- -

m. = |

J..l_.,_h.h_n (1111
ma e =

& . -4 .

k] —
|| —— g .

p your

| EmET wREERsss W T,
5 (| SEEE mumez-- —WE 2T
— s S o] - |‘ > —

e,

e FENEEREEN =

M

i TN I .

arn how to secure your Docker environment and kee

environments secure irrespective of the threats out th

2

Securing Docker

L

PACKT

Securing Docker

Table of Contents

Securing Docker
Credits

About the Author

About the Reviewer

www.PacktPub.com

eBooks, discount offers, and more

Why subscribe?

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions
Reader feedback
Customer support
Errata
Piracy
Questions

1. Securing Docker Hosts

Docker host overview

Discussing Docker host

Virtualization and isolation

Attack surface of Docker daemon

Protecting the Docker daemon

Securing Docker hosts

Docker Machine

SELinux and AppArmor

Auto-patching hosts
Summary

2. Securing Docker Components

Docker Content Trust

Docker Content Trust components
Signing images
Hardware signing
Docker Subscription
Docker Trusted Registry
Installation
Securing Docker Trusted Registry
Administering
Workflow

Docker Registry
Installation
Configuration and security
Summary
3. Securing and Hardening Linux Kernels
Linux kernel hardening guides
SANS hardening guide deep dive

Access controls

Distribution focused

Linux kernel hardening tools

Grsecurity
Lynis
Summary
4. Docker Bench for Security

Docker security — best practices

Docker — best practices

CIS guide

Host configuration

Docker daemon configuration

Docker daemon configuration files

Container images/runtime

Docker security operations

The Docker Bench Security application

Running the tool
Running the tool — host configuration
Running the tool — Docker daemon configuration
Running the tool — Docker daemon configuration files
Running the tool — container images and build files
Running the tool — container runtime
Running the tool — Docker security operations

Understanding the output
Understanding the output — host configuration
Understanding the output — the Docker daemon configuration
Understanding the output — the Docker daemon configuration files
Understanding the output — container images and build files
Understanding the output — container runtime
Understanding the output — Docker security operations

Summary
5. Monitoring and Reporting Docker Security Incidents

Docker security monitoring

Docker CVE
Mailing lists

Docker security reporting

Responsible disclosure

Security reporting

Additional Docker security resources

Docker Notary

Hardware signing

Reading materials

Awesome Docker

Summary

6. Using Docker’s Built-in Security Features

Docker tools

Using TLS
Read-only containers

Docker security fundamentals

Kernel namespaces
Control groups
Linux kernel capabilities
Containers versus virtual machines
Summary
7. Securing Docker with Third-party Tools
Third-party tools

Traffic Authorization
Summon

sVirt and SELinux

Other third-party tools

dockersh

DockerUI

Shipyard
Logspout

Summary
8. Keeping up Security

Keeping up with security

E-mail list options

The two e-mail lists are as follows:

GitHub issues

IRC rooms

CVE websites

Other areas of interest

Summary

Index

Securing Docker

Securing Docker
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016
Production reference: 1230316
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-885-4

www.packtpub.com

http://www.packtpub.com

Credits

Author

Scott Gallagher
Reviewer

Harald Albers
Commissioning Editor
Priya Singh
Acquisition Editor
Prachi Bisht

Content Development Editor
Arshiya Ayaz Umer
Technical Editor
Suwarna Patil

Copy Editor

Vibha Shukla

Project Coordinator
Shweta H Birwatkar
Proofreader

Safis Editing

Indexer

Monica Ajmera Mehta
Graphics

Disha Haria
Production Coordinator
Nilesh Mohite

Cover Work

Nilesh Mohite

About the Author

Scott Gallagher has been fascinated with technology since he was in elementary school,
when he used to play Oregon Trail. His love continued through middle school, working on
more Apple Ile computers. In high school, he learned how build computers and program
in BASIC! His college years were all about server technologies such as Novell, Microsoft,
and Red Hat. After college, he continued to work on Novell, all while keeping an interest
in all the technologies. He then moved into managing Microsoft environments and
eventually into what he is the most passionate about, Linux environments, and now his
focus is on Docker and cloud environments.

I would like to thank my family for the support they have given me, not only throughout
the work on this book, but throughout my life and career. I would like to thank my wife,
who is my soulmate, the love of my life, and the most important person in my life and the
reason I push myself to be the best I can be each day. I would also like to thank my kids,
who are the most amazing kids in this world, for being able to watch them grow each day;
I truly am blessed. Finally, I would like to thank my parents, who have helped me become
the person I am today.

About the Reviewer

Harald Albers works as a Java developer and security engineer in Hamburg, Germany.

In addition to developing distributed web applications, he also sets up and maintains the
build infrastructure, staging, and production environments for these applications.

Most of his work is only possible because of Docker’s simple and elegant solutions for the
challenges of provisioning, deployment, and orchestration.

He started using Docker and contributing to the Docker project in mid-2014. He is a
member of the Docker Governance Advisory Board, 2015-2016.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Preface

Docker is the hottest buzzword in technology these days! This book helps you to ensure
that you are securing all the pieces in the Docker ecosystems of tools. Keeping your data
and systems safe is of utmost importance these days, and with Docker, it’s the same
exception. Learn how Docker is inherently secure and how to secure the pieces around it
even more and be on the lookout for potential vulnerabilities as they take place.

What this book covers

Chapter 1, Securing Docker Hosts, starts off the book by discussing how to secure the first
part of getting your Docker environment up and running, and that is by focusing on your
Docker hosts. The Docker hosts are the platform that your containers will run on. Without
securing these first, it’s like leaving the front door to your house wide open.

Chapter 2, Securing Docker Components, focuses on securing the components of Docker,
such as the registry you can use, the containers that run on your hosts, and how to sign
your images.

Chapter 3, Securing and Hardening Linux Kernels, explains hardening guides that are out
there as well as different security measures/methods you can use to help secure the kernel
that is being used to run your containers as it’s important to secure it.

Chapter 4, Docker Bench for Security, informs how well you have set up your Docker
environment with the Docker Bench Security application, get recommendations for where
you should focus your efforts to fix right away, and what you don’t really have to fix right
now, but should keep yourself aware of.

Chapter 5, Monitoring and Reporting Docker Security Incidents, covers how to stay on top
of the items that Docker has released regarding the security findings to help keep you
aware of your environments. Also, we will take a look at how to safely report any security
findings you come across to ensure that Docker has a chance to alleviate the concern
before it becomes public and widespread.

Chapter 6, Using Docker’s Built-in Security Features, introduces the use of Docker tools
to help secure your environment. We will go over all of them to give you a baseline of
what you can use that is provided by Docker itself. You can learn what command-line and
GUI tools you can use for your security needs.

Chapter 7, Securing Docker with Third-party Tools, covers the third-party tools that are
out there to help you keep your Docker environment secure. You will learn about
command line, but we’ll focus on third-party tools. We will take a look at traffic
authorization, summon, and sVirt with SELinux.

Chapter 8, Keeping up on Security, explains the means that you can use to keep up to date
with Docker-related security issues that are out there for the version of the Docker tools
you might be running now, how to stay ahead of any security issues, and keep your
environments secure even with threats out there.

What you need for this book

The book will walk you through the installation of any tools that you will need. You will
need a system with Windows, Mac OS, or Linux installed; preferably, the latter one, as
well as an Internet connection.

Who this book is for

This book is intended for those developers who will be using Docker as their testing
platform as well as security professionals who are interested in securing Docker
containers. Readers must be familiar with the basics of Docker.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “You
will need pass phrase you entered earlier for ca-key.pem.”

Any command-line input or output is written as follows:

$ docker run -it scottpgallagher/chef-server /bin/bash

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: “The next section,
Security settings, is probably one of the most important ones.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Securing Docker Hosts

Welcome to the Securing Docker book! We are glad you decided to pick up the book and
we want to make sure that the resources you are using are being secured in proper ways to
ensure system integrity and data loss prevention. It is also important to understand why
you should care about the security. If data loss prevention doesn’t scare you already,
thinking about the worst possible scenario—a full system compromise and the possibility
of your secret designs being leaked or stolen by others—might help to reinforce security.
Throughout this book, we will be covering a lot of topics to help get your environment set
up securely so that you can begin to start deploying containers with peace of mind
knowing that you took the right steps in the beginning to fortify your environment. In this
chapter, we will be taking a look at securing Docker hosts and will be covering the
following topics:

Docker host overview

Discussing Docker host
Virtualization and isolation
Attack surface of Docker daemon
Securing Docker hosts

Docker Machine

SELinux and AppArmor
Auto-patching hosts

Docker host overview

Before we get in depth and dive in, let’s first take a step back and review exactly what the
Docker host is. In this section, we will look at the Docker host itself to get an
understanding of what we are referring to when we are talking about the Docker host. We
will also be looking at the virtualization and isolation techniques that Docker uses to
ensure security.

Discussing Docker host

When we think of a Docker host, what comes to our mind? If you put it in terms of virtual
machines that almost all of us are familiar with, let’s take a look at how a typical VM host
differs from a Docker host. A VM host is what the virtual machines actually run on top of.
Typically, this is something like VMware ESXi if you are using VMware or Windows
Server if you are using Hyper-V. Let’s take a look at how they are as compared so that
you can get a visual representation of the two, as shown in the following diagram:

VM Host Docker Host
VM Container
VM Container
VM Container

The preceding image depicts the similarities between a VM hest and Docker host. As
stated previously, the host of any service is simply the system that the underlying virtual
machines or containers in Docker run on top of. Therefore, a host is the operating system
or service that contains and operates the underlying systems that you install and set up a
service on, such as web servers, databases, and more.

Virtualization and isolation

To understand how Docker hosts can be secured, we must first understand how the
Docker host is set up and what items are contained in the Docker host. Again, like VM
hosts, they contain the operating system that the underlying service operates on. With
VMs, you are creating a whole new operating system on top of this VM heost operating
system. However, on Docker, you are not doing that and are sharing the Linux Kernel
that the Docker host is using. Let’s take a look at the following diagram to help us
represent this:

VM Host Docker Host
| Hypervisor | | Hypervisor]
| Hostos | | Linux Kernel |
AR
VM1 + Libs + OS

App A ‘ App B

| VM1 +Libs+0S |

Bin/Libs Bin/Libs

| VM1 + Libs + OS

As we can see from the preceding image, there is a distinct difference between how items
are set up on a VM host and on a Docker host. On a VM host, each virtual machine has
all of its own items inclusive to itself. Each containerized application brings its own set of
libraries, whether it is Windows or Linux. Now, on the Docker host, we don’t see that. We
see that they share the Linux Kernel version that is being used on the Docker host. That
being said, there are some security aspects that need to be addressed on the Docker host
side of things. Now, on the VM host side, if someone does compromise a virtual machine,
the operating system is isolated to just that one virtual machine. Back on the Docker host
side of things, if the kernel is compromised on the Docker host, then all the containers
running on that host are now at high risk as well.

So, now you should see how important it is that we focus on security when it comes to
Docker hosts. Docker hosts do use some isolation techniques that will help protect against
kernel or container compromises in a few ways. Two of these ways are by implementing
namespaces and cgroups. Before we can discuss how they help, let’s first give a
definition for each of them.

Kernel namespaces, as they are commonly known as, provide a form of isolation for the
containers that will be running on your hosts. What does this mean? This means that each
container that you run on top of your Docker hosts will be given its own network stack so
that it doesn’t get privileged access to another container’s socket or interfaces. However,
by default, all Docker containers are sitting on the bridged interface so that they can

communicate with each other easily. Think of the bridged interface as a network switch
that all the containers are connected to.

Namespaces also provide isolation for processes and mount isolation. Processes running in
one container can’t affect or even see processes running in another Docker container.
Isolation for mount points is also on a container by container basis. This means that mount
points on one container can’t see or interact with mount points on another container.

On the other hand, control groups are what control and limit resources for containers that
will be running on top of your Docker hosts. What does this boil down to, meaning how
will it benefit you? It means that cgroups, as they will be called going forward, help each
container get its fair share of memory disk I/O, CPU, and much more. So, a container
cannot bring down an entire host by exhausting all the resources available on it. This will
help to ensure that even if an application is misbehaving that the other containers won’t be
affected by this application and your other applications can be assured uptime.

Attack surface of Docker daemon

While Docker does ease some of the complicated work in the virtualization world, it is
easy to forget to think about the security implications of running containers on your
Docker hosts. The largest concern you need to be aware of is that Docker requires root
privileges to operate. For this reason, you need to be aware of who has access to your
Docker hosts and the Docker daemon as they will have full administrative access to all
your Docker containers and images on your Docker host. They can start new containers,
stop existing ones, remove images, pull new images, and even reconfigure running
containers as well by injecting commands into them. They can also extract sensitive
information like passwords and certificates from the containers. For this reason, make sure
to also separate important containers if you do need to keep separate controls on who has
access to your Docker daemon. This is for containers where people have a need for access
to the Docker host where the containers are running. If a user needs API access then that is
different and separation might not be necessary. For example, keep containers that are
sensitive on one Docker host, while keeping normal operation containers running on
another Docker host and grant permissions for other staff access to the Docker daemon on
the unprivileged host. If possible, it is also recommended to drop the setuid and setgid
capabilities from containers that will be running on your hosts. If you are going to run
Docker, it’s recommended to only use Docker on this server and not other applications.
Docker also starts containers with a very restricted set of capabilities, which works in your
favor to address security concerns.

Note

To drop the setuid or setgid capabilities when you start a Docker container, you will need
to do something similar to the following:

$ docker run -d --cap-drop SETGID --cap-drop SETUID nginx

This would start the nginx container and would drop the SETGID and SETUID capabilities
for the container.

Docker’s end goal is to map the root user to a non-root user that exists on the Docker host.
They also are working towards allowing the Docker daemon to run without requiring root
privileges. These future improvements will only help facilitate how much focus Docker
does take when they are implementing their feature sets.

Protecting the Docker daemon

To protect the Docker daemon even more, we can secure the communications that our
Docker daemon is using. We can do this by generating certificates and keys. There are are
few terms to understand before we dive into the creation of the certificates and keys. A
Certificate Authority (CA) is an entity that issues certificates. This certificate certifies
the ownership of the public key by the subject that is specified in the certificate. By doing
this, we can ensure that your Docker daemon will only accept communication from other
daemons that have a certificate that was also signed by the same CA.

Now, we will be looking at how to ensure that the containers you will be running on top of
your Docker hosts will be secure in a few pages; however, first and foremost, you want to
make sure the Docker daemon is running securely. To do this, there are some parameters
you will need to enable for when the daemon starts. Some of the things you will need
beforehand will be as follows:

1. Create a CA.

$ openssl genrsa -aes256 -out ca-key.pem 4096
Generating RSA private key, 4096 bit long modulus

e is 65537 (0x10001)
Enter pass phrase for ca-key.pem:
Verifying - Enter pass phrase for ca-key.pem:

You will need to specify two values, pass phrase and pass phrase. This needs to be
between 4 and 1023 characters. Anything less than 4 or more than 1623 won’t be
accepted.

$ openssl req -new -x509 -days <number_of_days> -key ca-key.pem -sha256
-out ca.pem

Enter pass phrase for ca-key.pem:

You are about to be asked to enter information that will be
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a
DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Pennsylvania

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

There are a couple of items you will need. You will need pass phrase you entered
earlier for ca-key.pem. You will also need the Country, State, city, Organization
Name, Organizational Unit Name, fully qualified domain name (FQDN), and
Email Address to be able to finalize the certificate.

2. Create a client key and signing certificate.

$ openssl genrsa -out key.pem 4096
$ openssl req -subj '/CN=<client_DNS_name>' -new -key key.pem -out
client.csr

3. Sign the public key.

$ openssl x509 -req -days <number_of_days> -sha256 -in client.csr -CA
ca.pem -CAkey ca-key.pem -CAcreateserial -out cert.em

4. Change permissions.

$ chmod -v 0400 ca-key.pem key.pem server-key.em
$ chmod -v 0444 ca.pem server-cert.pem cert.em

Now, you can make sure that your Docker daemon only accepts connections from the
other Docker hosts that you provide the signed certificates to:

$ docker daemon --tlsverify --tlscacert=ca.pem --tlscert=server-
certificate.pem --tlskey=server-key.pem -H=0.0.0.0:2376

Make sure that the certificate files are in the directory you are running the command from
or you will need to specify the full path to the certificate file.

On each client, you will need to run the following:

$ docker --tlsverify --tlscacert=ca.pem --tlscert=cert.pem --tlskey=key.pem
-H=<$DOCKER_HOST>:2376 version

Again, the location of the certificates is important. Make sure to either have them in a
directory where you plan to run the preceding command or specify the full path to the
certificate and key file locations.

You can read more about using Transport Layer Security (TLS) by default with your
Docker daemon by going to the following link:

http://docs.docker.com/engine/articles/https/

For more reading on Docker Secure Deployment Guidelines, the following link provides
a table that can be used to gain insight into some other items you can utilize as well:

https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines
Some of the highlights from that website are:

Collecting security and audit logs

Utilizing the privileged switch when running Docker containers
Device control groups

Mount points

http://docs.docker.com/engine/articles/https/
https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines

e Security audits

Securing Docker hosts

Where do we start to secure our hosts? What tools do we need to start with? We will take a
look at using Docker Machine in this section and how to ensure the hosts that we are
creating are being created in a secure manner. Docker hosts are like the front door of your
house, if you don’t secure them properly, then anybody can just walk right in. We will also
take a look at Security-Enhanced Linux (SELinux) and AppArmor to ensure that you
have an extra layer of security on top of the hosts that you are creating. Lastly, we will
take a look at some of the operating systems that support and do auto patching of their
operating systems when a security vulnerability is discovered.

Docker Machine

Docker Machine is the tool that allows you to install the Docker daemon onto your virtual
hosts. You can then manage these Docker hosts with Docker Machine. Docker Machine
can be installed either through the Docker Toolbox on Windows and Mac. If you are
using Linux, you will install Docker Machine through a simple curl command:

$ curl -L
https://github.com/docker/machine/releases/download/v0.6.0/docker-machine-
“uname -s - uname -m- > /usr/local/bin/docker-machine && \

$ chmod +x /usr/local/bin/docker-machine

The first command installs Docker Machine into the /usr/local/bin directory and the
second command changes the permissions on the file and sets it to executable.

We will be using Docker Machine in the following walkthrough to set up a new Docker
host.

Docker Machine is what you should be or will be using to set up your hosts. For this
reason, we will start with it to ensure your hosts are set up in a secure manner. We will
take a look at how you can tell if your hosts are secure when you create them using the
Docker Machine tool. Let’s take a look at what it looks like when you create a Docker
host using Docker Machine, as follows:

$ docker-machine create --driver virtualbox host1l

Running pre-create checks..

Creating machine..

Waiting for machine to be running, this may take a few minutes..
Machine is running, waiting for SSH to be available..

Detecting operating system of created instance..

Provisioning created instance..

Copying certs to the local machine directory..

Copying certs to the remote machine..

Setting Docker configuration on the remote daemon..

From the preceding output, as the create is running, Docker Machine is doing things such
as creating the machine, waiting for SSH to become available, performing actions,
copying the certificates to the correct location, and setting up the Docker configuration,
we will see how to connect Docker to this machine as follows:

$ docker-machine env host1l

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://192.168.99.100:2376"

export
DOCKER_CERT_PATH="/Users/scottpgallagher/.docker/machine/machines/host1"
export DOCKER_MACHINE_NAME="host1"

Run this command to configure your shell:

eval "$(docker-machine env host1)"

The preceding command output shows the commands that were run to set this machine up

as the one that Docker commands will now run against:

eval "$(docker-machine env host1)"

We can now run the regular Docker commands, such as docker info, and it will return
information from host1, now that we have set it as our environment.

We can see from the preceding highlighted output that the host is being set up securely
from the start from two of the export lines. Here is the first highlighted line by itself:

export DOCKER_TLS_VERIFY="1"

From the other highlighted output, DOCKER_TLS_VERIFY is being set to 1 or true. Here is
the second highlighted line by itself:

export DOCKER_HOST="tcp://192.168.99.100:2376"

We are setting the host to operate on the secure port of 2376 as opposed to the insecure
port of 2375.

We can also gain this information by running the following command:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL SWARM
host1 * virtualbox Running
tcp://192.168.99.100:2376

Make sure to check the TLS switch options that can be used with Docker Machine if you
have used the previous instructions to set up your Docker hosts and Docker containers to
use TLS. These switches would be helpful if you have existing certificates that you want
to use as well. These switches can be found in the highlighted section by running the
following command:

$ docker-machine --help

Options:

--debug, -D Enable debug mode

-s, --storage-path "/Users/scottpgallagher/.docker/machine"
Configures storage path [SMACHINE_STORAGE_PATH]

--tls-ca-cert CA to verify remotes against [$MACHINE_TLS_CA_CERT]

--tls-ca-key Private key to generate certificates
[$MACHINE_TLS_CA_KEY]

--tls-client-cert Client cert to use for TLS
[SMACHINE_TLS_CLIENT_CERT]

--tls-client-key Private key used in client TLS auth
[SMACHINE_TLS_CLIENT_KEY]

--github-api-token Token to use for requests to the Github API
[SMACHINE_GITHUB_API_TOKEN]

--native-ssh Use the native (Go-based) SSH implementation.
[$MACHINE_NATIVE_SSH]

--help, -h show help

--version, -v print the version

You can also regenerate TLS certificates for a machine using the regenerate-certs
subcommand in the event that you want that peace of mind or that your keys do get

compromised. An example command would look similar to the following command:
$ docker-machine regenerate-certs hostl

Regenerate TLS machine certs? Warning: this is irreversible. (y/n): y
Regenerating TLS certificates

Copying certs to the local machine directory..

Copying certs to the remote machine..

Setting Docker configuration on the remote daemon..

SELinux and AppArmor

Most Linux operating systems are based on the fact that they can leverage SELinux or
AppArmor for more advanced access controls to files or locations on the operating
system. With these components, you can limit a container’s ability to execute a program as
the root user with root privileges.

Docker does ship a security model template that comes with AppArmor and Red Hat
comes with SELinux policies as well for Docker. You can utilize these provided templates
to add an additional layer of security on top of your environments.

For more information about SELinux and Docker, I would recommend visiting the
following website:

https://www.mankier.com/8/docker_selinux

While, on the other hand, if you are in the market for some more reading on AppArmor
and Docker, I would recommend visiting the following website:

https://github.com/docker/docker/tree/master/contrib/apparmor

Here you will find a template.go file, which is the template that Docker ships with its
application that is the AppArmor template.

https://www.mankier.com/8/docker_selinux
https://github.com/docker/docker/tree/master/contrib/apparmor

Auto-patching hosts

If you really want to get into advanced Docker hosts, then you could use CoreOS and
Amazon Linux AMI, which perform auto-patching, both in a different way. While
CoreOS will patch your operating system when a security update comes out and will
reboot your operating system, the Amazon Linux AMI will complete the updates when
you reboot. So, when choosing which operating system to use when you are setting up
your Docker hosts, make sure to take into account the fact that both of these operating
systems implement some form of auto-patching, but in a different way. You will want to
make sure you are implementing some type of scaling or failover to address the needs of
something that is running on CoreOS so that there is no downtime when a reboot occurs to
patch the operating system.

Summary

In this chapter, we looked at how to secure our Docker hosts. The Docker hosts are the
first line of defense as they are the starting point where your containers will be running
and communicating with each other and end users. If these aren’t secure, then there is no
purpose of moving forward with anything else. You learned how to set up the Docker
daemon to run securely running TLS by generating the appropriate certificates for both the
host and the clients. We also looked at the virtualization and isolation benefits of using
Docker containers, but make sure to remember the attack surface of the Docker daemon
too.

Other items included how to use Docker Machine to easily create Docker hosts on secure
operating systems with secure communication and ensure that they are being set up using
secure methods when you use it to set up your containers. Using items such as SELinux
and AppArmor also help to improve your security footprint as well. Lastly, we covered
some Docker host operating systems that you can use for auto-patching as well, such as
CoreOS and Amazon Linux AMI.

In the next chapter, we will be looking at securing the components of Docker. We will
focus on securing the components of Docker such as the registry you can use, containers
that run on your hosts, and how to sign your images.

Chapter 2. Securing Docker Components

In this chapter, we will be taking a look at securing some Docker components using things
such as image signing tools. There are tools that will help secure the environments where
we are storing our images, whether they are signed or not. We will also look at using tools
that come with commercial level support. Some of the tools (image signing and
commercial level support tools) we will be looking at are:

¢ Docker Content Trust: Software that can be used to sign your images. We will look
at all the components and go through an example of signing an image.

e Docker Subscription: Subscription is an all inclusive package that includes a
location to store your images, and Docker Engine to run your containers, all while
providing commercial level support for all those pieces, plus for the applications and
their life cycle that you plan to use.

¢ Docker Trusted Registry (DTR): Trusted Registry gives you a secure location to
store and manage your images either on premises or in the cloud. It also has a lot of
integration into your current infrastructure as well. We will take a look at all the
pieces available.

Docker Content Trust

Docker Content Trust is a means by which you can securely sign your Docker images that
you have created to ensure that they are from who they say they are from, that being you!
In this section, we will take a look at the components of Notary as well as an example of
signing images. Lastly, we will take a peek at the latest means of using Notary with
regards to hardware signing capabilities that are now available. It is a very exciting topic,
so let’s dive in head first!

Docker Content Trust components

To understand how Docker Content Trust works it is beneficial to be familiar with all the
components that make up its ecosystem.

The first part of that ecosystem is The Update Framework (TUF) piece. TUF, as we will
refer to it from now on, is the framework that Notary is built upon. TUF solves the
problem with software update systems in that they can often be hard to manage. It enables
users to ensure that all applications are secure and can survive any key compromises.
However, if an application is insecure by default, it won’t help to secure that application
until it has been brought up to a secure compliance. It also enables trusted updates over
untrusted sources and much more. To learn more about TUF, please visit the website:

http://theupdateframework.com/

The next piece of the Content Trust ecosystem is that of Notary. Notary is the key
underlying piece that does the actual signing using your keys. Notary is open source
software, and can be found here:

https://github.com/docker/notary

This has been produced by those at Docker for the use of publishing and verifying content.
Notary consists of a server piece as well as a client piece. The client piece resides on your
local machine and handles the storing of the keys locally as well as the communication
back with the Notary server to match up timestamps as well.

Basically, there are three steps to the Notary server.

1. Compile the server
2. Configure the server
3. Run the server

Since the steps may change in the future, the best location for that information would be
on the GitHub page for Docker Notary. For more information about compiling and setting
up the server side of Notary, please visit:

https://github.com/docker/notary#compiling-notary-server

Docker Content Trust utilizes two distinct keys. The first is that of a tagging key. The
tagging key is generated for every new repository that you publish. These are keys that
can be shared with others and exported to those who need the ability to sign content on
behalf of the registry. The other key, the offline key, is the important key. This is the key
that you want to lock away in a vault and never share with anyone...ever! Like the name
implies, this key should be kept offline and not stored on your machine or anything on a
network or cloud storage. The only times you need the offline key are if you are rotating it
out for a new one or if you are creating a new repository.

So, what does all this mean and how does it truly benefit you? This helps in protecting
against three key, no pun intended, scenarios.

http://theupdateframework.com/
https://github.com/docker/notary
https://github.com/docker/notary#compiling-notary-server

e Protects against image forgery, for instance if someone decides to pretend one of your
images is from you. Without that person being able to sign that image with the
repository specific key, remember the one you are to keep offline!, they won’t be able
to pass it off as actually coming from you.

e Protects against replay attacks; replay attacks are ones in which a malicious user tries
to pass off an older version of an application, which has been compromised, as the
latest legitimate version. Due to the way timestamps are utilized with Docker Content
Trust, this will ultimately fail and keep you and your users safe.

e Protects against key compromise. If a key is compromised, you can utilize that
offline key to do a key rotation. That key rotation can only be done by the one with
the offline key. In this scenario, you will need to create a new key and sign it with
your offline key.

The major take away from all of this is that the offline key is meant to be kept offline.
Never store it on your cloud storage, on GitHub, or even a system that is always connected
to the Internet such as that of your local machine. It would be best practice to store it on a
thumb drive that is encrypted and keep that thumb drive stored in a a secure location.

To learn more about Docker Content Trust, please visit the following blog post:

http://blog.docker.com/2015/08/content-trust-docker-1-8/

http://blog.docker.com/2015/08/content-trust-docker-1-8/

Signing images

Now that we have covered all the components of Docker Content Trust, let’s take a look at
how we can sign an image and what all steps are involved. These instructions are just for
development purposes. If you are going to want to run a Notary server in production, you
will want to use your own database and compile Notary yourself using the instructions at
their website:

https://github.com/docker/notary#compiling-notary-server

This will allow you to use your own keys for your situation to your own backend registry.
If you are using the Docker Hub, it is very simple to use Docker Content Trust.

$ export DOCKER_CONTENT_TRUST=1

The most important piece is that you need to put a tag on all images you push, which we
see in the next command:

$ docker push scottpgallagher/ubuntu:latest

The push refers to a repository [docker.io/scottpgallagher/ubuntu] (len: 1)
f50e4a66df18: Image already exists

a6785352b25c: Image already exists

0998bf8fh9e9: Image already exists

0a85502c06c9: Image already exists

latest: digest:
sha256:98002698c8d868b03708880ad2e1d36034c79a6698044b495ac34c4cl6eacd57
size: 8008

Signing and pushing trust metadata

You are about to create a new root signing key passphrase. This passphrase
will be used to protect the most sensitive key in your signing system.
Please

choose a long, complex passphrase and be careful to keep the password and
the

key file itself secure and backed up. It is highly recommended that you use
a

password manager to generate the passphrase and keep it safe. There will be
no

way to recover this key. You can find the key in your config directory.
Enter passphrase for new root key with id d792b7a:

Repeat passphrase for new root key with id d792b7a:

Enter passphrase for new repository key with id
docker.io/scottpgallagher/ubuntu (46a967e):

Repeat passphrase for new repository key with id
docker.io/scottpgallagher/ubuntu (46a967e¢):

Finished initializing "docker.io/scottpgallagher/ubuntu"

The most important line from the code above is:

latest: digest:
sha256:98002698c8d868h03708880ad2e1d36034c79a6698044bh495ac34c4cl6eacd57
size: 8008

This gives you the SHA hash that is used to verify the image is what it says it is and not
created by someone else, as well as its size. This will be used later when someone goes to

https://github.com/docker/notary#compiling-notary-server

run that image/container.

If you were to do a docker pull from a machine that doesn’t have this image, you can see
it has been signed with that hash.

$ docker pull scottpgallagher/ubuntu

Using default tag: latest

latest: Pulling from scottpgallagher/ubuntu

Digest:
sha256:98002698c8d868b03708880ad2e1d36034c79a6698044b495ac34c4cl6eacd57
Status: Downloaded newer image for scottpgallagher/ubuntu:latest

Again, we see the SHA value being presented when we do the pull command.

So, what this means is when you go to run this container, it won’t run locally without first
comparing the local hash to that on the registry server to ensure it hasn’t changed. If they
match, it will run, if they don’t match, it won’t run and will give you an error message
about the hashes not matching.

With the Docker Hub you aren’t essentially signing images with your own key, unless you
manipulate the keys that are in your ~/.docker/trust/trusted-certificates/
directory. Remember that, by default, when you install Docker you are given a set of
certificates that you can use.

Hardware signing

Now that we have looked at being able to sign images, which other security measure have
been put in place to help make that process even more secure? Enter YubiKeys! YubiKeys
is a form of two factor authentication that you can utilize. The way YubiKey works is that
it has the root key on it, built into the hardware. You enable Docker Content Trust, then
push your image. Upon using your image, Docker notes that you have enabled Content
Trust and asks you to touch the YubiKey, yes, physically touch it. This is to ensure that
you are a person and not a robot or just a script. You then need to provide a passphase to
use and then, once again, touch the YubiKey. Once you have done this, you won’t need the
YubiKey anymore, but you will need that passphrase that you assigned earlier.

My description of this really doesn’t do it justice. At DockerCon Europe 2015

(http://europe-2015.dockercon.com), there was a great play-by-play of this in operation
between two Docker employees, Aanand Prasad and Diogo Moénica.

To view the video, please visit the following URL.:

https://voutu.be/fL.fFFtOHRZQ?t=1h21m33s

http://europe-2015.dockercon.com
https://youtu.be/fLfFFtOHRZQ?t=1h21m33s

Docker Subscription

Docker Subscription is a service for your distributed applications that will help you
support those applications as well as deploy them. The Docker Subscription package
includes two critical software pieces and a support piece:

e Docker Registry — where you store and manage your images (locally hosted or
hosted in the cloud)

e The Docker Engine — to run those images

¢ Docker Universal Control Plane (UCP)

e Commercial support — pick up the phone or shoot off an email for some assistance

If you are a developer, sometimes the operations side of things are either a little difficult to
get set up and manage or they require some training to get going. With Docker
Subscription you can off load some of those worries by utilizing the expertise that is out
there with commercial level support. With this support you will get responsive turn around
on your issues. You will receive any hot fixes that are available or have been made
available to patch your solution. Assistance with future upgrades is also part of the added
benefit of choosing the Docker Subscription plan. You will get assistance with upgrading
your environments to the latest and most secure Docker environments.

Pricing is broken down based on where you want to run your environment whether it is on
a server of your choosing or if it’s in a cloud environment. It is also based upon how many
Docker Trusted Registries and/or how many commercially supported Docker Engines you
wish to have as well. All of these solutions provide you with integration into your existing
LDAP or Active Directory environments. With this added benefit, you can use items such
as group policies to manage access to such resources. The last thing that you will have to
decide is how quick a response time you want from the support end. All of those will
result in the price you pay for the subscription service. No matter what you do pay though
the money spent will be well worth it, not only in respect of the peace of mind you will get
but the knowledge you will gain is priceless.

You can also change your plans on a monthly or annual basis as well as upgrade, in
increments of ten, your Docker Engine instances. You can also upgrade in packs of ten the
number of Docker Hub Enterprise instances. Switching between an on premises server
to the cloud, or vice-versa, is also possible.

To break some things down so as to not be confused, the Docker Engine is the core of the
Docker ecosystem. It is the command line tools that you use to run, build, and manage
your containers or images. The Docker Hub Enterprise is the location where you store and
manage your images. These images can be public or made private. We will learn more
about DTR in the next section of this chapter.

For more information about Docker Subscription, please visit the link below. You can sign
up for a free 30 day trial, view subscription plans, and contact sales for additional
assistance or questions. The subscription plans are flexible enough to conform to your
operating environment whether it is something you want support for 24/7 or maybe just

half of that:

https://www.docker.com/docker-subscription

You can also view the breakdown for commercial support here:

https://www.docker.com/support

Bringing this all back to the main topic of the book, Securing Docker, this is by far the
most secure you can get with your Docker environment that you will be using to manage
your images and containers, as well as managing the location they are all stored and run
from. A little extra help never hurts and with this option, a little help will defiantly go a
long way.

The latest part to be added is the Docker Universal Control Plane. The Docker UCP
provides a solution for management of applications and infrastructure that is Dockerized
regardless of where they might be running. This could be running on premises or in the
cloud. You can find out more information about Docker UCP at the following link:

https://www.docker.com/products/docker-universal-control-plane

You can also get a demo of the product using the above URL. Docker UCP is scalable,
easy to set up, and you can manage users and access control through integrations into your
existing LDAP or Active Directory environments.

https://www.docker.com/docker-subscription
https://www.docker.com/support
https://www.docker.com/products/docker-universal-control-plane

Docker Trusted Registry

The DTR is a solution that provides a secure location where you can store and manage
your Docker images either on premises or in the cloud. It also provides some monitoring
to let you get insight into usage so you can tell what kind of load is being passed to it.
DTR, unlike Docker Registry, is not free and does come with a pricing model. As we saw
earlier with Docker Subscription, the pricing plan for DTR is the same. Don’t fret as we
will go over Docker Registry in the next section of the book so you can understand it as
well and have all the options available to you for image storage.

The reason we separate it out into its own section is that there are a lot of moving pieces
involved and it’s critical to understand how they all function not only as a whole to the
Docker Subscription piece, but as it stands by itself, the DTR piece where all your images
are being maintained and stored.

Installation

There are two ways you can install DTR, or rather there are two locations where you can
install DTR. The first is that you can deploy it in house on a server you manage. The other
is deploying it to a cloud provider environment like that of Digital Ocean, Amazon Web
Services (AWS), or Microsoft Azure.

The first part you will need is a license for the DTR. Currently, they do offer a trial license
that you can use, which I highly recommend you do. This will allow you to evaluate the
software on your selected environment without having to fully commit to that
environment. If there is something that you find doesn’t work in a particular environment
or you feel another location may suit you better, you can then switch without having to be
tied to a particular location or having to move your existing environment around to a
different provider or location. If you do choose to use AWS, they do have a pre-baked
Amazon Machine Image (AMI) that you can utilize to get your Trusted Registry set up
much quicker. This avoids having to do it all manually by hand.

Before you can install the Trusted Registry, you first need to have Docker Engine
installed. If you don’t already have it installed, please see the documentation located with
the link below for more information on doing so.

https://docs.docker.com/docker-trusted-registry/install/install-csengine/

You will notice there is a difference in installing the normal Docker Engine from the
Docker CS Engine. The Docker CS Engine stands for commercially supported Docker
Engine. Be sure to check the documentation as the list of recommended or supported
Linux versions are shorter than the regular list for Docker Engine.

If you are installing using the AMI, then please follow the instructions here:

https://docs.docker.com/docker-trusted-registry/install/dtr-ami-byol-launch/

If you are installing on Microsoft Azure, then please follow the instructions here:

https://docs.docker.com/docker-trusted-registry/install/dtr-vhd-azure/

Once you do have Docker Engine installed, it’s time to install the DTR piece. If you are
reading to this point we will be assuming that you aren’t installing to AWS or Microsoft
Azure. If you are using either of those two methods, please see the links from above. The
installation is very straightforward:

$ sudo bash -c '$(sudo docker run docker/trusted-registry install)'’
Note

Note: You may have to remove the sudo options from the above command when running
on Mac OS.

Once this has been run, you can navigate in your browser to the IP address of your Docker
host. You will then be setting the domain name for your Trusted Registry as well applying
the license. The web portal will guide you through the rest of the setup process.

https://docs.docker.com/docker-trusted-registry/install/install-csengine/
https://docs.docker.com/docker-trusted-registry/install/dtr-ami-byol-launch/
https://docs.docker.com/docker-trusted-registry/install/dtr-vhd-azure/

In accessing the portal you can set up authentication through your existing LDAP or
Active Directory environments as well, but this can be done at anytime.

Once that is done, it is time for Securing Docker Trusted Registry, which we will cover in
the next section.

Securing Docker Trusted Registry

Now that we have our Trusted Registry set up, we need to make it secure. Before making
it secure you will need to create an administrator account to be able to perform actions.
Once you have your Trusted Registry up and running, and are logged into it, you will be
able to see six areas under Settings. These are:

General settings
Security settings
Storage settings
License

Auth settings
Updates

The General settings are mainly focused around settings such as HT'TP port or HTTPS
port, the Domain name to be used for your Trusted Registry, and proxy settings, if
applicable.

"'I TRUSTED REGISTRY Dashboard Sewings SArCh & anomymous_sderin

Settigs

Gunaral Swcurity storage Licansn Auth Garbayu cslactizn Update

General settings bo configure domains and ports. Mote that the domaln rame |3 the only required field.

Domain name
Rquined. Thi fully gualfied demain nars acsigod e the Trustad

Segatry host, Defauks tn an empty sring

HTTFP port

Used as the eniry point for the Image storage service. Defult: 20 an

HTTPS port

Used 35 the Secure entry oint for he image Sorage senice. T
rafault 443

HTTP oy

Pray senser far socermal HTTP raquests

HTTFS proxy

“ruxy senser for ectermal HTTPS requesis.

No proxy
Fromy bypass for HTTRSS requests

MNotary Server (experimental feature)

SioLary Server url Mot that for Moary Signabunes 1o show up in thi
Trusted Registry LA you st use the same domain name shen
pu=ning a5 the domain narme configured im Trusted Bepetny, Ex
RIS T2 7 AL ;8443

MNotary Verify TLS (experimental feature)

Wt or Pk B vanify Ehal the TLS certificate i valid for the
Miotary server. This s necessary for production emdrmnmenes

Notary TLS Root CA [experimental feature)
The TLS certificate of the Certficate Authority used to verfy Nobarg's
certificate {If not already In operating system's CA, stone),

Update checking
Disabie cutisound connections for update checks, I disabled you

will not be notified when important updates are 2valiable. Upgrades enabled

The next section, Security settings, is probably one of the most important ones. Within
this Dashboard pane you are able to utilize your SSL Certificate and SSL Private Key.
These are what make the communication between your Docker clients and the Trusted
Registry secure. Now, there are a few options for those certificates. You can use the self
signed ones that are created when installing the Trusted Registry. You can also do self
signed ones of your own, using a command line tool such as OpenSSL. If you are in an
enterprise organization, they more than likely have a location where you can request
certificates such as the one that can be used with the registry. You will need to make sure

that the certificates on your Trusted Registry are the same ones being used on your clients
to ensure secure communications when doing docker pull or docker push commands:

@9 | TRUSTED REGISTRY Dashboard Settings Logs & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

You can generate your own certificates for Trusted Registry using a public service or your enterprise's infrastructure.

SSL Certificate

The certificate that was issued by a Certificate Authority. If there are
any intermediate certificates they should be included here in the
correct order.

SSL Private Key

This is the key that you used to generate your reguest for a SSL
Certificate,

b

Save and restart

The next section deals with image storage settings. Within this Dashboard pane, you can
set where your images are stored on the backend storage. Options for this might include an
NFS share you are using, local disk storage of the Trusted Registry server, an S3 bucket
from AWS, or another cloud storage solution. Once you have selected your Storage
Backend option, you can then set the path from within that Storage to store your images:

%" | TRUSTED REGISTRY Dashboard Settings Logs & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

Configure your starage to use the local filesystemn, 53, Azure, or Swift

Fill out settings via a form

Storage Backend

Choose your storage backend
Filesystem -

Snap.

We were unable to load storage configuration options from your instance.

Upload a YAML file

Upload YAML file

If you have a YAML file to configure registry storage select it cnosse e N0 file selected
here)

’ Download YAML file

The License section is very straightforward as this is where you update your license when
it’s time to renew a new one or when you upgrade a license that might include more
options:

sah >
@ | TRUSTED REGISTRY Dashboard Settings Logs & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

In order to run Trusted Registry, you will need to get a license, either by purchasing Trusted Registry or acquiring a trial license. To get your
license, visit the Docker Subscription page and select the edition you would like acguire.

License ID
License information

Tier:

Apply a new license

cnoase siie| N0 file selected

Save and restart

Authentication settings allow you to tie the login to the Trusted Registry into your existing
authentication environment. Your options here are: None or a Managed option. None is
not recommended except for testing purposes. The Managed option is where you would
set up usernames and passwords and manage them from there. The other option would be
to use an LDAP service, one that you might already be running as well, so that users have
the same login credentials for their other work appliances such as email or web logins.

@ | TRUSTED REGISTRY Dashboard Settings Logs & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

Authentication Method

Add users to the Trusted Registry and set their global roles manually None £
or via LDAP.

No authentication means that everyone that can access your Trusted Registry admin site. This is not recommended for any use other than
testing.

Save

The last section, Updates, deals with how you manage updates for the DTR. These

settings would be totally up to you how you handle updates, but be sure if you are doing
an automated form of updates that you are also utilizing backups for restoring purposes in
the event that something goes wrong during the update process.

@' | TRUSTED REGISTRY Dashboard Settings Logs search & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

Docker issues system updates as the Trusted Registry is continually improved. Ensure update checking is enabled on the General page and
check here for updates. Also, view the release notes to see relevant changes.

System Update Available

Your current Trusted Registry version is out of date

Current version: 1.4.2

Update to version 1.4.3
-
| just want the bugfixes for now, simply path my version.

Administering

Now that we have covered the items that help you secure your Trusted Registry, we might
as well take a few minutes to cover the other items that are within the console to help you
administer it. Beyond the Settings tab within the registry, there are four other tabs that you
can navigate and gather information about your registry. Those are:

Dashboard
Repositories
Organizations
Logs

The Dashboard is the main landing page you are taken to when you log in via your
browser to the console. This will display information about your registry in one central
location. The information you will be seeing is more hardware related information about
the registry server itself as well as the Docker host that the registry server is running on.
The Repositories section will allow you to control which repositories, either Public or
Private, your users are able to pull images from. The Organizations section allows you to
control access, that is, who on the system can push, pull, or do other Docker related
commands against the repositories that you have elected to configure. The last section, the
Logs section, will allow you to view logs based upon your containers that are being used
from your registry. The logs are rotated every two weeks with a maximum size of 64 mb.
You are able to filter through the logs as well based on a container as well as being able to
search for a date and/or time.

Workflow

In this section, let’s pull an image, manipulate it, and then place it on our DTR for access
by others within our organization.

First, we need to pull an image from the Docker Hub. Now, you could start from scratch
with a Dockerfile and then do a Docker build and then push, but let’s, for this
demonstration, say we have the mysql image and we want to customize it in some way.

$ docker pull mysql

Using default tag: latest
latest: Pulling from library/mysql

1565e86129b8: Pull complete

a604b236bcde: Pull complete

2alfefc8d587: Pull complete

f9519f46a2bf: Pull complete

be3fa53728a0: Pull complete

ac2f3cdeb1c6: Pull complete

b61ef27b0115: Pull complete

9ff29f750be3: Pull complete

eced4ebeael79: Pull complete

952556261f143: Pull complete

0c7947afc43f: Pull complete

b3a598670425: Pull complete

e287fa347325: Pull complete

40f595e5339f: Pull complete

0ab12a4dd3c8: Pull complete

89fa423a616b: Pull complete

Digest:
sha256:72e383e001789562e943beel14728e3a9312c3823182d14e3e01b3fd877976265
Status: Downloaded newer image for mysql:latest

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

mysql latest 89fa423a616b 20 hours ago
359.9 MB

Now, let’s assume we made a customization to the image. Let’s say that we set up the
container to ship its logs off to a log stash server that we are using to collect our logs from
all our containers that we are running. We now need to save those changes.

$ docker commit bedea9a7734e <dns.name>/mysql

When we go to do the commit, we need a few tidbits of information. The first is the
container ID, which we can get from running a docker ps command. We also need the
DNS name of our registry server that we set up earlier, and lastly a unique image name to
give it. In our case, we will keep it as mysq1l.

We are now ready to push the updated image to our registry server. The only information
we need is the image name that we want to push, which will be the <dns.name>/mysql.

$ docker push <dns.name>/mysql

The image is now ready to be used by the other users in our organization. Since the image
is in our Trusted Registry, we can control access to that image from our clients. This could
mean that our clients would need our certificate and keys to be able to push and pull this
image, as well as permissions set up within the organization settings we previously went
over in the last section.

$ docker pull <dns.name>/mysql

We can then make run the image, make changes if needed, and push the newly created
image back to the Trusted Registry server as necessary.

Docker Registry

The Docker Registry is an open source option if you want to totally go at it on your own.
If you totally want hands off, you can always use the Docker Hub and rely on public and
private repositories, which will run you a fee on the Docker Hub though. This can be
hosted locally on a server of your choosing or on a cloud service.

Installation

The installation of the Docker Registry is extremely simply as it runs in a Docker
container. This allows you to run it virtually anywhere, on a virtual machine in your own
server environment or in a cloud environment. The typical port that is used is port 5000,
but you can change it to suit your needs:

$ docker run -d -p 5000:5000 --restart=always --name registry registry:2.2

One of the other items you will notice from above is that we are specifying a version to
use instead of leaving it blank and pulling the latest version. That is because as of writing
this book, the latest version for that registry tag is still at version 0.9.1. Now, while this
might be suitable for some, version 2 is stable enough to be considered and to run your
production environment on. We are also introducing the - -restart=always flag for that as
in the event of something happening to the container, it will restart and be available to
serve out or accept images.

Once you have run the command above, you will have a running container registry on the
IP address of the Docker host you ran the command on along with the port selection that
you used in your docker run command above.

Now it is time to put some images up on your new registry. The first thing we need is an
image to push to the registry and we can do that in two ways. We can build images based
on Docker files that we have created or we can pull down an image from another registry,
in our case we will be using the Docker Hub, and then push that image to our new registry
server. First, we need an image to choose and again, we will default back to the mysql
image since it’s a more popular image that most people might be using in their
environments at some point along the way.

$ docker pull mysql
Using default tag: latest
latest: Pulling from library/mysql

1565e86129b8: Pull complete

a604b236bcde: Pull complete

2alfefc8d587: Pull complete

f9519f46a2bf: Pull complete

b03fa53728a0: Pull complete

ac2f3cdebic6: Pull complete

b61ef27b0115: Pull complete

9ff29f750be3: Pull complete

ecedebeael79: Pull complete

95255626f143: Pull complete

0c7947afc43f: Pull complete

b3a598670425: Pull complete

e287fa347325: Pull complete

40f595e5339f: Pull complete

0abl12a4dd3c8: Pull complete

89fa423a616b: Pull complete

Digest:
sha256:72e383e001789562e943beel14728e3a9312c3823182d14e3e01b3fd877976265
Status: Downloaded newer image for mysql:latest

Next, you need to tag the image so it will now be pointing to your new registry so you can
do push it to the new location:

$ docker tag mysql <IP_address>:5000/mysql

Let’s break down that command above. What we are doing is applying the tag of
<IP_address>:5000/mysql to the mysql image that we pulled from the Docker Hub. Now
that <IP_address> piece will be replaced by the IP address from the Docker host that is
running the registry container. This could also be a DNS name as well, as long as the DNS
points to the correct IP that is running on the Docker host. We also need to specify the port
number for our registry server, and in our case we left it with port 5000, so we include:
5000 in the tag. Then, we are going to give it the same same of mysql at the end of the
command. We are now ready to push this image to our new registry.

$ docker push <IP_address>:5000/mysql

After it has been pushed, you can now pull it down from another machine that is
configured with Docker and has access to the registry server.

$ docker pull <IP_address>:5000/mysql

What we have looked at here are the defaults and while it could work if you want to use
firewalls and such to secure the environment or even internal IP address, you still might
want to take security to the next level and that is what we will look at in the next section.
How can we make this even more secure?

Configuration and security

It’s time to tighten up our running registry with some additional features. The first method
would be to run your registry using TLS. Using TLS allows you to apply certificates to the
system so that people who are pulling from it know that it is who you say it is by knowing
that someone hasn’t comprised the server or is doing a man in the middle attack by
supplying you with compromised images.

To do that, we will need to rework the Docker run command we were running in the last
section. This is going to assume you have gone through some of the process of obtaining a
certificate and key from your enterprise environment or you have self signed one using
another piece of software.

Our new command will look like this:

$ docker run -d -p 5000:5000 --restart=always --name registry \

-e REGISTRY_HTTP_TLS_CERTIFICATE=server.crt \

-e REGISTRY_HTTP_TLS_KEY=server.key \

-v <certificate folder>/<path_on_container> \

registry:2.2.0
You will need to be in the directory where the certificates are or specify the full path to
them in the above command. Again, we are keeping the standard port of 5000, along with
the name of registry. You could alter that too to something that might suit you better. For
the sake of this book we will keep it close to that in the official documentation in the event
that you look there for more reference. Next, we add two additional lines to the run
command:

-e¢ REGISTRY_HTTP_TLS_CERTIFICATE=server.crt \
-e REGISTRY_HTTP_TLS_KEY=server.key \

This will allow you to specify the certificate and key file that you will be using. These two
files will need to be in the same directory that you are running the run command from as
the environmental variables will be looking for them upon run. Now you could also add a
volume switch to the run command to make it a little cleaner if you like and put the
certificate and key in that folder and run the registry server that way.

The other way you can help with security is by putting a username and password on the
registry server. This will help when users want to push or pull an item as they will need
the username and password information. The catch with this is that you have to be using
TLS in conjunction with this method. This method of username and password is not a
standalone option.

First, you need to create a password file that you will be using in your run command:

$ docker run --entrypoint htpasswd registry:2.2.0 -bn <username> <password>
> htpasswd

Now, it can be a little confusing to understand what is happening here, so let’s clear that
up before we jump to the run command. First, we are issuing a run command. This
command is going to run the registry:2.2.0 container and its entry point specified

means to run the htpasswd command along with the -bn switches, which will inject the
username and password in an encrypted fashion into a file called htpasswd that you will
be using for authentication purposes on the registry server. The -b means to run in batch
mode while the -n means to display the results, and the > means to put those items into a
file instead of to the actual output screen.

Now, onto our newly enhanced and totally secure Docker run command for our registry:

$ docker run -d -p 5000:5000 --restart=always --name registry \

-e "REGISTRY_AUTH=htpasswd" \

-e "REGISTRY_AUTH_HTPASSWD_REALM=Registry Name" \

-e REGISTRY_AUTH_HTPASSWD_PATH=htpasswd \

-e REGISTRY_HTTP_TLS_ CERTIFICATE=server.crt \

-e REGISTRY_HTTP_TLS_KEY=server.key \

registry:2.20
Again, it’s a lot to digest but let’s walk through it. We have seen some of these lines before
n:

-e REGISTRY_HTTP_TLS_CERTIFICATE=server.crt \
-e REGISTRY_HTTP_TLS_KEY=server.key \

The new ones are:

-e "REGISTRY_AUTH=htpasswd" \
-e "REGISTRY_AUTH_HTPASSWD_REALM=Registry Name" \
-e REGISTRY_AUTH_HTPASSWD_PATH=htpasswd \

The first one tells the registry server to use htpasswd as its authentication method to verify
clients. The second gives your registry a name and can be changed at your own discretion.
The last one tells the registry server the location of the file that is to be used for the
htpasswd authentication. Again, you will need to use volumes and put the htpasswd file in
its own volume inside the container so it allows for easier updating down the road. You
also need to remember the htpasswd file needs to be placed in the same directory as the
certificate and key file when you execute the Docker run command.

Summary

In this chapter, we have looked at being able to sign your images using the components of
Docker Content Trust as well as hardware signing using Docker Content Trust along with
the third party utilities in the form of YubiKeys. We also took a look at Docker
Subscription that you can utilize to your advantage to help set up not only secure Docker
environments but also ones that are supported by those at Docker itself. We then looked at
DTR as a solution that you can use to store your Docker images. Lastly, we looked at the
Docker Registry, which is a self hosted registry that you can use to store and manage your
images. This chapter should help give you enough configuration items to chew on to help
you make the right decision as to where to store your images.

In the next chapter we will be looking at securing/hardening Linux kernels. As the kernel
is what is used to run all your containers, it is important that it is secured in the proper way
to help alleviate any security related issues. We will be covering some hardening guides
that you can use to accomplish this goal.

Chapter 3. Securing and Hardening Linux
Kernels

In this chapter, we will turn our attention to securing and hardening the one key piece that
every container running on your Docker host relies on: the Linux kernel. We will focus on
two topics: guides that you can follow to harden the Linux kernel and tools that you can

add to your arsenal to help harden the Linux kernel. Let’s take a brief look at what we will

be covering in this chapter before diving in:

e Linux kernel hardening guides
e Linux kernel hardening tools

o Grsecurity
o Lynis

Linux kernel hardening guides

In this section, we will be looking at the SANS Institute hardening guide for the Linux
kernel. While a lot of this information is outdated, I believe that it is important for you to
understand how the Linux kernel has evolved and become a secure entity. If you were to
step into a time machine and go back to the year 2003 and attempt to do the things you
want to do today, this is everything you would have to do.

First, some background information about the SANS Institute. It is a private US-based
company that specializes in cybersecurity and information technology-related training and
education. These trainings prepare professionals to defend their environments against
attackers. SANS also offers a variety of free security-related content via their SANS
Technology Institute Leadership Lab. More information about this can be found at

http://www.sans.edu/research/leadership-laboratory.

To help alleviate against this widespread attack base, there needs to be security focus on
every aspect of your IT infrastructure and software. Based upon this, the first place to start
would be at the Linux kernel.

http://www.sans.edu/research/leadership-laboratory

SANS hardening guide deep dive

As we have already covered the background of the SANS Institute, let’s go ahead and
jump into the guide that we will be following to secure our Linux kernel(s).

For reference, we will be using the following URL and highlighting the sticking points
that you should be focusing on and implementing in your environments to secure the
Linux kernel:

https://www.sans.org/reading-room/whitepapers/linux/linux-kernel-hardening-1294

The Linux kernel is an always-developing and maturing piece of the Linux ecosystem and
for this reason, it’s important to get a firm grasp on the Linux kernel as it stands currently,
which will help when looking to lockdown the new feature sets that might come in future

releases.

The Linux kernel allows loading modules without having to recompile or reboot, which is
great when you are looking to eliminate downtime. Some various operating systems
require reboots when trying to apply updates to a certain operating system/application
criteria. This can also be a bad thing with regards to the Linux kernel as the attackers can
inject harmful material into the kernel and wouldn’t need to reboot the machine, which
might be caught by someone noticing the reboot of the system. For this reason, it is
suggested that a statically compiled kernel with the load option be disabled to help prevent
against attack vectors.

Buffer overflows are another way attackers can compromise a kernel and gain entry.
Applications have a limit, or buffer, on how much a user can store in memory. An attacker
overflows this buffer with specially crafted code, which could let the attacker gain control
of the system that, in turn, will empower them to do whatever they want at that point.
They could add backdoors to the system, send logs off to a nefarious place, add additional
users to the system, or even lock you out of the system. To prevent these type of attacks,
there are three areas of focus that the guide hones in on.

The first is the Openwall Linux kernel patch that was a patch created to address this issue.
This patch also includes some other security enhancements that might be attributed to your
running environments. Some of these items included restricted links and file reads/writes
in the /tmp folder location and restricted access to the /proc locations on the filesystem. It
also includes enhanced enforcement for a number of user processes that you could control
as well as the ability to destroy shared memory segments, which were not in use, and
lastly, some other enhancements for those of you that are running kernel versions older
than version 2.4.

If you are running an older version of the Linux kernel, you will want to check out the
Openwall hardened Linux at http://www.openwall.com/Owl/ and Openwall Linux at
http://www.openwall.com/linux/.

The next piece of software is called Exec Shield and it takes a similar approach to the
Openwall Linux kernel patch, which implements a non-executable stack, but Exec Shield
extends this by attempting to protect any and all segments of virtual memory. This patch is

https://www.sans.org/reading-room/whitepapers/linux/linux-kernel-hardening-1294
http://www.openwall.com/Owl/
http://www.openwall.com/linux/

limited to the prevention of attacks against the Linux kernel address space. These address
spaces include stack, buffer, or function pointer overflow spaces.

More information about this patch can be found at
https://en.wikipedia.org/wiki/Exec_Shield.

The last one is PaX, which is a team that creates a patch for the Linux kernel to prevent
against a variety of software vulnerabilities. As this is something we will be talking about
in-depth in the next section, we will just discuss some of its features. This patch focuses
on the following three address spaces:

e PAGEEXEC: These are paging-based, non-executable pages
e SEGMEXEC: These are segmentation—based, non-executable pages
e MPROTECT: These are mmap() and mprotect () restrictions

To learn more about PaX, visit https://pax.grsecurity.net.

Now that you have seen how much efforts you had to put in, you should be glad that
security is now at the forefront for everyone, especially, the Linux kernel. In some of the
later chapters, we will be looking at some of the following new technologies that are being
used to help secure environments:

e Namespaces

e cgroups

e sVirt

e Summon

There are also a lot of capabilities that can be accomplished through the --cap-ad and --
cap-drop switches on your docker run command.

Even like the days before, you still need to be aware of the fact that the kernel is shared
throughout all your containers on a host, therefore, you need to protect this kernel and
watch out for vulnerabilities when necessary. The following link allows you to view
Common Vulnerabilities and Exposures (CVE) in the Linux kernel:

https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-
7/cvssscoremax-7.99/Linux-Linux-Kernel.html

https://en.wikipedia.org/wiki/Exec_Shield
https://pax.grsecurity.net
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html

Access controls

There are various levels of access controls that you can layer on top of Linux as well as
recommendations that you should follow with reference to certain users, and these would
be the superusers on your system. Just to give some definition to superusers, they are the
accounts on the system that have unfettered access to do anything and everything. You
should include the root user when you are layering on these access controls.

These access control recommendations will be the following:

¢ Restricting usage of the root user
e Restricting its ability to SSH

By default, on some systems, root has the ability to SSH to machine if SSH is
enabled, which we can see from a portion of the /etc/ssh/sshd_config file on some
Linux systems, as follows:

Authentication:

#LoginGraceTime 2m
#PermitRootLogin no
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10

From what you can see here, the section for PermitRootLogin no is commented out
with the # symbol so that means this line won’t be interpreted. To change this, simply
remove the # symbol and save the file and restart the service. The section of this file
should now be similar to the following code:

Authentication:

#LoginGraceTime 2m
PermitRootLogin no
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10

Now, you may want to restart the SSH service for these changes to take affect, as
follows:

$ sudo service sshd restart

e Restrict its ability to log in beyond the console. On most Linux systems, there is a file
in /etc/default/login and in that file, there is a line that is similar to the following:

#CONSOLE=/dev/console

Similar to the preceding example, we need to uncomment this line by removing # for
this to take affect. This will only allow the root user to log in at console and not via
SSH or other methods.

e Restrict su command

The su commands allow you to login as the root user and be able to issue root-level
commands, which gives you full access to the entire system. To restrict access to who
can use this command, there is a file located at /etc/pam.d/su, and in this file, you
will see a line similar to the following:

auth required /lib/security/pam_wheel.so use_uid

You can also choose the following line of code here, depending upon your Linux
flavor:

auth required pam_wheel.so use_uid

The check for wheel membership will be done against the current user ID for the
ability to use the su command.

e Requiring sudo to run commands
e Some other access controls that are remanded are the use of the following controls:

o Mandatory Access Controls (MAC): Restricting what users can do on systems

o Role-Based Access Controls: Using groups to assign the roles that these groups
can perform

o Rule Set Based Access Controls (RSBAC): Rule sets that are grouped in the
request type and performs actions based on set rule(s)

o Domain and Type Enforcement (DTE): Allow or restrict certain domains from
performing set actions or preventing domains from interacting with each other

You can also utilize the following:

e SELinux (RPM-based systems (such as Red Hat, CentOS, and Fedora)
e AppArmor (apt-get-based systems (such as Ubuntu and Debian)

These RSBAC, as we discussed earlier, allow you to choose methods of control that are
appropriate for what your system is running. You can also create your own access control
modules that can help enforce. By default, on most Linux systems, these type of
environments are enabled or in enforcing mode. Majority of people will turn these off
when they create a new system, but it comes with security drawbacks, therefore, it’s
important to learn how these systems work and use them in the enabled or enforcement
mode to help mitigate further risks.

More information about each can be found at the following:

e SELinux: https:/en.wikipedia.org/wiki/Security-Enhanced Linux
e AppArmor: https://en.wikipedia.org/wiki/AppArmor

https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/AppArmor

Distribution focused

There are many Linux distributions, or flavors as they call them, in the Linux community
that have been pre-baked to be already hardened. We referenced one earlier, the Owlwall
flavor of Linux, but there are others out there as well. Out of the other two, one that is no
longer around is Adamantix and the other is Gentoo Linux. These Linux flavors feature
some baked-in Linux kernel hardening as standards of their operating system builds.

Linux kernel hardening tools

There are some Linux kernel hardening tools out there, but we will focus on only two of
them in this section. The first being Grsecurity and the second being Lynis. These are tools
that you can add to your arsenal to help in increasing the security of the environments that
you will be running your Docker containers on.

Grsecurity

So, what exactly is Grsecurity? According to their website, Grsecurity is an extensive
security enhancement for the Linux kernel. This enhancement contains a wide range of
items that help in defending against various threats. These threats might include the
following components:

Zero day exploits: This mitigates and keeps your environment protected until a long-
term solution can be made available through the vendor.

Shared host or container weaknesses: This protects you against kernel
compromises that various technologies, and very much so containers, use for each
container on the host.

It goes beyond basic access controls: Grsecurity works with the PaX team to
introduce complexity and unpredictability to the attacker, while responding and
denying the attacker any more chances.

Integrates with you existing Linux distribution: As Grsecurity is kernel-based, it
can be used with any Linux flavors such as Red Hat, Ubuntu, Debian, and Gentoo.
Whatever your Linux flavor is, it doesn’t matter, as the focus is on the underlying
Linux kernel.

More information can be found at https://grsecurity.net/.

To directly get to the good stuff and see the feature set that is offered by utilizing a tool
like Grsecurity, you will want to go to the following link:

http://grsecurity.net/features.php
On this page, items will be grouped into the following five categories:

Memory Corruption Defenses
Filesystem Hardening
Miscellaneous Protections
RBAC

GCC Plugins

https://grsecurity.net/
http://grsecurity.net/features.php

Lynis

Lynis is an open source tool that is used to audit your systems for security. It runs directly
on the host so that it has access to the Linux kernel itself, as well as various other items.
Lynis runs on almost every Unix operating system including the following:

AIS
FreeBSD
Mac OS
Linux
Solaris

Lynis was written as a shell script, therefore, it’s just as easy as copying and pasting on
your system and running a simple command:

./lynis audit system
While it is running, the following actions are being taken:

Determining the OS

Performing a search for available tools and utilities
Checking for any Lynis update

Running tests from enabled plugins

Running security tests per category

Reporting status of security scan

More information can be found at https://rootkit.nl/projects/lynis.html and
https://cisofy.com/lynis/.

https://rootkit.nl/projects/lynis.html
https://cisofy.com/lynis/

Summary

In this chapter, we took a look at hardening and securing Linux kernels. We first looked at
some hardening guides followed by a deep dive of an overview of the SANS Institute
Hardening Guide. We also took a look at how to prevent buffer overflows in our kernels
and applications through various patches. We also looked at various access controls,
SELinux, and AppArmor. Lastly, we took a look at two hardening tools that we can add to
our toolbox of software in the form of Grsecurity and Lynis.

In the next chapter, we will take a look at the Docker Bench application for security. This
is an application that can look at the various Docker items, such as host configuration,
Docker daemon configuration, daemon configuration files, container images and build
files, container runtime, and lastly, Docker security operations. It will contain hands-on
examples with a lot of code outputs.

Chapter 4. Docker Bench for Security

In this chapter, we will be looking at the Docker Bench for Security. This is a tool that
can be utilized to scan your Docker environments, start the host level and inspect all the
aspects of this host, inspect the Docker daemon and its configuration, inspect the
containers running on the Docker host, and review the Docker security operations and
give you recommendations across the board of a threat or concern that you might want to
look at in order to address it. In this chapter, we will be looking at the following items:

e Docker security — best practices
e Docker — best practices
e Center for Internet Security (CIS) guide

Host configuration

Docker daemon configuration
Docker daemon configuration files
Container images/runtime

Docker security operations

O O O O O

e The Docker Bench Security application

o Running the tool
o Understanding the output

Docker security — best practices

In this section, we will take a look at the best practices when it comes to Docker as well as
the CIS guide to properly secure all the aspects of your Docker environment. You will be
referring to this guide when you actually run the scan (in the next section of this chapter)
and get results of what needs to or should be fixed. The guide is broken down into the
following sections:

The host configuration

The Docker daemon configuration

The Docker daemon configuration files
Container images/runtime

Docker security operations

Docker — best practices

Before we dive into the CIS guide, let’s go over some of the following best practices when
using Docker:

¢ One application per container: Spread your applications to one per container.
Docker was built for this and it makes everything easy at the end of the day. The
isolation that we talked about earlier is where this is the key.

¢ Review who has access to your Docker hosts: Remember that whoever has the
access to your Docker hosts has the access to manipulate all your images and
containers on the host.

e Use the latest version: Always use the latest version of Docker. This will ensure that
all the security holes have been patched and you have the latest features as well.

e Use the resources: Use the resources available if you need help. The community
within Docker is huge and immensely helpful. Use their website, documentation, and
the Internet Relay Chat (IRC) chat rooms to your advantage.

CIS guide

The CIS guide is a document

(https://benchmarks.cisecurity.org/tools2/docker/cis_docker_1.6_benchmark_v1.0.0.pdf)

that goes over the aspects of the Docker pieces to help you securely configure the various
pieces of your Docker environment. We will cover these in the following sections.

https://benchmarks.cisecurity.org/tools2/docker/cis_docker_1.6_benchmark_v1.0.0.pdf

Host configuration

This part of the guide is about the configuration of your Docker hosts. This is that part of
the Docker environment where all your containers run. Thus, keeping it secure is of the
utmost importance. This is the first line of defense against the attackers.

Docker daemon configuration

This part of the guide recommends securing the running Docker daemon. Everything you
do to the Docker daemon configuration affects each and every container. These are the
switches you can attach to the Docker daemon that we saw previously and items you will
see in the following section when we run through the tool.

Docker daemon configuration files

This part of the guide deals with the files and directories that the Docker daemon uses.
This ranges from permissions to ownerships. Sometimes, these areas may contain
information you don’t want others to know about, which could be in a plain text format.

Container images/runtime

This part of the guide contains both the information for securing the container images as
well as the container runtime.

The first part contains images, cover base images, and build files that were used. You need
to be sure about the images you are using not only for your base images, but also for any
aspect of your Docker experience. This section of the guide covers the items you should
follow while creating your own base images to ensure they are secure.

The second part, the container runtime, covers a lot of security-related items. You have to
take care of the runtime variables that you are providing. In some cases, attackers can use
them to their advantage, while you think you are using them to your own advantage.
Exposing too much in your container can compromise the security of not only that
container, but also the Docker host and other containers running on this host.

Docker security operations

This part of the guide covers the security areas that involve deployment. These items are
more closely tied to the best practices and recommendations of items that are to be
followed.

The Docker Bench Security application

In this section, we will cover the Docker Benchmark Security application that you can
install and run. The tool will inspect the following components:

The host configuration

The Docker daemon configuration

The Docker daemon configuration files
Container images and build files
Container runtime

Docker security operations

Looks familiar? It should, as these are the same items that we reviewed in the previous
section, only built into an application that will do a lot of heavy lifting for you. It will
show you what warnings arise with your configurations and provide information on other
configuration items and even the items that have passed the test.

We will look at how to run the tool, a live example, and what the output of the process will
mean.

Running the tool

Running the tool is simple. It’s already been packaged for us inside a Docker container.
While you can get the source code and customize the output or manipulate it in some way
(say, e-mail the output), the default may be all that you need.

The code is found here: https://github.com/docker/docker-bench-security

To run the tool, we will simply copy and paste the following into our Docker host:

$ docker run -it --net host --pid host --cap-add audit_control \
-v /var/1lib:/var/1lib \

-v /var/run/docker.sock:/var/run/docker.sock \

-v /usr/lib/systemd:/usr/1lib/systemd \

-v /etc:/etc --label docker_bench_security \
docker/docker-bench-security

If you don’t already have the image, it will first download the image and then start the
process for you. Now that we’ve seen how easy it is to install and run it, let’s take a look
at an example on a Docker host to see what it actually does. We will then take a look at the
output and take a dive into dissecting it.

There is also an option to clone the Git repository, enter the directory from the git clone
command, and run the provided shell script. So, we have multiple options!

Let’s take a look at an example and break down each section, as shown in the following
command:

Docker Bench for Security v1.0.0

#

Docker, Inc. (c) 2015

#

Checks for dozens of common best-practices around deploying Docker
containers in production.

Inspired by the CIS Docker 1.6 Benchmark:

#
https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.6_Benchmark_vi
.0.0.pdf

H memmmmmmmmmmmmemmmmmmemmemmemmemmmmmmmmmmmmmmmmmmmmmmmmm—mm—m—— e ————————-

Initializing Sun Jan 17 19:18:56 UTC 2016

Running the tool — host configuration

Let’s take a look at the output of the host configuration runtime:

[INFO] 1 - Host configuration

[WARN] 1.1 - Create a separate partition for containers

[PASS] 1.2 - Use an updated Linux Kernel

[PASS] 1.5 - Remove all non-essential services from the host - Network
[PASS] 1.6 - Keep Docker up to date

[INFO] * Using 1.9.1 which is current as of 2015-11-09

https://github.com/docker/docker-bench-security

[INFO] * Check with your operating system vendor for support and
security maintenance for docker

[INFO] 1.7 - Only allow trusted users to control Docker daemon

[INFO] * docker:x:100:docker

[WARN] 1.8 - Failed to inspect: auditctl command not found.

[INFO] 1.9 - Audit Docker files and directories - /var/lib/docker
[INFO] * Directory not found

[WARN] 1.10 - Failed to inspect: auditctl command not found.

[INFO] 1.11 - Audit Docker files and directories - docker-registry.service
[INFO] * File not found

[INFO] 1.12 - Audit Docker files and directories - docker.service

[INFO] * File not found

[WARN] 1.13 - Failed to inspect: auditctl command not found.

[INFO] 1.14 - Audit Docker files and directories - /etc/sysconfig/docker
[INFO] * File not found

[INFO] 1.15 - Audit Docker files and directories - /etc/sysconfig/docker -
network

[INFO] * File not found

[INFO] 1.16 - Audit Docker files and directories - /etc/sysconfig/docker -
registry

[INFO] * File not found

[INFO] 1.17 - Audit Docker files and directories - /etc/sysconfig/docker -
storage

[INFO] * File not found

[INFO] 1.18 - Audit Docker files and directories - /etc/default/docker
[INFO] * File not found

Running the tool — Docker daemon configuration

Let’s take a look at the output for the Docker daemon configuration runtime, as shown in
the following command:

[INFO] 2 - Docker Daemon Configuration

[PASS] 2.1 - Do not use lxc execution driver

[WARN] 2.2 - Restrict network traffic between containers
[PASS] 2.3 - Set the logging level

[PASS] 2.4 - Allow Docker to make changes to iptables
[PASS] 2.5 - Do not use insecure registries

[INFO] 2.6 - Setup a local registry mirror

[INFO] * No local registry currently configured

[WARN] 2.7 - Do not use the aufs storage driver

[PASS] 2.8 - Do not bind Docker to another IP/Port or a Unix socket
[INFO] 2.9 - Configure TLS authentication for Docker daemon

[INFO] * Docker daemon not listening on TCP

[INFO] 2.10 - Set default ulimit as appropriate

[INFO] * Default ulimit doesn't appear to be set

Running the tool — Docker daemon configuration files

Let’s take a look at the output for the Docker daemon configuration files runtime, as
follows:

[INFO] 3 - Docker Daemon Configuration Files

[INFO] 3.1 - Verify that docker.service file ownership is set to root:root
[INFO] * File not found

[INFO] 3.2 - Verify that docker.service file permissions are set to 644

[INFO] *
[INFO] 3.3 -
root:root
[INFO] *
[INFO] 3.4 -
to 644

[INFO] *
[INFO] 3.5 -
[INFO] *
[INFO] 3.6 -
[INFO] *
[INFO] 3.7 -
root:root
[INFO] *
[INFO] 3.8 -
644

[INFO] *
[INFO] 3.9
to root:root
[INFO] *
[INFO] 3.10 -
set to 644
[INFO] *
[INFO] 3.11 -
to root:root
[INFO] *
[INFO] 3.12 -
set to 644
[INFO] *
[INFO] 3.13 -
to root:root
[INFO] *
[INFO] 3.14
set to 644
[INFO] *
[PASS] 3.15 -
root:root
[PASS] 3.16 -
[INFO] 3.17 -
root:root
[INFO] *
[INFO] 3.18 -
444

[INFO] *
[INFO] 3.19 -
root:root
[INFO] *
[INFO] 3.20 -
444

[INFO] *
[INFO] 3.21
to root:root
[INFO] *
[INFO] 3.22 -
set to 444
[INFO] *

File not found
Verify that docker-registry.service file ownership is set to

File not found
Verify that docker-registry.service file permissions are set

File not found
Verify that docker.
File not found
Verify that docker.
File not found
Verify that Docker

socket file ownership is set to root:root
socket file permissions are set to 644
environment file ownership is set to

File not found
Verify that Docker environment file permissions are set to
File not found

Verify that docker-network environment file ownership is set

File not found
Verify that docker-network environment file permissions are

File not found
Verify that docker-registry environment file ownership is set

File not found
Verify that docker-registry environment file permissions are

File not found
Verify that docker-storage environment file ownership is set

File not found
Verify that docker-storage environment file permissions are

File not found
Verify that /etc/docker directory ownership is set to

Verify that /etc/docker directory permissions are set to 755
Verify that registry certificate file ownership is set to

Directory not found
Verify that registry certificate file permissions are set to

Directory not found
Verify that TLS CA certificate file ownership is set to

No TLS CA certificate found
Verify that TLS CA certificate file permissions are set to

CA certificate found
that Docker server certificate file ownership is set

No TLS
Verify

found
certificate file permissions are

Server certificate
that Docker server

No TLS
Verify
found

No TLS Server certificate

[INFO] 3.23 - Verify that Docker server key file ownership is set to
root:root

[INFO] * No TLS Key found
[INFO] 3.24 - Verify that Docker server key file permissions are set to 400
[INFO] * No TLS Key found

[PASS] 3.25 - Verify that Docker socket file ownership is set to
root :docker
[PASS] 3.26 - Verify that Docker socket file permissions are set to 660

Running the tool — container images and build files

Let’s take a look at the output for the container images and build files runtime, as shown
in the following command:

[INFO] 4 - Container Images and Build Files
[INFO] 4.1 - Create a user for the container
[INFO] * No containers running

Running the tool — container runtime
Let’s take a look at the output for the container runtime, as follows:

[INFO] 5 - Container Runtime
[INFO] * No containers running, skipping Section 5

Running the tool — Docker security operations

Let’s take a look at the output for the Docker security operations runtime, as shown in the
following command:

[INFO] 6 - Docker Security Operations
[INFO] 6.5 - Use a centralized and remote log collection service

[INFO] * No containers running

[INFO] 6.6 - Avoid image sprawl

[INFO] * There are currently: 23 images

[WARN] 6.7 - Avoid container sprawl

[WARN] * There are currently a total of 51 containers, with only 1 of

them currently running

Wow! A lot of output and tons to digest; but what does all this mean? Let’s take a look and
break down each section.

Understanding the output

There are three types of output that we will see, as follows:

e [PASS]: These items are solid and good to go. They don’t need any attention, but they
are good to read to make you feel warm inside. The more of these, the better!

e [INFO]: These are items that you should review and fix if you feel that they are
pertinent to your setup and security needs.

e [WARN]: These are items that need to be fixed. These are the items we don’t want to
be seeing.

Remember, we had the six main topics that were covered in the scan, as shown in the
following:

The host configuration

The Docker daemon configuration

The Docker daemon configuration files
Container images and build files
Container runtime

The Docker security operations

Let’s take a look at what we are seeing in each section of the scan. These scan results are
from a default Ubuntu Docker host, with no tweaks made to the system at this point. We
want to again focus on the [WARN] items in each section. Other warnings may come up
when you run yours, but these will be the ones that come up the most, if not for everyone
at first.

Understanding the output — host configuration
Let’s take a look at the following output for the host configuration runtime output:

[WARN] 1.1 - Create a separate partition for containers

For this one, you will want to map /var/1ib/docker to a separate partition.

[WARN] 1.8 - Failed to inspect: auditctl command not found.
[WARN] 1.9 - Failed to inspect: auditctl command not found.
[WARN] 1.10 - Failed to inspect: auditctl command not found.
[WARN] 1.13 - Failed to inspect: auditctl command not found.
[WARN] 1.18 - Failed to inspect: auditctl command not found.

Understanding the output — the Docker daemon configuration
Let’s take a look at the following output for the Docker daemon configuration output:

[WARN] 2.2 - Restrict network traffic between containers

By default, all the containers running on the same Docker host have access to each other’s
network traffic. To prevent this, you would need to add the - -icc=false flag to the
Docker daemon’s start up process:

[WARN] 2.7 - Do not use the aufs storage driver

Again, you can add a flag to your Docker daemon start up process that will prevent
Docker from using the aufs storage driver. Using -s <storage_driver> on your Docker
daemon startup, you can tell Docker not to use aufs for storage. It is recommended that
you use the best storage driver for the OS on the Docker host that you are using.

Understanding the output — the Docker daemon configuration files

If you are using the stock Docker daemon, you should not see any warnings. If you have
customized the code in some way, you may get a few warnings here. This is one area
where you should hope to never see any warnings.

Understanding the output — container images and build files

Let’s take a look at the following output for the container images and build files runtime
output:

[WARN] 4.1 - Create a user for the container
[WARN] * Running as root: suspicious_mccarthy

This states that the suspicious_mccarthy container is running as the root user and it is
recommended to create another user to run your containers.

Understanding the output — container runtime
Let’s take a look at the output for the container runtime output, as follows:

[WARN] 5.1: - Verify AppArmor Profile, if applicable
[WARN] * No AppArmorProfile Found: suspicious_mccarthy

This states that the suspicious_mccarthy container does not have AppArmorProfile,
which is the additional security provided in Ubuntu in this case.

[WARN] 5.3 - Verify that containers are running only a single main process
[WARN] * Too many processes running: suspicious_mccarthy

This error is pretty straightforward. You will want to make sure that you are only running
one process per container. If you are running more than one process, you will want to
spread them out across multiple containers and use container linking, as shown in the
following command:

[WARN] 5.4 - Restrict Linux Kernel Capabilities within containers
[WARN] * Capabilities added: CapAdd=[audit_control] to suspicious_mccarthy

This states that the audit_control capability has been added to this running container.
You can use --cap-drop={} from your docker run command to remove the additional
capabilities from a container, as follows:

[WARN] 5.6 - Do not mount sensitive host system directories on containers
[WARN] * Sensitive directory /etc mounted in: suspicious_mccarthy

[WARN] * Sensitive directory /1lib mounted in: suspicious_mccarthy

[WARN] 5.7 - Do not run ssh within containers

[WARN] * Container running sshd: suspicious_mccarthy

This is straight to the point. No need to run SSH inside your containers. You can do
everything you want to with your containers using the tools provided by Docker. Ensure

that SSH is not running in any container. You can utilize the docker exec command to
execute the items against your containers (see more information here:

https://docs.docker.com/engine/reference/commandline/exec/), as shown in the following
command:

[WARN] 5.10 - Do not use host network mode on container
[WARN] * Container running with networking mode 'host':
suspicious_mccarthy

The issue with this one is that, when the container was started, the - -net=host switch was
passed along. It is not recommended to use this as it allows the container to modify the
network configuration and open low port numbers as well as access networking services
on the Docker host, as follows:

[WARN] 5.11 - Limit memory usage for the container
[WARN] * Container running without memory restrictions:
suspicious_mccarthy

By default, the containers don’t have memory restrictions. This can be dangerous if you
are running multiple containers per Docker host. You can use the -m switch while issuing
your docker run commands to limit the containers to a certain amount of memory. Values
are set in megabytes (that is, 512 MB or 1024 MB), as shown in the following command:

[WARN] 5.12 - Set container CPU priority appropriately
[WARN] * The container running without CPU restrictions:
suspicious_mccarthy

Like the memory option, you can also set the CPU priority on a per-container basis. This
can be done using the - -cpu-shares switch while issuing your docker run command. The
CPU share is based off of the number 1,024. Therefore, half would be 512 and 25% would
be 256. Use 1,024 as the base number to determine the CPU share, as follows:

[WARN] 5.13 - Mount container's root filesystem as readonly
[WARN] * Container running with root FS mounted R/W:
suspicious_mccarthy

You really want to be using your containers as immutable environments, meaning that
they don’t write any data inside them. Data should be written out to volumes. Again, you
can use the - -read-only switch, as follows:

[WARN] 5.16 - Do not share the host's process namespace
[WARN] * Host PID namespace being shared with: suspicious_mccarthy

This error arises when you use the - -pid=host switch. It is not recommended to use this
switch as it breaks the isolation of processes between the container and Docker host.

Understanding the output — Docker security operations

Again, another section you should hope to never see are the warnings if you are using
stock Docker. Mostly, here you will see the information and should review this to make
sure it’s all kosher.

https://docs.docker.com/engine/reference/commandline/exec/

Summary

In this chapter, we took a look at the CIS guidelines for Docker. This guide will assist you
in setting up multiple aspects of your Docker environment. Lastly, we looked at the
Docker Bench for Security. We looked at how to get it up and running and went through
an example of what the output would look like once it has been run. We then took a look
at the output to see what all it meant. Remember the six items that the application covered:
host configuration, Docker daemon configuration, Docker daemon configuration files,
container images and build files, container runtime, and Docker security operations.

In the next chapter, we will be taking a look at how to monitor as well as report any
Docker security issues that you come across. This will help you know where to look for
anything related to the security that may pertain to your existing environment. If you are
to come across security-related issues that you find yourself, there are best practices for
reporting these issues to give time to Docker to fix them before allowing the public
community time to know about the issue, which will allow the hackers to use these
vulnerabilities to their advantage.

Chapter 5. Monitoring and Reporting
Docker Security Incidents

In this chapter, we will take a look at how to stay on top of the items that Docker has
released, regarding the security findings in order to be aware of your environments. Also,
we will take a look at how to safely report any security findings that you come across in
order to ensure that Docker has a chance to alleviate the concern before it becomes public
and widespread. In this chapter, we will be covering the following topics:

Docker security monitoring

Docker Common Vulnerabilities and Exposures (CVE)
Mailing lists

Docker security reporting

o Responsible disclosure
o Security reporting

Additional Docker resources

o Docker Notary
o Hardware signing
o Reading materials

Docker security monitoring

In this section, we will take a look at some ways of monitoring security issues that relate
to any Docker products you may be using. While you are using the various products, you
need to be able to be aware of, if any, security issues that arise so that you can mitigate
these risks to keep your environments and data safe.

Docker CVE

To understand what a Docker CVE is, you need to first know what is CVE. CVEs are
actually a system that is maintained by the MITRE Corporation. These are used as a
public way of providing information based on a CVE number that is dedicated to each
vulnerability for easy reference. This allows a national database of all the vulnerabilities
that are given a CVE number from the MITRE Corporation. To learn more about CVEs,
you can find it on the Wikipedia article here:

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures

The Wikipedia article explains things such as how they go about giving CVE numbers and
the format that they all follow.

Now that you know what CVEs are, you probably have already pieced together what
Docker CVEs are. They are CVEs that are directly related to Docker security incidents or
issues. To learn more about Docker CVEs or see a list of current Docker CVEs, visit
https://www.docker.com/docker-cve-database.

This listing will be updated anytime a CVE is created for a Docker product. As you can
see, the list is very small, therefore, this is probably a list that will not grow on a day-to-
day, or even a month-to-month, basis frequency.

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://www.docker.com/docker-cve-database

Mailing lists

Another method for following or discussing security-related issues of any Docker products
in the ecosystem is to join their mailing lists. Currently, they have two mailing lists that
you can either join or follow along with.

The first is a developer list that you can join or follow along with. This is a list for those
who are either helping in assisting with contributing the code to the Docker products or
developing products using the Docker code base provided in the following:

https://groups.google.com/forum/#!forum/docker-dev

The second list is a user list. This list is for those who, you guessed it, are the users of the
various Docker products that might have security-related questions. You can search from
the already submitted discussions, join existing conversations, or ask new questions that
will be answered by those who are also on the mailing lists at the following forum:

https://groups.google.com/forum/#!forum/docker-user

Before asking some security-related questions, you will want to read the following section
to ensure that you are not exposing any existing security issues that might tempt an
attacker out there.

https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-user

Docker security reporting

Reporting Docker security issues is just as important as monitoring security issues with
regards to Docker. While it is important to report these issues, there are certain standards
that you should follow when you find security issues and are going to, hopefully, report
them.

Responsible disclosure

When disclosing security-related issues, not only for Docker, but for any product out
there, there is a term called responsible disclosure that everyone should follow.
Responsible disclosure is an agreement that allows the developer or maintainer of the
product ample time to provide a fix for the security issue before disclosing the issue to the
general public.

To learn more about responsible disclosure, you can visit
https://en.wikipedia.org/wiki/Responsible_disclosure.

Remember to put yourself in the shoes of the group that is responsible for the code. If it
were your code, wouldn’t you want someone to give you a notice of a vulnerability so that
you had ample time to fix the issue before it was disclosed, causing widespread panic and
flooding the inbox with e-mails from the masses.

https://en.wikipedia.org/wiki/Responsible_disclosure

Security reporting

Currently, the method for reporting security issues is to e-mail the Docker security team
and give them as much information as you can provide about the security issue. While
these are not the exact items that Docker might recommend, there are general guidelines
that most other security professionals like to see when reporting security issues, such as
the following:

Product and version, where the security issue was discovered
Method to reproduce the issue

Operating system that was being used at the time, plus the version
Any additional information you can provide

Remember, the more information you provide from the beginning, the quicker the team
has to react from their end by being on top of the issue and attack it more aggressively
from the start.

To report a security issue for any Docker-related product, make sure to e-mail any
information to <security@docker .com>

mailto:security@docker.com

Additional Docker security resources

If you are looking for some other items to look into, there are some additional items that
we have covered in Chapter 1, Securing Docker Hosts that are worthwhile to conduct a
quick review. Make sure to look back at Chapter 1, Securing Docker Hosts to get more
details on the next couple of items or links that will be provided in each section.

Docker Notary

Let’s take a quick look at Docker Notary, but for more information about Docker Notary,
you can look back at the information in Chapter 2, Securing Docker Components or the
following URL:

https://github.com/docker/notary

Docker Notary allows you to publish your content by signing it with private keys that you
are recommended to keep offline. Using these keys to sign your content helps in ensuring
others to know that the content they are using is, in fact, from who it says it is—you—and
that the content can be trusted, assuming the users trust you.

Docker Notary has a few key goals that I believe are important to point out in the
following:

Survivable key compromise
Freshness guarantee
Configurable trust thresholds
Signing delegation

Use of existing distribution
Untrusted mirrors and transport

It is important to know that Docker Notary has a server and client component as well. To
use Notary, you will have to be familiar with the command-line environment. The
preceding link will break it down for you and give you walkthroughs on setting up and
using each component.

https://github.com/docker/notary

Hardware signing

Similar to the previous Docker Notary section, let’s take a quick look at the hardware
signing as it’s a very important feature that must be understood fully.

Docker also allows hardware signing. What does this mean? From the previous section,
we saw that you can use highly secure keys to sign your content, allowing others to verify
that the information is from who it says it is, which ultimately provides everyone great
peace of mind.

Hardware signing takes this to a whole new level by allowing you to add yet another layer
of code signing. By introducing a hardware device, Yubikey—a USB piece of hardware—
you can use your private keys (remember to keep them secure and offline somewhere) as
well as a piece of hardware that requires you to tap it when you sign your code. This
proves that you are a human by the fact of having to physically touch the YubiKey when
you are signing your code.

For more information about the hardware signing part of Notary, it is worthwhile to read
their announcement when they released this feature from the following URL.:

https://blog.docker.com/2015/11/docker-content-trust-yubikey/

For a video demonstration of using YubiKeys and Docker Notary, please visit the
following YouTube URL:

https://voutu.be/fL.fFFtOHRZQ?t=1h21m23s

To find out more information about YubiKeys, visit their website at the following URL:

https://www.yubico.com

https://blog.docker.com/2015/11/docker-content-trust-yubikey/
https://youtu.be/fLfFFtOHRZQ?t=1h21m23s
https://www.yubico.com

Reading materials

There are also some additional reading materials that can assist with ensuring your focus
is on monitoring the security aspect of the entire Docker ecosystem.

Looking back at Chapter 4, Docker Bench for Security, we covered the Docker Bench,
which is a scanning application for your entire Docker environment. This is highly useful
to help in pointing out any security risks that you might have.

There is also a great free Docker security eBook that I found. This book will cover
potential security issues along with tools and techniques that you can utilize to secure your
container environments. Not bad for free, right?! You can find this book at the following
URL:

https://www.openshift.com/promotions/docker-security.html

You can refer to the following Introduction to Container Security whitepaper for more
information:

https://d30ypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_conta

You can also refer to The Definitive Guide To Docker Containers whitepaper, as follows:

https://www.docker.com/sites/default/files/WP-
%20Definitive%20Guide%20T0%20Containers.pdf

The last two items—Introduction to Container Security whitepaper and The Definitive
Guide To Docker Containers—are directly created from Docker, therefore, they contain
information that is directly related to understanding how containers are structured and they
breakdown a lot of the Docker information into a central location, which you can
download or print out and have at hand at any point of time. They also help you to
understand the various layers of containers and how they help keep your environment and
applications secure from each other.

https://www.openshift.com/promotions/docker-security.html
https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf
https://www.docker.com/sites/default/files/WP-%20Definitive%20Guide%20To%20Containers.pdf

Awesome Docker

While this is not a security-related tool, it is a Docker tool that is very useful and is
updated quite frequently. Awesome Docker is a curated list of any and all Docker projects.
It allows others to contribute with pull requests to the curated list. The list includes topics
for those who are looking to get started with Docker; useful articles; deep-dive articles;
networking articles; and articles on using multi-server Docker environments, cloud
infrastructure, tips, and newsletters, the list just keeps going on. To view the project as
well as the awesomeness of everything that it includes, visit the following URL:

https://github.com/veggiemonk/awesome-docker

https://github.com/veggiemonk/awesome-docker

Summary

In this chapter, we looked at a number of ways to monitor and report Docker security
issues. We looked at some mailing lists that you can join monitoring the Docker CVE list.
We also reviewed using both Docker Notary to sign your images as well as hardware
signing to utilize hardware items such as YubiKeys. We also looked at using responsible
disclosure, which is giving Docker a chance to fix any security-related issue prior to
releasing them to the public.

In the next chapter, we will be looking at working with some Docker tools. These tools
can be used to secure the Docker environment. We will look at both command-line tools
as well as GUI tools that you can use to your advantage. We will be looking at utilizing
TLS in your environments using read-only containers, utilizing kernel namespaces and
control groups, and mitigating against the risk, while being aware of the Docker daemon
attack surface.

Chapter 6. Using Docker’s Built-in
Security Features

In this chapter, we will take a look at working with Docker tools that can be used to secure
your environment. We will be taking a look at both command-line tools as well as GUI
tools that you can utilize to your advantage. We will cover the following items in this
chapter:

e Docker tools

o Using TLS in your environments to help ensure that pieces are communicating

securely
o Using read-only containers to help protect the data in a container from being
manipulated in some form

e Docker security fundamentals

o Kernel namespaces
o Control groups
o Linux kernel capabilities

Docker tools

In this section, we will cover the tools that can help you secure your Docker environment.
These are options that are built into the Docker software, which you are already using. It’s
time to learn how to enable or utilize these such features to help give you the peace of
mind in order to be sure that the communication is secure; this is where we will cover
enabling TLS, which is a protocol that ensures privacy between applications. It ensures
that nobody is listening in on the communication. Think of it as when you are watching a
movie and people on the phone sayj, is this line secure? It’s the same kind of idea when it
comes to network communication. Then, we will look at how you can utilize the read-only
containers to ensure that the data you are serving up can’t be manipulated by anyone.

Using TLS

It is highly recommended to use the Docker Machine to create and manage your Docker
hosts. It will automatically set up the communication to use TLS. Here’s how you can
verify that the default host that was created by docker-machine indeed uses TLS.

One of the important factors is knowing if you are using TLS or not and then adjusting to
use TLS if you are, in fact, not using TLS. The important thing to remember is that,
nowadays, almost all the Docker tools ship with the TLS enabled, or if they don’t, they
appear to be working towards this goal. One of the commands that you can use to check in
order to see if your Docker host is utilizing the TLS is with the Docker Machine inspect
command. In the following, we will take a look at a host and see if it is running with the
TLS enabled:

docker-machine inspect default

{
"ConfigVersion": 3,
"Driver": {
"IPAddress": "192.168.99.100",
"MachineName": "default",
"SSHUser": "docker",
"SSHPort": 50858,
"SSHKeyPath" :
"/Users/scottgallagher/.docker/machine/machines/default/id_rsa",
"StorePath": "/Users/scottgallagher/.docker/machine",
"SwarmMaster": false,
"SwarmHost": "tcp://0.0.0.0:3376",
"SwarmDiscovery": "",
"VBoxManager": {},
"CPU": 1,
"Memory": 2048,
"DiskSize": 204800,
"Boot2DockerURL": "",
"Boot2DockerImportvM": "",
"HostDNSResolver": false,
"HostOnlyCIDR": "192.168.99.1/24",
"HostOnlyNicType": "82540EM",
"HostOnlyPromiscMode": "deny",
"NoShare": false,
"DNSProxy": false,
"NoVTXCheck": false

}
"DriverName": "virtualbox",
"HostOptions": {

llDr.iver.Il : lIll’

"Memory": 0,

"Disk": o,

"EngineOptions": {
"ArbitraryFlags": [],
"Dns": null,
"GraphDir": "",
"Env": [],

"Ipve": false,

"InsecureRegistry": [],

"Labels": [],

n LOgLEVEl" : mn ,

"StorageDriver": "",

"SelinuxEnabled": false,

"TlsVerify": true,

"RegistryMirror": [],

"InstallURL": "https://get.docker.com"

}

"SwarmOptions": {
"IsSwarm": false,
|lAddreSSll: "",
"Discovery": "",
"Master": false,

"Host": "tcp://0.0.0.0:3376",
"Image": "swarm:latest",
"Strategy": "spread",
"Heartbeat": 0,

"Overcommit": O,
"ArbitraryFlags": [],

"Env": null

}
"AuthOptions": {
"CertDir": "/Users/scottgallagher/.docker/machine/certs",
"CaCertPath": "/Users/scottgallagher/.docker/machine/certs/ca.pem",
"CaPrivateKeyPath":
"/Users/scottgallagher/.docker/machine/certs/ca-key.pem",
"CaCertRemotePath": "",
"ServerCertPath":
"/Users/scottgallagher/.docker/machine/machines/default/server.pem",
"ServerKeyPath":
"/Users/scottgallagher/.docker/machine/machines/default/server-key.pem",
"ClientKeyPath":
"/Users/scottgallagher/.docker/machine/certs/key.pem",
"ServerCertRemotePath": "",
"ServerKeyRemotePath": "",
"ClientCertPath":

"/Users/scottgallagher/.docker/machine/certs/cert.pem",
"ServerCertSANs": [],
"StorePath":
"/Users/scottgallagher/.docker/machine/machines/default"

}
3

"Name": "default"

}

From the preceding output, we can focus on the following line:

"SwarmHost": "tcp://0.0.0.0:3376",

This shows us that if we were running Swarm, this host would be utilizing the secure
3376 port. Now, if you aren’t using Docker Swarm, then you can disregard this line.
However, if you are using Docker Swarm, then this line is important.

Just to take a step back, let’s identify what Docker Swarm is. Docker Swarm is native

clustering within Docker. It helps in turning multiple Docker hosts into an easy-to-manage
single virtual host:

"AuthOptions": {

"CertDir": "/Users/scottgallagher/.docker/machine/certs",

"CaCertPath":
"/Users/scottgallagher/.docker/machine/certs/ca.pem",

"CaPrivateKeyPath":
"/Users/scottgallagher/.docker/machine/certs/ca-key.pem",

"CaCertRemotePath": "",

"ServerCertPath":
"/Users/scottgallagher/.docker/machine/machines/default/server.pem",

"ServerKeyPath":
"/Users/scottgallagher/.docker/machine/machines/default/server-key.pem",

"ClientKeyPath":
"/Users/scottgallagher/.docker/machine/certs/key.pem",

"ServerCertRemotePath": "",

"ServerKeyRemotePath": "",

"ClientCertPath":

"/Users/scottgallagher/.docker/machine/certs/cert.pem",
"ServerCertSANs": [],
"StorePath":
"/Users/scottgallagher/.docker/machine/machines/default"

}

This shows us that this host is, in fact, using the certificates so we know that it is using
TLS, but how do we know from just that? In the following section, we will take a look at
how to tell that it is, in fact, using TLS for sure.

Docker Machine also has the option to run everything over TLS. This is the most secure
way of using Docker Machine in order to manage your Docker hosts. This setup can be
tricky if you start using your own certificates. By default, Docker Machine stores your
certificates that it uses in /Users/<user_id>/.docker/machine/certs/. You can see the
location on your machine where the certificates are stored at from the preceding output.

Let’s take a look at how we can achieve the goal of viewing if our Docker host is utilize
TLS:

docker-machine 1s
NAME ACTIVE URL STATE URL SWARM DOCKER ERRORS
default * virtualbox Running tcp://192.168.99.100:2376 v1.9.1

This is where we can tell that it is using TLS. The insecure port of Docker Machine hosts
is the 2375 port and this host is using 2376, which is the secure TLS port for Docker
Machine. Therefore, this host is, in fact, using TLS to communicate, which gives you the
peace of mind in knowing that the communication is secure.

Read-only containers

With respect to the docker run command, we will mainly focus on the option that allows
us to set everything inside the container as read-only. Let’s take a look at an example and
break down what it exactly does:

$ docker run --name mysql --read-only -v /var/lib/mysql v /tmp --e
MYSQL_ROOT_PASSWORD=password -d mysql

Here, we are running a mysql container and setting the entire container as read-only,
except for the /var/1lib/mysql directory. What this means is that the only location the
data can be written inside the container is the /var/1ib/mysql directory. Any other
location inside the container won’t allow you to write anything in it. If you try to run the
following, it would fail:

$ docker exec mysql touch /opt/filename

This can be extremely helpful if you want to control where the containers can write to or
not write to. Make sure to use this wisely. Test thoroughly, as it can have consequences
when the applications can’t write to certain locations.

Remember the Docker volumes we looked at in the previous chapters, where we were able
to set the volumes to be read-only. Similar to the previous command with docker run,
where we set everything to read-only, except for a specified volume, we can now do the
opposite and set a single volume (or more, if you use more -v switches) to read-only. The
thing to remember about volumes is that when you use a volume and mount it in a
container, it will mount as an empty volume over the top of that directory inside the
container, unless you use the --volumes-from switch or add data to the container in some
other way after the fact:

$ docker run -d -v /opt/uploads:/opt/uploads:/opt/uploads:ro nginx

This will mount a volume in /opt/uploads and set it to read-only. This can be useful if
you don’t want a running container to write to a volume in order to keep the data or
configuration files intact.

The last option that we want to look at, with regards to the docker run command is the - -
device= switch. This switch allows us to mount a device from the Docker host into a
specified location inside the container. For doing so, there are some security risks that we
need to be aware of. By default, when you do this, the container will get full the access:
read, write, and the mknod access to the device’s location. Now, you can control these
permissions by manipulating rwm at the end of the switch command.

Let’s take a look at some of these and see how they work:

$ docker run --device=/dev/sdb:/dev/sdc2 -it ubuntu:latest /bin/bash

The previous command will run the latest Ubuntu image and mount the /dev/sdb device
inside the container at the /dev/sdc2 location:

$ docker run --device=/dev/sdb:/dev/sdc2:r -it ubuntu:latest /bin/bash

This command will run the latest Ubuntu image and mount the /dev/sdb1 device inside
the container at the /dev/sdc2 location. However, this one has the :r tag at the end of it
that specifies that it’s read-only and can’t be written.

Docker security fundamentals

In the previous sections, we looked into some Docker tools that you can use, such as TLS
for communication, and using read-only containers to help ensure data isn’t changed or
manipulated. In this section, we will focus on some more options that are available from
within the Docker ecosystem that can be used to help secure up your environments to
another level. We will take a look at the kernel namespaces that provide another layer of
abstraction by providing the running process to its own resources that appear only to the
process itself and not to other processes that might be running. We will cover more about
kernel namespaces in this section. We will then take a look at the control groups. Control
groups, more commonly known as cgroups, give you the ability to limit the resources that
a particular process has. We will then cover the Linux kernel capabilities. By that, we will
look at the restrictions that are placed on containers, by default, when they are run using
Docker. Lastly, we will take a look at the Docker daemon attack surface, risks that exist
with the Docker daemon that you need to be aware of, and mitigation of these risks.

Kernel namespaces

Kernel namespaces provide a form of isolation for containers. Think of them as a
container wrapped inside another container. Processes that are running in one container
can’t disrupt the processes running inside another container or let alone run on the Docker
host that the container is operating on. The way this works is that each container gets its
own network stacks to operate with. However, there are ways to link these containers
together in order to be able to interact with each other; however, by default, they are
isolated from each other. Kernel namespaces have been around for quite a while too, so
they are a tried and true method of isolation protection. They were introduced in 2008 and
at the time of writing this book, it’s 2016. You can see that they will be eight years old,
come this July. Therefore, when you issue the docker run command, you are benefiting
from a lot of heavy lifting that is going on behind the scenes. This heavy lifting is creating
its own network stack to operate on. This is also shielding off the container from other
containers being able to manipulate the container’s running processes or data.

Control groups

Control groups, or more commonly referred to as cgroups, are a Linux kernel feature that
allows you to limit the resources that a container can use. While they limit the resources,
they also ensure that each container gets the resources it needs as well as that no single
container can take down the entire Docker host.

With control groups, you can limit the amount of CPU, memory, or disk I/O that a
particular container gets. If we look at the docker run command’s help, let’s highlight the
items that we can control. We will just be highlighting a few items that are particularly
useful for the majority of users, but please review them to see if any others fit your

environment, as follows:

$ docker run --help

Usage: docker run [OPTIONS] IMAGE [COMMAND] [ARG..]

Run a command in a new container

-a, --attach=[]
--add-host=[]
--blkio-weight=0
and 1000
--cpu-shares=0
--cap-add=[]
--cap-drop=[]
--cgroup-parent=
--cidfile=
--Ccpu-period=0
period
--Cpu-quota=0
quota
--cpuset-cpus=
0,1)
- -cpuset-mems=
0,1)
-d, --detach=false
container ID
--device=[]
--disable-content-trust=true
--dns=[]
--dns-opt=[]
--dns-search=[]
-e, --env=[]
--entrypoint=
image
--env-file=[]
- -expose=[]
--group-add=[]
-h, --hostname=

--help=false
-i, --interactive=false
--ipc=

--kernel-memory=

Attach to STDIN, STDOUT or STDERR
Add a custom host-to-IP mapping (host:ip)
Block IO (relative weight), between 10

CPU shares (relative weight)

Add Linux capabilities

Drop Linux capabilities

Optional parent cgroup for the container
Write the container ID to the file

Limit CPU CFS (Completely Fair Scheduler)

Limit CPU CFS (Completely Fair Scheduler)
CPUs in which to allow execution (0-3,
MEMs in which to allow execution (0-3,
Run container in background and print

Add a host device to the container

Skip image verification

Set custom DNS servers

Set DNS options

Set custom DNS search domains

Set environment variables

Ooverwrite the default ENTRYPOINT of the

Read in a file of environment variables
Expose a port or a range of ports

Add additional groups to join

Container host name

Print usage

Keep STDIN open even if not attached
IPC namespace to use

Kernel memory limit

-1, --label=[]
--label-file=[]
--link=[]
--log-driver=
--log-opt=[]
--1xc-conf=[]
-m, --memory=
--mac-address=
92:d0:c6:0a:29:33)
--memory-reservation=
- -memory - swap=
disable swap
- -memory-swappiness=-1
100)
- -name=
--net=default
--oom-kill-disable=false
-P, --publish-all=false
-p, --publish=[]
--pid=
--privileged=false
container
--read-only=false
read only
--restart=no
exits
--rm=false
it exits
--security-opt=[]
--sig-proxy=true
--stop-signal=SIGTERM
default
-t, --tty=false
-u, --user=
<group|gid>])
--ulimit=[]
--uts=
-v, --volume=[]
--volume-driver=
--volumes-from=[]
container(s)
-w, --workdir=

Set meta data on a container

Read in a line delimited file of labels
Add link to another container

Logging driver for container

Log driver options

Add custom 1xc options

Memory limit

Container MAC address (e.g.

Memory soft limit
Total memory (memory + swap), '-1' to

Tuning container memory swappiness (0 to

Assign a name to the container

Set the Network for the container

Disable OOM Killer

Publish all exposed ports to random ports
Publish a container's port(s) to the host
PID namespace to use

Give extended privileges to this

Mount the container's root filesystem as
Restart policy to apply when a container
Automatically remove the container when
Security Options

Proxy received signals to the process

Signal to stop a container, SIGTERM by

Allocate a pseudo-TTY
Username or UID (format: <name|uid>[:

Ulimit options

UTS namespace to use

Bind mount a volume

Optional volume driver for the container
Mount volumes from the specified

Working directory inside the container

As you can see from the preceding highlighted portions, these are just a few items that you

can control on a per-container basis.

Linux kernel capabilities

Docker uses the kernel capabilities to place the restrictions that Docker places on the
containers when they are launched or started. Limiting the root access is the ultimate
agenda with these kernel capabilities. There are a few services that typically run as root,
but can now be run without these permissions. Some of these include SSH, cron, and
syslogd.

Overall, what this means is that you don’t need root in the server sense you typically think
of. You can run with a reduced capacity set. This means that your root user doesn’t need
the privilege it typically needs.

Some of the things that you might not need to enable anymore are shown in the following:

Performing mount operations

Using raw sockets, which will help to prevent spoofing of packets
Creating new devices

Changing the owner of files

Altering attributes

This helps due to the fact that if someone does compromise a container, then they can’t
escalate any more than what you are providing them. It will be much harder, if not
impossible, to escalate their privileges from a running container to running Docker host.
Due to such complexity, the attackers will probably look elsewhere than your Docker
environments to try to attack. Docker also supports the addition and removal of
capabilities, therefore, it’s recommend to remove all the capabilities, except the ones that
you intend to use. An example would be to use the -cap-add net_bind_service switch
on your docker run command.

Containers versus virtual machines

Hopefully, you trust your organization and all those who have access to these systems.
You will most likely be setting up virtual machines from scratch. It is probably impossible
to get the virtual machine from someone else due to its sheer size. Therefore, you will be
aware of what is inside the virtual machine and what isn’t. This being said, with the
Docker containers, you will not be aware of what is there inside the image that you may

be using for your container(s).

Summary

In this chapter, we looked at deploying TLS to all the pieces of our Docker environment
so that we can ensure that everything is communicating securely and the traffic can’t be
intercepted and then interpreted. We also understood how to utilize the read-only
containers to our advantage in order to ensure the data that is being served up can’t be
manipulated. We then took a look at how to provide processes with their own abstraction
of items, such as networks, mounts, users, and more. We then dove into control groups, or
cgroups as their more commonly referred to as, as a way to limit the resources that a
process or container has. We also took a look at the Linux kernel capabilities, that is, the
restrictions that are placed on a container when it is started or launched. Lastly, we dove
into mitigating risks against the Docker daemon attack surface.

In the next chapter, we will look at securing Docker with third-party tools and learn which
third-party tools, beyond those offered by Docker, are out there to help secure your
environments to help keep your application(s) secure when running on Docker.

Chapter 7. Securing Docker with Third-
party Tools

In this chapter, let’s take a look at securing Docker using third-party tools. These would be
tools that are not part of the Docker ecosystem, which you can use to help secure your
systems. We will be taking a look at the following three items:

e Traffic Authorization: This allows inbound and outbound traffic to be verified by
the token broker in order to ensure that traffic between services is secure.

e Summon: Summon is a command-line tool that reads a file in the secrets.yml
format and injects secrets as environment variables into any process. Once the
process exits, the secrets are gone.

e sVirt and SELinux: sVirt is a community project that integrates Mandatory Access
Control (MAC) security and Linux-based virtualization (Kernel-base Virtual
Machine (KVM), Iguest, and so on).

We will then add bonus material with regards to some extra third-party tools that are quite
useful and powerful and deserve to get some recognition as useful third-party tools. These
tools include dockersh, DockerUl, Shipyard, and Logspout. Without further ado, let’s
jump in and get started on our path to the most secure environments that we can obtain.

Third-party tools

So, what third-party tools will we focus on? Well from the preceding introduction, you
learned that we will be looking at three tools in particular. These would be Traffic
Authorization, Summon, and sVirt with SELinux. All the three tools help in different
aspects and can be used to perform different things. We will learn the differences between
them and help you to determine which ones to implement. You can decide whether you
want to implement them all, only one or two of them, or maybe you feel that none of these
would pertain to your current environment. However, it is good to know what is out there,
in case, your needs change and the overall architecture of your Docker environments
change over time.

Traffic Authorization

Traffic Authorization can be used to regulate HTTP/HTTPS traffic between services. This
involves a forwarder, gatekeeper, and token broker. This allows inbound and outbound
traffic to be verified by the token broker in order to ensure that traffic between services is
secure. Each container runs a gatekeeper that is used to intercept all the HTTP/HTTPS
inbound traffic and verifies its authenticity from a token that is found in the authorization
header. The forwarder also runs on each container, and like the gatekeeper, this also
intercepts traffic; however, instead of intercepting inbound traffic, it intercepts outbound
traffic and places the token on the authorization header. These tokens are issues from the
token broker. These tokens can also be cached to save time and minimize the impact of
latency. Let’s break it down into a series of steps, as shown in the following:

1. Service A initiates a request to Service B.

2. The forwarder on Service A will authenticate itself with the token broker.

3. The token broker will issue a token that Service A will apply to the authorization
header and forward the request to Service B.

4. Service B’s gatekeeper will intercept the request and verify the authorization header
against the token broker.

5. Once the authorization header has been verified, it is then forwarded to Service B.

As you can see, this applies extra authorizations on both inbound and outbound requests.
As we will see in the next section, you can also use Summon along with Traffic
Authorization to use shared secrets that are available once they are used, but go away once
the application has completed its actions.

For more information about Traffic Authorization and Docker, visit
https://blog.conjur.net/securing-docker-with-secrets-and-dynamic-traffic-authorization.

https://blog.conjur.net/securing-docker-with-secrets-and-dynamic-traffic-authorization

Summon

Summon is a command-line tool and is used to help pass along secrets or things you don’t
want exposed, such as passwords or environmental variables and then these secrets are
disposed upon exiting the process. This is great as once the secret is used and the process
exits, the secret no longer exists. This means the secret isn’t lingering around until it is
either removed manually or discovered by an attacker for malicious use. Let’s take a look
at how to utilize Summon.

Summon typically uses three files: a secrets.yml file, script used to perform the action or
task, and Dockerfile. As you have learned previously, or based on your current Docker
experience, the Dockerfile is the basis of what helps in building your containers and has
instructions on how to set up the container, what to install, what to configure, and so on.

One great example have for the usage of Summon is to be able to deploy your AWS
credentials to a container. For utilizing AWS CLI, you need a few key pieces of
information that should be kept secret. These two pieces of information are your AWS
Access Key ID and AWS Secret Access Key. With these two pieces of information, you
can manipulate someone’s AWS account and perform actions within this account. Let’s
take a look at the contents of one of these files, the secrets.yml file:

secrets.yml
AWS_ACCESS_KEY_ID: !var $env/aws_access_key_id
AWS_SECRET_ACCESS_KEY: !var $env/aws_secret_access_key

The -D option is used to substitute values while $env is an example of a substitution
variable, therefore, the options can be interchanged.

In the preceding content, we can see that we want to pass along these two values into our
application. With this file, the script file you want to deploy, and the Dockerfile, you are
now ready to build your application.

We simply utilize the docker build command inside the folder that has our three files in
it:

$ docker build -t scottpgallagher/aws-deploy .

Next, we need to install Summon, which can be done with a simple curl command, as
follows:

$ curl -sSL
https://raw.githubusercontent.com/conjurinc/summon/master/install.sh | bash

Now that we have Summon installed, we need to run the container with Summon and pass
along our secret values (note that this will only work on OS X):

$ security add-generic-password -s "summon" -a "aws_access_key_id" -w
"ACESS_KEY_ID"

$ security add-generic-password -s "summon" -a "aws_secret_access_key" -w
"SECRET_ACCESS_KEY"

Now we are ready to run Docker with Summon in order to pass along these credentials to

the container:

$ summon -p ring.py docker run —env-file @ENVFILE aws-deploy

You can also view the values that you have passed along by using the following cat
command:

$ summon -p ring.py cat @SUMMONENVFILE
aws_access_key_ id=ACESS_KEY_ID
aws_secret_access_key=SECRET_ACCESS_KEY

The @SUMMONENVFILE is a memory-mapped file that contains the values from the
secrets.yml file.

For more information and to see other options to utilize Summon, visit
https://conjurinc.github.io/summon/#examples.

https://conjurinc.github.io/summon/#examples

sVirt and SELinux

sVirt is part of the SELinux implementation, but it is typically turned off as most view it as
a roadblock. The only roadblock should be learning sVirt and SELinux.

sVirt is an open source community project that implements MAC security for Linux-based
virtualization. A reason you would want to implement sVirt is to improve the security as
well as harden the system against any bugs that might exist in the hypervisor. This will
help in eliminating any attack vectors that might be aimed towards the virtual machine or
host.

Remember that all containers on a Docker host share the usage of the Linux kernel that is
running on the Docker host. If there is an exploit to this Linux kernel on the host, then all
containers running on this Docker host have the potential to be easily compromised. If you
implement sVirt and a container is compromised, there is no way for the compromise to
reach your Docker host and then out to other Docker containers.

sVirt utilizes labels in the same way as SELinux. The following table is a list of these
labels and their descriptions:

Type ||SELinux Context Description

Mcs1 is a randomly selected MCS field. Currently,

system_u:system_r:svirt_t:MCS1)
approximately 500,000 labels are supported.

'Virtual machine
processes

Only processes labeled svirt_t with the same
system_u:object_r:svirt_image_t:MCS1IMCS fields are able to read/write these image files
and devices.

'Virtual machine
image

All processes labeled svirt_t are allowed to write

system_u:object_r:svirt_image_t:s@]] . ;
to the svirt_image_t:s0 files and devices.

shared read/write
content

This is the system default label used when an image
system_u:object_r:virt_content_t:sO f[lexits. No svirt_t virtual processes are allowed to
read files/devices with this label.

Virtual machine
image

'Virtual machine “

Other third-party tools

There are some other third-party tools that do deserve a mention in this chapter and are
worth exploring to see the value that they can add for you. It seems that these days, a lot of
focus is on GUI applications to help with securing applications and infrastructures. The
following utilities will give you a few options that could be pertinent to the environment
you are running with the Docker tools.

Note

Note that you should use caution when implementing some of the following items as there
could be unwanted repercussions. Make sure to use testing environments prior to
production implementation.

dockersh

The dockersh was designed to be used as a login shell replacement on machines that
support multiple interactive users. Why is this important? If you remember some of the
general security warnings that you have when dealing with Docker containers on a Docker
host, you will know that whoever has access to the Docker host has access to all the
running containers on this Docker host. With dockersh, you can isolate the use on a per-
container basis and only allow users access the containers that you want them to, while
maintaining administrative control over the Docker host and keeping the security
threshold minimum.

This is an ideal way to help isolate users on a per-container basis, while containers help
eliminate the need for SSH by utilizing dockersh, you can remove some of these fears
about providing everyone that needs container to access, the access to the Docker host(s)
as well. There is a lot of information required to set up and invoke dockersh, therefore, if
you are interested, it’s recommended to visit the following URL to find more about
dockersh, including how to set it up and use it:

https://github.com/Yelp/dockersh

https://github.com/Yelp/dockersh

DockerUl

DockerUl is a simple way to view what is going on inside your Docker host. The
installation of DockerUI is very straightforward and is done by running a simple docker
run command in order to get started:

$ docker run -d -p 9000:9000 --privileged -v
/var/run/docker.sock:/var/run/docker.sock dockerui/dockerui

To access the DockerUl, you simply open a browser and navigate to the following link:
http://<docker_host_ip>:9000

This opens your DockerUI to the world on port 9600, as shown in the following
screenshot:

ac® < il & GitHub, inc <
DockerUl
Home Conlainers Images Baitings
Containers:
Id Imasge Commeand Croated Stortus
S8B6395bA18 fbinfsh -g fussflocaibin'sentry —oconfig=saniry.conf.py starl 1370720963 | U 4 howra |
28B4 5o 1d3 fbinfsh «g fustbiniredis-server fetc/redis'redis.conf 1370716229

DockerUl is a web interface for the Docker Remote API. The goal is to provide a pure client side
implementation so it is effortless to connect and manage docker. This project is not complete and is
still under heavy development.

Container: 9cBa34d00df172b317647d25529d3bad48560ea46c5324717aa%214cb62d0537f

Created: 2013-06-08T10:48:43 968TOAA50-08:00

Path: fbin/sh

Args: [*-c*,"fusrflocal/bin/sentry --config=/santry.canl.py start”]

Sysinitpath fusrfocal’bin'docker

Image: 5886885bfd1827cB2172e0b1 864201 bBb3aZ 7'dte 7 ddBaIfdabadd 1 aal5b530ca
Running frus

:Michaeal Crosky

Goals

» Minimal dependencies - | really want to keep this project a pure html/js app.
« Consistency - The web Ul should be consistent with the commands found on the docker CLI.

Container Quickstart

1. Run: docker run —-d -p 9808:9800 —privileged -v
Svar/runfdocker.sock: fvar/run/docker.sock dockerui/dockerui

You can get the general high-level view of your Docker host and its ecosystem and can do
things such as manipulate the containers on the Docker host by restarting, stopping, or
starting them from a stopped state. DockerUI takes some of the steep learning curve of
running command-line items and places them into actions that you perform in a web
browser using point and click.

For more information about DockerUl, visit https://github.com/crosbymichael/dockerui.

https://github.com/crosbymichael/dockerui

Shipyard

Shipyard, like DockerUl, allows you to use a GUI web interface to manage various
aspects—mainly in your containers—and manipulate them. Shipyard is build on top of
Docker Swarm so that you get to utilize the feature set of Docker Swarm, where you can
manage multiple hosts and containers instead of having to just focus on one host and its
containers at a time.

Using Shipyard is simple and the following curl command re-enters the picture:

$ curl -sSL https://shipyard-project.com/deploy | bash -s

To access the Shipyard once the set up is completed, you can simply open a browser and
navigate to the following link:

http://<docker_host_ip>:8080

As we can see in the following screenshot, we can view all the containers on our Docker
host:

0D ® < 2| 1721681356 o th | @

& IMAGES i NODES F REGISTRIES & ACCOUNTS = EVENTS

P® W Mode Name image Status Created Actions

@ 2015824d4739b ship2 shipyard-swarmragent swarm:latest Up 15 seconds 2015-10-28 12:54:20 -0400 Q *
® 0B1e29%ecd475 ship2 shipyard-swarm-manager swarm:latest Up 16 seconds 2015-10-28 12:54:20 -0400 Q F
@ deB883d24661 ship2 shipyand-proxy ehazlett/docker-proxy:latest Up 19 seconds 2015-10-28 12:54:1 6 -0400 Q F
® fad106fbfcab ship2 shipyard-certs alpine Up 23 seconds 2015-10-28 12:54:13 -0400 Q F
@ adfibed1602e ship1 shipyard-contraller shipyard/shipyard:latest Up & minutes 2015-10-28 12:48:14 -0400 Q F
® c2535bd5da1f ship1 shipyard-swarmragent swarm:latest Up & minutes 2015-10-28 12:48:09 -0400 Q F
@ ddeaf3fs]adh ship1 shipyard-controller swarm:latest Up & minutes 2015-10-28 12:48:09 -0400 Q F
® dacd63sbe0c3 ship1 shipyard-proxy ehazlett/docker-proxy:latest Up & minutes 2015-10-28 12:48:05 -0400 Q F
@ Bac4d780aB4a shipl shipyard-certs alpina Up & minutes 2015-10-28 12:48:02 -0400 Q >
L] 3bB22dc1cBec3 shipl shipyard-discovery progrium/consullatest Up & minutes 2015-10-28 12:48:02 -0400 Q F
@ 4c1al1daad70 shipl shipyard-contraller rethinbdb Up & minutes 2015-10-28 12:47:55-0400 Q *

We can also view all the images that are on our Docker host, as shown in the following
screenshot:

ene < m 172169135 5 th | O |8

shipya rd B CONTAINERS 5 IMAGES . NODES P REGISTRIES & ACCOUNTS = EVENTS ADMIM
B O -
Names D Created Node Virtual Size

rethinkdb:latest 684ad3d758db 2015-10-23 19:21:38 -0400 ghip1 17277 MB n
swarm:|atest 556c60fB7088 2015-10-13 23:27:36 -0400 ship1 9.72MB n
shipyard;shipyard:latest b41dcda84lcB 2015-09-24 09:49:16 -0400 ghipl 56.01 MB u
alpine:latest fafddc47 1ec2 2015-09-14 16:01:14 -0400 shipl 5.01 MB n
ehazlett/docker-aroxy:latest bbaZzf7546a7f 2015-09-05 19:02:35-0400 ship1 7.48 MB n
whazlett/curl:iatest fa495a510875 2015-09-05 17:20:40 -0400 ship1 B.35MB n
progriumyconsul latest eb6fb6787628 2015-06-30 15:59:47 -0400 ship1 66.21 MB u
swarm:latest 556c60fB7888 2015-10-13 23:27:36 -0400 ship2 9.72 MB n
alpine:iatest fafddcd7 1ec2 2015-08-14 16:01:14 -0400 ship2 5.01 MB n
ehazlett/docker-proxy-latest bbaZf7546a7f 2015-09-05 19:02:35 0400 ship2 7.48 MB. u

We can also control our containers, as seen in the following screenshot:

soe < il 172168135 & th &

i CONTAINERS 2 IMAGES o NODES P REGISTRIES & ACCOUNTS = EVENTS ADMIN

shipyar d

@ shipyard-swarm-agent Started today at 12:54 pm

swarm:latest

. o EEEEEN CNEEEE OTE DN -

Container Configuration Swarm Node Environment
Container ID Command Nama Host SWARM_HOST=:2375
2015824d739b j --addr 172.16,9.136:2375 ship2 172.16.9.136:2375
consul /4172, 16.9. 135 :B500
CPUs Memory

Hostname Domain Name 1 996 MB
201582447390 N/A
Port Configuration

Inemal 23753/tcp
Processes

PID USER COMMAND

2308 oot fewarm | —addr 172.16.9.136:2375 consull//172.16.9.135:8500

Shipyard, like DockerU]I, allows you to manipulate your Docker hosts and containers, by
restarting them, stopping them, starting them from a failed state, or deploying new
containers and having them join the Swarm cluster. Shipyard also allows you to view
information such as port mapping information that is what port from the host maps to the
container. This allows you to get a hold of important information like that when you need
it quickly to address any security related issues. Shipyard also has user management where
DockerUI lacks such capability.

For more information about Shipyard simply visit the following URLs:

e https://github.com/shipyard/shipyard
e http://shipyard-project.com

https://github.com/shipyard/shipyard
http://shipyard-project.com

Logspout

Where do you go when there is an issue that needs to be addressed? Most people will first
look at the logs of that application to see if it is outputting any errors. With Logspout, this
becomes a much more manageable task with many multiple running containers. With
Logspout, you can route all the logs for each and every container to a location of your
choice. Then, you could parse these logs in one place. Instead of having to pull the logs
from each container and review them individually you can instead have Logspout do that
work for you.

Logspout is just as easy to set up as we have seen for other third-party solutions. Simply
run the following command on each Docker host to start collecting the logs:

$ docker run --name="logspout" \
--volume=/var/run/docker.sock:/tmp/docker.sock \
--publish=127.0.0.1:8000:8080 \
gliderlabs/logspout

Now that we have all the container logs collected in one area, we need to parse through
these logs, but how do we do it?

$ curl http://127.0.0.1:8000/10gs

Here’s the curl command to the rescue again! Logs get prefixed with the container names
and colorized in a manner in order to distinguish the logs. You can replace the loopback
(127.0.0.1) address in the docker run invocations with the IP address of the Docker host
so that it’s easier to connect to in order to be able to get the logs as well as change the port
from 8000 to something of your choice. There are also different modules that you can
utilize to obtain and collect logs.

For more information about Logspout, visit https://github.com/gliderlabs/logspout.

https://github.com/gliderlabs/logspout

Summary

In this chapter, we looked at some third-party tools in order to be able to help secure
Docker environments. Mainly, we looked at three tools: Traffic Authorization, Summon,
and sVirt with SELinux. All the three can be utilized in different ways to help secure your
Docker environments to give you the peace of mind at end of the day to run your
applications in the Docker containers. We learned what third-party tools, beyond those
offered by Docker, are out there to help secure your environments to keep your
application(s) secure when running on Docker.

We then took a look at some other third-party tools. These are extra tools that are
worthwhile to some, given what your Docker environment setup looks like. Some of these
tools include dockersh, DockerUI, Shipyard, and Logsprout. These tools, when carefully
applied, layer on extra enhancements to help in the overall security of your Docker
configurations.

In the next chapter, we will be looking at keeping up on security. With so much going on
these days that surrounds the security, it’s sometimes tough to know where to look for
updated information and be able to apply quick fixes.

You will be learning to help enforce the idea of keeping security in the forefront of your
mind and subscribing to things such as e-mail lists that not only include Docker, but also
include items that are related to the environments you are running with Linux. Other items
are keeping up on following what is going on with regards to items such as GitHub issues
that relate to Docker security, following along in the IRC rooms, and watching websites
such as the CVE.

Chapter 8. Keeping up Security

In this chapter, we will be taking a look at keeping up with security as it relates to Docker.
By what means you can use to help keep up to date on Docker-related security issues that
are out there for the version of the Docker tools you might be running now? How do you
stay ahead of any security issues and keep your environments secure even with threats? In
this chapter, we will look at multiple ways in which you can keep up on any security
issues that arise and the best way to obtain information as quickly as possible. You will
cover learning to help enforce the idea of keeping security in the forefront of your mind
and subscribing to things such as e-mail lists that not only include Docker, but also include
items that are related to the environments you are running with Linux. Other items are
keeping up on following what is going on with regards to items such as GitHub issues that
relate to Docker security, following along with the Internet Relay Chat (IRC) rooms,
and watching websites such as the CVE.

In this chapter, we will be covering the following topics:
e Keeping up with security

E-mail list options
GitHub issues
IRC rooms

CVE websites

O O O o

e Other areas of interest

Keeping up with security

In this section, we will take a look at the multiple ways that you can obtain or keep up to
date about the information related to the security issues that may occur in Docker
products. While this isn’t a complete list of tools that you can use to keep up on issues,
this is a great start and consists of the most commonly used items that are used. These
items include e-mail distribution lists, following the GitHub issues for Docker, IRC chat
rooms for the multiple Docker products that exist, CVE website(s), and other areas of
interest to follow on items that relate to Docker products, such as the Linux kernel
vulnerabilities and other items you can use to mitigate the risks.

E-mail list options

Docker operates two mailing lists that users can sign up to be a part of. These mailing lists
provide means to both gather information about the issues or projects others are working
on and spark your thoughts into doing the same for your environment. You can also use
them to help blanket the Docker community with questions or issues that you are running
into when using various Docker products or even other products in relation to Docker
products.

The two e-mail lists are as follows:

e Docker-dev
e Docker-user

What is the Docker-dev mailing list mostly geared towards? You guessed it, it is geared
towards the developers! These are the people who are either interested in developer type
roles and what others are developing or are themselves developing code for something that
might integrate into various Docker products. This could be something such as creating a
web interface around Docker Swarm. This list would be the one you want to post your
questions at. The list consists of other developers and possibly even those that work at
Docker itself that might be able to help you with any questions or issues that you have.

The other list, the Docker-user list, is geared towards the users of the various Docker
products or services and have questions on either how to use the products/services or how
they might be able to integrate third-party products with Docker. This might include how
to integrate Heroku with Docker or use Docker in the cloud. If you are a user of Docker,
then this list is the right one for you. You can also contribute to the list as well if you have
advanced experience, or something comes across the list that you have experience in, or
have dealt with previously.

There is no rule that says you can’t be on both. If you want to get the best of both worlds,
you can sign up for both and gauge the amount of traffic that comes across each one and
then make the decision to only be on one, based on where your interests lie. You also have
the option of not joining the lists and just following them on the Google Groups pages for
each list.

The Google groups page for the Docker-dev list is
https://groups.google.com/forum/#!forum/docker-dev and the Google groups page for the
Docker-user list is https://groups.google.com/forum/#!forum/docker-user.

Don’t forget that you can also search through these lists to see if your issue or questions
might have already been answered. As this book is about security, don’t forget that you
can use these two mailing lists to discuss items that are security related—whether they be
development or user related.

https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-user

GitHub issues

Another method of keeping up with security-related issues is to follow the GitHub issues.
As all the code for the Docker core and other various piece of Docker such as Machine,
Swarm, Compose, and all others are stored on GitHub, it provides an area. What exactly
are GitHub issues and why should I care about them is what you are probably asking
yourself right now. GitHub Issues is a bug tracker system that GitHub uses. By tracking
these issues, you can view the issues that others are experiencing and get ahead of them in
your own environment, or it could solve the problem in your environment, knowing that
others are having the same issue and it’s not just on your end. You can stop pulling what is
left of your hair.

As each GitHub repository has its own issues section, we don’t need to look at each and
every issues section, but I believe it is worthwhile to view one of the repositories issues
section so that you know what exactly you are looking at in order to help decipher it all.

The following screenshot (which can be found at https://github.com/docker/docker/issues)
shows all the current issues that exist with the Docker core software code:

ene < I8 @ it : ol e ||

GitHuh This repository Explore Features Enterprise Pricing

docker / docker © Watch 2484 JrStar 28833 Y Fork 78

Code (D lssues 1,240 Pull requests 62 Wiki Pulse Graphs
Ississue s 0par Labels Milestones

{D 1,230 Open .~ 7,755 Closed Author = Labals - Miastones - Assignes - Son -

Option in daemon]son ﬂle for userland -proxy being ignored

#20289 opened 21 ago by mbent

Improve error reporting with —-insecure-registry if hitps registry connection fails L1
#20286 opened a day ago by vikstrous

Mo such image - statusCode=404 group/distribution kindiquestion a1

#20283 openad a day ago by reiz

Exlsthng conta iners mav attach to volumes from wrong driver if initial driver is not responding o2

#20276 opened & day ago

Llnklng to a container runnlng codenvy/che fails with error "argument list too long." L1
74 opened a day ago by

Allow comments in && . a1

20273 o lay ag

Unable to recover from dewoemnpper running out of space areafstorapaidevicemapper

¥20272 oper fay ago

Docker hangs forever if a container is linked to itself krdbug . 16

#20271 openad & day ago by kelemen

delault appammr prohle is not 2.8 compatlble a1

#20269 opened a day ago

Drluer cve-rla!_.r failed to remoue root filesystem: layer not retained since 1.10.0 a4

i opened & day ago by

Cannui start daemon - Failed to load layer - failed to get diff id - invalid checksum digest format [ae

67 opened a day age by berog

Iogln help should not outpul explicit domain names group/distribution

sened 2 days ago by dmpd2

From this screen, we can not only see how many issues are open, but also know how many

https://github.com/docker/docker/issues

have been closed. These are issues that were once an issue and solutions were derived for
them and now they have been closed. The closed ones are here for historic purposes in
order to be able to go back in time and see what solution might have been provided to
solve an issue.

In the following screenshot, we can filter the issue based on the author, that is, the person
who submitted the issue:

@ . <> [& GitHub, Inc il o
LT A i i a8 W e s 1 TR u pe—
docker / docker & Watch 2470 o Star 28,652 Y Fork 7543
Code (D Issues 1,245 Pull requests 54 Wik Pulse Graphs

Is:issue is:open Labels Milestones
(@ 1,245 Open .+ 7,757 Closed Author~ Labels~ Miestones~ Assignee~ Sort~
) Re-Implement checkpolnt/restore after gg Filter by author &

#20300 opanad § hours ago by thaleztah

' [v1.10] slice bounds out of range [kndibug __]
#20200 opaned 9 hours ago by ColnHebart 1.10 n Aargrlenmann Ason Lahmann

1 [v1.10] max depth exceeded error j¥} aboch 31
#20208 openad 10 hours ago by beelres
. abwonan Alssandre Basic
£ [1.10.1] docker daemon -b none creates & '_j;q a1

#20257 opened 14 hours age by ibulldihecloud § Akshayvyas aishay Vyas

al ardi Andrea Luzzand
1 Cannot import tar.gz files anymore . e A L a2 s
#20206 opened 17 hours ago by tunter
ﬂ bowalrus bo Wong

' WORKDIR doesn't respect USER when c1 R s et 2
#20295 opened 19 hours ago by dmolesUCa B SR
calavera David Caiara
¢! Option in daemon.json file for userland-p [] 1

#20285 opened 21 hours age by mbeniley 1.10.2 0 cooliD725 Lol Jteng
) Improve error reporting with --insecure-ru da; CPUGUYBS Brian Gos
#20286 opened a day ago by wiksirous 1.10.2
. croshymichael Mchas! Crosby
' No such image - statusCode=404 group/distribution kind/question a9
#20283 opened & day ago by relz

| Existing containers may attach to volumes from wrong driver if initial driver is not responding o2
#20276 opened a day ago by cintonskitson

1 Linking to a container running codenvy/che fails with error "argument list too long." 31
#20274 opened a day ago by gissehel

7 Allow comments in &8\ # ... [taieag kindenhancemant
#20273 opened a day ago by meandre

' Unable to recover from devicemapper running out of space amafstorageidevicemapper

In the following screenshot, we can also filter the issue based on labels and these might
include api, kernel, apparmor, selinux, aufs, and many more:

B GitHub, Ine. ¥
e o B i o i i : : e
| docker / docker & Watch 2470 4 Star
Code (D Issues 1,245 | Pull requests 54 Wiki Pulse | Graphs
Blssue isopen Labels Milestones
(D) 1,245 Open .+ 7,757 Closad Author = Labels - Milesiones -

o

=)

1) [v1.10] slice bounds out of range [Kindiig

Re-implement checkpoint/restore after containerd in FiRer by Inbol
#20300 openad 5 hours ago by thaleztah

#20299 opened 9 hours ago by ColinHebert 1.10.2 Unlabeled

) [v1.10] max depth exceeded error 8 arzaicpl

#20298 opened 10 hours ago by bestree
B arcatbuilder
[1.10.1] docker daemon -b none creates a bridge nar W areaic
#20297 opensd 14 hours ago by bulict hecloud

araa/kemel

| Gannot import tar.gz files anymore

#20206 opened 17 hours ago by tlurter B areaiogging

WORKDIR doesn't respect USER when creating dire B 2™

#20295 opened 19 hours ago by dmolesUC3 area/security/appanmor

*! Option in daemon.json file for userland-proxy being arsa/sscurity/seccomp

#20289 opened 21 hours ago by mbentisy 1.10.2
area/securityiselinux

*! Improve error reporting with —insecure-registry if ht! aiva/sragiiiis

#20286 opened a dey Bgo by vikstrous 1.10.2
arealsloragetbins

| No such image - statusCode=404 group/distribution kindiquestion

#20283 opened a day ago by reiz

") Existing containers may attach to volumes from wrong driver if initial driver is not responding

#20276 opened a day ago by clintonskitson

* Linking to a container running codenvy/che fails with error "argument list too long."

#20274 opened a day ago by gissehel

Allow comments in &8& \# ... kindfenhancement
#20273 opened a day ago by mecandre

) Unable to from devi pper running out of space srafsicrageidevicemapper

ez YFork 7.3

Assignae ~

Sorl~

=]

4

In the following screenshot, we see that we can also filter by milestone:

es® <> m & GitHub, Ine. & i (=)
i R S e e e
docker / docker ® Watch 2470 s Star 28652 Y Fork 7943
Code (Dlssues 1,248 Pull requests 54 Wil Pulze Graphs
sclssun [s:0pen Labels Milestones 'ﬁ "‘""‘i
(@ 1,245 Open .~ 7,757 Closed Author = Labels ~ Milestones ~ Assignes - Son ~
() Re-implement checkpoint/restore after containerd Integration [king "''s" by milestone =
#20300 opened 5 hours ago by thadeztah ¢ |
o [v1.10] slice bounds out of range kindug ' = o2
) [v1.10] max depth exceeded error fa02 [mp]
#20208 opanad 10 hours aga by bestrea 110
1 [1.10.1] docker daemon -b none creates a bridge named "none" an Windows TRa 1
#20297 opanad 14 hours aga oy Ibuiidthacloud
Windows TPS
11 Cannot import tar.gz files anymore 2 a
F20296 openad 17 hours ago By turber
) WORKDIR doesn't respect USER when creating directories [i)
#201205 opanad 19 hours ago by dmolesUC3
1) Option in daemon.json file for userland-proxy being ignored |[Kindig = o1

#2028 openad 21 hours ago by mbentley 1.10.2

1 Improve error reparting with —insecure-registry it https registry connection fails
#20286 opened & day ago by vikstrous 1.10.2

£ No such image - statusCode=404 group/distribution kindiquestion a1
#2053 opened & day ago by reiz

) Existing containers may attach to volumes from wrong driver if initial driver is not responding 12
#20276 opened & day ago by clintonskiison

) Linking to a container running codenvy/che fails with error "argument list too long." a1
¥20274 opened a day ago by gissehel

T Allow comments in 88\ # ... [arakid kindenhancement
#20273 opened & day ago by moandne

) Unable to recover from devicemapper running out of space area'storage/devicemappar

Milestones are essentially tags to help sort issues based on fixing an issue for a particular
purpose. They can also be used to plan upcoming releases. As we can see here, some of
these include Windows TP4 and Windows TP5.

Lastly, we can filter issues based on assignee, that is, the person to whom it is assigned to
fix or address the issue, as shown in the following screenshot:

s < > M & GitHub, Inc. fo t o

T ET TR arcapeidiininy T P e T e e i Bl
docker / docker @ Watch 2470 dStar 28852 ¥ Fork 7843
Code (D) lssues 1,245 Pull requests B4 Wik Pulza Graphs
Is:issue is:open Labels Milestones
(@ 1.2450pen + 7,757 Closed Author = Labels - Miestones ~ Assignee = Sort~

Filter by who's assigned '

' Re-implement checkpoint/restore after containerd integration |kindfasturs:
E20300 opened 5 hours ago by (habeztah

' [v1.10] slice bounds out of range kindbug 2
#20259 opened B hours ago by ColinHeber 1102 Assigned to nobody
(1) [v1.10] max depth exceeded error § asronishmann Asron Lebmann -t
#20208 opened 10 hours ago by bestres
i} aboch
T [1.10.1] docker daemon -b none creates a bridge named "none” groupinetworking i mE]

abronan Alswance Heslc
#20247 openad 14 hours ago by ibuildthecloud .

" akshayvyas Akshay Vyss

' Cannot import tar.gz files anymore 1 s
#20296 opened 17 hours ago by lunter ' R e s

' WORKDIR doesn't respect USER when creating directories ﬂ bewalrus be Wong ez
#20205 openad 18 hours ago by dmoleslUIC3
- bifirsh Ben Firshman
1) Option in daemon.json file for userland-proxy being ignored kindtug [] (k]
#20289 openad 21 hours ago by mbantley 1.10.2 u calavera David Calavara

T Improve error reporting with —insecure-registry if hitps registry connection fails _‘\'_5. COCIOT25 Led dilang
¥20286 openad a day ago by vikstious 1.10.2
‘i cpuguyB3 Brian Gofl
' Mo such image - statusCode=404 group/distribution kindiquestion =h
¥20283 opened a day ago by relz

() Existing containers may attach to volumes from wrong driver if initial driver is not responding na
#20276 openad a day ago by clinfonskitzon

" Linking to a container running codenvy/che fails with error "argument list too long.” 31
#20274 opened & day ago by gissehel

T Allow comments in &8\ # ... Ll kindlenhancement
#20273 opened a day ago by mcandre

1) Unable to from devi pper running out of space areafstorage/devicemappar

As we can see, there are lot of ways in which we can filter the issues, but what does an
issue actually look like and what does it contain? Let’s take a look at that in the following
section.

In the following screenshot, we can see what an actual issue looks like:

1 o +

GitHuh This reposilory Explore Features Enterprise Pricing Sign Signin

docker / docker @ Watch 2470 s Star 28652 Fork 7,943

Code (Dtssuas 1,245 Pull requesis 54 Wiki Pulsa Graphs
Option in daemon.json file for userland-proxy being ignored R
1 mbentley opened this issue 21 hours ago + 1 comment
* mbentley commented 21 hours ago Labels
Kind/bug

Description of problem:
When using the option in daemon.json file for userland-proxy, it is being ignored.

Milestone
docker version: .
1.10.2
% docker version .
Client: Assignee
Version: 1.10.1 (X calavers

API version: 1.22
Go version; Qol.3.3

Git commit: QeB3TES 3 participants

Built: Thu Feb 11 19:15:28 2@16

0S/Arch; Linux/ands4 REE
Server:

Version: 1.18.1

API version: 1.22

Go version: gol.5.3

Git commit: QeB3765

Built: Thu Feb 11 19:15:28 2816

OS/Aren: Linux/amd6d

docker info:

% docker infa
Containers: 2
Running: @
Paused: @
Stopped: 2
Images: 483
Server Version: 1.18.1
Storage Driver: aufs
Root Dir: fvarflib/docker/aufs

Some of the information that we can see is the title of the issue and the unique issue
number. We can then see that this particular issue is open, the person who reported the
issue, and for how long it’s opened. We can then see how many comments are there on the
issue and then a large explanation of the issue itself. On the right-hand side, we can see
what labels the issue has, what its milestone is, who it is assigned to, and how many

participants are involved in the issue. Those involved are people who have commented on
the issue in some way.

In the last image, which is at the bottom of the issue from the preceding image, we can see
the timeline of the issue, such as who it was assigned to and when, as well as when it was
assigned a label and any additional comments.

eane® <

[im

& GitHub, Inc.
Ceae FUSTIULNTUULRET Ugemiun
I—BEBE docker-proxy -proto tcp -host-ip 8.0.8.8 -host-port B@ -container-ip 172
515 nginx: master process ngink -c fetc/nginx/nginx.con
522 nginx: worker process
L8523 nginx: worker process

Expected Results:
MNo docker-proxy process running indicating that the usemame proxy is not being used

Additional info:

daemon, json ©

“debug": false,
"hasts" fd: /4",
*log-config™: {

"log-driver”: "json-file",

"log-opts": [Mmax-size=18n", "max-file=2"]

H

“storage-driver": “aufs",
“graph”: "fvar/lib/docker",
"userland-proxy": false

G B calavera was assigned by thadeztah 13 hours ago
%> [thadeztah added the (kiG] 'sbe! 19 hours ago

'r n thaeztah added this to the 1.10.2 milestone 19 hours aga

thaJeztah commentad 19 hours ago Dockar mamber

ping @calavera - assigned this to you &

DR8] to join this conversation on GitHub, Already have an account? Sign in ta comment

&

& 2016 GitHub, Inc. Terma Prvacy Security Contact Halp [Status API

Labels

Milestone
-
1102

Assignas

u calavera

3 participants

Training Shop Blog About

Pricing

IRC rooms

The first thing to understand is what exactly IRC is. If you think back to the older days,
we probably all had some form of IRC rooms when we had AOL and had chat rooms that
you could join based on your location or topic. IRC operates in the same way where there
is a server that clients, such as yourself, connect to. These rooms are typically based on a
topic, product, or service that people have in common that can come together to discuss.
You can chat as a group but also utilize private chats with others in the same room or
channel as you.

Docker utilizes IRC for discussion about its products. This allows not only end users of
the products to engage in discussion, but also in the case of Docker, most of those who
actually work for Docker and on these products tend to be in these rooms on a daily basis
and will engage with you about issues you might be seeing or questions you have.

With IRC, there are multiple servers that you can use to connect to the hosted channels.
Docker uses the http:/freenode.net server (it is the server you would use if you were to
use a third-party client to connect to IRC; however, you can also use
http://webchat.freenode.net) and then all their channels for their products are things such
as #docker, #docker-dev, #docker-swarm, #docker-compose, and #docker-machine.
All channels start with the pound sign (#), followed by the channel name. Within these
channels, there are discussion for each product. Beyond these channels, there are other
channels where you can discuss Docker-related topics. In the previous chapter, we
discussed the Shipyard project, which allows you to have a GUI interface that overlays on
top of your Docker Swarm environment. If you had questions about this particular
product, you could join the channel for that product, which is #shipyard. There are other
channels you can join as well and more created daily. To get a list of channels, you will
need to connect to your IRC client and issue a command. Follow the given link to find out
how to do this:

http://irc.netsplit.de/channels/?net=freenode

Chat archives are also kept for each channel, therefore, you can search through them as
well to find out whether discussions are happening around a question or issue that you
may be experiencing. For example, if you wanted to see the logs of the #docker channel,
you could find them here:

https://botbot.me/freenode/docker/

You can search for other channel archives on the following website:

https://botbot.me

http://freenode.net
http://webchat.freenode.net
http://irc.netsplit.de/channels/?net=freenode
https://botbot.me/freenode/docker/
https://botbot.me

CVE websites

In Chapter 5, Monitoring and Reporting Docker Security Incidents, we covered CVEs and
Docker CVEs. A few things to remember about them are listed in the following:

CVEs can be found at https://cve.mitre.org/index.html

Docker-related ones can be found at https://www.docker.com/docker-cve-database
To search for CVE’s use the following URL: https://cve.mitre.org/index.html

If you were to open this CVE from the preceding link, you will see that it gathers
some information as shown in the following:

CVE ID
Description
References

Date entry created
Phase

Votes

Comments
Proposed

O O O O O O o o

https://cve.mitre.org/index.html
https://www.docker.com/docker-cve-database
https://cve.mitre.org/index.html

Other areas of interest

There are some areas of interest that you should keep in mind with regards to security. The
Linux kernel, as we have talked about a lot during this book, is the key part of the Docker
ecosystem. For this reason, it’s very important to keep the kernel as up to date as possible.
With regards to updates, it is also important to keep the Docker products you are using up
to date too. Most updates include security updates, and for this reason, they should be
updated when new product updates are released.

Twitter has become the social hotspot when you are looking to promote your products and
Docker does the same. There are a few accounts that Docker operates for different
purposes and they are listed in the following. Depending on what piece of Docker you are
using, it would be wise to follow one or all of them, as shown in the following list:

@docker
@dockerstatus
@dockerswarm
@dockermachine

Twitter also utilizes hashtags that group the tweets together, based on their hashtags. For
Docker, it’s the same and they use the #docker hashtag, which you can search for on
Twitter to gather tweets that all talk about Docker.

The last thing we want to cover is Stack Overflow. Stack Overflow is a question and
answer website and uses votes to promote the answers that are provided to help you get
the best answer in the quickest manner. Stack Overflow utilizes a method similar to
Twitter with tagging questions so that you can search for all the questions on a particular
topic. The following is the link that you can use to gather all the Docker questions into one
search:

http://stackoverflow.com/questions/tagged/docker

When you visit the URL, you will see a list of questions as well as how many votes each
question has, number of answers, number of views, and a green check mark on some of
them. The checked answers are the answers that the person who asked them mark as
accepted, meaning that it’s the best answer. Some of the people who monitor Docker
questions are those that work for Docker, doing the work behind the scenes and providing
the best answers, therefore, it’s a great place to pose any questions that you might have.

http://stackoverflow.com/questions/tagged/docker

Summary

In this chapter, we looked at how to keep up with security-related issues that not only
pertain to Docker products that you may be running now or in the near future, but they
also pertain to security issues such as kernel issues. As Docker relies on the kernel for all
Docker containers on a Docker host, the kernel is very important. We looked at multiple
mailing lists that you can sign up for, getting notifications in this manner. Joining IRC chat
rooms and following GitHub issues for anything security-related or anything that isn’t
currently working might affect your environments. It is very important to always keep
security in the front of your mind when deploying anything and while the Docker is
inherently secure, there are always people out there that will take advantage of any given
vulnerability, therefore, keep all of your environments safe and as up to date as possible.

Index

A

Active Directory / Docker Subscription
Amazon Linux AMI / Auto-patching hosts
Amazon Machine Image (AMI) / Installation
AppArmor / Securing Docker hosts

o and SELinux / SELinux and AppArmor

o URL / SELinux and AppArmor, Access controls
auto-patching hosts

o about / Auto-patching hosts
Awesome Docker

o URL / Awesome Docker

Certificate Authority (CA) / Protecting the Docker daemon
cgroups / Virtualization and isolation
channel archives
o about / IRC rooms
chat archives
o about / IRC rooms
CIS guide
o about / CIS guide
URL / CIS guide
host configuration / Host configuration
daemon configuration / Docker daemon configuration
daemon configuration files / Docker daemon configuration files
container images/runtime / Container images/runtime
security operations / Docker security operations
Common Vulnerabilities and Exposures (CVE) / SANS hardening guide deep dive
o about / Docker CVE
o URL / Docker CVE
containers
o versus virtual machines / Containers versus virtual machines

control groups / Control groups

CoreOS / Auto-patching hosts
CVE

o Docker-related, URL / CVE websites
o URL / CVE websites

O O O O O O

Digital Ocean, Amazon Web Services (AWS) / Installation
Docker-dev

e}

URL / The two e-mail lists are as follows:

Docker-user

e}

URL / The two e-mail lists are as follows:

Docker Bench Security application

e}

e}

about / The Docker Bench Security application
tool, running / Running the tool

Docker Bench Security application, output

e}

e}

e}

about / Understanding the output

host configuration / Understanding the output — host configuration

Docker daemon configuration / Understanding the output — the Docker daemon
configuration

Docker daemon configuration, files / Understanding the output — the Docker
daemon configuration files

container images and build files / Understanding the output — container images
and build files

container runtime / Understanding the output — container runtime

Docker security operations / Understanding the output — Docker security
operations

e Docker Bench Security application, tool

e}

e}

e}

e}

host configuration / Running the tool — host configuration
Docker daemon configuration / Running the tool — Docker daemon

configuration

Docker daemon configuration, files / Running the tool — Docker daemon
configuration files

container images and build files / Running the tool — container images and build
files

container runtime / Running the tool — container runtime

Docker security operations / Running the tool — Docker security operations

DockerCon Europe 2015

e}

URL / Hardware signing

Docker Content Trust

O O O o

about / Docker Content Trust

components / Docker Content Trust components
images, signing / Signing images

hardware, signing / Hardware signing

Docker CS Engine / Installation

e}

URL / Installation

Docker daemon

e}

e}

attack surface / Attack surface of Docker daemon
protecting / Protecting the Docker daemon

docker exec command / Understanding the output — container runtime
Dockerfile / Workflow
Docker host
o about / Docker host overview, Discussing Docker host
o virtualization and isolation / Virtualization and isolation
o securing / Securing Docker hosts
Docker Hub / Workflow
Docker Hub Enterprise / Docker Subscription
Docker Machine
o about / Docker Machine
Docker Notary
o about / Docker Notary
o URL / Docker Notary
Docker Registry
o about / Docker Registry
o installing / Installation
o configuring / Configuration and security
o security / Configuration and security
Docker Secure Deployment Guidelines
o URL / Protecting the Docker daemon
dockersh
o about / dockersh
o URL / dockersh
Docker Subscription / Docker Subscription
about / Docker Subscription
Docker Registry / Docker Subscription
Docker Engine / Docker Subscription
Docker Universal Control Plane (UCP) / Docker Subscription
Commercial support / Docker Subscription
URL / Docker Subscription
Docker Toolbox / Docker Machine
Docker Trusted Registry
about / Docker Trusted Registry
installing / Installation
securing / Securing Docker Trusted Registry
administering / Administering
workflow / Workflow
DockerUI / DockerUI
o URL / DockerUI
Docker Universal Control Plane (UCP) / Docker Subscription
Domain and Type Enforcement (DTE) / Access controls

O O O O O O

O O O O O

E

e e-mail lists
o options / E-mail list options
o Docker-dev / The two e-mail lists are as follows:
o Docker-user / The two e-mail lists are as follows:
e Exec Shield

o URL / SANS hardening guide deep dive

F

e fully qualified domain name (FQDN) / Protecting the Docker daemon

G

e GitHub
o ISSUES / GitHub issues
o URL / GitHub issues

e Grsecurity / Grsecurity
o URL / Grsecurity

H

e Heroku / The two e-mail lists are as follows:
e Hyper-V / Discussing Docker host

I

¢ Internet Relay Chat (IRC)
o about / IRC rooms

K

e Kernel namespaces / Kernel namespaces

LDAP / Docker Subscription

Linux Kernel / Virtualization and isolation

Linux kernel / Other areas of interest

Linux kernel capabilities / Linux kernel capabilities
Linux kernel hardening, guides

o about / Linux kernel hardening guides
o SANS hardening guide deep dive / SANS hardening guide deep dive

o URL / SANS hardening guide deep dive
o access controls / Access controls
o distributions / Distribution focused
Linux kernel hardening, tools
o about / Linux kernel hardening tools
o Grsecurity / Grsecurity
o Lynis/ Lynis
Logspout / Logspout
o URL / Logspout
Lynis
o about / Lynis
o URL / Lynis

M

¢ mailing lists

o about / Mailing lists

o URL / Mailing lists
e Mandatory Access Controls (MAC) / Access controls
e Microsoft Azure / Installation

N

e namespaces / Virtualization and isolation
e Notary
o about / Docker Content Trust
o URL / Docker Content Trust components, Signing images

OpenSSL / Securing Docker Trusted Registry
Openwall hardened Linux

o URL / SANS hardening guide deep dive
Openwall Linux

o URL / SANS hardening guide deep dive
Owlwall / Distribution focused

P

e PaX /SANS hardening guide deep dive
o URL / SANS hardening guide deep dive

R

¢ responsible disclosure

o URL / Responsible disclosure

o about / Responsible disclosure
e Role-Based Access Controls / Access controls

e Rule Set Based Access Controls (RSBAC) / Access controls

S

e SANS Technology Institute Leadership Lab

o URL / Linux kernel hardening guides
e security

o about / Docker security — best practices, Keeping up with security
best practices / Docker — best practices

monitoring / Docker security monitoring
reporting / Docker security reporting
e-mail list, options / E-mail list options
GitHub, issues / GitHub issues
IRC rooms / IRC rooms

o CVE websites / CVE websites
e security, fundamentals

about / Docker security fundamentals
o Kernel namespaces / Kernel namespaces

o control groups / Control groups

o Linux kernel capabilities / Linux kernel capabilities
e security, reporting

o responsible disclosure / Responsible disclosure

o about / Security reporting
® security, resources

o about / Additional Docker security resources
o Docker Notary / Docker Notary
o hardware signing / Hardware signing
o materials, reading / Reading materials
o Awesome Docker / Awesome Docker
e Security-Enhanced Linux (SELinux) / Securing Docker hosts
e SELinux
o and AppArmor / SELinux and AppArmor
o URL / SELinux and AppArmor, Access controls
/ sVirt and SELinux
e Shipyard / Shipyard
o URL / Shipyard
e Summon / Summon
e sVirt/sVirt and SELinux
e Swarm / Using TLS

O O O O O O

(¢]

T

e The Update Framework (TUF) / Docker Content Trust components
o URL / Docker Content Trust components

e third-party tools
o about / Third-party tools

traffic authorization / Traffic Authorization

summon / Summon

sVirt / sVirt and SELinux

SELinux / sVirt and SELinux

other / Other third-party tools

dockersh / dockersh

DockerUI / DockerUlI

Shipyard / Shipyard

Logspout / Logspout

O 0O 0O o o o o o o

e TLS
o using / Using TLS

e tools

o about / Docker tools

o TLS, using / Using TLS

o read-only containers / Read-only containers
traffic authorization / Traffic Authorization

o URL / Traffic Authorization
Transport Layer Security (TLS)

o URL / Protecting the Docker daemon

\Y

e VM host / Discussing Docker host
e VMware ESXi / Discussing Docker host

Y

¢ YubiKeys
o URL / Hardware signing

	Securing Docker
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Securing Docker Hosts
	Docker host overview
	Discussing Docker host
	Virtualization and isolation
	Attack surface of Docker daemon
	Protecting the Docker daemon
	Securing Docker hosts
	Docker Machine
	SELinux and AppArmor
	Auto-patching hosts
	Summary
	2. Securing Docker Components
	Docker Content Trust
	Docker Content Trust components
	Signing images
	Hardware signing
	Docker Subscription
	Docker Trusted Registry
	Installation
	Securing Docker Trusted Registry
	Administering
	Workflow
	Docker Registry
	Installation
	Configuration and security
	Summary
	3. Securing and Hardening Linux Kernels
	Linux kernel hardening guides
	SANS hardening guide deep dive
	Access controls
	Distribution focused
	Linux kernel hardening tools
	Grsecurity
	Lynis
	Summary
	4. Docker Bench for Security
	Docker security – best practices
	Docker – best practices
	CIS guide
	Host configuration
	Docker daemon configuration
	Docker daemon configuration files
	Container images/runtime
	Docker security operations
	The Docker Bench Security application
	Running the tool
	Running the tool – host configuration
	Running the tool – Docker daemon configuration
	Running the tool – Docker daemon configuration files
	Running the tool – container images and build files
	Running the tool – container runtime
	Running the tool – Docker security operations
	Understanding the output
	Understanding the output – host configuration
	Understanding the output – the Docker daemon configuration
	Understanding the output – the Docker daemon configuration files
	Understanding the output – container images and build files
	Understanding the output – container runtime
	Understanding the output – Docker security operations
	Summary
	5. Monitoring and Reporting Docker Security Incidents
	Docker security monitoring
	Docker CVE
	Mailing lists
	Docker security reporting
	Responsible disclosure
	Security reporting
	Additional Docker security resources
	Docker Notary
	Hardware signing
	Reading materials
	Awesome Docker
	Summary
	6. Using Docker's Built-in Security Features
	Docker tools
	Using TLS
	Read-only containers
	Docker security fundamentals
	Kernel namespaces
	Control groups
	Linux kernel capabilities
	Containers versus virtual machines
	Summary
	7. Securing Docker with Third-party Tools
	Third-party tools
	Traffic Authorization
	Summon
	sVirt and SELinux
	Other third-party tools
	dockersh
	DockerUI
	Shipyard
	Logspout
	Summary
	8. Keeping up Security
	Keeping up with security
	E-mail list options
	The two e-mail lists are as follows:
	GitHub issues
	IRC rooms
	CVE websites
	Other areas of interest
	Summary
	Index

