


Visit us at
w w w . s y n g r e s s . c o m

Syngress is committed to publishing high-quality books for IT Professionals and delivering 
those books in media and formats that fit the demands of our customers. We are also  
committed to extending the utility of the book you purchase via additional materials  
available from our Web site.

SOLUTIONS WEB SITE
To register your book, please visit www.syngress.com. Once registered, you can access 
your e-book with print, copy, and comment features enabled.

ULTIMATE CDs
Our Ultimate CD product line offers our readers budget-conscious compilations of  
some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect  
way to extend your reference library on key topics pertaining to your area of expertise, 
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime 
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS
For readers who can’t wait for hard copy, we offer most of our titles in downloadable  
e-book format. These are available at www.syngress.com.

SITE LICENSING
Syngress has a well-established program for site licensing our e-books onto servers  
in corporations, educational institutions, and large organizations. Please contact our  
corporate sales department at corporatesales@elsevier.com for more information.

CUSTOM PUBLISHING
Many organizations welcome the ability to combine parts of multiple Syngress books,  
as well as their own content, into a single volume for their own internal use. Please  
contact our corporate sales department at corporatesales@elsevier.com for more 
information.



This page intentionally left blank



John Hoopes Technical Editor

Aaron Bawcom	 Andreas Turriff
Paul Kenealy	 Mario Vuksan
Wesley J. Noonan	 Carsten Willems
Craig A. Schiller	 David Williams
Fred Shore



Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively “Makers”) 
of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS 
and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or 
consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion  
or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with 
computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author UPDATE®,” 
and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition of a Serious Security 
Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of 
Elsevier, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective 
companies.

Unique Passcode

48305726

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Virtualization for Security

Including Sandboxing, Disaster Recovery, High Availability, Forensic Analysis, and Honeypotting
Copyright © 2009 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as permitted 
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any 
means, or stored in a database or retrieval system, without the prior written permission of the publisher, with the 
exception that the program listings may be entered, stored, and executed in a computer system, but they may not be 
reproduced for publication.

Printed in the United States of America
1  2  3  4  5  6  7  8  9  0

ISBN 13: 978-1-59749-305-5

Publisher: Laura Colantoni	 Project Manager: Andre Cuello
Acquisitions Editor: Brian Sawyer	 Page Layout and Art: SPI
Technical Editor: John Hoopes	 Developmental Editor: Gary Byrne
Cover Designer: Michael Kavish	 Indexer: SPI
Copy Editors: Leslie Crenna, Emily Nye, Adrienne Rebello, Gail Rice, Jessica Springer, and Chris Stuart

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and Rights, 
at Syngress Publishing; email m.pedersen@elsevier.com.

Library of Congress Cataloging-in-Publication Data

Hoopes, John.
  Virtualization for security : including sandboxing, disaster recovery, high availability / John Hoopes.
    p.  cm.
  ISBN 978-1-59749-305-5
  1.  Virtual computer systems.  2.  Virtual storage (Computer sciences)--Security measures.  3.  Database security.   
  I. Title. 
  QA76.9.V5H66 2009
  005.8--dc22

2008044794



John Hoopes is a senior consultant at Verisign. John’s professional background includes 
an operational/support role on many diverse platforms, including IBM AS/400, IBM 
mainframe (OS/390 and Z-Series), AIX, Solaris, Windows, and Linux. John’s security 
expertise focuses on application testing with an emphasis in reverse engineering and 
protocol analysis. Before becoming a consultant, John was an application security testing 
lead for IBM, with responsibilities including secure service deployment, external service  
delivery, and tool development. John has also been responsible for the training and 
mentoring of team members in network penetration testing and vulnerability assessment.  
As a consultant, John has led the delivery of security engagements for clients in the 
retail, transportation, telecommunication, and banking sectors. John is a graduate of  
the University of Utah.

John contributed content to Chapter 4 and wrote Chapters 6–8, 12, and 14. John also  
tech-edited Chapters 3, 10, and 11.

v

Technical Editor



vi

Aaron Bawcom is the vice president of engineering for Reflex Security. 
Reflex Security helps organizations accelerate adoption of next-generation 
virtualized data centers. At Reflex, Aaron drives the technical innovation  
of market-leading virtualization technology. He architects and designs  
next-generation management, visualization, cloud computing, and application- 
aware networking technology. During his career, he has designed firewalls, 
intrusion detection/prevention, antivirus, antispyware, SIM, denial-of- 
service, e-mail encryption, and data-leak prevention systems.

Aaron’s background includes positions as CTO of Intrusion.com and 
chief architect over the Network Security division of Network Associates.  
He holds a bachelor’s degree in computer science from Texas A&M University  
and currently resides in Atlanta, Georgia.

Aaron wrote Chapter 2.

Paul Kenealy (BA [Hons] Russian and Soviet Studies, Red Hat Certified 
Engineer) has just completed an MSc in information security at Royal 
Holloway and is an information security incident response handler with 
Barclays Bank in Canary Wharf, London. His specialities include security 
pertaining to Linux network servers, intrusion detection, and secure  
network architecture and design. Paul’s background includes positions  
as a programmer with Logica, and he has designed and implemented  
a number of VMware infrastructure systems for security monitoring and 
incident analysis.

Paul contributed content to Chapter 5.

Wesley J. Noonan (VCP, CISA) is a virtualization, network, and security 
domain expert at NetIQ, where he directly interfaces with customers to 
meet and understand their needs and to integrate his experiences with 
NetIQ’s development road map. With more than 14 years in the IT  
industry, Wesley specializes in Windows-based networks and network  
infrastructure security design and implementation.

vi

Contributing Authors



vii

Wesley is a continual industry contributor, having authored Hardening 
Network Infrastructure, coauthored Hardening Network Security, The CISSP 
Training Guide and Firewall Fundamentals, and acted as the technical editor 
for Hacking Exposed: Cisco Networks. Previously, Wesley has presented at 
VMworld 2008, TechMentor, and Syracuse VMUG; taught courses as a 
Microsoft Certified Trainer; and developed and delivered his own Cisco 
training curriculum. He has also contributed to top tier industry publications 
such as the Financial Times, Redmond magazine, eWeek, Network World, and 
TechTarget’s affiliates.

Wesley currently resides in Houston, Texas, with his family.
Wesley wrote Chapters 10 and 11, contributed content to Chapter 5, and  

tech-edited Chapters 2, 4–9, 12, 13, and 14.

Craig A. Schiller (CISSP-ISSMP, ISSAP) is the chief information security 
officer at Portland State University, an adjunct instructor of digital  
forensics at Portland Community College, and president of Hawkeye  
Security Training, LLC. He is the primary author of Botnets: The Killer Web  
App (Syngress, ISBN: 1597491357) and the first Generally Accepted System 
Security Principles (GSSP). He is a contributing author of several editions 
of the Handbook of Information Security Management and Data Security  
Management. Craig was also a contributor to Infosecurity 2008 Threat Analysis 
(Syngress, ISBN: 9781597492249), Combating Spyware in the Enterprise 
(Syngress, ISBN: 1597490644), and Winternals Defragmentation, Recovery, 
and Administration Field Guide (Syngress, ISBN: 1597490792).

Craig was the senior security engineer and coarchitect of the NASA 
Mission Operations AIS Security Engineering Team. He cofounded two 
ISSA U.S. regional chapters, the Central Plains Chapter and the Texas 
Gulf Coast Chapter, and is currently the director of education for ISSA-
Portland. He is a police reserve specialist for the Hillsboro Police Department 
in Oregon.

Craig is a native of Lafayette, Louisiana. He currently lives in Beaverton,  
Oregon, with his wife, Janice, and family ( Jesse, Sasha, and Rachael). 
Both Janice and Craig sing with the awesome choir of St. Cecilia’s 
Catholic Church.

Craig contributed content to Chapter 3 and wrote Chapter 9.



viii

Fred Shore is a customer support analyst for the HealthCare Partners 
Medical Group. He provides specialized and expert support for Windows- 
based operating systems. His expertise on Windows systems is grounded 
in more than 17 years of hands-on technical support experience. His 
background includes extensive troubleshooting and problem solving.  
His background also includes stints at Portland State University’s Office 
on Information Technology and Vivendi Games, North America.

Fred holds a bachelor’s degree in business administration: information 
systems from Portland State University. He now lives in Southern California 
with his dog, Chance.

Fred contributed content to Chapter 3.

Andreas Turriff (MCSE, MCSA, CNE-5, CNE-6, MCNE) is a member 
of the IT security team at Portland State University, working for the  
CISO, Craig Schiller. Andreas integrates the tools for computer forensics 
analysis on bootable media for internal use; his current main project is the 
development of a Linux Live-DVD employing both binary and kernel- 
level hardening schemes to ensure the integrity of the forensics tools  
during analysis of malware. Andreas is currently in his senior year at  
Portland State University, where he is working toward earning a bachelor’s 
degree in computer science. He also has worked previously as a network 
administrator for a variety of companies.

Andreas contributed content to Chapter 3.

Mario Vuksan is the director of research at Bit9, where he has helped 
create the world’s largest collection of actionable intelligence about  
software, the Bit9 Global Software Registry. He represents Bit9 at  
industry events and currently works on the company’s next generation 
of products and technologies. Before joining Bit9, Vuksan was program 
manager and consulting engineer at Groove Networks (acquired by  
Microsoft), working on Web-based solutions, P2P management, and 
integration servers. Before joining Groove Networks, Vuksan developed 
one of the first Web 2.0 applications at 1414c, a spin-off from PictureTel. 
He holds a BA from Swarthmore College and an MA from Boston  
University. In 2007, he spoke at CEIC, Black Hat, Defcon, AV Testing 
Workshop, Virus Bulletin, and AVAR Conferences.

Mario wrote Chapter 13.



ix

Carsten Willems is an independent software developer with 10 years’ 
experience. He has a special interest in the development of security tools 
related to malware research. He is the creator of the CWSandbox, an  
automated malware analysis tool. The tool, which he developed as a part of 
his thesis for his master’s degree in computer security at RWTH Aachen, is 
now distributed by Sunbelt Software in Clearwater, Florida. He is currently 
working on his Ph.D. thesis, titled “Automatic Malware Classification,” at 
the University of Mannheim. In November 2006 he was awarded third 
place at the Competence Center for Applied Security Technology (CAST) 
for his work titled “Automatic Behaviour Analysis of Malware.” In addition, 
Carsten has created several office and e-business products. Most recently, 
he has developed SAGE GS-SHOP, a client-server online shopping system 
that has been installed over 10,000 times.

Carsten contributed content to Chapter 3.

David Williams is a principal at Williams & Garcia, LLC, a consulting  
practice based in Atlanta, Georgia, specializing in effective enterprise  
infrastructure solutions. He specializes in the delivery of advanced solutions 
for x86 and x64 environments. Because David focuses on cost containment  
and reduction of complexity, virtualization technologies have played a key 
role in his recommended solutions and infrastructure designs. David has 
held several IT leadership positions in various organizations, and his  
responsibilities have included the operations and strategy of Windows, 
open systems, mainframe, storage, database, and data center technologies 
and services. He has also served as a senior architect and an advisory  
engineer for Fortune 1000 organizations, providing strategic direction  
on technology infrastructures for new enterprise-level projects.

David studied music engineering technology at the University of 
Miami, and he holds MCSE+I, MCDBA, VCP, and CCNA certifications. 
When not obsessed with corporate infrastructures, he spends his time with 
his wife and three children.

David wrote Chapter 1.



This page intentionally left blank



xi

Contents

Chapter 1 An Introduction to Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2
What Is Virtualization?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

The History of Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
The Atlas Computer . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
The M44/44X Project. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
CP/cms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
Other Time-Sharing Projects. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Virtualization Explosion of the 1990s and Early 2000s. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

The Answer: Virtualization Is…. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8
Why Virtualize?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

Decentralization versus Centralization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
True Tangible Benefits . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13

Consolidation . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
Reliability. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
Security. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18

How Does Virtualization Work? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
OS Relationships with the CPU Architecture. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
The Virtual Machine Monitor and Ring-0 Presentation. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
The VMM Role Explored . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

The Popek and Goldberg Requirements. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24
The Challenge: VMMs for the x86 Architecture . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25

Types of Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
Server Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
Storage Virtualization . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
Network Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30
Application Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31

Common Use Cases for Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32
Technology Refresh. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32
Business Continuity and Disaster Recovery. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34
Proof of Concept Deployments . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
Virtual Desktops . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
Rapid Development, Test Lab, and Software  

Configuration Management. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36



xii	 Contents

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42

Chapter 2 Choosing the Right Solution for the Task. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  45
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
Issues and Considerations That Affect Virtualization Implementations. .  .  .  .  .  .  .  .  . 46

Performance. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47
Redundancy. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47
Operations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48

Backups . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48
Security. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48
Evolution. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

Discovery . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
Testing . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
Production . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
Mobility . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50
Grid. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50

Distinguishing One Type of Virtualization from Another. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
Library Emulation . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51

Wine. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
Cygwin. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53

Processor Emulation. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53
Operating System Virtualization . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54
Application Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54
Presentation Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
Server Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55

Dedicated Hardware . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
Hardware Compatibility. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56

Paravirtualization . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
I/O Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
Hardware Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62

Chapter 3 Building a Sandbox. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  63
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
Sandbox Background. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64



	 Contents	 xiii

The Visible Sandbox. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
cwsandbox.exe. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68
cwmonitor.dll . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69

Existing Sandbox Implementations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72
Describing CWSandbox. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74
Creating a Live-DVD with VMware and CWSandbox. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78

Setting Up Linux. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78
Setting Up VMware Server v1.05 . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80
Setting Up a Virtual Machine in VMware Server . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80
Setting Up Windows XP Professional in the Virtual Machine. .  .  .  .  .  .  .  .  .  .  .  . 81
Setting Up CWSandbox v2.x in Windows XP Professional . .  .  .  .  .  .  .  .  .  .  .  .  . 82
Configuring Linux and VMware Server for Live-DVD Creation. .  .  .  .  .  .  .  .  .  . 83
Updating Your Live-DVD. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 85

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89
Notes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90
Bibliography . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90

Chapter 4 Configuring the Virtual Machine . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  91
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92

Resource Management. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92
Hard Drive and Network Configurations . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92

Hard Drive Configuration . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93
Growing Disk Sizes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93
Virtual Disk Types. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93
Using Snapshots. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94

Network Configuration . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94
Creating an Interface. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94

Bridged . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95
Host-Only . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96
Natted . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97

Multiple Interfaces. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
Physical Hardware Access. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99

Physical Disks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99
USB Devices. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103

Interfacing with the Host. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104
Cut and Paste. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104
How to Install the VMware Tools in a Virtual Machine. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 105
How to Install the Virtual Machine Additions in Virtual PC. .  .  .  .  .  .  .  .  .  .  .  . 112



xiv	 Contents

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115

Chapter 5 Honeypotting. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  117
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118
Herding of Sheep. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118

Honeynets. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
Gen I . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
Gen II. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
Gen III. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121

Where to Put It. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
Local Network . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122
Distributed Network. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122

Layer 2 Bridges . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
Honeymole . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125
Multiple Remote Networks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 126

Detecting the Attack . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
Intrusion Detection . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
Network Traffic Capture. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 131
Monitoring on the Box . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132

How to Set Up a Realistic Environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 133
Nepenthes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134
Setting Up the Network. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134

Keeping the Bad Stuff in . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140
Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
Note. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143

Chapter 6 Malware Analysis. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  145
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 146

Setting the Stage. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 146
How Should Network Access Be Limited? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 147

Don’t Propagate It Yourself. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 147
The Researcher May Get Discovered . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
Create a “Victim” That Is as Close to Real as Possible . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
You Should Have a Variety of Content to Offer. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
Give It That Lived-in Look. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149
Making the Local Network More Real. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149
Testing on VMware Workstation . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151
Microsoft Virtual PC. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153



	 Contents	 xv

Looking for Effects of Malware. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 154
What Is the Malware’s Purpose? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 154
How Does It Propagate?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 155
Does the Malware Phone Home for Updates?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 155
Does the Malware Participate in a Bot-Net? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 156
Does the Malware Send the Spoils Anywhere?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 156
Does the Malware Behave Differently Depending on the Domain?. .  .  .  .  .  .  . 157
How Does the Malware Hide and How Can It Be Detected?. .  .  .  .  .  .  .  .  .  .  . 157
How Do You Recover from It?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158

Examining a Sample Analysis Report . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159
The <Analysis> Section. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159
Analysis of 82f 78a89bde09a71ef 99b3cedb991bcc.exe. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 160
Analysis of arman.exe. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 162

Interpreting an Analysis Report . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167
How Does the Bot Install? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 168
Finding Out How New Hosts Are Infected. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 169
How Does the Bot Protect the Local Host and Itself? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 171
Determing How/Which C&C Servers Are Contacted. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 174
How Does the Bot Get Binary Updates?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 175
What Malicious Operations Are Performed? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 176

Bot-Related Findings of Our Live Sandbox. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181
Antivirtualization Techniques . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183

Detecting You Are in a Virtual Environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
Virtualization Utilities. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
VMware I/O Port . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
Emulated Hardware Detection . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185

Hardware Identifiers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
MAC Addresses. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
Hard Drives . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186
PCI Identifiers . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186

Detecting You Are in a Hypervisor Environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187
Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189

Chapter 7 Application Testing . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  191
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192
Getting Up to Speed Quickly. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192

Default Platform. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 193
Copying a Machine in VMware Server. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 193
Registering a Machine in Microsoft Virtual Server . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 195



xvi	 Contents

Known Good Starting Point. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
Downloading Preconfigured Appliances. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197

VMware’s Appliance Program. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197
Microsoft’s Test Drive Program. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198

Debugging. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199
Kernel Level Debugging. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199
The Advantage of Open Source Virtualization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 209

Chapter 8 Fuzzing. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  211
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 212
What Is Fuzzing?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 212
Virtualization and Fuzzing. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 214
Choosing an Effective Starting Point. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 214

Using a Clean Slate . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 214
Reducing Startup Time . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215
Setting Up the Debugging Tools. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215
Preparing to Take Input . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217

Preparing for External Interaction. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 218
Taking the Snapshot. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 218

Executing the Test . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 219
Scripting Snapshot Startup . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 219
Interacting with the Application . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 220
Selecting Test Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
Checking for Exceptions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 222
Saving the Results . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 223
Running Concurrent Tests . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 223

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227

Chapter 9 Forensic Analysis . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  229
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 230
Preparing Your Forensic Environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 231
Capturing the Machine . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232
Preparing the Captured Machine to Boot on New Hardware. .  .  .  .  .  .  .  .  .  .  .  .  .  . 238
What Can Be Gained by Booting the Captured Machine?. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239

Virtualization May Permit You to Observe Behavior  
That Is Only Visible While Live. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242



	 Contents	 xvii

Using the System to Demonstrate the Meaning of the Evidence. .  .  .  .  .  .  .  .  . 242
The System May Have Proprietary/Old Files  

That Require Special Software . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242
Analyzing Time Bombs and Booby Traps. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 243
Easier to Get in the Mind-Set of the Suspect. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 243
Collecting Intelligence about Botnets or Virus-Infected Systems. .  .  .  .  .  .  .  .  . 244
Collecting Intelligence about a Case. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 244
Capturing Processes and Data in Memory. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
Performing Forensics of a Virtual Machine. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
Caution: VM-Aware Malware Ahead. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 253

Chapter 10 Disaster Recovery. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  255
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 256
Disaster Recovery in a Virtual Environment . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 256
Simplifying Backup and Recovery . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257

File Level Backup and Restore. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257
System-Level Backup and Restore. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258
Shared Storage Backup and Restore . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 259

Allowing Greater Variation in Hardware Restoration. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 261
Different Number of Servers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 262

Using Virtualization for Recovery of Physical Systems. .  .  .  .  .  .  .  .  .  .  .  .  .  . 262
Using Virtualization for Recovery of Virtual Systems. .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263

Recovering from Hardware Failures. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265
Redistributing the Data Center . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265
Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 267
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 268
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 269

Chapter 11 High Availability: Reset to Good . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  271
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 272
Understanding High Availability. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 272

Providing High Availability for Planned Downtime . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 273
Providing High Availability for Unplanned Downtime. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 274

Reset to Good. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
Utilizing Vendor Tools to Reset to Good. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
Utilizing Scripting or Other Mechanisms  

to Reset to Good. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277
Degrading over Time. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277



xviii	 Contents

Configuring High Availability. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Configuring Shared Storage . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Configuring the Network. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Setting Up a Pool or Cluster of Servers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 279

Maintaining High Availability. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280
Monitoring for Overcommitment of Resources. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280
Security Implications . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 281
Performing Maintenance on a High Availability System. .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 282

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 284
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 285
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287

Chapter 12 Best of Both Worlds: Dual Booting . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  289
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 290
How to Set Up Linux to Run Both Natively and Virtually . .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 290

Creating a Partition for Linux on an Existing Drive. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 291
Setting Up Dual Hardware Profiles. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 295

Issues with Running Windows Both Natively and Virtualized. .  .  .  .  .  .  .  .  .  .  .  .  .  . 296
Precautions When Running an Operating System  

on Both Physical and Virtualized Platforms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296
Booting a Suspended Partition. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296
Deleting the Suspended State. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 297
Changing Hardware Configurations Can Affect  

Your Software. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 297
Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 299
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 299
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 300

Chapter 13 Protection in Untrusted Environments. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  301
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 302

Meaningful Uses of Virtualization in Untrusted Environments. .  .  .  .  .  .  .  .  .  . 302
Levels of Malware Analysis Paranoia. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 308

Using Virtual Machines to Segregate Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 316
Using Virtual Machines to Run Software You Don’t Trust . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 318
Using Virtual Machines for Users You Don’t Trust. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 321

Setting up the Client Machine . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322
Installing Only What You Need . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322
Restricting Hardware Access . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322
Restricting Software Access . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322

Scripting the Restore. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 323



	 Contents	 xix

Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 327
Notes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 328

Chapter 14 Training. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  329
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 330
Setting Up Scanning Servers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 330

Advantages of Using a Virtual Machine instead of  
a Live-CD Distribution. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 331
Persistence. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 331
Customization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 331

Disadvantages of Using a Virtual Machine instead of a Live-CD. .  .  .  .  .  .  .  .  . 332
Default Platforms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 332

Scanning Servers in a Virtual Environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 333
Setting Up Target Servers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 334

Very “Open” Boxes for Demonstrating during Class. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
Suggested Vulnerabilities for Windows. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
Suggested Vulnerabilities for Linux. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 336
Suggested Vulnerabilities for Application Vulnerability Testing. .  .  .  .  .  .  .  .  . 336

Creating the Capture-the-Flag Scenario . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 339
Harder Targets . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 339

Snapshots Saved Us. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 340
Require Research to Accomplish the Task. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 341
Introduce Firewalls. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 341
Multiple Servers Requiring Chained Attacks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 341

Adding Some Realism . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 342
Loose Points for Damaging the Environment . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 342
Demonstrate What the Attack Looks Like on IDS. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 343

Out Brief. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Cleaning up Afterward. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 343
Saving Your Back. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 344
Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 345
Solutions Fast Track. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 345
Frequently Asked Questions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 347

Index. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  349



1

˛	 Summary

˛	 Solutions Fast Track

˛	 Frequently Asked Questions

Chapter 1

An Introduction to 
Virtualization

Solutions in this chapter:

What Is Virtualization?■■

Why Virtualize?■■

How Does Virtualization Work?■■

Types of Virtualization■■

Common Use Cases for Virtualization■■



2	 Chapter 1 • An Introduction to Virtualization

Introduction
Virtualization is one of those buzz words that has been gaining immense popularity 
with IT professionals and executives alike. Promising to reduce the ever-growing 
infrastructure inside current data center implementations, virtualization technologies 
have cropped up from dozens of software and hardware companies. But what exactly 
is it? Is it right for everyone? And how can it benefit your organization?

Virtualization has actually been around more than three decades. Once only 
accessible by the large, rich, and prosperous enterprise, virtualization technologies  
are now available in every aspect of computing, including hardware, software, and 
communications, for a nominal cost. In many cases, the technology is freely available 
(thanks to open-source initiatives) or included for the price of products such as 
operating system software or storage hardware.

Well suited for most inline business applications, virtualization technologies have 
gained in popularity and are in widespread use for all but the most demanding 
workloads. Understanding the technology and the workloads to be run in a virtual-
ized environment is key to every administrator and systems architect who wishes to 
deliver the benefits of virtualization to their organization or customers.

This chapter will introduce you to the core concepts of server, storage, and 
network virtualization as a foundation for learning more about Xen. This chapter 
will also illustrate the potential benefits of virtualization to any organization.

What Is Virtualization?
So what exactly is virtualization? Today, that question has many answers. Different 
manufacturers and independent software vendors coined that phrase to categorize 
their products as tools to help companies establish virtualized infrastructures. Those 
claims are not false, as long as their products accomplish some of the following key 
points (which are the objectives of any virtualization technology):

Add a layer of abstraction between the applications and the hardware■■

Enable a reduction in costs and complexity■■

Provide the isolation of computer resources for improved reliability and security■■

Improve service levels and the quality of service■■

Better align IT processes with business goals■■

Eliminate redundancy in, and maximize the utilization of, IT infrastructures■■



	 An Introduction to Virtualization • Chapter 1	 3

While the most common form of virtualization is focused on server hardware 
platforms, these goals and supporting technologies have also found their way into 
other critical—and expensive—components of modern data centers, including  
storage and network infrastructures.

But to answer the question “What is virtualization?” we must first discuss the 
history and origins of virtualization, as clearly as we understand it.

The History of Virtualization
In its conceived form, virtualization was better known in the 1960s as time sharing. 
Christopher Strachey, the first Professor of Computation at Oxford University and 
leader of the Programming Research Group, brought this term to life in his paper 
Time Sharing in Large Fast Computers. Strachey, who was a staunch advocate of main-
taining a balance between practical and theoretical work in computing, was referring 
to what he called multi-programming. This technique would allow one programmer 
to develop a program on his console while another programmer was debugging his, 
thus avoiding the usual wait for peripherals. Multi-programming, as well as several 
other groundbreaking ideas, began to drive innovation, resulting in a series of  
computers that burst onto the scene. Two are considered part of the evolutionary 
lineage of virtualization as we currently know it—the Atlas and IBM’s M44/44X.

The Atlas Computer
The first of the supercomputers of the early 1960s took advantage of concepts such 
as time sharing, multi-programming, and shared peripheral control, and was dubbed 
the Atlas computer. A project run by the Department of Electrical Engineering at 
Manchester University and funded by Ferranti Limited, the Atlas was the fastest 
computer of its time. The speed it enjoyed was partially due to a separation of oper-
ating system processes in a component called the supervisor and the component 
responsible for executing user programs. The supervisor managed key resources, such 
as the computer’s processing time, and was passed special instructions, or extracodes, 
to help it provision and manage the computing environment for the user program’s 
instructions. In essence, this was the birth of the hypervisor, or virtual machine 
monitor.

In addition, Atlas introduced the concept of virtual memory, called one-level 
store, and paging techniques for the system memory. This core store was also logically 
separated from the store used by user programs, although the two were integrated.  
In many ways, this was the first step towards creating a layer of abstraction that all 
virtualization technologies have in common.



4	 Chapter 1 • An Introduction to Virtualization

The M44/44X Project
Determined to maintain its title as the supreme innovator of computers, and motivated 
by the competitive atmosphere that existed, IBM answered back with the M44/44X 
Project. Nested at the IBM Thomas J. Watson Research Center in Yorktown, New York, 
the project created a similar architecture to that of the Atlas computer. This architecture 
was first to coin the term virtual machines and became IBM’s contribution to the 
emerging time-sharing system concepts. The main machine was an IBM 7044 (M44) 
scientific computer and several simulated 7044 virtual machines, or 44Xs, using both 
hardware and software, virtual memory, and multi-programming, respectively.

Unlike later implementations of time-sharing systems, M44/44X virtual machines 
did not implement a complete simulation of the underlying hardware. Instead,  
it fostered the notion that virtual machines were as efficient as more conventional 
approaches. To nail that notion, IBM successfully released successors of the M44/44X 
project that showed this idea was not only true, but could lead to a successful 
approach to computing.

CP/cms
A later design, the IBM 7094, was finalized by MIT researchers and IBM engineers 
and introduced Compatible Time Sharing System (CTSS). The term “compatible” 
refers to the compatibility with the standard batch processing operating system used 
on the machine, the Fortran Monitor System (FMS). CTSS not only ran FMS in  
the main 7094 as the primary facility for the standard batch stream, but also ran an 
unmodified copy of FMS in each virtual machine in a background facility. The back-
ground jobs could access all peripherals, such as tapes, printers, punch card readers, and 
graphic displays, in the same fashion as the foreground FMS jobs as long as they did 
not interfere with foreground time-sharing processors or any supporting resources.

MIT continued to value the prospects of time sharing, and developed Project 
MAC as an effort to develop the next generation of advances in time-sharing  
technology, pressuring hardware manufacturers to deliver improved platforms for 
their work. IBM’s response was a modified and customized version of its System/ 
360 (S/360) that would include virtual memory and time-sharing concepts not 
previously released by IBM. This proposal to Project MAC was rejected by MIT,  



	 An Introduction to Virtualization • Chapter 1	 5

a crushing blow to the team at the Cambridge Scientific Center (CSC), whose only 
purpose was to support the MIT/IBM relationship through technical guidance and 
lab activities.

The fallout between the two, however, led to one of the most pivotal points in 
IBM’s history. The CSC team, lead by Norm Rassmussen and Bob Creasy, a defect 
from Project MAC, to the development of CP/CMS. In the late 1960s, the CSC 
developed the first successful virtual machine operating system based on fully virtu-
alized hardware, the CP-40. The CP-67 was released as a reimplementation of the 
CP-40, as was later converted and implemented as the S/360-67 and later as the 
S/370. The success of this platform won back IBM’s credibility at MIT as well as 
several of IBM’s largest customers. It also led to the evolution of the platform and 
the virtual machine operating systems that ran on them, the most popular being 
VM/370. The VM/370 was capable of running many virtual machines, with  
larger virtual memory running on virtual copies of the hardware, all managed by  
a component called the virtual machine monitor (VMM) running on the real  
hardware. Each virtual machine was able to run a unique installation of IBM’s 
operating system stably and with great performance.

Other Time-Sharing Projects
IBM’s CTSS and CP/CMS efforts were not alone, although they were the most 
influential in the history of virtualization. As time sharing became widely accepted 
and recognized as an effective way to make early mainframes more affordable, other 
companies joined the time-sharing fray. Like IBM, those companies needed plenty of 
capital to fund the research and hardware investment needed to aggressively pursue 
time-sharing operating systems as the platform for running their programs and 
computations. Some other projects that jumped onto the bandwagon included

■■ Livermore Time-Sharing System (LTSS)  Developed by the Lawrence 
Livermore Laboratory in the late 1960s as the operating system for the 
Control Data CDC 7600 supercomputers. The CDC 7600 running LTSS 
took over the title of the world’s fastest computer, trumping on the Atlas 
computer, which suffered from a form of trashing due to inefficiencies in  
its implementation of virtual memory.



6	 Chapter 1 • An Introduction to Virtualization

■■ Cray Time-Sharing System (CTSS)  (This is a different CTSS; not to  
be confused with IBM’s CTSS.) Developed for the early lines of Cray  
supercomputers in the early 1970s. The project was engineered by the Los 
Alamos Scientific Laboratory in conjunction with the Lawrence Livermore 
Laboratory, and stemmed from the research that Livermore had already done 
with the successful LTSS operating system. Cray X-MP computers running 
CTSS were used heavily by the United States Department of Energy for 
nuclear research.

■■ New Livermore Time-Sharing System (NLTSS)  The last iteration of 
CTSS, this was developed to incorporate recent advances and concepts in 
computers, such as new communication protocols like TCP/IP and LINCS. 
However, it was not widely accepted by users of the Cray systems and was 
discontinued in the late 1980s.

Virtualization Explosion  
of the 1990s and Early 2000s
While we have discussed a summarized list of early virtualization efforts, the projects 
that have launched since those days are too numerous to reference in their entirety. 
Some have failed while others have gone on to be popular and accepted technologies 
throughout the technical community. Also, while efforts have been pushed in server 
virtualization, we have also seen attempts to virtualize and simplify the data center, 
whether through true virtualization as defined by the earlier set of goals or through 
infrastructure sharing and consolidation.

Many companies, such as Sun, Microsoft, and VMware, have released enterprise-
class products that have wide acceptance, due in part to their existing customer base. 
However, Xen threatens to challenge them all with their approach to virtualization. 
Being adopted by the Linux community and now being integrated as a built-in feature 
to most popular distributions, Xen will continue to enjoy a strong and steady increase 
in market share. Why? We’ll discuss that later in the chapter. But first, back to the 
question… What is virtualization?



	 An Introduction to Virtualization • Chapter 1	 7

Continued

Evolution of the IBM LPAR— 
More than Just Mainframe Technology
IBM has had a long history of Logical Partitions, or LPARs, on their mainframe 
product offerings, from System390 through present-day System z9 offerings. 
However, IBM has extended the LPAR technology beyond the mainframe, 
introducing it to its Unix platform with the release of AIX 5L. Beginning with 
AIX 5L Version 5.1, administrators could use the familiar Hardware Management 
Console (HMC) or the Integrated Virtualization Manager to create LPARs with 
virtual hardware resources (dedicated or shared). With the latest release, AIX 
5L Version 5.3, combined with the newest generation of System p with 
POWER5 processors, additional mainframe-derived virtualization features, 
such as micro-partitioning CPU resources for LPARs, became possible.

IBM’s LPAR virtualization offerings include some unique virtualization 
approaches and virtual resource provisioning. A key component of what  
IBM terms the Advanced POWER Virtualization feature, is the Virtual I/O 
Server. Virtual I/O servers satisfy part of the VMM, called the POWER Hypervisor, 
role. Though not responsible for CPU or memory virtualization, the Virtual I/O 
server handles all I/O operations for all LPARs. When deployed in redundant 
LPARs of its own, Virtual I/O servers provide a good strategy to improve  
availability for sets of AIX 5L or Linux client partitions, offering redundant  
connections to external Ethernet or storage resources.

Among the I/O resources managed by the Virtual I/O servers are

■■ Virtual Ethernet  Virtual Ethernet enables inter-partition communica-
tion without the need for physical network adapters in each partition. 
It allows the administrator to define point-to-point connections 
between partitions. Virtual Ethernet requires a POWER5 system with 
either IBM AIX 5L Version 5.3 or the appropriate level of Linux and  
an HMC to define the Virtual Ethernet devices.

■■ Virtual Serial Adapter (VSA)  POWER5 systems include Virtual Serial 
ports that are used for virtual terminal support.

Configuring & Implementing…



8	 Chapter 1 • An Introduction to Virtualization

The Answer: Virtualization Is…
So with all that history behind us, and with so many companies claiming to wear the 
virtualization hat, how do we define it? In an effort to be as all-encompassing as 
possible, we can define virtualization as:

A framework or methodology of dividing the resources of a  
computer hardware into multiple execution environments, by 
applying one or more concepts or technologies such as hardware 
and software partitioning, time-sharing, partial or complete 
machine simulation, emulation, quality of service, and many 
others.

Just as it did during the late 1960s and early 1970s with IBM’s VM/370, modern 
virtualization allows multiple operating system instances to run concurrently on  
a single computer, albeit much less expensive than the mainframes of those days.  
Each OS instance shares the available resources available on the common physical 
hardware, as illustrated in Figure 1.1. Software, referred to as a virtual machine  
monitor (VMM), controls use and access to the CPU, memory, storage, and network 
resources underneath.

■■ Client and Server Virtual SCSI  The POWER5 server uses SCSI as the 
mechanism for virtual storage devices. This is accomplished using a  
pair of virtual adapters; a virtual SCSI server adapter and a virtual 
SCSI client adapter. These adapters are used to transfer SCSI  
commands between partitions. The SCSI server adapter, or target 
adapter, is responsible for executing any SCSI command it receives. 
It is owned by the Virtual I/O server partition. The virtual SCSI client 
adapter allows the client partition to access standard SCSI devices 
and LUNs assigned to the client partition. You may configure virtual 
server SCSI devices for Virtual I/O Server partitions, and virtual client 
SCSI devices for Linux and AIX partitions.



	 An Introduction to Virtualization • Chapter 1	 9

Why Virtualize?
From the mid-1990s until present day, the trend in the data center has been towards 
a decentralized paradigm, scaling the application and system infrastructure outward  
in a horizontal fashion. The trend has been commonly referred to as “server sprawl.” 
As more applications and application environments are deployed, the number of 
servers implemented within the data center grows at exponential rates. Centralized 
servers were seen as too expensive to purchase and maintain for many companies  
not already established on such a computing platform. While big-frame, big-iron 
servers continued to survive, the midrange and entry-level server market bustled  
with new life and opportunities for all but the most intense use cases. It is important 
to understand why IT organizations favored decentralization, and why it was seen as 
necessary to shift from the original paradigm of a centralized computing platform to 
one of many.

Decentralization versus Centralization
Virtualization is a modified solution between two paradigms—centralized and  
decentralized systems. Instead of purchasing and maintaining an entire physical  
computer, and its necessary peripherals for every application, each application can  
be given its own operating environment, complete with I/O, processing power, and 
memory, all sharing their underlying physical hardware. This provides the benefits  
of decentralization, like security and stability, while making the most of a machine’s 
resources and providing better returns on the investment in technology.

With the popularity of Windows and lighter-weight open systems distributed 
platforms, the promise that many hoped to achieve included better return on assets 
and a lower total cost of ownership (TCO). The commoditization of inexpensive 

Figure 1.1 Virtual Machines Riding on Top of the Physical Hardware

OS

Applications

OS

Applications

OS

Applications

OS

Applications

Physical Host Hardware
CPU, Memory, Disk, Network



10	 Chapter 1 • An Introduction to Virtualization

hardware and software platforms added additional fuel to the evangelism of that 
promise, but enterprises quickly realized that the promise had turned into a night-
mare due to the horizontal scaling required to provision new server instances.

On the positive side, companies were able to control their fixed asset costs as 
applications were given their own physical machine, using the abundant commodity 
hardware options available. Decentralization helped with the ongoing maintenance  
of each application, since patches and upgrades could be applied without interfering 
with other running systems. For the same reason, decentralization improves security 
since a compromised system is isolated from other systems on the network. As IT 
processes became more refined and established as a governance mechanism in many 
enterprises, the software development life cycle (SDLC) took advantage of the 
decentralization of n-tier applications. Serving as a model or process for software 
development, SDLC imposes a rigid structure on the development of a software 
product by defining not only development phases (such as requirements gathering, 
software architecture and design, testing, implementation, and maintenance), but  
rules that guide the development process through each phase. In many cases, the 
phases overlap, requiring them to have their own dedicated n-tier configuration.

However, the server sprawl intensified, as multiple iterations of the same applica-
tion were needed to support the SDLC for development, quality assurance, load 
testing, and finally production environments. Each application’s sandbox came at the 
expense of more power consumption, less physical space, and a greater management 
effort which, together, account for up to tens (if not hundreds) of thousands of 
dollars in annual maintenance costs per machine. In addition to this maintenance 
overhead, decentralization decreased the efficiency of each machine, leaving the 
average server idle 85 to 90 percent of the time. These inefficiencies further eroded 
any potential cost or labor savings promised by decentralization.

In Table 1.1, we evaluate three-year costs incurred by Foo Company to create  
a decentralized configuration comprised of five two-way x86 servers with software 
licensed per physical CPU, as shown in Figure 1.2. These costs include the purchase 
of five new two-way servers, ten CPU licenses (two per server) of our application, 
and soft costs for infrastructure, power, and cooling. Storage is not factored in because 
we assume that in both the physical and virtual scenarios, the servers would be 
connected to external storage of the same capacity; hence, storage costs remain the 
same for both. The Physical Cost represents a three-year cost since most companies 
depreciate their capital fixed assets for 36 months. Overall, our costs are $74,950.



	 An Introduction to Virtualization • Chapter 1	 11

Component Unit Cost Physical Cost Virtual Cost

Server hardware 	 $7,500.00 $37,500.00 $7,500.00

Software licenses/CPU 	 $2,000.00 $20,000.00 $4,000.00

Supporting infrastructure 	 $2,500.00 $12,500.00 $2,500.00

Power per server year 	 $180.00 $2,700.00 $540.00

Cooling per server year 	 $150.00 $2,250.00 $450.00

Total three-year costs: $74,950.00 $16,490.00

Realized savings over  
three years:

$ 58,460.00

Table 1.1 A Simple Example of the Cost of Five Two-Way Application Servers

Figure 1.2 A Decentralized Five-Server Configuration

15% Utilized
2 FC Switch Ports 
2 Network Ports 

15% Utilized
2 FC Switch Ports 
2 Network Ports 

15% Utilized
2 FC Switch Ports 
2 Network Ports 

15% Utilized
2 FC Switch Ports 
2 Network Ports 

App Server 2 App Server 5

2 Network Ports 
2 FC Switch Ports 
15% Utilized
App Server 1 App Server  3 App Server 4

Storage Arrays
and

Other Infrastructure

Network and SAN
Switches

Two-Way 
Server

Two-Way 
Server

Two-Way 
Server

Two-Way 
Server

Two-Way 
Server



12	 Chapter 1 • An Introduction to Virtualization

In contrast, the table also shows a similarly configured centralized setup of five 
OS/application instances hosted on a single two-way server with sufficient hardware 
resources for the combined workload, as shown in Figure 1.3. Although savings are 
realized by the 5:1 reduction in server hardware, that savings is matched by the 
savings in software cost (5:1 reduction in physical CPUs to license), supporting 
infrastructure, power, and cooling.

Figure 1.3 A Centralized Five-Server Configuration

Virtual Host
75 % Utilized, 2 FC Switch Ports, 2 Network Ports

Network and SAN
Switches

Storage Arrays
and

Other Infrastructure

Two-Way Server

Warning

When building the business case and assessing the financial impact of  
virtualization, be sure not to over-commit the hosts with a large number of 
virtual machines. Depending on the workload, physical hosts can manage  
as many as 20 to 30 virtualization machines, or as little as 4 to 5. Spend  
time upfront gathering performance information about your current work-
loads, especially during peak hours, to help properly plan and justify your 
virtualization strategy.



	 An Introduction to Virtualization • Chapter 1	 13

Assuming that each server would average 15-percent utilization if run on physical 
hardware, consolidation of the workloads into a centralized virtual is feasible. The hard 
and soft costs factored into the calculations more closely demonstrate the total cost of 
ownership in this simple model, labor excluded. It is important to note that Supporting 
Infrastructure, as denoted in the table, includes rack, cabling, and network/storage 
connectivity costs. This is often overlooked; however, it is critical to include this in 
your cost benefit analysis since each Fibre-Channel (FC) switch port consumed could 
cost as much as $1,500, and each network port as much as $300. As illustrated in the 
figures, there are ten FC and ten network connections in the decentralized example 
compared to two FC and two network connections. Port costs alone would save  
Foo a considerable amount. As the table shows, a savings of almost 80 percent could 
be realized by implementing the servers with virtualization technologies.

Designing & Planning…

A Virtualized Environment  
Requires a Reliable, High-Capacity Network
To successfully consolidate server workloads onto a virtualized environment,  
it is essential that all server subsystems (CPU, memory, network, and disk) can 
accommodate the additional workload. While most virtualization products 
require a single network connection to operate, careful attention to, and 
planning of, the networking infrastructure of a virtual environment can 
ensure both optimal performance and high availability.

Multiple virtual machines will increase network traffic. With multiple 
workloads, the network capacity needs to scale to match the requirements of 
the combined workloads expected on the host. In general, as long as the host’s 
processor is not fully utilized, the consolidated network traffic will be the sum 
of the traffic generated by each virtual machine.

True Tangible Benefits
Virtualization is a critical part of system optimization efforts. While it could simply 
be a way to reduce and simplify your server infrastructure, it can also be a tool to 
transform the way you think about your data center as a whole.Figure 1.4 illustrates 



14	 Chapter 1 • An Introduction to Virtualization

the model of system optimization. You will notice that virtualization, or physical 
consolidation, is the foundation for all other optimization steps, followed by logical 
consolidation and then an overall rationalization of systems and applications, identi
fying applications that are unneeded or redundant and can thus be eliminated.

Virtualization
Physical Consolidation

Logical Consolidation/
Shared Servers

System Rationalization

Reduce the 
Server Footprint

Consolidation
Workloads on Shared
Server Instances

Eliminate Unneeded
Applications and
Redundancy

Figure 1.4 Virtualization’s Role in System Optimization

In Table 1.2 you will find a sample list of benefits that often help IT organization 
justify their movement toward a virtual infrastructure. Although each organization’s 
circumstances are different, you only need a few of these points to apply to your 
situation to build a strong business case for virtualization.

Category Benefit

Consolidation Increase server utilization

Simplify legacy software migration

Host mixed operating systems per physical platform

Streamline test and development environments

Reliability Isolate software faults

Reallocate existing partitions

Create dedicated or as-needed failover partitions

Security Contain digital attacks through fault isolation

Apply different security settings to each partition

Table 1.2 Benefits of Virtualization



	 An Introduction to Virtualization • Chapter 1	 15

Consolidation
Three drivers have motivated, if not accelerated, the acceptance and adoption of 
virtualization technologies—consolidation, reliability, and security. The goal behind 
consolidation is to combine and unify. In the case of virtualization, workloads are 
combined on fewer physical platforms capable of sustaining their demand for  
computing resources, such as CPU, memory, and I/O. In modern data centers, many 
workloads are far from taxing the hardware they run on, resulting in infrastructure 
waste and lower returns. Through consolidation, virtualization allows you to combine 
server instances, or operating systems and their workloads, in a strategic manner and 
place them on shared hardware with sufficient resource availability to satisfy resource 
demands. The result is increased utilization. It is often thought that servers shouldn’t 
be forced to run close to their full-capacity levels; however, the opposite is true.  
In order to maximize that investment, servers should run as close to capacity as 
possible, without impacting the running workloads or business process relying on 
their performance. With proper planning and understanding of those workloads, 
virtualization will help increase server utilization while decreasing the number of 
physical platforms needed.

Another benefit of consolidation virtualization focuses on legacy system migrations. 
Server hardware has developed to such levels that they are often incompatible with 
legacy operating systems and applications. Newer processor technologies, supporting 
chipsets, and the high-speed buses sought after can often cripple legacy systems, if not 
render them inoperable without the possibility of full recompilation. Virtualization 
helps ease and simplify legacy system migrations by providing a common and widely 
compatible platform upon which legacy system instances can run. This improves the 
chances that applications can be migrated for older, unsupported, and riskier platforms 
to newer hardware and supported hardware with minimal impact.

In the past, operating systems were bound to a specific hardware platform. This 
tied many organizations’ hands, forcing them to make large investments in hardware 
in order to maintain their critical business applications. Due to the commoditization 
of hardware, though, many of the common operating systems currently available can 
run on a wide range of server architectures, the most popular of which is the x86 
architecture. You can run Windows, Unix, and your choice of Linux distributions  
on the x86 architecture. Virtualization technologies built on top of x86 architecture 
can, in turn, host heterogeneous environments. Multiple operating systems, including 
those previously mentioned, can be consolidated to the same physical hardware, 
further reducing acquisition and maintenance costs.



16	 Chapter 1 • An Introduction to Virtualization

Finally, consolidation efforts help streamline development and test environments. 
Rather than having uncontrolled sprawl throughout your infrastructure as new 
projects and releases begin or existing applications are maintained, virtualization 
allows you to consolidate many of those workloads onto substantially fewer physical 
servers. Given that development and test loads are less demanding by nature than 
production, consolidation of those environments through virtualization can yield 
even greater savings than their production counterparts.

Designing & Planning…

More Cores Equal More Guests… Sometimes
When designing the physical platform for your virtualization and consolida-
tion efforts, be sure to take advantage of the current offering of Intel and 
AMD multi-core processors. Do keep in mind, though, that increasing your 
core count, and subsequently your total processing power, does not propor-
tionally relate to how many virtual machines you can host. Many factors can 
contribute to reduced guest performance, including memory, bus congestion 
(especially true for slower Intel front-side bus architectures or NUMA-based 
four-way Opteron servers), I/O bus congestion, as well as external factors such 
as the network infrastructure and the SAN.

Carefully plan your hardware design with virtual machine placement in 
mind. Focus more on the combined workload than the virtual machine count 
when sizing your physical host servers. Also consider your virtualization prod-
uct’s features that you will use and how it may add overhead and consume 
resources needed by your virtual machines. Also consider the capability of your 
platform to scale as resource demands increase—too few memory slots, and 
you will quickly run out of RAM; too few PCI/PCI-X/PCI-e slots and you will not 
be able to scale your I/O by adding additional NICs or HBAs.

Finally, consider the level of redundancy and known reliability of the 
physical server hardware and supporting infrastructure. Remember that when 
your host fails, a host outage is much more than just one server down; all the 
virtual machines it was hosting will experience the outage as well.

Continued



	 An Introduction to Virtualization • Chapter 1	 17

Reliability
More than ever before, reliability has become a mandate and concern for many  
IT organizations. It has a direct relationship to system availability, application uptime, 
and, consequently, revenue generation. Companies are willing to, and often do,  
invest heavily into their server infrastructure to ensure that their critical line-of- 
business applications remain online and their business operation goes uninterrupted. 
By investing in additional hardware and software to account for software faults, 
infrastructures are fortified to tolerate failures and unplanned downtime with  
interruption. Doing so, though, has proven to be very costly.

Virtualization technologies are sensitive to this and address this area by providing 
high isolation between running virtual machines. A system fault in one virtual machine, 
or partition, will not affect the other partitions running on the same hardware platform. 
This isolation logically protects and shields virtual machines at the lowest level by 
causing them to be unaware, and thus not impacted, by conditions outside of their 
allocations. This layer of abstraction, a key component in virtualization, makes each 
partition just as if it was running on dedicated hardware.

Such isolation does not impede flexibility, as it would in a purely physical world. 
Partitions can be reallocated to serve other functions as needed. Imagine a server 
hosting a client/server application that is only used during the 8 a.m. to 5 p.m. hours 
Monday through Friday, another that runs batch processes to close out business 
operations nightly, and another that is responsible for data maintenance jobs over  
the weekend. In a purely physical world, they would exist as three dedicated servers 
that are highly utilized during their respective hours of operation, but sit idle when 
not performing their purpose. This accounts for much computing waste and an 
underutilization of expensive investments. Virtualization addresses this by allowing  
a single logical or physical partition to be reallocated to each function as needed.  
On weekdays, it would host the client/server application by day and run the batch 

Always keep in mind the key hardware traits required for any virtualization 
host:

Performance■■

Flexibility■■

Reliability■■



18	 Chapter 1 • An Introduction to Virtualization

processes at night. On the weekends, it would then be reallocated for the data  
maintenance tasks, only to return to hosting the client/server application the follow-
ing Monday morning. This flexibility allows IT organizations to utilize “part-time” 
partitions to run core business processes in the same manner as they would physical 
servers, but achieve lower costs while maintaining high levels of reliability.

Another area that increases costs is the deployment of standby or failover servers  
to maintain system availability during times of planned or unplanned outages. While 
capable of hosting the targeted workloads, such equipment remains idle between  
those outages, and in some cases, never gets used at all. They are often reduced to 
expensive paperweights, providing little value to the business while costing it much. 
Virtualization helps solve this by allowing just-in-time or on-demand provisioning of 
additional partitions as needed. For example, a partition that has been built (OS and 
applications) and configured can be put into an inactive (powered-off or suspended) 
state, ready to be activated when a failure occurs. When needed, the partition becomes 
active without any concern about hardware procurement, installation, or configuration. 
Another example is an active/passive cluster. In these clusters, the failover node must 
be active and online, not inactive. However, the platform hosting the cluster node must 
be dedicated to that cluster. This has caused many organizations to make a large invest-
ment in multiple failover nodes, which sit in their data centers idle, waiting to be used 
in case of an outage. Using server virtualization, these nodes can be combined onto 
fewer hardware platforms, as partitions hosting failover nodes are collocated on fewer 
physical hosts.

Security
The same technology that provides application fault isolation can also provide  
security fault isolation. Should a particular partition be compromised, it is isolated 
from the other partitions, stopping the compromise from being extended to them. 
Solutions can also be implemented that further isolate compromised partitions and 
OS instances by denying them the very resources they rely on to exist. CPU cycles 
can be reduced, network and disk I/O access severed, or the system halted altogether. 
Such tasks would be difficult, if not impossible, to perform if the compromised 
instance was running directly on a physical host.

When consolidating workloads through virtualization, security configurations can 
remain specific to the partition rather than the server as a whole. An example of this 
would be super-user accounts. Applications consolidated to a single operating system 



	 An Introduction to Virtualization • Chapter 1	 19

running directly on top of a physical server would share various security settings—in 
particular, root or administrator access would be the same for all. However, when  
the same workloads are consolidated to virtual partitions, each partition can be 
configured with different credentials, thus maintaining the isolation of system access 
with administrative privileges often required to comply with federal or industry 
regulations.

Simply put, virtualization is an obvious move in just about any company, small or 
large. Just imagine that your manager calls you into the office and begins to explain 
his or her concerns about cost containment, data center space diminishing, timelines 
getting narrower, and corporate mandates doing more with less. It won’t take too 
many attempts to explain how virtualization can help address all of those concerns. 
After realizing you had the answer all along, it will make your IT manager’s day to 
learn this technology is the silver bullet that will satisfy the needs of the business 
while providing superior value in IT operations and infrastructure management and 
delivery.

Note

Most Virtual Machine Monitor (VMM) implementations are capable of inter-
active sessions with administrators through CLI or Web interfaces. Although 
secure, a compromised VMM will expose every virtual machine managed by 
that VMM. So exercise extreme caution when granting access or providing 
credentials for authentication to the VMM management interface.

How Does Virtualization Work?
While there are various ways to virtualize computing resources using a true VMM, 
they all have the same goal: to allow operating systems to run independently and in 
an isolated manner identical to when it is running directly on top of the hardware 
platform. But how exactly is this accomplished? While hardware virtualization still 
exists that fully virtualizes and abstracts hardware similar to how the System370 did, 
such hardware-based virtualization technologies tend to be less flexible and costly.  
As a result, a slew of software hypervisor and VMMs have cropped up to perform 
virtualization through software-based mechanisms. They ensure a level of isolation 



20	 Chapter 1 • An Introduction to Virtualization

where the low-level, nucleus core of the CPU architecture is brought up closer to 
the software levels of the architecture to allow each virtual machine to have its own 
dedicated environment. In fact, the relationship between the CPU architecture and 
the virtualized operating systems is the key to how virtualization actually works 
successfully.

OS Relationships with the CPU Architecture
Ideal hardware architectures are those in which the operating system and CPU are 
designed and built for each other, and are tightly coupled. Proper use of complex 
system call requires careful coordination between the operating system and CPU. 
This symbiotic relationship in the OS and CPU architecture provides many advan-
tages in security and stability. One such example was the MULTICS time-sharing 
system, which was designed for a special CPU architecture, which in turn was 
designed for it.

What made MULTICS so special in its day was its approach to segregating 
software operations to eliminate the risk or chance of a compromise or instability in 
a failed component from impacting other components. It placed formal mechanisms, 
called protection rings, in place to segregate the trusted operating system from the 
untrusted user programs. MULTICS included eight of these protection rings, a quite 
elaborate design, allowing different levels of isolation and abstraction from the core 
nucleus of the unrestricted interaction with the hardware. The hardware platform, 
designed in tandem by GE and MIT, was engineered specifically for the MULTICS 
operating system and incorporated hardware “hooks” enhancing the segregation even 
further. Unfortunately, this design approach proved to be too costly and proprietary 
for mainstream acceptance.

The most common CPU architecture used in modern computers is the IA-32,  
or x86-compatible, architecture. Beginning with the 80286 chipset, the x86 family 
provided two main methods of addressing memory: real mode and protected mode. 
In the 80386 chipset and later, a third mode was introduced called virtual 8086 
mode, or VM86, that allowed for the execution of programs written for real mode 
but circumvented the real-mode rules without having to raise them into protected 
mode. Real mode, which is limited to a single megabyte of memory, quickly became 
obsolete; and virtual mode was locked in at 16-bit operation, becoming obsolete 



	 An Introduction to Virtualization • Chapter 1	 21

when 32-bit operating systems became widely available for the x86 architecture. 
Protected mode, the saving grace for x86, provided numerous new features to support 
multitasking. These included segmenting processes, so they could no longer write 
outside their address space, along with hardware support for virtual memory and task 
switching.

In the x86 family, protected mode uses four privilege levels, or rings, numbered  
0 to 3. System memory is divided into segments, and each segment is assigned and 
dedicated to a particular ring. The processor uses the privilege level to determine 
what can and cannot be done with code or data within a segment. The term “rings” 
comes from the MULTICS system, where privilege levels were visualized as a set of 
concentric rings. Ring-0 is considered to be the innermost ring, with total control  
of the processor. Ring-3, the outermost ring, is provided only with restricted access, 
as illustrated in Figure 1.5.

Ring-0

Ring-1

Ring-2

Ring-3

0 1 2
Supervisor Mode
Unrestricted Access

3
User Mode
Restricted Access

Figure 1.5 Privilege Rings of the x86 Architecture



22	 Chapter 1 • An Introduction to Virtualization

The Virtual Machine  
Monitor and Ring-0 Presentation
The Supervisor Mode is the execution mode on an x86 processor that enables the 
execution of all instructions, including privileged instructions such as I/O and memory 
management operations. It is in Supervisor Mode (Ring 0) where the operating system 
would normally run. Since Ring-3 is based on Ring-0, any system compromise or 
instability directly impacts User Mode running in Ring-3. In order to isolate Ring-0 
for each virtualized guest, it then becomes necessary to move Ring-0 closer to the 
guests. By doing so, a Ring-0 failure for one virtualized guest does not impact Ring-0, 
or consequently Ring-3, of any other guest. The perceived Ring-0 for guests can 
reside in either Ring-1, -2, or -3 for x86 architectures. Of course, the further the 
perceived Ring-0 is away from the true Ring-0, the more distant it is from executing 
direct hardware operations, leading to reduced performance and independence.

Virtualization moves Ring-0 up the privilege rings model by placing the Virtual 
Machine Monitor, or VMM, in one of the rings, which in turn presents the Ring-0 
implementation to the hosted virtual machines. It is upon this presented Ring-0 that 
guest operating systems run, while the VMM handles the actual interaction with the 
underlying hardware platform for CPU, memory, and I/O resource access. There are 
two types of VMMs that address the presentation of Ring-0 as follows:

■■ Type 1 VMM  Software that runs directly on top of a given hardware 
platform on the true Ring-0. Guest operating systems then run at a higher 
level above the hardware, allowing for true isolation of each virtual machine.

Note

The same concept of protection rings exists in modern OS architecture. 
Windows, Linux, and most Unix variants all use rings, although they have 
reduced the four-ring structure to a two-layer approach that uses only Rings 
0 and 3. Ring-0 is commonly called Supervisor Mode, while Ring-3 is known 
as User Mode. Security mechanisms in the hardware enforce restrictions  
on Ring-3 by limiting code access to segments, paging, and input/output.  
If a user program running in Ring-3 tries to address memory outside of  
its segments, a hardware interrupt stops code execution. Some assembly 
language instructions are not even available for execution outside of  
Ring-0 due to their low-level nature.



	 An Introduction to Virtualization • Chapter 1	 23

■■ Type 2 VMM  Software that runs within an operating system, usually in 
Ring-3. Since there are no additional rings above Ring-3 in the x86 archi-
tecture, the presented Ring-0 that the virtual machines run on is as distant 
from the actual hardware platform as it can be. Although this offers some 
advantages, it is usually compounded by performance-impeding factors as 
calls to the hardware must traverse many diverse layers before the operations 
are returned to the guest operating system.

The VMM Role Explored
To create virtual partitions in a server, a thin software layer called the Virtual Machine 
Monitor (VMM) runs directly on the physical hardware platform. One or more  
guest operating systems and application stacks can then be run on top of the VMM. 
Figure 1.6 expands our original illustration of a virtualized environment presented  
in Figure 1.1.

Figure 1.6 The OS and Application Stack Managed by the VMM Software Layer

OS

Application
Application
Application

OS OS OS

Virtual Machine Monitor
Hypervisor

Physical Host Hardware
CPU, Memory, Network, Disk 

CPU,
Memory,

Network, Disk
(Virtual)

Additional Software 
Layer

Application
Application
Application

CPU,
Memory,

Network, Disk
(Virtual)

Application
Application
Application

CPU,
Memory,

Network, Disk
(Virtual)

Application
Application
Application

CPU,
Memory,

Network, Disk
(Virtual)

The VMM is the center of server virtualization. It manages hardware resources 
and arbitrates the requests of the multiple guest operating systems and application 
stacks. It presents a virtual set of CPU, memory, I/O, and Disk resources to each 
guest either based on the actual physical hardware or based on a standard and  
consistent selection of custom hardware. This section further discusses the role of  
the VMM and design considerations that are used when designing a VMM.



24	 Chapter 1 • An Introduction to Virtualization

The Popek and Goldberg Requirements
Often referred to as the original reference source for VMM criteria, the Popek and 
Goldberg Virtualization Requirements define the conditions for a computer architec-
ture to support virtualization. Written in 1974 for the third-generation computer 
systems of those days, they generalized the conditions that the software that provides 
the abstraction of a virtual machine, or VMM, must satisfy. These conditions, or 
properties, are

■■ Equivalence  A program running under the VMM should exhibit a predict-
able behavior that is essentially identical to that demonstrated when running 
on the underlying hardware platform directly. This is sometimes referred to 
as Fidelity.

■■ Resource Control  The VMM must be in complete control of the actual 
hardware resources virtualized for the guest operating systems at all times. 
This is sometimes referred to as Safety.

■■ Efficiency  An overwhelming number of machine instructions must be 
executed without VMM intervention or, in other words, by the hardware 
itself. This is sometimes referred to as Performance.

According to Popek and Goldberg, the problem that VMM developers must 
address is creating a VMM that satisfies the preceding conditions when operating 
within the characteristics of the Instruction Set Architecture (ISA) of the targeted 
hardware platform. The ISA can be classified into three groups of instructions:  
privileged, control sensitive, and behavior. Privileged instructions are those that  
trap if the processor is in User Mode and do not trap if it is in Supervisor Mode. 
Control-sensitive instructions are those that attempt to change the configuration  
of actual resources in the hardware platform. Behavior instructions are those whose 
behavior or result depends on the configuration of resources.

VMMs must work with each group of instructions while maintaining the  
conditions of equivalence, resource control, and efficiency. Virtually all modern-day 
VMMs satisfy the first two: equivalence and resource control. They do so by effec-
tively managing the guest operating system and hardware platform underneath 
through emulation, isolation, allocation, and encapsulation, as explained in Table 1.3.



	 An Introduction to Virtualization • Chapter 1	 25

Function Description

Emulation Emulation is important for all guest operating systems. The  
VMM must present a complete hardware environment, or  
virtual machine, for each software stack, whether they be an 
operating system or application. Ideally, the OS and application 
are completely unaware they are sharing hardware resources 
with other applications. Emulation is key to satisfying the  
equivalence property.

Isolation Isolation, though not required, is important for a secure  
and reliable environment. Through hardware abstraction, each 
virtual machine should be sufficiently separated and independent 
from the operations and activities of other virtual machines. 
Faults that occur in a single virtual machine should not impact 
others, thus providing high levels of security and availability.

Allocation The VMM must methodically allocate platform resources to  
the virtual machines that it manages. Resources for processing, 
memory, network I/O, and storage must be balanced to optimize 
performance and align service levels with business requirements. 
Through allocation, the VMM satisfies the resource control property 
and, to some extent, the efficiency property as well.

Encapsulation Encapsulation, though not mandated in the Popek and Goldberg 
requirements, enables each software stack (OS and application)  
to be highly portable, able to be copied or moved from one  
platform running the VMM to another. In some cases, this level  
or portability even allows live, running virtual machines to be 
migrated. Encapsulation must include state information in order  
to maintain the integrity of the transferred virtual machine.

Table 1.3 VMM Functions and Responsibilities

The Challenge: VMMs for the x86 Architecture
Referring back to the IA-32 (x86) architecture, all software runs in one of the four 
privilege rings. The OS traditionally runs in Ring-0, which affords privileged access to 
the widest range of processor and platform resources. Individual applications usually run 
in Ring-3, which restricts certain functions (such as memory mapping) that might 
impact other applications. In this way, the OS retains control to ensure smooth operation.

Since the VMM must have privileged control of platform resources, the usual 
solution is to run the VMM in Ring-0, and guest operating systems in Ring-1 or 



26	 Chapter 1 • An Introduction to Virtualization

Ring-3. However, modern operating systems have been specifically designed to run in 
Ring-0. This creates certain challenges. In particular, there are 17 “privileged” instruc-
tions that control critical platform resources. These instructions are used occasionally 
in most existing OS versions. When an OS is not running in Ring-0, any one of these 
instructions can create a conflict, causing either a system fault or an incorrect response. 
The challenge faced by VMMs for the IA-32 (x86) architecture is maintaining the 
Popek and Goldberg requirements while working with the IA-32 ISA.

Types of Virtualization
Many forms of virtualization exist in modern information technology. The most common 
is server virtualization, which is what most people think of when the term “virtualization” 
is referenced. However, in addition to server virtualization, IT organizations use  
other types of virtualization, based on other connotations of the word. Many think of 
virtualization as meaning “partitioning” a computing resource into multiple entities. 
Virtualization can also mean just the opposite: presenting multiple entities as a single 
virtual entity, thus hiding or masking the true computing resources that are performing 
the work in the background. Many manufacturers and independent software vendors 
have developed products that utilize the latter approach to virtualization. Of the most 
common are virtualization products for storage, network, and applications. In Chapter 2 
we’ll discuss how to distinguish one type of virtualization from another in more detail.

Server Virtualization
Although the concepts we have discussed so far have been about virtualization in 
general, they are most exhibited in server virtualization products. Server virtualization 
has become the most successful form of virtualization today. Server virtualization is 
sometimes called full virtualization. Server virtualization abstracts both the hardware 
resources on the physical computer as well as the hosted guest operating systems that 
run on the virtualization platform. A virtual machine running on a virtualized server 
needs no special software in order to run on the virtualized server. 

Implementations of server virtualization exist on, and for all, CPU platforms and 
architectures, the most popular being the IA-32 or x86. The challenges posed by the 
x86 architecture’s ISA and the Popek and Goldberg requirements have led to several 
approaches to VMM development. Although there are many different implementations 
of a VMM for x86, they can be summarized into four distinct categories. Table 1.4 
provides additional information about each category for server virtualization.



	
A

n
 In

tro
d

u
ctio

n
 to

 V
irtu

alizatio
n

 • C
h

ap
ter 1	

27

Type of  
Virtualization Description Pros Cons

Full virtualization A virtualization technique 
that provides complete 
simulation of the underly-
ing hardware. The result  
is a system in which all soft-
ware capable of execution  
on the raw hardware can  
be run in the virtual  
machine. Full virtualization 
has the widest range of 
support of guest operating 
systems.

Provides complete isola-
tion of each virtual 
machine and the VMM; 
most operating systems  
can be installed with
out any modification. 
Provides near-native  
CPU and memory per
formance; uses sophisti-
cated techniques to trap 
and emulate instructions  
in runtime via binary 
patching.

Requires the right combi-
nation of hardware and 
software elements; not 
quite possible on the x86 
architecture in its pure 
form because of some of 
the privileged calls that 
cannot be trapped; per-
formance can be 
impacted by trap-and-
emulate techniques of 
x86 privileged 
instructions.

Paravirtualization A virtualization technique 
that provides partial simu
lation of the underlying 
hardware. Most, but  
not all, of the hardware 
features are simulated.  
The key feature is address 
space virtualization, grant-
ing each virtual machine  
its own unique address  
space.

Easier to implement than 
full virtualization; when  
no hardware assistance is 
available, paravirtualized 
guests tend to be the 
highest performing  
virtual machines for net-
work and disk I/O.

Operating systems run-
ning in paravirtualized 
virtual machines cannot 
be run without substan-
tial modification; virtual 
machines suffer from lack 
of backward compatibility 
and are not very portable.

Table 1.4 Types of Server Virtualization

Continued



28	
C

h
ap

ter 1 • A
n

 In
tro

d
u

ctio
n

 to
 V

irtu
alizatio

n

Table 1.4 Continued. Types of Server Virtualization

Type of  
Virtualization Description Pros Cons

Operating  
System 
Virtualization

This concept is based on  
a single operating system 
instance.

Tends to be very lean  
and efficient; single  
OS installation for  
management and 
updates; runs at native 
speeds; supports all 
native hardware and  
OS features that the  
host is configured for.

Does not support hosting mixed 
OS families, such as Windows and 
Linux; virtual machines are not as 
isolated or secure as with the 
other virtualization types; Ring-0 
is a full operating system rather 
than a stripped-down microkernel 
as the VMM, so it adds overhead 
and complexity; difficult to iden-
tify the source of high resource 
loads; also difficult to limit 
resource consumption per guest.

Native  
virtualization

This technique is the  
newest to the x86 group of 
virtualization technologies. 
Often referred to as hybrid 
virtualization, this type is a 
combination of full virtual-
ization or paravirtualization 
combined with I/O accelera-
tion techniques. Similar  
to full virtualization,  
guest operating systems  
can be installed without 
modification. It takes  
advantage of the latest  
CPU technology for x86,  
Intel VT, and AMD-V.

Handles non-virtualizable 
instructions by using 
trap-and-emulate in 
hardware versus software; 
selectively employs accel-
erations techniques for 
memory and I/O opera-
tions; supports x64 (64-bit 
x86 extensions) targeted 
operating systems; has  
the highest CPU, memory, 
and I/O performance of 
all types of x86 virtual 
machines.

Requires CPU architecture that 
supports hardware-assisted accel-
eration; still requires some OS 
modification for paravirtualized 
guests, although less than pure 
paravirtualization.



	 An Introduction to Virtualization • Chapter 1	 29

Storage Virtualization
Storage vendors have been offering high-performance storage solutions to their 
customers for quite some time now. In its most basic form, storage virtualization 
exists in the assembly of multiple physical disk drives, or spindles, into a single  
entity that is presented to the host server and operating system, such as with RAID 
implementations. This can be considered virtualization because all the drives are  
used and interacted with as a single logical drive, although composed of two or  
more drives in the background.

Designing & Planning…

Hardware-Assistance Enhances Virtualization
To maximize the performance of your x86-based physical platform and the 
hosted virtual machines, be sure to select processors that support hardware-
assisted virtualization. Both Intel, providing Intel Virtualization Technology 
(Intel VT), and AMD, providing “Pacifica” (AMD-V), offer such technologies in 
their latest generation of processors available for servers as well as desktops 
and notebooks.

Hardware-assisting processors give the guest OS the authority it needs  
to have direct access to platform resources without sharing control of the 
hardware. Previously, the VMM had to emulate the hardware to the guest OS 
while it retained control of the physical platform. These new processors give 
both the VMM and the guest OS the authority each needs to run without 
hardware emulation or OS modification.

They also help VMM developers design a more simplified VMM. Since 
hardware-assisted processors can now handle the compute-intensive calcula-
tions needed to manage the tasks of handing off platform control to a guest 
OS, the computational burden is reduced on the VMM. Also, key state infor-
mation for the CPU and guest OS can now be stored in protected memory that 
only the VMM has access to, protecting the integrity of the handoff process.

Finally, hardware-assisted processors, all of which support 64-bit process-
ing, now allow the benefits of 64-bit computing to filter up to the guest  
OS and its hosted applications. This provides virtual machines with greater 
capabilities, headroom, and scalability.



30	 Chapter 1 • An Introduction to Virtualization

The true storage tier and its components were further masked by the introduction 
and adoption of storage area network (SAN) technologies. Without any change to the 
operating system code responsible for managing storage subsystems, IT organizations 
are now sharing storage components between multiple servers, even though each 
server thinks it has its own dedicated physical storage, in actuality storage administra-
tors have simply carved out a virtual quantity of drive space and presented it to the 
hosts for use.

More advanced technologies have begun to hit the market that take storage 
virtualization to the next level. Products exist that are capable of migrating storage in 
real time from one storage platform to another in the background based on rules and 
policies (such as retention policies, age of data, or last-time accessed) without any 
interruption or impact to the host. Software products exist that trap-and-emulate 
native SCSI commands and translate them to other storage instructions in the back-
ground, making it possible for a disk array to look like a suite of tape drives and tape 
libraries to back up software and operating systems without any modification.

Network Virtualization
As with storage vendors, manufacturers of network hardware have been in the  
virtualization arena for some time, although not always recognized as virtualization. 
The most popular forms of network virtualization are

■■ Virtual LAN (VLAN)  Ratified in the IEEE 802.1Q standard, VLANs are 
a method of creating independent logical networks within a shared physical 
network. Network administrators incorporate VLANs into their network 
design to logically segment broadcast domains and control the interaction 
between devices on different network segments. VLAN technology has 
evolved and is a common feature in the application-specific integrated 
circuits (ASICs) of just about all modern-day Ethernet switches. Although 
multiple devices can be physically connected to the same network switch, 
VLANs allow network administrators to create multiple virtual networks 
that isolate each segment from the others. Each segment utilizes a portion  
of the available resources (CPU, memory, bandwidth, and so on) in the  
host switch.

■■ Virtual IP (VIP)  An IP address that is not connected to a specific computer 
or network interface in a computer. VIPs are usually assigned to a network 
device that is in-path of the traversing network traffic. Incoming packets are 



	 An Introduction to Virtualization • Chapter 1	 31

sent to the VIP but are redirected to the actual interface of the receiving 
host(s). VIPs are mostly used for redundancy and load-balancing scenarios, 
where multiple systems are hosting a common application and are capable  
of receiving the traffic as redirected by the network device.

■■ Virtual Private Network (VPN)  A private communication network used 
to communicate confidentially over a public network. VPN traffic is often 
carried over highly insecure network mediums, such as the Internet, creating 
a secure channel for sensitive and confidential information to traverse from 
one site to another. It is also used as a means of extending remote employees 
home networks to the corporate network. Although special software is 
usually needed to establish the connection, once established, interaction with 
other resources on the network is handled the same way it would be on a 
true physical network, without requiring any modification of the network 
stack or operating system.

Application Virtualization
Administrators have always been plagued with the deployment and maintenance of 
desktop applications. Web applications and dynamically updated applications have 
been popular solutions to application distribution. Application virtualization seeks to 
tackle the problem by encapsulating a virtualization layer and all components of an 
application into a single file that can be run on a user’s desktop. Application packages 
can be instantly activated or deactivated, reset to their default configuration, and thus 
mitigate the risk of interference with other applications as they run in their own 
computing space.

Some of the benefits of application virtualization are:

■■ It eliminates application conflicts  Applications are guaranteed to use  
the correct-version files and property file/Registry settings without any 
modification to the operating systems and without interfering with other 
applications.

■■ It reduces roll-outs through instant provisioning  Administrators can 
create pre-packaged applications that can be deployed quickly locally or 
remotely over the network, even across slow links. Virtual software applica-
tions can even be streamed to systems on-demand without invoking a setup 
or installation procedure.



32	 Chapter 1 • An Introduction to Virtualization

■■ It runs multiple versions of an application  Multiple versions can run 
on the same operating system instance without any conflicts, improving the 
migration to newer versions of applications and speeding the testing and 
integration of new features into the environment.

Common Use Cases for Virtualization
Now that we have discussed the concept, history, and types of virtualization in depth, 
the last thing to review before diving into virtualization with Xen’s hypervisor, or 
VMM, is the use cases for virtualization. As mentioned earlier, not every scenario can 
appropriately be implemented using virtualization technologies. Some workloads are 
large enough and consistent enough to warranty their own dedicated computing 
resources. Others are so large it takes a farm of resources just to be able to handle  
the workload, as is the case with high-performance clusters (HPCs). However, most 
workloads, regardless of the size of your company, are great candidates for virtualiza-
tion; and by doing so, you can realize substantial benefits.

If you have not already adopted virtualization technologies as part of your infra-
structure strategy, the following are some examples where you can put virtualization 
to work for you:

Technology refresh■■

Business continuity and disaster recovery■■

Proof of concept (POC) deployments■■

Virtual desktops■■

Rapid development, test lab, and software configuration management■■

Technology Refresh
Asset life-cycle management is an area that gets many CFOs and CIOs attention 
because of the cost imposed to the business. As one phase of the life cycle, a technology 
refresh, or the replacement of older fixed assets with newer ones, can stand out on  
a department or corporate profit and loss statement, even with the lower prices of 
technology today. In many cases, it makes more sense to replace them than to pay to 
maintain aging and often obsolete equipment. But what if you could reduce the cost 
further?



	 An Introduction to Virtualization • Chapter 1	 33

During a technology refresh, the opportunity to virtualize and consolidate some 
of your existing workloads is great. There are some basic questions you should ask 
before undertaking any technology refresh, as represented in Table 1.5. If you could 
answer to one or more of these questions, then virtualization should be the answer 
you have been looking for.

Factor to Consider How Virtualization Addresses It

Q: Is the server that is being 
refreshed hosting an application 
that is still valuable to the  
company rather than being 
deprecated or obsolete?

If the application still provides value to the 
company, then it is a good strategy to make 
sure the application and operating system  
are hosted on a reliable, supported hardware 
environment. Virtualization can help by reduc-
ing the costs, both hard and soft, of refreshing 
your infrastructure.

Q: Is current performance  
acceptable to the business?

New servers can be several times more  
powerful than the servers you are planning  
on refreshing. If you did a physical-to-physical 
refresh, that would lead to underutilized 
servers and considerable waste of processing 
power. If you deem current performance to be 
satisfactory, then a virtual machine is perfect 
for your application, especially since virtual 
machines can often perform at near-native 
levels.

Q: Is there a trend that shows 
that additional resources will  
be needed in the short term?

Upgrading server resources can be a costly and 
time-consuming effort with considerable down-
time. A virtualized environment is flexible, and 
upgrade can often be performed dynamically 
on some platforms. For others, it is as simple  
as taking a few minutes to power down the 
virtual machine, reconfigure resource alloca-
tion, and then power the virtual machine up.

Table 1.5 Factors to Consider When Choosing Virtualization  
for a Technology Refresh

Continued



34	 Chapter 1 • An Introduction to Virtualization

Factor to Consider How Virtualization Addresses It

Q: Can legacy applications  
be migrated easily and cost-
effectively to a newer  
operating system or hardware?

Many legacy operating systems and applica-
tions are difficult to migrate to new hardware 
platforms with substantial modification.  
The hardware environment presented by  
the VMM, on the other hand, often has  
simple hardware with drivers available for  
all operating systems supported, making  
migrations much simpler.

Q: Will there be issues or  
complications either restoring 
applications and data to a new 
server or reinstalling and  
configuring the applications  
and data from the ground up?

A process known as physical-to-virtual (P2V) 
allows you to make an image of your servers 
and convert them to virtual machines, eliminat-
ing the need to restore from backup or possibly 
reinstall the application from scratch. In some 
cases, this can happen without any downtime.

Q: Is the application one that 
requires higher availability  
and recoverability from  
failure or some other system 
compromise?

Features such as live migrations allow single-
instance virtual machines to achieve higher 
availability than on a physical platform.  
Or if a clustered or load-balanced environment 
is desired but is not possible because of the 
hardware investment, making your failover 
node(s) virtual machines can incur minimal 
up-front costs that equate to substantial  
savings down the road.

Table 1.5 Continued. Factors to Consider When Choosing Virtualization  
for a Technology Refresh

Business Continuity and Disaster Recovery
Business continuity and disaster recovery initiatives have picked up over the past few 
years. Customer demand and federal regulations have helped accelerate those efforts 
and give them the attention they have needed for some time. However, business 
continuity plans (BCPs) can often require a large investment in standby technology 
in order to achieve the recovery point and time objectives. As a result, IT disaster 
recovery can be a slow moving, never-ending process.

Virtualization is an ideal platform for most cases since it eliminates the need to 
purchase an excessive amount of equipment “just in case.” Most software vendors  



	 An Introduction to Virtualization • Chapter 1	 35

of backup/recovery products support the restoration of operation systems and appli-
cations of physical servers to virtual machines. And if you currently use a recovery 
service provider because hosting your own hot site was too costly, virtualization may 
make that option more achievable by substantially reducing the investment your 
company needs to make.

For example, if your company has identified 50 servers that comprise your  
mission-critical applications and must be brought back online within 72 hours of  
a disaster, you would need 50 servers available and all the supporting data center and 
network infrastructure to support them (space, HVAC, power, and so on) at your 
recovery site. However, establishing your recovery site with virtualization technolo-
gies, you could reduce that number to five physical servers, each targeted to host  
ten virtual machines, a modest quantity based on what most companies achieve 
currently. That is a 90 percent reduction in acquisition costs for the servers as well as 
the environment costs to support them. Just think of the space reduction going from  
50 to 5 servers!

Proof of Concept Deployments
Business managers often get frustrated with IT’s inability to provision an environment 
to host a proof of concept (POC) for a proposed application that is intended to add 
value to the business. Most IT organizations do not have spare assets (at least any that 
are viable) laying around, nor have the time to spend to provision an application that 
is not associated with an approved “move-forward” project. As a result, most POCs 
are either set up on inadequate equipment, such as desktops, or not established at all, 
presenting a risk of missed opportunity for the business.

Virtual machines find their strength in situations such as this. Rapid provisioning, 
no hardware investment needed, safe, secure, and reliable… all the qualities needed to 
quickly build a POC environment and keep it running during the time it is needed. 
Even better, if the POC is successful and you decide to go to production with the 
application, you can migrate your virtual machine from your test infrastructure to your 
production virtual infrastructure without having to rebuild the application, saving lots 
of time in the end.

Virtual Desktops
Companies often have huge investments in client PCs for their user base, many of 
which do not fall into the category of power users. Similar to server hardware, client 
PC hardware continues to improve and get more powerful, often being underutilized. 



36	 Chapter 1 • An Introduction to Virtualization

If you have users that run a CRM application, e-mail, a Web browser, and some 
productivity applications such as spreadsheets and word processing, those users are 
well suited for a virtual desktop environment. Placing a thin client with keyboard, 
mouse, and monitor on their desk, the computing power can safely and securely  
be moved into the data center, hosted as a virtual machine on server hardware.  
In environments requiring desktop hardware encryption, PC firewalls, and other 
security devices, this can lead to a substantial reduction in complexity and software 
licensing as well.

If you are planning on rolling out a new wave of PCs for hundreds of call center 
agents or in a manufacturing environment ( just think of how dirty those shiny new, 
underutilized PCs will get in just a few days on the shop floor), consider instead 
creating a virtualized desktop infrastructure in your data center and saving your 
company lots of money while you are at it.

Rapid Development, Test Lab,  
and Software Configuration Management
Development teams have always been good candidates for virtualization. Whether it’s 
a desktop-based virtualization product or hosting some development servers as virtual 
machines in the data center, virtualization has proven to be effective in increasing the 
productivity of developers, the quality of their work, and the speed at which they 
complete their coding. In the same way, virtualization can speed up the testing cycles 
and also allow a higher density of automated testing, thus accelerating the time to 
release or to market.

Virtualization enables companies to streamline their software life cycle. From 
development and testing, through integration, staging, deployment, and management, 
virtualization offers a comprehensive framework for virtual software life-cycle auto-
mation that streamlines these adjacent yet often disconnected processes, and closes the 
loops between them. In addition to these obvious benefits, you can creatively design 
solutions around a virtual infrastructure to help your software development and test 
teams to:

Provide remote lab access and desktop hosting for offsite or offshore devel-■■

opment resources, minimizing duplication of lab equipment at each site.

Close the loop between software development and quality assurance— ■■

capturing and moving defect state configurations.



	 An Introduction to Virtualization • Chapter 1	 37

Reproduce and resolve defects on demand.■■

Clone or image a production virtual machine and host it in your QA test ■■

infrastructure for security patch, service pack, or maintenance release testing.

Push a staged configuration into production after successful testing is  ■■

completed, minimizing errors associated with incorrect deployment and 
configuration of the production environment.



38	 Chapter 1 • An Introduction to Virtualization

Summary
Virtualization is an abstraction layer that breaks the standard paradigm of computer 
architecture, decoupling the operating system from the physical hardware platform 
and the applications that run on it. As a result, IT organizations can achieve greater 
IT resource utilization and flexibility. Virtualization allows multiple virtual machines, 
often with heterogeneous operating systems, to run in isolation, side-by-side, on the 
same physical machine. Each virtual machine has its own set of virtual hardware 
(CPU, memory, network interfaces, and disk storage) upon which an operating 
system and applications are loaded. The operating system sees the set of hardware  
and is unaware of the sharing nature with other guest operating systems running  
on the same physical hardware platform. Virtualization technology and its core  
components, such as the Virtual Machine Monitor, manage the interaction with the 
operating system calls to the virtual hardware and the actual execution that takes 
place on the underlying physical hardware.

Virtualization was first introduced in the 1960s to allow partitioning of large, 
mainframe hardware, a scarce and expensive resource. Over time, minicomputers  
and PCs provided a more efficient, affordable way to distribute processing power.  
By the 1980s, virtualization was no longer widely employed. However, in the 1990s, 
researchers began to see how virtualization could solve some of the problems associ-
ated with the proliferation of less expensive hardware, including underutilization, 
escalating management costs, and vulnerability.

Today, virtualization is growing as a core technology in the forefront of data center 
management. The technology is helping businesses, both large and small, solve their 
problems with scalability, security, and management of their global IT infrastructure 
while effectively containing, if not reducing, costs.

Solutions Fast Track
What Is Virtualization?

Virtualization technologies have been around since the 1960s. Beginning ˛˛

with the Atlas and M44/44X projects, the concept of time-sharing and 
virtual memory was introduced to the computing world.

Funded by large research centers and system manufacturers, early ˛˛

virtualization technology was only available to those with sufficient resources 
and clout to fund the purchase of the big-iron equipment.



	 An Introduction to Virtualization • Chapter 1	 39

As time-sharing evolved, IBM developed the roots and early architecture of ˛˛

the virtual machine monitor, or VMM. Many of the features and design 
elements of the System370 and its succeeding iterations are still found in 
modern-day virtualization technologies.

After a short quiet period when the computing world took its eyes off of ˛˛

virtualization, a resurgent emphasis began again in the mid-1990s, putting 
virtualization back into the limelight as an effective means to gain high 
returns on a company’s investment.

Why Virtualize?
As virtualization technology transitioned from the mainframe world to ˛˛

midrange and entry-level hardware platforms and the operating systems that 
they ran, there was a shift from having either a decentralized or a centralized 
computing model to having a hybrid of the two. Large computers could 
now be partitioned into smaller units, giving all of the benefits of logical 
decentralization while taking advantage of a physical centralization.

While there are many benefits that companies will realize as they adopt  ˛˛

and implement virtualization solutions, the most prominent ones are 
consolidation of their proliferating sprawl of servers, increased reliability of 
computing platforms upon which their important business applications run, 
and greater security through isolation and fault containment.

How Does Virtualization Work?
The operating system and the CPU architecture historically have been ˛˛

bound and mated one to the other. This inherent relationship is exemplified 
by secure and stable computing platforms that segregate various levels of 
privilege and priority through rings of isolation and access, the most critical 
being Ring-0.

The most common CPU architecture, the IA-32 or x86 architecture, follows ˛˛

a similar privileged model containing four rings, 0 to 4. Operating systems 
that run on x86 platforms are installed in Ring-0, called Supervisor Mode, 
while applications execute in Ring-3, called User Mode.



40	 Chapter 1 • An Introduction to Virtualization

The Virtual Machine Monitor (VMM) presents the virtual or perceived ˛˛

Ring-0 for guest operating systems, enabling isolation from each platform. 
Each VMM meets a set of conditions referred to as the Popek and Goldberg 
Requirements, written in 1974. Though composed for third-generation 
computers of that time, the requirements are general enough to apply to 
modern VMM implementations.

While striving to hold true to the Popek and Goldberg requirements, ˛˛

developers of VMMs for the x86 architecture face several challenges due in 
part to the non-virtualizable instructions in the IA-32 ISA. Because of those 
challenges, the x86 architecture cannot be virtualized in the purest form; 
however, x86 VMMs are close enough that they can be considered to be  
true to the requirements.

Types of Virtualization
Server Virtualization is the most common form of virtualization, and the ˛˛

original. Managed by the VMM, physical server resources are used to 
provision multiple virtual machines, each presented with its own isolated  
and independent hardware set. Of the top three forms of virtualization are 
full virtualization, paravirtualization, and operating system virtualization.  
An additional form, called native virtualization, is gaining in popularity  
and blends the best of full virtualization and paravirtualization along with 
hardware acceleration logic.

Other areas have and continue to experience benefits of virtualization, ˛˛

including storage, network, and application technologies.

Common Use Cases for Virtualization
A technology refresh of older, aging equipment is an opportune time to ˛˛

consider implementing a virtual infrastructure, consolidating workloads and 
easing migrations through virtualization technologies.

Business can reduce recovery facility costs by incorporating the benefits of ˛˛

virtualization into the BCP and DR architectures.



	 An Introduction to Virtualization • Chapter 1	 41

Virtualization also gives greater levels of flexibility and allows IT organizations ˛˛

to achieve on-demand service levels. This is evident with easily deployed 
proof-of-concept, pilot, or mock environments with virtually no overhead  
to facilitate or manage it.

The benefits of virtualization can be driven beyond the walls of the data ˛˛

center to the desktop. Desktop virtualization can help organizations reduce 
costs while maintaining control of their client environment and providing 
additional layers of security at no additional cost.

Virtualization is, and has been, at home in the software development life ˛˛

cycle. Such technologies help streamline development, testing, and release 
management and processes while increasing productivity and shortening  
the window of time from design to market.



42	 Chapter 1 • An Introduction to Virtualization

Frequently Asked Questions
Q:	What is virtual machine technology used for?

A:	Virtual machine technology serves a variety of purposes. It enables hardware 
consolidation, simplified system recovery, and the re-hosting of earlier applications 
because multiple operating systems can run on one computer. One key application 
for virtual machine technology is cross-platform integration. Other key applications 
include server consolidation, the automation and consolidation of development and 
testing environments, the re-hosting of earlier versions of applications, simplifying 
system recovery environments, and software demonstrations.

Q:	How does virtualization address a CIO’s pain points?

A:	 IT organizations need to control costs, improve quality, reduce risks and increase 
business agility, all of which are critical to a business’ success. With virtualization, 
lower costs and improved business agility are no longer trade-offs. By enabling  
IT resources to be pooled and shared, IT organizations are provided with the 
ability to reduce costs and improve overall IT performance.

Q:	What is the status of virtualization standards?

A:	True open standards for getting all the layers talking and working together aren’t 
ready yet, let alone giving users interoperable choices between competitive  
vendors. Users are forced to rely on de facto standards at this time. For instance, 
users can deploy two different virtualization products within one environment, 
especially if each provides the ability to import virtual machines from the other. 
But that is about as far as interoperability currently extends.

Q:	When is a product not really virtualization but something else?

A:	Application vendors have been known to overuse the term and label their  
product “virtualization ready.” But by definition, the application should not be  
to tell whether it is on a virtualized platform or not. Some vendors also label 
their isolation tools as virtualization. To isolate an application means files are 
installed but are redirected or shielded from the operating system. That is not the 
same as true virtualization, which lets you change any underlying component, 
even network and operating system settings, without having to tweak the 
application.



	 An Introduction to Virtualization • Chapter 1	 43

Q:	What is the ideal way to deploy virtualization?

A:	Although enterprises gain incremental benefits from applying virtualization in one 
area, they gain much more by using it across every tier of the IT infrastructure. 
For example, when server virtualization is deployed with network and storage 
virtualization, the entire infrastructure becomes more flexible, making it capable 
of dynamically adapting to various business needs and demands.

Q:	What are some of the issues to watch out for?

A:	Companies beginning to deploy virtualization technologies should be cautious  
of the following: software costs/licensing from proliferating virtual machines, 
capacity planning, training, high and unrealistic consolidation expectations, and 
upfront hardware investment, to name a few. Also, sufficient planning upfront is 
important to avoid issues that can cause unplanned outages affecting a larger 
number of critical business applications and processes.



This page intentionally left blank



45

˛	 Summary

˛	 Solutions Fast Track

˛	 Frequently Asked Questions

Chapter 2

Choosing the Right 
Solution for the Task

Solutions in this chapter:

Issues and Considerations That Affect ■■

Virtualization Implementations

Distinguishing One Type of  ■■

Virtualization from Another



46	 Chapter 2 • Choosing the Right Solution for the Task

Introduction
Virtualization has grown to mean many things, but at its core it is really just 
another name for abstraction. Abstraction is what computer people have been using 
for years as a method to represent real world objects in the digital realm of the 
computer. Abstraction is used to provide a common interface through which 
components can interact. One example of abstraction would be the use of telephone 
numbers. These days the number has little bearing on the location of the user.  
We take for granted the complexity of locating a device across a wide variety of 
physical mediums. We as humans trust that if we dial the number, the person we’re 
looking for will answer.

Virtualization is an implementation of a standard interface that applications can 
trust to behave in a familiar manner. This interface may mask significant complexity, 
or it may merely be a direct channel to the underlying system. Some virtual environ-
ments are implemented as simply as replacing a library that an application uses with 
another similar library which provides similar functionality and additional features. 
Other virtual environments go so far as to implement an entire “virtual hardware” 
environment which is impossible to detect from within.

Still other virtual environments are designed to provide “run anywhere” functionality. 
A programmer need not concern himself with the intricacies of the current platform.  
He is presented with a common interface and standardized functions both of which he 
can trust to perform key behaviors.

This chapter describes the various levels of virtualization. It attempts to present 
the advantages and disadvantages of the various levels of abstraction. This information 
should help you choose the correct level of virtualization to meet a variety of project 
requirements.

Issues and Considerations That  
Affect Virtualization Implementations
Choosing the virtualization technology that is most applicable for your task can vary 
greatly. If you just want to conduct some rudimentary testing, you might want to use 
a simple form of operating system virtualization such as Linux-VServer. If you just 
want to improve the operation of a particular line of business application, you might 
use VMware’s ThinApp. Or if you are a tad braver, you might be architecting the 
virtualization infrastructure your whole company will operate on some day. Whatever 



	 Choosing the Right Solution for the Task • Chapter 2	 47

your mission, the pressures that shape your virtualization usage can range from 
performance goals to policy issues so making sure your solution fits the right 
problems is very important.

Performance
Performance is usually the most important metric for deciding how to structure your 
virtualization environment. If you see large changes in usage between different applications  
throughout a day then you may need a different virtualization structure than if your 
usage model is fairly static. In addition, your performance requirements can also drive 
what type of hardware will host the virtualization platform. Some hardware platforms 
were created solely with virtualization in mind whereas other types of hardware can 
run a virtualization platform just as well as a standard operating system. In addition, 
some applications may require considerable CPU processing power whereas other 
applications may have significant I/O requirements. Understanding what your current 
needs are as well as your future growth is extremely important.

Redundancy
As soon as the first major government or financial organization began to rely on 
data processing systems they wanted to make sure that if the system went down 
there was another system picking up the workload. Why buy one when you can 
buy two for twice the price? The good news is that virtual machines are dramatically 
less expensive and simpler to setup than the super computers of yore. In fact,  
some virtualization platforms such as Microsoft Hyper-V and VMware ESX have 
attempted to make virtual machines highly available by clicking a check box in  
a GUI. Some virtualization platforms have multiple levels of high availability. You 
need to figure out if your systems must be fault tolerant and, if so, to what degree. 
Some virtualization platforms offer multiple levels of fault tolerance. Basic fault 
tolerance capabilities simply move a virtual machine to a new host if the primary 
host fails. You need to decide if your application can tolerate thirty to sixty seconds 
of downtime for a virtual machine servicing the application. If not, you may need 
to investigate even stronger forms of fault tolerance, which reduce downtime from 
one to three seconds. Marathon Technologies provides this type of fault tolerance 
in its everRun product and VMware Fault Tolerance is a new feature for the 
VMware platform that is scheduled for release in 2009. Please refer to Chapter 11 
for a more thorough discussion of high availability.



48	 Chapter 2 • Choosing the Right Solution for the Task

Operations
There are also several operational issues that can influence your virtualization deployment. 
Hardware maintenance windows, software upgrades, change control, virtual machine 
lifetimes, and licensing constraints can potentially change what type of virtualization 
you use. For example, moving virtual machines from one hardware system to another—
installing new upgraded hardware and then moving those virtual machines back with 
little or no downtime—is extremely practical and should be included n your planning 
process. In addition, if you just want a second system for testing and won’t be using it 
in production, then that can drastically change how you use virtualization.

Backups
Disaster recovery requirements can significantly change your virtualization deployment. 
A solution that can backup 10 virtual machines might be very different than a system 
that can backup 400 virtual machines. The VMware platform offers a feature called 
Snapshots that stores a binary diff of a virtual machine image and stores it on disk. 
This solution might work fine in a smaller environment but can begin to strain if 
you need to backup hundreds of virtual machines. By the same token, a solution that 
can easily backup hundreds of virtual machines may not scale to an environment 
where you need to backup thousands of virtual machines. Some larger environments 
use deduplication technology to significantly reduce the amount of data stored 
within a virtualization infrastructure.

Security
One of the best ways to improve the performance of your virtualized environment 
is to move a virtual machine from one host system to another where there are 
more hardware resources available. The movement can be done on-demand or 
dynamically using automation features of the virtualization platform. The dynamic 
movement of virtual machines from one physical host system to another has 
become the blood pumping through the veins of many IT organizations offering 
optimal use of hardware resources.

Taking advantage of virtual machine movement has some important impacts  
on security. Moving a virtual machine running the corporate web site to the same 
physical hardware system that also processes the company payroll may introduce  
a policy problem. Designing proper segmentation and change control policies must 
be considered when designing your infrastructure.



	 Choosing the Right Solution for the Task • Chapter 2	 49

Evolution
The question most people have these days is not if virtualization will be adopted 
within their organization but instead when and how those deployments will occur.  
At the time of writing many organizations have adopted a policy that all new physical 
servers will be purchased as virtualization servers and any older systems that go through 
a hardware refresh will undergo a physical-to-virtual (P2V) conversion onto virtualized 
hardware. There are many stages in this virtualization adoption process that are worth 
discussion so you have an idea of what you are in for and what possibilities exist.

Discovery
One of the first phases of virtualization adoption is learning about all of the different 
options that are available out there. There is a whole host of choices ranging from 
library emulation all the way up to full grid computing capabilities. There are lots of 
challenges in between and understanding as many potential problems up front can 
significantly help you avoid problems in the future.

Testing
The birth of many virtualization deployments usually begins with an IT engineer 
who wants to test out a theory for how something will work but there isn’t any 
hardware available to run the test. You may want to test out a new version of software 
or you may want to upgrade a running system to a new patch and see if everything 
still works. Whatever the case may be you might install UML, VMware Workstation, 
or Bochs to run the new system on your existing computer. These are virtualization 
solutions that run certain types of virtual machines on top of an existing operating 
system. This type of virtualization isn’t dual booting but instead running an entirely 
new operating system at the same time as the parent operating system. The new 
virtual machine can have its own IP address that can be contacted from the network.

Production
After a while that new virtual machine you created to test out a theory may become 
useful. You may find yourself relying on the services provided by that virtual machine 
on a consistent basis. In fact, there may be other people in the organization that  
start using the system as well. At this point you may need to move the system into a 
production environment where the virtual machine is always running. The next step 
might be to move the system to something like VMware Server, which will run the 



50	 Chapter 2 • Choosing the Right Solution for the Task

virtual machine as a background service in your host operating system. Another 
option is to move the virtual machine to a full-fledged virtualization host system. 
Some options in this category include VMware ESX/ESXi, Hyper-V, XenServer, or 
Parallels. These systems are considered mature virtualization platforms and the pricing 
options have also become very economical or even free.

Mobility
Once you have several virtualization platforms running in a production environment, 
you might notice how simple it is to bring down a virtual machine on one host, 
move the virtual disks for the virtual machine to a new host, and bring the virtual 
machine back up on the new host. The time required to complete this type of virtual 
machine move is largely dependent on the speed of storage transfer across a network. 
A solution for improving this manual process includes yet another layer of abstraction 
and some specialized features of the virtualization platform. If the host platform 
accesses its file storage over the network as opposed to a local disk, then transferring 
the new virtual machine to a new host system is largely a matter of just telling the 
new host system to start up a new virtual machine where the virtual hard disk for 
the new virtual machine is located on the network. Using this technique, the disks 
required to run the virtual machine don’t need to be transferred across the network 
thereby dramatically speeding up the move to just a few seconds. There are several 
cost effective storage solutions that you can use to gain this capability including 
openfiler or FreeNAS in addition to commercial offerings such as 3Par, NetApp, 
EMC Clariion, or HP StorageWorks.

Grid
At this point you may have installed a storage area network to enable fast movement 
of virtual machines in your environment. You may find yourself powering on more 
web servers just before noon and then powering them off late in the afternoon so 
the CRM application can process sales data during the evening on the same host 
systems. Instead of manually instigating these virtual machine moves, you could use  
a feature such as VMware Distributed Resource Scheduler (DRS). DRS can detect 
when a virtual machine becomes starved for resources and instigate moving the 
virtual machine to a new host system that could better satisfy the resources needed 
by the virtual machine. These new automation capabilities within virtualization 
platforms offer the type of utility computing that drastically decreases cost and 
improves the performance and reliability of IT environments.



	 Choosing the Right Solution for the Task • Chapter 2	 51

Distinguishing One Type  
of Virtualization from Another
The hype surrounding the word virtualization has become so overblown that it can 
be difficult to distinguish one type of virtualization from another. In some cases  
the abstractions offered by different types of virtualization platforms overlap.  
In other cases, virtualization capabilities might abstract a portion of IT resources  
in completely different ways. Figure 2.1 attempts to depict the different types of 
virtualization, how they are similar, how they are different, and what portion of the 
IT structure they abstract.

Figure 2.1 Different Types of Virtualization

Library Emulation
One of the most basic forms of virtualization is emulation. Library emulation solu-
tions run a particular guest application built for one type of operating system on a 
different type of host operating system. The emulator will provide the same API as 
the original operating system environment within the context of the host operating 
system. Library emulation has the performance advantage of not requiring an entire 
guest operating system to run. Unfortunately, it does not work in every situation since 

Library Emulation
One of the most basic forms of virtualization is emulation. Library emulation solu-
tions run a particular guest application built for one type of operating system on a 
different type of host operating system. The emulator will provide the same API as 
the original operating system environment within the context of the host operating 
system. Library emulation has the performance advantage of not requiring an entire 
guest operating system to run. Unfortunately, it does not work in every situation since 



52	 Chapter 2 • Choosing the Right Solution for the Task

operating system application programming interfaces can be quite expansive and 
complex potentially introducing inconsistencies between the original guest operating 
system and the emulated interface.

Wine
The Windows emulator is a software package that allows you to run Windows 
programs on various Unix platforms. The software emulates the native Windows 
API and translates those calls into Unix, X Windows, and OpenGL API calls. 
Using the Wine software, you can run popular Windows programs such as 
Microsoft Office and Excel as well as games like Counter Strike, EVE Online,  
and World of Warcraft. Figure 2.2 shows a Linux system running a Microsoft 
PowerPoint application.

Figure 2.2 Linux Running Windows Emulator



	 Choosing the Right Solution for the Task • Chapter 2	 53

Cygwin
Cygwin is a software package that allows you to run certain Linux programs on  
a Microsoft Windows operating system. One of the most popular uses of Cygwin  
is to run a Linux shell such as bash on a Windows system. As the bash program makes 
Linux API calls, the Cygwin software translates the API calls into native Windows 
API calls (see Figure 2.3).

Figure 2.3 Linux Running Windows Emulator

Processor Emulation
Emulating hardware processor instructions is another type of virtualization. 
Processor emulators translate CPU instructions received from a hosted guest 
operating system into native CPU instructions. The advantage of this type of an 



54	 Chapter 2 • Choosing the Right Solution for the Task

approach is that a guest operating system can be run on numerous types of native 
processors. The disadvantage is that performance suffers due to the real-time 
interpretation that occurs. Bochs and QEMU are different flavors of processor 
emulation platforms.

Operating System Virtualization
Operating system virtualization abstracts operating system components to guest 
operating systems such as memory access, file system, and network access. One key 
component of this type of virtualization is that the kernel of the parent operating 
system is the same kernel used in each guest operating system. This type of virtualiza-
tion avoids emulation since the same system call interface is shared by each guest. 
Memory and CPU resources can be managed very effectively because load balancing 
is more efficient since there is not a hypervisor boundary that must be crossed to 
perform process execution.

Since all guests hosted using OS virtualization share the same kernel, they also 
share any problems within the shared kernel including stability or security problems. 
Upgrades can be problematic because upgrading one virtual machine requires 
updating all virtual machines on the same host system, which can cause logistical 
problems. Examples of OS virtualization platforms include Linux-VServer, Paralleles 
Virtuozzo Containers, OpenVZ, and Solaris Containers.

Application Virtualization
Some application virtualization solutions such as VMware’s ThinApp offer the 
ability to stream the application to a user’s desktop from a file server. By using  
this approach administrators can update a single file on a centralized file server  
so that the next time users start the application, they will get the latest version of 
that application. By encapsulating an entire application into a single file, the 
administrator also enables the user to run multiple versions of an application at 
the same time on the same desktop. Another application virtualization solution is 
the Microsoft App-V product.



	 Choosing the Right Solution for the Task • Chapter 2	 55

Presentation Virtualization
Another technique for solving the problem of application distribution is to abstract  
the presentation layer of the application usage experience. Presentation virtualization 
requires a small application to be run locally on your desktop that connects over a 
network to a server where the application is running. The communication between the 
desktop and the server transfers all keyboard, video, and mouse data over a specialized 
protocol such as the Microsoft Remote Desktop protocol or the Citrix XenApp 
Independent Computing Architecture protocol.

Server Virtualization
The virtualized server can run completely different operating systems without  
each guest knowing that another guest is running on the same physical system.  
The virtualized server does the job of sharing the physical hardware with each 
guest operating system running.

One of the most critical components of a server virtualization platform is the 
hypervisor. A hypervisor is software that allows multiple virtual machines to share 
access to physical CPU, memory, disk, and network resources. Initially, hypervisors 
ran on top of an existing operating system. This type of hypervisor is sometimes 
called a hosted hypervisor. Examples of hosted hypervisors include VMware 
Workstation/Server, Microsoft Virtual PC/Server, and Parallels Workstation. 
Another type of hypervisor is sometimes called a bare-metal hypervisor. Examples 
of bare-metal hypervisors include VMware ESX, Microsoft Hyper-V, and Citrix 
XenServer. Even though these hypervisors are classified as bare-metal hypervisors, 
they don’t actually run directly on bare-metal but instead run inside of a parent 
operating system.

Dedicated Hardware
A hypervisor that does not have a parent operating system is sometimes referred  
to as an embedded hypervisor or an integrated hypervisor. The VMware ESXi 
virtualization platform is an example of a hypervisor that runs directly on actual 



56	 Chapter 2 • Choosing the Right Solution for the Task

hardware without an underlying operating system. The ESXi hypervisor can boot 
from a local disk or over the network. The only thing the hypervisor does is run 
virtual machines. The ESXi virtualization platform is completely managed from an 
application programming interface. The lack of a parent operating system reduces 
maintenance and the attack surface area of the platform. If there is no parent 
operating system, then you don’t need to patch it and you can’t attack it. Another 
example of an embedded hypervisor is the Hitachi Virtage platform.

Hardware Compatibility
Hypervisor virtualization has become more popular than emulation largely for 
performance reasons. Some hypervisors do not emulate CPU instructions but instead 
only modify the portions of the virtual machine execution that need to be modified 
in order to share the physical hardware across multiple virtual machines. The job of 
the hypervisor or an emulation layer is largely to get instructions from virtual 
machines to the physical hardware. For example, if you wanted to get from one side 
of a river to another an emulation approach would use a ferry to get across the river 
whereas a hypervisor would use a bridge.

The performance gains that hypervisors offer over emulation do not come for 
free. The ability to run virtual machines at near native hardware speeds requires 
giving up a certain amount of flexibility in your choice of hardware. Most hypervisors 
have specific hardware requirements that require the type of x86 hardware that they 
can run on. At the time of writing the Microsoft Hyper-V product not only requires 
a 64-bit processor but also specialized virtualization instructions as discussed in the 
section titled “Hardware Virtualization” to follow in this chapter. The more hardware 
systems your virtualization platform supports, the more flexibility you gain in your 
virtualization deployment.

Hypervisors require specialized hardware for deployment, and certain features 
within a hypervisor might even mandate certain hardware specifications. Since 
hypervisors don’t emulate every CPU instruction from a virtual machine for perfor-
mance reasons, the virtual machine has a small amount of dependency on the actual 
physical processor of the host system. If the physical processor does not support the 
instruction set used by the running applications on a virtual machine, then the 
hypervisor will not be able to run the virtual machine. This is normally not a problem 
but vendors such as Intel and AMD continue to innovate x86 processors so they 



	 Choosing the Right Solution for the Task • Chapter 2	 57

usually include new features. The culprit here is that x86 is not always x86. These 
processors define a class, and different types within the class support different instruction 
sets. So just because you can run a virtual machine on one VMware ESX host does 
not necessarily mean you can run that same virtual machine on another VMware 
ESX host system.

Chapter 11 describes how virtual machines can dynamically move between a 
pool of host systems called a cluster. Given that hypervisors have specific hardware 
requirements, creating a cluster necessitates that the hardware specification of all hosts 
in the cluster be similar. For example, a virtual machine that requires the use of Intel 
x86 instruction set SSE4.1 cannot be migrated to a host that has an x86 processor 
that is running the Intel quad core CPU with the Kentsfield core. The hypervisor 
vendors are working to mitigate these types of problems.

Paravirtualization
A server virtualization platform attempts to present a generic hardware interface to  
a guest virtual machine, whereas a paravirtualized platform requires the guest virtual 
machine to use virtualization specific drivers in order to run within the virtualized 
platform. In certain circumstances paravirtualization can offer performance benefits, 
but some administrators consider the requirement of specialized drivers within the 
operating system as invasive. Examples of paravirtualized platforms include the Xen 
and TRANGO hypervisors.

Even though paravirtualization offers some unique advantages, there are many 
problems with the technology in general. Before you can use a particular operating 
system within a paravirtualized environment, you must first make sure that the 
virtualization platform offers drivers for the guest operating system. This means that 
the platform may support Linux kernel version 2.4 but it does not necessarily 
support kernel version 2.6. What it also means is that one development group from 
company ‘A’ has a version of the drivers but open source group ‘B’ also has a set of 
drivers. It can become confusing to an administrator which drivers should be used 
depending on the pros and cons of each implementation. And those differences can 
be very complex. Different operating systems may have vastly different methods for 
transferring data to and from hardware devices. This can make paravirtualization 
extremely complex and thus prone to errors.



58	 Chapter 2 • Choosing the Right Solution for the Task

I/O Virtualization
As physical x86-based host systems continue to increase processing power, there 
is a growing need to abstract the flow of data in and out of these systems. At the 
time of writing there are x86-based servers that can host 1000 virtual machines. 
Even if the host systems have multiple physical network adapters to provide  
the I/O needs of those virtual machines, the logistical problems surrounding 
cabling, port density, rack space, cooling, and other data center issues begin  
to heat up.

Virtualized I/O solutions abstract physical network interfaces such as Ethernet, 
FibreChannel, or Infiniband to a host server system. Most virtualized I/O solutions 
involve some type of software driver that runs within the host operating system itself. 
This software driver has the ability to present a single physical network interface as 
multiple physical network interfaces to the operating system running on the host.  
For example, you could have a HP server with a single 20Gbps Infiniband host channel 
adapter running VMware ESX with the virtualized I/O driver. The virtualized I/O 
driver could present the hypervisor with one 10Gbps Ethernet adapter and four host 
bus adapters for SAN connectivity. The ESX server would then further split up those 
virtualized I/O fabric adapters into hypervisor virtualized network adapters attached to 
the virtual machines themselves. The physical hardware ends up virtualized twice. Even 
though the method for virtualized I/O is complex, the end result is a much simpler 
environment to manage. Some vendors offering compelling solutions in this area 
include 3Leaf Systems and Xsigo Systems.

Hardware Virtualization
Computer processing chips that offer capabilities to run multiple virtual 
machines simultaneously are considered a form of hardware virtualization. These 
capabilities improve a virtualization platform’s ability to switch from running one 
virtual machine to another. Examples of hardware virtualization technologies include 
Intel’s Virtualization Technology (VT) and AMD Virtualization (AMD-V). Some 
virtualization platforms such as Microsoft Hyper-V require virtualization extensions  
in order to run.



	 Choosing the Right Solution for the Task • Chapter 2	 59

Tools & Traps…

Management
Development of virtualization technology began in the early 1960s but has 
skyrocketed in the past 10 years as it has been applied to the ubiquitous x86 
line of processing technology. In that time there has been a renaissance of 
virtualization technology such as hypervisors and hardware virtualization, 
but what has become increasingly apparent is that management technology 
is the largest driver of virtualization solutions. The more you work with  
virtualization, the more you will want to script, automate, and manage  
virtualization deployments. When you are considering what type of virtual-
ization technology to use, make sure that there is a strong programmatic 
interface to the platform. A virtualization platform with a strong application 
programming interface allows you to customize how the solution works and 
enables open source projects as well as third party vendors to develop new 
and innovative solutions for the platform.



60	 Chapter 2 • Choosing the Right Solution for the Task

Summary
The breadth and depth of virtualization solutions has significantly evolved over the 
last 40 years. The development of virtualization technology has continued to improve 
the solutions for age old information technology problems. In order to effectively use 
the virtualization solutions that exist, it is important to understand your immediate 
and future needs. Some people view virtualization as a more efficient use of resources 
but at the same time might think that using a virtualization platform will not pro-
duce the same performance as using a single operating system on a single hardware 
platform. This may be true, but the real challenge is knowing how computing 
resources need to be used in your organization. IT organizations with the fastest 
performing systems understand the core business drivers behind the organization. 
Once those goals are well understood, virtualization can be a powerful weapon in 
realizing them.

When the phone rings at 3 a.m. because an IT system is not functioning properly, 
sleep is lost, people get yelled at, and life at home can be less than enjoyable. Ensuring that 
a machine failure is not a failure of the IT organization but instead a lane change on the 
road to operations bliss becomes much simpler in a virtualization environment. Providing 
stellar uptimes, quick backups, and secure computing environments can not only 
eliminate angry users but also produce gold stars on your report card. Understanding 
the different types of virtualization gives you powerful tools in building a resilient and 
productive IT organization.

As shown in Figure 2.1 near the beginning of the chapter, the different flavors of 
virtualization abstract almost every angle of the computing stack. Server virtualization 
solutions abstract hardware resources such as CPU, memory, disk, and network interfaces 
to virtual machines. In addition virtualization solutions can abstract software interfaces, 
GUI interfaces, portions of operating systems, portions of applications, and even low 
level kernel drivers.



	 Choosing the Right Solution for the Task • Chapter 2	 61

Solutions Fast Track
Issues and Considerations That  
Affect Virtualization Implementations

Performance fluctuations.˛˛

Application tolerance.˛˛

Software upgrades and change control.˛˛

Understanding the stages of virtualization adoption.˛˛

Distinguishing One Type  
of Virtualization from Another

Server virtualization is the most popular form of x86 virtualization.˛˛

Emulation provides better hardware and software compatibility than ˛˛

hypervisor based solutions.

Hypervisors provide significant performance advantages over emulation ˛˛

solutions.

Hardware compatibility is an ongoing challenge with hypervisor based ˛˛

solutions.



62	 Chapter 2 • Choosing the Right Solution for the Task

Frequently Asked Questions
Q:	I’ve never installed any type of virtualization. What is the best way to start  

learning about the technology?

A:	Download VMware Server and install it. Create a virtual machine and install an 
operating system on it.

Q:	Isn’t virtualization slower than real hardware?

A:	A single virtual machine running on a single physical server is negligibly slower 
than not using a virtualization platform.

Q:	Why do I need a storage area network?

A:	A storage area network improves the ability to move virtual machines between 
physical hosts.

Q:	Can my application detect if I am running in a virtual machine?

A:	On some virtualization platforms it has been possible to issue low level CPU 
instructions within a virtual machine whose output might indicate whether or 
not the machine is running on a virtualization platform.

Q:	I am running software whose license is tied to the hardware. Can I install that 
software in a virtual machine?

A:	Most of the major licensing vendors have adopted their software to allow licensed 
applications to run in a virtualization platform. Check with the application 
vendor to make sure there are no problems.



63

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 3

Building a Sandbox

Solutions in this chapter:

Sandbox Background■■

Existing Sandbox Implementations■■

Describing CWSandbox■■

Creating a Live DVD with VMware  ■■

and CWSandbox



64	 Chapter 3 • Building a Sandbox

Introduction
There are several ways to obtain information about malware and in particular bot 
applications, as seen in the book, Botnets—The Killer Web App (Syngress 2007). Much 
of this chapter has been adapted from the contribution of Carsten Willem to the 
Botnet book. One approach is to analyze suspected malware by executing them in  
a so-called sandbox. Through this analysis we hope to learn more about its internals, 
the underlying communication method and infrastructure. Sandboxes are a common 
concept in computer security and are used for executing program code that comes 
from unverified or untrusted sources.

In the following sections of this chapter we describe sandbox technology and its 
application to malware analysis. First, we introduce the general sandbox architecture 
and its components. Then we will discuss several implementations of malware analysis 
sandboxes, followed by a more detailed explanation of one of these products, the 
CWSandbox. A sample analysis report for a very simple bot application is presented 
and explained. After that a detailed description of how to use the sandbox in real 
malware analysis is given, and a lot of useful and real examples of many different 
malicious actions that usually are performed by a bot are shown. This part of the 
chapter will give you the knowledge and ability to read an analysis report and identify 
the important malicious internals of the analyzed bot software. We will present some 
results that we have achieved on our live sandbox systems by successfully analyzing 
more than 10,000 malware samples. Finally, we have included instructions on how to 
build a Live DVD containing a VM with Windows XP Pro and the CWSandbox for 
use in the field or in the classroom.

Sandbox Background
A sandbox offers a monitored and controlled environment, such that the unknown 
software cannot do any harm to the real hosting computer system. This can be 
achieved by only blocking some critical operations or by implementing a complete 
virtual environment, where the processor, memory, and the file system are simulated 
and the real system is not accessible by the tested application. In malware analysis 
the main objective of the sandbox is to monitor the accesses to system resources, 
not to block them. A virtual machine or some other mechanism is used so that  
the system can be brought back into a clean and uninfected initial state after an 
analysis run. Consequently, the protection of the underlying system is not so 
important. This form of analysis is called behavior analysis. This form of analysis is  



	 Building a Sandbox • Chapter 3	 65

in contrast to code analysis, where the program instructions are examined with the 
help of a disassembler or a debugger.

The Visible Sandbox
To illustrate the functionality and the components of sandbox technology, the 
architecture and operation of CWSandbox is described. Different sandbox applications 
will implement sandbox technology differently. In our example, the host computer 
is running Ubuntu, which is running VMware, which is running Windows XP Pro, 
which is running the sandbox application, cwsandbox, which is running the 
malware application.

In our example, the sandbox itself consists of two different executables: cwsandbox. 
exe and cwmonitor.dll. The first one is the main application, which starts the 
malware and controls the whole analysis process, and the second one is a Dynamic 
Link Library (DLL), which is injected into all monitored processes in the malware. 
The sandbox is executed with the malware and associated command line parameters 
as its arguments. It is the sandbox that actually executes the malware.

During the execution of the malware, the DLL intercepts each critical API call  
and informs the main application about the call. Depending on the type of the system 
call, it either waits for the sandbox to decide how to continue, delegates control to  
the called API function, or simply returns with a simulated or error result. Besides the 
monitoring, the DLL also has to ensure that whenever the malware starts a new 
process or injects code into an already running process, the sandbox is informed about 
that. In that case a new instance of the DLL is injected into that newly created or 
already existing process, such that this process also can be monitored. A schematic  
of this architecture is given in Figure 3.1.



66	 Chapter 3 • Building a Sandbox

As mentioned, the monitoring DLL informs the sandbox about each performed 
API call, which in fact is done by sending a notification to it. These notifications 
include a lot of information, like the name of the API function, the used parameters, 
or the time when the call occurred. Depending on the type of the called function,  
a different TNotification class is used. Subclasses for the following categories exist:

■■ TNotification_COM:  Used for API calls that create COM objects

■■ TNotification_DLLHandling:  Used for API calls that load/unload a DLL or 
that dynamically determine the entry points of API functions (used during 
explicit linking)

■■ TNotification_FileSystem:  Used for API calls that access the file system

■■ TNotification_ICMPPacket:  Used for API calls that send ICMP packets

■■ TNotification_INIFile:  Used for API calls that use the Windows built-in 
methods to access .ini files

■■ TNotification_Mutex:  Used for API calls that create or access mutex objects

■■ TNotification_Network:  Used for API calls that use the Windows built-in 
network methods; for example, for accessing Windows shares

Figure 3.1 A Transparent Sandbox Instance Using CWSandbox



	 Building a Sandbox • Chapter 3	 67

■■ TNotification_Process:  Used for API calls that perform actions on processes; 
for example, creating, terminating, or opening a process

■■ TNotification_ProtectedStorage:  Used for API calls that perform accesses on the 
Protected Storage, which is a Windows Service for storing authentication data 
of applications or Web sites

■■ TNotification_Registry:  Used for API calls that access the registry

■■ TNotification_Service:  Used for API calls that access Windows Services

■■ TNotification_System:  Used for API calls that perform system functions;  
for example, rebooting the system

■■ TNotification_SystemInfo:  Used for API calls that query system info;  
for example, querying the current user

■■ TNotification_Thread:  Used for API calls that perform actions on threads;  
for example, creating or terminating

■■ TNotification_User:  Used for API calls that use the Windows built-in user 
management functions; for example, creating or deleting a user

■■ TNotification_VirtualMemory:  Used for API calls that access another process’s 
virtual memory

■■ TNotification_Window:  Used for API calls that access the currently existing 
windows; for example, to find a window with a given title or class name

■■ TNotification_WinSock:  Used for API calls that perform WinSock operations

There is a focus on analyzing the network connections and the traffic data. For that 
reason the transferred data is inspected and the underlying web protocol is trying to be 
determined. At the moment the following protocols are understood: Hypertext Transport 
Protocol (HTTP), File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), Internet 
Relay Chat Protocol (IRC), and the Ident Protocol (IDENT). Connections that use the 
RFC-conform messages and slightly modified versions are automatically detected and 
all the protocol dependent data is extracted (e.g., the login information, downloaded 
Web sites, or performed FTP commands). If an SMTP connection is detected, the 
CWSandbox can be instructed to trick the malware such that only informational 
requests are sent to the remote SMTP server instead of real mail delivery. The malware 
thinks that it is working with a proper SMTP server and that all the information about 
outgoing mails can be monitored, but actually no single mail is sent at all.



68	 Chapter 3 • Building a Sandbox

cwsandbox.exe
The cwsandbox.exe is a noninteractive console application, as it expects—and 
needs—no user input during its execution. The only possible input is CTRL+C, 
which is the standard Windows shortcut for terminating console applications.  
If termination is not ended prematurely by using this shortcut, the sandbox runs  
until all malware processes have terminated, a custom timeout is reached, or some 
critical event has occurred that requires an instant termination of the malware processes. 
During its runtime the following tasks are performed:

The malware process is started in suspended mode, such that the process object ■■

is created and all modules are loaded, but no single instruction is executed yet

The cwmonitor.dll is injected into this new process■■

Runtime options and information are exchanged with this DLL■■

Throughout the execution notifications are received from the DLL inside  ■■

of each monitored process; depending on the received notification, some 
decisions have to be made by the sandbox; the DLL then waits for this 
decision and continues in the way the sandbox decided; however, in most 
cases no decision is needed and the DLL simply routes the call to the original 
API function after sending the notification

After all processes have terminated or a given timeout is reached, all still ■■

running processes are terminated or the created malicious threads are 
stopped if their parent processes cannot be terminated safely, as it is the case 
with essential Windows processes like winlogon.exe

Under some circumstances the malware is terminated before the timeout ■■

occurs, for example to prevent serious harmful actions

A high level analysis report is created from the collected data■■

Optionally, a .cab file archive is created from all the monitored data and ■■

some additional files

Besides the monitoring of the relevant API function calls, the sandbox also offers 
some helpful features for a manual postprocessing step of the results. Some of the 
most important features are enabled with the configuration options STORE_
CREATED_FILES and DUMP_PROCESSES. The first one provides that a copy of 
all newly created files is written into the .cab file. By this, you can get the data of 



	 Building a Sandbox • Chapter 3	 69

temporary files, which often are used as a source for encryption and then contain the 
plain text of data, which is transmitted only in an obfuscated version over the network. 
Furthermore this includes copies of all downloaded files, which may contain code 
updates or other malware files. The second option enables a functionality that creates 
process dumps of all monitored processes shortly before they are terminated or 
suspended. So, if a malware sample is compressed or encrypted, you will get a 
decompressed and decrypted version of the binary code by that. All process dumps 
are also stored in the mentioned .cab file.

cwmonitor.dll
The cwmonitor.dll is injected into each monitored process by the sandbox application. 
This is automatically done, if a new process is started by the malware, or an existing 
process is infected with malicious code. If a monitored process wants to perform either 
of these operations, the sandbox application controls this creation/injection as described 
in the following. If a new application should be started, the sandbox intercepts directly 
after creating the process and before executing any single operation of it. Then, the 
monitoring DLL is injected and the newly created process is only resumed, if the 
initialization routine of the DLL can be successfully performed. The infection of an 
already running process works in an analog way: if a monitored process injects code 
into an already running one, CWSandbox intercepts this before any single operation 
of the injected code is allowed to be executed. Then, the monitoring DLL is injected 
and completely initialized. If the initialization of the DLL fails for some reason, the 
created process or infected thread is terminated automatically without being able to 
perform any single instruction.

Warning

Please keep in mind that the main purpose of CWSandbox is to monitor and 
not to block the actions of the analyzed file. This means that your local 
system as well as other remote systems may be infected by it and that sensitive 
data may be retrieved and sent to the malware operator. Furthermore there 
may remain active malicious code also after the analysis process has finished. 
The sandbox tries to terminate all created processes and to stop all malicious 
threads that have been injected into running system services. But as this is 
not possible in any case, you always should reset your system back to a clean 
state after a performed analysis.



70	 Chapter 3 • Building a Sandbox

In its initialization routine the DLL first collects some information about the 
hosting process, like username or security context information. Then it sets up an 
inter-process communication (IPC) object to communicate with the sandbox 
application. Via this mechanism, the collected process information is sent to the 
sandbox and some configuration settings are received in turn. Function hooks are 
installed for all relevant API functions, which are used to intercept their calls. The 
technique used for realizing the hook functions is called Inline Code Overwriting 
and is described in detail in the following. There are several other approaches like 
Import Address Table (IAT) Patching, Export Address Table (EAT) Patching, or 
using Proxy DLLs. Every hooking technique has its disadvantages and advantages, 
but for CWSandbox the currently used one seems to fit best.

The inline patching performed in CWSandbox works in the following way. 
Each Windows API function that is being used in an application is implemented in 
one of the Windows DLL files like kernel32.dll, advapi32.dll, or ntdll.dll. These 
DLLs either are loaded automatically on process initialization or can be reloaded 
manually during runtime by one of the functions LoadLibrary, LoadLibraryEx, or 
LdrLoadDll. No matter how and when the DLL is loaded, at runtime the code of 
each API function that is called needs to reside in the virtual memory of the calling 
process. Accordingly, the cwmonitor.dll is able to locate these functions in memory, 
either by using the API function GetProcAddress or by manually parsing the EAT 
of the containing Windows DLL module. For catching all calls to the particular 
function, a JMP instruction is written to its code location as the first operation. This 
JMP operation is used to reroute the execution to a customized hook function.

As an example, Figure 3.2 shows an extract of the CreateFileA function from 
kernel32.dll, which is used to open an existing file or to create a new file. In the 
upper part of the figure the original and unmodified version of this function is 
shown. The first three instructions are displayed in a light gray box, the following 
ones in a dark gray box. The operations from the light gray one are those that are 
overwritten by the JMP instruction after the hook is installed. You can see that in 
the lower part of the figure: the first light gray box is completely missing, because 
it has been overwritten. The following bytes from the dark gray box are not 
modified at all.



	 Building a Sandbox • Chapter 3	 71

Figure 3.2 Inline Code Overwriting

At hook installation, before the introducing bytes of a function are overwritten, 
these have to be saved to some other memory location as they later may be 
needed to perform the original API function. In the lowest box of the figure you 
can see that these bytes are copied to a location called SavedStub. Now, each time 
the CreateFileA function is called, first the JMP operation is executed and control 
is delegated to the hook function (shown in the middle box of the lower figure-
part). If the original API should be called from inside of the hook function, first 
the SavedStub is executed and then control is transmitted back to the original API 
function. In fact the operations from the dark gray box are executed then, which 
have not been modified by the hook. This form of API Hooking is the most 



72	 Chapter 3 • Building a Sandbox

effective and comfortable one, which can be done from user mode. But as it is 
detectable by the malware application, coming releases of CWSandbox will use 
some form of kernel mode hooking. It is also possible for an application to not 
use the Windows API functions at all, but to perform the relevant system calls 
directly. Because this technique is hard to and laborious to implement, usually it  
is not done in malware. 

Warning

CWSandbox will deliver no false positives, as all contents of a produced analysis 
report reflect operations that actually have been performed. In contrast, 
there always will be the risk of false negatives, as only the explicitly monitored 
operations will be reported. As an example, applications are able to perform 
system calls directly instead of using the Windows API. Nevertheless, since 
this is rather complicated and laborious, nearly all malware uses the API.  
But you never can be sure that a program is clean, just by finding no malicious 
operations in the corresponding analysis report.

Existing Sandbox Implementations
There are several software tools that perform such a behavior analysis by executing 
a sample in some form of sandbox, which monitors the performed actions and 
afterward creates an analysis report of these actions. One candidate is the Norman 
SandBox, which was developed by Norman ASA, a Norwegian company that 
specializes in data security. Norman simulates a whole computer system and a 
connected network. The implementation details and a description of the underlying 
technology can be found in their Sandbox Whitepaper.1 A live version of their 
sandbox is available online at http://sandbox.norman.no/live.html, where everyone 
can submit malware samples and get an analysis report by e-mail later. Another 
product is TTAnalyze, which was developed by Ulrich Bayer, Ikarus Software 
GmbH, in cooperation with the Technical University of Vienna. TTAnalyze uses 
the PC emulator QEMU to run a complete Windows operating system inside of it. 
In this emulated system the technique of API Hooking (a technique described later 



	 Building a Sandbox • Chapter 3	 73

in this chapter) is used to monitor the interesting system calls of the malware. 
The decoupling from the network has the advantage that the malware is not able 
to infect other computers, but there also is the disadvantage that less information 
can be collected, as no real outgoing connection can be established.

Chas Tomlin has chosen a different approach with his Sandnet. There, the malicious 
software is executed on a real Windows system, not on an emulated or simulated one. 
After 60 seconds of execution, the host is reset and forced to reboot from a Linux 
image instead of its actual Windows OS. For that purpose Preboot Execution 
Environment (PXE) is used: a mechanism for booting a computer via its network 
interface independently of an available data storage device or operating system. After 
booting Linux, the Windows partition is mounted and the registry hives are extracted 
as well as the complete file list. Both are sent to a different analysis host for further 
examination. After that, the Windows partition is reverted back to its initial clean 
state using PartImage.2 As Chas Tomlin’s Sandnet focuses on the network activity, 
several dispositions are made. During the execution of the malware, the Windows 
host is connected to a virtual Internet with an IRC server running that positively 
answers all incoming IRC connection requests. Furthermore, all packets are captured 
to examine all other network traffic afterward. The collected packets are parsed using 
perl scripts for known protocols such as IRC, DNS, and HTTP, and the relevant 
information is extracted.

A similar method is used in Truman—The Reusable Unknown Malware Analysis Net, 
which is provided by Joe Stewart from LURHQ. It consists of a PXE bootable Linux 
client based on Chas Tomlin’s PXE Windows Image Using Linux [Tomb] and a set  
of additional tools. The malware sample is also executed on a real Windows system, 
which is connected to a virtual Internet. After the sample’s execution, the Truman 
tools are used to dump the system’s memory and its file system contents. By that,  
a different analysis machine is able to examine the dumps and compare them against 
the initial system state. More information on Truman can be found at www.lurhq.
com/truman.

Finally, there is CWSandbox, which results from the diploma thesis of Carsten 
Willems and is being further improved and still under development (see Figure 3.3). 
A free research version as well as a commercial version can be retrieved from Sunbelt 
Software. More information and also a live sandbox, where anyone is able to submit 
suspicious software samples and get an analysis report by mail later, can be found at 
www.cwsandbox.org and www.sunbeltsandbox.com.



74	 Chapter 3 • Building a Sandbox

Describing CWSandbox
CWSandbox is an application for the automatic behavior analysis of malware. This 
dynamic analysis is performed by executing the malicious application in a controlled 
environment and catching all relevant calls to the Windows API. These API calls are 
used for accessing the Windows system resources like files, the registry, or the network, 
so all the malware’s actions can be examined by that. In a second step a high level 
summarized report is generated from this monitored data. One focus lies on the 
analysis of bots, and a big effort is spent on extracting and evaluating the network 
traffic data. To give an intuitive image of the sandbox in advance, a short example  
is presented first. It shows the analysis of a bot application that was collected by  
a honeypot. We will use this bot as a basic example in this chapter, because it is  
a simple one, but comprises most of the techniques and actions characteristic for 
most of the bots currently available. It is named Backdoor.IRCBot.S by BitDefender, 
BackDoor.Generic4.VT by AVG, and Backdoor.Win32.IRCBot.yc by Kaspersky.  

Figure 3.3 Running CWSandbox



	 Building a Sandbox • Chapter 3	 75

Due to the nature of its origin the name we chose is based on its MD5 hash value, 
therefore it is 82f78a89bde09a71ef99b3cedb991bcc.exe. For starting its analysis in 
CWSandbox the following command is used:
c:\cwsandbox.exe TARGET_FILENAME=82f78a89bde09a71ef99b3cedb991bcc.exe

The sandbox then starts the malware and monitors its actions by inspecting the 
performed API calls performed by it. Figure 3.2 shows an example output of this 
execution. The upper main console window prints out information about the 
malware process and about all new processes that were started or injected. The lower 
event log window gives information about each monitored API function that was 
called by one of them. After a customizable time, all participating malware processes 
are terminated or stopped. Then a summarized and high level XML analysis report is 
created from the collected data. The analysis report contains a separate section for 
each process that was involved, and for each of them several subsections that contain 
actions of a particular type; for example, there is one subsection for accesses to the 
file system, one for accesses to the registry, and another one for the performed 
network operations. Figure 3.4 shows an extract of such an XML report.

Figure 3.4 Analysis Report



76	 Chapter 3 • Building a Sandbox

CWSandbox is used to create analysis reports for single malware samples, and it is 
integrated into a bigger system, the Automated Analysis Suite (AAS). This suite consists 
of several software components and is used to collect and analyze malware automati-
cally and provides a database repository. You can see a schematic overview of the AAS 
in Figure 3.5. All its components are arranged around a central database, which holds 
the malware sample files and the resulting analysis reports. This database is filled by 
manual malware submission via a Web interface or by automatic collection via 
Nepenthes sensor hosts. Of course, the malware submission interface can also be used 
by other collecting mechanisms, but currently this is done only via Nepenthes. One or 
more CWSandbox hosts are where the actual analysis is performed (see Figure 3.5).  
On such a host an instance of the CWSandbox is running, which periodically queries 
the database for new samples. If a new one is found, it is downloaded and an analysis is 
started on it. Afterward the resulting report is written back to the database and the host 
is brought back into a clean state. Therefore, on our live systems most of the 
CWSandbox hosts are realized as virtual machines, which run under VMware, but 
this is only for convenience reasons. All you need is a mechanism to reset the 
CWSandbox host back to a clean initial state after a performed analysis. Accordingly, 
this also can be done by using applications like DeepFreeze,3 a hardware restore 
solution, or by using a dual-boot or network-boot system as well. 

Notes from the Underground…

Detecting a Virtual Machine
Using virtual machines for malware analysis has become very popular today. 
Due to that fact a lot of malicious applications try to detect if they are running 
in a virtual environment. Depending on the used virtualization software, there 
exist different characteristics for which the malware can check. This includes 
specific registry entries, the list of running processes or system services, or 
typical behavior of the system. Especially for the often used product VMware 
there exist a lot of publicly known detection methods. The Web site www.
trapkit.de presents a lot of them and also offers the tools scoopy doo and jerry 

Continued



	 Building a Sandbox • Chapter 3	 77

for that purpose. A generic approach to VM detection has been presented  
by Joanna Rutkowska under the name redpill. It is based on the fact that 
retrieving the address of the Interrupt Descriptor Table (IDT) is a nonprivileged 
instruction that also can be called from user mode applications. Because the 
IDT address retrieved when running in a virtual machine is different from that 
in a real system, we can easily use this for VM detection. The best thing about 
this trick is that it works with any virtualization software. As newer CPU  
generations offer real virtualization support, we can only hope that in the 
future, VM detection will become impossible or at least (and most probably) 
much more difficult.

Figure 3.5 Automated Analysis Suite (AAS)



78	 Chapter 3 • Building a Sandbox

Creating a Live DVD with  
VMware and CWSandbox
While working at Portland State University, two students, Fred Shore and Andreas 
Turriff, created a bootable DVD containing VMware, a virtual Windows XP Pro 
instance, and the CWSandbox. The following sections contain that report and will help 
you build your own instance. Even though these instructions use the CWSandbox, the 
skills described will permit you to substitute the sandbox tool of your choice.

This project began as the brainchild of Craig Schiller, the CISO at Portland State 
University. The idea was to create a bootable Linux Live DVD that included a virtual 
version of Windows XP and CWSandbox for use in the classroom and in the field 
for the manual analysis of malware. We created a Live DVD because the necessary 
files would not fit on a CD.

The minimum hardware requirements for the creation and maintenance of the 
Live DVD is an Intel Pentium III-based PC with at least a 20 gigabyte IDE hard 
drive, a read/write DVD-ROM drive, and at least 512 megabytes of RAM.

The minimum hardware requirements for use of the Live DVD in the field or in 
the classroom are an Intel Pentium III-based PC with a DVD-ROM drive, a USB 
port, and at least 512 megabytes of RAM.

We created our Live DVD based on Ubuntu version 7.10, VMware Server v1.05, 
and Windows XP Professional with service pack 2. The version of Windows XP Pro 
used a volume license product key.

Setting Up Linux
We started with a Dell GX270 with 1.5 gigabytes of RAM and a 40 GB IDE 
HDD. We downloaded the Live DVD version of Ubuntu v7.10 (Gutsy Gibbon) 
from the Ubuntu Web site. The link to this ISO is http://releases.ubuntu.
com/7.10/ubuntu-7.10-desktop-i386.iso.

We set up Ubuntu using the default settings. When we got to the partitioner we 
selected manual setup.4 We chose to use a 3 partition scheme, creating the partitions 
with the following parameters:

1.	 Boot Partition (must be established in the first 1024 tracks, usually within first 8G): 

a.	 Mount point: /boot

b.	 Size: 128 megabytes

c.	 File System: ext2



	 Building a Sandbox • Chapter 3	 79

2.	 Swap Partition: 

a.	 Mount point: N/A

b.	 Size: 2000 megabytes

c.	 File System: swap

3.	 Root Partition

a.	 Mount point: /

b.	 Size: whatever space is left

c.	 File System: ext3

After the setup is complete we installed all the updates to Ubuntu 7.10. After 
restarting and logging in to Ubuntu for the first time, we fired up Firefox and went to 
the Ubuntu community forums to get the documentation to change the unsafe default 
settings in Ubuntu. The page is https://help.ubuntu.com/community/UnsafeDefaults.

There is also a change to make in /etc/init.d/mountdevsubfs.sh: 

1.	 Open a terminal window located in the launch bar under Applications/
Assessories.

2.	 Type the following line into the terminal window: 

gksudo gedit /etc/init.d/mountdevsubfs.sh■■

and press ■■ Enter.

3.	 Enter your password.

4.	 Remove comments (#) from the following four lines starting with mkdir -p  
/dev/bus/usb/.usbfs line.

# Magic to make /proc/bus/usb work■■

#■■

mkdir -p /dev/bus/usb/.usbfs■■

domount usbfs “” /dev/bus/usb/.usbfs -obusmode=0700,devmode=0600,  ■■

listmode=0644

ln -s .usbfs/devices /dev/bus/usb/devices■■

mount --rbind /dev/bus/usb /proc/bus/usb■■

5.	 Save the file, then restart the computer.

Next we need to set up an instance of VMware.



80	 Chapter 3 • Building a Sandbox

Setting Up VMware Server v1.05
The first step in setting up VMware server is to download the tar.gz package from 
the VMware Web site, www.vmware.com/download/server. You should register your 
copy of VMware Server at http://register.vmware.com/content/registration.html  
to receive a serial number for VMware server. The application is free but still requires 
a serial.

We chose to set up VMware server with the default settings. Just remember to 
run all the terminal commands with sudo in front of it. When you extract the 
VMware server package to your HDD, be sure to check the All Files radio button.  
It will create a directory called vmware-server-distrib. The script you need to run is 
sudo ./vmware-install.pl. 

1.	 As you are prompted by the script, just select the default settings and let the 
script start the configuration script. The configuration script will compile  
a version of VMware for your kernel.

2.	 Finally enter your serial number and the VMware server set up is  
complete.

3.	 Run the server by typing sudo vmware and typing your password.

4.	 Click connect to complete the connection to the host VMware server.

5.	 Click Create a new virtual machine.

Next, we will set up the virtual machine.

Setting Up a Virtual  
Machine in VMware Server

1.	 Click the Next button to move to the next step in the setup wizard.

2.	 On the Virtual Machine Configuration page, select the Custom radio 
button and then click Next.

3.	 On the Guest Operating System page, select the 1. Microsoft Windows 
radio button and choose Windows XP Professional from the Version drop-
down box. Click Next.

4.	 On the Name the Virtual Machine page, choose the Name and Location 
for your virtual machine and click Next.

5.	 On the Processor page, use the default, One processor and click Next.



	 Building a Sandbox • Chapter 3	 81

6.	 On the Access Rights page, uncheck the Make this virtual machine 
private checkbox and click Next.

7.	 On the Memory page, type 256 in the MB input box and click Next.

8.	 On the Network Connection page, select the Use network address 
translation (NAT) radio button and click Next.

9.	 On the I/O Adapter Types page, use the default, the BusLogic radio button, 
and click Next.

10.	 On the Disk page, choose the Create a new virtual disk radio button and 
click Next.

11.	 On the Virtual Disk Type page, choose the default, the IDE (Recommended) 
radio button, and click Next.

12.	 On the Disk Size page, leave the default Disk size (GB): 8.0 but uncheck 
both the Allocate all disk space now checkbox and the Split disk into 
2GB files checkbox and click Next.

13.	 On the Disk File page, choose the name of your virtual disk file, and click 
Finish.

14.	 Once you are back to the VMware Server Console, click Edit virtual 
machine settings.

15.	 We need to add a USB device so click the + Add button, select the USB 
Controller under Hardware Types, and click Next.

16.	 On the Device Status page it gives instructions on how to use the 2 port 
USB 1.1 controller (VMware Server does not support USB v2.0) and click 
Finish.

17.	 Click OK to close the Virtual Machine Settings window.

Next, you will need to set up Windows XP in the virtual machine you just created.

Setting Up Windows XP  
Professional in the Virtual Machine
Setting up Windows XP Professional in the virtual machine we just created is a 
straightforward process, just like setting it up on a regular PC. You need a Volume 
Licensed version of Windows XP Professional with service pack 2 and a product key 
for it. We set up XP using all the default settings. It is not until after XP is set up that 



82	 Chapter 3 • Building a Sandbox

the real configuration begins. First, install the VMware Tools, click VM on the VMware 
Server Console, and select Install VMware Tools from the drop-down menu.

We used a simple set of requirements to ready XP for the CWSandbox installation:

1.	 Create a user account with administrative privileges.

2.	 In System Properties:

a.	 Turn off System Restore

b.	 Turn off Error Reporting

c.	 Set Performance to Adjust for best performance

d.	 Set the page file to 384-384

3.	 Turn on the Windows Firewall.

4.	 Run Windows Updates, however many times it takes to bring XP up to date 
(we haven’t tested the installation with SP3).

5.	 Set up a dummy e-mail account using Outlook Express.

6.	 Using Add/Remove Programs/Windows Setup, remove all unnecessary 
components such as Games, Windows Themes, and so on.

Finally, we are ready to set up CWSandbox.

Setting Up CWSandbox v2.x  
in Windows XP Professional
We set up the Live DVD to do manual malware analysis with CWSandbox. This 
means that we require only eight of the files in the WinXP Binaries.zip distributed 
by Sunbelt Software:

CWSandbox.exe■■

CWSandbox.ini■■

CWMonitor.dll■■

CWSandboxConfigTool.exe■■

HTMLReport.xslt■■

CWSandbox_EULA.pdf■■

Sunbelt CWSandbox User Guide V2.pdf■■

Botnets_10_excerpt.pdf■■



	 Building a Sandbox • Chapter 3	 83

These files should be put into a directory on the C-drive; we used C:\CWSandbox. 
Then we made short-cuts on the desktop to CWSandbox.exe, CWSandboxConfigTool.
exe, and each of the pdf files. The CWSandboxConfigTool was especially helpful 
because it provides a simple explanation for every option available for running 
CWSandbox. The HTMLReport.xslt file worked very well in formatting the analysis.
xml for viewing after running a malware analysis. The path to the HTMLReport.xslt 
should be set to three levels above the analysis.xml—..\..\..\ HTMLReport.xslt—using 
the CWSandboxConfigTool.

Now that we have a fully functioning instance of CWSandbox we are ready to 
create a Live DVD with this instance.

Configuring Linux and  
VMware Server for Live DVD Creation

1.	 Install Remastersys (see www.remastersys.klikit-linux.com)

a.	 Open a terminal, become root by typing sudo su and press Enter.

b.	 The Remastersys repository needs to be added to your /etc/apt/sources.
list; type: gedit /etc/apt/sources.list

c.	 Paste the following into the sources.list: # Remastersys, deb http://www.
remastersys.klikit-linux.com/repository remastersys/.

d.	 Then simply either reload in Synaptic or you can “sudo apt-get update” 
and install remastersys.

e.	 To install remastersys, in the terminal window, type apt-get install remastersys 
and press Enter.

f.	 Type exit and press Enter in the terminal window to leave super 
user.

2.	 Edit the Virtual Machine definition file (.vmx, usually in /var/lib/vmware/
Virtual Machines). In a terminal window, type:

cd /var/lib/vmware/Virtual\ Machines/theNameOfYourVirtualMachine/  
(replace the bold text in the preceding line with the name of your virtual 
machine)

a.	 Use your favorite text editor to edit the file: theNameOfYourVirtual-
Machine.vmx.

b.	 Remember to insert sudo before the command.



84	 Chapter 3 • Building a Sandbox

c.	 Add the following three lines to the end of the file and save it:

disk.Locking = “FALSE”■■

workingDir = “/tmp”■■

uuid = “KEEP”■■

3.	 Use your favorite editor to add the following line to the end of /etc/
vmware/config file: mainMem.useNamedFile = “FALSE”

4.	 Set disk to independent-nonpersistent** mode:

a.	 Select the Virtual Machine in the VMware Server console.

b.	 Click ‘Edit virtual machine settings, select the Hard Disk entry on 
the Hardware tab, and click Advanced in the lower right corner.

c.	 On the Virtual Device Node page, click the Independent checkbox, the 
Nonpersistent radio button, and under Other click the Disable write 
caching checkbox.

d.	 Click Okay on each of the configuration pages and exit the VMware.

Now the Windows XP instance is set to be nonpersistent; whatever changes 
that are made to the Windows XP instance after this will be lost after a restart.

To make changes to the Windows XP instance, set the radio button from 
nonpersistent to persistent on the Virtual Device Node page and save the 
changes.

5.	 Run “sudo remastersys dist cdfs”. This command gathers all the files neces-
sary for the Live DVD and stores them in /home/remastersys/. You will be 
prompted for your ubuntu cd during this process so put it in now.

6.	 (Optional) If necessary, modify the files in /home/remastersys to suit your 
requirements (e.g., change the banner and boot options in /home/remastersys/ 
ISOTMP/isolinux/isolinux.cfg).

7.	 Run “sudo remastersys dist iso”. This command creates the Live DVD in iso 
format and places it in /home/remastersys.

8.	 Burn the .iso file located in /home/remastersys to DVD.



	 Building a Sandbox • Chapter 3	 85

Updating Your Live DVD
Updating your Live DVD is a relatively simple process if you use the machine already 
configured for creating a Live DVD. The process has three steps (two steps are optional).

1.	 (Optional) Update your Linux Installation.

2.	 (Optional) Update VMware Server.

3.	 (Optional) Update Windows XP (including the CWSandbox Files). Remember, 
you need to make the hard drive in your virtual machine persistent. Make 
your changes to Windows XP, then make the drive nonpersistent again.

4.	 Run the command ‘sudo remastersys clean’ in a terminal window. This 
command cleans the /home/remastersys/ directory completely by deleting 
all the files. So if you have done the optional customization of your Live 
DVD via step 8 of the previous section, save copies of your customizations 
before running this command.

5.	 Repeat steps 5 through 8 from the previous section.



86	 Chapter 3 • Building a Sandbox

Summary
Sandbox technology is used to protect the local system while executing unknown 
or malicious code. They achieve this protection by either blocking critical operations  
(e.g., the sandbox provided in Java) or by executing the suspect code in a virtual 
environment. The virtual environment permits you to instrument and observe 
malware with impunity to its effects. You can choose to permit or block communi-
cations with other computers. You can configure the sandbox to respond as if it  
has transmitted spam while in reality it has sent nothing. Sandbox technology in 
a virtual environment is ideal for analyzing unknown or malicious code. Using 
the sandbox to isolate the real operating system, a sandbox can reveal valuable 
information about the behavior of malicious or unknown code. It can reveal 
decompressed and decrypted versions of packaged code, connections attempted, 
files opened, userids, passwords, and much more.

For those occasions when you must perform malware analysis in the field, we 
have described the process for building a Live DVD with built-in VMware, Windows 
XP and the CWSandbox. We described an application of sandbox technology as the 
central server and automated malware analysis tools that can work in conjunction 
with malware collectors like Nepenthes. Finally we cautioned investigators about the 
rise of VMware aware techniques. Using the sandbox, the alert investigator may be 
able to see attempts by VMware aware code attempting to check for VMware’s 
presence.

Solutions Fast Track
Sandbox Background

Sandboxes are a common tool in security/malware research; they allow the ˛˛

execution of unknown software in a controlled, restricted and monitored 
environment

CWSandbox is example of a sandbox tool for automatic behavior analysis of ˛˛

Windows executables; the functionality of a sandbox is achieved by taking 
the following steps:



	 Building a Sandbox • Chapter 3	 87

The initial malware process is created by the starter application 1.	

cwsandbox.exe.

cwmonitor.dll is injected into each monitored process.2.	

The DLL installs API hooks for all important functions of the  3.	

Windows API.

If a new process is started by the malware or an existing one is infected, 4.	

this process is also monitored.

After a customizable time all monitored processes are terminated/stopped.5.	

A high-level summarized analysis report is created of all the monitored 6.	

actions.

The network traffic is examined, important Web protocols (HTTP, FTP,  7.	

IRC, and so on) are recognized and all relevant protocol data is reported 
(username, password, and so on).

Existing Sandbox Implementations
Norman SandBox was developed by Norman AS. at ˛˛ http://sandbox.norman.no.

TTAnalyze was developed by Ulrich Bayer, Ikarus Software GmbH, in ˛˛

cooperation with the Technical University of Vienna.

In Chas Tomlin’s Sandnet the malicious software is executed on a real ˛˛

Windows system, not on an emulated or simulated one.

Truman is tThe Reusable Unknown Malware Analysis Net, by Joe Stewart ˛˛

from LURHQ.

˛˛ CWSandbox is from the diploma thesis of Carsten Willems.

Describing CWSandbox
CWSandbox is an application for the automatic behavior analysis of malware. ˛˛

This dynamic analysis is performed by executing the malicious application in 
a controlled environment and catching all relevant of its calls to the 
Windows API

CWSandbox is designed to attach reporting tools to malware. It is not ˛˛

designed to block malicious activity of the malware. You are responsible for 
blocking any outbound traffic that may result from executing the malware.



88	 Chapter 3 • Building a Sandbox

Malware may be able to detect the presence of a virtual environment by ˛˛

checking specific registry entries, the list of running processes or system 
services, or typical behavior of the system. Many detection methods are 
known for the popular VMware product. The website www.trapkit.de 
describes a lot of them and also offers the tools scoopy doo and jerry for that 
purpose. Joanna Rutkowska described a generic approach to VM detection 
which she called redpill. Redpill checks the IDT address retrieved when 
running in a virtual machine since it is different to that in a real system. This 
trick works with any virtualization software.

Sandbox technology can be extended to serve as a tool for automatic ˛˛

collection and analysis of malware, as in Automated Analysis Suite (AAS).

AAS uses a database to store malware samples and the corresponding created ˛˛

analysis reports.

AAS integrates the honeypot tool ˛˛ Nepenthes for automatic malware 
collection.

Additionally, malware can be submitted via a PHP-based Web interface.˛˛

AAS embeds CWSandbox for automatic analysis.˛˛

Creating a Live DVD with VMware and CWSandbox
Once you have created a sandbox, you can turn that implementation into  ˛˛

a bootable DVD so that you can take the sandbox into the field.or distribute 
the tool to a classroom of students to give them hands-on malware analysis 
experience.



	 Building a Sandbox • Chapter 3	 89

Frequently Asked Questions
Q:	What kind of things can you find using sandbox technology?

A:	You are only limited by the instruments that you attach to the malware. You can 
learn the ip addresses of FQDN of different members of a botnet, the identity  
of command and control servers, malicious code download servers, the nickname, 
userid and password of bot command and control servers, unpacked and  
unencrypted versions of stealth malware, the filenames of files that are part of 
the malicious system, a list of all files opened by the malware, and more.

Q:	I really like the Live DVD idea. How can I create my own Live-CDs and DVDs 
using other content?

A:	 Instructions for creating your own Live-CDs and DVDs can be found on howto-
forge. We used a how-to written by Falko Timme, “Creating Your Own Custom 
Ubuntu 7.10 Or Linux Mint 4.0 Live-CD With Remastersys,” Copyright © 2008 
HowtoForge.

Q:	What does virtualization do for Sandbox technology?

A:	Virtualization makes it possible for a security investigator to try multiple tests on 
a malware sample without having to wipe the test system’s hard drive between 
test sessions. Without virtualization, the measures to ensure integrity could be 
provided using reverting tools such as DeepFreeze, Partimage, or hardware restore 
solutions. The virtual environment permits investigators to create several members 
of a network to examine the interaction of a botnet.

Q:	I don’t want to give away my licensed copies of Windows or Cwsandbox.  
How do I create a Live DVD that doesn’t include my license keys?

A:	You can use SYSPREP and the process located http://www.uea.ac.uk/itcs/
software/xp/xp-sysprep.html to remove the product keys so that a new owner of 
the DVD can use their own product keys. If you created the image file after you 
install the sandbox but before you enter the license, then the new owner of the 
DVD will need to provide their own license or add a different sandbox product.



90	 Chapter 3 • Building a Sandbox

Notes
1. � For more information go to http://sandbox.norman.no/pdf/ 

03%20sandboxwhitepaper.pdf.

2. � This utility saves/restores hard disc partitions in many formats to an image file 
(see www.partimage.org).

3. � This tool is for resetting your computer to its original state (see www.faronics.
com/html/deepfreeze.asp).

4. � Right-click on free space on /dev/sda or /dev/had to create partitons in the  
free space.

Bibliography
Falco. Creating Your Own Custom Ubuntu 7.10 or Linux Mint 4.0 Live-CD with Remastersys, 

HowtoForge.
Unsafe Defaults, https://help.ubuntu.com/community/UnsafeDefaults. Ubuntu community 

forums, user documentation, last edited 2007-10-03 20:31:48 by Joel Goguen.
Willems, Carsten. Botnets, the Killer Net App, Chapter 10 Excerpt. Syngress, 2007.  

ISBN: 1597491357.
Willems, Carsten. Portions of CWSandbox User Guide v2. Sunbelt Software, 2007.



91

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 4

Configuring the 
Virtual Machine

Solutions in this chapter:

Hard Drive and Network Configurations■■

Physical Hardware Access■■

Interfacing with the Host■■



92	 Chapter 4 • Configuring the Virtual Machine

Introduction
This chapter will cover common configuration tasks which apply to many of the 
previously mentioned scenarios. It will highlight areas where virtualization can 
provide resources to the security professional that would be difficult or impossible  
to accomplish using traditional methods.

Many of these configuration options will be specific to the virtual machine 
implementation chosen, but where possible methods of accomplishing these tasks  
in the popular implementations will be presented.

Resource Management
Appropriately limiting resource usage by applications and guest operating systems  
not only provides cost savings but also is necessary to ensure that potential security 
outbreaks do not deny service to other guests running on the same host. The original 
Morris Worm released onto the Internet in 1988 was one of the first major computer 
security breaches in history. The worm proliferated to thousands of computers on the 
Internet. The worm would have continued to spread unabated if it had not wastefully 
consumed resources to the point of slowing the infected systems to a crawl. The result-
ing denial-of-service condition caused the phones of system administrators to ring off 
the hook. The system administrators swiftly diagnosed and eventually repaired the 
problem.

Limiting resource usage involves setting appropriate limits for CPU and memory 
consumption by a virtual machine. You edit the CPU and memory resources for a 
virtual machine in the Virtual Machine Properties dialog on the Resources tab. These 
fields allow you to set minimums (Reservation), maximum (Limit), and shares for 
resource allocation. Shares are used to set relative weights between different VMs for 
the allocation between minimum and maximum. You can also control the resources 
used by groups of virtual machines using resource pools. Once you set resource usage 
suitably, you can mitigate any effects that a security breach may induce within your 
environment.

Hard Drive and Network Configurations
Two of the most basic configuration elements for any virtual machine are the hard 
drive and network configurations. Almost all virtualization vendors provide a number 
of different types of hard drives as well as a number of network configuration 



	 Configuring the Virtual Machine • Chapter 4	 93

scenarios that should be taken into consideration not only just for general purposes, 
but also for consideration in any security related implementation.

Hard Drive Configuration
Both VMware and Virtual PC provide great flexibility in ways to configure hard 
disks. Fundamentally there are two types of hard disks that most vendors support. The 
first is a virtual disk, which is typically a file that is configured in such a manner as to 
emulate a physical hard disk. Indeed, from the perspective of the virtual machine the 
virtual disk looks, acts, and feels just like a real hard disk. The other option is to use a 
physical disk. In this case, instead of creating a file (or set of files) that appear to be a 
hard disk, you actually use a real physical hard disk as the disk that the virtual 
machines will use.

In the case of some enterprise virtualization products, such as VMware ESX, the 
“physical disk” can be a LUN that has been configured on SAN storage. This is 
referred to as raw device mapping (RDM). With an RDM the virtual machine is 
configured with a virtual disk that is simply a pointer or forwarder to the mapped 
LUN. One of the reasons for using both physical drives and RDMs is a potential 
performance increase over using a virtual disk.

Growing Disk Sizes
By using virtualization, and, in particular, virtual disks, you can dynamically increase 
the amount of space a virtual disk consumes on the underlying hardware as it is 
needed. For example, you may create a virtual disk that is 20GB in size; however, 
once you install the OS and applications in the virtual machine, you may only be 
using 5GB of the 20GB total. Rather than having a disk on the physical host that  
is using up 20GB of space (and effectively wasting 15GB), the virtual disk can be 
configured to only use the space required, in this case 5GB. This can be very helpful 
in the event that you are constrained for space in your storage, however you need to 
be mindful of this fact since if the virtual machine suddenly needs more than the 
5GB and it is not available, it could cause problems in running the virtual machine.

Virtual Disk Types
Most vendors support creating virtual disks that are either IDE or SCSI type of disks. 
You will need to consult with your virtualization vendor to determine with certainty, 



94	 Chapter 4 • Configuring the Virtual Machine

but in most cases selecting a SCSI disk type is the recommended choice since it 
typically provides for better performance than a similarly created IDE disk type.

Using Snapshots
Another consideration to factor in the hard drive configuration of your virtual 
machines is the ability to snapshot the hard disk. Disk snapshots are one of the most 
compelling reasons for virtualization. With disk snapshots you are able to save the 
disk contents and state at a moment in time (called a snapshot) which in turn allows 
you to revert the disk (and thus the entire virtual machine) to whatever state the disk 
was in at the time the snapshot was created. For example, you may make a snapshot 
prior to applying any patches so that if the patches do not work or cause problems 
with the virtual machine you can simply roll back to the snapshot, as if the patches 
had never been applied. This is a great method for testing malicious software and 
code. You can configure a snapshot, then introduce the malicious software or code 
the virtual machine for testing, and once the testing is finished, revert to the saved 
snapshot, thus removing the malicious software and code completely. In fact, it is as  
if you had never run the software at all.

Network Configuration
Computers without network interfaces while significantly more secure, also lose a lot 
of their potential. Fortunately, the virtualization software currently available offers 
some very interesting options that can add significant value to a single computer. As 
we go through these configuration options, we will also suggest some of the various 
uses for them.

Creating an Interface
Adding interfaces to a virtual machine is in general a simple process. In VMware 
workstation the task can be accomplished from the virtual Machine Settings dialog. 
Clicking Add Hardware and selecting Ethernet Adapter will bring up the dialog 
box shown in Figure 4.1. Select one and click Finish.



	 Configuring the Virtual Machine • Chapter 4	 95

Bridged
This is one of the more interesting options available in a virtual machine. A bridged 
interface appears on the guest as just another interface. The bridging interface of the 
host is used to provide physical network connectivity for the virtual machine as if the 
virtual machine was directly connected to the network. The virtual machine receives 
its own IP address on the network, etc.

One item that you should be aware of is the interaction between a firewall on the 
host and the packets being sent to the virtual machine(s). To the firewall these packets 
can often appear to have been sent incorrectly because the virtual machine has a 
different IP address than the physical machine. They will likely be blocked. This can 
be a very frustrating scenario. It is recommended that the firewall be tuned, if pos-
sible, to allow incoming packets to the IP address of the virtual interface. It should 
also be noted that the firewall can block certain forms of traffic that do not depend 
on IP addresses such as DHCP packets. In some cases it may be necessary to disable 
the firewall entirely or use another interface type such as natted.

By default, VMware will choose the bridging interface automatically. It makes a 
decision based on factors such as which interfaces have routable IP addresses, and 

Figure 4.1 Selecting the Type of Network Interface to Add



96	 Chapter 4 • Configuring the Virtual Machine

which interfaces are currently assigned as default gateways. This choice can be made 
manually in the event that the default is not optimal for your scenario. By using the 
Edit->Virtual Network Settings menu option, you can configure the bridging inter-
face (as well as some other options that we’ll discuss in the next few sections. These 
tasks are accomplished from the dialog box shown in Figure 4.2.

Host-Only
The host-only network can be used in a number of scenarios, most commonly when 
you do not want the virtual machine to communicate with anything on the physical 
network. The host-only network does not have access to external machines. In addition, 

Figure 4.2 Virtual Network Editor



	 Configuring the Virtual Machine • Chapter 4	 97

the guest machine is not subject to the same network “noise” that it might be on an 
internal network. This feature allows the security professional two distinct scenarios. 
First, it is ideal for malware testing. This topic will be covered further in Chapter 6.  
One issue to keep in mind is whether the host should have access to the same network 
as the guest machine. In the case of malware analysis, this is not advised.

The second instance in which a host-only network adapter might be used is for 
testing older software. Older software can be susceptible to worms. Ideally, older 
worms would not still infect things on the Internet. Unfortunately, however, this is 
not always the case. By using a host-only network adapter, you have significantly 
more control over what goes onto the network (note that if the host has an adapter 
on the network, then it can still communicate with the guest machine [for better or 
worse]).

There is an option for setting up the subnet for the host-only machine, as well as 
whether the host will provide DHCP services. DHCP allows for the guest machine 
to query for an IP. Note that because it is a host-only network, no default gateway 
will be assigned, and no DNS servers will be offered.

Natted
This option allows the virtual machine to be on a network that exists only in the 
host and yet to be able to communicate with systems on the physical network by 
way of NAT. It is different from the host-only networks primarily because of the 
additional NAT service that the host provides; for example, in VMware workstation 
the “VMware NAT Service.” This service allows the host to route to and from 
multiple guest machines, translating between the IP addresses the virtual machines 
use and the IP addresses used on the physical network via a NAT process. The traffic 
from the guests will appear to be coming from the IP address of the host machine, 
and the host will pass along any packets in response to requests initiated by a guest, 
thereby allowing all of the machines to “share” the same IP address as the host. One 
should be aware that certain protocols do not function well in natted environments. 
This is also true of certain security tools.



98	 Chapter 4 • Configuring the Virtual Machine

Multiple Interfaces
The final configuration to mention is the ability for a guest machine to have multiple 
interfaces. If the VMware NAT Service doesn’t provide you with the desired natting 
functions, you can replicate the function using a “routing” guest with multiple inter-
faces. This is particularly handy if you have multiple virtual machines on a host-only 
network that need to communicate with each other and you want all traffic for 
external sources from those guests to go through a specific virtual machine that is 
acting as a firewall (and thus is configured with two interfaces, one of which is on 
the host only network). This virtual machine could even be configured to proxy and 
manipulate the traffic from the other guests and potentially the host computer as 
well. To do this one sets the IP address of the host machine’s physical adapter to a 
nonroutable IP address (for example, 192.168.200.50). The guest machine that will  
be doing the routing needs a “bridged” interface (eth0) associated with the physical 
interface of the host machine. Its IP will likely be assigned by DHCP. A host-only 

Tools & Traps…

Natted Interfaces Can Interfere with Security Tools
One should be aware that certain protocols do not function well in natted 
environments. This is also true of a number of security tools. Although some 
tools are able to detect that they are in a natted environment, security tools 
are especially prone to being disabled in a natted environment. Be sure to test 
your tool against a known target to baseline your results before using the tool 
in the field. The category I’ve had the most difficulty with has been certain 
high-speed network scanners. The natted environment doesn’t seem to be 
able to track the number of connection requests, and the responses don’t 
seem to appear correctly.

When in doubt, a bridged interface should be used for any network scan-
ning. Note that the sudden appearance of a new MAC address on a port can 
have undesirable side effects at the switch level such as disabled ports. If you 
suddenly lose connectivity through a switch for no apparent reason, this  
“feature” might be the culprit. In some cases this can be avoided by creative 
use of MAC cloning and firewalls, although this solution should be considered 
hit and miss at best.



	 Configuring the Virtual Machine • Chapter 4	 99

network should then be set up. The host-only interface of the guest (eth1) should be 
set as a default gateway (such as 192.168.10.1), and the host-only interface of the 
host should be something on the same network (192.168.10.10, for example). The 
default route on the hosting server should then be set to 192.168.10.1. Finally, the 
host needs to be configured to pass along the traffic to the bridged interface. If the 
guest is running Linux, the following rules will accomplish this:

iptables –A FORWARD –i eth1 –j ACCEPT
iptables –A POSTROUTING –t nat –o eth0 –j MASQUERADE

These rules will allow the host to use the guest to provide network services. They 
can include both firewalling and packet manipulation, depending on the guest.

Physical Hardware Access
In some cases the virtual machine can also be given access to the physical hardware 
such as a physical disk or a USB device. This type of access allows the virtual 
machine an even greater range of capabilities. This option should suffice for most 
virtual hardware requirements. If full native hardware is desired for some specific 
scenarios (such as wireless penetration testing), we would recommend using a sce-
nario in which the same machine can be booted both on native hardware and in a 
virtual environment. This dual booting scenario will be discussed in Chapter 12.

Physical Disks
A physical partition can be used for a native machine. This option is often used when 
data is needed from an old hard drive. The simple solution to this problem is to put 
the drive into a computer as a secondary drive and copy data from the drive to the 
primary drive. However, this procedure may not be feasible in some circumstances. 
The file system of the secondary drive may not be compatible with the operating 
system that is installed on the primary drive. The required data may only be retriev-
able in a program installed on the secondary disk. It might be annoying, difficult, or 
even impossible to install the required software on the primary partition. The second-
ary drive might even be infected by malware. Virtualization can often be used to gain 
access to the secondary physical drive, complete with its installed operating system 
without having to assemble an additional computer.

Using VMware makes creating a virtual machine with access to physical hard 
drives a relatively simple task. The first step is to use the Add Hardware Wizard 
shown in Figure 4.3. Select Hard Disk and click the Next button.



100	 Chapter 4 • Configuring the Virtual Machine

A wizard will appear where you can choose what type of disk to create  
(see Figure 4.4). The various options are explained on the dialog box, but we will choose 
Use a physical disk. Select this option and continue by clicking the Next button.

Figure 4.3 Add Hardware Wizard

Figure 4.4 Choosing the Type of Hard Disk



	 Configuring the Virtual Machine • Chapter 4	 101

After you choose to use a physical hard disk, your next step is to determine 
which hard drive to use. Choose the disk that is not in use by the primary operating 
system. Ideally, VMware would at a minimum indicate the disk sizes (or even better a 
disk ID of some sort) so that you could choose the correct disk; unfortunately, how-
ever, this is not the case. The disk order is determined at the BIOS level. You can get 
an idea of which disk is first in Windows by going into the Properties of one of your 
fixed disks and clicking the Hardware tab, as shown in Figure 4.5. Note that if you 
choose the Windows disk that is already mounted, you can cause the host operating 
system to crash with a Blue Screen of Death or similar dangerous scenarios. The 
Hardware tab will show you in which order your disks are connected to the operat-
ing system.

Figure 4.5 Windows Disk Properties Hardware Tab



102	 Chapter 4 • Configuring the Virtual Machine

You know the first disk is the one that you want to work with because of the 
name of the disk. Because the numbering begins at zero (something C programmers 
are used to, but much of the world would consider strange), you will choose the 
option for Physical Drive 0 on the wizard that is shown in Figure 4.6. Note the 
options to Use the Entire disk or to use individual partitions. If you choose to allo-
cate specific partitions, you can block the virtual machine from even seeing other 
partitions of the disk. It should be noted, however, that if the virtual machine can’t 
“see” the partition, then its number may change, causing issues with an operating 
system that was already installed. If you are using a disk that has been created in a 
native (nonvirtualized) hardware scenario, we recommend that you allocate all parti-
tions that pertained to that operating system. Using the entire disk is the most simple 
option, and this is the recommended option if your requirements permit choosing it.

Figure 4.6 Choosing the Physical Drive to Allocate



	 Configuring the Virtual Machine • Chapter 4	 103

When the virtual machine is started, the partition you just allocated will be 
available in the same way a virtual hard disk would be available. If this new disk is set 
up as the primary disk, the operating system installed on the disk can be booted 
(assuming hardware compatibility with the virtual machine). This arrangement should 
allow the disk to come up, and you should be able to use and interact with the 
machine as if it were any other machine. Note that this arrangement should not be 
used to forensically examine the hard drive. The process of mounting the hard drive 
(whether on virtual or native hardware) will modify the disk, and crucial information 
may be lost as a result.

USB Devices
USB disks can also be used for storage in a virtualized environment. In fact, most 
USB devices can be connected to a virtual machine and function very well. To 
connect a USB device to the virtual machine in VMware workstation, choose the 
following menu options: VM->Removable Devices->USB Devices (see 
Figure 4.7). From there a list of USB devices known to the system will be displayed. 
The devices that are already connected to the virtual machine will have a check 
mark next to them. Clicking a device that is not connected will connect it, and 
clicking a checked item will disconnect it. Note that this will disconnect it from the 
host rather abruptly. Devices should be disabled or unmounted at the operating 
system level before disconnecting them from a machine in much the same way that 
they should be before removing them in the physical world. 

Warning

If you are running a virtual machine from a removable disk, do not attempt 
to connect that device to the virtual machine. The virtual machine will likely 
crash because its source files are no longer available.



104	 Chapter 4 • Configuring the Virtual Machine

Interfacing with the Host
Both VMware and Microsoft Virtual PC provide utilities that simplify and improve 
the performance of Virtual machines. VMware tools install drivers, as well as addi-
tional configuration options. In the case of VMware ESX, VMware tools also enable 
the balloon driver, which allows for VMware to improve memory utilization and 
performance. Both of the suites provide the ability for the mouse to “engage” and 
“disengage” as it hits the boundaries of the window. This function allows a more 
natural interaction with machines in a window.

You should install the vendor tools and utilities and keep them up-to-date, in 
most if not all instances.

Cut and Paste
One additional feature that is enabled as a result of installing the utilities is the ability 
to cut and paste information between the host and the guest operating systems.  

Figure 4.7 Connecting a USB Device



	 Configuring the Virtual Machine • Chapter 4	 105

This ability is as simple as highlighting something in the host operating system  
(or another guest machine), and then activating the virtual machine window, and 
pasting using the native functionality of the guest operating system. 

Figure 4.8 Recommendation to Install VMware Tools

Notes from the Underground…

Security Implications of Virtual Machine Utilities
The virtual machine utility functionality is supported using an internal interface 
which allows communication between the guest and the host machines. This 
interface is present whether or not the utilities have been installed in the guest 
operating system and should be considered an additional attack surface when 
evaluating the security of the virtual machine. In addition, special notice should 
be given to cut-and-paste functionality. Guests can “examine” the clipboard at 
any time, and as a result nothing confidential should be put into the clipboard 
while a virtual machine running possibly malicious code (or a remote connection 
to a virtual machine console) is enabled.

How to Install the  
VMware Tools in a Virtual Machine
Click the VM menu option in the virtual machine console and choose Install 
VMware Tools. This should bring up a dialog similar to Figure 4.8.



106	 Chapter 4 • Configuring the Virtual Machine

Clicking Install will connect a CD image that in Microsoft Windows will auto-
matically run the installation program. In Linux and a number of other operating 
systems, a CD that has a compressed archive file containing the tools will be 
mounted. In a Windows guest the following wizard is brought up (see Figure 4.9).

Clicking Next will bring up the choices shown in Figure 4.10. Clicking Next 
will bring up a dialog about configuring the tools installation. Although the Typical 
installation will probably suffice for most people, you’ll choose the Custom installa-
tion to illustrate some of the available options. You can always “modify” the type of 
installation at a later date using the same steps you used to begin this process.

Figure 4.9 VMware Tools Installation Wizard



	 Configuring the Virtual Machine • Chapter 4	 107

Clicking the Next button will bring up a wizard similar to the one shown in 
Figure 4.11. This dialog allows you to choose which portions of the tools package 
you would like to install. The toolbox enables features such as Cut and Paste, as well 
as time synchronization. The shared folders option enables SMB connections between 
the host and guest. If you put a file into a shared folder, it “appears” on the shared 
folder of the guest system as well. This is a very handy mechanism for sharing files 
between the host and guest, but it can also be a security concern and thus should be 
given consideration before enabling it.

Figure 4.10 Choosing the Type of VMware Tool Setup



108	 Chapter 4 • Configuring the Virtual Machine

Expanding the VMware Device Drivers menu allows you to choose which device 
drivers will be installed. Using these drivers is recommended, assuming they meet the 
requirements for the server, because they will increase the performance and stability 
of the virtual machine. If you are using this server for a device driver level test, these 
drivers may not be appropriate or desired. Figure 4.12 shows the options available 
when the Device Drivers tree is expanded.

Figure 4.11 VMware Toolbox Installation Options



	 Configuring the Virtual Machine • Chapter 4	 109

A final confirmation menu (shown in Figure 4.13) is brought up to allow any 
last-minute changes to the configuration settings. If any changes are desired, you can 
hit the Back button and return to the previous menus.

Figure 4.12 VMware Device Driver Installation Options



110	 Chapter 4 • Configuring the Virtual Machine

Clicking Install will start the installation process. Because this process is being 
carried out from a CD “image” that is installed on a hard drive, the installation 
actually goes significantly faster than it would from a native CD. The installation 
process has a status screen (show in Figure 4.14) that shows a progress bar moving 
across the screen. It is normally a very swift process.

Figure 4.13 Installation Confirmation Screen



	 Configuring the Virtual Machine • Chapter 4	 111

Finally, assuming all has gone well (which it usually does), you should be pre-
sented with a screen similar to the one shown in Figure 4.15. This screen confirms 
that the wizard has completed the installation correctly. At this point it will direct 
you to reboot your machine to gain the advantages of the newly installed drivers. 
This is an expected behavior (unlike some software reboots that are forced on 
Windows users). The fundamental device drivers have been changed and need to  
be activated during the boot process.

Figure 4.14 Status of VMware Tools Installation



112	 Chapter 4 • Configuring the Virtual Machine

Following the installation you will want to restart the guest so that the new device 
drivers are enabled. You should note that at this point when you click on the virtual 
machine window (while a graphical user interface is activated), it will capture your 
mouse, and moving the physical mouse will move the mouse pointer within the virtual 
window. A new ability has been introduced because of the tools. When you move the 
mouse to the edge of the virtual desktop, the mouse will “release,” and you can click on 
other windows on the hosting machine. The cut-and-paste functionality should allow 
the clipboards of the guest and host operating systems to behave as if they are connected.

How to Install the Virtual  
Machine Additions in Virtual PC
Installing the Virtual Machine Additions in Virtual PC is also very easy to do. When 
the option to Install/upgrade Virtual Machine Additions is chosen, a CD will 
be mounted that contains the installation package. The options are very similar to  
the VMware tools options, and they won’t be covered in detail in this chapter.

Figure 4.15 VMware Tools Installation Completion



	 Configuring the Virtual Machine • Chapter 4	 113

Summary
The options available for configuring a virtual machine are varied and rich. Using 
these options enables you to gain significant advantage over using physical hardware 
in a number of situations. As you read the remainder of this book, these configura-
tion scenarios will come up repeatedly. We hope this chapter has highlighted some of 
the flexibility available in virtualized environments. We have just scratched the sur-
face, and a number of advanced techniques will be covered throughout the book.

Solutions Fast Track
Hard Drive and Network Configurations

Virtual disks and physical disks can be used for the virtual machine  ˛˛

hard drive

Virtual disks can be configured to dynamically grow as required by the ˛˛

virtual machine, up to the limit of the disk size configuration

Snapshots can be used to save the disk at a point in time so that the virtual ˛˛

machine can be reverted to that time, thus undoing anything that occurred 
subsequent to the snapshot

Virtual machines can be configured with single or multiple network ˛˛

interfaces

Host Only: This option allows for local communication only. No connection ˛˛

to the host’s network interfaces is managed by the virtual machine 
monitoring package.

Natted: This option allows for communication using the host’s network ˛˛

interfaces. All traffic will appear to be sourced from the hosts IP address.

Bridged: This option allows the Guest to appear on the network as an ˛˛

additional machine. It will have its own MAC address and IP address  
and be able to send and receive its own packets.



114	 Chapter 4 • Configuring the Virtual Machine

Physical Hardware Access
In some cases the virtual machine can also be given access to the physical ˛˛

hardware such as a physical disk or a USB device. This type of access allows 
the virtual machine an even greater range of capabilities.

USB disks can also be used for storage in a virtualized environment. In fact, ˛˛

most USB devices can be connected to a virtual machine and function  
very well.

If you are running a virtual machine from a removable disk, do not attempt ˛˛

to connect that device to the virtual machine. The virtual machine will 
likely crash because its source files are no longer available.

Interfacing with the Host
Most vendors provide a set of tools and utilities, such as VMware Tools, ˛˛

which allow for interfacing between the guest and the host

The utilities provide functionality such as allowing copy-and-paste ˛˛

functionality between the guest and the host as well as providing for the 
transfer of files between the guest and host regardless of external network 
connectivity

The utilities also provide drivers and functions that increase the performance ˛˛

and stability of the virtual machine, and potentially the host as well



	 Configuring the Virtual Machine • Chapter 4	 115

Frequently Asked Questions
Q:	Should I install vendor tools and utilities such as VMware tools?

A:	Yes, in almost all cases you should. The utilities typically provide drivers and 
applications that improve the performance, stability, and functionality of the 
virtual machines.

Q:	Can I use a physical disk for the hard drive of the virtual machine?

A:	Yes you can. This is an advanced configuration, however, and should be approached 
with caution and understanding of the implications of using a physical disk.

Q:	What network configuration options are available?

A:	Most virtualization software supports three types of network configurations.  
The first is a simple bridged connection that allows the virtual machine to be 
connected directly to the underlying physical network topology. The second is  
a host-only connection that limits the virtual machine to only being able to 
communicate on the virtual network on the host. The third is a NAT connection 
that causes the virtual machine to use the same IP address as the underlying host, 
with the host providing NAT functionality between the guest and the rest of the 
physical network.



This page intentionally left blank



117

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 5

Honeypotting

Solutions in this chapter:

Herding of Sheep■■

Detecting the Attack■■

How to Set Up a Realistic Environment■■



118	 Chapter 5 • Honeypotting

Introduction
Honeypots are used to attract would be attackers in the interest of learning something 
about them. The honeypot appears to be a server with one or more vulnerabilities 
that the attacker can exploit. They can be as simple as a default installation of your 
favorite operating system or a complex network involving multiple servers and full 
implementations of fake traffic to make it appear as though the environment is as real 
as possible.

Honeypots can be set in a variety of locations. They are often set up as Internet 
accessible boxes. University projects often set them up as stand-alone environments. 
They can also be deployed amongst corporate servers in order to divert the attention 
of an attacker away from the true production machines. They are sometimes even 
deployed internally to detect the inquisitive insider before they can cause serious 
problems.

The organization setting up the honeypot normally also sets up intrusion detection/ 
monitoring software to observe the activities that the attacker undertakes. The goal is 
normally to determine what the attacker is after, what methods they use once they’ve 
compromised a box, and what tools are they using.

Virtualization brings whole new dimensions to the sophistication of honeypots. 
Instead of individual boxes requiring their own dedicated hardware whole clusters of 
juicy looking targets can be deployed. A honeypot and the infrastructure to monitor 
any attacks on it can be deployed on the same hardware. Multiple operating systems 
can be used to give the appearance of an extensive environment with minimal 
investment.

Herding of Sheep
Honeypots are a powerful and flexible technique for not only positively identifying 
attacks to hosts on a network but also monitoring and recording how the attacks 
were carried out. Honeypots can work in conjunction with intrusion detection 
systems (IDS), but unlike an IDS, they have an advantage in a much lower rate of 
false positive alerts. This is because honeypots do not provide any legitimate network 
services, nor have they any legitimate users, but instead are idle devices on the  
network. As a result, any network traffic seen entering or leaving a honeypot is by 
definition suspicious and a pretty good indication that your network is under attack.



	 Honeypotting • Chapter 5	 119

By learning how to combine honeypots and virtualization together, you can 
quickly create almost any type of virtual infrastructure with minimal resources or 
effort, effectively creating a virtual world to distract and misdirect attackers away  
from the real network servers. This is an environment that you control, and, through 
the power of virtualization you can pause, reset, and duplicate at will.

By using virtualization techniques you can build up a whole array of different 
virtual honeypots and virtual networks in your virtual toolbox. These can be quickly 
put together in different configurations to solve many different security problems. 
Furthermore, once a honeypot has been compromised, and you’ve collected the 
information you need, just roll back the honeypot to the last good snapshot and start 
again. With virtualization there’s no need to manually rebuild every compromised 
honeypot.

This chapter will guide you through creating different virtual honeypots and the 
virtual networking that supports them. It will start with some simple but useful 
practical examples and will end by recreating some of the latest honeypot techniques 
in redirecting traffic from remote sensors to a central honeynet under your control.

Firstly, there are some widely accepted distinctions or classifications between the 
different types of honeypots and how they are positioned within a network.

Honeypots can be classified as either high interaction or low interaction.  
This classification distinguishes between honeypots that emulate operating systems 
or services and honeypots that are genuine operating systems or services. This  
classification gives an indication as to the depth of interactivity or fidelity of the 
honeypot.

Low interaction honeypots that emulate systems or services are usually imple-
mented as an application running on a secure server. The attackers interact with the 
application and not the hosting server itself. The depth to the service depends upon 
how much intelligence has been manually programmed into the application or script. 
An example of a low interaction honeypot is a Linux host running a honeypot 
application or a Windows host running the KFSensor honeypot application.

In comparison high interaction honeypots do not run any service emulation 
applications but instead are full operating systems with real services. So a Windows 
2008 virtual machine placed on a network configured as a mail server could be 
considered a high interaction honeypot.

Both types of honeypots have their advantages, disadvantages, and complexities; 
however, the choice between the different classifications of honeypots is most often 



120	 Chapter 5 • Honeypotting

based on risk versus potential gains. High interaction honeypots can pose the greatest 
security risk because when they are compromised the attacker has full control of  
a complete operating system. This can then be used fully to participate in further 
malicious activity. However, the potential gains could be in securing production 
systems against a sophisticated and motivated hacker by observing his modus operandi 
through such a honeypot.

Honeynets
“To really get in touch with the dark side, one needs a honeynet: a real machine 
connected to a network, which can be probed, attacked, ‘owned’, and abused.”1

A honeynet is a collection of high interaction honeypots on a tightly controlled 
and highly monitored network. The use of these was pioneered by the Honeynet 
Project www.honeynet.org along with their recommended technique of using a layer 
2 bridge to provide the required tight control and monitoring. This control and 
monitoring is necessary as high interaction honeypots are, after all, full operating 
systems.

The layer 2 bridges when used with honeypots are known as honey walls and are 
an essential part of any honeynet. Rather than installing servers with dual network 
adaptors and their associated networking, virtualization makes installing honey walls 
incredibly easy. In fact a pre-built honey wall template makes an excellent addition  
to anybody’s virtualization toolkit allowing them to reuse their honey wall time and 
time again as they build different honeynets.

The honey wall is a virtually undetectable bridge into a honeynet network. The 
honey wall monitors and restricts the amount and type of data entering or leaving 
the honeynet. By using the honey wall, the damage a compromised honeypot can 
cause to networks external to the honeynet can be limited. In this way the risks 
associated with implementing a honey wall can be reduced and controlled.

Depending on how the honeynet architecture has been implemented, honeynets 
are either described as GenI, GenII, or GenIII honeynets.

Gen I
GenI honeynets were the first implementations of honeynets with the defining 
feature of a honey wall that was assembled by hand. Even though these honey wall 
implementations varied considerably, many of them were constructed from a host 



	 Honeypotting • Chapter 5	 121

with two or more network interfaces for bridging the traffic between network 
segments. As described in “Know Your Enemy: Honeynets” (The Honeynet Project, 
May 2006), the main of aim of these honey walls was to provide the following:

Data control■■

Data capture■■

Data analysis■■

Data collection■■

Gen II
GenII honeynets were defined by utilizing a CDROM for installation to overcome 
the difficulties in building consistent, secure layer 2 bridges that contained an effective 
range of monitoring tools. The honey wall CDROM was created by the Honeynet 
Project and was a complete prebuild bootable honey wall environment. It was capable 
of controlling both the rate and type of data flowing through a bridge by using both 
iptables and snort inline. Snort inline dynamically changes the content of packets as 
signatures are detected to neutralize the payload of an attack.

Network alerts were also facilitated via snort signature matching. The honey wall 
was also capable of capturing Sebek UDP packets sent from a honeypot with the 
Sebek kernel module. This module—which is very similar to a rootkit in that it is 
undetectable on the host—captures an attacker’s keystrokes within the honeypot.  
In this way the keystrokes of an attacker are captured even if an encrypted channel 
such as SSH was used.

Gen III
GenIII honeynets are architecturally the same as Gen II honeynets, however they 
offer improvements to the web interface in the display of network statistics and alerts 
as well as deployment and management improvements.

Where to Put It
Once a decision has been made to implement a honeypot, the next logical question 
is where to put it. Fundamentally there are two places that a honeypot can be 
located: a single local network or a distributed network. There are pro’s and con’s  
to each approach.



122	 Chapter 5 • Honeypotting

Local Network
One obvious option for the location of a honeypot is to install it completely on a 
local and self-managed network. This has the benefit of ensuring that the honeypot  
is in an environment that you are 100% in control of. There are no external depen-
dencies in any way. You can configure the systems as you require without needing  
to worry about how they interact with other systems.

While this can be appealing you must undertake steps to ensure that a honeypot 
system installed on a local network cannot be compromised or used to gain access to 
your legitimate network resources. This can most easily be accomplished by separating 
the networks that the honeypots reside on from the rest of your network through the 
use of firewalls and similar devices.

Note

A drawback of using a single local network is that it impedes the ability to 
host honeypots throughout your organization. All the honeypots have to be  
in the same location, however, if you have multiple internet points of presence 
or if you want to monitor multiple potential internal environments, using a 
single local network can be impractical.

Distributed Network
Some of the most exciting projects currently underway with honeypots are based 
around the idea of collecting and collating data from arrays of distributed honeypots. 
These distributed systems allow you to gain valuable insights into malicious activity 
happening on a number of other remote networks in real time. Some of these projects 
even allow you to redirect hacker activity across the Internet to your local virtual 
honeypots without ever having to install a honeypot into the remote location.  
The attacker is unable to detect the redirection and as such will attack the local  
one believing it is part of the remote network.

There are a number of distributed honeypot projects which greatly ease the 
configuration of distributed honeypots. Some are supplied as preconfigured virtual 
machines to download and start using immediately.



	 Honeypotting • Chapter 5	 123

Honeymole, www.honeynet.org.pt/index.php/HoneyMole, is a project that 
makes the creation of layer 2 bridges over encrypted TCP/IP tunnels easy. For more 
information go to the following Web sites:

www.honeyathome.org

www.leurrecom.org

http://ids.surfnet.nl/wiki/doku.php

SURFids is an open source distributed intrusion detection project. It is a well 
developed and sophisticated package that uses databases for event management and  
a sophisticated GUI for management. It utilizes open source components to redirect 
malicious network traffic to a central honeypot. OpenVPN and tap interfaces are 
used to provide layer 2 bridging over TCP/IP into a Nepenthes honeypot. A demon-
stration VMware image is available from the SURFids website so that you can be up 
and running with this in no time at all.

SURFids has many noteworthy features such as automatic geo-location and map-
ping of an attacker’s source IP address, passive TCP fingerprinting of the attacker’s host, 
and antivirus scanning and sandboxing of captured binaries. However of particular 
interest is SURFids’s bootable USB memory stick. This memory stick can be used on 
any low specification host with only one network card to boot it up into a remote 
sensor/redirector. This has been thoughtfully implemented as the remote device will 
query the server for updates every hour and automatically upload any available. The 
aim of this is to make administration of a large number of remote sensors as simple as 
possible.

Layer 2 Bridges
Layer 2 bridges are a very useful networking capability in the area of honeypots. Not 
only are they used extensively to create honey walls and other network monitoring 
points, they can also be used to undetectably redirect network traffic for use in 
distributed honeynets. When properly implemented, they act as a basic mechanism 
through which control of all network traffic can occur.

To understand how layer 2 bridges work, here is a quick recap of TCP/IP. TCP/IP 
is a suite of layered protocols used by network devices to send and receive data on a 
network. The protocols are layered on top of each other, as can be seen in Table 5.1. 
The highest layer is the Application Layer, and the lowest is the Physical Layer.



124	 Chapter 5 • Honeypotting

As you can see layer 1 is the network layer, and it is very far down the TCP/IP 
stack. To interconnect different networks together, IP routing is used. IP routing relies 
upon routers to route packets based upon their IP addresses to the correct network. 
This is very effective and is used extensively throughout the Internet. Remote redi-
rectors or probes can be easily created on remote networks that will redirect all IP 
packets to the local honeypot based upon layer 3 routing (layer 3 refers to layer 3 of 
the OSI model, not the TCP/IP model or layers).

Even though layer 3 IP redirection would effectively redirect packets, it would be 
fundamentally flawed for the redirection of honeypot data. This is because layer 3 redi-
rection alerts hackers that the host they are attacking is not within the correct network 
and could indeed be a honeypot. This can be tested quickly by using traceroute to see 
the number of routers or “hops” to the remote system, with the redirection showing up 
in the final hop. Furthermore when the attacker gains access to the honeypot, it has a 
different IP profile and be on the wrong network to what he was trying to break into.

Finally, layer 3 redirection is limited to only IP packets. As a result the protocols 
below layer 3—which are local to the network segment—are not redirected. This 
would limit the effectiveness of the honeypot or honeyfarm as these other protocols 
may be what the attacker or scripts have exploited in order to compromise the 
honeypot.

It is much more difficult to redirect layer 2 protocols since by definition they are 
not routable and are only local to a particular network segment. So Linux iptables 
firewall could not redirect this layer as it operates at only layer 3, the IP layer, and 
above. One method to redirect layer 2 traffic is to encapsulate as the layer 2 data and 

OSI Layer 
Number

OSI Layer 
Name

TCP/IP Layer 
Number

TCP/IP Layer 
Name Transmission Unit

7 Application 4 Application Application Data  
(i.e., HTTP web traffic, 
SMTP email)

6 Presentation

5 Session

4 Transport 3 Transport Segment/Datagrams

3 Network 2 Internet IP Packets

2 Data Link 1 Network/Link Frames

1 Physical Electrical pulses

Table 5.1 TCP/IP Layers



	 Honeypotting • Chapter 5	 125

above within a layer 3 packet. This layer 3 packet can then be routed over the  
internet as normal and then unencapsulated on the receiving end. This is effectively 
what the honeymole project achieves.

Honeymole
Honeymole, www.honeynet.org.pt/index.php/HoneyMole, is a small program devel-
oped by the Brazilian Honeynet Project for securely redirecting remote network 
traffic to a local honeypot. It achieves this by creating encrypted layer 2 bridges over 
TCP/IP using the SSL libraries. The great advantage to using honeymole is that it 
allows you to securely host your honeynets in one central location, greatly reducing 
the risk and overhead of running multiple remote honeypots. Furthermore by being 
able to run your honeypots centrally you can take full advantage of virtualization  
by hosting all of your honeypots in a central virtualization host. This would not be 
possible if they were dispersed through multiple remote networks (at the very least  
it would require virtualization hosts in all locations).

The first honeymole 1.0 release was in 2005. It is still under active development 
with the current 2.0.2 released in 2008. A typical honeymole configuration is shown 
in Figure 5.1. In this configuration both the honeymole server and the honeypot 
have been virtualized and reside on a single VMware Server.

192.168.10.10.0/24
Network

Encrypted Tunnel
Through Internet 

Honeymole Client Virtual Honeymole Server

Virtual Honeypot 
192.168.10.10

Bridged 192.168.10.10.0/24 Network
VMnet0

NIC1 NIC1

NIC2NIC2

Figure 5.1 Typical Honeymole Configuration

Virtualization can be used further by creating a small Linux honeymole virtual 
machine as a template. This can then be easily copied and then uploaded to the 
remote hosts, which can execute it with either VMware player or VMware Server.



126	 Chapter 5 • Honeypotting

As honeymole relies upon SSL certificates for authentication between the honey-
mole client and the honeymole server, your first stage to installation is to generate 
certificates for the Certificate Authority, the Server Certificate, and the Client 
Certificate. This is aided by the inclusion of scripts within the honeymole tar file for 
their creation. The second stage is to compile both the honey wall server and the 
honey wall client on their respective hosts and edit their configuration files.

Both the client and server configuration files contain options for compression  
and encryption algorithms, but crucially they both contain a mandatory entry for  
a Berkeley Packet Filter (BPF). This is instrumental to the operation of honeymole 
and it is used to instruct honeymole as to which packets to capture and send over  
the layer 2 bridge.

These BPF filters entry within the honeymole configurations for the remote 
client at 192.168.10.10.1 is as follows: 
FILTER = “dst host 192.168.10.10.1 and not src host 20.30.40.50”

For the local server at 20.30.40.50 the filter is as follows:
FILTER = “src host 192.168.10.10.1 and not dst host 20.30.40.50”

As can be seen, both the remote honeymole client and the local honeymole 
server have two network cards. This results in a much more robust implementation 
without network loops. In both the client and server the TCP/IP stack is removed 
from the first network interfaces and labelled NIC1 on each. This is achieved by 
entering ifconfig eth0 0.0.0.0 on each host. In this way packets can be ‘sniffed’  
from NIC1 on the honeymole client, sent over the encrypted tunnel via interface 
NIC2, and then ‘injected’ from NIC1 on the virtual honeymole server onto the  
local honeynet network for a honeypot to respond.

Multiple Remote Networks
The organization where the honeynet is to be implemented may have a small number 
of remote networks. As such the honeynet architecture must be capable of redirecting 
appropriate network traffic to an array of local honeypots. Not only must this be 
achieved in a secure manner, but cross contamination of honeypot data and also 
accidently bridging two remote networks together must be avoided. Therefore local 
honeypots that are responding to different network ranges must be physically isolated 
on different network segments to avoid bridging.



	 Honeypotting • Chapter 5	 127

One solution is to add another network interface card (NIC) to the honeymole 
server for each remote network. In this way network separation is achieved by physical 
means as remote packets are injected onto different physical segments through their 
dedicated NICs. This can be seen in Figure 5.2, where NIC3 has been added to the 
honeymole server for use by the 90.100.100.0 network.

192.168.10.0/24 Network

Virtual Honeypot
82.138.241.198 

Bridged 192.168.10.0/24 Network

NIC1
NIC1

NIC2NIC2

Honeymole Client 2 

NIC3

NIC2

NIC1

90.100.100.0/24 Network

Honeymole Client 1

Virtual Honeypot
90.100.100.20 

Bridged 90.100.100.0/24 Network

Encrypted Tunnel
 Through Internet

Figure 5.2 Providing Network Isolation via Additional NICs

Even though the approach shown in Figure 5.2 fulfils the security and separation 
requirements initially, it is somewhat limited as it would not scale to host honeypots 
on many different networks. This is because it would require a prohibitive number of 
networks. Furthermore, if the honeymole server is implemented with VMware server, 
there is a limitation of four virtual network interfaces per virtual machine.

Therefore, in the architecture shown in Figure 5.2 only one more network could 
be redirected before the four network card limitation was reached and another virtual 
honeymole server would be needed.



128	 Chapter 5 • Honeypotting

An alternative and more flexible approach is to have the output of the honeymole 
server as a VLAN trunk port. In this way many different network segments can be 
carried through one network interface.

To create two VLANs numbered 80 and 90 to be carried through the eth1  
interface on the honeymole VMware virtual machine, the following commands are 
issued within the virtual machine and also on the VMware host.
Ifconfig eth0 add 80

Ifconfig eth0 add 90

These commands result in the creation of eth1.80 and eth1.90, two virtual VLAN 
interfaces that can be used to inject and sniff packets onto two different network 
segments. Eth1 must connect to a VMware vmnet used for sending tagged 802.1q 
packets.

The vmnet can be connected to a physical switch using a switch port configured 
as an 802.1Q trunk.

This is a flexible approach as the VLAN functionality within the switch can be 
used extensively to present different VLANs to different switch ports. As a result 
different switch ports will connect directly to their corresponding remote networks, 
which is particularly useful when utilising physical honeypots.

However, if you want to use VMware virtual honeypots, each honeypot must 
connect to its corresponding VLAN and consequently its corresponding remote 
bridged network. This can be achieved by executing the vmware-config.pl script  
on the VMware host server to reconfigure the mappings between the vmnet virtual 
networks and physical host interfaces, including the VLANs. Below is the resulting 
configuration.
Vmnet0 is bridged to eth0

Vmnet1 is bridged to eth0.80

Vmnet2 is bridged to eth0.90

As can be seen in Figure 5.3, vmnet1 is mapped to eth0.80, which is one of the 
virtual Linux VLAN interfaces which were created in the step above. The final step is 
to map the virtual network interface of all the honeypots and the honeymole to the 
correct vmnetwork.



	 Honeypotting • Chapter 5	 129

The architecture shown in Figure 5.3 is both scalable and flexible for implement-
ing a large number of honeypots to respond to remote attacker activity through a 
honeymole server. Each additional honeypot only requires another VLAN to vmnet 
mapping to be created to which a honeypot can be attached. By combining together 
virtual networks and VLANs great flexibility is achieved as physical switches can 
introduce physical honeypots into the infrastructure. Furthermore virtual networks 
with their corresponding virtual honeypots can be reassigned to different VLANs 
very quickly.

eth0.80 vlan

Honeypot 90.100.100.20

eth0

Vmnet1

eth0

eth0.90 vlan

eth0

Vmnet2

802.1q Trunked
Data 

Honeypot 50.60.70.81

Figure 5.3 Mapping Virtual Network Interfaces to Correct vmnet Networks



130	 Chapter 5 • Honeypotting

Detecting the Attack
While honeypots and honeynets can be a pretty fun and interesting undertaking,  
at the end of the day the entire project is nothing more than a geek exercise if you 
don’t have a means to detect the attack. In a lot of ways a honeypot is a learning 
exercise in a safe and controlled environment. A well implemented honeypot will 
provide a tremendous amount of insight and information with regard to how attacks 
are executed, what compromises are being performed, and what impact of the attack 
is. If you are unfortunate enough that a real attack occurs on your production envi-
ronment, you know where and what to look for to restore functionality and security.

Intrusion Detection
Honeypots are a great way of luring attackers and automated malware away from 
your production systems, however there needs to be a way of being aware of when 
somebody or something is actively trying to break into your honeypot, and, even 
better, how many times they’ve tried to do it. This is especially important if you’re 
running a high interaction honeypot as you need to monitor the compromise and 
prevent the honeypot from being used to launch further attacks at third parties.  
This monitoring can be achieved manually by going through host and network logs, 
but it would soon become tedious, will not scale, and, once compromised, a host’s 
logs may not be reliable.

This is where intrusion detection systems (IDS) come in, to automate the moni-
toring, reporting, and alerting of honeypot attacks. IDS are a great complement to 
honeypots and they can even be built as virtual machines straight into your virtual 
environment. As with other examples in this chapter, once an IDS has been built as a 
virtual machine, it can be cloned and installed into other parts of your environment 
for further monitoring with very little further effort.

SNORT, www.snort.org, is a very popular open source IDS system often used 
alongside honeypot installations. It works by inspecting network packets for “signatures,” 
which are known data patterns within packets indicating malicious behavior. It is 
included in the honeynet’s project honey wall bridge as the IDS capability. SNORT 
Inline is another feature of SNORT which is able to change the packet payload of any 
packets that have been identified as malicious. This is particularly useful as the payload 
of an attack can be neutralized before it ever reaches the intended recipient.



	 Honeypotting • Chapter 5	 131

Getting up and running with SNORT should be very easy as there is a whole 
range of pre-built virtual appliances you can download from the VMware website, 
www.vmware.com. Virtual appliances of particular note are SmoothWall Express, 
Untangle 5.0, and the Backtrack Live CD. Even though these are great appliances 
and well worth the time, the best tool for monitoring honeypots is still the Honeynet 
Project’s honey wall.

Network Traffic Capture
There are primarily three different ways to capture the malicious traffic destined for 
your honeypot. These are 

Span port from a switch■■

Honey wall bridge■■

Network tap■■

A span port on a managed switch copies or mirrors all of the data entering or 
leaving a switchport on a switch to another switchport. This other switchport would 
then have a packet capture device, the simplest of which could be a Linux host 
running tcpdump, connected to it collecting packets. This is an effective way to 
capture packets quickly or on a small scale and is a valuable technique. However  
this approach soon runs into scalability problems as you try to monitor more than  
a couple of honeypots.

When using virtualization and especially virtual networks there is a further problem 
with span ports that also applies to network taps. This is the difficulty in spanning or 
tapping a virtual network because network packets do not physically leave the virtual-
ization server. In order to perform this network traffic capture the tap or span must be 
placed where the network data is accessible in the physical network. This may be quite 
difficult to achieve in some scenarios where virtualization is used extensively especially 
if vpns are terminated on a virtual host. If you are using VMware ESX server, however, 
you can configure the virtual switch (vSwitch) to operate in promiscuous mode allow-
ing you to connect a virtual machine running your sniffing software to the vSwitch 
and thus sniff and capture all the traffic on that vSwitch.

A physical network tap is also a good device to aid in honeypot packet capture. 
They work by being an inline physical device that sits in the middle of either a copper 



132	 Chapter 5 • Honeypotting

or fibre optic cable. In this way all network data must pass through the network tap, 
where a copy is sent out of a third interface to your packet capture device. Just like the 
span port, they are undetectable, and just like the span port they are difficult to scale 
and cannot capture virtual network traffic.

By design a honey wall bridge is also an excellent device for packet capture.  
The Honeynet Project’s honey wall is a prebuilt honey wall which is not only fully 
capable of packet capture but also packet flow analysis. It is virtually undetectable, but 
arguably its biggest advantage over the other two options is that it can also be fully 
virtualized. This means it is able to capture packets from within the virtual networks 
themselves. This leads to greater virtualization and cleaner network monitoring 
designs.

Monitoring on the Box
While monitoring the network to see the data being transmitted and received is 
valuable, you also want to be able to monitor the application and systems on the box 
itself regardless of whether it is a physical or virtual system. This allows you to monitor 
things like exactly what the attacker is doing to the applications and operating system, 
which provides information about how you can protect your production resources 
from the same kinds of attacks.

One option for monitoring the box is to implement some form of host based 
intrusion detection. The benefits of this are similar to network based IDS. Another 
option is to use a configuration management and baselining tool such at NetIQ 
Secure Configuration Manager, ConfigurSoft, or Tripwire. These applications allow 
you to define a specific configuration and then report on any variances or differences 
from the defined baseline. This can be helpful in illustrating files and configurations 
that the attacker may have changed.

Something that must be kept in mind is that attackers typically try to identify 
applications such as anti-virus and IDSand disable them to prevent them from notify-
ing you of an attack. Another option for an attacker is to try to spoof or deceive the 
monitoring application so that it provides false information. Consequently you must 
take the information provided by any particular box with a grain of salt.



	 Honeypotting • Chapter 5	 133

How to Set Up a Realistic Environment
Honeypots can be used in a variety of different ways to collect information from the 
different sources of attacks. When building honeypots to collect and correlate trends 
across different networks to investigate automated scanning and attacks, a high degree 
of realism is not needed. This is because the automated tools used for scanning are 
typically just searching for vulnerabilities and rarely check for realism. However if 
your honeypots are purely for intrusion detection and are situated deeper into your 
secure network to detect sophisticated, manual hacking attempts, then your honey-
pots must be realistic so that the attacker actually attempts to compromise the system.

This realism could be achieved through careful configuration to make the  
honeypot appear to be similar to any other legitimate neighboring server on the 
network. Virtualization, in particular VMware, is widely used in enterprise production 
environments and should not be an immediate indication of a honeypot. Attempting 
to disguise a server as virtual is rarely necessary and also very difficult to achieve 
successfully.

Tools & Traps…

Leveraging VMware VMsafe
VMware VMsafe is a program by VMware that is promising to provide low 
level security APIs and functionality to security vendors. While most of the 
functionality for VMsafe will not be available until the next release of VMware 
ESX server, it’s worth being aware of in the context of monitoring the box. 
VMsafe APIs (in particular the VIPER and Introspect APIs) have the potential to 
provide out of guest monitoring of all memory and processing occurring in a 
virtual machine. This has the potential to allow a honeypot that is running as 
a virtual machine to have all memory and processing to be monitored com-
pletely externally via a special security virtual machine, and, most importantly, 
in a manner that is undetectable to an attacker.



134	 Chapter 5 • Honeypotting

Plausibility is important and an attacker would be suspicious of your honeypot  
if it doesn’t reflect the general security level of the network you’re trying to protect. 
So installing a honeypot with too many vulnerabilities in a generally well secured 
and patched network may well raise suspicions. Therefore generally apply the same 
security practices such as patching and firewalling to the honeypots but with slightly 
less rigor to ensure that the honeypot is typical of the network but still the most 
vulnerable host.

Configuring honeypots to appear to be systems that are still in development or 
under test is another good ruse for creating plausibility as to why a honeypot is 
different or less secure to other hosts on the network. Pitfalls can also come through 
the power of virtualization and copying virtual machines. If you move a host to a 
different network or clone a host from another network without cleaning up old 
configurations, then you may alert the attacker that he’s on a recycled honeypot.

Nepenthes
Nepenthes, http://nepenthes.mwcollect.org, is a modular low interaction honeypot 
designed to emulate vulnerabilities worms use to spread across networks. Nepenthes 
does have a different approach from other honeypots in that it only aims to emulate 
the vulnerable parts within a service such as vulnerabilities within SMTP servers 
rather than emulating the service as a whole.

Furthermore Nepenthes also has a shellcode processor which is able to extract 
the shellcode from an exploit and execute it in order to fetch malware. In this way  
a large collection of worms can be automatically downloaded for further analysis. 
Currently the vulnerabilities emulated are only specific to Windows platforms, and,  
as of August 2008, it was still under active development with the latest release being 
February 2008. It is designed for the Linux/BSD platform, and it will also run on 
Windows under Cygwin. Installation on Debian-based systems can be performed 
using apt-get install nepenthes.

Setting Up the Network
Virtualization is as much about creating virtual networks and joining them together 
in unique ways as it is about creating stand alone virtual hosts. Furthermore if you 
can master creating virtual networks you are able to build more and more of your 
infrastructure virtually inside a single host. This section will cover creating two virtual 
networks using VMware server. This will be used as the building blocks for creating 



	 Honeypotting • Chapter 5	 135

much more complicated networks later such as honeynets with honey walls but the 
principles will remain exactly the same.

Firstly in the creation of the network architecture, VMware makes it possible to 
create separate and distinct virtual networks inside a single server. Since these networks 
are virtual they can be reconfigured quickly in software rather than the time consuming 
alternative or rewiring physically switches and hubs. Honeypots can be moved quickly 
from one virtual network to another without even having to shut them down by using 
a very simple administration GUI.

Figure 5.4 shows two virtual networks and four virtual machines; one of which is 
in a prime position to be a honey wall. All networks and machines are within a single 
VMware host shown in blue.

Virtual Network Vmnet5 

Internet

Physical
interface

eth0 

Virtual Network Vmnet6

Vmware Server Host

Honeywall

Figure 5.4 Using a Virtual Machine as a Honey Wall

The two virtual networks are called VMnet5 and VMnet6. VMnet5 is connected  
to an external network through a physical network interface, eth0. In comparison 
VMnet6 is an internal-only network which exists only within the VMware server;  
it is not connected to any physical network devices and has no direct external network 



136	 Chapter 5 • Honeypotting

connectivity. In the diagram virtual hosts 1, 2 and 4 are connected to VMnet5, and 
therefore have direct external connectivity.

Host 4 is connected to both networks, and, if configured correctly, could be a 
virtual honey wall bridge between the two networks.

Finally host 3 is only connected to VMnet6 and all other network data must go 
through host 4, the honey wall. In this way all network activity entering or leaving 
host 3 can be monitored and captured.

To recreate the above architecture using VMware server, it is necessary to first 
create the two networks, VMnet5 and VMnet6. On a Linux host you use the VMware 
config.pl script, which unfortunately also includes the VMware kernel module 
matching and compilation process. However this can just be skipped through until 
this part.
Would you like to skip networking setup and keep your old settings as they are?

(yes/no) [no]

no

Do you want networking for your virtual machines? (yes/no/help) [yes]

Would you prefer to modify your existing networking configuration using the wizard 
or the editor? (wizard/editor/help) [editor]

editor

It is important to enter editor here in order to be able to fully edit the virtual 
network configuration. After this has been selected you will be asked which virtual 
network to configure in this case 5. VMnet5 is bridged to a physical network interface, 
eth1, which means that packets entering the physical network interface will be copied 
or ‘bridged’ over onto the virtual network. This bridging configuration can be 
achieved by entering the responses below. 
The following virtual networks have been defined:

. vmnet0 is bridged to eth0

Do you wish to make any changes to the current virtual networks settings?

(yes/no) [no]

Yes

Which virtual network do you wish to configure? (0-99)

5

What type of virtual network do you wish to set vmnet5?

(bridged,hostonly,nat,none) [none]

bridged



	 Honeypotting • Chapter 5	 137

Your computer has multiple ethernet network interfaces available: eth1,

eth2. Which one do you want to bridge to vmnet6? [eth1]

eth1

The following virtual networks have been defined:

. vmnet1 is bridged to eth0

. vmnet5 is bridged to eth1

This completes the configuration of the first virtual network, VMnet5. The second 
virtual network has to be configured slightly differently because it is a host-only 
network. This means that the network is not directly connected to a physical network 
card so any network traffic is internal to the VMware server only or ‘host only’. This 
configuration can be achieved by entering the following responses:
Do you wish to make additional changes to the current virtual networks

settings? (yes/no) [yes]

Which virtual network do you wish to configure? (0-99)

6

What type of virtual network do you wish to set vmnet6?

(bridged,hostonly,nat,none) [hostonly]

hostonly

Configuring a host-only network for vmnet6.

Do you want this program to probe for an unused private subnet? (yes/no/help)

[yes]

Yes

Probing for an unused private subnet (this can take some time)…

The subnet 192.168.51.0/255.255.255.0 appears to be unused.

The following virtual networks have been defined:

. vmnet1 is bridged to eth0

. vmnet5 is bridged to

. vmnet6 eth1is a host-only network on private subnet 192.168.51.0.

Do you wish to make additional changes to the current virtual networks

settings? (yes/no) [yes]

no

This concludes the configuration of the two virtual networks. You are now ready 
for the addition of your virtual honeypots. Once you have created your virtual 
honeypots you can take full advantage of these two virtual networks and can place 
honeypots onto either network or both. It’s possible to create up to 99 virtual  



138	 Chapter 5 • Honeypotting

network segments in this way, so there is plenty of scope available for creating quite 
complicated honeynets.

You can place a virtual honeypot onto one of the networks you have just created 
by using the VMware Server Console. This is a Graphical User Interface (GUI) 
which controls the creation, configuration, and status of all your virtual machines  
and virtual networks. To place honeypot1 onto VMnet5 Go to VM | Settings | 
and select the virtual network interface you want to use and the custom network 
connection option. With this option selected you are able to then select the virtual 
network you want to connect to interface. In Figure 5.5 the first network interface 
has been selected to connect to VMnet5.

Figure 5.5 Virtual Machine Settings

If you are creating a virtual honey wall then you can connect the other virtual 
network interface to the VMnet6 network so that the honey wall can bridge across 
the two networks. The configuration of VMnet6 can be seen in Figure 5.6.



	 Honeypotting • Chapter 5	 139

A further reason for utilizing VMware in the deployment of high interaction 
honeypots (honeynets) is its ability to host more than one full honeypot operating 
system on one physical server. For example, a single VMware server could host full 
installations of Solaris 10, Windows 2008, and Fedora Core 9, which can run 
simultaneously.

Snapshots can be taken of the honeypots in a ‘clean’ state, and, once a honeypot 
has been compromised and had all useful data extracted, it can be reverted back to 
the ‘clean’ snapshot. This is advantageous as a high interaction honeypot need only  
be installed once and then reverted back to its initial state as needed rather than the 
alternative of reinstalling or reimaging each physical machine.

Another aim that can be achieved by using VMware is the ability to distribute 
compromised honeypots to a colleague or other security professional for further 

Figure 5.6 Configuring a Second Network Interface for Bridging Across  
Two Networks



140	 Chapter 5 • Honeypotting

analysis. This can be achieved with VMware server by pausing the virtual honeypot 
and distributing its files from the VMware host. Conversely paused virtual machine 
honeypots can be downloaded from the honeynet alliance and imported into the 
VMware server host.

Keeping the Bad Stuff in
When you are installing honeypots especially high interaction honeypots it’s important 
to be able to fully control the network traffic both entering and leaving your honeypot. 
Facilities such as rate limiting and outbound connection type restrictions can greatly 
reduce the risk of a compromised honeypot being used to launch further attacks. Again 
many of these capabilities can be obtained by using a honey wall, but additional rate 
limiting is also available through VMware. This is possible if VMware ESX is used as the 
hosting platform.

Installed within honey wall is Snort, an Intrusion Detection System based on 
packet monitoring. Snort can also be used ‘inline’ with iptables, a Linux host firewall, 
to change the firewall rules dynamically and replace the contents of malicious packets 
with a harmless payload.



	 Honeypotting • Chapter 5	 141

Summary
The objective of honeypots and honeynets is to provide an environment that is 
attractive to an attacker, thus enabling you to learn how the attacker operates  
and how the attacks themselves function. In essence it is a surveillance tool that,  
if implemented properly, provides you with information that you can use to better 
secure your production resources.

There are many different ways of implementing honeypots, but for any honeypot 
to be effective it must be appealing to an attacker. It is important to setup realistic 
environments so that the attacker doesn’t realize they are attacking a honeypot but 
rather they think they are attacking real resources.

A critical element of success for honeypots is the ability to detect and monitor 
the attack so that you can learn how the attacks work and thus how to protect 
against them.

Virtualization’s flexibility presents a good environment for implementing honey-
pots since you can set up complex and robust environments with a fraction of the 
hardware required for a corresponding physical implementation.

Solutions Fast Track
Herding of Sheep

Honeypots are used to attract attackers to a controlled environment where ˛˛

you can learn how the attackers and the attacks function

Honeypots are considered high interaction or low interaction˛˛

There are three generations of honeynets: Gen I, Gen II, and Gen III˛˛

It is important determine whether you require a local or distributed network ˛˛

of honeypots

Detecting the Attack

You can use both network and host based IDS to detect the attack˛˛

You can also capture network traffic to identify an attack˛˛

You can use span ports or network taps for monitoring the physical network˛˛



142	 Chapter 5 • Honeypotting

You can configure vSwitches to operate in promiscuous mode to capture ˛˛

network traffic on the virtual network

A honey wall or honey wall bridge can be used to provide both packet ˛˛

capture as well as control.

How to Set Up a Realistic Environment
A honeypot should appear to be similar to a legitimate server or resource˛˛

Making a honeypot appear to be a development or test system can be an ˛˛

effective way to lure attacks

Nepenthes is a low interaction honeypot that you can use to emulate ˛˛

vulnerabilities



	 Honeypotting • Chapter 5	 143

Frequently Asked Questions
Q:	Should a honeypot consist of an unpatched or highly vulnerable target?

A:	Generally speaking, no. A good honeypot should be very similar to your produc-
tion resources. While you might reduce the security some (or maybe not apply  
all patches or apply them as timely as you would to your production resources),  
if your honeypot is completely unpatched while the rest of your environment is 
highly secure, it can tip off the attacker that it is a honeypot. They may move on 
to other systems thus precluding you from gaining the information you require 
from your honeypot implementation.

Q:	Why should I use a honey wall?

A:	An important element of a honeypot or honeynet is the ability to rigidly and 
strictly control the network traffic from an attacker but to be able to do so with-
out the attacker realizing it. Honey walls provide that strict control of network 
traffic but can do so largely transparently to the attacker.

Note
1. � Cyrus Peikari and Anton Chuvakin, Security Warrior (Sebastopol, CA: O’Reilly 

Media, Inc., 2004).



This page intentionally left blank



145

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 6

Malware Analysis

Solutions in this chapter:

How Should Network Access Be Limited?■■

Looking for Effects■■

Antivirtualization Techniques■■



146	 Chapter 6 • Malware Analysis

Introduction
In the early 1990s viruses were prevalent. Their primary mode of transportation 
involved being executed by an unsuspecting user. The virus would then infect other 
similar files on the machine in hopes that one of these files would be copied to 
another unsuspecting user. The very operating system of the machine might also be 
altered in an attempt to continue to “infect” every file that the computer might 
come in contact with.

As computers got more sophisticated, so did the malware problem. Workgroup 
networks brought about viruses that could infect not only local files, but the files of 
other users in the workgroup. The Internet gave rise to worms that could move from 
server to server without the interaction of the user. Eventually some worms were so 
powerful that they were able to compromise every vulnerable host in a matter of 
minutes. Even the most innocuous self-replicating code can cause significant amounts 
of damage to a network running at capacity.

All along the way researchers have been watching this progression in an effort 
to understand, classify, and with any luck repair the damage done by these malicious 
programs. Unfortunately the methods of the virus creators have gotten more 
sophisticated. The true nature of a virus often is disguised in an effort to prevent 
researchers from discovering its secrets. Researchers need a way to truly see what 
malware is doing to a server if they have any hope of finding a way to prevent and 
recover from malware infestations.

This chapter will highlight how virtualization can be used to quarantine malware 
in an area where it can be studied. You will see how to create an environment in 
which to test the malware. We will also discuss ways to monitor the environment 
from afar so that the effects of the malware can be observed.

Setting the Stage
Imagine if you will that you’re working for a company, and you get called in to 
help the CEO with a problem. His computer has started popping up links to 
pornographic sites, and telling him that he’s infected and needs to download a 
special tool to disinfect his computer. He says he’s already tried the tool, but the 
pop-ups are now coming faster than ever. You immediately realize that he’s 
infected, likely more than once, and that his computer is probably a lost cause. 
Unfortunately he had sensitive data on the computer, and you need to know what 
might have been leaked into the wild. This is the point where malware analysis 



	 Malware Analysis • Chapter 6	 147

comes in. You need to know what activities the virus performs. Does it send data 
to the creator? Was the malware specifically targeted in some way to the victim? 
How does it infect other computers? Can the damage it does be repaired?

There are two primary methods of malware analysis that can be used. One is 
static analysis, and the second is dynamic analysis. Static analysis involves looking at 
the code of the malware itself. If you are lucky enough to be able to obtain source 
code in a high-level language, this can be a fairly straightforward task. Unfortunately 
for the researchers this almost never happens. Instead the malware is almost exclusively 
distributed in binary format. In addition, malware writers often use obfuscation tools 
to cause their binaries to be even more difficult to understand (as if reading assembly 
code weren’t hard enough). They often use encryption techniques to hide portions of 
their code, and write custom code modification scripts. They may alter their binary 
structure so that the traditional binary sections are not in place, or worse are corrupted 
in some fashion to prevent binary analysis tools from working. In many cases the 
actual binary of the entire malware is never actually in memory at one time. Modules 
are decoded on demand, and promptly erased when execution is complete.

The other method of analysis is known as dynamic analysis. This analysis involves 
executing the binary in a controlled environment, and then observing its behavior. 
These behaviors can be divided into two areas of interest: (1) how does the malware 
interact with external hosts, and (2) what activities does it perform on the victim 
machine?

How Should Network Access Be Limited?
During analysis the question of how much network access to grant should be 
addressed. There are a number of reasons for which you should avoid allowing the 
malware to contact other servers on the Internet. Indeed, in most circumstances  
you will want the systems to be on completely isolated networks. This section will 
attempt to detail how to use a virtualized solution to create an isolated system.  
Using the proposed implementation will hopefully help you to avoid getting caught 
in some less desirable situations.

Don’t Propagate It Yourself
The biggest and most obvious reason to prevent malware from making contact with 
live networks (both the Internet and your local networks) is that the malware may be 
looking for targets to attack. It would be a very bad day for your organization if the 



148	 Chapter 6 • Malware Analysis

malware you were researching were able to escape the sandbox environment in which 
it was being tested and infect other computers in the corporate network. And even if 
the malware only has access to the Internet, you could still face liability issues for allowing 
the malware to propagate from your machine and infect others. More information 
regarding creating a sandbox environment has been presented in Chapter 3.

The Researcher May Get Discovered
Rumor has it that malware authors have begun collecting lists of “antimalware” 
researchers and labs. When a malware organization sets up a Web site for malware 
distribution, they may include the functionality to provide differing content based on 
which Internet address has created the request. If a network known to be affiliated 
with malware research makes contact, a different version of malware is served. The 
goal is to prevent the malware researchers from obtaining the latest versions of the 
malware.

Create a “Victim” That Is  
as Close to Real as Possible
In order to research the malware you should have as close to a realistic target as 
possible. The ideal target would probably be an actual image of someone’s com-
puter with any confidential data removed or at least scrubbed. As we will discuss in 
the following sections, there are a number of advantages to putting such an image 
into a virtual machine. There are also some disadvantages. Untargeted malware is 
created to run on standard user-oriented machines. These pieces of software often 
are designed to discover their environment and capture data (sometimes including 
information such as the keystrokes of the user). Sometimes they relay that data back 
to a collection point immediately. In other cases the malware packages things up, 
and awaits a collector process connection to retrieve the packaged data. In some 
cases documents will be searched in an effort to collect sensitive information. 
Often there is a replication function that leverages the credentials of the user to 
probe other servers on the network.

You Should Have a  
Variety of Content to Offer
One of the key aspects of current malware is the behavior it exhibits when certain 
types of files are encountered. Often malware scans files for e-mail addresses to be 



	 Malware Analysis • Chapter 6	 149

added to spam lists, as well as to be used as targets for propagation. Some malware 
searches for financial information in the form of tax preparation software backup files 
and money management files. Others might be searching for passwords stored in text 
files. A malware analysis machine that doesn’t contain an assortment of content might 
miss the key behaviors that the researcher may be trying to locate. Worse yet if the 
machine is too “sterile” the malware may make the determination that it is in a lab, 
and terminate execution altogether.

Give It That Lived-in Look
The victim should appear to be a live box that actually is used. The idea is that the 
enemy should find both interesting information and a significant amount of the 
standard clutter found on a normal machine. Internet history and a cluttered desktop 
can go along way toward achieving the goal. A handful of spreadsheets with tantalizing 
names such as “Taxes” and “Passwords” will likely distract them from looking too 
closely to check if the machine is authentic. Again, some consideration should be 
given to migrating a real existing machine onto the virtual platform. Nothing looks 
more “real” than a machine that has actually been used for some period of time.

Making the Local Network More Real
Although limiting network access is important, it is still one of the key areas the 
researcher will want to observe. One of the ways in which virtualization can be of 
help is by using two virtual machines. The first machine can be set up to execute the 
malicious software, and the second can be set up for observation purposes. This is the 
machine that should contain data for the malware to capture.

In addition to appearing to be a juicy victim on which to observe propagation 
methods, the secondary server can provide some key services on the network that can 
greatly aid in analyzing the malware. One key element of the secondary server would 
be a DNS responder. Malware often uses DNS to in order to locate servers on the 
Internet. These DNS requests can be redirected by this secondary server to a known 
location (likely the secondary server itself), which would be of no consequence if it 
were compromised.

This secondary server should also be able to answer web requests on both port 80 
and 443 as though it were an authentic server. In addition to answering the requests, 
they should be logged so that the researcher will have the ability to discover if other 
malware is being hosted in these locations. The easiest way to set up a quick web 



150	 Chapter 6 • Malware Analysis

server like this is to create an error handling page that examines the request header, 
and then responds with content of the appropriate type. You can do this in a number 
of ways, but the easiest way I’ve found is to set up a normal web server (Apache or 
IIS will work fine), and then create a custom error handler for the 404 – File Not 
Found error.

On Apache you can modify the Web site configuration by adding an 
ErrorDocument configuration line that directs the web server to run a script every 
time an unknown resource is requested. An example of the altered configuration  
is shown in Figure 6.1.

Figure 6.1 Using an Error Document in Apache

The customhandler.pl script should examine the extension of the file being 
requested and attempt to return something matching the requested data. Note that 
the malware may be asking for content of a specific type, and interpreting it as 
something else. More often than not the content being requested will be indicative 
of the function of the malware, and will help the researcher to understand what the 
malware is requesting. I have included a simple example of such a script later.

On IIS similar functionality can be achieved also by setting custom error handlers. 
You can accomplish this in the Web site configuration dialog under the Custom 
Error Handlers tab in the IIS configuration wizard. Note that Figure 6.2 shows only 
one error handler installed, but they could be installed for every type of error message 
on the server.



	 Malware Analysis • Chapter 6	 151

Testing on VMware Workstation
On VMware Workstation the testing scenario just described can be created by making 
two machines. The first machine is your victim machine, rich in content malware 
might be interested in, and the second is the “resolver” host, which answers DNS 
requests, answers web requests, and acts as a possible victim for the original malware 
to exploit. The networking should be done using a host-only network, with  
the resolver possibly having two virtual network interfaces to reach the Internet  

Figure 6.2 Using IIS to Catch All Web Requests



152	 Chapter 6 • Malware Analysis

(in the event that it is desirable that some connections be relayed). This “dual homing” 
should be done with great care however, if the second host is destined to be infected 
as well while studying the malware propagation methods. Figure 6.3 illustrates how  
a machine with two network adapters appears on VMware Server.

One other thing to be especially careful of is that by default VMware workstation 
assigns an IP address to the host on host-only networks. This can put the hosting 
operating system under attack by malware hosted in a virtual server. In order to 
prevent this issue from affecting your host I would recommend that you get into the 
virtual network setup, and remove the host adaptor from your infected network. 
NAT and DHCP should also be disabled on these networks to limit the possible 
exposure to the host. Figure 6.4 displays the configuration page where this change 
would be made.

Figure 6.3 VMware Hardware Setting Configuration



	 Malware Analysis • Chapter 6	 153

Microsoft Virtual PC
A similar arrangement can be created using Microsoft Virtual PC. Again two 
machines should be created with local-only network interfaces. Note that Virtual PC 
does not provide DHCP or natting services for these local-only interfaces, so they 
will have to be assigned IP addresses manually. This does save the researcher a step in 
having to deactivate those services. Figure 6.5 provides an example of how host-only 
network interfaces can be configured in Virtual PC.

Figure 6.4 Host Virtual Adapter Configuration



154	 Chapter 6 • Malware Analysis

Looking for Effects of Malware
Now that we’ve discussed some of the issues related with setting up the environment 
to test in we can move on to the actual work: discovering what the malware actually 
does, how it does it, and how it communicates with the rest of the network (assuming 
it interacts with other entities).

What Is the Malware’s Purpose?
The malware likely has a primary purpose. This purpose might be to gather information 
from the victim. The purpose may also be as simple as connecting to a command and 
control network and awaiting instructions. As we mentioned before, there are two ways 
to discover this, and in reality a hybrid approach of static analysis (binary disassembly) 
and dynamic analysis (behavior observation) is likely the best approach to discovering 
the behavior of the malware in question.

Figure 6.5 Hardware Configuration in Virtual PC



	 Malware Analysis • Chapter 6	 155

How Does It Propagate?
One of the key areas of focus is the method that the malware uses to infect the 
host in the first place. Did it use a vulnerability to gain access to the system?  
What application was exploited? Is there a patch available for this vulnerability?  
Is the vendor even aware that this vulnerability exists? For the most part malware 
lurks in the realm of known vulnerabilities. There are a small number that exploit 
previously unknown vectors, especially in the realm of web browser vulnerabilities, 
but for the most part they usually are developed with recently disclosed  
vulnerabilities as the vector of attack. In some cases whole packages of malware 
are created just waiting for an appropriate vulnerability. Once an appropriate 
vulnerability is discovered, an exploit can be created, packaged, and deployed with 
amazing speed. In fact there are some misguided developers who sell malware 
development kits. These kits lower the skill threshold required to develop these 
pieces of software significantly.

Does the Malware  
Phone Home for Updates?
One behavior that the researcher will want to pay close attention to is how the 
malware gets updated. Often the initial infection vector is nothing but a loader, 
especially in the case of the malware development kits mentioned earlier. These 
loaders are designed to gain a toe-hold on the server (often using an exploit), and 
then retrieve updates to enhance the “functionality” of the malware. Often the 
updates are served from a compromised web server, but other methods are also used 
such as FTP, TFTP, and even in some cases, peer-to-peer networks. These updates 
may be changed to accommodate the current objectives of the malware designer.  
In some cases new functionality may be added. The updates may even be as simple  
as downloading a list of commands to be executed on every infected machine.

Another interesting aspect of the “modern malware” scenario is the use of 
dynamic host lists, and peer-to-peer technologies. In some cases the malware has 
a long list of dynamic hostnames from which to obtain updates. These hostnames 
may be generated using an algorithm. The attacker may control a majority of the 
hosts (and hostnames), or they may control only a small portion of the list. The 
malware accesses each name in some order, and only when the malware hits a 
Web site controlled by the attacker does it actually update or perform the actions 
requested.



156	 Chapter 6 • Malware Analysis

Does the Malware Participate in a Bot-Net?
A Bot-net is a collection of drone machines that are directed to act in a cooperative 
fashion to perform some action on behalf of the Bot-net controller. In many cases 
these actions consist of flooding the target with packets. It may also emulate a normal 
user navigating a Web site (and deliberately consuming resources on the target). Even 
the largest of Web sites can be powerless against an attack by even a moderately sized 
network of drones.

Does the Malware  
Send the Spoils Anywhere?
In addition to participating in Denial of Service attacks, infected machines often are 
employed to search for information that the attacker deems useful. This information 
could range from personal information such as Social Security numbers or other 
governmental identification information. Financial information such as bank account 
numbers and credit card information is also commonly gathered, as are usernames 
and passwords. Sometimes the victim’s computer is even scrubbed for e-mail 
addresses to be used in carrying out further attacks. An e-mail-based attack has a 
significantly higher success rate if the person sending the e-mail knows the receiver. 
These e-mail lists can allow an attacker to discover and leverage these trust 
relationships.

Gathering all this data would be useless to malware authors unless they have  
some method of retrieving the files. In some cases the method may be as simple as 
e-mailing the data to an anonymous mail-drop address. The information may even be 
encoded or obfuscated and posted on public forums and blogs. The malware may 
employ a technique known as steganography. Steganography is a method of adding 
encoded information to a picture while preserving the appearance of the picture.  
A human looking at the picture would see the original image, but an attacker with 
the proper tools can extract the information from the picture at a later time. These 
pictures could be posted on photo distribution sites or even on social networks of 
various types. In other cases the communication method may be as sophisticated as  
a complex peer-to-peer network relaying information from infected host to infected 
host. The author can join the network and lurk, receiving copies of the information 
in much the same way as the other infected hosts. This allows the author to remain 
anonymous. It is very difficult to determine which hosts are keeping copies of the 
data, and which hosts are merely innocent victims of the malware plague.



	 Malware Analysis • Chapter 6	 157

Regardless of the method, the drop location is likely something that the researcher 
is attempting to discover. The information gathering step is likely a promising method 
for locating the person disseminating the malware. In addition it can be a place to  
tell with some degree of accuracy how much information may already have been 
“liberated” by other infections.

Does the Malware Behave  
Differently Depending on the Domain?
Another area of research to be conducted is whether the malware’s behavior is different 
depending on the network on which it is run. There has been some recent research on 
malware that modifies its behavior depending on the identity of the victim. We can 
easily imagine malware that performs its standard nefarious actions on most computers, 
but once a US military computer is detected (possibly discovered by its domain name 
ending in .mil) it uses more stealthy methods to communicate, and gathers a different 
set of information.

How Does the Malware  
Hide and How Can It Be Detected?
One common priority for malware authors is to remain hidden. Once upon a time 
malware was just another process running on the machine. In some cases it tried to 
disguise itself using a known process name. It was obvious when you discovered a 
process running that was vastly different from what it normally was, that something 
was wrong. At that point you could look in a directory and find all the keystrokes 
you had typed in the last week. Malware has gotten significantly more sophisticated. 
Malware is sometimes able to infect the kernel, and prevent files and directories from 
being displayed at all. In an attempt to evade virus scanners, some can even hide in 
existing processes and not write anything to disk.

A big challenge for the researcher is finding ways to detect the malware. Does it 
change any settings that can be detected? Is there a way to detect the malware by 
creating a specific directory and then checking to see if it exists? Malware that hides 
directories or files may hide files created by the user as well. The malware may modify 
certain kernel structures and tables that can be detected. It may also be detectable by 
looking at memory dumps of the various processes on the system to see if there is 
anything out of the ordinary. These methods are quite tedious, but may be the only 
way to discover the malware in action.



158	 Chapter 6 • Malware Analysis

One method that can be especially helpful in determining some of these issues is 
to boot the infected virtual machine under an alternate operating system. This might 
be a system similar to the original system (same platform), or it might be an entirely 
different operating system. By examining a disk using an alternate operating system, 
you can examine the file system and directory structures without being subject to 
the effects of the infection. By noting any abnormalities you stand a fair chance of 
discovering the files that are associated with the infection. These abnormalities can be 
encountered in the existence of files and directories, as well as in the files themselves. 
To be thorough it is likely a good idea to perform some sort of hash on all the files 
inside the original operating system, and then to perform the same hash on every file 
under the alternate operating system. Any differences will certainly be something that 
should be investigated. It should be noted that files are changing all the time while 
the system is running, so abnormalities may also be attributable to other sources. 
Unfortunately each of these inconsistencies would have to be examined and checked 
to ensure that the changes were not caused by the infection.

How Do You Recover from It?
On our virtualized victim, recovery is likely as simple as restoring from a snapshot. 
One push of a button, and any sign that the malware was executed is erased. 
Unfortunately, the researcher likely wants to know how if and how other victims 
might be able to repair the damage done. The most effective way (and only sure way) 
to recover from a malware infection is to rebuild the machine, but in some cases 
where the malware and its activity are fully understood it may be possible to clean 
out the infection, and continue operating. The files that make up the malware may be 
located on the system. Disinfection would likely also involve changing system settings 
back to their original values. It may even be possible to remove a root-kit, although 
this task can be significantly more difficult.

As we mentioned before, the best and recommended action for malware recovery 
is to boot the system under an alternate operating system, retrieve as much data as 
possible, and rebuild the system. Special care should be taken to prevent copying any 
infected data over to the new system. Infected content are normally executable files 
such as those ending in EXE, COM, SCR, and so forth. Unfortunately certain other 
files can contain scripts of various kinds, and can thus be infected by malware. These 
would include word processing documents and spreadsheet files. In the ideal case 
these files would be opened only in a safe environment, and then only to print or 
copy their data over to a safe destination.



	 Malware Analysis • Chapter 6	 159

Examining a Sample Analysis Report
The result of a malware analysis in CWSandbox is an XML analysis report, which 
contains information about all participating processes and the actions performed by 
them. This document type can be read by humans as well as by machines, which 
makes post-processing easier. For better human-readability XSL templates are used  
to transform the XML report into HTML or plain text documents. Nevertheless,  
in the following the contents of the raw XML file are described, but we also give an 
example of a resulting HTML report at the end of this section. In this section we 
will use the same sample malware file like seen above.

The <Analysis> Section
Each XML report contains the root element <analysis> and its two child element 
sections <calltree> and <processes>:
<analysis cwsversion=”1.97” time=”16.12.2006 23:51:28”  
file=”82f78a89bde09a71ef99b3cedb991bcc.exe”  
logpath=”c:\analysis\log\82f78a89bde09a71ef99b3cedb991bcc.exe\run_1\”>  
<calltree>…</calltree>  
<processes>…</processes>  
</analysis>

The attributes of the <analysis> element reveal several information about the particular 
analysis run, e.g. the used CWSandbox version, the date and time of the analysis, and the 
name of the analyzed executable. The <calltree> section covers a call tree of all monitored 
processes, where a father-child-relation shows that the father process has created or injected 
into the child process. This is the calltree for our malware sample:
<calltree>  
  <process_call filename=”c:\82f78a89bde09a71ef99b3cedb991bcc.exe”  
  starttime=”00:00.219” startreason=”AnalysisTarget”>  
    <calltree>  
     <process_call filename=”C:\WINDOWS\system32\arman.exe --install  
      c:\82f78a89bde09a71ef99b3cedb991bcc.exe”  
      starttime=”00:02.031” startreason=”CreateProcess”/>  
    </calltree>  
  </process_call>  
</calltree>

From that output you can see that the initial malware process, which was created 
from the binary c:\82f78a89bde09a71ef99b3cedb991bcc.exe, starts a new process using 
the command line C:\WINDOWS\system32\arman.exe --install c:\82f78a89bde09a71ef9
9b3cedb991bcc.exe. This new file c:\windows\system32\arman.exe most probably was 
created previously by the initial process. Via the call parameters it may be informed, that 



160	 Chapter 6 • Malware Analysis

it recently has been installed and where the original malware file is stored. We will see 
in detail later, what is going on inside of this first process. Furthermore, you can see the 
relative start timepoints of the two processes: the first one is started only a few hundred 
milliseconds after the analysis has started, and the second one starts roughly after  
2 seconds. By the attribute startreason we know, that the first process was started by 
the sandbox itself and that this process has created the second one by calling a Windows 
API function for creating new processes, e.g. CreateProcess. Another possible value for 
this attributes is InjectedCode, which is used for those processes which were not newly 
created, but which were already running and then injected with malicious code.

Analysis of  
82f78a89bde09a71ef99b3cedb991bcc.exe
The <processes> section contains one <process> subsection with detailed information 
for each participating process. By the attributes of the <process> element we learn 
some more information about the process itself:
<process index=”1” pid=”1192”  
filename=”c:\82f78a89bde09a71ef99b3cedb991bcc.exe” filesize=”113152”  
md5=”82f78a89bde09a71ef99b3cedb991bcc” username=”Administrator”  
parentindex=”0” starttime=”00:00.219” terminationtime=”00:02.328”  
startreason=”AnalysisTarget” terminationreason=”NormalTermination”  
executionstatus=”OK”>

■■ index: each process gets its own unique process index for later identification

■■ pid: the process identifier that is assigned by the operating system

■■ filename: the filename from which the process initially was created from

■■ filesize: the size of this process file

■■ md5: the MD5 hash value of this process file

■■ username: the username of the security context the process is running within

■■ parentindex: the index of the parent process which has started this one; the 
value 0 indicates that the process was started by the sandbox application

■■ starttime: relative time when the process was started or injected like 
described above in the <calltree> section

■■ endtime: relative time when the process was terminated; from the difference 
between starttime and endtime you can know the overall execution time  
of this process



	 Malware Analysis • Chapter 6	 161

■■ startreason: the reason why this process was monitored like described above 
in the <calltree> section

■■ terminationreason: the reason why the process was terminated; 
NormalTermination means that the process has terminated by itself; 
another possible value would be Timeout, which means that the sandbox 
has terminated this process at the end of the specified maximum analysis 
duration time

■■ executionstatus: normally this attribute has the value OK; if for some reason 
the process could not be started, e.g. because it is no valid Win32 application, 
the value CouldNotCreateProcess is used

The <process> element always contains several sections, which describe all the 
actions which are performed during the execution of this process. For each of the 
possible TNotification-objects, a separate section is included, if such notifications 
have been monitored during the execution. In the following, some interesting 
extracts from these sections are shown and explained. Please notice that sometimes 
we have skipped several notifications or left out some of their attributes for better 
readability.
<dll_handling_section>  
<load_dll dll=”c:\82f78a89bde09a71ef99b3cedb991bcc.exe” successful=”1”/>  
<load_dll dll=”C:\WINDOWS\system32\ntdll.dll” successful=”1”/>  
<load_dll dll=”C:\WINDOWS\system32\kernel32.dll” successful=”1”/>  
<load_dll dll=”C:\WINDOWS\system32\msvcrt.dll” successful=”1”/>  
<load_dll dll=”C:\WINDOWS\system32\WS2_32.dll” successful=”1”/>  
<load_dll dll=”C:\WINDOWS\system32\WININET.dll” successful=”1”/>  
<load_dll dll=”C:\WINDOWS\system32\pstorec.dll” successful=”1”/> 
</dll_handling_section>

The upper section gives us information about the loaded modules of the  
malware process. It starts with the particular malware image file followed by the 
Windows standard libraries ntdll.dll and kernel32.dll, which are loaded into each 
Windows user process. From the information that msvcrt.dll is loaded, we can know 
(or at least assume) that the malware is written in C, as it is the standard runtime 
library for Microsoft C applications. As the libraries ws2_32.dll and wininet.dll are 
loaded, we know that the malware is going to use the Winsock library in order to 
set up outgoing or incoming TCP/IP connections. As the examined malware file is 
a bot application, this is not amazing. From the fact that pstorec.dll is loaded, we can 
assume that the malware is going to access the Protected Storage, most probably for 
stealing some authentication data which is stored within of it. In the next analysis 



162	 Chapter 6 • Malware Analysis

section you can see what we already assumed before: the malware copies itself to the 
Windows system directory by using the destination filename arman.exe:
<filesystem_section>  
<copy_file srcfile=”c:\82f78a89bde09a71ef99b3cedb991bcc.exe”  
dstfile=”C:\WINDOWS\system32\arman.exe”  
creationdistribution=”CREATE_ALWAYS”/>  
</filesystem_section>

The following outputs show us that a new process is started from this created 
arman.exe file. We see that the new process should be created without showing the 
main window: showwindow=”SW_HIDE”. Furthermore, we are informed that the API 
function CreateProcessA was used for that purpose. The notification <kill_process> 
approves the fact that the malware process terminates itself after starting its copy  
from the Windows system directory.
<process_section>  
<create_process commandline=”C:\WINDOWS\system32\arman.exe --install  
c:\82f78a89bde09a71ef99b3cedb991bcc.exe” targetpid=”1612”  
creationflags=”DETACHED_PROCESS” showwindow=”SW_HIDE”  
apifunction=”CreateProcessA” successful=”1”/>  
<kill_process targetpid=”1192” showwindow=”SW_HIDE”  
apifunction=”NtTerminateProcess”/>  
</process_section>

That is all for the first process and this is exactly what we see for the most of 
these simple bots: on their first start, they simply copy themselves to the Windows 
directory, then they execute this new copy and terminate the initial application.

Analysis of arman.exe
Let us know have an intensive look at the actions of the second process, which is 
promising more interesting results:
<process index=”2” pid=”1612” filename=”C:\WINDOWS\system32\arman.exe  
--install c:\82f78a89bde09a71ef99b3cedb991bcc.exe” filesize=”113152”  
md5=”82f78a89bde09a71ef99b3cedb991bcc” username=”Administrator”  
parentindex=”1” starttime=”00:02.031” terminationtime=”02:00.547”  
startreason=”CreateProcess” terminationreason=”Timeout”  
executionstatus=”OK”>

We know that this process is created from the same binary, only from a different 
location. Therefore, the MD5 and the file size have the same values as for the first 
one. By the values of the attributes parentindex and startreason we know that the 
execution was initiated by the first process. The terminationreason tells us, that this 



	 Malware Analysis • Chapter 6	 163

second process did not terminate itself, but would have continued to execute if the 
sandbox application has not terminated it at the end of the analysis.
<filesystem_section>  
<delete_file srcfile=”c:\82f78a89bde09a71ef99b3cedb991bcc.exe” 
desiredaccess=”FILE_ANY_ACCESS” flags=”SECURITY_ANONYMOUS”/>  
</filesystem_section>

Here we can see the probable reason for the second command line parameter of 
arman.exe: it is used to inform the application where the original malware file can be 
found for deleting it. We do not know the regular distribution mechanism of this bot. 
Since it was collected by a honeypot we can assume that it is usually copied to a 
remote host after this host has been exploited. Depending on the exploit used, the 
malware file would be copied to a temporary or application dependent directory.  
The existence of an .exe-file in such a folder would raise suspicion or it would be 
deleted automatically due to some system clean up routine. Therefore, in nearly all 
cases we have seen, malware first copies itself to the Windows folder and then deletes 
the initial source file.

Many applications use named mutexes to ensure that only one instance of  
them is running. The funny thing about this is that very often you can learn more 
information about the malware from the name of their mutexes. Sometimes you 
can determine the malware name, how the author has intended it. Also very often 
you can recognize the malware family by that, as the mutex does not change from 
version to version or simply uses the same value plus a newer version number.  
The mutex of our sample probably reveals its intended name:
<mutex_section>  
<create_mutex name=”arm4n” owned=”1”/>  
</mutex_section>

The malware opens the registry section HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run, whose entries are loaded automatically on system startup. It checks 
if already an entry for the arman.exe file exists. As this is not the case, a new entry is 
created. After that, the malware checks if the entry could be created successfully. This 
modifies the system startup sequence, such that arman.exe will be started automatically 
each time the machine boots up:
<registry_section>  
<open_key key=”HKLM”  
subkey_or_value=”SOFTWARE\Microsoft\Windows\CurrentVersion\Run”/>  
<query_value key=”HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”  



164	 Chapter 6 • Malware Analysis

subkey_or_value=”Arman”/>  
<set_value key=”HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”  
subkey_or_value=”Arman” data=”C:\WINDOWS\system32\arman.exe”/>  
<open_key key=”HKLM”  
subkey_or_value=”SOFTWARE\Microsoft\CTF\Compatibility\arman.exe”/>  
</registry_section>

Now for the interesting stuff, namely those operations dealing with network 
connections. Each analysis report for malware that calls at least one Winsock 
operation contains a <winsock_section>. This has several subsections, one for all 
UDP connections, one for the incoming TCP connections, one for the allowed 
outgoing TCP connections, one for the blocked TCP connections and a last one 
for all operations for which the underlying protocol and direction could not be 
determined as no indicating function was called. These latter sections normally are 
used for using the Windows built-in DNS query functions. In our case the 
Winsock notifications sections starts like this:
<winsock_section>  
<connections_unknown>  
<connection connectionestablished=”0” socket=”0”>  
<gethostbyname requested_host=”sexccc.serveftp.com”/>  
<gethostbyname requested_host=”sexccc.ath.cx” result_addr=”208.98.19.3”/>  
</connection>  
</connections_unknown>

We can see that the first DNS query did not deliver an IP address. This is 
because at the moment of the analysis the domain name sexccc.serveftp.com was 
not connected to a valid IP. In contrast to that, the second request for sexccc.ath.cx  
delivers the IP 208.98.19.3, which is the address of the botnet C&C server, as we 
see here:
<connections_outgoing>  
  <connection transportprotocol=”TCP” remoteaddr=”208.98.19.3”  
    remoteport=”6666” protocol=”IRC” connectionestablished=”1” socket=”1396”>  
    <irc_data username=”XP-DEU 0 0 :[XP|DEU|P|00|gcoDZaUz]”  
     nick=”[XP|DEU|P|00|gcoDZaUz]”>  
     <channel name=”##tibia2##” password=”tibiablows”  
      topic_deleted=”:.scan.stop -s;.scan.start NETAPI 40 -a -s;  
      .scan.start NETAPI 40 -b -s”/>  
    </irc_data>  
  </connection>  
</connections_outgoing>



	 Malware Analysis • Chapter 6	 165

The malware initiates an outgoing TCP connection to 208.98.19.3 on port 
6666 which can be established successfully. Furthermore, CWSandbox has detected 
(by inspecting the traffic) that the protocol used in this connection is IRC. Because 
of that it was able to retrieve all the protocol dependent IRC data from the traffic 
stream:

the parameter of the user command is ■■ XP-DEU 0 0 :[XP|DEU|P|00|gcoDZaUz], 
which means that the username is XP-DEU, the IRC usermode is 0 and the 
realname is :[XP|DEU|P|00|gcoDZaUz]

the nick name is ■■ [XP|DEU|P|00|gcoDZaUz]

the channel ■■ ##tibia2## is joined with using the password tibiablows

the channel topic is :.■■ scan.stop -s;.scan.start NETAPI 40 -a -s; .scan.

start NETAPI 40 -b –s

by the name of the attribute ■■ topic_deleted you can see that the channel 
topic is received but in fact not let being passed to the malware; the 
CWSandbox can be configured in multiple ways in order to prevent  
a further processing of received bot commands

The last entries of the analysis report reveals that the malware opens a backdoor 
on TCP port 1910, but which is not being connected during the analysis run:
<connections_listening>  
  <connection transportprotocol=”TCP” localport=”1910”  
  connectionestablished=”0” socket=”1392”/>  
</connections_listening>

That is it for the second process of this malware analysis. We have seen the most 
essential operations of such simple bot applications: after it has copied itself to the 
Windows directory and started, this new instance deletes the originally malware file, 
sets up an autostart registry entry, opens a backdoor, resolves the domain name of its 
C&C server, connects to this server and joins the correct channel. As we did not let 
the channel topic pass to the malware receiving function, its functionality stops there. 
An extract of the transformed HTML report of this analysis is given below, showing 
the analysis only for the second process. Again, some unimportant parts have been 
removed to reduce its length.



166	 Chapter 6 • Malware Analysis

Analysis Number 2

Parent ID 1

Process ID 2028

File Name C:\WINDOWS\system32\arman.exe  
--install c:\82f78a89bde09a71ef99b3cedb991bcc.exe

File Size 113152 bytes

MD5 82f78a89bde09a71ef99b3cedb991bcc

Start Reason CreateProcess

Termination  
  Reason

Timeout

Start Time 00:05.391

Stop Time 02:00.469

Loaded DLLs

DLL-Handling C:\WINDOWS\system32\arman.exe  
C:\WINDOWS\system32\ntdll.dll  
C:\WINDOWS\system32\kernel32.dll  
…

Deleted Files

File System
c:\malware.exe

Mutexes Creates Mutex: arm4n

Registry Changes
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run  
“Arman” = C:\WINDOWS\system32\arman.exe

Reads
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run “Arman”  
HKLM\Software\Microsoft\Rpc\SecurityService “DefaultAuthLevel”

System Info Get System Directory
DNS Lookup
Host Name IP Address

sexccc.serveftp.com

Network Activity
sexccc.ath.cx 208.98.19.3
UDP Connections
Opened listening TCP connection on port: 11666  
C&C Server: 208.98.19.3:6666  
Username: XP-DEU 0 0 :[XP|DEU|P|00|gcoDZaUz]  
Nickname: [XP|DEU|P|00|gcoDZaUz]  
Channel: ##tibia2## (Password: tibiablows)



	 Malware Analysis • Chapter 6	 167

Interpreting an Analysis Report
The results which can be obtained from the analysis of a malware application can be 
used mainly for two purposes: protecting and disinfecting the bot-hosting client 
systems and destroying the functionality of the currently existing botnet. Obviously, 
the botnet will be left ineffective, if all bots have been disabled, but as it is not 
possible to deactivate all bots at the same time and as there always is the risk of  
new infections, it is also very important to shutdown the C&C server respectively 
servers. Important analysis results that can be used for the purposes of removing and 
avoiding the infection of a bot application and of shutting down the botnet may be:

Where does the bot application store its files on the infected system?■■

What mechanisms are used to automatically start the bot application at ■■

system startup?

How does the bot protect the infected host from infection by other ■■

malware?

How does the bot protect itself from detection and removal?■■

How are new infectable hosts found?■■

What exploits/mechanisms are used to infect new hosts?■■

How does the bot connect to the C&C server(s) and what servers are used?■■

Where does the bot application get updates from?■■

What malicious operations are performed locally and remotely?■■

Tip

Based on the raw XML analysis report you are able to create your own 
customized HTML or plain text transformation. For that you will have to 
create an XSL template, which contains instructions how to parse an XML 
document. Having this, there exist several tools for performing the transfor-
mation. One easy way to do this is by including a line like this into the 
XML file (you need to use the correct filename of your XSL with the href 
parameter): <?xml-stylesheet type=”text/xsl” href=”templae.xsl”?>



168	 Chapter 6 • Malware Analysis

Evidence for all of this information can be obtained from an analysis report that 
is created by CWSandbox. In the following sections those items are examined in 
detail and the proceeding of extracting evidences for them from an analysis report  
is explained.

How Does the Bot Install?
If we want to check if a given host already is infected with a particular malware or if 
we want to clean a host from that parasite, we need information about the locations 
where the malware installs its files and about the mechanisms it uses to automatically 
execute at system startup. Finding the answer on the latter question normally also 
solves the first one, as any autostart mechanism needs the information where to find 
the process to start. Windows offers a lot of different possibilities to instruct the 
system to execute a specific application automatically on startup. The great tool 
autoruns shows the most of them (For more information about autoruns, go to www.
microsoft.com/technet/sysinternals/SystemInformation/Autoruns.mspx). Although 
there are many ways, nearly all malware either uses one of the \run-sections of the 
registry or installs a Windows Service application or kernel driver. However, the malware 
needs to modify a registry setting to setup any form of autostart mechanism.  
As CWSandbox reports all accesses to the registry, you easily can filter out those 
accesses. As already seen, registry accesses are contained in the <registry_section> 
and the relevant entries are <create_key> and <set_value>. Here are some examples 
for malware that installs as an autostart process, using different registry sections:
<registry_section>  
<set_value key=”HKLM\Software\Microsoft\Windows\CurrentVersion\Run”  
subkey_or_value=”mirosoftware” data=”C:\WINDOWS\MEDIA\microsoftware.exe”/>  
<set_value key=”HKCU\Software\Microsoft\Windows\CurrentVersion\Run”  
subkey_or_value=”MS Domain Name Server Deamon” data=”MSDNSD32.exe”/>  
<set_value key=”HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows” 
subkey_or_value=”AppInit_DLLs” data=”bampklkf.dll”/>  
<set_value key=”HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\  
Notify\directut” subkey_or_value=”DllName” data=”directut.dll”/>

As mentioned, some bots do not install as normal programs, but as Windows 
Service applications. In that case, beside the changes to the registry, the analysis report 
will contain lines like these:
<service_section>  
<open_scmanager name=”SCM”/>  
<open_service name=”Netlib” desiredaccess=”SERVICE_ALL_ACCESS”/>  
<create_service name=”Netlib” displayname=”Net Functions Library”  
filename=”C:\WINDOWS\system32\Netlib.exe” starttype=”SERVICE_AUTO_START”  



	 Malware Analysis • Chapter 6	 169

servicetype=”SERVICE_WIN32_OWN_PROCESS,SERVICE_INTERACTIVE_PROCESS”/>  
</service_section>

A very powerful technique for infecting a system is to install a kernel device driver. 
Once loaded, this driver executes in kernel mode and underlies no more security 
restrictions. As it has full control over all running kernel and user mode processes, it 
could be very hard to detect such a malware. In most cases a kernel driver implements 
rootkit functions to hide itself and/or to provide system backdoors. CWSandbox can 
be configured to forbid the installation of kernel drivers completely or to fool the 
installer by returning a successful error code while suppressing the real installation.  
In any case, the attempt to load a kernel driver can be detected by the attribute 
servicetype=”SERVICE_KERNEL_DRIVER” of a <create_service> notification. The analysis 
report section of the installing process would look like this:
<service_section>  
<open_scmanager servicename=”SCM”/>  
<create_service servicename=”xmsk64” displayname=”XMM coprocessor driver”  
filename=”C:\WINDOWS\system32\xmsk64.sys” starttype=”SERVICE_SYSTEM_START”  
servicetype=”SERVICE_KERNEL_DRIVER” desiredaccess=”SERVICE_ALL_ACCESS”/>  
<start_service servicename=”xmsk64”/>  
<create_service servicename=”xmsk32” displayname=”XMMZ coprocessor driver”  
filename=”C:\WINDOWS\system32\xmsk64.sys “ starttype=”SERVICE_AUTO_START”  
servicetype=”SERVICE_KERNEL_DRIVER” desiredaccess=”SERVICE_ALL_ACCESS”/>  
</service_section>

Ultimately, loading of the driver is performed by the Service Control Manager 
(SCM). This process is hooked automatically and in its report section an entry like 
the following will be given. By the attribute behavior=”SimulateOK” we can see that 
CWSandbox was configured to only simulate this call and to suppress the real 
loading.
<service_section>  
<load_driver behavior=”SimulateOK”  
servicename=”\Registry\Machine\System\CurrentControlSet\Services\xmsk64”/>  
</service_section>

Finding Out How New Hosts Are Infected
In order to find new infectable machines, a lot of malware probes remote hosts for 
known vulnerabilities. For determining which hosts to probe, several strategies exist: 
some malware generate random IPs, others scan complete (also randomly chosen)  
IP ranges. There are also applications that use predefined internal or external target 
lists. Internal lists are contained inside the malware binary, external ones need to be 
reloaded from one or multiple possible locations from the Internet. After one potential  



170	 Chapter 6 • Malware Analysis

target has been determined it is probed against one or several vulnerabilities. As the 
possible exploits all work in different ways and use several different target services, it 
is hard to give a standard procedure of how to detect their usage from an analysis 
report, but there are some clues which always will be there. In any case, a connection 
to a remote host needs to be established on one or more of the specific possible 
ports. For some ports, any attempt to establish a connection is a promising hint of an 
exploitation attempt. For example: though they are really old, malware still searches 
for known security leaks in the LSASS and the DCOM RPC Service is searched. 
Therefore, often you will see outgoing connections on the TCP ports 135, 139 and 
445. As these ports normally are blocked by CWSandbox by default, the connection 
establishment attempts will be included in the <connections_outgoing_blocked>. 
The analysis report would include some outputs like these:
<connections_outgoing_blocked>  
<connection transportprotocol=”TCP” remoteaddr=”192.168.1.0”  
remoteport=”445” connectionestablished=”0” socket=”2700”/>  
<connection transportprotocol=”TCP” remoteaddr=”193.126.165.204” 
remoteport=”445” connectionestablished=”0” socket=”2700”/>  
<connection transportprotocol=”TCP” remoteaddr=”136.59.147.32” 
remoteport=”445” connectionestablished=”0” socket=”2700”/>  
<connection transportprotocol=”TCP” remoteaddr=”183.208.49.198” 
remoteport=”445” connectionestablished=”0” socket=”2700”/>  
<connection transportprotocol=”TCP” remoteaddr=”191.255.181.117” 
remoteport=”445” connectionestablished=”0” socket=”2700”/>  
</connections_outgoing_blocked>

To get more information about these attempts, you should not forbid connections 
to those ports. Furthermore you should configure the CWSandbox such that all 
communication data is logged. Even if this logging is not enabled, the .cab-file will 
contain the content of all TCP packets that are sent or received. By examining this 
data, you can learn about what the malware has intended by these connections.

Oftentimes you will also be able to infer the host determination strategy from the 
reports, especially if you find complete ranges of target IPs that are trying to be 
connected or pinged, like in this case:
<icmp_section>  
<ping host=”192.168.1.1”/>  
<ping host=”192.168.1.2”/>  
<ping host=”192.168.1.3”/>  
<ping host=”192.168.1.4”/>  
<ping host=”192.168.1.5”/>  
<ping host=”192.168.1.6”/>  
<ping host=”192.168.1.7”/>  
…  
</icmp_section>



	 Malware Analysis • Chapter 6	 171

How Does the  
Bot Protect the Local Host and Itself?
A lot of bots try to protect a new infected host against further exploitation by others. 
Of course, this is not being done for charitable reasons, rather for the selfish reason of 
trying to ensue that that no one else can take control of the host. This protection is 
accomplished by fixing known security leaks or by completely disabling Windows 
Services which can be exploited. Mostly this is done by removing existing Windows 
shares. In the following you can see how first all existing shares are enumerated 
(enum_share) and then deleted (delete_share):
<network_section>  
<enum_share/>  
<delete_share networkressource=”IPC$”/>  
<delete_share networkressource=”ADMIN$”/>  
<delete_share networkressource=”C$”/>  
</network_section>

To hide and protect its own existence, most malware performs the following 
actions on a new infected system: it searches for known antivirus and security 
products and stops them or modifies their configuration. When a malware tries to 
detect such running security applications, this normally is done by searching for the 
commonly known names of their corresponding services, processes, or windows. 
This either can be done by enumerating all of the existing objects and then  
comparing each found one to the entries of an internal list, or by using functions 
for opening a handle to a named object by providing the known name as a parameter. 
In the first case, you will find the actions <enum_services/>, <enum_processes/> or 
<enum_window/> in your report. In the second case long lists of actions with the 
known object names as parameter will appear in the analysis. The following example 
shows how a malware looks for services of antivirus software:
<service_section>  
<open_service name=”AntiVir Service”/>  
<open_service name=”AVUPDService”/>  
<open_service name=”BlackICE”/>  
…  
<open_service name=”McAfee Firewall”/>  
<open_service name=”McAfeeFramework”/>  
<open_service name=”McShield”/>  
<open_service name=”NOD32krn”/>  
<open_service name=”NOD32Service”/>  
<open_service name=”Norton AntiVirus Server”/>  
…  



172	 Chapter 6 • Malware Analysis

<open_service name=”SharedAccess”/>  
<control_service name=”SharedAccess” control=”SERVICE_CONTROL_STOP”/>  
<change_service_config name=”SharedAccess” starttype=”SERVICE_DISABLED”/>  
</service_section>

You can see that the bot loops through a long list (the original output has over  
50 tests) of hard-wired service names. As most of those applications are not installed 
on our test-system nothing more is done than just querying for those services. The last 
actions show us what happens if such a security service could be found: the malware 
stops and disables the Windows SharedAccess service, which implements the Application 
Layer Gateway and is the low level service for controlling network connections. 
Normally this one is used for the Windows Firewall and for Internet Connection Sharing 
(ICS), but it also runs if neither of them is enabled. By shutting down this service, the 
Windows Firewall becomes inactive, but also other unforeseen problems may occur.

Some malware does not search for the services. Rather, this type of malware 
tries to kill the corresponding processes. In our example the Windows XP  
command taskkill is used, for which the parameter /im imagename specifies the 
filename of the process and /f forces its termination. Again, we only present a 
short extract of the real analysis report output:
<process_section>  
<create_process commandline=”taskkill /f /im Mcdetect.exe”/>  
<create_process commandline=”taskkill /f /im avgupsvc.exe”/>  
<create_process commandline=”taskkill /f /im avgamsvr.exe”/>  
<create_process commandline=”taskkill /f /im avgcc.exe”/>  
<create_process commandline=”taskkill /f /im ccapp.exe”/>  
…
<create_process commandline=”taskkill /f /im nod32krn.exe”/>  
<create_process commandline=”taskkill /f /im nod32kui.exe”/> 
</process_section>

As a further example we present a malware that searches for the main windows  
of known antivirus scanners. We do not know what would happen if a searched 
window would be found, but this is not very hard to guess:
<window_section>  
<find_window classname=”NAVAP Wnd Class”/>  
<find_window windowname=”Norton AntiVirus”/>  
<find_window windowname=”AVGCC.exe”/>  
<find_window windowname=”AVG Resident Shield”/>  
<find_window windowname=”avg”/>  



	 Malware Analysis • Chapter 6	 173

<find_window windowname=”AVGUPSVC.EXE”/>  
<find_window windowname=”AVG Free Edition - Control Center”/>  
…
</window_section>

Some malware tries to find running debuggers and other activity-monitoring 
tools, which can be used for malware code analysis, by trying to open their devices. 
In our example these are SICE and NTICE (NT version) for the Softice debugger and 
FILEMON and REGMON, the famous tools from www.sysinternals.com. Filemon monitors  
file system activity in real-time (for more information go to www.microsoft.com/
technet/sysinternals/FileAndDisk/Filemon.mspx). Regmon monitors registry accesses 
in real-time (for more information, go to www.microsoft.com/technet/sysinternals/
utilities/regmon.mspx). Again, we do not know what would happen if one of the 
queried devices would exist. Most probably the application would crash the system 
or simply not perform any of its malicious operations in order to not reveal anything.
<file_section>  
<open_file filetype=”File” srcfile=”\\.\SICE”  
creationdistribution=”OPEN_EXISTING” desiredaccess=”FILE_ANY_ACCESS”/>  
<open_file filetype=”File” srcfile=”\\.\NTICE”  
creationdistribution=”OPEN_EXISTING” desiredaccess=”FILE_ANY_ACCESS”/>  
<open_file filetype=”File” srcfile=”\\.\FILEMON”  
creationdistribution=”OPEN_EXISTING” desiredaccess=”FILE_ANY_ACCESS”/>  
<open_file filetype=”File” srcfile=”\\.\REGMON”  
creationdistribution=”OPEN_EXISTING” desiredaccess=”FILE_ANY_ACCESS”/>  
</file_section>

Sometimes malware does not try to stop found security services, but to modify 
their configuration, such that the malware is not detected or is enabled to circumvent 
the security mechanisms. For the Windows Firewall this could be done by using the 
netsh command or by modifying the corresponding registry key directly:
<process_section>  
<create_process commandline=”netsh firewall set allowedprogram  
C:\WINDOWS\sysbinar\bin3.exe enable” showwindow=”SW_HIDE”/>  
</process_section>

<registry_section>  
<set_value key=”HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\ 
Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List”  
subkey_or_value=”C:\WINDOWS\sysbinar\bin3.exe”  
data=”C:\WINDOWS\sysbinar\bin3.exe:*:Enabled:enable”/>  
</registry_section>



174	 Chapter 6 • Malware Analysis

Determing How/Which  
C&C Servers Are Contacted
Most bots use a central C&C server for communicating with their botherder,  
and normally they use the standard IRC protocol for that purpose. CWSandbox 
detects such communication and reacts in two ways on that: first, all the interesting 
connection information is extracted from the traffic, and second, all received  
commands are deleted such that they never arrive at the malware’s receiving function. 
Some bots use slight modifications of the IRC protocol and some modified IRC 
servers also do not answer with RFC conform messages or do not answer at all 
until the IRC client has authenticated completely. CWSandbox tries to recognize 
these custom protocols as well, but it is obvious that this is only possible within  
a certain range of modifications. Often the communications of these modified 
IRC servers can be read manually if the traffic logging option is used. If an IRC 
communication could be detected successfully, an output like the following will be 
contained in the analysis report:
<connection transportprotocol=”TCP” remoteaddr=”203.115.204.58”  
 remoteport=”7000” protocol=”IRC” connectionestablished=”1”  
 socket=”476”>  
  <irc_data username=”SIS-21920206516” nick=”SIS-21920206516”>  
   <channel name=”#n” password=”.n.”  
    topic_deleted=”:.asc asn1smbnt 200 5 0 -b -r”/>  
  </irc_data>  
</connection>

We see that a TCP connection was established to the host 203.115.204.58 on 
port 7000. Although port 7000 is not the most well known port associated with IRC 
(that would be port 6667), it is a common choice along with 6665 and 6666. After 
authenticating itself with the username SIS-21920206516 and nickname SIS-21920206516, 
the client joins the channel #n by using the password .n.. Some IRC servers are 
additionally secured with a server password and in that case also the value used for 

Note

CWSandbox includes rootkit functionality to hide its existence from the 
malware. For that purpose all of its objects like processes, windows, modules, 
or handles are hidden. You can deactivate this feature by the configuration 
parameter HIDE_ENVIRONMENT, but it is enabled per default.



	 Malware Analysis • Chapter 6	 175

that would be included in the report. Normally, after joining an IRC channel the 
channel topic is transmitted automatically to the client. In case of bots this topic is 
mostly used to send an initial command to the client, in this case this is .asc asn1s-
mbnt 200 5 0 -b –r (see Chapter 4 for further description of commonly used bot 
commands). The last section of this chapter contains detailed information about the 
results on IRC connections which we were able to retrieve by the analysis of over 
1,800 found bot samples.

How Does the Bot Get Binary Updates?
Often the first thing a malware does is to retrieve new files or instructions from its 
operator. This is done to get code updates or actualized configuration data, as the 
running malware may be an outdated version or may contain the addresses of already 
shut down machines. In the case of bots, this configuration data is most often received 
via their C&C channel, but there are also variants that try to get this from hardwired 
URLs. In any case, you will see an outgoing TCP connection and/or DNS requests as 
evidences for such an update request. If you are lucky, the reloading of code or data is 
done via HTTP or FTP. In that case the report would contain outputs like this:
<connections_outgoing>  
<connection transportprotocol=”TCP” remoteaddr=”194.187.45.55”  
remoteport=”80” protocol=”HTTP” connectionestablished=”1” socket=“2004”>  
<http_data>  
 <http_cmd method=”GET” url=”/RDFX4.exe” http_version=”HTTP/1.1”/>  
</http_data>  
</connection>  
<connection transportprotocol=”TCP” remoteaddr=”194.187.45.55”  
remoteport=”80” protocol=”HTTP” connectionestablished=”1” socket=”2004”>  
<http_data>  
 <http_cmd method=”GET” url=”/MTE3NDI6ODoxN.exe”> <http_version=”HTTP/1.1”/>  
</http_data>  
</connection>  
<connection transportprotocol=”TCP” remoteaddr=”194.187.45.55”  
emoteport=”80” protocol=”HTTP” connectionestablished=”1” socket=”2040”>  
<http_data>  
 <http_cmd method=”GET” url=”/DXC9.exe” http_version=”HTTP/1.1”/>  
</http_data>  
</connection>  
</connections_outgoing>

As you can see, there are several .exe-files downloaded from the same host 
194.187.45.55. In fact for this particular malware (NOD32 calls it Win32/
TrojanDownloader.Adload.NAN Trojaner) altogether 10 (!) different .exe-files are 
reloaded. After the malware has downloaded them to the local disk, they are executed:



176	 Chapter 6 • Malware Analysis

<process_section>  
<create_process commandline=”c:\RDFX4.exe /NCRC” targetpid=”1272”  
showwindow=”SW_MAXIMIZE” apifunction=”CreateProcessW” successful=”1”/> 
<create_process commandline=”c:\MTE3NDI6ODoxN.exe” targetpid=”620” 
showwindow=”SW_MAXIMIZE” apifunction=”CreateProcessW” successful=”1”/> 
<create_process commandline=”c:\DXC9.exe /S /NCRC” targetpid=”1308” 
showwindow=”SW_MAXIMIZE” apifunction=”CreateProcessW” successful=”1”/>  
</process_section>

Sometimes the malware does not use one of the standard web protocols to reload 
data. Then it is harder to determine the fact, that something executable or 
configuration data is retrieved. Again, the CWSandbox feature to log all communi-
cation data will help in this case. In any case you should use the option STORE_
CREATED_FILES. By doing that you will get a copy of each created file, no 
matter if this is an executable or data file and if it was downloaded, copied or 
created completely new. All these created files can be found in the corresponding 
created_files-subfolder inside the .cab-archive. Another helpful option is FAIL_ON_
ALL_DNS_REQUESTS. By enabling this one, each DNS request will fail and the 
malware will disclose all of its internally stored remote host contact addresses.

What Malicious Operations Are Performed?
The possible malicious operations a bot could perform on the infected host and to 
remote hosts are only limited by the imagination of its developer. It is obvious that 
the operations mentioned in the sections above are malicious as well. However, the 
operations above are only intended to infect and secure a system. They are not 
intended to do harm. Once the infection process with all its side actions is finished, 
the bot is free to pursue its real purpose: using the hosting system to perform illegal 
and criminal operations, directed by its operator. Some examples for these are:

Sending spam or notification mails■■

Performing DDoS attacks■■

Installing a backdoor■■

Stealing sensitive data■■

Harvesting e-mail addresses from the local host■■

In the following, we will present hints for those operations which can be found 
in the analysis reports. We start with the detection of mail delivery. In general an 
SMTP mail delivery looks like this in the report:



	 Malware Analysis • Chapter 6	 177

<connection transportprotocol=”TCP” remoteaddr=”68.142.229.41”  
remoteport=”25” protocol=”SMTP” connectionestablished=”1” socket=”1560”>  
<smtp_data username=”kalonline@sbcglobal.net” password=”vi3tridaz”>  
 <send_mail rcpts=”<kalonline@sbcglobal.net>” behavior=”Simulate_And_Log”>  
 From: kalonline@sbcglobal.net  
 To: kalonline@sbcglobal.net  
 Subject: Perfect Keylogger was installed successfully: 11.11.2006, 06:47  
 Date: Sat, 11 Nov 2006 06:47:04 +0100  
 Content-Type: text/plain; 

 Perfect Keylogger was installed on the computer FOO2,  
 with IP address 192.168.1.1, user victim at 11.11.2006, 06:47.  
</send_mail>  
</smtp_data>  
</connection>

From this output we can learn the SMTP server (68.142.229.41), the used 
authentication data (username: kalonline@sbcglobal.net, password: vi3tridaz), and  
the recipient’s mail address (<kalonline@sbcglobal.net>). Furthermore, we can  
read the mail body in plaintext. Without doubt this is a notification mail that is 
used to inform the malware operator about a new infected host. As we have seen 
CWSandbox recognizes SMTP traffic and extracts all the relevant data from it. 
Furthermore, it can be configured to trick the malware by exchanging informational 
data with the SMTP Server, but only pretending to send the e-mail. The attribute 
behavior=”Simulate_And_Log” enables this feature during the malware’s execution. 
There is another feature that constricts the number of allowed SMTP send  
operations in order to limit the report size for mass mailing malware.

Huge botnets often are used to perform DDoS attacks. Commonly known attacks 
are TCP Syn floods, UDP floods and ICMP floods. If you find a lot of notifications for 
such connections in your report, which all use the same target IP address, this is an 
assured evidence for such an attack (or sometimes only for the foolishness of the 
malware’s developer). The relevant entries could look like the following ones and have 
to occur in a high amount:
<connection transportprotocol=”TCP” remoteaddr=”192.168.1.4”  
remoteport=”80” protocol=”Unknown” connectionestablished=”1”  
socket=”122”/>  
<connection transportprotocol=”TCP” remoteaddr=”192.168.1.4”  
remoteport=”80” protocol=”Unknown” connectionestablished=”1” socket=”124”/> 
<connection transportprotocol=”TCP” remoteaddr=”192.168.1.4”  
remoteport=”80” protocol=”Unknown” connectionestablished=”1” socket=”123”/>

<connection transportprotocol=”UDP” remoteaddr=”192.168.1.4”  
remoteport=”123” connectionestablished=”0” socket=”3496”/>  



178	 Chapter 6 • Malware Analysis

<connection transportprotocol=”UDP” remoteaddr=”192.168.1.4”  
remoteport=”123” connectionestablished=”0” socket=”3488”/>  
<connection transportprotocol=”UDP” remoteaddr=”192.168.1.4”  
remoteport=”123” connectionestablished=”0” socket=”3444”/>

An analysis report normally contains only one output line for each type of 
received notification, no matter how often this one was received. Usually a DOS attack 
is performed by using a lot of parallel threads using a lot of different sockets, so one 
notification will be reported for each different socket. If due to bad implementation 
always the same socket would used, only one notification would be reported for that. 
Therefore, it may be necessary to use the parameter SHOW_QUANTITIES_IN_REPORT.  
If this attribute is enabled, the quantities for each contained notification are included 
into the analysis report additionally. In that case a (badly implemented) DOS attack 
would look like one of these:
<connection transportprotocol=”TCP” remoteaddr=”192.168.1.4”  
remoteport=”80” protocol=”Unknown” connectionestablished=”1”  
socket=”1228” quantity=“324”/>

<connection transportprotocol=”UDP” remoteaddr=”192.168.1.4”  
remoteport=”123” connectionestablished=”0” socket=”3444”  
quantity=“432”/>

<ping host=”192.168.1.4” quantity=“433”/>

A lot of malware programs install backdoors on the infected host, such that  
its operator (or whoever) is able to connect to this host remotely. The power of such 
backdoors ranges from simply enabling remote access to the local file system, giving  
a simple command shell to the attacker, to offering a complete graphical interface. 
Remote access to the file system can be set up easily by creating a new share:
<network_section>  
 <add_share networkressource=”C$” filename=”C:\”/>  
</network_section>

Malware could also try to escalate the security privileges of existing users, such 
that a regular login can be used for much more powerful operations than it was 
intended to:
<process_section>  
<create_process filename=”C:\WINDOWS\system32\net.exe”  
 commandline=”net localgroup administrators ftpuser /add”/>  
<create_process filename=”C:\WINDOWS\system32\net.exe”  
 commandline=”net localgroup administratoren ftpuser /add”/>  
<create_process filename=”C:\WINDOWS\system32\net.exe”  
 commandline=”net localgroup administradores ftpuser /add”/>  
<create_process filename=”C:\WINDOWS\system32\net.exe”  



	 Malware Analysis • Chapter 6	 179

 commandline=”net localgroup administrateures ftpuser /add”/>  
</process_section>

Real backdoors bind themselves to a network port and implement complete 
servers. Evidences for such activity can be found in the section of 
<connection_listening>:
<connections_listening>  
 <connection transportprotocol=”TCP” localport=”6918”  
connectionestablished=”0” socket=”652”/>  
</connections_listening>

Some malware programs use the integrated Terminalserver of Windows to allow 
remote access. They modify the relevant registry settings to allow remote connections 
in general. In that case you will find some lines in report that look like these:
<registry_section>  
<set_value key=”HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server”  
 subkey_or_value=”TSEnabled” data=”[REG_DWORD, value: 00000001]”/>  
<set_value key=”HKLM\SYSTEM\CurrentControlSet\Services\TermService”  
 subkey_or_value=”Start” data=”[REG_DWORD, value: 00000002]”/>  
<set_value key=”HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server”  
 subkey_or_value=”fDenyTSConnections” data=”[REG_DWORD, value: 00000000]”/>  
</registry_section>

Changing the network routes or hijacking the DNS resolving process is also part 
of the performed evil operations. By that, the malware either completely blocks 
accesses to hosts which provide updates for security software or the operating system 
or it routes all of those requests to infected hosts. This can be be performed by 
modifying the hosts-file that resides in the system32\drivers\etc\log-directory in the 
Windows folder. An attempt to do so can be detected by locating an <open_file> 
action that refers to that file and requests WRITE access. Some malware completely 
reroutes all DNS requests to a special host, which by that is enabled to return different 
IP addresses dynamically. Such a modification normally takes place in two steps: first 
the network configuration for the network adapter is modified by changing the 
relevant registry settings and then the network interface is advised to refresh its 
configuration. Of course, the second step is only optional. If it is not performed, the 
modified network configuration is activated on next system startup. The tracks of 
these actions will look like this:
<registry_section>  
<set_value key=”HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\  
 Interfaces\{9E4D711D-1234-5678-9ABC-9E6F3F301B84}”  
 subkey_or_value=”NameServer” data=”85.255.114.68,85.255.112.150”/>  
<set_value key=”HKLM\System\CurrentControlSet\Services\Tcpip\Parameters”  



180	 Chapter 6 • Malware Analysis

 subkey_or_value=”NameServer” data=”85.255.114.68 85.255.112.150”/>  
</registry_section> 

<process_section>  
 <create_process filename=”ipconfig.exe” commandline=” /flushdns”/>  
 <create_process filename=”ipconfig.exe” commandline=” /registerdns”/>  
 <create_process filename=”ipconfig.exe” commandline=” /dnsflush”/>  
 <create_process filename=”ipconfig.exe” commandline=” /renew”/>  
 <create_process filename=”ipconfig.exe” commandline=” /renew_all”/>  
</process_section>

Finally, a lot of malware tries to steal sensitive data from the local host. This can 
be done by installing a keylogger or by directly accessing the places, where such data 
is stored. The explicit process of keylogging is not detected by current version of 
CWSandbox and will be added as a new feature in coming releases. Nevertheless, as 
some file needs to be installed as an autostart application or as a service or driver for 
that purpose, this will become obvious by examining the report. If the malware tries 
to read the data directly from their storage location, this could happen in several ways, 
depending on that location. Examples for retrieving dialup network configuration 
data and contents of address books for several mail clients are these (please notice that 
some malware uses <open_file> and other <find_file> or even <get_file_attributes>  
to check for the existence of such files):
<file_section>  
<find_file filetype=”File” srcfile=”C:\WINDOWS\system32\Ras\*.pbk”/>  
<find_file filetype=”File” srcfile=”C:\Dokumente und Einstellungen\victim\  
 Anwendungsdaten\Microsoft\Network\Connections\Pbk\*.pbk”/>  
<find_file filetype=”File” srcfile=”C:\Documents and Settings\Application Data\ 
 Qualcomm\Eudora\NNdbase.txt” creationdistribution=”OPEN_EXISTING”/>  
<find_file filetype=”File” srcfile=”C:\Documents and Settings\Application Data\ 
 The Bat!\TheBat.ABD” creationdistribution=”OPEN_EXISTING”/>  
</file_section>

In Windows 2000 the Protected Storage Service was introduced, which is a service  
for storing sensitive data like passwords or private keys in a protected and encrypted 
way. It is used to save the passwords that have been entered in the Internet Explorer or 
Microsoft Outlook and Outlook Express, but also can be used by any other user application 
to protect its sensitive data. By that it is an open treasure chest for each malicious 
application. CWSandbox detects all accesses to this Protected Storage and reports 
them in a <pstorage_section>. An example for such a report follows:
<pstorage_section>  
<enum_subtypes key=”PST_KEY_CURRENT_USER” typename=”InfoDelivery”/>  
<enum_items key=”PST_KEY_CURRENT_USER” typename=”InfoDelivery”  
 subtypename=”Subscriptions”/>  



	 Malware Analysis • Chapter 6	 181

<enum_items key=”PST_KEY_CURRENT_USER” typename=”Identification”  
 subtypename=”INETCOMM Server Passwords”/>  
<read_item key=”PST_KEY_CURRENT_USER” typename=”Identification”  
 subtypename=”INETCOMM Server Passwords”  
 itemname=”mail.microsoft.com5E3655B0”/>  
<enum_subtypes key=”PST_KEY_CURRENT_USER” typename=”IdentityMgr”/>  
<enum_items key=”PST_KEY_CURRENT_USER” typename=”IdentityMgr”  
 subtypename=”Identities”/>  
<read_item key=”PST_KEY_CURRENT_USER” typename=”IdentityMgr”  
 subtypename=”Identities” itemname=”IdentitiesPass”/>  
<enum_subtypes key=”PST_KEY_CURRENT_USER” typename=”Internet Explorer”/>  
<enum_items key=”PST_KEY_CURRENT_USER” typename=”Internet Explorer”  
 subtypename=”Internet Explorer”/>  
<read_item key=”PST_KEY_CURRENT_USER” typename=”Internet Explorer”  
 subtypename=”Internet Explorer”  
 itemname=”http://www.gmx.net/de/:StringData”/>  
</pstorage_section>

Bot-Related  
Findings of Our Live Sandbox
We have running a live sandbox system at the University of Mannheim in Germany, 
which consists of four CWSandbox Hosts and uses a MySQL database as repository. 
New samples can be submitted via the web-interface at www.cwsandbox.org, but a 
lot of persons use scripts to transmit files automatically. In the last few months we 
have successfully analyzed altogether 11,965 unique malware samples. Inside this set 
CWSandbox has detected 1283 programs that have successfully established an IRC 
connection to a remote host. From those 108 did not follow an RFC conform 
protocol, but a slightly modified variant instead. Furthermore, of the others 40 did 
send a TCP packet with data like NICK (null)abcdef without having a connection 
established. Those probably are bad designed applications or some other unforeseen 
error occurred during their execution. (We have checked some examples and could 
see that these applications do not even create a socket after WSAStartup and use –1 
as a socket handle when calling the send operation.) Anyway, we can assume that 
these also are applications that implement some form of IRC communication. 
Finally, 492 of the rest tried to connect to a TCP server on port 6665, 6666 or 
6667, which lets us assume that they are also going to initiate an IRC session.  
So, from the 11965 samples 1815 tried to or succeeded in establishing an IRC 
connection and, therefore, can be seen as bots or, at least, as malware that contains 
bot-like behavior.



182	 Chapter 6 • Malware Analysis

Tools & Traps…

Using the Live CWSandbox
A live version of CWSandbox can be accessed at the project homepage www.
cwsandbox.org and at the Sunbelt ResearchCenter at http://research.sunbelt-
software.com/Submit.aspx. After submitting a suspicious file, your email 
address and an optional comment you simply have to wait until the analysis 
report is sent to you. Depending on the current file queue length and on the 
fact if the submitted malware file has already been analyzed before this can 
happen immediately or take some minutes.

Those programs, that successfully have used an IRC connection have connected 
to IRC servers at 317 different IP addresses and have used 120 different TCP ports. 
As the IRC servers only could be identified by their IP addresses, it is possible (and 
probable) that due to using dynamic DNS services not all of these hosts are unique. 
We could presume that two different bot applications which connect to the same 
channel on the same host and use the same channel password for that are only two 
variants of one and the same malware and, therefore, belong to the same botnet.  
As we have found 590 unique host-channel-password combinations, this would mean 
that we have found 590 different botnets. We can presume that two connections to 
the same channel using the same channel password but connecting to different IRC 
servers also belong to the same botnet. This is probable but may not hold in every 
case, the amount of unique botnets found decreases to the number of 497. Figure 6.6  
shows a diagram of the dispersion for the 50 top most seen channels-password 
combinations. The x-axis holds the different channels and the y-axis shows the 
number of found malware samples that connect to each channel. The top position 
was the channel #dd in combination with the password dpass, which we have seen 
for 95 times, followed by #hotgirls (no password) with 44 and #i# (@d00k@) with 
38 instances.



	 Malware Analysis • Chapter 6	 183

As mentioned, we have found 120 different TCP ports. Most of them only 
appeared once or a few times, which leads to the suspicion that these were used in 
malware that is only rarely spread or is a test- or betaversion. Of course, the most 
often used port is 6667 (375 times), as this is the IRC default port. At the second 
position comes port 8585 (89 times), followed by 7000 (86 times). But also the ports 
1863, 6556, 19555 and 11640 have been seen more than 30 times each.

Please keep in mind, that this analysis may not be representative of what you  
will find. It should only give you an impression of a real live example of a running 
CWSandbox system.

Antivirtualization Techniques
Some of the topics we’ve discussed have been dependent on users within the 
virtual environment not being aware that they are in a virtual environment. Some 
of our uses of virtualization such as malware analysis and honey pot deployment 
could be significantly compromised if the malicious object of interest detects that 
the compromised host is not genuine.

Figure 6.6 Dispersion of Found Channel-Password Combinations



184	 Chapter 6 • Malware Analysis

Malware may have alternate behavior if it detects that it’s running on a virtual 
platform. An attacker lured to a honey pot server may disconnect entirely if they 
detect that they are being observed (although the argument can be made that this is 
actually a desired behavior). Security professionals will in some cases want to disguise 
the fact that the virtual environments are being used.

What kind of security book would this be if it didn’t discuss the other side of the 
fence? I feel some need to cover the techniques being used by hackers in an attempt 
to detect the fact that they are not on a legitimate platform. Some of them are well 
known, others are a bit more obscure.

Detecting You Are in a Virtual Environment
There are numerous ways for malware to attempt to detect that it’s being executed on  
a virtual machine. There are active debates on whether being in a virtual machine is 
fundamentally detectable or not. Each method that is implemented by one side seems 
to be counterable by the other side in a tiny arms race. Following are some of the ways 
that malware is able to detect that it is being executed in a virtual machine. The researcher 
should pay special attention to the malware attempting to examine various system 
parameters. There are two possible ways this can be addressed. First the underlying 
system parameters can be changed. Second the malware can be “patched” so that it 
doesn’t ask, asks in the wrong way, or gets an erroneous answer so that the virtual 
machine is not detected. Both methods have merit, and each has its own disadvantages.

Virtualization Utilities
Both VMware and Virtual PC include a number of utilities to be run in the guest 
operating system. They often consist of special drivers, and tools used to join clipboards. 
They may also be used to assist in transferring files between the guest and host systems. 
Unfortunately for the malware researchers the presence of these processes is a dead 
giveaway that the process is running in a virtualized environment. Luckily these helper 
tools are not required, and should likely not be installed in the malware testing 
environment.

VMware I/O Port
In the case of VMware there is an interesting device that is used to provide some 
functionality to VMware guest systems. This function comes in the form of an additional 
I/O port. This port acts in much the same way as other hardware I/O ports on the 



	 Malware Analysis • Chapter 6	 185

system. Values can be written to the port, and values can be read. Depending on  
the parameters passed in control registers during these reads and writes different 
information such as the version of VMware can be obtained. I would suggest that 
anyone looking for further information on this port visit the following URLs:

http://open-vm-tools.sourceforge.net/

http://chitchat.at.infoseek.co.jp/VMware/

I have not yet found a method to deactivate or disguise this port so that it can’t 
be detected. It may be possible to edit the VMware binary, and cause the port to use 
a different number, but I have no information on how difficult that might be, and 
what other effects might be caused by this modification.

Emulated Hardware Detection
The most common method for a process to detect that it’s in a virtual environment  
is for it to look at the hardware on which the machine is running. Virtual machine 
monitors (such as VMware and Virtual PC) emulate a specific set of hardware (with 
very little variation). When the process detects that it’s on the VMware set of hardware 
then it can make the assumption that it’s running in VMware. The same methods  
can be used in Virtual PC.

Hardware Identifiers
We’ll now discuss three types of hardware identifiers: MAC addresses, hard drives,  
and PCI identifiers.

MAC Addresses
MAC addresses are used on Ethernet interfaces in much the same way that IP 
addresses are used on the Internet. If an IP address is considered to be a phone 
number, then the MAC address might be the extension number. It’s a number that is 
used only on the local subnet. MAC addresses need to be unique on the subnet.  
In order to prevent manufacturers from choosing the same MAC address, the idea  
of manufacturer codes was introduced. The first six hex digits in a MAC address are 
known as the manufacturer code. Both VMware and Virtual PC have been assigned 
their own MAC manufacturer codes. VMware’s manufacturer code is: 00:0C:29. 
Virtual PC interfaces begin with 00:03:FF. Note that the MAC address of the  
interface can be changed in the .vmx file of the virtual machine on VMware.



186	 Chapter 6 • Malware Analysis

Hard Drives
Hard drives also identify themselves in unique ways that are quite easily determined 
to be parts of a virtual environment. Both the volume name, as well as the driver 
associated with the disks, are obviously parts of a virtual environment. This label can 
be changed using the built-in operating system utilities such as e2label, and Disk 
Manager. Figure 6.7 shows how the virtualized hardware can reveal itself on the 
guest in the form of manufacturer codes and labels.

Figure 6.7 Virtualized Hardware in a Windows Guest Environment

PCI Identifiers
In addition the very hardware itself will report that it is running in a virtual machine. PCI 
devices again have a manufacturer code, as well as a text label so that operating systems 
will know which drivers to install. These identifiers (both the numeric and textual) can 



	 Malware Analysis • Chapter 6	 187

be used to determine if the hardware is virtual or not. Figure 6.8 again shows how the 
hardware can be detected, this time using Linux as the guest operating system.

Figure 6.8 Virtualized Hardware in a Linux Guest Environment

Detecting You Are in a  
Hypervisor Environment
Another interesting form of virtualization for malware analysis is the hypervisor 
environment. These environments are created using features of recent processors from 
Intel and AMD. These processors support going into a privileged mode known as 
hyper-visor mode. The hypervisor process has control of the virtualized machine.  
It gains control on certain operations performed by the guest machine such as  
memory paging operations. When the guest operating system makes a page request 
to access a segment of memory that has not been accessed recently, the hypervisor 
process can intercede. While the guest is paused, the hypervisor can inspect and 
modify the state of the guest machine. Methods have been created that allow the 
researcher to catch system library calls, and to manipulate the results of those calls.

The hardware of the guest is the actual hardware of the machine so the methods 
discussed earlier regarding detecting virtualization in general don’t apply. It is very 
difficult (and some argue impossible) to detect a virtualized environment from the 
guest machine. In an interesting twist there has also been research on malware that 
puts the victim into a virtual environment. The malware then becomes the entity 
attempting to prevent the host from discovering that it’s been “virtualized.” It’s really 
a race to be the first to “initialize” the virtualization. If a second attempt at entering 
hypervisor mode is attempted, the hypervisor process can “convince” the victim that 
it has attained hypervisor mode when in actuality the victim is not in control.



188	 Chapter 6 • Malware Analysis

Summary
Malware research has benefited significantly from being able to virtualize the victim 
machine. The ability to test malware against a wide variety of software architectures 
without requiring the resources of an extensive test lab cannot be understated. 
Infected machines can be studied, and observed with much greater accuracy without 
disturbing the environment of the malware.

Although not perfect, virtualization has raised the bar on malware developers. 
They can still detect many forms of virtualization, but it is getting harder for them. 
This is a good thing for the virus researchers because the malware developers are 
constantly devising better and better methods for obfuscating their creations.

Solutions Fast Track
How Should Network Access Be Limited?

Add content that might be found on a real system.˛˛

Make it look like the box is really used.˛˛

Limited network access.˛˛

Looking for Effects of Malware
What is its purpose?˛˛

How does it propagate?˛˛

How does it update?˛˛

Is it part of a Bot-net?˛˛

Does it transmit any data?˛˛

How does it attempt to hide itself?˛˛

Can it be effectively removed?˛˛

Antivirtualization Techniques
Virtualization Tools˛˛

Guest / Host communication Facilities˛˛

Emulated Hardware Identifiers˛˛



	 Malware Analysis • Chapter 6	 189

Frequently Asked Questions
Q:	Where can I get Malware to practice with?

A:	One of the best sites on the Internet for this topic is http://www.offensive 
computing.net/.

Q:	I’ve been infected. Can I use these methods to disinfect my machine?

A:	 I wouldn’t recommend it. Though performing research can be highly educational, 
the risks of performing a “partial” removal are significant. Removing only part of 
the malware can cause the malware to trigger even worse behavior. Unless you 
are positive you know every step that the malware performs, and that no one has 
“visited” your machine while you were infected, the safest course of action is 
always to rebuild the machine. You should also be very careful when transferring 
files from an infected machine that you do not carry the malware to the new 
machine as well.



This page intentionally left blank



191

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 7

Application Testing

Solutions in this chapter:

Getting Up to Speed Quickly■■

Debugging■■



192	 Chapter 7 • Application Testing

Introduction
Application testing involves deploying an application in a configured environment 
that simulates a real-world scenario. The application is then tested in such a manner 
as to reveal divergence between the intended use of the application and its actual 
behavior. In simpler terms, the testers install the application, and then they try to 
break it in as many ways as possible. While they are exercising the application they 
monitor it to detect subtle breakage. Using the data collected from monitoring,  
an experienced application tester can often determine if an application failure has 
security implications, or if it’s just a lowly bug.

The time of an application tester is often consumed with the creation of an 
environment suitable for testing. Merely installing the base operating system on a 
handful of physical servers can be an all-day task, and this is assuming that there are 
enough physical servers on hand to deploy a functioning environment. Although this 
task has been simplified by unattended installation utilities, it can still require a sig-
nificant investment of time and resources.

A testing environment can be easily deployed using virtualization. Fully configured 
servers are mere keystrokes away from being ready to go. They can even be stored in  
a “suspended” state, so the tester doesn’t have to wait for the machine to complete a 
boot cycle.

This chapter will discuss how virtualization can significantly reduce the resources 
required to create a working test environment. It will also discuss some of the 
pitfalls that testers might encounter, and give recommendations for creating a test 
environment with testing tools already in place.

Getting Up to Speed Quickly
I was once one of the people in charge of application testing for a large organization. 
My role was to examine an application and determine if the application was “secure” 
enough to host the data for multiple customers. There were two main goals. The first 
was to ensure that no customer could compromise the data of the other customers. 
The second was to ensure that no customer could compromise the resources of my 
employer. Such an undertaking usually required significant planning in order to get 
resources properly allocated and configured. Setting up even a modest environment 
of a Web server, database server, and two client machines could take a week or more. 
I often felt as though I lived in the lab, installing operating systems that were to be 



	 Application Testing • Chapter 7	 193

used for a single two-week test and then discarded. We would go through the exercise 
again in the event that an application had to be retested.

Happily, those days came to an end when we discovered VMware’s GSX platform 
(now released as VMware Server). We could create an image of an installed operating 
system. We could have it fully updated, hardened, and patched. We could install our 
debugging tools and any sort of monitoring tools we felt we’d be using. We could 
even have the image booted up to a login prompt so we wouldn’t have to wait for it 
to boot.

Default Platform
At this point we could take one of two approaches. We could take a snapshot of the 
image before we customized it for any applications and then work from the snapshot, 
with a “revert” to the previous snapshot after the testing had completed, or we could 
copy the image and register it with the server. We chose the latter for the simple reason 
that we could save entire virtual machines by saving copy of a directory, and we 
wouldn’t have to worry abut managing a complicated snapshot tree in the event that 
we needed to go back to a previous version. The environment could be compressed, 
and then saved offline (in full working order), to be restored if the application were 
ever tested again.

Copying a Machine in VMware Server
The first step in copying a working machine is to copy the entire directory. At this 
point it would be a good idea to edit the .vmx file, and change the line:

displayName = “Windows Server 2003 Template”

Note

You should be aware that making a copy of a machine may have licensing 
implications for the operating system, as well as any software you have 
chosen to install on the image. While this issue may be resolved by running 
only one virtual machine at a time (for any license you possess), you should 
review any licensing agreements to ensure that you are compliant. Some 
agreements may allow for testing or use in lab environments, and others may 
prohibit installation in a virtual machine all together.



194	 Chapter 7 • Application Testing

It should be changed to another name that describes the function of this machine, 
or perhaps how the new machine will be different from the original machine. For 
example:

displayName = “IIS .Net Test”
Registering a machine with VMware Server is done using the vmware-cmd 

command. Figure 7.1 shows the command which should be run where the config 
file path is the full path to the .vmx file of the machine you are registering.

Figure 7.1 Registering a Machine with VMware Server

Notice the number “1” at the end of the response line. This is an indication that 
the machine was successfully registered. In case it can’t be registered (such as when 
the machine has already been registered), the command would respond with an error 
message indicating the nature of the error.

Upon starting the machine you may be presented with an error message indicating 
that the machine may have been copied. Figure 7.2 shows the message dialog asking 
how you would like to respond to this condition.



	 Application Testing • Chapter 7	 195

We would also recommend creating a new unique identifier to avoid any conflicts 
with other machines. At this point you should be able to power up the machine and 
begin testing.

Registering a Machine in Microsoft Virtual Server
Registering a copy of a virtual machine in Microsoft Virtual Server is almost as  
easy. The following VB script will register an existing machine which is located at 
C:\Virtual Machines.

On Error Resume Next
Set objVS = CreateObject(“VirtualServer.Application”)
errReturn = objVS.RegisterVirtualMachine(“Windows 2000 Server”, _
“C:\Virtual Machines”)

Figure 7.2 Dialog Box When Registering a Copied Virtual Machine



196	 Chapter 7 • Application Testing

Known Good Starting Point
One of the best features of using virtualization to quickly enable testing environments is 
that you are using clean servers that are known to be stable, and have reliable hardware. 
The ideal testing lab will have virtual machine “templates” at the ready. If a Windows 
2003 server is needed, it can be copied, registered to the virtualization platform, and 
started in less than five minutes. Compare this to the rough hour that would be needed 
to install from scratch. In addition the templates can be kept updated so that nothing 
needs to be downloaded in order to get a test started.

Beyond the base operating system, testing tools can already be in place. Supporting 
software such as network sniffers, debuggers, and even application disassembly tools 
can be in place and ready for use. There is little need for testing personnel to install 
any software that is not directly related to the test application.

Using standard hardware is also a convenient bonus. Working hardware drivers 
should be installed on the template. This is a great change from the days when a spare 
server was pieced together for a test, and drivers had to be sought out (often legacy 
drivers which may or may not have been readily available). On top of that you never 
knew if the drivers were entirely compatible with the operating system.

Tools & Traps…

Update Your Machine
Depending on the age of your image, I’d recommend checking for software 
updates for all of the software on your virtual machine. I was once the victim  
of a very old worm because I brought an older image online in a hostile 
environment. You might also consider setting the machine’s network inter-
faces to use NAT so that external traffic can’t reach it. This will give you time 
to retrieve updates without having to worry about something attacking you 
before they’re installed. Configuring the network interface for NAT is discussed 
in Chapter 4.

It is also a good idea to keep your virtual images updated on a regular 
basis. These images should be managed with similar levels of care as any other 
machine on your network. Regular patching, hardening, and maintenance 
should not be neglected just because the server isn’t online very often.



	 Application Testing • Chapter 7	 197

Downloading Preconfigured Appliances
Another application testing advance that has come about as a result of virtualization  
is the ability to download fully working appliances. We expect this trend to continue  
and become a more popular way to distribute customer demonstration environments. 
I can imagine that a number of product demonstrations did not result in a sale because 
of the installation and configuration hurdles related to getting to know a new product. 
Virtualization allows vendors to ship fully installed, fully configured appliances to 
prospective customers. Sample data can be preloaded into the environment, and this 
allows customers to be able to see the value of the application in its most useful state 
(instead of seeing a “bare-bones” environment with a handful of data). This is a much 
easier sell for salesmen who may or may not be able to actually configure the product 
in question.

As a side benefit this can also be a boon for application testing personnel. A major 
hurdle when performing application tests is trying to get a valid environment to test 
in. In a number of previous instances, I have performed tests on environments which 
were not entirely functional. In some cases this was a result of someone not knowing 
how to configure an application correctly, or I might not have been familiar with an 
option and made the wrong choice during the setup. Our standard process was to 
request that the application be configured in the same manner in which it would be 
deployed. Demonstration appliances are normally configured by internal engineers 
who understand how the application should be set up. It should be noted that testing 
the “difficulty” of the installation process to reveal areas that could become common 
pitfalls and configuration errors might also be valuable.

I was also sometimes limited as a result of not having enough data to fully utilize 
an application. Testing scenarios such as “Can customer A access the data of customer B?” 
cannot be conducted without having both customers set up within an application. 
How can I know that customer A can’t transfer money on behalf of customer B if 
customer B doesn’t exist within the application? Demonstration appliances are often 
configured with a working dataset that is able to exercise the majority of the functions 
of the application.

VMware’s Appliance Program
VMware is sponsoring a program where user-submitted virtual machines are available 
to the public. These applications are developed mostly on various open source 
operating systems (likely due to distribution restrictions associated with their proprietary 
counterparts). There are significant advantages to delivering an appliance instead of  



198	 Chapter 7 • Application Testing

a software package, the first being that the application can be delivered with the 
common options already set. The hardware and underlying configuration of the 
operating system would be known and stable; this can greatly simplify how an 
application is delivered. It will be interesting to see if the appliance model of 
application delivery makes an impact on traditional application delivery models.

At the time of this writing there were over 900 different appliances available on 
the VMware site. More information can be found at the following URL:

www.vmware.com/appliances/
In some cases proprietary applications are available for evaluation, and in other 

cases the appliances are designed to be used on a permanent basis. This is also a great 
place to go to obtain applications for educational purposes. I have personally used  
a number of database appliances while developing tools for SQL injection.

Microsoft’s Test Drive Program
Microsoft has recently introduced a program called the VHD Test Drive Program, 
which allows you to download fully configured versions of its software. It is meant to 
be a way for companies to evaluate a product and determine whether it would be 
appropriate for their environments. The virtual machines expire after a period of time 
and cease functioning. These demonstration machines are absolutely ideal for software 
testing, because the vendor has provided you with an environment configured the 
way it is supposed to be configured. In a number of cases the test environment even 
includes data within the application. The software testing team can concentrate on 
the productive portion of their test without having to install and configure (and 
gather subcomponents). A list of test drive environments available at the time this 
book was written is shown in Figure 7.3. Further information can be found at:

http://technet.microsoft.com/en-us/bb738372.aspx



	 Application Testing • Chapter 7	 199

Debugging
Recent versions of Microsoft Windows have introduced a new method of remote 
debugging. Traditionally, this task involved using two machines connected via a serial 
cable. One machine would be the debugger, and the other the debuggee. Fortunately, 
you can use virtual machines to accomplish this task using only one machine.  
In addition, you can debug using a named pipe instead of a serial connection, which 
enables significantly faster communications between the machines.

Kernel Level Debugging
The first step involves reconfiguring the debuggee so that it has the debugging 
features of the kernel are enabled, and that the port is configured correctly. To enable 
the debugging features in the kernel, one must first change the boot.ini file, which  
is normally found in the root directory of the C drive. You need to copy the line 
corresponding to the operating system you are debugging (by default there is only 
one line in the operating systems section). The section in quotes is the label that  

Figure 7.3 Virtual Test Drive Environments Available from Microsoft



200	 Chapter 7 • Application Testing

the boot entry will be given. We recommend that you use something like “Microsoft 
Windows XP Professional – Debugging Enabled.” Following the label you will need 
to add two options: /debugport = com1 and /baudrate = 115200. Make sure that  
the options are all on the same line. Your boot.ini file should look similar to the one 
shown in Figure 7.4.

At this point you need to install the com port in your virtual machine, and 
configure it to point to a named pipe. The machine should be powered off at this 
point. Open the virtual machine settings menu by clicking on the VM menu,  
followed by the settings option as shown in Figure 7.5.

Figure 7.4 Boot.ini file Showing Kernel Debugging Options



	 Application Testing • Chapter 7	 201

Click Add to add new hardware. Clicking the Serial Port option should bring up 
the dialog shown in Figure 7.6.

Figure 7.5 VMware Hardware Configuration Settings



202	 Chapter 7 • Application Testing

Select the Output to named pipe radio option as shown in Figure 7.7.

Figure 7.7 Choosing the Option of Using a Named Pipe

Figure 7.6 Adding a Serial Port for Debugging Purposes



	 Application Testing • Chapter 7	 203

This will bring up the screen (shown in Figure 7.8) in which you can configure 
the named pipe. For a Windows host, the pipe should be named in the following 
fashion: \\.\pipe\name_of_your_choice. You should select This end is the server  
if you plan to start the guest and then connect to it (the most common scenario).  
The option The other end is an application should then be selected. When this  
is done, the options should look something like this:

Figure 7.8 Configuring Options for the Named Pipe

Click Finish. There is one final area to configure. On the settings screen shown 
in Figure 7.9, the settings for the serial port has an advanced option called “Yield 
CPU on poll” that needs to be enabled.



204	 Chapter 7 • Application Testing

Finally, click OK to save the configuration and close the virtual machine settings 
dialog.

You can get the debugger from Microsoft at the following site: http://www.
microsoft.com/whdc/devtools/debugging/default.mspx. In addition to the debugger, 
this site also provides a number of additions such as the symbols packages for various 
versions of Windows. You should seriously consider downloading these symbols for 
the platform(s) you are debugging.

You should be able to start the guest at this point. When it boots, it should pause at 
a screen similar to the screen shown in Figure 7.10. You should select the debugging 
version and hit enter.

Figure 7.9 Enabling the “Yield CPU on Poll” Option



	 Application Testing • Chapter 7	 205

At this point you can connect the debugger to the debuggee machine. To do this 
the debugger should be started using the options shown in Figure 7.11. The options 
shown enable debugging over a specific named pipe (which you created using the 
VMware guest configuration screens). Note that if you find yourself running this 
command often, then this command can be added to a batch file for the sake of 
convenience.

Figure 7.10 Choosing the Kernel Debugging Boot Option



206	 Chapter 7 • Application Testing

The debugger should attach to the virtual machine via the named pipe, and you 
should be able to debug in a fashion very similar to that used in application mode 
debugging. If you hit CTRL-BREAK in the debugger you should be presented with 
a screen similar to Figure 7.12.

Figure 7.11 Windbg Command Line Options for Using a Named Pipe

Figure 7.12 Debugger Attached to a Guest Machine



	 Application Testing • Chapter 7	 207

The Advantage of Open Source Virtualization
One of the most intriguing features of open source virtualization tools is the ability to 
modify the behavior of the underlying hardware. Some very unique situations can be 
created, which under normal circumstances might almost never happen. The best 
example of this would probably be classified as a hardware race condition. This type of 
situation might only occur one in a million times in the real world. These types of 
issues are very difficult to detect, let alone debug. However, they are much easier to 
re-create if you are able to control the hardware and the order in which certain events 
happen. No simulator can exactly replicate hardware inconsistencies (such as shorts, 
induced interference, and intermittent connections), but their effects can be simulated 
in an attempt to investigate how drivers and other applications will be affected. 
Interrupts which normally occur in a serial fashion can be triggered out of order, to 
replicate a heavily loaded system that is unable to process events in a normal fashion.



208	 Chapter 7 • Application Testing

Summary
Application testing is a complex process that can be greatly simplified by using virtual 
environments. We have only scratched the surface of some of the capabilities introduced 
through the use of virtual hardware. The ability to copy and run a template virtual 
machine, and be up and running in minutes saves countless hours. Virtual appliances 
can save even more time by providing a preconfigured environment ready to be 
“broken.”

Solutions Fast Track
Getting Up to Speed Quickly

Copy the machine to its own directory.˛˛

Edit the server file so that the machine has its own name.˛˛

Register the server using: vmware-cmd –s <path to your .vmx file>.˛˛

Copy the machine to its own directory.˛˛

Register the server using the RegisterVirtualMachine method in the ˛˛

VirtualServer.Application control.

Debugging
Modify the boot.ini file in the virtual machine to allow kernel debugging.˛˛

Add a serial port to the guest and connect it to a named pipe.˛˛

Boot the guest.˛˛

Connect to the named pipe on the host using a debugger.˛˛



	 Application Testing • Chapter 7	 209

Frequently Asked Questions
Q:	How can a test environment be quickly created to allow for testing of an 

application?

A:	You can use templates to quickly deploy a virtual machine that is already 
configured with most, if not all, of the applications and settings necessary to 
facilitate the test.

Q:	Can I debug a virtual machine without needing additional hardware for running 
the debugger?

A:	Yes, you can configure the virtual machine to boot into a debug mode after 
configuring the virtual hardware to output a com port to a named pipe. Simply 
power on the virtual machine, then run your debugger while configuring it to 
listen to the named pipe.



This page intentionally left blank



211

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 8

Fuzzing

Solutions in this chapter:

What Is Fuzzing?■■

Virtualization and Fuzzing■■

Choosing an Effective Starting Point■■

Preparing for External Interaction■■

Executing the Test■■



212	 Chapter 8 • Fuzzing

Introduction
Fuzzing involves providing semi-random data to an application and recording how  
it behaves. The term can be thought of as starting with something clear such as a 
valid application file, and “fuzzing” or “blurring” pieces of it. It’s a specialized form  
of application testing that can involve significant automation. It also goes by other 
names such as fault injection, or error condition evaluation.

Virtualization has proven ideal for resetting the environment to an initial state 
before any malformed data had been sent. Without using virtualization this can 
involve restarting the application, or even worse, initiating a reboot just to get to a 
state where the next test can be performed. In addition, monitoring the application 
without interfering with the application itself can be a challenge. Some applications 
attempt to prevent debuggers from observing their behavior. While these attempts 
can be overcome (defeated, bypassed), it can be an involved process of application 
modification and research.

This chapter will cover how virtualized environments can significantly increase 
the efficiency of fuzzing. Using scripted snapshots, the reset of an environment can 
be done in a matter of seconds instead of minutes. Using the debugging features of a 
virtualized environment to monitor the application can provide an ideal environment 
for the hard-to-monitor applications. In addition, it is possible to run multiple 
instances of the same application in parallel using multiple hardware platforms to 
increase the speed with which an application can be tested in an automated fashion.

What Is Fuzzing?
The term fuzzing has only recently become popular, but people have been fuzzing to 
some degree for quite a long time. One documented project conducted in 1990 was 
designed to send semi-random data to UNIX commands. The team conducting the 
study issued commands with arguments of various lengths. These tests resulted in 
abnormal crashes of around 30% of the tested applications. The original study can by 
found at ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.ps. Subsequent studies 
examining X Windows utilities and Windows commands can be found at ftp://ftp.cs.
wisc.edu/paradyn/technical_papers/fuzz-revisted.ps and http://pages.cs.wisc.edu/ 
~bart/fuzz/fuzz-nt.html.

The idea of fuzzing is based on two fundamental assumptions. First, that a piece 
of software has vulnerabilities. Second, that these vulnerabilities can be found by 



	 Fuzzing • Chapter 8	 213

permuting input. It should be noted that fuzzing cannot be used to prove that a 
program is correct, or even secure. It can only be used as an aid in finding vulner-
abilities. It should also be obvious that certain types of data do not lend themselves  
to fuzzing directly. Included in this category would be encrypted data, as well as data 
that includes checksums. Both of these situations can be fuzzed to some degree using 
advanced fuzzing techniques (such as using a debugger to provide input directly into 
the memory of an application, instead of traditional input methods). These advanced 
methods are beyond the scope of this book.

There have been a number of frameworks developed to aid in fuzzing, and we’ll 
cover just a handful of them. One of the earlier fuzzing frameworks was put forth by 
Dave Aitel who released a paper in 2002 entitled “The Advantages of Block-Based 
Protocol Analysis for Security Testing.” (This paper is available on his Web site at 
www.immunitysec.com/resources-papers.shtml). His framework was called Spike.  
The idea behind it was that instead of random data, the fuzzing should consist of data 
of a form similar to valid data. For example, if a valid command consists of a verb 
followed by two arguments, then the fuzzing data should concentrate on the known 
verbs and two random arguments. Some exploration of other verbs and tests with 
one argument or more than two arguments could be done, but they shouldn’t be  
the focus. If an argument appears to take an integer, then the fuzzing library should 
concentrate on sending integers which often cause problems (such as –1, –0, 0, 
32767, etc., instead of random strings). The spike framework simplifies creating blocks 
of data. These blocks could then be combined to make packets or files. A block 
might be a string capable of generating tests with strings at that point. The fuzzing 
would only permute one block at a time in the hopes of generating an exception. 
Spike can be obtained at www.immunitysec.com.

The Peach framework was created by Michael Eddington. It is a tool written in 
Python, similar to Spike. To use Peach, the tester creates a Peach Pit file containing 
information related to the test. The format of the test is specified using XML. 
Different tags are used to specify various data types such as strings and integers.  
In addition, these tags have attributes which assist the fuzzer in creating valid tests. 
The tester then defines the sequence of the test (again using XML for each step).  
The steps for file fuzzing might include writing the file, running the application, 
gathering debug data, and storing the file along with the debug data for later  
analysis. Note that Peach also includes some basic support for parallelization. This  
can be used with virtualization to great effect. The homepage for the Peach tool is 
www.peachfuzzer.com.



214	 Chapter 8 • Fuzzing

Virtualization and Fuzzing
We will be using the snapshot features of VMware and Virtual PC to create slave 
servers that run the application itself. We will also use a master server to control the 
testing, provide the entropy, and to store and record the results. The Master server 
need not be on the same platform type as the slave, as long as the master is able to 
control starting and stopping of the virtual machine slaves. Normally the master  
runs on the virtual machine host but this is not a requirement. Both VMware and 
Microsoft Virtual Server can be controlled remotely using programmatic interfaces 
(details below).

Choosing an Effective Starting Point
By using virtualization features such as snapshots we are able to force the application 
into a known starting point before each test. This allows us to make sure that testing 
is consistent and repeatable. There will always be some entropy in our tests such as 
when external sites are contacted and random numbers are generated, but these 
sources of entropy should be controlled and defined as much as possible during the 
test. They should also be considered possible targets for fuzzing. For example, if an 
application uses DNS to authenticate someone (a very bad idea), what would happen 
if the DNS server sends a corrupted response?

Using a Clean Slate
A clean slate is key to getting proper results from the testing. By “clean slate,” I mean 
a system which has just been rebooted, the application immediately started, and 
nothing unrelated to the application (except the actual testing tools) is started. The 
environment in which the application is executed should be as pristine as possible, 
although this environment is certainly a possible area for fuzzing.

One area that people often neglect to clean out is environment variables.  
An environment variable is used to pass information to a program that it might need. 
Often the environment variables store information related to the local environment. 
For example Unix/Linux uses environment variables to locate the paths of critical 
files, as well as information related to the current display. These environment variables 
can vary on individual systems. Changing environment variables can sometimes 
modify the behavior of the application. This is yet another area that should be kept  
as consistent as possible.



	 Fuzzing • Chapter 8	 215

Reducing Startup Time
Application fuzzing can take a significant amount of time. The key to success is having 
a large test bucket. The more tests attempted, the more likely it will be that something 
will crash. Testing should begin with the point at which the application might take 
malicious input. This will likely be after some amount of startup processing has 
occurred. Configuration files have to be read, objects instantiated, and threads created 
and initialized. Using virtualization we can take a snapshot of the system with the 
application already running and awaiting our input.

Setting Up the Debugging Tools
Although an extensive coverage of fuzzing is beyond the scope of this book, we will 
cover the topic to some extent. One of the key factors in fuzzing is monitoring the 
system to determine when the processing path is altered based on the fuzzing tests. 
One method is to use the built-in debugging tools provided by the system. You could 
rely on Windows to let you know when an exception has occurred (similar to the 
recovery shown in Figure 8.1) or you could install more sophisticated tools to catch 
the exceptions.

Figure 8.1 An Example of Windows Recovering from an Exception

Probably the most powerful tool that I’ve encountered in this area is called  
Pai Mei. The tool was written by Pedram Amini. One of the tools in his suite is called 
“Process Stalker” (shown in Figure 8.2). The tool is available at www.openrce.org.  
The basic function of the Process Stalker is to connect to an application as a debugger, 
and then put breakpoints in many locations throughout the code. As the application 
triggers the breakpoints, the state of the application is recorded in a database, and the 
application is allowed to continue. Recording is then stopped and each of the break-
points that were reached is recorded. The application is then restarted, but this time 
any breakpoint that was reached previously is ignored. The new breakpoints indicate 
events which occur as a result of the test data.



216	 Chapter 8 • Fuzzing

The idea behind this method is to correlate what events trigger each executable 
block of code in an application. By using this method in conjunction with a fuzzer,  
a tester can hone in on which fuzzing tests were able to reach various areas of code. 
These tests can then be refined so that the new areas of code are given greater testing 
coverage. For example, a specific application may read a file as part of its normal 
functioning. Depending on the first three characters of the file, different functions 
may be used to parse the incoming file. Process Stalker could be used to determine 
each of the valid file types, and then a second round of testing could be started on 
each individual type. Resources could be focused on testing valid file types, and the 
invalid file type handler. Research has also been done on ways of increasing code 
coverage by automatically modifying the input data. By changing the input data, and 
detecting changes in process flow, valid data can be “organically” grown. A paper was 
presented at the Blackhat conference in 2006 which discussed these methods entitled 
“Sidewinder: An Evolutionary Guidance System for Malicious Input Crafting.”

Figure 8.2 Process Stalker (Part of the Pai Mei Toolset by Pedram Amini)



	 Fuzzing • Chapter 8	 217

Preparing to Take Input
In the simplest case, the application being tested is listening to a network port. The 
input can then be sent by the fuzzing control machine in a series of packets structured 
to mimic the protocols being tested. For example, if the server had implemented the 
file transfer protocol (FTP) then the fuzzing control machine might send packets 
which established the session, logged in, and then started sending specially structured 
gibberish in an attempt to cause the application to enter an unknown state.

Unfortunately, the simple case does not always apply. In many cases the application 
being tested might only initiate network traffic. Or it may not use the network at all. 
The fuzzing scenarios may all be file based. In these cases the fuzzing controller needs 
to be able to create the structured data in some other fashion.

Test files can be generated on the server. This can be a very fruitful approach. 
Unfortunately, using a virtual machine can cause some undesired effects. Each test 
should be repeatable using parameters which are stored along with the testing results. 
The fuzzing controller needs to have some method of “injecting” the parameters into 
the application from somewhere that won’t be destroyed when the virtual machine 
snapshot is restored. The parameters need to be communicated in a way which allows 
the application to be exercised in the desired fashion, and that allows for maximum 
flexibility of structured data.

One method that we developed to facilitate this was a client/server approach.  
A daemon was created which listened on a network port. The fuzzing controller  
used a client library to send data to the daemon running on the virtual machine.  
The daemon then translated that data into something that the application could use. 
In some cases this involved mouse clicks exercising various features. It could also 
involve key strokes simulating a user providing input. In the most common scenario, 
files were transmitted onto the virtual machine. Then the application was “told” to 
open the files using either direct library calls, or mouse/keystroke combinations.

At one point we upgraded this fuzzing framework to use a base file on the server, 
and only perform particular changes. This method, also known as bit flipping, can be 
used to observe which areas of a file affect an application in various ways. By observ-
ing the behavior of the application, and noting differences when various portions of 
the file are modified, the tests can be tuned to increase code coverage and testing 
efficiency.

An even more complex daemon was used to test running applications. By attaching 
to a process, the internal memory structures of an application can be modified. This 
method is useful if a program uses a check summing process to detect files that have 



218	 Chapter 8 • Fuzzing

been modified. In some cases application developers have implemented these check-
sums as a means to prevent their applications from being fuzzed. This is a dangerous 
and likely ineffective way to prevent malicious data from being submitted to an appli-
cation. If an attacker is able to generate the checksum for their malicious data, they  
will be able to bypass these checks. While it may be possible for the fuzzing framework 
to generate these checksums, it is unlikely that it will be an efficient use of resources. 
Instead the checksum routines can be bypassed or modified so that they always  
confirm the validity of data.

Preparing for External Interaction
We’ll now discuss steps to take for preparing for an external interaction.

Taking the Snapshot
Taking the snapshot is a simple task with VMware Workstation. To take a snapshot on 
VMware Workstation, get the machine in a state to begin fuzzing. Then click on the 
“Take a snapshot of the virtual machine” button highlighted in Figure 8.3.

Figure 8.3 Create a Snapshot Button



	 Fuzzing • Chapter 8	 219

When you are creating virtual machines, especially for the scenario where an 
application test is to be done, the options made during setup may be critical. It is key 
that the environment is understood and the options documented. Tests may take 
place on platforms which were generated a significant time after the creation of the 
image. Document as much as possible, and maintain that documentation in parallel 
with the creation and maintenance of each image. Changing an image to be updated 
to current operating system patch levels should result in the documentation noting  
at a minimum that the machine was updated and the date and time the updates were 
completed. Ideally the updates performed would be updated so that each individual 
package version was known.

Executing the Test
We’ll now discuss steps to take for executing the test.

Scripting Snapshot Startup
Snapshot control can also be done from the command line in the host environment. 
On the VMware Server this can be done with the vmrun command. The command 
shown in Figure 8.4 will list all of the virtual machines on a server. In each of the 
figures shown below, the root password has been covered by a white box.

Figure 8.4 Listing the Registered Virtual Machines

Then the command shown in Figure 8.5 can be issued to create a snapshot from 
the command line.



220	 Chapter 8 • Fuzzing

And finally when you want to revert to a snapshot, issue the command shown in 
Figure 8.6.

Figure 8.5 Taking a Snapshot of a Virtual Machine

Figure 8.6 Reverting the Machine Back to a Snapshot

Note that the application will come up in a suspended state. To resume from the 
suspended state issue the command shown in Figure 8.7.

Figure 8.7 Resuming Execution on a Suspended Machine

Interacting with the Application
At this point the daemon we created comes into play. The fuzzing framework needs 
to create test data and communicate that data to the virtual machine. In the case  
of network applications this might mean only connecting to the network port and 
sending a series of packets. As mentioned above, the testing may also consist of  



	 Fuzzing • Chapter 8	 221

modifying files to be opened by the application. In this case the fuzzing framework 
would submit either the test file itself or the changes which are to be performed on  
a base file. In each case the test data should be saved on the fuzzing control machine 
so that the testing can be replicated in the event that the data somehow triggers an 
“interesting” condition.

Selecting Test Data
Entire books have been written on the theory of fuzzing and how to choose data.  
We refer to fuzzing data as “structured” gibberish. There is always some chance that 
random data might cause issues with an application. Given enough time the proverbial 
million monkeys might just be able to type out a Shakespearean play. Unfortunately, 
application tests rarely have such generous testing schedules (and even if they did, the 
human resources wouldn’t appreciate it). Instead, a more efficient method of creating 
data that is mostly correct should be used.

One great source when attempting to create interesting test data is to base it on 
valid data which is captured while exercising the application in a standard manner. 
This valid data is then used as a base from which tests can be generated. Once the 
valid data is captured, and a method for injecting data of the fuzzer’s choosing is 
created, the testing can begin.

Strings within the data should be changed. They can be made longer or shorter, 
they can be zero padded, or the file might be truncated. Various malicious strings 
might be inserted in an attempt to cause the application to perform in a new manner. 
Integers contained within the data should be changed. Perhaps adding a “1” to the 
number will cause unique code to be executed. In other cases the application may 
not be expecting negative or very large numbers. Bit fields should be tested to deter-
mine the functionality of each bit. Structures within the data may be modified, or 
reordered in an attempt to create unique scenarios.

In some cases entirely different file types may be tested. Some applications have 
internal logic which is executed depending on the type of the file. In some cases the 
file type might be determined by the extension of the file. In other cases the file type 
might be determined by the presence of certain strings at the beginning of the file. 
Alternate file types should be tested in order to achieve maximum code coverage.

Similar procedures should also be performed on network protocols. In addition 
the out-of-order arrival (both at the packet and application levels) should be  
investigated. How is the application affected if a packet performing function two  
is sent before the packet calling function one which normally arrives first?



222	 Chapter 8 • Fuzzing

It is probably becoming obvious that creating useful test data often requires 
investigation into the inner workings of the program. Luckily, tools have been created 
which can greatly aid in this process.

Checking for Exceptions
The next important function of a fuzzing framework is to detect whether interesting 
behavior has occurred. In its simplest form, this interesting behavior might only be 
that the application terminates. This may or may not generate debugging information 
such as memory dumps, stack traces, and log files In other cases the application may 
execute non standard code paths. It may have error recovery logic, or it may terminate 
the processing of the offending data. Each of these cases can possibly be interesting to 
the fuzzer, and in many instances these error states can be used to create more useful 
test data.

Debuggers can be used to observe whether an application has generated an 
exception. Ideally these exceptions will be detected before any exception handling 
routines are called. This gives the fuzzer the best chance to know what data was 
invalid. This information can be used to create test data uniquely formed to exercise 
the entire breadth of the exception handling routines. It can also be used to create 
data which doesn’t trigger the exception routines.

One of the most powerful tools I’ve seen for observing code execution paths is  
a tool called Pai Mei. One of the components of Pai Mei is called Process stalker.  
The main idea behind Pai Mei is to attach to a process as a debugger. Using procedure 
information generated from the disassembly of a process, a breakpoint is set on every 
function. A breakpoint is an instruction which when executed by the processor an 
exception is generated. This exception will suspend the applications execution and 
allow the debugger to investigate. The debugger has access to the state of the processor. 
It can see and change things like what each register is set to and which flags are set. 
The debugger can also examine and possibly modify the contents of memory.

When Pai Mei gains control because a breakpoint is hit, it records which function 
was accessed in a database. It also saves the parameters of the function when it is 
called. It then returns control of the running process. The result is a list of functions 
that were called during that run. The power of Process Stalker arises when one begins 
to use sets of functions as filters. The tester will determine which functions are called 
during set up and then data is submitted. Any functions related to the setup of the 
machine are removed, and the remaining functions are related to processing the test 
data. In addition, any functions resulting in exceptions are noted.



	 Fuzzing • Chapter 8	 223

Saving the Results
A special consideration when using virtual machines for fuzzing is for any data gener-
ated during the test to be preserved. Ideally the only data required to replicate the 
results of the test would be the test data submitted via the fuzzing framework. In the 
real world, sometimes other uncontrolled factors may play a part in the abnormal 
condition. For the sake of convenience, memory dumps, and stack traces should be 
preserved for further analysis as well. There are two ways to do this. First of all a script 
can be written which gathers pertinent logs, dumps and data. It should then package 
them up, and submit them (possibly via the fuzzing framework) for archival purposes. 
This script should be triggerable by the fuzzing framework.

The second method which could be implemented (and likely the simplest), is to 
save the results in the form of a virtual machine snapshot. This snapshot should be 
backed up and saved along with the test data which created the abnormal scenario.

Running Concurrent Tests
All of this automation can be extended one step further. One of the greatest efficien-
cies that can be realized by using virtualization is parallelization. Multiple machines 
can each run scenarios at once. This allows the fuzzing framework to control multiple 
servers at once. The efficiency gains are obvious.

To set up a concurrent test the base machine is created as above. There are some 
additional issues that need to be addressed. The first problem is the sheer factor of 
putting two identical machines into the same environment. There are certain param-
eters of a machine that need to be unique in order for the machine to exist in an 
environment with other machines. One example that many people are familiar with 
would be the IP address. One of the benefits of DHCP is that machines can request 
an IP address that isn’t being used on the network. DHCP uses an identifier that is 
supposed to be unique to the machine (namely the mac address). When you make  
a copy of a virtual machine these unique identifiers are sometimes left unchanged.

Two strategies can be used to make this manageable. First of all, some of the para
meters can be modified in the configuration of the virtual machine. Other parameters 
only become a factor when the machine is used in a domain environment which may 
not be a requirement for your testing.

The other strategy that can be employed is to have separate environments for 
each machine being tested in much the same way the sandbox scenarios of previous 
chapters were implemented. This would likely include separate virtual networks. 



224	 Chapter 8 • Fuzzing

Virtual machine hosting server would have to either host the fuzzing platform or 
provide routing services into the various testing networks.

One factor that should be noted is that the fact that you’re working from a 
snapshot can be a great asset. It should only be necessary to save the differential disk 
files after a test. Further these differential disks can likely be compressed significantly. 
It is key to remember not to modify the original virtual disk files, or the snapshots 
being used will become useless.



	 Fuzzing • Chapter 8	 225

Summary
By using virtualization the efficiency of a fuzzing test can be vastly increased and by 
using snapshots every test can begin in the same place making repeatable tests much 
more likely. Testing initialization is a matter of restoring a snapshot, instead of reboot-
ing the server, restarting an application, and waiting for it all to settle. It is also much 
easier to gather the data for fuzzing tests which have resulted in interesting behaviors 
Finally, the value of parallelization cannot be understated. An efficient way to have 
multiple tests running concurrently with identical environments can dramatically cut 
the time required for testing.

Solutions Fast Track
What Is Fuzzing?

Fuzzing is sending causing an application to process semi-random data in ˛˛

order to test the application’s behavior.

Virtualization and Fuzzing
Virtualization can assist in fuzzing by isolating the test machine from the test ˛˛

management server.

Snapshots can be used to increase testing efficiency by reducing startup and ˛˛

cleanup time.

Virtual machines can be used to perform multiple tests in parallel.˛˛

Choosing an Effective Starting Point
By choosing an effective starting point, all tests can be started from a ˛˛

consistent point.

Debugging tools should already be in place and running.˛˛

The application should have already completed its initialization routines,  ˛˛

and be ready for our test input.



226	 Chapter 8 • Fuzzing

Preparing for External Interaction
A snapshot can be taken either manually—using the virtual machine ˛˛

console—or scripted using a command line interface or API.

Executing the Test
Revert to the starting point snapshot.˛˛

Send the test input.˛˛

Monitor for exceptions.˛˛

Record the results.˛˛



	 Fuzzing • Chapter 8	 227

Frequently Asked Questions
Q:	Why does fuzzing work?

A:	 Ideally fuzzing will have little to no effect on an application. The idea that random 
data that is so unstructured can damage an application is sad, but unfortunately 
true in many cases. Fuzzing has proven to be effective at finding issues with  
applications which developers missed, and testing scenarios were unable to catch.

Q:	How do you know when you’ve got a good starting point?

A:	 If you find yourself having to execute the same steps before you can get to the 
point of running your test (such as starting a debugging tool, etc.), you should 
consider running that step by hand and then taking the snapshot.



This page intentionally left blank



229

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 9

Forensic Analysis

Solutions in this chapter:

Preparing Your Forensic Environment■■

Capturing the Machine■■

Preparing the Captured Machine  ■■

to Boot on New Hardware

What Can Be Gained by Booting the ■■

Captured Machine?



230	 Chapter 9 • Forensic Analysis

Introduction
According to Bologna and Lindquist (Fraud Auditing and Forensic Accounting: New Tools 
and Technique, John Wiley & Sons Inc., 1995), the term forensic means “belonging to, 
used in, or suitable to courts of judicature or to public discussion and debate.” The 
College of American Pathologists, in Handbook of Forensic Pathology, 1990, defines 
forensics as “the application of the principles of the physical sciences in the search for 
truth in civil, criminal, and social behavioral matters to the end that injustices shall 
not be done to any member of society.” Kruse and Heiser, authors of Computer 
Forensics. Incident Response Essentials, Addison–Wesley, Boston 2001, defined computer 
forensics as the “coherent application of methodical investigatory techniques to solve 
crime cases.” For the purposes of this chapter, I choose to expand the definition by 
Kruse and Heiser to include the use of methodical investigatory techniques to gather 
intelligence as well as evidence and to include the use of these techniques for civil 
cases as well as in investigating policy violations and intrusions. This approach speaks 
to the “search for truth in civil, criminal, and social behavioral matters to the end that 
injustices shall not be done to any member of society” portion of the pathologists’ 
definition of forensics. As will be shown, criminal cases will benefit from the availability 
and use of techniques made possible by virtualization as long as the rigors required 
by the courts are observed when collecting the evidence to be presented.

Investigating computer crime can be a very involved process. The first rule of 
forensics work is that the evidence must be preserved. Common forensics practice is 
to make an image of all media from a computer. All disks are copied using great care 
not to modify the data contained on the disks. All work pertaining to the investigation 
is then performed using these forensically sound copies of the data. It is equally 
important that the results of forensic examination be reproducible. Steve Mancini,  
a security professional with extensive forensic experience for Intel, says the investigator 
should be able to hand another investigator a copy of the image and a copy of his 
notes. The second investigation should lead to the same empirical results and 
(hopefully) the same assertions that were originally made about that image.

Virtualization is well suited to working on a copy of a hard drive without 
modifying it. In the days prior to virtualization, this process required the investigator 
to clone the hard drive, put the clone into new hardware, and boot. From the time 
of that first boot, the investigator couldn’t be sure that his “cloned image” was  
still good. Anytime the investigator had any suspicion that the clone was tainted,  
it meant that the clone had to be recopied from a known good copy. This was  



	 Forensic Analysis • Chapter 9	 231

a time-consuming process and one the defense attorney might challenge. The 
defense attorney would not have to prove that the integrity of the clone was lost, 
only that the potential for it to be lost was possible.

This chapter will illustrate the process of turning a copy of a drive into something 
that an investigator can use with confidence, knowing that he can get back to the 
original state with the push of a button. By using a virtual machine, the contents of 
the machine can be viewed in the same ways that the suspect viewed them. The 
chapter will also discuss the concept of “best evidence,” the acceptability of evidence 
obtained from virtual instances of a suspect’s computer, and will describe a method 
proposed by Derek Bem and Ewa Huebner, University of Western Sydney, Australia, 
that combines traditional methods with virtual technology to gain the benefits of 
virtualization and still meet the rigors expected by the courts.

Preparing Your Forensic Environment
Before capturing the suspect’s machine and creating images, you should prepare  
a computer for use as your forensic system. The computer should be the fastest 
computer you can find, with USB 2.0 ports, firewire, or the ability to connect IDE, 
SATA, or PATA drives without opening the case; a large, fast internal hard drive; 
and a large enough external hard drive to house several of the biggest hard drives 
found in your environment. If you are working in a forensic lab where you can 
segregate your networks, the hard drives could be networked drives or SANS. 
These hard drives should be single-purpose and should not be used for any other 
storage. When cases are removed from the hard drive, you will want to use a secure 
delete utility such as sdelete for Windows; Shred (RHEL), gshred (Solaris), or scrub 
(erase partition) for Unix; or the Secure Empty Trash option on a Mac, to ensure that 
no vestigial data remains. In some cases (for example, cases involving government-
classified “above secret” or cases where you attempt to recover previously overwritten 
data) you should use new hard drives for each case. Some have argued that every 
case requires new hard drives.

The computer and your VM environment should be secured against external and 
internal attacks, and particularly attacks from within the virtual system. For VMware 
you can find guidance for this process in the VMware security guide or in the ESX 
Server Security Technical Implementation Guide produced by the Defense Information 
Systems Agency in April 2008. Once you have secured the system, it will be useful 
to create a Live-CD of the system similar to the one created by Ernie Baca.  



232	 Chapter 9 • Forensic Analysis

Baca developed the Penguin Sleuth Kit and later made a VMware version and placed 
the VM appliance and documentation on the VMware site, www.vmware.com/vmtn/
appliances/directory/249/. Once the system is assembled, you should create an 
inventory of all systems, applications, and hardware used. This inventory should be 
placed under configuration control so that as you make changes you will simultaneously 
update the documentation. Each case file should include a copy of the inventory 
document as it existed during the investigation (for reproduceability).

To be effective and to limit challenges you must be able to build and update the 
Live-CD as patches are made available for the software you use.

Capturing the Machine
You can convert physical media to virtual media using tools like the VMware 
Converter and Virtual Machine Manager (VMM). When going from physical media 
to virtual, these products require the source system to be running and thus cannot 
create a forensically sound image. When creating a forensically sound image, you 
must be able to prove that the image is an exact duplicate or that you can explain 
any and all differences and how they occurred. You can create a forensically sound 
image and then convert the image to a virtual system. This becomes an issue when 
you have very large cases with many hard drives. Simson Garfinkel describes this  
in a 2006 presentation to Black Hat entitled “New Directions in Disk Forensics.” 
In the presentation he describes the difficulties he faced processing hundreds  
of hard drives using traditional forensic methods and the solution he designed. 
Garfinkel developed a new image format called Advanced Forensic Format (AFF). 
A benefit of the format is that it is designed to help the investigator to handle very 
large hard drives and is able to handle cases with many hard drives. It does this by 
keeping metadata about a drive with the drive data and by segmenting the drive 
into manageable chunks. Traditional forensics requires us to image an entire drive, 
making it nearly impossible to perform forensics on Terabyte and above hard drives. 
Harlan Carvey and Dave Kleiman in Windows Forensic Analysis (Syngress, 2008) 
provide an excellent example. “Imagine a RAID system with five or eight such 
hard drives, topping out at 6 terabytes (TB) of storage. How long would it take  
you to image those hard drives? With certain configurations, it can take investigators 
four or more hours to acquire and verify a single 80-GB hard drive. And would  
you need to image the entire system if you were interested in only the activities  



	 Forensic Analysis • Chapter 9	 233

of a single process and not in the thousands of files resident on the system?”  
To address this type of situation, Kleiman and Carvey propose the use of two 
techniques, Live Response and Live Acquisition. In Live Response, the investigator 
accesses a live, running system and collects volatile and nonvolatile information. 
Live Acquisition creates an image of a hard drive while the system is still running. 
These two techniques challenge the present-day “best practices” in order to solve 
problems that can’t be solved using traditional forensic techniques.

In order to reduce the potential for “junk science” challenges to forensic tools 
(see “Junk Science Legal Challenge Explained,” by Mike Anderson, founder of 
New Technologies, Inc., www.forensics-intl.com/def14.html), NIST produced a 
set of test specifications (Digital Imaging Tool Specifications) that were intended 
to be used to validate the tools used to produce disk images for use in courts. The 
specifications ensure that disk imaging tools that produce images in the traditional 
method actually deliver a forensically sound image, but in doing so, they preclude 
any newer technology from consideration. Make no mistake, the specification and 
the testing is very valuable for the forensic community. The test reports for disk 
imaging systems that have been tested so far can be found here (www.cftt.nist.
gov/disk_imaging.htm).

This means, unless you take on the challenge of explaining to the court how 
and why your tools and procedures preserve the integrity of the original drive, at 
least for now, traditional means (preferably one of the systems tested by NIST 
above) should be used to created the forensically sound image. If you are faced 
with a situation that can only be met using nontraditional forensic techniques, 
Kleiman and Carvey prescribe an application of Locard’s exchange principle.  
In essence, you would research the changes that occur to a system because of the 
chosen technique so that these changes can be explained and defended. If your find 
yourself in this position, I recommend you read “The Tools ‘Proven In Court’ 
Question” (www.csisite.net/tpicq.htm), a treatise by Steve Hailey, President/CEO 
of CyberSecurity Institute.

Icove, Seger, and VonStorch in 1995 described three rules for maintaining the 
reliability of electronic evidence: “It must be produced, maintained, and used in a 
normal environment; be professionally authenticated (i.e. the report from the forensic 
experts is reliable); and also meet the ‘best evidence rule.’ This means that what is 
produced must be the best evidence available and not a substitute for the evidence 
offered.” In a simple example, when an original photo exists, you cannot use a copy 
of the photo as evidence. 



234	 Chapter 9 • Forensic Analysis

If virtual images do not represent “best evidence,” can they still be useful in a 
civil or criminal case? In some civil cases, the attorneys will accept copies of relevant 
files without requiring forensically sound images, but as an investigator you can’t 
expect that will happen. It is likely that the use of virtual instances, surrounded by 
best practices to ensure that integrity is maintained throughout the virtualization 
and forensic processes, will eventually be accepted by the courts. In the process of 
getting images of the suspect’s computer to run in a virtual environment, changes 
are made to system files to reflect the differences between the virtual environment 
and the real hardware. A case can be made that the content portions of the image 
are unchanged, a fact that can be verified by comparing hashes (MD5 or SHA-2) 
made from files on the original hard drive. Once forensic professionals have a good 
understanding of the changes that occur when virtualizing a suspect’s computer and 
we have developed an easy to understand means of explaining these changes to a 
judge, jury, and opposing expert witnesses, we should be able to use results from 
forensic examinations in court. In the meantime, Bem and Huebner suggest using 

Notes from the Good Guys…

RFC 3227 Guidance on Good Evidence
RFC 3227 describes legal considerations related to gathering evidence.

“Computer evidence needs to be

■■ Admissible:  It must conform to certain legal rules before it can be 
put before a court.

■■ Authentic:  It must be possible to positively tie evidentiary material 
to the incident.

■■ Complete:  It must tell the whole story and not just a particular 
perspective.

■■ Reliable:  There must be nothing about how the evidence was 
collected and subsequently handled that casts doubt about its 
authenticity and veracity.

■■ Believable:  It must be readily believable and understandable by  
a court.”



	 Forensic Analysis • Chapter 9	 235

the virtual environment to locate data of interest and the forensically sound copy of 
the suspect’s drive to extract the evidence for the court.

The suspect’s computer can be captured and converted to a virtual image either 
directly from the suspect’s computer (or a clone of that drive), or from an image file 
taken from the suspect’s computer (or a clone). The Hillsboro (Oregon) Police 
Department Computer Forensic lab is run by Police Reserve Specialists (PRS). The 
PRS are information security professionals with a background in computer forensics 
who volunteer their time to run the forensic lab and perform other duties. They’ve 
been exploring procedures for creating VM files using full images or just relevant 
partitions. They begin by creating a new VM, selecting the same operating system as 
the suspect’s drive, and on the Specify Disk Capacity page, instructing VMware to 
“allocate all space now” rather than later. This creates a set of files that can be modified 
for the specific image you intend to virtualize.

The HPD Computer forensics lab uses an Ultrablock disk write blocker when 
creating images. Prior to making the image of the suspect’s drive they will verify that 
the write blocker blocks writes and that the imager makes good images. Then they 
either image the suspect’s entire drive or they image the Master Boot Record (MBR) 
and any relevant partitions to individual files. The byte space value should be set to 
512 to produce records in the form needed by VMware.

In VMware Workstation, they edit the text file ending in “.vmdk” and the “.
vmx” file related to your VM. In the “.vmdk” file, under the “# Extent description” 
heading, in the first line highlighted below, replace the string in quotes with the 
name of your MBR image file. In the second line, replace the string in quotes with 
the name of your partition image file. Both of these filenames and the filename and 
display name parameters in the “./vmx” file should be named using a standard that 
helps you manage the cases. HPD includes the Serial Number of the original hard 
drive in every filename. You should add the second line if it doesn’t already exist. 
For both lines, replace the number at the end with the number of records that were 
copied with “dd”.

In “The Disk Data Base” section, replace the ddb.geometry.cylinder value with 
the actual number of cylinders from the original physical hard disk.
Sample .vmdk file

# Disk DescriptorFile
version = 1
CID = 2734fd20
parentCID = ffffffff
createType = “monolithicFlat”



236	 Chapter 9 • Forensic Analysis

# Extent description
RW 4194304 FLAT “Windows XP Professional-flat.vmdk” 0

# The Disk Data Base
#DDB

ddb.virtualHWVersion = “4”
ddb.geometry.cylinders = “4161”
ddb.geometry.heads = “16”
ddb.geometry.sectors = “63”
ddb.adapterType = “ide”

Edit the “.vmx” file, to modify or add the entry labeled Ide0.0.mode.
Ide0:0.mode = “independent-nonpersistent”

This setting prevents changes in the VM from affecting the raw disk image.
Sample .vmx file

config.version = “8”
virtualHW.version = “4”
scsi0.present = “TRUE”
memsize = “256”
ide0:0.present = “TRUE”
ide0:0.fileName = “Windows XP Professional.vmdk”
	 ide0:0.deviceType = “disk”
	 ide0:0.mode = ”persistent”
ide1:0.present = “TRUE”
ide1:0.fileName = “auto detect”
ide1:0.deviceType = “cdrom-raw”
floppy0.present = “FALSE”
displayName = “Windows XP Professional”
guestOS = “winxppro”
priority.grabbed = “normal”
priority.ungrabbed = “normal”

If the ide0.0.mode entry is not present, add both of the following entries after the 
ide0.0.fileName entry.

ide0:0.deviceType = “disk”
ide0:0.mode = ”independent-nonpersistent”

An easier alternative is to use Live View (http://liveview.sourceforge.net/),  
see Figure 9.1, to create the above files. Live View is a utility developed by Brian 
Kaplan of the CERT (Computer Emergency Response Team) for converting raw 
disks and images into VMs for VMware. With Live View you can connect a cloned 
drive or an image file created with dd, FTK, Encase, etc. Live View supports *.img, 
*.dd, *.raw and {split} images. Live View will use the source to create the necessary 
VMware files.



	 Forensic Analysis • Chapter 9	 237

After creating the files, Live View will start up VMware and boot the Suspect’s 
virtual computer. Because this is a virtual environment, Windows will make some 
changes to the system files reflecting the differences in peripherals that were attached 
to the suspect’s computer. The content should be provably unchanged, as observed 
above. In the days before virtualization, the investigator would need to make a new 
forensically sound copy every time there was any danger that the copy they were 
working with had been modified. With virtualization you can refresh the copy you 
are working with any time with the press of a button. Using the method described by 
Derek Bem and Ewa Huebner, University of Western Sydney, Australia, in “Computer 
Forensic Analysis in a Virtual Environment” (see Figure 9.2), the investigator would 
make two clones of the original drive. The diagram includes the four phases of 
computer forensics (Access, Acquire, Analyze, and Report) as described by Kruse and 
Heiser in Computer Forensics: Incident Response Essentials. The access phase is not 

Figure 9.1 Live View P2V



238	 Chapter 9 • Forensic Analysis

relevant to the chapter and is mostly a concern of law enforcement (warrant  
preparation, etc.). In the Acquire phase, you would produce two images, one to  
be used to create a VM and the other for traditional forensics.

Figure 9.2 Bem and Huebner’s Hybrid Forensics Model

Preparing the Captured  
Machine to Boot on New Hardware
Once you have created an image, you should generate an MD5 or SHA-2 
checksum for the image. Compare this checksum to the one you generated 
using the original drive. Place all of these files, images, and the original drive 



	 Forensic Analysis • Chapter 9	 239

under chain of custody rigors. One of the images would be stored safely until 
after the virtualization analysis was complete. The other would be placed into 
the virtual environment using one of the P2V tools like Live View. If you don’t 
have the password to the suspect’s computer, you can reboot the Virtual Machine 
(VM) and change the BIOS settings to boot using a CD. Then put NTPasswd 
(http://home.eunet.no/~pnordahl/ntpasswd/), or whatever Crack utility you 
use, in the CD drive and reboot. Use NTPasswd to set the Administrator password 
to blank or another password. Then remove the CD and reboot into the suspect’s 
VM. Once VMware has configured the monitor and peripherals you will want 
to save a snapshot so that you can refresh back to this point.

What Can Be Gained  
by Booting the Captured Machine?
In Bem and Huebner’s model, the Analyze phase is split into two parts. Initial  
analysis is performed in the virtual environment. Traditional methods of gathering 
most evidence involve extracting data from static image files. Gathering dynamic or 
time dependent evidence required the investigator to create forensically sound work 
images, which had to be re-created many times to ensure the image you were 
working had not been modified by any previous procedures. Today’s large-capacity 
hard drives have made this approach problematic. However, with virtual machines, 
the investigator can restore the image to its original state by saving the original 
image when it is first booted. A touch of the refresh button is all it takes to get a 
clean image. In addition, in some virtual systems, restore points can be set at critical 
times so that a sequence can begin at any point in a process and can be repeated as 
many times as necessary to document every aspect of the behavior of interest. Using 
the same tools as the suspect, interesting information can be identified and then 
retrieved from the image that was created for the traditional forensic approach. 
Using the VM, we can use tools that are normally used by first responders to incidents. 
Many of our virus infection or bot client cases start as potential computer crime 
cases until we can determine the potential damage or intent. At Portland State 
University, we use the RAPIER tool developed by Steve Mancini and Joe Schwendt 
from Intel. The RAPIER tool is adapted from a tool called Rapier that is used 
internally in Intel to collect a consistent set of data from a machine that is involved 
in an incident no matter where in the world the incident occurs and regardless of 
the skill of the first responder. In our case, we are able to have the Desktop Support 



240	 Chapter 9 • Forensic Analysis

Techs (DST) gather this information as part of normal response to suspected bot 
clients or virus-infected systems. Using this information we are able to determine 
the identity of other infected machines by examining security event and firewall 
logs. We also learn about the ports that are opened on the system by the malicious 
code. Sometimes the anti-virus logs will identify files associated with a bot client or 
dates and times that it found malicious or suspicious files. This information can then 
be used by the information security team to search for other files that may be 
related to or affected by the malicious code. The results of the RAPIER run are 
examined by the Information security team. The logs may indicate a need for 
deeper forensics.

In many cases the investigator might want to use some Unix tools and also some 
Windows tools. Because of the traditional forensics requirement to ensure that no 
changes are introduced to the image, every time you switch between operating  
systems you would have to ensure you still had a clean image. With a VM, you can 
refresh your image with the touch of a button and then restart the VM. To boot into 
Unix, you can load a Helix (www.e-fense.com/helix/) or your favorite bootable CD 
in the CD drive, change the bios settings for the VM to boot by CD, and then use 
your favorite Unix forensics tools. When you are done you can refresh the image, then 
reboot the VM back into windows. The Helix CD also contains powerful Windows-
based forensics tools to make Windows-centric forensic analysis easier and more 
effective. In addition some System Internals tools (http://technet.microsoft.com/
en-us/sysinternals/) provide more information in the GUI than what is captured in 
the command line version. For example, process explorer highlights packed images in 
purple. The presence of a packed image executing on a system is a red flag that should 
be investigated. Unfortunately, pslist, the command line version of process explorer, 
does not record this kind of information. In fact, pslist does not record the detail  
that can be collected in the property tabs of process explorer. Thanks to the virtual 
environment, investigators can use the GUI tools without fear of contaminating  
the image. 



	 Forensic Analysis • Chapter 9	 241

The reports produced in the virtual environment are used to develop the list of 
information that is to be harvested from the traditional forensic process’s image. The 
final report phase is drawn from the evidence that is retrieved from the traditional 
forensic image. In this way we gain the benefit of using the suspect’s machine, 
programs, and data to find and interpret information but are still able to present 
“best evidence” to the courts.

The following are examples of ways that virtualization can add value to investigations.

Tools & Traps…

RAPIER: Rapid Assessment  
and Potential Incident Examination Report
Originally designed by Steve Mancini and Joe Schwendt of Intel® to be used 
by remote first responders (or by Unix administrators investigating a Windows 
machine) to gather and forward a consistent set of information about  
suspected incidents to trained investigators. RAPIER can be found on Google 
Code (http://code.google.com/p/rapier/). RAPIER is highly configurable. It provides 
an interactive interface, a set of command line parameters, and .conf files that 
can be used to specify which tests to run, email addresses for investigators, and 
ip addresses of a central RAPIER server. In a 2006 presentation to FIRST (Forum 
for Incident Response and Security Teams), the developers claimed, “RAPIER is 
not a forensics tool. It does not honor most industry guidelines for a proper 
forensics examination with regard to not affecting the image or files upon the 
system.” However, in a virtual environment, RAPIER becomes a powerful tool 
for forensics, for two reasons. If the investigator has established a clean  
snapshot, then investigators need only refresh the image to the clean snapshot 
following a RAPIER run. In addition, one of the reports that RAPIER provides 
is a report of the system prior to the run and all changes that were made  
during the run.



242	 Chapter 9 • Forensic Analysis

Virtualization May Permit  
You to Observe Behavior  
That Is Only Visible While Live
When Windows starts, there are a myriad of places that can contain instructions to be 
executed upon startup. Looking in each location that can contain startup instructions 
and trying to interpret what those text and binary instructions might do is next to 
impossible. However, if you could boot the system in a virtual instance, you might be 
able to tell easily that the malicious code you were investigating had replaced the 
background with a fake security alert. In addition, you run the system and collect 
network information from the network about open ports and network connections 
that are initiated or accepted. You can add tools that can look for and interpret 
information on VM running the suspect’s image.

Using the System to  
Demonstrate the Meaning of the Evidence
Sometimes the data that is collected in the traditional forensic manner, while accurate 
and the best evidence, is not easily understood by jurors or the courts. Using a VM, 
the investigator or attorney can demonstrate the interpretation of the data using the 
programs on the suspect’s image. Seeing the movie is much more meaningful for 
jurors than looking at printed copies of the associated binary. While the binary 
printout may be the actual evidence, using a demonstration can give the evidence 
meaning. The same is true of programs that use proprietary formats for data storage. 
Without the programs to interpret the data, the actual file content isn’t very useful 
for convincing a judge or jury.

The System May Have Proprietary/ 
Old Files That Require Special Software
You can look at files using the suspect’s programs (MS Word, Excel, etc) that can 
interpret them. If the suspect is using a program that is no longer available, you can 
and should use the copy of the program that is on the suspect’s image. The program 
you need may even be a program developed by the suspect that can’t be obtained 
anywhere else.



	 Forensic Analysis • Chapter 9	 243

Analyzing Time Bombs and Booby Traps
If an application is booby-trapped you will be able to examine and analyze (without 
suffering) the effects of the trap, then refresh the image. In 2006, Frederic T. Chong 
of the University of California Santa Barbara (UCSB) and a team of researchers from 
the University of California at Davis (UCSD), Jedidiah Crandall, Gary Wassermann, 
Daniela de Oliveira. Zhendon Su, and S. Felix Wu, authored material about using 
VMs to detect malware time bombs. The paper, entitled “Temporal Search: Detecting 
Hidden Malware Timebombs with Virtual Machines,” describes a technique to find 
malicious code that is set to trigger at a specific time or a specified relative time, by 
manipulating time for a VM. Just changing the time wouldn’t find malware like the 
Kama Sutra worm that deletes the victims files on the 3rd day of every month; it only 
checks the day of the month after the initial infection or a reboot. Instead, their 
approach (in a greatly simplified explanation) changes the rate of time and watches 
for correlations with rate of updates to each physical memory location. They analyze 
these physical memory locations to determine which ones are legitimate timers and 
which are suspect. It is hoped that analysis of these timers will yield the target time 
in advance of the trigger date/time.

Easier to Get in the Mind-Set of the Suspect
Even the investigator can benefit from seeing the data in the same context as the 
suspect would have viewed it. Without proper context, we may interpret files as 
sinister that are in fact innocent when viewed in context. In gathering potential 
evidence regarding a case where it was suspected that an employee was using company 
systems to distribute hardcore pornography internationally, an investigator searched 
through the image for keywords that might reveal files related to the case. One of the 
sets of files that turned up in the keyword search had the phrase “sexchange” in the 
directory and several filenames, which was duly reported to superiors. Imagine the 
investigators’ embarrassment when they later examined the files and discovered they 
were msexchange files, that’s right, Microsoft Exchange. While Exchange may be  
a dirty word to some, it is hardly pornographic.

Sometimes we gain additional insights just by seeing the data as it is displayed 
by the program used by the suspect. The data displayed in the context of explanatory 
headings, the look and feel of the application, help you to see what the suspect  
saw when using the system. There are tools available that operate in a Windows 



244	 Chapter 9 • Forensic Analysis

environment that will interpret the contents of index.dat files to reveal Internet 
access history and cookies even if the user has deleted the history and cache.

Collecting Intelligence about  
Botnets or Virus-Infected Systems
Using virtualization to execute the code on a suspected bot client or virus-infected 
system permits the investigator to gather valuable insights about the workings of 
malicious code. From the security event log you can see any attempts to guess 
passwords using brute force. You also find the identity of other bot clients that are 
involved in the brute force attacks. Using the firewall logs you see any inbound-opens 
that have been attempted. You can learn the identity of websites that delivered 
malicious code by looking at the firewall logs around the time of the malware 
detection. Watching network traffic from the suspect computer, you can identify 
ports opened by malicious code and the ip addresses of other parts of the botnet. 
These other parts of the botnet may be providing malicious code, such as retroviruses, 
to kill off your anti-virus protection, or lists of email addresses and spam templates. 
If the bot client uses Internet Relay Chat (IRC) you may find the Command and 
Control server, nick, userid, and password. You can then use this information to detect 
other infected computers in your organization and prevent future communications 
with the mother ship.

Locating the actual malware is a primary goal of a forensic examination of a bot 
client or virus-infected computer. Chapter 6, “Malware Analysis,” describes the process 
of running code samples in a sandbox to perform malware analysis.

Collecting Intelligence about a Case
When investigators gather evidence, they must ensure that no unexplained changes 
occur to the suspect’s computer. If the goal of the examination is to gather intelligence  
rather than evidence, the VM can be used without restraint. The investigator must 
take pains to ensure that information gathered during an intelligence gathering run 
does not mix with information gathered as evidence. In these circumstances the 
investigator can use institution and even hearsay to suggest keywords for searches  
or other settings in the suspect’s computer, using the VM to check out “what if?” 
scenarios. The intelligence may then suggest a set of information that can be gathered 
in a traditional manner that may be used as evidence.



	 Forensic Analysis • Chapter 9	 245

Capturing Processes and Data in Memory
Today’s malware is frequently delivered in packaged (compressed and encrypted) 
form. In order to run it needs to decrypt itself. To make interception more difficult, 
malware performs the decryption and execution in memory. However, in a VM you 
can force the VM to write all of its memory space to a file by pausing the VM. The 
contents of a .vmss file will contain the contents of physical memory when the pause 
button is pushed.

When paused, the VM will create a file whose extension will be “.vmss” (Virtual 
Machine Suspended State). This file will contain the contents of memory at the time 
the VM execution was suspended. The investigator can then use tools like strings to 
search through memory for key words. The tool process explorer, part of the System 
Internals suite of tools, provides a limited but useful means of peeking at memory. For 
each process running in your VM, process explorer can display associated properties. 
One tab permits the investigator to examine the strings in the file, both in the file and 
in memory. Running process explorer from a utility drive in your VM permits you to 
examine process specific strings without affecting the forensic copy. Once you have 
found something of interest, you can use the pause feature of VMware to capture all of 
memory. Then you can show that the information you found with process explorer 
exists in the memory space.

Performing Forensics of a Virtual Machine
More and more organizations are using virtualization in the data center. It is inevitable 
that a virtual system will be involved in a case requiring forensic analysis. How would 
you go about acquiring a forensically sound image of a VM? You could extract an 
image of the full physical hard drive of the host VM server. That could be a tremendous 
waste of time and storage space. These systems tend to be very large with multiple 
multi-Terabyte hard drives or SANs. They have to be large enough to provide storage 
for several machines or there is no point in using the technology.

Edward Haletky, a columnist for IT World magazine, recommends copying (not 
imaging) the VM files related to the suspect VM and associated image files to media 
that can be secured for chain of custody. This approach should work for all cases 
except for those where the virtualization server is being used to corrupt or influence 
its VMs. The image file used by the VM contains all of the slack space and unallocated 
space from the original computer, so if the suspect activity is in the original computer, 
then copies of the image file and the associated VM files should be sufficient. 



246	 Chapter 9 • Forensic Analysis

However, if there is any possibility of the specter of corruption or influence from 
outside the VM affecting the files, then the files should be imaged instead of copied.  
Is it sufficient to image just the files related to the VM or is it necessary to image the 
entire Virtual server? If the VM was bigger at one time and has shrunk, you may want 
more than just the existing VM file system (VMFS). These topics are still being 
debated by forensic professionals, but it is likely that the answer will be driven by the 
specifics of each case.

When copying the VM from VMware, Mr. Haletky recommends grabbing the  
.vm* files in same directory as the target VM’s vmdk file. You should also copy  
the file that is listed in the .vmx configuration file as “ide0:0.fileName =” If listed, 
this file is the original image file used to create the VM.

The .vmdk files (Virtual Machine DisK) are the primary VM files. They document 
the virtual environment and how it is stored. The *-delta.vmdk is produced when you 
take a snapshot. When the snapshot is taken, VM stops writing to *-flat.vmdk and 
begins writing to the differential file *-delta.vmdk. This file would be helpful in 
determining the changes that occurred on the VM following a snapshot, if one had 
tools to interpret the information. The VM also creates a .vmsn (Virtual Memory 
SNapshot file), which contains the contents of memory when the snapshot was taken. 
As described earlier, the VM produces a .vmss (Virtual Machine Suspended State file) 
when the VM is paused.

Acquiring the files is just the beginning, as Mr. Haletky reminds us in “Virtual 
Server Investigations: VM Forensic Tools Remain MIA,” an online article in the July 
28, 2008 CIO magazine. Once the files are acquired, the investigator faces the problem 
of the lack of accepted VM forensic tools, processes and procedures.

Unless and until these tools, processes, and procedures are created, it will be up to 
each of us to solve the problems we encounter when working cases involving VMs, 
and in the process, to develop the very tools we are seeking.

We have only begun to scratch the surface of the complexity and potential benefits 
which virtualization will bring us. Take, for example, the challenges to forensics 
represented by the VMware product called VMotion. Here’s a quote from a VMware 
overview of the product “VMware VMotion technology, unique to VMware, leverages 
the complete virtualization of servers, storage and networking to move an entire 
running virtual machine instantaneously from one server to another.” VMotion allows 
you to perform live transparent (invisible to the user) migrations without downtime, 
continuous automatic optimization of VMs in a resource pool, and to proactively 
move VMs away from a failing server or one with performance issues.



	 Forensic Analysis • Chapter 9	 247

The use of virtualization will only grow from this point on, bringing more 
challenges for forensics and security in general. 

Caution: VM-Aware Malware Ahead
Investigators need to be aware that some malware is VM-aware and that they behave 
differently in a VM environment than they would normally. If you are lucky, then the 
malware will fool either your malware analysis tools or the investigator but not both. 
In some cases, the measures taken to fool the malware analysis code do so in a way 
that a trained observer would spot. In a case like this, static forensics might reveal the 

Tools & Traps…

Tools Referenced
Here are the tools referenced in this chapter:

Edward Baca’s Virtual Penguin 
Sleuth Kit

www.vmware.com/vmtn/appliances/
directory/249/

e-fense’s Helix Forensics CD www.e-fense.com/helix/

Mark Russinovich’s System 
Internals tools

http://technet.microsoft.com/en-us/
sysinternals

Intel®’s Steve Mancini and 
Joe Schwendt RAPIER

http://RAPIER.sourceforge.net

Brian Kaplan’s (CERT) Live View http://liveview.sourceforge.net/

Digital Intelligence’s Ultrablock 
write blocker

www.digitalintelligence.com/products/
ultrablock/

Peter Nordal–Hagen’s 
NTPasswd

http:/ /home.eunet.no/~pnordahl/
ntpasswd/

Accessdata’s FTK Imager www.accessdata.com/downloads.html

Guidance Software’s EnCase www.guidancesoftware.com/products/
ef_index.aspx

VMware’s VMotion www.vmware.com/products/vi/vc/ 
vmotion.html



248	 Chapter 9 • Forensic Analysis

subterfuge. In any event, investigators should watch for signs that the system might be 
VM-aware and not just for malware analysis. It is inevitable that the bad guys will 
develop a capability to hide evidence when their software detects a VM.

We are still in the early days of applying this virtualization technology. We must 
look for any instances where we lose something by placing the suspect’s image in  
a VM. Look at the copy protection technique from the early 1990s where the vendor 
has made a portion of a floppy unwritable and then check by writing to that 
location. If the hard drive could write something there, then the program executed 
different code that would not give the user access to its application. We need to 
discover situations like this that may exist in a virtual environment before we 
encounter them in a real case.



	 Forensic Analysis • Chapter 9	 249

Summary
Virtualization technology offers many benefits in the field of digital forensics. With 
virtualization, investigators have the ability to produce higher quality forensics in less 
time. The choice to refresh the image to ensure integrity is no longer painful; it is a 
simple touch of the “refresh” button. Moving from your Windows tools to your Unix 
tools is just a reboot away. Virtualization permits us to observe the suspect’s computer 
operating on the suspect’s data without fear of contamination. This alone would 
make the use of virtualization desirable, but there is much more. Virtualization gives 
us the ability to analyze booby-traps and time bombs left by the suspect without 
putting the evidence in jeopardy. If the case you are investigating affects your entire 
enterprise, virtualization permits you to observe and instrument the suspect computer 
to gather intelligence about external components of the incident and to identify 
internal participants.

Let us not forget the value obtained by using virtualization to demonstrate 
complex evidence in a way the judge and jury can readily understand. Even though 
the demonstration is not in and of itself evidence, the power of demonstration 
cannot be understated.

In short, virtualization is a powerful tool in the forensic investigator’s toolkit.

Solutions Fast Track
Preparing Your Forensic Environment

Set aside dedicated workstations for Forensics:˛˛

a.	 Size the hard drives to handle the largest drives in your organization.

b.	 Be able to attach drives by any means (USB, firewire, IDE, SATA,  
PATA, etc) that exist in your organization.

Image drives should be single purpose. Nothing else but images should be ˛˛

stored there.

Securely delete images or replace the image drive when cases are removed ˛˛

from the forensic system.

Secure the VM environment host against external and internal attack, ˛˛

particularly from attacks from within the virtual systems.



250	 Chapter 9 • Forensic Analysis

Document and configuration control the deployed Forensic workstation. ˛˛

Place a copy of this inventory in each case file (for reproducibility).

Create a Live-CD of this system to use when performing digital forensics in ˛˛

the field.

Capturing the Machine
Court expectations and traditional forensic methods face several challenges ˛˛

today:

a.	 Very large hard drives.

b.	 Complex cases involving many hard drives.

c.	 Cases where volatile but important information will be lost if the suspect’s 
computer is shut down.

d.	 Critical systems that can’t be shut down in order to take an image.

Ensure that the tools that you use and the way that you use them will ˛˛

produce a forensically sound image.

Using two forensically sound images, set up parallel forensic environments. ˛˛

One will be used for traditional forensic techniques. The other will use  
a virtual instance of the suspect’s computer, made from one of the two 
forensically sound images.

Use a tool like Live View to make a virtual instance from a forensically ˛˛

sound image.

Preparing the Captured  
Machine to Boot on New Hardware

Create an MD5 or SHA-2 checksum for the forensically sound images. ˛˛

Note-SHA-1 is no longer accepted for this purpose.

Once the VM is able to boot, all peripherals have been configured, and the ˛˛

password has been cracked. If necessary, save a VM snapshot so that the image 
of the VM in this state can be restored using Refresh.



	 Forensic Analysis • Chapter 9	 251

Save a copy of the configuration files of this snapshot to document the ˛˛

changes from the basic image which are necessary for the VM to run inside 
the VM environment instead of on the suspect’s hardware.

What Can Be Gained by  
Booting the Captured Machine?

Virtualization may permit you to observe behavior which is only visible ˛˛

while the system is live.

Attorneys can use a VM of the suspect’s computer in the courtroom to ˛˛

demonstrate the meaning of mountains of printed data.

A VM of the suspect’s machine will permit investigator’s to view old files or ˛˛

files which require special or proprietary software.

Investigators can discover and analyze time bombs and booby traps left by ˛˛

the defendant with impunity.

Using the suspect’s programs and data, it is easier to get in the mindset of the ˛˛

suspect

Using the suspect’s programs and data will reveal some relations between ˛˛

data more easily.

You can examine any malicious code found during the investigation and ˛˛

collect intelligence information about botnets or virus infected systems used, 
operated, or distributed by the suspect.

By examining malicious code in an instrumented, virtual environment, you ˛˛

can collect intelligence information about other participants in the crime 
being investigated.

Pausing the VM will cause VMware to capture processes and data in memory ˛˛

in *.vmss files, which can be examined. This can reveal decrypted versions  
of packaged, malicious code.

This section also discussed the unique concepts involved when the suspect’s ˛˛

computer is a VM. Performing forensics on an instance of a virtual machine 
is different than performing forensics using a VM.



252	 Chapter 9 • Forensic Analysis

Investigators should understand that VM aware malware exists. They should ˛˛

look for signs that the suspect’s computer may include software that detects 
the presence of a VM environment and alters its behavior accordingly.

We are in the early days of using virtualization in the forensics arena.  ˛˛

We should be on the lookout for any instance where investigators might lose 
information by examining the image in a virtual environment instead of in  
a physical environment.



	 Forensic Analysis • Chapter 9	 253

Frequently Asked Questions
Q:	What is different about imaging a VM (e.g., a production virtual server) from 

imaging a physical drive?

A:	We image a physical drive to ensure that information that may reside in slack 
space and unallocated space is available for forensic examination. The information 
in slack space and unallocated space may represent information from previous 
activity on the suspect’s computer. It may contain information related to a case in 
which a suspect or malicious code may have attempted to delete. For a VM, the 
slack space and unallocated space investigators may be interested in is located in 
the image file and its representation associated with the VM. Copying the image 
file and associated VM files is sufficient to recreate the VM, with the exception 
being the case where tampering via the host computer is suspected. In that case 
the host becomes suspect and the slack and unallocated space of the physical 
drives of the host become the target of the investigation and would need to  
be acquired.

Q:	What is Locard’s Exchange principle and how is it related to forensics?

A:	Edmund Locard (1877–1966) was the director of the first (according to some) 
crime lab, in Lyon, France. Locard’s Exchange principle is a fundamental concept 
of forensic science. In its simplest form it says that every contact leaves a trace. 
Professor Locard, in “Manuel de Technique Policière,” Paris: Payot, 1923” and his 
other works, explains the principle in this way. “Wherever he steps, whatever he 
touches, whatever he leaves, even unconsciously, will serve as a silent witness 
against him. Not only his fingerprints or his footprints, but his hair, the fibers 
from his clothes, the glass he breaks, the tool mark he leaves, the paint he 
scratches, the blood or semen he deposits or collects. All of these and more bear 
mute witness against him. This is evidence that does not forget. It is not confused 
by the excitement of the moment. It is not absent because human witnesses are. 
It is factual evidence. Physical evidence cannot be wrong, it cannot perjure itself, 
it cannot be wholly absent. Only human failure to find it, study and understand  
it can diminish its value.”



254	 Chapter 9 • Forensic Analysis

Q:	Can you repeat the steps involved in using virtualization for forensics without all 
the explanation?

A:	Sure.

  1. � First, you gain access to the suspect’s drive through your normal means  
(e.g., warrant).

  2. � Next, you acquire two images and associated cryptographic checksums using 
dd, FTK Imager, or another tool.

  3.  Both are placed in a chain of custody process.
  4.  One image is used to create a VM using Live View or another means.
  5.  The VM is started and password is cracked (Ntpasswd) if needed.
  6.  The VM is restarted, and a snapshot is taken of the cracked VM.
  7. � The investigator does the investigation using windows or UNIX tools as 

desired.
  8. � The investigator prepares a report with the findings and recommends the 

information that needs to be extracted using traditional forensics methods 
from the second image.

  9. � Using traditional forensic methods the evidence is extracted from the 
second image.

10. � The investigator prepares the evidence report with the information extracted 
using traditional methods.

11. � Optionally, demonstrations are prepared using the VM for use in the trial to 
explain the meaning of the evidence.



255

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 10

Disaster Recovery

Solutions in this chapter:

Disaster Recovery in a Virtual Environment■■

Simplifying Backup and Recovery■■

Allowing Greater Variation in Hardware ■■

Restoration

Recovering from Hardware Failures■■

Redistributing the Data Center■■



256	 Chapter 10 • Disaster Recovery

Introduction
I was once in a class talking to a guy who was using a virtualization tool to run 
Windows inside of Windows. The idea of doing this intrigued me. I asked him about 
it and he explained that he did it for a couple reasons. The first was that he could 
back all of his important data up by dragging a handful of files to a removable drive. 
The second was that whenever he got a new computer, migrating to the new  
computer was as simple as installing his virtualization tool, and copying his virtual 
machine onto the new computer. He didn’t have to reinstall anything. He didn’t have 
to go through every directory looking for things that he might want. He didn’t  
have to set up directories marked _OLD just in case he forgot something.

Disaster recovery poses very similar issues to the ones he solved on a minor scale. 
It can be prohibitively expensive to maintain hardware of the proper configuration 
for each critical server in a data center. Just trying to keep backups current without 
having to shutdown services for the copy can be cumbersome.

Happily by having machines virtualized, a number of benefits can be realized. 
This chapter will illustrate some of those benefits. Hopefully the reader will see  
the flexibility which comes from having servers that can be moved from hardware 
platform to hardware platform with minimal reconfiguration.

Disaster Recovery  
in a Virtual Environment
The nuances of disaster recovery can mean many things to many people. Fundamentally 
however, disaster recovery implies the ability to recover and restore an organization’s  
IT infrastructure, reducing (or eliminating) the amount of time the organization experi-
ences a business outage. Disaster recovery includes not only recovering from things like 
natural disasters that impact the entire datacenter, but also recovering from incidents  
that may impact a single system such as hardware failure, a security compromise, etc.  
In a virtual environment, the definition of disaster recovery is no different than in  
a traditional/physical environment. You still need to determine:

What is the maximum downtime that can be tolerated?■■

What is the maximum amount of data loss that can be tolerated?■■

What is the classification of resources (critical, urgent, normal,  ■■

nonessential, etc.) for restoration?

What kind of recovery plan is required for various types of disasters?■■



	 Disaster Recovery • Chapter 10	 257

What is unique to a virtual environment is the number of options for disaster 
recovery that are available and how disaster recovery can be implemented. Unlike 
traditional physical infrastructure, because the virtualized environment typically exists 
as discrete sets of files, disaster recovery of virtualized assets typically enjoy a much 
more simplified backup and recovery process, greater portability of resources, and  
a decreased recovery time.

Simplifying Backup and Recovery
A fundamental tenet of most disaster recovery plans is the ability to back up critical 
data and then restore the data as part of the recovery process. In traditional environ-
ments this typically entails running a backup agent on the system and backing up the 
relevant files to tape, disk, or other offline storage media. In the event of a disaster, 
you can restore the data to a system with the only data loss typically being the data 
after the time of the last backup. Additionally, some backup applications support 
backing up and restoring the entire system. The benefit of this approach is that you 
don’t need to have a system running and operational to restore the data to; rather, 
you simply restore the entire system to a new server.

The basics of backup and recovery in a virtual environment aren’t any different; 
however, the options available are. In addition to treating a virtual machine like a 
physical machine and backing up and restoring the system at the file level—because 
virtual machines are typically discrete files themselves—some additional backup and 
restore options become available.

File Level Backup and Restore
The first backup and restore option is to simply treat the virtual machine like a 
physical machine and back it up in the exact same manner as you would the physical 
machines in your environment. The biggest benefit to this approach is that it provides 
a consistent backup and restore methodology throughout the entire organization. 
Regardless of whether the system is a virtual machine or not, the backup and restore 
procedures will likely be consistent for all systems. This consistency can reduce both 
training and complexity in your environment since there is nothing fundamentally 
unique or different with regard to managing the virtual machines.

There are some significant drawbacks to this methodology however. First, because 
virtual machines are designed to share the hardware resources of the host that is 
running the hypervisor, performing file-level backups within the same backup  
window can potentially result in resource contention and performance degradation  



258	 Chapter 10 • Disaster Recovery

as all virtual machines try to use the same CPU cycles for their backups at the same 
time. Second, because virtual machines are typically discrete files, the backup system 
can’t take advantage of the encapsulation of the VMs into these files, which in turn 
allows for a robust system-level backup and restore.

System-Level Backup and Restore
Because virtual machines are typically nothing more than a set of files that exist on 
the virtualization server (for example, .vmdk files on VMware ESX), it is possible to 
back up and restore the entire system by simply backing up and restoring the files  
that make up the virtual machine.

This approach provides for a tremendous degree of both flexibility and portability 
in the back up and restore process. Since the entire system is backed up, during  
the restoration the entire system can be restored which typically makes the system 
available as soon as the restoration is completed. This can reduce the downtime 
required to recover from a disaster. Additionally, since the entire system is contained 
in the backed up files, the system can potentially be restored to any hardware plat-
form capable of reading the virtual machine files. For example, if you have VMware 
ESX servers running at both the primary location as well as the disaster recovery 
location, the restoration can be as simple as restoring the files to the new ESX servers 
and powering the virtual machines on. As more vendors begin using Open Virtual 
Machine Format (OVF), this portability of restoration allows for the restoration of  
a virtual machine between any virtualization vendor’s systems. So, for example, you 
could backup the virtual machine on VMware ESX server and restore it to Microsoft 
Hyper-V or Citrix XenSource and vice-versa.

For most vendors, the ability to backup and restore at the system level leverages 
some mechanism of snapshot technology. Snapshots are simply a means for locking 
the state of the virtual machine at a point in time. This allows the virtual machine  
to then be potentially restored to the point at which the snapshot is made. Snapshots 
can typically be made of both running and powered-down systems. Because the 
snapshot process is typically handled by the virtualization software, the snapshot  
of a live system can be taken without any downtime, and frequently with little or  
no performance impact to the virtual machine as well as without needing to do 
anything special (such as shutting down services) with the software running within 
the virtual machine. This snapshot, or read only copy of the machine state at the  
time of the snapshot, can then be backed up using traditional backup mechanisms.



	 Disaster Recovery • Chapter 10	 259

While the portability and ease of recovery are compelling advantages to system-level 
backup and restore, there are some disadvantages to be aware of. First, a system-level 
backup and restore is an “all or nothing” exercise. System-level backups lack the ability 
to back up or restore individual files. If you need to restore, you have to restore the 
entire VM, which could cause changes you want to be rolled back as well as the failures 
you may be attempting to recover from. Consequently they are not effective as a means 
of recovering from the loss of only certain files, such as when a user accidentally deletes 
something. Additionally, since a virtual machine may consist of tens of gigabytes of data, 
the space required to back up and store the virtual machine, as well as the time required 
for the restore (and potentially the backup if an offline backup mechanism isn’t utilized) 
can be significant, and must be planned for accordingly. 

Notes from the Underground…

Using Snapshots to Test Patches and Updates
While snapshots are a good mechanism to support system-level backup and 
restore, they can also be used for saving a virtual machine in a “known good” 
state in the event that you need to make changes and updates, but want  
a quick and easy recovery path in the event of a failure. For example, you can 
take a snapshot of a VM before applying a significant patch/update or before 
making a major change, and if you run into problems you can potentially  
rollback the changes by simply reverting to the saved snapshot.

Shared Storage Backup and Restore
In many virtualization implementations, the virtual machine files themselves will 
actually be stored on some form of shared storage such as SAN, NAS or iSCSI 
device. As a result, backup mechanisms such as Network Data Management Protocol 
(NDMP), which can back up the shared storage, can be used to back up the virtual 
machine files in the same manner that any other files on the shared storage system 
can be backed up. Similarly, the restoration process is fundamentally no different  
than restoring any other file on the shared storage.



260	 Chapter 10 • Disaster Recovery

A good hybrid option available for backing up and restoring files is to take 
advantage of both the system-level backups and your SAN vendor shared storage 
replication. If your SAN has been designed to provide for replication to a DR site,  
storing the snapshots of the system level backup on the SAN and then utilizing the 
SAN replication functionality will enable you to quickly and reliably bring the 
virtual machines online at the DR site as shown in Figure 10.1. If a server in the 
primary location fails, because SAN replication has replicated the virtual machine 
files to the DR site, the virtual machines on the server that failed can be powered on 
at the DR site since all the files required for the virtual machine to operate have 
been replicated to the DR site already.

Figure 10.1 A Shared Storage Replication Example

The drawbacks to SAN storage and backup are similar to a system backup and 
restore. Because the virtual machine files themselves are what is being backed up,  
it is not possible to perform file-level restoration within the virtual machine.  
You must back up and restore the entire virtual machine.



	 Disaster Recovery • Chapter 10	 261

Allowing Greater  
Variation in Hardware Restoration
Because virtual machines tend to be hardware agnostic (that is, the virtual machine 
tends not to care too much about the physical server hardware) disaster recovery of a 
virtualized environment typically allows for a much greater variation in the hardware 
that is required to recover the environment. This level of hardware independence helps 
to reduce many of the complexities involved in attempting to perform bare-metal 
restoration operations. Because the hardware that the virtual machine is presented with 
by the virtualization platform tends to be the same regardless of the physical machine 
involved, the virtual machine can typically be restored and run on any hardware 
available. For example, as long as the hardware is capable of running VMware ESX  
a virtual machine that ran on one physical server can typically be run on any other 
physical server that is capable of running VMware ESX with little to no configuration 
required to make the virtual machine work.

Most DR sites use one of two types of methodologies for defining the hardware 
used at the DR site. For environments with a budget, the DR site will typically consist 
of the exact same hardware used in the production datacenter. This helps ensure that 
applications and systems in the production datacenter can run as effectively at the  
DR site as at the production site, since at the hardware level everything is the same. 
Obviously the major drawback of this is cost. The DR site will typically double the 
cost involved in any production server in order to provide for the server functionality 
in the DR site. If a server cost $50,000 for the production site, you will need to spend 
an additional $50,000 for the same server to be located at the DR site.

The other DR site methodology consists of lower end (frequently previous 
generation) hardware that exists solely for the purposes of DR. IT organizations 
often have a hard time with budgetary justifications for the same hardware that is 
used in the production environment, since the DR site might be viewed as some-
thing that is not used 99% of the time and doesn’t need to perform at the same  
level as the production environment (the classic “we just need enough capacity to  
get through the disaster, not to run our entire organization” syndrome). While this 
may save money over the initial investment in standing up and maintaining the  
DR site, it has the significant drawback that the servers that are being used may not 
be capable of effectively running the systems and applications required. Additionally, 
the physical hardware is different and you may have more costs over the long run 
associated with maintenance and configuration of so many different types of systems.



262	 Chapter 10 • Disaster Recovery

With virtualization, as long as you have servers that are capable of running the 
virtualization software, the virtual machines become highly portable and easy to 
move and bring online at the disaster recovery location. As previously mentioned, 
from the perspective of the virtual machine, the hardware it “sees” is whatever the 
hypervisor presents to it. The bare metal is completely transparent to the virtual 
machine in most cases (32-bit and 64-bit CPUs are a notable exception). So, as long 
as you are running the same virtualization software (for example Microsoft Hyper-V 
or VMware ESX), the virtual machine doesn’t care what the underlying hardware is 
and can be moved between hardware types with little or no configuration required. 
By simply relocating the virtual machine files to servers running at the DR site and 
powering them on, all critical assets can be quickly and easily recovered, independent 
of the need for the same hardware running at the DR site as in the production 
environment.

Additionally, because of the hardware independence there are a number of 
options for recovery that become available that not only reduce the number of 
servers required for disaster recovery, but also provide for a means to better manage 
the required capacity.

Different Number of Servers
Perhaps the most compelling justification for virtualization in a disaster recovery 
scenario is the potential to significantly reduce the number, and thus the cost, of the 
servers required to recover functionality for the organization. This exhibits itself 
particularly in two scenarios:

Using virtualization for recovery of physical systems■■

Using virtualization for recovery of virtual systems■■

Using Virtualization for  
Recovery of Physical Systems
A viable use of virtualization in a disaster recovery scenario is to use virtualization  
at the DR site in order to provide for capacity of physical systems running in the 
production datacenter. In classic DR methodology, every server running in produc-
tion requires a corresponding server at the DR site in order maintain the same 
functionality and capacity that is required by the production computing resources.  
If you run Microsoft SQL in production, but don’t have Microsoft SQL running at 



	 Disaster Recovery • Chapter 10	 263

the DR site, you can’t bring your Microsoft SQL resources online in the event of  
a disaster. Because of the 1:1 nature of traditional DR sites, the costs required to 
maintain and operate the DR site can easily double the costs of the production 
systems. Even if smaller or less powerful hardware is used, it may still require the  
same amount of hardware, software, and maintenance as well as similar (if not  
the same) power and cooling requirements.

Virtualization can help reduce the costs associated with maintaining the  
DR facilities by providing the ability to replicate the functionality of multiple  
physical systems on a single system running multiple virtual machines—each virtual 
machine representing a corresponding physical system. In this way, you can maintain 
the traditional separation of roles that each server may have in your environment, 
while leveraging the resource sharing aspects of virtualization to provide the same 
functionality on a smaller quantity of physical resources. Even if you are only able  
to run 2 virtual machines on each physical server, you can still reduce the number  
of servers required to maintain DR site operations by half.

A drawback to this methodology is that it typically requires some form of file-
level backup in order to restore data between the physical and virtual machine. 
Additionally, some applications may benefit from application-level replication strate-
gies, such as SQL replication, to maintain data consistency between the physical and 
virtual machines. The initial setup of the systems, however, can benefit from vendor 
Physical-to-Virtual (P2V) virtualization tools such as VMware Converter which allow 
a physical machine to be easily virtualized.

Using Virtualization for  
Recovery of Virtual Systems
Similar to physical systems, virtualization can also be used for disaster recovery of 
other virtual systems. The benefits are similar to those of physical systems. In most 
cases the implementation of the production virtualized assets places a high degree  
of importance on performance of the virtual machines. Additionally the capacity of 
the product virtualization implementation is typically designed for 100% of the 
virtualized resources to be running at any given time.

In a disaster recovery scenario however, it is common that not all production 
assets are required to be operational at the DR site. As a result, the virtualization 
resources required at the DR site are frequently smaller than the corresponding 
production datacenter. For example, if in a DR scenario you only need 75% of  



264	 Chapter 10 • Disaster Recovery

the resources to be operational, you can reduce the number of servers running at the 
DR site by 25%.

A DR scenario also typically does not require the same level of performance that 
might be expected in the normal production operations environment. This may allow 
you to be able to further reduce the total number of servers required by running 
more virtual machines per server than you do in the production environment. For 
example, you may run six virtual machines per server in production, but you might 
be able to get by with 10 virtual machines per server in a DR scenario. When used 
in conjunction with potentially being able to reduce the servers required to be 
operational in a DR scenario, you may be able to operate the DR site using a much 
smaller footprint of physical servers than the production environment used. This is  
a delicate proposition however, and must be extensively tested to ensure that the 
performance remains at acceptable levels.

Because of the portable nature of virtual machines, there are relatively few  
drawbacks to this scenario. In addition to supporting file-level backup and restore, 
just like a physical environment, using virtualization for both the production and  
DR environments can also take advantage of system-level backup and restore  
and snapshots for a quick, efficient, and effective disaster recovery. 

Damage & Defense…

Portability of Virtual Machines: A Blessing and a Curse
Perhaps the biggest benefit that virtualization provides the DR process is the 
fact that virtual machines are easily portable. It’s easy to make a copy and 
move it in the event of a disaster. This same portability cuts in other ways  
however. Remember that those virtual machine files are functionally equiva-
lent to having a physical server. Be very careful to track and secure access to 
the files, because if a malicious user obtains access, it would be the same as 
boxing a physical server up and mailing it to them. When old snapshots or 
backups are no longer needed, they should be destroyed—the same way that 
you would wipe a physical server before disposing of it.



	 Disaster Recovery • Chapter 10	 265

Recovering from Hardware Failures
While disaster recovery is frequently considered in the context of addressing a natural 
disaster, or a disaster on a scale of magnitude that impacts the entire datacenter, a far 
more frequent disaster is a failure that impacts a single server. This can range from 
something as simple as a basic hardware component failure to a catastrophic failure  
of the entire system. Much like with the large scale disaster, virtualization can be a 
very effective method of recovering from the failure.

As we mentioned, the virtual machine is separated from the physical hardware  
by the virtualization technology, such as Citrix XenSource, Microsoft Hyper-V, or 
VMware ESX. This allows the virtual machine to be completely independent of the 
underlying hardware. As a result, the virtual machine has the ability to tolerate being 
moved to a different piece of hardware (with some restrictions, such as CPU type)  
in the event of a hardware failure. There are a number of ways that recovering from 
hardware is facilitated by virtualization.

The most efficient recovery is if the virtual machine files reside on shared storage. 
In the event that the server has a failure, it can be as easy as connecting the new 
server to the shared storage, importing the virtual machine files to the new server 
and powering the virtual machine back up. In this circumstance the virtual machine 
typically recovers as if it were a physical server and someone had accidentally hit the 
power button.

If you are actively backing up the virtual machine as a system-level backup, an 
additional recovery method is to simply restore the virtual machine files to a new 
server, importing the virtual machine as required.

To further automate the recovery from hardware-related failures and disasters, 
many virtualization vendors provide the means for automated hardware failure  
recovery via high-availability solutions. We will explore this more in Chapter 11.

Redistributing the Data Center
The portable nature of virtual machines also lends itself to the ability to forego the 
traditional concept of a dedicated DR site, in particular if your environment already 
has multiple production datacenters. Many companies have regional datacenters; for 
example, one on the west coast and one on the east coast. If virtualization is utilized 
at both locations, rather than needing a dedicated DR site, you can facilitate the DR 
functionality by ensuring that there are enough resources available at both locations 



266	 Chapter 10 • Disaster Recovery

to allow virtual machines from one location to be run at the other location. For 
example, if you have two datacenters and you require 10 physical servers to provide 
the resources and capacity to run 50 virtual machines at either location and in the 
event of a disaster you need the ability to run 25 of those virtual machines at the 
other location, you can build out both datacenters with 15 physical servers. This will 
provide not only the resources to run the local production resources, but provide  
for spare capacity that can be used in the event of a disaster to bring the virtual 
machines required online and operational.



	 Disaster Recovery • Chapter 10	 267

Summary
Disaster recovery is one of the most critical elements of successful IT operations. 
Depending on the sources cited, anywhere from 60 to 90% of companies that  
experience disaster without a proactive disaster plan will be out of business within 
two years of the disaster. Virtualization technologies can be a significant enabling 
technology in building a proactive disaster plan.

Virtualization can simplify backup and recovery by providing an easy way to 
perform system-level backup and restoration because the virtual machine is encapsu-
lated in a discrete set of files that are easy to back up and restore independently of  
the application or services residing in the virtual machine.

Virtualization also provides for a greater degree of hardware independence since 
the virtual machines are separated from the physical hardware by the virtualization 
technology that is being used. Consequently it is easy to move a virtual machine 
between different physical server hardware with little or no configuration or changes 
required on the virtual machine.

In addition to facilitating and simplifying broad scale disaster recovery, virtualiza-
tion can simplify the recovery of hardware failures—again largely due to the fact that 
the virtual machine is independent of the actual hardware in use. As long as another 
server is available to process the virtual machine files, the virtual machine can be 
quickly and easily brought back into operation.

Finally, virtualization enables the ability to quickly and easily redistribute resources 
between datacenters providing the same degree of recovery that a dedicated DR site 
does, without the additional expenses and costs of a dedicated DR site.

Regardless of how you implement your disaster recovery, something that must 
never be overlooked is the need to test, verify, and validate the disaster recovery 
process. Any disaster recovery process can look solid on paper, but you want to make 
sure to regularly and routinely test and validate that you are able to successfully 
execute the disaster recovery plan so that if you are ever in a situation where you 
must implement it, you have a high degree of confidence in its success.



268	 Chapter 10 • Disaster Recovery

Solutions Fast Track
Disaster Recovery in a Virtual Environment

Disaster recovery implies the ability to recover and restore an organization’s ˛˛

IT infrastructure, reducing (or eliminating) the amount of time the 
organization experiences a business outage.

In a virtual environment, the definition of disaster recovery is no different ˛˛

than in a traditional/physical environment.

What is unique to a virtual environment is the number of options for ˛˛

disaster recovery that are available and how disaster recovery can be 
implemented.

Simplifying Backup and Recovery
Supports File Level, System Level and Shared Storage backup and restore.˛˛

File level backup and restore provides for consistency of function throughout ˛˛

the organization.

System level backup and restore leverages snapshots and the portability of  ˛˛

the virtual machine for quick backup and restoration to other virtualization 
servers.

Shared storage level backup and restore takes advantage of storage vendor ˛˛

tools to back up the entire virtual machine.

Allowing Greater Variation in Hardware restoration
Virtual machines are independent of underlying hardware˛˛

This independence makes it easy to restore virtual machines regardless of  ˛˛

the physical hardware that is being used.



	 Disaster Recovery • Chapter 10	 269

Recovering from Hardware Failures
Because of the portability of virtual machines, it is relatively easy to move  ˛˛

a virtual machine from failed hardware to functional hardware.

Many vendors provide automated mechanisms for hardware recovery in the ˛˛

form of high availability configurations and options.

Redistributing the Data Center
Virtualization can be used to provide for disaster recovery without the  ˛˛

need for a dedicated DR site by allowing resources to be quickly and easily 
redistributed between datacenters.



270	 Chapter 10 • Disaster Recovery

Frequently Asked Questions
Q:	What backup and recovery options are available to virtualized resources?

A:	Virtualized resources such as virtual machines can typically be backed up and 
restored using one of three methodologies: file-level backup and restore, system-
level backup and restore, and shared storage-level backup and restore.

Q:	How often should the DR plan be tested?

A:	At the very minimum the DR plan should be tested on an annual basis. This 
should include validating that all of the resources required to be operational in 
the event of a disaster are able to be successfully restored both to the DR site  
as well as back into production. In areas that experience known disaster times  
(for example hurricane season) the DR plan should be validated more frequently.



271

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 11

High Availability: 
Reset to Good

Solutions in this chapter:

Understanding High Availability■■

Reset to Good■■

Configuring High Availability■■

Maintaining High Availability■■



272	 Chapter 11 • High Availability: Reset to Good

Introduction
One of the most frequent causes of downtime is a failure of the underlying server 
hardware. One of the early promises of virtualization is the ability to keep virtualized 
systems online and operational regardless of problems with the underlying hardware 
by allowing the virtual machine to run on any host in the virtual environment.  
If an individual host fails, it’s no problem because the virtual machine can be run  
on another host with little to no downtime.

High availability is a design methodology used to ensure the uptime and availability 
of virtual machines. Generally speaking, there are two types of downtime that are 
mitigated by high availability provided by virtualization technologies:

Planned downtime■■

Unplanned downtime■■

The chapter will discuss different methods of providing high availability in a 
virtual environment as well as how to maintain and operate the virtualization hosts.  
It will also cover some of the pitfalls of building a high availability infrastructure.

Understanding High Availability
Before any discussion of how to provide for high availability can occur, you must first 
understand what high availability is and distinguish between planned and unplanned 
downtime. Planned downtime is downtime that has been scheduled and is expected 
in the environment. It is typically caused by system maintenance that, while disrup-
tive to the overall system, usually can’t be avoided. Reasons for planned downtime 
range from applying patches or configuration changes that may require a reboot to 
upgrading or replacing hardware. One benefit of planned downtime is that it can be 
more easily managed in order to minimize disruption. In many cases, as we will 
examine, virtualization can actually provide for zero downtime.

On the other hand, unplanned downtime is just the opposite of planned downtime. 
Unplanned downtime typically results from things like power outages, hardware failures, 
software crashes, network connectivity failures, security breaches, and operating system 
failures. While unplanned downtime cannot be easily predicted, it can be more easily 
recovered from in a virtual environment than in a physical environment.



	 High Availability: Reset to Good • Chapter 11	 273

Providing High  
Availability for Planned Downtime
While virtualization cannot provide for zero downtime high availability in all  
circumstances, it can provide for zero downtime in many circumstances. If you recall 
from previous chapters, the virtual machine is isolated from the underlying hardware 
and operating system by the hypervisor. This isolation allows the virtual machine to 
operate completely independently of the underlying hardware. Consequently, the 
actual host is effectively irrelevant. As long as there is a host available with the capac-
ity necessary for the virtual machine to operate, the virtual machine can be run there.

This capability creates the first scenario for providing high availability in a virtual 
environment. Ultimately what matters is that the applications running in the virtual 
machine remain available. If you can do that, you have achieved zero downtime.  
So in circumstances where the downtime is planned and does not require the virtual 
machine itself to be rebooted or taken offline in any manner, providing high avail-
ability is as simple as relocating the virtual machine to another host, performing 
whatever maintenance is required, then bringing the host back online. This is 
depicted in Figure 11.1.

Figure 11.1 How High Availability Works



274	 Chapter 11 • High Availability: Reset to Good

Virtual machines are running on both HOSTA and HOSTB. If HOSTA needs to 
be taken down for maintenance, VM1 can be moved to HOSTB while the relevant 
maintenance is performed on HOSTA. HOSTA can then be brought back online 
returning the overall virtualization environment to its original capacity. In many cases 
the migration of the virtual machine between hosts can be done with no downtime 
using “live migration” technologies such as VMware VMotion. VMotion requires 
shared storage to be configured for all of the hosts, which in turn allows the virtual 
machine to be migrated between hosts while it remains online and operational.  
In many cases the migration occurs without any indication that the virtual machine 
has been moved.

Obviously if the virtual machine itself requires maintenance, for example applying 
patches to the virtual machine, which requires a reboot, you cannot have zero down-
time. However if you need to replace or upgrade hardware on the host, apply patches 
to the host, or reconfigure the network on the host, virtualization can truly provide 
for zero downtime maintenance.

Providing High  
Availability for Unplanned Downtime
In a perfect world we would anticipate potential downtime and plan accordingly to 
minimize or eliminate the impact to the user community. Of course we do not live 
in a perfect world, which means that sooner or later an unplanned and unexpected 
outage is going to occur. In this circumstance, while virtualization cannot typically 
prevent the downtime, it can frequently minimize the amount of time the systems  
are down.

Similar to the planned downtime scenario, because the virtual machines are 
independent of the underlying hardware, if a failure occurs on a given host most 
virtualization vendors provide a mechanism such as VMware High Availability 
Clustering to automatically identify the host failure and bring the virtual machines 
online on a different host. While this will not prevent the downtime, because of  
the automation that virtualization provides the amount of downtime is typically  
a fraction of what it would be on a physical system.



	 High Availability: Reset to Good • Chapter 11	 275

Reset to Good
The fundamental objective of any high availability implementation is to be able  
to reset the environment to a good, functional state as quickly as possible. There are  
a number of methods by which this can be provided, but they typically fall into  
two broad categories:

Utilizing vendor tools to reset to good■■

Utilizing scripting or other mechanisms to reset to good■■

Utilizing Vendor Tools to Reset to Good
Because of how easy it is to provide high availability in a virtual environment, many 
vendors have begun providing everything required for configuring high availability 
native to the virtualization management consoles and tools. This is typically the 

Tools & Traps…

Common Misconceptions  
of High Availability and Virtualization
A common misconception of high availability in a virtual environment is that 
it operates similarly to traditional high availability cluster technologies such as 
Microsoft Cluster Server (MSCS) or Veritas Cluster Server (VCS). Unfortunately 
this is not typically the case. MSCS and VCS are designed to provide zero  
application downtime for both planned and unplanned downtime. In a virtual 
environment while you can typically provide zero application downtime for 
planned downtime, most virtualization vendors allow the virtual machines to 
be inaccessible and started up on a new host in the event of unplanned down-
time. If you require zero downtime in all circumstances, you will probably 
need to invest in traditional high availability cluster solutions. The good news 
is that many of them can actually be installed in a virtual environment giving 
you the best of both worlds: the portability of the virtual environment with 
the zero downtime capabilities of the high availability cluster software.



276	 Chapter 11 • High Availability: Reset to Good

easiest way to not only configure but maintain and support high availability in an 
environment. Frequently, however, this functionality is more expensive than basic 
virtualization and requires the purchase of additional licenses or enterprise versions  
of a vendor product.

For environments that utilize VMware ESX and VMware VirtualCenter, high 
availability is provided as a component of the VI3 Standard and Enterprise editions. 
VMware HA is capable of providing for high availability of virtual machines in the 
event of either virtual machine or host failures. For example, VMware HA can monitor 
the virtual machine for a “guest OS” failure and if detected can automatically restart 
the virtual machine. Similarly, VMware HA can monitor the ESX host and if a failure 
is detected, restart the virtual machines that were running on that ESX host on a 
functional host. It’s important to understand the VMware HA relies on the detection  
of a failure to function. In other words, VMware HA doesn’t prevent a system from 
being down or inaccessible, but it can automatically bring the system back online in 
the event that a failure is detected. This is shown in Figure 11.2.

Figure 11.2 VMware HA



	 High Availability: Reset to Good • Chapter 11	 277

Citrix XenServer uses a similar methodology. With Citrix XenServer, the system 
monitors the health of the hosts in a pool, and if a host fails the virtual machines  
are moved to another host in the pool. Like VMware, this is only effective once  
a failure has occurred.

Utilizing Scripting or Other  
Mechanisms to Reset to Good
In addition to vendor tools, you can also use scripting or other mechanisms such as 
Microsoft Cluster Server (MSCS) to reset the environment to a good, functional 
state. For example, you can leverage powershell to monitor a virtual machine. If it 
detects that the virtual machine is not accessible or is not online, it will attempt to 
restart the virtual machine. In smaller or cost conscious environments this can be an 
easy way to provide for high availability without the cost of the vendor software that 
enables built in, automated high availability.

Another option is to utilize high availability cluster software such as MSCS on 
the virtual machines themselves. A benefit of this approach is that you may be able  
to provide zero downtime high availability in circumstances that otherwise would 
require a period of downtime during which the script or vendor tool could detect  
a failure and start the virtual machine again.

Degrading over Time
A common problem across virtually all software and operating systems is the periodic 
need to restart the system to get it functioning properly again. For example, memory 
leaks, orphaned sessions, and data caches may require that the system be rebooted in 
order to free up the corresponding resources and thus return the system to optimal 
performance. Utilizing high availability technologies (such as the migration of virtual 
machines to other hosts during the reboot process) can be done for underlying host 
servers with zero virtual machine downtime.



278	 Chapter 11 • High Availability: Reset to Good

Configuring High Availability
Each virtualization vendor has its own unique details and steps in order to configure 
high availability, but virtually all of them have the same basic requirements and 
configurations to enable high availability in the environment. These include:

Shared storage■■

Network infrastructure that monitors for failure■■

A pool or cluster of servers that participates in high availability■■

Configuring Shared Storage
A common element in most virtualization high availability configurations is the 
requirement for all of the virtualization hosts to use a common shared storage system 
that the virtual machine files reside on. The reason for this is simple: in order for a 
virtual machine to run on a host, the host has to be able to read the virtual machine 
files. If the virtual machine files are stored in local storage on HOSTA and HOSTA 
fails, it is not possible for HOSTB to read the virtual machine files. However, if the 
virtual machine files are stored on shared storage (such as Fibre Channel, iSCSI, and, 
in some cases, NAS or NFS) any host can potentially read the files, and, in the event 
of a failure the virtual machine can be powered up on any host.

Configuring the Network
In order to determine whether high availability mechanisms need to be activated,  
the virtualization systems need a means to determine whether a failure has occurred. 
The most common method of doing this utilizes heartbeats over the network infra-
structure to determine whether a failure appears to be occurring. Consequently it is 
necessary to configure the network so that the systems that participate in the heart-
beat activities are able to communicate with each other. In most cases you will want 
to use a common subnet for these communications, but some environments will  
use remote or WAN segments to provide for high availability between datacenters. 
This configuration is commonly referred to as stretch clustering. If any network 
devices such as firewalls reside between the systems, the firewall must be configured 
to permit the heartbeat traffic between the hosts. Finally, because the network infra-
structure is used to determine whether a failure has occurred, it is important to 
utilize redundant network connections to reduce the likelihood of a false positive 
causing a failover to occur due to a minor or temporary network issue.



	 High Availability: Reset to Good • Chapter 11	 279

Setting Up a Pool or Cluster of Servers
The final element of most high availability configurations is setting up the actual hosts 
that the virtual machines will reside on. Some vendors refer to setting up the hosts as 
configuring a cluster, while others refer to it as a resource pool or a pool of servers. 
Regardless of the taxonomy used, however, the underlying functionality is the same. 
The hosts are configured to operate as a logical grouping of servers allowing the 
virtual machines to be run on any of the hosts in the cluster or pool (for simplicity 
we will use the term cluster from here on).

Because the virtual machines can run on any host in the cluster it is important 
that the hardware in use be as close to the same as possible for all hosts. In fact, it’s 
best to use physically identical systems. At a minimum most vendors require the 
following hardware to be the same within the high availability cluster:

CPU from the same vendor (AMD or Intel)■■

CPU the same model (except for stepping)■■

CPU with the same features (for example, all CPUs support Intel Virtualization ■■

Technology)

Damage & Defense…

Protecting against a Split Brain
Determining whether a failure has occurred is not a precise science. For exam-
ple, if the network between two hosts has failed but the hosts themselves are 
still functioning, they may know a failure has occurred, but to each host it 
appears as though the other host is who has failed. This situation is known as 
split brain. Each host thinks that the other has failed, and thus attempts to 
bring the resources online locally. When the problem is remedied, you poten-
tially wind up with the exact same virtual machines running at the exact same 
time but in different places. To protect against this you want to have network 
redundancy built into the design to prevent split brain from occurring due to 
a simple network issue. You also can configure most networks with policies to 
handle the situation when two hosts are isolated from each other, commonly 
referred to as isolation response.



280	 Chapter 11 • High Availability: Reset to Good

Additionally, some vendors require that the exact same versions of hypervisor 
software be running on all hosts in the cluster. Although this is not required, it can 
greatly simplify troubleshooting by providing an easy means to compare systems in 
the event that there is a problem. Ideally the hosts will not only be running the  
same version of software, but they will be configured in the exact same manner.

Maintaining High Availability
Configuring high availability is only the first step in reducing downtime in a virtual 
environment. Once the initial configuration and implementation has occurred the 
task of maintaining the systems becomes the key to a successful high availability 
implementation. There are a number of issues, some unique to a high availability 
environment, to be aware of and to plan for accordingly.

Monitoring for  
Overcommitment of Resources
A primary motivator for virtualization is the ability to share the resources and capacity 
of the underlying virtualization hosts among multiple virtual machines. While over 
commitment of resources is not unique to a high availability implementation, in order 
for the high availability implementation to operate properly and provide the availability 
required effective capacity planning is critical.

In many cases for high availability to kick in something in the environment must 
be down, regardless of whether it is a planned or unplanned outage. By definition,  
for high availability functions to take effect, some portion of the normal production 
environment must be inaccessible. This can create a unique problem with high avail-
ability in that if you have allocated enough capacity to accommodate the failure of a 
host (or hosts), the high availability mechanism can have the exact opposite effect of 
what was intended. By oversubscribing the resources in the cluster, high availability 
can inadvertently take other resources down by making the performance of the 
remaining hosts so poor as to be unusable.

To mitigate this it is imperative that any high availability implementation be 
designed to accommodate N+1 capacity at a minimum. N+1 means that when you 
decide which resources are required to run the virtual machines in the cluster, you 
provide capacity for at least one additional host (though some environments might 
use N+2 or more in order to accommodate multiple failures) so that in the event 



	 High Availability: Reset to Good • Chapter 11	 281

that one host fails, all of the resources can still be brought online without adversely 
affecting performance. For example, if you have determined that in order to achieve 
the necessary performance for your environment you require five virtualization hosts, 
go ahead and implement capacity for six virtualization hosts. All six servers can 
typically be used for normal operations and capacity, and, in the event that a server 
fails, you still have the five servers required for optimal operations.

The catch with this is that there is always going to be a tendency to use “spare” 
capacity instead of buying “new” capacity. For example, if you need to add 10 more 
virtual machines and you effectively have 10 virtual machines worth of capacity in 
the high availability cluster, there may be a push to go ahead and just add the virtual 
machines without adding any additional recovery capacity. While this will probably 
work just fine for daily operations, in the event of a failure you will no longer have 
the capacity available to run all of the virtual machines in the environment. In fact, 
many vendors may even prevent a high availability recovery if there are not enough 
resources to effectively bring the virtual machines back online.

Security Implications
Another thing to consider are the security implications of high availability clusters. 
For technical or political reasons, it may be necessary for certain virtual machines  
to never run on the same host system. This could be due to security policies, for 
example, the HR resource must be isolated from other systems, or for technical 
reasons, such as not running all of your domain controllers on one host server since  
a failure could cause the entire domain to become inaccessible.

In the case of a failure, the high availability cluster could potentially bring virtual 
machines online on hosts they otherwise should not be running on. Some vendors 
can mitigate this by utilizing affinity and anti-affinity rules when making a high 
availability decision. Affinity rules define which virtual machines can be run together 
on the same virtualization host and in some cases may even require that the virtual 
machines be located together as a group. Anti-affinity rules are just the opposite; they 
define groups of virtual machines which should never run together on the same host. 
For example, you may be able to configure the domain controller virtual machines 
with an anti-affinity rule so that you never have the domain controllers running on 
the same virtualization host. While this may meet your security requirements, there  
is a delicate balancing act that must be performed. If you have an anti-affinity rule  
in place and the only place that a virtual machine can be recovered to run is on  



282	 Chapter 11 • High Availability: Reset to Good

a virtualization host that the anti-affinity rule prevents from occurring, rather than 
bringing the virtual machine online it will stay offline in order to adhere to the 
anti-affinity rule.

The ultimate question that needs to be asked is whether it is more important  
for a virtual machine to remain isolated or to be brought online in less than ideal 
circumstances. If the answer is that security is the most important aspect, then your 
high availability implementation may not provide the protection you expect in 
certain circumstances. If it is more important that the virtual machine be running, 
then high availability can accomplish the goal, but you will want to make sure that 
the virtual machine is migrated to a host in order to provide the required separation 
at the earliest available time.

High availability is also frequently used to provide protection for virtual machines 
and resources by ensuring that the virtual machine remains operational as much as 
possible. While high availability can certainly help the overall security posture of an 
organization, it shouldn’t be viewed as something to replace other defensive methods. 
If a virtual machine is compromised, all that high availability ensures is that the 
compromised virtual machine stays online and operational. You still need to imple-
ment traditional security and defensive mechanisms such as anti-virus and malware 
protection, intrusion detection/prevention, and firewalls.

Performing Maintenance  
on a High Availability System
One aspect of IT operations for which high availability can definitely reduce down-
time is performing maintenance and patching of an environment, in particular, for 
virtualization hosts. While high availability can bring a failed virtual machine back 
online, many vendors have the ability if you can plan and schedule a server outage to 
move the virtual machines with zero downtime to other hosts in the cluster. Some 
good examples of this are VMware VMotion or XenServer XenMotion. By relocating 
all of the virtual machines on a particular host in a cluster to other hosts in the 
cluster, the freshly emptied host can be shutdown, patches can be applied, and main-
tenance can be performed with no downtime. When the maintenance is complete, 
you simply bring the host back online and reverse the process of relocating the 
virtual machines from the other hosts in the cluster back to the updated host.



	 High Availability: Reset to Good • Chapter 11	 283

When you do this you want to be mindful of something we discussed earlier, 
specifically the recommendation that as much as possible you should run all hosts  
in a cluster with the exact same software versions and configurations. Consequently 
you will want to test any patches or updates first, then roll them across the entire 
cluster in a structured fashion to minimize impact and downtime as well as to ensure 
that when maintenance is completed all of the virtualization hosts are as identical as 
possible.



284	 Chapter 11 • High Availability: Reset to Good

Summary
One aspect of virtualization is its ability to leverage the technology to provide for 
high availability of virtual machine resources. Rather than requiring specialized 
hardware and software, as might be the case in a traditional environment, by leverag-
ing the ability to build high availability clusters you can reduce or eliminate both 
planned and unplanned downtime.

There are a number of tools you can use to reset the environment to good, but 
they primarily fall into two categories: the first is vendor tools such as VMware HA 
or Citrix XenServer High Availability, and the second is scripted mechanisms that 
might include traditional HA tools such as Microsoft Cluster Server.

While the specific details of configuring high availability differ from vendor to 
vendor, most share three common elements. You must configure shared storage so that 
all of the hosts can read the virtual machine files. You must configure the network 
infrastructure to allow for heartbeats and failure detection mechanisms to operate. 
Finally, you need to define a cluster or pool of virtualization servers to provide high 
availability functionality for the environment.

Once the high availability implementation has been configured the task of main-
taining the system takes precedence. You want to ensure that you guard against the 
over commitment of resources since this can not only prevent high availability opera-
tions from functioning but can also cause more problems to the entire environment 
than are solved by bringing the virtual machines online.

Another aspect of the high availability environment is the element of security.  
You need to be mindful of whether virtual machines can be run on the same  
virtualization host or not, and, if they cannot, the high availability solution must be 
configured accordingly. While high availability can help the general security posture 
of an organization by ensuring that resources are operational, it is not a substitute  
for other security mechanisms.

Finally maintenance of the systems should be planned and managed to ensure 
minimal impact and downtime for the virtual machines while at the same time 
ensuring that all of the hosts in the high availability cluster are running the same 
software and configuration for both stability and troubleshooting of the environment.



	 High Availability: Reset to Good • Chapter 11	 285

Solutions Fast Track
Understanding High Availability

High availability is a mechanism to reduce or eliminate downtime.˛˛

Planned downtime is scheduled in advance. High availability can frequently ˛˛

provide for zero downtime in these circumstances.

Unplanned downtime is not scheduled in advance and is frequently the ˛˛

result of a system failure or compromise. High availability can frequently 
minimize this downtime by automatically identifying the failure and 
bringing impacted virtual machines back online.

Reset to Good
Reset to good is the ability to reset an environment to a good, functional ˛˛

state as quickly as possible.

Reset to good can be accomplished using vendor tools such as VMware HA ˛˛

or Citrix XenServer HA or via scripting or third-party technologies such as 
Microsoft Cluster Server.

Configuring High Availability
Configure shared storage so that all hosts can read virtual machine files.˛˛

Configure network connectivity for heartbeat and failure detection ˛˛

mechanisms.

Set up a cluster or pool of servers for providing high availability functionality.˛˛

All systems in a high availability cluster should use the exact same hardware, ˛˛

software versions, and configurations as much as possible.

Maintaining High Availability
Proper capacity management must be performed to avoid over commitment ˛˛

of resources. Overcommitment can degrade the performance of the 
environment in the event of a failure or prevent the high availability from 
functioning altogether.



286	 Chapter 11 • High Availability: Reset to Good

If virtual machines require isolation from other virtual machines, you need ˛˛

to design your high availability solution to ensure adherence to affinity and 
anti-affinity rules.

High availability is not a substitute for other security mechanisms.˛˛

Virtual machine migrations can be used to patch host systems without ˛˛

impacting the virtual machines.



	 High Availability: Reset to Good • Chapter 11	 287

Frequently Asked Questions
Q:	Does high availability prevent all downtime?

A:	No. While high availability can prevent downtime in many circumstances, in some 
cases it doesn’t prevent downtime rather it reduces recovery time by bringing 
impacted machines online faster.

Q:	Do I have to use the same hardware for all hosts in a high availability cluster?

A:	While you do not have to have the exact same hardware, it is highly recommended. 
In particular many vendors require the same processor type for effective high 
availability.

Q:	Is resource over commitment a concern with high availability?

A:	Yes. Because high availability functionality generally entails that some portion of 
the production capacity and resources have failed and are no longer accessible  
(in essence you are operating at reduced capacity to begin with), if you do not 
have spare capacity to allow for the high availability functionality to bring virtual 
machines online on alternate hosts, high availability operations may not be able  
to occur. You want to ensure that, at a minimum, you provide N+1 capacity to 
eliminate resource over commitment concerns.



This page intentionally left blank



289

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 12

Best of Both Worlds: 
Dual Booting

Solutions in this chapter:

How to Set Up Linux to Run  ■■

Both Natively and Virtually

Issues with Running Windows  ■■

Both Natively and Virtualized



290	 Chapter 12 • Best of Both Worlds: Dual Booting

Introduction
Security professionals are often called upon to use a variety of tools to get their job 
done. Sometimes they need multiple operating systems while other times they need 
raw access to hardware for certain tools to work. I have seen many a consultant 
carrying multiple laptops so that they could have various tools at the ready. While 
carrying multiple laptops is a viable option, it can be a very tiring one, especially  
at the end of a long international trip. I have seen others juggling spare hard drives  
so they can switch between environments with only minor hardware adjustments 
(and a boot cycle). You can just imagine what they go through to transfer files 
between operating systems.

This chapter will explain one solution I’ve been using for the past few years that 
has met my needs in a variety of situations. It allows for both Windows and Linux to 
be run natively, as well as for Linux to be run in a virtual machine, giving me access 
to my Linux system while running under Windows.

The two biggest reasons I have for running Linux natively is for wireless tool 
access, and for using the open source security tool Nessus. Virtual machines are great 
for emulating hardware, but I have yet to be able to assign PCMCIA / miniPCI cards 
directly to a virtual machine. Because of this much of the low level driver operations 
required to perform wireless penetration testing must be done in native Linux.  
I really appreciate being able to be in both operating systems at once though when  
I am not performing low level network operations. The convenience of being able  
to write code and test tools while still connected to all of my corporate windows 
environments is very nice.

How to Set Up Linux  
to Run Both Natively and Virtually
The easiest way to set this up is to install Linux in a virtual machine first. I prefer 
doing this for two reasons. The biggest current reason is that I have two hard drives in 
my laptop. The second hard drive is interchangeable with the DVD drive. I can either 
have the second hard drive or the DVD drive in but not both at the same time. This 
makes it a bit difficult to install Linux on the native machine first (although it can 
often be done by swapping the second physical drive with the primary drive for the 
duration of the installation).

By setting up a virtual environment first I am able to mount a DVD image file 
(also known as an ISO file) as though it were an actual disk. This allows me to leave 



	 Best of Both Worlds: Dual Booting • Chapter 12	 291

both hard drives in at the same time. Migrating to a new laptop may require the 
purchase of a new drive bay, but this minor inconvenience is certainly worth the 
benefits of having both operating systems and the ability to use them concurrently.

Creating a Partition  
for Linux on an Existing Drive
If your machine is unable to support two hard drives (or you don’t want to give up 
your DVD drive) it is possible to install Linux on a new partition. Partition Magic 
can be used to resize existing partitions to make room for the new installation.

The first step in this operation is to use the disk manager to defragment the drive. 
As a hard drive is used and files are allocated then deleted, a disk develops spaces 
between files. Modern file systems do a much better job of tracking and using these 
spaces, but spaces can develop none the less. By defragmenting the disk, the files on 
the disk are moved in such a way that these spaces are minimized. This ensures that 
the maximum amount of space is available for your alternate operating system.

After the disk is defragmented, the majority of its free space should be available  
in one large block. A new partition can then be created using a portion of this space. 
This operation requires a special tool such as Partition Magic shown in Figure 12.1.

Figure 12.1 Creating a New Partition with Partition Magic



292	 Chapter 12 • Best of Both Worlds: Dual Booting

At this point the new operating system can be installed in one of two ways.  
Most operating systems are able to install on any partition, and normal installation 
procedures can be followed. Be sure to select the correct partition (installing on the 
wrong partition will almost certainly destroy your data). The other option at this 
point is to assign the new partition to a virtual machine. By selecting the partition 
and assigning it to a virtual machine, your alternate operating system can be installed 
without having to shutdown the primary operating system. In addition you also  
get the fringe benefit of not having to burn DVDs or CDs to do the installation. 
(You may also be able to use a DVD image on a system without a DVD drive.)  
It should be noted that the process of performing an installation using multiple CDs 
can be done without too much trouble. Whenever the installation process requires  
a new CD, the ISO images can be “virtually” ejected and the next image inserted  
by “mounting” it.

Continue with the installation process, although the master boot record should not 
be replaced. Here again, using a virtual machine can protect your primary operating 
system boot loader from being replaced. Unless you assign the primary operating 
system partition to the virtual machine deliberately, the virtual machine will not be 
able to read the primary partition at all.

Notes from the Underground…

Avoiding Problems with Changing Hard Disk Numbers
It should be noted that booting in a virtual environment can result in different 
hard disk numbers than those assigned when a machine is booted on the 
native hardware. This situation can be partially resolved by configuring the 
boot process to look for devices by disk label instead of by hard disk number. 
The fstab file (found in the /etc directory) can also be modified so that disks 
are located by label. This will stabilize the changing environments and allow 
your server to boot both natively and in the virtual environment with fewer 
issues.



	 Best of Both Worlds: Dual Booting • Chapter 12	 293

At this point it’s time to make it possible to boot to either operating system.  
This can be done in a couple different ways. First you may be able to use the bios to 
boot to an alternate hard drive. This is the method I used because it seems simplest. 
The other option is to use a boot loader to choose the operating system to boot.

The boot loader software is the first program loaded on your system. The two 
most common boot loaders are the Windows boot loader and the Linux boot loader 
known as Grub. Either of them can perform the function of booting both Windows 
and Linux. In order to boot Windows using Grub, you have to make the correct 
entries in the /boot/grub/menu.lst file. The following entries assume that Linux is 
installed on your primary disk and Windows is on a second hard drive. 

title Windows XP

root (hd1,0)

rootnoverify (hd1,0)

map (hd0) (hd1)

map (hd1) (hd0)

chainloader +1

Booting Linux with the Windows boot loader is slightly more complicated. The 
Windows boot loader needs a copy of the boot sector (first sector) from the Linux 
box. This sector is enough to initiate the boot onto another partition. The easiest  
way to obtain the boot sector from the Linux partition is to boot it using a virtual 
machine. If this is not possible most Linux distributions allow you to boot using  
a Live CD configuration. It may also be possible to boot using a standalone Linux 
distribution such as Knoppix. Once you have booted into a Linux environment, the 
first sector of the disk should be copied to a file. The command DD accomplishes 
this task.
dd if = /dev/hda2 of = bootsector.sec bs = 512 count = 1

The preceding command copies the single 512-byte sector from the disk into a 
file called bootsector.sec. This file must then be copied over to the Windows partition. 
I usually put it in the root of the C drive. The boot.ini file must then be modified 
with an entry pointing to this boot sector. An example is shown in Figure 12.2.



294	 Chapter 12 • Best of Both Worlds: Dual Booting

The first entry was already present in the boot.ini file. If you want to boot to  
the original partition by default then it should be left as the first entry in the file.  
If you want your new partition to be the default, then it should be first in the table. 
The timeout parameter determines how long the boot loader waits before the default 
entry is chosen. If you make this time too short you won’t have time to pick the 
alternate operating system and may find yourself having to reboot often. If you 
extend the timeout you may end up taking too long to boot up without interaction 
(note that you can always hit Enter at the boot screen to pick the currently high-
lighted choice). An example of the boot screen created by the boot.ini file in the 
preceding section is shown in Figure 12.3.

Figure 12.2 Modifying the boot.ini file with the Linux Boot Sector



	 Best of Both Worlds: Dual Booting • Chapter 12	 295

At the completion of this procedure you will be able to boot either operating 
system on the machine natively.

At this point you need to configure a virtual machine hosted in one of the 
operating systems to boot the other physical partition. Chapter 4 discusses how to 
allow a virtual machine to access a physical drive. It is highly recommended that all 
of the other partitions be blocked from the virtual machine. Accessing an active 
partition can cause serious issues with your machine.

Setting Up Dual Hardware Profiles
The next step in making your alternate operating system function well is to configure 
dual hardware profiles. I will first discuss how to do this with Linux, and following 
that I will discuss doing it with Windows. When you boot an operating system both 
inside and outside of a virtual machine you are effectively booting the same operating 
system on two different sets of hardware. The operating system needs to be able  
to function on both sets of hardware. This effectively means it needs two different  
configurations, and the appropriate configuration needs to be activated at boot time.

Figure 12.3 A Boot Menu with a Linux Option



296	 Chapter 12 • Best of Both Worlds: Dual Booting

Under Linux, VMware performs this switch using features installed when you add 
the VMware Tools package to the guest operating system. During boot time a process 
runs which determines if the operating system is running inside a virtual machine  
or not. If the system is a virtual machine, then the virtual machine’s hardware profile 
is activated. This primarily consists of copying the appropriate display drivers and  
X server configuration into place. There are some other things activated depending 
on how you configured the virtual machine hardware (such as guest/host file systems 
and virtual memory monitors). Finally the clipboard linking functionality is activated.

If the system is booted on the native hardware, the original native configuration 
files are copied into the correct place. During upgrades this process can become a bit 
corrupted, and the update may have to be performed on both the native and virtual 
machines.

Issues with Running  
Windows Both Natively and Virtualized
At one time it was possible to run Windows in both environments. Unfortunately  
a new feature known as Genuine Advantage prevents this arrangement from working. 
Because the hardware appears significantly different inside than outside the virtual 
machine, the software believes it’s been copied to another machine. At this point the 
Windows installation is deactivated, and key features no longer function correctly.

Precautions When Running  
an Operating System on Both  
Physical and Virtualized Platforms
In the section we’ll discuss precautions to take when running an operating system  
on physical and virtualized platforms.

Booting a Suspended Partition
One of the benefits of having your operating system virtualized is the ability to suspend 
execution. I recommend you suspend any virtualized partitions using the virtualization 
software before you suspend or hibernate the native operating system. However, this 
can have complications for a dual booting machine. If you suspend a secondary parti-
tion and then boot it natively it recovers in much the same way it would if you shut 



	 Best of Both Worlds: Dual Booting • Chapter 12	 297

the machine down by powering it off. Operating systems are normally set up so that 
they can recover from this situation without too much difficulty. The significant issue 
arises when you go to use the partition in a virtual environment again. When the 
virtualized environment is restored, it puts the memory back in place as though it had 
never been suspended. Unfortunately this memory state is not aware that the disks have 
been recovered. Any files that were open at the time the machine was suspended are 
still open, and even worse some file sectors may be cached or moved during file system 
maintenance processes. All of these actions can create unbelievable amounts of corrup-
tion on a machine. One of the worst incidents I have ever had to recover from on my 
Linux machine happened as a result of this unfortunate scenario. I highly recommend 
that the suspended files be removed and the system be rebooted cleanly.

In order to avoid this problem I make it a habit to shutdown the virtual machine 
unless I’m certain that I will be back in virtual mode next (such as a reboot to bring 
in new updates). If there’s any chance I will boot Linux (my secondary partition) 
native then shutting down is the safest option.

Deleting the Suspended State
If for some reason you should discover that you’re caught in the above scenario, you 
can delete the files that store the suspended state. The state is stored in files ending in 
vmss and vmem. VMware is then able to boot the machine cleanly, and you should 
not lose any data (beyond what you lost during the original recovery process).

Changing Hardware  
Configurations Can Affect Your Software
It should be noted that some software uses hardware parameters during execution. 
The most common package that I’ve observed doing this is Nessus. I had issues for 
months before I figured this problem out. We hope this description will save others 
the headache.

When Nessus is activated certain information is collected from the hardware  
to “fingerprint” the machine. This behavior is very similar to that of Windows 
Genuine Advantage as discussed previously in this chapter. When the machine is 
booted natively (as Nessus recommends), these hardware parameters change. This 
causes Nessus to behave as though you have copied it from one machine to another.

I was in the habit of updating Nessus in a virtual machine and then booting  
it natively for actual testing. Each time I did that I had to reregister then activate  



298	 Chapter 12 • Best of Both Worlds: Dual Booting

my installation again. This became a more serious issue when Tenable Security  
(the makers of Nessus) changed their licensing requirements, which now require 
commercial users to purchase licenses.

Any software that depends on hardware parameters for licensing requirements 
may behave very differently when run inside versus outside a virtual environment. 
Consideration and planning should be done before installing software to know in 
which environment the software is most likely to be run. The installation should be 
done in this environment.



	 Best of Both Worlds: Dual Booting • Chapter 12	 299

Summary
The ability to boot an operating system both natively and within a virtual environment 
is a powerful tool that can greatly increase the convenience and productivity of a 
security professional. In addition hardware costs can be decreased significantly by 
reducing the number of “audit” machines that have to be deployed and maintained.

Solutions Fast Track
How to Set Up Linux to  
Run Both Natively and Virtually

Add the Windows partition as an option to the Grub menu.lst  ˛˛

configuration file

Copy the Linux boot sector onto Windows using DD˛˛

Change the boot.ini file to include the Linux boot sector as a bootable ˛˛

option

Issues with Running  
Windows Both Natively and Virtualized

Create a new machine˛˛

Assign the physical partition as the primary hard drive˛˛

Ensure that no partitions are accessible by both the host and the guest ˛˛

operating systems at the same time

Create a secondary hardware profile so that the virtualized operating system ˛˛

can be configured correctly



300	 Chapter 12 • Best of Both Worlds: Dual Booting

Frequently Asked Questions
Q:	What advantages do you gain when booting a secondary operating system 

natively?

A:	A secondary operating system has greater access to hardware devices. This is 
especially important when performing wireless assessments. It would be possible 
to perform similar work with USB wireless cards, but they are more expensive 
and do not always have the features required for wireless assessments (such as 
packet injection). There are also some tools (Nessus being a major standout)  
that do not function well in virtualized environments.

Q:	What advantages do you achieve with the secondary operating system running in 
a virtualized environment?

A:	The main advantage is that both the primary and secondary servers are running 
at the same time. You can use either one and transfer information between them 
with significantly less effort that would be required if only one were running and 
you had to reboot to switch between them.



301

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 13

Protection in 
Untrusted 
Environments

Solutions in this chapter:

Using Virtual Machines to Segregate Data■■

Using Virtual Machines to Run Software  ■■

You Don’t Trust

Using Virtual Machines for Users  ■■

You Don’t Trust



302	 Chapter 13 • Protection in Untrusted Environments

Introduction
One great use of virtual machines is to provide the architecture to give someone 
access to a machine that can be used in an untrusted environment. Imagine one  
of your grandparents surfing the web. They enter a URL and make a typing mistake. 
They are confronted with a pop up message telling them that they have a virus and 
need to click on a link to fix it. How many of them would resist doing just that? 
There are obviously ways to prevent damaging the server and the underlying operating 
system, but these methods generally do not protect the user from hurting themselves. 
One method that has some merit is to use a virtual machine to perform everyday 
tasks such as browsing. The virtual machine is then reverted to the known good 
snapshot on a regular basis. This may be weekly, hourly, or even more often depending 
on the environment.

I have also seen technically savvy users utilize this method to browse sites they 
know are dangerous. They browse with the knowledge that their machine is almost 
certainly compromised, so no personal information should be used in it. They use 
these machines to read forums or run jokes sent to them by friends. Immediately 
after running the offending application, they revert the machine back to its pristine 
uninfected condition and continue with their day without worrying that the file they 
just executed may have damaged something.

Every day computer users face the choice of installing a new piece of software. 
Software is another consumer product neatly marketed, packaged, and made appealing 
by a host of pundits and influencers. Yet is that software good for your system or is it 
potentially malicious? Shades of gray are many, just like security postures practiced by 
consumers and enterprises. A healthy dose of caution when dealing with new and 
unknown software and documents is very much welcome.

For a curious user there’s always a big question: do I take a plunge and install 
something I may not be able to easily remove later on, or do I simply give up. It can 
be a choice of biblical proportions. Virtual machines in most cases offer a simpler and 
safer playground than your primary machine.

Meaningful Uses of  
Virtualization in Untrusted Environments
As responsible computer users we need to be cognizant of modern computing 
realities. There is neither a warranty for software nor an international or government 
body that verifies software quality. In general we need to be skeptical or worried 



	 Protection in Untrusted Environments • Chapter 13	 303

about alleged interoperability testing. Application separation for testing and pleasure is  
a good solution here, best implemented through virtual machines that unlike emulators 
implement the full richness of the original operating system.

But useful scenarios abound. For example, installing a VMware codec to record 
videos of virtual machines is not a big deal, but when it BSODs (Blue Screen of 
Death) my Vista machine, it is very much an inconvenience. As codecs and system 
drivers in general are potential deal killers on Vista, as a concerned user, I may have  
a valid and pressing need to find a solution for this problem. In my case my friendly 
QA department has recorded my failure scenario and demanded to review it. Instead 
of risking further trouble on Vista, I took a Vista VM image, installed the required 
VMware codec, and attempted to play the questionable clip there. The failure (with 
complete VM image) was then shipped to QA for further investigation. Obvious 
benefits were realized, the crash could be investigated, and my critical infrastructure 
was not affected.

This codec example was not security related, but it illustrates a straightforward 
benefit of a virtualization strategy. We can separate critical parts of our personal or 
business computing and isolate them to minimize application instability risk. Thus it 
can pay big for companies to distribute critical applications onto separate VM 
instances for operational as well as security benefits.

Consumers and enterprise users have discovered a wide variety of ways to use 
virtual machines as go-betweens for deferring security risks. It creates a new adage: 
what you can’t do with a physical machine, you can do in a virtual machine. Some 
useful examples where complete functional segregation really does make sense are 
the following:

1.	 Accessing your Internal CRM Implementation  CRMs and other 
line-of-business applications often bear the brunt of targeted malware attacks 
(which means that an AV signature is unlikely to be available). For example, 
Trend Micro Labs published that on September 12 of 2007 they saw 1,100 
custom attacks in only 16 hours. As accurate data on custom attacks is hard 
to come by, we have to assume that our best security posture is the safest.  
So whether to discipline your call center staff or comply with various 
Sarbanes-Oxley or PCI requirements, keeping confidential application data 
(such as credit cards numbers or health records) separate from the polluted 
personal computing space is exceptionally prudent. This then allows enterprise 
administrators to define a so-called “application wall” and properly lock 
down virtual machine images providing assurance that only approved and 



304	 Chapter 13 • Protection in Untrusted Environments

properly configured enterprise applications are used in a quarantined 
environment. Sometimes software applications distributed in this manner  
are called virtual appliances. But the term has a connotation that VM images 
are not for general users or average employees but rather something that 
belongs in a data center. Virtualization technology has significantly matured 
since the term was coined, and today we can virtualize VPN and a host of 
proprietary client applications fit for every type of user.

2.	 Personal Playground  On the other side of the line separating line-of-
business applications from personal computing is the employee’s personal 
playground. Employees today expect to be allowed to do whatever they 
please with corporate PCs issued to them. Virtualization is then ideally used 
for segregating general Web browsing. Surfing the Web in a separate OS is a 
great way to limit your exposure to Sql Injection exploits and vulnerabilities 
directed against browsers and their add-on components. We will come back 
to this topic later in this chapter. Many enterprises could benefit by moving 
personal Web experiences onto a separate virtual “disk image” away from 
cumbersome and expensive compliance procedures that most companies 
need to implement. In a separate virtual machine a user can install all of 
their favorite IM, VOIP, and other tools, and quite literally, use it as a safer 
personal playground. In addition, enterprise administrators will be able to 
add to the mix a favorite anti-malware solution or could even opt for a 
controlled application whitelisting solution in order to maintain visibility and 
accountability. Once the first security products implementing the VMSafe 
program come to market that too can be transparently added to further 
protect these personal computing playgrounds. VMware’s VMSafe program 
allows security vendors to scan and analyze virtual machines by not physically 
residing inside a virtual OS but rather being an application that is part of  
the virtualization server core. It is expected that other virtualization vendors 
will soon be making similar security announcements: a security product  
will run on the virtualization server or hypervisor level with full access to 
virtual disks and virtual memory (which is in effect on disk as well). Their 
efficiency will be improved as will be our security. Only let’s not take it as 
a solution for zero-day or custom exploit attacks.

3.	 System Rollback  Finally, reverting back to an initial image or to a last 
known trusted state can be done on a schedule that makes sense for users 



	 Protection in Untrusted Environments • Chapter 13	 305

and administrators. This in itself can help troubleshoot a host of other non-
security related issues from sluggish performance due to large browser caches 
to instantly fixing disk defragmentation issues. It is often said that Windows 
and other operating systems suffer from memory loss over time as things get 
forgotten and operations take longer and longer. By effectively separating 
functional work spaces, for example, line-of-business applications and private 
computing, virtualization can help us regain control and rein in software 
application performance losses.

4.	 Software Application Testing for Operating System Compliance  Most 
operating systems routinely release major new versions and with each such 
change risk breaking backward compatibility or various compliance policies.  
For example, it turns out that the best way to test new Vista compliant software 
applications is to actually run them in a Vista virtual machine (hopefully 
configured with your standard software and network settings) and see what 
happens before irreparably ruining your working system image. This seems like  
a silly recommendation, but given the level of incompatibility issues and serious 
consequences (hosed users and Blue Screens of Death), it is not surprising that 
major PC resellers like HP and Dell are offering XP downgrade paths for 
purchasers of their new hardware until at least June of 2009. Note that end-of-
life for Windows XP has been announced with the availability of  Vista.

5.	 Quarantine of Suspicious Content  In the last year first serious attacks 
against Adobe Flash then media exploits of image files and videos were 
witnessed. It is no longer only unknown software, scripts, and documents with 
macro languages that are prone to malicious behavior. If you are investigating 
an exploit of an unannounced vulnerability, viewing images, video, or 
animations whose provenance cannot be proven is best done within a virtual 
machine. If you are doing this most likely you are on the forefront of malware 
research, whether working for one of the major security companies or a 
security analyst for Internet service providers (ISPs) or companies with 
known security exposures like banks and governmental institutions. Properly 
locked down virtual machines are best sandbox solutions for the job if you 
are working with a full OS and can install further tools to monitor behavior 
and actions of a questionable sample.

6.	 Behavior Examination of Potential Malware  Unlike the use of sandbox 
tools, which usually give you a flavor for the capabilities of a potential piece 



306	 Chapter 13 • Protection in Untrusted Environments

of code, building an environment for behavior forensics is another matter. 
For one you are implicitly more concerned about security and using gloves 
when necessary. On the other hand your role is more akin to that of a 
surgeon. You need better tools and more assistance. Debuggers like the free 
OllyDBG and disassemblers like IDA Pro are your tools; virtualization 
infrastructure is your assistant. At this stage, everything matters especially 
whether you are working with 16-bit mutex-es, 32-bit code or 64-bit code. 
For example, even the Beta version of OllyDBG 2.0 is not able to help  
you with 64-bit analysis. Anti-debugging libraries and exploits targeting 
vulnerabilities in virtualization software will also cause trouble. But as a safe 
first step virtual machines are a great choice for giving you a steady reading 
on what a piece of malware is up to.

Notes from the Underground…

Anti-debugging Libraries
The anti-malware industry has been using virtualization in malware research 
and product testing for some time now. Yet recent “commercial” anti-debug-
ging libraries have made the industry re-examine this strategy as quite a few 
malicious samples change their behavior when run in a virtual machine. It has 
become increasingly difficult to detect dangerous samples, examine their 
behaviors, and build effective signatures. The Anti-Malware Testing Standards 
Organization (AMTSO) is attempting to address these issues by issuing 
guidance to both researchers and testers on how to observe malware in a  
virtualized environment. As today’s security products rely primarily on “active 
protection” elements, they detect malware when it is actively executed. Such 
detection methods can be tested only in a controlled virtual environment that 
is as close to the real world scenario as possible. But to truly observe an 
application’s behavior today, you need to be cognizant of modern anti-detection 
methods. If a piece of malware detects suspicious monitoring, it simply 
changes its behavior. In turn a researcher may realize thousands of instructions 
later that the code is running in a virtual loop or doing nothing significant. 

Continued



	 Protection in Untrusted Environments • Chapter 13	 307

On the other side of the virtualization debate there are good arguments advocating 
caution when it comes to the exuberance that has recently marked public interest into 
virtualization technologies for malicious research. Recently, a surge in vulnerabilities 
with virtualization software has been reported. IBM’s ISS X-Force team has spotlighted 
this trend in its 2008 Midyear Security Report (see note number one). As usual the 
more popular a software title is the more eyeballs it attracts from both users and 
researchers as well as attackers. The National Vulnerability Database (NVD) sets the 
tone. Of the total vulnerabilities assigned to VMware almost half were discovered in 
the last year, and a majority of them carry a “high severity” CVSS score (see note 
number two). Out of these a majority was discovered against products running on 
Windows and not enterprise products like ESX, which are not based on Windows.  
Yet the increase in vulnerabilities has been felt for all types of virtualization operating 
systems. Even more so up to now untouchable hypervisor micro-operating systems  
are increasingly coming under scrutiny. As a comparison, VMware had a one-fifth 
vulnerability ratio as compared to Microsoft products. The situation with Citrix was  
a bit different with 12 vulnerabilities out of 50 for all of the last year with only three 
marked with a “high severity” CVSS score.

E.G. Oreans’s Themida protection mechanism used on many commercial 
games as well as malware adds to every dll as much as 2MB of bogus code to 
thwart any attempts at meaningful reverse engineering. In this way game 
software publishers as well as other legitimate companies that are worried 
about intellectual property theft are protecting themselves against software 
cracks and the most blatant of code thefts. Virtualization alone is not security’s 
silver bullet. It can be exceptionally effective in reverting virtual images to 
their clean state. Starting from a known point is much faster than re-imaging 
your target system. But it is prone to modern detecting techniques. Hence for 
testing and research purposes not only one but rather two methods are critical: 
testing in a virtualized environment with all its efficiency benefits, and testing 
on a real system with all the volatility of an infected system. One effective 
method for doing this is combining a virtualized solution with a system  
re-imaging. For example, one can use Symantec Ghost. You would need to set 
up parallel installations that are blind to each other. Virtualization would be 
a preferred and optimal choice while oblivious to presence of a re-imaging 
solution. A re-imaging solution would then be able to replace a virtualization 
installation in cases where systems are deemed compromised or no virtual 
machine was able to yield malware detection on samples determined by 
other heuristic methods to be malicious in nature.



308	 Chapter 13 • Protection in Untrusted Environments

One of the VMware Hypervisor architects boasted to me at the RSA Show in 
San Francisco in 2007 that VMware Hypervisor cannot be broken: A great promise, 
one of those that we always fear in software. Yet it appears to be holding water for 
now. Hypervisor technology is a great step forward as it locks down the micro-kernel 
to only the relevant set of components required to run the platform. To date most of 
the vulnerabilities found against VMware’s Virtualization Server platform were related 
to packages not created by VMware, which has exposed the platform to standard 
vulnerabilities found against the Linux platform. This in itself has been a major 
driving factor for VMware and its customers moving to ESXi architecture, which 
promises to reduce ill effects of the underlying Linux platform. As the virtualization 
movement gains strength there will also be added scrutiny of virtualization server 
platforms. Similarly hypervisor installations (now few as the technology is rather new) 
will undergo further scrutiny, and any zero vulnerability boast will most likely not stand.

This is important because vulnerabilities in virtualization platforms invite security 
exploits that could potentially erase all the security benefits the virtualization platform 
provides. Hence the question: Is it okay to allow VM to be infected? After all it is a 
disposable VM instance that can be recycled at will regardless of the exploit vectors 
that it was exposed to. The truth is that you better be disconnected if you want to be 
sure. Vulnerabilities found against the core platform could lead to wholesale system 
compromise where the damage could be much worse than with standard setups. 
Proper management and network optimization of virtual switches and virtual 
machines will go a long way to limiting damage.

Looking back at the history of malware protection, we note that it didn’t take very 
much for the blockbuster infections Sobig-F (see note number three) or MyDoom 
(see note number four) to circle the planet. And these are not the only ones. Sobig-F 
was the sixth variant in the Sobig virus series generating 300,000 infections per day. 
MyDoom extended this to 1.2 million infections per day. And this was still 2004.  
With today’s broadband speeds you need to practice as much caution as possible. 
Hence I’d like to define levels of precaution, if not paranoia that are important when 
analyzing malicious samples. These precautions are increasingly costly and difficult to 
administer but nevertheless practiced widely in industry.

Levels of Malware Analysis Paranoia
Whether you are investigating suspicious software or an outright known and malicious 
piece of software, some core precautions are in order. Lessons from anti-malware and 
forensics industries are the best guidance. These are recommendations for the most 



	 Protection in Untrusted Environments • Chapter 13	 309

paranoid and not necessary for all purposes. Trying out compatibility of new NVidia 
drivers on a Windows Vista image do not fall into this category.

1.	 Set Up Proper VM Images  Create standard (based on Federal Desktop 
Core Configuration or FDCC) VM images with sandbox tools that trace 
registry, file, and network actions. Add ring 0 and ring 3 debuggers and 
install disassembles. Inventory registry and files so that you can do a baseline 
analysis at a later stage. Fingerprint all files. Stay away from MD5 hashes. 
Have fun: Execute new software or browse suspicious Web sites in a virtual 
machine.

2.	 Set Up Virtual Network  Set up a separate Web network that is not 
connected to your corporate, private, or any other networks. You can at 
worst use conservative tools such as RSYNC or file drop points to exchange 
data and messages. IP KVMs help you seamlessly monitor disconnected 
networks and allow you to switch from one virtualized setup to another.  
A separate network allows malware to communicate with its command and 
control servers and behave as it would on a regular machine but will also 
limit the potential damage to your infrastructure if analysis gets out of hand.

3.	 Set Up Disconnected Network  Create a surrogate Internet where all the 
outbound traffic is routed to your network sink. Log and evaluate traffic. 
Install IDS end point agents into your virtual machines. Monitor network 
traffic. Use Metasploit tools and HttpSinkholing to evaluate traffic.

One only needs to remember the “Hall of Fame” malicious attacks such as Blaster & 
Nachi Internet Worms whose rapid propagation had serious effects on many security 
labs. You may not have the ease of silently recycling every single instance  
of your Windows operating system. Even a few hours of downtime due to security 
restore could be deadly to companies who live and die by the 9 to 5 clock. You 
would theoretically have the ability to roll back many of your VM instances, but  
a failure to do so or the existence of a single unpatched endpoint could always 
trigger a re-infection one degree worse than the last.

CoreSecurity publicized in March of 2008 several VMware Player vulnerabilities 
(see note number five) that allowed an attacking malicious code or sample under 
investigation to get control not only over the Player application but also over the host 
system itself. Many malware analysts are using highly portable VMware Players to do a 
“back-of-the-envelope” first pass. That is a dangerous procedure as this vulnerability 
illustrates. This example involving shared folder traversals like the ones before them are 



310	 Chapter 13 • Protection in Untrusted Environments

serious but can be avoided by properly tuning the virtual machines and modifying the 
business process to limit obvious exposure points. When analyzing outright potentially 
malicious code one needs to exercise caution. Using fully blown virtualization 
products is a must as are cleanup and backup procedures in the unlikely scenario 
that the entire setup becomes corrupt.

One of the latest approaches to locking down VM images is to use application 
control or application whitelisting endpoint agents by companies such as Bit9. They 
employ positive security approaches to end point protection (see note number six). 
Currently, only a handful of companies are focusing on such an approach realizing that 
it is much easier to manage exceptions that diverge from a known and trusted software 
image. Any divergence—be it the existence of new files on the file system or suspicious 
registry entries and in-memory artifacts—could be a trigger for recycling a virtual 
machine or for performing in-depth forensics analysis. Allowing software to run and 
asking questions later is a sure recipe for disaster.

Having a measurable degree of a virtual machine lockdown cannot be emphasized 
more as proliferation of end point always implies the multiplication of your risk 
exposure even though your goal was to separate risky applications from business 
critical software. The reality is that your virtual machine instance is a fully fledged 

Damage & Defense…

Shared Folders Vulnerabilities  
When Running Inside Windows
Several generations of vulnerabilities target VMware Shared Folder implemen-
tation when running inside Microsoft Windows. The ESX version of VMware  
is not affected. By not properly parsing the path, a very simple remote code 
execution attack can be performed. These vulnerabilities are well documented 
and tracked in CVE and NVD databases. Your best defense in this case is to 
implement your own shared folder functionality that does not run utilize 
VMware’s flawed implementation. Even more so you should disable the feature 
in the VMware software that you are using.



	 Protection in Untrusted Environments • Chapter 13	 311

operating system carrying all the traditional exposure elements. For example, how 
often do you plan to update paused or running virtual machines to install the latest 
OS security updates? Are you planning to follow the same procedure for all other 
non-Microsoft produced code?

The simple answer is that there has to be a procedure for this especially if you 
are planning to expose your VM images to untrusted environments. Proper patching 
is no longer an exotic task. There are quite a few patch management vendors 
providing compelling solutions. Yet many of these solutions have only a limited 
grasp on existing security updates available. Take for example your typical Windows 
System Tray and you will see dozens of software applications that have automatic 
updaters available. That means that all those applications could automatically be updating 
your “trusted” image. They could also be new vectors for out-of-date security 
updates. In 2008 there were no less than 30 critical vulnerabilities in NVD attributed 
to software publishers not signing their software updates. These updates were 
distributed through their automatic update mechanisms. But the worst development 
of all is the increased focus on attacks against third party software, software that  
we have so far ignored when analyzing our security postures. That same software 
runs on your standard Windows image; whether it is running on iron or inside a 
virtual machine, it generates the same vulnerability exposure, which needs to be 
detected and dealt with.

Traditionally, Windows hardening initiatives were the only set of guidelines on 
how to de facto trickle down the performance and capacity of your operating 
system. Removing rights to one or the other operation, hiding or disabling icons, 
and preventing access to system or monitoring tools were all done as a proactive 
measure to keep intruders and malicious users from exploiting the system to its 
fullest. While credit has to be given to the richness of controls built into the GPO 
model—which addresses a multitude of levers from power consumption to identity 
management—in one specific area Microsoft GPO policies are a giant case study 
on how not to control software on an endpoint. This is not meant to bash the 
ecosystem of companies that provide valuable GPO tools such as NetIQ’s Group 
Policy Administrator. GPOs are traditionally seen as a part of configuration change 
management where changes are controlled and audited by IT administrators.

Software application control is yet another matter. For example, it is highly 
unproductive to use GPOs to control and monitor how and when software applications 
execute. In such cases you have to dedicate at least one full sysadmin resource to 
manage fickle GPO rules that were not designed for software application control.  



312	 Chapter 13 • Protection in Untrusted Environments

We say fickle because too many rules create a bizarre set of laws and regulations that 
can be explained only through historic intent and not through their functionality. 
For example, prevent execution based on filenames or extensions is not going to 
prevent people from doing what they want. Within the GPO object model software 
policies are not meant to be adaptive. They are either compliant or not. Yet with  
the proliferation of virtualized endpoints, GPO rules for software application  
management are bound to become more complex and as such utterly unmanageable. 
Clearly a better solution is necessary.

Tools & Traps…

Don’t Let Your Processor  
Waste Cycles on Your Multiple Displays
It sounds obvious but the use of native graphic applications does help manage 
multiple displays. It is better to use your graphics card rather than abuse 
precious CPU time. Plus it’s the best way to monitor actions on multiple virtual 
machines. For example, Matrox PowerSpace is a tool that has been specifically 
tuned for optimization of virtualized screens (see Figure 13.1). Of course, it runs 
on Matrox hardware, but this sort of tool is not exclusive to Matrox. Once you 
start running multiple virtual machines to examine and test software and 
malicious components, you will start to appreciate the convenience of having 
the graphics cards give back CPU cycles to virtual machines. Features you want 
to check out are: graceful log out of a virtual machine and application display 
management.



	 Protection in Untrusted Environments • Chapter 13	 313

Source: Matrox.com

Figure 13.1 The Matrox PowerSpace Tool

A better alternative is available from Tripwire when security servers and non-
Windows operating systems. Faronics can help you with a simple single end point 
lockdown agent, while Bit9 can provide you with a complete enterprise application 
whitelisting suite built to manage access to all software applications whether malicious 
or benign. A typical tool that accomplishes a true end point lockdown does several 
things for you. For one it internally defines a software baseline. This internal cache 
can then be used to determine whether a new piece of software is automatically  
added to the approved set of components or is treated as a possible intruder. 
Automatism at this task is highly desired as any user interaction with automatic 
software installation procedures would only confuse. One does not need to be a 
home user to be confused over the existence of questionable reusable components 



314	 Chapter 13 • Protection in Untrusted Environments

claiming to be from Microsoft. Seamless automatism can be achieved by allowing 
flexibility in installation of trusted software components as long as they conform to 
some simple set of rules. For example, one can approve software from a known set of 
highly trusted software publishers who have never had an issue with their digital 
certificates. There was a longstanding dispute between Microsoft and VeriSign that led 
Microsoft to define its own root authority over leaked and now retired certificates 
issued to Microsoft. These were never involved in any unauthorized use contrary to 
the popular belief.

In addition to installing an anti-malware solution, a good way to improve your 
posture in an untrusted environment is to consider experimenting with stricter 
HIPS tools and host-based IDS agents. Altor Networks even produces a virtualization 
specific set of IDS/IPS tools. These groups of software were design to generally  
not trust executing code. Since virtual machines are built for a specific purpose, 
expected behavior is in most cases expected and exceptions largely relevant. 
Hence, the overwhelming quantity of false positives that come with some of these 
technologies is reduced to a minimum.

In an application whitelisting solution enforcing a complete lockdown means 
defining a trust policy that automatically trusts software components. It does  
not permit execution of anything else. It is able to control your registry and 
monitor your virtual machine’s runtime memory for artifacts that are not  
specifically approved. The trust mechanism can be easily bound by defining  
a certain set of digital certificates, software sources, or administrative users that 
we inherently trust.

Another concept that could be leveraged is a so-called block-and-ask mode. 
In this mode a user is warned whenever a new executable software component is 
added to the virtual machine. This can be exceptionally powerful when working 
with browser appliances because downloading additional software or browser 
plug-ins is an action with expressed user intent. When warned, a user is able to 
affirmatively acknowledge their intent. If on the other hand a warning arrives 
when just browsing the Internet, it is a signal of an exploit being attempted 
against the virtual machine and the user is able to self-police by blocking such  
a request. In this way we expect the user to know what is appropriate and what 



	 Protection in Untrusted Environments • Chapter 13	 315

is not. When browsing the Internet administrators could trust this general  
guidance as anti-malware tools and URL filtering devices are able to protect 
against outright violators.

A good starting point is always a healthy VM image. With Windows you can 
build your own golden image: your favorite configuration with your favorite 
tuning. Or you can leave this job to the government. Even though this may sound 
weird to the uninitiated, the National Institute of Standards and Technology 
(NIST) has done a tremendous amount of progress towards a common set of 
FDCC desktop operating system images (see Figure 13.2). The FDCC program 
stands for Federal Desktop Core Configuration and has received a fair amount of 
attention in the last few years as NIST, the National Security Agency with guidance 
from Microsoft, and other organizations have been looking at the best ways to 
certify software common desktop platforms and instill a level of configuration  
and platform control that we have required of automotive and pharmaceuticals 
industries but have not yet required from the software industry. As our power grid, 
waterways, and national defenses are controlled by systems that among others run 
Microsoft Windows, this seems reasonable. In 1.0 implementation FDCC offers 
images for Windows XP SP2 and Windows Vista that can be freely downloaded and 
used as an excellent baseline for all future virtualization and security projects. They 
include a standard OS installation with a series of hardening steps. Additional ones 
could be applied through a recommended set of GPO rules and IE7 and firewall 
hardening configurations. For example, it just makes sense to turn off autoplay  
for hardware devices and keep wireless devices off by default. RunOnce registry 
settings are disabled by default. A Vista-specific setting requires the use of signed 
device drivers, a policy that is usually left unenforced in today’s Vista installations. 
As your purpose-built VM image is going to have as little contact with hardware 
devices, it makes sense that you go the extra mile and require signed device drivers, 
ones that are most likely going to come from a certified source. You may choose  
to alter or modify the hardened settings to fit your situation. Still many things are 
not addressed such as Vista audit policy settings, some tunneling protocols, and 
anonymous SID-name translations. Images can be found on http://fdcc.nist.gov.  
Of course, you will need to make sure that Windows licensing is your problem.



316	 Chapter 13 • Protection in Untrusted Environments

Source: http://fdcc.nist.gov

Figure 13.2 FDCC Downloads

Using Virtual  
Machines to Segregate Data
The National Security Agency (NSA) has been spearheading the NetTop effort  
for the last six years. It is an effort that transposes many Virtual Desktop Infrastructure 
(VDI) ideas and complicates it by adding multiple parallel and disconnected 



	 Protection in Untrusted Environments • Chapter 13	 317

networks. A fresh life was given to the effort in the large NSA booth at the RSA  
conference in San Francisco in April of 2008. NetTop provides guidance to security 
agencies that can truly harvest the power of virtualization. NSA’s goal is to improve 
management and support for safe co-existence of confidential and non-confidential 
data and networks. Today a typical high security facility has a multiplicity of end 
point and networking equipment to address this unique security challenge faced by 
government and military facilities worldwide. But a similar principle applies for 
banking and pharmaceutical industries. Just for a second let’s go back to a high 
security environment, and let’s imagine a work desk with six different towers, all 
sporting different colored Ethernet wires leading into different hubs. At best you are 
looking at one monitor (using a KVM switch), but you could easily have multiple 
monitors in order to oversee status on several networks at the same time. It is obvious 
that this is costly and inefficient. Users are not happy, system administrators even less 
so, and the organizations that fund this mess hate it. Still it is the reality until NetTop 
gets widely implemented.

The NetTop project has produced several compliant prototype configurations that 
run on commonly available hardware (see note number seven). Many commercial 
companies such as HP and Juniper are seeing the future in the NetTop paradigm as 
well. Thin client vendors would like to reduce the desktop iron to a neat and light 
end point box that brings disparate networks together and only displays remotely 
powered applications on a single monitor. The real magic would happen on powerful 
virtualized switches and hardware serving perfectly separate and differently config-
ured networks. If there is no way for a virtualized guest system to interact with the 
virtualization infrastructure, it is then assumed that it will not be able to break into 
guest system instances belonging to a different network with different security and 
confidentiality requirements.

This solution is also applicable to a host of other implementers. Government 
contractors for one will need to be able to integrate into this new paradigm.  
But more importantly financial institutions run parallel networks that need to 
clear and broker a wide variety of complex transactions. Pharmaceutical research 
and manufacturing floors are frequently segregated from the rest of the world 
with contact personnel using multiple systems and providing for failure points. 
Simple mistakes such as putting a USB key in the wrong socket or connecting  
a network cable to the wrong hub were “Doh!” moments that have in some 
instances brought down entire organizations for days at a time. In a national 
security scenario these exposures could be catastrophic.



318	 Chapter 13 • Protection in Untrusted Environments

Using Virtual Machines  
to Run Software You Don’t Trust
Developing your ultimate set of  VM images for the analysis and running of software 
that you generally do not trust should not be an impossible task. But as anyone who 
has tried to diligently install a major OS upgrade such as Windows Vista from scratch, 
this process can take a long time. I am not picking on Vista here, but OS installations 
in general are always time consuming efforts. The steps given here are not mandatory 
but are rather presented in an order describing an ascending level of depth and 
control that you may want to exercise over your ultimate disposable testing 
environment.

The first step is to create or obtain a baseline OS image with relevant corporate 
and security software installed. FDCC’s Windows XP and Windows Vista images  
(see note number eight) are a great start, but many organizations have already pre-
configured and pre-installed “golden” images. FDCC images can be easily downloaded 
from the NIST Web site.

An operating system baseline is at some points an artistic decision. Different 
people for different purposes might include networking or corporate applications 
that they do not trust into a baseline for testing software. Whether unknown software 
is trying to kill pop-ups generated by your Oracle CRM application, installing a 
filter into your corporate VPN application, or hooking into your legacy terminal 
application is best determined when a potentially vulnerable target is part of the 
baseline OS. Targeted attacks do not happen if the configuration does not correspond 
to reality.

Keeping a running tally of VM template images is a good procedure for maintaining 
configuration consistency across a multitude of different virtual instances. For example, 
OS install should be followed by network and VPN setup if you are building browser or 
internal application appliances. Critical applications should follow not in order of their 
importance but rather in the software stack order: device drivers first, followed by 
middleware, and ending with end client applications such as Web browsers and Oracle 
and SAP end user agents.

The next step following the application stack metaphor is system hardening.  
It can be built as a separate and isolated step that can be managed separately. 
Security postures could evolve by including less or more strict policies. These 
should naturally build on top of a well configured VM template and before target 
applications are installed. Windows Vista has introduced a host of new GPO  



	 Protection in Untrusted Environments • Chapter 13	 319

policies and lockdown functionality. On the one hand you should not expect to 
truly lock down a Windows Vista system. This means that there would be no 
native way in Vista to prevent the installation of unauthorized software, be it 
through temporary browser cache or elsewhere in the VM image. On the other 
hand tweaking GPO policies is a very worthwhile step. The FDCC recommended 
GPO policy settings are a great start.

After installing software applications that are part of your purpose-built virtual 
appliance, you could optimize user experience by launching and pausing VM 
instances. VM image in paused states can then be used for reverting back to a known 
good state or performing a differential analysis in order to identify what has changed 
in the file system or the Windows registry since the last known point.

Some effort should be taken at hardening the environment outside of the  
VM instance. Tools are available on the market, for example, Configuresoft’s 
Compliance Checker, that will assess the health of a virtualization server looking 
for basic security exposures such as vulnerable password policies, root login 
restrictions, Mac address spoofing, misconfiguration among console firewall, and 
syslog services.

An extremely useful step to consider is building your own HTTP Sinkhole 
which intercepts and terminates all HTTP network traffic. ShadowServer 
Foundation has expressed intention to build what many people have accomplished 
through multiple scripts into a stand-alone offering (see note number six). Another 
open source project is underway with leadership coming out of AOL TimeWarner 
but is without an official Web page. This project plans to aggregate tools required 
to offer easy installation and configuration of HTTP Sinkholes whose importance 
resides in being able to intercept botnets outgoing traffic, analyze it properly, and 
potentially reverse the command and control protocol to allow security professionals 
to assume control over infected systems and instantly shut down their malicious 
behavior.

Inside the virtual machine instance a proper set of tools can bring exceptional 
visibility over software execution of unknown components. Logging all file 
system and registry access is a great first step. There are a number of tools available 
from HijackThis, Metasploit, and Mandiant that can help monitor application 
activity.

If you are interested in an in-depth malware or binary analysis or a true form 
forensics, a next step down is mandatory use of debuggers and disassemblers. 
OllyDBG provides a good solution for 32-bit environments, though we still do 



320	 Chapter 13 • Protection in Untrusted Environments

not have appropriate 64-bit ring 3 or user mode debuggers (see Figure 13.3). This 
could lead to some serious trouble if the penetration of 64-bit Windows systems 
was any more common. On the ring 0 kernel level Norman provides the best tool 
for reversing and monitoring the execution of unknown code in a Windows 
kernel. As the popularity of various packing or compression and software protection 
techniques is on the rise especially among the writers of malicious code, debugging 
and analysis is not complete without a proper disassembly tool such as IDA Pro. 
Disassembly can help identify binary protection artifacts or bogus code designed 
not to look suspicious or to frustrate researchers. Some modern software protection  
techniques add a sufficient amount of redundant or indirect code through parallel 
threads, countless assertions and code re-interpretation that it requires reverse 
engineers of the highest caliber to be able to extract the potentially malicious 
payload.

To make matters worse anti-debugging and anti-VM tricks have made it to 
the commercial market place and are now available as software libraries. They 
detect whether your software is running in a virtual environment; it then alters its 
behavior. There are numerous methods to perform this check. In one scenario all 
a malicious code needs to do is to look for the presence of rdtsc hooking. Rdtsc  
is present on newer processors such as Pentium Pros and AMDs and has been 
available for the last several years. It controls the processor clock and is very 
important to the function of the VMware server unlike a traditional OS, which 
needs to coordinate execution of multiple kernels and as such needs to have 
complete control over the system clock.

If all of these steps are followed, you will end up with an operating system 
image loaded with all the software that is the key to the success of your enterprise, 
and it will have all the required monitoring and forensics tools needed to properly 
assess the trustworthiness of any given piece of executable code.



	 Protection in Untrusted Environments • Chapter 13	 321

Using Virtual Machines  
for Users You Don’t Trust
VMware’s ACE product line is exceptionally useful for generation of disposable 
images for public use including users you do not trust. There are other vendors in 
this market as well; so if more control over VM is desired one should certainly do 
well in evaluating competing solutions.

What is attractive about the ACE model is an additional level of management that 
you can apply to virtual machine instances that you issue. ACE allows you to encrypt 
your virtual image. This can then be used by a single user or given to a designated 
group of users all sharing similar settings. Furthermore these images can be run 
directly from a USB drive for ultimate portability. You should not expect lightning 
fast performance though. ACE also allows you to control VM image with rules-based 

Figure 13.3 OllyDBG Binary Level Analysis



322	 Chapter 13 • Protection in Untrusted Environments

network access (locking out systems by port or traffic type) and to better implement 
a host quarantine (isolating a host system). These are security features you need if you 
are to give virtual machines to users you do not trust.

Setting up the Client Machine
Setting up new operating system images is at the core of the virtualization value 
proposition. Here we are focusing on hardened OS images and a set of rules that 
could be implemented to let you spin up baseline OS variants for various investigative 
purposes.

Installing Only What You Need
Consider starting with FDCC Windows XP and Windows Vista hardened images  
(see note number eight). Implement recommended GPO policies that come with 
your FDCC download. FDCC images come only in VHD format. While you can use 
http://vmtoolkit.com tools to convert VMware specific VMDK images to VHD files, 
basic VHD converter VHD is built into VMware player and the workstation.

Restricting Hardware Access
Device control solutions offer a really strong set of kernel ring 0 features that allow 
you to custom tailor the appropriate thumb and floppy drive policies. The best bet 
may be to simply disable them for good because access to hardware devices may not 
be appropriate in a virtualized world. This does not make so much sense if hardware 
is locked up in a data center unless of course an organization has hundreds of IT 
administrators. It does make a lot of sense for thin computing stations where host 
hardware still has some functionality.

Restricting Software Access
Application control solutions from vendors like Bit9 allow you to drastically reduce 
the attack surface of the operating systems residing in your virtual machine by 
expressly defining what is and is not approved (see Figure 13.4). In this way any 
divergence is reported and can be instantly acted upon. You may want to be notified 
in a Vista Universal Access Control (UAC) manner or you may want to block from 
execution anything that does not belong to the software image of the type of software 
that you want to allow to execute. For example, you may want to allow all Microsoft 
security updates to automatically install, and you do not want the arduous task  
of continually updating your baseline images.



	 Protection in Untrusted Environments • Chapter 13	 323

Scripting the Restore
Basic approaches to virtual machine restore depend on the number of personalized 
data settings that need to be recovered. The most basic approach is to stop and 
destroy the corrupted virtual machine image. But if more flexibility is necessary  
a backup procedure can be implemented with the backup agent of your choice. 
Most of this can be easily scripted and put on a schedule. Another option is to use 
specific backup features available with products such as VMware VCB (VMware 
Consolidated Backup) where you do not need to have an individual backup agent 
inside of each VM Image. This option can be scripted as well. The basic difference 
between these two approaches is in the way the backup is performed. If you do it 
from within each image you can do a file by file backup optimization, but you will 
lose efficiency if all your VM instances decide to start performing backup at the 
same time. VMware VCB on the other hand will perform better but will not give 

Figure 13.4 Software Lockdown



324	 Chapter 13 • Protection in Untrusted Environments

you visibility inside each VM image for a more optimal backup experience. Still, 
backing up entire images is an appropriate solution for protecting your purpose-built 
VM appliances. It is important to note that there’s yet a third option geared toward 
big iron installations. VCB is quite powerful as it was designed for large VMware 
installations running primarily on SAN devices. This solution also is not a breeze to 
implement so one should consider it carefully.



	 Protection in Untrusted Environments • Chapter 13	 325

Summary
Security has high hopes for virtualization as it gives researchers an unprecedented 
view into the behavior of unknown software applications. Virtual machines have been 
used for quite some time among top anti-malware companies. A recent surge of 
reported vulnerabilities and the emergence of commercial anti-VM libraries have 
pushed for these companies to change their posture and begin adapting to a world 
where virtualization is a highly valuable tool but is also an untrusted environment.

In the enterprise virtualization is improving security procedures by allowing 
purpose-built appliances to be built and deployed in untrusted environments.  
It redefines how enterprises think about their software risk exposure and how to best 
manage their business critical software assets. Separation between critical and risky 
has been long a conundrum of personal computing. The disposable nature of virtual 
machine images is about to change where and how we use software applications.

Solutions Fast Track
Using Virtual Machines to Segregate Data

Business critical software applications are best run in isolation˛˛

Purpose-built appliances need to implement prudent system  ˛˛

hardening methods

Application whitelisting and application control solutions give  ˛˛

the best lockdown

Using Virtual Machines to  
Run Software You Don’t Trust

Unknown applications are best tested in virtualized network and  ˛˛

end point settings

Be cognizant that virtualization vulnerabilities and anti-VM libraries exist˛˛

Implement network and end point system segregation˛˛

Monitor all aspects of file system and network activity with all relevant ˛˛

debugging and reversing tools at your disposal



326	 Chapter 13 • Protection in Untrusted Environments

Using Virtual Machines  
for Users You Don’t Trust

Virtual machines are perfect for segregating untrusted users from themselves˛˛

Be cognizant that virtualization vulnerabilities and anti-VM libraries exist˛˛

Harden each virtual machine security posture and validate virtualization ˛˛

server security settings

Manage untrusted users by permitting approved and denying all other ˛˛

software execution



	 Protection in Untrusted Environments • Chapter 13	 327

Frequently Asked Questions
Q:	What should I consider when using VM images for testing suspicious Web sites  

or potential malware?

A:	You should be cognizant of the fact that there are commercial anti-debugging 
and anti-VM toolkits out there. Based on their information some advanced 
malware alters its execution, aborts, or launches virtual machine specific exploits. 
Consider building a specialized lab that is as separate from your mission critical 
infrastructure as possible. Consider building a HTTP sinkhole so that you can 
easily analyze, spoof, and redirect HTTP traffic. Most recent botnet traffic has 
migrated to the HTTP protocol as it affords a larger surface attack area.

Q:	What tools could help me in analyzing the behavior of VM images?

A:	HijackThis is a freeware application that offers a really good summary of behavior 
of unknown software. Today additional information is available on the Trend 
Micro Web site. Metasploit offers tools to understand their behavior. Going 
deeper, OllyDBG and IDA Pro are good ring 3 debugger and disassemblers for 
in-depth forensic analysis of unknown applications. Norman’s Sandbox is the best 
tool for going deeper into ring 0 and examining kernel level interactions.



328	 Chapter 13 • Protection in Untrusted Environments

Notes
1. � IBM Internet Security Systems X-Force 2008 Mid-Year Trend Statistics (Somers, NY: 

IBM Global Services, 2008), www-935.ibm.com/services/us/iss/xforce/ 
midyearreport/xforce-midyear-report-2008.pdf.

2. � “National Vulnerability Database Version 2.2” (Gaithersburg, MD: National 
Institute of Standards and Technology, Computer Security Resource Center), 
http://nvd.nist.gov/.

3. � John Leyden, “Sobig-F is fastest growing virus ever — official outlook grim,”  
The Register, August 2003, www.theregister.co.uk/2003/08/21/sobigf_is_fastest_ 
growing_virus/.

4. � “Mydoom Surpasses Sobig.F to Become Fastest Spreading Virus Ever, with  
1 in 12 Emails Now Infected,” BNET (from Business Wire, January 2004),  
http://findarticles.com/p/articles/mi_m0EIN/is_/ai_112589554.

5. � “PATH TRAVERSAL VULNERABILITY IN VMWARE’S SHARED 
FOLDERS IMPLEMENTATION,” Core Security Technologies, 2008,  
http://www.coresecurity.com/content/advisory-vmware.

6. � “OWASP NYC AppSec 2008 Conference,” the Open Web Application Security 
Project, 2008, www.owasp.org/index.php/OWASP_NYC_AppSec_2008_ 
Conference.

7. � “Technology Profile Fact Sheet: NetTop,” from Technology Profile Fact Sheets  
(Fort George G. Meade, MD: National Security Agency, Central Security Service), 
www.nsa.gov/techtrans/techt00011.cfm.

8. � “Federal Desktop Core Configuration,” National Institute of Standards and 
Technology, July 2007, http://nvd.nist.gov/fdcc/download_fdcc.cfm.



329

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Chapter 14

Training

Solutions in this chapter:

Setting Up Scanning Servers■■

Setting Up Target Servers■■

Creating the Capture-the-Flag Scenario■■

Out Brief■■

Cleaning Up Afterward■■

Saving Your Back■■



330	 Chapter 14 • Training

Introduction
During my early years as a security professional I had a role in training other members 
of my team in penetration testing. Because of the nature of penetration testing, we had 
to go through special precautions to ensure that surrounding network environment 
would not be damaged by the students. In addition, because we were using it as a 
training environment we wanted to keep the systems that the students were using 
fairly standard. We didn’t want them to have to install new operating systems, and we 
didn’t have hardware to pass out to everyone for the class.

Initially, we tried to do things using multiple physical servers, Knoppix CDs and 
lots of rebooting. Setting up for class each day meant coming in one to two hours 
early to wire everything up, and make sure the environment was ready to go. The 
end of day brought a similar level of effort to shut everything down. We had to find  
a good place to store five servers, along with the switches and cabling needed to 
make it work.

Virtualization significantly reduced complexity of the environment. As you will see 
in the chapter our requirements went from dragging around five physical servers and 
nightmare administration down to a single server and eventually to a remotely accessible 
server which stayed in our lab. As an added advantage, resetting the environment for the 
next class was a matter of reverting to snapshots created before the class started. No more 
server rebuilds were required. We could also revert during the class when the students 
crashed too many services for the box to be considered operable. Restarting the services/
rebooting the box would have been possible, but it was no longer necessary thanks to 
the benefits we gained from using virtual servers.

Our users were able to move to an environment that they could alter when they 
wanted, but could be restored in a simple manner. They could install tools which 
would be there the next day. No reboots were required to use Linux tools on their 
Windows laptops.

Setting Up Scanning Servers
One of the first tools used during a penetration test is the scanner. During our class the 
goal was to give each student the opportunity to configure and run a scan from an 
operational server. We did not want the students installing software for two reasons. First 
of all installing software can be tedious, and certainly wouldn’t have been a valuable use 
of time. The other reason is that our students were often new to Linux, and may not 
have been able to install the required software in a “clean” Linux distribution.



	 Training • Chapter 14	 331

Advantages of Using a  
Virtual Machine instead  
of a Live-CD Distribution
Our first solution involved using a Linux distribution designed for security testing.  
The environment was distributed in the form of a Live-CD. A Live-CD is a bootable 
CD that boots into a preconfigured environment. One can think of them as a 
computer image on a disk. Normally, a Live-CD boots a kernel, and creates a virtual 
disk in memory. The kernel then creates a file system on this memory disk, containing 
all of the files that the environment will need to function. This usually includes 
commands and utilities to accomplish a specific task, but can be as complex as an entire 
application environment.

The Live-CD distribution we chose booted to a fully functioning Linux 
workstation designed for security testing. It had a large number of tools installed, 
and would have been a great base to learn from. There were however two drawbacks 
that made this environment slightly less than ideal.

Persistence
The first drawback of a Live-CD environment is persistence. Each time a Live-CD 
environment is rebooted, all changes are lost, and the environment is restored to a 
clean directory. They are great for a short-term demonstration, but for the purposes 
of our class we wanted somewhere to store information for the duration of the class. 
The students were using their laptops, and permanent alterations would have been 
frowned upon. 

Another option would have been to have students put their customizations on  
a USB storage device. At one point we encouraged students to use these with their 
Live-CD environments and it seemed to work, but at that time USB storage devices 
weren’t terribly popular.

Customization
Each class we would run into something we wanted to improve. During one class  
we might have noticed that the version of Nessus was way out of date. During 
another class we would wish that we had a tool to look at WebDav shares. We always 
had to weigh the educational value of a change against the inconvenience of having 
every student try and install tools. Inevitably someone would miss an instruction,  



332	 Chapter 14 • Training

and we would have to troubleshoot their installations. We spent significant amounts 
of class time teaching students how to install and configure software which they 
might never use again.

We did have a goal for students to learn to install simple software, however.  
Life as a penetration tester involves a willingness to go out and find tools appropriate 
for the job at hand. There is a vast knowledge base which has been developed  
which is available for public use (for which we all owe a debt of gratitude). Students 
needed the ability to install and configure tools to their liking.

Disadvantages of Using  
a Virtual Machine instead of a Live-CD
There were some disadvantages of using a Virtual Machine instead of a Live-CD 
distribution. The biggest issue in our minds was that students couldn’t take their 
virtual machine home with them after the class was complete. Although some of our 
students were very new to Linux and security in general, others were quite capable 
of handling their own machines. Nowadays we could have arranged for it by copying 
their virtual machine to their local box, and using VMware Player. This would have 
worked ideally, but at the time all of the VMware products required additional licensing 
fees. Assuming the student’s hardware was capable of the additional workload, the 
student would have been able to boot the image and run the tools in the same 
manner as they had on our server.

Another drawback to using virtual machines instead of CDs is that we lost the 
ability for the students to do wireless assessments. As we’ve discussed in other 
portions of the book, wireless assessments can require significant hardware control 
right down to the firmware level. Virtualization software does not allow virtual 
machines to access the hardware in a direct manner. In order to demo wireless 
software, tools must either be installed on the native operating system, or they can 
be loaded from a CD.

Default Platforms As Well to Use a Variety of  Tools
There was also call for semistable environments for students to install software into 
(I wouldn’t recommend installing individual clients for single tests onto “master” 
scanning servers, but onto an image dedicated to a single test shouldn’t be a problem). 
Examples of such software might be a Lotus Notes client. Lotus Notes uses a  
proprietary protocol which is most conveniently tested using the actual Lotus  



	 Training • Chapter 14	 333

Notes Client. The client is able to talk to the server and discover information about 
default databases and configuration options which, while remotely accessible, are  
not easily obtained using any other tools.

The testing of exploits also often requires a default platform to be ready at  
a moment’s notice. Exploits obtained from the internet can be unpredictable.  
In some cases they are very reliable, and perform their action with minimal impact 
to the server in question. In other cases they crash the server multiple times trying 
to brute force parameters before they are able to perform their intended action.  
In still other cases the author of the exploit has deliberately coded the exploit to 
perform malicious actions. A professional network penetration tester should know 
the exact effect that an exploit might have, and have permission from the client to 
perform such a test. Ideally the tester has the ability to read through the code and 
determine at some level what the exploit is doing, but in many cases that may be 
difficult or impossible. At a minimum the exploit should be run against a test server 
to verify that the exploit works as advertised.

Scanning Servers in a Virtual Environment
For all of the reasons above, we decided that preconfigured virtual servers for each 
student would be the way to go. That way we could give each student a “root” 
password to log in, and manage their own server. Students were encouraged to 
customize things to their own liking and become familiar with the server throughout 
the weeklong course.

The base configuration looked very similar to our favorite Live-CD distribution 
with regards to tools chosen to be installed. From there we added some additional tools 
that we wanted to use to demonstrate various concepts from the class. Students were 
given copies of the master scanning server, and each was then encouraged to customize 
as they saw fit. The first recommended action was to change the root password. For one 
class in particular this was an important instruction. For some reason they spent much 
more time trying to attack each other than they did training against the official target 
servers. This behavior also caused the instructors to curtail the amount of “dangerous” 
techniques we taught. If they couldn’t refrain from attacking each other, we didn’t feel 
teaching them advanced techniques would be a wise course of action.

We did not elect to create servers to test exploits against (although we did 
recommend this for testing in the “wild”). The students were encouraged to test 
exploits that they obtained from the web against their scanning server (and to read 
through the code to get an idea of how it worked). We deliberately structured the 



334	 Chapter 14 • Training

class so that commercial clients/test servers would not be required (for licensing 
issues as much as anything else).

One obstacle that we did have to overcome was that each machine had to be able 
to exist on the same network at the same time. This meant that their MAC/IP 
addresses needed to be changed. We ended up scripting the MAC address change, and 
using DHCP to handle the IP address modifications. This proved to be fairly effective.

Students were able to access their boxes using the VMware console software. 
Thankfully this was readily available from the VMware server management web portal. 
Students could download the flavor of their choosing (Linux or Windows), install it, 
and be presented with the console of their scanning machine. This gave them some 
exposure to managing virtual machines in addition to learning the basics of security 
testing. The teachers could also use the consoles to observe the students and check 
that they were keeping up with the progressive nature of the scenarios. If any student 
required assistance, the teacher could either use the console to demonstrate the technique 
or go directly to the student’s desk to provide personal attention.

The virtual machines could also be accessed and managed in the same manner as 
any other remote server. Because the scanning servers we were using were Linux 
based, the preferred remote management tool was SSH. In some cases they used GUI 
type tools tunneled through SSH as well. SSH was also used for transferring files to 
and from the scanning servers. The steps in setting up these tunnels were used as 
teaching opportunities. Students were taught how to work in the presence of firewalls.

The testing environments were set up with firewalls governing traffic in both 
directions. Because the target servers were “weakened” live servers, we did not want 
them on the primary corporate network. One can imagine the scandal if the security 
group were to be infected by a worm because of an un-patched training server. In 
addition, we wanted all testing to be done from the scanning servers inside of the test 
environment. This was done to ensure that tests performed during the class would 
not accidentally be directed at targets outside of our environment. As mentioned 
above, the only two ports open to incoming connections were SSH and the VMware 
console port. Outbound connections were blocked entirely from both the scanning 
servers and the target servers.

Setting Up Target Servers
Because the class was supposed to be about penetration testing and exploitation,  
we needed to have servers to scan and attack. Virtualization made it easy to create 
additional servers and start/stop them one at a time as our demonstrations required. 



	 Training • Chapter 14	 335

We were even able to keep them in a suspended state so that the demonstrations 
took very little time to initialize and execute. The first set of machines was used 
during the first three days of the class. A second set of boxes was used for the final 
day where the class was able to practice the techniques they had learned.

Very “Open” Boxes  
for Demonstrating during Class
The target servers for the first half of the week were set up using un-patched 
operating systems plus a number of services with known vulnerabilities. In addition, 
we deliberately installed some additional “vulnerable” third-party packages with 
exploitable issues. The intent was to give the students experience in exploiting a 
wide variety of vulnerabilities. While an in-depth discussion of developing their 
own exploits was beyond the scope of the class, it was well within their abilities to 
do research on publicly available sites, and to determine if the exploits they found 
would apply to the environment we provided. We deployed the servers with no 
firewall rules restricting traffic from the scanning servers. We set up both Linux and 
Windows environments using “older” generation platforms to ensure there were 
enough issues to work with.

Suggested Vulnerabilities for Windows
The first type of vulnerability we wanted to demonstrate were default configuration 
issues and poorly chosen passwords. We created a number of users on the test server. 
Some users had no passwords, and others had simple or predictable passwords. The 
class was taught how to look up default passwords for various software installations, as 
well as how to enumerate users on servers which allow it. They were also taught how 
to look at the password policy to determine if it would be safe to attempt to brute 
force passwords. Of course on our test server brute forcing was configured to be safe 
so that we could demonstrate tools to perform such attacks. We also installed MS 
SQL server, and had the password set to blank as was the default a number of years 
ago. This allowed the students to both learn how to connect to such a server, as well 
as how to exploit a database server using SQL commands.

We also made sure that significant information was available using publicly available 
tools. SNMP community strings were set to public. I believe this server even displayed 
configuration information using the built in IIS web server with some custom ASP 
scripts (which had vulnerabilities in them as well).



336	 Chapter 14 • Training

In addition, we installed some open source software with known exploits.  
The goal in installing this software was to simulate a real environment which was 
performing useful functions. The software we chose had a buffer overflow in the 
portion of the application which collected data from the network. We also chose 
software that had “non-overflow” vulnerabilities. If a tester issued a properly 
formatted request, then the tester could retrieve any file on the system.

Finally, the operating system was left unpatched. We had to be careful to keep the 
firewall rules in place, as putting such a server on the corporate network would have 
been a violation of the usage guidelines, and likely would have been a victim of the 
occasional worm outbreaks.

Suggested Vulnerabilities for Linux
We also deployed a highly vulnerable Linux box so the students would have experience 
attempting to exploit a UNIX-like server. Again we installed a number of vulnerable 
software packages. From there we modified the server configuration so that even more 
vulnerabilities existed.

Again the configuration of the installed software was changed so that there would 
be even more vulnerable to exploitation. One example of this was modifying the 
FTP server so that when one logged into the server using anonymous, you were 
given read and write access to a user’s home directory. The students were then taught 
how to exploit a server if you had access to that directory.

Finally, a number of packages were installed which had known buffer overflow 
issues. Again these were packages with known buffer management issues. The goal 
was to allow students to perform their own research and collect vulnerabilities to be 
used during the test.

Suggested Vulnerabilities  
for Application Vulnerability Testing
We also installed a handful of applications that would be exploited using web servers, 
as these types of servers would be the ones most commonly encountered during 
penetration tests. Again the class did not have enough time to teach a significant 
amount of application exploitation, but the students were given some exposure to it. 
At the time the most significant type of vulnerability being exploited in the wild was 
SQL injection. SQL injection vulnerabilities arise when an application creates an 
application query using input from the user without ensuring that it is in the proper 



	 Training • Chapter 14	 337

format. Students were taught to extract data from tables, as well as how to gain shell 
access to a database server which was accessed by a vulnerable application as shown 
in Figure 14.1.

Figure 14.1 An Example of a Successful Exploit Returning a Shell from  
a Windows Machine

Students were also taught how to test and exploit some forms of vulnerable CGI-
BIN scripts. My first successful exploit was actually a vulnerable CGI script which I 
had installed on a test server. I had read about how one performed an exploit against a 
particular CGI script, and wanted to know if it worked. It appeared too simple to 
actually be effective. I installed the package by following the instructions which came 
with the package. I then attempted the exploit that I had read about. Much to my 
surprise the exploit worked, and I was presented with a shell prompt originating from 
my victim server. I was absolutely shocked, and hooked at the same time. I wanted to 
give my students that same thrill. Figure 14.2 shows how the exploit of a vulnerable 
cgi script might look.



338	 Chapter 14 • Training

Although cross site scripting attacks were not terribly popular at the time I was 
teaching my class, talk about the exploitation of cross-site scripting attacks. The 
students were presented with a vulnerable application and taught how to spot issues 
in the applications. They were also taught some minor exploitation techniques.

During each of the application vulnerability scenarios we spent a limited amount 
of time looking at the vulnerable source code. Our students were not all capable of 
understanding the raw source code, but because the examples we were using were  
so blatant I believe the majority of them could understand how the issues arose. 
Figure 14.3 shows how the XSS demonstration appeared.

Figure 14.2 A Successful Exploit against a Linux Server



	 Training • Chapter 14	 339

Creating the Capture-the-Flag Scenario
The final day’s activities were devoted to a capture-the-flag scenario. Students were 
divided into teams of two and were told to conduct a penetration test. We provided 
the teams with a sample “Statement of  Work” indicating the boxes that were  
considered in scope to be tested, along with some information regarding the purpose 
of each server. The team with the best report would be declared the winners.  
The measurement of “best” report was a subjective analysis done by the class using an 
approach of each team presenting vulnerabilities, and then we discussed the results. 
Finally, teams were given the opportunity to choose whose report best captured the 
state of the environment.

Each team used their own virtual machines to conduct scans and perform testing 
against the targets.

Harder Targets
Each server had some vulnerabilities deliberately installed, as well as some false positives 
that appeared vulnerable on a scan but which would ultimately prove vulnerable.  
On each server there were multiple vulnerabilities to exploit.

The first server (and only server the students could reach directly from the scanning 
server) was a web server. It had an older version of apache, as well as an exploitable 
version of openssl. The versions installed were both vulnerable to buffer overflow 
exploits which allowed arbitrary code execution. This would result in shell access on 

Figure 14.3 An Example of a Successful XSS Demonstration



340	 Chapter 14 • Training

the server if you used exploits that were published in a number of places (which we 
had covered during class). The web server also had a CGI vulnerability on it which 
was vulnerable to shell character insertion (a type of attack where a user-submitted 
input is used as a parameter to an application run from a command line). Again this 
vulnerability would result in shell access, although it was not a published vulnerability 
so they would have to develop their own exploit for it. (Nessus would indicate the 
exact format of the exploit, though). The operating system on the web server was also 
a bit old, and a number of exploits were available against it as well. Using the remote 
vulnerabilities the servers could gain shell access as an unprivileged user. Following 
this the local vulnerabilities could be used to gain root on the server, and crack the 
shadowed password file.

The second “in scope” server was a database running on the Windows platform. 
The web server had access to the database server using credentials stored in a file in 
the web environment. In addition, the database server had one account that would 
have been easily guessed from the username. By using the database credentials, the 
students could gain access to the database server as SYSTEM, or using the guessed 
password they could obtain administrator access.

Finally, another “internal” server was in scope which had simulated payroll data 
on it. This server was exploitable by using the same usernames and passwords found 
in the shadowed password file on the Linux server. It could also be exploited using 
an old FTP vulnerability. Either of those would get the attacker onto the server with 
the flag.txt file.

While it sounds pretty simple, exploiting the three boxes usually took the majority 
of the day and allowed the students to use a significant portion of what we had 
taught them.

Snapshots Saved Us
There were a large number of times that the ability to restore to a snapshot helped us 
restore the environment. During the initial days of the class, a reboot of one or more 
servers was required to fix various problems that arose. It was especially annoying 
when the first class managed to lock everyone (including the instructors) out of the 
server. We had to boot that server into single user mode to recover. Obviously, the 
members of the class were anxiously awaiting this repair to continue their work. 
Happily, the virtualized environment alleviated many of these types of problems.  
A hung server could be recovered in about 30 seconds by restoring to a snapshot 
created before the class even started. Unfortunately, this would delete the tools of the 



	 Training • Chapter 14	 341

students who had already gained access to the box, but that couldn’t always be helped. 
This experience can also happen in the real world.

Require Research to Accomplish the Task
A key portion of the class consisted of the students detecting the vulnerability using the 
scan, and then going out on the internet to research the vulnerability. We encouraged 
them to read about who discovered the vulnerability, what the problem actually was, 
how it was repaired, and how the exploit worked. Wherever possible we encouraged 
them to test the vulnerability against a test server, with sniffers in place so that they 
would see each step of the exploit in action.

Introduce Firewalls
During the capture-the-flag scenario we also brought firewalls into the environment. 
Up to this point the students hadn’t had to contend with a firewall’s effects on their 
testing. Firewalls blocked access to ports that they were accustomed to using such as 
FTP, Telnet, and SSH. In addition, they had to understand the effects that egress 
filtering would have on their attempts to create connections back to their “attack” 
servers. The primary web server was only reachable on ports 80, and 443. We also left 
a range of ports open from 1100–1200 open in the firewall but with no services 
running on them. These ports were intended to be used by students to forward ports 
of internal services, and to transfer tools onto the web server. Egress filtering was not 
in place (a possible finding for the teams). The firewall also allowed the students to 
make connections back to their scanning server without issue.

Multiple Servers Requiring Chained Attacks
Another technique that was introduced during the capture-the-flag scenario was the 
idea of chaining attacks together. While the statement of work indicated the presence 
of a number of servers, only one was actually accessible from the students’ scanning 
servers. They were required to exploit this server in one of a number of ways. From 
there they were able to (but not required to) escalate privileges to root on the server. 
From this point they were to exploit boxes on the “inside” of the network. Again 
there were a number of methods to go from the front web server to the other servers 
inside the environment. Students were required to get any tools they wanted to use 
onto this server in order to exploit the remaining servers. These tools often include 
scanners and remote administration tools. It was interesting to see to what length 
each group would go to in order to gain graphical access to the server they had just 



342	 Chapter 14 • Training

exploited. Although it was not necessary for the testing, some groups would work  
on it for extended periods of time.

This exercise of having to chain their attacks together taught them both to really 
think about what they were doing, as well as practice using the tools. Each time they 
messed up and accidentally closed their tunnels, they would have to start them over. 
By the end of the day they were getting pretty adept at it, and in some cases would 
script major portions of it.

Adding Some Realism
As mentioned earlier, we made every effort to keep the scenarios realistic. This 
included a statement of work that was very close to statements which we had used on 
previous real-world engagements. In some cases the customer would “reboot” a box 
without letting the testers know. This was normally done to recover the environment 
from a “misbehaved” exploit that someone had run. In addition, if service was 
somehow interrupted, the customer would “call” and let the testing team know that 
they were not pleased. Each of these devices was used to prepare the students for 
situations they might encounter as they moved out of the classroom environments.

Loose Points for Damaging the Environment
We had to create some rules to get the students to realize that they had to be better 
behaved than the bad guys. Exploits couldn’t be run unless you could describe what 
their effect would be. At one point we also deployed some servers in the environment 
which were not mentioned in the statement of work. Any attacks against these 
servers were penalized. I guess in some ways we had deployed honey pots hoping  
to catch the careless students in our groups.

For some reason, during each and every class at least one of the students tried to 
shutdown the firewall on the primary web server. I assume this was their way of 
getting some more “room to work with”. They didn’t know how to operate with 
the firewalls in place, so they tried to drop the firewall rules. Every class we tried to 
increase the amount of instruction on working with limited network access, but 
apparently it wasn’t enough. Obviously shutting down a firewall would not be an 
appropriate action to perform on a customer server, but never the less someone 
always managed to attempt it. And every class they did it in a way that locked 
everyone out of the server, instead of opening it to the world. This was normally the 
cause of our “customer” calling to say that they were severely displeased with the 
service interruption that had been caused by the testing. Instead of changing the 



	 Training • Chapter 14	 343

final rule on the firewall to accept all packets, they flushed all of the rules except the 
default rule which was set to deny all traffic.

Demonstrate What the Attack Looks Like on IDS
One aspect that I would have liked to add to the class would have been an IDS 
server. It would have been interesting for the instructors to observe the progress of 
the class. It also could have been an educational experience for the students to see 
how their attacks were registering on the console. It might also have been yet 
another “deterrent” for any students who might have wanted to take their newly 
learned skills out on the road. If I were to set up the class again, I would take advantage 
of one of the virtual appliance programs to install a preconfigured IDS system. Using 
an appliance would give me all of the benefits of an IDS system without me having 
to expend significant effort. Expending less effort has always been a goal of mine,  
and I’ve spent considerable effort trying to achieve it.

Out Brief
At the conclusion of the day we had a short out brief meeting. We used this time to 
discuss the major vulnerabilities that were found. Teams were given the opportunity 
to present how they discovered a particular vulnerability, the information they discovered 
while researching the vulnerability, as well as how well their exploits worked. We also 
attempted to commend teams for finding additional vulnerabilities. During each stage 
of the scenario we attempted to have more than one path, to remind the students 
that even though the situation was called “capture the flag”, their goal was to find all 
vulnerabilities in the environment, not just a valid path to the end goal.

Cleaning up Afterward
The best part of our new virtualized classroom environment was the ability to get 
ready for the next class. We didn’t have to help anyone fix their laptops. Each of the 
student’s scan boxes could be deleted, and the configurations removed from the 
virtual server manager.

The target boxes for both the weeklong instruction, as well as the capture-the-flag 
scenarios, could be reverted to the snapshots taken at the beginning of the week. 
Finally, the scenarios could be updated with new vulnerabilities, or more likely with 
hints to cause the students to move in a more productive direction. These changes were 
then incorporated into a snapshot to be used during the next time we taught the class.



344	 Chapter 14 • Training

Saving Your Back
The last improvement that we made was the use of a VPN to be able to access the 
virtual server host. Servers with enough horsepower to run a decent sized class were not 
terribly portable. By using a VPN into our lab environment, we were able to reduce the 
needs of the class down to my laptop (which was also used for the class presentation 
materials). The solution we chose was Openvpn. This would allow me to connect to the 
environment, and then students could route their management connections through my 
workstation, into the VPN tunnel, and finally the lab environment. Openvpn was fairly 
simple to set up, and seemed to allow us to perform any actions we might need. I was 
amazed to see tools such as Nessus, and Nmap be able to perform with near real-time 
speed through the tunnel.

To simplify even further, a hardware device could have been used to give instant 
access to the environment (without me needing to be in the correct configuration). 
Devices such as the Linksys WRT54G router can be configured to connect to 
Openvpn gateways. Anyone connecting to either the wired or wireless interfaces can be 
directed into the tunnel, and given access to the lab network. Note that some caution 
should be used when deploying a wireless network on a corporate infrastructure. It is 
highly likely that you may be breaking corporate policies. It is certainly recommended 
to use appropriate encryption precautions to prevent unauthorized users from accessing 
the lab, or the corporate network using your hardware.

Another advantage of deploying your own hardware is to test out a number  
of attacks which are not advisable for use on a corporate network. Tools which 
perform ARP packet spoofing in an attempt to become the gateway for a segment 
can cause significant damage. By using our own hardware, the students could be 
shown both the techniques and the effects without causing interference or damage 
to production systems.



	 Training • Chapter 14	 345

Summary
Virtualization made my class significantly more productive. I was much happier  
to teach the class when I didn’t have to cart around five different servers and 
spend significant amounts of time trying to get each student’s environment set up 
appropriately. It also made the time much more effective for the students. They 
were able to concentrate on learning what they had come to learn instead of 
learning how to configure an operating system they may or may not ever use again.

Solutions Fast Track
Setting Up Scanning Servers

We wanted something for students to use that was easily reproducible.˛˛

We needed something that had a variety of tools installed.˛˛

We wanted each student to have access to their own server.˛˛

Setting Up Target Servers
We used older versions of software.˛˛

We created additional holes to illustrate key concepts during demonstrations.˛˛

Virtualization was used to run multiple servers on less hardware. In this case ˛˛

we only used servers for short periods of time (often minutes), and then 
suspended it, freeing up resources to be used for other machines.

Creating the Capture-the-Flag Scenario
This environment was more complicated; it included multiple networks, ˛˛

firewalls, and interconnected applications.

Virtualization allowed us to monitor students’ progress.˛˛

Virtualization allowed us to quickly restore the environment in the event ˛˛

that a student damaged something.



346	 Chapter 14 • Training

Out Brief
Students reported their findings on the environment.˛˛

Emphasis was placed on listing all of the vulnerabilities, and not just the ones ˛˛

that led to further exploitation.

Cleaning Up Afterward
Virtualization allowed us to restore all of the environments used in class to  ˛˛

a known functional state for the next session.

We often reverted, updated, and took another snapshot as we encountered ˛˛

issues we wanted to change.

Saving Your Back
VPN technology was used to access the virtual hosting server remotely.˛˛

VPN technology allowed us to have even more processing power without ˛˛

having to transport bulky equipment.

The effect of the VPN on the students was minimal. We didn’t have to ˛˛

chance the class at all to make it work. 



	 Training • Chapter 14	 347

Frequently Asked Questions
Q:	Was it safe to teach ethical hacking?

A:	We were confident that the students were attending the class with the intent of 
learning more about security and the attacker’s mind-set. The students were 
professionals and understood the issues involved with performing tests against 
systems owned by others.



This page intentionally left blank



A
ACE model, 321–322
Advanced Forensic Format (AFF), 232
Altor networks, 314
AMD Virtualization (AMD-V), 58
anti-debugging libraries, 306–307
antivirtualization techniques

detection, 184
hardware detection identifiers

hard drives, 186
hypervisor environment, 187
MAC addresses, 185
PCI identifiers, 186–187

virtualization utilities, 184
VMware I/O port, 184–185

application fuzzing, 215
application testing

application tester, 192
default platform

copying machine in VMware server, 
193–195

registering machine in Microsoft  
virtual server, 195

preconfigured appliances
Microsoft’s test drive program, 198–199
VMware’s appliance program, 197–198

standard hardware, 196
Atlas computer, 3

B
Berkeley packet filter (BPF), 126
block-and-ask mode, 314–315
/boot/grub/menu.lst file, 293
boot.ini file, 200, 293–294
bootsector.sec file, 293
Bot-net controller, 156

C
Citrix XenServer, 277
compatible time sharing system (CTSS), 4
cray time sharing system (CTSS), 6
CWSandbox, XML analysis report

Bot-like behavior, 181–183
interpretation

binary updates from Bot, 175–176
Bot installation, 168–169
C&C server communication,  

174–175
infected new hosts, 169–170
malicious operations, 176–181
protecting local host, 171–173

live version of, 182
registry section, 163–164
root element, 159–160
TCP connection, 164–165
Winsock notifications, 164

D
debugging. See kernel level debugging
disaster recovery

backup and recovery simplification
file level backup and restore,  

257–258
shared storage backup and restore, 

259–260
system-level backup and restore, 

258–259
data center redistribution, 265–266
from hardware failure, 265
hardware restoration

DR site methodology, 261–262
physical system recovery, 262–263
virtualization software, 262

Index

349



350	 Index

disaster recovery (Continued)
virtual system recovery, 263–264
VMware ESX, 261

virtual environment, 256–257
disk data base, 236
distributed network, 122–123
DLL. See dynamic link library
dual booting, native and virtual machine

Linux operating system
boot.ini file, 293–294
boot menu with Linux option, 294–295
bootsector.sec file, 293
disk defragmentation, 291
dual hardware profiles, 295–296
DVD image file mounting, 290
Grub, 293
new partition creation, 291
operating system installation, 292

Windows operating system
booting suspended partition, 296–297
changing hardware configurations, 

297–298
deleting suspended state, 297

dynamic link library (DLL), 65

F
Federal Desktop Core Configuration 

(FDCC) program, 315–316
file transfer protocol (FTP), 67
firewalls, 341
forensic analysis

captured machine booting gain
analyze phase, 239
botnets/virus-infected systems  

intelligence collection, 244
capturing process and memory data, 245
evidence meaning, 242
RAPIER tool, 239–240
report phase, 241
special software, 242

time bombs and booby traps  
analysis, 243

Unix and Windows tools, 240
virtualization, behavior  

observation, 242
virtual machine performance, 245–247
VM-aware malware, 247–248

definition, 230
environment preparation, 231–232
machine capturing

forensically sound image creation, 232
hybrid forensics model, 237–238
Live response and Live acquisition, 233
Live View, 236–237
master boot record (MBR), 235
RAID system, 232–233
reliability maintenance rules, 233–234
virtual environment, 234–235
virtualization, 237
VMware files, 235–236

new hardware booting, 238–239
virtualization, 230–231

fortran monitor system (FMS), 4
FTP. See file transfer protocol
fuzzing

controller, 217
definition, 212
external interaction preparation

creating virtual machines, 219
snapshot, 218–219

test execution
data selection, 221–222
exceptions, 222
interacting with application, 220–221
running concurrent tests, 223–224
saving results, 223
snapshot control, 219–220

virtualization features
clean slate, 214
debugging tools, 215–216



	 Index	 351

implementation, 217–218
reducing startup time, 215

vulnerabilities, 212–213

G
GenI honeynets, 120–121
GenII honeynets, 121
GenIII honeynets, 121
GPO model, 311–312

H
hard drive and network configurations

growing disk sizes, 93
interface creation

bridged, 95–96
ethernet adapter, 94–95
host-only, 96–97
natted, 97

multiple interfaces, 98–99
SCSI disk type, 93–94
snapshots, 94

hardware detection identifiers
hard drives, 186
hypervisor environment, 187
MAC addresses, 185
PCI identifiers, 186–187

hardware management console (HMC), 7
hardware restoration, disaster recovery

DR site methodology, 261–262
physical system recovery, 262–263
virtualization software, 262
virtual system recovery, 263–264
VMware ESX, 261

high availability, virtual environment
configuration

server pool/cluster, 279–280
shared storage and network, 278

definition, 272
maintenance

downtime reduction, 282–283

monitoring resources over commitment, 
280–281

security implications, 281–282
planned downtime, 273–274
reset to good

scripting/other mechanism  
utilization, 277

vendor tool utilization, 275–277
unplanned downtime, 274

high availability cluster, 279–280
high interaction honeypots, 120
“high severity” CVSS score, 307
HIPS tools, 314
HMC. See hardware management  

console
honeymole, 125–126
honeynets, 120–121
honeypots

advantages and disadvantages, 119
detecting attacks

intrusion detection systems (IDS), 
130–131

network monitoring, 132
network traffic capture, 131–132

distributed network, 122–123
with intrusion detection systems (IDS), 

118–120
layer 2 bridges, 123–125
local network, 122
multiple remote networks

mapping virtual network interfaces, 
128–129

network interface card (NIC), 127
settingup network environment

Nepenthes, 134
network setup, 134–137
plausibility, 134
second network interface configuration, 

139–140
virtual machine settings, 138



352	 Index

host-based IDS agents, 314
HTTP Sinkhole, 319
hybrid forensics model, 237–238
hypertext transport protocol  

(HTTP), 67

I
Ident protocol (IDENT), 67
IDS/IPS tools, 314
IDS system, 343
Internet Relay Chat (IRC), 244
inter-process communication (IPC), 70

K
kernel level debugging

boot.ini file, 200
boot option, 205
guest machine, 206
Named Pipe optins, 202–203
serial port, 202
VMware hardware configuration  

settings, 201
windbg command line options, 206
Yield CPU on Poll option, 204

L
library emulation

Cygwin, 53
hardware processor, 53–54
host operating system, 51–52
Linux emulator, 52–53

Linux boot loader, 293
Live-CD distribution, 331–332
Live-DVD creation

configuration, 83–84
CWSandbox v2.x, 82–83
Linux, 78–79
Rrmastersys, 83
updating process, 85
Virtual machine, 80–81

VMware server v1.05, 80
Windows XP professionals, 81–82

livermore time sharing system (LTSS), 5
Live View P2V, 236–237
local network, 122
Lotus Notes client, 332–333

M
Mainframe technology, 7–8
malware analysis

antivirtualization
detection, 184
hardware detection identifiers, 185–187
virtualization utilities, 184
VMware I/O port, 184–185

API applications, 72
malicious code, 69
malware effects

in Bot-net controller, 156
Denial of Service attacks, 156–157
malware recovery, 158
primary purpose, 154
propagation, 155

network access
antimalware researchers and labs, 148
ErrorDocument configuration, 150
local network, 148–149
Microsoft Virtual PC, 153–154
untargeted malware, 149
VMware workstation, 152–153
web requests, 151

sandbox technology, 64
static and dynamic analysis, 147
virtual machines, 76
visible process, 65
VMware Workstation

hardware setting configuration, 152
host virtual adapter configuration, 153

Marathon technologies, 47
Matrox PowerSpace Tool, 313



	 Index	 353

Microsoft Cluster Server (MSCS), 277
Microsoft SQL, 262–263
Microsoft Virtual PC, 153–154
MULTICS time-sharing system, 20
multiple remote networks

mapping virtual network interfaces, 
128–129

network interface card (NIC), 127
MyDoom virus, 308

N
National Security Agency (NSA), 316–317
National Vulnerability Database  

(NVD), 307
natted interfaces, 98
Nessus hardware parameter, 297–298
NetTop project, 316–317
network access

antimalware researchers and labs, 148
ErrorDocument configuration, 150
local network, 148–149
Microsoft Virtual PC, 153–154
untargeted malware, 149
VMware workstation

host virtual adapter configuration, 153
VMware hardware setting  

configuration, 152
Web requests, 151

network interface
engage and disengage, 104
host and guest operating system, 104–105
security implications, 105
virtual PC, 112
VMware tools

CD image, 106
confirmation screen, 109–110
device drivers, 108–109
fundamental device drivers, 111–112
installation, 105–106
SMB connections, 107–108

status process, 110–111
tools setup, 107

NVidia drivers, 309

O
OllyDBG debugger

binary level analysis, 320–321
virtualization, 306

open source virtualization tools, 207
Open Virtual Machine Format (OVF), 258
Openvpn gateways, 344
operating system and native  

virtualization, 28
operating system virtualization, 54

P
Paravirtualization, 57
partition magic tool, 291
Penguin Sleuth Kit, 232
physical hardware

physical disks
hard disk types, 100–101
hardware wizard, 100
physical drive, 102–103
primary drive, 99
Windows disk properties, 101–102

removable disk, 103
USB devices, 103–104

Physical system recovery, 262–263
Preboot execution environment (PXE), 73
Process Stalker tool, 215–216

R
RAPIER tool, 239–240
raw device mapping (RDM), 93

S
Sandbox technology

behavior and code analysis, 64–65
cwmonitor.dll



354	 Index

Sandbox technology (Continued)
analysis reports, 72
API functions, 70, 72
DLL files and modules, 70
JMP operation, 70–71
malicious code, 69

cwsandbox.exe
.cab file, 68–69
console application and runtime  

tasks, 68
malicious threads, 69

implementations
interesting system, 73
Truman tools, 73–74
Windows operating system, 72

live-DVD creation
configuration, 83–84
CWSandbox v2.x, 82–83
Linux, 78–79
Rrmastersys, 83
updating process, 85
Virtual machine, 80–81
VMware server v1.05, 80
Windows XP professionals, 81–82

malicious application
analysis report, 75
automated analysis suite (AAS),  

76–77
interrupt descriptor table (IDT), 77
Windows system resources, 74

malware analysis
API applications, 72
malicious code, 69
sandbox technology, 64
virtual machines, 76
visible process, 65

visible technology
CWSandbox, 66
DLL intercepts, 65
schematic architecture, 65–66

SMTP web protocols, 67
TNotification class, 66–67

SAN vendor shared storage  
replication, 260

scanning servers
advantages of virtual machine, 331–332
disadvantages of virtual machine,  

332–333
virtual environment, 333–334

SDLC. See software development life cycle
Server virtualization

bare-metal hypervisors, 55
hardware compatibility

cluster, 57
multiple virtual machines, 56
VMware ESX host system, 56–57

Hitachi Virtage, 55–56
Service Control Manager (SCM)
simple mail transfer protocol (SMTP), 67
Sobig-F virus, 308
software development life cycle  

(SDLC), 10
SSH tool, 334
SURFids, 123

T
target servers, vulnerabilities

application vulnerability testing
CGI script, Linux server, 337–338
cross site scripting attacks, 338
shell access, Windows machine, 337
SQL injection, 336–337
XSS demonstration, 338–339

Linux, 336
Windows, 335–336

training environment
brief meeting, 343
capture-the-flag scenario

adding realism, 342–343
chained attacks, 341–342



	 Index	 355

“in scope” server, 340
restore snapshot, 340–341
vulnerability research, 341
web server, 339–340

cleaning up, 343
penetration testing, 330
scanning servers

advantages of virtual machine,  
331–332

disadvantages of virtual machine, 
332–333

virtual environment, 333–334
target servers, vulnerabilities

application vulnerability testing, 
336–339

Linux, 336
Windows, 335–336

U
Universal Access Control (UAC), 322
Unix forensics tools, 240

V
VHD file format, 322
virtualization implementations

abstraction, 46
Computer processing chips, 58
evolution

discovery and testing, 49
mobility and grid, 50
production, 49–50

I/O physical network, 58
Linux-VServer, 46–47
management technology, 59
operating system and  

application, 54
operations and security, 48
paravirtualization, 57
presentation layer, 55
redundancy and performance, 47

server
cluster, 57
multiple virtual machines, 56
VMware ESX host system, 56–57

snapshots, 48
technologies

hardware, 58
management, 59

types
hardware processor, 53–54
library, 51–53

virtualization techniques
malware effects

in Bot-net controller, 156
Denial of Service attacks, 156–157
malware recovery, 158
primary purpose, 154
propagation, 155

network access
antimalware researchers and labs, 148
ErrorDocument configuration, 150
local network, 148–149
Microsoft Virtual PC, 153–154
untargeted malware, 149
VMware workstation, 152–153
web requests, 151

static and dynamic analysis, 147
virtualization technology

business continuity and disaster recovery, 
34–35

decentralization vs. centralization
application server, 10–11
fibre-channel (FC) switch port, 13
five-server configuration, 11–12
operating environment, 9
SDLC advantages, 10

desktops, 35–36
environment, 13
ethernet, 7
functions and responsibility, 25



356	 Index

virtualization technology (Continued)
high-performance clusters (HPCs), 32
history

Atlas computer, 3
CP/CMS, 4–5
definition, 8
Mainframe technology, 7–8
M44/44X project, 4
physical hardware, 8–9
time-sharing projects, 5–6
Xen threatens, 6

infrastructure strategy, 32
life-cycle management, 32–34
network infrastructure, 19
n-tier applications, 10
objectives, 2–3
OS and CPU architecture

MULTICS time-sharing  
system, 20

privilege rings, 20–21
protection rings, 20, 22

POC environment, 35
Popek and Goldberg requirement, 24–25
SCSI devices, 8
server sprawl, 9
software configuration management, 

36–37
system optimization model

benefits and role, 14
consolidation efforts, 15–16
redundancy, 16–17
reliability, 17–18
security configurations, 18–19
server infrastructure, 13

types
application, 31–32
hardware-assisting processors, 29
network, 30–31
server, 26–28
storage vendors, 29–30

virtual machine and Ring–0
VMM software, 22–23
x86 processor, 22

virtual serial adapter (VSA), 7
VMM software layer, 23
x86 architecture, 25–26

virtual machine
hard drive and network configurations

growing disk sizes, 93
interface creation, 94–98
multiple interfaces, 98–99
SCSI disk type, 93–94
snapshots, 94

network interface
engage and disengage, 104
host and guest operating system, 

104–105
installations, 112
VMware tools, 105–112

physical hardware
physical disks, 99–103
USB devices, 103–104

resource management, 92
virtual machine manager (VMM), 232
virtual machine monitor, 19
virtual machines, untrusted environment 

protection
data segregation, 316–317
malware analysis paranoia levels

anti-malware and forensics  
industries, 308

application control, 310
block-and-ask mode, 314–315
Federal Desktop Core Configuration 

(FDCC), 315–316
GPO model, 311–312
Matrox PowerSpace Tool, 313
NVidia drivers, 309
stricter HIPS tools and host-based  

IDS agents, 314



	 Index	 357

Tripwire, 313–314
VM image, 315
VMware player, 309–310

untrusted software
baseline OS image creation, 318
debuggers and disassemblers,  

319–320
HTTP Sinkhole, 319
OllyDBG binary level analysis,  

320–321
system hardening, 318–319

untrusted users
ACE model, 321–322
restore scripting, 323–324
setting client machine, 322–323

virtualization uses
anti-debugging libraries, 306–307
internal CRM implementation access, 

303–304
personal playground, 304
potential malware behavior examination, 

305–306
software application testing, operating 

system compliance, 305
suspicious content quarantine, 305
system rollback, 304–305
VMware codec, 303
VMware Hypervisor, 308
vulnerabilities, 307–308

virtual system recovery, 263–264
VM-aware malware, 247–248
VM file system (VMFS), 246
VMSafe program, 304
VMware codec, 303
VMware consolidated backup (VCB), 

323–324
VMware distributed resource scheduler 

(DRS), 50
VMware ESX servers

hardware restoration, 261
system-level backup and restore, 258

VMware HA, 276
VMware Hypervisor, 308
VMWare tools, 296
VMware Workstation

host virtual adapter configuration, 153
VMware hardware setting  

configuration, 152
VPN, 344

W
Windows boot loader, 293
Workgroup networks, 146

X
x86 architecture, 21
Xen and TRANGO hypervisors, 57
Xsigo virtualization systems, 58




