; 1 < MAX_ITERATIONS; i++)

{
z = vec2(z.x¥z.x - z.y*z.y, 2.0%z.x*z.y) + ¢;
if (dot(z, z) > 4.0)
highp float £ = LIGHTNESS_FACTOR*float(i) / float(MAX_ITERATIONS);
color = vec4(vec3(0.1, 0.1, 1.0)*f, 1.0);
break;
}
}
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gl FragColor = color;

</script>

When we plot the values of ¢ with the real values of the x-axis and the imaginary component of the y-axis,
the diagram of the numbers that are part of the Mandelbrot set form the (probably) familiar fractal pattern shown
in Figure 6-4. In the diagram, the boundary points are what is interesting. Parts of the boundary are visually
similar to the overall boundary of the set. As we zoom in closer, smaller regions still have similarity to the overall
structure.

Figure 6-4. Mandelbrot set (left); some regions of self-similarity highlighted (right)

In Listing 6-4, we set constants of the number of iterations to test for each point being in the set and the
amount to multiply the color of the boundary points based on the iteration number when a number leaves the
set. When setting the c-value, the x coordinate has been moved 0.5 in the negative direction just to center the
image better. The first z-value, z , equals ¢,so we set z initially equal to c. We initialize the pixel color to black
and start our loop. The next z-value is calculated from the equations that we have derived in Listing 6-3 and
then we test the dot product for being over 4. Recall that the dot product is x> + y?, which is the magnitude (or
length) squared. We know that a magnitude larger than 2 means that the point is outside the set. As 22 = 4, using
the squared value is an equivalent but less-expensive calculation because it does not require us to compute a
square root. Finally we shade our pixel a value of blue between 0 and 1 based on the current iteration when the
pixel becomes unbound in the sequence to the maximum number of iterations. However, it can be hard to see
the boundary, so setting the constant LIGHTNESS_FACTOR to a higher value such as 10.0 will help visualize the
boundary. Doing so increases the number of white-colored iterations, but this does provide much better contrast.

Note If the fragment shader is not loading externally, try placing it inline. | have experienced errors with the for
loop when placed in an external file, but have the program working when inline. The actual reason for this is that the
comparision sign “<” needs to be escaped in the shader if it is read in as XML. A couple ways to resolve this issue
are shown in the debugging section of Chapter 9.The for loop in GLSL is much more restrictive than in JavaScript or
C/C++ and requires a constant as the limit condition.
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Julia Set

The Julia set is named after French mathematician Gaston Julia, who first wrote about it in a 1918 paper. It is is
closely related to the Mandelbrot set and can be generated with the same function:
z =z°+C

n+1 n

However, the Julia set restricts the values of ¢ to be those values that lie within the Mandelbrot set and z_ is a
coordinate on the complex plane (the xy plane in our shader). The initialization of z and c in our fragment shader
becomes this:

highp vec2 z
highp vec2 c

vec2(position.x, position.y);
vec2(-0.8, -0.2);

c can be any valid point in the Mandelbrot set, and every point will produce a different image! Two such c
seed points are (-0.8, 0.2), which produces the left image of Figure 6-5; and (-0.5, 0.62), which produces the
right image of Figure 6-5.

Figure 6-5. Two fractals produced in the Julia set: left - seed value of (-0.8, -0.2); right - seed value of (-0.5, 0.62)

Adding Interactivity

As the fragment shader runs on the GPU, its calculations for the Mandelbrot set will be much faster than
calculations implemented on the client side with pure JavaScript. This allows us to add interaction that will have
smooth, responsive animation.

The Mandelbrot and Julia sets are pretty cool, and it would be much more enjoyable to explore them if we
could adjust the settings with a graphical user interface (GUI) instead of hard-coding values in our fragment
shader and rerunning the program to see different results. We will do this now. First we need to think of things
that we want to be able to adjust on the fly:

//uniform options

var julia = 0,
c_seed = [0.0, 0.0],
zoom = 1.0,
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offset = [0.0, 0.0],
color = [0.1, 0.1, 1.0],
lightness = 1.0;

With these variables we are setting up our program to hold options that will allow us to switch between
displaying the Mandelbrot and Julia sets, change the c-value when displaying the Julia set, adjust our zoom
(magnification) our initial x and y offsets, the highlight color of the fractal, and the brightness.

Adding an HTML Form

Next we will add an HTML form. First we will make some basic styling changes. The form and GUI are not
exceptional, but they do the trick. Here I set the canvas and form CSS to float left and the table cells to be
vertically aligned:

<style>
body{ background-color: grey; }
canvas{ background-color: white; float: left; }
form{ float: left; }
td{ vertical-align: top; }
</style>

Next we set up our form, which uses the HTML5 range type and is shown in Figure 6-6.

Mandelbrot | =

Figure 6-6. Our WebGL output on the left and form components on the right

The form consists of several inputs of type submit, several of type range, a select box, a textarea, and some
span elements used as labels to show the current values. The code is shown in Listing 6-5.
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Listing 6-5. HTML form to adjust Mandelbrot/Julia set settings

<form id="fractal-options'>
<table border="0">

FRACTALS, HEIGHT MAPS, AND PARTICLE SYSTEMS

<tr>
<td>
<select id="sets">
<option value="mandelbrot">Mandelbrot</option>
<option value="julia">Julia</option>
</select>
</td>
<td>
</td>
</tr>
<tr>
<td>
<input type="submit" name="up" value="Up"/><bx/>
<input type="submit" name="left" value="<-"/>
<input type="submit" name="right" value="->"/><br/>
<input type="submit" name="down" value="Down"/>
</td>

<td rowspan="2">
<textarea cols="30" rows="2" id="output-text">Offset: (0.00, 0.00)
Zoom level: xi1</textarea>

</tr>
<tr>
<td>
<input type="submit" name="zoom-in" value="Zoom in"/><br/>
<input type="submit" name="zoom-out" value="Zoom out"/>
</td>
</tr>
<tr>
<td>

C value: (<span id="c-value-label">0.00, 0.00</span>)<br/>
Real: <input type="range" step="0.01" id="c-real" name="c-real" value="0.0"
min="-2" max="2"/><br/>
Imaginary: <input type="range" step="0.01" id="c-imaginary" name="c-
imaginary" value="0.0" min="-2" max="2"/>
</td>
<td>
Color: (<span id="color-label">0.1, 0.1, 1.0</span>)<br/>
R: <input type="range" step="0.1" class="color-slider" id="color-r"
value="0.1" min="0.0" max="1.0"/><br/>
G: <input type="range" step="0.1" class="color-slider" id="color-g"
value="0.1" min="0.0" max="1.0"/><br/>
B: <input type="range" step="0.1" class="color-slider" id="color-b"
value="1.0" min="0.0" max="1.0"/><br/>

name="color-r"
name="color-g"

name="color-b"

<br/><br/>
Lightness: <input type="range" step="1.0" class="color-slider"
id="lightness" name="lightness" value="10.0" min="1.0" max="50.0"/>
</td>

</tr>
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<tr>
<td colspan="2">
<input type="submit" name="reset" value="Reset"/>
</td>
</tr>

</form>

After adding the markup of Listing 6-5, our labels and textarea are currently not adjusted when GUI events
occur and our JavaScript global variables that we earlier declared do not get updated.

Adding JavaScript Event Listeners

To add this functionality, we will need to add JavaScript event listeners. They can be written in plain JavaScript,
but doing so with jQuery can be more concise and is shown in Listing 6-6.

Listing 6-6. jQuery event listeners for our form

<script>
$("#sets").change(function(){
if($(this).val() == "mandelbrot"){
julia = 0;
telse{
julia = 1;
}

D;

$("#c-real, #c-imaginary").change(function(){
var range = $(this);
var value = parseFloat(range.val());
if(range.attr("id") == "c-real")

c_seed[0] = value;

telse if(range.attr("id") == "c-imaginary")
{
c_seed[1] = value;
}
setClLabel();

};

$(".color-slider").change(function(){
var range = $(this);
var value = parseFloat(range.val());

if(range.attr("id") == "color-r")

color[0] = value;
}else if(range.attr("id") == "color-g")

{
color[1] = value;

telse if(range.attr("id") == "color-b")
{
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value;
"lightness")

value;

setColorLabel();

B;

$("form").on("click", "input:submit", function(evt){

var name =

case

case

case

case

case

case

case

$(this).attr("name");

switch(name){
|upl:

offset[1] += (0.1 *
break;

zoom);

"down':

offset[1] -=
break;

(0.1 * zoom);

'left':

offset[0] -= (0.1 *
break;

zoom) ;

'right':

offset[0] += (0.1 *
break;

zoom) ;

'zoom-in"':

zoom /= 1.5;
break;

'zoom-out':

zoom *= 1.5;
break;

'reset':

resetUniformVariables();
$("#c-real").val(0.00);
$("#c-imaginary").val(0.00);
$("#color-r").val(0.1);
$("#color-g").val(0.1);
$("#color-b").val(1.0);
$("#lightness").val(10.0);
$("#sets").val("mandelbrot");
setColorLabel();
setClabel();

break;

default:

}

break;

setTextArea();

evt.preventDefault();

1

</script>
</body>

FRACTALS, HEIGHT MAPS, AND PARTICLE SYSTEMS
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As you can see, the JavaScript in Listing 6-6 comes immediately before the end </body> tag. This lets us be
sure that the full Document Object Model (DOM) has loaded and that we can work with it right away. We have
three different change listeners and a delegated click listener. We grab DOM elements with the id selector “#” or
the class selector “. "

The first change listener is for the select component with id of “sets” The values of the select box can be
“mandelbrot” or “julia’) corresponding to displaying the Mandelbrot or Julia set. We find the current selected
value with the val function of $(this) - a keyword that stores the currently found jQuery object of the select
element.

The next change listener is for the real and imaginary c-value sliders. We parse the float value of the returned
string and update the relevant index of our c_seed array by comparing the id attribute of the current object. Then
we update the C label. We will come back to this and other helper methods in Listing 6-7.

The third change function grabs elements that have a class of “color-slider”. We compare the id of the
changed object with the ids “color-1’, “color-b’; and “color-b’; and change our color variable value accordingly.
Then we update the color label.

Our last event handler matches the form and handles all clicked submit inputs. This is an alternative to
defining a separate click handler for each submit input and is preferable as it lets jQuery delegate event handling
to the appropriate subitem. In this handler we get the value of the name attribute and use a switch statement to
adjust our variables accordingly. One case of note within the switch is the “reset” block, which restores our form
to the original state.

No matter which submit button is clicked, the textarea is updated and evt.preventDefault is called. This
latter action is very important because without the preventDefault call the form will do a full page refresh, and
we won't be able to maintain state. Alternatively, we can return false; to not submit the form.

Listing 6-7 shows the resetUniformVariables, setColorlLabel, setCLabel, and setTextArea methods that
are called in our event listeners.

Listing 6-7. Helper functions to reset our variables, adjust our labels, and textarea

function resetUniformVariables()

{
c_seed = [0.0, 0.0];
zoom = 1.0;
offset = [0.0, 0.0];
julia = o;
color = [0.1, 0.1, 1.0];
lightness = 10.0;
}
function setColorLabel()
{
$("#color-label").html( color[o].toFixed(1) + ", " + color[1].toFixed(1) + ", " +
color[2].toFixed(1));
}
function setCLabel()
{
$("#c-value-label").html(c_seed[0].toFixed(2) + ", " + c_seed[1].toFixed(2));
}
function setTextArea()
{

var zoom reciprocal = 'MAX_ZOOM';
if(zoom > 0.00000000001)

{
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zoom reciprocal = 1.0/zoom;
}
var settings = "Offset: (" + offset[0].toFixed(2) + "," +offset[1].toFixed(2) + ")\n";
settings += "Zoom level: x" + zoom_reciprocal;
$("#output-text").html(settings) ;

In Listing 6-7 we set the innerHTML of the component with the html function call. The toFixed(2) call
formats decimal output to exactly two decimal places.

Passing Information and Animating

At this point, we have listeners for all our form components and update the GUI display to show the current
settings. Now we need to pass this information to our shaders and reintroduce an animation loop. We will store
the uniform locations as variables within our program so we won'’t need to repoll the GPU for these locations
every time we reanimate the scene:

//uniform locations

var c_seed_uniform = null,
zoom_uniform = null,
offset_uniform = null,
julia_uniform = null,
color_uniform = null,
lightness_uniform = null;

Limiting GPU get/set calls is a best practice, as will be explained in Chapter 9. The main part of our
program now looks like this:

getUniformLocations();
(function animLoop(){
setUniforms();
setupWebGL();
drawScene();
requestAnimationFrame(animLoop, canvas);

IOF
Where our getUniformLocations helper function is:

function getUniformLocations()

{
c_seed_uniform = gl.getUniformLocation(glProgram, "uCseed");
zoom_uniform = gl.getUniformLocation(glProgram, "uZoom");
offset_uniform = gl.getUniformLocation(glProgram, "uOffset");
julia_uniform = gl.getUniformLocation(glProgram, "uJulia");
color uniform = gl.getUniformLocation(glProgram, "uColor");
lightness_uniform = gl.getUniformLocation(glProgram, "ulLightness");

The first part of our fragment shader now declares our uniforms and their types:

<script id="shader-fs" type="x-shader/x-fragment">
uniform highp vec2 uCseed;
uniform highp float uZoom;
uniform highp vec2 uOffset;
uniform int uJulia;
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uniform highp vec3 uColor;
uniform highp float uLightness;

All that is left is implementing our setUniforms function and updating the rest of our fragment shader. Here
is our setUniforms method:

function setUniforms() {
gl.uniform2fv(c_seed uniform, c_seed);
gl.uniformif(zoom uniform, zoom);
gl.uniform2fv(offset_uniform, offset);
gl.uniform1i(julia_uniform, julia);
gl.uniform3fv(color uniform, color);
gl.uniformif(lightness_uniform, lightness);

Note When defining uniform values, you must always specify the variable size, even if it is 1. For example, in the
previous code, 2fv means float vec2, while 1i means int.

Our final fragment shader is shown in Listing 6-8. With the exception of the number of iterations, everything
else is configurable by our application passing in uniform values.

Listing 6-8. Configurable fragment shader for Mandelbrot and Julia sets

<script id="shader-fs" type="x-shader/x-fragment">
uniform highp vec2 uCseed;
uniform highp float uZoom;
uniform highp vec2 uOffset;
uniform int uJulia;
uniform highp vec3 uColor;
uniform highp float ulLightness;

varying highp vec2 position;
const int MAX_ITERATIONS = 250;
void main(void) {
highp vec2 z = vec2(position.x, position.y) * uZoom + uOffset;
highp vec2 c = z;
if(uJulia == 1)
{

}

highp vec4 color = vec4(0.0, 0.0, 0.0, 1.0);

c = uCseed;

for (int i = 0; i < MAX_ITERATIONS; i++)
{

z = vec2(z.x*z.x - z.y*z.y, 2.0%*z.x*z.y) + c;

if (dot(z, z) > 4.0)

highp float f = ulightness*float(i) /
float (MAX_ITERATIONS);

color = vec4(uColor*f, 1.0);

break;
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}
}
gl FragColor = color;
</script>

In Figure 6-7 you can see a small region of the Mandelbrot set zoomed in at more than 16,000 times
magnification is still similar to the overall shape (and most likely limited by numeric precision).

offaes: (-0.11,0.92)

Zoom level: x16834.11219602812

Figure 6-7. Small region of the Mandelbrot set zoomed in

In Figure 6-8 you can see two screenshots of the application displaying the Julia set with different C-seed
values and magnification levels.

Figure 6-8. Two screenshots of the Julia set with different c-seed values and magnification levels

It is left to the reader to extend the program by setting the number of iterations to be adjustable in the GUI
and performing other enhancements such as saving and reloading settings or being able to drag the current
location around with the mouse or use the mouse wheel for zooming.
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Generation of Fractals

There are a number of techniques to generate fractals. Two of these are iterated function systems (IFSs) and
Lindenmayer systems (L-systems). In the former, an image is composed of several copies of itself that decrease
each iteration in size and possibly involve affine transforms.

In L-systems, a formal grammar is used with a starting point and replacement rules. For example, the
“Sierpinski triangle” has the following rules:

Axiom (Start): A
Rules: A->B-A-B, B->A+B+A
Where - means turn left 60 degrees, and + means turn right 60 degrees. The first few iterations of this

L-system would be:

A
(B-A-B)
(A+B+A) - (B-A-B)+(A+B+A)

And the resulting images after 1, 2, 3, 4, and 8 iterations are shown in Figure 6-9.

Figure 6-9. Sierpinski Triangle after the first four iterations on the left and after the eighth iteration on the right

Similarly, many plants can be graphically represented by L-systems. A fern can be generated with the
following L-system rules, where the angle here is 20 degrees and [ ] means to push the operation onto a stack for
operator order precedence (see Figure 6-10):

Axiom: X
Rules: X -> F[+X]F[-X]+X, F -> FF
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Figure 6-10. Plant leaf produced from an L-system fractal

Rendering a Grid Mesh with One TRIANGLE_STRIP Call

To generate terrain or use a height map (which will be explained later in the chapter), we first need a mesh of
points. We will investigate how to render a regular grid mesh of triangles with a single TRIANGLE_STRIP draw call.
In Figure 6-11 we have a 2x2 square mesh with triangles subdivided as you might expect, with all divisions along
the same diagonal direction (top right to bottom left in this case).

If you attempt to render this with a single triangle strip call, however, your indices would need to be these:

0)3)1)4)2)5)8)7)5)4)'“

This presents a problem because vertices 5 and 4 form a triangle with only vertice 7 or 2. So there would
need to be repetition of the triangle 5,4,7 and then vertice 6 followed by repeating triangle 7,6,4 again, and so on.
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0 1 2
3 4 5
6 7 8

Figure 6-11. A 2x2 square mesh with the diagonal direction of each triangular bisection consistently being from the
lower left corner to upper right corner

However, if you switch the diagonal cuts on alternating rows, as shown in Figure 6-12, you get a more natural
index progression:

0,4,1,5,2,6,3,7,11,6,10,5,9,4,8,12,9,13,10,14,11,15

0 1 2 3

4 5 6 7

8 11
9 10

12 13 14 15

Figure 6-12. A 3x 3 square mesh with triangles having inverted orientation on alternate rows

158



CHAPTER 6 © FRACTALS, HEIGHT MAPS, AND PARTICLE SYSTEMS

We are cheating a little when we switch rows because 3,7,11 is a straight line and not a true triangle, as with
4,8,12. However, you most likely will not see these lines when the grid is rendered, and if you do they will occur at
the edges of the mesh.

We want to have meshes with many more subdivisions, but do not want to enter in these vertices or
indices manually, so next we need to figure out how to programmatically create this mesh for any number of
subdivisions.

First, observe that an nxn grid has (n+1)? vertice points. In the 3x3 example, notice that we can split the
indices into the following groupings:

O) 4) 1) 5) 2) 6) 3) 7!
11, 6,10, 5, 9, 4, §,
12, 9,13,10,14,11,15

If we place the first vertex 0 by itself, we can start to see the pattern emerge:

0,

4) 1) 5) 2) 6) 3) 7:
11, 6,10, 5, 9, 4, 8,
12, 9,13,10,14,11,15

The triangles formed by these separate groupings are highlighted in Figure 6-13.

12 13 14 15

Figure 6-13. Grouping row vertices

From Figure 6-13 we can create the following pseudocode:

Add 0 to indices
For each row
If row is odd:
Alternate bottom and top indices, starting at bottom row (and column indice 0) and
then top row (starting at column indice 1) and working toward the right
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Else
Alternate bottom and top indices, starting at bottom row (and last column indice)
and then top row (starting at second-last column indice) and working toward the
left

A JavaScript implementation is shown in Listing 6-9, which will produce a flat plane.

Listing 6-9. An arbitrarily divided mesh

function createGrid(size, divisions){
size = (typeof size !== 'undefined') ? size : 1.0;
divisions = (typeof divisions !== 'undefined') ? divisions : 10;

var segment_size = size/divisions;
var vertexPositionData = [];
for(var i=0;i<=divisions;++i)

{
for(var j=0;j<=divisions;++j)
vertexPositionData.push(i*segment size);
vertexPositionData.push(0.0);
vertexPositionData.push(j*segment_size);
}
}

var indexData = [0];
for(var row=0;row<divisions;++row)

{
if(row%2 == 0)
{
for(var i=0;i<=divisions;++i)
if(i!=0)
{
indexData.push( row*(divisions+1) + i);
}
indexData.push( (row+1)*(divisions+1) + 1);
}
telse{
for(var i=0;i<=divisions;++1i)
{
if(il!=0)
{
indexData.push( (row+1)*(divisions+1) - (i+1) );
}
indexData.push( (row+2)*(divisions+1) -(i+1) );
}
}
}

//assign to buffers
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In Listing 6-9, we set our vertex points evenly spaced along our grid based on the number of divisions. We
use the modulus operator, %, to determine whether we are on an even or odd row and push indices into our array
appropriately.

Height Maps

A height map (aka heightfield) is a texture image that stores displacement information, typically for the y-value of
an object. Height maps are used in terrain generation but can be used to alter any object or simulate extra detail,
as discussed in the bump mapping section.

Taking the grid creation code in Listing 6-9, we can use a texture and our shaders to alter the height of each y
point on the xz plane grid. Our vertex and fragment shader pair is shown in Listing 6-10.

Listing 6-10. Vertex and fragment shader to read texture heightfield data

<script type="x-shader/x-vertex">
attribute vec3 aVertexPosition;

uniform mat4 uPMatrix;
uniform mat4 uMVMatrix;
uniform sampler2D uSampler;

varying highp float height;

void main(void) {
height = texture2D( uSampler, vec2(aVertexPosition.xz )).r;
gl Position = uPMatrix * uMVMatrix *
vec4(aVertexPosition.x, height, aVertexPosition.z, 1.0);

}

</script>

<script id="shader-fs" type="x-shader/x-fragment">
varying highp float height;
void main(void) {

gl FragColor = vec4(height, height, height, 1.0);

</script>

In the vertex shader of Listing 6-10, we use the x and z coordinate to look up a value in the texture to use
as the height value. In the fragment shader, we use the height value to also shade our image, though this is not
required. We could have used a lighting model or texturing or have colored the mesh in any other way that we
saw fit. The full source of this example is in the file 06/heightmap.html.

Note The texture used in this example has gray values using RGBA channels. As such, the luminance can be
found by using any of the channels separately. A true grayscale image would have the same result but the texture
file used will be physically smaller. If we require a greater range of height values, a RGBA texture can provide this.
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In Figure 6-14, we show a texture on the left and the heightfields produced with increasing mesh divisions on
the right.

Figure 6-14. Left: a black-and-white texture; right: using the luminance as a height amount with 3x 3, 10x 10, and
200x 200 grid sizes

Bump/Normal Mapping

Bump mapping is a technique introduced by Jim Blinn in 1978, which uses a heightmap to simulate extra detail
and roughness on a surface without actually changing the geometry of the surface. This is the way bump mapping
works:

e  Height values of bumps along the surface are stored in a texture
e  Surface normals of the height map are calculated
e These normals are combined with the real surface normal and used with a lighting model

Because bump mapping does not actually change the geometry of the object, it is often less computationally
expensive then rendering a more complex mesh with actual indentations.

Terrain

There are many ways to model terrain. One way is to use a static heightmap like the one we have just investigated,
but using a more appropriate texture. Another method is to dynamically create terrain using fractal generation.
We will now show an example of this technique using the midpoint displacement algorithm.

Midpoint Displacement

Midpoint displacement starts with a mesh with four corner points and associated heights. Then the mesh is
subdivided between each corner midpoint and then a middle point. In Figure 6-15 you can see that the average of
points A and B becomes the value of its midpoint F. Similarly, G = (A+C)/2,H = (B+D)/2,I = (C+D)/2, and point
E = (A+B+C+D)/4.

Then each new square is subdivided again. In the second subdivision (bottom left of Figure 6-15), only the
top-left points are labeled, but these calculations are done to all four squares.

This process of subdividing can continue as long as you want (and can computationally handle). In practice,
when computing the midpoint, a random offset is usually added, which is proportional to the size of the
midpoint region. So point E could be calculated as (A + B + C + D)/4 + ( Math.Random() -0.5), and point J
couldbe (A + F + G + E)/4 +( Math.Random() -0.5) *0.5.
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Figure 6-15. First few iterations of the midpoint displacement algorithm with vertice values shown

Notice that the dimension of a midpoint displaced grid is always n*n, where n is strictly a power of 2. We
can either test that the dimension is in fact a power of 2 and throw an error if it is not, or we can ensure it by
modifying the start of our createGrid function to this:

function createGrid(size, power){
size = (typeof size !== 'undefined') ? size : 1.0;
divisions = (typeof power !== 'undefined') ? (Math.pow(2.0, power) ) : 8;
divisions = (int)divisions;

Every square in the grid will be rendered as two triangles, but we can still use a single TRIANGLE_STRIP call as
we have in our height map example. We just need to compute the height of each vertex point. Our first step is to
specify heights for the four corners of the mesh:

For each element of an nxn grid, where n = divisions, iis the row index and j is the column index, the
array index for the y value of each (x,y,z) point will be calculated as: [ (1 + j*(n+1))*3 + 1]. Here 3 represents
the number of coordinates in the vertex position, (x,y,z). The reason that we add 1 is because we are looking for
the middle component, y (x would be an offset of 0, while z would be 2).

//seed the corners. Here we will use the values [1.5, 3.5, 2.0, 1.0]
//but these could be randomly generated seed values
vertexPositionData[ (0 + 0*(divisions+1))*3+1] = 1.5; //top-left
vertexPositionData[ (divisions + 0*(divisions+1))*3+1] = 3.5; //top-right
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vertexPositionData[ (0 + divisions*(divisions+1))*3+1] = 2.0; //bottom-left
vertexPositionData[ (divisions + divisions*(divisions+1))*3+1] = 1.0; //bottom-right

midpointDisplacement(

);

[0,0],

[divisions, 0],

[0, divisions],
[divisions, divrisions],
divisions,

0

We call the method midpointDisplacement, which takes four corner coordinates as arguments, the number

of divisions, and the current iteration of the algorithm. The full method is shown in Listing 6-12.

Listing 6-12. Midpoint displacement recursive function

function midpointDisplacement(tl, tr, bl, br, divisions,iteration)
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if( (t1[0] + 1) == br[o] || (t1[1] + 1) == br[1] )
{

return;

}

//array indices

var midpoint = [(tl[o] + br[0])/2,
(tl[1] + br[1])/2
15

var left mp = [ tl[o],
(tl[2] + bl[2])/2
15
var right mp = [ tr[o],
(tr[2] + br[1])/2
15
var top mp = [ (tl[o] + tr[o])/2,
t1[1]
15
var bottom mp = [ (bl[o] + br[0])/2,
b1[1]
15

//current height values

var tl height = vertexPositionData[(tl[0] + t1[1] * (divisions+1))*3+1]

var tr_height = vertexPositionData[(tr[0] + tr[1] * (divisions+1))*3+1];
var bl height = vertexPositionData[(bl[0] + b1l[1] * (divisions+1))*3+1];
var br _height = vertexPositionData[(br[0] + br[1] * (divisions+1))*3+1];

)
)

//compute five new points

var top value = (tl height + tr height)/2.0;

vertexPositionData[ (top mp[0] + top mp[1] * (divisions+1))*3+1] = top value;

var bottom value = (bl height + br height)/2.0;

vertexPositionData[ (bottom mp[0] + bottom mp[1] * (divisions+1))*3+1] =
bottom_value;
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var left value = (tl_height + bl _height)/2.0;

vertexPositionData[ (left mp[0] + left mp[1] * (divisions+1))*3+1] = left value;
var right value = (tr_height + br_height)/2.0;

vertexPositionData[ (right_mp[0] + right mp[1] * (divisions+1))*3+1] = right value;

//midpoint has random term

vertexPositionData[ (midpoint[0] + midpoint[1] * (divisions+1)) * 3 + 1] =
(tl_height+tr_height+bl height+br height)/4.0
+(-0.5+Math.random())*Math.pow(0.65, iteration-2.0);

//repeat with four quads

midpointDisplacement( tl, top mp, left mp, midpoint, divisions, iteration+1 );
midpointDisplacement( top_mp, tr, midpoint, right mp, divisions, iteration+1 );
midpointDisplacement( left mp, midpoint, bl, bottom mp, divisions, iteration+1 );
midpointDisplacement( midpoint, right mp, bottom mp, br, divisions, iteration+1 );

In Listing 6-12, if the top-left and bottom-right corners are only one column and row away from each other,
we return immediately. Otherwise, we look up the corner heights and then compute the five new points that
we will be adding in this iteration. We then use these new points to recursively call the midpointDisplacement
function four more times, once for each quadrant of the original region. In these new calls, we pass in updated
corner coordinates and increase the iteration value. The iteration value is used to generate the random portion
added to the midpoint height. Sample output from the program is shown in Figure 6-16.

Figure 6-16. Sample fractal terrain generation

Once a terrain is dynamically rendered, the height values can be saved to an output texture for later static
usage. The full source of this example is in the file 06/fractal_terrain.html.

Note The midpoint displacement algorithm has visual square—shaped artifacts, and other algorithms such as
the diamond-square algorithm produce better results. In Figure 6-16, no lighting or texture data has been applied.
Both of these would also dramatically add to the rendered image.
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Particle Systems

Particle systems refer to modeling dynamic fluid objects such as smoke, fire, blood splatter, sparks, electricity,
dust, glow, sparkle, rain, snow, hail, and clouds. Particle systems were formalized in a landmark paper entitled
“Particle Systems: A Technique for Modeling a Class of Fuzzy Objects,” by William Reeves in 1983 (while he was
working at Lucasfilm).

The phenomena that particle systems model have no fixed shape or rigidity, so they are difficult to model
by traditional polygonal methods. Instead they are modeled by clouds of primitive particles that make up the
volume of the object.

Each particle in the system is dynamic. It has a lifespan with a birth and a death. It also has attributes that
may change throughout its lifespan. Attributes that a particle may have include:

e  Position

e  Velocity

e Color

e  Transparency
e Age

e Size

There can be any other attribute that we want to model and keep track of such as shape, lifetime, previous
position and velocity, acceleration, spin, and so on.

Particle system primitives may be points; static lines (rendering the full parametric path of a point particle)
for particles such as hair, fur, or grass; triangle primitives; or more advanced primitives such as a falling leafin a
fall forest scene or a fish in a school of fish. Primitives may or may not detect and handle collisions. Particles are
usually small and are affected by outside forces like gravity and wind, but not affected by lighting equations or
shadows.

A set of rules governs a particle system, but the exact details of each particle are nondeterministic, and the
process is stochastic. This means that the overall shape of the object will be unknown until the system is run and
will most likely vary when rerun.

The life cycle of a particle in the system is:

1. Generation/birth: Initialized within a location of the ‘fuzzy object’ shape or from
within a regular mesh object such as a cube with an added amount of randomness.

2. Dynamic life: Attributes vary over time. Often the attribute is defined by a parametric
equation using time as the parameter.

3. Extinction/death: When the particle’s age (which starts at 0 and traditionally is
measured in number of frames) reaches a preset lifespan; or the particle hits the
ground, another boundary, leaves the frame of view, or some other rule is met, the
particle is destroyed.

Particle systems are similar to fractals in that at higher zoom levels, more detail is shown than from far away.
An initial seeding of a particle’s attribute x is often defined as the average value of that attribute plus a random
amount based on a variance:

initial = average + random * variance,

Particle systems offer controlled chaos as we set guidelines for particles, but offer an amount of randomness
within. We can keep track of a particle’s exact state or use parametric equations to calculate new values.

We will now create a particle system with WebGL using point primitives. For this example, we will set the
initial position and velocity of each particle at random in the range +/- 1 for each coordinate. We will create a
new object type of Particle to hold information, as shown in Listing 6-13.
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Listing 6-13. Object to hold particle properties

function Particle(position, color){
if (position === undefined) {
position = [ ((Math.random()-.5)*.1),
((Math.random()-.5)*.1),
((Math.random()-.5)*.1),

1;
}
if (color === undefined) { color = [1.0, 0.0, 0.0, 0.5]; }
this.position = position;
this.color = color;

this.velocity = [ ((Math.random()-.5)*.1),
((Math.random()-.5)*.1),
((Math.random()-.5)*.1),

I
if(
(Math.abs(this.velocity[0]) < 0.01) &&
(Math.abs(this.velocity[1]) < 0.01) &&
(Math.abs(this.velocity[2]) < 0.01)
)
{

//ensure particle is not stagnant
this.velocity[0] = 0.1;

}

this.age = 0;

this.lifespan = 20;

this.size = 1.0;

In Listing 6-13 we set the position and velocity and initialize the color to red by default. We also set the
alpha to 0.5 so that we can blend our particles. We initialize the age to 0 and set the lifespan to 20. Next we define
a function to control how our particles are updated in Listing 6-14.

Listing 6-14. Our particle update function

Particle.prototype.update = function(){
this.position[0] += (0.1 * this.velocity[0]);
this.position[1] += (0.1 * this.velocity[1]);
this.position[2] += (0.1 * this.velocity[2]);
var x = Math.abs(this.position[0]);
var y = Math.abs(this.position[1]);
var z = Math.abs(this.position[2]);

var distance = x*x + y*y + z*z;
if(distance > 4)
{
this.position = [ (Math.random()*2.0)-1.0,
(Math.random()*2.0)-1.0,
(Math.random()*2.0)-1.0

I
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this.velocity = [ (Math.random()*2.0)-1.0,
(Math.random()*2.0)-1.0,
(Math.random()*2.0)-1.0

1

if(this.age < 10)

this.color = [1.0, 1.0, 1.0, 0.75];
}else if(this.age < this.lifespan)

{

this.color = [0.0, 0.0, 1.0, 0.75];
telse
{

this.color = [1.0, 1.0, 1.0, 0.0];
}

this.age++;

There is more than one way to model a system. Here I check the squared distance of each point to the origin.
If it is over some set amount, we increment the age of the particle and rerandomize the position and velocity. On
the first increment of the age up until the age of 10, the color is set to white. Between 10 and the lifespan of the
particle, it is then blue. When the particle reaches the lifespan, the alpha channel is set to 0 so that the particle
does not show (but is still stored in memory). The range of the velocity once the age increments is much higher
than for the red particles. As such, red particles often exist longer then older white and blue counterparts at the
end of the animation. The full code can be found in the file 06/particle systems.html, and screenshots during
the life of the program are shown in Figure 6-17.

Figure 6-17. A basic particle system with slow-moving red particles that give way to faster white and blue particles
and then eventually disperse

Enhancements
There are several enhancements that we can make to our previous example:
e  Limiting how many particles are spawned at once
e  Using time for parametric movement
e Having a more controlled model instead of complete randomness
e  Having particles die and fade away

When using particle systems in WebGL, remember that the GPU is much faster than JavaScript for
calculations and offset as much of the calculation to it as possible. In the previous example, if you increase the
number of particles to an amount that your computer cannot easily handle; for me 1,000,000 grinds it to a halt,
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then we can see that using the GPU for calculation would be an improvement. The downside of using the GPU is
that it does not maintain as much state, so our effects need to be simpler or pass in extra data that is stored in a
vertex buffer object (VBO) or texture.

For our next example, we will pass the frame count of each particle to use as time into the GPU. We will use
parametric equations in our shader to define the path of each particle according to the basic physics equation of
position = initial position + velocity*time + 0.5*acceleration*time®, (Df = Di + v*t + 0.5*a*t"2), which was discussed
in the previous chapter. This allows us to calculate the point of each particle purely from the time value passed to
the shader instead of using JavaScript and the Particle object that we previously used.

We will define a total of seven properties that are passed to the shader each frame:

X,¥,z, age (in frames), velocity X, velocity Y, size

In each frame, our JavaScript removes old particles, updates the age of particles, and spawns new ones, as
shown in Listing 6-15. We will be simulating a stream of water initially travelling upwards.
Listing 6-15. JavaScript to spawn, update, and remove particles

function adjustParticles(){
var particles old = particles.slice(); //copy
particles = [];
for( var i=0; i<particles old.length; i+=PARTICLE_COMPONENTS )

{
//remove old particles
//if past lifespan or below the start position, do not readd particle
if( (particles_old[i+3] < LIFESPAN) &&
(particles old[i+1] > (START.Y - 0.001) )
)
{ var old = particles old.slice(i, i+PARTICLE_COMPONENTS );
0ld[3] += 1.0; //age
particles = particles.concat(old);
}
}

currentNumberParticles = particles.length/PARTICLE_COMPONENTS;

//spawn new particles
if( currentNumberParticles + MAX SPAWN PER FRAME < MAX NUMBER OF PARTICLES )

{
for( var n=0; n<MAX_SPAWN_PER_FRAME; ++n )
{
particles.push(.5*Math.random()-.25); //X
particles.push(START Y); /7Y
particles.push(Math.random() - .5); /17
particles.push(0.0); //age
particles.push(5.0*Math.random() - 10.0); //velX
particles.push(14.0 + 12.0*Math.random()); //velY
particles.push(0.5 + Math.random() *4.0); //size
++currentNumberParticles;
}

}
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The x,y,z, and age component are stored in one attribute, aVertexPosition, with the age accessible via the w
component. The x,y velocity and size are stored in another attribute called aVertexVelocity, with the size the z
component. The vertex and fragment shader are shown in Listing 6-16.

Listing 6-16. Parametric vertex and fragment shader for particle system

<script type="x-shader/x-vertex">
attribute vec4 aVertexPosition;
attribute vec4 aVertexVelocity;

uniform mat4 uPMatrix;
uniform mat4 uMVMatrix;

varying highp float parametricTime;
void main(void) {
parametricTime = (aVertexPosition.w/100.0);

vec3 currentPosition = vec3(aVertexPosition.x + (aVertexVelocity.x *
parametricTime),

aVertexPosition.y + (aVertexVelocity.y * parametricTime),
aVertexPosition.z + (aVertexVelocity.x * parametricTime)

)s
currentPosition.y -= 4.9*parametricTime*parametricTime;

gl Position = uPMatrix * uMVMatrix * vec4(currentPosition.xyz, 1.0);
gl PointSize = aVertexVelocity.z;

}

</script>

<script id="shader-fs" type="x-shader/x-fragment">
varying highp float parametricTime;
void main(void) {
gl FragColor = vec4(parametricTime*.8, parametricTime*.8, 1.0,
0.9-(parametricTime*.4));

}

</script>

The shader code has the particles change from blue to white with age and is used to model a stream of water,
as shown in Figure 6-18. The full source of this example is in the file 06/particle systems_gpu.html.

Figure 6-18. Water stream with varying parameters modeled as a particle system
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Summary

This chapter showed that we can use algorithms directly in the GPU to render complex images. We demonstrated
how cool and useful fractals can be and we generated terrain. We investigated particle systems, discussed how to
use height maps, and explained how bump mapping can create the illusion of more noise on a surface.

The next chapter will look at the popular WebGL framework Three.js. We will show how to get started
developing with it and demonstrate how its API abstraction can simplify and expediate development.
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Three.js Framework

There are many WebGL frameworks that are available to abstract away the lower-level application programming
interface (API) calls that we have covered in the first six chapters of the book. This abstraction helps to make
WebGL development easier and more productive. We will discuss several WebGL frameworks in the next chapter.
In this chapter we will concentrate on one of the most widely used frameworks - Three.js. We will cover the
following:

e  Abackground of the library

e  How to start development with Three.js

e  Falling back to a 2D canvas context for rendering if WebGL is not supported
e Three.js API calls to easily create cameras, objects, and use lighting models

e  Show the equivalent Three.js code to some examples found in previous chapters, which
used direct low-level WebGL API calls

e Introduce tQuery, a library that blends Three.js with jQuery selectors

Background

Three.js was created by Ricardo Cabello, aka Mr.Doob, and has been on gitHub since 2010. Since that time, it has
received added help from many contributors and its user base has grown to a large size.

Three.js provides several different draw modes and can fall back to the 2D rendering context if WebGL
is not supported. Three.js is a well-designed library and fairly intuitive to use. Default settings reduce the
amount of initial work or “boilerplate” needed. Settings can be overridden as parameters passed in upon object
construction or by calling the appropriate object methods afterwards.

Note There can be a mistaken notion among people starting out with WebGL that Three.js and WebGL
development are one and the same. Just as the JavaScript framework, jQuery, is not the same as JavaScript, Three.
js (or any other framework) is not the same as pure WebGL development.

If you are adept with an underlying language, you can usually understand framework code for it. The reverse is not
true. Knowing a framework in no way guarantees that you know a language, so learning the low-level language is
highly beneficial.
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Features

Here are some of the many features of the Three.js framework:
e  Gracefully falls back to 2D context when WebGL is not supported
e  Built-in vector and matrix operators

e  APIwrapper implementation of cameras, lights, materials, shaders, objects, and common
geometries

e Import and export utilities

¢  Good documentation and examples

Setup

We will now go over how to obtain the Three.js library code, its directory structure, and core objects.

Obtaining the Library

The Three.js project is hosted on github at https://github.com/mrdoob/three. js. The latest release can be
downloaded from https://github.com/mrdoob/three.js/downloads. Or if you are familiar with git, you can
clone the repository:

git clone https://github.com/mrdoob/three.js.git.

The library is under active development, and changes to the API are not uncommon. The latest complete API
documentation can be found at the URL mrdoob.github.com/three.js/docs/latest/, which will redirect to the
current version. There is a wiki page at https://github.com/mrdoob/three. js/wiki/, and there is no shortage
of demos that use Three.js or articles about Three.js development on the Web. Some of the better articles are
listed in Appendix D.

Directory Structure

Once you download or clone the repository, you can place the files within your active development folder. The
directory structure shows the following folder layout:

/build compressed versions of the source files

/docs API documentation

/examples examples

/gui a drag-and-drop GUI builder that exports Three.js source
/sxc source code, including the central Three.js file

/utils utility scripts such as exporters

Within the src directory, components are split up nicely into the following subfolders:

/sxc
/cameras camera objects
/core core functionality such as color, vertex, face, vector, matrix, math
definitions, and so on
/extra utilities, helper methods, built-in effects, functionality, and plugins
/1lights light objects
/materials mesh and particle material objects such as Lambert and Phong
/objects physical objects
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/renderers render mode objects

/scenes scene graph object and fog functions
/textures texture object

Three.js central file

Basic Elements

There are several core object types in Three.js (see Table 7-1).

Table 7-1. Core Objects in Three.js

Base Object Description

THREE .Renderer The object that actually renders the scene. Implementations can be CanvasRenderer,
DOMRenderer, SVGRenderer, or WebGLRenderer.

THREE.Scene Scene graph that stores the objects and lights contained within a scene.

THREE . Camera Virtual camera; can be PerspectiveCamera or OrthographicCamera.

THREE.Object3D Many object types, including Mesh, Line, Particle, Bone and Sprite.

THREE.Light Light model. Types can be AmbientLight, DirectionallLight, PointLight, or SpotLight

Two other notes about the object hierarchy: THREE .Mesh objects have an associated THREE . Geometry and
THREE .Material objects, and in turn each THREE.Geometry contains THREE.Vertex and THREE. Face objects.

Basic Usage

Now that we have obtained the Three.js library, we are ready to start using it. We need to include the script, either
from local sources, as follows:

<script src="./three.js/build/Three.js" ></script>
Or remotely—from github, for example:

<script src="https://raw.github.com/mrdoob/three.js/master/build/Three.js"></script>

Hello World!

Using Three.js is very easy compared with the low-level coding that we have done so far. Having learned the base
WebGL API calls already, though, we can fully appreciate the speedup of a framework while knowing (or at least
presuming to know without actually checking the library code) what is going on underneath the surface Three.js
API calls.

In our first example, shown in Figure 7-1, we will render an unlit rectangular cuboid in Three.js.
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Figure 7-1. A rectangular cuboid rendered with Three.js. No light makes the cuboid appear flat

The full code of the example is fairly short compared with pure WebGL (see Listing 7-1). We will go into each
section of the code in detail after the listing.

Listing 7-1. Rendering an unlit rectangular cuboid

<!doctype html>
<html>
<head>
<title>Three.js Cube Test</title>
<style>
body{ background-color: grey; }
canvas{ background-color: white; }
</style>
<script src="./Three.js/build/Three.js”></script>
<script>
var CANVAS_WIDTH = 400,
CANVAS_HEIGHT= 300;

var renderer = null, //WebGL or 2D
scene = null, //scene object
camera = null; //camera object
function initWebGL()
{
setupRenderer();
setupScene();
setupCamera();
renderer.render(scene, camera);
}
function setupRenderer()
{

renderer = new THREE.WebGLRenderer();
renderer.setSize( CANVAS WIDTH, CANVAS HEIGHT );
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//where to add the canvas element
document.body.appendChild( renderer.domElement );

}
function setupScene()
{
scene = new THREE.Scene();
addMesh();
}
function setupCamera()
{
camera = new THREE.PerspectiveCamera(
35, // Field of view
CANVAS_WIDTH / CANVAS HEIGHT, // Aspect ratio
.1, // Near clip plane
10000 // Far clip plane
)5
camera.position.set( -15, 10, 10 );
camera.lookAt( scene.position );
scene.add( camera );
}
function addMesh()
{
var cube = new THREE.Mesh(
new THREE.CubeGeometry( 5, 7, 5 ),
new THREE.MeshBasicMaterial( { color: Ox0000FF } )
)5
scene.add(cube);
}
</script>

</head>

<body onload="initWebGL()”></body>

</html>

The code in Listing 7-1 is very straightforward. When scanning the listing, notice that we have not written

vertex or fragment shaders or included a < canvas > tag. The shaders have been written for us by the library when

the code is rendered and are based on our scene and camera setup. We will show later in the chapter how to

specify shaders if needed.

Going through Listing 7-1, the first thing we do is add variables that will be used to set the size of our canvas
and hold Three.js WebGLRenderer, Scene, and PerspectiveCamera objects:

var CANVAS_WIDTH = 400,
CANVAS_HEIGHT = 300;
var renderer = null,

scene = null,
camera = null;

//WebGL or 2D
//scene object
//camera object

Then, as with low-level WebGL, we have an onload event. In Listing 7-1, the onload event calls the

initWebGL function:
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function initWebGL()

{
setupRenderer();
setupScene();
setupCamera();
renderer.render(scene, camera);
}

The names of the function give hints that we are going to set up a WebGLRenderer object, a Scene object,
and a Camera object; and then run the renderer with our scene and camera objects. Each of the setup function
calls are small and straightforward, starting with setupRenderer:

function setupRenderer()

{
renderer = new THREE.WebGLRenderer();
renderer.setSize( CANVAS WIDTH, CANVAS HEIGHT );
//where to add the canvas element
document.body.appendChild( renderer.domElement );
}

We choose the WebGLRenderer object as our renderer type and create a new instance of it. Then we set the
renderer size to our canvas dimensions and attach the domElement of the renderer (a< canvas > element) to our
document<body > tag.

Next we call setupScene:

function setupScene()

{

scene = new THREE.Scene();
addMesh();

We create a new Scene object that will store objects such as meshes and lighting. The addMesh function is
this:

function addMesh()

{
var cube = new THREE.Mesh(
new THREE.CubeGeometry( 5, 7, 5 ),
new THREE.MeshBasicMaterial( { color: Ox0000FF } )
)5
scene.add(cube);
}

In this example, we create a cuboid mesh of dimensions 5x7x5. We create a MeshBasicMaterial object with
color property set to blue and do not add any lighting. Cuboid faces are not distinct in the rendering of Figure 7-1
because each face is the same color, and no lighting means that no normal vectors are used. Finally, in the
addMesh function, we add this mesh to our scene object.

The setupCamera method creates and sets up a PerspectiveCamera object:

function setupCamera()

{
camera = new THREE.PerspectiveCamera(
45, // Field of view
CANVAS_WIDTH / CANVAS_HEIGHT, // Aspect ratio
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.1, // Near clip plane
10000 // Far clip plane
)5
camera.position.set( 10, 10, 10 );
camera.lookAt( scene.position );
scene.add( camera );

We position our camera and tell it which direction to look. Then we add the camera object to the scene.

Note There is an equivalent orthogonal camera API call: THREE.OrthogonalCamera(float left, float right, float
top, float bottom, float near, float far). Recall that an orthogonal camera is useful if we want objects with same-sized
dimensions to appear the same size regardless of their distances within a scene.

Lastly we have the call:
renderer.render(scene, camera);

This call will render the scene using the scene graph object, which contains all the physical objects in the
scene along and with the virtual camera object. The renderer object takes care of context handling and drawing
to the underlying canvas element.

Let’s examine all the details in Listing 7-1 that have been abstracted:

e No vertex points were specified; just the dimensions of the cuboid.

¢ The modelview or perspective matrices were not explicitly set. The PerspectiveCamera
position and lookAt functions, along with the scene.position vector, were used to
calculate them and pass along to the shaders for us.

e The shader pair in this example is completely computed for us.
e The<canvas>element is automatically added to our document.

e  No vertex buffer objects or draw call is made by us. Which is used: drawArrays or
drawElements? We cannot tell without looking at the source code of the library.

These are some nice abstractions for a basic scene to help an absolute beginner get started with three-
dimensional animation. For more complex scenes, the amount of abstraction is even greater and can further
increase productivity. Having a knowledge of the underlying workings of WebGL as we now do is also great
because it allows us to understand the library code to help us troubleshoot when things do not work as expected.

Adding Some Details

We will now look at adjusting color, lighting, and mesh objects with Three.js.

Color

In Three.js, colors are initialized with hex values, which look similar to CSS but are numeric values prefixed with
Ox instead of a hash (#) tag. So pure red would be 0xFF0000, and we would create a new red Color object with:

var myColor = new THREE.Color( 0xff0000 );
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After initialization, color components are converted to RGB values between 0 and 1, and are available as the
object properties 1, g, and b. If you want to set the color component-wise yourself, you can use the function
setRGB. To change the color to blue looks like this:

myColor.setRGB(0.0, 1.0, 0.0);

The Clear Color

To set the clear color in Three.js, we use the renderer method setClearColor or setClearColorHex:

var alpha = 1.0;
renderer.setClearColor(myColor, alpha);

Or equivalently:

renderer.setClearColorHex(0x00ff00, 1.0);

Note We can also specify the clear color in the WebGLRenderer constructor, along with other options. The
default properties are shown here:

new THREE.WebGLRenderer ({
antialias: false,
canvas: document.createElement( 'canvas' ),
clearColor: 0x000000,
clearAlpha: o,
maxLights: 4,
stencil: true,
preserveDrawingBuffer: false

B;

When setting the clearColor in this manner, make sure to also set the clearAlpha to a nonzero value, such
as this:

renderer = new THREE.WebGLRenderer( { clearColor: 0x007700, clearAlpha: 1 } );

Lighting

We will now add a light to our scene by adjusting setupScene and addMesh and adding a new method called
addLight, which is shown in Listing 7-2. Changes are shown in bold.

Listing 7-2. Adding a light to the scene

function setupScene()

{
scene = new THREE.Scene();
addMesh();
addLight();

}
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function addMesh()

{
var cube = new THREE.Mesh(
new THREE.CubeGeometry( 5, 7, 5 ),
new THREE.MeshLambertMaterial( { color: 0x0000FF } )
)5
scene.add(cube);
}
function addLight()
{
var light = new THREE.PointLight( OXFFFFFF );
light.position.set( 20, 20, 20 );
scene.add(light);
}

The result of our code modifications can be seen in Figure 7-2 and are in the 07/basic_lighting.html
file. In the addLight method of Listing 7-2 it takes only three lines of code to add a point light, specify the color
and location of the light, and add it to our scene. It only takes changing the type of our Mesh material from
MeshBasicMaterial to MeshLambertMaterial to use the Lambert shading model that was discussed in Chapter 4.
We still have not needed to adjust the shader code.

Figure 7-2. Cuboid with clear color set to gray and a light that makes the 3D shape visible

So far, we have used only the built-in CubeGeometry object. We will now cover the Geometry and Mesh objects
in more detail.

Meshes

The basic THREE .Mesh object extends THREE.Object3D and stores a Geometry object and a Material object
(among other things):

var myMesh=new THREE.Mesh(geometry, material);
As shown in Listing 7-1 and Listing 7-2, the material can be a Lambert model and created like this:

var material=new THREE.MeshLambertMaterial( { color: OX0000FF } );
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Preset geometry objects can be found in the /src/extras/geometries folder similar to the one we have used so

far: CubeGeometry. If you look at the TorusGeometry. js source, the function signature is:
THREE.TorusGeometry=function ( radius, tube, segmentsR, segmentsT, arc ){ .. }

To render a torus, we simply change the Geometry object in the addMesh code of Listing 7-2 to this:

function addMesh()

{
var mesh = new THREE.Mesh(
new THREE.TorusGeometry( 4, 1.5, 20, 20 ),
new THREE.MeshLambertMaterial( { color: OxOO0O0OFF } )
);
scene.add(mesh);
}

Figure 7-3 shows a torus geometry obtained by switching the Geometry object of a mesh.

Figure 7-3. A torus geometry rendered in Three.js

Having existing geometries available is really nice. You do not need to understand or implement the math
involved; someone has already done this for you! Each of these geometries extends the THREE . Geometry object
found in /src/core/Geometry.js. In the base Geometry object are many properties such as vertices, colors,
and faces along with built-in functionality such as computing normal vectors and bounding boxes, which are
useful for collision detection.

Smooth shading is the default shading model, but we can also perform flat shading and show wireframe
models very easily, as shown in Figure 7-4. To perform flat shading we adjust the material properties like so:

new THREE.MeshLambertMaterial( {
color: 0x0000FF,
shading: THREE.FlatShading

1)

Similarly to show the wireframe, we adjust the material properties to:

new THREE.MeshLambertMaterial( {
color: 0x0000FF,
wireframe: true

1)

On the left of Figure 7-4 is a flat shaded torus geometry; the wireframe of a torus is displayed on the right.
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Figure 7-4. Left: flat shading; right: wireframe

Three.js caches values for performance improvements. If you change a Geometry object’s properties, you
need to inform Three.js to use the new values as we will now discuss.

Updating Objects

In Three.js, some values are updated automatically when adjusted, such as matrix transforms and cameras.
However, for performance some values are not automatically updated. Instead you need to set a flag telling Three.
js that the object needs updating.

For a Geometry object, update flag properties are verticesNeedUpdate, elementsNeedUpdate,
morphTargetsNeedUpdate, uvsNeedUpdate, normalsNeedUpdate, colorsNeedUpdate, and
tangentsNeedUpdate. For instance, you would tell Three.js that the normal vectors have been changed on an
object named geometry by setting the normalsNeedUpdate flag with this:

geometry.normalsNeedUpdate ;

Meshes also need their dynamic flag set:

geometry.dynamic=true;

Other objects such as textures may require flags as well. To update a texture you would set this:
texture.needsUpdate=true;

Complete details of how to update Three.js objects are available at https://github.com/mrdoob/Three.js/
wiki/Updates.

Falling Back to the 2D Canvas Context

One of the really nice things about Three.js is the ability to fall back to the 2D canvas context if WebGL is not
supported. We can do this with the new code shown in bold text in Listing 7-3.

Listing 7-3. Testing for WebGL support and falling back to the 2D canvas context if needed

function setupRenderer()

{

var test_canvas = document.createElement('canvas');
var gl = null;
try{
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gl = ( test_canvas.getContext("webgl") ||
test_canvas.getContext("experimental-webgl")
);

}catch(e){
}

if(gl)
{

renderer = new THREE.WebGLRenderer();
console.log('webgl!");

Yelse{
renderer = new THREE.CanvasRenderer();
console.log('canvas');

}

test_canvas = undefined;

renderer.setSize( CANVAS WIDTH, CANVAS HEIGHT );
renderer.setClearColorHex(0x777777, 1.0);

//where to add the canvas element
document.body.appendChild( renderer.domElement );

This output of the code in Listing 7-3 run in two browsers, one with and one without WebGL support, is
shown in Figure 7-5. The images are not identical, but compared to not rendering anything, this ability to fall back
with no code alterations other than that of Listing 7-3 is fantastic! It provides graceful degradation for users who
do not have a browser with WebGL capabilities.

Figure 7-5. Left: browser supporting WebGL; right: falling back to canvas context

Shaders

To use shaders in Three.js, set the object material to be of type ShaderMaterial, where vs_source and fs_source
are loaded sources from either embedded code or external files:

var material=new THREE.ShaderMaterial({
vertexShader: vs_source,
fragmentShader: fs_source

};

In addition, the constructor takes other optional parameters such as attributes and uniforms, which we
will examine later on in the chapter.

184



CHAPTER 7 * THREE.JS FRAMEWORK

Revisiting Earlier Book Code

We will now reproduce some of the earlier examples of the book using Three.js so that an adequate comparison
can be made in terms of using a framework versus lower-level API usage. Along the way, we will uncover new
Three.js API functions and configuration parameters, so porting our existing code is a great way to get our feet wet
in a new APIL.

2D Rendering

Remember the “bowtie” two-triangle example of Chapter 1 (Figure 1-4)? Let’s reproduce it with Three.js. At this
point, we have used only built-in meshes, but we do not know how to create a custom mesh, even a simple one,

with Three.js.

Custom Mesh

To build a custom mesh, we first create a new Geometry object. Then we create Vector3 objects for each vertice
and add them to the Geometry object’s vertices property array. We then add vertice triplets to the faces array
property of the Geometry object. Finally, we add our Geometry object to a new Mesh object. This is shown in
Listing 7-4.

Listing 7-4. Creating a custom mesh with Three.js

function addMesh()
{
var triangleVertices = [
//1eft triangle
-0.5, 0.5, 0.0,
0.0, 0.0, 0.0,
-0.5, -0.5, 0.0,

//right triangle

0.5, 0.5, 0.0,

0.0, 0.0, 0.0,

0.5, -0.5, 0.0
I

var geometry = new THREE.Geometry();

for(var i=0; i<triangleVertices.length; i += 3)

{

var vertex = new THREE.Vector3(

triangleVertices[i],
triangleVertices[i + 1],
triangleVertices[i + 2]
);

geometry.vertices.push(vertex);
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geometry.faces.push( new THREE.Face3(0, 1, 2) );
geometry.faces.push( new THREE.Face3(3, 4, 5) );

var mesh = new THREE.Mesh(
geometry,
new THREE.MeshBasicMaterial( { color: OXFFFFFF } )

);

scene.add(mesh);

Now when we run the code, we produce the image on the left of Figure 7-6. Only one triangle is rendered.
This is because the winding order is opposite in our triangles. To fix this, we have two options. First, we can
render both sides of the mesh:

mesh.doubleSided = true;

However, this is a performance hit and we do not want to get into the habit of doing this. The other option is
to fix the winding order of the second face:

geometry.faces.push( new THREE.Face3(3, 5, 4) );

After this adjustment, we get the image on the right of Figure 7-6. The full code is in the file 07/bowtie.html.
Notice that even though we have specified the vertex data, we are not responsible to bind it to a VBO.

Figure 7-6. Left: triangle faces with opposite winding order, only one is visible; right: triangle faces with the same
winding order

Separate Vertex Colors

To have separate colors per vertex, we need to assign them to the geometry.faces[n].vertexColors attributes
and NOT the geometry.colors attribute. The geometry.colors attribute is used for other objects such

as particles, but not for meshes. Instead of setting the color property of our mesh material, we now set the
vertexColors property:

new THREE.MeshBasicMaterial(
{

vertexColors: THREE.VertexColors

Note If we do not need per vertex coloring, we can also set the color of each face with geometry.faces[n].
color and using vertexColors: THREE.FaceColors inour Material setup.
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Changing the addMesh code to that in Listing 7-5 will produce the same colored output as in Figure 1-8. A working
example can be found in the 07/bowtie_color.html file.

Listing 7-5. Per vertex color values

function addMesh()
{
var triangleVertices = [
//1left triangle
-0.5, 0.5, 0.0,
0.0, 0.0, 0.0,
-0.5, -0.5, 0.0,

//right triangle
0.5, 0.5, 0.0,
0.0, 0.0, 0.0,
0.5, -0.5, 0.0
I
var triangleVerticeColors = [
//left triangle
1.0, 0.0, 0.0,
1.0, 1.0, 1.0,
1.0, 0.0, 0.0,

//right triangle

0.0, 0.0, 1.0,

0.0, 0.0, 1.0, //these two colors are switched

1.0, 1.0, 1.0, //from the chapter 1 example as the
//vertice order is changed here

IH

var geometry = new THREE.Geometry();
var colors = [];

for(var i=0; i<triangleVertices.length; i += 3)

{
var vertex = new THREE.Vector3();
vertex.set(
triangleVertices[i],
triangleVertices[i + 1],
triangleVertices[i + 2]
)5
geometry.vertices.push(vertex);
var color = new THREE.Color();
color.setRGB(
triangleVerticeColors[i],
triangleVerticeColors[i + 1],
triangleVerticeColors[i + 2] );
colors.push(color);
}
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geometry.faces.push( new THREE.Face3(0, 1, 2) );
geometry.faces.push( new THREE.Face3(3, 5, 4) );

var f = 0;
for(var i=0; i < colors.length; i+=3)
{

geometry.faces[f].vertexColors.push(colors[i]);
geometry.faces[f].vertexColors.push(colors[i+1]);
geometry.faces[f].vertexColors.push(colors[i+2]);

++f;
}
var mesh = new THREE.Mesh(
geometry,
new THREE.MeshBasicMaterial(
{
vertexColors: THREE.VertexColors
}
)
)5

scene.add(mesh);

The next component of Chapter 1’s bowtie example was adding movement, which we will now cover with
Three.js.

Movement

We will now move our two triangles, as we did in the first chapter. We do this a little differently from how we did
in Listing 1-9. First, we will make the geometry, mesh, and triangleVertices that were local variables in Listing
7-5 globally available:

var mesh = null,
geometry = null,
triangleVertices = [],
angle = 0;

We also have added a variable to keep track of an angle. To animate the scene, we can use the same
animation loop using the renderAnimationFrame polyfill that we discussed in Chapter 1 and have been using
since. However, Three.js includes the polyfill, so we do not need to include an extra file just for it:

function initWebGL()

{
setupRenderer();
setupScene();
setupCamera();

(function animLoop(){
updateGeometry();
renderer.render(scene, camera);
requestAnimationFrame( animLoop );

HO;

In our addMesh method of Listing 7-5, we need to add this line:
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geometry.dynamic = true;

This informs Three.js that properties of the geometry will change. Lastly, we define the updateGeometry
function, which controls how the vertices change:

function updateGeometry()

{
var x_translation = Math.sin(angle)/2.0;
for (var i = 0; i < geometry.vertices.length; i++) {
geometry.vertices[i].x = triangleVertices[i*3] + x_translation;
}
angle += 0.01;
geometry.verticesNeedUpdate = true;
}

The preceding code loops through each vertex and adjusts the x component to its original value from the
triangleVertices array plus a translation amount. We will look at a simpler way to move an entire mesh in the
next example. To see movement, it is essential that we tell Three.js that the vertices need to be updated with this
line:

geometry.verticesNeedUpdate = true;

The Triangular Prism

Our next code revisits producing the triangular prism shown in Figure 1-16 and found in the file 01/triangular_
prism_depth_test.html. Our array data is the same as in Listing 1-11, and we will not relist it here. The rest of
the addMesh method for a triangular prism is shown in Listing 7-6.

Listing 7-6. Add mesh function for triangular prism

function addMesh()

{
var triangleVertices, //same as in Listing 1-11
triangleVerticeColors, //same as in Listing 1-11
triangleVertexIndices; //same as in Listing 1-11

var colors = [];

for(var i=0; i<triangleVertexIndices.length; i += 3)
{
var vertex = new THREE.Vector3();
var color = new THREE.Color();
vertex.set(
triangleVertices[i],
triangleVertices[i + 1],
triangleVertices[i + 2]
);

geometry.vertices.push(vertex);

color.setRGB(
triangleVerticeColors[i],
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triangleVerticeColors[i + 1],
triangleVerticeColors[i + 2]

)s
colors.push(color);
}
for(var i=0; i<triangleVertexIndices.length; i += 3)
{
geometry.faces.push( new THREE.Face3(
triangleVertexIndices[i],
triangleVertexIndices[i + 1],
triangleVertexIndices[i + 2]
) )s
}
var f = 0;
for(var i=0; i<triangleVertexIndices.length; i +=3 )
{
geometry.faces[f].vertexColors.push(colors[triangleVertexIndices[i]]);
geometry.faces[f].vertexColors.push(colors[triangleVertexIndices[i + 1]]);
geometry.faces[f].vertexColors.push(colors[triangleVertexIndices[i + 2]]);
++f;
}

geometry.dynamic = true;

mesh = new THREE.Mesh(

geometry,

new THREE.MeshBasicMaterial(
{
vertexColors: THREE.VertexColors
}

)

);

mesh.doubleSided = true;

scene.add(mesh);

The code in Listing 7-6 generates our vertices, faces, and vertexColors properties of our geometry.

We also set the mesh to doubleSided for this example instead of making the winding consistent. To rotate and
translate the mesh, we will act directly on the Mesh object instead of each vertice property, as we did in the
previous example:

function initWebGL()

{
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setupRenderer();
setupScene();
setupCamera();

var original_mesh_x = mesh.position.x;

(function animLoop(){
//rotate mesh round y-axis
mesh.position.x = original_mesh_x + 2.0*Math.cos(angle);
mesh.rotation.y = angle;
angle += 0.05;
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renderer.render(scene, camera);
requestAnimationFrame( animLoop );

HNO;

The key to this technique is storing the original x position. A working implementation can be found in the
07/triangular_prism.html file.

Texturing

Our next example will texture the triangular prism as we did in Chapter 3, in the 03/multitexture.html file.
Some of the built-in geometries will automatically calculate default texture coordinates. This is not the case for
our custom mesh, but we will now go over how to assign custom coordinates.

First, we load our textures:

var texture = [],
textureImage = [],
STONE_TEXTURE = 0,
WEBGL_LOGO_TEXTURE = 1;

setupTexture();

function setupTexture()

{
texture[STONE_TEXTURE] = THREE.ImageUtils.loadTexture(
"textures/stone-128px.jpg");
texture[WEBGL_LOGO_TEXTURE] = THREE.ImageUtils.loadTexture(
"textures/webgl logo-512px.png");
for(var i=0; i<texture.length;++i)
{
texture[i].wrapT = texture[i].wrapS = THREE.RepeatWrapping;
texture[i].needsUpdate = true;
}
}

Note We need to ensure that THREE. ImageUtils.loadTexture() finishes before our scene is rendered. We
show a couple approaches to guarantee this later in the chapter.

And now we will set our per vertex texture coordinates, which are stored as an array in the geometry’s
faceVertexUvs property:

function addMesh()
{

var uvs = [];
for(var i=0; i<triangleVertexIndices.length; i += 3)
{

var vertex = new THREE.Vector3();

var color = new THREE.Color();

vertex.set(
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triangleVertices[i],

triangleVertices[i + 1],

triangleVertices[i + 2]
)5

geometry.vertices.push(vertex);

var tex = [];
for(var j=0; j<3;++j)

{
var a = triangleVertexIndices[i+j];
var s = null,
t = null;
if(i >= 24)
{
s = triangleVertices[a*3 + 1];
t = triangleVertices[a*3 + 2];
}else{
s = triangleVertices[a*3];
t = triangleVertices[a*3 + 1];
}
s = (s+2.0) * .25;
t = (t+2.0) * .25;
tex.push(new THREE.UV(s, t));
}
uvs.push(tex);

color.setRGB(
triangleVerticeColors[i],
triangleVerticeColors[i + 1],
triangleVerticeColors[i + 2]
)5

colors.push(color);

geometry.faceVertexUvs = [];

for(var z=0;z<uvs.length;z++){
geometry.faceVertexUvs.push(uvs);

}

mesh = new THREE.Mesh(

geometry,
new THREE.MeshBasicMaterial(
{
map: texture[STONE_TEXTURE]
}
)

)5

mesh.doubleSided = true;
scene.add(mesh);
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The preceding code applies the stone texture, and the example can be run from the 07/triangular_prism_
textured.html file.

How do we use two textures, one as a decal as we did in Chapter 3? To accomplish this, we will have to do
our only shader coding with Three.js in this chapter, using the ShaderMaterial object.

ShaderMaterial

As mentioned earlier, the ShaderMaterial requires vertex and fragment shader sources. We also can provide
uniformand attribute values. Three.js automatically sets many mesh properties such as vertex position and
texture coordinates assigned as program attributes from our object properties. In addition, the model view and
perspective uniforms are also assigned. This is nice, but may appear a little magical as well.

To decal a texture on top of another texture, as we did in the 03/multitexture.html file, we first assign
variables for our uniforms and shader material:

var uniforms = null,
shaderMaterial = null;

Next we adjust our addMesh method:
function addMesh()

{
setupShaderMaterial();
mesh = new THREE.Mesh(
geometry,
shaderMaterial
);
mesh.doubleSided = true;
scene.add(mesh);
}

The setupShaderMaterial method is shown in Listing 7-7. In the method we set our textures as uniform
variables. The type parameter represents the variable type: texture, int, float, and so on. Then we load our sources
with Ajax (again, this could be embedded sources instead) and then create and store a new ShaderMaterial
object.

Listing 7-7. Using a ShaderMaterial

function setupShaderMaterial()

{

uniforms = {
uSampler: { type: "t", value: 0, texture: texture[STONE TEXTURE] },
uSampler2: { type: "t", value: 1, texture: texture[WEBGL_LOGO TEXTURE] }

};
var vs_source = null,
fs_source = null;
//get shader sources with jQuery Ajax

$.ajax({
async: false,
url: './multitexture.vs',
success: function (data) {
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vs_source = data.firstChild.textContent;
}s
dataType:
1;

$.ajax({
async: false,
url: './multitexture.fs’,
success: function (data) {
fs_source = data.firstChild.textContent;
}

dataType: 'xml'
1;

shaderMaterial = new THREE.ShaderMaterial( {
uniforms: uniforms,
vertexShader: vs_source,
fragmentShader: fs_source

xml'

)

We define our shaders, which are different from the ones written in Chapter 3. The shader program pair is
shorter now and uses some “magically set” attributes and uniforms in Listing 7-8.

Listing 7-8. A Three.js shader program for two textures

<script type="x-shader/x-vertex">
varying highp vec2 vTextureCoord;

void main(void) {
gl Position

= projectionMatrix * modelViewMatrix * vec4(position, 1.0);
vTextureCoord =

uv;
}

</script>

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec2 vTextureCoord;
uniform sampler2D uSampler;
uniform sampler2D uSampler2;

void main(void) {
highp vec4 stoneColor = texture2D(uSampler, vec2(vTextureCoord.st));
highp vec4 webglLogoColor = texture2D(uSampler2, vec2(vTextureCoord.st));
gl FragColor = mix(stoneColor, webglLogoColor, webglLogoColor.a);

}

</script>

In Listing 7-8, the projectionMatrix and modelViewMatrix variables are uniforms passed in from Three.js for our
projection and model view transforms. The vertex positions values are passed in as the position variable attribute.

Note It is important to realize that Listing 7-8 is not a valid shader program on its own. These sources are not
passed directly to the shaderSouxrce, and compileShader WebGL methods. Instead, behind the scenes, Three.
js checks for set values and inserts attributes and uniforms into the shader source before finalizing the source and
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compiling it. You can observe this by viewing the source of your browser and demonstrated in Figures 7-7 and 7-8.
Then Three.js attaches and links the shader program and selects to use it as we manually do in other book chapters.

Part of the vertex shader produced is shown in Figure 7-7.

uniform matd4 viewMatrix;
uniform mat3 normalMatrix;
uniform vec3 cameraPosition;
attribute vec3 position;
attribute vec3 normal;
attribute vec2 uv;

attribute vec2 uv2;

#ifdef USE_COLOR

attribute vec3 color;

sendif

attribute vec3 morphTarget®;
attribute vec3 morphTargetl;
attribute vec3 morphTarget2;
attribute vec3 morphTarget3;
#ifdef USE_MORPHNORMALS
attribute vec3 morphNormale;
attribute vec3 morphNormall;
attribute vec3 morphNormal2;
attribute vec3 morphNormal3;
attribute vec3 morphTarget4;
attribute vec3 morphTarget5;
attribute vec3 morphTarget6;
attribute vec3 morphTarget7;
#endif

#endif

#ifdef USE_SKINNING
attribute vecd skinVertexA;
attribute vec4 skinVertexB;
attribute vec4 skinIndex;
attribute vec4 skinWeight;

#endif
varying highp vec2 vTextureCoord;
void main(void) {
gl Position = projectionMatrix * modelViewMatrix * vec4(position, 1.8);

vTextureCoord = uv;

}

Figure 7-7. Part of the final vertex shader produced by Three.js from the initial vertex shader in Listing 7-8

The full fragment shader generated code is shown in Figure 7-8. Compare the source code in these two figures
with what we specify in Listing 7-8.
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precision highp float;

uniform matd viewMatrix;
uniform vec3 cameraPosition;

varying highp vec2 vTextureCoord;
uniform sample uSampler;
uniform sampler2D uSampler2;

void main(void) {
highp vec4 stoneColor = texture2D(uSampler, vec2(vTextureCoord.st));
highp vec4 webglLogoColor = texture2D(uSampler2, vec2(vTextureCoord.st));
gl_FragColor = mix(stoneColor, webglLogoColor, webglLogoColor.a);

Figure 7-8. Final fragment shader produced by Three.js from initial fragment shader in Listing 7-8

Finally, we make setupTexture the document onload event now. In the setupTexture function, I have
nested callbacks in the loadTexture function calls to ensure that the textures are loaded before initializing
WebGL:

function setupTexture()
{
texture[STONE_TEXTURE] = THREE.ImageUtils.loadTexture(
"textures/stone-128px.jpg",
{}, function() {
texture[WEBGL_LOGO TEXTURE] = THREE.ImageUtils.loadTexture(
"textures/webgl_logo-512px.png",
{}, function() {
for(var i=0; i<texture.length;++i)
{
texture[i].wrapT = texture[i].wrapS =
THREE .RepeatWrapping;
texture[i].needsUpdate = true;

initWebGL();

);

Obviously, if we had more than a couple of textures, this approach would be very hard to read, and an
alternate code structure would be preferable. We will show an alternate code structure later in the chapter. The
full code of this example can be found in the 07/triangular_prism_textured_decal.html file.
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Lighting and Texturing

Our next example will be to re-create the three spheres and plane demonstrated in Chapter 4. We will use
Phong lighting, blending, fog, and texturing. In this example, we do not use multiple textures per object and can
accomplish everything without explicitly setting our shaders in Three.js. The final result is shown in Figure 7-9.

Figure 7-9. Achieving a similar result to the examples in Chapter 4; this time with Three.js

Here are the new variables that we will use in this example:

var texture = [],
STONE_TEXTURE = o,
GLASS_TEXTURE = 1,
WATER_TEXTURE = 2,
number textures = 3,
loaded textures = 0,

meshes = [],
NUM_SPHERES = 3,
PLANE_INDEX = 3;

To load our textures instead of nested callbacks, we now use the code in Listing 7-9. The advantage of it is
that it is easier to read and adjust if we add more textures. Each time the callback is called, a global counter of
loaded textures is incremented. When the expected number of textures loaded is reached, we call the initWebGL
method.

Listing 7-9. Callback to adjust our loaded textures

function adjustlLoadedTexture( tex )

{

loaded_textures++;

tex.wrapS = THREE.RepeatWrapping;
tex.wrapT = THREE.RepeatWrapping;
tex.needsUpdate = true;

if( loaded textures == number textures )
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{
initWebGL();
}
}
function setupTexture()
{
var texture files = [
"textures/stone-256px.jpg",
"textures/glass-256px.jpg",
"textures/water-256px.jpg"
K
loaded_textures = 0;
for(var i=0; i<texture files.length;++i)
{
texture[i] = THREE.ImageUtils.loadTexture(
texture files[i], {}, adjustLoadedTexture
);
}
}

Note The callback automatically passes the object returned from the loadTexture call as a parameter in the
callback function, adjustLoadedTexture. Both of the following alternate function calls will not work:
texture[i] = THREE.ImageUtils.loadTexture(

texture files[i], {}, adjustLoadedTexture()
)5

texture[i] = THREE.ImageUtils.loadTexture(
texture files[i], {}, adjustlLoadedTexture( texture[i] )
);

To add fog to our scene, we do not need to implement this within a shader. We just assign a value to the
scene.fog parameter by calling the method THREE. FogExp2:

scene.fog=new THREE.FogExp2( 0x775555, 0.11 );

The second parameter is the density of the fog. FogExp2 is the exponent version of the fog equations that we
discussed in Chapter 4. To perform the linear version, we would use THREE.Fog(color, near, far).
Other interesting adjustments that we have made for this example are to change the material used:

var material = new THREE.MeshPhongMaterial(
{ ambient: oxffffff,
color: colors[i],
specular: 0x555555,
shininess: 30,
map: tex

);
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In this declaration, tex is a texture object. We specify blending on one of the spheres with this:

if(i == 2)

{
material.blending = THREE.AdditiveBlending;
material.blendSrc = THREE.SrcAlphaFactor;
material.blendDst = THREE.OneFactor;
material.transparent = true;
material.depthTest = false;

Lastly, we have added a few more lights:

function addLight()
{

var ambientlLight = new THREE.AmbientLight( ox111111 );
scene.add(ambientLight);

var pointlLight = new THREE.PointLight( OXFFFFFF );
pointlLight.position.set( 0, 10, 0 );
scene.add(pointLight);

var directionallight = new THREE.Directionallight( OXFFFFFF );
directionallight.position.set( 1, 2, 1 ).normalize();
scene.add( directionallight );

The point and directional light can have attenuation and intensity variations as with the lighting models that
we implemented in Chapter 4.

Particle System

For our last example of the chapter, we will produce a particle system with Three.js similar to the one we created
in Chapter 6. The result of the code is shown in Figure 7-10.

Figure 7-10. Particle system produced with Three.js
Creating our particle system is similar to the way we implemented it in Chapter 6, except now we place our

particles inside of a Geometry as shown in Listing 7-10. Remember that particles are usually represented as single
points, and we can also use a texture image mapped onto each point.
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Listing 7-10. Initializing particles

function setupParticles()
{
particleGeometry = new THREE.Geometry(),
particleMaterial =
new THREE.ParticleBasicMaterial({
color: OxFFFFFF,
size: (Math.random() + 1.0) * .25

};

//fill empty data to capacity
for( var i=0; i<MAX_NUMBER_OF PARTICLES; ++i )
{

}

particleGeometry.vertices.push( initializeParticle() );

}

function initializeParticle()
{
var particle = new THREE.Vector3(
.5 * Math.random() - .25,
START Y,
3.0);

//add extra data
particle.age = 0;
particle.original = new THREE.Vector3(particle.x, particle.y, particle.z);
particle.velocity = new THREE.Vector3(
5.0 * Math.random() - 10.0,
12.0 * Math.random() + 14.0,
0.5 + Math.random() * 4.0); //velocity [x,y,z]
}

return particle;

Next we set up a particle system that is basically a wrapper for a mesh and material:

//particle system
particleSystem = new THREE.ParticleSystem(
particleGeometry,
particleMaterial
)s

scene.add(particleSystem);

Note The object THREE.Particle also exists, but is used for CanvasRenderer, whereas THREE.ParticleSystem
is used for the WebGLRenderer.

Finally, we adjust the particles during each iteration of the render loop, as shown in Listing 7-11.
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Listing 7-11. Updating particles in the render loop

function adjustParticles(){
var particles old = particleGeometry.vertices.slice(); //copy
particleGeometry.vertices = [];
for( var i=0; i<particles old.length; ++i )

{

}

//remove old particles
//if past lifespan or below the start position, do not readd particle

if(

)
{

( particles old[i].age < LIFESPAN ) &&
( particles_old[i].y > (START_Y - 0.001) )

particles old[i].age += 1.0; //age
var pTime = particles old[i].age/100.0;
particles old[i].x = particles old[i].original.x
+ particles_old[i].velocity.x * pTime;
particles old[i].y = particles old[i].original.y
+ particles old[i].velocity.y * pTime
- 4.9 * pTime * pTime;
particleGeometry.vertices =
particleGeometry.vertices.concat(particles old[i]);

currentNumberParticles = particleGeometry.vertices.length;

//spawn new particles
if( currentNumberParticles + MAX SPAWN PER FRAME < MAX NUMBER OF PARTICLES )

{

}

for( var n=0; n<MAX SPAWN_PER _FRAME; ++n )

{

}

var particle = initializeParticle();

particleGeometry.vertices.push(particle);
++currentNumberParticles;

particleGeometry.verticesNeedUpdate = true;

The working example can be found in the file 07/particle_system.html.

Advanced Usage

There are many advanced built-in functions and algorithms in the Three.js library and currently more than 150
included examples that demonstrate usage. We cannot cover them in this book, but I encourage you to explore
the API, examples, and source code of the library.
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Import/Export

Files to import mesh files are available in the /src/loaders and /src/extra/loaders directories while files to
export are in the /utils/exporters directory. We will show how to import a mesh which is converted to a JSON
format specifically for Three.js in the next chapter.

tQuery

A promising looking project in development is called tQuery, which stands for: Three.js + jQuery. This library is
written by Jerome Eteinne, who also writes the blog http://learningthreejs.com. tQuery is a thin wrapper on
top of the Three.js library, which mimics jQuery chainability and can produce scenes with even less boilerplate
code to get up and running than using Three.js alone. The project is available on gitHub at https://github.com/
jeromeetienne/tquery.

The following code with tQuery produces the cylinder in Figure 7-11:

<!doctype html>

<html>
<head>
<title>tQuery Cylinder Example</title>
<script
src="https://raw.github.com/jeromeetienne/tquery/master/build/tquery-all.js">
</script>
</head>
<body>
<script>
var world = tQuery.createWorld().boilerplate().start();
var object = tQuery.createCylinder().addTo(world);
</script>
</body>
</html>

Figure 7-11. Cylinder modelled with tQuery
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Of course, the previous example above is fairly stock, and the amount of flexibility that tQuery offers to
customize meshes and scene details is very important.

Summary

This chapter showed the great power that a framework like Three.js combined with existing WebGL API
knowledge can provide and how quickly we can develop code by using one.

In the next chapter, we will survey other WebGL frameworks and physics libraries. We will also show how to
find and use existing mesh, shader and texture resources.
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Productivity Tools

In the previous chapter we looked at the excellent Three.js WebGL framework and showed how it abstracts lower-
level WebGL API calls. This abstraction simplifies and expedites development. This chapter introduces additional
tools that can help your development be productive and enjoyable. Topics that we will cover in this chapter are
the following:

e The merits of using a WebGL framework and the benefits of learning core WebGL
e  Currently available frameworks

e  Basic “Hello World” philoGL and GLGE framework examples

¢ Loading existing meshes and models

e  File formats and import/export tools

¢ Finding and modifying existing shaders and textures

e  JavaScript physics frameworks

e  Aphysics demo using the physi.js library with Three.js

Frameworks

A framework abstracts lower-level API calls and also extends built-in functionality. WebGL frameworks get you
started with less initial setup and boilerplate code. This makes it quicker to start programming and easier to
develop complex applications. Frameworks can abstract vertex buffer object (VBO) and shader handling, ease
camera manipulation, perform matrix math operations, and load meshes—among other things.

The trade-off of using a framework is that the abstraction of the lower-level details can limit configurability
and performance (without hacking the framework source code). Usually, though, the amount of time savings
outweighs what is lost in configurability.

However, it is beneficial not to get attached to any one framework and learn the basic WebGL API first. The
rationale for this is that knowing how core WebGL works should enable switching between frameworks fairly
easily. The opposite is not true. If you learn a framework first (no matter how good it is) and then need to use the
base WebGL API or switch frameworks, you could be quite lost. Furthermore, if you understand core WebGL and
want to understand a particular frameworks’ nuances, you can view the source code and see and understand the
basic WebGL API calls.

Many Choices
There are many, many frameworks available for WebGL. At present there are twenty five frameworks available

according to http://www.khronos.org/webgl/wiki/User Contributions. Which one(s) should you use?
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To stand out in the crowd, several frameworks are built to provide specific niche usage such as general
usage, game development, data visualization, globes and maps, and high performance. Apart from different
focuses, what other factors determine which framework to use? Well as with other software projects, here are
some criteria to evaluate:

e  Power and function: It works and allows you to quickly create scenes that use advanced
techniques. The code is well written and extendable, crashes infrequently, and does not
have many critical bugs.

e  Usability: Clear API and good documentation, wiki, FAQ, and so on.

e  Support and activity: The author(s) and community are actively involved. Bug fixes
are fairly quick, and new feature requests are being made (the code base is not stalled
indefinitely). Some questions to ask are these: How many commits have been made to the
project? How many contributors? How long has the project been around? When was the
last commit? Release? Stable release? Is there a forum or user group?

e  Popularity: This applies more to the low and high end of the spectrum. If no one uses
something, it is hard to get support for a library. There is also more of a chance that the
framework will become defunct and abandoned. On the flip side, if something is widely
popular, resources are easy to come by and you can be sure that the framework will have
a bright future.

e Personal preference: You just like it better. When all other things are near equal, your
own gut preference is important.

One place to compare some project metrics for activity is at https://www.ohloh.net/p/compare, where you
can compare statistics for up to three projects at once.

Available Frameworks

Here I present a selection of several of the most promising-looking frameworks (to me), with a synopsis and
website locations. Afterward, we will give a basic “Hello World!” example with two of the frameworks: GLGE and
philoGL.

Note | do not see much value in listing all the current frameworks because many lack the necessary criteria
specified previously (support, features, users) that are needed for longevity. Displaying them all will only muddy the
waters when trying to choose one to use. This list contains some of the top frameworks at the time of writing. The
list is somewhat subjective, so | do apologize if | have omitted a framework that you feel is worthy.

C3DL

C3DL stands for Canvas 3D Library. The library is intended for providing “a set of math, scene, and 3d object
classes that makes WebGL more accessible for developers that want to develop 3D content in browser but do not
want to have to deal in depth with the 3D math needed to make it work.”

The C3DL webpage has several tutorials and good documentation. You can find it here: http://www.c3dl.org/
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CopperLicht

CopperLicht can be used for 3D applications and games. Features include fast rendering, a world editor, and
importing of many model formats. You can find out more about it here:
http://www.ambiera.com/copperlicht/index.html

GLGE

The main goal of GLGE is simplification. “WebGL for the lazy” and “The aim of GLGE is to mask the involved
nature of WebGL from the web developer, who can then spend his/her time creating richer content for the web.”
We will show an example with GLGE later on in the chapter. You can find GLGE here: http://www.glge.org/

Jax

Jax is designed with rapid development in mind. It is “a one-stop shop for building robust, high-quality WebGL
applications—fast.” Jax uses the Ruby language and the model-view-controller (MVC) pattern to separate
components. Some of the built-in functionality includes keyboard and mouse input handling, and unit testing
capability. You can find the Jax website at http://jaxgl.com/ and the source code on github at
https://github.com/sinisterchipmunk/jax

KickJS

Kick]S is focused on game development with WebGL. Kick]JS also features an online interactive GLSL editor as
demonstrated in Chapter 2 and an online editor (currently in beta). You can find the Kick]S website here:
http://www.kickjs.org/, and the source code hosted on github here: https://github.com/mortennobel/KickJS/

PhiloGL

PhiloGL is focused for data visualizations and game development. An aim of the framework is to be written with
best JavaScript practices in mind as well as to thinly abstract the basic WebGL calls. We will show an example
with philoGL later on in the chapter. You can find out more about it here: http://www.senchalabs.org/philogl/

ScenedS

Scene]S specializes in rendering a large number of pickable objects such as those used in engineering and
medical applications. This is possible because the framework (as its name suggests) provides a scene graph
engine that uses an efficient optimized draw list internally and is JSON-based. You can find out more about it
here: http://www.scenejs.com/

TDL

Threedlibrary (TDL) is focused on low-level usage and performance over ease of use. Google body and many
high-performance demos use TDL. You can find out more about it here:
http://code.google.com/p/threedlibrary/
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Three.js

As mentioned in the previous chapter, Three.js is a general-purpose 3D engine that abstracts away a lot of the
details making it easier to develop WebGL. Three.js is currently the most popular WebGL framework, and some
people think that WebGL and Three.js are one and the same. This is not the case, but it is a great framework to try
out as the previous chapter has demonstrated. You can find the Three.js library on github here:
https://github.com/mrdoob/three. js

In this chapter, we will show how to import meshes and use a physics engine with Three.js.

A philoGL “Hello World!” Example

philoGL is a framework from Sencha Labs, and the main developer on the project is Nicolas Garcia Belmonte.
The framework website is at http://www. senchalabs.org/philogl/, and its source code is on github at:
https://github.com/senchalabs/philogl

To get started, download the library and include it either locally

<scriptsrc="./build/PhiloGL.js" > </script>, or from a remote location such as
<script src="https://raw.github.com/senchalabs/philogl/master/build/PhiloGL.cls.js"></script>

The \examples folder of the philoGL library presents philoGL versions of the core WebGL lessons of the
popular site “Learning WebGL’ by Giles Thomas at http://learningwebgl.com/blog/?page id=1217.The
library is split into a core and modules. Documentation is available at
http://www.senchalabs.org/philogl/doc/index.html

Listing 8-1shows a modified version of the ported “Learning WebGL’ Lesson 4 example that is included
with the library, for us to further analyze. As you can see from the listing, philoGL uses a very object-oriented
approach to JavaScript. Mesh data is omitted for brevity, but can be found in the full file online at
/08/01_philogl cube.html

Listing 8-1. Code to rotate a cube with philoGL

<!doctype html>

<html>
<head>
<title>PhiloGL Cube Test</title>
<style>

body{ background-color: grey; }
canvas{ background-color: white; }
</style>
<script src="./PhiloGL-1.5.1/build/PhiloGL.js"></script>
<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec4 aVertexColor;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying vec4 vColor;

void main(void) {
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
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vColor = aVertexColor;
}
</script>
<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec4 vColor;

void main(void) {
gl FragColor = vColor;
}

</script>

<script>
//modified from
//https://github.com/senchalabs/philogl/blob/master/examples/lessons/4/

function webGLStart() {
//Load model
var cube = new PhiloGL.03D.Model({
vertices: [-1, ...],

colors: [1, ...],
indices: [0, ...]
D;
PhiloGL('my-canvas', {
program: {
from: 'ids',
vs: 'shader-vs',
fs: 'shader-fs'
b

onError: function() {

alert("An error ocurred while loading the application");
b
onLoad: function(app) {

var gl = app.gl,

canvas = app.canvas,

program = app.program,

camera = app.camera,

view = new PhiloGL.Mat4,

1Cube = 0;

gl.viewport(0, 0, canvas.width, canvas.height);
gl.clearColor(o, 0, 0, 1);

gl.clearDepth(1);

gl.enable(gl.DEPTH TEST);
gl.depthFunc(gl.LEQUAL);

camera.view.id();

function setupElement(elem) {
//update element matrix
elem.update();
//get new view matrix out of element and camera matrices
view.mulMat42(camera.view, elem.matrix);
//set buffers with element data
program.setBuffers({
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'aVertexPosition': {
value: elem.vertices,
size: 3

b

'aVertexColor': {
value: elem.colors,
size: 4

}

1

//set uniforms
program.setUniform('uMvMatrix', view);
program.setUniform('uPMatrix', camera.projection);

}

function animate() {
rCube += 0.01;

}
function tick() {
drawScene();
animate();
PhiloGL.Fx.requestAnimationFrame(tick);
}

function drawScene() {
gl.clear(gl.COLOR BUFFER BIT | gl.DEPTH BUFFER BIT);

//Draw Cube
cube.position.set(1.5, 0, -8);
cube.rotation.set(rCube, rCube, rCube);
setupElement(cube);
program.setBuffer('indices', {
value: cube.indices,
bufferType: gl.ELEMENT ARRAY BUFFER,
size: 1
D;
gl.drawElements(gl. TRIANGLES, cube.indices.length,
gl.UNSIGNED SHORT, 0);

}
tick();
}
1
}
</script>
</head>

<body onload="webGLStart();">
<canvas id="my-canvas" width="400" height="300">
Your browser does not support the HTML5 canvas element.
</canvas>
</body>
</html>
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In Listing 8-1, the first thing to notice is that the shader programs are not abstracted away by default as in
other frameworks such as Three]S (this was shown in the previous chapter and will later be shown for GLGE). On
page load, the function webGLStart is called, which loads our mesh data and initializes our shaders. As you can
see, philoGL does have its own matrix functionality, requestAnimationFrame defined, and partial abstraction of
the view and VBOs built in. philoGL has a nice mix of core WebGL abstraction and visibility. The output of the
program is shown in Figure 8-1.

Figure 8-1. A cube rendered with philoGL

A GLGE “Hello World!” Example

GLGE was written by Paul Brunt. The project’s web page is http://www.glge.org, and the source code is on
github at https://github.com/supereggbert/GLGE. Obtain the sources Zip file and unzip the archive. Add the
main library file to your code with either

<script src="./glge-compiled.js" ></script>for alocalfile or from an online source such as< script
src="https://raw.github.com/supereggbert/GLGE/master/glge-compiled-min.js"></script>.

The API for GLGE has documentation at http://www.glge.org/api-docs/, but not much for quick start tips
or tutorials. There are several examples in the /examples folder to inspect the code and build from.

Unlike core WebGL, the Three.js or philoGL frameworks, GLGE uses XML to represent the scene objects.
Listing 8-2 shows a minimal example using GLGE. Later in the chapter, we will show that loading complex
meshes with GLGE is very easy.

Listing 8-2. GLGE code to render a cube

<!doctype html>

<html>
<head>
<title>GLGE Cube Test</title>
<style>

body{ background-color: grey; }
canvas{ background-color: white; }
</style>
<script src="./GLGEv0.9/glge-compiled-min.js"></script>
<script src="./raf _polyfill.js"></script>
<script>
//create a GLGE document
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</html>
The scene file is shown in Listing 8-3 (mesh data has been omitted for brevity) and can be found in the file

var doc = new GLGE.Document();

var angle = 0.0;

//load scene data from XML file. This scene file is modified from the demo at:
//http://www.rozengain.com/blog/2010/06/23/hands-on-//webgl-basic-glge-tutorial/
doc.load("02_glge scene.xml");

//callback when the scene is finished loading
doc.onLoad = function() {

//get a reference to the canvas element
var canvas = document.getElementById("my-canvas");

//create a GLGE renderer
var renderer = new GLGE.Renderer(canvas);

//set the scene for the renderer from the <scene> element of the XML file
renderer.setScene( doc.getElement("mainscene") );

//get the box object, not the box mesh
var box = doc.getElement("box");

//the rendering loop

(function animLoop(){
box.setRotX(angle);
box.setRotY(angle);
box.setRotZ(angle);
angle += 0.005;

renderer.render();
requestAnimationFrame(animLoop, canvas);

NO;

</script>

<canvas id="my-canvas" width="400" height="300">
Your browser does not support the HTML5 canvas element.
</canvas>

/08/02_glge scene.xml

Listing 8-3. GLGE Scene file with a custom mesh
<?xml version="1.0" ?>

<glge>
<mesh id="box-mesh">
<positions>1.00000, ...</positions>
<normals>0.00000, ...</normals>
<uv1>0.33333, ...</uvl>
<faces»0, ...</faces>
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<camera id="maincamera" loc_z="20" />
<material id="boxmaterial" color="#900" />
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<scene id="mainscene" camera="#maincamera" ambient_color="#fff">
<light id="mainlight" loc_y="5" type="L_POINT" />
<object id="box" mesh="#box-mesh" rot x="-.8" rot_y=".5" material="#boxmaterial" />
</scene>
</glge>

Listing 8-3 has a custom mesh defined inline. The output of this code that uses a cube mesh is shown in
Figure 8-2.

Figure 8-2. A spinning cube rendered with GLGE

In Listing 8-2, we did not have to write code for the shader program or bind the VBO data. We specify the
mesh data in our scene file, and the framework takes care of the rest. The nice part of the scene being represented
with XML is that it is easy to traverse elements and has a well-formed hierarchy.

Going into details of advanced usage of philoGL or GLGE is beyond the scope of this book, but if you like the
object-oriented partial abstraction of philoGL or the XML scene-based GLGE style, I urge you to follow up with
these WebGL frameworks on your own or any other framework(s) that you are interested in.

Meshes

As you have no doubt noticed, defining even a trivial mesh in WebGL takes effort. For complex objects such
as the classic teapot, an animal, a building, or anything else, we’ll most likely want to load in our data from a
rendering program such as Blender or Mesa, or an open-source online repository. Models can come in many
formats with two of the most popular being OBJ (Wavefront) and DAE (Collada).

Loading Existing Meshes

As developers, we may or may not also be artistically talented. Even if you are, you probably do not want to spend
hours creating a model that someone else has already made and is readily available for usage. If possible, we can
download existing models and use them in WebGL.
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Note There are several places to download free or variably priced meshes such as the following:
http://sketchup.google.com/3dwarehouse/
http://www.blender-models.com/
http://artist-3d.com/
http://thefree3dmodels.com/
http://www.oyonale.com/modeles.php
http://www.3dvia.com/
http://www.3dcadbrowser.com/
http://www.3d02.com/
http://www.turbosquid.com/

Modeling Resources

In addition to downloading existing meshes, we may want to create our own, though defining vertex points by
hand is error prone and not ideal. Instead, there are many existing modeling programs available for us:

e Trimble, available at http://ww2.trimble.com/3d/, used to be called SketchUp and was
recently purchased from Google. As of June 1, 2012 on its FAQ section, Trimble says it will
continue to support SketchUp customers and offer free and professional versions of its
software. At the moment, the SketchUp modeling program is available at
http://sketchup.google.com/.

e Blender, available at http://www.blender.org/, is an open-source 3D modeling and
rendering program.

e  Many other commercial programs such as Maya, Unity, Shade 3D, and 3DS Max.

File Formats

There are many different file formats that represent meshes. Whatever format a mesh is originally represented
as, our ultimate goal is to convert the existing mesh format to something readable by our application. Because
WebGL uses JavaScript, an obvious choice for this is JavaScript Object Notation (JSON). Some frameworks can
convert models to JSON on the fly. However, best performance will be achieved by converting the mesh to a
stored JSON formatted file first and then using the static file data.

We will discuss a couple of popular file formats to store mesh data and how to import these formats for usage
with WebGL.

Wavefront Format (.obj)

The .obj 3D format was developed by Wavefront technologies more than 20 years ago. It is a fairly simple format
that stores vertex, normal, texture coordinates, and polygon faces. By default, each face has counterclockwise
winding.

The faces in a wavefront file do not need to be only triangles; they can contain polygons with more than
three vertices. We must make sure that all faces are triangles when importing/exporting a wavefront model.
Otherwise, we need to triangulate the mesh, which involves splitting up a single polygon into multiple triangle
pieces. A very simple .obj file might look like this:
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#lines with "#" are comments
#vertex lines start with "v". 4% homogeneous coordinate component is optional

\' 0.5 1.0 0.25 1.0

\' 0.25 1.5 0.25

\' 0.5 0.0 0.25

Vv 0.25 1.0 0.25 1.0

\" 0.75 1.5 0.25

\" 0.75 0.0 0.25

#texture coordinates start with "vt"
vt 0.25 0.5

vt 0.125 0.75

vt 0.25 0.0

#normal coordinates start with "vn"
vn 0.0 0.0 1.0

#simple face - only vertex coordinates
f 123

#more complex face - vertex/texture coord/normal
f 4/1/1 5/2/1 6/3/1

The obj format can get a little more complex, but we don’t need to worry about that because obj importers,
exporters and converters already exist for us as we will show later in the chapter. The obj format also supports
material property files that can use different illumination models from simple color and no ambient light to full
lighting components of the form Ka, Kd, Ks for ambient, diffuse, and specular, respectively, and whether it casts
shadows, or uses transparencies or reflections.

Collada Format (.dae)

Collada stands for COLLAborative Design Activity and was introduced in 2004. It is an XML schema to transport
3D assets such as models and shaders between different authoring applications without losing data in the
exchange. The XML files that describe the assets have a .dae extension, which stands for Digital Asset Exchange.
Many formats can be interchanged, and as such the schema is large and beyond the scope of this book. Collada is
overseen by the Khronos group, the same consortium that oversees WebGL.

JSON

A JSON object of arrays is perfect for loading data into VBOs. The exact object properties can vary. For example,
we could have an object with attribute data separated, as follows:

var our_data={
"positions": [],
"normals": [],
"texture coords":[],
"indices": []
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You could load the preceding data into four separate VBOs or into an interleaved array for the first three sets
of data and another VBO for the indices. The data passed in could also be preinterleaved; for example:

var our_data2={

"interleaved data": [],

"indices": []
}

Interleaved arrays are discussed in Chapter 9.
With the first JSON data above, we can assign our data to a VBO like:
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(our_data.positions), gl.STATIC DRAW);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(our_data.normals), gl.STATIC_DRAW);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(our_data.texture_coords), gl.STATIC_DRAW);

gl.bufferData(gl.ELEMENT ARRAY BUFFER, new Uinti6Array(our data.indices), gl.STATIC DRAW);

Note There is a limit to the size of meshes that WebGL buffers can hold. The current limit is 2'°=65,536 indices
per mesh. To get around these limits, a large mesh could be split into smaller meshes. There are also programs that
can reduce the number of polygons in a mesh (by combining smaller triangles into larger triangles), which may not
be that noticeable depending on the amount of reduction, the shape of the mesh, and the lighting model used.

Importing, Exporting, and Format Conversion

Regardless of the format initially used, remember that WebGL renders with triangle primitives. So if a model uses
polygons, they will need to be broken down into triangles. And although WebGL refers to texture coordinates as
st, alot of programs refer to them as uv coordinates.

If you do a web search for convertors to JSON format, you will come across a few scripts. One of these scripts
ishttp://code.google.com/p/blender-machete/, which aims to add JSON export capability to Blender. Maya
users can use Inka available at http://www.inka3d.com/ to export data directly to a WebGL useable format.

There is no built-in way of loading mesh data with WebGL. We will show how to load meshes, starting with a
multiple-step process using Blender to loading in model data directly if the framework supports it.

Using the Three.js Blender Import/Export Addon

We will use a Blender module that Three.js provides to export mesh data into a JSON format that the Three.js
framework uses.

Note With some adjustment, you can use the Three.js—specific JSON format outside of the Three.js framework.

The Three.js library has a Python add-on module for Blender in this folder:
\three.js\utils\exporters\blender\2.63\scripts\addons\io_mesh_threejs. If you do not already have
Blender, download and install it. Then copy the entire io_mesh_threejs folder into your Blender Python script
add-on directory. The path of this folder will vary by operating system, version of Blender and your chosen
installation directory. Using Blender 2.63 on a Windows 7 machine, the folder could be
C:\Program Files (x86)\Blender Foundation\Blender\2.63\scripts\addons\.Ifyouneed
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help finding the folder location for your installation, search the user forum at http://www.blender.org/forum/
for steps to find this information. To load the plugin, start Blender and go to the File > > User Preferences menu
item, as shown in Figure 8-3.

H |
i New Ctrl N
@ Open... Ctrl O
8 OpenRecent..  Shift Ctrl O

v~ Save Ctrl S
.. Save As... Shift Ctrl S
& Save Copy... Ctrl Alt S

| ) it -

~a Save User £ Z !
m:: b > Show/hide user pre
-iad == Load Factor

G Link Ctrl Alt O
€5 Append Shift F1

m({ﬁ Import
P!') Export

5..';' External Data

Figure 8-3. Accessing the user preferences window in Blender
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Next, locate the Addons tab and search for “three”, as shown in Figure 8-4. Click the checkbox to the right of
the search result to enable it.

Editing Input

Editing Input

[

Figure 8-4. Top: Addons tab within User Preferences window of Blender; bottom: finding the Three.js addon

Now that we have enabled the three.js Blender module, after we import meshes using the File >>Import
menu item (as shown on the left of Figure 8-5) we can now export the mesh at the File >> Export menu item into a
Three.js JSON-formatted file.
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Figure 8-5. Left: importing a model such as a dae or obj file; right: exporting as a Three.js JSON-formatted file

We will now show how to export a mesh with this plugin and load it into a Three.js program.

Exporting a Mesh into the Three.JS JSON Format

Obtain some meshes of anything you desire. For these examples, I have obtained Collada models of the Taj
Mahal by Kevin Girard and various animals by a user named mandun from the sketchup warehouse. I have also
downloaded a duck model from http://ourbricks.com/khronos/colladarepository.

I then import each mesh into Blender one at a time and export into Three.js format.

Note If a mesh is not working with a script, but others load and display properly with the same code, there
could be indice, vertex, or normal data wrong within the model. The mesh could also be too large.

Loading the Mesh with Three.JS

To load a mesh in Three.js JSON format, we use the THREE.JSONLoader object as shown in Listing 8-4.
Listing 8-4. Loading a Three.js JSON format mesh

function addDuckMesh()

{
var loader = new THREE.JSONLoader();
loader.load("./meshes/duck_three.js", function(geometry){
mesh = new THREE.Mesh(

219


http://ourbricks.com/khronos/colladarepository

CHAPTER 8 © PRODUCTIVITY TOOLS

geometry,
geometry.materials[0]

)

//mesh transforms if necessary
scene.add(mesh);

//make sure mesh is loaded before renderering

loadRestOfScene()
D;
}
function loadRestOfScene()
{
addLight();
setupCamera();

(function animLoop(){
mesh.rotation.z = angle;
angle += 0.005;

renderer.render(scene, camera);
requestAnimationFrame( animLoop );

IOF

In Listing 8-4, we make sure that the mesh has loaded before rendering the scene. Loading the mesh object
is done asynchronously, so we are not otherwise guaranteed that the mesh will finish loading before the scene
is rendered. The first parameter of the loader. load function is the mesh filename, and the second is a callback
function when the mesh has loaded. The loaded mesh object is passed in and we have the materials and textures
of the original mesh available in the geometry.materials[0] property. After we have added the mesh, we load
the rest of our scene and render. The output of this is shown on the left of Figure 8-6.

Figure 8-6. Left: rendering of a rubber duck; right: wireframe overlayed on image, showing hundreds of triangles
that comprise it

We showed last chapter how to generate a wireframe with Three.js. The duck on the right of Figure 8-6 is a
wireframe on top of the regular material. To generate this image, we use multiple materials with the function
THREE.SceneUtils.createMultiMaterialObject, as shown here:

var materials=[

geometry.materials[0],
new THREE.MeshBasicMaterial(
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{
color: 0x000000,
wireframe: true

}

)
I
mesh=new THREE.SceneUtils.createMultiMaterialObject(
geometry,
materials

);
We could also vary the transparency of each material by adding the properties to our material:

transparency: true,
opacity: 0.5 //or other value between 0 and 1

Using a Three.js JSON Model with Core WebGL

What if you don’t want to use the Three.js framework, but do find their JSON mesh generation Blender plugin
useful? How can we use the exported file in regular old WebGL. Well, open up a file output with the Blender
addon and examine it. Listing 8-5 shows the essentials of the file with the really important information in bold
text.

Listing 8-5. Three.js JSON mesh File

{

"metadata” :
{
//format, what generated this file
//counts for vertices, faces, normals, uvs, materials, colors

1

"scale" : 1.000000,

"materials": [ {
//material color, blending, depth tests, textures, etc.

"blending" : "NormalBlending",

"colorAmbient" : [0.0, 0.0, 0.0],

"colorDiffuse" : [0.6400000190734865, 0.6400000190734865, 0.6400000190734865],
"colorSpecular” : [0.0, 0.0, 0.0],

"depthTest" : true,

"depthWrite" : true,

"mapDiffuse" : "duckCM_fix.jpg",

"mapDiffuseWrap" : ["repeat", "repeat"],

"

"vertices": [35.022598,...],
"morphTargets": [],
"normals": [-0.194006,...],
"colors": [],
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"uvs": [[0.866606,...]],
"faces": [42,...]

Note The format of the file is liable to change and is currently in its third incarnation. Refer to the companion
website at http: //www.beginningwebgl.com for an updated specification and usage with core WebGL.

The properties that we are interested in here are the vertices, normal, uvs (texture coordinates), and faces
arrays; and also colorDiffuse and mapDiffuse, which tell us the material color and texture file to load.

Now the vertices, normal, and uvs arrays are straightforward, and we can pass them directly into vertex
buffer objects, but the faces array does not correspond to the indices array, as you might expect. For the duck
model, the first items of the array are these:

"faces": [42, 89,243,6, 0,0,1,2,0,1,2,42...]

With a simple cube mesh exported from Blender to the Three.js JSON format, the first few items are the
following:

"faces": [35,0,1,2,3,0,0,1,2,3,35,...]

A cube only has six faces, so why is 35 an index value? To understand what is going on, you need to take a
look at the three.js JSONLoader.js source:

isQuad = isBitSet( type, 0 );
hasMaterial = isBitSet( type, 1 );
hasFaceUv = isBitSet( type, 2 );
hasFaceVertexUv = isBitSet( type, 3 );
hasFaceNormal = isBitSet( type, 4 );
hasFaceVertexNormal = isBitSet( type, 5 );
hasFaceColor = isBitSet( type, 6 );
7

hasFaceVertexColor = isBitSet( type,

The first item of the face array gives information about the type of data contained in the next array elements
by using binary bit checks. For example, 42=0010 1010 in binary, so it has a vertex normal, vertex uvs, and a
material. Then the next numbers in the sequence 89, 243,6, 0,0,1,2,0,1,2 point to appropriate array indices
in the JSON object. A new number is checked for format information—in this case, 42 again—and this process
repeats for each item in the array. As such, while it is possible to program handling of the face array data to
determine indices, it is not a straightforward process. The full format used by Three.js is explained at
https://github.com/mrdoob/three.js/wiki/JISON-Model-format-3.0.

Loading a Collada File Directly with GLGE

With GLGE, we can load Collada files directly by adding them to our XML scene file, as shown in Listing 8-6. Very
simple!
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Listing 8-6. Loading Collada files with GLGE

<?xml version="1.0" ?>
<glge>
<camera id="maincamera" loc_z="20" />
<scene id="mainscene" camera="#maincamera" ambient_color="#fff">
<light id="mainlight" loc_y="5" type="L_POINT" />
<collada document="./meshes/Gorilla/models/Gorilla.dae" loc_x="0.8"
loc_y="-3.0" rot x="0.0" rot y="0.9" scale=".0012" />
<collada document="./meshes/Elephant/models/Elephant.dae"
loc_x="11.0" loc_y="-4.0" rot x="0.0" rot_y="0.0" scale="0.8" />
</scene>
</glge>

The output of Listing 8-6 is shown on the left of Figure 8-7.

Figure 8-7. Left: gorilla and elephant meshes loaded with GLGE; right: dolphin and orca meshes

We can also load Collada meshes with Three.js using the THREE.ColladaLoader object:

var loader=new THREE.Colladaloader();
loader.load("./meshes/Orca/models/Orca.dae", function(collada){
dae=collada.scene;
scene.add(dae);
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Figure 8-8. The Taj Mahal, loaded with Three.js

A model of the Taj Mahal loaded with Three.js is shown in Figure 8-8.
As you can see, we can use elaborate meshes easily with these frameworks. Now we will look at finding
existing shader and texture resources.

Shaders

We don'’t always want to reinvent the wheel creating a new shader if someone has already figured out one that is
similar. Rather, we can reuse existing (uncopyrighted) vertex and fragment shaders and modify them to fit our
program needs.

You are free to find inspiration from existing shaders that you come across, such as the ones at

http://code.google.com/p/glslang-library/source/browse/trunk/trunk/glslang/shaders. Keep in
mind that the shading language used might be a version of GLSL that is higher than the version that WebGL uses
and could have features that WebGL does not support or be in a different shading language such as Cg (Nvidia) or
HLSL (Microsoft) and need some conversion.

Nvidia also offers their excellent GPU Gems books online such as the third book which is available at
http://developer.nvidia.com/content/gpu-gems-3.

Textures

There are a lot of places online to browse and download free high-quality textures, including these:
e  http://texturez.com/
e http://www.textureking.com

e http://www.texturelovers.com
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e http://cgtextures.com/
e http://freestocktextures.com/
e http://psd.tutsplus.com/category/freebies/texture/

Physics Engines

In Chapter 5, we showed how to model some simple physical interactions such as gravity, velocity, and collisions.
There are existing physics engines that can perform much more complex calculations. While these libraries are
not necessarily geared exclusively to WebGL, they are written in JavaScript and can be used with WebGL.

The popular physics libraries Box2D (http://box2d.org/) and Bullet (http://bulletphysics.org/), which
were originally written in C++ are available in JavaScript as the ports shown in Table 8-1.

Table 8-1. Relevant Ports for Box2D and Bullet
Library Port

Box2D based http://code.google.com/p/box2dweb/
https://github.com/kripken/box2d.js
Bullet based https://github.com/kripken/ammo.js/

Box2D is a 2D physics engine; Bullet is a 3D physics engine. Box2D has been used by games such as Angry
Birds; Bullet has been used in games such as Toy Story 3 and movies such as Megamind and Sherlock Holmes.
Other physics engines include cannon.js and physi.js. cannon.js is inspired by ammao.js and three.js and available
athttps://github.com/schteppe/cannon. js. The physi.js library, available at http://chandlerprall.github.
com/Physijs/, is a plugin for three.js, which uses the ammo.js physics library. A demo of the game Jenga is at
http://chandlerprall.github.com/Physijs/examples/jenga.html. There is a nice wiki for getting started with
physi.js at https://github.com/chandlerprall/Physijs/wiki.

Revisiting Old Code with physi.js and Three.js

We will look at coding the colliding and bouncing spheres demo from Chapter 5, this time using the physi.js
library for physics together with Three.js. I choose to use physi.js, which is a newcomer to the physics scene,
because it is very, very easy to use. It really does a nice job in letting you quickly get started simulating physics.
Download the physi.js library and include it in the source:

<script src="https://raw.github.com/mrdoob/three.js/master/build/Three.js"></script>
<script src="./physi.js/physi.js"></script>
<script>

Physijs.scripts.worker = './physi.js/physijs_worker.js';

Physijs.scripts.ammo = '/08/ammo.js/builds/ammo.js’;
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Here we also set the path to the ammo.js library (which you will also need to download) and the
physijs_worker. js file. The main difference in setup is using Physijs versions of the Scene object and
Mesh objects:

scene=new Physijs.Scene;

var geometry=new THREE.SphereGeometry(Math.random()+.25);
var material=Physijs.createMaterial(new THREE.MeshLambertMaterial(
{
color: new THREE.Color().setRGB(Math.random(), Math.random(),
Math.random()).getHex()

1>
0.1, //friction
0.9 //bounce
)
var mesh=new Physijs.SphereMesh(
geometry,
material

);

The material is a Physijs material, which is a normal material along with friction and bounce properties.
The SphereMesh is one of a few mesh shapes available, such as boxes, cylinders, cones, and convex geometry
(generic to match custom meshes). In our render loop, we call scene.simulate() each time through:

(function animLoop(){
if(!paused)

scene.simulate(); //run the physics
renderer.render(scene, camera);
requestAnimationFrame( animLoop );

IOF

The simulate call is what calculates the physical interactions of our objects. If we run the program at
this point, the spheres will all fall. We need to add a ground and some walls as bounds. Once these are added,
collision detection against them will be automatic. We did not have to specify any rules for the velocity—the
effects of gravity are modeled for us. When we add the ground, we set the mass of it to 0. This means that other
objects have no effect on it and it will not fall from gravity:

function addGround()
{
var material=Physijs.createMaterial(
new THREE.MeshLambertMaterial({ "color": "oxffdddd" }),
.1, // low friction
.9 // high restitution

)s

var ground=new Physijs.BoxMesh(
new THREE.CubeGeometry(ROOM SIZE, 1, ROOM SIZE),
material,
0 // mass
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)s
ground.position.y=-HALF_ROOM_SIZE/2.0;
ground.receiveShadow=true;
scene.add( ground );

We also add walls, which are shown in the output of the demo in Figure 8-9.

Figure 8-9. Sphere collisions using Three.js and physi.js

The full code that is shown in Listing 8-7 is very small compared with our home-brewed example of Chapter
5. However, the simulation is slower and less responsive than our Chapter 5 example. As this is a new library,
I expect that some performance improvements will be made for it.

Listing 8-7. Full code of Three.js and physi.js sphere collision demo

<!doctype html>
<html>
<head>
<title>Three.js and Physi.js Test</title>
<style>
body{ background-color: grey; }
canvas{ background-color: white; }
</style>
<script src="http://code.jquery.com/jquery-1.7.2.min.js"></script>
<script src="https://raw.github.com/mrdoob/three.js/master/build/Three.js"></script>
<script src="./physi.js/physi.js"></script>
<script>
Physijs.scripts.worker = './physi.js/physijs_worker.js';
Physijs.scripts.ammo = '/08/ammo.js/builds/ammo.js";
var CANVAS_WIDTH = 500,
CANVAS HEIGHT= 500,

ROOM_SIZE = 20.0,
HALF_ROOM SIZE = ROOM SIZE * 0.5,
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NUM_SPHERES = 50,
paused = false;

var renderer = null, //WebGL or 2D
scene = null, //scene object
camera = null; //camera object

$(document) . keyup(function(evt){
switch(evt.keyCode){

case 80: //'p'
paused =!paused;
break;
default:
break;
}
D;
function initWebGL()
{
setupRenderer();
setupScene();
setupCamera();

(function animLoop(){
if(!paused)

scene.simulate(); //run the physics

renderer.render(scene, camera);
requestAnimationFrame( animLoop );

}
HO;

function setupRenderer()

{

renderer = new THREE.WebGLRenderer( {clearColor: 0x007700, clearAlpha:

renderer.setSize( CANVAS WIDTH, CANVAS HEIGHT );
document.body.appendChild( renderer.domElement );

}

function setupScene()

{
scene = new Physijs.Scene();
addMeshes();
addLight();

}

function setupCamera()

{
camera = new THREE.PerspectiveCamera(
45, // Field of view
CANVAS_WIDTH / CANVAS_HEIGHT, // Aspect ratio
.1, // Near clip plane
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10000 // Far clip plane

)5

camera.position.set( ROOM_SIZE, ROOM SIZE*1.5, ROOM SIZE );
camera.lookAt( scene.position );
scene.add( camera );

}
function addMeshes()
{
addGround();
addWalls();
for(var i=1; i<=NUM SPHERES;++i)
{
var geometry = new THREE.SphereGeometry(Math.random() + .25);
var material = Physijs.createMaterial(
new THREE.MeshLambertMaterial(
{
color: new THREE.Color().setRGB(
Math.random(),
Math.random(),
Math.random()
) .getHex()
}
)s
0.1, //friction
0.9 //bounce
)5
var mesh = new Physijs.SphereMesh(
geometry,
material
)5
mesh.position.x = HALF_ROOM_SIZE*Math.random()-HALF_ROOM SIZE*.s;
mesh.position.y = HALF_ROOM SIZE*Math.random()-HALF_ROOM SIZE*.5;
mesh.position.z = HALF_ROOM_SIZE*Math.random()-HALF_ROOM SIZE*.s;
mesh.castShadow = true;
scene.add(mesh);
}
}
function addGround()
{

var material = Physijs.createMaterial(
new THREE.MeshLambertMaterial({ "color": "oxffdddd" }),
.1, // low friction
.9 // high restitution

);

var ground = new Physijs.BoxMesh(
new THREE.CubeGeometry(ROOM SIZE, 1, ROOM SIZE),
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material,
0 // mass
)s
ground.position.y = -HALF_ROOM_SIZE/2.0;
ground.receiveShadow = true;
scene.add( ground );

}

function addWalls()
{
var material = Physijs.createMaterial(
new THREE.MeshLambertMaterial({ "color": "Oxaaaaff" }),
.1, // low friction
.9 // high restitution

)5

var wall = new Physijs.BoxMesh(
new THREE.CubeGeometry(ROOM SIZE, HALF ROOM SIZE, 1),
material,
0 // mass
)s
wall.position.z = -HALF_ROOM_SIZE;
scene.add( wall );

wall = new Physijs.BoxMesh(
new THREE.CubeGeometry(ROOM SIZE, HALF_ROOM SIZE, 1),
material,
0 // mass
)5
wall.position.z = HALF_ROOM SIZE;
wall.receiveShadow = true;
scene.add( wall );

wall = new Physijs.BoxMesh(
new THREE.CubeGeometry(1, HALF_ROOM SIZE, ROOM SIZE),
material,
0 // mass

)

wall.position.x = -HALF_ROOM_SIZE;

scene.add( wall );

wall = new Physijs.BoxMesh(
new THREE.CubeGeometry(1, HALF_ROOM_SIZE, ROOM SIZE),
material,
0 // mass

)5

wall.position.x = HALF_ROOM SIZE;

wall.receiveShadow = true;

scene.add( wall );
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function addLight()
{
var light = new THREE.PointLight( OXFFFFFF );
light.position.set( 10, 10, 10 );
scene.add(light);
}
</script>
</head>
<body onload="initWebGL()"></body>
</html>

Summary

This chapter introduced several more frameworks available for WebGL and showed basic usage examples for
GLGE and philoGL. We showed how to import complex meshes into our scene and listed shader and texture
resources. Finally we showed how to use Three.js and physi.js to recode an example from the physics chapter.

Chapter 9 will show what to do when things go wrong and how to debug WebGL code. We also show
performance best practices. Even with a framework, if we are not following best practices, complex scenes can
grind to a halt. As such, it is important to know how to improve rendering performance.
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CHAPTER 9

Debugging and Performance

In this chapter we will show how to troubleshoot errors and improve application performance. We will:
e present helpful tools for debugging WebGL code and shaders
e  go over some common errors and their solutions

e show ways to get more performance out of WebGL by optimizing our code to remove
common bottlenecks

¢ identify WebGL best practices

Debugging

When our program is producing erroneous results, as computer programmers we say that the program has bugs
in it or is acting buggy. The process of identifying the source of the bug(s)/error(s) and fixing them is known as
debugging.

Why should we aim to be proficient at debugging code? Although debugging is often the most time-
consuming and frustrating part of programming, it is also a natural part of development. Using tools and
techniques that can pinpoint the source of error, and a knowledge of common errors, are essential to minimizing
the time we spend debugging.

Integrated Development Environment (IDE)

The first place that we should look for assistance is where we code. Although we could use a plain text editor with
no syntax highlighting or code intelligence, why would we want to? Most modern IDEs will give near-immediate
feedback through coloring and/or other syntax highlighting, and display warnings or notices. There are many,
many IDEs and text editors available, each with a variety of features. Some are lightweight, while others are
memory-intensive, some are robust out of the box, while others have plugins or modules to add functionality.
IDE:s also range in price from free to very expensive. Some suitable text editors and IDEs for JavaScript and web
development include Sublime, Notepad++, Netbeans, Eclipse, WebStorm, Zend Studio, Aptana, Cloud9, and
Komodo. Of these, it is interesting to note that Cloud9, as its name suggests, is hosted in the cloud. There is no
local installation, which of course has advantages and disadvantages.

Minimally, your IDE or text editor should be able to detect JavaScript and HTML syntax, have some color
coding, visually match up braces and parentheses, have line numbering, and search/replace support. On
the other end of the spectrum, IDEs can have built-in version control and remote file support, unit testing,
refactoring, code completion, API intelligence, and much more. You can see an example of an IDE in action in
Figure 9-1.
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D<script>
) § (document) . ready ({

L1</s
L</b
Bi</h

$.8jax

ajax jQuery(http_code.jquery.com_jcquery-1.6.2.3s)

ijaxComplete jQuery(http_code.jquery.com_jcquery-1.6.2.33)
ajaxError jQueryihttp_code.jquery.com jgquery-l.€.2.3js)
ijaxPrefilter jQuery(http_code.jquery.com_jcquery-l1.6.2.33)

ajaxSend jQuery(http code.jquery.com jouery-l.£6.Z2.3s)

settings jQuery(http_code. jquery.com_jcquery-l1.6.2.33)

xSetup jluery(http code.jquery.com jouery-l.6.Z2.3s)

ajaxStart jQuery(http_code.jquery.com_jcuery-1.6.2.3s)

Figure 9-1. jQuery library autocompletion inside of the Webstorm IDE

I'won'’t try to convince you to use a particular IDE or text editor. The choice is yours and ultimately should be
what you feel most comfortable and productive using. Some factors to consider are:

Active development and community base: Don’t invest the time to learn something that
will soon be a relic or that no one else uses.

Power and productivity: Can you do amazing things with a few keystrokes/macros or does
the vastness of the IDE actually hinder your productivity? Remember that the purpose of
an IDE is to increase your productivity and ease of use by offering tools that assist your
development.

Extendibility: Does the IDE have plugins, modules, and third-party integration support?
Intuitiveness: Is the IDE well designed and easy to navigate?

Configurability: If the initial settings are not to your liking, how much of the editor/IDE is
customizable?

Resource usage and stability: Does it take seconds or minutes to load up the IDE; is it
responsive; does it take too much RAM; does it crash often?

Focus: Is the IDE tailored toward one language or many? To a specific task or many? There
are pros and cons of each of these. Often if an IDE is tailored to one language it will be sleeker
and more optimal than software designed for use by a plethora of languages and may also
have advanced tools. However, the tradeoff of an IDE geared toward several languages
means that if you regularly code in many languages, you have to learn only one GUI.

Browser Developer Tools

WebGL is run inside a browser, and the API used is written with JavaScript. The next place that we should look for
assistance when debugging is within the browser, as each of the major browsers has its own built-in developer
tools. These developer tools have a varying level of usability and features, but do share the common functionality
of: the ability to view and manipulate the Document Object Model (DOM), resources, network traffic, and an
interactive console that outputs JavaScript debug and error information.

Chrome/Safari both offer developer tools. Firefox has the Firebug and Developer extensions, Internet
Explorer has the developer toolbar, and Opera has Dragonfly. Internet Explorer developer tools have improved
quite a lot between versions 8 and 9 in terms of baked-in support. However, in my opinion Chrome and Firefox
remain the most feature-rich of the browser tools.
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Safari by default has their developer tools disabled. To enable them, you need to go to the Preferences
>>Advanced tab and click the “Show Develop menu in menu bar” check box. The Firefox extensions are available
at http://getfirebug.com/ and https://addons.mozilla.org/en-US/firefox/addon/web-developer/.

In Figure 9-2 we demonstrate how to find a DOM element interactively through the Chrome Developer Tools
console tab.

Beginning WebGL for HTML 5

Publication Date: July 4, 2012 | ISBN-10: 1430239964 | ISBN-13: 9781430239963 | Edition: 1

4| 1 | k

) =t L: =
<3 Elements lg__J Resources @Network EScripts @Timeline C Profiles gAud\ts » Q

» document .getElementsByTagName( "header™);
[ ¥ <header> 1
¥<div id="header-content">
<hl>»Beginning WebGL for HTML 5</hl>
</div>
</header:>

>

Figure 9-2. Using the console in Chrome Developer Tools to search for the < header >tag

In Figure 9-3 we show the Network traffic tab of Opera’s Dragonfly developer tools. This tab shows a timeline
of the loaded and loading resources for a webpage.
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Figure 9-3. Viewing network statistics with Opera Dragonfly

In Figure 9-4, we show a rather cool new feature of Firefox: the ability to visualize the DOM in three
dimensions. This tool is made possible by WebGL.
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Figure 9-4. 3D visualization of DOM elements in Firefox, made possible by WebGL

Two other specific browser tools are: Typing ‘about:config’ into the address bar in Firefox and searching
for ‘webgl’ lets you adjust Firefox’s webgl settings. Typing the address ‘about:tracing’ in Chrome lets you profile
WebGL applications in that browser.

Debug Messages to the Console

To output information to ourselves or other developers about the state of our program or if there are warnings
or errors that we should know about, instead of displaying potentially annoying alert boxes for nonsevere errors
or muddying up the DOM document with our status updates we can print messages to the JavaScript console
screen. As mentioned, all the browsers have developer tools that include a console screen for the input and
output of commands and messages. There is also a console object in JavaScript that has methods to output
messages to the developer console.

For instance, we can write log messages and error messages to the developer console with JavaScript code
like this:

var myVar = 42;
console.log("just some helpful information"); //just some helpful information
console.error("something more severe: " + myVar); //something more severe: 42

The main difference displayed in the console for these two messages will be that error messages usually
have a red font color while log messages are black. There are many more methods of the console object, and the
application programming interface (API) for the Firebug console is available at http://getfirebug.com/wiki/index.
php/Console_API. Although the exact implementation of the console object is browser-dependent, others (such
as those based on WebKit) support most of the implementation that Firebug uses.

View Other People’s Code

Because WebGL uses a client-side API written in JavaScript, we can view other people’s code easily. Doing so
can give insight into techniques that we may not have previously considered. There are a couple of ways to view
JavaScript code: right-clicking and accessing the menu item “View Page Source” or “View Source’; or looking

at the Resources tab of Developer Tools. For a shader source, we can also view the raw source. However, as

we showed in Chapter 7, frameworks can modify the final shader source. As such, using a tool such as WebGL
inspector, which we will cover later on in the chapter, can prove to be more useful.
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Online Sandboxes

A sandbox is a safe environment that children are known to play within and toy around with their imagination. In
development terms, a sandbox is an isolated testing environment that we can play around with our code without
harming production code.

There are many places online that we can quickly and safely tinker around with our JavaScript code. jsFiddle
at http://jsfiddle.net/ lets you run JavaScript code (optionally with HTML and CSS) and view the output. It
offers toggling of the inclusion of common JavaScript libraries with a simple select box and has integrated JSLint
support to check the validity of your code. A similar site to jsFiddle is JS Bin and its site at http://jsbin.com.

Shaders can be modified at several sites online, such as Kick]JS (which you can find at http://www.kickjs.org/
example/shader_editor/shader_editor.html). We covered online shader tools in Chapter 2, and some additional
sites are listed in Appendix D.

The main usefulness of online sandboxes is the ability to quickly test a small amount of code with much of
the environment configured for you and the ability to safely share your code as a link for other developers to view,
tweak, and collaborate with.

Generic WebGL Error Codes

An issue with WebGL that makes it fairly tough to debug is that there are only five major error codes (including
the code to signal no error). These codes are numeric constants. An example from the WebGL specification is:
const GLenum INVALID ENUM = 0x0500;

The main error codes are:

NO_ERROR - we are good to go
INVALID ENUM - an unacceptable value is specified for an enumerated argument

INVALID VALUE - a numeric argument is out of range (such as trying to specify a shader
location of -1)

INVALID_OPERATION - the specified operation is not allowed in the current state (such
as trying to generate a mipmap with no bound texture)

OUT_OF_MEMORY - application has exhausted memory

The main errors are shared for the many function calls of WebGL. This makes it essential that we can trigger
and detect exactly where and when an error occurs. Refer to the WebGL specification for a complete list of which
error code(s) each function can throw.

There are also many WebGL states that we can check for, such as when we check the framebuffer status with:

GLenum checkFramebufferStatus(GLenum target);

We may receive the following among other possible return values:
FRAMEBUFFER_INCOMPLETE_ATTACHMENT //0x8CD6

Context Errors

The WebGL rendering context associated with a HTMLCanvasElement can have errors when created or throughout
the life of the application. We will now show how to check for these errors and handle them appropriately when
encountered.
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Context Creation

If the request fails when we attempt to obtain a WebGL context, the browser is required to fire a WebGL context
event named "webglcontextcreationerror" to the canvas. To listen for this event we can add a listener as
demonstrated in the WebGL specification Example VII and shown in Listing 9-1.

Listing 9-1. Checking for a context-creation error

var errorInfo = "";
function onContextCreationError(event) {

canvas.removeEventListener(
"webglcontextcreationerror",
onContextCreationError, false);

errorInfo = e.statusMessage || "Unknown";

}

canvas.addEventListener(
"webglcontextcreationerror”,
onContextCreationError, false);

var gl = canvas.getContext("experimental-webgl");
if(1gl) {
alert("A WebGL context could not be created.\nReason: " +
errorInfo);

The code in Listing 9-1 creates an error listener, attempts to get a WebGL context, and if there is an error will
display the reason and then remove the error event listener. The benefit of adding the listener is that we can gain
insight into the reason why the context could not be created.

Context Loss and Restoration

If the browser loses context with WebGL, we can detect this and restore it. However, any resources such as
textures or buffers will need to be re-created. Context can be lost because of a mobile power event, GPU
reset, a client dropping a background tab or being low on resources. Part of Example VI from the WebGL
specification is shown in Listing 9-2 and demonstrates how to listen for the "webglcontextlost" and
"webglcontextrestored"events.

Listing 9-2. Listening for context lost and restoring context

canvas.addEventListener(
"webglcontextlost", function (event) {

// inform WebGL that we handle context restoration
event.preventDefault();

// Stop rendering
window.cancelAnimationFrame(requestId);
}, false);

canvas.addEventListener(
"webglcontextrestored", function (event) {

initializeResources();
}, false);
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In Listing 9-2, we register context lost and restored listeners. If the context is lost, we stop animating. On
restoration, we reload our resources.

Note: The loss of context is one of the main security concerns with WebGL and
the OpessnGL GL_ARB_robustness extension aims to add the ability for applications to detect lost contexts.
This will help graphics cards “watchdog” malicious intentions such as denial of service attacks.

Continuously Checking For Errors

While developing we can use the webgl-debug. js library that was created by the Khronos group (the consortium
that oversees WebGL) and is available at https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/
debug/webgl-debug.js. Usage is outlined at http://www.khronos.org/webgl/wiki/Debugging. This library will
make a call to getError between every WebGL call and output error results to the console. We can convert the
error numbers to more readable strings with the call:

WebGLDebugUtils.glEnumToString( gl.getError() );

Calling getError is expensive because it polls the GPU, effectively blocking further communication between
the WebGL API and GPU until a result is returned. As such, this library should not be used in production code.

Download the webgl-debug. js file locally. Starting with the 03/texture_and_lighting.html file of Chapter
3, we will slightly modify the code to make use of this library. First we include the new script file:

<script src ="webgl-debug.js"></script>

Now let’s cause an error so that we can demonstrate the library. In the setupWebGL function, change the
enabling of the depth test from g1.enable(gl.DEPTH_TEST) to gl.enable(gl.DEPTH_TEST_FOOBAR). If we run the
program, it looks strange, but we get no indication in our console that there is a WebGL error as shown in Figure 9-5.

= 1 -
[%Elements (#_| Resources @Network Es:ripu @ Timeline

> |

Figure 9-5. No error produced in our console
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Now we will wrap our WebGL context in the webgl-debug. js library in our initWebGL function:

if(gl)
{ gl = WebGLDebugUtils.makeDebugContext(gl);

The result (found in the 09/texture_and_lighting debug.html file) is that no image is produced, but useful
debug information is output to the console. It tells us exactly what function and line are erroneous—line 132 in
the setupWebGL function—as shown in Figure 9-6.

Lfa Elements LJ Resources @ Network 5 Scripts @Timeline > |Q

_0 'mcaugﬁ-»t_Ti.'peE-'ro-r: Cannot Ei:lll method 'toString' of undefined
glEnumToString

webgl-

glFunctionArgToString webgl-de
opt_onErrorFunc webgl -de

wWrapper webgl -debug. js
setupkiebGL texture and lighting debug.html:132
animLoop texture and lighting debug.html:115
initkebGL texture and lighting debug.html:121
(anonymous function) texture angd lichtinc dehiio html 358
onload texture an{ http://localhost/09/texture_and_

>

Figure 9-6. The debug information from webgl-debug.js

WebGL Inspector

By far the best in-browser debug tool currently available is WebGL Inspector, which is a useful tool to see view
shader program information, loaded textures, the current states of our application, the contents of our buffers,
capture a snapshot along with thorough trace data of a frame and much more. WebGL inspector was written
by Ben Vanik and James Darpinian and is available from http://benvanik.github.com/WebGL-Inspector/. It is
billed as

“An advanced WebGL debugging toolkit...inspired by gDEBugger and PIX with the goal of making the
development of advanced WebGL applications easier. What Firebug and Developer Tools are to HTML/JS, WebGL
Inspector is to WebGL.”
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WebGL inspector can be used by embedding a script into a web page or by installing the Chrome extension.
Once it is installed, pages with WebGL content will have a GL icon show up in the address bar and two buttons on
the web page, “Capture” and “Ul” as shown in Figure 9-7.

L C' & | © localhost/09/sphere_fps.html GL vy % nN A

Buffer 3 ol
Buffer 4 ., Buffer 5 / ARRAY_BUFFER E
BUFFER_SIZE 11532
Buffer 6 [@ BUFFER USAGE STATTC DREW
History

bufferData (ARRAY BUFFER, [C,2,0,0,2,0,0,2,0,0,2,0,0,2,0,0,2,0,0,2,0,0,2,0,0,2,0,0,2,0

Contents

Figure 9-7. The Buffers tab of WebGL inspector

In Figure 9-7, the Buffers tab is displayed that shows the contents of our vertex buffer objects (VBOs). We can
use the Textures tab to ensure that our textures have properly loaded, view filter and clamping parameters, and
other information about the textures (see Figure 9-8).

stone-128px 100% | F\t

126 x 128 ‘webgl_logo-512px
ebgl logo—512px2D TEXTURE WRAE S REFEAT
M TEXTURE_WRAP T REPELT

TEXTURE MIN FILTER NERREST
TEXTURE_MAG FILTER HEARREST
History

texImage2D (TEXTURE 2D, 0, RGBA, RGBA, UNSIGNED_BYTE, [ob]

Source: http://localhost/09/textures/webgl logo-512px.png

Figure 9-8. Texture data of WebGL inspector
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The Programs tab will show us the status of our program along with the attributes and uniforms and our
vertex and fragment shader source code, as seen in Figure 9-9.

Va: Snader 0 Program 2

S5 Sumler L LINK_STATUS true
VALIDATE STATUS false
DELETE_STATUS false
ACTIVE_UNIFORMS L]
ACTIVE ATTRIBUIES 4
idx uniform name size type
0 uDoTexturing 1 INT
2l uSamplexr 1 SAMPLER ZD
- uSamplexr2 1 SAMPLER 2D
3 uMVMatrix 1 FLOAT MAT4
4 uNormalMatrix 1 FLOAT MAT4
5 ubPMatrix 1 FLOAT MAT4
idx attribute name size type
0 aVertexColor 1 FLOAT_VEC3
ak aVertexNormal L. FLOAT_VEC3
2 aVertexPosition 1 FLOAT VECS3
3 aVertexTexCoord 1 FLOAT VEC2

(69,13) : warning X3206: implicit truncation of vector type
(70,20) : warning X3206: implicit truncation of vector type

Vertex Shader 0
COMPILE STAIUS true
DELETE STATIUS falzse

attribute vec3 aVertexPosition;
attribute vec3 aVertexColor;
attribute vec3 aVertexNormal;
attribute vec2 aVertexTexCoord;

uniform mat4 uNormalMatrix;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

varying highp vec4 vColor;

Figure 9-9. Programs tab of WebGL inspector

The State tab shows us all our adjustable state settings such as if blending is enabled, the blend color, the
clear color, which orientation is used for front faces of our polygons, and so on, as shown in Figure 9-10.

The Timeline tab will display real-time data on various metrics such as frame time, primitives/frame, and
buffer memory. The timeline is one area of this otherwise very useful program that could use some work in
producing more scalable and readable results (see Figure 9-11).

Until now we have not discussed the Capture button. In my opinion, this is the most useful feature of WebGL
inspector. When you click the button, WebGL inspector will capture the screen and a complete trace of the frame
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ACTIVE_TEXTURE
ALIASED LINE WIDTH_RANGE
ALIASED _POINT_SIZE_RANGE
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BLEND_DST_RGB
BLEND_EQUATION ALPHA
BLEND_EQUATION_RGB
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BLUE_BITS
COLOR_CLEAR_VALUE
COLOR_WRITEMASK
CULL_FACE
CULL_FACE_MODE
CURRENT_PROGREM
DEPTH_BITS
DEPTH_CLEAR_VALUE
DEETH_FUNC
DEPTH_RANGE
DEPTH_TEST
DEPTH_WRITEMASK
DITHER

ELEMENT ARRAY BUFFER_BINDING
FRAGMENT SHADER_DERIVATIVE HINT CES

FRAMEBUFFER_BINDING
FRONT_FACE
GENERATE_MIPMAP HINT
GREEN_BITS
LINE_WIDTH

MAX_COMBINED TEXTURE_IMAGE_UNITS

MAX_CUBE_MAP TEXTURE_SIZE
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MAX RENDERBUFFER SIZE

CHAPTER 9
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null
false

B rgba(o, 0, 0, 0)
ZERO
ZERO
FUNC_ADD
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g

[ rgba(o, 0, 0, 0)
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BACK
null
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LESS
0-1
false
true

true

null
undefined
null

CCW
DONT_CARE
-1

1

20

16384

221

16384

Figure 9-10. WebGL state settings as displayed in the State tab of WebGL inspector

DEBUGGING AND PERFORMANCE

WFrame Time
IMOraws/Frame
Werimitives Frame
W cCalls/Frame
WRedundant Call %

WTextures

Weuffers

WPrograms
WFramebuffers
MRenderbuffers
Wshacers

WA0s

MTexture Memory
WBuffer Memory
[Texture Writes/Frame
MBuffer Writes/Frame
WiTexture Reads/Frame

Figure 9-11. The timeline metrics of the WebGL inspector
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will be generated as shown in the Trace tab in Figure 9-12 . Our sample program is small and has only 19 lines,
but complex WebGL applications can have thousands of lines as we will later demonstrate. The lines highlighted
yellow are redundant. This is great information to help improve performance as shown in the next section. You
have the option to not highlight redundant calls, but will probably find the feedback useful. WebGL inspector also
lets us slow or pause frame advancement.

Hmnl Timeline Stete Textures Buffers Programs

159w ¢ t & w [¥|Redundant Calls
0 clesrColer(0.1,0.5,0.1,1)
1 clear (COLOR_BUFFER_BIT | DEPTE_BUFFER_BIT)
261 2 ensble (DZFTH_TEZST)
3 viewport(0, 0, 400, 300}
4 uniformMatrixdfv{"ulMatrix”, false, [1.8106601238250732,0,0,0,0,%.4142136573791504,0,0,0,0,-1.0020020008087158,-1,0,0,
= 5 uniformMatrisxd WMVMatriz", false, [-0.468320428392574854,0,0.8335586505479451,0,0,1,0,0,-0.68355246905475431,0, -0, 468
€ uniformMatrixdfv{"uNormalMatrix®, false, [-0.46832045512742615,0,-0.8835586309432983,0,0,1,0,0,0.8835586309432983, 0, C
7 getdttriblocatio ogram 2], "aVertexPosition") = 2
8 enzbleVertexAttriblArray

ffer 51)
10 vertexAttribPointer(2, %, FLOAT, false, 0, 0)
11 getAttriblocation([Frogram 2], "aVertexNormal™) = 1
1473 12 enableVertexAttribArray
13 bindBuffer (ARRAY BUFFER, [

£fer 3]1)

1345 9 bindBuffer (ARRAY_BUFFER,
i
&
W

14 vertexAttribPointer(l, 3, FLOAT, false, 0, 0)

PSS 15 getAttriblocation([Program 2], “aVertexTexCoord”) = 3
- 17 bindBuffer (ARRAY BUFFER, [Buffer 4])
18 vertexAttribPointer(3, 2, FLOAT, false, 0, 0)

19 drawZlements (TRIANGLES, 5400, UNSIGNED SHORT, 0) - i

Figure 9-12. Trace tab shows frame captures with WebGL inspector

In line 19 of Figure 9-12 there are two icons on the right. The first, with a right-facing arrow, lets us run
isolated output from a single draw command. In our sample application, this is the entire scene. However, in
more complex applications with several draw calls, it can be quite useful to show what specific part of the scene
was rendered. When the second link (that looks like an i) is clicked, a new window will pop up with complete
draw information. The popup is extensive and first shows a mesh of the element drawn that can be zoomed in
and out with the mouse wheel and rotated while holding down a mouse button. This mesh is useful to visually
confirm that our vertices have rendered in the proper order and also so that we can ensure consistent winding of
our polygon faces; the luminance of red in clockwise and counter-clockwise faces is different. We can also show
a grid of texture coordinates used. Next, a list of program uniforms and current values are displayed followed by
attributes. Finally we see the state of WebGL settings: vertex, fragment, depth/stencil and output. The first part of
this popup is shown in Figure 9-13.

If we click a pixel of the image displayed to the right of the trace log (not shown in Figure 9-12), we get all the
information about the color components and how the final pixel color is obtained in a new popup window. There
is no blending for our example, so the final color calculation is straightforward, as shown in Figure 9-14. However,
when blending with nonopaque alpha values, this information can be quite useful.

Lastly, WebGL inspector is also useful for indicating errors. Re-adding the gl.enable(gl.DEPTH TEST
FOOBAR) line makes an erroneous line of the trace show up highlighted red, as displayed in Figure 9-15.

If we try to obtain an attribute location that does not exist (for example, by trying to get the mistyped
attribute aVertexPosition2 instead of aVertexPosition), getAttribLocation returns (-1), which is an invalid
value (see Figure 9-16).
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19 drawElements(TRIANGLES, 5400, UNSIGNED SHORT, 0)
ELEMENT ARRAY BUFFER: [Buifer €]

aVertexPosition: [Buffer 5] +0 / 3 * FLOAT |v]
Program: [Program 2]
idx uniform name size type value
0 uDoTexturing i INT 1l
i uSampler 1 SAMPLER_2D Sampler: 0 [stone-128px] @,, o

Figure 9-13. Information about a specific draw call in WebGL inspector

Note If a variable does exist in your vertex shader but you never use it, the compiler will mark it as not used
and remove it when compiling and linking your program. If you try to get its location later, you will receive (-1) and
produce the same error.

Lastly, suppose we have called gl.bindBuffer with a null value binded to the WebGLBuffer parameter. This
can easily happen, for instance, by writing data to a variable when generating or reading in data from a file, but
using a different variable when binding that has been initialized to null and is never written to. The highlighted
error is shown in Figure 9-17.

As you have seen, WebGL inspector is a tool with multiple uses, and I urge the reader to become familiar
with it—you will thank yourself.
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() about:blank

i Show Depth Discarded Draws

1 clear (COLOR_BUFFER_BIT | DEPTH_BUFFER_BIT)

Source Dest _ Result ||
Rz 26 Ry: 0 R.: 26 blending disabled

G- 128 Gg: O G, : 128

B_: 26 By: 0 B.:"26

A_> 255 Rt O A_: 255

| 15 drawflements(TRTANGLES, 5400, UNSIGNED_SHORT, 0)

Source Dest Result

Ro: 46 Ry: 26 R : 46 blending disabled
G.: O Gg: 128 G.: 0

B,: 0 By: 26 B.: 0

A_: 255 RB4: 255 A_: 255

Figure 9-14. Pixel history of WebGL inspector

Figure 9-15. WebGL inspector error caused by invalid keyword

7 gevActriblocation([Frogram 2], "aVertexPosition2™) = -1

INVALID VALUE
9 bindBuffer (ARRAY_BUFFER, [Buffer 5])

INVALID_VALUE

Figure 9-16. WebGL inspector error caused by invalid attribute location value
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9 bindBuffer (ARRAY BUFFER, null)
10 vertexAttribPointer(2, 3, FLOAT, false, 0, 0)

void vertexAttribPointer(indx, size, type, normalized, \ " = LID_OPERATI

11 getittI| gyide offset)

Figure 9-17. WebGL inspector error caused by binding a VBO to null

Testing with glsl-unit

Unit testing code—isolating parts of a program into small units and running automated tests on each unit—is a
valuable way to ensure that a program functions the way that is expected and to detect errors brought on to code
when refactoring (making structural but not behavioral changes to the code, to improve code design and quality).

There is a fairly new unit testing framework for the GLSL available at http://code.google.com/p/glsl-unit/. To
clone the git repository you can use this:

git clone
https://code.google.com/p/glsl-unit/

Common Pitfalls

There are certain errors when programming with WebGL that are more commonly encountered than others. Here
are some pitfalls to avoid.

Cached Content

File changes are not being used. The browser is instead still using an old version. Do a hard browser refresh with
Shift-F5 or make the browser notice by renaming the resource file or purposely adding an error (temporarily) to
your shader program or javascript file.

Reusing a Canvas for Incompatible Contexts

"2D" and "webgl" contexts are incompatible. Trying to use one and then call canvas.getContext with the other
will return null instead of obtaining a valid context.

Mobile Device Fragment Precision Support

WebGL only requires that fragment shader floating values support mediump. Many phones and mobile devices
only support this precision. If you are targeting mobile users, do not use highp. We can also poll the supported
precision of a device with a call to the function getShaderPrecisionFormat. This can allow you to serve different
shaders based on the device capabilities.

Camera View Is Facing a Wrong Way

Make sure that the virtual camera is pointed in the right direction of the scene and also that vertice points lie
within the clipspace and the viewport.
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Texture Issues

Using non power of two (NPOT) textures when trying to generate a mipmap is a fatal error. There is also a limit of
the number of texture units that are available. If you run the webglreport shown in Figure 9-18, you can easily see
the exact number supported on your current browser and GPU.

Performance Varies by GPU

GPUs have different hardware setups and optimizations. What is optimal on one GPU may be very slow on
another GPU.

Loading the Wrong Resource

Check that you are loading the correct file, whether it be a texture image, mesh, or shader file. Also ensure that
you are not violating cross-original resource sharing rules.

Browser Differences

It is advisable to try your code in different browsers when debugging because results may vary or work only

in some browsers. The reason for this is that some of the WebGL specification is client-dependent. There are
minimum requirements, but not all implementations are the same. Not all extensions are supported, either. To
poll the list of available extensions supported in a browser, you can use these functions:

DOMString[] getSupportedExtensions()
object getExtension(DOMString name)

The getSupportedExtensions function returns an array of supported extension names. Every string in the
returned array will return a valid object from getExtension, while any string name not in the supported array
will return null.The objects that are returned signal that the extension has been properly enabled but are not
required to contain any functions or constants.

We can also use the function getParameter(GLenum pname) to find other browser support information,
such as checking the maximum supported texture size with:

gl.getParameter(gl.MAX_TEXTURE_SIZE).

Even without WebGL browser differences, there are JavaScript browser differences that need to be tested.
For example, a trailing comma in a JavaScript object or array is fine in most browsers, but will be erroneous in
Internet Explorer.

ie) [1,2,3,] is bad in IE while [1,2,3] is good in all browsers.

And {"a":"1","b":"2", }isbad in IE while {"a":"1","b":"2"} is good in all browsers.

A nice utility to view the WebGL constants of your browser is available at http://analyticalgraphicsinc.github.
com/webglreport/, and example Chrome output is shown in Figure 9-18.
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11 analyticalgraphicsinc.github.com GL

WebGL Report

ports WebGL

Platform:
Browser Usar Agent: Mozillars 0 (Windows NT 6.1, WO
Chrome/19.0.1084 456 Safari/535
Context Name: experimental-wabgl
GL Version: WebGL 1.0 (OpenGL ES 2.0 Chromium)

Shading Language Version: WebGL GLSL ES 1.0 (OpenGL ES GLSL ES 1.0 Chromium)
Vendor: WabKit

Renderer: Webkit WebGL

ANGLE: true

.

4) AppleWebKitS36 5 (KHTML, like Gackn)

Rasterizer
Aiased Line Whdth Range: L Textures

Alased Point Sire Range:
Max Texture Size:

Max Cube Map Texture Sire:

Max Combined Texture Image
Units:

Figure 9-18. Using webglreport to see your browser WebGL support

External Shader Parse Errors

When loading in a shader from an external file, you might notice a statement that seems to be valid, such as
either of the following:

if (a<b ){; 1}

if(a &b ){; 1}

Each line will cause the shader to not load because the XML entities " <" and "&" need escaping. To correct
this, try use the entities &1t; and 8amp; directly in the shader source files:
if (a8lt; b ){; }
if( a &amp;8amp; b ){ ; }

Alternatively, you can adjust the dataType returned from the Ajax call to HTML and then parse out the script
tag with jQuery:

$.ajax({
async: false,
url: './my_shader.fs',
success: function (data) {
fs_source = $(data).html();
}

dataType: 'html'
1);
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Performance

For simple applications, following WebGL best practices for optimization will not be that important. Browsers
and the GPU can perform calculations extremely quickly, so a small number of draw calls will render fast and
appear at a good framerate, regardless of whether our code is optimized or not. However, as our applications
become more complex and involve more WebGL and GPU interaction, they will quickly slow down, and the
effect can range from slightly noticeable to debilitating usage. Luckily for us, there are known ways to take
existing code and optimize it.

Measuring Framerate

In order to see whether what we are doing is actually improving processing, we need to measure the framerate
(the number of frames per second) that we are rendering. A lower framerate will appear choppy, while a higher
framerate will appear smooth and natural. The framerate is usually measured in frames per second (fps). Silent
films had variable framerates of around 14-26 fps as the cameras were hand-cranked. Early projectors set the fps
at a constant 24 fps that of course appears much smoother. Some newer films are using 48 fps, and a computer
monitor refresh rate is typically 60 Hz (Hz, Hertz, is the number of cycles per second), though larger digital
displays now are over 100 Hz. So the higher the framerate you can achieve, the better.

To measure framerate, we will use the stats. js library available on Github at https://github.com/mrdoob/
stats.js. This library is written by the author of the three. js framework that was covered in Chapter 7. Download
the stats. js file and include it in the code using this:

<script src="stats.js" ></script>

Next we need to attach the stats < div>to our document and call its update method every time through the
requestAnimationFrame loop. Note that the update method is not called if our scene is paused. This is a personal
preference, as otherwise the fps will just fluctuate to a much higher, but irrelevant value when the application is
paused. Code that uses the stats. js library is shown in Listing 9-3.

Listing 9-3. Adding the Stats calculator to our application

var stats = new Stats();

function initWebGL()

{
attachStats();
(function animLoop(){
if( !paused ){
setupWebGL();
setMatrixUniforms();
drawScene();
stats.update();
}
requestAnimationFrame(animLoop, canvas);
HO;
telse{
alert( "Error: Your browser does not appear to support WebGL.");
}
}
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function attachStats()

{
stats.getDomElement().style.position = 'absolute';
stats.getDomElement().style.left = 'opx';
stats.getDomElement().style.top = 'Opx';
document.body.appendChild( stats.getDomElement() );
}

Note: You can view the milliseconds it took to render the frame instead of fps by using the setMode method:
stats.setMode(1); // 0: fps, 1: ms

The stats widget is shown in the top-left corner of Figure 9-19.

Figure 9-19. Displaying the fps metric of stats.js

When we use stats. js and have multiple browser tabs open, if we switch to a different tab and then back,
the framerate decreases dramatically when we return. This is good, as it shows that requestAnimationFrame is
working as promised, and unnecessary animations are not being performed.

Complexity in Optimizations

It is very hard to determine how to optimize GPUs because there are many different hardware implementations,
and some optimizations that help certain GPUs will actually hinder performance on others.
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Bottlenecks

In order to optimize code, you generally need to find the bottleneck(s)—the places where the performance of a
system is being most restricted—and fix them.

An example that will be familiar to many people is washing and drying clothes. Suppose you have three
clothes washers and one dryer. Each washer takes 30 minutes per load and the dryer takes twice as long: 60
minutes per load. The capacity of the washer and dryer are the same. We need to wait for the dryer to finish and
are limited by the time it takes; it is the bottleneck of our system.

Suppose that we have three loads of clothes to launder. The total time to do 3 loads is 210 minutes (30
minutes for the concurrent washes + 60*3 for each dry). We can improve the performance of the system by
limiting or removing the bottleneck in these ways:

e decreasing the drying time
e increasing the capacity of the machine
e  buying more dryers

With the first improvement, suppose that you can fiddle around with the machine and get the drying time
down to 45 minutes. The total time of 3 loads will then be 165 minutes (30 +45*3).

For the second improvement (but no speed improvement), suppose that you can modify the dryer to take
two full loads instead of one. You still need to do 2 full dryer cycles (1 at half capacity=1 washer load and then 1
at full capacity =2 washer loads), but the total time is decreased to 150 minutes (30 + 60*2).

For the third option, if you can buy two extra machines, your total time is reduced to just 90 minutes
(30+60).

In the washer/dryer example, buying more hardware (analogous to having more computing power or RAM)
leads to the most improvement. However, in other cases a bottleneck can be improved upon most by a more
efficient algorithm.

For example, if you have a computation that takes 1,000 numbers, and the current complexity of the
computation increases in the order n? it will take 1,000,000,000 computing units to finish. If you buy 4 machines
and distribute the calculation among them, it will still take 250,000,000 calculations per machine. However, if you
can reduce the complexity of the algorithm to n* without buying anything new, you reduce the computing cost by
1,000 to 1,000,000.

WebGL Bottlenecks

While optimizations are not absolute, there are some general best practice guidelines for maximum performance
and to limit bottlenecks. Expensive operations include things that block communication of the browser and

GPU and unnecessary calculations and lookups. The fragment shader has the most calculations to perform as

it operates on every pixel in a scene. For this reason, the fragment shader can also often be the bottleneck in an
application.

Fragment Shader

The fragment shader works on every pixel. As such, it is a possible source of computational bottlenecks and
performance loss. One way to judge whether the fragment shader is in fact a bottleneck is to reduce the size of
your canvas and compare the framerate. If there is significant performance improvement, it is because there are
fewer pixels that need to be computed on, so you should try to optimize the fragment shader.

One tip is to do the reverse: After the fragment shader is done, stretch the canvas to a larger size. This will
not require any more GPU computation and should be a relatively inexpensive client-side operation. Of course,
this is viable only if stretching produces an acceptable number of artifacts or aliasing marks (that is, it still looks
good).
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Browser Resources

Even before we start rendering our scene, we need to load resources. There are several ways to reduce the
physical size of resources that will improve the initial loading time of our web page.

Minify JavaScript Files

When our code is ready for production, we can combine multiple files and minify them into a compressed file.
There are a number of tools available for this, from direct cutting/pasting of the source or uploading of files:

http://www.minifyjavascript.com/
http://jscompress.com/

To command line usage:

http://html5boilerplate.com/docs/Build-script/
http://developer.yahoo.com/yui/compressor/

Textures

We should keep texture sizes as small as possible. If a smaller 128 x 128 texture looks nearly identical to a larger
512 x 512 one, we should use it instead. It will be 16 times smaller in memory. Second we should choose an
appropriate image format. BMP images are usually larger than PNGs, which are larger than JPEGs, which are
larger than WEBPs. Which format you choose also depends on whether you need an alpha channel and how
much image data you can afford to lose and still obtain a satisfactory level of image quality.

Browser vs. GPU Power

The GPU can calculate orders of magnitude faster than JavaScript in the client. On the GPU, many, many
operations can be done in parallel and using compiled native code. As such, any “heavy lifting” should be offset
to the GPU if possible.

Blocking the GPU

The GPU takes stream(s) of data from the application associated with vertex attributes. These streams then go
to the vertex processor and then the fragment processor. The GPU computes in parallel but the communication
between the JavaScript API and the GPU is more serial. Naturally we do not want to block this browser to GPU
communication as much as possible. Doing so will lead to our program appearing to stall and the framerate
decrease. So what can we do to limit unnecessary browser to GPU communication?

Batch Draw Calls

We should limit draw calls as much as possible (drawArrays, drawElements) by batching them together. The
GPU can easily handle hundreds or thousands of triangles at once. However, there is also an upper limit to how
large a single VBO can be.
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Note: Three.js has a utility to merge disjoint geometries in order to reduce the number of separate draw calls
needed. Details are in the /src/extras/GeometryUtils. js file and the function THREE. GeometryUtils.merge.

Reduce Buffer Switching

Instead of having separate VBOs for vertex attributes such as color, normal, and position we should combine
them into interleaved arrays. We will discuss interleaved arrays later on in the chapter.

Reduce Shader Program Switching

If we have a few shader programs in use and several objects, we want to group the elements that use each shader
if possible so that we can limit how often we need to change our active shader program.

Cache State Changes (gl.getX/gl.readX)

Every time you need to poll a state component of WebGL, the browser needs to interrupt the GPU and obtain
information. Some calls to avoid as much as possible are getAttachedShaders, getProgramParameter,
getProgramInfolog, getShaderParameter, getShaderInfolog, getShaderSource, getTexParameter,
getParameter, getError, getActiveAttrib, getActiveUniform, getAttriblocation,

getUniform, getUniformLocation, getVertexAttrib, getVertexAttribOffset, getTexParameter,
getRenderbufferParameter, getFramebufferAttachmentParameter, getBufferParameter, and associated
set X calls. If possible we should store cached versions of this information in JavaScript instead. We also want
to limit uniform changes because they require interactions to the GPU. Additional WebGL calls to limit are
readPixel and finish.

Do Not Use getError in Production

As mentioned above, using getError queries the GPU which is expensive. Use it continuously while developing
but not once your code is in a production environment.

Remove Redundant Calls

We have showed how WebGL inspector is very helpful at showing you unnecessary API calls. An example of an
unnecessary call is setting a state every frame when nothing changes it. This can be remedied by moving the
particular state setting code into an initialization function outside of the rendering loop.

Another example of needless redundancy is generating 1,000 spheres by recalculating the vertice points
for each one and then transposing them in the scene. Instead, calculate the vertices once for a unit length
(1=x"2+y”*2+2"2) sphere and store them. Then for the other spheres, scale and transform all the generated
points to produce variance. This greatly reduces the number of trigonometric operations required and replaces
them with the much less expensive elementary operations of multiplication and addition.

Limit Active Texture Changes

We can reduce how often we need to change the active texture by combining small textures into a single larger
texture. This resultant image is known as a texture atlas. A texture atlas of some planets, the sun, and the moon is
shown in Figure 9-20.
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Figure 9-20. Texture atlas of the moon, sun, and some planets

We will use this texture atlas for performance optimization later in the chapter. For performance, also ensure
that you generate mipmaps as outlined in Chapter 3.

Use it or Lose it

If you are not using features such as blending or the depth test, disable them. For example, if you are only
rendering to two dimensions with no MVP transform or if you are rendering 2D objects that you know are being
drawn in order from furthest away to nearest, you can safely disable depth testing.

Faster Arrays

WebGL arrays are naturally faster than traditional JavaScript arrays because they make use of new JavaScript
typed arrays. Combining this with the use of interleaved arrays will improve VBO and attribute performance, as
we will now explain.

Typed Arrays

Traditionally raw data transferred in JavaScript is treated as a string. As WebGL passes data to the GPU in large
quantities, typed arrays are used to increase performance. Typed arrays use raw binary data and have a fixed byte
size and type, which increases streaming efficiency.
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WebGL uses the primitive sizes:

gl.BYTE - 1 byte
gl.SHORT - 2 bytes
gl. FLOAT - 4 bytes

The kinds of typed arrays available in JavaScript are these:

ArrayBuffer, ArrayBufferView, DataView
Float32Array, Float64Array
Int16Array, Int32Array, Int8Array
Uint16Array, Uint32Array, Uint8Array

Typed arrays are required in WebGL. You can view more information about them at https://developer.
mozilla.org/en/JavaScript_typed_arrays.

Interleaved arrays

Switching VBOs is expensive. Often attribute data is separated for simplicity. However, instead of using a separate
array for color, texture, position and normals, we can combine some or all of this data into an interleaved array.
This will be much better performance-wise because it is not the size of data passed to our GPU at one time, but
the number of separate draw calls required that hinders performance.

Interleaved arrays simply mix data together per vertex. In Figure 9-21 each row of array data has the RGBA
color data followed by the XYZ position data (W is omitted). The total number of elements per row is seven:

Color Data Position Data
RO | GO | BO | AO X0| YO| Z0
R1 | G1| B1| Al X1 Yi| 22
L~ L—
B2 Lo~ | x21 yo-

Interleaved Color and Position Data
RO | GO|BO|AO| X0 | YO| 20

R1 | GI[B1]| AT | X1 | VYl]| Z2

[ —

R2 _,_9;')‘-_-__-

e

Figure 9-21. Using separate data arrays versus an interleaved array

RGBAXYZ. The size and order will be needed when we tell WebGL how to interpret our data. WebGL is not
concerned by the actual contents of the data, and it is up to us to provide the proper context of our data. We could
just as validly interleave the array in XYZRGBA order instead.

Let’s look at the actual code we need in order to use an interleaved array. In Listing 9-4 we show the array
declaration for two attribute arrays and then that of an interleaved array below it.

Listing 9-4. Separate position and color arrays and an interleaved array

//a square with separated arrays
var vertexPositionArray = [

256


https://developer.mozilla.org/en/JavaScript_typed_arrays
https://developer.mozilla.org/en/JavaScript_typed_arrays

CHAPTER 9 © DEBUGGING AND PERFORMANCE

10.0, 10.0, 0.0,
10.0, -10.0, 0.0,
-10.0, -10.0, 0.0,
-10.0, 10.0, 0.0

I

var vertexColorArray = [
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 1.0,
0.0, 0.0, 1.0

I;

//a square with interleaved array data

var vertexInterleavedArray = [
/1%, Yy, z, 1, g, b
10.0, 10.0, 0.0, 1.0, 0.0, 0.0,
10.0, -10.0, 0.0, 0.0, 1.0, 0.0,
-10.0, -10.0, 0.0, 0.0, 1.0, 1.0,
-10.0, 10.0, 0.0, 0.0, 0.0, 1.0

Is

Now that we have data, we can bind it to a buffer(s) and then point our attributes to the buffer(s) when we later
draw our scene. Separate buffers are shown in Listing 9-5.

Listing 9-5. Binding separate buffers and later pointing attributes to

//two buffers for position and color data

var vertexPositionBuffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, vertexPositionBuffer);

gl.bufferData(gl.ARRAY BUFFER, new Float32Array(vertexPositionArray), gl.STATIC DRAW);

var vertexColorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY BUFFER, vertexColorBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexColorArray), gl.STATIC_DRAW);

gl.bindBuffer(gl.ARRAY BUFFER, vertexPositionBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 0, 0);

gl.bindBuffer(gl.ARRAY BUFFER, vertexColorBuffer);
gl.vertexAttribPointer(vertexColorAttribute, 3, gl.FLOAT, false, 0, 0);

The last two parameters of vertexAttribPointer are the stride and offset. These are measured in bytes and
the defaults are both 0.

Stride

The stride lets WebGL know how far apart each row of vertex data is in the array. So for vertexPositionArray,
thisis 3 * Float32Array.BYTES_PER_ELEMENT =12. The following statement would produce the same result as
using the default stride of 0.

gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 12, 0);

For our interleaved array, we have a stride of 6 * Float32Array.BYTES_PER_ELEMENT = 24. Note that we
could also use an array with “garbage data” that we are not using or later using in each row such as://[r, g, b,
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X, Y, z, some_extra_value]ln this case, the stride would be 7 * Float32Array.BYTES PER_ELEMENT=28 even
though we are still only using 24 of the bytes per row.

Offset

The offset tells WebGL what byte to start reading data from. With the vertexPositionArray in Listing 9-4, if we
wanted to discard the first two numbers and start with the third, we would use an offset of 2 * Float32Array.
BYTES_PER_ELEMENT =8. Our first three vertices would then be:

(0.0,10.0,-10.0)
(0.0,-10.0,-10.0)
(0.0,-10.0,10.0)

Where stride and offset really come in handy is when we need to point to the specific data attributes in
an interleaved array. Using the same buffer, we can set the offsets of our attributes to varying appropriate
values. With the interleaved data of Listing 9-4 the position data has no offset, while the color data comes 3 *
Float32Array.BYTES_PER_ELEMENT =12 bytes later so we set its offset to this value as shown in Listing 9-6.

Listing 9-6. Using a single buffer with interleaved data

//interleaved data using a single buffer

var vertexInterleavedBuffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, vertexInterleavedBuffer);

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexInterleavedArray), gl.STATIC_DRAW);

gl.bindBuffer(gl.ARRAY_BUFFER, vertexInterleavedBuffer);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false, 24, 0);
gl.vertexAttribPointer(vertexColorAttribute, 3, gl.FLOAT, false, 24, 12);

Index Buffers

When possible, use index buffers as the GPU is optimized for their usage. Index buffers allow us to reuse vertices,
so require less data to be transferred between the CPU and GPU.

Estimating Calculations Early

You would not calculate the value of PI to 100 decimal places every time you needed to use it—you would use a
precomputed value instead. Further, the precision of PI to 100 decimals is most likely not necessary and would
not produce any difference in the final result. This demonstrates two important concepts in computing:

o The fastest calculation is the one that does not have to be made.

e  Estimates and simplifications are often better than accuracy if the (visual) results are
approximately equal.

Reusing a precomputed value is better than performing the calculation many times. For example, if each
vertice calculates the cos (time), it is much better to compute this value once per frame in our JavaScript and
pass in to the vertex shader as a uniform value than compute it every single vertex.

In order from least- to most-expensive:

e  External calculations done that are set as constants inside of the code
e  Calculations done during application setup
e  Calculations redone each frame of the application
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e  (Calculations done every vertex in the vertex shader
e  Calculations done every single pixel in the fragment shader

Of course we must also consider that the GPU is much more powerful than JavaScript, so there are situations
where doing a complex calculation in JavaScript early will be just as bad if not worse than doing it more than
once in the GPU.

Best Practice Summary
The following are techniques that are widely regarded as best practice usage for WebGL:
e  Batch as much as possible, reduce the number of draw calls
¢ Interleave attribute data
e  Reduce state change queries
e Donot call getError in production
e  Keep texture sizes as small as possible; use mipmaps and batch textures
e  Offload as much calculation from the browser to the GPU as it is magnitudes faster
e  Ensure that the fragment shader is optimized as it is used most frequently
e  UserequestAnimationFrame

Further resources can be found in Appendix D.

A Cooked-up Example

We tend to forget (or not fully understand) what we learn unless we dig in and try it for ourselves. So we will now
cook up an example that has many objects moving randomly around in the scene in order to get WebGL to be
slow enough to notice optimization improvements. We will increase the number of objects until we obtain a poor
framerate and then we will use the debug and performance knowledge that we have obtained to optimize it.

I have created an example, 09/spheres_original.html, that uses six textures (of the Sun, Earth, Moon,
Mars, Jupiter, and Saturn) with a basic lighting model and random movement. Initially there will be a separate
draw call per spherical object and non-interleaved data used. By adjusting the number of objects rendered, we
can lower the framerate. On my machine, 6 objects runs at 60 fps, 50 runs at around 35 fps, 100 is at around 30
fps which is still ok. A thousand objects reduces the framerate to a crawl at around 4 fps. I attempted 10,000, but
my browser just hung for a while. You can see 50 objects on the left of Figure 9-22 and 1,000 on the right. You

Figure 9-22. Fifty objects on the left; 1,000 on the right
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can adjust the number of objects rendered on your machine by changing the following line and can observe the
framerate by using the stats. js widget displayed in the top-left corner of the canvas:

var num_spheres = 1000;

Alow-4 fps is a great starting point to see performance improvements in action. Opening up WebGL
Inspector, we can capture a frame and see in the Trace tab that there are more than 18,000 lines executed per
frame; and 1,000 total draw calls as shown in Figure 9-23; 4,000 separate buffers in the Buffers tab; and more than
40 MB of buffer data being used.

17985drawElements (TRIANGLES, 5400, UNSIGNED_SHORT, 0) * i
17986uniformMatrix4fv("uPMatrix”, false, [1.8106601238250732,0,0,0,0,2.4142136573791504,0,0,0,0,-1.
17987uniformMatrix4fv("uMVMatrix”, false, [0.999419629573822,0.02399090677499771,-0.024184588342905
17988uniformMatrix4£fv("uNormalMacrix™, false, [0.9994195699691772,-0.022767670452594757,0.025339515
17989getAttribLlocation([Prograr
17990enableVertexAttribArray (1)
17991bindBuffer (ARRAY BUFFER, [Buffer 4001])

17992vertexAttribPointer(l, 3, FLOAT, false, 0, 0)

ram 2], "aVertexPosition™) =1

17993getAttriblocation([Program 2], "aVertexNormal"™)
17994enableVertexAtctribArray (0)
17995bindBuffer (ARRAY BUFFER, [Buf 3999])
17996vertexAttribPointer(0, 3, FLOAI, false, 0, 0)
17997getAttriblocation([Progra
17998activeTexture (TEXTURE3)
1799%uniformli ("uSampler”, 3)
18000enableVertexAttribArray (2)

18001bindBuffer (ARRAY BUFFER, [Buffer 4000])

18002vertexAttribPointer(2, 2, FLOAT, false, 0, 0)

18003drawElements (TRIANGLES, 5400, UNSIGNED_SHORT, 0) 3

m 2], "aVertexTexCoord™) = 2

Figure 9-23. Trace capture showing more than 18,000 lines and redundant calls highlighted

Capturing a frame and using the trace to identify redundancies for us, we can see that the viewport is being
set and the perspective matrix is being recalculated every frame. Our view does not change and our camera does
not move, so this is a waste. We can move the following lines to be placed before our render loop:

gl.viewport(0, 0, canvas.width, canvas.height);
mat4.perspective(45, canvas.width / canvas.height, 0.1, 100.0, pMatrix);
gl.uniformMatrix4fv(glProgram.pMatrixUniform, false, pMatrix);

This change improves the fps slightly. We will work through the trace until we get rid of as many
redundancies as possible. Next we can see that we are reenabling vertex array attributes every time that we
render an object. We can move these lines to be placed before our render loop as well.

vertexPositionAttribute = gl.getAttriblLocation(glProgram, "aVertexPosition");
vertexNormalAttributel = gl.getAttriblLocation(glProgram, "aVertexNormal");
vertexTexCoordAttributel = gl.getAttribLocation(glProgram, "aVertexTexCoord");

gl.enableVertexAttribArray(vertexPositionAttribute);
gl.enableVertexAttribArray(vertexNormalAttribute);
gl.enableVertexAttribArray(vertexTexCoordAttribute);

Amazingly, this code increases the framerate all the way to 50 fps! There are no more redundancies marked
in the trace, with the total number of calls being reduced from 18,000 to 11,000. Now let’s see how many objects
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we can push this application to display. Increase the number of objects rendered until your framerate lowers to a
number below 15. The full code with redundancies removed is in the 09/optimized_1_removed_redundancies.
html file, and output is shown in Figure 9-24.

Figure 9-24. Three thousand objects at 16 fps

Note: With too many buffers you may experience misleading results. With 100,000 objects | got a high framer-
ate, but after looking in the WebGL inspector, there were only 12,000 VBOs not the 400,000 that there should have
been. There were also only 33,000 lines in the trace; we would need at least 100,000 for the separate draw calls.
The biggest evidence that we did not actually have 100,000 objects was that the result of 3,000 objects looked
identical to 100,000.

Later after interleaving my vertex attributes, I could see 20,000 VBOs and the much fuller image shown in
Figure 9-25.

In addition to limits for the number of total VBOs, there is also a limit to the number of elements per single VBO.
The maximum number of indices is 2216 = 66536.

When optimizing, if a result seems too good to be true use your intuition and determine whether an upper
browser limit has been reached or results have been cached somewhere.

Our next optimization is interleaving the vertex position, texture coordinate, and normal arrays into 1 array,
so this should enable us to draw more elements as the number of buffers we use per object is reduced from 4
to 2 (1 buffer is for the index array). Interleaving the arrays cleans up the drawScene function nicely. Listing 9-7
shows our code to use our interleaved data (the generation is not shown but is viewable in the 09/optimized 2_
interleaved.html file) and send it on to the GPU.
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Listing 9-7. Interleaved array attribute pointing

function drawScene()

for( var i=0; i<num spheres;++i ){
setMvMatrix(spherePositions[i])
setMatrixUniforms();
var active_num = i%textures.length;

gl.activeTexture(gl.TEXTUREO + active num);
gl.uniformii(glProgram.samplerUniform, active_num);

gl.bindBuffer(gl.ARRAY_BUFFER, trianglesInterleavedBuffers[i]);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false,
8 * Float32Array.BYTES PER_ELEMENT, 0);
gl.vertexAttribPointer(vertexNormalAttribute, 3, gl.FLOAT, false,
8 * Float32Array.BYTES PER_ELEMENT,
3 * Float32Array.BYTES PER_ELEMENT);
gl.vertexAttribPointer(vertexTexCoordAttribute, 2, gl.FLOAT, false,
8 * Float32Array.BYTES PER_ELEMENT,
6 * Float32Array.BYTES PER_ELEMENT);

gl.drawElements(gl.TRIANGLES, vertexIndexBuffers[i].numItems,
g1.UNSIGNED_SHORT, 0);

Now if you put in the wrong stride, such as just 8 instead of 8 * Float32Array.BYTES_PER_ELEMENT (the
total number of bytes) in the preceding code, you will get unexpected results, as shown in Figure 9-25.

Figure 9-25. Interleaved arrays gone wrong. These objects are not very spherical
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However, using the correct stride values produces the expected result shown in Figure 9-26.

Figure 9-26. Interleaved arrays gone right; 10,000 objects but at a low framerate

Next we will combine our six 256 x 256 textures into a single 512 x 512 texture atlas. You will remember
that the texture atlas image was shown earlier, in Figure 9-20. Using the texture atlas will mean that instead of
changing the active texture every object, we will never need to change the uniform sampler value!

The hardest part of using a texture atlas is generating the coordinates. This is actually fairly easy for a texture
atlas with each inner image also having dimensions a power of 2, though the width and height do not have to be
equal. We keep track of the x and y offset of each image and the scale (from 0 to 1) that the image lengths will be
relative to the overall texture atlas dimensions as shown here:

//x_offset, y offset, x_scale, y_scale
var textureAtlasAreas = [

[0.0, 0.0, 0.5, 0.5], //moon
[o.5, 0.0, 0.5, 0.5], //sun
[0.0, 0.5, 0.25, 0.25], //saturn
[0.0, 0.75, 0.25, 0.25], //jupiter
[0.5, 0.5, 0.25, 0.25], //earth
[0.5, 0.75, 0.25, 0.25] //mars

I
Then when we set up our sphere data, we can access this information like so:
var num_textures = textureAtlasAreas.length;
for(var i=0; i<num_spheres;++i){
var active _num = i%num_textures;

var tex_start x = textureAtlasAreas[active num][0],
tex_start y = textureAtlasAreas[active num][1],
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textureAtlasAreas[active num][2],
textureAtlasAreas[active num][3];

tex_scale x
tex_scale_y

//texture coordinates
interleavedData.push(u * tex scale x + tex start x);
interleavedData.push(v * tex scale y + tex start y);

Note A potential drawback of texture atlases is the possibility of color bleeds at texture boundaries.

We will generate a mipmap with a call to gl.generateMipmap(gl.TEXTURE_2D); The final optimization we
will make and the most important is to batch draw calls.

Instead of looping through all the spheres we are to draw, we will perform a double loop of batches and
spheres per batch when we generate our meshes in the setupSphereData method of our example and then use
the number of batches in our drawScene method.

However, there is at least one issue we face now. Previously, we changed the model view matrix per sphere
object. However, now we are batching several object draws together and still only adjusting the modelview matrix
once per batch. That means that every sphere in a batch will be drawn at the same location. We will only see
the largest sphere per batch, and the smaller ones will be hidden inside of it. For example, with 10,000 spheres
batched at 40 at once, we will render all 10,000 but see only 250. We need to be able to set the model view per
sphere. We also do not want to update uniforms unnecessarily. Instead of calculating the model view for every
object in JavaScript we can offset this calculation to the GPU. This will actually be a performance improvement as
the GPU is much faster. We will also have to update a uniform of translation and rotation amounts once per draw
instead of for every object. Our original JavaScript code to calculate the per object model view matrix is shown in
Listing 9-8.

Listing 9-8. JavaScript code for calculating per object model view matrix values

function setMvMatrix(sp)

{
mat4.identity(mvMatrix);
mat4.identity(normalMatrix);
mat4.translate(mvMatrix, [sp.x _offset, sp.y offset, sp.z_offset]);
mat4.rotate(mvMatrix, sp.angle, [sp.x_angle, sp.y angle, sp.z_angle]);
mat4.inverse(mvMatrix, normalMatrix);
sp.x_angle += Math.random();
sp.y_angle += Math.random();
sp.z_angle += Math.random();
sp.x_offset = (Math.cos(sp.angle) * sp.x offset orig);
sp.y_offset = (Math.sin(sp.angle) * sp.y offset orig);
sp.z_offset = -25.0 + 12.0 * Math.sin(sp.angle);
sp.angle += 0.005;
}

Instead of recalculating cosine and sine values which are constant across all the spheres, we can create
uniform variables to store these values and use them in our vertex shader:

uniform float uCosTime;
uniform float uSinTime;
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We will now also calculate the sphere geometry only once and store it as shown in Listing 9-9.

Listing 9-9. Calculating the points on a unit sphere

var unit_sphere = null;

function calculateUnitSpherePoints(latitudeBands, longitudeBands)
{
//0(n"2) trig operations - costly!
unit_sphere = {
"vertices": [],
lluvsll: []

};

for (var latNumber = 0; latNumber <= latitudeBands; latNumber++) {
var theta = latNumber * Math.PI / latitudeBands;
var sinTheta = Math.sin(theta);
var cosTheta = Math.cos(theta);

for (var longNumber = 0; longNumber <= longitudeBands; longNumber++) {
var phi = longNumber * 2 * Math.PI / longitudeBands;

var sinPhi = Math.sin(phi);

var cosPhi = Math.cos(phi);

var
var
var
var
var

= cosPhi * sinTheta;

= cosTheta;

sinPhi * sinTheta;

= 1- (longNumber / longitudeBands);
= latNumber / latitudeBands;

< © N X
Il

//position
unit_sphere.vertices.push({"x": x, "y": vy, "z": z});
//texture coordinates
unit_sphere.uvs.push({"u": u, "v": v});
}
}

And we can use the stored coordinates to generate all the other spheres in our scene:

//position

interleavedData.push(radius * vertex.x + spherePositions[mesh number].x offset orig);
interleavedData.push(radius * vertex.y + spherePositions[mesh number].y offset orig);
interleavedData.push(radius * vertex.z + spherePositions[mesh number].z_offset orig);

//normal

interleavedData.push(vertex.x);
interleavedData.push(vertex.y);
interleavedData.push(vertex.z);

//texture coordinates
interleavedData.push(uv.u * tex_scale_x + tex_start x);
interleavedData.push(uv.v * tex scale y + tex start y);

This allows us to not change the MVP matrices or need to use the spherePositions array data after
generation. We can now draw our objects in batches with the code of Listing 9-10.
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Listing 9-10. Drawing our objects in batches

var num_spheres = 15000;
var num_per batch = 250;
var batches = num_spheres/num per batch;

function drawScene()
{
gl.uniformif(glProgram.cosTimeUniform, Math.cos(currentTime) );
gl.uniformif(glProgram.sinTimeUniform, Math.sin(currentTime) );
for(var i=0; i<batches;++i){
gl.bindBuffer(gl.ARRAY BUFFER, trianglesInterleavedBuffers[i]);
gl.vertexAttribPointer(vertexPositionAttribute, 3, gl.FLOAT, false,
8 * Float32Array.BYTES PER_ELEMENT, 0);
gl.vertexAttribPointer(vertexNormalAttribute, 3, gl.FLOAT, false,
8 * Float32Array.BYTES PER_ELEMENT,
3 * Float32Array.BYTES PER_ELEMENT);
gl.vertexAttribPointer(vertexTexCoordAttribute, 2, gl.FLOAT, false,
8 * Float32Array.BYTES PER_ELEMENT,
6 * Float32Array.BYTES PER_ELEMENT);
gl.drawElements(gl.TRIANGLES, vertexIndexBuffers[i].numItems,
gl.UNSIGNED_SHORT, 0);
}

currentTime += 0.01;

As we are limited in how big a single VBO can be, we will use spheres of 10 divisions (600 indices per sphere)
instead of 30 (5,400 indices per sphere) to demonstrate the speedup by batching. Rendering 15,000 of these
spheres one at a time results in 3 fps. Rendering 15,000 but batching 250 at a time produces a much better 45 fps
as shown in Figure 9-27.

Figure 9-27. Left: a batch size of 1 renders at 3 fps; right:- a batch size of 250 renders at 47 fps

Summary

This chapter discussed how to debug WebGL applications and improve performance. These are two important
topics that will benefit your WebGL development and the user’s enjoyment of your application. The difference
between a complex scene crawling at 3 fps and one moving nicely along at 40 fps is remarkable and could be the
difference between a user enjoying your application or abandoning it. WebGL can be difficult to debug as many
elements are at play: the specific browser, computer, and GPU used; the JavaScript API; shader programs; and
resources such as textures. Each one of these can be the source of error. Luckily for us, there are powerful tools to
assist us, starting from the IDE we use, to browser developer tools, and using WebGL inspector.

In the next and final chapter, we will present a diverse range of effects, tips and tricks—image processing,
non-photorealistic shaders, and using framebuffer objects to both determine which element in our scene is
currently picked by the mouse and to implement a shadowmap.
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Effects, Tips, and Tricks

In this chapter, we will introduce a variety of WebGL effects, tips, and tricks such as these:
e  Basic image processing
e Image processing using convolution filters
e Antialiasing
e  Nonphotorealistic shaders
e  Framebuffers and renderbuffers
e  Picking objects from the canvas

¢  Shadow map implementation

Effects

A wide variety of effects can be achieved through image-processing and convolution filters such as sharpening,
blurring, grayscale, sepia tone, color adjustments, and edge detection.

To apply these effects, we will start by loading a texture image. Then we will alter the raw color values at each
pixel in the texture within the fragment shader. For these examples, the setup is similar to some of the Chapter 6
examples in which algorithms were used to create images purely within the fragment shader. This time around,
we have a starting texture image to alter. In practice, the texture image could be from a HTMLVideoElement object,
so we could alter streaming video on the fly using these same techniques. We will concentrate on static image
processing.

Basic Image Manipulation

Our first example of image manipulation will show grayscale, inverted color values and a green tinted image next
to the original texture image. We do this by first setting some effect constants and a variable to store a uniform
value that will inform our shader which effect to use:

var NO_EFFECT = o,
GRAYSCALE EFFECT = 1,
NEGATIVE_EFFECT = 2,
GREEN_TINT_EFFECT = 3;

var effectUniform = null;

When we render to the canvas, we will actually draw our scene four times, using a quarter of the
viewport and changing the effect each time. The rendering is shown in Figure 10-1. Unfortunately, it is hard
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to see any difference in black and white print, so please visit the site http://www.beginningwebgl.com/ for a
full colour version.

b
R

Figure 10-1. Top left: original image; top right: grayscale; bottom right: inverted colors; bottom left: tinted more green

Adjusting the viewport and rerendering allows us to easily view several variations at once and is an
application of using multiple viewports in the same scene as discussed in Chapter 1. The code for the viewport
setup is shown in Listing 10-1. In it, we draw four times to different areas of the viewport and inform the fragment
shader which effect to apply each time by changing the uniform value.

Listing 10-1. Code for the viewport setup

//top left

gl.uniformii(effectUniform, NO_EFFECT);

gl.viewport(0, canvas.height/2.0, canvas.height/2.0, canvas.height/2.0);
drawScene();

//bottom left

gl.uniformii(effectUniform, GREEN TINT EFFECT);
gl.viewport(0, 0, canvas.height/2.0, canvas.height/2.0);
drawScene();
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//top right

gl.uniformii(effectUniform, GRAYSCALE EFFECT);
gl.viewport(canvas.height/2.0, 0, canvas.height/2.0, canvas.height/2.0);
drawScene();

//bottom right

gl.uniformii(effectUniform, NEGATIVE EFFECT);

gl.viewport(canvas.height/2.0, canvas.height/2.0, canvas.height/2.0, canvas.height/2.0);
drawScene();

The full code can be found in the 10/01_image processing.html file. The vertex shader is very simple and
passes only the original x and y coordinates onto the fragment shader:

<script type = "x-shader/x-vertex">
attribute vec3 aVertexPosition;

varying vec2 position;
void main(void) {
position = vec2(aVertexPosition.xy);
gl Position = vec4(position, 0.0, 1.0);
}

</script>

The fragment shader is also simple, but may appear complex due to the if/else if branches. It is shown in
Listing 10-2.

Listing 10-2. Fragment shader to apply no effect or one of three different image modifications

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec2 position;
uniform sampler2D uSampler;
uniform int uEffect;

void main(void) {
//convert texture coordinates from [-1, 1] clipspace to [0, 1]
highp vec2 texCoords = position * 0.5 + .5;

highp vec4 texColor = texture2D( uSampler, vec2(texCoords.s, texCoords.t) );
highp vec4 finalColor;

if(ukffect == 0){ //no effect
finalColor = texColor;
}else if(uEffect == 1){ //inverted colors
finalColor = vec4( vec3(1.0, 1.0, 1.0) - texColor.rgb, 1.0 );
}else if(uEffect == 2){ //grayscale
highp float gray = (texColor.r + texColor.g + texColor.b)/3.0;
finalColor = vec4( gray, gray, gray, 1.0);
}else if(uEffect == 3){ //reduced red, blue
texColor.rb *= 0.8;
finalColor = texColor;

}

gl FragColor = finalColor;

</script>
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In Listing 10-2, we take in the varying position from the vertex shader, which we then convert from the
clipspace coordinate range [-1,1] to the texture range [0,1] and store in texCoords. No matter what effect is being
applied, we first perform a texture lookup and store the result in texColor. Now we check the value of uEffect
that was passed in and determine a final color value accordingly. If uEffect is 0 (no effect), we simply set the final
color, finalColoz, to the texColor value. If uEffect is 1 (inverted color), we compute the color as (1 - RGB). If
uEffect is 2 (grayscale), we take the average of the sum of the individual RGB components. Finally, if uEffect is
3, we lower the red and blue channel values. This increases the green tint of the image.

Note In Chapter 6, when we loaded in a texture image that was used as a height map, only one of the channels
was read from to find the grayscale color. This worked because the image was grayscale to begin with. Here, though,
the image is full color. While using only one input color channel such as red may still produce a grayscale image, we
can sample more input data by using a summed average of all three RGB channels. This can produce an image with
more detail. For example, consider an input image that always has a red component of 0.0 and only the green and
blue channels vary in value. In this case, the grayscale image produced using only the red channel will be completely
black.

There are many other advanced methods to convert an image to grayscale. For instance, it is said that the human
eye does not weigh the three color channels evenly, so RGB weights of (0.3, 0.59, 0.11), respectively, are better.
GrayValue=dot( vec3(0.3, 0.59, 0.11), color.rgb);

We will perform two more direct pixel adjustments before moving on to convolution filters. The first direct
adjustment will swap color channels, and the second direct adjustment will create a sepia-toned image. Our
application is nearly the same, with the following modifications:

var COLORS_SWAPPED_EFFECT = o,
SEPIA EFFECT = 1;

//rendering to just the bottom half of the viewport
//bottom left

gl.viewport(0, 0, canvas.height/2.0, canvas.height/2.0);
gl.uniformii(effectUniform, COLORS SWAPPED EFFECT);
drawScene();

//bottom right

gl.viewport(canvas.height/2.0, 0, canvas.height/2.0, canvas.height/2.0);
gl.uniformii(effectUniform, SEPIA EFFECT);

drawScene();

And our fragment shader code for these operations now contains the following:

if(uEffect == 0){
finalColor = texColor.gbra;
Yelse if(uEffect == 1){
highp vec3 sepia = vec3(
min( (texColor.r * .393)+(texColor.g *.769)+ (texColor.b * .189), 1.0),
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min( (texColor.r * .349)+ (texColor.g *.686)+ (texColor.b * .168), 1.0),
min( (texColor.r * .272)+(texColor.g *.534)+(texColor.b * .131), 1.0)
);

finalColor = vec4(sepia, 1.0);

If uEffect is 0 (colors swapped), we map the RGB channels around to GBR, producing the image on the
left of Figure 10-2. If uEffect is 1(sepia tone), we use the Microsoft recommended color values to multiply the
original RGB values with to create the sepia tone, as shown on the right of Figure 10-2.

Figure 10-2. Left: color channels swapped; right: sepia tone

We could also adjust the brightness of the image simply by multiplying all channels by a factor:
finalColor = color.rgb * brightnessFactor

Setting the brightnessFactor to 1.0 maintains the same brightness; above this value brightens the image,
and below it darkens the image.

The preceding direct pixel adjustments are pretty cool, but also simple as they affect pixel data looked up
from a texture directly. To produce more-complex effects, we need to look at the surrounding pixel area around
each pixel as we will do next.

Convolution Filters

For more-complex effects, we need to look at the region around each pixel in the original image. This region
will be an nx n matrix, where n is odd, typically of sizes 3 x 3 or 5 x 5. This smaller image region consisting of a
weighted matrix of neighboring pixel values is known as a convolution kernel or filter.

The weighted values of the matrix will determine the final value of the pixel. We may include the original
pixel in the calculation or omit it completely and use only neighboring values. In Figure 10-3, the latter is the
case, and we take an equal average of neighboring pixels, which blurs the image.

For example, the highlighted pixel in row 2 and column 2 has its final value computed as follows:

FinalColor2,2 = ( 1 * color, ,+1 * color, ,+1 * color, , +
1* color +0 * color +1 * color +
1 * color +1 * color +1 color
)/8
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Figure 10-3. Top left: original image; top right: convolution filter around a single pixel; bottom left: the final color
value of a target pixel; bottom right: the final image after each pixel has been processed

For a pixel near the edge, we compute the pixels in the neighborhood and average appropriately. For
instance, the value of the top left pixel is this:

FinalColor1,1 = ( color ,+color, +color,, )/3

In the preceding example, the original values are black or white, so the computation is easy. For color values,
the RGB channels need to be computed separately. Above, each pixel’s value is from neighboring pixels in the
original image. There are also filters in which neighboring values are not from the original image, but from the
modified results. In these cases, the order of traversal is important.

To compute the final value of each pixel that a convolution matrix is applied to we also have to factor in the
total weight of the matrix values: the sum of each individual (w1, w2.., w9). Then we multiply the final result by
the reciprocal of the total weight if it is nonzero or 1 if it is zero:

wl| w2 w3

w4 | w5 |wé x ( 1/[max(1, total_weight)])
w7 w8 |w9

Multiplying the matrix by the reciprocal of the total weight keeps the output values within an appropriate
range. The matrix used to compute the final image of Figure 10-3 can be represented as follows:

i R 1 1/8 |1/8 |1/8
10 |1 X (1/Imax(1,8)]1)= |8 | 0 |us
1 3] 1 1/8 | 1/8 |1/8
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As another example (shown in Figure 10-4), consider the following 4 x 5 matrix of input values shown on the
left, the 3 x 3 kernel shown in the center, and the final value produced for one example cell shown on the right.
The kernel only keeps the factor from the top-left corner of the neighboring matrix.

22117 113 | 2
1195|686 1/0|0
13114 | 7 | 25 X
17| 4 |15 3 0o/0|0
6 16|12 | 19 |

(=

(=
n

w

Figure 10-4. A convolution filter that only keeps the top-left value

We have enough theory now that we can start to experiment with different convolution kernels.

Sharpen

To sharpen an image, we want to increase the contrast between bordering colors. One filter that accomplishes
this is the following:

[ 0, -1, 0,
-1, 4, -1,
0, -1, 0]

We need to know the total weight of the kernel which is the sum of its, elements. Above the total weight is
calculated as (0 - 1+0-1+4-1+0-1+0)=0. Usually the total weight equals 1, so we do not need to do anything
further.

This sharpening mask works by putting more weight on the center pixel and negative weight on edge values.
When the center and edge values are the same color, the calculation will cancel each other out, while edges that
differ from the center pixel will have their differences highlighted.

An even sharper kernel is this:

[ _11 '11 '11
-1, 8, -1,
-1, -1, -1 ]

Here the total weight is also 0. If you output the image produced from this kernel, with the input image on
the left of Figure 10-6 you get the mostly black image of Figure 10-5.
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Figure 10-5. Image produced from sharpen kernel

To apply the sharpened output, we need to add this result to our original image by adding this result to our
input image. This can be achieved directly as follows:

[ -1, -1, -1, [ o0, 0,0, [ -1, -1, -1,
-1, 8, -1, + o, 1, 0, = -1, 9, -1,
-1, -1, -1 ] 0, 0, 0] -1, -1, -1 ]

A fairly blurry image is shown on the left of Figure 10-6 along with applying both sharpen kernels to the
original image.

Figure 10-6. Left: original; center: sharpened; right: second sharper kernel

The matrices used to produce Figure 10-5 and the right of Figure 10-6 illustrate how a small kernel
modification that changes the total weight can produce vastly different results.
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Blur

When we blur an image, we are essentially losing contrast. An easy way to do this is to average all the neighboring
values for each pixel, which is known as a “box” blur. First, we set our matrix to factor in all neighboring pixels
evenly:

var blurKernel = [
1, 1, 1,
1, 1, 1,
1, 1, 1

I
Then we calculate the total weight, which is 9 for this matrix, and use it to produce our final matrix:
var blurKernel = [

1/9, 1/9, 1/9,
1/9, 1/9, 1/9,
1/9, 1/9, 1/9

15

Now the total weight of this matrix is 1. A box blur will produce quick results. Another kind of blur that
produces better results uses a Gaussian statistical distribution and is known as a Gaussian blur. The 3 x 3 kernel
is this:

[0.045, 0.122, 0.045,
0.122, 0.332, 0.122,
0.045, 0.122, 0.045]

Avery interesting blur filter is the Kuwahara filter, which reduces noise while preserving edges. This filter
produces an image that looks painted.
We will now look at some filters that detect edges.

Sobel Edge Detection

A well-known filter, known as the Sobel operator, detects horizontal or vertical images (you can view the theory
behind itat http://en.wikipedia.org/wiki/Sobel operator). To find horizontal edges, we can use this kernel:

[ _11 0) 1)
'21 0) 2)
'11 0, 1 ]
And to find vertical edges we can use this:
I: -1, -2, -1,
0, 0, O,
1, 2, 1]

Notice that both these kernels do not factor in the original (central) pixel value. In Figure 10-7, we apply
the horizontal, vertical, and combined Sobel edge detectors to the input image that is shown on the right of
Figure 10-6.
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Figure 10-7. Sobel edge detectors—left: horizontal; center: vertical; right: both

Lastly, we will demonstrate the emboss kernel before we show how to implement these filters within WebGL
and build a small application to switch filters.

Emboss

Embossing can make an image look raised like bump mapping by replacing each source pixel with either a
highlight or shadow. Embossing is often used in printing and metal work to produce raised highlights of a
graphic. An embossed image is shown in Figure 10-8.

Figure 10-8. An embossed image

To achieve this effect, we first take both the Sobel horizontal and vertical kernels and add them together:

var embossKernel = [
-2, -2,
-2, o0,
0, 2

)

)

N N O

)

15
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We can adjust the intensity of the edge detection effect by multiplying this matrix. There are four different
effects that we can achieve by swapping the direction of the 0 diagonal and the side of this diagonal in which the
positive/negative signs reside. The four possibilities are these:

[ [

-1, -1, 0, 1) 1) 0)
'1) 0) 1) 1) 0) '1)
0, 1, 1 o, -1, -1,
I, 1
[ [
0) 1) 1) 0) '1) '1)
-1, 0,1, 1, 0, -1,
-1, -1, 0 i, 1, O,

1 ]

Each of these kernels will alter the direction that shadows and highlights face—either out from the surface or
into the surface. Once we apply the kernel to our image, we then convert it to grayscale and add 0.5 to each RGB
value. This makes the image mainly gray except for where the shadows and highlights occur.

A demo that allows you to toggle these various emboss settings is in the file 10/emboss . html.

Other common convolution filter values can be found at http://www.codeproject.com/Articles/6534/
Convolution-of-Bitmaps. Another cool interactive demo that lets you adjust many effects in real time is
available to view at http://evanw.github.com/webgl-filter/.

In Figure 10-9, we show the simple graphical user interface (GUI) that shows an original image, effect in the
middle, and final combined image on the right along with a select box of various effects. We will now show how
to build this application.

sharpen2
no_effect
sharpen

sobel_edges_y
sobel_edges_x
sobel_both
B blur
ERN gaussian_blur
edge_detect

Figure 10-9. A simple GUI that we will build—Ileft: original image; center: kernel matrix effect; right: the effect
combined with the original image

We will now show how to build the application in Figure 10-9 that displays our original image on the left, an
image kernel by itself in the middle, and after the image filter is combined with the original image on the right.
It also has a drop-down select list that will change the filter. The first thing we will do is define a new variable to
store the kernel weight, the current kernel and an object containing various kernel names and values. We will
also add an initially empty < select > element:

var kernelUniform = null,
kernelWeightUniform = null,
kernels = null,
current_kernel = "no_effect";

<select id = "filters"></select>
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We attach an event listener to our select element that will store the filter value that has been selected:

$(document) .ready(function(){

$("#filters").on('change', function(evt){

current_kernel = $(this).find(":selected").text();

1;

D;
We will create a function called setKernels in which we can add properties that correspond to convolution

arrays within our kernels JSON object (see Listing 10-3).
Listing 10-3. Declaring our kernel filters

function setKernels()

{
kernels = {
"no_effect": [
o, 0, 0,
o, 1, 0,
0, 0, 0
1,
"sharpen": [
o’ -1’ o’
-1, 4,-1,
0, -1, 0
1,
"sharpen2": [
-1’ -1’ -1’
-1, 8, -1,
-1, -1, -1
1,
"sobel_edges_y": [
-1, 0, 1,
-2, o) z’
-1, 0, 1
1,
"sobel_edges_x": [
-1, -2, -1,
o, o, O,
1, 2, 1
1,
"sobel both": [
-2’ -2’ o’
-2, o’ 2’
0, 2,2
1,
"bluxr": [
1, 1, 1,
1, 1, 1,
1, 1, 1
I,
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"gaussian_bluxr":[
0.045, 0.122, 0.045,
0.122, 0.332, 0.122,
0.045, 0.122, 0.045

1,
"edge_detect":[
o, 1,0,
1) -4) 1’
0, 1, 0
]

)

var sel = $("#filters").get(0);

sel.options.length = 0;

$.each(kernels, function (x) {
sel.options[sel.options.length] = new Option(x, x);

D;

In Listing 10-3, we add properties that correspond to filters. Each property name is added as an option in our
select drop-down. The core of our application now displays three viewports. The first one is constant, while the
second one displays the result of the selected kernel, and the third one displays the sum of these two images.

When we initialize our texture, we pass its dimensions to the fragment shader :

function loadTexture()

{
textureImage = new Image();
textureImage.src = "./textures/sample.jpg";
}
gl.uniform2f(
gl.getUniformLocation(glProgram, "uTexDimensions"),
textureImage.width,
textureImage.height
)

We shall see later in Listing 10-5 that the dimension information is needed to calculate the size of each texel
within the [0, 1] range that it should be.

We pass the kernel array to our shader as a 1fv type: a one-dimensional float vector. Lastly, we change the
dimensions of our canvas for this example to 768px by 256px as shown in Listing 10-4.

Listing 10-4. Passing kernels to our fragment shader

kernelUniform = gl.getUniformLocation(glProgram, "uKernel");
kernelWeightUniform = gl.getUniformLocation(glProgram, "uKernelWeight");

loadTexture();

textureImage.onload = function() {
setupTexture();
setKernels();

(function animLoop(){
setupWebGL();

279



CHAPTER 10 © EFFECTS, TIPS, AND TRICKS

//1eft
gl.uniformifv(kernelUniform, kernels.no_effect);

gl.uniformif(kernelleightUniform, sum_array(kernels.no_effect) ) ;

gl.viewport(0o, 0, canvas.width/3.0, canvas.height);
drawScene();

var currentKernel = kernels|current_kernel].slice();
var currentKernellleight = sum_array(currentKernel);

//center
gl.uniformifv(kernelUniform, currentKernel);
gl.uniformif(kexrnelWeightUniform, currentKernellWeight ) ;

gl.viewport(canvas.width/3.0, 0, canvas.width/3.0, canvas.height);

drawScene();

//right
//kernel result added to our original image (central pixel)
if(current_kernel ! = "no_effect")

{
}

gl.uniformifv(kernelUniform, currentKernel);
gl.uniformif(kernelWeightUniform, currentKernelWeight+1 );

currentKernel[4] += 1;

gl.viewport(2.0 * canvas.width/3.0, 0, canvas.width/3.0, canvas.height);

drawScene();

requestAnimationFrame(animLoop, canvas);

DIOF

<body onload = "initWebGL()">
<canvas id = "my-canvas" width = "768" height = "256">
Your browser does not support the HTML5 canvas element.
</canvas>
<select id = "filters"></select>
</body>
</html>

The sum_array function is:

function sum_array(a)

{
var key, sum = 0;
for (key in a) {
sum+= a[key];
}
return sum;
}
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Last but not least, let us look at our fragment shader code that takes 3 x 3 kernels and returns a final color

value (shown in Listing 10-5):

Listing 10-5. Fragment shader code

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec2 position;
uniform sampler2D uSampler;
uniform highp vec2 uTexDimensions;
uniform highp float uKernel[9];
uniform highp float uKernelWeight;

void main(void) {
//convert texture coordinates from [-1, 1] to [0, 1]
highp vec2 texCoords = position * 0.5 + .5;

//find the size of each pixel relative to the [0, 1] range
highp vec2 texelSize = vec2(1.0, 1.0) / uTexDimensions;

//modified from http://games.greggman.com/game/webgl-image-processing/

highp vec4 colorSum =

texture2D(uSampler, texCoords + texelSize * vec2(-1, -1))
texture2D(uSampler, texCoords + texelSize * vec2( 0, -1))
texture2D(uSampler, texCoords + texelSize * vec2( 1, -1))

texture2D(uSampler, texCoords + texelSize * vec2(-1, 0))
//current pixel, central in the kernel
texture2D(uSampler, texCoords) * uKernel[4] +
texture2D(uSampler, texCoords + texelSize * vec2( 1, 0))

texture2D(uSampler, texCoords + texelSize * vec2(-1, 1))
texture2D(uSampler, texCoords + texelSize * vec2( 0, 1))
texture2D(uSampler, texCoords + texelSize * vec2( 1, 1))

highp float weight;

weight = uKernelWeight;

if (0.01 > weight) {
weight = 1.0;

}

gl FragColor = vec4( (colorSum / weight).rgb, 1.0 );
}

</script>

*

*

uKernel[0]
uKernel[1]
]
]

+ +

uKernel[2

uKernel[3

uKernel[5] +

* uKernel[6] +

uKernel[7] +
uKernel[8];

The fragment shader in Listing 10-5 computes the size of each texel based on the dimensions of the texture
that we passed in. Then it looks up the nine locations corresponding to the kernel matrix within our texture. If the
total kernel weight that we pass in is close to zero, we set it to 1. Finally, the fragment color is set to the weighted

sum of the kernel values.

Combining Filters

You could very easily create a fragment shader that chains or combines operations. For example, you could
sharpen an image and then set it to sepia tone. Or you could find edges with the Sobel filter and then add the

results to the original image.
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The emboss filter in the 10/emboss . html example with output shown in Figure 10-8 is similar to Listing 10-5,
but also does a grayscale operation and bias:

//to grayscale and bias

highp float gray = dot( (colorSum/weight).rgb, vec3(.3,.59,.11) ) + .5;
highp vec3 finalColor = vec3( gray, gray, gray );

gl FragColor = vec4( finalColor, 1.0 );

As a final example of image filtering, we will set an image to grayscale except for hues that are close to a
certain value. You have probably seen this effect before on TV or in photos. It makes the colored part of the image
really stand out.

The first and third photos in Figure 10-9 are the original; the second and fourth are grayscale except for very
red areas such as the chair material in the second image and the blue of the scarf, blanket pattern, parts of the
sled and gloves. (see Figure 10-10). The contrast of the final image was adjusted in order to see the changes in a
grayscale printing.

Figure 10-10. Producing grayscale images except for certain colors

The code to produce the effect in Figure 10-10 within the fragment shader is simply the following which tests
color channel values:

//equivalent to dot( texColor.rgb, vec3(.3,.59,.11) )
highp float gray = texColor.r * .3 + texColor.g * .59+texColor.b * .11;

finalColor = vec3( gray, gray, gray );
if( texColor.r>0.3 88 texColor.g<0.2 && texColor.b>0.2 )

{

finalColor = texColor.rgb;

We will now look at built-in antialiasing that blurs edges to be less jagged within WebGL.

Antialiasing

Aliasing refers to distortion or artifacts that result because sampling or resolution is too low. With visual images,
this is most often caused because we are limited in the number of pixels that monitors display, and the result

is the appearance of jagged edges. In addition to our hardware limitations, the human eye is extremely good

at picking out edges—look away from the text in this book for a minute at the objects surrounding you and pay
attention to how quickly and accurately you can discern the edges of these objects. When you combine these two
factors (image limitations and the acuity of our vision), aliasing will always be an issue with graphics.
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Methods that we have at our disposal in WebGL to antialias include multisampling/supersampling, which
take the average of multiple rendering passes with slightly different coordinate offsets. When we do this to a
texture, it is analogous to using a blur kernel. We can also use more gradual function variations when possible; for
instance, using smoothstep instead of step. Most antialiasing involves blurring of edges in one form or another.

By default, antialiasing is performed in the drawing buffer with the implementation dictated by the
particular browser client. To override the defaults and set antialiasing to false, you can provide a second
argument when obtaining a canvas context with this:

gl = canvas.getContext("webgl", {"antialias":false}) ||
canvas.getContext("experimental-webgl"”, {"antialias":false});

Of course, you would probably not want to do this unless you had a very intensive application in which
framerate was very important or you wanted to perform your own aliasing implementation. The difference
between turning antialiasing on and off is shown on the left of Figure 10-11 and with antialiasing turned off on
the right.

Figure 10-11. Left: an image rendered with WebGL; right: an image rendered with WebGL and antialiasing
disabled

The above uses the file 04/11_all_techniques.html, and a highlighted region of the image is zoomed to
show jagged edges.

Nonphotorealistic Rendering

Usually, when we render graphics we are attempting to produce highly realistic scenes that accurately model
the world. These types of renderings attempt to be indistinguishable from a photograph and are thus known as
photorealistic rendering.

However, there are times when we do not want this at all, and simpler is better. Two such applications of
nonphotorealistic rendering (NPR) are when we are trying to produce a high-contrast, cartoon-like effect and
when we are trying to convey technical diagrams in which the details are not important, but the shapes of the
objects are. We will discuss these two techniques now.

Cartoon Shading

Cartoon shading, also known as cel-shading, is used to mimic the look of a hand-drawn image. It is prevalent in
many current cartoons, such as Futurama, and in films as well. To shade something with a cartoon appearance,
we select a limited number of tones that an object can have and then pick the tone based upon the diffuse light
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angle. There is a good interactive demo of toon-shading at http://webglsamples.googlecode.com/hg/
toon-shading/toon-shading.html.

Implementation of cartoon shading is straightforward once we have the diffuse term calculated. If we start
with the shaders of the the 04/04_gouraud_phong.html example as our basis, we already have the diffuse term
calculated in our vertex shader and passed along to our fragment shader. Now we can set the final color based on
discrete diffuse values, as shown in the fragment shader of Listing 10-6.

Listing 10-6. Fragment shader for toon shading

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec3 vColor;
varying highp float diffuselambert;

void main(void) {
highp vec4 color = vec4( vColor * .1, 1.0);

if (diffuseLambext > 0.9)

{
color = vec4( vColor * .8, 1.0);
}else if (diffuseLambert » 0.6){
color = vec4( vColor * .5, 1.0);
}else if (diffuseLambert > 0.3){
color = vec4( vColor * .3, 1.0);
}

gl FragColor = color;
//gl_FragColor = vec4(vColor * floor(diffuselLambert*10.0)*.1, 1.0);

}

</script>

In Listing 10-6, based on the diffuse light component that was passed into the fragment shader, we set the
component to a percentage of the original color. This produces four distinct colors for each object. The result is
shown in the center of Figure 10-12, and uncommenting the last line produces ten distinct bands (as shown on
the right of the figure).

Figure 10-12. Cartoon shading—Ileft: two bands; center: four distinct colors; right: ten distinct colors
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Note Listing 10-6 works only because each object is a constant color to begin with. If it were not, we need to
explicitly set our constant colors between the conditions, such as the following:

highp vec4 color = vec4( 0.1, 0.0, 0.0, 1.0);

if (diffuselambert>0.9)

{

color = vec4(1.0, 0.0, 0.0, 1.0);
}else if (diffuselLambert>0.6){

color = vec4(0.5, 0.0, 0.0, 1.0);
telse if (diffuselLambert>0.3){

color = vec4(0.3, 0.0, 0.0, 1.0);
}

Technical Diagrams

For technical drawings, such as those used in engineering and computer-aided design (CAD) software, details
such as shadows and reflections are not important. In fact, they might distract from what we are trying to present.
Instead, we want to convey a simple, consistent 3D shading. One way to accomplish this is to use the Gooch
shader, which is named after Bruce and Amy Gooch.

The Gooch shader defines boundaries and edges in black, specular highlights in white and all other shades
as varying from a “cold” to a “warm” color. The cold color can be blue, purple, or green; while the warm color can
be yellow, orange, or red. The value of the color in the range can convey depth and curvature hints. Everything
else in the scene is kept simple; there is one light which is usually above the objects.

We will use an existing implementation of the Phong lighting model, either 04/04_gouraud_phong.html
or 04/05_phong_phong.html from Chapter 4 as our starting point. With this base, the Gooch shader is easy to
implement because we already have all our lighting calculations in place and only need to set the final color to a
value within our range of cold to warm hues. The only difference of these two Chapter 4 starting files is whether
the lighting calculations occur per vertex or per fragment. A Gooch fragment shader with a per-vertex lighting
calculation passed in is shown in Listing 10-7.

Listing 10-7. Gooch shading in the fragment shader

<script id="shader-fs" type="x-shader/x-fragment">
varying highp vec3 vColor;
varying highp float diffuselambert;
varying highp float specular;

void main(void) {
//below is modified from http://3dshaders.com/shaders/CH15-Gooch.frag.txt
highp vec3 SurfaceColor = vec3(0.75, 0.75, 0.75);
highp vec3 WarmColor = vec3(0.6, 0.6, 0.0);
highp vec3 CoolColor = vec3(0.0, 0.0, 0.6);
highp float DiffuselWarm = 0.45;
highp float DiffuseCool = 0.45;
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highp vec3 kcool min(CoolColor + DiffuseCool * SurfaceColor, 1.0);
highp vec3 kwarm min(WaxrmColor + DiffuseWaxrm * SurfaceColor, 1.0);
highp vec3 kfinal = mix( kcool, kwarm, diffuseLambert );

gl_FragColor = vec4 ( min(kfinal + specular, 1.0), 1.0 );

}

</script>

The per-fragment light version is similar, and full code for both can be found in the files
10/06_gooch_vs.html and 10/07_gooch_fs.html.

The amount of cool and warm color used at each pixel in the Gooch shader depends on the diffuse light
component, which we have calculated in our vertex shader and passed in. We also apply the specular value that
we have calculated for the light. You can see the outcome in Figure 10-13.

Figure 10-13. Gooch shading of our Chapter 4 scene—left: vertex shader lighting; right: fragment shader

We will shift gears now and talk about the framebuffer, which is memory that stores a full frame of image
data that can be written to and read from.

Framebuffers

The framebuffer is a type of buffer—a region of physical memory in the GPU used to temporarily hold data—that
stores an image for rendering. A framebuffer can also have attachments, such as a color buffer, depth buffer, and
stencil buffer. In WebGL the drawing buffer of the canvas element uses the default framebuffer, but we can also
have extra framebuffers that are rendered “off-screen.” These alternate framebuffers are not shown to the user,
but instead are used to store additional information such as depth or color information for later lookup. When
we initialize our WebGL context, we can specify the depth or stencil attachments of the default framebuffer (see
Appendix C).

To use a framebuffer, first we will create variables to store our data:

var fbo = null,
fboTexture = null,
fboUniform = null;
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Now we are ready to setup a Framebuffer object. We will show the steps to render to an alternate
framebuffer and some applications of using an extra framebuffer.

Creating a Framebuffer Object
To create a Framebuffer object (FBO), we call the API methods createFrameBuffer:
WebGLFramebuffer createFramebuffer();

In practice, it will look like this:

//create a framebuffer object
fbo = gl.createFramebuffer();

If we are to save the framebuffer image for use as a texture, we need to make the dimensions a power of 2.
We can either set the dimensions in variables or as object properties of our newly created fbo object:

fbo.width = 256;
fbo.height = 256;

The preceding two lines do nothing to the FBO by themselves; they are just a convenient place to set data for
later retrieval. If we are working on a copy of the rendering, it is useful to set the dimensions of the framebuffer
to the size of the canvas viewport. This way, we can look up values from the alternate framebuffer on a direct
mapping with the size of the framebuffer of the canvas.

The framebuffer itself does not allocate memory. To do this, we attach a memory buffer to it, which can be in
the form of a WebGLTexture object or WebGLRenderbuffer object.

Attaching a Texture to the Framebuffer

The initialization of using a texture with a framebuffer differs from regular usage in that the the data is set to null
instead of actual values. This is because we do not have the data until we render the scene:

//create the texture
fboTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, fboTexture);
gl.texImage2D(
gl.TEXTURE 2D, 0, gl.RGBA, fbo.width, fbo.height, o,
gl.RGBA, gl.UNSIGNED BYTE, null);

//attach the texture to the framebuffer
gl.framebufferTexture2D(
gl.FRAMEBUFFER, gl.COLOR ATTACHMENTO, gl.TEXTURE_2D, fboTexture, 0);

The API call to attach the texture to the framebuffer has this signature:

void framebufferTexture2D( GLenum target, GLenum attachment, GLenum textarget,
WebGLTexture texture, GLint level);

The target is FRAMEBUFFER, and the attachment can be COLOR_ATTACHMENTO, DEPTH_ATTACHMENT, STENCIL _

ATTACHMENT, or DEPTH_STENCIL_ATTACHMENT. In the preceding code, we are storing color information in the
texture and so use a COLOR_ATTACHMENTO attachment.
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Binding the Framebuffer
We now have to tell WebGL which framebuffer to render output to by binding it with an API call to this:
void bindFramebuffer(GLenum target, WebGLFramebuffer framebuffer);

The target is FRAMEBUFFER. If the framebuffer object value is null, WebGL will use the default framebuffer
of the canvas element.
To set rendering to our new framebuffer, we would use this:

gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);

Using an alternate framebuffer has the effect that the current rendering is not visible on the screen. Our full
code to set up an alternate framebuffer and render to it is shown in Listing 10-8.

Listing 10-8. Setting up and rendering to an alternate framebuffer object

var fbo = null,
fboTexture = null;

glProgram.fboUniform = gl.getUniformLocation(glProgram, "uFBO");
createFBO();

(function animLoop(){

IOF

function createFBO()
{
//create frambuffer object
fbo.width = 256;
fbo.height = 256;
gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);

//create the texture
gl.bindTexture(gl.TEXTURE_2D, fboTexture);
gl.texImage2D(
gl.TEXTURE 2D, 0, gl.RGBA, fbo.width, fbo.height, o,

gl.RGBA, gl.UNSIGNED BYTE, null);
gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO EDGE);
gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE_MAG FILTER, gl.NEAREST);

//attach the texture
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENTO,
gl.TEXTURE 2D, fboTexture, 0);

//render the scene to the fbo
setupWebGL();
gl.uniform1i(glProgram[0].fboUniform, 1);
gl.viewport(0, 0, fbo.width, fbo.height);
drawScene();
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//attach the texture to the framebuffer object
gl.bindTexture(gl.TEXTURE_2D, null);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);

}

The glProgram[0] . fboUniform variable in Listing 10-8 will be used to switch our fragment shader
functionality, as we will now show.

Note The createFBO call is outside of the render loop, but if we move our scene around, we need to rerender
to the FBO each time the scene shifts positions in our view. If you place the createFBO() call inside of the render
loop, make sure that you keep these lines outside or you will create a new WebGLFramebuffer and WebGLTexture
object each time through:
fbo = gl.createFramebuffer();

fboTexture = gl.createTexture();

Changing Shader Functionality per Framebuffer

We can now render to either the regular drawing buffer or to extra framebuffers. We will have our fragment
shader either perform Phong lighting or simply use the color passed in from the vertex shader, depending on the
uFBO integer uniform:

<script id = "shader-fs" type = "x-shader/x-fragment">

uniform int uFBO;
varying highp vec4 vColor;

void main(void) {
//initialize the color to the varying value passed in
highp vec4 color = vColor;

if(uFBO == 0)

{
//apply complex Phong lighting calculations

color = phongBasedColor;
}
gl FragColor = color;
}

</script>

We will render our scene twice. The first time it will be to the canvas framebuffer context and use the Phong
lighting model. The second time we will render to the FBO that we have set up with basic color rendering.

We cannot actually see what is rendered to the alternate framebuffer. To demonstrate what it contains, we will
render to the canvas a second time, as shown in Figure 10-14, this time using the framebuffer texture. However,
the image does not look right because we can see only part of two of the spheres. This is occurring because a
framebuffer by default does not perform depth testing as it does not have a depth component. The image on the
right of Figure 10-14 is produced by reversing the order of rendering, which improves the viewed objects; but the
front sphere is completely visible even though the bottom should be hidden. We will fix depth testing for the entire
scene by adding a DEPTH_ATTACHMENT to the framebuffer which already has a COLOR_ATTACHMENTO.
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Figure 10-14. Left: Phong shading; center: basic color FBO with no depth buffer; right: basic color FBO with no
depth buffer and object render order adjusted

You can see in Figure 10-14 that there is aliasing going. We can limit the aliasing artifacts by performing
better texture filtering with this:

gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MAG FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE 2D, gl.TEXTURE MIN FILTER, gl.LINEAR MIPMAP NEAREST);
gl.generateMipmap(gl.TEXTURE_2D);

To render using the framebuffer texture, we have defined two programs and switch between them as you can
see if you examine the full source code of the file 10/08_framebuffer_lookup.html.

Listing 10-9 shows the current render loop, which renders to the canvas twice and the alternate
framebuffer once.

Listing 10-9. Rendering the same scene representing multiple FBOs by splitting the viewport

(function animLoop(){
if( !paused ){
setupWebGL();

//draw to canvas twice
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.uniformii(glProgram[0].fboUniform, 0);
gl.viewport(0, 0, canvas.width/2.0, canvas.height);
drawScene();

//we will draw the framebuffer texture once to the regular canvas
//as well, just so that we can see what is going on
gl.useProgram(glProgram{1]);
gl.bindTexture(gl.TEXTURE_2D, fboTexture);
gl.viewport(canvas.width/2.0, 0, canvas.width/2.0, canvas.height);
drawFBOContents();
gl.bindTexture(gl.TEXTURE_2D, null);
gl.useProgram(glProgram{0]);

}

requestAnimationFrame(animLoop, canvas);

HO;

The example at this point can be found in the 10/08_framebuffer_lookup.html file. Now we will add a
DEPTH_ATTACHMENT so that we can do depth testing in the framebuffer.
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Adding a Depth Attachment

As mentioned, we can provide attachments to a framebuffer in the form of textures or a WebGLRenderbuffer
object. We have shown how to store the color information in a texture. It could have alternatively been stored
in a WebGLRenderbuffer object. For the depth information, we will use a WebGLRenderbuffer attachment to the
framebuffer.

As with textures and framebuffers, you must bind a renderbuffer to override the default value.The API calls
to create and bind a WebGLRenderbuffer are these:

WebGLRenderbuffer createRenderbuffer()
void bindRenderbuffer(GLenum target, WebGLRenderbuffer renderbuffer)

In our code, it will look like this:

var rbo = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER, rbo);

Setting the renderbuffer to null will unbound the current object from the RENDERBUFFER target. Next we
have to tell WebGL how much size to allocate for the renderbuffer with the API call:

void renderbufferStorage(GLenum target, GLenum internalformat, GLsizei width, GLsizei height)

The target will be RENDERBUFFER, and the format we will use will be DEPTH_COMPONENT16. All possible
internalformat values are listed in Appendix C. In our code, this declaration will look like this:

gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH COMPONENT16, fbo.width, fbo.height);

The preceding code tells WebGL to allocate enough memory in the currently bound renderbuffer to hold
(fbo.width*fbo.height) 16-bit depth values.

Analogously to how we set up our texture as an attachment to the framebuffer, we now set up the
renderbuffer as an attachment of the framebuffer:

//setup attachments
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR ATTACHMENTO, gl.TEXTURE 2D, fboTexture, 0);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, rbo)

The API signature for the new method above is this:

void framebufferRenderbuffer(  GlLenum target, GLenum attachment,
GLenum renderbuffertarget,
WebGLRenderbuffer renderbuffer );

Rerunning the code now, which is in the 10/09_framebuffer_with_depth.html file, produces the expected
result on the right of Figure 10-15.
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Figure 10-15. Left: Phong shading; right: basic colored FBO with a depth attachment

You might be thinking that this was quite a bit of work to produce an image less impressive than the original.
Why bother? Well, remember that the offscreen framebuffer can be used to look up values. We will discuss two
applications of this next.

Picking Objects

So far, we have discussed throughout the book how to project 3D coordinates onto 2D canvas space. But how
do we find the 3D coordinates from a 2D canvas point? An application of this is “picking”—being able to grab
the proper object associated with a point. But how do we do this? There could be several objects sharing the
same (x,y) coordinate. One method for complex scenes is to use a scene graph that is basically a tree-like
representation of objects that helps keep track of spatial relationships of objects. This is one of the features that
the Scene]S framework (scenejs.org) is centered around.

Another technique is to assign (and keep track of) a distinct color for each object and render it to an
off-screen buffer. Then when the user clicks the mouse in the scene, we can look up the color value of the
pixel and immediately know what object was clicked. Pretty cool, eh? In the example that produced
Figure 10-15, we already have a distinct color for each object, so do not need to add code for this part
of the technique. In practice, you would just store an object mapping and pass in different uniform colors
to the shader, such as these:

var myObjectColors = {
0: {"name": "sphere1", "color": [0, 255, 0]},
1: {"name": "cube", "color": [255, 0, 0], },
2:.
b

This lets you have up to 255° unique colors that should be more than enough to use this technique
especially if you can restrict selection to a particular region and subset of objects within your scene. The name
property is mostly for the programmer/users benefit, while the numeric index could map to VBOs, and the
color property would be passed in as a vec3 uniform to the fragment shader for the offscreen FBO
rendering pass.
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Looking Up a Value

To look up the current color of a location on the canvas, we can use the API call:

void readPixels( GLint x, GLint y, GLsizei width, GLsizei height,

GLenum format, GlLenum type, ArrayBufferView pixels);

Note The value (0,0,0,0) is returned by readPixels for any pixel outside of the bound framebuffer.

The code to capture a click event and look up the pixel value of the mouse position is not that long and is
shown in Listing 10-10. We just need to switch the active framebuffer and then restore it to the default canvas
framebulffer after we are done with our readPixels call.

Listing 10-10. Code to look up the color value from an alternate framebuffer

$(this).on("click", "canvas", function(evt){
gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);
var status = gl.checkFramebufferStatus(gl.FRAMEBUFFER);

if (status == gl.FRAMEBUFFER_COMPLETE)

{

var pixelValues = new Uint8Array(4);
gl.readPixels(evt.clientX, 255 - evt.clientY, 1, 1, gl.RGBA,
gl.UNSIGNED_BYTE, pixelValues);

if(pixelvalues[0] == 255 88 pixelValues[1] == 0 8&& pixelValues[2] == 0)
{

console.log( "Location: ("+evt.clientX+", "+evt.clientY +
") is in the RED sphere!");
telse if( pixelValues[0] == 255 &3 pixelValues[1] == 255 &&
pixelValues[2] == 0)
{
console.log( "Location: ("+evt.clientX+", "+evt.clientY +
") is in the YELLOW sphere!");
Yelse if( pixelValues[0] == 0 && pixelValues[1] == 255 &&
pixelvValues[2] == 0)
{
console.log( "Location: ("+evt.clientX+", "+evt.clientY +
") is in the GREEN sphere!");
}

gl.bindFramebuffer(gl.FRAMEBUFFER, null);

};

Console log messages will look like those in Figure 10-16 when using the application.
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t‘é Elements (@ | Resources @ Network i! Scripts

N

Location: (155, 168) is in the RED sphere!
Location: (157, 194) is in the RED sphere!
Location: (155, 163) is in the RED sphere!
Location: (189, 85) is in the GREEN sphere!
Location: (192, 112) is in the GREEN sphere!
Location: (58, 63) is in the YELLOW sphere!
Location: (71, 114) is in the YELLOW sphere!

Figure 10-16. Clicking a sphere now logs a message to the console

The working program is in the 10/10_picking.html file. The 10/11_picking_moving.html file demonstrates
the scene being animated and the FBO being regenerated in each frame. You can extend the example by
changing the active sphere color while it is clicked or allowing the sphere to be moved or thrown when picked.

Shadow Map Implementation

To implement the shadow map that we discussed in Chapter 4, we look at the scene from the lights perspective
and render to an off-screen framebuffer. The framebuffer setup is the same as it was for the picking example (see
Listing 10-8), as outlined in the framebuffers section of the chapter. This involves using a separate MVP matrix for
the light’s perspective such as this:

var lightMvMatrix = mat4.lookAt([5, 0, 5], [0, 0, 0], [0, 1, O]);

This function call will return the model view matrix representation obtained by setting the light’s camera
position to [5,0,5], telling it to look at the origin [0,0,0], and that the “up” direction of the camera is [0,1,0]. Our
shader program for the first pass, which will calculate and store the nearest depth value of each (x,y) coordinate
as seen from the light, is shown in Listing 10-11.

Listing 10-11. Depth storage shader program

<script type="x-shader/x-vertex">
uniform mat4 ulightMvMatrix;
uniform mat4 uPMatrix;

attribute vec3 aVertexPosition;

void main(void) {
gl Position = uPMatrix * ulLightMvMatrix * vec4(aVertexPosition, 1.0);
}

</script>
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<script id="shader-fs" type="x-shader/x-fragment">
//http://spidergl.org/example.php?id=6
highp vec4 pack depth( const in highp float depth ) {

const highp vec4 bit shift = vecsa( 256.0 * 256.0 * 256.0,
256.0 * 256.0,
256.0,
1.0 );
const highp vec4 bit mask = vec4( 0.0,
1.0 / 256.0,
1.0 / 256.0,
1.0 / 256.0 );

highp vec4 res = fract( depth * bit shift );
res -= res.xxyz * bit mask;
return res;

}

//http://www.nutty.ca/?page_id=3528amp;link=shadow_map

highp vec4 pack_depth2 (highp float depth)

const highp vec4 bias = vec4(
1.0 / 255.0,
1.0 / 255.0,
1.0 / 255.0,
0.0

);

highp float r = depth;

highp float g = fract(r * 255.0);
highp float b = fract(g * 255.0);
highp float a = fract(b * 255.0);
highp vec4 colour = vec4(r, g, b, a);

return colour - (colour.yzww * bias);

}
void main()
{ gl FragColor = pack depth( gl FragCoord.z );
//gl_FragColor = pack_depth2( gl FragCoord.z );
</scripti

EFFECTS, TIPS, AND TRICKS

In Listing 10-11, the vertex shader is a basic MVP transform, but this time uses the light model view matrix.
The fragment shader, although long, has one main line that takes the z coordinate after transformation and stores
it as a color value. I have shown two similar packing functions that use the bits of each color channel to store a
broader range of depth values. Since the packing functions use a different channel order, the colors of the image,
if rendered to the canvas (as shown on the center and right of Figure 10-17), will vary. The first function results in

green-blue values and the second results in white-red values.
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Figure 10-17. Left: a rendered shadow map; center: first pack function depth map; right: second pack function
depth map

Next, we render the scene a second time and look up the stored depth value for each fragment. If the current
fragment is closer than the value stored in the texture, we render it as normal; otherwise, we darken it or make
it completely black to represent that it is shadowed. In our application we need to add one more matrix, which
converts clipspace coordinates to texture coordinates:

shadowBiasMatrix = mat4.create();

mat4.identity(shadowBiasMatrix);

mat4.scale(shadowBiasMatrix, [0.5, 0.5, 0.5], shadowBiasMatrix);
mat4.translate(shadowBiasMatrix, [1.0, 1.0, 1.0, 1.0], shadowBiasMatrix);

The contents of the shadowBiasMatrix will be the following:

[ 0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0

]

In the vertex shader, we calculate the shadow coordinate by transforming each input coordinate by the light
model view matrix, projection matrix, and then light bias:

shadowPosition = uShadowBiasMatrix * uPMatrix * ulightMVMatrix * vec4(vertexShifted, 1.0);

This vector is passed on to the fragment shader, in which it is compared with the stored depth value that we
pass in as a FBO texture attachment:

[11171711717171717171777/]  shadowmap specific code /////////11117111171111
highp vec3 shadowCoordZDivide = shadowPosition.xyz/shadowPosition.w;

highp vec4 rgba_depth = texture2D( uFBOTexture, shadowCoordZDivide.xy );
highp float depth = unpack_depth( rgba_depth );
//highp float depth = unpack_depth2( rgba_depth );

highp float visibility = 1.0;
highp float bias = 0.00005; //used to reduce self shadow, "shadow acne"

if( shadowCoordzDivide.z > (depth - bias) )
{

}
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1111117117171777171177777  end shadowmap specific code ///////1/11117111111117

gl FragColor = vec4(color.rgb * visibility, color.a);

The first thing we do here is divide the shadowPosition by the homogeneous w coordinate in order to get
Cartesian coordinates in the clipspace range. Then we look up the stored depth value for this (x,y) coordinate
from our texture uniform. As we packed the depth values in the first shader pass, we now need to unpack the
values in order for comparisions to make sense. We will show the implementation of the unpack functions after
explaining the rest of the preceding code. Finally, we compare the current fragment z-value, which has been
converted to the light projection with the stored value minus a small bias amount. If the input fragment is greater
than the stored value, it means that it lies behind a closer fragment that the light can see and so is in shadow.

You can use either pack/unpack function in combination but cannot mix them. The code for the unpack
functions is this:

//http://spidergl.org/example.php?id=6
highp float unpack _depth( const in highp vec4 rgba depth ) {
const highp vec4 bit shift = vec4(
1.0 / ( 256.0 * 256.0 * 256.0 ),
1.0 / ( 256.0 * 256.0 ),
1.0 / 256.0,
1.0
)
highp float depth = dot( rgba_depth, bit shift );
return depth;
}

//http://waw.nutty.ca/?page _id=3528amp;link=shadow_map
highp float unpack_depth2 (highp vec4 colour)

{
const highp vec4 bitShifts = vec4(
1.0,
1.0 / 255.0,
1.0 / (255.0 * 255.0),
1.0 / (255.0 * 255.0 * 255.0)
)s
return dot(colour, bitShifts);
}

The result of this program is displayed on the left of Figure 10-17. The full code is in the 10/12_shadow. html
file. Applying a shadow map to the textured, blended, foggy image at the end of Chapter 4 has been demonstrated
inthe 10/13_all_techniques.html file and is shown in Figure 10-18.
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Figure 10-18. Left: semitransparent objects do not cast a shadow; right: all objects cast a shadow

In Figure 10-18, the left image enables blending and disables the depth test during the depth pass. On
the right, all objects produce shadows. Alternatively, you could pass in a uniform value that varies the shadow
visibility based on the amount of transparency.

It is left to the reader to implement this and investigate further techniques such as percentage-closer filtering
(PCF), which produces softer shadows and less aliasing.

Summary

This chapter demonstrated a variety of image-processing techniques that can be extended for real-time video
processing and animation usage. We have also presented nonphotorealistic rendering and gone over framebuffer
basics and setup. Finally, we have shown two applications of using an off-screen framebuffer: picking and a
shadow map.

I sincerely hope that you have enjoyed the material presented in this book. There are many more advanced
topics that you can now look forward to moving on to, and the knowledge that you gained here should help you
on your quest.

Stop by the companion website at http://www.beginningwebgl.com if you have not already done so to give
your feedback on the book, report errata, and request and view other tutorials and examples.

In the afterword, we will discuss the future of WebGL—at least as much as can be predicted at this point—
based on current browser and mobile support and scheduled feature additions.
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The Future of WebGL

What does the future hold for WebGL? In this afterword, we will discuss both what WebGL has going for it and
some concerns, and speculate on its future.

In order for WebGL to have a bright future and not fail like other past 3D browser attempts such as the
Virtual Reality Markup Language (VRML), it needs the following:

e  Support
e Adoption from the development community, especially game developers

¢ Improvements and active development

Support

Here we will look at support from browsers and devices.

Browser support

As mentioned in the book introduction, Chrome and Firefox do a very good job of supporting WebGL. Safari and
Opera are improving, and IE does not have plans to natively support WebGL anytime soon. While five years ago
this could be a disaster, IE does not command the market share that it used to enjoy—Chrome has surpassed it
and Firefox is not far behind.

Mobile Device support

The level of mobile devices that currently support WebGL is small but will improve with each new device released
and should be much higher in 2013.

Right now, there are several mobile browsers that support WebGL: Firefox Mobile, Android Browser, Opera
Mobile (Android only), BlackBerry Playbook, and iOS Mobile Safari (supported for only iAd at the moment).

The mobile market share is growing and is an important area in which to gain ground. As Adobe recently
announced that it will be discontinuing mobile Flash support, WebGL has an even better opportunity to establish
itself as the go-to technology for mobile 3D.

The site http://webglstats.com/ by Florian Boesch has some very interesting statistics on the current
support of various WebGL metrics across browsers, devices, and operating systems.
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Adoption

As mentioned in this book, Google has used WebGL for its Body, Map, and Earth applications.

We showed in Chapter 9 that Firefox is using WebGL for a new 3D debugging visualization of the
Document Object Model (DOM). It is important to get support and usage from the big name companies, and
this is happening with support from Google, Mozilla, Apple and Opera. It is also important to get well-written
frameworks that lower the bar to 3D coding. Frameworks such as Three.js are already easy to use and will
continue to get better.

What WebGL Has Going for It

e No plugin needed.

e The timing is right. 3D in the browser is more useful now than back when VRML tried.
GPUs are more powerful. WebGL is part of the larger movement of HTML5 and related
technologies, which adds many browser enhancements which are making it possible to
create applications previously only possible on the desktop.

“For a couple of decades, the web has been sipping that power through a straw but with
WebGL, it’s as if the straw had been replaced by a fire hose when it comes to graphic
processing power...” http://www.tnl.net/blog/2011/10/23/webgl-and-the-future-
of-the-web/

e  Web applications do not have platform compatibility issues or need to be installed.
e  WebGL frameworks are making it easier all the time to get started with WebGL.

e  For the experienced graphics programmers, the ability to tweak WebGL at a low level is
extremely useful.

e  Many awe-inspiring demos.

e Transparent development of the specification.

e  Experience and existing developers. Khronos is also in charge of OpenGL and Collada.

There are many current OpenGL and OpenGL ES developers who can fairly easily pick
up/transition to the WebGL API.

Concerns

WebGL is powerful and very promising. However it is a relatively new language and has some concerns which
include these:

e  Lack of Microsoft support. As mentioned previously, this is not as big a deal as it would
have been when Microsoft dominated the browser demographic. Whether it is not
supporting WebGL because of security concerns or because of interest in its own DirectX
technology, only Microsoft can say for certain.

e  Security concerns. GPU blacklists, and newer graphics cards with improved security
will help with GPU concerns. Other web security measures such as cross-origin resource
sharing will enable flexibility while maintaining security.

e  Flash or other technology being used for 3D instead. As mentioned, Flash discontinuing
mobile support helps alleviate this concern.
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e  Performance issues with JavaScript . JavaScript is slow. Improvements have been made
such as typed arrays, and more optimizations are being investigated.

¢  Game developers need to get on board. This point will now be expanded upon.

Game Developers

An excellent blog entry at http://codeflow.org/entries/2011/sep/11/webgl-and-html5-challenges-for-
the-future/ by Florian Boesch explains how WebGL needs game developers to adopt it. In the entry several
features that are needed by game developers are listed with those relating to WebGL specifically being: multiple
render targets, geometry instancing, texture lookup in the vertex shader, and floating-point textures. Current
support for these features by browser can be found at the webglstats.com link mentioned here.

Active Development

The WebGL specification, future extensions, and browser implementations are all under active development.

Extensions

The WebGL language has extensions to the core that are in development and can be viewed at
http://www.khronos.org/registry/webgl/extensions/. Of the extensions currently listed, three in
particular that will be useful are these:

e Anisotropic filtering, which improves the quality of textures that are viewed at an
oblique angle

e  Depth textures for shadow maps
e  Compressed textures
Future features that could be added soon include these:
e  More extensions, such as cross-context sharing or multiple render targets.

e  Multithreading in web workers. This would allow uploading textures and data without
blocking the main thread.

e Asynchronous context creation and resource sharing between contexts.

The Final Word

Nothing in technology is certain, but I firmly believe that WebGL is here to stay—or I wouldn’t have taken the
time and energy to write this book. WebGL is a very promising technology being developed at the right time
when browsers are under rapid release cycles and are supporting more advanced features daily. It is also a time
when more and more powerful computers are being crammed into mobile devices everywhere. WebGL is already
a very useable technology. Framework improvements will help lower the bar for new developers, more debug
and utility tools will be created, and performance will continue to improve.
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APPENDIX A

Essential HTMLS and JavaScript -

There are many, many improvements and features that are either part of HTMLS5 or associated with it:
geolocation, new input types, form validation, local storage, and web sockets (to name a few). Covering
everything new is both not feasible and not desired here—there are recent large books that do so in depth.

Essential HTML5

While you will not need to know everything new and great about HTMLS5 to follow along with this book, to
maximize your understanding of the code samples we will present the relevant differences from HTML 4 that you
need to be aware of.

Brevity

First, HTML5 allows more compact writing of a document by standardizing the opening tags and having
shorthand for scripts and styles. In HTML 4, you would have something like code Listing A-1 below:

Listing A-1. A minimalistic HTML 4 document

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<TITLE>Example</TITLE>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<style type="text/css">
body{ color: #222222; }
</style>
<script type="text/javascript">

</script>
</head>
<body>
<p>Some text</p>
</body>
</html>
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With HTMLS5, the equivalent document is shorter and clearer to write, as shown in Listing A-2. You do not
have to declare transitional or strict in your doctype, just the simple and clean <!doctype html>. We can also
leave out the type attribute for the style and script tags because JavaScript and CSS are the default.

Listing A-2. A minimalistic HTML5 document

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
<style>
body{ color: #222222; }

</style>
<script>

</script>
</head>
<body>
<p>Some text</p>
</body>
</html>

Semantic Areas

We just showed that HTML5 has some nice shorthand over HTML 4. HTML 5 also lets you outline your document
in a more natural and expressive manner. In the past, if you wanted a header and footer area of your page, one
way of styling would be to group the relevant content in a <div> with an appropriately expressive id attribute
value such as that shown in Listing A-3.

Listing A-3. HTML 4 document with id used to mark major sections

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<title>Example</title>
</head>
<body>
<div id="header">
my header stuff
</div>
<div id="main-content">
<p>Some text</p>
</div>
<div id="footer">
my footer stuff
</div>
</body>
</html>
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With HTML5, we have many new included tags such as <header> and <footer>, which make this markup
cleaner and the sections more natural as shown in Listing A-4.

Listing A-4. HTML5 document with new semantic tags for major page sections

<!doctype html>

<html>
<head>
<meta charset="UTF-8">
<title>Example</title>
</head>
<body>
<header>
my header stuff
</header>
<div id="main-content">
<p>Some text</p>
</div>
<footer>
my footer stuff
</footer>
</body>
</html>

Other new structural elements are article, aside, figcaption, figure, hgroup, nav, and section. There are
new non-structural elements as well—such as audio, canvas, time, and video—and new attributes for existing
elements, but we will cover only the new canvas element in this book.

The <canvas> Element

For graphics programming within the browser, the most important difference between HTML 4 and 5 is the
addition of the <canvas> element. This new element allows the scriptable rendering of graphics within the
browser. The canvas element has width, height, and id attributes. The area within a canvas element can be
manipulated with the JavaScript language. Most modern browsers support the <canvas> element, which has
markup like this:

<canvas id="my-canvas" width="600" height="400">
Your browser does not support the HTML5 canvas element.
</canvas>

The text within the tag is displayed only if the browser does not support the <canvas> tag.

<canvas> Context

Because canvas supports more than one graphics AP, to start rendering in a canvas, we must first specify the
API we wish to use. We do this with the getContext(contextId, args. . .) function, where the first argument is the
context name such as ‘2d’ or ‘webgl; and additional arguments are optional and dependent on which API is used.

<script>
var canvas = document.getElementById("my-canvas");
var context = canvas.getContext('webgl');
//draw something awesome

</script>
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<canvas id="my-canvas" width="600" height="400">
Your browser does not support the HTML5 canvas element.
</canvas>

Essential JavaScript

Ideally the reader has some JavaScript experience. However, some readers will have zero JavaScript experience—
possibly coming from the world of OpenGL. If this describes you, I highly recommend doing some independent
JavaScript research on a site such as https://developer.mozilla.org/en/JavaScript, which presents many
very good learning references. In this section, we recap a few basic JavaScript concepts, but it is not intended to
be used as a thorough reference.

JavaScript variables are typeless. Variables are declared with var:

var name = "Brian";
var age = 30;

Although typeless, certain operations are dependent on the stored value. Here the "+"operator is used as
either addition or string concatenation depending on the context:

var one = 1;
console.log(15 + one); //16
console.log("15" + one); //"151"

To declare an array:
var color = [1.0, 0.0, 0.0]; //ox

var color = [];
color.push(1.0);
color.push(0.0);
color.push(0.0);
console.log(color); //[1, 0, 0]

To declare an JavaScript Object Notation (JSON) object:

var my object = {};
my_object.name = "Brian";
my_object.age = 30;

my object.color = [0.0, 0.2, 1.0]

or equivalently:

var my_object = {
name: "Brian",
age: 30,
color: [0.0, 0.2, 1.0]

};

Although JavaScript has objects, it does not have classes. Objects can simulate class behavior and contain
functions:

var my object = {
name: "Brian",
age: 30,
color: [0.0, 0.2, 1.0],
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getName: function (){
return "My name is " + this.name;
}

};

my object.getName(); //"My name is Brian"

Self-invoking Anonymous Functions
We will sometimes make use of self-invoking anonymous functions, which look like this:

(function (){
//executed immediately
//not global scope for variables

IOF

The previous function calls itself (self-invoking) and is nameless (anonymous). An advantage of this type
of method is that the scope of all variables declared within it are not global. In this way, it is considered a best
practice to wrap part or all of our JavaScript code in a self-invoking function.

A variation of the self-invoking anonymous function is a self-invoking function. For example, in the book we
use a named function called animLoop and call it again within each loop—creating an endlessly running loop:

(function animLoop (){
if ( !paused ){
setuphebGL();
setMatrixUniforms ();
drawScene();

}

requestAnimationFrame(animLoop, canvas);

NO;

Note The applications in the book use many global variables. This is not a good practice, but easiest and most
practical for the types of fairly small standalone applications presented in the book.

jQuery

jQuery is a hugely popular JavaScript library available at http://jquery.com/. There is nothing you can do with
jQuery that you cannot do with core JavaScript, but you will probably be able to achieve the result quicker and
using less but more-readable code.

First, we need to include the jQuery library in our code:

<script src="http://code.jquery.com/jquery-latest.js"></script>

jQuery enables easy Document Object Model (DOM) traversal. With regular JavaScript, to find an element
with id value "super-dog" you would use this:

document.getElementById("super-dog");
With jQuery you would use one of the following:

$ ("#super-dog");
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or
jQuery("#super-dog");

To find the third td cell of the fifth row of an HTML <table> with an id of "super-dog" with jQuery you
would use this:

$("#super-dog tr:5 td:3");

So, you can also use CSS selectors! To find all the links on an HTML page with class "menu” and store the
href values with jQuery, you would use the following:

var links = [];
$ ("a.menu").each (function(){

links.push ( $(this).attr("href") );
D;

Both of these operations are not nearly as straightforward with regular JavaScript.

You need to ensure that the entire DOM has loaded before traversing it. Two ways to accomplish this are to
place the jQuery code just before the closing </body> tag or to wrap code in a document ready block:

$(document) .ready(function(){
var links = [];
$ ("a.menu").each (function(){
links.push ( $(this).attr("href") );
D;

console.log(links);

s

Two more features of jQuery that make it popular are its abstraction of Ajax calls, which we cover in the
book, and also its chainability. We can call a function and then call a function on that function, and so on. For
example:

$ ("#super-dog tr").each (function(){

$(this).find("td span.new").
addClass("old").
removeClass("new").
closest("tr").
next().
find("td span.old").
addClass("dead").
removeClass("old");

B;

This is a contrived example, but it is valid and illustrates the power of jQuery. For each row in the table, we
find spans with class "new" and switch them to "0ld". Then we find the closest tr parent element (we could have
nested tables where we have multiple tr parents), find the next sibling row, and this time find spans with "01d"
classes and change them to "dead" classes.
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Graphics Refresher

It is assumed throughout this book that the reader has a basic understanding of 3D graphics but we will refresh
memories of some relevant topics in this appendix.

Pixels

When we digitally represent an image on a computer screen, it is composed of a rectangular grid of individual
points of color known as pixels. This type of a representation is known as a raster graphic or bitmap. How true to
the original image the displayed image appears depends on the number of pixels on the screen: the resolution.
In Figure B-1, we show an input image on the left, a 4 x 4 pixel grid representation in the center and a 16 x 16
grid representation on the right. As the resolution increases, the difference between the original image to the
rendered image decreases.

Figure B-1. Left: an input image; center: 4 x 4 pixel output; Right: 16 x 16 pixel output

Primitives
Graphics primitives are the smallest building blocks that we can compose images and scenes with. The

primitives available to us depend on the language used and can be points, lines, polygons such as triangles and
quadrilaterals, or solid shapes in some higher-level languages.
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Colors

A color has several properties, including hue (tint), saturation (darkness), and value (intensity). In fact, colors can
be represented by these three properties in the Hue-Saturation-Value (HSV) color model. There is more than one

way to represent colors, though, depending on whether we are using additive or subtractive color theory, and the

application usage such as printing an image or displaying it to a screen.

When we print images, the subtractive CMYK model is often used, which has four channels comprised of
Cyan, Magenta, Yellow, and a darkness (K). This is why some printers have a color CMY cartridge and a black
cartridge.

On computer monitors, color values are typically expressed using the additive RGBA scheme that has four
channels that comprise Red, Green, Blue, and Alpha (transparency) values. Each channel value can range from
0.0 to 1.0 in floating point, 0 to 255 in integer values, or 0x000000 to 0xffffff in hexadecimal values.

To convert from CMY to RGB we take [ (1.0, 1.0, 1.0) - CMY].Soyellowin CMYis (0.0, 0.0, 1.0) and
inRGBis (1.0, 1.0, 0.0).In this book, we will exclusively use the RGB(A) color model.

Note More information on the RGBA color format can be found on Wikipedia at
http://en.wikipedia.org/wiki/RGBA_color_space.

Coordinate Systems

The Cartesian coordinate system is named after the mathematician, philosopher, and writer Rene Descartes and
uses (x,y) pairs in two dimensions and (x,y,z) triplets in three dimensions. The origin is the intersection of all the
axes. In two dimensions, this is (0,0), and in three dimensions it is (0, 0, 0). For each axis, values increase on one
side of the origin and decrease on the other. There are two separate 3D coordinate system orientations, as shown
in Figure B-2. The difference between them is the z direction in relation to the x and y axes.

y y
-z Y4
X <€ > X X € > X
z -Z
A 4 A 4
-y -y

Figure B-2. Two distinct 3D coordinate system orientations

Transforms

Elementary or affine transforms alter the vertices of a figure. There are three elementary transforms: translation,
rotation, and scaling, as shown in Figure B-3.
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Figure B-3. Transforms of a translation (left), a rotation (middle), and a scale (right)

A translation of a painted region 3 positions to the right and 2 positions up is shown in Figure B-4.

Figure B-4. Translation of an image

5.

A rotation of an image subregion 90 degrees clockwise around its center pixel is shown in Figure B

I
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Figure B-5. Rotation of an image

A scaling of two times the original size of a painted subregion is shown in Figure B-6.
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Figure B-6. Scaling of an image

Graphics programming uses a lot of mathematics, and although libraries can abstract away much of the
calculations, it is good to know some essentials.

Math

The first things that we should know are angles, degrees, pi, and radians.

Angles

An angle is formed when two rays intersect, as shown on the left of Figure B-7. Technically, an angle is a measure
of the quotient of the arc length of the two rays and the radius when inscribed inside of a circle, as shown on the
right of Figure B-7. A circle has 360 degrees, so angles are sometimes measured in degrees.

gd

Figure B-7. Left: two rays forming an inner angle; right: angle inside of a circle

Pi

The constant number pi, represented as 7, is approximately 3.14159 which is the ratio of a circle’s circumference
to its diameter. Pi is used extensively in trigonometry, geometry, and other branches of mathematics.
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Radians

In addition to degrees, we have radians which are defined as 360 degrees = 2n radians. This means that 1 radian
is about 57.3 degrees. Figure B-8, shows various angles and the radian values of the four quadrant right angles.
Angle A looks to be about 45 degrees and E is about 150 degrees, which makes angle B about 30 degrees. Angle D
looks like it is -60 degrees, which would make angle C about 30 degrees.

/2 = 90°

E — o
ne 180 7\ 0. 2n =360

D

3n/2 = 270°, -n/2 = -90°

Figure B-8. Various angles of rotation

The relations of the angles and sides of a triangle are studied in the branch of mathematics known
as trigonometry.

Trigonometry

For aright-angled triangle (one angle is exactly 90 degrees) and another angle 6 in the triangle, we can know the
ratio of the side lengths. Figure B-9 shows the hypotenuse (side opposite the right angle), opposite and adjacent
sides in relation to the angle.

hypotenuse
opposite

adjacent

Figure B-9. The sides of a right-angled triangle
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Given these sides and angle, 8, we can express the angle in terms of the sides as follows:

sin 0 = opposite/hypotenuse
cos 0 = adjacent/hypotenuse
tan 6 = opposite/adjacent

These relations are often memorized as soh, cah, and toa, which are the acronyms of the relation names
and sides.

Rotations
In two dimensions, a rotation uses the rotation matrix:

[cosA -sinA] [x] = [xcosA - ysinA]
[sinA cosA] [y] = [xsinA + ycosA]

We can use these equations to calculate the new x, y coordinates after a rotation of A degrees.

Vectors

With two points with coordinates (x,,y,,z,), (X,,¥,,Z,) we will now define some useful calculations.

Dot Product

The dot product returns a scalar value by returning the sum of component-wise multiplications of two input
vectors:

* * *
X1X2+y1y2+y122

Cross Product

The cross product (x, Y, z) returns a vector perpendicular to the plane formed by two input vectors. As such, we
use it to find normal vectors. The cross product is computed as follows:

_ oy X, _ y*
X= y1*Z2 y2*21
y= -XI*Z2 + XZ*Z1
Z= XY, - XY,

Length

The length between two points can be calculated as the square root of the sum of the squares of each component
difference:

squareroot( (x,-x,)* + (y,-y,)*+(z,-2,)?)
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WebGL Spec. Odds and Ends

This appendix contains some parts of the specification that we mentioned but did not fully cover and are listed
here for reference.

WebGLContextAttributes

When we obtain our WebGL context, we can optionally pass it an object containing some or all of the following
properties:

dictionary WebGLContextAttributes {
boolean alpha = true;
boolean depth = true;
boolean stencil = false;
boolean antialias = true;
boolean premultipliedAlpha = true;
boolean preserveDrawingBuffer = false;

b
We showed how to preserve the drawing buffer in a Chapter 5 projectile example using this:

gl = canvas.getContext("webgl", {preserveDrawingBuffer: true}) ||
canvas.getContext("experimental-webgl", {preserveDrawingBuffer: true});

By preserving the buffer contents instead of automatically swapping buffers, we can see the trail of object
movement and also produce effects such as motion blur. If performance is key and we do not need alpha or
depth testing, we can disable those attributes. If we need the stencil buffer, we can enable it. We showed in
Chapter 10 how to disable antialiasing. The premultipliedAlpha value affects how the alpha component of the
canvas affects the overall color of the image. Setting this value to false makes the WebGL color calculation of the
canvas element the same as the 2D context does.

Texture Properties

In Chapter 3, we glossed over some texture options.
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Cube Map Targets

For cube mapped textures, the target property can be one of these:

TEXTURE_CUBE_MAP, TEXTURE_BINDING CUBE_MAP,
TEXTURE_CUBE_MAP_POSITIVE X,TEXTURE_CUBE_MAP_NEGATIVE X,
TEXTURE_CUBE_MAP_POSITIVE_Y,TEXTURE_CUBE_MAP_NEGATIVE Y,
TEXTURE_CUBE_MAP_POSITIVE_ Z,TEXTURE_CUBE_MAP_NEGATIVE Z,
MAX_CUBE_MAP_TEXTURE_SIZE

texImage2D
Formats for the texture can be as follows:
ALPHA: Alpha
RGB: R, G, B color
RGBA: R, G, B color and alpha
LUMINANCE: Luminance
LUMINANCE ALPHA: Luminance, alpha
And the types can be these:

UNSIGNED_BYTE
UNSIGNED_SHORT 4 4 4
UNSIGNED SHORT 5 5 5_
UNSIGNED_SHORT 5 6 _5

4
1

With the following combinations being legal:

UNSIGNED BYTE / RGBA, RGB, LUMINANCE, LUMINANCE ALPHA
UNSIGNED_SHORT 4 4 4 4 / RGBA

UNSIGNED_SHORT 5 5 5 1 / RGBA

UNSIGNED_SHORT 5 6 5 / RGB

Framebuffer and RenderBuffer Targets and Attachments

In Chapter 10, we introduced framebuffers and renderbuffers. Additional legal attachment/format combinations
are these:

DEPTH_ATTACHMENT/DEPTH_COMPONENT_16
STENCIL_ATTACHMENT/STENCIL_INDEX8
DEPTH_STENCIL_ATTACHMENT/DEPTH_STENCIL

Color attachment: COLOR_ATTACHMENTO
Addition formats: RGBA, RGBA4, RGB5 A1, RGB565, STENCIL_INDEX

The following concurrent attachment combinations are illegal:

DEPTH_ATTACHMENT / DEPTH_STENCIL_ATTACHMENT
STENCIL_ATTACHMENT / DEPTH_STENCIL_ATTACHMENT
DEPTH_ATTACHMENT / STENCIL_ATTACHMENT
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Additional Resources

WebGL is an emerging technology with many aspects. I have done my best to compile good supplemental
learning resources in this appendix.

Companion Website

You can find companion websites to this book at the following addresses:

Beginning WebGL
http://www.beginningwebgl.com/

gitHub Page
https://github.com/bdanchilla/beginningwebgl

Due to the volatile nature of the web quickly creating deadlinks, and resources that become obsolete or new
resources that spring up, please refer to the companion website for up-to-date revisions of the resources listed in
this appendix.

Topics

Further resources for many of the technologies mentioned in this book are listed here (alphabetically).

Ajax
XMLHttpRequest Specification
http://www.w3.0rg/TR/XMLHttpRequest/

Mozilla XMLHttpRequest Page
https://developer.mozilla.org/En/XMLHttpRequest/Using XMLHttpRequest

Debugging

Khronos debugging wiki page
http://www.khronos.org/webgl/wiki/Debugging

WebGL Inspector
http://benvanik.github.com/WebGL-Inspector/
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Demos

Cutting-edge Chrome WebGL experiments
http://www.chromeexperiments.com/webgl

Khronos demo repository
http://www.khronos.org/webgl/wiki/Demo_Repository

Nice water demo
http://madebyevan.com/webgl-water/

HTML

HTML 5 and 4 differences
http://www.w3.o0rg/TR/html5-diff/

Canvas Element
http://www.w3.0rg/TR/html5/the-canvas-element.html

JavaScript

Douglas Crockford site
http://javascript.crockford.com/

jQuery
http://jquery.com/

JSON
http://www.json.org/

LAMP, MAMP, and WAMP

MAMP
http://www.mamp.info/en/index.html

XAMPP
http://www.apachefriends.org/en/index.html

EasyPHP
http://www.easyphp.org/

Bitnami
http://bitnami.org/

OPEW
http://sourceforge.net/projects/opew/

Browser Setting Adjustment
https://github.com/mrdoob/three.js/wiki/How-to-run-things-locally

Libraries and Frameworks

Framework listings
http://www.khronos.org/webgl/wiki/User_Contributions
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GLGE

Project Page
http://www.glge.org

Tutorial
http://www.rozengain.com/blog/2010/06/23/hands-on-webgl-basic-glge-tutorial/

PhiloGL

Project Page
http://www.senchalabs.org/philogl/

Resources
http://www.slideshare.net/philogb/leaving-flatland-getting-started-with-webgl-sxsw-2012

Three.]JS

Project page
https://mrdoob.github.com/three.js/

Documentation
http://mrdoob.github.com/three.js/docs/latest/
Wiki

https://github.com/mrdoob/three.js/wiki

Learning Resources: Paul Lewis
http://aerotwist.com/tutorials/

Learning Resources: Jerome Etienne
http://learningthreejs.com/

Nice Diagrams of Overall Objects
http://ushiroad.com/3j/
http://www.12devsofxmas.co.uk/2012/01/webgl-and-three-js/

Lighting

Direct Illumination models
http://www.lighthouse3d.com/tutorials/glsl-tutorial/directional-lights-ii/
http://www.ozone3d.net/tutorials/glsl lighting phong p3.php

Phong Reflection Model
http://en.wikipedia.org/wiki/Phong reflection _model

Figure 3-13 is a variation of http://en.wikipedia.org/wiki/File:Phong_components_version_4.png
which is Licensed under the GNU Free Documentation License

Global Illumination Models
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter38.html
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Ambient Occlusion
http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch14.pdf
http://en.wikipedia.org/wiki/Screen_Space Ambient Occlusion
http://www.gamerendering.com/category/lighting/ssao-1lighting/

Reflection and Refraction
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch17.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter19.html

Shadow Mapping
http://fabiensanglard.net/shadowmapping/index.php

Mathematics

Wolfram Mathworld
http://mathworld.wolfram.com

Fractals

http://users.erols.com/ziring/mandel.html
http://66.39.71.195/Derbyshire/manguide.html
http://davis.wpi.edu/~matt/courses/fractals/index.htm
http://www.fractalforums.com/

Matrix and Vector Libraries

gl-matrix.js
https://github.com/toji/gl-matrix

sylvester
http://sylvester.jcoglan.com/

webgl-mjs
http://code.google.com/p/webgl-mjs/

Benchmarks
http://stepheneb.github.com/webgl-matrix-benchmarks/matrix_benchmark.html

Mesh File Formats

Wavefront (obj) format
http://en.wikipedia.org/wiki/Wavefront_OB3J

Collada format
http://en.wikipedia.org/wiki/COLLADA

Three.js internal JSON format
https://github.com/mrdoob/three.js/wiki/JISON-Model-format-3.0
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Performance and Best Practices

Mozilla Developer Network Best Practices
https://developer.mozilla.org/en/WebGL/WebGL_best practices

Gregg Tavares Google I/0 2011

http://www.youtube.com/watch?v=rfQ8rKGTVlg
http://games.greggman.com/game/webgl-techniques-and-performance/
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en//
events/io/2011/static/notesfiles/WebGLTechniquesandPerformancenotes.pdf

Profiling with about: tracing
http://www.html5rocks.com/en/tutorials/games/abouttracing/

Physics

Learning
http://www.physicsclassroom.com

WebGL Demos
http://www.ibiblio.org/e-notes/webgl/gpu/contents.htm

Javascript Libraries:

Box 2D Ports
http://code.google.com/p/box2dweb/
https://github.com/kripken/box2d.js

Bullet Port
https://github.com/kripken/ammo.js/

Cannon
https://github.com/schteppe/cannon. js

physi.js
http://chandlerprall.github.com/Physijs/

Tutorials

http://creativejs.com/2011/09/box2d-javascript-tutorial-series-by-seth-ladd/
http://learningthreejs.com/blog/2012/06/05/3d-physics-with-three-js-and-physijs/
http://www.html5gamedevs.com/2012/01/18/webgl-bullet-js-experiences-history-programming-
slides/

WebGL

Current browser support
http://caniuse.com/#search=webgl

Khronos group wiki
http://www.khronos.org/webgl/wiki/Main_Page
http://www.khronos.org/webgl/wiki/Tutorial#Creating_the_Shaders

WebGL Specification
http://www.khronos.org/registry/webgl/specs/latest/
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Learning WebGL
http://learningwebgl.com/blog/

Mozilla Developer area
https://developer.mozilla.org/en/WebGL

Opera Developer area
http://dev.opera.com/articles/view/porting-3d-graphics-to-the-web-webgl-intro-part-2/

Reference Card
http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf

Presentations
http://www.khronos.org/webgl/wiki/Presentations

Tutorials
http://www.html5rocks.com/en/features/graphics

Blending
http://mrdoob.com/lab/javascript/webgl/blending/blendfunc.html

WebGL Future

Challenges and predictions

http://www.irrlicht3d.org/pivot/entry.php?id=1255
http://codeflow.org/entries/2011/sep/11/webgl-and-html5-challenges-for-the-future/
http://www.tnl.net/blog/2011/10/23/webgl-and-the-future-of-the-web/

Support statistics
http://www.riastats.com/
http://webglstats.com/

Extension Registry
http://www.khronos.org/registry/webgl/extensions/

WebGL SL (OpenGL ES SL)

OpenGL ES 2.0 Shading Language version 1.0
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES Specification_1.0.17.pdf

WebGL quick reference card available
http://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf

Online GLSL editors

http://webglplayground.net/

http://spidergl.org/meshade/
http://www.kickjs.org/example/shader_editor/shader_editor.html

Existing shaders
http://code.google.com/p/glslang-library/source/browse/trunk/trunk/glslang/shaders/material/
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Index

A

Ajax, 317
Anisotropic filtering, 301
Antialiasing, 282-283

B

Bitmap. See Raster graphics

Box2D physics engines, 225

Bui Tuong Phong. See Phong shading
Bullet physics engines, 225

Bump mapping, 162

C

Camera

capture, 119

control zoom, 119

mouse wheel, 119-120

rotate, mouse movement, 118-119

shader program, 120
Canvas 3D Library, 206
Cartesian coordinate system, 310
Cartoon shading, 283-285
Cel-shading. See Cartoon shading
Collaborative design activity file

format, 215

Companion websites, 317
Convolution filters, 271

blur, 275

combining filters, 281-282

description, 271-273

emboss, 276-281

sharpen, 273-274

Sobel edge detection, 275-276
CopperLicht, 207
Cross-Origin Resource Sharing

(CORS), 60

D

Debugging, 317
Debugging and performance, 233. See also Graphical

processing unit (GPU)
browser developer tools
console tab, 235
3D visualization, 236
log messages and error messages, 236
network statistics, 235
sandbox, 237
source code, 236
browser resources
browser vs. GPU power, 253
JavaScript files, 253
textures, 253
bugs/buggy, 233
common pitfalls
browser differences, 248
external shader errors, 249
GPUs, 248
incompatible contexts, 247
mobile device precision, 247
resource, 248
textures, 248
virtual camera, 247
context errors
creation, 238
loss and restoration, 238-239
fragment shader, 252
integrated development environment,
233-234
jQuery, 234
measuring framerate, 250-251
optimizations, 251
unit testing code, 247
WebGL
attribute location, 246
binding, 247

323




INDEX

Debugging and performance (cont.)
bottlenecks, 252
buffers tab, 241
draw calls, 245
error codes, 237
invalid keyword, 246
pixel history, 246
programs tab, 242
state tab, 243
textures, 241
timeline metrics, 243
trace tab, 244

webgl-debug.js, 239-240
Demos, 318

E

Effects, 267
convolution filters, 271
blur, 275
combining filters, 281-282
description, 271-273
emboss, 276-281
sharpen, 273-274
Sobel edge detection, 275-276
description, 267
image manipulation, 267
description, 267
fragment shader, 269
uEffect, 270-271
viewport setup code, 268-269
Emboss filter, 276-281

F

File formats, 214
Collada format (.dae), 215
JSON, 215-216
Wavefront format (.obj), 214-215
Fog, 106-107
Fractals, 139, 144
IFSs, 156
Julia set, 147
L-systems, 156-157
Mandelbrot and Julia sets interaction, 147
HTML form, 148-150
JavaScript Event Listeners, 150-153
passing information and animation, 153-155
Mandelbrot set, 144-146
TRIANGLE_STRIP call, grid mesh, 157-161
Framebuffer object (FBO), 287
Framebuffers, 286
binding, 288-289
depth attachment, 291-292
description, 286
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FBO creation, 287
and renderbuffers, 316
shader functionality, 289-290
texture attachment, 287
WebGLRenderbuffer attachment,
291-292

Frameworks, 205
C3DL, 206
CopperLicht, 207
description, 205
GLGE, 207
Jax, 207
Kick]S, 207
personal preference, 206
philoGL

cube rotation code, 208-211
description, 207

popularity, 206
power and function, 206
Scene]JS, 207
support and activity, 206
TDL, 207
Three.js, 208
usability, 206

G

GLGE, 319
Collada file loading, meshes, 222-224
cube render code, 211-213
description, 207
GL Shading Language (GLSL), 33
angle and trigonometric functions,
46-47
built-in constants, 44
built-in variables, 44
exponential functions, 47
geometric functions, 48-49
graphics pipelines (see Graphics pipelines)
Kick]JS Shader Editor, 51
math functions, 47-48
matrix and vector functions, 49-50
primitive types, 42
procedural shaders, 51
discard function, 53-56
gradient color, 52
stripes, 53
qualifiers
invariant, 44
order, 44
parameter, 43
precision, 43
storage, 42-43
SpiderGL MeShader, 51
texture and lookup functions



2D texture functions, 50
3D texture functions, 50
noise functions, 50
vector and matrix operations, 45-46
vector components, 44-45
WebGL Playground, 51
Gooch shading, 285-286
Gouraud shading, 96
Graphical processing unit (GPU)
batch draw calls, 253
buffer switching, 254
cache state (gl.getX/gl.readX), 254
calculations, 258-259
cooked-up
draw calls, 260
interleaved data, 261-262
matrix values, 264
multiple objects, 259
render loop, 260-261
sphere data, 263-264
textures, 263
three thousand objects, 261
features, 255
getError queries, 254
index buffers, 258
interleaved arrays
offset, 258
separate data, 256-257
stride, 257-258
painting, 139
color lookups, 141-144
gradient and varying luminosity, 141
square plane, 139-140
redundancy, 254
shader programs, 254
techniques, 259
texture atlas, 254-255
typed arrays, 255-256
Graphics pipelines
fixed functionality, 33-34
OpenGL ESSL, 35
programmable pipelines, 34
rendering process, 34-35
shaders, 34
clean up, 38-39
fragment shader, 37
setting up, 37-38
using jQuery, 41
vertex shader, 36-37
with Ajax, 39
XMLHttpRequestObject, 39-40
Graphics refresher, 309
cartesian coordinate system, 310
color, 310
math

INDEX

angles, 312

pi, 312

radians, 313

rotations, 314

trigonometry, 313-314

vectors, 314
pixels, 309
primitives, 309
transforms

rotation, 311

scaling, 311

translation, 311

H

Height maps, 139, 161
bump/normal mapping, 162
vertex and fragment shader, 161

Henri Gouraud. See Gouraud shading

HTMLS5, 303
brevity, 303-304
<canvas> element

context, 305-306
marup, 305
resources, 318
semantic areas, 304-305

Image manipulation, 267

description, 267

fragment shader, 269

uEffect, 270-271

viewport setup code, 268-269
Integrated development environment (IDE), 233-234
Intercollisions

bounding boxes and spheres, 127-128

conservation of momentum, 128

different mass, 130-131

mass, 129

rectangle, 127

uniform mass collisions, 128-129
Iterated function systems (IFSs), 156

J

JavaScript
jQuery, 307-308
JSON, 306
resources, 318
self-invoking anonymous functions, 307
variables, 306-307
JavaScript Object Notation (JSON), 306
description, 215
Three.js
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JavaScript Object Notation (JSON) (cont.)
with core WebGL, 221-222
exporting a mesh, 219
mesh loading, 219-221

Jax, 207

jQuery, 307-308

K

Kick]S, 207

Kinetic energy (KE). See Potential energy (PE)

L

LAMP, 318
Libraies and Frameworks, 318
Lindenmayer systems (L-systems),
156-157
Lighting, 57, 75
ambient, 7576, 77-80
diffuse, 75
directional, 75, 77-80
normal vectors, 76
point, 76, 81
specular, 75
vs. textures, 81-83

MAMP, 318
Math
angles, 312
pi, 312
radians, 313
rotations, 314
trigonometry, 313-314
vectors
cross product, 314
dot product, 314
length, 314
Meshes, 213
Collada file loading, with GLGE,
222-224
existing models, 214
file formats, 214
Collada format (.dae), 215
description, 214
JSON, 215-216
Wavefront format (.obj), 214-215
modeling resources, 214
Three.js, 216
Blender module, 216-219
JSON format, 219-224
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N

Nonphotorealistic rendering (NPR), 283
cartoon shading, 283-285
description, 283
technical diagrams, 285-286

o)

.obj 3D file format, 14-15

P, Q

Particle systems, 139, 166
attributes, 166
enhancements, 168-170
life cycle, 166
update function, 167-168
with WebGL, 166

Performance. See Debugging and performance

PhiloGL, 319
cube rotation code, 208-211
description, 207
Phong reflection/illumination model
Blinn-Phong calculations, 102
Gouraud shader, 98-100
Phong shader, 100-102
shininess values, 102
specular reflection, 98
Phong shading, 96-98
Physics, 115, 321
code setup
interacts, 118
mouse wheel, 119-120
rotate, mouse events, 118-119
sphere properties, 117
storing information, 117-118
VBO, 116
collisions, 126
forces acts
acceleration, 116
rates, 116
scalars and vectors, 115
gravity
acceleration properties, 124-125
bounce back up, 123-124
bouncing balls, 126
colliding and falling, 122-123
free falling, 120-122
nonperfect elasticity, 125-126
intercollisions

bounding boxes and spheres, 127-128

conservation of momentum, 128



different mass, 130-131
uniform mass collisions,
128-129
kinematics, 115
potential energy
collisions, 136-137
friction, 134
properties, 136
three-dimensional, 134
variables, 135
velocities, 137
vertex and indice values, 135
projectiles
drawing context, 134
equations, 132
factors, 132
gl-matrix.js, 133
key shortcuts, 132-133
path, 131
velocity vector, 132
scope, 115
velocity, three dimensions, 126
Physics engines, 225
Box2D, 225
Bullet, 225
sphere collisions code, 227-231
Picking objects, 292
color value look up code, 293
console log messages, 294
description, 292
Pixels, 309
Potential energy (PE)
collisions, 136-137
friction, 134
properties, 136
three-dimensional, 134
velocities, 137
vertex and indice values, 135
Productivity tools, 205
frameworks, 205
C3DL, 206
CopperLicht, 207
description, 205
GLGE, 207, 211-213
Jax, 207
KickJS, 207
personal preference, 206
PhiloGL, 207-211
popularity, 206
power and function, 206
Scene]JS, 207
support and activity, 206
TDL, 207
Three.js, 208
usability, 206

INDEX

meshes, 213
existing models, 214
file formats, 214-216
importing, exporting and format
conversion, 216-224
modeling resources, 214
physics engines, 225
Box2D, 225
Bullet, 225
sphere collisions code, 227-231
shaders, 224
textures, 224-225
Projectiles
drawing context, 134
equations, 132
factors, 132
gl-matrix.js, 133
key shortcuts, 132-133
path, 131
velocity vector, 132

R

Raster graphics, 309
Realism, 85
ambient occlusion, 108
atmospheric fog, 106-107
blending, 109-112
depth buffer, 109
final image, 85
harder shadows, 108
light implementation
attenuation, 103-104
direct illumination models, 106
global illumination models, 106
Phong illumination model, 98-102
shading models, 91-98
spotlights, 104-106
reflection and refraction
final image, 113
fresnel effect, 113
fresnel shader, 113
glass/water, 112
setup
plane class, 87-88
spheres, 88-91
vector operations, 86-87
shadow maps, 108-109
softer shadow, 108
Renderbuffers. See Framebuffers
Resources, 317
Ajax, 317
companion websites, 317
debugging, 317
Demos, 318
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Resources (cont.)
GLGE, 319
HTML, 318
JavaScript, 318
LAMP, MAMP and WAMP, 318
libraies and framwork, 318
lighting, 319-320
mathematics, 320
matrix and vector libraries, 320
mesh file formats, 320
performance and best practices, 321
PhiloGL, 319
physics, 321
Three.]JS, 319
WebGL
browser, 321-322
future, 322
SL, GL and ES, 322

S

Scene]S, 207
Shaders, 224
Shading models
flat shading method, 91-94
lambert reflection, 94-96
normal vectors, 91-92
smooth shading, 91, 96-98
Gouraud shading, 96
Phong shading, 96-98
Shadow map implementation, 294
depth storage shader program, 294-295
description, 294
packing functions, 295
percentage-closer filtering (PCF), 298
unpack function code, 297
Sobel operator, 275

T, U
Terrain, midpoint displacement, 162
iterations of, 163
recursive function, 164-165
texImage2D, 316
Texture properties
cube map targets, 316
texImage2D, 316
Textures, 57, 58, 224-225
application and shader interaction, 61
coordinates, 58
data storage, 64-65
3D object, 66
coordinates, 66
data changes, 68-70
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uPMatrix and uMVMatrix, 67-68
useTexture flag, 71-72
filtering, 62-63
images, 59-60
vs. lighting, 81-83
mipmaps, 65
multiple textures, 72
application changes, 72-73
shader program changes, 73-74
objects, 58-59
texel, 58
texImage2D, 59
toggling state, 70-72
vertex shader, 61-62
width and height, 58
wrapping, 63-64
Three dimensions. See Velocity
Threedlibrary (TDL), 207
Three.js framework, 173, 319
Blender module, 216-219
background, 173
color
clear color, 180
object creation, 179
RGB values, 180
core object types, 175
custom mesh
geometry object, 185-186
movement, 188-189
separate vertex colors, 186-188
2D canvas context, 183-184
description, 208
directory structure, 174-175
2D Rendering, 185
features, 174
Hello World
addMesh function, 178
initWebGL function, 178
queries, 176-177
rectangular cuboid, 176
renderer object, 179
setupRenderer, 178
import/export, 202
JSON format
with core WebGL, 221-224
exporting a mesh, 219
mesh loading, 219-221
library code, 174
lighting, 180-181
lighting and textures
addLight(), 199
initWebGL method, 197-198
parameter, 198
particle system, 199-201



shaders, 197
variables, 197
meshes
flat shading, 182
THREE.Mesh, 181
torus geometry, 182
wireframe, 183
object updates, 183
ShaderMaterial
setupShaderMaterial method, 193-194
setupTexture (), 196
shader program, 194
source code, 195
variables, 193
vertex shader, 196
shaders, 184
textures
custom coordinates, 191-193
ShaderMaterial, 193-196
tQuery, 202-203
triangular prism, 189-191
usage, 175
Transforms
rotation, 311
scaling, 312
translation, 311

\'

Velocity, 126
Vertex buffer object (VBO), 61, 116

W XY Z

WAMP, 318
WebGL, 1
animation and model movement, 22
movement creation, 23-24
using requestAnimationFrame, 22-23
blank canvas, 1-2
browser, 321-322
color attributes, 20-22
color buffers, 4

context, 2-4
depth buffers, 5
framework (see Frameworks)
future, 299, 322
active developments, 301
adoption, 300
browser support, 299

extensions, active developments, 301

features, 300
Flash technology, 300
for gamers, 301
framework improvements, 301
JavaScript performance concerns,
301
lack of Microsoft support, 300
mobile device support, 299
security concerns, 300
primitive types, 5
shaders, 8-16
SL, GL and SL, 322
stencil buffers, 5
three-dimensional rendering, 26
depth testing, 31-32
gl-matrix library, 26-28
using Index buffer, 29-31
vertex data, 6
attributes and uniforms, 7-8
Vertex Buffer Objects (VBOs), 6-7
view, 16
clip coordinates, 17-18
manipulate coordinates, 18
matrix library, 26
model-view matrix, 24-25
projection matrix, 25
viewport, 18-20
WebGLContextAttributes, 315
WebGL spec. odds and ends, 315
framebuffers and renderbuffers, 316
texture properties
cube map targets, 316
texImage2D, 316
WebGLContextAttributes, 315
Web workers, multithreading, 301
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