

Securing	Docker

Table	of	Contents

Securing	Docker

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Errata

Piracy

Questions

1.	Securing	Docker	Hosts

Docker	host	overview

Discussing	Docker	host

Virtualization	and	isolation

Attack	surface	of	Docker	daemon

Protecting	the	Docker	daemon

Securing	Docker	hosts

Docker	Machine

SELinux	and	AppArmor

Auto-patching	hosts

Summary

2.	Securing	Docker	Components

Docker	Content	Trust

Docker	Content	Trust	components

Signing	images

Hardware	signing

Docker	Subscription

Docker	Trusted	Registry

Installation

Securing	Docker	Trusted	Registry

Administering

Workflow

Docker	Registry

Installation

Configuration	and	security

Summary

3.	Securing	and	Hardening	Linux	Kernels

Linux	kernel	hardening	guides

SANS	hardening	guide	deep	dive

Access	controls

Distribution	focused

Linux	kernel	hardening	tools

Grsecurity

Lynis

Summary

4.	Docker	Bench	for	Security

Docker	security	–	best	practices

Docker	–	best	practices

CIS	guide

Host	configuration

Docker	daemon	configuration

Docker	daemon	configuration	files

Container	images/runtime

Docker	security	operations

The	Docker	Bench	Security	application

Running	the	tool

Running	the	tool	–	host	configuration

Running	the	tool	–	Docker	daemon	configuration

Running	the	tool	–	Docker	daemon	configuration	files

Running	the	tool	–	container	images	and	build	files

Running	the	tool	–	container	runtime

Running	the	tool	–	Docker	security	operations

Understanding	the	output

Understanding	the	output	–	host	configuration

Understanding	the	output	–	the	Docker	daemon	configuration

Understanding	the	output	–	the	Docker	daemon	configuration	files

Understanding	the	output	–	container	images	and	build	files

Understanding	the	output	–	container	runtime

Understanding	the	output	–	Docker	security	operations

Summary

5.	Monitoring	and	Reporting	Docker	Security	Incidents

Docker	security	monitoring

Docker	CVE

Mailing	lists

Docker	security	reporting

Responsible	disclosure

Security	reporting

Additional	Docker	security	resources

Docker	Notary

Hardware	signing

Reading	materials

Awesome	Docker

Summary

6.	Using	Docker’s	Built-in	Security	Features

Docker	tools

Using	TLS

Read-only	containers

Docker	security	fundamentals

Kernel	namespaces

Control	groups

Linux	kernel	capabilities

Containers	versus	virtual	machines

Summary

7.	Securing	Docker	with	Third-party	Tools

Third-party	tools

Traffic	Authorization

Summon

sVirt	and	SELinux

Other	third-party	tools

dockersh

DockerUI

Shipyard

Logspout

Summary

8.	Keeping	up	Security

Keeping	up	with	security

E-mail	list	options

The	two	e-mail	lists	are	as	follows:

GitHub	issues

IRC	rooms

CVE	websites

Other	areas	of	interest

Summary

Index

Securing	Docker

Securing	Docker
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1230316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-885-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Scott	Gallagher

Reviewer

Harald	Albers

Commissioning	Editor

Priya	Singh

Acquisition	Editor

Prachi	Bisht

Content	Development	Editor

Arshiya	Ayaz	Umer

Technical	Editor

Suwarna	Patil

Copy	Editor

Vibha	Shukla

Project	Coordinator

Shweta	H	Birwatkar

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Graphics

Disha	Haria

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

About	the	Author
Scott	Gallagher	has	been	fascinated	with	technology	since	he	was	in	elementary	school,
when	he	used	to	play	Oregon	Trail.	His	love	continued	through	middle	school,	working	on
more	Apple	IIe	computers.	In	high	school,	he	learned	how	build	computers	and	program
in	BASIC!	His	college	years	were	all	about	server	technologies	such	as	Novell,	Microsoft,
and	Red	Hat.	After	college,	he	continued	to	work	on	Novell,	all	while	keeping	an	interest
in	all	the	technologies.	He	then	moved	into	managing	Microsoft	environments	and
eventually	into	what	he	is	the	most	passionate	about,	Linux	environments,	and	now	his
focus	is	on	Docker	and	cloud	environments.

I	would	like	to	thank	my	family	for	the	support	they	have	given	me,	not	only	throughout
the	work	on	this	book,	but	throughout	my	life	and	career.	I	would	like	to	thank	my	wife,
who	is	my	soulmate,	the	love	of	my	life,	and	the	most	important	person	in	my	life	and	the
reason	I	push	myself	to	be	the	best	I	can	be	each	day.	I	would	also	like	to	thank	my	kids,
who	are	the	most	amazing	kids	in	this	world,	for	being	able	to	watch	them	grow	each	day;
I	truly	am	blessed.	Finally,	I	would	like	to	thank	my	parents,	who	have	helped	me	become
the	person	I	am	today.

About	the	Reviewer
Harald	Albers	works	as	a	Java	developer	and	security	engineer	in	Hamburg,	Germany.

In	addition	to	developing	distributed	web	applications,	he	also	sets	up	and	maintains	the
build	infrastructure,	staging,	and	production	environments	for	these	applications.

Most	of	his	work	is	only	possible	because	of	Docker’s	simple	and	elegant	solutions	for	the
challenges	of	provisioning,	deployment,	and	orchestration.

He	started	using	Docker	and	contributing	to	the	Docker	project	in	mid-2014.	He	is	a
member	of	the	Docker	Governance	Advisory	Board,	2015-2016.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Docker	is	the	hottest	buzzword	in	technology	these	days!	This	book	helps	you	to	ensure
that	you	are	securing	all	the	pieces	in	the	Docker	ecosystems	of	tools.	Keeping	your	data
and	systems	safe	is	of	utmost	importance	these	days,	and	with	Docker,	it’s	the	same
exception.	Learn	how	Docker	is	inherently	secure	and	how	to	secure	the	pieces	around	it
even	more	and	be	on	the	lookout	for	potential	vulnerabilities	as	they	take	place.

What	this	book	covers
Chapter	1,	Securing	Docker	Hosts,	starts	off	the	book	by	discussing	how	to	secure	the	first
part	of	getting	your	Docker	environment	up	and	running,	and	that	is	by	focusing	on	your
Docker	hosts.	The	Docker	hosts	are	the	platform	that	your	containers	will	run	on.	Without
securing	these	first,	it’s	like	leaving	the	front	door	to	your	house	wide	open.

Chapter	2,	Securing	Docker	Components,	focuses	on	securing	the	components	of	Docker,
such	as	the	registry	you	can	use,	the	containers	that	run	on	your	hosts,	and	how	to	sign
your	images.

Chapter	3,	Securing	and	Hardening	Linux	Kernels,	explains	hardening	guides	that	are	out
there	as	well	as	different	security	measures/methods	you	can	use	to	help	secure	the	kernel
that	is	being	used	to	run	your	containers	as	it’s	important	to	secure	it.

Chapter	4,	Docker	Bench	for	Security,	informs	how	well	you	have	set	up	your	Docker
environment	with	the	Docker	Bench	Security	application,	get	recommendations	for	where
you	should	focus	your	efforts	to	fix	right	away,	and	what	you	don’t	really	have	to	fix	right
now,	but	should	keep	yourself	aware	of.

Chapter	5,	Monitoring	and	Reporting	Docker	Security	Incidents,	covers	how	to	stay	on	top
of	the	items	that	Docker	has	released	regarding	the	security	findings	to	help	keep	you
aware	of	your	environments.	Also,	we	will	take	a	look	at	how	to	safely	report	any	security
findings	you	come	across	to	ensure	that	Docker	has	a	chance	to	alleviate	the	concern
before	it	becomes	public	and	widespread.

Chapter	6,	Using	Docker’s	Built-in	Security	Features,	introduces	the	use	of	Docker	tools
to	help	secure	your	environment.	We	will	go	over	all	of	them	to	give	you	a	baseline	of
what	you	can	use	that	is	provided	by	Docker	itself.	You	can	learn	what	command-line	and
GUI	tools	you	can	use	for	your	security	needs.

Chapter	7,	Securing	Docker	with	Third-party	Tools,	covers	the	third-party	tools	that	are
out	there	to	help	you	keep	your	Docker	environment	secure.	You	will	learn	about
command	line,	but	we’ll	focus	on	third-party	tools.	We	will	take	a	look	at	traffic
authorization,	summon,	and	sVirt	with	SELinux.

Chapter	8,	Keeping	up	on	Security,	explains	the	means	that	you	can	use	to	keep	up	to	date
with	Docker-related	security	issues	that	are	out	there	for	the	version	of	the	Docker	tools
you	might	be	running	now,	how	to	stay	ahead	of	any	security	issues,	and	keep	your
environments	secure	even	with	threats	out	there.

What	you	need	for	this	book
The	book	will	walk	you	through	the	installation	of	any	tools	that	you	will	need.	You	will
need	a	system	with	Windows,	Mac	OS,	or	Linux	installed;	preferably,	the	latter	one,	as
well	as	an	Internet	connection.

Who	this	book	is	for
This	book	is	intended	for	those	developers	who	will	be	using	Docker	as	their	testing
platform	as	well	as	security	professionals	who	are	interested	in	securing	Docker
containers.	Readers	must	be	familiar	with	the	basics	of	Docker.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“You
will	need	pass	phrase	you	entered	earlier	for	ca-key.pem.”

Any	command-line	input	or	output	is	written	as	follows:

$	docker	run	-it	scottpgallagher/chef-server	/bin/bash

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“The	next	section,
Security	settings,	is	probably	one	of	the	most	important	ones.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details
of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the
errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Securing	Docker	Hosts
Welcome	to	the	Securing	Docker	book!	We	are	glad	you	decided	to	pick	up	the	book	and
we	want	to	make	sure	that	the	resources	you	are	using	are	being	secured	in	proper	ways	to
ensure	system	integrity	and	data	loss	prevention.	It	is	also	important	to	understand	why
you	should	care	about	the	security.	If	data	loss	prevention	doesn’t	scare	you	already,
thinking	about	the	worst	possible	scenario—a	full	system	compromise	and	the	possibility
of	your	secret	designs	being	leaked	or	stolen	by	others—might	help	to	reinforce	security.
Throughout	this	book,	we	will	be	covering	a	lot	of	topics	to	help	get	your	environment	set
up	securely	so	that	you	can	begin	to	start	deploying	containers	with	peace	of	mind
knowing	that	you	took	the	right	steps	in	the	beginning	to	fortify	your	environment.	In	this
chapter,	we	will	be	taking	a	look	at	securing	Docker	hosts	and	will	be	covering	the
following	topics:

Docker	host	overview
Discussing	Docker	host
Virtualization	and	isolation
Attack	surface	of	Docker	daemon
Securing	Docker	hosts
Docker	Machine
SELinux	and	AppArmor
Auto-patching	hosts

Docker	host	overview
Before	we	get	in	depth	and	dive	in,	let’s	first	take	a	step	back	and	review	exactly	what	the
Docker	host	is.	In	this	section,	we	will	look	at	the	Docker	host	itself	to	get	an
understanding	of	what	we	are	referring	to	when	we	are	talking	about	the	Docker	host.	We
will	also	be	looking	at	the	virtualization	and	isolation	techniques	that	Docker	uses	to
ensure	security.

Discussing	Docker	host
When	we	think	of	a	Docker	host,	what	comes	to	our	mind?	If	you	put	it	in	terms	of	virtual
machines	that	almost	all	of	us	are	familiar	with,	let’s	take	a	look	at	how	a	typical	VM	host
differs	from	a	Docker	host.	A	VM	host	is	what	the	virtual	machines	actually	run	on	top	of.
Typically,	this	is	something	like	VMware	ESXi	if	you	are	using	VMware	or	Windows
Server	if	you	are	using	Hyper-V.	Let’s	take	a	look	at	how	they	are	as	compared	so	that
you	can	get	a	visual	representation	of	the	two,	as	shown	in	the	following	diagram:

The	preceding	image	depicts	the	similarities	between	a	VM	host	and	Docker	host.	As
stated	previously,	the	host	of	any	service	is	simply	the	system	that	the	underlying	virtual
machines	or	containers	in	Docker	run	on	top	of.	Therefore,	a	host	is	the	operating	system
or	service	that	contains	and	operates	the	underlying	systems	that	you	install	and	set	up	a
service	on,	such	as	web	servers,	databases,	and	more.

Virtualization	and	isolation
To	understand	how	Docker	hosts	can	be	secured,	we	must	first	understand	how	the
Docker	host	is	set	up	and	what	items	are	contained	in	the	Docker	host.	Again,	like	VM
hosts,	they	contain	the	operating	system	that	the	underlying	service	operates	on.	With
VMs,	you	are	creating	a	whole	new	operating	system	on	top	of	this	VM	host	operating
system.	However,	on	Docker,	you	are	not	doing	that	and	are	sharing	the	Linux	Kernel
that	the	Docker	host	is	using.	Let’s	take	a	look	at	the	following	diagram	to	help	us
represent	this:

As	we	can	see	from	the	preceding	image,	there	is	a	distinct	difference	between	how	items
are	set	up	on	a	VM	host	and	on	a	Docker	host.	On	a	VM	host,	each	virtual	machine	has
all	of	its	own	items	inclusive	to	itself.	Each	containerized	application	brings	its	own	set	of
libraries,	whether	it	is	Windows	or	Linux.	Now,	on	the	Docker	host,	we	don’t	see	that.	We
see	that	they	share	the	Linux	Kernel	version	that	is	being	used	on	the	Docker	host.	That
being	said,	there	are	some	security	aspects	that	need	to	be	addressed	on	the	Docker	host
side	of	things.	Now,	on	the	VM	host	side,	if	someone	does	compromise	a	virtual	machine,
the	operating	system	is	isolated	to	just	that	one	virtual	machine.	Back	on	the	Docker	host
side	of	things,	if	the	kernel	is	compromised	on	the	Docker	host,	then	all	the	containers
running	on	that	host	are	now	at	high	risk	as	well.

So,	now	you	should	see	how	important	it	is	that	we	focus	on	security	when	it	comes	to
Docker	hosts.	Docker	hosts	do	use	some	isolation	techniques	that	will	help	protect	against
kernel	or	container	compromises	in	a	few	ways.	Two	of	these	ways	are	by	implementing
namespaces	and	cgroups.	Before	we	can	discuss	how	they	help,	let’s	first	give	a
definition	for	each	of	them.

Kernel	namespaces,	as	they	are	commonly	known	as,	provide	a	form	of	isolation	for	the
containers	that	will	be	running	on	your	hosts.	What	does	this	mean?	This	means	that	each
container	that	you	run	on	top	of	your	Docker	hosts	will	be	given	its	own	network	stack	so
that	it	doesn’t	get	privileged	access	to	another	container’s	socket	or	interfaces.	However,
by	default,	all	Docker	containers	are	sitting	on	the	bridged	interface	so	that	they	can

communicate	with	each	other	easily.	Think	of	the	bridged	interface	as	a	network	switch
that	all	the	containers	are	connected	to.

Namespaces	also	provide	isolation	for	processes	and	mount	isolation.	Processes	running	in
one	container	can’t	affect	or	even	see	processes	running	in	another	Docker	container.
Isolation	for	mount	points	is	also	on	a	container	by	container	basis.	This	means	that	mount
points	on	one	container	can’t	see	or	interact	with	mount	points	on	another	container.

On	the	other	hand,	control	groups	are	what	control	and	limit	resources	for	containers	that
will	be	running	on	top	of	your	Docker	hosts.	What	does	this	boil	down	to,	meaning	how
will	it	benefit	you?	It	means	that	cgroups,	as	they	will	be	called	going	forward,	help	each
container	get	its	fair	share	of	memory	disk	I/O,	CPU,	and	much	more.	So,	a	container
cannot	bring	down	an	entire	host	by	exhausting	all	the	resources	available	on	it.	This	will
help	to	ensure	that	even	if	an	application	is	misbehaving	that	the	other	containers	won’t	be
affected	by	this	application	and	your	other	applications	can	be	assured	uptime.

Attack	surface	of	Docker	daemon
While	Docker	does	ease	some	of	the	complicated	work	in	the	virtualization	world,	it	is
easy	to	forget	to	think	about	the	security	implications	of	running	containers	on	your
Docker	hosts.	The	largest	concern	you	need	to	be	aware	of	is	that	Docker	requires	root
privileges	to	operate.	For	this	reason,	you	need	to	be	aware	of	who	has	access	to	your
Docker	hosts	and	the	Docker	daemon	as	they	will	have	full	administrative	access	to	all
your	Docker	containers	and	images	on	your	Docker	host.	They	can	start	new	containers,
stop	existing	ones,	remove	images,	pull	new	images,	and	even	reconfigure	running
containers	as	well	by	injecting	commands	into	them.	They	can	also	extract	sensitive
information	like	passwords	and	certificates	from	the	containers.	For	this	reason,	make	sure
to	also	separate	important	containers	if	you	do	need	to	keep	separate	controls	on	who	has
access	to	your	Docker	daemon.	This	is	for	containers	where	people	have	a	need	for	access
to	the	Docker	host	where	the	containers	are	running.	If	a	user	needs	API	access	then	that	is
different	and	separation	might	not	be	necessary.	For	example,	keep	containers	that	are
sensitive	on	one	Docker	host,	while	keeping	normal	operation	containers	running	on
another	Docker	host	and	grant	permissions	for	other	staff	access	to	the	Docker	daemon	on
the	unprivileged	host.	If	possible,	it	is	also	recommended	to	drop	the	setuid	and	setgid
capabilities	from	containers	that	will	be	running	on	your	hosts.	If	you	are	going	to	run
Docker,	it’s	recommended	to	only	use	Docker	on	this	server	and	not	other	applications.
Docker	also	starts	containers	with	a	very	restricted	set	of	capabilities,	which	works	in	your
favor	to	address	security	concerns.

Note
To	drop	the	setuid	or	setgid	capabilities	when	you	start	a	Docker	container,	you	will	need
to	do	something	similar	to	the	following:

$	docker	run	-d	--cap-drop	SETGID	--cap-drop	SETUID	nginx

This	would	start	the	nginx	container	and	would	drop	the	SETGID	and	SETUID	capabilities
for	the	container.

Docker’s	end	goal	is	to	map	the	root	user	to	a	non-root	user	that	exists	on	the	Docker	host.
They	also	are	working	towards	allowing	the	Docker	daemon	to	run	without	requiring	root
privileges.	These	future	improvements	will	only	help	facilitate	how	much	focus	Docker
does	take	when	they	are	implementing	their	feature	sets.

Protecting	the	Docker	daemon
To	protect	the	Docker	daemon	even	more,	we	can	secure	the	communications	that	our
Docker	daemon	is	using.	We	can	do	this	by	generating	certificates	and	keys.	There	are	are
few	terms	to	understand	before	we	dive	into	the	creation	of	the	certificates	and	keys.	A
Certificate	Authority	(CA)	is	an	entity	that	issues	certificates.	This	certificate	certifies
the	ownership	of	the	public	key	by	the	subject	that	is	specified	in	the	certificate.	By	doing
this,	we	can	ensure	that	your	Docker	daemon	will	only	accept	communication	from	other
daemons	that	have	a	certificate	that	was	also	signed	by	the	same	CA.

Now,	we	will	be	looking	at	how	to	ensure	that	the	containers	you	will	be	running	on	top	of
your	Docker	hosts	will	be	secure	in	a	few	pages;	however,	first	and	foremost,	you	want	to
make	sure	the	Docker	daemon	is	running	securely.	To	do	this,	there	are	some	parameters
you	will	need	to	enable	for	when	the	daemon	starts.	Some	of	the	things	you	will	need
beforehand	will	be	as	follows:

1.	 Create	a	CA.

$	openssl	genrsa	-aes256	-out	ca-key.pem	4096

Generating	RSA	private	key,	4096	bit	long	modulus

...

...

...

.++

..++

e	is	65537	(0x10001)

Enter	pass	phrase	for	ca-key.pem:

Verifying	-	Enter	pass	phrase	for	ca-key.pem:

You	will	need	to	specify	two	values,	pass	phrase	and	pass	phrase.	This	needs	to	be
between	4	and	1023	characters.	Anything	less	than	4	or	more	than	1023	won’t	be
accepted.

$	openssl	req	-new	-x509	-days	<number_of_days>	-key	ca-key.pem	-sha256	

-out	ca.pem

Enter	pass	phrase	for	ca-key.pem:

You	are	about	to	be	asked	to	enter	information	that	will	be	

incorporated

into	your	certificate	request.

What	you	are	about	to	enter	is	what	is	called	a	Distinguished	Name	or	a	

DN.

There	are	quite	a	few	fields	but	you	can	leave	some	blank

For	some	fields	there	will	be	a	default	value,

If	you	enter	'.',	the	field	will	be	left	blank.

Country	Name	(2	letter	code)	[AU]:US

State	or	Province	Name	(full	name)	[Some-State]:Pennsylvania

Locality	Name	(eg,	city)	[]:

Organization	Name	(eg,	company)	[Internet	Widgits	Pty	Ltd]:

Organizational	Unit	Name	(eg,	section)	[]:

Common	Name	(e.g.	server	FQDN	or	YOUR	name)	[]:

Email	Address	[]:

There	are	a	couple	of	items	you	will	need.	You	will	need	pass	phrase	you	entered
earlier	for	ca-key.pem.	You	will	also	need	the	Country,	State,	city,	Organization
Name,	Organizational	Unit	Name,	fully	qualified	domain	name	(FQDN),	and
Email	Address	to	be	able	to	finalize	the	certificate.

2.	 Create	a	client	key	and	signing	certificate.

$	openssl	genrsa	-out	key.pem	4096

$	openssl	req	-subj	'/CN=<client_DNS_name>'	-new	-key	key.pem	-out	

client.csr

3.	 Sign	the	public	key.

$	openssl	x509	-req	-days	<number_of_days>	-sha256	-in	client.csr	-CA	

ca.pem	-CAkey	ca-key.pem	-CAcreateserial	-out	cert.em

4.	 Change	permissions.

$	chmod	-v	0400	ca-key.pem	key.pem	server-key.em

$	chmod	-v	0444	ca.pem	server-cert.pem	cert.em

Now,	you	can	make	sure	that	your	Docker	daemon	only	accepts	connections	from	the
other	Docker	hosts	that	you	provide	the	signed	certificates	to:

$	docker	daemon	--tlsverify	--tlscacert=ca.pem	--tlscert=server-

certificate.pem	--tlskey=server-key.pem	-H=0.0.0.0:2376

Make	sure	that	the	certificate	files	are	in	the	directory	you	are	running	the	command	from
or	you	will	need	to	specify	the	full	path	to	the	certificate	file.

On	each	client,	you	will	need	to	run	the	following:

$	docker	--tlsverify	--tlscacert=ca.pem	--tlscert=cert.pem	--tlskey=key.pem	

-H=<$DOCKER_HOST>:2376	version

Again,	the	location	of	the	certificates	is	important.	Make	sure	to	either	have	them	in	a
directory	where	you	plan	to	run	the	preceding	command	or	specify	the	full	path	to	the
certificate	and	key	file	locations.

You	can	read	more	about	using	Transport	Layer	Security	(TLS)	by	default	with	your
Docker	daemon	by	going	to	the	following	link:

http://docs.docker.com/engine/articles/https/

For	more	reading	on	Docker	Secure	Deployment	Guidelines,	the	following	link	provides
a	table	that	can	be	used	to	gain	insight	into	some	other	items	you	can	utilize	as	well:

https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines

Some	of	the	highlights	from	that	website	are:

Collecting	security	and	audit	logs
Utilizing	the	privileged	switch	when	running	Docker	containers
Device	control	groups
Mount	points

http://docs.docker.com/engine/articles/https/
https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines

Security	audits

Securing	Docker	hosts
Where	do	we	start	to	secure	our	hosts?	What	tools	do	we	need	to	start	with?	We	will	take	a
look	at	using	Docker	Machine	in	this	section	and	how	to	ensure	the	hosts	that	we	are
creating	are	being	created	in	a	secure	manner.	Docker	hosts	are	like	the	front	door	of	your
house,	if	you	don’t	secure	them	properly,	then	anybody	can	just	walk	right	in.	We	will	also
take	a	look	at	Security-Enhanced	Linux	(SELinux)	and	AppArmor	to	ensure	that	you
have	an	extra	layer	of	security	on	top	of	the	hosts	that	you	are	creating.	Lastly,	we	will
take	a	look	at	some	of	the	operating	systems	that	support	and	do	auto	patching	of	their
operating	systems	when	a	security	vulnerability	is	discovered.

Docker	Machine
Docker	Machine	is	the	tool	that	allows	you	to	install	the	Docker	daemon	onto	your	virtual
hosts.	You	can	then	manage	these	Docker	hosts	with	Docker	Machine.	Docker	Machine
can	be	installed	either	through	the	Docker	Toolbox	on	Windows	and	Mac.	If	you	are
using	Linux,	you	will	install	Docker	Machine	through	a	simple	curl	command:

$	curl	-L	

https://github.com/docker/machine/releases/download/v0.6.0/docker-machine-

`uname	-s`-`uname	-m`	>	/usr/local/bin/docker-machine	&&	\

$	chmod	+x	/usr/local/bin/docker-machine

The	first	command	installs	Docker	Machine	into	the	/usr/local/bin	directory	and	the
second	command	changes	the	permissions	on	the	file	and	sets	it	to	executable.

We	will	be	using	Docker	Machine	in	the	following	walkthrough	to	set	up	a	new	Docker
host.

Docker	Machine	is	what	you	should	be	or	will	be	using	to	set	up	your	hosts.	For	this
reason,	we	will	start	with	it	to	ensure	your	hosts	are	set	up	in	a	secure	manner.	We	will
take	a	look	at	how	you	can	tell	if	your	hosts	are	secure	when	you	create	them	using	the
Docker	Machine	tool.	Let’s	take	a	look	at	what	it	looks	like	when	you	create	a	Docker
host	using	Docker	Machine,	as	follows:

$	docker-machine	create	--driver	virtualbox	host1

Running	pre-create	checks…

Creating	machine…

Waiting	for	machine	to	be	running,	this	may	take	a	few	minutes…

Machine	is	running,	waiting	for	SSH	to	be	available…

Detecting	operating	system	of	created	instance…

Provisioning	created	instance…

Copying	certs	to	the	local	machine	directory…

Copying	certs	to	the	remote	machine…

Setting	Docker	configuration	on	the	remote	daemon…

From	the	preceding	output,	as	the	create	is	running,	Docker	Machine	is	doing	things	such
as	creating	the	machine,	waiting	for	SSH	to	become	available,	performing	actions,
copying	the	certificates	to	the	correct	location,	and	setting	up	the	Docker	configuration,
we	will	see	how	to	connect	Docker	to	this	machine	as	follows:

$	docker-machine	env	host1

export	DOCKER_TLS_VERIFY="1"

export	DOCKER_HOST="tcp://192.168.99.100:2376"

export	

DOCKER_CERT_PATH="/Users/scottpgallagher/.docker/machine/machines/host1"

export	DOCKER_MACHINE_NAME="host1"

#	Run	this	command	to	configure	your	shell:

#	eval	"$(docker-machine	env	host1)"

The	preceding	command	output	shows	the	commands	that	were	run	to	set	this	machine	up

as	the	one	that	Docker	commands	will	now	run	against:

	eval	"$(docker-machine	env	host1)"

We	can	now	run	the	regular	Docker	commands,	such	as	docker	info,	and	it	will	return
information	from	host1,	now	that	we	have	set	it	as	our	environment.

We	can	see	from	the	preceding	highlighted	output	that	the	host	is	being	set	up	securely
from	the	start	from	two	of	the	export	lines.	Here	is	the	first	highlighted	line	by	itself:

export	DOCKER_TLS_VERIFY="1"

From	the	other	highlighted	output,	DOCKER_TLS_VERIFY	is	being	set	to	1	or	true.	Here	is
the	second	highlighted	line	by	itself:

export	DOCKER_HOST="tcp://192.168.99.100:2376"

We	are	setting	the	host	to	operate	on	the	secure	port	of	2376	as	opposed	to	the	insecure
port	of	2375.

We	can	also	gain	this	information	by	running	the	following	command:

$	docker-machine	ls

NAME						ACTIVE			DRIVER							STATE					URL																									SWARM																					

host1														*								virtualbox					Running			

tcp://192.168.99.100:2376			

Make	sure	to	check	the	TLS	switch	options	that	can	be	used	with	Docker	Machine	if	you
have	used	the	previous	instructions	to	set	up	your	Docker	hosts	and	Docker	containers	to
use	TLS.	These	switches	would	be	helpful	if	you	have	existing	certificates	that	you	want
to	use	as	well.	These	switches	can	be	found	in	the	highlighted	section	by	running	the
following	command:

$	docker-machine	--help

Options:

		--debug,	-D						Enable	debug	mode

		-s,	--storage-path	"/Users/scottpgallagher/.docker/machine"

Configures	storage	path	[$MACHINE_STORAGE_PATH]

		--tls-ca-cert						CA	to	verify	remotes	against	[$MACHINE_TLS_CA_CERT]

		--tls-ca-key						Private	key	to	generate	certificates	

[$MACHINE_TLS_CA_KEY]

		--tls-client-cert					Client	cert	to	use	for	TLS	

[$MACHINE_TLS_CLIENT_CERT]

		--tls-client-key							Private	key	used	in	client	TLS	auth	

[$MACHINE_TLS_CLIENT_KEY]

		--github-api-token					Token	to	use	for	requests	to	the	Github	API	

[$MACHINE_GITHUB_API_TOKEN]

		--native-ssh						Use	the	native	(Go-based)	SSH	implementation.	

[$MACHINE_NATIVE_SSH]

		--help,	-h						show	help

		--version,	-v						print	the	version

You	can	also	regenerate	TLS	certificates	for	a	machine	using	the	regenerate-certs
subcommand	in	the	event	that	you	want	that	peace	of	mind	or	that	your	keys	do	get

compromised.	An	example	command	would	look	similar	to	the	following	command:

$	docker-machine	regenerate-certs	host1		

Regenerate	TLS	machine	certs?		Warning:	this	is	irreversible.	(y/n):	y

Regenerating	TLS	certificates

Copying	certs	to	the	local	machine	directory…

Copying	certs	to	the	remote	machine…

Setting	Docker	configuration	on	the	remote	daemon…

SELinux	and	AppArmor
Most	Linux	operating	systems	are	based	on	the	fact	that	they	can	leverage	SELinux	or
AppArmor	for	more	advanced	access	controls	to	files	or	locations	on	the	operating
system.	With	these	components,	you	can	limit	a	container’s	ability	to	execute	a	program	as
the	root	user	with	root	privileges.

Docker	does	ship	a	security	model	template	that	comes	with	AppArmor	and	Red	Hat
comes	with	SELinux	policies	as	well	for	Docker.	You	can	utilize	these	provided	templates
to	add	an	additional	layer	of	security	on	top	of	your	environments.

For	more	information	about	SELinux	and	Docker,	I	would	recommend	visiting	the
following	website:

https://www.mankier.com/8/docker_selinux

While,	on	the	other	hand,	if	you	are	in	the	market	for	some	more	reading	on	AppArmor
and	Docker,	I	would	recommend	visiting	the	following	website:

https://github.com/docker/docker/tree/master/contrib/apparmor

Here	you	will	find	a	template.go	file,	which	is	the	template	that	Docker	ships	with	its
application	that	is	the	AppArmor	template.

https://www.mankier.com/8/docker_selinux
https://github.com/docker/docker/tree/master/contrib/apparmor

Auto-patching	hosts
If	you	really	want	to	get	into	advanced	Docker	hosts,	then	you	could	use	CoreOS	and
Amazon	Linux	AMI,	which	perform	auto-patching,	both	in	a	different	way.	While
CoreOS	will	patch	your	operating	system	when	a	security	update	comes	out	and	will
reboot	your	operating	system,	the	Amazon	Linux	AMI	will	complete	the	updates	when
you	reboot.	So,	when	choosing	which	operating	system	to	use	when	you	are	setting	up
your	Docker	hosts,	make	sure	to	take	into	account	the	fact	that	both	of	these	operating
systems	implement	some	form	of	auto-patching,	but	in	a	different	way.	You	will	want	to
make	sure	you	are	implementing	some	type	of	scaling	or	failover	to	address	the	needs	of
something	that	is	running	on	CoreOS	so	that	there	is	no	downtime	when	a	reboot	occurs	to
patch	the	operating	system.

Summary
In	this	chapter,	we	looked	at	how	to	secure	our	Docker	hosts.	The	Docker	hosts	are	the
first	line	of	defense	as	they	are	the	starting	point	where	your	containers	will	be	running
and	communicating	with	each	other	and	end	users.	If	these	aren’t	secure,	then	there	is	no
purpose	of	moving	forward	with	anything	else.	You	learned	how	to	set	up	the	Docker
daemon	to	run	securely	running	TLS	by	generating	the	appropriate	certificates	for	both	the
host	and	the	clients.	We	also	looked	at	the	virtualization	and	isolation	benefits	of	using
Docker	containers,	but	make	sure	to	remember	the	attack	surface	of	the	Docker	daemon
too.

Other	items	included	how	to	use	Docker	Machine	to	easily	create	Docker	hosts	on	secure
operating	systems	with	secure	communication	and	ensure	that	they	are	being	set	up	using
secure	methods	when	you	use	it	to	set	up	your	containers.	Using	items	such	as	SELinux
and	AppArmor	also	help	to	improve	your	security	footprint	as	well.	Lastly,	we	covered
some	Docker	host	operating	systems	that	you	can	use	for	auto-patching	as	well,	such	as
CoreOS	and	Amazon	Linux	AMI.

In	the	next	chapter,	we	will	be	looking	at	securing	the	components	of	Docker.	We	will
focus	on	securing	the	components	of	Docker	such	as	the	registry	you	can	use,	containers
that	run	on	your	hosts,	and	how	to	sign	your	images.

Chapter	2.	Securing	Docker	Components
In	this	chapter,	we	will	be	taking	a	look	at	securing	some	Docker	components	using	things
such	as	image	signing	tools.	There	are	tools	that	will	help	secure	the	environments	where
we	are	storing	our	images,	whether	they	are	signed	or	not.	We	will	also	look	at	using	tools
that	come	with	commercial	level	support.	Some	of	the	tools	(image	signing	and
commercial	level	support	tools)	we	will	be	looking	at	are:

Docker	Content	Trust:	Software	that	can	be	used	to	sign	your	images.	We	will	look
at	all	the	components	and	go	through	an	example	of	signing	an	image.
Docker	Subscription:	Subscription	is	an	all	inclusive	package	that	includes	a
location	to	store	your	images,	and	Docker	Engine	to	run	your	containers,	all	while
providing	commercial	level	support	for	all	those	pieces,	plus	for	the	applications	and
their	life	cycle	that	you	plan	to	use.
Docker	Trusted	Registry	(DTR):	Trusted	Registry	gives	you	a	secure	location	to
store	and	manage	your	images	either	on	premises	or	in	the	cloud.	It	also	has	a	lot	of
integration	into	your	current	infrastructure	as	well.	We	will	take	a	look	at	all	the
pieces	available.

Docker	Content	Trust
Docker	Content	Trust	is	a	means	by	which	you	can	securely	sign	your	Docker	images	that
you	have	created	to	ensure	that	they	are	from	who	they	say	they	are	from,	that	being	you!
In	this	section,	we	will	take	a	look	at	the	components	of	Notary	as	well	as	an	example	of
signing	images.	Lastly,	we	will	take	a	peek	at	the	latest	means	of	using	Notary	with
regards	to	hardware	signing	capabilities	that	are	now	available.	It	is	a	very	exciting	topic,
so	let’s	dive	in	head	first!

Docker	Content	Trust	components
To	understand	how	Docker	Content	Trust	works	it	is	beneficial	to	be	familiar	with	all	the
components	that	make	up	its	ecosystem.

The	first	part	of	that	ecosystem	is	The	Update	Framework	(TUF)	piece.	TUF,	as	we	will
refer	to	it	from	now	on,	is	the	framework	that	Notary	is	built	upon.	TUF	solves	the
problem	with	software	update	systems	in	that	they	can	often	be	hard	to	manage.	It	enables
users	to	ensure	that	all	applications	are	secure	and	can	survive	any	key	compromises.
However,	if	an	application	is	insecure	by	default,	it	won’t	help	to	secure	that	application
until	it	has	been	brought	up	to	a	secure	compliance.	It	also	enables	trusted	updates	over
untrusted	sources	and	much	more.	To	learn	more	about	TUF,	please	visit	the	website:

http://theupdateframework.com/

The	next	piece	of	the	Content	Trust	ecosystem	is	that	of	Notary.	Notary	is	the	key
underlying	piece	that	does	the	actual	signing	using	your	keys.	Notary	is	open	source
software,	and	can	be	found	here:

https://github.com/docker/notary

This	has	been	produced	by	those	at	Docker	for	the	use	of	publishing	and	verifying	content.
Notary	consists	of	a	server	piece	as	well	as	a	client	piece.	The	client	piece	resides	on	your
local	machine	and	handles	the	storing	of	the	keys	locally	as	well	as	the	communication
back	with	the	Notary	server	to	match	up	timestamps	as	well.

Basically,	there	are	three	steps	to	the	Notary	server.

1.	 Compile	the	server
2.	 Configure	the	server
3.	 Run	the	server

Since	the	steps	may	change	in	the	future,	the	best	location	for	that	information	would	be
on	the	GitHub	page	for	Docker	Notary.	For	more	information	about	compiling	and	setting
up	the	server	side	of	Notary,	please	visit:

https://github.com/docker/notary#compiling-notary-server

Docker	Content	Trust	utilizes	two	distinct	keys.	The	first	is	that	of	a	tagging	key.	The
tagging	key	is	generated	for	every	new	repository	that	you	publish.	These	are	keys	that
can	be	shared	with	others	and	exported	to	those	who	need	the	ability	to	sign	content	on
behalf	of	the	registry.	The	other	key,	the	offline	key,	is	the	important	key.	This	is	the	key
that	you	want	to	lock	away	in	a	vault	and	never	share	with	anyone…ever!	Like	the	name
implies,	this	key	should	be	kept	offline	and	not	stored	on	your	machine	or	anything	on	a
network	or	cloud	storage.	The	only	times	you	need	the	offline	key	are	if	you	are	rotating	it
out	for	a	new	one	or	if	you	are	creating	a	new	repository.

So,	what	does	all	this	mean	and	how	does	it	truly	benefit	you?	This	helps	in	protecting
against	three	key,	no	pun	intended,	scenarios.

http://theupdateframework.com/
https://github.com/docker/notary
https://github.com/docker/notary#compiling-notary-server

Protects	against	image	forgery,	for	instance	if	someone	decides	to	pretend	one	of	your
images	is	from	you.	Without	that	person	being	able	to	sign	that	image	with	the
repository	specific	key,	remember	the	one	you	are	to	keep	offline!,	they	won’t	be	able
to	pass	it	off	as	actually	coming	from	you.
Protects	against	replay	attacks;	replay	attacks	are	ones	in	which	a	malicious	user	tries
to	pass	off	an	older	version	of	an	application,	which	has	been	compromised,	as	the
latest	legitimate	version.	Due	to	the	way	timestamps	are	utilized	with	Docker	Content
Trust,	this	will	ultimately	fail	and	keep	you	and	your	users	safe.
Protects	against	key	compromise.	If	a	key	is	compromised,	you	can	utilize	that
offline	key	to	do	a	key	rotation.	That	key	rotation	can	only	be	done	by	the	one	with
the	offline	key.	In	this	scenario,	you	will	need	to	create	a	new	key	and	sign	it	with
your	offline	key.

The	major	take	away	from	all	of	this	is	that	the	offline	key	is	meant	to	be	kept	offline.
Never	store	it	on	your	cloud	storage,	on	GitHub,	or	even	a	system	that	is	always	connected
to	the	Internet	such	as	that	of	your	local	machine.	It	would	be	best	practice	to	store	it	on	a
thumb	drive	that	is	encrypted	and	keep	that	thumb	drive	stored	in	a	a	secure	location.

To	learn	more	about	Docker	Content	Trust,	please	visit	the	following	blog	post:

http://blog.docker.com/2015/08/content-trust-docker-1-8/

http://blog.docker.com/2015/08/content-trust-docker-1-8/

Signing	images
Now	that	we	have	covered	all	the	components	of	Docker	Content	Trust,	let’s	take	a	look	at
how	we	can	sign	an	image	and	what	all	steps	are	involved.	These	instructions	are	just	for
development	purposes.	If	you	are	going	to	want	to	run	a	Notary	server	in	production,	you
will	want	to	use	your	own	database	and	compile	Notary	yourself	using	the	instructions	at
their	website:

https://github.com/docker/notary#compiling-notary-server

This	will	allow	you	to	use	your	own	keys	for	your	situation	to	your	own	backend	registry.
If	you	are	using	the	Docker	Hub,	it	is	very	simple	to	use	Docker	Content	Trust.

$	export	DOCKER_CONTENT_TRUST=1

The	most	important	piece	is	that	you	need	to	put	a	tag	on	all	images	you	push,	which	we
see	in	the	next	command:

$	docker	push	scottpgallagher/ubuntu:latest

The	push	refers	to	a	repository	[docker.io/scottpgallagher/ubuntu]	(len:	1)

f50e4a66df18:	Image	already	exists

a6785352b25c:	Image	already	exists

0998bf8fb9e9:	Image	already	exists

0a85502c06c9:	Image	already	exists

latest:	digest:	

sha256:98002698c8d868b03708880ad2e1d36034c79a6698044b495ac34c4c16eacd57	

size:	8008

Signing	and	pushing	trust	metadata

You	are	about	to	create	a	new	root	signing	key	passphrase.	This	passphrase

will	be	used	to	protect	the	most	sensitive	key	in	your	signing	system.	

Please

choose	a	long,	complex	passphrase	and	be	careful	to	keep	the	password	and	

the

key	file	itself	secure	and	backed	up.	It	is	highly	recommended	that	you	use	

a

password	manager	to	generate	the	passphrase	and	keep	it	safe.	There	will	be	

no

way	to	recover	this	key.	You	can	find	the	key	in	your	config	directory.

Enter	passphrase	for	new	root	key	with	id	d792b7a:

Repeat	passphrase	for	new	root	key	with	id	d792b7a:

Enter	passphrase	for	new	repository	key	with	id	

docker.io/scottpgallagher/ubuntu	(46a967e):

Repeat	passphrase	for	new	repository	key	with	id	

docker.io/scottpgallagher/ubuntu	(46a967e):

Finished	initializing	"docker.io/scottpgallagher/ubuntu"

The	most	important	line	from	the	code	above	is:

latest:	digest:	

sha256:98002698c8d868b03708880ad2e1d36034c79a6698044b495ac34c4c16eacd57	

size:	8008

This	gives	you	the	SHA	hash	that	is	used	to	verify	the	image	is	what	it	says	it	is	and	not
created	by	someone	else,	as	well	as	its	size.	This	will	be	used	later	when	someone	goes	to

https://github.com/docker/notary#compiling-notary-server

run	that	image/container.

If	you	were	to	do	a	docker	pull	from	a	machine	that	doesn’t	have	this	image,	you	can	see
it	has	been	signed	with	that	hash.

$	docker	pull	scottpgallagher/ubuntu

Using	default	tag:	latest

latest:	Pulling	from	scottpgallagher/ubuntu

Digest:	

sha256:98002698c8d868b03708880ad2e1d36034c79a6698044b495ac34c4c16eacd57

Status:	Downloaded	newer	image	for	scottpgallagher/ubuntu:latest

Again,	we	see	the	SHA	value	being	presented	when	we	do	the	pull	command.

So,	what	this	means	is	when	you	go	to	run	this	container,	it	won’t	run	locally	without	first
comparing	the	local	hash	to	that	on	the	registry	server	to	ensure	it	hasn’t	changed.	If	they
match,	it	will	run,	if	they	don’t	match,	it	won’t	run	and	will	give	you	an	error	message
about	the	hashes	not	matching.

With	the	Docker	Hub	you	aren’t	essentially	signing	images	with	your	own	key,	unless	you
manipulate	the	keys	that	are	in	your	~/.docker/trust/trusted-certificates/
directory.	Remember	that,	by	default,	when	you	install	Docker	you	are	given	a	set	of
certificates	that	you	can	use.

Hardware	signing
Now	that	we	have	looked	at	being	able	to	sign	images,	which	other	security	measure	have
been	put	in	place	to	help	make	that	process	even	more	secure?	Enter	YubiKeys!	YubiKeys
is	a	form	of	two	factor	authentication	that	you	can	utilize.	The	way	YubiKey	works	is	that
it	has	the	root	key	on	it,	built	into	the	hardware.	You	enable	Docker	Content	Trust,	then
push	your	image.	Upon	using	your	image,	Docker	notes	that	you	have	enabled	Content
Trust	and	asks	you	to	touch	the	YubiKey,	yes,	physically	touch	it.	This	is	to	ensure	that
you	are	a	person	and	not	a	robot	or	just	a	script.	You	then	need	to	provide	a	passphase	to
use	and	then,	once	again,	touch	the	YubiKey.	Once	you	have	done	this,	you	won’t	need	the
YubiKey	anymore,	but	you	will	need	that	passphrase	that	you	assigned	earlier.

My	description	of	this	really	doesn’t	do	it	justice.	At	DockerCon	Europe	2015
(http://europe-2015.dockercon.com),	there	was	a	great	play-by-play	of	this	in	operation
between	two	Docker	employees,	Aanand	Prasad	and	Diogo	Mónica.

To	view	the	video,	please	visit	the	following	URL:

https://youtu.be/fLfFFtOHRZQ?t=1h21m33s

http://europe-2015.dockercon.com
https://youtu.be/fLfFFtOHRZQ?t=1h21m33s

Docker	Subscription
Docker	Subscription	is	a	service	for	your	distributed	applications	that	will	help	you
support	those	applications	as	well	as	deploy	them.	The	Docker	Subscription	package
includes	two	critical	software	pieces	and	a	support	piece:

Docker	Registry	—	where	you	store	and	manage	your	images	(locally	hosted	or
hosted	in	the	cloud)
The	Docker	Engine	—	to	run	those	images
Docker	Universal	Control	Plane	(UCP)
Commercial	support	—	pick	up	the	phone	or	shoot	off	an	email	for	some	assistance

If	you	are	a	developer,	sometimes	the	operations	side	of	things	are	either	a	little	difficult	to
get	set	up	and	manage	or	they	require	some	training	to	get	going.	With	Docker
Subscription	you	can	off	load	some	of	those	worries	by	utilizing	the	expertise	that	is	out
there	with	commercial	level	support.	With	this	support	you	will	get	responsive	turn	around
on	your	issues.	You	will	receive	any	hot	fixes	that	are	available	or	have	been	made
available	to	patch	your	solution.	Assistance	with	future	upgrades	is	also	part	of	the	added
benefit	of	choosing	the	Docker	Subscription	plan.	You	will	get	assistance	with	upgrading
your	environments	to	the	latest	and	most	secure	Docker	environments.

Pricing	is	broken	down	based	on	where	you	want	to	run	your	environment	whether	it	is	on
a	server	of	your	choosing	or	if	it’s	in	a	cloud	environment.	It	is	also	based	upon	how	many
Docker	Trusted	Registries	and/or	how	many	commercially	supported	Docker	Engines	you
wish	to	have	as	well.	All	of	these	solutions	provide	you	with	integration	into	your	existing
LDAP	or	Active	Directory	environments.	With	this	added	benefit,	you	can	use	items	such
as	group	policies	to	manage	access	to	such	resources.	The	last	thing	that	you	will	have	to
decide	is	how	quick	a	response	time	you	want	from	the	support	end.	All	of	those	will
result	in	the	price	you	pay	for	the	subscription	service.	No	matter	what	you	do	pay	though
the	money	spent	will	be	well	worth	it,	not	only	in	respect	of	the	peace	of	mind	you	will	get
but	the	knowledge	you	will	gain	is	priceless.

You	can	also	change	your	plans	on	a	monthly	or	annual	basis	as	well	as	upgrade,	in
increments	of	ten,	your	Docker	Engine	instances.	You	can	also	upgrade	in	packs	of	ten	the
number	of	Docker	Hub	Enterprise	instances.	Switching	between	an	on	premises	server
to	the	cloud,	or	vice-versa,	is	also	possible.

To	break	some	things	down	so	as	to	not	be	confused,	the	Docker	Engine	is	the	core	of	the
Docker	ecosystem.	It	is	the	command	line	tools	that	you	use	to	run,	build,	and	manage
your	containers	or	images.	The	Docker	Hub	Enterprise	is	the	location	where	you	store	and
manage	your	images.	These	images	can	be	public	or	made	private.	We	will	learn	more
about	DTR	in	the	next	section	of	this	chapter.

For	more	information	about	Docker	Subscription,	please	visit	the	link	below.	You	can	sign
up	for	a	free	30	day	trial,	view	subscription	plans,	and	contact	sales	for	additional
assistance	or	questions.	The	subscription	plans	are	flexible	enough	to	conform	to	your
operating	environment	whether	it	is	something	you	want	support	for	24/7	or	maybe	just

half	of	that:

https://www.docker.com/docker-subscription

You	can	also	view	the	breakdown	for	commercial	support	here:

https://www.docker.com/support

Bringing	this	all	back	to	the	main	topic	of	the	book,	Securing	Docker,	this	is	by	far	the
most	secure	you	can	get	with	your	Docker	environment	that	you	will	be	using	to	manage
your	images	and	containers,	as	well	as	managing	the	location	they	are	all	stored	and	run
from.	A	little	extra	help	never	hurts	and	with	this	option,	a	little	help	will	defiantly	go	a
long	way.

The	latest	part	to	be	added	is	the	Docker	Universal	Control	Plane.	The	Docker	UCP
provides	a	solution	for	management	of	applications	and	infrastructure	that	is	Dockerized
regardless	of	where	they	might	be	running.	This	could	be	running	on	premises	or	in	the
cloud.	You	can	find	out	more	information	about	Docker	UCP	at	the	following	link:

https://www.docker.com/products/docker-universal-control-plane

You	can	also	get	a	demo	of	the	product	using	the	above	URL.	Docker	UCP	is	scalable,
easy	to	set	up,	and	you	can	manage	users	and	access	control	through	integrations	into	your
existing	LDAP	or	Active	Directory	environments.

https://www.docker.com/docker-subscription
https://www.docker.com/support
https://www.docker.com/products/docker-universal-control-plane

Docker	Trusted	Registry
The	DTR	is	a	solution	that	provides	a	secure	location	where	you	can	store	and	manage
your	Docker	images	either	on	premises	or	in	the	cloud.	It	also	provides	some	monitoring
to	let	you	get	insight	into	usage	so	you	can	tell	what	kind	of	load	is	being	passed	to	it.
DTR,	unlike	Docker	Registry,	is	not	free	and	does	come	with	a	pricing	model.	As	we	saw
earlier	with	Docker	Subscription,	the	pricing	plan	for	DTR	is	the	same.	Don’t	fret	as	we
will	go	over	Docker	Registry	in	the	next	section	of	the	book	so	you	can	understand	it	as
well	and	have	all	the	options	available	to	you	for	image	storage.

The	reason	we	separate	it	out	into	its	own	section	is	that	there	are	a	lot	of	moving	pieces
involved	and	it’s	critical	to	understand	how	they	all	function	not	only	as	a	whole	to	the
Docker	Subscription	piece,	but	as	it	stands	by	itself,	the	DTR	piece	where	all	your	images
are	being	maintained	and	stored.

Installation
There	are	two	ways	you	can	install	DTR,	or	rather	there	are	two	locations	where	you	can
install	DTR.	The	first	is	that	you	can	deploy	it	in	house	on	a	server	you	manage.	The	other
is	deploying	it	to	a	cloud	provider	environment	like	that	of	Digital	Ocean,	Amazon	Web
Services	(AWS),	or	Microsoft	Azure.

The	first	part	you	will	need	is	a	license	for	the	DTR.	Currently,	they	do	offer	a	trial	license
that	you	can	use,	which	I	highly	recommend	you	do.	This	will	allow	you	to	evaluate	the
software	on	your	selected	environment	without	having	to	fully	commit	to	that
environment.	If	there	is	something	that	you	find	doesn’t	work	in	a	particular	environment
or	you	feel	another	location	may	suit	you	better,	you	can	then	switch	without	having	to	be
tied	to	a	particular	location	or	having	to	move	your	existing	environment	around	to	a
different	provider	or	location.	If	you	do	choose	to	use	AWS,	they	do	have	a	pre-baked
Amazon	Machine	Image	(AMI)	that	you	can	utilize	to	get	your	Trusted	Registry	set	up
much	quicker.	This	avoids	having	to	do	it	all	manually	by	hand.

Before	you	can	install	the	Trusted	Registry,	you	first	need	to	have	Docker	Engine
installed.	If	you	don’t	already	have	it	installed,	please	see	the	documentation	located	with
the	link	below	for	more	information	on	doing	so.

https://docs.docker.com/docker-trusted-registry/install/install-csengine/

You	will	notice	there	is	a	difference	in	installing	the	normal	Docker	Engine	from	the
Docker	CS	Engine.	The	Docker	CS	Engine	stands	for	commercially	supported	Docker
Engine.	Be	sure	to	check	the	documentation	as	the	list	of	recommended	or	supported
Linux	versions	are	shorter	than	the	regular	list	for	Docker	Engine.

If	you	are	installing	using	the	AMI,	then	please	follow	the	instructions	here:

https://docs.docker.com/docker-trusted-registry/install/dtr-ami-byol-launch/

If	you	are	installing	on	Microsoft	Azure,	then	please	follow	the	instructions	here:

https://docs.docker.com/docker-trusted-registry/install/dtr-vhd-azure/

Once	you	do	have	Docker	Engine	installed,	it’s	time	to	install	the	DTR	piece.	If	you	are
reading	to	this	point	we	will	be	assuming	that	you	aren’t	installing	to	AWS	or	Microsoft
Azure.	If	you	are	using	either	of	those	two	methods,	please	see	the	links	from	above.	The
installation	is	very	straightforward:

$	sudo	bash	-c	'$(sudo	docker	run	docker/trusted-registry	install)'

Note
Note:	You	may	have	to	remove	the	sudo	options	from	the	above	command	when	running
on	Mac	OS.

Once	this	has	been	run,	you	can	navigate	in	your	browser	to	the	IP	address	of	your	Docker
host.	You	will	then	be	setting	the	domain	name	for	your	Trusted	Registry	as	well	applying
the	license.	The	web	portal	will	guide	you	through	the	rest	of	the	setup	process.

https://docs.docker.com/docker-trusted-registry/install/install-csengine/
https://docs.docker.com/docker-trusted-registry/install/dtr-ami-byol-launch/
https://docs.docker.com/docker-trusted-registry/install/dtr-vhd-azure/

In	accessing	the	portal	you	can	set	up	authentication	through	your	existing	LDAP	or
Active	Directory	environments	as	well,	but	this	can	be	done	at	anytime.

Once	that	is	done,	it	is	time	for	Securing	Docker	Trusted	Registry,	which	we	will	cover	in
the	next	section.

Securing	Docker	Trusted	Registry
Now	that	we	have	our	Trusted	Registry	set	up,	we	need	to	make	it	secure.	Before	making
it	secure	you	will	need	to	create	an	administrator	account	to	be	able	to	perform	actions.
Once	you	have	your	Trusted	Registry	up	and	running,	and	are	logged	into	it,	you	will	be
able	to	see	six	areas	under	Settings.	These	are:

General	settings
Security	settings
Storage	settings
License
Auth	settings
Updates

The	General	settings	are	mainly	focused	around	settings	such	as	HTTP	port	or	HTTPS
port,	the	Domain	name	to	be	used	for	your	Trusted	Registry,	and	proxy	settings,	if
applicable.

The	next	section,	Security	settings,	is	probably	one	of	the	most	important	ones.	Within
this	Dashboard	pane	you	are	able	to	utilize	your	SSL	Certificate	and	SSL	Private	Key.
These	are	what	make	the	communication	between	your	Docker	clients	and	the	Trusted
Registry	secure.	Now,	there	are	a	few	options	for	those	certificates.	You	can	use	the	self
signed	ones	that	are	created	when	installing	the	Trusted	Registry.	You	can	also	do	self
signed	ones	of	your	own,	using	a	command	line	tool	such	as	OpenSSL.	If	you	are	in	an
enterprise	organization,	they	more	than	likely	have	a	location	where	you	can	request
certificates	such	as	the	one	that	can	be	used	with	the	registry.	You	will	need	to	make	sure

that	the	certificates	on	your	Trusted	Registry	are	the	same	ones	being	used	on	your	clients
to	ensure	secure	communications	when	doing	docker	pull	or	docker	push	commands:

The	next	section	deals	with	image	storage	settings.	Within	this	Dashboard	pane,	you	can
set	where	your	images	are	stored	on	the	backend	storage.	Options	for	this	might	include	an
NFS	share	you	are	using,	local	disk	storage	of	the	Trusted	Registry	server,	an	S3	bucket
from	AWS,	or	another	cloud	storage	solution.	Once	you	have	selected	your	Storage
Backend	option,	you	can	then	set	the	path	from	within	that	Storage	to	store	your	images:

The	License	section	is	very	straightforward	as	this	is	where	you	update	your	license	when
it’s	time	to	renew	a	new	one	or	when	you	upgrade	a	license	that	might	include	more
options:

Authentication	settings	allow	you	to	tie	the	login	to	the	Trusted	Registry	into	your	existing
authentication	environment.	Your	options	here	are:	None	or	a	Managed	option.	None	is
not	recommended	except	for	testing	purposes.	The	Managed	option	is	where	you	would
set	up	usernames	and	passwords	and	manage	them	from	there.	The	other	option	would	be
to	use	an	LDAP	service,	one	that	you	might	already	be	running	as	well,	so	that	users	have
the	same	login	credentials	for	their	other	work	appliances	such	as	email	or	web	logins.

The	last	section,	Updates,	deals	with	how	you	manage	updates	for	the	DTR.	These

settings	would	be	totally	up	to	you	how	you	handle	updates,	but	be	sure	if	you	are	doing
an	automated	form	of	updates	that	you	are	also	utilizing	backups	for	restoring	purposes	in
the	event	that	something	goes	wrong	during	the	update	process.

Administering
Now	that	we	have	covered	the	items	that	help	you	secure	your	Trusted	Registry,	we	might
as	well	take	a	few	minutes	to	cover	the	other	items	that	are	within	the	console	to	help	you
administer	it.	Beyond	the	Settings	tab	within	the	registry,	there	are	four	other	tabs	that	you
can	navigate	and	gather	information	about	your	registry.	Those	are:

Dashboard
Repositories
Organizations
Logs

The	Dashboard	is	the	main	landing	page	you	are	taken	to	when	you	log	in	via	your
browser	to	the	console.	This	will	display	information	about	your	registry	in	one	central
location.	The	information	you	will	be	seeing	is	more	hardware	related	information	about
the	registry	server	itself	as	well	as	the	Docker	host	that	the	registry	server	is	running	on.
The	Repositories	section	will	allow	you	to	control	which	repositories,	either	Public	or
Private,	your	users	are	able	to	pull	images	from.	The	Organizations	section	allows	you	to
control	access,	that	is,	who	on	the	system	can	push,	pull,	or	do	other	Docker	related
commands	against	the	repositories	that	you	have	elected	to	configure.	The	last	section,	the
Logs	section,	will	allow	you	to	view	logs	based	upon	your	containers	that	are	being	used
from	your	registry.	The	logs	are	rotated	every	two	weeks	with	a	maximum	size	of	64	mb.
You	are	able	to	filter	through	the	logs	as	well	based	on	a	container	as	well	as	being	able	to
search	for	a	date	and/or	time.

Workflow
In	this	section,	let’s	pull	an	image,	manipulate	it,	and	then	place	it	on	our	DTR	for	access
by	others	within	our	organization.

First,	we	need	to	pull	an	image	from	the	Docker	Hub.	Now,	you	could	start	from	scratch
with	a	Dockerfile	and	then	do	a	Docker	build	and	then	push,	but	let’s,	for	this
demonstration,	say	we	have	the	mysql	image	and	we	want	to	customize	it	in	some	way.

$	docker	pull	mysql

Using	default	tag:	latest

latest:	Pulling	from	library/mysql

1565e86129b8:	Pull	complete

a604b236bcde:	Pull	complete

2a1fefc8d587:	Pull	complete

f9519f46a2bf:	Pull	complete

b03fa53728a0:	Pull	complete

ac2f3cdeb1c6:	Pull	complete

b61ef27b0115:	Pull	complete

9ff29f750be3:	Pull	complete

ece4ebeae179:	Pull	complete

95255626f143:	Pull	complete

0c7947afc43f:	Pull	complete

b3a598670425:	Pull	complete

e287fa347325:	Pull	complete

40f595e5339f:	Pull	complete

0ab12a4dd3c8:	Pull	complete

89fa423a616b:	Pull	complete

Digest:	

sha256:72e383e001789562e943bee14728e3a93f2c3823182d14e3e01b3fd877976265

Status:	Downloaded	newer	image	for	mysql:latest

$	docker	images

REPOSITORY										TAG																	IMAGE	ID												CREATED													

VIRTUAL	SIZE

mysql															latest														89fa423a616b								20	hours	ago								

359.9	MB

Now,	let’s	assume	we	made	a	customization	to	the	image.	Let’s	say	that	we	set	up	the
container	to	ship	its	logs	off	to	a	log	stash	server	that	we	are	using	to	collect	our	logs	from
all	our	containers	that	we	are	running.	We	now	need	to	save	those	changes.

$	docker	commit	be4ea9a7734e	<dns.name>/mysql

When	we	go	to	do	the	commit,	we	need	a	few	tidbits	of	information.	The	first	is	the
container	ID,	which	we	can	get	from	running	a	docker	ps	command.	We	also	need	the
DNS	name	of	our	registry	server	that	we	set	up	earlier,	and	lastly	a	unique	image	name	to
give	it.	In	our	case,	we	will	keep	it	as	mysql.

We	are	now	ready	to	push	the	updated	image	to	our	registry	server.	The	only	information
we	need	is	the	image	name	that	we	want	to	push,	which	will	be	the	<dns.name>/mysql.

$	docker	push	<dns.name>/mysql

The	image	is	now	ready	to	be	used	by	the	other	users	in	our	organization.	Since	the	image
is	in	our	Trusted	Registry,	we	can	control	access	to	that	image	from	our	clients.	This	could
mean	that	our	clients	would	need	our	certificate	and	keys	to	be	able	to	push	and	pull	this
image,	as	well	as	permissions	set	up	within	the	organization	settings	we	previously	went
over	in	the	last	section.

$	docker	pull	<dns.name>/mysql

We	can	then	make	run	the	image,	make	changes	if	needed,	and	push	the	newly	created
image	back	to	the	Trusted	Registry	server	as	necessary.

Docker	Registry
The	Docker	Registry	is	an	open	source	option	if	you	want	to	totally	go	at	it	on	your	own.
If	you	totally	want	hands	off,	you	can	always	use	the	Docker	Hub	and	rely	on	public	and
private	repositories,	which	will	run	you	a	fee	on	the	Docker	Hub	though.	This	can	be
hosted	locally	on	a	server	of	your	choosing	or	on	a	cloud	service.

Installation
The	installation	of	the	Docker	Registry	is	extremely	simply	as	it	runs	in	a	Docker
container.	This	allows	you	to	run	it	virtually	anywhere,	on	a	virtual	machine	in	your	own
server	environment	or	in	a	cloud	environment.	The	typical	port	that	is	used	is	port	5000,
but	you	can	change	it	to	suit	your	needs:

$	docker	run	-d	-p	5000:5000	--restart=always		--name	registry	registry:2.2

One	of	the	other	items	you	will	notice	from	above	is	that	we	are	specifying	a	version	to
use	instead	of	leaving	it	blank	and	pulling	the	latest	version.	That	is	because	as	of	writing
this	book,	the	latest	version	for	that	registry	tag	is	still	at	version	0.9.1.	Now,	while	this
might	be	suitable	for	some,	version	2	is	stable	enough	to	be	considered	and	to	run	your
production	environment	on.	We	are	also	introducing	the	--restart=always	flag	for	that	as
in	the	event	of	something	happening	to	the	container,	it	will	restart	and	be	available	to
serve	out	or	accept	images.

Once	you	have	run	the	command	above,	you	will	have	a	running	container	registry	on	the
IP	address	of	the	Docker	host	you	ran	the	command	on	along	with	the	port	selection	that
you	used	in	your	docker	run	command	above.

Now	it	is	time	to	put	some	images	up	on	your	new	registry.	The	first	thing	we	need	is	an
image	to	push	to	the	registry	and	we	can	do	that	in	two	ways.	We	can	build	images	based
on	Docker	files	that	we	have	created	or	we	can	pull	down	an	image	from	another	registry,
in	our	case	we	will	be	using	the	Docker	Hub,	and	then	push	that	image	to	our	new	registry
server.	First,	we	need	an	image	to	choose	and	again,	we	will	default	back	to	the	mysql
image	since	it’s	a	more	popular	image	that	most	people	might	be	using	in	their
environments	at	some	point	along	the	way.

$	docker	pull	mysql

Using	default	tag:	latest

latest:	Pulling	from	library/mysql

1565e86129b8:	Pull	complete

a604b236bcde:	Pull	complete

2a1fefc8d587:	Pull	complete

f9519f46a2bf:	Pull	complete

b03fa53728a0:	Pull	complete

ac2f3cdeb1c6:	Pull	complete

b61ef27b0115:	Pull	complete

9ff29f750be3:	Pull	complete

ece4ebeae179:	Pull	complete

95255626f143:	Pull	complete

0c7947afc43f:	Pull	complete

b3a598670425:	Pull	complete

e287fa347325:	Pull	complete

40f595e5339f:	Pull	complete

0ab12a4dd3c8:	Pull	complete

89fa423a616b:	Pull	complete

Digest:	

sha256:72e383e001789562e943bee14728e3a93f2c3823182d14e3e01b3fd877976265

Status:	Downloaded	newer	image	for	mysql:latest

Next,	you	need	to	tag	the	image	so	it	will	now	be	pointing	to	your	new	registry	so	you	can
do	push	it	to	the	new	location:

$	docker	tag	mysql	<IP_address>:5000/mysql

Let’s	break	down	that	command	above.	What	we	are	doing	is	applying	the	tag	of
<IP_address>:5000/mysql	to	the	mysql	image	that	we	pulled	from	the	Docker	Hub.	Now
that	<IP_address>	piece	will	be	replaced	by	the	IP	address	from	the	Docker	host	that	is
running	the	registry	container.	This	could	also	be	a	DNS	name	as	well,	as	long	as	the	DNS
points	to	the	correct	IP	that	is	running	on	the	Docker	host.	We	also	need	to	specify	the	port
number	for	our	registry	server,	and	in	our	case	we	left	it	with	port	5000,	so	we	include:
5000	in	the	tag.	Then,	we	are	going	to	give	it	the	same	same	of	mysql	at	the	end	of	the
command.	We	are	now	ready	to	push	this	image	to	our	new	registry.

$	docker	push	<IP_address>:5000/mysql

After	it	has	been	pushed,	you	can	now	pull	it	down	from	another	machine	that	is
configured	with	Docker	and	has	access	to	the	registry	server.

$	docker	pull	<IP_address>:5000/mysql

What	we	have	looked	at	here	are	the	defaults	and	while	it	could	work	if	you	want	to	use
firewalls	and	such	to	secure	the	environment	or	even	internal	IP	address,	you	still	might
want	to	take	security	to	the	next	level	and	that	is	what	we	will	look	at	in	the	next	section.
How	can	we	make	this	even	more	secure?

Configuration	and	security
It’s	time	to	tighten	up	our	running	registry	with	some	additional	features.	The	first	method
would	be	to	run	your	registry	using	TLS.	Using	TLS	allows	you	to	apply	certificates	to	the
system	so	that	people	who	are	pulling	from	it	know	that	it	is	who	you	say	it	is	by	knowing
that	someone	hasn’t	comprised	the	server	or	is	doing	a	man	in	the	middle	attack	by
supplying	you	with	compromised	images.

To	do	that,	we	will	need	to	rework	the	Docker	run	command	we	were	running	in	the	last
section.	This	is	going	to	assume	you	have	gone	through	some	of	the	process	of	obtaining	a
certificate	and	key	from	your	enterprise	environment	or	you	have	self	signed	one	using
another	piece	of	software.

Our	new	command	will	look	like	this:

$	docker	run	-d	-p	5000:5000	--restart=always	--name	registry	\

		-e	REGISTRY_HTTP_TLS_CERTIFICATE=server.crt	\

		-e	REGISTRY_HTTP_TLS_KEY=server.key	\

		-v	<certificate	folder>/<path_on_container>	\	

		registry:2.2.0

You	will	need	to	be	in	the	directory	where	the	certificates	are	or	specify	the	full	path	to
them	in	the	above	command.	Again,	we	are	keeping	the	standard	port	of	5000,	along	with
the	name	of	registry.	You	could	alter	that	too	to	something	that	might	suit	you	better.	For
the	sake	of	this	book	we	will	keep	it	close	to	that	in	the	official	documentation	in	the	event
that	you	look	there	for	more	reference.	Next,	we	add	two	additional	lines	to	the	run
command:

		-e	REGISTRY_HTTP_TLS_CERTIFICATE=server.crt	\

		-e	REGISTRY_HTTP_TLS_KEY=server.key	\

This	will	allow	you	to	specify	the	certificate	and	key	file	that	you	will	be	using.	These	two
files	will	need	to	be	in	the	same	directory	that	you	are	running	the	run	command	from	as
the	environmental	variables	will	be	looking	for	them	upon	run.	Now	you	could	also	add	a
volume	switch	to	the	run	command	to	make	it	a	little	cleaner	if	you	like	and	put	the
certificate	and	key	in	that	folder	and	run	the	registry	server	that	way.

The	other	way	you	can	help	with	security	is	by	putting	a	username	and	password	on	the
registry	server.	This	will	help	when	users	want	to	push	or	pull	an	item	as	they	will	need
the	username	and	password	information.	The	catch	with	this	is	that	you	have	to	be	using
TLS	in	conjunction	with	this	method.	This	method	of	username	and	password	is	not	a
standalone	option.

First,	you	need	to	create	a	password	file	that	you	will	be	using	in	your	run	command:

$	docker	run	--entrypoint	htpasswd	registry:2.2.0	-bn	<username>	<password>	

>	htpasswd

Now,	it	can	be	a	little	confusing	to	understand	what	is	happening	here,	so	let’s	clear	that
up	before	we	jump	to	the	run	command.	First,	we	are	issuing	a	run	command.	This
command	is	going	to	run	the	registry:2.2.0	container	and	its	entry	point	specified

means	to	run	the	htpasswd	command	along	with	the	-bn	switches,	which	will	inject	the
username	and	password	in	an	encrypted	fashion	into	a	file	called	htpasswd	that	you	will
be	using	for	authentication	purposes	on	the	registry	server.	The	-b	means	to	run	in	batch
mode	while	the	-n	means	to	display	the	results,	and	the	>	means	to	put	those	items	into	a
file	instead	of	to	the	actual	output	screen.

Now,	onto	our	newly	enhanced	and	totally	secure	Docker	run	command	for	our	registry:

$	docker	run	-d	-p	5000:5000	--restart=always	--name	registry	\

		-e	"REGISTRY_AUTH=htpasswd"	\

		-e	"REGISTRY_AUTH_HTPASSWD_REALM=Registry	Name"	\

		-e	REGISTRY_AUTH_HTPASSWD_PATH=htpasswd	\

		-e	REGISTRY_HTTP_TLS_CERTIFICATE=server.crt	\

		-e	REGISTRY_HTTP_TLS_KEY=server.key	\

		registry:2.20

Again,	it’s	a	lot	to	digest	but	let’s	walk	through	it.	We	have	seen	some	of	these	lines	before
in:

		-e	REGISTRY_HTTP_TLS_CERTIFICATE=server.crt	\

		-e	REGISTRY_HTTP_TLS_KEY=server.key	\

The	new	ones	are:

		-e	"REGISTRY_AUTH=htpasswd"	\

		-e	"REGISTRY_AUTH_HTPASSWD_REALM=Registry	Name"	\

		-e	REGISTRY_AUTH_HTPASSWD_PATH=htpasswd	\

The	first	one	tells	the	registry	server	to	use	htpasswd	as	its	authentication	method	to	verify
clients.	The	second	gives	your	registry	a	name	and	can	be	changed	at	your	own	discretion.
The	last	one	tells	the	registry	server	the	location	of	the	file	that	is	to	be	used	for	the
htpasswd	authentication.	Again,	you	will	need	to	use	volumes	and	put	the	htpasswd	file	in
its	own	volume	inside	the	container	so	it	allows	for	easier	updating	down	the	road.	You
also	need	to	remember	the	htpasswd	file	needs	to	be	placed	in	the	same	directory	as	the
certificate	and	key	file	when	you	execute	the	Docker	run	command.

Summary
In	this	chapter,	we	have	looked	at	being	able	to	sign	your	images	using	the	components	of
Docker	Content	Trust	as	well	as	hardware	signing	using	Docker	Content	Trust	along	with
the	third	party	utilities	in	the	form	of	YubiKeys.	We	also	took	a	look	at	Docker
Subscription	that	you	can	utilize	to	your	advantage	to	help	set	up	not	only	secure	Docker
environments	but	also	ones	that	are	supported	by	those	at	Docker	itself.	We	then	looked	at
DTR	as	a	solution	that	you	can	use	to	store	your	Docker	images.	Lastly,	we	looked	at	the
Docker	Registry,	which	is	a	self	hosted	registry	that	you	can	use	to	store	and	manage	your
images.	This	chapter	should	help	give	you	enough	configuration	items	to	chew	on	to	help
you	make	the	right	decision	as	to	where	to	store	your	images.

In	the	next	chapter	we	will	be	looking	at	securing/hardening	Linux	kernels.	As	the	kernel
is	what	is	used	to	run	all	your	containers,	it	is	important	that	it	is	secured	in	the	proper	way
to	help	alleviate	any	security	related	issues.	We	will	be	covering	some	hardening	guides
that	you	can	use	to	accomplish	this	goal.

Chapter	3.	Securing	and	Hardening	Linux
Kernels
In	this	chapter,	we	will	turn	our	attention	to	securing	and	hardening	the	one	key	piece	that
every	container	running	on	your	Docker	host	relies	on:	the	Linux	kernel.	We	will	focus	on
two	topics:	guides	that	you	can	follow	to	harden	the	Linux	kernel	and	tools	that	you	can
add	to	your	arsenal	to	help	harden	the	Linux	kernel.	Let’s	take	a	brief	look	at	what	we	will
be	covering	in	this	chapter	before	diving	in:

Linux	kernel	hardening	guides
Linux	kernel	hardening	tools

Grsecurity
Lynis

Linux	kernel	hardening	guides
In	this	section,	we	will	be	looking	at	the	SANS	Institute	hardening	guide	for	the	Linux
kernel.	While	a	lot	of	this	information	is	outdated,	I	believe	that	it	is	important	for	you	to
understand	how	the	Linux	kernel	has	evolved	and	become	a	secure	entity.	If	you	were	to
step	into	a	time	machine	and	go	back	to	the	year	2003	and	attempt	to	do	the	things	you
want	to	do	today,	this	is	everything	you	would	have	to	do.

First,	some	background	information	about	the	SANS	Institute.	It	is	a	private	US-based
company	that	specializes	in	cybersecurity	and	information	technology-related	training	and
education.	These	trainings	prepare	professionals	to	defend	their	environments	against
attackers.	SANS	also	offers	a	variety	of	free	security-related	content	via	their	SANS
Technology	Institute	Leadership	Lab.	More	information	about	this	can	be	found	at
http://www.sans.edu/research/leadership-laboratory.

To	help	alleviate	against	this	widespread	attack	base,	there	needs	to	be	security	focus	on
every	aspect	of	your	IT	infrastructure	and	software.	Based	upon	this,	the	first	place	to	start
would	be	at	the	Linux	kernel.

http://www.sans.edu/research/leadership-laboratory

SANS	hardening	guide	deep	dive
As	we	have	already	covered	the	background	of	the	SANS	Institute,	let’s	go	ahead	and
jump	into	the	guide	that	we	will	be	following	to	secure	our	Linux	kernel(s).

For	reference,	we	will	be	using	the	following	URL	and	highlighting	the	sticking	points
that	you	should	be	focusing	on	and	implementing	in	your	environments	to	secure	the
Linux	kernel:

https://www.sans.org/reading-room/whitepapers/linux/linux-kernel-hardening-1294

The	Linux	kernel	is	an	always-developing	and	maturing	piece	of	the	Linux	ecosystem	and
for	this	reason,	it’s	important	to	get	a	firm	grasp	on	the	Linux	kernel	as	it	stands	currently,
which	will	help	when	looking	to	lockdown	the	new	feature	sets	that	might	come	in	future
releases.

The	Linux	kernel	allows	loading	modules	without	having	to	recompile	or	reboot,	which	is
great	when	you	are	looking	to	eliminate	downtime.	Some	various	operating	systems
require	reboots	when	trying	to	apply	updates	to	a	certain	operating	system/application
criteria.	This	can	also	be	a	bad	thing	with	regards	to	the	Linux	kernel	as	the	attackers	can
inject	harmful	material	into	the	kernel	and	wouldn’t	need	to	reboot	the	machine,	which
might	be	caught	by	someone	noticing	the	reboot	of	the	system.	For	this	reason,	it	is
suggested	that	a	statically	compiled	kernel	with	the	load	option	be	disabled	to	help	prevent
against	attack	vectors.

Buffer	overflows	are	another	way	attackers	can	compromise	a	kernel	and	gain	entry.
Applications	have	a	limit,	or	buffer,	on	how	much	a	user	can	store	in	memory.	An	attacker
overflows	this	buffer	with	specially	crafted	code,	which	could	let	the	attacker	gain	control
of	the	system	that,	in	turn,	will	empower	them	to	do	whatever	they	want	at	that	point.
They	could	add	backdoors	to	the	system,	send	logs	off	to	a	nefarious	place,	add	additional
users	to	the	system,	or	even	lock	you	out	of	the	system.	To	prevent	these	type	of	attacks,
there	are	three	areas	of	focus	that	the	guide	hones	in	on.

The	first	is	the	Openwall	Linux	kernel	patch	that	was	a	patch	created	to	address	this	issue.
This	patch	also	includes	some	other	security	enhancements	that	might	be	attributed	to	your
running	environments.	Some	of	these	items	included	restricted	links	and	file	reads/writes
in	the	/tmp	folder	location	and	restricted	access	to	the	/proc	locations	on	the	filesystem.	It
also	includes	enhanced	enforcement	for	a	number	of	user	processes	that	you	could	control
as	well	as	the	ability	to	destroy	shared	memory	segments,	which	were	not	in	use,	and
lastly,	some	other	enhancements	for	those	of	you	that	are	running	kernel	versions	older
than	version	2.4.

If	you	are	running	an	older	version	of	the	Linux	kernel,	you	will	want	to	check	out	the
Openwall	hardened	Linux	at	http://www.openwall.com/Owl/	and	Openwall	Linux	at
http://www.openwall.com/linux/.

The	next	piece	of	software	is	called	Exec	Shield	and	it	takes	a	similar	approach	to	the
Openwall	Linux	kernel	patch,	which	implements	a	non-executable	stack,	but	Exec	Shield
extends	this	by	attempting	to	protect	any	and	all	segments	of	virtual	memory.	This	patch	is

https://www.sans.org/reading-room/whitepapers/linux/linux-kernel-hardening-1294
http://www.openwall.com/Owl/
http://www.openwall.com/linux/

limited	to	the	prevention	of	attacks	against	the	Linux	kernel	address	space.	These	address
spaces	include	stack,	buffer,	or	function	pointer	overflow	spaces.

More	information	about	this	patch	can	be	found	at
https://en.wikipedia.org/wiki/Exec_Shield.

The	last	one	is	PaX,	which	is	a	team	that	creates	a	patch	for	the	Linux	kernel	to	prevent
against	a	variety	of	software	vulnerabilities.	As	this	is	something	we	will	be	talking	about
in-depth	in	the	next	section,	we	will	just	discuss	some	of	its	features.	This	patch	focuses
on	the	following	three	address	spaces:

PAGEEXEC:	These	are	paging-based,	non-executable	pages
SEGMEXEC:	These	are	segmentation–based,	non-executable	pages
MPROTECT:	These	are	mmap()	and	mprotect()	restrictions

To	learn	more	about	PaX,	visit	https://pax.grsecurity.net.

Now	that	you	have	seen	how	much	efforts	you	had	to	put	in,	you	should	be	glad	that
security	is	now	at	the	forefront	for	everyone,	especially,	the	Linux	kernel.	In	some	of	the
later	chapters,	we	will	be	looking	at	some	of	the	following	new	technologies	that	are	being
used	to	help	secure	environments:

Namespaces
cgroups
sVirt
Summon

There	are	also	a	lot	of	capabilities	that	can	be	accomplished	through	the	--cap-ad	and	--
cap-drop	switches	on	your	docker	run	command.

Even	like	the	days	before,	you	still	need	to	be	aware	of	the	fact	that	the	kernel	is	shared
throughout	all	your	containers	on	a	host,	therefore,	you	need	to	protect	this	kernel	and
watch	out	for	vulnerabilities	when	necessary.	The	following	link	allows	you	to	view
Common	Vulnerabilities	and	Exposures	(CVE)	in	the	Linux	kernel:

https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-
7/cvssscoremax-7.99/Linux-Linux-Kernel.html

https://en.wikipedia.org/wiki/Exec_Shield
https://pax.grsecurity.net
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html

Access	controls
There	are	various	levels	of	access	controls	that	you	can	layer	on	top	of	Linux	as	well	as
recommendations	that	you	should	follow	with	reference	to	certain	users,	and	these	would
be	the	superusers	on	your	system.	Just	to	give	some	definition	to	superusers,	they	are	the
accounts	on	the	system	that	have	unfettered	access	to	do	anything	and	everything.	You
should	include	the	root	user	when	you	are	layering	on	these	access	controls.

These	access	control	recommendations	will	be	the	following:

Restricting	usage	of	the	root	user
Restricting	its	ability	to	SSH

By	default,	on	some	systems,	root	has	the	ability	to	SSH	to	machine	if	SSH	is
enabled,	which	we	can	see	from	a	portion	of	the	/etc/ssh/sshd_config	file	on	some
Linux	systems,	as	follows:

#	Authentication:

#LoginGraceTime	2m

#PermitRootLogin	no

#StrictModes	yes

#MaxAuthTries	6

#MaxSessions	10

From	what	you	can	see	here,	the	section	for	PermitRootLogin	no	is	commented	out
with	the	#	symbol	so	that	means	this	line	won’t	be	interpreted.	To	change	this,	simply
remove	the	#	symbol	and	save	the	file	and	restart	the	service.	The	section	of	this	file
should	now	be	similar	to	the	following	code:

#	Authentication:

#LoginGraceTime	2m

PermitRootLogin	no

#StrictModes	yes

#MaxAuthTries	6

#MaxSessions	10

Now,	you	may	want	to	restart	the	SSH	service	for	these	changes	to	take	affect,	as
follows:

$	sudo	service	sshd	restart

Restrict	its	ability	to	log	in	beyond	the	console.	On	most	Linux	systems,	there	is	a	file
in	/etc/default/login	and	in	that	file,	there	is	a	line	that	is	similar	to	the	following:

#CONSOLE=/dev/console

Similar	to	the	preceding	example,	we	need	to	uncomment	this	line	by	removing	#	for
this	to	take	affect.	This	will	only	allow	the	root	user	to	log	in	at	console	and	not	via
SSH	or	other	methods.

Restrict	su	command

The	su	commands	allow	you	to	login	as	the	root	user	and	be	able	to	issue	root-level
commands,	which	gives	you	full	access	to	the	entire	system.	To	restrict	access	to	who
can	use	this	command,	there	is	a	file	located	at	/etc/pam.d/su,	and	in	this	file,	you
will	see	a	line	similar	to	the	following:

auth	required	/lib/security/pam_wheel.so	use_uid

You	can	also	choose	the	following	line	of	code	here,	depending	upon	your	Linux
flavor:

auth	required	pam_wheel.so	use_uid

The	check	for	wheel	membership	will	be	done	against	the	current	user	ID	for	the
ability	to	use	the	su	command.

Requiring	sudo	to	run	commands
Some	other	access	controls	that	are	remanded	are	the	use	of	the	following	controls:

Mandatory	Access	Controls	(MAC):	Restricting	what	users	can	do	on	systems
Role-Based	Access	Controls:	Using	groups	to	assign	the	roles	that	these	groups
can	perform
Rule	Set	Based	Access	Controls	(RSBAC):	Rule	sets	that	are	grouped	in	the
request	type	and	performs	actions	based	on	set	rule(s)
Domain	and	Type	Enforcement	(DTE):	Allow	or	restrict	certain	domains	from
performing	set	actions	or	preventing	domains	from	interacting	with	each	other

You	can	also	utilize	the	following:

SELinux	(RPM-based	systems	(such	as	Red	Hat,	CentOS,	and	Fedora)
AppArmor	(apt-get-based	systems	(such	as	Ubuntu	and	Debian)

These	RSBAC,	as	we	discussed	earlier,	allow	you	to	choose	methods	of	control	that	are
appropriate	for	what	your	system	is	running.	You	can	also	create	your	own	access	control
modules	that	can	help	enforce.	By	default,	on	most	Linux	systems,	these	type	of
environments	are	enabled	or	in	enforcing	mode.	Majority	of	people	will	turn	these	off
when	they	create	a	new	system,	but	it	comes	with	security	drawbacks,	therefore,	it’s
important	to	learn	how	these	systems	work	and	use	them	in	the	enabled	or	enforcement
mode	to	help	mitigate	further	risks.

More	information	about	each	can	be	found	at	the	following:

SELinux:	https://en.wikipedia.org/wiki/Security-Enhanced_Linux
AppArmor:	https://en.wikipedia.org/wiki/AppArmor

https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/AppArmor

Distribution	focused
There	are	many	Linux	distributions,	or	flavors	as	they	call	them,	in	the	Linux	community
that	have	been	pre-baked	to	be	already	hardened.	We	referenced	one	earlier,	the	Owlwall
flavor	of	Linux,	but	there	are	others	out	there	as	well.	Out	of	the	other	two,	one	that	is	no
longer	around	is	Adamantix	and	the	other	is	Gentoo	Linux.	These	Linux	flavors	feature
some	baked-in	Linux	kernel	hardening	as	standards	of	their	operating	system	builds.

Linux	kernel	hardening	tools
There	are	some	Linux	kernel	hardening	tools	out	there,	but	we	will	focus	on	only	two	of
them	in	this	section.	The	first	being	Grsecurity	and	the	second	being	Lynis.	These	are	tools
that	you	can	add	to	your	arsenal	to	help	in	increasing	the	security	of	the	environments	that
you	will	be	running	your	Docker	containers	on.

Grsecurity
So,	what	exactly	is	Grsecurity?	According	to	their	website,	Grsecurity	is	an	extensive
security	enhancement	for	the	Linux	kernel.	This	enhancement	contains	a	wide	range	of
items	that	help	in	defending	against	various	threats.	These	threats	might	include	the
following	components:

Zero	day	exploits:	This	mitigates	and	keeps	your	environment	protected	until	a	long-
term	solution	can	be	made	available	through	the	vendor.
Shared	host	or	container	weaknesses:	This	protects	you	against	kernel
compromises	that	various	technologies,	and	very	much	so	containers,	use	for	each
container	on	the	host.
It	goes	beyond	basic	access	controls:	Grsecurity	works	with	the	PaX	team	to
introduce	complexity	and	unpredictability	to	the	attacker,	while	responding	and
denying	the	attacker	any	more	chances.
Integrates	with	you	existing	Linux	distribution:	As	Grsecurity	is	kernel-based,	it
can	be	used	with	any	Linux	flavors	such	as	Red	Hat,	Ubuntu,	Debian,	and	Gentoo.
Whatever	your	Linux	flavor	is,	it	doesn’t	matter,	as	the	focus	is	on	the	underlying
Linux	kernel.

More	information	can	be	found	at	https://grsecurity.net/.

To	directly	get	to	the	good	stuff	and	see	the	feature	set	that	is	offered	by	utilizing	a	tool
like	Grsecurity,	you	will	want	to	go	to	the	following	link:

http://grsecurity.net/features.php

On	this	page,	items	will	be	grouped	into	the	following	five	categories:

Memory	Corruption	Defenses
Filesystem	Hardening
Miscellaneous	Protections
RBAC
GCC	Plugins

https://grsecurity.net/
http://grsecurity.net/features.php

Lynis
Lynis	is	an	open	source	tool	that	is	used	to	audit	your	systems	for	security.	It	runs	directly
on	the	host	so	that	it	has	access	to	the	Linux	kernel	itself,	as	well	as	various	other	items.
Lynis	runs	on	almost	every	Unix	operating	system	including	the	following:

AIS
FreeBSD
Mac	OS
Linux
Solaris

Lynis	was	written	as	a	shell	script,	therefore,	it’s	just	as	easy	as	copying	and	pasting	on
your	system	and	running	a	simple	command:

./lynis	audit	system

While	it	is	running,	the	following	actions	are	being	taken:

Determining	the	OS
Performing	a	search	for	available	tools	and	utilities
Checking	for	any	Lynis	update
Running	tests	from	enabled	plugins
Running	security	tests	per	category
Reporting	status	of	security	scan

More	information	can	be	found	at	https://rootkit.nl/projects/lynis.html	and
https://cisofy.com/lynis/.

https://rootkit.nl/projects/lynis.html
https://cisofy.com/lynis/

Summary
In	this	chapter,	we	took	a	look	at	hardening	and	securing	Linux	kernels.	We	first	looked	at
some	hardening	guides	followed	by	a	deep	dive	of	an	overview	of	the	SANS	Institute
Hardening	Guide.	We	also	took	a	look	at	how	to	prevent	buffer	overflows	in	our	kernels
and	applications	through	various	patches.	We	also	looked	at	various	access	controls,
SELinux,	and	AppArmor.	Lastly,	we	took	a	look	at	two	hardening	tools	that	we	can	add	to
our	toolbox	of	software	in	the	form	of	Grsecurity	and	Lynis.

In	the	next	chapter,	we	will	take	a	look	at	the	Docker	Bench	application	for	security.	This
is	an	application	that	can	look	at	the	various	Docker	items,	such	as	host	configuration,
Docker	daemon	configuration,	daemon	configuration	files,	container	images	and	build
files,	container	runtime,	and	lastly,	Docker	security	operations.	It	will	contain	hands-on
examples	with	a	lot	of	code	outputs.

Chapter	4.	Docker	Bench	for	Security
In	this	chapter,	we	will	be	looking	at	the	Docker	Bench	for	Security.	This	is	a	tool	that
can	be	utilized	to	scan	your	Docker	environments,	start	the	host	level	and	inspect	all	the
aspects	of	this	host,	inspect	the	Docker	daemon	and	its	configuration,	inspect	the
containers	running	on	the	Docker	host,	and	review	the	Docker	security	operations	and
give	you	recommendations	across	the	board	of	a	threat	or	concern	that	you	might	want	to
look	at	in	order	to	address	it.	In	this	chapter,	we	will	be	looking	at	the	following	items:

Docker	security	–	best	practices
Docker	–	best	practices
Center	for	Internet	Security	(CIS)	guide

Host	configuration
Docker	daemon	configuration
Docker	daemon	configuration	files
Container	images/runtime
Docker	security	operations

The	Docker	Bench	Security	application

Running	the	tool
Understanding	the	output

Docker	security	–	best	practices
In	this	section,	we	will	take	a	look	at	the	best	practices	when	it	comes	to	Docker	as	well	as
the	CIS	guide	to	properly	secure	all	the	aspects	of	your	Docker	environment.	You	will	be
referring	to	this	guide	when	you	actually	run	the	scan	(in	the	next	section	of	this	chapter)
and	get	results	of	what	needs	to	or	should	be	fixed.	The	guide	is	broken	down	into	the
following	sections:

The	host	configuration
The	Docker	daemon	configuration
The	Docker	daemon	configuration	files
Container	images/runtime
Docker	security	operations

Docker	–	best	practices
Before	we	dive	into	the	CIS	guide,	let’s	go	over	some	of	the	following	best	practices	when
using	Docker:

One	application	per	container:	Spread	your	applications	to	one	per	container.
Docker	was	built	for	this	and	it	makes	everything	easy	at	the	end	of	the	day.	The
isolation	that	we	talked	about	earlier	is	where	this	is	the	key.
Review	who	has	access	to	your	Docker	hosts:	Remember	that	whoever	has	the
access	to	your	Docker	hosts	has	the	access	to	manipulate	all	your	images	and
containers	on	the	host.
Use	the	latest	version:	Always	use	the	latest	version	of	Docker.	This	will	ensure	that
all	the	security	holes	have	been	patched	and	you	have	the	latest	features	as	well.
Use	the	resources:	Use	the	resources	available	if	you	need	help.	The	community
within	Docker	is	huge	and	immensely	helpful.	Use	their	website,	documentation,	and
the	Internet	Relay	Chat	(IRC)	chat	rooms	to	your	advantage.

CIS	guide
The	CIS	guide	is	a	document
(https://benchmarks.cisecurity.org/tools2/docker/cis_docker_1.6_benchmark_v1.0.0.pdf)
that	goes	over	the	aspects	of	the	Docker	pieces	to	help	you	securely	configure	the	various
pieces	of	your	Docker	environment.	We	will	cover	these	in	the	following	sections.

https://benchmarks.cisecurity.org/tools2/docker/cis_docker_1.6_benchmark_v1.0.0.pdf

Host	configuration
This	part	of	the	guide	is	about	the	configuration	of	your	Docker	hosts.	This	is	that	part	of
the	Docker	environment	where	all	your	containers	run.	Thus,	keeping	it	secure	is	of	the
utmost	importance.	This	is	the	first	line	of	defense	against	the	attackers.

Docker	daemon	configuration
This	part	of	the	guide	recommends	securing	the	running	Docker	daemon.	Everything	you
do	to	the	Docker	daemon	configuration	affects	each	and	every	container.	These	are	the
switches	you	can	attach	to	the	Docker	daemon	that	we	saw	previously	and	items	you	will
see	in	the	following	section	when	we	run	through	the	tool.

Docker	daemon	configuration	files
This	part	of	the	guide	deals	with	the	files	and	directories	that	the	Docker	daemon	uses.
This	ranges	from	permissions	to	ownerships.	Sometimes,	these	areas	may	contain
information	you	don’t	want	others	to	know	about,	which	could	be	in	a	plain	text	format.

Container	images/runtime
This	part	of	the	guide	contains	both	the	information	for	securing	the	container	images	as
well	as	the	container	runtime.

The	first	part	contains	images,	cover	base	images,	and	build	files	that	were	used.	You	need
to	be	sure	about	the	images	you	are	using	not	only	for	your	base	images,	but	also	for	any
aspect	of	your	Docker	experience.	This	section	of	the	guide	covers	the	items	you	should
follow	while	creating	your	own	base	images	to	ensure	they	are	secure.

The	second	part,	the	container	runtime,	covers	a	lot	of	security-related	items.	You	have	to
take	care	of	the	runtime	variables	that	you	are	providing.	In	some	cases,	attackers	can	use
them	to	their	advantage,	while	you	think	you	are	using	them	to	your	own	advantage.
Exposing	too	much	in	your	container	can	compromise	the	security	of	not	only	that
container,	but	also	the	Docker	host	and	other	containers	running	on	this	host.

Docker	security	operations
This	part	of	the	guide	covers	the	security	areas	that	involve	deployment.	These	items	are
more	closely	tied	to	the	best	practices	and	recommendations	of	items	that	are	to	be
followed.

The	Docker	Bench	Security	application
In	this	section,	we	will	cover	the	Docker	Benchmark	Security	application	that	you	can
install	and	run.	The	tool	will	inspect	the	following	components:

The	host	configuration
The	Docker	daemon	configuration
The	Docker	daemon	configuration	files
Container	images	and	build	files
Container	runtime
Docker	security	operations

Looks	familiar?	It	should,	as	these	are	the	same	items	that	we	reviewed	in	the	previous
section,	only	built	into	an	application	that	will	do	a	lot	of	heavy	lifting	for	you.	It	will
show	you	what	warnings	arise	with	your	configurations	and	provide	information	on	other
configuration	items	and	even	the	items	that	have	passed	the	test.

We	will	look	at	how	to	run	the	tool,	a	live	example,	and	what	the	output	of	the	process	will
mean.

Running	the	tool
Running	the	tool	is	simple.	It’s	already	been	packaged	for	us	inside	a	Docker	container.
While	you	can	get	the	source	code	and	customize	the	output	or	manipulate	it	in	some	way
(say,	e-mail	the	output),	the	default	may	be	all	that	you	need.

The	code	is	found	here:	https://github.com/docker/docker-bench-security

To	run	the	tool,	we	will	simply	copy	and	paste	the	following	into	our	Docker	host:

$	docker	run	-it	--net	host	--pid	host	--cap-add	audit_control	\

-v	/var/lib:/var/lib	\

-v	/var/run/docker.sock:/var/run/docker.sock	\

-v	/usr/lib/systemd:/usr/lib/systemd	\

-v	/etc:/etc	--label	docker_bench_security	\

docker/docker-bench-security

If	you	don’t	already	have	the	image,	it	will	first	download	the	image	and	then	start	the
process	for	you.	Now	that	we’ve	seen	how	easy	it	is	to	install	and	run	it,	let’s	take	a	look
at	an	example	on	a	Docker	host	to	see	what	it	actually	does.	We	will	then	take	a	look	at	the
output	and	take	a	dive	into	dissecting	it.

There	is	also	an	option	to	clone	the	Git	repository,	enter	the	directory	from	the	git	clone
command,	and	run	the	provided	shell	script.	So,	we	have	multiple	options!

Let’s	take	a	look	at	an	example	and	break	down	each	section,	as	shown	in	the	following
command:

#	---

#	Docker	Bench	for	Security	v1.0.0

#

#	Docker,	Inc.	(c)	2015

#

#	Checks	for	dozens	of	common	best-practices	around	deploying	Docker	

containers	in	production.

#	Inspired	by	the	CIS	Docker	1.6	Benchmark:

#	

https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.6_Benchmark_v1

.0.0.pdf

#	---

Initializing	Sun	Jan	17	19:18:56	UTC	2016

Running	the	tool	–	host	configuration
Let’s	take	a	look	at	the	output	of	the	host	configuration	runtime:

[INFO]	1	-	Host	configuration

[WARN]	1.1		-	Create	a	separate	partition	for	containers

[PASS]	1.2		-	Use	an	updated	Linux	Kernel

[PASS]	1.5		-	Remove	all	non-essential	services	from	the	host	-	Network

[PASS]	1.6		-	Keep	Docker	up	to	date

[INFO]							*	Using	1.9.1	which	is	current	as	of	2015-11-09

https://github.com/docker/docker-bench-security

[INFO]							*	Check	with	your	operating	system	vendor	for	support	and	

security	maintenance	for	docker

[INFO]	1.7		-	Only	allow	trusted	users	to	control	Docker	daemon

[INFO]						*	docker:x:100:docker

[WARN]	1.8		-	Failed	to	inspect:	auditctl	command	not	found.

[INFO]	1.9		-	Audit	Docker	files	and	directories	-	/var/lib/docker

[INFO]						*	Directory	not	found

[WARN]	1.10	-	Failed	to	inspect:	auditctl	command	not	found.

[INFO]	1.11	-	Audit	Docker	files	and	directories	-	docker-registry.service

[INFO]						*	File	not	found

[INFO]	1.12	-	Audit	Docker	files	and	directories	-	docker.service

[INFO]						*	File	not	found

[WARN]	1.13	-	Failed	to	inspect:	auditctl	command	not	found.

[INFO]	1.14	-	Audit	Docker	files	and	directories	-	/etc/sysconfig/docker

[INFO]						*	File	not	found

[INFO]	1.15	-	Audit	Docker	files	and	directories	-	/etc/sysconfig/docker-

network

[INFO]						*	File	not	found

[INFO]	1.16	-	Audit	Docker	files	and	directories	-	/etc/sysconfig/docker-

registry

[INFO]						*	File	not	found

[INFO]	1.17	-	Audit	Docker	files	and	directories	-	/etc/sysconfig/docker-

storage

[INFO]						*	File	not	found

[INFO]	1.18	-	Audit	Docker	files	and	directories	-	/etc/default/docker

[INFO]						*	File	not	found

Running	the	tool	–	Docker	daemon	configuration
Let’s	take	a	look	at	the	output	for	the	Docker	daemon	configuration	runtime,	as	shown	in
the	following	command:

[INFO]	2	-	Docker	Daemon	Configuration

[PASS]	2.1		-	Do	not	use	lxc	execution	driver

[WARN]	2.2		-	Restrict	network	traffic	between	containers

[PASS]	2.3		-	Set	the	logging	level

[PASS]	2.4		-	Allow	Docker	to	make	changes	to	iptables

[PASS]	2.5		-	Do	not	use	insecure	registries

[INFO]	2.6		-	Setup	a	local	registry	mirror

[INFO]						*	No	local	registry	currently	configured

[WARN]	2.7		-	Do	not	use	the	aufs	storage	driver

[PASS]	2.8		-	Do	not	bind	Docker	to	another	IP/Port	or	a	Unix	socket

[INFO]	2.9		-	Configure	TLS	authentication	for	Docker	daemon

[INFO]						*	Docker	daemon	not	listening	on	TCP

[INFO]	2.10	-	Set	default	ulimit	as	appropriate

[INFO]						*	Default	ulimit	doesn't	appear	to	be	set

Running	the	tool	–	Docker	daemon	configuration	files
Let’s	take	a	look	at	the	output	for	the	Docker	daemon	configuration	files	runtime,	as
follows:

[INFO]	3	-	Docker	Daemon	Configuration	Files

[INFO]	3.1		-	Verify	that	docker.service	file	ownership	is	set	to	root:root

[INFO]						*	File	not	found

[INFO]	3.2		-	Verify	that	docker.service	file	permissions	are	set	to	644

[INFO]						*	File	not	found

[INFO]	3.3		-	Verify	that	docker-registry.service	file	ownership	is	set	to	

root:root

[INFO]						*	File	not	found

[INFO]	3.4		-	Verify	that	docker-registry.service	file	permissions	are	set	

to	644

[INFO]						*	File	not	found

[INFO]	3.5		-	Verify	that	docker.socket	file	ownership	is	set	to	root:root

[INFO]						*	File	not	found

[INFO]	3.6		-	Verify	that	docker.socket	file	permissions	are	set	to	644

[INFO]						*	File	not	found

[INFO]	3.7		-	Verify	that	Docker	environment	file	ownership	is	set	to	

root:root

[INFO]						*	File	not	found

[INFO]	3.8		-	Verify	that	Docker	environment	file	permissions	are	set	to	

644

[INFO]						*	File	not	found

[INFO]	3.9		-	Verify	that	docker-network	environment	file	ownership	is	set	

to	root:root

[INFO]						*	File	not	found

[INFO]	3.10	-	Verify	that	docker-network	environment	file	permissions	are	

set	to	644

[INFO]						*	File	not	found

[INFO]	3.11	-	Verify	that	docker-registry	environment	file	ownership	is	set	

to	root:root

[INFO]						*	File	not	found

[INFO]	3.12	-	Verify	that	docker-registry	environment	file	permissions	are	

set	to	644

[INFO]						*	File	not	found

[INFO]	3.13	-	Verify	that	docker-storage	environment	file	ownership	is	set	

to	root:root

[INFO]						*	File	not	found

[INFO]	3.14	-	Verify	that	docker-storage	environment	file	permissions	are	

set	to	644

[INFO]						*	File	not	found

[PASS]	3.15	-	Verify	that	/etc/docker	directory	ownership	is	set	to	

root:root

[PASS]	3.16	-	Verify	that	/etc/docker	directory	permissions	are	set	to	755

[INFO]	3.17	-	Verify	that	registry	certificate	file	ownership	is	set	to	

root:root

[INFO]						*	Directory	not	found

[INFO]	3.18	-	Verify	that	registry	certificate	file	permissions	are	set	to	

444

[INFO]						*	Directory	not	found

[INFO]	3.19	-	Verify	that	TLS	CA	certificate	file	ownership	is	set	to	

root:root

[INFO]						*	No	TLS	CA	certificate	found

[INFO]	3.20	-	Verify	that	TLS	CA	certificate	file	permissions	are	set	to	

444

[INFO]						*	No	TLS	CA	certificate	found

[INFO]	3.21	-	Verify	that	Docker	server	certificate	file	ownership	is	set	

to	root:root

[INFO]						*	No	TLS	Server	certificate	found

[INFO]	3.22	-	Verify	that	Docker	server	certificate	file	permissions	are	

set	to	444

[INFO]						*	No	TLS	Server	certificate	found

[INFO]	3.23	-	Verify	that	Docker	server	key	file	ownership	is	set	to	

root:root

[INFO]						*	No	TLS	Key	found

[INFO]	3.24	-	Verify	that	Docker	server	key	file	permissions	are	set	to	400

[INFO]						*	No	TLS	Key	found

[PASS]	3.25	-	Verify	that	Docker	socket	file	ownership	is	set	to	

root:docker

[PASS]	3.26	-	Verify	that	Docker	socket	file	permissions	are	set	to	660

Running	the	tool	–	container	images	and	build	files
Let’s	take	a	look	at	the	output	for	the	container	images	and	build	files	runtime,	as	shown
in	the	following	command:

[INFO]	4	-	Container	Images	and	Build	Files

[INFO]	4.1		-	Create	a	user	for	the	container

[INFO]						*	No	containers	running

Running	the	tool	–	container	runtime
Let’s	take	a	look	at	the	output	for	the	container	runtime,	as	follows:

[INFO]	5		-	Container	Runtime

[INFO]						*	No	containers	running,	skipping	Section	5

Running	the	tool	–	Docker	security	operations
Let’s	take	a	look	at	the	output	for	the	Docker	security	operations	runtime,	as	shown	in	the
following	command:

[INFO]	6		-	Docker	Security	Operations

[INFO]	6.5	-	Use	a	centralized	and	remote	log	collection	service

[INFO]						*	No	containers	running

[INFO]	6.6	-	Avoid	image	sprawl

[INFO]						*	There	are	currently:	23	images

[WARN]	6.7	-	Avoid	container	sprawl

[WARN]						*	There	are	currently	a	total	of	51	containers,	with	only	1	of	

them	currently	running

Wow!	A	lot	of	output	and	tons	to	digest;	but	what	does	all	this	mean?	Let’s	take	a	look	and
break	down	each	section.

Understanding	the	output
There	are	three	types	of	output	that	we	will	see,	as	follows:

[PASS]:	These	items	are	solid	and	good	to	go.	They	don’t	need	any	attention,	but	they
are	good	to	read	to	make	you	feel	warm	inside.	The	more	of	these,	the	better!
[INFO]:	These	are	items	that	you	should	review	and	fix	if	you	feel	that	they	are
pertinent	to	your	setup	and	security	needs.
[WARN]:	These	are	items	that	need	to	be	fixed.	These	are	the	items	we	don’t	want	to
be	seeing.

Remember,	we	had	the	six	main	topics	that	were	covered	in	the	scan,	as	shown	in	the
following:

The	host	configuration
The	Docker	daemon	configuration
The	Docker	daemon	configuration	files
Container	images	and	build	files
Container	runtime
The	Docker	security	operations

Let’s	take	a	look	at	what	we	are	seeing	in	each	section	of	the	scan.	These	scan	results	are
from	a	default	Ubuntu	Docker	host,	with	no	tweaks	made	to	the	system	at	this	point.	We
want	to	again	focus	on	the	[WARN]	items	in	each	section.	Other	warnings	may	come	up
when	you	run	yours,	but	these	will	be	the	ones	that	come	up	the	most,	if	not	for	everyone
at	first.

Understanding	the	output	–	host	configuration
Let’s	take	a	look	at	the	following	output	for	the	host	configuration	runtime	output:

[WARN]	1.1	-	Create	a	separate	partition	for	containers

For	this	one,	you	will	want	to	map	/var/lib/docker	to	a	separate	partition.

[WARN]	1.8	-	Failed	to	inspect:	auditctl	command	not	found.

[WARN]	1.9	-	Failed	to	inspect:	auditctl	command	not	found.

[WARN]	1.10	-	Failed	to	inspect:	auditctl	command	not	found.

[WARN]	1.13	-	Failed	to	inspect:	auditctl	command	not	found.

[WARN]	1.18	-	Failed	to	inspect:	auditctl	command	not	found.

Understanding	the	output	–	the	Docker	daemon	configuration
Let’s	take	a	look	at	the	following	output	for	the	Docker	daemon	configuration	output:

[WARN]	2.2	-	Restrict	network	traffic	between	containers

By	default,	all	the	containers	running	on	the	same	Docker	host	have	access	to	each	other’s
network	traffic.	To	prevent	this,	you	would	need	to	add	the	--icc=false	flag	to	the
Docker	daemon’s	start	up	process:

[WARN]	2.7	-	Do	not	use	the	aufs	storage	driver

Again,	you	can	add	a	flag	to	your	Docker	daemon	start	up	process	that	will	prevent
Docker	from	using	the	aufs	storage	driver.	Using	-s	<storage_driver>	on	your	Docker
daemon	startup,	you	can	tell	Docker	not	to	use	aufs	for	storage.	It	is	recommended	that
you	use	the	best	storage	driver	for	the	OS	on	the	Docker	host	that	you	are	using.

Understanding	the	output	–	the	Docker	daemon	configuration	files
If	you	are	using	the	stock	Docker	daemon,	you	should	not	see	any	warnings.	If	you	have
customized	the	code	in	some	way,	you	may	get	a	few	warnings	here.	This	is	one	area
where	you	should	hope	to	never	see	any	warnings.

Understanding	the	output	–	container	images	and	build	files
Let’s	take	a	look	at	the	following	output	for	the	container	images	and	build	files	runtime
output:

[WARN]	4.1	-	Create	a	user	for	the	container

[WARN]	*	Running	as	root:	suspicious_mccarthy

This	states	that	the	suspicious_mccarthy	container	is	running	as	the	root	user	and	it	is
recommended	to	create	another	user	to	run	your	containers.

Understanding	the	output	–	container	runtime
Let’s	take	a	look	at	the	output	for	the	container	runtime	output,	as	follows:

[WARN]	5.1:	-	Verify	AppArmor	Profile,	if	applicable

[WARN]	*	No	AppArmorProfile	Found:	suspicious_mccarthy

This	states	that	the	suspicious_mccarthy	container	does	not	have	AppArmorProfile,
which	is	the	additional	security	provided	in	Ubuntu	in	this	case.

[WARN]	5.3	-	Verify	that	containers	are	running	only	a	single	main	process

[WARN]	*	Too	many	processes	running:	suspicious_mccarthy

This	error	is	pretty	straightforward.	You	will	want	to	make	sure	that	you	are	only	running
one	process	per	container.	If	you	are	running	more	than	one	process,	you	will	want	to
spread	them	out	across	multiple	containers	and	use	container	linking,	as	shown	in	the
following	command:

[WARN]	5.4	-	Restrict	Linux	Kernel	Capabilities	within	containers

[WARN]	*	Capabilities	added:	CapAdd=[audit_control]	to	suspicious_mccarthy

This	states	that	the	audit_control	capability	has	been	added	to	this	running	container.
You	can	use	--cap-drop={}	from	your	docker	run	command	to	remove	the	additional
capabilities	from	a	container,	as	follows:

[WARN]	5.6	-	Do	not	mount	sensitive	host	system	directories	on	containers

[WARN]	*	Sensitive	directory	/etc	mounted	in:	suspicious_mccarthy

[WARN]	*	Sensitive	directory	/lib	mounted	in:	suspicious_mccarthy

[WARN]	5.7	-	Do	not	run	ssh	within	containers

[WARN]	*	Container	running	sshd:	suspicious_mccarthy

This	is	straight	to	the	point.	No	need	to	run	SSH	inside	your	containers.	You	can	do
everything	you	want	to	with	your	containers	using	the	tools	provided	by	Docker.	Ensure

that	SSH	is	not	running	in	any	container.	You	can	utilize	the	docker	exec	command	to
execute	the	items	against	your	containers	(see	more	information	here:
https://docs.docker.com/engine/reference/commandline/exec/),	as	shown	in	the	following
command:

[WARN]	5.10	-	Do	not	use	host	network	mode	on	container

[WARN]	*	Container	running	with	networking	mode	'host':

suspicious_mccarthy

The	issue	with	this	one	is	that,	when	the	container	was	started,	the	--net=host	switch	was
passed	along.	It	is	not	recommended	to	use	this	as	it	allows	the	container	to	modify	the
network	configuration	and	open	low	port	numbers	as	well	as	access	networking	services
on	the	Docker	host,	as	follows:

[WARN]	5.11	-	Limit	memory	usage	for	the	container

[WARN]	*	Container	running	without	memory	restrictions:

suspicious_mccarthy

By	default,	the	containers	don’t	have	memory	restrictions.	This	can	be	dangerous	if	you
are	running	multiple	containers	per	Docker	host.	You	can	use	the	-m	switch	while	issuing
your	docker	run	commands	to	limit	the	containers	to	a	certain	amount	of	memory.	Values
are	set	in	megabytes	(that	is,	512	MB	or	1024	MB),	as	shown	in	the	following	command:

[WARN]	5.12	-	Set	container	CPU	priority	appropriately

[WARN]	*	The	container	running	without	CPU	restrictions:

suspicious_mccarthy

Like	the	memory	option,	you	can	also	set	the	CPU	priority	on	a	per-container	basis.	This
can	be	done	using	the	--cpu-shares	switch	while	issuing	your	docker	run	command.	The
CPU	share	is	based	off	of	the	number	1,024.	Therefore,	half	would	be	512	and	25%	would
be	256.	Use	1,024	as	the	base	number	to	determine	the	CPU	share,	as	follows:

[WARN]	5.13	-	Mount	container's	root	filesystem	as	readonly

[WARN]	*	Container	running	with	root	FS	mounted	R/W:

suspicious_mccarthy

You	really	want	to	be	using	your	containers	as	immutable	environments,	meaning	that
they	don’t	write	any	data	inside	them.	Data	should	be	written	out	to	volumes.	Again,	you
can	use	the	--read-only	switch,	as	follows:

[WARN]	5.16	-	Do	not	share	the	host's	process	namespace

[WARN]	*	Host	PID	namespace	being	shared	with:	suspicious_mccarthy

This	error	arises	when	you	use	the	--pid=host	switch.	It	is	not	recommended	to	use	this
switch	as	it	breaks	the	isolation	of	processes	between	the	container	and	Docker	host.

Understanding	the	output	–	Docker	security	operations
Again,	another	section	you	should	hope	to	never	see	are	the	warnings	if	you	are	using
stock	Docker.	Mostly,	here	you	will	see	the	information	and	should	review	this	to	make
sure	it’s	all	kosher.

https://docs.docker.com/engine/reference/commandline/exec/

Summary
In	this	chapter,	we	took	a	look	at	the	CIS	guidelines	for	Docker.	This	guide	will	assist	you
in	setting	up	multiple	aspects	of	your	Docker	environment.	Lastly,	we	looked	at	the
Docker	Bench	for	Security.	We	looked	at	how	to	get	it	up	and	running	and	went	through
an	example	of	what	the	output	would	look	like	once	it	has	been	run.	We	then	took	a	look
at	the	output	to	see	what	all	it	meant.	Remember	the	six	items	that	the	application	covered:
host	configuration,	Docker	daemon	configuration,	Docker	daemon	configuration	files,
container	images	and	build	files,	container	runtime,	and	Docker	security	operations.

In	the	next	chapter,	we	will	be	taking	a	look	at	how	to	monitor	as	well	as	report	any
Docker	security	issues	that	you	come	across.	This	will	help	you	know	where	to	look	for
anything	related	to	the	security	that	may	pertain	to	your	existing	environment.	If	you	are
to	come	across	security-related	issues	that	you	find	yourself,	there	are	best	practices	for
reporting	these	issues	to	give	time	to	Docker	to	fix	them	before	allowing	the	public
community	time	to	know	about	the	issue,	which	will	allow	the	hackers	to	use	these
vulnerabilities	to	their	advantage.

Chapter	5.	Monitoring	and	Reporting
Docker	Security	Incidents
In	this	chapter,	we	will	take	a	look	at	how	to	stay	on	top	of	the	items	that	Docker	has
released,	regarding	the	security	findings	in	order	to	be	aware	of	your	environments.	Also,
we	will	take	a	look	at	how	to	safely	report	any	security	findings	that	you	come	across	in
order	to	ensure	that	Docker	has	a	chance	to	alleviate	the	concern	before	it	becomes	public
and	widespread.	In	this	chapter,	we	will	be	covering	the	following	topics:

Docker	security	monitoring
Docker	Common	Vulnerabilities	and	Exposures	(CVE)
Mailing	lists
Docker	security	reporting

Responsible	disclosure
Security	reporting

Additional	Docker	resources

Docker	Notary
Hardware	signing
Reading	materials

Docker	security	monitoring
In	this	section,	we	will	take	a	look	at	some	ways	of	monitoring	security	issues	that	relate
to	any	Docker	products	you	may	be	using.	While	you	are	using	the	various	products,	you
need	to	be	able	to	be	aware	of,	if	any,	security	issues	that	arise	so	that	you	can	mitigate
these	risks	to	keep	your	environments	and	data	safe.

Docker	CVE
To	understand	what	a	Docker	CVE	is,	you	need	to	first	know	what	is	CVE.	CVEs	are
actually	a	system	that	is	maintained	by	the	MITRE	Corporation.	These	are	used	as	a
public	way	of	providing	information	based	on	a	CVE	number	that	is	dedicated	to	each
vulnerability	for	easy	reference.	This	allows	a	national	database	of	all	the	vulnerabilities
that	are	given	a	CVE	number	from	the	MITRE	Corporation.	To	learn	more	about	CVEs,
you	can	find	it	on	the	Wikipedia	article	here:

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures

The	Wikipedia	article	explains	things	such	as	how	they	go	about	giving	CVE	numbers	and
the	format	that	they	all	follow.

Now	that	you	know	what	CVEs	are,	you	probably	have	already	pieced	together	what
Docker	CVEs	are.	They	are	CVEs	that	are	directly	related	to	Docker	security	incidents	or
issues.	To	learn	more	about	Docker	CVEs	or	see	a	list	of	current	Docker	CVEs,	visit
https://www.docker.com/docker-cve-database.

This	listing	will	be	updated	anytime	a	CVE	is	created	for	a	Docker	product.	As	you	can
see,	the	list	is	very	small,	therefore,	this	is	probably	a	list	that	will	not	grow	on	a	day-to-
day,	or	even	a	month-to-month,	basis	frequency.

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://www.docker.com/docker-cve-database

Mailing	lists
Another	method	for	following	or	discussing	security-related	issues	of	any	Docker	products
in	the	ecosystem	is	to	join	their	mailing	lists.	Currently,	they	have	two	mailing	lists	that
you	can	either	join	or	follow	along	with.

The	first	is	a	developer	list	that	you	can	join	or	follow	along	with.	This	is	a	list	for	those
who	are	either	helping	in	assisting	with	contributing	the	code	to	the	Docker	products	or
developing	products	using	the	Docker	code	base	provided	in	the	following:

https://groups.google.com/forum/#!forum/docker-dev

The	second	list	is	a	user	list.	This	list	is	for	those	who,	you	guessed	it,	are	the	users	of	the
various	Docker	products	that	might	have	security-related	questions.	You	can	search	from
the	already	submitted	discussions,	join	existing	conversations,	or	ask	new	questions	that
will	be	answered	by	those	who	are	also	on	the	mailing	lists	at	the	following	forum:

https://groups.google.com/forum/#!forum/docker-user

Before	asking	some	security-related	questions,	you	will	want	to	read	the	following	section
to	ensure	that	you	are	not	exposing	any	existing	security	issues	that	might	tempt	an
attacker	out	there.

https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-user

Docker	security	reporting
Reporting	Docker	security	issues	is	just	as	important	as	monitoring	security	issues	with
regards	to	Docker.	While	it	is	important	to	report	these	issues,	there	are	certain	standards
that	you	should	follow	when	you	find	security	issues	and	are	going	to,	hopefully,	report
them.

Responsible	disclosure
When	disclosing	security-related	issues,	not	only	for	Docker,	but	for	any	product	out
there,	there	is	a	term	called	responsible	disclosure	that	everyone	should	follow.
Responsible	disclosure	is	an	agreement	that	allows	the	developer	or	maintainer	of	the
product	ample	time	to	provide	a	fix	for	the	security	issue	before	disclosing	the	issue	to	the
general	public.

To	learn	more	about	responsible	disclosure,	you	can	visit
https://en.wikipedia.org/wiki/Responsible_disclosure.

Remember	to	put	yourself	in	the	shoes	of	the	group	that	is	responsible	for	the	code.	If	it
were	your	code,	wouldn’t	you	want	someone	to	give	you	a	notice	of	a	vulnerability	so	that
you	had	ample	time	to	fix	the	issue	before	it	was	disclosed,	causing	widespread	panic	and
flooding	the	inbox	with	e-mails	from	the	masses.

https://en.wikipedia.org/wiki/Responsible_disclosure

Security	reporting
Currently,	the	method	for	reporting	security	issues	is	to	e-mail	the	Docker	security	team
and	give	them	as	much	information	as	you	can	provide	about	the	security	issue.	While
these	are	not	the	exact	items	that	Docker	might	recommend,	there	are	general	guidelines
that	most	other	security	professionals	like	to	see	when	reporting	security	issues,	such	as
the	following:

Product	and	version,	where	the	security	issue	was	discovered
Method	to	reproduce	the	issue
Operating	system	that	was	being	used	at	the	time,	plus	the	version
Any	additional	information	you	can	provide

Remember,	the	more	information	you	provide	from	the	beginning,	the	quicker	the	team
has	to	react	from	their	end	by	being	on	top	of	the	issue	and	attack	it	more	aggressively
from	the	start.

To	report	a	security	issue	for	any	Docker-related	product,	make	sure	to	e-mail	any
information	to	<security@docker.com>

mailto:security@docker.com

Additional	Docker	security	resources
If	you	are	looking	for	some	other	items	to	look	into,	there	are	some	additional	items	that
we	have	covered	in	Chapter	1,	Securing	Docker	Hosts	that	are	worthwhile	to	conduct	a
quick	review.	Make	sure	to	look	back	at	Chapter	1,	Securing	Docker	Hosts	to	get	more
details	on	the	next	couple	of	items	or	links	that	will	be	provided	in	each	section.

Docker	Notary
Let’s	take	a	quick	look	at	Docker	Notary,	but	for	more	information	about	Docker	Notary,
you	can	look	back	at	the	information	in	Chapter	2,	Securing	Docker	Components	or	the
following	URL:

https://github.com/docker/notary

Docker	Notary	allows	you	to	publish	your	content	by	signing	it	with	private	keys	that	you
are	recommended	to	keep	offline.	Using	these	keys	to	sign	your	content	helps	in	ensuring
others	to	know	that	the	content	they	are	using	is,	in	fact,	from	who	it	says	it	is—you—and
that	the	content	can	be	trusted,	assuming	the	users	trust	you.

Docker	Notary	has	a	few	key	goals	that	I	believe	are	important	to	point	out	in	the
following:

Survivable	key	compromise
Freshness	guarantee
Configurable	trust	thresholds
Signing	delegation
Use	of	existing	distribution
Untrusted	mirrors	and	transport

It	is	important	to	know	that	Docker	Notary	has	a	server	and	client	component	as	well.	To
use	Notary,	you	will	have	to	be	familiar	with	the	command-line	environment.	The
preceding	link	will	break	it	down	for	you	and	give	you	walkthroughs	on	setting	up	and
using	each	component.

https://github.com/docker/notary

Hardware	signing
Similar	to	the	previous	Docker	Notary	section,	let’s	take	a	quick	look	at	the	hardware
signing	as	it’s	a	very	important	feature	that	must	be	understood	fully.

Docker	also	allows	hardware	signing.	What	does	this	mean?	From	the	previous	section,
we	saw	that	you	can	use	highly	secure	keys	to	sign	your	content,	allowing	others	to	verify
that	the	information	is	from	who	it	says	it	is,	which	ultimately	provides	everyone	great
peace	of	mind.

Hardware	signing	takes	this	to	a	whole	new	level	by	allowing	you	to	add	yet	another	layer
of	code	signing.	By	introducing	a	hardware	device,	Yubikey—a	USB	piece	of	hardware—
you	can	use	your	private	keys	(remember	to	keep	them	secure	and	offline	somewhere)	as
well	as	a	piece	of	hardware	that	requires	you	to	tap	it	when	you	sign	your	code.	This
proves	that	you	are	a	human	by	the	fact	of	having	to	physically	touch	the	YubiKey	when
you	are	signing	your	code.

For	more	information	about	the	hardware	signing	part	of	Notary,	it	is	worthwhile	to	read
their	announcement	when	they	released	this	feature	from	the	following	URL:

https://blog.docker.com/2015/11/docker-content-trust-yubikey/

For	a	video	demonstration	of	using	YubiKeys	and	Docker	Notary,	please	visit	the
following	YouTube	URL:

https://youtu.be/fLfFFtOHRZQ?t=1h21m23s

To	find	out	more	information	about	YubiKeys,	visit	their	website	at	the	following	URL:

https://www.yubico.com

https://blog.docker.com/2015/11/docker-content-trust-yubikey/
https://youtu.be/fLfFFtOHRZQ?t=1h21m23s
https://www.yubico.com

Reading	materials
There	are	also	some	additional	reading	materials	that	can	assist	with	ensuring	your	focus
is	on	monitoring	the	security	aspect	of	the	entire	Docker	ecosystem.

Looking	back	at	Chapter	4,	Docker	Bench	for	Security,	we	covered	the	Docker	Bench,
which	is	a	scanning	application	for	your	entire	Docker	environment.	This	is	highly	useful
to	help	in	pointing	out	any	security	risks	that	you	might	have.

There	is	also	a	great	free	Docker	security	eBook	that	I	found.	This	book	will	cover
potential	security	issues	along	with	tools	and	techniques	that	you	can	utilize	to	secure	your
container	environments.	Not	bad	for	free,	right?!	You	can	find	this	book	at	the	following
URL:

https://www.openshift.com/promotions/docker-security.html

You	can	refer	to	the	following	Introduction	to	Container	Security	whitepaper	for	more
information:

https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf

You	can	also	refer	to	The	Definitive	Guide	To	Docker	Containers	whitepaper,	as	follows:

https://www.docker.com/sites/default/files/WP-
%20Definitive%20Guide%20To%20Containers.pdf

The	last	two	items—Introduction	to	Container	Security	whitepaper	and	The	Definitive
Guide	To	Docker	Containers—are	directly	created	from	Docker,	therefore,	they	contain
information	that	is	directly	related	to	understanding	how	containers	are	structured	and	they
breakdown	a	lot	of	the	Docker	information	into	a	central	location,	which	you	can
download	or	print	out	and	have	at	hand	at	any	point	of	time.	They	also	help	you	to
understand	the	various	layers	of	containers	and	how	they	help	keep	your	environment	and
applications	secure	from	each	other.

https://www.openshift.com/promotions/docker-security.html
https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf
https://www.docker.com/sites/default/files/WP-%20Definitive%20Guide%20To%20Containers.pdf

Awesome	Docker
While	this	is	not	a	security-related	tool,	it	is	a	Docker	tool	that	is	very	useful	and	is
updated	quite	frequently.	Awesome	Docker	is	a	curated	list	of	any	and	all	Docker	projects.
It	allows	others	to	contribute	with	pull	requests	to	the	curated	list.	The	list	includes	topics
for	those	who	are	looking	to	get	started	with	Docker;	useful	articles;	deep-dive	articles;
networking	articles;	and	articles	on	using	multi-server	Docker	environments,	cloud
infrastructure,	tips,	and	newsletters,	the	list	just	keeps	going	on.	To	view	the	project	as
well	as	the	awesomeness	of	everything	that	it	includes,	visit	the	following	URL:

https://github.com/veggiemonk/awesome-docker

https://github.com/veggiemonk/awesome-docker

Summary
In	this	chapter,	we	looked	at	a	number	of	ways	to	monitor	and	report	Docker	security
issues.	We	looked	at	some	mailing	lists	that	you	can	join	monitoring	the	Docker	CVE	list.
We	also	reviewed	using	both	Docker	Notary	to	sign	your	images	as	well	as	hardware
signing	to	utilize	hardware	items	such	as	YubiKeys.	We	also	looked	at	using	responsible
disclosure,	which	is	giving	Docker	a	chance	to	fix	any	security-related	issue	prior	to
releasing	them	to	the	public.

In	the	next	chapter,	we	will	be	looking	at	working	with	some	Docker	tools.	These	tools
can	be	used	to	secure	the	Docker	environment.	We	will	look	at	both	command-line	tools
as	well	as	GUI	tools	that	you	can	use	to	your	advantage.	We	will	be	looking	at	utilizing
TLS	in	your	environments	using	read-only	containers,	utilizing	kernel	namespaces	and
control	groups,	and	mitigating	against	the	risk,	while	being	aware	of	the	Docker	daemon
attack	surface.

Chapter	6.	Using	Docker’s	Built-in
Security	Features
In	this	chapter,	we	will	take	a	look	at	working	with	Docker	tools	that	can	be	used	to	secure
your	environment.	We	will	be	taking	a	look	at	both	command-line	tools	as	well	as	GUI
tools	that	you	can	utilize	to	your	advantage.	We	will	cover	the	following	items	in	this
chapter:

Docker	tools

Using	TLS	in	your	environments	to	help	ensure	that	pieces	are	communicating
securely
Using	read-only	containers	to	help	protect	the	data	in	a	container	from	being
manipulated	in	some	form

Docker	security	fundamentals

Kernel	namespaces
Control	groups
Linux	kernel	capabilities

Docker	tools
In	this	section,	we	will	cover	the	tools	that	can	help	you	secure	your	Docker	environment.
These	are	options	that	are	built	into	the	Docker	software,	which	you	are	already	using.	It’s
time	to	learn	how	to	enable	or	utilize	these	such	features	to	help	give	you	the	peace	of
mind	in	order	to	be	sure	that	the	communication	is	secure;	this	is	where	we	will	cover
enabling	TLS,	which	is	a	protocol	that	ensures	privacy	between	applications.	It	ensures
that	nobody	is	listening	in	on	the	communication.	Think	of	it	as	when	you	are	watching	a
movie	and	people	on	the	phone	say,	is	this	line	secure?	It’s	the	same	kind	of	idea	when	it
comes	to	network	communication.	Then,	we	will	look	at	how	you	can	utilize	the	read-only
containers	to	ensure	that	the	data	you	are	serving	up	can’t	be	manipulated	by	anyone.

Using	TLS
It	is	highly	recommended	to	use	the	Docker	Machine	to	create	and	manage	your	Docker
hosts.	It	will	automatically	set	up	the	communication	to	use	TLS.	Here’s	how	you	can
verify	that	the	default	host	that	was	created	by	docker-machine	indeed	uses	TLS.

One	of	the	important	factors	is	knowing	if	you	are	using	TLS	or	not	and	then	adjusting	to
use	TLS	if	you	are,	in	fact,	not	using	TLS.	The	important	thing	to	remember	is	that,
nowadays,	almost	all	the	Docker	tools	ship	with	the	TLS	enabled,	or	if	they	don’t,	they
appear	to	be	working	towards	this	goal.	One	of	the	commands	that	you	can	use	to	check	in
order	to	see	if	your	Docker	host	is	utilizing	the	TLS	is	with	the	Docker	Machine	inspect
command.	In	the	following,	we	will	take	a	look	at	a	host	and	see	if	it	is	running	with	the
TLS	enabled:

docker-machine	inspect	default

{

				"ConfigVersion":	3,

				"Driver":	{

						"IPAddress":	"192.168.99.100",

						"MachineName":	"default",

						"SSHUser":	"docker",

						"SSHPort":	50858,

						"SSHKeyPath":	

"/Users/scottgallagher/.docker/machine/machines/default/id_rsa",

						"StorePath":	"/Users/scottgallagher/.docker/machine",

						"SwarmMaster":	false,

						"SwarmHost":	"tcp://0.0.0.0:3376",

						"SwarmDiscovery":	"",

						"VBoxManager":	{},

						"CPU":	1,

						"Memory":	2048,

						"DiskSize":	204800,

						"Boot2DockerURL":	"",

						"Boot2DockerImportVM":	"",

						"HostDNSResolver":	false,

						"HostOnlyCIDR":	"192.168.99.1/24",

						"HostOnlyNicType":	"82540EM",

						"HostOnlyPromiscMode":	"deny",

						"NoShare":	false,

						"DNSProxy":	false,

						"NoVTXCheck":	false

				},

				"DriverName":	"virtualbox",

				"HostOptions":	{

						"Driver":	"",

						"Memory":	0,

						"Disk":	0,

						"EngineOptions":	{

								"ArbitraryFlags":	[],

								"Dns":	null,

								"GraphDir":	"",

								"Env":	[],

								"Ipv6":	false,

								"InsecureRegistry":	[],

								"Labels":	[],

								"LogLevel":	"",

								"StorageDriver":	"",

								"SelinuxEnabled":	false,

								"TlsVerify":	true,

								"RegistryMirror":	[],

								"InstallURL":	"https://get.docker.com"

						},

						"SwarmOptions":	{

								"IsSwarm":	false,

								"Address":	"",

								"Discovery":	"",

								"Master":	false,

								"Host":	"tcp://0.0.0.0:3376",

								"Image":	"swarm:latest",

								"Strategy":	"spread",

								"Heartbeat":	0,

								"Overcommit":	0,

								"ArbitraryFlags":	[],

								"Env":	null

						},

						"AuthOptions":	{

								"CertDir":	"/Users/scottgallagher/.docker/machine/certs",

								"CaCertPath":	"/Users/scottgallagher/.docker/machine/certs/ca.pem",

								"CaPrivateKeyPath":	

"/Users/scottgallagher/.docker/machine/certs/ca-key.pem",

								"CaCertRemotePath":	"",

								"ServerCertPath":	

"/Users/scottgallagher/.docker/machine/machines/default/server.pem",

								"ServerKeyPath":	

"/Users/scottgallagher/.docker/machine/machines/default/server-key.pem",

								"ClientKeyPath":	

"/Users/scottgallagher/.docker/machine/certs/key.pem",

								"ServerCertRemotePath":	"",

								"ServerKeyRemotePath":	"",

								"ClientCertPath":	

"/Users/scottgallagher/.docker/machine/certs/cert.pem",

								"ServerCertSANs":	[],

								"StorePath":	

"/Users/scottgallagher/.docker/machine/machines/default"

						}

				},

				"Name":	"default"

}

From	the	preceding	output,	we	can	focus	on	the	following	line:

				"SwarmHost":	"tcp://0.0.0.0:3376",

This	shows	us	that	if	we	were	running	Swarm,	this	host	would	be	utilizing	the	secure
3376	port.	Now,	if	you	aren’t	using	Docker	Swarm,	then	you	can	disregard	this	line.
However,	if	you	are	using	Docker	Swarm,	then	this	line	is	important.

Just	to	take	a	step	back,	let’s	identify	what	Docker	Swarm	is.	Docker	Swarm	is	native

clustering	within	Docker.	It	helps	in	turning	multiple	Docker	hosts	into	an	easy-to-manage
single	virtual	host:

	"AuthOptions":	{

												"CertDir":	"/Users/scottgallagher/.docker/machine/certs",

												"CaCertPath":	

"/Users/scottgallagher/.docker/machine/certs/ca.pem",

												"CaPrivateKeyPath":	

"/Users/scottgallagher/.docker/machine/certs/ca-key.pem",

												"CaCertRemotePath":	"",

												"ServerCertPath":	

"/Users/scottgallagher/.docker/machine/machines/default/server.pem",

												"ServerKeyPath":	

"/Users/scottgallagher/.docker/machine/machines/default/server-key.pem",

												"ClientKeyPath":	

"/Users/scottgallagher/.docker/machine/certs/key.pem",

												"ServerCertRemotePath":	"",

												"ServerKeyRemotePath":	"",

												"ClientCertPath":	

"/Users/scottgallagher/.docker/machine/certs/cert.pem",

												"ServerCertSANs":	[],

												"StorePath":	

"/Users/scottgallagher/.docker/machine/machines/default"

								}

This	shows	us	that	this	host	is,	in	fact,	using	the	certificates	so	we	know	that	it	is	using
TLS,	but	how	do	we	know	from	just	that?	In	the	following	section,	we	will	take	a	look	at
how	to	tell	that	it	is,	in	fact,	using	TLS	for	sure.

Docker	Machine	also	has	the	option	to	run	everything	over	TLS.	This	is	the	most	secure
way	of	using	Docker	Machine	in	order	to	manage	your	Docker	hosts.	This	setup	can	be
tricky	if	you	start	using	your	own	certificates.	By	default,	Docker	Machine	stores	your
certificates	that	it	uses	in	/Users/<user_id>/.docker/machine/certs/.	You	can	see	the
location	on	your	machine	where	the	certificates	are	stored	at	from	the	preceding	output.

Let’s	take	a	look	at	how	we	can	achieve	the	goal	of	viewing	if	our	Docker	host	is	utilize
TLS:

docker-machine	ls

NAME						ACTIVE			URL										STATE					URL	SWARM			DOCKER			ERRORS

default			*								virtualbox			Running			tcp://192.168.99.100:2376		v1.9.1			

This	is	where	we	can	tell	that	it	is	using	TLS.	The	insecure	port	of	Docker	Machine	hosts
is	the	2375	port	and	this	host	is	using	2376,	which	is	the	secure	TLS	port	for	Docker
Machine.	Therefore,	this	host	is,	in	fact,	using	TLS	to	communicate,	which	gives	you	the
peace	of	mind	in	knowing	that	the	communication	is	secure.

Read-only	containers
With	respect	to	the	docker	run	command,	we	will	mainly	focus	on	the	option	that	allows
us	to	set	everything	inside	the	container	as	read-only.	Let’s	take	a	look	at	an	example	and
break	down	what	it	exactly	does:

$	docker	run	--name	mysql	--read-only	-v	/var/lib/mysql	v	/tmp	--e	

MYSQL_ROOT_PASSWORD=password	-d	mysql

Here,	we	are	running	a	mysql	container	and	setting	the	entire	container	as	read-only,
except	for	the	/var/lib/mysql	directory.	What	this	means	is	that	the	only	location	the
data	can	be	written	inside	the	container	is	the	/var/lib/mysql	directory.	Any	other
location	inside	the	container	won’t	allow	you	to	write	anything	in	it.	If	you	try	to	run	the
following,	it	would	fail:

$	docker	exec	mysql	touch	/opt/filename

This	can	be	extremely	helpful	if	you	want	to	control	where	the	containers	can	write	to	or
not	write	to.	Make	sure	to	use	this	wisely.	Test	thoroughly,	as	it	can	have	consequences
when	the	applications	can’t	write	to	certain	locations.

Remember	the	Docker	volumes	we	looked	at	in	the	previous	chapters,	where	we	were	able
to	set	the	volumes	to	be	read-only.	Similar	to	the	previous	command	with	docker	run,
where	we	set	everything	to	read-only,	except	for	a	specified	volume,	we	can	now	do	the
opposite	and	set	a	single	volume	(or	more,	if	you	use	more	-v	switches)	to	read-only.	The
thing	to	remember	about	volumes	is	that	when	you	use	a	volume	and	mount	it	in	a
container,	it	will	mount	as	an	empty	volume	over	the	top	of	that	directory	inside	the
container,	unless	you	use	the	--volumes-from	switch	or	add	data	to	the	container	in	some
other	way	after	the	fact:

$	docker	run	-d	-v	/opt/uploads:/opt/uploads:/opt/uploads:ro	nginx

This	will	mount	a	volume	in	/opt/uploads	and	set	it	to	read-only.	This	can	be	useful	if
you	don’t	want	a	running	container	to	write	to	a	volume	in	order	to	keep	the	data	or
configuration	files	intact.

The	last	option	that	we	want	to	look	at,	with	regards	to	the	docker	run	command	is	the	--
device=	switch.	This	switch	allows	us	to	mount	a	device	from	the	Docker	host	into	a
specified	location	inside	the	container.	For	doing	so,	there	are	some	security	risks	that	we
need	to	be	aware	of.	By	default,	when	you	do	this,	the	container	will	get	full	the	access:
read,	write,	and	the	mknod	access	to	the	device’s	location.	Now,	you	can	control	these
permissions	by	manipulating	rwm	at	the	end	of	the	switch	command.

Let’s	take	a	look	at	some	of	these	and	see	how	they	work:

$	docker	run	--device=/dev/sdb:/dev/sdc2	-it	ubuntu:latest	/bin/bash

The	previous	command	will	run	the	latest	Ubuntu	image	and	mount	the	/dev/sdb	device
inside	the	container	at	the	/dev/sdc2	location:

$	docker	run	--device=/dev/sdb:/dev/sdc2:r	-it	ubuntu:latest	/bin/bash

This	command	will	run	the	latest	Ubuntu	image	and	mount	the	/dev/sdb1	device	inside
the	container	at	the	/dev/sdc2	location.	However,	this	one	has	the	:r	tag	at	the	end	of	it
that	specifies	that	it’s	read-only	and	can’t	be	written.

Docker	security	fundamentals
In	the	previous	sections,	we	looked	into	some	Docker	tools	that	you	can	use,	such	as	TLS
for	communication,	and	using	read-only	containers	to	help	ensure	data	isn’t	changed	or
manipulated.	In	this	section,	we	will	focus	on	some	more	options	that	are	available	from
within	the	Docker	ecosystem	that	can	be	used	to	help	secure	up	your	environments	to
another	level.	We	will	take	a	look	at	the	kernel	namespaces	that	provide	another	layer	of
abstraction	by	providing	the	running	process	to	its	own	resources	that	appear	only	to	the
process	itself	and	not	to	other	processes	that	might	be	running.	We	will	cover	more	about
kernel	namespaces	in	this	section.	We	will	then	take	a	look	at	the	control	groups.	Control
groups,	more	commonly	known	as	cgroups,	give	you	the	ability	to	limit	the	resources	that
a	particular	process	has.	We	will	then	cover	the	Linux	kernel	capabilities.	By	that,	we	will
look	at	the	restrictions	that	are	placed	on	containers,	by	default,	when	they	are	run	using
Docker.	Lastly,	we	will	take	a	look	at	the	Docker	daemon	attack	surface,	risks	that	exist
with	the	Docker	daemon	that	you	need	to	be	aware	of,	and	mitigation	of	these	risks.

Kernel	namespaces
Kernel	namespaces	provide	a	form	of	isolation	for	containers.	Think	of	them	as	a
container	wrapped	inside	another	container.	Processes	that	are	running	in	one	container
can’t	disrupt	the	processes	running	inside	another	container	or	let	alone	run	on	the	Docker
host	that	the	container	is	operating	on.	The	way	this	works	is	that	each	container	gets	its
own	network	stacks	to	operate	with.	However,	there	are	ways	to	link	these	containers
together	in	order	to	be	able	to	interact	with	each	other;	however,	by	default,	they	are
isolated	from	each	other.	Kernel	namespaces	have	been	around	for	quite	a	while	too,	so
they	are	a	tried	and	true	method	of	isolation	protection.	They	were	introduced	in	2008	and
at	the	time	of	writing	this	book,	it’s	2016.	You	can	see	that	they	will	be	eight	years	old,
come	this	July.	Therefore,	when	you	issue	the	docker	run	command,	you	are	benefiting
from	a	lot	of	heavy	lifting	that	is	going	on	behind	the	scenes.	This	heavy	lifting	is	creating
its	own	network	stack	to	operate	on.	This	is	also	shielding	off	the	container	from	other
containers	being	able	to	manipulate	the	container’s	running	processes	or	data.

Control	groups
Control	groups,	or	more	commonly	referred	to	as	cgroups,	are	a	Linux	kernel	feature	that
allows	you	to	limit	the	resources	that	a	container	can	use.	While	they	limit	the	resources,
they	also	ensure	that	each	container	gets	the	resources	it	needs	as	well	as	that	no	single
container	can	take	down	the	entire	Docker	host.

With	control	groups,	you	can	limit	the	amount	of	CPU,	memory,	or	disk	I/O	that	a
particular	container	gets.	If	we	look	at	the	docker	run	command’s	help,	let’s	highlight	the
items	that	we	can	control.	We	will	just	be	highlighting	a	few	items	that	are	particularly
useful	for	the	majority	of	users,	but	please	review	them	to	see	if	any	others	fit	your
environment,	as	follows:

$	docker	run	--help																																

Usage:	docker	run	[OPTIONS]	IMAGE	[COMMAND]	[ARG…]

Run	a	command	in	a	new	container

		-a,	--attach=[]																	Attach	to	STDIN,	STDOUT	or	STDERR

		--add-host=[]																			Add	a	custom	host-to-IP	mapping	(host:ip)

		--blkio-weight=0																Block	IO	(relative	weight),	between	10	

and	1000

		--cpu-shares=0																		CPU	shares	(relative	weight)

		--cap-add=[]																				Add	Linux	capabilities

		--cap-drop=[]																			Drop	Linux	capabilities

		--cgroup-parent=																Optional	parent	cgroup	for	the	container

		--cidfile=																						Write	the	container	ID	to	the	file

		--cpu-period=0																		Limit	CPU	CFS	(Completely	Fair	Scheduler)	

period

		--cpu-quota=0																			Limit	CPU	CFS	(Completely	Fair	Scheduler)	

quota

		--cpuset-cpus=																		CPUs	in	which	to	allow	execution	(0-3,	

0,1)

		--cpuset-mems=																		MEMs	in	which	to	allow	execution	(0-3,	

0,1)

		-d,	--detach=false														Run	container	in	background	and	print	

container	ID

		--device=[]																					Add	a	host	device	to	the	container

		--disable-content-trust=true				Skip	image	verification

		--dns=[]																								Set	custom	DNS	servers

		--dns-opt=[]																				Set	DNS	options

		--dns-search=[]																	Set	custom	DNS	search	domains

		-e,	--env=[]																				Set	environment	variables

		--entrypoint=																			Overwrite	the	default	ENTRYPOINT	of	the	

image

		--env-file=[]																			Read	in	a	file	of	environment	variables

		--expose=[]																					Expose	a	port	or	a	range	of	ports

		--group-add=[]																		Add	additional	groups	to	join

		-h,	--hostname=																	Container	host	name

		--help=false																				Print	usage

		-i,	--interactive=false									Keep	STDIN	open	even	if	not	attached

		--ipc=																										IPC	namespace	to	use

		--kernel-memory=																Kernel	memory	limit

		-l,	--label=[]																		Set	meta	data	on	a	container

		--label-file=[]																	Read	in	a	line	delimited	file	of	labels

		--link=[]																							Add	link	to	another	container

		--log-driver=																			Logging	driver	for	container

		--log-opt=[]																				Log	driver	options

		--lxc-conf=[]																			Add	custom	lxc	options

		-m,	--memory=																			Memory	limit

		--mac-address=																		Container	MAC	address	(e.g.	

92:d0:c6:0a:29:33)

		--memory-reservation=											Memory	soft	limit

		--memory-swap=																		Total	memory	(memory	+	swap),	'-1'	to	

disable	swap

		--memory-swappiness=-1										Tuning	container	memory	swappiness	(0	to	

100)

		--name=																									Assign	a	name	to	the	container

		--net=default																			Set	the	Network	for	the	container

		--oom-kill-disable=false								Disable	OOM	Killer

		-P,	--publish-all=false									Publish	all	exposed	ports	to	random	ports

		-p,	--publish=[]																Publish	a	container's	port(s)	to	the	host

		--pid=																										PID	namespace	to	use

		--privileged=false														Give	extended	privileges	to	this	

container

		--read-only=false															Mount	the	container's	root	filesystem	as	

read	only

		--restart=no																				Restart	policy	to	apply	when	a	container	

exits

		--rm=false																						Automatically	remove	the	container	when	

it	exits

		--security-opt=[]															Security	Options

		--sig-proxy=true																Proxy	received	signals	to	the	process

		--stop-signal=SIGTERM											Signal	to	stop	a	container,	SIGTERM	by	

default

		-t,	--tty=false																	Allocate	a	pseudo-TTY

		-u,	--user=																					Username	or	UID	(format:	<name|uid>[:

<group|gid>])

		--ulimit=[]																					Ulimit	options

		--uts=																										UTS	namespace	to	use

		-v,	--volume=[]																	Bind	mount	a	volume

		--volume-driver=																Optional	volume	driver	for	the	container

		--volumes-from=[]															Mount	volumes	from	the	specified	

container(s)

		-w,	--workdir=																		Working	directory	inside	the	container

As	you	can	see	from	the	preceding	highlighted	portions,	these	are	just	a	few	items	that	you
can	control	on	a	per-container	basis.

Linux	kernel	capabilities
Docker	uses	the	kernel	capabilities	to	place	the	restrictions	that	Docker	places	on	the
containers	when	they	are	launched	or	started.	Limiting	the	root	access	is	the	ultimate
agenda	with	these	kernel	capabilities.	There	are	a	few	services	that	typically	run	as	root,
but	can	now	be	run	without	these	permissions.	Some	of	these	include	SSH,	cron,	and
syslogd.

Overall,	what	this	means	is	that	you	don’t	need	root	in	the	server	sense	you	typically	think
of.	You	can	run	with	a	reduced	capacity	set.	This	means	that	your	root	user	doesn’t	need
the	privilege	it	typically	needs.

Some	of	the	things	that	you	might	not	need	to	enable	anymore	are	shown	in	the	following:

Performing	mount	operations
Using	raw	sockets,	which	will	help	to	prevent	spoofing	of	packets
Creating	new	devices
Changing	the	owner	of	files
Altering	attributes

This	helps	due	to	the	fact	that	if	someone	does	compromise	a	container,	then	they	can’t
escalate	any	more	than	what	you	are	providing	them.	It	will	be	much	harder,	if	not
impossible,	to	escalate	their	privileges	from	a	running	container	to	running	Docker	host.
Due	to	such	complexity,	the	attackers	will	probably	look	elsewhere	than	your	Docker
environments	to	try	to	attack.	Docker	also	supports	the	addition	and	removal	of
capabilities,	therefore,	it’s	recommend	to	remove	all	the	capabilities,	except	the	ones	that
you	intend	to	use.	An	example	would	be	to	use	the	–cap-add	net_bind_service	switch
on	your	docker	run	command.

Containers	versus	virtual	machines
Hopefully,	you	trust	your	organization	and	all	those	who	have	access	to	these	systems.
You	will	most	likely	be	setting	up	virtual	machines	from	scratch.	It	is	probably	impossible
to	get	the	virtual	machine	from	someone	else	due	to	its	sheer	size.	Therefore,	you	will	be
aware	of	what	is	inside	the	virtual	machine	and	what	isn’t.	This	being	said,	with	the
Docker	containers,	you	will	not	be	aware	of	what	is	there	inside	the	image	that	you	may
be	using	for	your	container(s).

Summary
In	this	chapter,	we	looked	at	deploying	TLS	to	all	the	pieces	of	our	Docker	environment
so	that	we	can	ensure	that	everything	is	communicating	securely	and	the	traffic	can’t	be
intercepted	and	then	interpreted.	We	also	understood	how	to	utilize	the	read-only
containers	to	our	advantage	in	order	to	ensure	the	data	that	is	being	served	up	can’t	be
manipulated.	We	then	took	a	look	at	how	to	provide	processes	with	their	own	abstraction
of	items,	such	as	networks,	mounts,	users,	and	more.	We	then	dove	into	control	groups,	or
cgroups	as	their	more	commonly	referred	to	as,	as	a	way	to	limit	the	resources	that	a
process	or	container	has.	We	also	took	a	look	at	the	Linux	kernel	capabilities,	that	is,	the
restrictions	that	are	placed	on	a	container	when	it	is	started	or	launched.	Lastly,	we	dove
into	mitigating	risks	against	the	Docker	daemon	attack	surface.

In	the	next	chapter,	we	will	look	at	securing	Docker	with	third-party	tools	and	learn	which
third-party	tools,	beyond	those	offered	by	Docker,	are	out	there	to	help	secure	your
environments	to	help	keep	your	application(s)	secure	when	running	on	Docker.

Chapter	7.	Securing	Docker	with	Third-
party	Tools
In	this	chapter,	let’s	take	a	look	at	securing	Docker	using	third-party	tools.	These	would	be
tools	that	are	not	part	of	the	Docker	ecosystem,	which	you	can	use	to	help	secure	your
systems.	We	will	be	taking	a	look	at	the	following	three	items:

Traffic	Authorization:	This	allows	inbound	and	outbound	traffic	to	be	verified	by
the	token	broker	in	order	to	ensure	that	traffic	between	services	is	secure.
Summon:	Summon	is	a	command-line	tool	that	reads	a	file	in	the	secrets.yml
format	and	injects	secrets	as	environment	variables	into	any	process.	Once	the
process	exits,	the	secrets	are	gone.
sVirt	and	SELinux:	sVirt	is	a	community	project	that	integrates	Mandatory	Access
Control	(MAC)	security	and	Linux-based	virtualization	(Kernel-base	Virtual
Machine	(KVM),	lguest,	and	so	on).

We	will	then	add	bonus	material	with	regards	to	some	extra	third-party	tools	that	are	quite
useful	and	powerful	and	deserve	to	get	some	recognition	as	useful	third-party	tools.	These
tools	include	dockersh,	DockerUI,	Shipyard,	and	Logspout.	Without	further	ado,	let’s
jump	in	and	get	started	on	our	path	to	the	most	secure	environments	that	we	can	obtain.

Third-party	tools
So,	what	third-party	tools	will	we	focus	on?	Well	from	the	preceding	introduction,	you
learned	that	we	will	be	looking	at	three	tools	in	particular.	These	would	be	Traffic
Authorization,	Summon,	and	sVirt	with	SELinux.	All	the	three	tools	help	in	different
aspects	and	can	be	used	to	perform	different	things.	We	will	learn	the	differences	between
them	and	help	you	to	determine	which	ones	to	implement.	You	can	decide	whether	you
want	to	implement	them	all,	only	one	or	two	of	them,	or	maybe	you	feel	that	none	of	these
would	pertain	to	your	current	environment.	However,	it	is	good	to	know	what	is	out	there,
in	case,	your	needs	change	and	the	overall	architecture	of	your	Docker	environments
change	over	time.

Traffic	Authorization
Traffic	Authorization	can	be	used	to	regulate	HTTP/HTTPS	traffic	between	services.	This
involves	a	forwarder,	gatekeeper,	and	token	broker.	This	allows	inbound	and	outbound
traffic	to	be	verified	by	the	token	broker	in	order	to	ensure	that	traffic	between	services	is
secure.	Each	container	runs	a	gatekeeper	that	is	used	to	intercept	all	the	HTTP/HTTPS
inbound	traffic	and	verifies	its	authenticity	from	a	token	that	is	found	in	the	authorization
header.	The	forwarder	also	runs	on	each	container,	and	like	the	gatekeeper,	this	also
intercepts	traffic;	however,	instead	of	intercepting	inbound	traffic,	it	intercepts	outbound
traffic	and	places	the	token	on	the	authorization	header.	These	tokens	are	issues	from	the
token	broker.	These	tokens	can	also	be	cached	to	save	time	and	minimize	the	impact	of
latency.	Let’s	break	it	down	into	a	series	of	steps,	as	shown	in	the	following:

1.	 Service	A	initiates	a	request	to	Service	B.
2.	 The	forwarder	on	Service	A	will	authenticate	itself	with	the	token	broker.
3.	 The	token	broker	will	issue	a	token	that	Service	A	will	apply	to	the	authorization

header	and	forward	the	request	to	Service	B.
4.	 Service	B’s	gatekeeper	will	intercept	the	request	and	verify	the	authorization	header

against	the	token	broker.
5.	 Once	the	authorization	header	has	been	verified,	it	is	then	forwarded	to	Service	B.

As	you	can	see,	this	applies	extra	authorizations	on	both	inbound	and	outbound	requests.
As	we	will	see	in	the	next	section,	you	can	also	use	Summon	along	with	Traffic
Authorization	to	use	shared	secrets	that	are	available	once	they	are	used,	but	go	away	once
the	application	has	completed	its	actions.

For	more	information	about	Traffic	Authorization	and	Docker,	visit
https://blog.conjur.net/securing-docker-with-secrets-and-dynamic-traffic-authorization.

https://blog.conjur.net/securing-docker-with-secrets-and-dynamic-traffic-authorization

Summon
Summon	is	a	command-line	tool	and	is	used	to	help	pass	along	secrets	or	things	you	don’t
want	exposed,	such	as	passwords	or	environmental	variables	and	then	these	secrets	are
disposed	upon	exiting	the	process.	This	is	great	as	once	the	secret	is	used	and	the	process
exits,	the	secret	no	longer	exists.	This	means	the	secret	isn’t	lingering	around	until	it	is
either	removed	manually	or	discovered	by	an	attacker	for	malicious	use.	Let’s	take	a	look
at	how	to	utilize	Summon.

Summon	typically	uses	three	files:	a	secrets.yml	file,	script	used	to	perform	the	action	or
task,	and	Dockerfile.	As	you	have	learned	previously,	or	based	on	your	current	Docker
experience,	the	Dockerfile	is	the	basis	of	what	helps	in	building	your	containers	and	has
instructions	on	how	to	set	up	the	container,	what	to	install,	what	to	configure,	and	so	on.

One	great	example	have	for	the	usage	of	Summon	is	to	be	able	to	deploy	your	AWS
credentials	to	a	container.	For	utilizing	AWS	CLI,	you	need	a	few	key	pieces	of
information	that	should	be	kept	secret.	These	two	pieces	of	information	are	your	AWS
Access	Key	ID	and	AWS	Secret	Access	Key.	With	these	two	pieces	of	information,	you
can	manipulate	someone’s	AWS	account	and	perform	actions	within	this	account.	Let’s
take	a	look	at	the	contents	of	one	of	these	files,	the	secrets.yml	file:

secrets.yml

AWS_ACCESS_KEY_ID:	!var	$env/aws_access_key_id

AWS_SECRET_ACCESS_KEY:	!var	$env/aws_secret_access_key

The	-D	option	is	used	to	substitute	values	while	$env	is	an	example	of	a	substitution
variable,	therefore,	the	options	can	be	interchanged.

In	the	preceding	content,	we	can	see	that	we	want	to	pass	along	these	two	values	into	our
application.	With	this	file,	the	script	file	you	want	to	deploy,	and	the	Dockerfile,	you	are
now	ready	to	build	your	application.

We	simply	utilize	the	docker	build	command	inside	the	folder	that	has	our	three	files	in
it:

$	docker	build	-t	scottpgallagher/aws-deploy	.

Next,	we	need	to	install	Summon,	which	can	be	done	with	a	simple	curl	command,	as
follows:

$	curl	-sSL	

https://raw.githubusercontent.com/conjurinc/summon/master/install.sh	|	bash

Now	that	we	have	Summon	installed,	we	need	to	run	the	container	with	Summon	and	pass
along	our	secret	values	(note	that	this	will	only	work	on	OS	X):

$	security	add-generic-password	-s	"summon"	-a	"aws_access_key_id"	-w	

"ACESS_KEY_ID"

$	security	add-generic-password	-s	"summon"	-a	"aws_secret_access_key"	-w	

"SECRET_ACCESS_KEY"

Now	we	are	ready	to	run	Docker	with	Summon	in	order	to	pass	along	these	credentials	to

the	container:

$	summon	-p	ring.py	docker	run	—env-file	@ENVFILE	aws-deploy

You	can	also	view	the	values	that	you	have	passed	along	by	using	the	following	cat
command:

$	summon	-p	ring.py	cat	@SUMMONENVFILE

aws_access_key_id=ACESS_KEY_ID

aws_secret_access_key=SECRET_ACCESS_KEY

The	@SUMMONENVFILE	is	a	memory-mapped	file	that	contains	the	values	from	the
secrets.yml	file.

For	more	information	and	to	see	other	options	to	utilize	Summon,	visit
https://conjurinc.github.io/summon/#examples.

https://conjurinc.github.io/summon/#examples

sVirt	and	SELinux
sVirt	is	part	of	the	SELinux	implementation,	but	it	is	typically	turned	off	as	most	view	it	as
a	roadblock.	The	only	roadblock	should	be	learning	sVirt	and	SELinux.

sVirt	is	an	open	source	community	project	that	implements	MAC	security	for	Linux-based
virtualization.	A	reason	you	would	want	to	implement	sVirt	is	to	improve	the	security	as
well	as	harden	the	system	against	any	bugs	that	might	exist	in	the	hypervisor.	This	will
help	in	eliminating	any	attack	vectors	that	might	be	aimed	towards	the	virtual	machine	or
host.

Remember	that	all	containers	on	a	Docker	host	share	the	usage	of	the	Linux	kernel	that	is
running	on	the	Docker	host.	If	there	is	an	exploit	to	this	Linux	kernel	on	the	host,	then	all
containers	running	on	this	Docker	host	have	the	potential	to	be	easily	compromised.	If	you
implement	sVirt	and	a	container	is	compromised,	there	is	no	way	for	the	compromise	to
reach	your	Docker	host	and	then	out	to	other	Docker	containers.

sVirt	utilizes	labels	in	the	same	way	as	SELinux.	The	following	table	is	a	list	of	these
labels	and	their	descriptions:

Type SELinux	Context Description

Virtual	machine
processes

system_u:system_r:svirt_t:MCS1
MCS1	is	a	randomly	selected	MCS	field.	Currently,
approximately	500,000	labels	are	supported.

Virtual	machine
image

system_u:object_r:svirt_image_t:MCS1

Only	processes	labeled	svirt_t	with	the	same
MCS	fields	are	able	to	read/write	these	image	files
and	devices.

Virtual	machine
shared	read/write
content

system_u:object_r:svirt_image_t:s0
All	processes	labeled	svirt_t	are	allowed	to	write
to	the	svirt_image_t:s0	files	and	devices.

Virtual	machine
image

system_u:object_r:virt_content_t:s0

This	is	the	system	default	label	used	when	an	image
exits.	No	svirt_t	virtual	processes	are	allowed	to
read	files/devices	with	this	label.

Other	third-party	tools
There	are	some	other	third-party	tools	that	do	deserve	a	mention	in	this	chapter	and	are
worth	exploring	to	see	the	value	that	they	can	add	for	you.	It	seems	that	these	days,	a	lot	of
focus	is	on	GUI	applications	to	help	with	securing	applications	and	infrastructures.	The
following	utilities	will	give	you	a	few	options	that	could	be	pertinent	to	the	environment
you	are	running	with	the	Docker	tools.

Note
Note	that	you	should	use	caution	when	implementing	some	of	the	following	items	as	there
could	be	unwanted	repercussions.	Make	sure	to	use	testing	environments	prior	to
production	implementation.

dockersh
The	dockersh	was	designed	to	be	used	as	a	login	shell	replacement	on	machines	that
support	multiple	interactive	users.	Why	is	this	important?	If	you	remember	some	of	the
general	security	warnings	that	you	have	when	dealing	with	Docker	containers	on	a	Docker
host,	you	will	know	that	whoever	has	access	to	the	Docker	host	has	access	to	all	the
running	containers	on	this	Docker	host.	With	dockersh,	you	can	isolate	the	use	on	a	per-
container	basis	and	only	allow	users	access	the	containers	that	you	want	them	to,	while
maintaining	administrative	control	over	the	Docker	host	and	keeping	the	security
threshold	minimum.

This	is	an	ideal	way	to	help	isolate	users	on	a	per-container	basis,	while	containers	help
eliminate	the	need	for	SSH	by	utilizing	dockersh,	you	can	remove	some	of	these	fears
about	providing	everyone	that	needs	container	to	access,	the	access	to	the	Docker	host(s)
as	well.	There	is	a	lot	of	information	required	to	set	up	and	invoke	dockersh,	therefore,	if
you	are	interested,	it’s	recommended	to	visit	the	following	URL	to	find	more	about
dockersh,	including	how	to	set	it	up	and	use	it:

https://github.com/Yelp/dockersh

https://github.com/Yelp/dockersh

DockerUI
DockerUI	is	a	simple	way	to	view	what	is	going	on	inside	your	Docker	host.	The
installation	of	DockerUI	is	very	straightforward	and	is	done	by	running	a	simple	docker
run	command	in	order	to	get	started:

$	docker	run	-d	-p	9000:9000	--privileged	-v	

/var/run/docker.sock:/var/run/docker.sock	dockerui/dockerui

To	access	the	DockerUI,	you	simply	open	a	browser	and	navigate	to	the	following	link:
http://<docker_host_ip>:9000

This	opens	your	DockerUI	to	the	world	on	port	9000,	as	shown	in	the	following
screenshot:

You	can	get	the	general	high-level	view	of	your	Docker	host	and	its	ecosystem	and	can	do
things	such	as	manipulate	the	containers	on	the	Docker	host	by	restarting,	stopping,	or
starting	them	from	a	stopped	state.	DockerUI	takes	some	of	the	steep	learning	curve	of
running	command-line	items	and	places	them	into	actions	that	you	perform	in	a	web
browser	using	point	and	click.

For	more	information	about	DockerUI,	visit	https://github.com/crosbymichael/dockerui.

https://github.com/crosbymichael/dockerui

Shipyard
Shipyard,	like	DockerUI,	allows	you	to	use	a	GUI	web	interface	to	manage	various
aspects—mainly	in	your	containers—and	manipulate	them.	Shipyard	is	build	on	top	of
Docker	Swarm	so	that	you	get	to	utilize	the	feature	set	of	Docker	Swarm,	where	you	can
manage	multiple	hosts	and	containers	instead	of	having	to	just	focus	on	one	host	and	its
containers	at	a	time.

Using	Shipyard	is	simple	and	the	following	curl	command	re-enters	the	picture:

$	curl	-sSL	https://shipyard-project.com/deploy	|	bash	-s

To	access	the	Shipyard	once	the	set	up	is	completed,	you	can	simply	open	a	browser	and
navigate	to	the	following	link:
http://<docker_host_ip>:8080

As	we	can	see	in	the	following	screenshot,	we	can	view	all	the	containers	on	our	Docker
host:

We	can	also	view	all	the	images	that	are	on	our	Docker	host,	as	shown	in	the	following
screenshot:

We	can	also	control	our	containers,	as	seen	in	the	following	screenshot:

Shipyard,	like	DockerUI,	allows	you	to	manipulate	your	Docker	hosts	and	containers,	by
restarting	them,	stopping	them,	starting	them	from	a	failed	state,	or	deploying	new
containers	and	having	them	join	the	Swarm	cluster.	Shipyard	also	allows	you	to	view
information	such	as	port	mapping	information	that	is	what	port	from	the	host	maps	to	the
container.	This	allows	you	to	get	a	hold	of	important	information	like	that	when	you	need
it	quickly	to	address	any	security	related	issues.	Shipyard	also	has	user	management	where
DockerUI	lacks	such	capability.

For	more	information	about	Shipyard	simply	visit	the	following	URLs:

https://github.com/shipyard/shipyard
http://shipyard-project.com

https://github.com/shipyard/shipyard
http://shipyard-project.com

Logspout
Where	do	you	go	when	there	is	an	issue	that	needs	to	be	addressed?	Most	people	will	first
look	at	the	logs	of	that	application	to	see	if	it	is	outputting	any	errors.	With	Logspout,	this
becomes	a	much	more	manageable	task	with	many	multiple	running	containers.	With
Logspout,	you	can	route	all	the	logs	for	each	and	every	container	to	a	location	of	your
choice.	Then,	you	could	parse	these	logs	in	one	place.	Instead	of	having	to	pull	the	logs
from	each	container	and	review	them	individually	you	can	instead	have	Logspout	do	that
work	for	you.

Logspout	is	just	as	easy	to	set	up	as	we	have	seen	for	other	third-party	solutions.	Simply
run	the	following	command	on	each	Docker	host	to	start	collecting	the	logs:

$	docker	run	--name="logspout"	\

				--volume=/var/run/docker.sock:/tmp/docker.sock	\

				--publish=127.0.0.1:8000:8080	\

				gliderlabs/logspout

Now	that	we	have	all	the	container	logs	collected	in	one	area,	we	need	to	parse	through
these	logs,	but	how	do	we	do	it?

$	curl	http://127.0.0.1:8000/logs

Here’s	the	curl	command	to	the	rescue	again!	Logs	get	prefixed	with	the	container	names
and	colorized	in	a	manner	in	order	to	distinguish	the	logs.	You	can	replace	the	loopback
(127.0.0.1)	address	in	the	docker	run	invocations	with	the	IP	address	of	the	Docker	host
so	that	it’s	easier	to	connect	to	in	order	to	be	able	to	get	the	logs	as	well	as	change	the	port
from	8000	to	something	of	your	choice.	There	are	also	different	modules	that	you	can
utilize	to	obtain	and	collect	logs.

For	more	information	about	Logspout,	visit	https://github.com/gliderlabs/logspout.

https://github.com/gliderlabs/logspout

Summary
In	this	chapter,	we	looked	at	some	third-party	tools	in	order	to	be	able	to	help	secure
Docker	environments.	Mainly,	we	looked	at	three	tools:	Traffic	Authorization,	Summon,
and	sVirt	with	SELinux.	All	the	three	can	be	utilized	in	different	ways	to	help	secure	your
Docker	environments	to	give	you	the	peace	of	mind	at	end	of	the	day	to	run	your
applications	in	the	Docker	containers.	We	learned	what	third-party	tools,	beyond	those
offered	by	Docker,	are	out	there	to	help	secure	your	environments	to	keep	your
application(s)	secure	when	running	on	Docker.

We	then	took	a	look	at	some	other	third-party	tools.	These	are	extra	tools	that	are
worthwhile	to	some,	given	what	your	Docker	environment	setup	looks	like.	Some	of	these
tools	include	dockersh,	DockerUI,	Shipyard,	and	Logsprout.	These	tools,	when	carefully
applied,	layer	on	extra	enhancements	to	help	in	the	overall	security	of	your	Docker
configurations.

In	the	next	chapter,	we	will	be	looking	at	keeping	up	on	security.	With	so	much	going	on
these	days	that	surrounds	the	security,	it’s	sometimes	tough	to	know	where	to	look	for
updated	information	and	be	able	to	apply	quick	fixes.

You	will	be	learning	to	help	enforce	the	idea	of	keeping	security	in	the	forefront	of	your
mind	and	subscribing	to	things	such	as	e-mail	lists	that	not	only	include	Docker,	but	also
include	items	that	are	related	to	the	environments	you	are	running	with	Linux.	Other	items
are	keeping	up	on	following	what	is	going	on	with	regards	to	items	such	as	GitHub	issues
that	relate	to	Docker	security,	following	along	in	the	IRC	rooms,	and	watching	websites
such	as	the	CVE.

Chapter	8.	Keeping	up	Security
In	this	chapter,	we	will	be	taking	a	look	at	keeping	up	with	security	as	it	relates	to	Docker.
By	what	means	you	can	use	to	help	keep	up	to	date	on	Docker-related	security	issues	that
are	out	there	for	the	version	of	the	Docker	tools	you	might	be	running	now?	How	do	you
stay	ahead	of	any	security	issues	and	keep	your	environments	secure	even	with	threats?	In
this	chapter,	we	will	look	at	multiple	ways	in	which	you	can	keep	up	on	any	security
issues	that	arise	and	the	best	way	to	obtain	information	as	quickly	as	possible.	You	will
cover	learning	to	help	enforce	the	idea	of	keeping	security	in	the	forefront	of	your	mind
and	subscribing	to	things	such	as	e-mail	lists	that	not	only	include	Docker,	but	also	include
items	that	are	related	to	the	environments	you	are	running	with	Linux.	Other	items	are
keeping	up	on	following	what	is	going	on	with	regards	to	items	such	as	GitHub	issues	that
relate	to	Docker	security,	following	along	with	the	Internet	Relay	Chat	(IRC)	rooms,
and	watching	websites	such	as	the	CVE.

In	this	chapter,	we	will	be	covering	the	following	topics:

Keeping	up	with	security

E-mail	list	options
GitHub	issues
IRC	rooms
CVE	websites

Other	areas	of	interest

Keeping	up	with	security
In	this	section,	we	will	take	a	look	at	the	multiple	ways	that	you	can	obtain	or	keep	up	to
date	about	the	information	related	to	the	security	issues	that	may	occur	in	Docker
products.	While	this	isn’t	a	complete	list	of	tools	that	you	can	use	to	keep	up	on	issues,
this	is	a	great	start	and	consists	of	the	most	commonly	used	items	that	are	used.	These
items	include	e-mail	distribution	lists,	following	the	GitHub	issues	for	Docker,	IRC	chat
rooms	for	the	multiple	Docker	products	that	exist,	CVE	website(s),	and	other	areas	of
interest	to	follow	on	items	that	relate	to	Docker	products,	such	as	the	Linux	kernel
vulnerabilities	and	other	items	you	can	use	to	mitigate	the	risks.

E-mail	list	options
Docker	operates	two	mailing	lists	that	users	can	sign	up	to	be	a	part	of.	These	mailing	lists
provide	means	to	both	gather	information	about	the	issues	or	projects	others	are	working
on	and	spark	your	thoughts	into	doing	the	same	for	your	environment.	You	can	also	use
them	to	help	blanket	the	Docker	community	with	questions	or	issues	that	you	are	running
into	when	using	various	Docker	products	or	even	other	products	in	relation	to	Docker
products.

The	two	e-mail	lists	are	as	follows:
Docker-dev
Docker-user

What	is	the	Docker-dev	mailing	list	mostly	geared	towards?	You	guessed	it,	it	is	geared
towards	the	developers!	These	are	the	people	who	are	either	interested	in	developer	type
roles	and	what	others	are	developing	or	are	themselves	developing	code	for	something	that
might	integrate	into	various	Docker	products.	This	could	be	something	such	as	creating	a
web	interface	around	Docker	Swarm.	This	list	would	be	the	one	you	want	to	post	your
questions	at.	The	list	consists	of	other	developers	and	possibly	even	those	that	work	at
Docker	itself	that	might	be	able	to	help	you	with	any	questions	or	issues	that	you	have.

The	other	list,	the	Docker-user	list,	is	geared	towards	the	users	of	the	various	Docker
products	or	services	and	have	questions	on	either	how	to	use	the	products/services	or	how
they	might	be	able	to	integrate	third-party	products	with	Docker.	This	might	include	how
to	integrate	Heroku	with	Docker	or	use	Docker	in	the	cloud.	If	you	are	a	user	of	Docker,
then	this	list	is	the	right	one	for	you.	You	can	also	contribute	to	the	list	as	well	if	you	have
advanced	experience,	or	something	comes	across	the	list	that	you	have	experience	in,	or
have	dealt	with	previously.

There	is	no	rule	that	says	you	can’t	be	on	both.	If	you	want	to	get	the	best	of	both	worlds,
you	can	sign	up	for	both	and	gauge	the	amount	of	traffic	that	comes	across	each	one	and
then	make	the	decision	to	only	be	on	one,	based	on	where	your	interests	lie.	You	also	have
the	option	of	not	joining	the	lists	and	just	following	them	on	the	Google	Groups	pages	for
each	list.

The	Google	groups	page	for	the	Docker-dev	list	is
https://groups.google.com/forum/#!forum/docker-dev	and	the	Google	groups	page	for	the
Docker-user	list	is	https://groups.google.com/forum/#!forum/docker-user.

Don’t	forget	that	you	can	also	search	through	these	lists	to	see	if	your	issue	or	questions
might	have	already	been	answered.	As	this	book	is	about	security,	don’t	forget	that	you
can	use	these	two	mailing	lists	to	discuss	items	that	are	security	related—whether	they	be
development	or	user	related.

https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-user

GitHub	issues
Another	method	of	keeping	up	with	security-related	issues	is	to	follow	the	GitHub	issues.
As	all	the	code	for	the	Docker	core	and	other	various	piece	of	Docker	such	as	Machine,
Swarm,	Compose,	and	all	others	are	stored	on	GitHub,	it	provides	an	area.	What	exactly
are	GitHub	issues	and	why	should	I	care	about	them	is	what	you	are	probably	asking
yourself	right	now.	GitHub	Issues	is	a	bug	tracker	system	that	GitHub	uses.	By	tracking
these	issues,	you	can	view	the	issues	that	others	are	experiencing	and	get	ahead	of	them	in
your	own	environment,	or	it	could	solve	the	problem	in	your	environment,	knowing	that
others	are	having	the	same	issue	and	it’s	not	just	on	your	end.	You	can	stop	pulling	what	is
left	of	your	hair.

As	each	GitHub	repository	has	its	own	issues	section,	we	don’t	need	to	look	at	each	and
every	issues	section,	but	I	believe	it	is	worthwhile	to	view	one	of	the	repositories	issues
section	so	that	you	know	what	exactly	you	are	looking	at	in	order	to	help	decipher	it	all.

The	following	screenshot	(which	can	be	found	at	https://github.com/docker/docker/issues)
shows	all	the	current	issues	that	exist	with	the	Docker	core	software	code:

From	this	screen,	we	can	not	only	see	how	many	issues	are	open,	but	also	know	how	many

https://github.com/docker/docker/issues

have	been	closed.	These	are	issues	that	were	once	an	issue	and	solutions	were	derived	for
them	and	now	they	have	been	closed.	The	closed	ones	are	here	for	historic	purposes	in
order	to	be	able	to	go	back	in	time	and	see	what	solution	might	have	been	provided	to
solve	an	issue.

In	the	following	screenshot,	we	can	filter	the	issue	based	on	the	author,	that	is,	the	person
who	submitted	the	issue:

In	the	following	screenshot,	we	can	also	filter	the	issue	based	on	labels	and	these	might
include	api,	kernel,	apparmor,	selinux,	aufs,	and	many	more:

In	the	following	screenshot,	we	see	that	we	can	also	filter	by	milestone:

Milestones	are	essentially	tags	to	help	sort	issues	based	on	fixing	an	issue	for	a	particular
purpose.	They	can	also	be	used	to	plan	upcoming	releases.	As	we	can	see	here,	some	of
these	include	Windows	TP4	and	Windows	TP5.

Lastly,	we	can	filter	issues	based	on	assignee,	that	is,	the	person	to	whom	it	is	assigned	to
fix	or	address	the	issue,	as	shown	in	the	following	screenshot:

As	we	can	see,	there	are	lot	of	ways	in	which	we	can	filter	the	issues,	but	what	does	an
issue	actually	look	like	and	what	does	it	contain?	Let’s	take	a	look	at	that	in	the	following
section.

In	the	following	screenshot,	we	can	see	what	an	actual	issue	looks	like:

Some	of	the	information	that	we	can	see	is	the	title	of	the	issue	and	the	unique	issue
number.	We	can	then	see	that	this	particular	issue	is	open,	the	person	who	reported	the
issue,	and	for	how	long	it’s	opened.	We	can	then	see	how	many	comments	are	there	on	the
issue	and	then	a	large	explanation	of	the	issue	itself.	On	the	right-hand	side,	we	can	see
what	labels	the	issue	has,	what	its	milestone	is,	who	it	is	assigned	to,	and	how	many
participants	are	involved	in	the	issue.	Those	involved	are	people	who	have	commented	on
the	issue	in	some	way.

In	the	last	image,	which	is	at	the	bottom	of	the	issue	from	the	preceding	image,	we	can	see
the	timeline	of	the	issue,	such	as	who	it	was	assigned	to	and	when,	as	well	as	when	it	was
assigned	a	label	and	any	additional	comments.

IRC	rooms
The	first	thing	to	understand	is	what	exactly	IRC	is.	If	you	think	back	to	the	older	days,
we	probably	all	had	some	form	of	IRC	rooms	when	we	had	AOL	and	had	chat	rooms	that
you	could	join	based	on	your	location	or	topic.	IRC	operates	in	the	same	way	where	there
is	a	server	that	clients,	such	as	yourself,	connect	to.	These	rooms	are	typically	based	on	a
topic,	product,	or	service	that	people	have	in	common	that	can	come	together	to	discuss.
You	can	chat	as	a	group	but	also	utilize	private	chats	with	others	in	the	same	room	or
channel	as	you.

Docker	utilizes	IRC	for	discussion	about	its	products.	This	allows	not	only	end	users	of
the	products	to	engage	in	discussion,	but	also	in	the	case	of	Docker,	most	of	those	who
actually	work	for	Docker	and	on	these	products	tend	to	be	in	these	rooms	on	a	daily	basis
and	will	engage	with	you	about	issues	you	might	be	seeing	or	questions	you	have.

With	IRC,	there	are	multiple	servers	that	you	can	use	to	connect	to	the	hosted	channels.
Docker	uses	the	http://freenode.net	server	(it	is	the	server	you	would	use	if	you	were	to
use	a	third-party	client	to	connect	to	IRC;	however,	you	can	also	use
http://webchat.freenode.net)	and	then	all	their	channels	for	their	products	are	things	such
as	#docker,	#docker-dev,	#docker-swarm,	#docker-compose,	and	#docker-machine.
All	channels	start	with	the	pound	sign	(#),	followed	by	the	channel	name.	Within	these
channels,	there	are	discussion	for	each	product.	Beyond	these	channels,	there	are	other
channels	where	you	can	discuss	Docker-related	topics.	In	the	previous	chapter,	we
discussed	the	Shipyard	project,	which	allows	you	to	have	a	GUI	interface	that	overlays	on
top	of	your	Docker	Swarm	environment.	If	you	had	questions	about	this	particular
product,	you	could	join	the	channel	for	that	product,	which	is	#shipyard.	There	are	other
channels	you	can	join	as	well	and	more	created	daily.	To	get	a	list	of	channels,	you	will
need	to	connect	to	your	IRC	client	and	issue	a	command.	Follow	the	given	link	to	find	out
how	to	do	this:

http://irc.netsplit.de/channels/?net=freenode

Chat	archives	are	also	kept	for	each	channel,	therefore,	you	can	search	through	them	as
well	to	find	out	whether	discussions	are	happening	around	a	question	or	issue	that	you
may	be	experiencing.	For	example,	if	you	wanted	to	see	the	logs	of	the	#docker	channel,
you	could	find	them	here:

https://botbot.me/freenode/docker/

You	can	search	for	other	channel	archives	on	the	following	website:

https://botbot.me

http://freenode.net
http://webchat.freenode.net
http://irc.netsplit.de/channels/?net=freenode
https://botbot.me/freenode/docker/
https://botbot.me

CVE	websites
In	Chapter	5,	Monitoring	and	Reporting	Docker	Security	Incidents,	we	covered	CVEs	and
Docker	CVEs.	A	few	things	to	remember	about	them	are	listed	in	the	following:

CVEs	can	be	found	at	https://cve.mitre.org/index.html
Docker-related	ones	can	be	found	at	https://www.docker.com/docker-cve-database
To	search	for	CVE’s	use	the	following	URL:	https://cve.mitre.org/index.html
If	you	were	to	open	this	CVE	from	the	preceding	link,	you	will	see	that	it	gathers
some	information	as	shown	in	the	following:

CVE	ID
Description
References
Date	entry	created
Phase
Votes
Comments
Proposed

https://cve.mitre.org/index.html
https://www.docker.com/docker-cve-database
https://cve.mitre.org/index.html

Other	areas	of	interest
There	are	some	areas	of	interest	that	you	should	keep	in	mind	with	regards	to	security.	The
Linux	kernel,	as	we	have	talked	about	a	lot	during	this	book,	is	the	key	part	of	the	Docker
ecosystem.	For	this	reason,	it’s	very	important	to	keep	the	kernel	as	up	to	date	as	possible.
With	regards	to	updates,	it	is	also	important	to	keep	the	Docker	products	you	are	using	up
to	date	too.	Most	updates	include	security	updates,	and	for	this	reason,	they	should	be
updated	when	new	product	updates	are	released.

Twitter	has	become	the	social	hotspot	when	you	are	looking	to	promote	your	products	and
Docker	does	the	same.	There	are	a	few	accounts	that	Docker	operates	for	different
purposes	and	they	are	listed	in	the	following.	Depending	on	what	piece	of	Docker	you	are
using,	it	would	be	wise	to	follow	one	or	all	of	them,	as	shown	in	the	following	list:

@docker
@dockerstatus
@dockerswarm
@dockermachine

Twitter	also	utilizes	hashtags	that	group	the	tweets	together,	based	on	their	hashtags.	For
Docker,	it’s	the	same	and	they	use	the	#docker	hashtag,	which	you	can	search	for	on
Twitter	to	gather	tweets	that	all	talk	about	Docker.

The	last	thing	we	want	to	cover	is	Stack	Overflow.	Stack	Overflow	is	a	question	and
answer	website	and	uses	votes	to	promote	the	answers	that	are	provided	to	help	you	get
the	best	answer	in	the	quickest	manner.	Stack	Overflow	utilizes	a	method	similar	to
Twitter	with	tagging	questions	so	that	you	can	search	for	all	the	questions	on	a	particular
topic.	The	following	is	the	link	that	you	can	use	to	gather	all	the	Docker	questions	into	one
search:

http://stackoverflow.com/questions/tagged/docker

When	you	visit	the	URL,	you	will	see	a	list	of	questions	as	well	as	how	many	votes	each
question	has,	number	of	answers,	number	of	views,	and	a	green	check	mark	on	some	of
them.	The	checked	answers	are	the	answers	that	the	person	who	asked	them	mark	as
accepted,	meaning	that	it’s	the	best	answer.	Some	of	the	people	who	monitor	Docker
questions	are	those	that	work	for	Docker,	doing	the	work	behind	the	scenes	and	providing
the	best	answers,	therefore,	it’s	a	great	place	to	pose	any	questions	that	you	might	have.

http://stackoverflow.com/questions/tagged/docker

Summary
In	this	chapter,	we	looked	at	how	to	keep	up	with	security-related	issues	that	not	only
pertain	to	Docker	products	that	you	may	be	running	now	or	in	the	near	future,	but	they
also	pertain	to	security	issues	such	as	kernel	issues.	As	Docker	relies	on	the	kernel	for	all
Docker	containers	on	a	Docker	host,	the	kernel	is	very	important.	We	looked	at	multiple
mailing	lists	that	you	can	sign	up	for,	getting	notifications	in	this	manner.	Joining	IRC	chat
rooms	and	following	GitHub	issues	for	anything	security-related	or	anything	that	isn’t
currently	working	might	affect	your	environments.	It	is	very	important	to	always	keep
security	in	the	front	of	your	mind	when	deploying	anything	and	while	the	Docker	is
inherently	secure,	there	are	always	people	out	there	that	will	take	advantage	of	any	given
vulnerability,	therefore,	keep	all	of	your	environments	safe	and	as	up	to	date	as	possible.

Index
A

Active	Directory	/	Docker	Subscription
Amazon	Linux	AMI	/	Auto-patching	hosts
Amazon	Machine	Image	(AMI)	/	Installation
AppArmor	/	Securing	Docker	hosts

and	SELinux	/	SELinux	and	AppArmor
URL	/	SELinux	and	AppArmor,	Access	controls

auto-patching	hosts
about	/	Auto-patching	hosts

Awesome	Docker
URL	/	Awesome	Docker

C
Certificate	Authority	(CA)	/	Protecting	the	Docker	daemon
cgroups	/	Virtualization	and	isolation
channel	archives

about	/	IRC	rooms
chat	archives

about	/	IRC	rooms
CIS	guide

about	/	CIS	guide
URL	/	CIS	guide
host	configuration	/	Host	configuration
daemon	configuration	/	Docker	daemon	configuration
daemon	configuration	files	/	Docker	daemon	configuration	files
container	images/runtime	/	Container	images/runtime
security	operations	/	Docker	security	operations

Common	Vulnerabilities	and	Exposures	(CVE)	/	SANS	hardening	guide	deep	dive
about	/	Docker	CVE
URL	/	Docker	CVE

containers
versus	virtual	machines	/	Containers	versus	virtual	machines

control	groups	/	Control	groups
CoreOS	/	Auto-patching	hosts
CVE

Docker-related,	URL	/	CVE	websites
URL	/	CVE	websites

D
Digital	Ocean,	Amazon	Web	Services	(AWS)	/	Installation
Docker-dev

URL	/	The	two	e-mail	lists	are	as	follows:
Docker-user

URL	/	The	two	e-mail	lists	are	as	follows:
Docker	Bench	Security	application

about	/	The	Docker	Bench	Security	application
tool,	running	/	Running	the	tool

Docker	Bench	Security	application,	output
about	/	Understanding	the	output
host	configuration	/	Understanding	the	output	–	host	configuration
Docker	daemon	configuration	/	Understanding	the	output	–	the	Docker	daemon
configuration
Docker	daemon	configuration,	files	/	Understanding	the	output	–	the	Docker
daemon	configuration	files
container	images	and	build	files	/	Understanding	the	output	–	container	images
and	build	files
container	runtime	/	Understanding	the	output	–	container	runtime
Docker	security	operations	/	Understanding	the	output	–	Docker	security
operations

Docker	Bench	Security	application,	tool
host	configuration	/	Running	the	tool	–	host	configuration
Docker	daemon	configuration	/	Running	the	tool	–	Docker	daemon
configuration
Docker	daemon	configuration,	files	/	Running	the	tool	–	Docker	daemon
configuration	files
container	images	and	build	files	/	Running	the	tool	–	container	images	and	build
files
container	runtime	/	Running	the	tool	–	container	runtime
Docker	security	operations	/	Running	the	tool	–	Docker	security	operations

DockerCon	Europe	2015
URL	/	Hardware	signing

Docker	Content	Trust
about	/	Docker	Content	Trust
components	/	Docker	Content	Trust	components
images,	signing	/	Signing	images
hardware,	signing	/	Hardware	signing

Docker	CS	Engine	/	Installation
URL	/	Installation

Docker	daemon
attack	surface	/	Attack	surface	of	Docker	daemon
protecting	/	Protecting	the	Docker	daemon

docker	exec	command	/	Understanding	the	output	–	container	runtime
Dockerfile	/	Workflow
Docker	host

about	/	Docker	host	overview,	Discussing	Docker	host
virtualization	and	isolation	/	Virtualization	and	isolation
securing	/	Securing	Docker	hosts

Docker	Hub	/	Workflow
Docker	Hub	Enterprise	/	Docker	Subscription
Docker	Machine

about	/	Docker	Machine
Docker	Notary

about	/	Docker	Notary
URL	/	Docker	Notary

Docker	Registry
about	/	Docker	Registry
installing	/	Installation
configuring	/	Configuration	and	security
security	/	Configuration	and	security

Docker	Secure	Deployment	Guidelines
URL	/	Protecting	the	Docker	daemon

dockersh
about	/	dockersh
URL	/	dockersh

Docker	Subscription	/	Docker	Subscription
about	/	Docker	Subscription
Docker	Registry	/	Docker	Subscription
Docker	Engine	/	Docker	Subscription
Docker	Universal	Control	Plane	(UCP)	/	Docker	Subscription
Commercial	support	/	Docker	Subscription
URL	/	Docker	Subscription

Docker	Toolbox	/	Docker	Machine
Docker	Trusted	Registry

about	/	Docker	Trusted	Registry
installing	/	Installation
securing	/	Securing	Docker	Trusted	Registry
administering	/	Administering
workflow	/	Workflow

DockerUI	/	DockerUI
URL	/	DockerUI

Docker	Universal	Control	Plane	(UCP)	/	Docker	Subscription
Domain	and	Type	Enforcement	(DTE)	/	Access	controls

E
e-mail	lists

options	/	E-mail	list	options
Docker-dev	/	The	two	e-mail	lists	are	as	follows:
Docker-user	/	The	two	e-mail	lists	are	as	follows:

Exec	Shield
URL	/	SANS	hardening	guide	deep	dive

F
fully	qualified	domain	name	(FQDN)	/	Protecting	the	Docker	daemon

G
GitHub

ISSUES	/	GitHub	issues
URL	/	GitHub	issues

Grsecurity	/	Grsecurity
URL	/	Grsecurity

H
Heroku	/	The	two	e-mail	lists	are	as	follows:
Hyper-V	/	Discussing	Docker	host

I
Internet	Relay	Chat	(IRC)

about	/	IRC	rooms

K
Kernel	namespaces	/	Kernel	namespaces

L
LDAP	/	Docker	Subscription
Linux	Kernel	/	Virtualization	and	isolation
Linux	kernel	/	Other	areas	of	interest
Linux	kernel	capabilities	/	Linux	kernel	capabilities
Linux	kernel	hardening,	guides

about	/	Linux	kernel	hardening	guides
SANS	hardening	guide	deep	dive	/	SANS	hardening	guide	deep	dive
URL	/	SANS	hardening	guide	deep	dive
access	controls	/	Access	controls
distributions	/	Distribution	focused

Linux	kernel	hardening,	tools
about	/	Linux	kernel	hardening	tools
Grsecurity	/	Grsecurity
Lynis	/	Lynis

Logspout	/	Logspout
URL	/	Logspout

Lynis
about	/	Lynis
URL	/	Lynis

M
mailing	lists

about	/	Mailing	lists
URL	/	Mailing	lists

Mandatory	Access	Controls	(MAC)	/	Access	controls
Microsoft	Azure	/	Installation

N
namespaces	/	Virtualization	and	isolation
Notary

about	/	Docker	Content	Trust
URL	/	Docker	Content	Trust	components,	Signing	images

O
OpenSSL	/	Securing	Docker	Trusted	Registry
Openwall	hardened	Linux

URL	/	SANS	hardening	guide	deep	dive
Openwall	Linux

URL	/	SANS	hardening	guide	deep	dive
Owlwall	/	Distribution	focused

P
PaX	/	SANS	hardening	guide	deep	dive

URL	/	SANS	hardening	guide	deep	dive

R
responsible	disclosure

URL	/	Responsible	disclosure
about	/	Responsible	disclosure

Role-Based	Access	Controls	/	Access	controls
Rule	Set	Based	Access	Controls	(RSBAC)	/	Access	controls

S
SANS	Technology	Institute	Leadership	Lab

URL	/	Linux	kernel	hardening	guides
security

about	/	Docker	security	–	best	practices,	Keeping	up	with	security
best	practices	/	Docker	–	best	practices
monitoring	/	Docker	security	monitoring
reporting	/	Docker	security	reporting
e-mail	list,	options	/	E-mail	list	options
GitHub,	issues	/	GitHub	issues
IRC	rooms	/	IRC	rooms
CVE	websites	/	CVE	websites

security,	fundamentals
about	/	Docker	security	fundamentals
Kernel	namespaces	/	Kernel	namespaces
control	groups	/	Control	groups
Linux	kernel	capabilities	/	Linux	kernel	capabilities

security,	reporting
responsible	disclosure	/	Responsible	disclosure
about	/	Security	reporting

security,	resources
about	/	Additional	Docker	security	resources
Docker	Notary	/	Docker	Notary
hardware	signing	/	Hardware	signing
materials,	reading	/	Reading	materials
Awesome	Docker	/	Awesome	Docker

Security-Enhanced	Linux	(SELinux)	/	Securing	Docker	hosts
SELinux

and	AppArmor	/	SELinux	and	AppArmor
URL	/	SELinux	and	AppArmor,	Access	controls

/	sVirt	and	SELinux
Shipyard	/	Shipyard

URL	/	Shipyard
Summon	/	Summon
sVirt	/	sVirt	and	SELinux
Swarm	/	Using	TLS

T
The	Update	Framework	(TUF)	/	Docker	Content	Trust	components

URL	/	Docker	Content	Trust	components
third-party	tools

about	/	Third-party	tools
traffic	authorization	/	Traffic	Authorization
summon	/	Summon
sVirt	/	sVirt	and	SELinux
SELinux	/	sVirt	and	SELinux
other	/	Other	third-party	tools
dockersh	/	dockersh
DockerUI	/	DockerUI
Shipyard	/	Shipyard
Logspout	/	Logspout

TLS
using	/	Using	TLS

tools
about	/	Docker	tools
TLS,	using	/	Using	TLS
read-only	containers	/	Read-only	containers

traffic	authorization	/	Traffic	Authorization
URL	/	Traffic	Authorization

Transport	Layer	Security	(TLS)
URL	/	Protecting	the	Docker	daemon

V
VM	host	/	Discussing	Docker	host
VMware	ESXi	/	Discussing	Docker	host

Y
YubiKeys

URL	/	Hardware	signing

	Securing Docker
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Securing Docker Hosts
	Docker host overview
	Discussing Docker host
	Virtualization and isolation
	Attack surface of Docker daemon
	Protecting the Docker daemon
	Securing Docker hosts
	Docker Machine
	SELinux and AppArmor
	Auto-patching hosts
	Summary
	2. Securing Docker Components
	Docker Content Trust
	Docker Content Trust components
	Signing images
	Hardware signing
	Docker Subscription
	Docker Trusted Registry
	Installation
	Securing Docker Trusted Registry
	Administering
	Workflow
	Docker Registry
	Installation
	Configuration and security
	Summary
	3. Securing and Hardening Linux Kernels
	Linux kernel hardening guides
	SANS hardening guide deep dive
	Access controls
	Distribution focused
	Linux kernel hardening tools
	Grsecurity
	Lynis
	Summary
	4. Docker Bench for Security
	Docker security – best practices
	Docker – best practices
	CIS guide
	Host configuration
	Docker daemon configuration
	Docker daemon configuration files
	Container images/runtime
	Docker security operations
	The Docker Bench Security application
	Running the tool
	Running the tool – host configuration
	Running the tool – Docker daemon configuration
	Running the tool – Docker daemon configuration files
	Running the tool – container images and build files
	Running the tool – container runtime
	Running the tool – Docker security operations
	Understanding the output
	Understanding the output – host configuration
	Understanding the output – the Docker daemon configuration
	Understanding the output – the Docker daemon configuration files
	Understanding the output – container images and build files
	Understanding the output – container runtime
	Understanding the output – Docker security operations
	Summary
	5. Monitoring and Reporting Docker Security Incidents
	Docker security monitoring
	Docker CVE
	Mailing lists
	Docker security reporting
	Responsible disclosure
	Security reporting
	Additional Docker security resources
	Docker Notary
	Hardware signing
	Reading materials
	Awesome Docker
	Summary
	6. Using Docker's Built-in Security Features
	Docker tools
	Using TLS
	Read-only containers
	Docker security fundamentals
	Kernel namespaces
	Control groups
	Linux kernel capabilities
	Containers versus virtual machines
	Summary
	7. Securing Docker with Third-party Tools
	Third-party tools
	Traffic Authorization
	Summon
	sVirt and SELinux
	Other third-party tools
	dockersh
	DockerUI
	Shipyard
	Logspout
	Summary
	8. Keeping up Security
	Keeping up with security
	E-mail list options
	The two e-mail lists are as follows:
	GitHub issues
	IRC rooms
	CVE websites
	Other areas of interest
	Summary
	Index

