

Networking for
VMware Administrators

VMware Press is the official publisher of VMware books and training materials, which pro-

vide guidance on the critical topics facing today’s technology professionals and students.

Enterprises, as well as small- and medium-sized organizations, adopt virtualization as

a more agile way of scaling IT to meet business needs. VMware Press provides proven,

technically accurate information that will help them meet their goals for customizing, build-

ing, and maintaining their virtual environment.

With books, certification and study guides, video training, and learning tools produced

by world-class architects and IT experts, VMware Press helps IT professionals master a

diverse range of topics on virtualization and cloud computing. It is the official source of

reference materials for preparing for the VMware Certified Professional Examination.

VMware Press is also pleased to have localization partners that can publish its products

into more than 42 languages, including Chinese (Simplified), Chinese (Traditional), French,

German, Greek, Hindi, Japanese, Korean, Polish, Russian, and Spanish.

For more information about VMware Press, please visit vmwarepress.com.

This page intentionally left blank

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Networking for VMware
Administrators

Chris Wahl
Steve Pantol

Networking for VMware Administrators
Copyright © 2014 VMware, Inc.

Published by Pearson plc

Publishing as VMware Press
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.

Library of Congress Control Number: 2014901956

ISBN-13: 978-0-13-351108-6

ISBN-10: 0-13-351108-1

Text printed in the United States on recycled paper at RR Donnelly in
Crawfordsville, Indiana.

First Printing March 2014

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. The publisher cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

VMware terms are trademarks or registered trademarks of VMware in the United
States, other countries, or both.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. The authors, VMware Press, VMware, and the publisher shall have
neither liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.

The opinions expressed in this book belong to the authors and are not necessarily
those of VMware.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

VMWARE PRESS
PROGRAM MANAGER

Anand Sundaram

ASSOCIATE PUBLISHER

David Dusthimer

ACQUISITIONS EDITOR

Joan Murray

DEVELOPMENT EDITOR

Eleanor C. Bru

MANAGING EDITOR

Sandra Schroeder

PROJECT EDITOR

Seth Kerney

COPY EDITOR

Anne Goebel

PROOFREADER

Jess DeGabriele

INDEXER

Cheryl Lenser

EDITORIAL ASSISTANT

Vanessa Evans

BOOK DESIGNER

Gary Adair

COVER DESIGNER

Chuti Prasertsith

COMPOSITOR

Bumpy Design

To my wife Jennifer, for her steadfast patience and support
while I fl ailed around like a fi sh out of water trying to write this book.

—Chris Wahl

To my long-suffering wife, Kari. Sorry for the continued trouble.
—Steve Pantol

This page intentionally left blank

Contents

Foreword xix

Introduction xxi

Part I Physical Networking 101

Chapter 1 The Very Basics 1

Key Concepts 1

Introduction 1

Reinventing the Wheel 2

Summary 6

Chapter 2 A Tale of Two Network Models 7

Key Concepts 7

Introduction 7

Model Behavior 9

Layering 9

Encapsulation 9

The OSI Model 10

The TCP/IP Model 12

The Network Interface Layer 12

The Internet Layer 13

The Transport Layer 14

The Application Layer 14

Comparing OSI and TCP/IP Models 15

Summary 16

Chapter 3 Ethernet Networks 17

Key Concepts 17

Introduction 17

Ethernet 18

History and Theory of Operation 18

Ethernet Standards and Cable Types 19

Ethernet Addressing 23

Extending Ethernet Segments: Repeaters, Hubs, and Switches 24

Switching Logic 25

Summary 26

Contentsx

Chapter 4 Advanced Layer 2 27

Key Concepts 27

Introduction 27

Concepts 28

Trunking 30

Loop Avoidance and Spanning Tree 32

Spanning Tree Overview 32

PortFast 35

Rapid Spanning Tree 35

Link Aggregation 36

What Is Link Aggregation? 36

Dynamic Link Aggregation 39

Load Distribution Types 41

Summary 42

Reference 43

Chapter 5 Layer 3 45

Key Concepts 45

Introduction 45

The Network Layer 46

Routing and Forwarding 46

Connected, Static, and Dynamic Routes 46

The Gateway of Last Resort 47

IP Addressing and Subnetting 47

Classful Addressing 48

Classless Addressing 48

Reserved Addresses 50

Network Layer Supporting Applications 50

DHCP 50

DNS 51

ARP 51

Ping 52

Summary 52

Chapter 6 Converged Infrastructure 53

Key Concepts 53

Introduction 53

Concepts 54

Converged Infrastructure Advantages 54

Contents xi

Examples 55

Cisco UCS 55

HP BladeSystem 57

Nutanix Virtual Computing Platform 59

Summary 60

Part II Virtual Switching

Chapter 7 How Virtual Switching Differs from Physical Switching 61

Key Concepts 61

Introduction 61

Physical and Virtual Switch Comparison 62

Similarities 62

Differences 63

Switching Decisions 63

Physical Uplinks 65

Host Network Interface Card (NIC) 65

Virtual Ports 66

Virtual Machine NICs 67

VMkernel Ports 67

Service Console 67

VLANs 68

External Switch Tagging (EST) 68

Virtual Switch Tagging (VST) 68

Virtual Guest Tagging (VGT) 69

Summary 70

Chapter 8 vSphere Standard Switch 71

Key Concepts 71

Introduction 71

The vSphere Standard Switch 72

Plane English 72

Control Plane 72

Data Plane 73

vSwitch Properties 73

Ports 73

Maximum Transmission Unit (MTU) 74

Security 75

Promiscuous Mode 75

MAC Address Changes 76

Forged Transmits 77

Contentsxii

Discovery 78

Cisco Discovery Protocol (CDP) 79

Traffi c Shaping 80

Traffi c Shaping Math 82

NIC Teaming 82

Load Balancing 83

Network Failure Detection 84

Notify Switches 86

Failback 86

Failover Order 87

Hierarchy Overrides 87

VMkernel Ports 88

Port Properties and Services 88

IP Addresses 89

VM Port Groups 90

Summary 91

Chapter 9 vSphere Distributed Switch 93

Key Concepts 93

Introduction to the vSphere Distributed Switch 93

Control Plane 94

Handling vCenter Failure 94

Data Plane 96

Monitoring 96

Cisco Discovery Protocol (CDP) 97

Link Layer Discovery Protocol (LLDP) 97

NetFlow 98

Port Mirroring 101

Private VLANs 105

Primary VLAN 106

Promiscuous VLAN 106

Secondary VLANs 106

Community VLANs 107

Isolated VLAN 108

Distributed Port Groups 108

VMkernel Ports 109

Virtual Machines 110

Traffi c Shaping 111

Egress 111

Contents xiii

Load Balancing 112

Route Based on Physical NIC Load 112

Network I/O Control 115

Network Resource Pools 116

Shares 117

User-Defi ned Network Resource Pools 119

Summary 120

Chapter 10 Third Party Switches–1000V 121

Key Concepts 121

Introduction 121

Integration with vSphere 122

Architectural Differences 123

Virtual Supervisor Module 124

Port Profi les 126

Virtual Ethernet Module 128

Layer 2 Mode 129

Nexus 1000V in Layer 3 Mode 130

VEM Maximums 132

Advanced Features 132

A Comment on Nexus OS 132

Licensed Modes of Operation 132

Essential Edition 133

Advanced Edition 133

Summary 134

Chapter 11 Lab Scenario 135

Key Concepts 135

Introduction 135

Building a Virtual Network 135

Architectural Decisions 136

Network Design 136

Host Design 137

Data Traffi c Design for Virtual Machines 138

Lab Scenario 139

Summary 143

Contentsxiv

Chapter 12 Standard vSwitch Design 145

Key Concepts 145

Introduction 145

Standard vSwitch Design 146

Sample Use Case 146

Naming Conventions 147

Ensuring Quality of Service 149

Network Adapters 151

Virtual Machine Traffi c 153

Virtual Machine Port Groups 153

Failover Order 156

VMkernel Ports 158

Management 158

vMotion 161

Fault Tolerance 166

NFS Storage 168

VMkernel Failover Overview 170

Final Tuning 172

Confi guring Additional vSphere Hosts 173

Summary 173

Chapter 13 Distributed vSwitch Design 175

Key Concepts 175

Introduction 175

Distributed vSwitch Design 176

Use Case 176

Naming Conventions 177

Ensuring Quality of Service 178

Network IO Control 178

Priority Tagging with 802.1p 180

Differentiated Service Code Point 181

Creating the Distributed vSwitch 182

Network Adapters 185

Distributed Port Groups for Virtual Machines 186

Load Based Teaming 188

Distributed Port Groups for VMkernel Ports 190

Management 191

vMotion 193

Fault Tolerance 194

iSCSI Storage 195

Contents xv

VMkernel Failover Overview 196

Adding vSphere Hosts 198

Creating VMkernel Ports 204

Moving the vCenter Virtual Machine 208

Final Steps 212

Health Check 212

Network Discovery Protocol 214

Other Design Considerations 215

Fully Automated Design 215

Hybrid Automation Design 216

Which Is Right? 216

Summary 216

Part III You Got Your Storage in My Networking: IP Storage

Chapter 14 iSCSI General Use Cases 219

Key Concepts 219

Introduction 219

Understanding iSCSI 220

Lossless Versus Best Effort Protocols 220

Priority-Based Flow Control 220

VLAN Isolation 222

iSCSI with Jumbo Frames 222

iSCSI Components 223

Initiators 224

Targets 224

Naming 225

Security with CHAP 227

iSCSI Adapters 229

Software iSCSI Adapter 230

Dependent Hardware iSCSI Adapters 231

Independent Hardware iSCSI Adapters 232

iSCSI Design 233

NIC Teaming 234

Network Port Binding 236

Multiple vSwitch Design 236

Single vSwitch Design 238

Boot from iSCSI 239

Summary 241

Contentsxvi

Chapter 15 iSCSI Design and Confi guration 243

Key Concepts 243

Introduction 243

iSCSI Design 244

Use Case 244

Naming Conventions 245

Network Addresses 246

vSwitch Confi guration 247

iSCSI Distributed Port Groups 247

VMkernel Ports 250

Network Port Binding 254

Jumbo Frames 256

Adding iSCSI Devices 258

iSCSI Server and Targets 258

Authentication with CHAP 261

Creating VMFS Datastores 263

Path Selection Policy 265

Summary 267

Chapter 16 NFS General Use Cases 269

Key Concepts 269

Introduction 269

Understanding NFS 269

Lossless Versus Best Effort Protocols 270

VLAN Isolation 271

NFS with Jumbo Frames 271

NFS Components 272

Exports 272

Daemons 272

Mount Points 273

Security with ACLs 275

Network Adapters 276

NFS Design 276

Single Network 277

Multiple Networks 278

Link Aggregation Group 280

Summary 283

Contents xvii

Chapter 17 NFS Design and Confi guration 285

Key Concepts 285

Introduction 285

NFS Design 285

Use Case 286

Naming Conventions 286

Network Addresses 287

vSwitch Confi guration 288

NFS vSwitch 288

Network Adapters 290

VMkernel Ports 291

Mounting NFS Storage 294

Summary 296

Part IV Other Design Scenarios

Chapter 18 Additional vSwitch Design Scenarios 297

Key Concepts 297

Introduction 297

Use Case 298

Naming Standards 298

Two Network Adapters 299

With Ethernet-based Storage 299

Without Ethernet-based Storage 300

Four Network Ports 300

With Ethernet-based Storage 300

Without Ethernet-based Storage 301

Six Network Ports 302

With Ethernet-based Storage—Six 1 Gb 303

Without Ethernet-based Storage—Six 1 Gb 304

With Ethernet-based Storage—Four 1 Gb + Two 10 Gb 304

Without Ethernet-based Storage—Four 1 Gb + Two 10 Gb 305

Eight Network Adapters 306

With Ethernet-based Storage—Eight 1 Gb 306

Without Ethernet-based Storage—Eight 1 Gb 307

With Ethernet-based Storage—Four 1 Gb + Four 10 Gb 308

Without Ethernet-based Storage—Four 1 Gb + Four 10 Gb 309

Summary 310

Contentsxviii

Chapter 19 Multi-NIC vMotion Architecture 311

Key Concepts 311

Introduction 311

Multi-NIC vMotion Use Cases 312

Design 312

Verifying Available Bandwidth 313

Controlling vMotion Traffi c 314

Distributed vSwitch Design 314

Standard vSwitch Design 317

Upstream Physical Switch Design 317

Confi guring Multi-NIC vMotion 318

Distributed Port Groups 318

VMkernel Ports 320

Traffi c Shaping 321

Summary 322

Appendix A Networking for VMware Administrators: The VMware User Group 323

The VMware User Group 323

Index 325

Foreword

Virtual networking has long been the Cinderella of server virtualization, as anyone reading
VMware release notes can easily attest—with every new vSphere release, we get tons of
new CPU/RAM optimization features, high availability improvements, better storage con-
nectivity, and networking breadcrumbs.

The traditional jousting between networking and virtualization vendors and the corre-
sponding lack of empathy between virtualization and networking teams in large IT shops
definitely doesn’t help. Virtualization vendors try to work around the traditional network-
ing concepts (pretending, for example, that Spanning Tree Protocol [STP] and Link
Aggregation Groups [LAG] don’t exist), while routinely asking for mission-impossible
feats such as long-distance bridging across multiple data centers. The resulting lack of
cooperation from the networking team is hardly surprising, and unfamiliar concepts and
terminology used by virtualization vendors definitely don’t help, either.

The virtualization publishing ecosystem has adjusted to that mentality—we have great
books on server virtualization management, troubleshooting, high availability, and DRS,
but almost nothing on virtual networking and its interaction with the outside physical
world. This glaring omission has finally been fixed—we’ve got a whole book dedicated
solely to VMware networking.

Who should read this book? In my personal opinion, this book should be manda-
tory reading for anyone getting anywhere near a vSphere host. Server and virtualization
administrators will get the baseline networking knowledge that will help them understand
the intricacies and challenges their networking colleagues have to deal with on a daily
basis, and networking engineers will finally have a fighting chance of understanding what
goes on behind the scenes of point-and-click vCenter GUI. If nothing else, if you man-
age to persuade the virtualization and networking engineers in your company to read this
book, they’ll learn a common language they can use to discuss their needs, priorities, and
challenges.

Although the book starts with rudimentary topics such as defining what a network is, it
quickly dives into convoluted technical details of vSphere virtual networking, and I have to
admit some of these details were new to me, even though I spent months reading vSphere
documentation and researching actual ESXi behavior while creating my VMware Net-
working Technical Deep Dive webinar.

What will you get from the book? If you’re a server or virtualization administrator and
don’t know much about networking, you’ll learn the concepts you need to understand the
data center networks and how vSphere virtual networking interacts with them. If you’re a

xx Foreword

networking engineer, you’ll get the other perspective—the view from the server side, and the
details that will help you adjust the network edge to interact with vSphere hosts.

Finally, do keep in mind that the other engineer in your organization is not your enemy—
she has a different perspective, different challenges, and different priorities and require-
ments. Statements such as “We must have this or we cannot do that” are rarely helpful in
this context; it’s way better to ask “Why would you need this?” or “What business problem
are you trying to solve?”—and this book just might be a piece of the puzzle that will help
you bridge the communication gap.

Ivan Pepelnjak

CCIE #1354 Emeritus

ipSpace.net

Introduction

In many organizations, there is still no Virtualization Team, or even a dedicated
Virtualization Person. The care and feeding of a vSphere environment often falls under
the “Perform other duties as assigned” bullet in the job description of existing server or
storage administrators.

Virtualization is a complex subject, interdisciplinary by nature, and truly “getting it”
requires a solid understanding of servers, storage, and networking. But because new tech-
nologies are often managed by whoever arrived to the meeting last, skill gaps are bound
to come up. In the authors’ experience, networking is the subject most foreign to admins
that inherit a vSphere environment. Server and storage teams tend to work rather closely,
with the network hiding behind a curtain of patch panels. This book is intended to help
vSphere admins bridge that gap.

This book is not intended to be a study guide for any particular certification. If your goal
is Network+, CCENT, or beyond, there are other, more comprehensive options available.

Part I, “Physical Networking 101,” is intended to build a foundation of networking knowl-
edge, starting with the very basics of connectivity and building up to routing and switch-
ing. It provides the background and jargon necessary for you to communicate effectively
with your network team as you scale up your virtualization efforts.

In Part II, ”Virtual Switching,” we look at virtual networking, explaining how and where
it differs from the physical world we built up in Part I. We go on a guided tour of building
virtual networks, starting with real-world requirements, and review the virtual and physi-
cal network configuration steps necessary to meet them.

In Part III, ”You Got Your Storage in My Networking: IP Storage,” we add storage into
the mix, using the same approach from Part II to look at iSCSI and NFS configurations.

Motivation for Writing This Book

Chris: Aside from a grandiose ambition to cross “write a book” off my bucket list, there
is something inherently romantic about the idea of passing one’s experiences down to the
next generation of technical professionals. The field of networking is like sailing in dark
and uncharted waters, with little islands of knowledge along the way. Having made the
voyage, I felt it best to return as a guide and see if I could both help others through and
learn more on the second go-round for myself.

Steve: What Chris said, but maybe less flowery. And it seemed like a good idea at the
time.

xxii Introduction

Who Should Read This Book

This book is targeted at IT professionals who are involved in the care and feeding of a
VMware vSphere environment. These administrators often have strong server or storage
backgrounds but lack exposure to core networking concepts. As virtualization is interdis-
ciplinary in nature, it is important for vSphere administrators to have a holistic under-
standing of the technologies supporting their environment.

How to Use This Book

This book is split into 19 chapters as described here:

 Part I, “Physical Networking 101”

 Chapter 1, “The Very Basics”: This chapter provides a high-level introduction
to networking concepts.

 Chapter 2, “A Tale of Two Network Models”: This chapter describes the pur-
pose of network models and describes the two major flavors.

 Chapter 3, “Ethernet Networks”: This chapter introduces the basics of Ether-
net networks.

 Chapter 4, “Advanced Layer 2”: This chapter builds upon the previous chapter
by diving into more advanced Ethernet concepts including VLANs, switch
port types, Spanning Tree Protocol, and Link Aggregation.

 Chapter 5, “Layer 3”: This chapter describes the IP protocol, Layer 3 network-
ing, and supporting applications.

 Chapter 6, “Converged Infrastructure (CI)”: This chapter provides a brief over-
view of converged infrastructure and describes example platforms.

 Part II, “Virtual Switching”

 Chapter 7, “How Virtual Switching Differs from Physical Switching”: This
chapter highlights the differences in the mechanics and execution between
physical switches as described in Part I and the virtual switches that are the
focus of the rest of the book.

 Chapter 8, “vSphere Standard Switch”: This chapter covers the features avail-
able with the vSphere Standard Switch.

 Chapter 9, “vSphere Distributed Switch”: This chapter covers the features
available with the vSphere Distributed Switch.

xxiiiIntroduction

 Chapter 10, “Third Party Switches—1000v”: This chapter covers the features
available with the Cisco Nexus 1000v virtual switch.

 Chapter 11, “Lab Scenario”: This chapter introduces the lab scenario that is
used in Chapters 12 and 13, guiding the reader through a design exercise.

 Chapter 12, “Standard vSwitch Design”: This chapter describes the configura-
tion steps necessary to configure the Standard vSwitch to support the use case
defined in Chapter 11.

 Chapter 13, “Distributed vSwitch Design”: This chapter describes the configu-
ration steps necessary to configure the Distributed vSwitch to support the use
case defined in Chapter 11, with a focus on the feature differences between the
Distributed and Standard vSwitches.

 Part III, “You Got Your Storage in My Networking: IP Storage”

 Chapter 14, “iSCSI General Use Cases”: This chapter introduces the concepts
behind iSCSI and describes an example use case.

 Chapter 15, “iSCSI Design and Configuration”: This chapter describes the
configuration steps necessary to configure iSCSI to support the use case
defined in Chapter 14.

 Chapter 16, “NFS General Use Cases”: This chapter introduces the concepts
behind NFS and describes an example use case.

 Chapter 17, “NFS Design and Configuration”: This chapter describes the con-
figuration steps necessary to configure NFS to support the use case defined in
Chapter 16.

 Part IV, “Other Design Scenarios”

 Chapter 18, “Additional vSwitch Design Scenarios”: This chapter describes
different design options that could be considered for varying hardware
 configurations.

 Chapter 19, “Multi-NIC vMotion Architecture”: This chapter introduces the
concepts behind Multi-NIC vMotion and describes the steps necessary to con-
figure it for a sample use case.

 Appendix A, “Networking for VMware Administrators: The VMware User Group”:
This appendix is a call to action introducing the VMware User Group as a means of
harnessing the power of the greater VMware community and encouraging the reader
to get involved.

About the Authors

Chris Wahl has acquired more than a decade of IT experience in enterprise infrastruc-
ture design, implementation, and administration. He has provided architectural and
engineering expertise in a variety of virtualization, data center, and private cloud-based
engagements while working with high performance technical teams in tiered data center
environments. He currently holds the title of Senior Technical Architect at Ahead, a con-
sulting firm based out of Chicago.

Chris holds well over 30 active industry certifications, including the rare VMware Certi-
fied Design Expert (VCDX #104), and is a recognized VMware vExpert. He also works to
give back to the community as both an active “Master” user and moderator of the VMware
Technology Network (VMTN) and as a Leader of the Chicago VMware User Group
(VMUG).

As an independent blogger for the award winning “Wahl Network,” Chris focuses on cre-
ating content that revolves around virtualization, converged infrastructure, and evangeliz-
ing products and services that benefit the technology community. Over the past several
years, he has published hundreds of articles and was voted the “Favorite Independent
Blogger” by vSphere-Land for 2012. Chris also travels globally to speak at industry events,
provide subject matter expertise, and offer perspectives as a technical analyst.

Steve Pantol has spent the last 14 years wearing various technical hats, with the last
seven or so focused on assorted VMware technologies. He holds numerous technical cer-
tifications and is working toward VCDX—if only to stop Wahl from lording it over him.
He is a Senior Technical Architect at Ahead, working to build better data centers and
drive adoption of cloud technologies.

Acknowledgments

Chris would like to thank the people that helped him get to a point in his career where he
could share knowledge around virtual networking with the technical community. It has
taken years of trial and error, resulting in many successes and failures, to reach this point.
While there were many people providing guidance and a leg up along the way, he would
like to specifically thank his past mentors Wayne Balogh, Sean Murphy, Matt Lattanzio,
and Pam Cox, along with his parents Dawn and Matt for their steadfast support towards
a career in technology. Additionally, an immeasurable thank you to his supportive spouse
Jennifer for providing positive energy and inspiration on a daily basis.

Steve would like to thank his wife, Kari, and their numerous children—Kurt, Avery, and
Ben—for putting up with him, both in general and as it relates to this project. And his
parents, Don and Betty, for spending so much early 90s money on computers, and not
yelling when he took them apart. Also, a special thank you to Xfinity On-Demand, par-
ticularly the Sprout and Disney Junior networks, for shouldering much of the burden of
parenting over the last several months.

We both would like to thank everyone at our employer, Ahead, including Mitch
Northcutt, Eric Kaplan, Paul Bostjancic, and Mike Mills, for their technical and logisti-
cal support. Also our amazing technical reviewers, Doug Baer, Scott Winger, and Trevor
Roberts, and the team at VMware Press, Joan Murray, Ellie Bru, and Seth Kerney, who
have all been tireless in working and reworking the manuscript to make it perfect.

About the Reviewers

Doug Baer is an Infrastructure Architect on the Hands-on Labs team at VMware. His
nearly 20 years in IT have spanned a variety of roles including consulting, software devel-
opment, system administration, network and storage infrastructure solutions, training, and
lab management. Doug earned a Bachelor of Science in Computer Science from the Uni-
versity of Arizona in Tucson, Arizona, and holds several top-level industry certifications,
including VCDX #19 and HP’s Master ASE Cloud and Datacenter Architect (#14).

You can find him working in the Hands-on labs at VMware’s large events, presenting at
VMware User Group events, writing on the VMware blogs (http://blogs.vmware.com/),
or answering questions on the VMware Community forums. If you look hard enough,
you might even find him as “Trevor” in videos on the Hands-on labs site. In his free time,
Doug likes to get away from technology and spend time hiking with his family or running
on the roads and trails all over Arizona.

Trevor Roberts Jr. is a Senior IT Architect with Cisco who enjoys helping customers
achieve success with Virtualization and Cloud solutions. In his spare time, Trevor shares
his insights on datacenter technologies at www.VMTrooper.com, via the Professional
OpenStack and Professional VMware podcasts, and through Twitter @VMTrooper.
Trevor is also currently authoring a manuscript on the topic of DevOps for VMware
Administrators.

Scott Winger is an aspiring writer who has been a computing technologist for a large
Midwest university since 1987. He has a degree in Mathematics and studied Computer
Architecture, Operating Systems, Programming Languages and Compilers, Database
Management Systems, Networking, and Numerical Methods at UW-Madison. He is a
nationally recognized teacher of the sailor’s arts and teaches various networking and com-
puting classes at a nearby Cisco Academy and Technical College. Scott earned his most
recent certification, VMware Certified Professional, in May 2013 and is in constant pur-
suit of additional certifications from Cisco, Microsoft, and VMware.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write us directly to let us know what you
did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and authors as well as your
name, email address, and phone number. We will carefully review your comments and
share them with the authors and editors who worked on the book.

Email: VMwarePress@vmware.com

Mail: VMware Press
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/title/9780133511086 for
convenient access to any updates, downloads, or errata that might be available for this
book.

This page intentionally left blank

Chapter 1

The Very Basics

Key Concepts
 Sneakernet

 Network Effect

 Access, Distribution, and Core

Introduction
If you have a tab-A-into-slot-B understanding of networking, or if your Visio diagrams
show servers connected to a big black box labeled “Here Be Dragons,” this chapter is the
place to start. If you are a little more familiar with the fundamentals, and you’re comfort-
able using terms like TCP/IP, Ethernet, and Switch in a sentence, feel free to skip ahead.

If you’re a server admin, you must have some experience with networking—you have
plugged in a network adapter; you’ve assigned an IP address. But often it is a very user-
centric exposure to the topic, just going through the motions—someone else tells you what
port to plug into; someone else assigns IP addresses. You go through the motions, but
you have never needed to understand why. Besides, you have plenty of work to do already,
and there just aren’t enough hours in the day to know everything about everything. In an
increasingly virtualized world, though, you will need to know at least a little to get by.

2 CHAPTER 1 The Very Basics

Reinventing the Wheel
To build our foundation, imagine a world much like our own, but where the concept of
networking does not yet exist. Business is still done on computers, or something much like
them, but no need has yet arisen that would require them to be connected to exchange
data. On the rare occasions that data does need to be moved from one station to another,
it is done by copying to removable media—some sort of wax cylinder, presumably—and
walking it over to another party. After our post-connectivity enlightenment, this arrange-
ment came to be called Sneakernet , as in your sneakers were the transport for the data.

Let’s say you work in desktop support, so you are a bit more technically inclined than the
rest of the business. In between break-fix type work, you and Bob, a coworker in account-
ing, like to exchange pictures of cats, sometimes festooned with silly captions. Not the
highest-brow pursuit, but it helps the day go by. You and Bob have access to stations with
scanners and printers, so you’ve been taking pictures at home and bringing them in to
scan, edit, and print, and you exchange the print-outs via interoffice mail. One day, a new
green initiative is issued from on high, strictly limiting your ability to use the printers for
things that are not business-critical. You consider adjusting your workflow to use the wax
cylinders, but this is not ideal—spare wax cylinders themselves are becoming harder and
harder to come by. You think to yourself that there must be a better way.

You think back to a game you used to play as a kid, using two paper cups and a taut string
to talk to a friend over a longish distance. You’d take turns talking into the cup, then mov-
ing it up to your ear to listen for a response. Then your much smarter friend pointed out
that if you built two sets, you could talk and listen at the same time—you talk into one cup,
connected to a cup your friend held up to his ear, he talked into a cup connected to a cup
you held up to your ear. You know there’s something to this concept you can use here, this
idea of separate transmit and receive wires, crossed over to allow two parties to communi-
cate. You set to work in your mad scientist basement laboratory.

The next morning, you bring in your results to show Bob. You install a card in each of
your computers, connect them with a two-wire crossover cable, and install a new appli-
cation that will allow you to send any file down the wire to the other station. You have
brought along a few new cat pictures for testing, and they transfer from your computer to
Bob’s without a hitch. You’ve built the first two-person network.

Bob is blown away, and thrilled to have his work hobby back. Weeks go by with the two
of you happily shifting files back and forth, until Paul from HR looks over your shoulder
and catches what you’re up to. He wants in, too. You pause to consider this. Even though
Paul’s a little weird—he prefers dog pictures—you can see the value of having more than
just two people connected.

4 CHAPTER 1 The Very Basics

cables degrades over distance, but the box will repeat the signal at full strength, doubling
your potential range. You decide to call this box a hub , naming it after a children’s televi-
sion channel you had on in the background while developing it.

The next morning, you bring in the hub, a card for Paul, and some new cables. By lunch
time, you’re up and running. Each picture you select is indiscriminately beamed to the
other two parties. But Sharon in Legal noticed you stringing cable up in the drop ceiling,
and she wants in, too. Sharon and Paul don’t get along, though, and Sharon would like to
be able to send pictures that might portray Paul in a less-than-flattering light. Obviously,
she’d prefer Paul not receive these.

Back to the drawing board you go. To meet Sharon’s needs, your transfer application
needs to become targeted somehow. But your hub will mindlessly repeat anything it
receives to all connected parties. Maybe, you reason, the problem isn’t the hub, it’s the
computers connected to it. The cards in your, Sharon’s, and Bob’s machines are all identi-
cal. Maybe you could burn some sort of unique identifier into them, and then you could
rewrite the transfer application to use that unique ID. You pull out your parts to get to
work on the new cards, when it hits you—the hub will repeat everything it gets, so even if
Sharon sends the picture directly to you, that data will still be repeated back to Paul. Well,
since you’re changing the cards anyway, you’ll add a bit of programming to them so they
will disregard any data they receive that is not intended for their specific ID. That should
work. While you’re down in the lab, you figure you’ll make a bunch of cards. Since you
don’t know exactly who will get what card yet, you decide to assign them numbers. You
figure only 15 or so people in the company would ever need them, so you can get away
with a two-digit identifier, so 00-99. Just prior to setting the ID on the first card, you think
you’d rather not paint yourself into a corner, and double the ID field instead. Now your
network could support up to 10,000 devices—unthinkable, but go big or go home.

You bring in the new hardware the next morning and round up Bob, Paul, and Sharon to
explain the new system. You’ll get 0000, Bob gets 0001, Paul gets 0002, and Sharon gets
0003. This works well, for a while. Soon you have ten active users in your under-the-table
network, and you start to feel the strain. Your users complain that it’s hard to remember
who’s who, and Bob’s been complaining that he hasn’t gotten a single cat picture since you
replaced his computer a few days prior. He thinks the rest of you are ignoring him.

The solution to Bob’s problem hits you right away—when you replaced his computer, he
got a new card from the pile. He’s not 0001 anymore, he’s 0010. You’ll have to let every-
one know this changed. But that will just further fuel the complaints that the numbering
system is hard to use. What you need is a system that can accommodate friendly names,
names people can remember. And if the hardware ID changes, that mapping of friendly
names to hardware IDs needs to be able to be updated automatically, so you don’t have to
go bother everyone.

5Reinventing the Wheel

You create a lookup table , listing everyone’s name, a friendly name—you’ll ask everyone
what they want to use for their computer name—and the network ID. You decide you will
distribute this file to everyone each night, at least for now, until you can think of a better
way to manage this issue of name resolution. The transfer application needs to be rewrit-
ten, again, to support sending files to friendly names in addition to network IDs. You make
the necessary changes and distribute the new file and instructions. All is well, for a time.

Awareness of your little project has started to increase. Your CIO has heard rumblings and
demands to know what you’ve been up to. After you explain your work to date, he asks
if the transfer program can transfer any type of file, or if it’s limited to just silly pictures.
When you tell him data is data, and any file would work, you see the gears turning in his
head. He thanks you for your time and walks off.

A few weeks later, he comes to you with a request to connect every computer in your
building—500 stations spread across multiple floors. He asks you to think about this and
get back to him with the details. There will be challenges. Your hub has 16 ports, so that’s
a problem right off the bat. You don’t see any reason why you couldn’t build a hub with
500 ports, but what if it failed? Everyone would be offline. And where would you put it?
There’s nowhere in the building where you could reach every station within the distance
limits of your cables, and even if there was, creating and installing that many cables of such
varied lengths would be expensive, in terms of both materials and time.

Well, if the request is coming from the CIO, maybe time and money aren’t going to be a
problem, so you start by attacking the first issue, distance. One 500-port hub won’t work,
but maybe two 250-port hubs would. Since the hubs are repeating everything they hear
anyway, you figure you should be able to attach two together without a problem. Come to
think of it, since everything is repeated out of every port, two computers should be able to
transfer data whether they’re attached to the same hub or chained many hubs away from
each other. Smaller devices should be easier for you to build, and easier for you to replace
in the case of failure. After some head scratching and doodling, you decide on a three-
tiered model. At the first, or core, tier, a single hub will feed hubs in the second, or distribu-
tion, tier. You’ll put one distribution hub on each floor, and these will feed a third tier of
hubs, an access tier. End-user workstations will connect to access hubs distributed through-
out the floor. This will allow you to keep cable runs short and structured, and provide a
cookie-cutter approach for expanding or deploying to new buildings.

You run this by the CIO, and he approves. You get to work deploying the new infrastruc-
ture, and before you know it, connectivity is embraced throughout the company, and no
one can remember how they ever got by without it.

6 CHAPTER 1 The Very Basics

Summary

Congratulations, you’ve built your first network. Go ahead and add “networking” as a
skill in your LinkedIn profile. This has been an egregious oversimplification, sure, but it
introduces the concepts we build on through these first few chapters. We introduced bits
and pieces—applications, network cards, cables, and hubs—and we worked through some
design challenges as we scaled. The next few chapters flesh out these initial concepts in
greater detail.

Chapter 2

A Tale of Two Network Models

Key Concepts
 Network Model

 Network Architecture

 Layering

 Encapsulation

 OSI Model

 TCP/IP Model

Introduction
In the previous chapter, we worked through a thought experiment where we built a
 company-wide network from the ground up, from scratch. This approach is not recom-
mended in the real world.

When building a real network, you have to consider availability of components, support-
ability of the systems, and interoperability with other systems. If every company in the
world rolled their own network from the ground up, trying to exchange data between
companies would be a nightmare, more so than usual.

Luckily, we don’t have to do that. We can go out and buy off-the-shelf equipment that
conforms to well-known networking models, allowing us to build networks in a predictable
and supportable fashion.

8 CHAPTER 2 A Tale of Two Network Models

A network model is a conceptual breakdown of networking functions, separating the com-
munications process into layers and describing the interactions between them. A network
architecture is a set of documents, each describing bite-sized pieces of the greater system
conforming to the model. A given document might define a protocol , or a set of rules
describing how devices communicate. Another document might describe a physical speci-
fication, such as connector type. Yet another might set the rules governing how two other
components interact. The complete, comprehensive set of documents should describe
every aspect necessary to build a working network. The only way to be sure that all devices
in a system can properly communicate is if every component in that system follows the
same set of rules.

Way back when, network architectures tended to be proprietary, with each major vendor
doing their own thing. Later, open standards would be introduced that anyone could fol-
low. There are two open standards models worth talking about—the classic reference
model used for teaching networking concepts, and the other one that we actually use.

Back in 1977, the International Organization for Standardization began work on the
Open Systems Interconnection (OSI) project. They had the best of intentions— bringing
together representatives from all around the world to build a standards-based system that
would allow every computer in the world to communicate. At the time, networking tech-
nologies were typically government-sponsored, like ARPANET , or vendor-driven and
proprietary, like IBM’s Systems Network Architecture (SNA) or DEC’s DECnet . OSI was
an attempt to bring technology vendors and other interested parties together to build a
common framework that anyone could implement, allowing for interoperability. OSI had
two major components, a seven-layer abstraction model and a suite of protocols designed
around that model.

About the same time, researchers supporting the Defense Advanced Research Project
Agency (DARPA) were working on an open-architecture method of interconnecting dispa-
rate networks. This grew into the Internet protocol suite, commonly referred to as TCP/
IP after its two most important protocols, Transmission Control Protocol and Internet
Protocol . It was quickly adopted. The US Department of Defense mandated TCP/IP as
the standard for all military networks in March 1982, and the Unix TCP/IP stack was
placed in the public domain in June 1989, allowing everyone access and effectively starving
support for other protocol suites, including OSI.

So while the OSI never really took off in a productized sense, the OSI Model remains a
vital and valuable tool used every day by people around the world for teaching networking
concepts and describing troubleshooting and design issues. The TCP/IP Model, being the
underpinnings of nearly every communications device in use today, is worth some atten-
tion, too.

9Model Behavior

Model Behavior
Before delving into the specifics of either model, let’s run through a couple of concepts
key to understanding how models work.

Layering
To better understand networking processes, we break them down into more manageable
layers and define standard interfaces between them. This offers the following benefits:

 Reduced complexity: By breaking the process up into easier-to-consume chunks,
we make the entire process easier to learn, use, support, and productize. And when
troubleshooting, we can focus on the parts, not the whole.

 Modularity and interoperability: Vendors can write software that implements func-
tions at one layer, and that software can coexist with other vendors’ software running
at other layers, so long as they respect the standardized interfaces between layers.

The phone system is an example of layering at work. All you need to know is how to work
the phone. Dial the number, and the rest is someone else’s problem. You don’t need to
know anything about circuit-switching, telephone lines, microwave transmissions, under-
sea cables, communications satellites, or cellular networks. Standard interfaces have been
implemented between your phone and the rest of the telephony infrastructure such that
your only concerns are whether the phone is working (do you have power, do you have a
signal) or potential user error (did you dial correctly).

In layered models, each layer provides a service between a lower and/or a higher layer.
In making a phone call, you’re asking the infrastructure below you to route the call and
ring the phone on the other end. The phone here is an endpoint—the device you the user
interact with directly. When two endpoints communicate, the same layers are exchanging
information, outsourcing the details of that exchange to lower layers. You make your call;
you start talking to the person on the other end, or more often, their voicemail, but you
get the idea.

Encapsulation
Encapsulation provides a mechanism for implementing the separation between layers. Each
layer within a model has a corresponding Protocol Data Unit (PDU) . All layers but the
lowest layer will define a header, and the data from the next-highest layer is encapsulated
as a payload behind that header. The header contains information used by the protocol
operating at that layer. The PDU is made up of that layer-specific header and the payload
of lower-layer data. Figure 2.1 illustrates the encapsulation process within the OSI model.

10 CHAPTER 2 A Tale of Two Network Models

L7 Header Layer 7 PDUData

L6 Header Layer 6 PDUData

L5 Header Layer 5 PDUData

L4 Header Layer 4 PDUData

L3 Header Layer 3 PDUData

L2 Header L2 Trailer Layer 2 PDUData

Figure 2.1 Encapsulation

The OSI Model
The OSI Model consists of seven layers and is depicted in Figure 2.2.

Application

OSI Model

Presentation

Session

Transport

Network

Data Link

Physical

Figure 2.2 The OSI Model

11The OSI Model

From the bottom up:

 Layer One, the Physical Layer: This layer deals with the physical transmission
medium as well as the injection of data onto the media. This includes cable types,
connectors, pins, encoding, modulation, currents, and the process for activating and
deactivating the transmission medium. This layer typically references other standards
defining physical technologies.

 Layer Two, the Data-Link Layer: This layer handles logical access to the physical
medium. A trailer containing a Frame Check Sequence field is added at this layer
to facilitate error recovery. The OSI Model refers to the PDU at this layer with the
generic term L2PDU. In the real world, we call them frames.

 Layer Three, the Network Layer: This layer defines logical addressing, routing and
forwarding, and path determination. Logical addressing provides each device a
unique identifier that can be used by the routing process. Routing determines how
devices forward packets toward their final destination. Path determination is the pro-
cess routers use to learn all possible routes to a given destination, and how to deter-
mine the optimal route to use. At this layer, we call the PDU a packet.

 Layer Four, the Transport Layer: This layer defines data delivery, including error
recovery and flow control. At this layer, we call the PDU a segment.

 Layer Five, the Session Layer: This layer defines how communications sessions are
started, managed, and ended.

 Layer Six, the Presentation Layer: This layer defines data formats and negotiates
which will be used. Data compression and encryption are addressed here.

 Layer Seven, the Application Layer: This layer defines the interface between the
communications driver and local user applications that need to communicate with
the underlying network. This layer also defines authentication processes.

Layer Eight

You might have heard references to “Layer Eight Problems” at some point in your career.
Layer Eight is often invoked in a sly, snarky sense to say that the root cause of an issue is
not technical. In some cases, the implication can be that it’s a PEBKAC error , one where
the Problem Exists Between Keyboard And Chair. Layer Eight is often used in this sense to
refer to people, management, politics, or money.

12 CHAPTER 2 A Tale of Two Network Models

Layers Eight and Nine can also be used in a more constructive sense to refer to people
and processes. This seems to fit the concepts of layering and encapsulation a bit better—
processes define procedures for people to carry out by using applications, and so on down
the stack.

Outside of a PearsonVue test center, you are unlikely to ever be forced to recite the seven
layers in order, but should you feel the need to commit them to memory, a mnemonic
device could come in handy.

A mnemonic device is any easily remembered trigger that can remind you of harder-to-
remember information. Common mnemonics include “Righty-Tighty, Lefty-Loosey” for
how to work a screwdriver, “Roy G. Biv” for the order of colors in a rainbow, and “King
Philip Came Over From Great Spain” for remembering the taxonomy classifications.

Entering the term “OSI mnemonic” into your search engine of choice will return a web-
site with a number of mnemonics to choose from, some of which are hilarious, obscene,
or both—traits that make them all the more likely to stick. Of the G-rated ones, we prefer
“Please Do Not Take Sales People’s Advice,” as it offers a practical life lesson as sort of a
bonus.

The TCP/IP Model
Like the OSI Model, the TCP/IP Model uses a layering approach to break down and
compartmentalize functions, but with four layers instead of seven. These are the Applica-
tion Layer, Transport Layer, Internet Layer, and Network Interface Layer, as depicted in
Figure 2.3.

As with the OSI Model, we review the layers from the bottom up.

The Network Interface Layer
The Network Interface Layer defines how a host connects to a network, covering the
physical connection itself as well as the specifics of the physical media used for data trans-
mission. It’s somewhat confusing that Ethernet is both the key network interface protocol
and the physical media we concern ourselves with here.

Ethernet will be covered in greater detail in Chapter 3, “Ethernet Networks.”

13The TCP/IP Model

Application

Transport

Internet

Network Interface

TCP/IP Model

Figure 2.3 The TCP/IP Model

The Internet Layer
The Internet Layer defines mechanisms for addressing and delivering data throughout the
network. Protocols operating at this layer include IP, ARP, ICMP, and IGMP.

Internet Protocol (IP) defines the logical addresses assigned to network devices. This
address is made up of a network address and a host address. The network address is used
to direct data to the proper destination network, and the host address uniquely identifies
the host on that destination network. These addresses take the dot-decimal form such as
192.168.1.100 that you’ve likely encountered before and have assigned countless times to
various devices. A subnet mask is defined for each IP address to allow the address to be
parsed into its network and host portions.

Address Resolution Protocol (ARP) is used to translate an IP address to a hardware address for
the delivery of frames to either the next hop device or to their final destination device. An
ARP request is sent through the local network asking which network interface has a par-
ticular IP address. The network adapter with that IP address sends an ARP reply, contain-
ing its hardware address.

14 CHAPTER 2 A Tale of Two Network Models

Internet Control Message Protocol (ICMP) is used to control the flow of data through the
network, report errors, and perform diagnostics. The most commonly used ICMP com-
mands are ping and tracert, which are used to verify connectivity and identify the pathways
between hosts.

Internet Group Message Protocol (IGMP) allows one host to send data to many destination
hosts at the same time. This is called multicasting and is so far beyond the scope of this
book that we hesitate to even bring it up.

The Internet Layer is explored in greater depth in Chapter 5, “Layer 3.”

The Transport Layer
The Transport Layer defines the type of connection between hosts and whether and how
acknowledgements are sent. From a practical standpoint, there are only two protocol
options at this layer: Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP).

TCP is a connection-oriented protocol, which establishes, manages, and terminates net-
work connections. TCP guarantees delivery of data and includes support for flow control,
error checking, and recovering lost data through acknowledgements and retransmissions.

UDP, by contrast, is a connectionless protocol. UDP data is assumed to not need error
correction or flow control, and is thus blasted indiscriminately over the network without a
true connection being established, and without any confirmation that the data has arrived
at the intended destination. This sounds worse than it is, as UDP is very useful for appli-
cations such as streaming media where data loss is preferable to the delays incurred by
retransmissions of lost packets, or in situations where error checking can be done more
effectively by an upper layer application.

The Application Layer
The TCP/IP Model’s Application Layer defines services used by software running on the
endpoint. When applications need access to the underlying network, this layer processes
their requests by converting them to a network-transportable format. In doing so, connec-
tions are made over the appropriate ports.

A port is a type of address assigned to an application or protocol. There are 65,536 pos-
sible TCP/UDP ports. Ports 1 to 1023 are reserved for well-known applications by the
Internet Corporation for Assigned Names and Numbers (ICANN). Ports 1024 to 49151
are called registered ports , in that they are also registered with ICANN. Ports 49152 to
65535 are private, or dynamic , ports used as needed by various applications.

15The TCP/IP Model

Port 0

If you were paying really close attention there, you might have noticed we said there were
65,536 possible ports and then categorized only 65,535 of them. Technically, the reserved
port range is 0-1023, but Port 0 is set aside for a specific use and not used to pass traffic.
Port 0 was intended as a shortcut in Unix socket programming. When port 0 is requested,
the system assigns the next available dynamic port. This saves the programmer the trouble
of having to hard-code a port number or write code to determine which dynamic ports are
available before assigning one.

Protocols running at this layer include HTTP (Port 80) for requesting and serving web
pages, FTP (Ports 20 and 21) for file transfer, and SMTP (Port 25) for e-mail. A complete
list of ports and their assignments is available at www.iana.org/assignments/port-numbers.

Comparing OSI and TCP/IP Models
The OSI and TCP/IP Models have much in common, as they describe the same set of
things, just differently. A comparison of the layers of each model, how they map to each
other, and example protocols at each layer is shown in Figure 2.4.

Application

Transport

Internet

Network Interface

HTTP, FTP, SSH, Telnet,
SMTP, POP, DNS

TCP, UDP

IP

Ethernet, Frame Relay,
Token Ring

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Model TCP/IP Model Common Protocols

Figure 2.4 The OSI and TCP/IP Models compared side-by-side

16 CHAPTER 2 A Tale of Two Network Models

Summary

This chapter described networking in theory, rather than in practice, focusing on intro-
ducing foundational concepts such as network models, layering, and encapsulation. Begin-
ning with the next chapter and through the end of Part I, “Physical Networking 101,” we
get a bit more hands-on, dealing with the more practical aspects of networking.

Chapter 3

Ethernet Networks

Key Concepts
 Ethernet

 MAC Address

 Collision Domain

 Broadcast Domain

 Repeaters, Hubs, and Switches

 Switching Logic

Introduction
Now it’s time to leave the classroom discussion and get into some nuts and bolts. While
this book is mainly concerned with virtual networking, at some point your traffic needs to
hit a physical link if you are going to get anything done. So an understanding of physical
networking is essential. In this chapter, we discuss Ethernet and the related Layer 1 and
Layer 2 technologies that you are likely to encounter in the data center. We start with a
quick history lesson on Ethernet, then move on to cabling technologies, physical address-
ing, and the business of interconnecting devices and forwarding data between them.

19Ethernet

For successful communication over a shared link, you need to have some mechanism
in place to ensure that only one device can transmit at a time. Ethernet accomplishes
this through an algorithm called Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) .

As even the abbreviation is a mouthful, let’s break it down further. “Carrier Sense” means
to check the wire first. If another transmission is in progress, wait until the wire is idle
before transmitting. “Multiple Access” means that more than one device is sharing the
bus—collisions are possible. “Collision Detect” describes how to detect and react to a col-
lision. As a collision involves multiple simultaneous signals, collisions can be spotted by
looking for higher-than-expected signal amplitudes. When these are detected, the trans-
mitting stations send a further jamming signal to ensure that all stations are aware of the
collision, and then employ a back-off algorithm for each station to wait a random amount
of time before attempting to retransmit.

Ethernet Standards and Cable Types
Ethernet is available in a number of speeds and form-factors. These days, in a modern
data center, you are most likely to encounter gigabit and 10 gigabit Ethernet, carried over
either copper or fiber. Outside of the data center, you might be dealing with 100Mbps
connections, or even wireless, but we’re going to focus the discussion on connectivity
within the data center, where the magic really happens.

Fiber Versus Fibre

In the United States, discussions about fiber in the data center can get confusing quickly.
Americans use “fiber” to refer to the fiber optic cables themselves. Sometimes, that fiber is
used to plumb the storage area network (SAN), over which the Fibre Channel Protocol is
used. So “fiber” is the medium and “Fibre Channel” is a protocol that can be run over that
medium. Make sense? To complicate things further, Fibre Channel Protocol can be run
over unshielded twisted pair (UTP) cable, too.

Outside of the United States, “fibre” is the preferred term for the medium as well, leading to
all sorts of spellcheck frustration.

For more information on Fibre Channel, we direct you to Storage Implementation in
vSphere 5.0 by Mostafa Khalil.

Gigabit Ethernet over copper wire, and its 10 and 100 megabit ancestors, uses UTP
cabling. These cables consist of four pairs of wires, twisted together down the length of
the cable, terminating in RJ45 connectors on each end.

20 CHAPTER 3 Ethernet Networks

Everything You Know About Connectors Is a Lie

You might dismiss this as pedantry, but we just can’t be part of the lie anymore. You know
that thing at the end of your Cat5 cable? It’s not an RJ45 connector . An RJ45 connector
is keyed such that it wouldn’t fit in a standard Ethernet NIC port. The connector used
on standard UTP cables is an 8P8C (or 8-position, 8-contact) connector. The real RJ45
connector is an 8P2C (8-position, 2-contact) type. The standard for which the real RJ45
plug and socket were designed for never really took off, and the connectors for 8P8C and
RJ45 look similar enough (minus the keying) that the name RJ45 stuck for both.

With Gigabit Ethernet over copper wire, all four pairs are used to transmit and receive
simultaneously. This differs from the earlier 10 and 100 megabit standards which defined
separate send and receive pairs.

Gigabit and 10 gigabit Ethernet over fiber involve two strands of fiber optic cabling, a
transmit strand and a receive strand. The fiber can be multi-mode for relatively short
distances, or single-mode for longer distances. Single-mode fiber carries only a single
frequency of not-safe-for-the-eye laser-driven light, while multi-mode carries multiple
LED-driven frequencies which are harmless if you happen to look at them. In data center
applications, fiber cables typically terminate in either SC or LC connectors. SC connectors
 are squarish and use a push-on, pull-off attachment mechanism, with each transmit/receive
pair typically held together with a plastic clip. LC connectors are a smaller form-factor
option, and use a retaining tab attachment mechanism similar to an RJ45 connector.

Upstream fiber connections typically involve hot-pluggable transceivers. Gigabit interface
converters (GBICs) or small form-factor pluggable transceivers (SFPs) are used to sup-
port gigabit Ethernet connections, and enhanced small form-factor pluggable transceivers
 (SPF+) are used for 10 gigabit connections.

Ten gigabit Ethernet over copper is most commonly found in an SFP+ direct attach form-
factor, in which twinaxial copper is terminated by SFP+ housings attached to the end of
the cable. Some vendors refer to these as Direct Attach Copper (DAC) cables . These are
used for fairly short runs, 1 to 7m for passive cables or up to 15m for active cables, with
the latter drawing transmission power from the connected device. Ten gigabit copper over
UTP (10GBase-T) is also available, but is less common at the moment, as upgrading infra-
structure to support it tends to cost more than using existing SFP+ ports.

Table 3.1 lists a number of commonly used physical Ethernet standards.

21Ethernet

Table 3.1 Common Ethernet Standards

Common Name Speed IEEE Standard Cable Type and Max Length

Ethernet

10BASE5

10BASE2

10BASE-T

10 Mbps

802.3

802.3

802.3

Copper coaxial, 500m

Copper coaxial, 185m

Copper UTP, 100m

Fast Ethernet

100BASE-TX

100BASE-FX

100 Mbps

802.3u

802.3u

Copper UTP, 100m

Fiber, 2km

Gigabit Ethernet

1000BASE-LX

1000BASE-SX

1000BASE-T

1000 Mbps

802.3z

802.3z

802.3ab

Fiber, 5km

Fiber, 500m

Copper UTP, 100m

10 Gigabit Ethernet

10GBASE-SR

10GBASE-LR

10GBASE-CR

10GBASE-T

10 Gbps

802.3ae

802.3ae

Pending

802.3an

Fiber, 400m

Fiber 10km

Copper twinaxial, 15m

Copper UTP, 100m

Table 3.2 shows a number of common cable connectors and types.

Table 3.2 Common Ethernet Cable Connectors and Types

Name Image

UTP with RJ45 / 8P8C End

22 CHAPTER 3 Ethernet Networks

Name Image

Fibre LC Connector

Fiber SC Connector

GBIC Module

SFP/SFP+ Module

Copper TwinAxial Cable

23Ethernet

Ethernet Addressing
With a shared bus, all stations are aware of all transmissions. However, as we saw in Chap-
ter 1, “The Very Basics,” some messages are intended for only a single station, some for
a subset of the stations, and some are intended to be received by all stations. So Ether-
net defines an addressing scheme to allow for communication to be targeted to a single
receiver, multiple receivers, or all receivers on the bus.

These Layer 2 addresses—dubbed MAC (Media Access Control) addresses in the IEEE 802.3
standard—are six bytes long and usually expressed as a string of twelve hexadecimal digits.
Cisco devices typically separate each set of four digits with a period (1234.5678.90AB).
Other vendors use a colon or dash between each set of two (12:34:56:78:90:AB or 12-34-
56-78-90-AB). VMware uses the colon notation, so from here on out, we will, too.

These addresses come in three flavors. The first, and the type we spend the most time
talking about, is a unicast address . Unicast addresses are used to identify a sender and the
intended recipient of an Ethernet frame. When a network adapter observes a transmission
on the shared bus, it checks to see if the destination MAC address matches its own. If it
does, it processes the frame. If it does not, the frame is ignored.

Unicast MAC addresses are required to be globally unique . To support this, manufactur-
ers of physical network adapters encode a MAC address into Ethernet adapters at the
factory—this address is often referred to as a “burned-in address.” The IEEE assigns
each manufacturer an organizationally unique identifier (OUI) , which occupies the first
half of each MAC address. The manufacturer then assigns the second half of the address.
VMware has its own OUI (00:50:56) that is used to construct MAC addresses for virtual
machine network adapters.

Globally Unique, Except When Not

The IEEE had the best of intentions in requiring that MAC addresses be globally unique,
but manufacturers have not quite been able to live up to that requirement. Many people
have had the experience of finding NICs with duplicate MACs, and modern NICs often
allow you to change the MAC address to a custom-defined value. Global uniqueness has
become more of a guideline, really. So as long as your MAC address is locally unique within
your Layer 2 domain, you will be fine.

The two additional types of MAC addresses are used to identify multiple recipients. A
broadcast destination address (MAC address FF:FF:FF:FF:FF:FF) is used to indicate that
all network adapters on the shared bus should process the frame. And multicast destina-
tion addresses are used to target the frame to a group of network adapters on the bus.
Multicast MAC addresses will use an OUI of 01:00:5e, with the remaining six bytes being
user-definable.

25Extending Ethernet Segments: Repeaters, Hubs, and Switches

as half-duplex communication . As the number of devices on the shared bus increases, so do
the chances for collisions. Eventually, sustained communication becomes impossible due
to constant collisions.

Because of their propensity for collisions and poor use of bandwidth, a smarter class of
interconnection devices, called switches , was developed. Switches do not create a single
shared bus through mindless rebroadcasting. Instead, they examine the destination address
of each frame to enable forwarding only to the relevant port. And if multiple frames are
sent to the same destination at the same time, the switch can buffer the frames and send
them one at a time to avoid collisions. So, in switches, although the bandwidth of the
switches’ backplane is shared, the bandwidth of each currently communicating link is not
shared and the full-rated bandwidth, up to the limitations of the switches’ backplane, is
available to each set of communicating ports.

With these features, each switch port becomes its own collision domain. As long as there
is only one device connected to each port, no collisions can occur. The CSMA/CD algo-
rithm can be disabled, allowing both ends of the connection to send and receive simultane-
ously, effectively doubling performance. This is referred to as full-duplex communication .

While switches can make intelligent forwarding decisions for unicast traffic, they must
still support broadcast and multicast traffic, allowing a sender to transmit to all or multiple
connected devices. When a switch port receives a broadcast, it is retransmitted to all other
ports, which is why a switch and its connected devices are said to be sharing a single broad-
cast domain . When a switch port receives a multicast, it is retransmitted only to the ports
associated with that address.

Switching Logic
Let’s dig a little deeper into how switches work their magic. The switch needs to examine
each incoming frame and determine whether to forward it or ignore it. To accomplish
this, the switch needs to learn what MAC address(es) should be associated with each of
its ports. This mapping is built up over time by the switch by examining the source MAC
address of each inbound frame. Knowing the source port and the source MAC address, it
builds a lookup table in a special type of memory designed for super-fast searching called
Content Addressable Memory (CAM) .

After examining the inbound frame’s source address, the switch examines the frame’s des-
tination address and searches its MAC address table for a match. If no match is found, the
switch floods the frame out of all other ports, the assumption being that the unknown des-
tination address will reply and can then be added to the address table. If a match is found,
and if that match is a port other than the port the frame arrived on, the switch forwards
the frame out of the port corresponding to that destination address. If the match is the

26 CHAPTER 3 Ethernet Networks

same port the frame arrived on, the frame is ignored. You might see this behavior if you
have a hub attached to a switch port. The switch would associate all MAC addresses of
devices attached to the hub with the same switch port, and the hub would repeat all signals
received by its connected devices to the switch port.

Summary

In this chapter, we dove into Ethernet, discussing the theory of operation, the physi-
cal plumbing, and physical addressing. We also introduced the switch and covered how
switches make forwarding decisions. The next chapter builds on these ideas, introducing
advanced Layer Two concepts.

Chapter 4

Advanced Layer 2

Key Concepts
 Virtual LANs (VLANs)

 Trunk Ports

 Access Ports

 Spanning Tree Protocol (STP)

 Link Aggregation

Introduction
In the previous chapters, we’ve mostly discussed the ideas around creating identification
for various network objects and have described various topologies for networks. This is
great for simply getting traffic to traverse from one object to another, but there are a few
advanced topics that are essential for transforming a basic network to one that’s highly
available and scalable.

In this chapter, you are introduced to three new concepts: a method in which physical
local area networks (LANs) can be logically divided into virtual LANs (VLANs), tech-
niques used to prevent Layer 2 loops that can seriously reduce a network’s ability to carry
useful traffic, and a discussion of link aggregation. These three topics are highly relevant in
modern data centers, especially as they relate to the virtual networking concepts that will

28 CHAPTER 4 Advanced Layer 2

be deeply covered in Part 2, “Virtual Switching.” The three major topics that are explored
in this chapter are usually found in every network you’ll ever encounter—and you’ll see
exactly why as you read on.

Concepts
A local area network is a shared resource consumed by each connected device. The goal is
that each device can communicate effectively. However, sometimes a company might wish
to separate parts of the network into different functional groups via smaller networks. The
powers that be might wish to have each department isolated into its own network, or want
to dedicate a network specifically to an application that drives revenue into the business.

There are significant performance and security advantages that can be realized by hav-
ing multiple LANs. Imagine the scenario where people in the Human Resources (HR)
department are sending and receiving sensitive personnel files to one another. An isolated
HR LAN to ensure that no one can accidentally or maliciously view their network traffic
might be justified in this case. An isolated LAN also ensures that the HR employees do not
have to share a broadcast domain with other users on the network, which improves perfor-
mance. Finally, a separate LAN limits the spread of certain types of malware.

Let’s look at an example of two different LANs being utilized for a company that wishes
to isolate the HR desktops from the sales and marketing desktops (see Figure 4.1). Notice
how this requires two different switches.

HR
Network

10.0.1.0/24

Common
Network

10.0.2.0/24

HR
Switch

HR
Desktops

Common
Switch

Sales
Desktops

Marketing
Desktops

Figure 4.1 Two isolated physical LANs

However, purchasing an entire new set of networking gear to isolate the HR employ-
ees is not very cost effective. It would be similar to an airline buying a fleet of jumbo jet
planes but only letting 10 people board each plane—there’s a lot of wasted capacity and

29Introduction

unnecessary overhead. Instead, the idea of a virtual LAN, or VLAN, was developed as the
IEEE 802.1Q open standard to allow physical switches to be divided logically to provide
separate, virtual LANs.

Figure 4.2 represents an Ethernet frame, with a focus on the 4 bytes that are normally left
unused. Within these 4 bytes, 12 bits are reserved specifically for a VLAN ID. By popu-
lating the VLAN ID field with a value, we can effectively tag the frame and place it in a
VLAN segment.

Destination
Address

Source
Address

802.1Q
VLAN Tag

4 Bytes

Frame
Check

Type/Len Data

Tag
Protocol
ID
0x8100

User
Priority
(3 Bits)

Canonical
Format
Indicator
(1 Bit)

VLAN ID
(12 Bits)

2 Bytes 2 Bytes (Tag Control Information)

Figure 4.2 An Ethernet frame

A VLAN is defined by adding a 4-byte tag inside of a frame’s header to let all the switches
know which logical LAN it belongs to. The switches’ ports are programmed to only
forward frames with specified VLAN numbers and ignore the rest. This lets a network
administrator control which ports belong to specific VLANs.

Revisiting the company that wants to isolate their HR desktops from the rest of the com-
pany, we now see that only one physical switch is required (see Figure 4.3). The VLAN
tags are now handling the separation at a logical layer.

A port which allows only frames for a single VLAN is called an access port . Traffic that
enters the port, which is an ingress action, will have the VLAN tag added to the frame by
the switch itself. This allows the server attached to the port to be unaware of its VLAN
membership, effectively letting the server send untagged frames toward the switch. On the
flip side, traffic that is forwarded out of a port, which is an egress , will have the VLAN tag
removed so that the server does not see the tag.

32 CHAPTER 4 Advanced Layer 2

This is where the idea of a native VLAN enters the scene. This is a specially defined VLAN
that will be used as a default for any traffic that is not tagged. When the switch sees an
untagged frame enter its port, it looks up the native VLAN number and forwards the
frame without tagging it with any VLAN information at all. The next hop switch has to
agree on the VLAN number of the native VLAN.

Loop Avoidance and Spanning Tree
Single links between devices create single points of failure, so it’s natural to want to add
redundancy. Whenever budget allows, you will also want to introduce redundancy at the
switch level, dual-connecting access switches to multiple upstream distribution switches,
for example. This prevents the failure of any single network device causing an outage
to the system as a whole. This is not without peril, however, as having redundant links
between switches that carry broadcast traffic can expose a condition called a broadcast storm
 whereby a switch’s ability to carry real traffic goes to near zero because it’s instead carrying
a growing and unending cycle of rebroadcasts of broadcast frames. Because Ethernet has
no internal counter such as a time-to-live to expire traffic, frames that enter a loop do so
indefinitely—or at least until the network administrator pulls the cable causing the loop, or
turns on the Spanning Tree Protocol (STP) on each connected switch.

Spanning Tree Overview
Spanning Tree Protocol (STP) is a very deep topic that causes headaches for many profes-
sional network administrators. We spend the next portion of this chapter getting you up to
speed on exactly what it is, how it works, and why it is so vital for the operation of a typical
network.

What Is Spanning Tree?

STP, the IEEE 802.1D open standard, is designed to prevent looping behavior and allow
network administrators to introduce redundant links without forming a traffic loop. STP
learns the topology of the network and purposely blocks redundant links that could cause a
loop. Should an active link fail, STP will unblock links as necessary to restore connectivity.

REAL WORLD EXAMPLE

It’s easy to demonstrate this effect. If you have any cheap, consumer-grade network
switch, you can plug two of the ports together, plug in your laptop or desktop, and ping
some IP address to generate an ARP Request broadcast. Since low-end switches have no
STP running to block the loop, you will observe incredible amounts of activity, that is, a
broadcast storm on the switch, until you unplug the loop.

33Loop Avoidance and Spanning Tree

How Does Spanning Tree Work?

All the switches that are actively participating in STP first have to figure out which switch
will be the root bridge . This is done by election, like picking a president or group leader,
but with less politics involved. The root bridge is simply determined from the switch with
the lowest bridge ID. The switches determine this by exchanging Bridge Protocol Data
Units (BPDUs) containing their bridge IDs.

A bridge ID consists of two parts: the bridge priority and MAC address. By default, all
switches have a bridge priority of 32,768. An administrator can change the bridge prior-
ity, increasing or decreasing it by multiples of 4,096, to forcefully determine which switch
will be the root bridge. If all the switches are using the default 32,768 priority, then the
tie is broken by finding the switch with the lowest MAC address value. It is prudent to set
a lower bridge priority on the switch you specifically want to be the root bridge, as other-
wise the root bridge role might change to an underpowered or over-utilized switch which
happens to have the lowest MAC address.

When the root bridge has been identified, the remaining non-root bridge switches in the
topology do some math homework to determine how they can best send traffic back to the
root bridge. They exchange BPDUs to determine the network topology and track topol-
ogy changes. Every path to the root bridge has an associated cost. Imagine that you wanted
to drive from one city to the next and are given many different choices on how to get
there. You might choose the interstate, which is more mileage but lets you drive at a fast
speed, or the local roads, which is fewer total miles but a much slower speed.

Switches look at the speed of each link in each possible path back to the root bridge, in
search of the lowest total path cost. The path cost is the sum of each link’s cost value based
on its data rate. For standard STP (802.1D), the cost values are shown in Table 4.1.

Table 4.1 STP Cost Values

Data Rate Cost

10 Mbps 100

100 Mbps 19

1000 Mbps (1 Gbps) 4

10000 Mbps (10 Gbps) 2

Looking at the costs, you can see that if STP had to choose between a single 100 Mbps
link (cost of 19) and four 1,000 Mbps links (cost of 4 * 4 = 16), it would choose the four
1,000 Mbps links. When the paths have been chosen, the switch ports which connect to
other switches are assigned STP roles as follows:

35Loop Avoidance and Spanning Tree

PortFast
The default behavior of STP blocks a port until it has listened and learned the traffic on
that port and determines that it can begin forwarding traffic without creating a loop. This
is great for switch-to-switch links, but endpoint devices on your network—desktops, serv-
ers, printers, and so on—are usually not capable of creating a network loop. The act of
blocking traffic for a period of time can cause some headaches and complications, particu-
larly if the workstation or server is trying to use a Preboot Execution Environment (PXE)
to boot, or requires a DHCP lease for its IP address.

For these endpoint devices, an administrator can enable PortFast on a Cisco device, or des-
ignate a port as an edge port or “fast uplink” port with other switch vendors. PortFast is an
extension to 802.1D that allows a port to skip the listening and learning states and transi-
tion directly to the forwarding state. You are effectively telling the switch to go ahead and
trust the port immediately, and that it does not need to burn time proving that the port
will not create a loop.

REAL WORLD EXAMPLE

It’s very common, and often recommended by vendors, to enable PortFast for any ports
connecting to your NICs on a server because they cannot form a loop. All the server NICs
should be allowed to actively forward traffic.

Of course, exercise caution when enabling PortFast on a switch port, and ensure that no
network device will be plugged into that port. There is the possibility that someone could
plug in a rogue network device with an improperly configured STP bridge priority, and
become the root bridge for your network topology. Though they are out of scope for this
book, tools such as BPDU Filtering and BPDU Guard can provide a safeguard against this
 sort of risk.

Rapid Spanning Tree
Although STP does work as advertised, it’s rather slow to converge. If the network topol-
ogy changes, STP can take anywhere from 30 to 50 seconds to transition ports from block-
ing to forwarding traffic. Most environments consider this an unacceptable outage length.
In today’s hyper-connected world of always-on technology, can you imagine having your
entire network down for almost a full minute?

36 CHAPTER 4 Advanced Layer 2

NOTE

The vast majority of networks do not run the traditional 802.1D STP. It’s become a blanket
term that refers to any variation of STP that exists today and is easier to say when talking to
your colleagues about the idea of blocking and forwarding traffic on switch ports.

Rapid Spanning Tree Protocol (RSTP), the IEEE 802.1W open standard, was introduced to
allow faster network convergence. This protocol requires about 6 seconds to converge and
uses fewer port states than STP. This is due to a variety of reasons, but mainly the fact
that the protocol uses proposals and agreements instead of timers and a decoupling of port
states from port roles. The three port states used are:

 Discarding: The port state replaces the STP disabled, blocking, and listening states.
The port is dropping frames just like with an STP blocking port.

 Learning: At this point, the port is learning the MAC addresses by examining the
traffic on the port, but is not forwarding or receiving data traffic.

 Forwarding: The switch port is forwarding and receiving data traffic.

RTSP also introduces two additional port roles:

 Alternate Port: This is a blocked port that provides an alternate path to the root
bridge by means of a different peer switch than the active root port.

 Backup Port: This is a blocked port that provides a backup path to the root bridge by
means of a redundant port to the same peer switch.

Link Aggregation
Not all redundant links between devices are bad things that invoke the wrath of STP. In
fact, there is an entire set of protocols at your disposal that specifically address some of the
needs for redundant links, which we cover here.

What Is Link Aggregation?
While something like STP is necessary to prevent network loops, it sure seems like a
shame to have perfectly good network connections sit idle, just biding their time waiting
for a link failure that might never come. We can make these links useful without angering
STP by using link aggregation.

37Link Aggregation

Link aggregation is the act of bundling multiple physical ports into a single logical group-
ing. This prevents any one member of the group from being blocked, as the group appears
as one logical port to STP.

Link aggregation offers a couple of advantages over discrete links managed by STP:

 Increased Bandwidth and Load Sharing: Because multiple links are active within a
logical group, additional bandwidth is available among unique sessions of traffic. Per
Figure 4.7, no single traffic session, such as a single client talking to a single server,
can use more than one physical link. Think of it like making a large highway with
multiple lanes: You can fit more cars on the highway, but each car can only take up
one lane at a time.

Logical
Port

Physical
Ports

Traffic
Source

Traffic
Destination

Port 1/1 Port 1/2

Port Channel 1

Figure 4.7 A data flow with link aggregation from a single source to a single destination travels
through only one aggregated port.

 Improved Redundancy and Availability: If a single link in the group fails, other links
continue to pass traffic and the group does not go down. There is no need for the
STP topology to reconfigure itself or for STP to transition a new link from blocking
to active.

One of the challenges with link aggregation is that it comes in a number of names, shapes,
and standards. Terminology varies between vendor implementations, even when imple-
menting the same standards. To un-muddle this, we try to use the generic term Link
Aggregation Group , or LAG, to describe the general concept, and use vendor-specific terms
when talking about their specific implementations.

38 CHAPTER 4 Advanced Layer 2

Implementation Methods

There are many different ways to build a LAG, as each vendor decided to use a slightly
different name or method in order to accomplish a logical link grouping. This can cause
confusion and frustration to networking newcomers, so we cover the more common terms
and technologies used.

802.3ad and 802.1ax – IEEE Open Standard

The IEEE LAN/MAN Standards Committee sponsored link aggregation in their 802.3ad
open standard. The idea was to meet a long list of goals for link aggregation through non-
proprietary means. Later, the standard was formally transferred and published as 802.1ax
to avoid some confusion with other 802.1 layers. The formal definition of 802.1ax is as
follows:

Link aggregation allows one or more links to be aggregated together to form a link
aggregation group, such that a media access control (MAC) client can treat the link
aggregation group as if it were a single link.1

Within the 802.1ax open standard, the IEEE also defines the Link Aggregation Control
Protocol (LACP) . The purpose of this protocol is to allow two systems to negotiate a LAG
using a standard, nonproprietary protocol.

EtherChannel – Cisco

EtherChannel is a Cisco proprietary way of building a LAG between Cisco switches. It
can consist of up to 8 active ports to forward traffic and 8 inactive ports, sometimes called
failover ports , to take over for any active ports that happen to fail. EtherChannel comes in
two flavors:

 A Static EtherChannel , or “mode on” in Cisco IOS-speak, is manually configured and
will not use a negotiation protocol to build the LAG. If the network administrator
inputs the wrong information in the switch, the LAG might still appear to be active
but might not forward traffic properly.

 A Dynamic EtherChannel can use one of two protocols to automatically create a LAG:
Port Aggregation Protocol (PAgP) or LACP. When a dynamic EtherChannel is cre-
ated, both network switches involved negotiate to form the LAG. If the negotiation
fails, the LAG is not established.

39Link Aggregation

Etherchannel Versus Port Channel

Further complicating any discussion on link aggregation, the terms EtherChannel and Port
Channel are often used interchangeably. There is a subtle difference, though. When config-
uring an EtherChannel between two switches, you create a Port Channel interface on each
switch, bundling the physical interfaces together. An EtherChannel, then, is the logical
pipe between switches consisting of a bundle of cables, while a Port Channel is the logical
interface terminating the EtherChannel at each end consisting of a bundle of interfaces. Put
another way, when you make a configuration change to EtherChannel, you do so via the
Port Channel’s interface. And when these changes are committed, they are automatically
applied to each of the interfaces from which the EtherChannel has been constructed.

Other Vendor Terminology

Here is some additional terminology you are likely to encounter when discussing link
aggregation:

 Trunk (HP): Some documentation for HP network equipment (and many network
engineers that used to support said equipment) refers to a LAG as a trunk. This can
cause confusion between LAGs and links carrying 802.1Q VLAN tags, as the latter
is termed a trunk by just about everyone else. The HP “trunk” implementation con-
forms to the 802.1ad standard which is what non-HP engineers would call a LAG.

 Multi-Chassis Link Aggregation (Various) or Cross-Stack EtherChannel (Cisco): A
multi-chassis LAG has terminating interfaces on two different nodes. This is a more
highly available implementation, as the LAG can sustain the loss of a connected tar-
get. Implementation details are vendor-specific and outside the scope of this book,
but you should know that MC-LAG exists and that it is more robust because the
loss of a single switch chassis doesn’t mean the loss of the aggregated link. Examples
include virtual port channel (Cisco) and distributed trunking (HP).

 NIC Teaming: Many endpoint operating systems and hypervisors are capable of logi-
cally bundling network connections. This is typically referred to as NIC teaming
 or NIC bonding . In these configurations, a software driver must determine how to
distribute traffic across the uplinks, as the connected physical switches are usually
unaware of the teamed configuration.

Dynamic Link Aggregation
As mentioned, both the 802.3ad and Cisco implementations of link aggregation support
two methods of building a LAG—static and dynamic. They really are as simple as they
sound. A static LAG is manually configured by an administrator and shows an “up” state

40 CHAPTER 4 Advanced Layer 2

immediately after being created, even if the partner ports on the other end of the wire are
not properly configured. A dynamic LAG uses a specific protocol to chat with its partner
ports to discuss whether or not they are configured properly to form a LAG.

REAL WORLD EXAMPLE

In reality, the major choice of which method to use boils down to what the network
equipment supports. The VMware vSphere Standard Switch (vSwitch), for example, cannot
form a dynamic LAG and requires a static LAG if link aggregation is required. Other
hardware and virtual switches, such as HP ProCurve, Cisco Nexus, and even the VMware
vSphere Virtual Distributed Switch (version 5.1 and later), support dynamic LAGs using
LACP. Most network administrators tend to prefer using a dynamic LAG when possible, as
it helps ensure that the LAG is properly configured.

In today’s modern switching world, there’s really only one choice for dynamic LAG
 protocol: LACP. It’s supported by everything you’d ever want to use. That said, it’s not
unusual to find devices using Cisco’s PAgP in the wild.

Link Aggregation Control Protocol (LACP)

LACP is defined in the IEEE 802.3ad open standard and later as 802.1ax. It’s not incred-
ibly important that you understand all the finer details of exactly how the protocol works,
but you should be aware of the general process used:

 1. A networking device configured to use LACP will generate special LACPDU
(LACP Data Unit) frames on all the ports that are part of the LAG.

 2. The peer device will receive these special frames and, if also configured for LACP,
will respond with its own LACPDU frames.

 3. The networking devices will form a dynamic LAG.

Pretty simple!

REAL WORLD EXAMPLE

When working with someone using a Cisco networking device, he or she may refer to
LACP as “mode active.” That’s because the actual CLI command to create an Ether-
Channel for Cisco requires setting the mode. The choices for LACP modes are “active”
and “passive.” An active device will actively seek out a peer device to form a LAG, while a
passive device will only listen for requests. At least one of the two devices must be active, or
else both will only listen. It’s common to set both devices as active to avoid worrying about
which device will be set which way.

41Link Aggregation

Port Aggregation Protocol (PAgP)

The other , increasingly irrelevant LAG protocol is Port Aggregation Protocol (PAgP).
This protocol was developed by Cisco as their own method of dynamically forming LAGs.
Modern Cisco gear no longer supports PAgP, as the rest of the world has settled on
LACP.

Load Distribution Types
When using LAGs, a method for selecting what traffic will go down what physical port
must be selected. Each session created between one device and another can only use one
single port inside the LAG. It is a common misconception to think of traffic being sprayed
across multiple ports—going back to the car on a highway example, you can’t slice up your
car and drive in four lanes at the same time. And even if you could, the pieces couldn’t get
to your destination any faster—and who would insure you?

Every LAG, static or dynamic, uses a load distribution method to determine which traffic
session maps to which specific port. A LAG is capable of examining the header of frames
and packets for three types of information:

Source information (src)

Destination information (dst)

Source and destination information (src-dst)

The load distribution logic can extract the following information:

IP Address (ip)

MAC Address (mac)

TCP/UDP Port (port)

You can choose what to look at based on what will best distribute your specific traf-
fic load. The typical default method is to use source and destination MAC addresses, or
src-dst-mac. This method is used when you simply do not know if there would be a benefit
to source-based or destination-based distribution. Packets from host A to host B, host A to
host C, and host C to host B could all use different ports in the LAG.

Here are some example use cases and load distribution methods:

Traffic headed for a collection of web servers might benefit from using source IP
address, or src-ip. With this method, packets from different IP addresses will poten-
tially use different ports in the LAG, but packets from the same IP address will use
the same port in the LAG.

42 CHAPTER 4 Advanced Layer 2

Streaming file transfers to an office building of PC workstations might benefit from
destination MAC address, or dst-mac. With this method, packets to the same desti-
nation MAC are forwarded over the same port in the LAG, and packets to a different
destination are sent on a different port in the LAG.

Application servers that must pass traffic among each other might benefit from
source and destination port, or src-dst-port. With this method, packets sent between
hosts using different port numbers could be forwarded on different ports in the
LAG, while packets sent between hosts on the same port number would be for-
warded over the same port in the LAG.

PITFALL

Prior to vSphere 5.5, the VMware vSphere Distributed Switch only supports src-dst-ip load
distribution. Make sure to tell your network administrator to use this method and set the
load distribution algorithm on the VMware virtual switch to “Route based on IP hash.”

Summary

Now that you’ve been down the road of advanced Layer 2 topics, you might be thinking
that most of what we’re trying to accomplish here involves the removal of logical loops.
But keep in mind that a vast amount of effort has been put into creative ways to trick
the network into thinking that one path exists when, in actuality, there might be mul-
tiple physical paths along the topology. Fortunately, most of what you’ll deal with on the
vSphere side of the network is completely unable to be looped—this is covered in much
greater detail in Part 2.

Of much greater importance for your future career as a high-performance networking
ninja will revolve around the understanding, consumption, and configuration of VLANs.
Most of your vSphere environment will depend on the correct numbering and presenta-
tion of VLANs so that the guest virtual machines (VMs) can properly communicate with
one another. Additionally, there are many performance benefits to be realized by using
VLANs to isolate various types of traffic. Finally, link aggregation increases reliability and
capacity for critical high volume loads such as vMotion and IP storage. Have no fear: We
go very deep into these exact topics later on, with real, working examples of the physical
and logical configuration.

43Reference

Reference

 1. IEEE Standards Association. 2013. 802.1AX-2008 - IEEE Standard for Local
and Metropolitan Area Networks—Link Aggregation. Available at: http://
standards.ieee.org/findstds/standard/802.1AX-2008.html.

This page intentionally left blank

Chapter 5

Layer 3

Key Concepts
 Router

 IP Address

 Subnet

 Default Gateway

 DHCP

 DNS

 ARP

 Ping

Introduction
With Layers 1 and 2 behind us, we can move on to Layer 3, the Network layer. There
comes a time when every packet needs to leave its local segment and go off into the world
to seek its fortune, while we look on with a single tear in our eye and wish it well. In this
chapter, we describe the process of routing data from one device to another, between net-
works. We start with an overview of the Network layer functions, then move on to logical
addressing at the Network layer, talk through routing mechanics, and close with describ-
ing a few of the tools supporting the functions at this layer.

46 CHAPTER 5 Layer 3

The Network Layer
You might recall from Chapter 2, “A Tale of Two Network Models,” that the OSI Layer 3
function is to schlep packets from a sender to a recipient, potentially navigating numerous
hops along the way. To accomplish this, Network layer protocols support the process of
forwarding packets, the logical addressing of devices, and methods of learning about con-
nected networks and how to reach them.

Routing and Forwarding
Each host on a network uses a simple two-step process when determining where to send a
packet. If the destination address is in the same subnet as the host, the source host simply
sends the packet directly to that destination host. If the destination address is on a dif-
ferent subnet, the host sends the packet to the router on the subnet. The router exam-
ines the packet, comparing the packet’s destination address to the routing table, looking
for a match. If a match is found, the router resends the packet out of the corresponding
interface.

Connected, Static, and Dynamic Routes
The router compares each packet’s destination address to its routing table. That routing
table can be populated in three different ways. The first concerns connected routes. The
router will automatically add a route to its routing table for subnets it is directly connected
to, so long as the interface is online and has an Internet protocol (IP) address assigned
to it. If the router has an interface with the IP address 192.168.1.1 / 24, it will add the
192.168.1.0 / 24 network to its table, with that interface as the next hop.

The second method is static routes. For networks that are not directly connected, an admin-
istrator can manually enter a route statement directing a certain network to a certain inter-
face. While this works just fine in a small or steady-state environment, it becomes difficult
to manage at scale, or when new networks are added regularly.

The third method , dynamic routes, allows routers to learn routes by way of a routing proto-
col. Each router advertises the routes it knows about to other routers in a topology. When
a router hears an update with new routes in it, it adds them to its routing table. Routing
protocols include some mechanism to prevent routing loops from being added to tables,
and include some sort of metric that routers use to compare learned routes, ensuring that
the best route to a location is added.

47IP Addressing and Subnetting

The Gateway of Last Resort
Earlier, we said that if a match in the routing table is found, the router sends the packet
out of the appropriate interface. Well, what if a match is not found? Often, a router will be
configured with a gateway of last resort, also called a default route or default gateway. These
terms can be used interchangeably, but “gateway of last resort” has a bit more flair to it.
This is a special wildcard static route that says if the packet doesn’t match anything in my
routing table, shoot it over to this guy, and he’ll know what to do with it.

NOTE

The previous statement holds unless you’re working with a Cisco router on which the
no ip classless command has been issued. In such a configuration, the gateway of last
resort can be set, but will be ignored. If a match is not found in the routing table, the packet
is dropped.

This concept extends to hosts on the network, too—each host will have its default gateway
configured to be the router on its subnet. Note that because the default gateway is a wild-
card route for any non-local network, you can only have one per host. Even if your host
is multi-homed—that is, connected to multiple networks—there can only be one default
 gateway.

IP Addressing and Subnetting
Each device communicating on the network needs a unique IP address. The IP address is
a 32-bit number, which we shorten into dotted-decimal notation, translating each byte of
the 32-bit sequence into a decimal value, and separating those numbers with periods. So
the IP address 204.248.52.7 is really the 32-bit sequence 11001100 11111000 00110100
00000111. You will often hear each of those decimal chunks referred to as octets , that is, a
group of eight values.

IP addresses are grouped into sets of contiguous addresses, each of which is an IP network
or subnet. The addresses within a single subnet will have a common string of values in the
first part of the address. The full IP address consists of two parts—a network prefix defin-
ing the network and a host address identifying the host on that network. All hosts that
share the same network prefix must be local to each other—there cannot be any routers
between them. Likewise, hosts that have different network prefixes must be separated by
a router.

48 CHAPTER 5 Layer 3

Classful Addressing
So, given a value like 204.248.52.7, how do you tell where the network address ends
and the host address begins? Back when IP was still just a twinkle in Defense Advanced
Research Projects Agency’s (DARPA’s) eye, the Internet Engineering Task Force (IETF)
created request for comments (RFC) 791 to describe different classes of networks usable
by hosts as unicast addresses. Three classes were defined—Classes A, B, and C. Each class
has a different length for its network prefix. Class A networks use the first byte of the
address as the network prefix. Class B networks use the first two bytes, and Class C net-
works use the first three. When describing the network prefix, the convention is to write
out the numbers in the prefix, and use zeroes for the host portion. Examples would be
4.0.0.0 for a Class A network, 128.123.0.0 for a Class B network, and 192.123.321.0 for a
Class C network.

Each class of network can support a set number of hosts. A Class A network reserves the
first byte for the network prefix, leaving three bytes (or 24 bits) available for host identifi-
cation. The total number of available hosts is then 2^24, minus two reserved addresses per
network, for a total of sixteen million and change. The last address in the range is reserved
as a broadcast address. The first address in the range was historically reserved to refer only
to the network prefix, though modern routing and switching hardware allows the use of
that address. Class B networks support 2^16 minus two or 65,534 hosts. For Class C, it’s
2^8 minus two or 254 hosts. Table 5.1 lists the octet ranges, network numbers, total num-
ber of networks, and number of hosts per network for each class.

Table 5.1 Classful Network Descriptions

Class First Octet Valid Networks Number of Networks Number of Hosts

A 1 – 126 1.0.0.0 – 126.0.0.0 128 (2^7) 16,777,214 (2^24 – 2)

B 128 – 191 128.0.0.0 –
192.255.0.0

16,384 (2^14) 65,534 (2^16 – 2)

C 192 – 223 192.0.0.0 –
223.255.255.0

2,097,152 (2^21) 254 (2^8 – 2)

Classless Addressing
This system of classful addressing was not without its limitations. The supply of classful
networks was rapidly depleted, and routing tables were becoming difficult to manage. The
IETF devised a new system for describing networks in RFCs 1518 and 1519, called Class-
less Inter-Domain Routing or CIDR.

49IP Addressing and Subnetting

As with classful addressing, the IP address would be made up of a network prefix and a
host identifier. But instead of restricting that network prefix to the bit boundary of an
octet, CIDR allowed the network prefix to be an arbitrary length, through variable-length
subnet masking (VLSM) .

CIDR introduces the concept of the subnet mask, another 32-bit binary number that,
when paired with an IP address, allows for the network and host portions of the IP address
to be determined. The binary representation of a subnet mask is always a sequence of con-
tiguous 1s followed by a sequence of 0s. A router performs a logical AND operation on
the binary values of the IP address and the subnet mask to determine the network portion.
Another way of looking at this is that the network portion of the IP address is the set of
bits that correspond to the 1s in the subnet mask.

Let’s work through a couple of examples. Let’s say we have a host IP address of
10.20.30.40 and a Class A subnet mask of 255.0.0.0. What is our network address?

Well, the binary representation of 10.20.30.40 is 00001010 00010100 00011110 00101000.
The binary representation of 255.0.0.0 is 11111111 00000000 00000000 00000000. Let’s
compare them:

IP: 00001010 00010100 00011110 00101000

Mask: 11111111 00000000 00000000 00000000

Network: 00001010 00000000 00000000 00000000

We can write out the network address by seeing which bits of the IP address map to a
1 in the subnet address, and then entering zeroes for bits that map to zeroes. Here, that
becomes 00001010 00000000 00000000 00000000. Converting that to decimal, we get
10.0.0.0. Often, you’ll see the subnet mask expressed as the number of 1s in the mask—this
is called CIDR notation. Our network in CIDR notation is 10.0.0.0/8.

Now let’s try one a little more complicated. We’ll use the same IP address, 10.20.30.40,
but this time our subnet mask will be 255.255.255.224.

Again, the binary representation of 10.20.30.40 is 00001010 00010100 00011110
00101000. The binary representation of 255.255.255.224 is 11111111 11111111 11111111
11100000. Let’s compare them:

IP: 00001010 00010100 00011110 00101000

Mask: 11111111 11111111 11111111 11100000

Network: 00001010 00010100 00011110 00100000

This time, our network address came out to 00001010 00010100 00011110 00100000.
Converting that to decimal and CIDR notation, we get 10.20.30.32/27.

50 CHAPTER 5 Layer 3

TIP

There’s a handy online calculator for translating IPs and subnet masks into their network
address and network range at www.subnet-calculator.com/cidr.php.

Reserved Addresses
Some IP addresses are best avoided, as they are reserved for specific purposes. These
include the smallest and largest IP address in each subnet. The smallest IP address is
reserved for use as the network address, and the largest is the broadcast address for the
segment. Other common reserved blocks are 0.0.0.0/8 reserved for wildcard source IP
addresses, 127.0.0.0/8 reserved for loopback addresses, 169.254.0.0/16 reserved for link
local addresses (you might recognize these as Automatic Private IP Addresses [APIPA] in
Windows), and Class D (first octet 224-239) and Class E (first octet 240-255) are reserved
for multicast and experimental addresses, respectively.

Other ranges are set aside for use as private IP space. These include 10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16. Private addresses are typically used inside an orga-
nization where public IP addresses are not needed. Privately addressed devices can still
access external resources by way of Network Address Translation (NAT). A complete
list of reserved address ranges can be found in RFC 6890, “Special Purpose IP Address
Registries.”

Network Layer Supporting Applications
Having covered addressing and forwarding mechanics, let’s turn to common tools that
assist Network layer function, care, and feeding.

DHCP
Every device on the network needs an IP address, but manually configuring an address for
each and every device presents logistical challenges as the network grows. Certain impor-
tant devices—routers, switches, and servers, for example—should be configured manually,
with static IP addresses that do not ever change. This ensures that these devices are always
reachable at the expected address. Other devices, typically end-user devices, might have
more transient connections and as such not need permanent, manually assigned addresses.
For these devices, Dynamic Host Configuration Protocol (DHCP) can be used to allow
the device to temporarily borrow, or lease, an IP address. DHCP also allows an adminis-
trator to configure other information including the default gateway address, DNS server
addresses (more on that in a bit), and domain names.

51Network Layer Supporting Applications

When DHCP is used, a DHCP server maintains a list of various pools of IP addresses that
can be used for each subnet. Devices configured to use DHCP issue a broadcast DHCP
Discover message on their subnet. A DHCP server earmarks an IP address in its pool and
responds with a broadcast DHCP Offer message directed to the client, which includes a
proposed IP address, subnet mask, lease duration, and the IP of the DHCP server. The
client then responds to the server via broadcast with a DHCP Request, indicating that
the client has accepted the offer. A client might receive offers from multiple DHCP serv-
ers, but will respond with a request to only one. Any other DHCP servers that had sent
offers will see the broadcast request and return their offered address to their pools. The
DHCP server then issues a DHCP Acknowledgement to the client, confirming the reser-
vation. The acknowledgment includes any additional configuration parameters that might
be specified.

DNS
While some of us are cursed with being able to recall IP addresses they used 20 years ago
(but not what their wife asked them to do this morning), this is not a fair expectation of
your end users.

Domain Name Service (DNS) is a centralized mechanism for mapping user-friendly
names to IP addresses. When a host is configured to use a DNS server, it will send DNS
requests to the specified server, asking for translation. The DNS server will then reply
with the IP address matching the friendly name. Multiple DNS servers can be specified, so
if the client cannot reach the first server listed, it will try the next server in the list until a
response is received.

ARP
Remember that each IP packet must be encapsulated in a Layer 2 frame before it can be
sent to the next hop. The Address Resolution Protocol (ARP) is used to determine the des-
tination media access control (MAC) address for that frame.

After a client has resolved a name to an IP address, it determines whether that IP address is
on its local subnet. If it is, it issues an ARP broadcast on the segment asking for the holder
of that IP address to respond with its MAC address. If the destination host is not on the
local subnet, the client issues an ARP request for the default gateway IP address.

ARP requests are not issued for every bit of communication. As a client makes requests,
the replies are remembered in the ARP cache. Each time a client needs to encapsu-
late a packet in a frame, it checks the ARP cache to see if it has a MAC match for the
destination IP.

52 CHAPTER 5 Layer 3

Ping
The ping command allows you to test basic IP connectivity between hosts. It uses the
Internet Control Message Protocol (ICMP) to send an ICMP echo request to the destina-
tion host. The host is then expected to reply with an ICMP echo reply. When successful,
you have confirmed that the network can deliver a packet from the source to the destina-
tion and back again.

Ping was named after the sound sonar makes, as the echo request and echo reply function
is similar to the process of active sonar.

Summary

In this chapter, we reviewed the functions of Layer 3, the Network layer. We described
the Network layer functions, Network layer addressing, the routing and forwarding pro-
cesses, and some utilities that function at and support this layer. In the next chapter, we
break away from networking theory to investigate a relatively new infrastructure consump-
tion model.

Chapter 6

Converged Infrastructure

Key Concepts
 Converged Infrastructure

 Cisco UCS

 HP BladeSystem

 Nutanix Virtual Computing Platform

Introduction
Let’s take a quick detour before we get into virtual networking. Think of it as a quick
breather, an opportunity to come up for air after the networking concepts we just threw at
you. So far, we’ve gone over a good bit of networking fundamentals, at some length. It’s
easy to get lost here, to get so caught up in the particulars of interconnecting devices to the
point where you forget that those devices are the reason for the network to be there in the
first place. Something similar often happens with server people, storage people, desktop
people—everyone with a specialization. When these technologies are treated as discrete
islands, staffed and procured separately, silos develop and inefficiencies abound.

Converged infrastructure is one approach to solving this problem. A converged infrastruc-
ture solution packages or otherwise integrates compute, networking, and storage technolo-
gies into a solution that is (ideally) easier to consume, deploy, and manage. In this chapter,
we go over the basic concepts and provide a few examples of converged solutions that we
often run into.

54 CHAPTER 6 Converged Infrastructure

Concepts
To begin, let’s look at a typical IT shop that has the traditional set of datacenter compo-
nents: rack-mount servers tethered to network switches and a storage array. The personnel
that manage and maintain this equipment are grouped into teams—the storage team, net-
work team, and server team—and together they make up the Infrastructure Team.

When a new server needs to be added to the datacenter, quite a bit of activity needs to take
place. Barring any political or procurement shenanigans, the three teams must work in
harmony in order to get the new server into a production state.

The Server Team has to “rack and stack” the server. This is the process of unloading the
server into the datacenter, removing it from the packaging, and then finding a rack loca-
tion and mounting it to the rack. They can also be tasked with assigning the server name,
applying an IP address, and working to complete any other personality attributes of the
server.

The Network Team might cable the server into the nearby switch and ask the Server
Team exactly how to configure the port for this server. They often ask questions about
the VLAN configuration, number of cables needed, and the Maximum Transition Unit
(MTU) settings to ensure that the port will correctly talk back and forth with the server.
They might also want to investigate the Network Interface Cards (NICs) to verify what
MAC addresses will be discovered by the switch for security purposes.

And finally, the Storage Team might need to examine the Host Bus Adapters (HBAs) to
identify the World Wide Port Names (WWPNs) for building a Storage Area Network
(SAN) and corresponding zoning configuration. They would then be able to build storage
constructs, such as Logical Unit Numbers (LUNs) or Volumes, and present them to the
server.

Sounds exhausting, doesn’t it? Lots of hands are involved, and there are many opportuni-
ties for errors even if everything is communicating perfectly. And while no single set of
tasks takes too terribly long, the logistics of coordinating the work and conforming to
change control policies can compound delays, stretching delivery time to crazy lengths.
We’ve worked with companies that consider a 90-day turnaround from delivery to produc-
tion to be a job well done.

Converged Infrastructure Advantages
This model has been around for many years. And it works, mostly. So why change?
Well, if you are only adding one or two servers a month, it’s not a big deal to go through
the multi-team goat rodeo. But what if you want to add 10, 100, or even 1,000 servers a

55Examples

month? You’d need an entire army of engineers to do nothing but add servers. It doesn’t
scale well and is extremely prone to error.

Converged infrastructure looks to remove large chunks of the human element. It aims to
combine multiple types of resources into one logical management and control plane. Net-
working is certainly core to this idea, and is typically coupled with both compute and stor-
age. Rather than having silos of IT infrastructure, converged infrastructure supports the
collapsing of those silos into one team.

Here are some pretty slick advantages to converging the infrastructure:

 Wire once: Much of the networking tasks that were performed by the Networking
Team are completed during the initial configuration of the solution. As additional
servers are brought into the datacenter, the physical network remains untouched.

 Agility and flexibility: The majority of configuration is done through automation and
templates, removing much of the risk associated with human configuration.

 Visibility: The entire solution can be analyzed and configured from a central manage-
ment panel, rather than having to log into multiple portals across a wide variety of
 disciplines.

Examples
Over the past several years, the number of converged infrastructure offerings has soared.
The market has reacted favorably to the idea of having simplified management and
increased flexibility in their datacenter. Each offering has a different twist on exactly how
they operate, what market segment they are focusing on, and how scalable the solution is.
We provide a few examples of solutions that we run into in the datacenter. This is not an
exhaustive list and is only meant to serve as examples of types of converged infrastructure.

Cisco UCS
Cisco’s Unified Computing System (UCS) was a bit of a blank-slate approach to computing,
trying to answer the question of what a compute platform should look like in a post-
virtualization world. Cisco’s approach unifies network and storage fabrics within an enclo-
sure, reduces the number of points of management, and provides a policy and pool-based
approach to server provisioning. It also allows you your choice of blade or rack-mount
form-factors.

The smarts of UCS are housed in a pair of fabric interconnects, which run the UCS Man-
ager software to control and manage the entire compute domain. Each fabric interconnect

56 CHAPTER 6 Converged Infrastructure

has upstream connections to external network and, optionally, SAN, and downstream
“server port” connections to fabric extenders, implemented as either IO modules housed
in blade enclosures, or top-of-rack style Nexus 2000-series devices. Each fabric extender
functions as a remote line card of the fabric interconnect. The fabric extenders are com-
pletely dependent on the fabric interconnects; they cannot themselves forward traffic.
Traffic flows into a fabric interconnect via an Uplink Port, then down through a Server
Port to a fabric extender, and ultimately to the blade server or rack-mount server.

To be clear, this is a rather unique offering in the converged space—typically, converged
infrastructure limits the design to either blades or a “blade-like” enclosure and does not
allow you to use a rack-mount server.

Why is this relevant? Not all workloads can fit in a blade form-factor. One example is
Apache Hadoop—it is a big data analytic cluster that can benefit from having many slow,
local hard drives to use the inside of each server, more than can fit into a single blade.

Figure 6.1 shows a UCS chassis, with its IO modules connected to a pair of fabric
 interconnects.

The fabric interconnects function as end-host devices —they act like switches on the server-
facing side, but like server NICs on the network-facing side. This eliminates some of the
caveats of traditional switches. An end-host device cannot form a loop, and as such, there
is no spanning tree to concern yourself with. This means that every uplink from the fab-
ric interconnect to the upstream switches can be active. Multiple connections from each
IO module to its fabric interconnect can also be made without worrying about loops—
depending on your configuration, the links between each IO module and the fabric inter-
connect are treated as a port-channel bundle, or blades are pinned to a particular uplink.
This ensures that traffic can flow up all uplinks. The fabric interconnects do not learn
about any of the MAC addresses for entities not within their control. When switching traf-
fic, any destination MAC address that is unknown is forwarded out an uplink port and is
expected to be handled by a fully featured switch upstream.

All network configuration necessary for the servers is performed in UCS Manager. You
define the VLANs, Quality of Service policies, MTU size, and number of NICs each
server will have. Servers are usually configured to be stateless—a service profile contain-
ing MAC address and World Wide Name (WWN) identity information pulled from
pools, network, and SAN configuration, and boot from SAN or LAN configuration details
is associated with the physical blade. This allows for quick and easy replacement in the
event of a failure—you replace the failed blade and re-associate the service profile to the
replacement.

58 CHAPTER 6 Converged Infrastructure

the architecture is designed to allow a wide variety of blade switches to be used, even from
other vendors such as Cisco and Brocade.

In contrast to Cisco UCS, where a pair of fabric interconnects form a domain with all of
the blade enclosures, BladeSystem puts a fair bit of control and management into each
individual blade enclosure. In fact, each enclosure houses an Onboard Administrator (OA)
and eight slots for various networking modules. This gives the administrator flexibility to
custom tailor each enclosure to specific needs (such as the amount or use of Fiber Chan-
nel, Ethernet, or a mix of both). The tradeoff for such flexibility is that each point needs
to be managed and maintained as an individual entity, although management software
does exist to allow combined control for the entities via offerings like HP Virtual Connect
Enterprise and HP OneView. The contrasting point is that Cisco UCS has one point of
logical management, while HP BladeSystem has many. We’re not prepared to say one is
any better than the other; this is just a point you should be aware of when working with
either system.

From a networking perspective, HP BladeSystem is focused on a technology called Virtual
Connect (VC) . These are switching modules that work in a transparent mode, which is very
similar to end-host mode with UCS. The VC modules are typically deployed in pairs that
sit next to each other within the enclosure. You have the choice of configuring the mod-
ules to be active and passive, where the passive module takes over if the active module fails,
or running active and active and allowing the underlying vSphere hypervisor to shift traffic
over to the active module in the case of failure. The decision to choose between active and
passive versus active and active typically comes down to traffic flows and the north-bound
switching architecture. HP has what they call a Cook Book to show you how to build
both—we go into some details on blade server architecture beginning in Chapter 11, “Lab
Scenario.”

HP BladeSytem gives you the ability to define VLANs, virtual NICs, NIC speeds, and
so on from within the VC manager. Configuration is done once with a VC Domain (be
that a single enclosure or multiple enclosures with VC Enterprise Manager) and can then
be used repeatedly for each current and additional blade. You can also use VLANs that
exist only within BladeSystem for local traffic, such as vMotion or Fault Tolerance, if
that would be optimal for your architecture or design. Additional automation and self-
service features are available when BladeSystem is deployed as part of an HP CloudSystem
Matrix solution.

Figure 6.2 shows the business end of an HP BladeSystem c7000 enclosure.

59Examples

Figure 6.2 HP BladeSystem rear view

Nutanix Virtual Computing Platform
Nutanix offers a fresh look at converging the various resource food groups—compute,
storage, and network—into a single “hyper-converged” platform. Nutanix’s convergence
goes to 11, as no remote storage array is involved—everything is baked into a Virtual
Computing Cluster chassis.

This makes for an interesting experience when focusing on the networking construction,
because the entire focus is the presentation of traffic into and out of the Nutanix cluster.
The Ethernet connections that tie into the system are there to give the virtual machines a
path out of the cluster to communicate with other entities. Each Nutanix node in the clus-
ter provides a series of network adapters that can plug into an upstream switching system,
making expansion of bandwidth a simple factor of the number of nodes. This is somewhat
similar to the concept expressed in the “Cisco UCS” section, with the difference being
that instead of wiring a UCS chassis to a UCS fabric interconnect, you just wire Nutanix
nodes into an upstream switch that provides both clustering and access to the nodes. The
remaining node-to-node communication is handled by the system. Other than assigning
IP addresses, this node-to-node communication is transparent to the administrator.

Figure 6.3 shows the architecture of the Nutanix Virtual Computing Platform.

Chapter 7

How Virtual Switching Differs
from Physical Switching

Key Concepts
 Host Uplinks

 Virtual Ports

 External Switch Tagging (EST)

 Virtual Switch Tagging (VST)

 Virtual Guest Tagging (VGT)

Introduction
Although it’s easy to point to the obvious difference between physical and virtual
 switching—one is hardware and the other is software—there is a bit more to it than that.
There are differences both in the process by which traffic is switched, and in the advanced
services and features offered. In this chapter, we look at how a virtual switch operates on
a VMware vSphere host running ESXi, along with some of the terminology of logical
objects represented by the virtual switch.

62 CHAPTER 7 How Virtual Switching Differs from Physical Switching

Physical and Virtual Switch Comparison
So your first question might be—what exactly is a virtual switch? After all, the previous
section of this book focused entirely on the theory and practice of switching, along with
some routing, and most of it focused on plugging wires into fancy boxes so that data could
move around.

To begin, let’s start by covering some basic functionality similarities and differences
between physical and virtual switches. You might be surprised at how alike these two types
of switches are; the differences can be subtle but have a profound impact on the design and
configuration of a well-tuned virtual environment.

Similarities
It’s important to note that a VMware virtual switch, or vSwitch as it is known, doesn’t
use any special or proprietary type of modification on the traffic. All the frames that flow
into a vSwitch follow the exact same standards as outlined by the Institute of Electrical
and Electronics Engineers (IEEE) 802.3 protocol, following the conceptual framework of
the OSI Model’s Data-Link Layer, and the practical application of the TCP/IP Network
Interface layer. If you think about it, this makes a lot of sense—as otherwise you’d need
special equipment just to pass traffic into or out of an ESXi host and its vSwitch.

Figure 7.1 shows the layout of an IEEE 802.3 frame.

7

Preamble

4

802.1Q
VLAN Tag

12

bytes

Interface
Gap

4

Frame
Check

Sequence

1500

Data
(Payload)

2

Type

6

MAC
Source

6

MAC
Destination

1

Start of Frame
Delimiter

Figure 7.1 An IEEE 802.3 frame layout

Additionally, ESXi hosts have the ability to use a wide variety of off-the-shelf network
adapters (NICs) from the likes of Qlogic, Emulex, Intel, and others—consult the Hard-
ware Compatibility List for an authoritative list. These use the standard connector types,
RJ45/8p8c for copper or any of the standard fiber connector types, just as you would find
in any other server that was running any other operating system or hypervisor. A vSwitch
then begins using these network adapters and attached cables to switch traffic.

63Physical and Virtual Switch Comparison

Differences
Because a vSwitch isn’t a physical device, you have some flexibility in configuration. If you
need a larger number of virtual ports on your vSwitch, you can just edit its properties and
adjust as needed. With physical switches, this could require a forklift switch upgrade, add-
ing new switches, or adding line cards to a chassis-based switch.

Switching Decisions
Another major difference is how a vSwitch handles Layer 2 switching. That is, the knowl-
edge and movement of data to MAC addresses on the network. A physical switch has a
large table of MAC addresses that it keeps in memory to quickly figure out where a frame
needs to be sent. The addresses that are remembered are for nodes that are both directly
and remotely attached to the switch—that is, nodes directly plugged into a switch port and
also nodes that are connected to another switch’s port.

Figure 7.2 shows the MAC addresses of devices connected to a virtual switch, as found in
the vSphere Web Client.

Figure 7.2 A virtual switch only tracks MAC addresses on its ports

65Physical Uplinks

Keep in mind that the vSwitch is only able to do Layer 2 switching. If a frame is trying to
reach a MAC address on another VLAN, Layer 3 switching is required and the frame will
be sent to the physical uplink with the hopes that a higher level switch can perform the
inter-VLAN routing.

Physical Uplinks
But not all ports on a vSwitch are virtual—after all, there has to be some way to get the
traffic out of the host! This is where those physical network adapters (NICs) come in to
play as uplinks into the physical network. Each uplink provides a traffic path northbound
to the upstream physical switch so that data can enter and leave the virtual environment.

Host Network Interface Card (NIC)
An ESXi host’s NICs act as uplinks for a virtual switch. That is, they are the means by
which traffic can enter and leave a vSphere host. If desired, you can configure a large num-
ber of NICs—up to 32 1GbE NICs in vSphere 5.1—or as few as one. We tend to think
that you shouldn’t ever have less than two of anything to avoid creating a single point of
failure, so shoot for two NICs at a minimum. If you don’t want your traffic to go anywhere
beyond the ESXi host, you can even create a vSwitch with no uplinks.

You’re also given the choice of speeds for your NICs. This is usually a speed of 1 gigabit
per second (1 Gbps) or 10 gigabits per second (10 Gbps). You might even notice these val-
ues expressed as “1GbE” and “10GbE”—the capital E denotes Ethernet.

Not all traffic will use the physical uplinks. Sometimes a VM (or even the host) wants to
communicate with another VM on the same VLAN inside of the same virtual switch on
the same host. In this case, there’s no need for the traffic to leave the virtual switch and use
an uplink—the switch knows that both entities are attached to it, and it will simply switch
the frames locally. In the past, this was sometimes called “dark traffic” because it was dif-
ficult to track and monitor before more modern virtualization-aware tools and monitoring
software were developed.

Figure 7.4 illustrates this concept of local vSwitch dark traffic.

67Virtual Ports

With version 5.x of vSphere, however, the distributed virtual ports are now elastic ports
by default. Elastic means that the virtual switch will manage the quantity of virtual ports
 automatically—creating and deleting them as needed—without user intervention.

The virtual ports are connected to three different types of ports: VM NICs, VMkernel
ports, and service console ports.

Virtual Machine NICs
Every virtual network adapter that is created, connected, and active within a VM uses up
a single virtual port on a vSwitch. This is actually how the connection is made between a
VM NIC and the virtual switch—the virtual port is the bridge to the physical network.

VMkernel Ports
VMkernel ports are special ports that connect the vSphere host’s VMkernel to the virtual
switch. After all, the host also needs to talk with other hosts, the vCenter server, and what-
ever else that is important on your network, and that traffic has to be sent out of the virtual
switch just like all the rest.

VMkernel ports can serve a few different purposes and carry various types of traffic:

 1. Management

 2. vMotion

 3. Fault tolerance logging

 4. iSCSI storage traffic

 5. NFS storage traffic

Service Console
Prior to vSphere 5, you actually had two choices of ESX to choose from: ESX and ESXi.
With vSphere 5, the only choice is ESXi. What’s the difference? ESX, sometimes called
the “classic” hypervisor, actually ran both the virtualization kernel (the VMkernel) along
with a Console Operating System (COS) . ESX was a comparably larger installation lead-
ing to a larger attack surface, and so VMware ultimately shelved the classic ESX architec-
ture and now only offers the slim, VMkernel-only version of ESXi.

68 CHAPTER 7 How Virtual Switching Differs from Physical Switching

However, it is important to understand that classic ESX does not use a Management
VMkernel port. Instead, it has a special interface called the Service Console for manage-
ment; the COS rather than the VMkernel owned this interface. While it is out of scope
to go any deeper for this book, it is good to be aware of the legacy architecture if you run
into it.

VLANs
One final, but major, component of a virtual switch is VLAN tagging. You might remem-
ber IEEE 802.1q from back in Chapter 4, “Advanced Layer 2.” Virtual switches support
three different ways to determine how VLANs are handled and where.

External Switch Tagging (EST)
Much like it sounds, External Switch Tagging (EST) is a configuration where the virtual
switch is completely ignorant of the VLAN tags. Instead, the external switch that the phys-
ical uplinks are connected to handles all of the VLANs and removes the tags before they
ever reach the virtual switch.

This is accomplished by setting the physical switch ports on the upstream switch into
Access mode. When traffic enters an Access port inside the northbound switch, the VLAN
tag is inspected and removed before the port sends the traffic down to the virtual switch.
Because of this, the virtual switch will only handle untagged traffic.

Also, because there are no VLAN tags making their way into the virtual switch, the VM
NIC or VMkernel port are unaware of what VLAN they belong to and never see an
802.1Q VLAN tag. Everything on that vSwitch then must use that same VLAN—the one
configured on the access port on the upstream switch.

Virtual Switch Tagging (VST)
Virtual Switch Tagging (VST) occurs when the virtual switch itself is inspecting and adding
or removing the VLAN tags. In order for this to occur, the upstream switch port that is
connected to the physical uplink must be configured as a trunk port. This allows the port
to pass along a defined number of VLAN-tagged traffic down to the virtual switch with
the tag intact.

When the frame arrives at the virtual switch, it inspects the VLAN tag to see what VLAN
it belongs to and the destination MAC address. Assuming it finds a VM NIC or VMkernel
port that matches the VLAN and MAC address, the frame is delivered with the VLAN

69VLANs

tag removed. Otherwise, the frame is discarded. When traffic is sent from a VM NIC or
VMkernel port, the virtual switch makes sure to add the VLAN tag before sending the
frame to a physical uplink.

VST is similar to EST in that the VM NIC or VMkernel port is unaware of the 802.1Q
VLAN tag because the virtual switch has removed the tag before delivery.

NOTE

VST is the most popular and common method used by virtualization administrators for
many reasons. VST is very simple to manage and maintain because the upstream switch
port is configured as a trunk and requires little to no effort from a network administrator
to maintain. Also, it grants additional visibility into how the VLANs are laid out for the
virtualization administrator as you can easily see the tag numbers from the vSphere Client.
And finally, it allows greater flexibility in the amount of VLANs that can be used on a virtual
switch over EST, which only allows you to use a single VLAN per physical uplink. Oh, and
it’s also the method recommended and preferred by VMware.

Virtual Guest Tagging (VGT)
The final type of tagging is Virtual Guest Tagging (VGT). In this configuration, the north-
bound switch port is configured as a trunk and passes VLAN tags down to the virtual
switch. The virtual switch will inspect the VLAN tags to ensure they match the correct
destination virtual port but will keep the tags intact. The tagged frames are passed along
in an unaltered state to the VM or VMkernel port. In order for this configuration to work
properly, the VM must be able to read and understand VLAN tags, as well as tag its own
traffic that is being sent out.

Figure 7.5 illustrates how the VLAN tag can be added to a NIC from within a
Windows VM.

VGT is a unique type of configuration and typically reserved for VMs that monitor or
“sniff” traffic, provide routing services, or have some other need for seeing the frame with
VLAN tags intact.

70 CHAPTER 7 How Virtual Switching Differs from Physical Switching

Figure 7.5 Configuring the VLAN in a Windows guest VM

Summary

In this chapter, we went over some of the key differences between physical and virtual
switches. We covered the different ways they process traffic, the different types of virtual
ports, and the different ways VLANs are handled. In the next chapter, we build on these
distinctions and get more hands-on as we explore the configuration options available in the
vSphere Standard Switch.

Chapter 8

vSphere Standard Switch

Key Concepts
 Control and Data Planes

 Virtual Ports

 vSwitch Security

 Traffic Shaping

 NIC Teaming and Failover

 VMkernel Ports

 Port Groups

Introduction
A VMware ESXi server cannot do much of anything worthwhile without some means of
getting network traffic to and from the VMs it hosts. Fortunately, VMware realized this
and has thoughtfully provided two solutions to this problem, the vSphere Standard Switch
 and the vSphere Distributed Switch. This chapter focuses on the former, the original
recipe vSwitch that is included with every license level. Don’t let the “standard” part of
the Standard Switch fool you—it includes a bunch of great features to help you shuffle
traffic around your network. With that said, let’s look at what makes a VMware Standard
Switch tick.

72 CHAPTER 8 vSphere Standard Switch

The vSphere Standard Switch
The goal of VMware’s Standard Switch is to allow network traffic to flow in any scenario.
This could mean that the ESXi host is not connected to a vCenter server at all, which
is typically referred to as a “standalone” or “vSphere Hypervisor” install of vSphere. In
this case, there’s no higher level of management than the host itself, so the standard level
switch needs to be able to function with nothing more than the host telling it what to do.

TIP

If you think about it deeper, when you first install VMware ESXi onto a server, it is a blank
slate—it has no name, IP, or DNS information. While there are ways to script the install to
auto-assign these identities, no assumptions can be made. This is another reason why the
standard vSwitch must be able to operate with nothing more fancy than a standalone instal-
lation of ESXi.

Plane English
Before getting too far into how the Standard Switch works, we need to introduce a bit of
terminology. When describing switch functions, we often use the terms “control plane”
and “data plane.” Control plane traffic and functions can best be thought of as traffic to the
switch, and data plane traffic is traffic through the switch. Management, monitoring, and
configuration traffic concerning the switch is control plane traffic. Frames passing from a
virtual machine (VM) out to the rest of the world would be data plane traffic.

In your typical physical, top-of-rack style switch, control and data planes live within the
same piece of equipment. With virtual switches, these functions can be separated.

Control Plane
The control plane of a standard vSwitch resides on the VMware host. That is, any manipu-
lation of the vSwitch configuration, number of ports, and the way that traffic is moved
around are all part of the host’s responsibilities. More specifically, it’s the job of the
hypervisor kernel (called the VMkernel) to make sure that the vSwitch is configured and
operational.

As such, even when you cluster a bunch of VMware hosts together, each host is respon-
sible for its own standard vSwitches. In the case of a vCenter failure, every host’s standard
vSwitch would still be configurable by connecting the vSphere client directly to the host.

73vSwitch Properties

Data Plane
Every Standard vSwitch on a host is responsible for switching frames, which means that
the data plane is a host’s responsibility. As data enters the host NICs, which form the
uplinks for a standard vSwitch, the VMkernel makes sure that the frames get to the appro-
priate destination. Sometimes this means that the traffic gets ignored, especially in the case
of external traffic that enters the vSwitch with an unknown destination MAC address.

vSwitch Properties
Every vSwitch has two basic properties that can be configured in order to meet the
requirements of your design and network’s maximum transmission size.

Ports
Ports indicate the number of virtual ports that will be kept in memory, tracked, and made
available to VMs, VMkernel ports, and uplinks that reside on the host. One weakness
of a standard vSwitch is the requirement that the ESXi host be restarted if you change
the number of ports. Prior to vSphere 4.1, the default number of vSwitch ports was only
56, leading many a green VMware administrator to hit that limit before realizing it was
something that could be changed. Over time, VMware listened to the woes of virtualiza-
tion administrators and, in vSphere 4.1, the default number of ports assigned to a standard
vSwitch has been changed to 128, allowing some breathing room. An administrator can
adjust the number of ports by powers of 2, from 128 to 256 and so on, all the way up to
4,096 possible ports.

Figure 8.1 shows the default vSwitch properties dialog in the vSphere Web Client.

REAL WORLD EXAMPLE

If you look at the port count on the classic vSphere client, you might notice that it shows 8
fewer ports (120) for the default. Hey, who stole my ports? Don’t worry, this is the expected
behavior. The hypervisor always reserves 8 ports for overhead activities such as network
discovery, Cisco Discovery Protocol (CDP) traffic, and physical uplinks. On the newer
vSphere web client, the actual port counts are shown.

74 CHAPTER 8 vSphere Standard Switch

Figure 8.1 The default vSwitch properties

Maximum Transmission Unit (MTU)
The other item that you can configure is the MTU, which is the maximum amount of data
that can be crammed into a frame’s payload segment. By default, this is 1,500 bytes, which
is the default for just about any networking device you can buy. You can safely assume that
all of the physical equipment that runs northbound of the vSwitch will support a 1,500
MTU or larger, which avoids unnecessary packet fragmentation.

There’s also an option to increase this size and set it to a “jumbo” size. We do love our
silly names in this industry. Jumbo frames are just frames larger than the default size of
1,500. Even setting an MTU of 1,501 is technically enabling jumbo frames. Tremble
before the mighty, slightly larger frame.

Most of the time, though, the term jumbo frame refers to a frame with an MTU of 9,000
or higher, though 9,000 is the maximum MTU ESXi will support. If you are talking to a
network engineer and want to get an idea of what MTU size to set on your vSwitch, ask
specifically what the MTU value is—don’t just ask if he or she is running jumbo frames.
This avoids any confusion.

REAL WORLD EXAMPLE

We’ve done a lot of work with people who want to enable jumbo frames thinking that a
larger number is by default going to increase performance. This is not always true, and
in some cases, enabling jumbo frames can actually hurt performance. It’s also incredibly

75Security

difficult to make sure that all of the physical networking equipment is properly configured
for a jumbo frame size. Make sure that you have a solid technical reason, with performance
testing, before you worry about increasing your MTU size on your infrastructure.

Security
The security settings on a vSwitch are probably one of the most misunderstood portions of
a vSwitch configuration. There are three settings available for tuning: promiscuous mode,
MAC address changes, and forged transmits, as shown in Figure 8.2.

Figure 8.2 Security settings on a vSwitch

Promiscuous Mode
If you think back to when we covered physical switching, you’ll probably recall that one
major advantage to it is that we have the ability to switch traffic directly to a single destina-
tion MAC address. Unless the traffic is being flooded, broadcast, or specifically intended
for a destination, devices on the network do not “see” the other traffic floating across the
switch. This is great for most use cases as it provides for greater scalability and improved
performance of the network, and is the default behavior on a standard vSwitch.

There are some situations where we really do want a VM to see traffic that is intended
for another device. Imagine having some sort of network monitoring VM that needs to

76 CHAPTER 8 vSphere Standard Switch

sniff traffic. This is where Promiscuous Mode comes in handy. By setting it to Accept,
we are ordering the vSwitch to share traffic on each VLAN among other VMs on the
same VLAN.

PITFALL

Promiscuous mode does not allow a VM to see traffic on VLANs that aren’t specified by
the port group. It can still only see traffic for the VLAN(s) that it belongs to. This is a very
common misconception.

MAC Address Changes
The idea of MAC Address Changes tends to confuse a lot of people, so we’ll go deep
into this one. First, what exactly is a MAC Address Change from a vSwitch perspective?
To understand this, you must first know more about how the switch keeps track of MAC
addresses for VMs.

To begin with, every VM has three different types of MAC addresses: the Initial, Effective,
and Runtime MAC addresses:

 The Initial MAC address is configured on the virtual network adapter inside the VM.
This is something you either let vSphere decide for you when the virtual NIC is
created or manually set yourself by changing that vSphere-provided value. It is very
similar to a physical NIC’s burned-in address (BIA).

 The Effective MAC address is configured within the VM by the guest operating sys-
tem (OS). Typically, the guest OS just uses the Initial MAC address, much like your
PC will by default use the BIA or your NIC.

 The Runtime MAC address is the actual live address that is being seen by the
vSwitch port.

Figure 8.3 shows the Runtime MAC address of a VM in the vSphere Web Client.

So, now that you’re a MAC address expert, let’s go back in and discuss how the vSwitch
polices MAC Address Changes.

When set to “Accept,” the vSwitch allows the Initial MAC address to differ from the
Effective MAC address, meaning the guest OS has been allowed to change the MAC
address for itself. Typically, we don’t want this to happen as a malicious user could try to
impersonate another VM by using the same MAC address, but there are use cases, such as
with Microsoft Network Load Balancing (NLB) where it makes sense.

77Security

Figure 8.3 The Runtime MAC address of a VM

When set to “Reject,” the vSwitch will disable the port if it sees that the guest OS is trying
to change the Effective MAC address to something other than the Initial MAC address.
The port will no longer receive traffic until you either change the security policy or make
sure that the Effective MAC address is the same value as the Initial MAC address.

To sum it up, the MAC Address Changes policy is focused entirely on whether or not a
VM (or even a VMkernel port) is allowed to change the MAC address it uses for receiving
traffic. The next section covers sending traffic.

Forged Transmits
Very similar to the MAC Address Changes policy, the Forged Transmits policy is con-
cerned with MAC Address Changes, but only as it concerns transmitting traffic.

If set to “Accept,” the VM can put in any MAC address it wishes into the “source address”
field of a Layer 2 frame. The vSwitch port will just happily let those frames move along to
their destination.

If the policy is set to “Reject,” the port will interrogate all the traffic that is generated by
the VM. The policy will check to see if the source MAC address field has been tampered
with. As long as the source MAC field is the same as the Effective MAC address, the frame
is allowed by the port. However, if it finds a non-matching MAC address, the frame is
dropped.

It’s very common to see issues with the Forged Transmit policy when doing nested virtu-
alization. Nesting is the term used to describe running the ESXi hypervisor inside a VM,
which then runs other nested VMs with their own unique MAC addresses. The many dif-
ferent MAC addresses will be seen by the port used by the nested hypervisor VM because

79Discovery

enable it. Make sure your security team is okay with you using a discovery protocol before
turning it on, but once on, it makes understanding the neighborhood of physical and virtual
switches dramatically easier for everyone!

Cisco Discovery Protocol (CDP)
The VMware standard vSwitch supports only one single protocol for discovery, the Cisco
Discovery Protocol. Can you guess which switch manufacturer uses this protocol? We’ll
give you a hint—it’s not Brocade.

CDP is a proprietary way to allow switches to chat with one another to figure out who
they are plugged into. It’s not required for traffic to flow, but it does give administrators
and engineers a great way to see what device is at the end of a plugged-in port. It also
updates itself in real time, meaning it has a lot more value than trying to keep your con-
figuration in a spreadsheet or some other manual method. CDP is enabled by default on
Standard Switches. Figure 8.5 shows the output of the show cdp neighbors command
on a 3550 switch to which a Standard Switch has been connected.

Figure 8.5 CDP information on a Cisco 3550 switch connected to two vSwitch uplink ports

80 CHAPTER 8 vSphere Standard Switch

Traffic Shaping
Traffic shaping is the ability to control the quantity of traffic that is allowed to flow across a
link. That is, rather than letting the traffic go as fast as it possibly can, you can set limits to
how much traffic can be sent.

Within a standard vSwitch, you can only enforce traffic shaping on outbound traffic that
is being sent out of an object—such as a VM or VMkernel port—toward another object.
This is referred to by VMware as “ingress traffic” and refers to the fact that data is com-
ing into the vSwitch by way of the virtual ports. Later, we cover how to set “egress traffic”
shaping, which is the control of traffic being received by a port group headed toward a VM
or VMkernel port, when we start talking about the distributed switch in the next chapter.

Traffic shaping consists of three different control points, as shown in Figure 8.6.

 Average bandwidth (Kbps): The average amount of bandwidth, measured in kilobits
per second (Kbps), that you allow the switch to send. There might be short periods
where the traffic slightly exceeds this value, since it is an average over time, but for
the most part, it will be enforced and traffic will go no faster than the defined speed
limit set here.

 Peak bandwidth (Kbps): The maximum amount of bandwidth that the switch is
allowed to let through. The use of the peak bandwidth value is determined by how
often we’ve hit the average bandwidth limitation. Whenever the actual traffic volume
is lower than the average bandwidth limit, we gain what is called a “burst bonus”
which can be any number of bytes up to the limit set by the burst size value (covered
next).

This bonus can be used when there is a pent-up traffic demand to let more traffic
flow through the switch using data sizes dictated by the burst size value.

 Burst size (KB): This is an often misunderstood value, so we’ll go into detail. The
burst size is the actual amount of “burstable” data that is allowed to be transmitted
at the peak bandwidth rate in kilobytes. Think of the burst bonus as a network traf-
fic savings account. And the burst size is the maximum number of bytes that can go
into that account. So, when you need to send more traffic than the average band-
width value allows, you transmit a burst of traffic, which is more than the allowed
average bandwidth. But this burst, which always stays at or below the allowable peak
bandwidth, will be forced to end when the number of bytes in your traffic savings
account, your burst bonus, reaches zero.

82 CHAPTER 8 vSphere Standard Switch

Traffic Shaping Math
Here’s a concrete example showing how to calculate how long traffic will peak in a “best
case” scenario:

 Let’s assume, for easy math, that you set the average bandwidth value to 1,000 Kbps.

 You also set the peak bandwidth to 2,000 Kbps, which is twice the value of the aver-
age bandwidth.

 Finally, you configure the burst size to 1,000 kilobytes (KB). Hint—don’t forget that
there are 8 bits in a byte, which means that 1,000 KB is 8,000 Kb. Big “B” is for bytes
and little “b” is for bits.

If the burst bonus is completely full, which would mean that it’s the full value of the burst
size (8,000 Kb), then you could peak for 4 seconds:

8,000 Kb burst size / 2,000 Kbps peak bandwidth = 8 / 2 = 4 seconds

NIC Teaming
Let’s take a well-deserved break from networking math for a moment and shift into the
fun world of NIC teaming. The concept of teaming goes by many different names: bond-
ing, grouping, and trunking to name a few. Really, it just means that we’re taking multiple
physical NICs on a given ESXi host and combining them into a single logical link that
provides bandwidth aggregation and redundancy to a vSwitch. You might think that this
sounds a little bit like port channels from earlier in the book. And you’re partially right—
the goal is very similar, but the methods are vastly different.

Figure 8.8 shows all the configuration options for teaming and failover.

Let’s go over all of the configuration options for NIC teaming within a vSwitch. These
options are a bit more relevant when your vSwitch is using multiple uplinks but are still
valid configuration points no matter the quantity of uplinks.

83NIC Teaming

Figure 8.8 Configuration options for teaming and failover, as viewed from the vSphere
Web Client

Load Balancing
The first point of interest is the load-balancing policy. This is basically how we tell the
vSwitch to handle outbound traffic, and there are four choices on a standard vSwitch:

 1. Route based on the originating virtual port

 2. Route based on IP hash

 3. Route based on source MAC hash

 4. Use explicit failover order

Keep in mind that we’re not concerned with the inbound traffic because that’s not within
our control. Traffic arrives on whatever uplink the upstream switch decided to put it on,
and the vSwitch is only responsible for making sure it reaches its destination.

The first option, route based on the originating virtual port, is the default selection for a new
vSwitch. Every VM and VMkernel port on a vSwitch is connected to a virtual port. When
the vSwitch receives traffic from either of these objects, it assigns the virtual port an uplink
and uses it for traffic. The chosen uplink will typically not change unless there is an uplink
failure, the VM changes power state, or the VM is migrated around via vMotion.

84 CHAPTER 8 vSphere Standard Switch

The second option, route based on IP hash, is used in conjunction with a link aggrega-
tion group (LAG), also called an EtherChannel or port channel. When traffic enters the
vSwitch, the load-balancing policy will create a hash value of the source and destination IP
addresses in the packet. The resulting hash value dictates which uplink will be used.

The third option, route based on source MAC hash, is similar to the IP hash idea, except the
policy examines only the source MAC address in the Ethernet frame. To be honest, we
have rarely seen this policy used in a production environment, but it can be handy for a
nested hypervisor VM to help balance its nested VM traffic over multiple uplinks.

The fourth and final option, use explicit failover order, really doesn’t do any sort of load
balancing. Instead, the first Active NIC on the list is used. If that one fails, the next Active
NIC on the list is used, and so on, until you reach the Standby NICs. Keep in mind that
if you select the Explicit Failover option and you have a vSwitch with many uplinks, only
one of them will be actively used at any given time. Use this policy only in circumstances
where using only one link rather than load balancing over all links is desired or required.

NOTE

In almost all cases, the route based on the originating virtual port is more than adequate.
Don’t try to get fancy with an exotic load-balancing policy unless you see an issue where the
majority of traffic is being sent down the same uplink and other uplinks are relatively quiet.
Remember our motto—the simplest designs are almost always the best designs.

A single VM will not be able to take advantage of more than a single uplink in most circum-
stances. If you provide a pair of 1 Gb Ethernet uplinks to your vSwitch, a VM will still only
use one of those uplinks at a time. There are exceptions to this concept, such as when a VM
has multiple virtual NICs attached on a vSwitch with IP hash, but are relatively rare to see in
production environments.

Network Failure Detection
When a network link fails (and they definitely do), the vSwitch is aware of the failure
because the link status reports the link as being down. This can usually be verified by
seeing if anyone tripped over the cable or mistakenly unplugged the wrong one. In most
cases, this is good enough to satisfy your needs and the default configuration of “link status
only” for the network failure detection is good enough.

But what if you want to determine a failure further up the network, such as a failure
beyond your upstream connected switch? This is where beacon probing might be able to
help you out. Beacon probing is actually a great term because it does roughly what it sounds

86 CHAPTER 8 vSphere Standard Switch

Notify Switches
The Notify Switches configuration is a bit mystifying at first. Notify the switches about
what, exactly? By default, it’s set to “Yes,” and as we cover here, that’s almost always a
good thing.

Remember that all of your upstream physical switches have a MAC address table that they
use to map ports to MAC addresses. This avoids the need to flood their ports—which
means sending frames to all ports except the port they arrived on (which is the required
action when a frame’s destination MAC address doesn’t appear in the switch’s MAC
address table).

But what happens when one of your uplinks in a vSwitch fails and all of the VMs begin
using a new uplink? The upstream physical switch would have no idea which port the VM
is now using and would have to resort to flooding the ports or wait for the VM to send
some traffic so it can re-learn the new port. Instead, the Notify Switches option speeds
things along by sending Reverse Address Resolution Protocol (RARP) frames to the
upstream physical switch on behalf of the VM or VMs so that upstream switch updates
its MAC address table. This is all done before frames start arriving from the newly vMo-
tioned VM, the newly powered-on VM, or from the VMs that are behind the uplink port
that failed and was replaced.

These RARP announcements are just a fancy way of saying that the ESXi host will send
out a special update letting the upstream physical switch know that the MAC address is
now on a new uplink so that the switch will update its MAC address table before actu-
ally needing to send frames to that MAC address. It’s sort of like ESXi is shouting to the
upstream physical switch and saying, “Hey! This VM is over here now!”

Failback
Since we’re already on the topic of an uplink failure, let’s talk about Failback. If you have a
Standby NIC in your NIC Team, it will become Active if there are no more Active NICs
in the team. Basically, it will provide some hardware redundancy while you go figure out
what went wrong with the failed NIC. When you fix the problem with the failed Active
NIC, the Failback setting determines if the previously failed Active NIC should now be
returned to Active duty.

If you set this value to Yes, the now-operational NIC will immediately go back to being
Active again, and the Standby NIC returns to being Standby. Things are returned back to
the way they were before the failure.

If you choose the No value, the replaced NIC will simply remain inactive until either
another NIC fails or you return it to Active status.

87Hierarchy Overrides

Failover Order
The final section in a NIC team configuration is the failover order. It consists of three dif-
ferent adapter states:

 Active adapters: Adapters that are Actively used to pass along traffic.

 Standby adapters: These adapters will only become Active if the defined Active
adapters have failed.

 Unused adapters: Adapters that will never be used by the vSwitch, even if all the
Active and Standby adapters have failed.

While the Standby and Unused statuses do have value for some specific configurations,
such as with balancing vMotion and management traffic on a specific pair of uplinks, it’s
common to just set all the adapters to Active and let the load-balancing policy do the rest.
We get more into the weeds on adapter states later on in the book, especially when we
start talking about iSCSI design and configuration in Part 3, “You Got Your Storage in
My Networking: IP Storage.”

Hierarchy Overrides
One really great feature of a vSwitch is the ability to leverage overrides where necessary.
You won’t see any override information on the vSwitch itself, but they are available on the
VMkernel ports and VM port groups, which are covered next in this chapter. Overrides
are simply ways that you can deviate from the vSwitch configuration on a granular level.
An override example is shown in Figure 8.10.

Figure 8.10 An example override on a failover order

88 CHAPTER 8 vSphere Standard Switch

For example, let’s say that you have a pair of adapters being used as uplinks on a vSwitch.
Within the vSwitch, you also have two VMkernel ports configured: one for management
traffic and another for vMotion traffic. You can use overrides to set specific teaming and
failover policies for each of those VMkernel ports. This allows you to separate manage-
ment and vMotion traffic during steady-state operation, but still allow both to function in
the event of a NIC Failure.

VMkernel Ports
The VMkernel ports, which are also referred to as “VMkernel networking interfaces” or
even “virtual adapters” in various places, are special constructs used by the vSphere host to
communicate with the outside world. You might recognize these ports due to their naming
structure of vmk## with the “vmk” portion being a shorthand for VMkernel.

The goal of a VMkernel port is to provide some sort of Layer 2 or Layer 3 services to the
vSphere host. Although a VM can talk to a VMkernel port, they do not consume them
directly.

Port Properties and Services
VMkernel ports have important jobs to do and are vital for making sure that the vSphere
host can be useful to the VMs. In fact, every VMkernel port can provide any combination
of the following six services:

 vMotion traffic

 Fault tolerance (FT) logging

 Management traffic

 vSphere replication traffic

 iSCSI traffic

 NFS traffic

Figure 8.11 shows the administratively selectable services that can be enabled on a
 VMkernel port.

NOTE

While you can enable multiple services on a given VMkernel port, it is often preferable to
split functions between multiple VMkernel ports. Fault tolerance (FT) logging, in particular,
is strongly recommended to be segregated from any other function.

89VMkernel Ports

Figure 8.11 Services that can be enabled on a VMkernel port

You might notice that two of the services mentioned aren’t shown as services that can be
enabled: iSCSI traffic and NFS traffic . The reason is simple—there is no need to tell a
VMkernel port that it can talk to iSCSI or NFS storage. All VMkernel ports can do this
natively, and we typically just need to make sure that the IP address assigned to the appro-
priate VMkernel port is on the same subnet as the storage array.

NOTE

There are a lot of interesting design concepts around the use of VMkernel ports for iSCSI
and NFS storage—feel free to skip ahead to Part 3 of this book if you want to learn more.
For now, we’ll just accept the fact that a VMkernel port doesn’t need a service enabled to be
useful for IP storage traffic.

IP Addresses
Every VMkernel port will have either an IPv4 or IPv6 address assigned, along with an
MTU value. You have the choice of using a DHCP server for your IP address—which
is not recommended for any serious production deployment—or assigning a static
IP address.

Note that the default gateway and DNS server addresses are not definable by a VMkernel
port. These values are input into the vSphere host directly. If the subnet you use for the

90 CHAPTER 8 vSphere Standard Switch

VMkernel port’s IP address does not match the subnet of the destination IP address, the
traffic will be routed over the VMkernel port that can reach the default gateway. Often,
but not always, this is vmk0 (the default first VMkernel port created when you install
ESXi).

TIP

Look carefully at the MAC address assigned to the vmk0 VMkernel port. Notice anything
different about it when compared to other VMkernel ports? You should notice that vmk0
uses the real, burned-in address of the physical NIC instead of a randomly generated
VMware MAC address. This MAC address is “seeded” at the time of the ESXi installation.

VM Port Groups
The final topic to touch on is VM port groups, which can be a bit of a struggle to under-
stand at first. Let’s imagine that you have a huge, unconfigured virtual switch with hun-
dreds of ports on it. Chances are, you don’t want all of the ports to be configured the same
way—some of them will be used by your production VMs, others by your developers’
VMs, and even more might be for the engineering VMs.

VM port groups are a way that we can create logical rules around the virtual ports that are
made available to VMs. It’s common to create a port group for each VLAN and network
subnet that you want to present to your VMs. VM port groups do not provide vSphere
services or require IP addresses—they are just ways to configure policy for a group of vir-
tual ports on your vSwitch.

Figure 8.12 shows an example from our lab showing a vSwitch with a VM port group
named “VM”—not very creative, sure, but it gets the point across. This is where we place
our VMs, which are SQL, vCenter, and DC in this example. We’ve also disconnected one
of the network adapters to show what that looks like.

You can also see our VMkernel port named “Management” just below the VM port group.
It looks a lot like a VM port group, and that might be confusing at first. Don’t worry,
though—vCenter won’t let you put a VM onto the “Management” VMkernel port.

91Summary

Figure 8.12 An example vSwitch with a VM port group named “VM”

Summary

We covered a lot of ground here, digging into every nook and cranny of the vSphere
Standard Switch. You should now feel more knowledgeable about virtual switch configura-
tion options, security settings, discovery settings, traffic-shaping policies, load-balancing
methods, VMkernel ports, and port group configuration. In the next chapter, we take a
close look at the options available with the vSphere Distributed Switch, highlighting the
features that go above and beyond what is available with the Standard Switch.

This page intentionally left blank

Chapter 9

vSphere Distributed Switch

Key Concepts
 dvUplinks

 LLDP

 NetFlow

 Port Mirroring

 Private VLANs

 Egress Shaping

 Load-based Teaming

 Network I/O Control

Introduction to the vSphere Distributed Switch
The vSphere Distributed Switch (VDS) provides two major benefits to you, the customer.
First, the VDS offers a centralized control plane for management of your virtual switching,
taking much of the manual grunt work out of day-to-day administration. Second, the VDS
offers advanced services and features over the standard switch.

94 CHAPTER 9 vSphere Distributed Switch

The VDS sits in the middle of the feature scale, offering more capabilities than the stan-
dard switch, but leaving some room at the table for third-party switches such as the Cisco
Nexus 1000V. We go further into third-party vSwitches in the next chapter. For now, we
focus more on the VDS, how it is different from the standard switch, and some of the neat
buttons and gizmos that it comes loaded with.

Control Plane
The control plane of the VDS sits at the vCenter layer of the stack. That is, vCenter is the
vehicle used to create, modify, and remove a VDS and its related virtual port groups. This
means that you can create your VDS one time and then choose which hosts will use it. It’s a
similar concept to the vSphere cluster. On its own, a cluster doesn’t really do anything. You
can set up the cluster’s High Availability (HA) and Distributed Resource Scheduler (DRS)
options, but until you actually add some hosts to the cluster, it just sits there looking pretty.
A VDS is useless until hosts are added to it, and only then does the magic happen.

Each VDS has a quantity of uplinks defined. These are named dvUplinks with a number
after them by default, but you can change the name. From a control plane perspective, giv-
ing your uplinks a custom name helps define the role of various uplinks each host will use
to move traffic into and out of the VDS. When adding a host to the VDS, you map physi-
cal uplink ports to the logical dvUplink ports. Figure 9.1 shows the dvUplinks in a VDS
using a custom name of “Core 1” and “Core 2” for the pair of dvUplinks.

TIP

Name your uplinks something descriptive to help with troubleshooting. I like to label mine
based on the VDS’s purpose, such as “Core-##” or “Storage-##.” You could also call out the
physical switching infrastructure, such as “TOR-A” or “TOR-B,” to distinguish which top
of rack (TOR) switch you are connecting to. Avoid using specific switch names or IPs, as
that information is tracked by CDP or LLDP anyway. More on LLDP in a later section.

Handling vCenter Failure
That VDSes are managed through vCenter might be causing you some heartburn, as it
seems to imply a dependency on vCenter availability. You might be wondering what hap-
pens when vCenter goes down—will virtual switching just stop?

95Introduction to the vSphere Distributed Switch

Figure 9.1 The dvUplinks in a VDS

The short answer is no, switching will continue without interruption. But, hey, we have
a couple hundred pages to go, so let’s get into the long answer. While it’s true that the
brains of a VDS lay with the vCenter server, there is a cached copy of the VDS con-
figuration kept on every vSphere host and updated every five minutes. If vCenter fails,
the host continues to use this cached copy of the VDS configuration. You can log into
your vSphere host via Secure Shell (SSH) and see the file if you browse to /etc/vmware/
dvsdata.db. The cached database is shown in Figure 9.2.

When the vCenter server comes back online, you might see a few errors appear stating
that the VDS configuration is not synchronized to some of your hosts. This will clear up
shortly as the vCenter VDS configuration is pushed down to the vSphere host during the
regular five-minute update interval.

96 CHAPTER 9 vSphere Distributed Switch

Figure 9.2 The local cache copy of the VDS database

Data Plane
Just as with the Standard Switch, all data plane activity continues to occur down at the
Host layer. By design, no data is routed through the vCenter server, since it is simply a
control point. All switching decisions continue to occur on the host itself, following the
same Layer 2 rules as established in Chapter 3, “Ethernet Networks.”

Monitoring
The VDS supports both Cisco Discovery Protocol (CDP) and Link Layer Discovery
 Protocol (LLDP).

97Monitoring

Cisco Discovery Protocol (CDP)
You might recall that the standard vSwitch supports CDP, but configuring and managing
that feature requires using some ESXCLI, PowerCLI, or other command-line methods.
With the VDS, in addition to enabling CDP or LLDP, you can also set the mode of
either of these protocols to Listen, Advertise, or Both, directly from the vSphere Client or
vSphere Web Client. In fact, it’s just a dropdown box in the Discovery Protocol section.
Neat, huh? This dropdown box is shown in Figure 9.3.

Figure 9.3 Enabling CDP on a VDS with a simple dropdown box

Link Layer Discovery Protocol (LLDP)
For those without a Cisco switching environment, you’re in luck. The VDS supports the
open standards equivalent of CDP, called Link Layer Discovery Protocol (LLDP). For all
intents and purposes, LLDP will provide anything you would expect from CDP, but works
across a variety of vendor platforms. Interestingly, more and more Cisco switches are also
supporting LLDP these days, which helps in a heterogeneous switching environment.

As shown in Figure 9.3, the option to enable LLDP can be found with the same dropdown
box used for CDP. You can also configure all three different operational modes: Listen,
Advertise, or Both.

98 CHAPTER 9 vSphere Distributed Switch

TIP

One question that commonly pops up revolves around the desire to set LLDP (or even
CDP for that matter) into an Advertise or Both mode and what the down side might be.
We have yet to encounter any environments where having additional information about
the environment—from a perspective of server or networking—is a bad thing. While some
organizations will have a policy preventing LLDP or CDP from being enabled in specific,
compliance-related environments, most are okay with having it on. Check with your security
and/or networking team first, but chances are high that they will appreciate having visibility
into the virtual networking environment.

NetFlow
Now we’re starting to hit some of the value-add features that people really enjoy about the
VDS. The first one is NetFlow, and it’s an advanced feature available to you on the VDS.
NetFlow doesn’t really have anything to do specifically with VMware, but was originally
developed by Cisco and has become a reasonably standard mechanism to perform network
analysis.

In Chapter 7, “How Virtual Switching Differs from Physical Switching,” we mentioned
the idea of dark traffic: traffic that might never end up leaving a host. This is because both
the source and destination VMs are located on the same host. Perhaps two VMs are talk-
ing to one another on the same VLAN and happen to be on the same host. Heck, that’s
sometimes done on purpose to avoid putting additional stress on the physical network and
because dark traffic gets switched at a host’s much faster processor/RAM speeds rather
than at physical networking speeds. NetFlow is a way to monitor and sample IP traffic that
occurs within your VDS. The configuration is controllable down to the port group level.
The traffic data is sent to a NetFlow collector running elsewhere on the network. NetFlow
is commonly used in the physical world to help gain visibility into traffic and understand-
ing just who is sending what and to where.

NetFlow comes in a variety of versions, from v1 to v10. VMware uses the IPFIX version
of NetFlow, which is version 10, and stands for “Internet Protocol Flow Information
eXport.” IPFIX is actually a melding of NetFlow version 9 with some Internet Engineer-
ing Task Force (IETF) standards, and is sometimes referred to as the “IETF Standardized
NetFlow 9.” If you find it confusing that version 10 is sometimes called IPFIX 9, you’re
not alone. To keep things simple, it’s often best to just call it IPFIX and folks will know
what you mean.

99Monitoring

TIP

vSphere 5.0 uses NetFlow version 5, while vSphere 5.1 and beyond uses IPFIX (version 10).
If you are using software that requires version 5, or doesn’t support IPFIX, you might want
to avoid upgrading your vSphere hosts until you can figure out a workaround. vSphere 5.1
does not support NetFlow version 5.

In order to take advantage of NetFlow, you need to perform two steps. The first is to con-
figure the NetFlow settings on your VDS itself, which we go into deeper here.

VDS NetFlow configuration is defined by the following items:

 IP Address: This is the IP of the NetFlow Collector where the traffic information
is sent.

 Port: This is the port used by the NetFlow Collector. It is typically UDP port 2055
but can vary depending on the vendor collecting the data.

 Switch IP Address: This one can be confusing at first. In a typical hardware environ-
ment, every switch has some sort of IP identifier for management. By assigning an IP
address here, the NetFlow Collector will treat the VDS as one single entity. It does
not need to be a valid, routable IP, but is merely used as an identifier. For example,
“1.1.1.1” is a valid entry.

These options are shown in Figure 9.4.

Figure 9.4 NetFlow options on a VDS

100 CHAPTER 9 vSphere Distributed Switch

There are also a number of advanced settings that can be tweaked if desired:

 Active flow export timeout in seconds: The amount of time that must pass before
the switch fragments the flow and ships it off to the collector. This avoids sending a
large quantity of data after a particularly long flow occurs.

 Idle flow export timeout in seconds: Similar to the active flow timeout, but for flows
that have entered an idle state. Think of this as the cleanup necessary to ensure that
an idle flow gets shipped off to the collector in a timely fashion.

 Sampling rate: This determines the Nth packet to collect. By default, the value is 0,
meaning to collect all packets. If you set the value to something other than 0, it will
collect every Nth packet. For example, 3 would only collect every third packet.

 Process internal flows only: Your choices here are enabled or disabled (default).
Enabling ensures that the only flows collected are ones that occur between VMs on
the same host. This can be helpful if you are only looking to collect the dark traffic
flows, already have NetFlow configured on your physical infrastructure, and wish to
avoid sampling traffic twice (once at the Virtual layer and again at the Physical layer).

The second step is to enable Monitoring on any port groups you need to monitor.
You’ll quickly figure this out when you set up NetFlow but do not see any traffic flow
 information—and we’ve done that more than once. The related dialog is shown in
Figure 9.5.

Figure 9.5 Enabling NetFlow on a port group

101Monitoring

Port Mirroring
Occasionally, you’ll come upon the need to clone traffic on a particular port to another
port. This goes beyond just monitoring a port—a port mirror actually clones all the traffic
to a configured destination. There are two main use cases for this: monitoring and capture.
The two use cases are closely related to one another, but tend to have different end goals
in mind. For monitoring, you might have a need, be it compliance or some sort of service
level agreement (SLA), to know exactly what traffic is being sent from one specific device
to another. The other need, capturing, is commonly found when doing telephony work for
call recording compliance. For example: capturing voice-over IP (VoIP) traffic so that you
can have a recording of a phone call in your call center.

This is relatively simple to do in the physical world, and goes by many names: SPAN
(Switched Port ANalyzer) ports, port mirroring, and port monitoring to name a few. A
specific source port or VLAN is selected for the configuration, and any traffic that flows
through that port is cloned to a destination port. The cloning process is usually “dumb” to
the actual traffic, and just makes an exact copy of the traffic for the destination port. This
worked well when each port on a switch carried traffic for a single connected server or
workstation.

The addition of virtual environments created a headache for port mirroring. A single
switch port connected to a vSphere host could now carry traffic for tens or even hundreds
of virtual servers. It became difficult to mirror traffic for a single virtual server outside of
some very clunky networking topologies, such as connecting a VM to a specifically dedi-
cated host uplink port. This was wasteful and also limited VM mobility. Other technolo-
gies, such as inclusion of a third party Nexus 1000V switch, could help with this issue, but
were traditionally reliant upon special networking skills and a higher purchase price.

Starting with vSphere 5.0, the distributed switch began providing the ability to mirror
traffic for virtual ports. This would allow an administrator to granularly control port mir-
roring for a specific distributed port or ports. The initial offering with the VDS 5.0 was a
simple configuration where you could mirror distributed ports to other distributed ports
or an uplink. This is known as “Distributed Port Mirroring (Legacy)” in the VDS 5.1 and
beyond, and is deprecated. Keep in mind that upgrading a vSphere environment does not
automatically upgrade an existing VDS—you will have to also perform a VDS upgrade in
order to enjoy the features found in later VDS versions.

Beginning with the VDS 5.1, four different port mirroring session types are available:

 1. Distributed Port Mirroring: Mirror packets from any number of distributed ports to
any number of other distributed ports on the same host. If the source and the desti-
nation are on different hosts, this session type does not function.

102 CHAPTER 9 vSphere Distributed Switch

 2. Remote Mirroring Source: Mirror packets from a number of distributed ports to spe-
cific uplink ports on the corresponding host.

 3. Remote Mirroring Destination: Mirror packets from a number of VLANs to distrib-
uted ports.

 4. Encapsulated Remote Mirroring (L3) Source: Mirror packets from a number of
distributed ports to remote agent’s IP addresses. The VMs’ traffic is mirrored to
a remote physical destination through an IP tunnel. This is similar to ERSPAN
(Encapsulated Remote Switched Port Analyzer).

These options are shown in Figure 9.6.

Figure 9.6 Port mirroring choices with a VDS 5.1

While the source and destination of each port mirroring choice varies, the properties are
all relatively similar. In order to configure any port mirroring session, you need to define
a number of standard properties for the configuration. The set of properties you need to
configure will change depending on the type of port mirror chosen:

 Name: A name describing the port mirroring session. Try to make this as descrip-
tive as possible without being wordy. Examples include “Mirroring ServerX to
 DestinationY” or “ServerX to Remote IP.”

 Status: By default, the port mirror will be disabled. You can leave it disabled while
you create the mirror and then enable later, or enable it during configuration.

103Monitoring

 Session Type: This selects the type of port mirroring session. Choose one of the four
described in the previous list.

 Encapsulation VLAN ID: The VLAN specified here will be used to encapsulate the
frames that are being mirrored. This will allow you to ship frames across an uplink
that might use a different VLAN ID. If you want the port mirror to remember
the original VLAN ID that the traffic was using, make sure to check the “Preserve
 Original VLAN” option. Otherwise, the encapsulation VLAN will take its place.

There are also a few advanced properties that can be tweaked. Not all of them will be
available for each port mirror type, but we cover all of them in this section:

 Normal I/O on destination ports: The description on this is a bit vague. It is asking
you to decide if you want the destination port to act simply as a port mirror port, or
if it should accept incoming traffic. By default it is set to “Disallowed” which pre-
vents the destination port from accepting traffic into the port and effectively dedi-
cates the port to the port mirror. For most monitoring applications that simply wish
to interrogate traffic, leaving the value at “Disallowed” is desired. Keep in mind that
this also prevents the port from transmitting traffic.

 Mirror packet length (Bytes): This is a size limitation imposed on the mirrored traf-
fic. If you do specify a size, packets that exceed the size will be truncated to the size
you specified. This can be handy if you are monitoring traffic that includes Jumbo
Frames, such as storage traffic, but only wish to capture the normal sized frames or
headers rather than the full payload. Typically you’ll want to leave this field empty
and specify any packet length limitations on the capture software.

 Sampling rate: Much like with NetFlow’s sampling rate configuration, the port mir-
ror sampling rate determines how many packets to sample. The value of 1, which is
default, means to capture every packet. Any other value of N means to capture the
Nth packet. For example, a sampling rate of 7 will capture every seventh packet and
skip the other six.

 Description: A description for your port mirroring session. No clue why this is listed
in the Advanced properties section, as it’s a way to help convey the purpose of your
session, but there you have it.

These advanced properties are shown in Figure 9.7.

104 CHAPTER 9 vSphere Distributed Switch

Figure 9.7 Configuration items for a port mirror session

Sources for a port mirror session can be one or many distributed ports, or even a range
of ports. Ports can be used by VMs or VMkernel ports. Each port ID shows the host that
is servicing the virtual port ID, the connectee of the virtual port, and the direction of the
 traffic that you wish to capture. Keep in mind that direction is based on perspective: An
ingress enters a port, while an egress exits a port. When two people are holding a conver-
sation, the person speaking has information egressing his mouth, while the person listen-
ing has information ingressing his ear.

Source options are shown in Figure 9.8.

Figure 9.8 A sampling of sources for a port mirror session

105Private VLANs

The only exception to this is the Remote Mirroring Destination type, which uses one or
more VLAN IDs as the source.

Choosing the destination for your port mirror has the most variety. Here is a list of desti-
nation options for each port mirror type:

 Distributed Port Mirroring: virtual ports

 Remote Mirroring Source: uplinks

 Remote Mirroring Destination: virtual ports

 Encapsulated Remote Mirroring (L3) Source: remote IP

The end result is an entry in the port mirroring section of a VDS that shows a list of all
sessions. Each session shows the name, type, and status in the top panel, along with the
properties, sources, and destinations in the lower panel. An active port mirroring session is
shown in Figure 9.9.

Figure 9.9 An active port mirroring session using Encapsulated Remote Mirroring (L3) Source

Private VLANs
Sometimes the use of VLANs isn’t enough to satisfy a design requirement. Perhaps you
wish to prevent unnecessary consumption of your 4094 VLAN IDs, or have some special
tenancy requirements that mandate creating isolated environments. This is where the

106 CHAPTER 9 vSphere Distributed Switch

concept of a Private VLAN comes into play. The architectural differences are sort of like
comparing a single-family home to a high-rise condo building.

In the single-family home scenario, everyone lives in the same house together but they
occupy different rooms. If you have access to the house, we can trust that you belong in
the house and we don’t really prevent you from wandering into someone else’s room—
although that’s typically not the polite thing to do. This is much like a regular VLAN. If
you want to transfer from one person’s home to another, or from one VLAN to another
VLAN, you have to use a routing device—you can’t just walk in between houses.

Primary VLAN
In a condo building, each condo itself is an isolated environment within the larger build-
ing. Everyone has access to the condo building’s front door, but not each other’s condo.
This is sort of how the Private VLAN works. We use the term “Primary VLAN” to
denote the common VLAN that is used to enter the private set of VLANs.

Promiscuous VLAN
The Primary VLAN is connected to the rest of the network infrastructure by way of one
or more promiscuous ports, also known as P-Ports. Think of the P-Port like the doorway
into the condo building—everyone has access to it, and it’s how you get in and out of the
private set of VLANs. Every Private VLAN needs a Primary VLAN with a P-Port, other-
wise there would be no way to get traffic in and out of the networking segment.

Secondary VLANs
Each condo in the building would represent a “Secondary VLAN,” or sub-VLAN, that can
re-use VLAN IDs that exist outside of the Private VLAN. That is, if you have a network
VLAN ID of 100 somewhere on your network, you can also have a Secondary VLAN that
uses VLAN ID 100 within the scope of the Primary VLAN. However, the Primary VLAN
must be unique on both networks, or else the network would become confused as to which
VLAN you are intending traffic to traverse.

Secondary VLAN IDs only exist within the Private VLAN environment, and the tags are
replaced with the Primary VLAN ID when traffic leaves the Private VLAN. There are
three types of Secondary VLANs defined in a VMware Distributed Switch: the Promiscu-
ous VLAN, which we already covered, as well as the Community and Isolated VLANs.

Figure 9.10 shows the process of creating a Private VLAN on a VDS.

107Private VLANs

Figure 9.10 Creating a Private VLAN on a Distributed Switch

Community VLANs
A Community VLAN is one that allows members to communicate with one another and
the Promiscuous VLAN. Think of it like a conference room—everyone in a conference
room can communicate with one another, but cannot talk to those outside of the room
without assistance. For instance, the previous diagram shows two community VLANs: 200
and 250. Any VMs placed in Community VLAN 200 would be able to talk to one another
and also send traffic to the Promiscuous VLAN. They cannot, however, send traffic to the
other Community VLAN 250 or the Isolated VLAN 600 without direct assistance from a
routing device in either the Promiscuous VLAN or higher up the networking stack. Figure
9.11 illustrates traffic flows between secondary VLANs.

You can have as many Community VLANs as you desire, up to the VLAN ID limitation
of 4094.

108 CHAPTER 9 vSphere Distributed Switch

Community
VLAN ID 200

Secondary VLAN

Community
VLAN ID 250

Secondary VLAN

Promiscuous
VLAN ID 100
Primary VLAN

External Network

Isolated
VLAN ID 600

Secondary VLAN

Figure 9.11 Traffic flows among Secondary VLANs in a Private VLAN

Isolated VLAN
The final Secondary VLAN type is the Isolated VLAN. In addition to the rules we cov-
ered for the Community VLAN, VMs inside the Isolated VLAN cannot even talk to one
another. Any Layer 2 traffic that attempts to go from one VM to another will simply be
dropped. The VMs can only communicate with the Promiscuous VLAN and beyond.

TIP

Why use an Isolated VLAN? This special type of VLAN has some fantastic uses for work-
loads that will be shared by guest users, such as kiosks. If you place an Internet facing
gateway device in the Promiscuous VLAN, you can ensure that each kiosk is blocked from
each other but can still reach the Internet. In fact, most “hoteling” situations deploy an
Isolated VLAN for just this reason. Still, be careful what you do on the Internet—someone
is likely monitoring your activities.

Distributed Port Groups
Because multiple hosts can use a VDS, the port groups must also be distributed. This
means that no one host owns any part of a VDS, including the distributed port groups.
In fact, if a VMkernel port wishes to live on a VDS, it must use a distributed port group.

109Distributed Port Groups

This differs from a standard vSwitch configuration in that you are required to create spe-
cial VMkernel network adapters directly in the vSwitch. Additionally, multiple VMkernel
ports can share the same distributed port group.

TIP

The VDS is owned by a vCenter Datacenter container , rather than a host, and cannot span
more than a single Datacenter. This means that you can create port groups on a VDS that
will be consumed by hosts in any cluster that lives in the Datacenter container, or even by
hosts that are not in a cluster. However, these port groups cannot be used by hosts in a
different Datacenter container. This makes distributed port groups extremely powerful and
highly scalable.

Every distributed port group has access to all the uplinks bound to a VDS. Additionally,
configuration settings and policies, such as the security and teaming values, are applied
directly to a distributed port group. This means that you can have one distributed port
group that sets all the uplinks to active and uses VLAN 100, while another port group uses
an active/passive mix on VLAN 200. It’s common to create a modular design with a variety
of port groups for different tasks, such as one for each VLAN your guest machines will
use, vMotion, Management, Fault Tolerance Logging, and more. We cover a lot more on
this topic in Chapter 13, “Distributed vSwitch Design.”

VMkernel Ports
Because a host still needs VMkernel ports (virtual adapters) to handle tasks like manage-
ment traffic and vMotion, there is still a need for VMkernel ports with a VDS. This is
where things can get a little tricky. VMkernel ports are unique for each host because
each host has its own vmk numbering scheme and IP configuration details. Therefore,
 VMkernel ports are configured on each host in vCenter, much like you would with a stan-
dard vSwitch.

The difference is that each VMkernel port exists on a distributed port group. When a
host has been added to a VDS, options to place its VMkernel ports onto a distributed port
group appear. A VMkernel port uses the underlying rules from the distributed port group
to function. Therefore, the underlying hardware configuration is defined by the distrib-
uted port group policies, and the personality of the VMkernel port—the IP address, subnet
mask, maximum transmission unit (MTU), and so on—is defined by the host itself. Figure
9.12 shows the VMkernel ports of a host on a VDS.

110 CHAPTER 9 vSphere Distributed Switch

Figure 9.12 VMkernel ports on a vSphere host attached to a Distributed vSwitch

Virtual Machines
When dealing with VMs attached to a VDS, very little operational changes are required.
VMs can use ports on any distributed port group, even the ones you have set aside for
your VMkernel ports to use. It is often best to create specific port groups just for your
VMs and use a naming scheme that best describes the network, such as the IP segment
range and VLAN ID.

As an added bonus, keep in mind that because the port groups are distributed, placing a
VM on a distributed port group reduces risk of a vMotion causing havoc because of a pol-
icy or VLAN ID misconfiguration at the destination host. Every host has the exact same
port group settings. This makes network troubleshooting slightly easier, as you can often
determine that a physical network on a host is not configured properly with little trouble-
shooting effort.

114 CHAPTER 9 vSphere Distributed Switch

 If you have very bursty traffic that finishes in less than 30 seconds, LBT does not
trigger a migration. This 30-second threshold exists to prevent thrashing: useless,
repetitive, expensive work.

NOTE

Although almost all documentation for LBT talks about the ability to migrate VM virtual
NICs, it’s important to understand that it can also move around VMkernel ports. If you
are in a converged infrastructure environment with a limited number of uplinks, it might
be advantageous to use LBT to move around your VMkernel port assigned to management
or vMotion in times of uplink bandwidth saturation. Don’t forget that LBT cannot cause
traffic for a VMkernel port to use multiple uplinks simultaneously—it will only move the
VMkernel port from one uplink to another.

You might wonder how LBT works when you have multiple distributed port groups all
sharing the same set of uplinks. After all, each port group can have a different teaming
policy applied, with some using LBT, others using virtual port ID, and perhaps a few using
an explicit failover order. Fortunately, because LBT monitors saturation on the uplinks, it
mixes with other policies very well. If any uplink in the VDS becomes saturated at 75% or
higher for 30 seconds, any distributed port group with the LBT policy configured triggers
and attempts to move around workloads. There is no need to have one giant port group
with all the VMs inside.

In Figure 9.16, the VMs have been split into two different port groups: a green one using
“route based on originating virtual port ID” (the default) and an orange one using LBT.
When VM1 begins sending massive amounts of traffic that cause uplink1 to reach 75% or
higher saturation for 30 seconds or longer, the orange LBT-enabled port group can still
move VM2 and VM3 to uplink2 to alleviate the saturation.

116 CHAPTER 9 vSphere Distributed Switch

Figure 9.17 The Resource Allocation screen shows all the NIOC configuration values

Let’s go over what all the various NIOC configuration settings do:

 Physical Network Adapters: A count of the number of uplinks each host has contrib-
uted to this particular VDS. In our case, we have 3 hosts using the VDS, each with 2
uplinks. Thus, 3 hosts x 2 uplinks = 6 physical network adapters.

 Bandwidth capacity (Gbit/s): All 6 uplinks discovered from the physical network
adapters run at 1 Gbit/s; therefore, my total bandwidth capacity for the entire VDS
is 6 Gbit/s. Note that this is gigabits per second (little “b”) not gigabytes per second
(big “B”).

 Network I/O Control: Disabled by default, or shows you Enabled if you or someone
else has turned it on. When Disabled, the NIOC configuration values have no effect
on traffic.

Network Resource Pools
You’ll also notice a list of eight system network resource pools. Each one corresponds to a
specific type of traffic and allows you to configure values that affect traffic ingress, which
is from the VDS to its uplink ports. You cannot remove any of the predefined resource
pools, which are as follows:

 vMotion Traffic.

 Fault Tolerance (FT) Traffic.

117Network I/O Control

 vSphere Replication (VR) Traffic: Used by the VR appliance, including VMware Site
Recovery Manager (SRM).

 iSCSI Traffic.

 Management Traffic.

 NFS Traffic.

 Virtual Machine Traffic: Used for all VMs, although you can create your own user-
defined resource pools. We cover that later in this chapter.

 vSphere SAN Traffic: Used by the Virtual SAN technology that VMware announced
at VMworld 2013 (vSphere 5.5 or higher only).

Now that you know what types of traffic we can control, let’s review the configurations
for each:

 Host Limit (Mbps): A traffic limit, defined in megabits per second, which cannot be
exceeded by the network resource pool. In vSphere 5.1, this is on a per-uplink basis,
whereas prior to 5.1, it was a per-host limit. As an example with a 5.1 VDS: If you
were to limit the vMotion network resource pool to 2000 Mbps, but defined mul-
tiple vMotion VMkernel ports on multiple uplinks, each uplink could send traffic
upstream at a rate of 2000 Mbps. Use limits sparingly as they might artificially create
network contention for no reason.

 Physical Adapter Shares: The configured shares for an adapter (uplink port). You
can choose High (100 shares), Normal (50 shares), Low (25 shares), or Custom to
define a custom quantity of shares up to 100. Shares are ultimately used to calcu-
late what percentage each network resource pool can claim from a physical adapter
(uplink). The speed of the uplink does not increase or decrease the number of shares
because percentages are relative to the speed of the uplink.

 Shares Value: The amount of shares set on the network resource pool.

 QoS Priority Tag: This field gives you the ability to set the IEEE 802.1p QoS tag.
Values range from 0 (lowest) to 7 (highest) priority. Many Layer 2 devices on the
physical network will inspect this portion of the Ethernet frame and, based on the
QoS tag value assigned, prioritize or drop traffic. Use with caution and make sure to
include your network team in the discussion.

Shares
Shares cause the most confusion when it comes to resource pools. As such, let’s address the
share values set on the network resource pools. First off, shares are a relative value. They
don’t represent a specific quantity of traffic, and are not used unless the uplink becomes
saturated with traffic.

119Network I/O Control

 100 shares + 50 shares = 150 shares total for this uplink

 VMs would get 100 out of 150 shares, which is 66.7%, and throttled to 66.7% of the
full 1 Gbps link for a total of 0.667 Gbps or roughly 667 Mbps.

 vMotion would get 50 out of 150 shares, which is 33.3%, and throttled to 33.3% of
the full 1 Gbps link for a total of 0.333 Gbps or roughly 333 Mbps.

Remember that shares only kick in to control active traffic. In the same scenario we just
reviewed, we assume that both VMs and vMotion traffic were active and causing conten-
tion. If the entire uplink were taken up with only VM traffic, and no vMotions were occur-
ring, no throttling would occur—there’s only one type of active traffic (VM traffic). The
VMs would get 100% of the uplink until a vMotion occurred.

User-Defined Network Resource Pools
Beyond the system network resource pools, which are included with vSphere and cannot
be deleted, you are given the opportunity to create your own custom user-defined resource
pools. These are used by VM port groups of your choosing, such as ones for production,
development, mission-critical VMs, or whatever. A user-defined resource pool is shown in
Figure 9.19.

Figure 9.19 My newly created user-defined network resource pool named “Production VMs”

120 CHAPTER 9 vSphere Distributed Switch

You can then apply the network resource pool directly to the port group to ensure that any
VM that uses the port group will be granted the NIOC configuration values. This process
is illustrated in Figure 9.20.

Figure 9.20 Applying my user-defined network resource pool named “Production VMs” to the
VM-1 distributed port group

Any VMs that do not match a user-defined network resource pool will use the system
defined pool named “Virtual Machine Traffic.” You can use this as a catch-all resource
pool for anything that doesn’t have a specific policy defined.

Summary

In this chapter, we described the architecture of the vSphere Distributed Switch and high-
lighted feature enhancements it offers over the Standard Switch, including support for
LLDP, NetFlow, port mirroring, Private VLANs, egress shaping, improved load balanc-
ing mechanisms, and Network I/O Control. In the next chapter, we cover the Cisco Nexus
1000V switch and the features it offers over the VDS.

Chapter 10

Third Party Switches–1000V

Key Concepts
 Cisco Nexus 1000V

 Virtual Supervisor Module (VSM)

 Virtual Ethernet Module (VEM)

 Port Profile

Introduction
Now that we’ve covered the two types of built-in vSwitches, let’s move into the realm of
third-party virtual switches and why they came about. Historically, the VMware vSwitches
have been good enough in many respects to earn a place in the datacenter but did not
provide enough features or functionality to fully replace the need for intelligent physical
switches. Advanced features such as ERSPAN, DHCP snooping, and Access Control are
not available with either the standard or distributed vSwitch. Network administrators use
these sorts of features to further enhance and control the network but were at a disadvan-
tage in the virtual environment due to a lack of features like these.

Cisco worked to fill this gap by introducing the Cisco Nexus 1000V virtual switch at
VMworld in 2008. It provided a bridge between the physical and virtual networking
worlds that many Cisco Nexus and IOS professionals were familiar with using. In fact, it
looks and feels much like a physical switch does, including a command line interface (CLI)

122 CHAPTER 10 Third Party Switches–1000V

and virtual modules designed to closely emulate their physical counterparts, but with
improvements necessary to be relevant in a virtual environment. And while it’s true that
much of the feature gap between the distributed vSwitch and the Nexus 1000V has eroded,
there are still many reasons that you might want to go down the path of the Nexus 1000V.

In this chapter, we dig into the Cisco Nexus 1000V from an architectural and feature set
 perspective.

NOTE

You might have also heard about another third-party switch from IBM called the
Distributed Virtual Switch 5000V . We are excluding this product because neither of us, nor
anyone we’ve worked with, has actually seen it in the wild. We’ve heard reports of sightings
in the woods of the Pacific Northwest, and rumors of a rogue software switch attacking and
drinking the blood of goats outside of San Antonio, but that’s about it. It’s also not called
out in any of the more popular reference architectures. Just be aware that it exists, and that
technically there are two choices for third-party switches with vSphere.

Integration with vSphere
The Nexus 1000V leverages the VMware vNetwork Distributed Switch Application
Programming Interface (API) and, therefore, requires VMware vSphere Enterprise Plus
licensing for any of the hosts that will be participating in the Nexus 1000V switch. This
doesn’t mean that all of your hosts in your environment must be on this license version. If
you have a small collection of hosts that are running lower licensed versions, such as Stan-
dard or Enterprise, you will still be able to load the necessary modules required for opera-
tion of the Nexus 1000V on your Enterprise Plus vSphere hosts. There is also no need for
physical or logical isolation—the hosts that do not use the Nexus 1000V can be managed
by the same vCenter server, inside the same Datacenter container, or even reside in the
same cluster together.

In order to visually represent the Nexus 1000V via the vSphere Client or vSphere Web
Client, VMware constructs a special vSphere Distributed Switch (VDS) and shows which
hosts are connected to it. Unlike a normal VDS, which can be edited by a vSphere admin-
istrator, the special Nexus 1000V VDS is read-only within the vSphere client. You can
view some of the configuration settings from the vSphere Client but are unable to invoke
any changes. This is because the configuration of the Nexus 1000V takes place on a super-
visor module, just like it would in a physical environment, using the Nexus operating sys-
tem (NX-OS) from Cisco. The main advantage to this method of configuration is that it is

125Virtual Supervisor Module

The VSM uses three different types of networks to control the Nexus 1000V environment:
management, packet, and control. Each network has specific tasks to perform and are usu-
ally kept on different VLANs, although it is not required to do so:

 Management Network: This appears as the mgmt0 interface on the Nexus 1000V. It
is used to perform administrative work on the Nexus 1000V, such as providing login
access for configuration. It is also used to talk to the vCenter Server.

 Packet Network: Services such as CDP, IGMP, and LACP use this network.

 Control Network: The VSM uses this network to talk to one another and pass along
configuration data necessary for the active-to-standby synchronization and to achieve
high availability. It’s also how the VSMs talk to the VEMs on the vSphere hosts.

All changes to the Nexus 1000V configuration are done via the VSMs, typically via a
remote console that is connected via SSH, though you can also use the VM console ses-
sion on the active node. Those changes are then communicated to vCenter by means of
a Server Virtual Switch (SVS) connection , which is a special relationship created to con-
nect the Nexus 1000V into the VMware vCenter Server. This is a requirement in order to
communicate data between the two entities, as the vCenter Server will reflect the status of
the Nexus 1000V configuration by way of Nexus 1000V VDS.

Here is an example SVS connection:

n1000V# show svs connections

connection VC:

 ip address: 10.0.0.27

 protocol: vmware-vim https

 certificate: default

 datacenter name: LabDC

 DVS uuid: ac 36 07 51 42 88 d9 ab-03 fe 4f dd d1 32 cc 5c

 config status: Enabled

 operational status: Connected

The connection data tells some important details:

 ip address: The IP address of the vCenter Server.

 protocol: The protocol type used to talk with the vCenter Server, either HTTP or
HTTPS. In this case, the Nexus 1000V is connected to the HTTPS port, which is
TCP 443, for a secure connection.

 datacenter: The vCenter Datacenter is LabDC. This is where vCenter will construct
the distributed vSwitch.

126 CHAPTER 10 Third Party Switches–1000V

 DVS uuid: The vCenter universally unique identifier (UUID) value for the distrib-
uted vSwitch that corresponds to the Nexus 1000V switch.

 config status: The current configuration is enabled.

 operational status: The Nexus 1000V is currently connected to the vCenter Server.
Only one connection is allowed at a time.

At this point, you have a control plane and redundant supervisors, but no configuration.
Let’s move forward to the next major construct that makes the Nexus 1000V useful: port
profiles.

Port Profiles
Port profiles share some similarities with port groups in VMware vSwitches. Both are used
to logically define the behavior of virtual ports. The Nexus 1000V uses a variety of port
profile types to control what types of virtual ports are being created, and how they map to
either the virtual environment or physical uplinks:

 Ethernet: This type of port profile is used to define physical uplinks. There are usu-
ally two port profiles of this type: one that is used for mapping the network adapters
connected to the upstream switches, and another special profile called “Unused_Or_
Quarantine_Uplink” that is used by the Nexus 1000V.

 vEthernet: This type of port profile is used to define virtual ports. These ports are
consumed by VMs and VMkernel ports on the vSphere hosts.

When you create an Ethernet port profile, the distributed vSwitch creates an empty uplink
port group. The VMware administrator would then add hosts to the Nexus 1000V VDS
and pick which network adapters to include, along with choosing the correct uplink port
group for those adapters.

Here’s an example configuration of an Ethernet port profile:

port-profile type ethernet SYSTEM-UPLINK

 vmware port-group

 switchport mode trunk

 switchport trunk allowed vlan 1,2,3,4,5,100-200

 channel-group auto mode on mac-pinning

 no shutdown

 system vlan 2

 description system profile for physical uplinks

 state enabled

127Virtual Supervisor Module

Some of the configuration highlights include:

 vmware port-group: Specifies the type of hypervisor.

 switchport mode trunk: Configures the uplink as a trunk port, which allows for
802.1Q tags on multiple VLANs.

 switchport trunk allowed vlan #: The VLAN tags that should be passed along by the
uplink.

 channel-group auto: This command tells the port profile how the link aggrega-
tion group (LAG) should be configured. The “mode” portion can be “mode on” for
static or “mode active | passive” for LACP. The use of “mac-pinning” is useful for
environments where the upstream switches do not support port channels. The MAC
addresses of the VMs are pinned to the uplinks in a round-robin fashion.

 system vlan #: This denotes special VLANs that should be brought up immediately
without waiting on communication between the VSM and VEM. It’s commonly used
for any management, control, or storage traffic.

REAL WORLD

Occasionally, there is a need to create additional Ethernet port profiles. This is a rare event,
but it can be useful when you have disjointed upstream Layer 2 networks. The typical use
case for this revolves around having isolated networks for DMZ traffic or PCI compliance.
In this case, you would add the host uplinks (network adapters) to specific port groups that
match the appropriate Ethernet port profile.

Every vEthernet port profile created on the Nexus 1000V will result in a distributed port
group being created on the Nexus 1000V VDS. This allows the VMware administrator to
place VMs or VMkernel ports into the port groups, while the policy remains in the hands
of the network administrator that is configuring the Nexus 1000V:

port-profile type vethernet BobSponge

 vmware port-group

 switchport mode access

 switchport access vlan 100

 no shutdown

 state enabled

Note that, aside from one applying to physical uplinks and the other applying to vnics,
the difference between the Ethernet and the vEthernet port profiles shown is that the

128 CHAPTER 10 Third Party Switches–1000V

 vEthernet port profile is configured as an access port that only passes VLAN 100 traffic,
whereas the Ethernet port profile is configured as a trunking port passing vlans 1, 2, 3, 4,
5, and 100-200.

PITFALL

Do not use the same VLAN across multiple sets of Ethernet port profiles or you will
encounter some very angry users who are wondering why they can’t connect to their work-
loads. Notice the VLANs defined in the Ethernet and vEthernet port profiles? The Nexus
1000V will determine which uplink to use based on the traffic’s VLAN tag. In our previous
examples, the BobSponge port group, which is on VLAN 100, would use the SYSTEM-
UPLINK uplink because it is configured to pass traffic for VLAN 100. But if there were
more than the Ethernet port profile carrying VLAN 100 traffic, unpredictable switching
would result.

This covers the high-level functions necessary to understand some of the operational
necessities of the Nexus 1000V supervisors. Let’s move along toward the data plane that is
provided by the VEMs.

Virtual Ethernet Module
The VEM is lightweight piece of software that must be installed on any vSphere host that
wishes to participate in the Nexus 1000V switch. The VEM acts as the data plane on each
host, handling all of the Layer 2 switching decisions for any traffic that is entering or leav-
ing the Nexus 1000V. It’s important to understand that the VSMs do not switch the data
plane traffic, and that all traffic is still switched locally on each host by the VEM.

TIP

Installation of the VEM on a vSphere host is typically handled in one of two ways: Either
embed the VEM files onto a custom vSphere installation ISO or use VMware Update
Manager (VUM) to push out the VEM files. If you’re using AutoDeploy, you should use
a custom ISO, especially if you’re operating in a stateless deployment model. For existing
environments, it is often easiest to push out the software with VUM and move forward
with the custom ISO for any newly created hosts. Either way, the VEM software is easy to
deploy.

The VEMs must be able to communicate with the VSMs using the Control Network.
This is how they are given configuration updates, licensing information, and generally

131Virtual Ethernet Module

The main advantage to using a shared VMkernel port is the lack of complexity with con-
figuration of additional VMkernel ports and IPs. It does, however, require that your man-
agement VMkernel port reside on the Nexus 1000V. On the flip side, being able to put the
management VMkernel port on an isolated standard vSwitch is one advantage to having an
isolated VMkernel port for VEM control traffic.

An example of isolating all VSM-to-VEM traffic onto a standard vSwitch is shown in
Figure 10.5.

Figure 10.5 An example design showing Layer 3 control and management VMkernel ports on a
standard vSwitch for isolation

PITFALL

It’s risky to use the Nexus 1000V switch for the VSM VMs and/or the VEM’s control and
packet VMkernel ports. Most admins opt to use a separate standard vSwitch, and some
decide to use a separate distributed vSwitch. By placing the VMkernel ports on the Nexus
1000V, you create a scenario where a network administrator could accidently sever commu-
nications between the VSMs and the VEMs with a faulty configuration, which requires a
painful troubleshooting process to remedy. Be aware of the risk involved if you do decide
to house the VEM’s VMkernel port(s) on the Nexus 1000V, and communicate the risk to
your team. A regularly updated backup of your running configuration and flagging critical
VLANs as System VLANs can go a long way in mitigating the risk.

132 CHAPTER 10 Third Party Switches–1000V

VEM Maximums
Each VEM in the environment will consume a virtual port on the Nexus 1000V Ethernet
switch, which traditionally had 66 ports available: 2 for the VSMs and 64 for VEMs on
the vSphere hosts. The latest code release for the Nexus 1000V allows for 130 total virtual
Ethernet ports, which doubles the allowable VEMs to 128 per Nexus 1000V. Knowing
that you can have 32 nodes (hosts) in a vSphere cluster, this means you could potentially
have 4 fully populated vSphere clusters (32 nodes x 4 clusters = 128 nodes) managed by a
single Nexus 1000V.

Advanced Features
As with most architectural decisions that occur in the network, there should be a require-
ment met by selecting a technology such as the Nexus 1000V. With VMware’s release
of vSphere 5.5, even more of the feature disparity between the Distributed vSwitch and
the Nexus 1000V has been eroded. However, there are still a handful of advantages to
be gleaned from using the Nexus 1000V in your vSphere environment. It’s important to
review the various features provided with the different licensing models to see if they will
meet design requirements or eliminate design constraints.

A Comment on Nexus OS
One of the more intangible advantages of using the Nexus 1000V is the ability to har-
ness a familiar OS for network management: Nexus OS (NX-OS) . Environments that
already lean heavily on Nexus will find a familiar configuration environment to their other
physical switches. This can offload the need for a server or virtualization administrator to
handle the more nitty-gritty networking configuration and design decisions, allowing them
to focus simply on consuming port groups for VM and VMkernel needs.

Licensed Modes of Operation
As of version 2.1, the Cisco Nexus 1000V offers two modes of licensing: Essential Edi-
tion and Advanced Edition. For those who have vSphere Enterprise Plus licensing, you
can enjoy the Nexus 1000V Essential Edition for free, or purchase the Advanced Edition
if there are features you want to take advantage of beyond the free version. Licensing is
purchased based on the number of physical CPU sockets in the vSphere host. A host with
2 physical CPU sockets, for example, would require 2 Nexus 1000V licenses.

133Licensed Modes of Operation

Essential Edition
The Essential Edition comes with the following features:

 VLAN, ACL, QoS: The ability to use 802.1Q for VLAN tagging; Access Control Lists
(ACL) for permitting and denying traffic; and Quality of Service (QoS) to police
traffic to and from the VMs and VMkernel ports.

 VXLAN: Virtual Extensible LAN (VXLAN) is a Layer 2 network isolation technology
that leverages encapsulation to create a large quantity of virtual LANs. It is also a
popular way to do networking with VMware’s vCloud Director product.

 vPath: Provides a forwarding-plane abstraction and a programmable framework for
inserting network services such as firewalls, load balancers, and wide area network
(WAN) optimization at the virtual access layer.

 LACP: Link Aggregation Control Protocol (802.3ad) for the creation and mainte-
nance of multi-link LAGs.

 NetFlow: See the “NetFlow” section in Chapter 9, “vSphere Distributed Switch.”

 ERSPAN: See the “Port Mirroring” section in Chapter 9.

 vTracker: Provides information about the virtual network environment. Based on the
data sourced from the vCenter, the CDP, and other related systems connected with
the Nexus 1000V virtual switch.

 vCenter Plug-in: Provides the server administrators a view of the virtual network and
a visibility into the networking aspects of the Cisco Nexus 1000V virtual switch by
way of the vSphere Web Client.

Advanced Edition
The Advanced Edition includes all of the features of the Essentials Edition, with the fol-
lowing additions:

 Cisco TrustSec Support: Enables you to build secure networks by establishing clouds
of trusted network devices. Each device in the cloud is authenticated by its neigh-
bors. Communication on the links between devices in the cloud is secured with a
combination of encryption, message integrity checks, and data-path replay protec-
tion mechanisms.

 DHCP Snooping: This feature validates the DHCP messages received from an
untrusted source, filtering out invalid response messages from DHCP servers. By
default, all vEthernet ports are untrusted, and all Ethernet ports are trusted.

134 CHAPTER 10 Third Party Switches–1000V

 IP Source Guard: A per-interface traffic filter that permits IP traffic only when the IP
address and MAC address of each packet matches the IP and MAC address bindings
of dynamic or static IP source entries in the DHCP Snooping binding table.

 ARP Inspection: Prevents man-in-the-middle (MITM) attacks by validating that
MAC addressing being advertised by a network host is not being forged.

 Virtual Security Gateway (VSG): A virtual firewall appliance that provides trusted
access to virtual datacenter and cloud environments.

Summary

In this chapter, we described the operation of the Cisco Nexus 1000V and highlighted the
advantages it offers over the distributed virtual switch. While enhancements to the dis-
tributed virtual switch have reduced some of the use cases for the Nexus 1000V, it remains
a popular alternative for environments with a more hands-on network team. This ends
our high-level overview of the types of virtual switches and their features. In the next few
chapters, we show you how to actually accomplish things with them as we work through
design exercises.

Chapter 11

Lab Scenario

Key Concepts
 Network Design

 Host Design

 Data Traffic Design

Introduction
Now that you are properly armed and dangerous with a bevy of networking knowledge
covering the physical and virtual ecosystem, it’s time to roll up your sleeves and get to
building and configuring your own virtual network. As with most things in technology, try
not to shoot from the hip—it’s always better to start with a design, including understand-
ing various architectural decisions. This chapter sets you up for success for a real world
deployment, providing a number of design considerations that are relevant for a wide
range of virtual networking deployments.

Building a Virtual Network
As you might imagine from reading the various switching chapters, there are many differ-
ent paths along the journey to a viable and healthy virtual network. Where some folks will
only need a standard virtual switch with a modest number of VMkernel ports, others will

136 CHAPTER 11 Lab Scenario

need multiple sets of distributed virtual switches with a large quantity of port groups and
VMkernel ports. Is either of these right or wrong?

The answer to that question can be found by examining the use cases for these virtual
networks and the effects they have on the overall design. Consideration must be given to
factors such as redundancy, load balancing, an appropriate MTU value, and so on to create
a healthy virtual network.

Before moving on to Chapter 12, “Standard vSwitch Design,” let’s review some of the
common architectural decisions you’ll need to tackle prior to building your shiny new vir-
tual network.

Architectural Decisions
Most of the questions we go through here sound obvious when they are said aloud. We
definitely will not argue that point with you. However, it is our experience that, although
obvious, the questions rarely get asked. Later, when the dust clears and the trouble tickets
flow, what would have been thoughtful questions to ponder become groans of pain and
fixes. Even if you plan to move on after building a virtual network, it’s never nice to leave a
ticking time bomb for the next person who fills your seat.

The major points of thought for a virtual network revolve around the network design, host
design, and your expected data traffic. It’s often difficult to pin down specifics on data traf-
fic for a new environment, so you might have to resort to a best guess and tweak as your
organization grows.

Network Design
The network design portion of your architecture focuses on the logical entities necessary
to create a successful virtual network. We’re not so much concerned with network adapter
speeds in this section, but rather want to lock down what is necessary to make the network
operational.

Start by looking at the various VMkernel services offered by a vSwitch and notate which
ones you will require (or think you will require later on down the road):

 Management traffic: Because this is used to manage the hosts and provide vSphere
HA heartbeats, you will always need a VMkernel port for management. This is a
no-brainer.

 vMotion traffic: Except for in somewhat rare cases where the network will be used
by nonclustered, standalone hosts, anticipate needing a VMkernel port for vMotion.
Yes, you could share this role with the management port, but using a modular

137Architectural Decisions

design for your network is almost always preferred for ease of management and
troubleshooting.

 Fault Tolerance (FT) logging: It’s rare to see Fault Tolerance used in the wild due to
the large number of associated caveats and 1 vCPU limitation. Unless your team, a
business unit, or your management requests it, it’s okay to skip creating this VMker-
nel port until a later date. Just remember that using FT, which allows you to create
a “shadow” virtual machine (VM) on another vSphere host, requires a fair bit of
compatibility between your vSphere hosts and sufficient bandwidth to keep the VMs
synchronized between hosts.

 vSphere Replication traffic: Unless you plan to utilize vSphere Replication (VR), it’s
perfectly fine to hold off creating this VMkernel port. If you do plan to use the prod-
uct later, it is a good time to evaluate your network configuration in multiple points
(the wide area network [WAN] bandwidth, the quantity of workloads to replicate,
and so on) and also design your VR ports.

 iSCSI traffic: Required if you plan to connect iSCSI storage to your vSphere hosts.
If not, hold off making a VMkernel port for iSCSI until required. This is covered
in Chapter 14, “iSCSI General Use Cases,” and Chapter 15, “iSCSI Design and
Configuration.”

 NFS traffic: Required if you plan to connect NFS storage to your vSphere hosts.
If not, hold off making a VMkernel port for NFS until required. This will be cov-
ered in Chapter 16, “NFS General Use Cases,” and Chapter 17, “NFS Design and
Configuration.”

NOTE

The Management VMkernel port is already created during the ESXi installation process.
That doesn’t mean that you won’t want to document how it is configured and have an
understanding of the traffic flows to get to and from that VMkernel port.

Host Design
This portion of the architecture looks at how the network adapters are configured and
consumed by the virtual network. This has become less of an exercise with the introduc-
tion of 10 Gb network adapters, which are typically fewer in number on a host, than it was
during the days of using many 1 Gb network adapters (or network cards that had as many
as four 1 Gb interfaces).

138 CHAPTER 11 Lab Scenario

When looking at the network adapters and physical host design, there are a few critical
decisions to make:

 Redundancy: Whenever possible, you’ll want to make sure your virtual networks
span redundant physical network adapters. This avoids a single point of failure
scenario in which one single network adapter failure could interrupt the flow of an
entire traffic type. It’s not enough to use multiple physical ports on the same network
adapter because the network adapter then becomes the single point of failure. Why
do we say “whenever possible” and not “always?” Many blade server configurations
can only accommodate a single network adapter. We don’t want to stop you from
considering these platforms, but want to highlight that you’re trading a single point
of failure for the ease of management and density advantages.

 Supported Features: Not all network adapters are created equal. Some support
advanced features, such as TCP Segmentation Offload (often just called TSO) or
various MTU values. Others do not. If you have a traffic type that requires specific
functionality, make sure your underlying physical network adapter can support it.

 Speeds: Oftentimes a physical server comes with a network adapter built in. This
is called the LAN On Motherboard (LOM) . The LOMs are often only capable of
providing 1 Gb speeds. If you are also installing cards capable of providing 10 Gb
speeds, you won’t want to mix the two speeds for a single traffic type. You could,
however, use one speed for a specific traffic—such as Management—and the other
speed for other traffic—such as VM traffic or vMotion.

REAL WORLD

Just about all 10-Gb network adapter manufacturers offer a model with a two-port configu-
ration. We suggest you pick up at least two of these cards for redundancy, even if you
only plan to use one port on each card—just make sure they are on the official VMware
Hardware Compatibility List (HCL). Remember that your virtual network can only use
the physical uplinks to get traffic in and out of the host. Don’t skimp on such an important
component unless you enjoy being called at night with an outage. Also, remember that
vSphere HA might trigger a VM restart if it feels that the host has been isolated from the
cluster, depending on your HA settings.

Data Traffic Design for Virtual Machines
The final component to consider is the VM networks, the real data traffic to and from
VMs. This, you’ll recall, is the important bit—it’s why you’re building the network in the
first place. Think hard on how you want to configure and label your VM networks. These

139Lab Scenario

are the day-to-day networks that you or your team will be working with, and we’ve seen a
lot of environments that use a very poor or confusing naming standard.

Some points to consider:

 VLAN tagging: In the vast majority of use cases, you will want to specifically define
a VLAN ID for each VM port group. This is referred to as Virtual Switch Tag-
ging (VST) . It also gives you the operational freedom of using trunk ports on your
upstream physical switch and clearly shows anyone looking at the vSphere Client
what VLAN the VMs are communicating on.

 MTU: The default value of 1500 bytes works fine for most folks. It’s rare to change
this for VM traffic, but a bit more common to increase the value if you plan to use an
overlay protocol such as virtual extensible LAN (VXLAN) or configure IP storage
such as iSCSI or NFS. You’ll recall from Chapter 4, “Advanced Layer 2,” that frames
larger than 1500 bytes are called Jumbo Frames. If you aren’t sure if you need Jumbo
Frames, leave this setting alone. Every piece of physical networking gear which
passes your nonstandard-sized frames would also have to be set to the same nonstan-
dard MTU size setting.

 Naming: One of the most overlooked, but probably one of the most important con-
figuration items, is the naming scheme. Calling a VM network “virtual machine
network 1” works when you have a tiny environment, but will become incredibly
confusing down the road. The name should convey meaning in a compact format.
Great names often have the subnet value in them, a designation of the workload type,
and perhaps even the VLAN ID. For example, the name “SQL_192.168.50.X_V170”
could communicate that the VM network uses the subnet 192.168.50.0/24 on VLAN
170 for SQL workloads.

REAL WORLD

Try to avoid using names that include spaces. Instead, use underscores or dashes, as spaces
often make it more difficult when scripting with PowerShell or other scripting languages.

Lab Scenario
Rather than just talk about setting up standard and distributed vSwitches, along with the
use of iSCSI and NFS storage VMkernel ports, we use our company’s engineering demon-
stration lab to walk you through virtual switch implementation. The equipment we use is
as follows:

141Lab Scenario

NOTE

Our demo lab is really something, and we love bragging about it. You can see all the toys we
get to play with at www.thinkahead.com/ahead-aviation/.

That said, you don’t need any of the equipment we’ve listed here to be successful with learn-
ing virtual switches, or even to try out creating a virtual network on your own. Much of what
we cover will be done in a vendor-agnostic manner focusing on generic network adapters.
You could easily substitute in hardware from HP, Dell, IBM, SuperMicro, or even use VM-
ware Workstation at home to review much of what we cover here. Additionally, if you do
not have blade servers or 10 Gb Ethernet adapters, we cover rack mount servers with both
10 Gb and 1 Gb Ethernet in Chapter 18, “Additional vSwitch Design Scenarios,” and Chap-
ter 19, “Multi-NIC vMotion Architecture.”

It is, however, important to emphasize that the equipment we’re using is something you
might find out in a real world datacenter, so we figured you might want to know what we
were using in the screenshots to follow.

We’ve also selected the following networks for each type of traffic:

 Management traffic: 10.20.0.0 /16, routable, with a gateway of 10.20.0.1,
on VLAN 20

 vMotion traffic: 192.168.205.0 /24, non-routable, on VLAN 205

 FT logging: 192.168.210.0 /24, non-routable, on VLAN 210

 VR traffic: Not used

 iSCSI traffic: 192.168.215.0 /24, non-routable, on VLAN 215

 NFS traffic: 192.168.220.0 /24, non-routable, on VLAN 220

NOTE

The items listed are similar to a list you might see while working on a design. See the
term “non-routable” used after many of the networks? This indicates that there will be no
gateway for the traffic to use to crossover from one network to another. It also means that
we’ve avoided creating a VLAN interface for inter-VLAN routing.

It is important that all the VLANs exist on the upstream physical network, as otherwise
the vSphere host will not be able to communicate using the selected VLANs. In our case,
the VLANs must be defined within the Cisco UCS domain itself and in the upstream
Nexus 7010. Figure 11.2 shows the VLANs defined in Cisco UCS Manager.

142 CHAPTER 11 Lab Scenario

Figure 11.2 The VLANs configured on the upstream Cisco UCS domain

To tie things together, Figure 11.3 shows a basic view of the lab from the perspective of
the vSphere Web Client.

The vCenter Server, named Initech Corp, contains a single datacenter in Chicago. This
datacenter contains a cluster named Production, which is our focus for the remaining
chapters in this section. Two blades have been added to the cluster, named esx1 and esx2,
which are identical for our intents and purposes. A single VM exists named vCSA55 which
runs the vCenter Server Appliance version 5.5. Nothing else has been configured—we’re
running off the stock default settings for the initial standard vSwitch that the hypervisor
automatically creates. Welcome to our greenfield deployment, where a near infinite num-
ber of possibilities await.

You might also notice that the value for “NICs” is shown as 2. That’s right, we move
through the creation of distributed and virtual switching with just a pair of 10 Gb Ethernet
network adapters, and discuss many of the caveats around this tactic, in Chapter 12 and
Chapter 13, “Distributed vSwitch Design,” on standard and distributed vSwitches.

143Summary

Figure 11.3 High-level perspective from the vSphere Web Client

Summary

Behind every great implementation is a great design. In this chapter, we looked over some
of the decisions you will face when creating your virtual network design. We also locked
down many of the variables that are used in the upcoming chapters on standard and dis-
tributed vSwitches in our engineering lab.

This page intentionally left blank

Chapter 12

Standard vSwitch Design

Key Concepts
 Defining a Use Case

 Naming Conventions

 Adapter Failover Order

 VMkernel Ports

Introduction
Fasten your seatbelts and please keep your arms and legs inside the car—we’re ready to
begin building out a network for your virtual infrastructure. If you need a moment to run
around cheering wildly, we understand.

Throughout this chapter, we focus on many of the various decision points that will arise
during an actual implementation of a standard vSwitch in your virtual environment. Some
of the decision points will not apply to your environment, and you are welcome to skip
past portions that do not apply. An example would be the creation of Fault Tolerance (FT)
VMkernel ports if you do not need to use FT for your workloads.

For each decision, we spend some time talking about the reasons behind different decision
paths. The goal is to arm you with the information necessary to make this chapter work
for your specific environment, rather than just showing you the mundane steps to build a
cookie-cutter switch configuration.

146 CHAPTER 12 Standard vSwitch Design

Standard vSwitch Design
A number of factors might influence the decision to use the standard vSwitch:

 Licensing: You might not have access to vSphere Enterprise Plus licensing, which is
required to create a distributed vSwitch. Enterprise Plus is considerably more costly
to acquire (and perhaps even to deploy due to the greater number of features to
design around), and you might feel that the funds could be better spent elsewhere in
your environment.

 Simple Requirements: If you only have a handful of vSphere hosts with very simple
design requirements, it might be straightforward to use a standard vSwitch. Many of
the advanced features found in a distributed vSwitch might not apply to your needs.
This could also complement the licensing point made earlier.

 Availability and Complexity: The control plane of a standard vSwitch is bound to the
vSphere host itself, not vCenter, making a standard vSwitch easier to troubleshoot
and protecting it from vCenter outages. Although many advances in distributed
vSwitch design have reduced the headaches associated with vCenter Server outages,
there are still some advantages to having an “out of band” vSwitch for your manage-
ment cluster or components that run critical back-end infrastructure workloads.

Remember that there is no universal right answer on vSwitch strategy as long as your
requirements are met and the desired functionality is achieved.

Sample Use Case
In order to make this more entertaining, we provide a sample use case and walk through
the configuration as the chapter progresses.

Initech Corp has a pair of vSphere hosts running ESXi 5.5 in their production data cen-
ter located in Chicago. As the VMware Administrator for the corporation, you have been
tasked with the creation and configuration of networking for your company’s virtual
infrastructure. Due to budget constraints, the company has purchased vSphere Enterprise
licensing, which prevents you from building a virtual network on the distributed vSwitch
or any other third party switches. You will need to use standard vSwitches. Each vSphere
host has a pair of 10 Gb Ethernet network adapters connected to a redundant upstream
physical network.

The virtual network should be capable of handling traffic for Management, vMotion, FT,
and NFS storage traffic. It also needs to be able to pass along traffic for three different

147Standard vSwitch Design

types of workloads: Web Servers on VLAN 100, Application Servers on VLAN 110, and
Database Servers on VLAN 120.

Naming Conventions
After you have determined what networks you will need, your next step is to identify any
relevant naming conventions currently in use in your organization, or if they are nonexis-
tent, create your own. We’ll assume that you don’t already have one in place because that
is more of a challenge.

We already know that the data center is located in Chicago, and that all hosts live in the
Production cluster. Let’s take a look at one of our vSphere host’s network configuration,
shown in Figure 12.1.

Figure 12.1 The initial vSwitch configuration of an ESXi host

Hey—someone already made a standard vSwitch. Don’t worry, this is entirely normal and
is part of the ESXi installation process. After all, the host needs some way to communicate
with the outside world when it has been installed, right?

vSwitch0 is a special standard vSwitch that is autogenerated at the time of install. It will
always contain two things:

 A Management Network with a VMkernel named vmk0 for your Management traffic

 A port group called “VM Network” for virtual machine networking traffic

148 CHAPTER 12 Standard vSwitch Design

You are not able to easily rename vSwitch0 to anything more descriptive unless you like
digging around in the command line or through a script. But we think the default name
vSwitch0 is actually a good thing—if you leave the vSwitch0 name as default, you are
assured that every single host you create has a vSwitch0, which helps make a standardized
environment.

NOTE

You’re certainly welcome to change the name of vSwitch0, or even create a new vSwitch
with a descriptive name and migrate the VMkernel port over, but that seems like a fair bit of
extra work for no real gain.

Let’s come up with some names for all of our VMkernel ports:

 Management: “Management Network” sounds fine.

 vMotion: The name “vMotion” is simple and effective.

 Fault Tolerance Logging: Either “FT” or “Fault Tolerance” work well, but I lean
toward “Fault Tolerance” since not everyone can immediately recognize the acro-
nym “FT.”

 NFS Storage: You could use simply “NFS Storage” to avoid any confusion, as this
easily proclaims both the protocol (NFS) and the need to pass along storage traffic.

NOTE

You could also add networking and VLAN information to your VMkernel port names, if
desired, an example being “vMotion_192.168.205.x_V205.”

Let’s also come up with names for the VM traffic port groups. Great names include some
sort of detail on the type of workload, the network for that workload, and the VLAN ID.
Unfortunately, right now we only know the type of workload (Web, Application, and
Database servers) and the VLAN ID—we don’t know the networks.

After a quick chat with our network engineer friend, we find out that the VLAN networks
are as follows:

 VLAN 100: 192.168.100.0 /24

 VLAN 110: 192.168.110.0 /24

 VLAN 120: 192.168.120.0 /24

149Ensuring Quality of Service

REAL WORLD

As with the VMkernel VLANs, you need to ensure that the VM VLANs exist on the
upstream network device. Otherwise, the VMs will be unable to communicate outside of
the vSphere host. Most of the issues we’ve seen with VM communication tend to relate to a
VLAN configuration missing somewhere in the upstream physical network.

Now we have all three pieces of the puzzle, so let’s come up with some descriptive names:

 Web Servers on VLAN 100: Web_192.168.100.x_V100

 Application Servers on VLAN 110: App_192.168.110.x_V110

 Database Servers on VLAN 120: DB_192.168.120.x_V120

See how easily you can read those port group names and know exactly what they do? It
makes life simple and efficient for any human operator, like you, that has to deal with the
virtual network. As mentioned earlier, we have avoided spaces in the port group names to
simplify scripting.

If you have more workloads in your environment, keep going through the exercise and
identifying all the names you’ll need before moving on. For example, you might need to
use iSCSI traffic, vSphere Replication, or have ten different types of Database Servers to
support, each with their own VLAN.

REAL WORLD

Why not just create a bunch of port groups called Port Group 1, Port Group 2, and so
on? These names make it annoying and difficult to figure out what these port groups are
used for. We’ve seen many environments with no understandable naming convention,
requiring tribal knowledge to decipher the names. Tribal knowledge is any knowledge that
only certain people know and is not documented anywhere. When someone that had tribal
knowledge leaves your company, the team suffers as they try to piece together the missing
information. Squash tribal knowledge by using highly descriptive names for your network
objects. And document them for good measure.

Ensuring Quality of Service
The standard vSwitch has few methods of ensuring quality of service for the traffic that
is being passed along. You’re mainly limited to traffic shaping of ingress traffic, which is

150 CHAPTER 12 Standard vSwitch Design

mainly traffic generated by VMs or VMkernel ports on the host to external entities—this
is sometimes referred to as “outbound” traffic shaping.

You miss out on a fair number of really handy tools, such as Network IO Control (NIOC),
egress traffic shaping, and the “route based on physical NIC load” policy (often referred to
as load-based teaming).

There are, however, a few ways to overcome these limitations:

 Additional network adapters: One of the oldest methods of ensuring QoS for traffic
is to increase your uplink count by way of multiple network adapters. For example,
you could designate a pair of ports specifically for your IP Storage traffic. Some
Converged Network Adapters (CNAs) also support the ability to logically carve up a
physical network card into multiple virtual network cards, making it appear as if the
vSphere host has many different network adapters. In this case, you are placing the
responsibility of enforcing traffic fairness on the CNA.

 Quality of Service (QoS) and Class of Service (CoS): Although the standard vSwitch
does not allow you to set the 802.1p priority tag, some upstream physical network
devices will interrogate and tag traffic for you. You would need to configure the
upstream network device to correctly understand and prioritize your traffic when it
receives traffic from the vSphere host.

 Combination approach: Some hardware systems allow you to both logically split
up your physical network adapter and enforce QoS or CoS tagging on the various
virtual network adapters. This would allow you to squeeze a fair bit of value out of
your investment, as these types of solutions typically kick in only when congestion is
present. If your upstream device supports this configuration, you are often allowed to
weigh each traffic type against others to determine which one holds more priority, or
even set hard limits as to how much traffic can be sent during a peak time.

NOTE

The increased availability of 10 Gb Ethernet has placed much of the need for QoS on
hold—for now. We rarely see a 10 Gb link reach saturation on a vSphere host for any signif-
icant amount of time outside of an intentionally busy period—such as that of a vMotion
event. However, as systems continue to crave more and more bandwidth, relying on 10 Gb
to soak up any traffic congestion without any thought into QoS will eventually stop working
effectively.

151Network Adapters

Network Adapters
At this point, you are ready to begin configuring the network. Notice how much empha-
sis was put on proper naming and really thinking about all the required port groups? It’s
essential to put in the planning time prior to implementation, otherwise you have either a
sloppy environment that will require re-work to fix, or a suboptimal implementation that
will haunt you further down the road.

Let’s focus first on the vSphere host named esx2. To begin with, we need to take a good,
hard look at our vSwitch0 to see if it has all the appropriate network adapters added to it.
These will act as uplinks for the vSphere host. We’ll select vSwitch0 from host esx2 and
choose the “Manage the physical network adapters” option. Figure 12.2 shows the results.

Figure 12.2 Network adapters used by vSwitch0

Whoops, it looks like only a single uplink, vmnic0, was added. This is the standard behav-
ior for a fresh installation—vSwitch0 grabs the first network adapter, vmnic0, by default. If
you recall from earlier, each host has two network adapters available, and we need to make
sure that both of them are added to vSwitch0 to ensure the switch is redundant.

152 CHAPTER 12 Standard vSwitch Design

REAL WORLD

With very, very few exceptions, every vSwitch you build should have at least two physical
adapters to act as uplinks. Any time you use a single adapter, you are creating a single point
of failure, creating havoc if that network adapter were to fail.

We’ll go ahead and click the green plus sign button to add the other network adapter into
vSwitch0, as indicated in Figure 12.3.

Figure 12.3 The second network adapter is now part of vSwitch0

NOTE

If your environment has more than two network adapters, it might be worth taking a glance
at Chapter 18, “Additional vSwitch Design Scenarios,” where we talk about systems that
have four or more network adapters. We ultimately can’t offer a complete walkthrough for
every environment, but you should be able to roll with the punches and adapt this guide to
your specific needs.

153Virtual Machine Traffi c

Virtual Machine Traffic
Now we have a fully redundant vSwitch0 that can use either vmnic0 or vmnic1. Let’s build
some port groups for our VM traffic.

Virtual Machine Port Groups
Our use case requires networking for three unique VM workloads: one for Web Servers,
another for Application Servers, and a third for the Database Servers. Because each one of
these workloads uses a different VLAN ID, we need three unique port groups. You might
wonder, however, why the port groups must be unique?

Each port group will carry one single VLAN ID because our guest workloads, the servers
themselves, are not configured to handle VLAN tags. We need to configure the vSwitch
to handle this on the workload’s behalf, which goes back to the Virtual Switch Tagging
(VST) methodology outlined in Chapter 7, “How Virtual Switching Differs from Physical
Switching.” If our workloads could handle VLAN tags, another option would be to use a
single port group that carried all three VLAN IDs as a trunk, which would be the Virtual
Guest Tagging (VGT) configuration.

Let’s begin by creating the port group for the Web Servers. To start, navigate to the Host
and Clusters view in the vSphere Web Client, select host esx2, click on the Manage tab,
Networking sub-tab, and then select the virtual switch named vSwitch0. Click the “Add
Host Networking” link on vSwitch0, which looks like a little globe with a plus sign on it.
The results are shown in Figure 12.4.

Figure 12.4 Adding a new network to vSwitch0

154 CHAPTER 12 Standard vSwitch Design

Because we want to make a new port group for VMs, we want to select the “Virtual
Machine Port Group for a Standard Switch” radio button.

The next prompt asks what the target device is. You can leave the default selection of
“Select an existing standard switch” highlighted with vSwitch0, as shown in Figure 12.5.
If you chose to rename vSwitch0, or created a new vSwitch, you would want to select that
vSwitch instead of vSwitch0.

Figure 12.5 Selecting vSwitch0 as the target device

You are now ready to enter the important details for your VM port group. It really boils
down to nothing more than a network label (the name) and VLAN ID. Since we’re start-
ing with the Web Server port group, the values would be:

 Network label: Web_192.168.100.x_V100

 VLAN ID: 100

I’ve entered the values shown in Figure 12.6. Note that when you click on the VLAN
ID box, a few premade selections will appear for None (0) and All (4095). You can safely
ignore these values and enter your own value—in this case, it is 100.

The last step is to review the requested configuration and click Finish. Congratulations,
you have created a VM port group, as shown in Figure 12.7!

155Virtual Machine Traffi c

Figure 12.6 Entering the network label and VLAN ID for the Web Server port group

Figure 12.7 The Web Server port group is now part of vSwitch0

156 CHAPTER 12 Standard vSwitch Design

Note the gold line leading from the Web Server port group to the two physical adapters.
This indicates that the port group is able to use either network adapter for passing along
traffic.

You’re not done yet—there are still two more port groups to create. We’ve gone ahead
and created them on vSwitch0 and show the final configuration in Figure 12.8. You’ll need
to repeat the process in this section for the other two VM port groups.

Figure 12.8 All the VM port groups have been created on vSwitch0

NOTE

Delete the “VM Network” port group if you’re not going to rename and use it for some-
thing else. No sense having a name that doesn’t match the naming convention.

Failover Order
By default, any new port group created will use the policies inherited by the vSwitch itself.
For vSwitch0, the policy is to actively use all of the network adapters. We’re going to leave

157Virtual Machine Traffi c

this setting as-is for the VM port groups and let the VMs use either of the two available
network adapters. In fact, Figure 12.9 provides a view of the default teaming and failover
policies for vSwitch0. As you can see, both vmnic0 and vmnic1 are listed as Active adapters
for vSwitch0, meaning they will both be used.

Figure 12.9 Default teaming and failover policies for vSwitch0

Why? With few exceptions, VMs are some of the least bandwidth hogging entities on a
network. And, since there is no way to easily load balance them across the two network
adapters, having two active uplinks with the default “route based on originating virtual
port” gives them a solid chance at being spread out evenly across the uplinks.

REAL WORLD

There are some situations where you really should define specific network adapters as Active
and others as Standby for VM traffic. If you have a specific use case, such as a workload that
needs to use an uplink that goes to a specific network (such as a DMZ uplink), make sure to
define a failover policy for that port group. It’s just that we rarely find this the case specifi-
cally for VM throughput—they often consume a very small percentage (<10%) of the total
bandwidth available to them.

We’ll come back to this in greater detail for the VMkernel ports, since they will be using
specific failover orders to help alleviate specific traffic congestion scenarios.

158 CHAPTER 12 Standard vSwitch Design

VMkernel Ports
Now comes the slightly trickier part of creating a standard vSwitch for the Initech Corp
environment: configuring VMkernel ports. With a standard vSwitch, creating a new
VMkernel port automatically generates a new port group for the VMkernel port to live
inside. VMs cannot use this port group. You can only have one VMkernel port residing
inside of each port group.

We’ll tackle each of the VMkernel ports needed for this environment in the next few sec-
tions. As a reminder from Chapter 11, “Lab Scenario,” we’re going to use the following
VLAN IDs for the VMkernel networks:

 Management traffic: 10.20.0.0 /16, routable, with a gateway of 10.20.0.1, on
VLAN 20

 vMotion traffic: 192.168.205.0 /24, non-routable, on VLAN 205

 FT logging: 192.168.210.0 /24, non-routable, on VLAN 210

 NFS traffic: 192.168.220.0/24, non-routable, on VLAN 220

Management
The Management VMkernel port is commonly used as the means to manage a host. If
you were to ping a host by its Fully Qualified Domain Name (FQDN), the IP address you
received in response should be the one mapped to the Management VMkernel port. It’s
also what we commonly use when performing work via Secure Shell (SSH).

NOTE

Enabling “Management traffic” on a VMkernel port, such as what is shown in Figures
12.10 and 12.14, tell vSphere High Availability (HA) which VMkernel port to use for heart-
beats. It’s not actually required for managing the host. Still, it’s often best to leave it on for
whichever VMkernel port you wish to use to manage the host, which is vmk0 by default.

If you look carefully at vSwitch0, you’ll notice that the Management Network port group
is in fact just a container that houses a single VMkernel port called vmk0 (see Figure
12.10). This is used for your host management and is responsible for being the default
gateway for any unknown VMkernel traffic that doesn’t match a network mapped to any
other VMkernel port. Don’t let that confuse you—the default gateway is not used for VM
traffic in any way. VMs will have a default gateway configured within their operating sys-
tem. The VMkernel default gateway is there only for other VMkernel ports.

159VMkernel Ports

Figure 12.10 vmk0 is the default VMkernel port used for host management

You cannot put VMs inside of this port group because it is made specifically for a VMker-
nel port. This helps avoid any confusion when an administrator, for example, you, is look-
ing for a network to place a VM on.

NOTE

vmk0 is a special VMkernel port generated by the hypervisor at the time of installation.
Unlike other VMkernel ports, vmk0 uses the first network adapter’s hardware MAC
address—also known as the burned-in address (BIA)—as its own MAC address. We find that
it’s often best to leave vmk0 as the Management VMkernel port and not try to fiddle with it
to become more than that, as bad things can (and do) happen.

It seems like most of your work is done for the Management VMkernel port, right? Obvi-
ously this port is operational, because otherwise the host would not be able to connect to
the vCenter Server. However, it’s important to review the failover order for every VMker-
nel port. If you edit the settings of the Management Network port group (which contains
vmk0), you’ll see a screen like that shown in Figure 12.11.

160 CHAPTER 12 Standard vSwitch Design

Figure 12.11 The failover policy settings for the Management Network

Hopefully, you’ll see the same issue here that we see—vmnic0 is set to Active, and vmnic1
is set to Unused. This means that a failure of vmnic0 will bring down the vmk0 port, even
if vmnic1 is still operational. We definitely don’t want that; so let’s fix it by modifying the
failover order for the port group.

In order to balance out the VMkernel ports over a variety of different network adapters,
we’re going to purposely mark specific network adapters as Active and others as Standby.
This is to help minimize traffic on any one specific network adapter. It might not make
total sense now, but we will review the failover settings with each VMkernel port on a one-
by-one basis here, and then go over the entire logical configuration in the final segment
of this chapter. When you see all of their failover settings together, it should make more
sense.

For the Management VMkernel port, vmk0, we’re going to set vmnic0 as Active and
vmnic1 as Standby. Select vmnic1 and click the blue up arrow to change vmnic1 from
Unused to Standby, as shown in Figure 12.12.

That’s much better. Now, if vmnic0 fails for some reason, vmk0 on the Management Net-
work will be moved over to vmnic1 and the host will remain accessible on the network.
When vmnic0 is repaired, vmk0 will move back over to vmnic0 due to the fact that the
Failback option is set to Yes. We have introduced redundancy to this network, which is
always a good thing to help avoid frantic calls in the middle of the night.

161VMkernel Ports

Figure 12.12 Marking vmnic1 as a Standby adapter for the Management Network

REAL WORLD

You might also choose to set failback to “No” for the Management VMkernel port to reduce
the risk of a “Lights On” switching event during physical network maintenance. This occurs
when the upstream switch is restarted, and then begins initiating the startup process and
powers on the physical network port. vSphere might incorrectly believe that the port is up
and available while the upstream switch is still going through the boot process and try to
erroneously use the port for Management traffic.

Note that we’re not talking about a blocked port via Spanning Tree Protocol (STP). Per the
Portfast recommended practice mentioned in Chapter 4, “Advanced Layer 2,” you should
have already configured all your upstream switch ports connected to the vSphere hosts to
immediately transition to a forwarding state.

vMotion
Whenever a VM is whisked away from one vSphere host to another, one or more
 VMkernel ports with the vMotion service tag will be used to transmit the VM’s running
state between them. As you might imagine, the amount of traffic traversing the vMotion
VMkernel port is somewhat bursty. When no vMotions are occurring, the traffic being

162 CHAPTER 12 Standard vSwitch Design

sent and received is zero. When vMotions are occurring, there is a whole bunch of traffic
being sent. This makes vMotion a somewhat difficult traffic to plan for in new environ-
ments where you’re not sure just how much workload migration will be taking place.

NOTE

Traditionally, one VMkernel port was created on each host for vMotion traffic, although the
concept of multiple-NIC vMotion was introduced with vSphere 5.0. In this chapter, Initech
Corp only has two network adapters, and as such, we don’t want to saturate both of them
with vMotion traffic simultaneously. However, we do cover multiple-NIC vMotion in detail
in Chapter 19, “Multi-NIC vMotion Architecture.”

One way to help mitigate the bursty nature of vMotion is to use a failover order to place
it on a specific network adapter. We’re actually going to ensure that vMotion is Active
on vmnic1 and Standby on vmnic0, which is the opposite order we used with the Man-
agement traffic in the previous section. This keeps the two from fighting on a standard
vSwitch unless we’re in a scenario where one of the two network adapters has failed.

To begin with, let’s create the VMkernel port for vMotion by selecting the Add Network-
ing function on vSwitch0—the same function we used to add a VM port group earlier.
This time, however, choose the “VMkernel Network Adapter” as your connection type as
shown in Figure 12.13.

Figure 12.13 Adding a new VMkernel port to vSwitch0 for vMotion traffic

163VMkernel Ports

Ensure that the target device is vSwitch0 and continue forward. You’ll be greeted with a
screen asking for a variety of port properties. Let’s review the properties:

 Network label: If you look back at the “Naming Conventions” section, you’ll see we
decided to call this port group “vMotion.”

 VLAN ID: We’ve already selected VLAN 205 for vMotion, so enter 205 here.

 IP settings: To keep things simple, we’re going to select IPv4, although if you are
feeling adventurous in your environment, you can feel free to opt for IPv6.

 TCP/IP stack: Use the “Default” stack, as we have no need to use any custom gate-
ways for traffic. (Our vMotion isn’t even routable on our network.)

 Enabled services: Select the “vMotion traffic” checkbox to allow the hypervisor to
use this VMkernel port for vMotion. If you forget to check this box, the host will not
be marked as a valid source to send or receive VMs within the vSphere Cluster.

You can also review the settings in Figure 12.14.

Figure 12.14 Port properties for the vMotion VMkernel port

In the next screen, we need to enter an IP address for this VMkernel port. That’s different
from what you might remember in the VM port group creation process. This is because a
VM port group is just a housing for VMs, each of which have their own IP address, while a
VMkernel port is used by the host to communicate on the network for its services.

164 CHAPTER 12 Standard vSwitch Design

In the case of Initech Corp, we’ve already been assigned a network subnet of
192.168.205.0/24 to use for vMotion traffic. To make life easier, we’ll pick 192.168.205.2
since the host we’re configuring is called esx2. The CIDR notation mask of /24 won’t
work for the vSphere Web Client—we’ll have to provide a full dotted decimal mask. A /24
translates to 255.255.255.0. Thus, your screen should look something like that shown in
Figure 12.15.

Figure 12.15 IPv4 settings for the vMotion VMkernel port

Review your settings and click Finish to complete the vMotion VMkernel port creation. If
all was successful, you should see that your vSwitch0 now has two VMkernel ports similar
to that shown in Figure 12.16.

However, notice the failover policy for the new vMotion network uses both vmnic0 and
vmnic1 as Active adapters? We need to fix that and mark vmnic0 as a Standby adapter.
Repeat the steps you went through with the Management Network, with two differences:
Enable the Override checkbox for Failover order, and make sure vmnic0 is Standby and
vmnic1 is Active.

Figure 12.17 shows that vmnic0 is a standby NIC for our vMotion VMkernel port.

We’ve now made sure that vMotion will primarily use the vmnic1 adapter, and if it fails,
will switch over to the vmnic0 adapter. Again, introducing redundancy is a great thing that
should be done whenever possible.

165VMkernel Ports

Figure 12.16 A list of VMkernel ports in use on vSwitch0

Figure 12.17 Marking vmnic0 as the Standby adapter for vMotion

166 CHAPTER 12 Standard vSwitch Design

Fault Tolerance
FT offers VMware Administrators the ability to protect a VM by creating a secondary
shadow VM that is kept in lockstep on a different vSphere host. If the primary VM is lost
due to a host failure, the secondary shadow VM is promoted to primary in a very brief
period of time. The lockstep process, which ensures that the secondary VM is kept in sync
with the primary VM, is what consumes bandwidth on the FT logging network.

Much like vMotion, it can be difficult to predict how much bandwidth will be needed for
FT and where it will be needed. While vMotion is bursty in nature, sending traffic from
one host to another over a short period of time, FT is typically of a longer duration for
very specific VMs. When an FT relationship is created, the only reason that the FT traf-
fic would cease would be because of a host failure or because the primary or secondary
VM were moved. For these reasons, we often like to keep FT and vMotion on the same
network adapter. So, for the FT VMkernel port, we will once again be using vmnic1 as the
Active adapter and vmnic0 will be marked as the Standby adapter.

Referring to the “VMkernel Ports” section of this chapter, we know that the FT logging
network is using:

 Network: 192.168.210.0/24

 VLAN ID: 210

Use this information to create a new VMkernel port on vSwitch0. There will be a few
changes, such as the port properties and IPv4 settings.

Figure 12.18 shows a review of the port properties for the FT VMkernel port.

Figure 12.18 Port properties for the FT VMkernel port

167VMkernel Ports

The IPv4 Settings for the FT VMkernel port are shown in Figure 12.19.

Figure 12.19 IPv4 settings for the FT VMkernel port

Don’t forget to change the failover order for the FT network, making vmnic1 the Active
adapter and vmnic0 a Standby adapter, by selecting vmnic0 and clicking the down arrow
until it sits in the Standby adapters section. Figure 12.20 shows the end results.

You’re at the home stretch—just one more VMkernel port to create to handle NFS
 Storage traffic.

Figure 12.20 Marking vmnic0 as the Standby adapter for FT

168 CHAPTER 12 Standard vSwitch Design

NFS Storage
The final requirement is to connect NFS Storage to the vSphere hosts. To do this, we
want to ensure that there is a VMkernel port created that corresponds to the same subnet
that the NFS storage array lives on. If we don’t, all traffic going back and forth from the
NFS storage array will be sent out of the default gateway of vmk0, which is not optimal
and typically not even supported.

REAL WORLD

Sending traffic to the NFS or iSCSI storage array over the default gateway is called
Routed NFS or Routed iSCSI . Support for this is shaky at best, and requires a very deep
understanding of the upstream physical network topology, QoS settings, and some sort of
priority flow control. Unless you have a team of Network Jedi Masters on staff who can
guarantee low latency and low packet loss with routed NFS/iSCSI traffic, it’s highly recom-
mended to do Switched NFS or Switched iSCSI, which takes place entirely at Layer 2. This
requires having a VMkernel port on the same subnet as your NFS or iSCSI storage target.
For general use cases, see Chapter 14, “iSCSI General Use Cases,” or Chapter 16, “NFS
General Use Cases,” for more details.

It’s essential to ensure a quality connection to any sort of storage array. VMs are highly
sensitive to disk-related latency and tolerate loss rather poorly. This is mostly due to the
fact that VMs are being tricked into thinking they are sending SCSI commands to a local
device, when in fact those commands are being packaged up into packets and shot off into
the network to a remote array. It is your job as the VMware Administrator to give those
packets the best possible chance to reach their destination, and return, in as little time as
possible.

Because of this fact, we’re going to configure the failover order so that vmnic0 is Active
and vmnic1 is Standby. In essence, we’re somewhat dedicating vmnic0 to the IP Storage
traffic, with NFS being the protocol of choice for Initech Corp. While it’s true that the
Management Network also uses vmnic0, the Management Network consumes a very tiny
amount of bandwidth (except for when someone is importing a VM into that host, which
is extremely rare). Additionally, any VM protected by FT will send write IO to the storage
array and to the secondary VM. Having unique network adapters for both IP Storage and
FT prevents the write traffic from competing with itself.

Let’s review the network settings for the NFS Storage network:

 Network: 192.168.220.0/24

 VLAN ID: 220

169VMkernel Ports

Creating the VMkernel port is nearly an identical process to the vMotion and FT process
you followed previously, except there is no service to enable for NFS.

Figure 12.21 shows a review of the port properties for the NFS Storage VMkernel port.

Figure 12.21 Port properties for the FT VMkernel port

The IPv4 Settings for the NFS Storage VMkernel port are shown in Figure 12.22.

Figure 12.22 IPv4 settings for the FT VMkernel port

170 CHAPTER 12 Standard vSwitch Design

NOTE

Does it seem weird that there is no service checkbox for NFS Storage? It might, but rest
assured, just having a VMkernel port on the same subnet as your NFS storage array will
ensure that the hypervisor uses this NFS Storage VMkernel port to communicate. But
don’t take my word for it—SSH to your vSphere host and run “esxcfg-route -l” to view the
routing table and see a list of known subnets and their related VMkernel ports.

VMkernel Failover Overview
Now that all of the VMkernel ports are created, let’s take a look at the end results. You
should see a list of four VMkernel ports on vSwitch0: Management Network (vmk0),
vMotion (vmk1), FT (vmk2), and NFS Storage (vmk3) (see Figure 12.23).

Figure 12.23 The four VMkernel ports in use on vSwitch0

171VMkernel Ports

Looking at the failover order for the various VMkernel ports, a pattern emerges. If you
look carefully at the active and standby use of each network adapter, you’ll find the follow-
ing to be true:

 Active use of vmnic0: Management Network and NFS Storage

 Active use of vmnic1: FT and vMotion

 Standby use of vmnic0: FT and vMotion

 Standby use of vmnic1: Management Network and NFS Storage

 Active use of both vmnic0 and vmnic1: VM port groups (Web, Application, and
Database Servers)

We’ve basically divided up the two network adapters to handle the two types of traffic that
are very sensitive to latency or consume a lot of bandwidth: NFS Storage is sensitive to
latency, and vMotion consumes a lot of bandwidth. They will not use the same network
adapter as an uplink unless one of the uplinks fails.

The remaining traffic types—Management, FT, and VM traffic—tend to consume a little
amount of bandwidth or are designed to handle a little bit more latency. VMware HA
heartbeats on the Management network, for example, can miss a few heartbeats without
declaring a failure. The vast majority of VMs are already well aware of how flaky a TCP/
IP connection can be and will use the protocol’s resiliency to handle any missed or late
packets, with the exception being some legacy applications or business critical applications
(BCAs) that need a large quantity of bandwidth or low latency. Also, FT is very rarely used
due to the vast number of caveats and limitations.

Therefore, if we were to draw the network paths out as a solid black line for Active and a
dotted grey line for Standby, it would look something like Figure 12.24.

NFS Storage VMotion

Management Virtual
Machines

Fault
Tolerance

vmnic0 vmnic1

Figure 12.24 Network adapter paths for vSwitch0 traffic

172 CHAPTER 12 Standard vSwitch Design

Final Tuning
One last thing we want to edit is the security settings on vSwitch0. By default, a standard
vSwitch allows both MAC address changes and forged transmits. This allows a VM to
modify its effective MAC address for receiving frames and to transmit frames with a differ-
ent MAC address than what has been configured in vSphere. While there are certain situa-
tions that warrant this, it isn’t necessarily something we want enabled.

To remedy this, edit vSwitch0 and set all three security policies to Reject. Unless an
administrator has manually set an override on the policies, the changes will automatically
trickle down to the port groups. This configuration is shown in Figure 12.25.

Figure 12.25 Network adapter paths for vSwitch0 traffic

NOTE

A distributed vSwitch is configured to reject all three security settings by default. A standard
vSwitch does not. Keep this in mind when you are trying to secure your virtual environment
using a standard vSwitch.

This concludes the configuration necessary to get your standard vSwitch operational in a
sleek and efficient manner. Notice that we didn’t go into the settings of vSwitch0 or any of
the underlying port groups to fiddle with traffic shaping, network failure detection, notify
switches, or failback? That’s because changes to these settings are often the exception to
the rule and should only be changed when the use case specifically calls out a need. The
default values work great for the majority of environments that exist today.

173Summary

Configuring Additional vSphere Hosts
The changes made to vSwitch0 have so far only been done on the vSphere host named
esx2. We still need to execute the entire set of changes to the other vSphere host named
esx1. Because each vSphere host acts as the control plane for a standard vSwitch, you must
configure every single vSphere host individually, either by hand or by way of a script.

Make sure that the changes you perform on esx1 are identical to the changes you made on
esx2, with the exception being IP addresses—each host needs a unique set of IP addresses.
Here is a list of IP addresses you can use with vSphere host esx1:

 Management traffic: 10.20.105.32 /16 on VLAN 20

 vMotion traffic: 192.168.205.1 /24 on VLAN 205

 FT logging: 192.168.210.1 on VLAN 210

 NFS traffic: 192.168.220.1 /24 on VLAN 220

REAL WORLD

If you think configuring two vSphere hosts by hand is a challenge, try dozens of them!
While ultimately out of scope for this book, we strongly recommend finding a script written
in your favorite language, such as VMware PowerCLI, to perform the standard vSwitch
configuration on your vSphere hosts. This is both much quicker to execute for many
vSwitches and less error-prone than typing it all by hand. We’re going to assume that you
don’t have access to Host Profiles since you’re using a standard vSwitch.

Summary

You should now have a clear concept of the steps necessary to go through the entire pro-
cess of creating a standard vSwitch—from the planning and design to the configuration
itself. You might also now start to see some of the hassle involved with using a standard
vSwitch, especially in a larger environment, along with how limited the standard vSwitch
is from a feature perspective. In the next chapter on the distributed vSwitch, you’ll see a
much greater set of tools and features available to make life a bit easier and handling traffic
more efficient.

This page intentionally left blank

Chapter 13

Distributed vSwitch Design

Key Concepts
 Distributed vSwitch Design

 Ensuring Quality of Service (QoS)

 Distributed Port Groups

 Health Check

 Fully Automated Design

 Hybrid Automation Design

Introduction
In the previous chapter, we took a pair of servers with a freshly installed copy of ESXi 5.5
and configured a standard vSwitch to support the Initech Corp use case. We’re going to
take many common components from that use case and apply them again with a few twists.
By the end of this chapter, you should have a well-designed and implemented distributed
vSwitch used by our two vSphere hosts and a solid understanding of the many choices that
are presented with the powerful and feature-rich distributed vSwitch.

176 CHAPTER 13 Distributed vSwitch Design

Distributed vSwitch Design
In the previous chapter, we highlighted three reasons that you might decide to forgo the
distributed vSwitch: licensing cost, a small environment size, and control plane availabil-
ity. Now, let’s look at two good reasons why you would want to embrace the distributed
vSwitch in your environment:

 Feature Requirements: The distributed vSwitch offers a vast number of features
above and beyond the standard vSwitch. We won’t enumerate them all here, but for
a full list, refer to Chapter 9, “vSphere Distributed Switch.” As an example—if you
require the use of enhanced quality of service control that is not available with your
upstream hardware, you’ll need to use a distributed vSwitch. You might also need
a feature that is specifically bundled with vSphere Enterprise Plus, such as Storage
Distributed Resource Scheduler (SDRS), vFlash Read Cache, or Auto Deploy. You
might also want to take advantage of the distributed vSwitch because it is available at
that license level.

 Larger Environment Size: Larger environments tend to focus on supported “out of
the box” features to ensure scalability. While it’s true that you can script the creation
of a standard vSwitch across an environment, not everyone out there wants to go
through the trouble. For those with double or triple digit quantities of vSphere hosts,
the ability to easily scale out a distributed vSwitch to the environment is attractive.
It is worth noting that there is no “correct” environment size necessary to go with a
distributed vSwitch.

This isn’t the end-all-be-all list of reasons, but two of the most common that we encounter
out in the field.

Use Case
Initech Corp has a pair of vSphere hosts running ESXi 5.5 in their production data center
located in Chicago. As the VMware Administrator for the corporation, you’ve been tasked
with the creation and configuration of a virtual network. Due to a requirement for provid-
ing quality of service assurances for network traffic and a need for Storage IO Control
(SIOC), the company has purchased vSphere Enterprise Plus licensing, which allows you
to build a virtual network on the distributed vSwitch. Each vSphere host has a pair of
10 Gb Ethernet network adapters connected to a redundant upstream physical network.

The virtual network should be capable of handling traffic for Management, vMotion, Fault
Tolerance (FT), and iSCSI storage. It also needs to be able to pass along traffic for three
different types of workloads: Web Servers on VLAN 100, Application Servers on VLAN
110, and Database Servers on VLAN 120.

177Distributed vSwitch Design

NOTE

Yes, we’re throwing you a little curve ball with the iSCSI Storage requirement. We hope
this will showcase any differences between creating a VMkernel port for NFS versus iSCSI.
Both NFS and iSCSI are covered in greater detail later in Chapter 14, “iSCSI General Use
Cases,” and Chapter 16, “NFS General Use Cases.”

Naming Conventions
To start with, let’s come up with names for our various VMkernel ports:

 Management: Let’s go with simply “Management” this time around.

 vMotion: The name “vMotion” is simple and effective.

 Fault Tolerance Logging: Either “FT” or “Fault Tolerance” work well, but let’s go
for “Fault Tolerance” to make it as clear as possible for future administrators.

 iSCSI Storage: We’ll use “iSCSI Storage” to avoid any confusion, as this easily pro-
claims both the protocol (iSCSI) and the need to pass along storage traffic.

NOTE

You could also add networking and VLAN information to your VMkernel distributed port
group names, if desired. An example being “vMotion_192.168.205.x_V205”—just be careful
not to make the names too similar to your virtual machine distributed port group names. A
hurried administrator might add a VM’s network to a VMkernel distributed port group by
accident.

Just like last time, we did our homework on the various VLAN IDs and subnets used
for the various VM networks. We’ll keep the names the same, as there is no real need to
change up the naming convention just because it’s a different type of switch. A name is a
just a name. Those names, again, are:

 Web Servers on VLAN 100: Web_192.168.100.x_V100

 Application Servers on VLAN 110: App_192.168.110.x_V110

 Database Servers on VLAN 120: DB_192.168.120.x_V120

178 CHAPTER 13 Distributed vSwitch Design

NOTE

As a reminder—you need to ensure that the VMkernel and VM VLANs exist on the
upstream network device to avoid any issues with upstream communications.

And finally, we need to come up with a name for the distributed vSwitch itself. You’ll find
that the creation wizard tends to call everything “DSwitch #” by default. We don’t really
see a reason to put the word “DSwitch” into your distributed vSwitch—that seems redun-
dant. It seems fair to just call it something fitting, like “Production_LAN.”

The next part of the design should focus on how we plan to provide quality of service for
the network traffic types.

Ensuring Quality of Service
There are a couple of different methods available for providing some sort of quality of ser-
vice in a virtual network plumbed with a distributed vSwitch. These options are Network
IO Control (NIOC) and priority tagging with IEEE standard 802.1p. We covered both of
these technologies in earlier chapters, but let’s review at a high level how each works and
how we can use them to our advantage.

Network IO Control
NIOC is a VMware technology used to weigh and limit outbound traffic types within
vSphere hosts participating in a distributed vSwitch. It uses share values assigned to
Network Resource Pools to provide a priority scheme for balancing traffic types. This is
similar to the use of shares with CPU and memory, just with network traffic. Shares only
become relevant in times of congestion and are dormant at any other time.

There are also limits available to put a hard cap on how much bandwidth can be consumed
by a specific Network Resource Pool. Limits are always active, no matter the level of con-
gestion, and therefore should be configured only when you have a complete understanding
and acceptance that you might be leaving perfectly good bandwidth unused. Also, note
that these limits apply only to traffic coming from VMs but have no affect traffic going
to VMs.

By combining the concepts of shares and limits, we can help the virtual network under-
stand which traffic should be granted more or less networking bandwidth. This ensures
that quality of service can be provided to our guest VMs.

179Ensuring Quality of Service

VMware comes with a set of NIOC default configuration values out of the box. Let’s
review the default pools and their default values for shares and limits:

 Management: Normal shares (50), Unlimited bandwidth

 vMotion: Normal shares (50), Unlimited bandwidth

 Fault Tolerance: Normal shares (50), Unlimited bandwidth

 iSCSI: Normal shares (50), Unlimited bandwidth

 NFS: Normal shares (50), Unlimited bandwidth

 Virtual Machines: High shares (100), Unlimited bandwidth

Figure 13.1 shows how the NIOC values look in the vSphere Web Client. Note that they
are listed under the Resource Allocation section of a distributed vSwitch.

Figure 13.1 Default NIOC values for a distributed vSwitch

Did you find the idea of giving VMs a high priority and leaving everything else at a nor-
mal priority surprising? Or how about the idea of giving every type of traffic an unlimited
amount of bandwidth? Let’s look at it this way—there’s no need to enforce limits or spe-
cial share values unless your use case calls for it. By giving nearly all traffic types a Normal
share value, we’re saying that everyone gets an even slice of the bandwidth pie. The only
exception is VMs, which can have a slice of pie that is roughly twice the size of anyone else
(100 shares for VMs versus 50 shares for anyone else).

180 CHAPTER 13 Distributed vSwitch Design

Share values only affect traffic flows during times of contention, and only for active traffic
types. Adding all of the above share sizes, we have 450 shares (50 + 50 + 50 + 50 +50 + 50
+ 100 + 50 = 450). And 50/450 is approximately 11%. So with the previously mentioned
limits, if every single traffic type were active and causing contention, the VMs have to
compete with each other over 22% of the bandwidth and the other traffic types each get
11%. It’s more likely that only a few types of traffic are active at the same time—meaning
only those active traffic types are used in calculating the bandwidth allocation. If you need
a refresher on NIOC, refer to the “Network I/O Control” section in Chapter 9.

There’s little need to change the default values for most environments. However, let’s
imagine that you are a bit squeamish about letting vMotion eat up your entire 10 Gb
network adapter. So for our environment, we’ll set a vMotion Traffic limit to 80% of an
uplink by capping it at 8 Gbps, or 8192 Mbps (8 Gbps x 1024 Mbps per Gigabit). This will
guarantee that vMotion will not hog all of an uplink. We’ll revisit this later after the dis-
tributed vSwitch has been created and we have access to NIOC.

REAL WORLD

As a rule, you do not need to limit vMotion to 8 Gbps in your environment. We’re just
showing that it’s something you can do if your requirements or comfort level warrant it.
vMotion loves to eat up the entire uplink if it thinks it can, which has caused us some head-
aches in the past.

Priority Tagging with 802.1p
Much like with a VLAN ID tag within an Ethernet frame, the idea behind 802.1p is to
insert a value into the Priority Code Point (PCP) field. This field is 3 bits long, allowing
for 8 possibilities (2 values per bit ^ 3 bits = 8 combinations). Priority ranges from 0 (the
lowest) to 7 (the highest). Within NIOC is the ability to set the priority tag for each type
of traffic, which is called the “QoS Priority Tag” within vSphere.

By default, NIOC does not set any values for the PCP field. You can edit any of the vari-
ous traffic types and add your own. Keep in mind that 802.1p tags apply to Ethernet
frames, not IP packets, and thus have some limitations on usefulness when they leave a
particular network segment.

REAL WORLD

There is no real IEEE standard behind 802.1p. The upstream physical network can ignore
the tags or process them however they desire. However, it is typical to treat Ethernet frames
tagged with high value PCP tags with higher priority. What we often find is that physical

181Ensuring Quality of Service

switches use Weighted Round Robin Scheduling (WRRS) with a buffer for each priority
level. High priority buffers get picked more often. Make sure to chat with your network
team and find out if they use 802.1p, agree on a value, and then move forward—don’t just
pick one all willy-nilly.

However, these tags can be useful when you wish to assign various levels of priority to
traffic within your Ethernet environment. You could, for example, give a higher weight to
your iSCSI storage traffic to help avoid congestion in the upstream physical networks.

We won’t be using 802.1p in our example here, but it’s important to know that it exists
and can be configured on each Network Resource Pool within NIOC. Additionally, one
neat feature with vSphere 5.5 is the ability to set the tag on a distributed port group with
a traffic filter. In this format, the tag is called the Class of Service (CoS) value. We go into
that a bit deeper in the next segment.

Differentiated Service Code Point
Another method of providing quality of service is by way of the Differentiated Service
Code Point (DSCP), a new feature available with vSphere 5.5. DSCP supports 64 different
tags (0 through 63) and is inserted into the IP packet rather than the Ethernet frame. This
allows the DSCP tag to provide a more end-to-end level of functionality throughout the
data center.

The DSCP tag is set within a traffic rule on a port group, as shown in Figure 13.2.

Figure 13.2 Defining a traffic rule with CoS and DSCP values

182 CHAPTER 13 Distributed vSwitch Design

The use of DSCP is pretty far out of scope for our particular use case, but again—you
should know it exists should you encounter a workload that can benefit from it.

Both CoS and DSCP are great examples of how the physical and virtual networks can
work together under a common set of rules. Both technologies help ensure that your criti-
cal workloads get the network priority required to meet business demand.

Creating the Distributed vSwitch
Unlike a standard vSwitch’s vSwitch0, there is no default distributed vSwitch created for
you at installation. You have to roll up your sleeves and make one yourself.

To begin, navigate to the network section of the vSphere Web Client and find the
 Chicago data center. You can then create a distributed vSwitch by way of a right click on
the data center or a trip to the Actions menu when the data center object is selected. The
first requirement is a name, as shown in Figure 13.3: Production_LAN.

Figure 13.3 Creating a distributed vSwitch named Production_LAN

Simple enough, right? Our next choice is a distributed vSwitch version. There are many to
choose from: 4.0, 4.1, 5.0, 5.1, and 5.5, as shown in Figure 13.4. Unless you have a legacy
environment that requires using a legacy version of the distributed vSwitch, go with 5.5.
And if you have an older existing distributed vSwitch, you can easily upgrade it to a higher
version, so long as it meets the requirements, without any downtime. Just keep in mind

183Creating the Distributed vSwitch

that there is no downgrade to an older version, and that upgrades to a newer version do
not happen automatically. Each version also shows off a few of the new features that were
included with that release.

Figure 13.4 Selecting Distributed Switch version 5.5

Now we’re prompted on a few specific quantities and features. Let’s review them:

 Number of uplinks: This value determines the maximum number of NIC ports that
any of this switch’s hosts can connect to this switch. And because our hosts only have
two network adapters, we’ll set the number of uplinks to 2. You can always increase
this value later if you need to.

 Network IO Control (NIOC): This is enabled by default, which is exactly what we
want. NIOC is one of the best things about a distributed vSwitch and was set to dis-
abled by default in past versions.

 Default port group: Keep this box checked so that we can automatically generate a
new port group.

 Port group name: Since the wizard is offering to make a port group for us, let’s go
ahead and have it create one for our Management traffic that we’ll need later on in
this chapter. Change the name to Management and put it aside for later.

As a result, your wizard should look like that shown in Figure 13.5.

184 CHAPTER 13 Distributed vSwitch Design

Figure 13.5 Editing the settings for our new distributed vSwitch

Congratulations, you just created a distributed vSwitch. The ticker-tape parade is on
its way. If you navigate to the Network view in the vSphere Web Client, your environ-
ment should have a VM Network and a Production_LAN network. Underneath the
 Production_LAN network will be two entities: a port group named Management and an
uplink group named Production_LAN-DVUplinks-##. Figure 13.6 shows an example of
what our environment looks like to compare with.

Figure 13.6 A view of the network for the Chicago data center

185Network Adapters

It should feel somewhat empty at this point. That’s because the switch is effectively doing
nothing right now, with only a very basic configuration. Let’s change that by configuring
the distributed vSwitch further and getting it ready for use.

Network Adapters
When we worked with a standard vSwitch, one of the first things you were asked to do
was look at the network adapters on vSwitch0 and make sure that both were added to the
switch. If you tried to do that with a distributed vSwitch, you would quickly find that it’s
not possible. That’s because it creates a relationship between a distributed uplink and a
host’s physical network adapter.

If you view the topology of the distributed vSwitch, you’ll see two lonely Uplinks in the
DVUplinks group on the right with zero NIC Adapters listed, as shown in Figure 13.7.

Figure 13.7 There are no uplinks added to the distributed vSwitch yet

Don’t worry, this is completely intentional and normal because we haven’t added any hosts
to the distributed vSwitch yet—remember, the distributed vSwitch is a vCenter construct,
and therefore hosts must join the switch. This is a bit different from standard vSwitches,
where we create them on each host individually. As each host is added, we’ll see the quan-
tity of uplinks change. We’ll also see the relationship created between a physical network
adapter on a host and the logical distributed uplink assignment.

Let’s move along to the port group creation sections and revisit the network adapters after
we’re finished adding hosts to the switch. You’ll then be able to easily spot the differences.

186 CHAPTER 13 Distributed vSwitch Design

Distributed Port Groups for Virtual Machines
We need to create three port groups for our VM traffic types: Web, Application, and
Database. The naming convention chosen earlier is:

 Web Servers on VLAN 100: Web_192.168.100.x_V100

 Application Servers on VLAN 110: App_192.168.110.x_V110

 Database Servers on VLAN 120: DB_192.168.120.x_V120

Let’s begin by creating the Web Servers VM distributed port group. To begin, make sure
you have the Production_LAN distributed vSwitch highlighted in the vSphere Web Client
and choose New Distributed Port Group from the Actions menu. Enter the name of the
distributed port group (see Figure 13.8) and click Next.

Figure 13.8 Creating the Web Server distributed port group

The next screen will require a number of settings to be filled out. We review them all here:

 Port binding: Although a much more important decision in prior versions, port bind-
ing has now become a trivial choice in almost all use cases. In particular, as long as
vCenter is running and the maximum number of switch ports hasn’t been reached,
static binding , the default choice, and the choice we recommend, ensures that every
VM on the port group is given a port on the switch regardless of its (the VM’s)
power state. Dynamic binding has been deprecated by VMware and plans to termi-
nate their support for it soon. In other words, don’t use it. Ephemeral binding (no
binding) offloads port state handling to each ESXi host. This is rather intensive on
the host and is only needed in corner cases where the vCenter server is offline.

187Distributed Port Groups for Virtual Machines

 Port allocation: Elastic binding, the default, is a great way to ensure your ports scale
and is recommended. It was introduced with vSphere 5.1 as a way to avoid having to
manually adjust port counts for a distributed port group or consume a greater quan-
tity of memory with a very large port count.

 Number of ports: Because elastic is enabled, the default value of 8 is just fine. You
could bump up this number if you absolutely hate the number 8 for some reason, but
there’s little reason to do so.

 Network resource pool: Leave as default during creation. When we visit the NIOC
settings, you’ll have the opportunity to create resource pools for individual VM dis-
tributed port groups.

 VLAN type: The VMs will need Virtual Switch Tagging (VST), meaning you will
need to select VLAN. If you were using External Switch Tagging (EST), the type
would be None, or if you were using Virtual Guest Tagging (VGT), the type would
be VLAN Trunking.

 VLAN ID: The Web Servers use VLAN 100, so enter 100.

 Advanced customization: Leave this unchecked. Rather than set up the policies on
a per-distributed port group basis, we’ll show you a trick to configure all of them
at once.

The end result should be a settings page similar to that shown in Figure 13.9.

Figure 13.9 Settings used for the Web Server distributed port group

188 CHAPTER 13 Distributed vSwitch Design

Make sure to repeat the process for the two remaining VM distributed port groups. When
completed, you should have a distributed vSwitch with five total port groups—three for
the VMs, one for management (that we are not using yet), and one for the DVUplinks, as
shown in Figure 13.10.

Figure 13.10 The distributed vSwitch now has all three VM distributed port groups

However, before we move on, it’s important to configure the teaming policy for all of the
VM port groups. Fortunately, the distributed vSwitch has some tools that make this pain-
less. We’ll walk through this process in the next section.

Load Based Teaming
We’re going to take advantage of load based teaming (LBT), called “Route based on phys-
ical NIC load” in vSphere, with the VM distributed port groups. This lets the distributed
vSwitch shift around VM ports from one uplink to another uplink in a congestion scenario
where one of the uplinks was over 75% utilization for at least 30 seconds.

REAL WORLD

As long as your VMs are running applications that are comfortable with having their port
moved around, we advise using LBT—although there are some legacy applications that
don’t take too kindly to having their port moved. You can easily find this out when you try
to vMotion such a workload to another host. What commonly “breaks” a VM is the process
of an upstream physical network device learning the MAC address location on a new port
by way of a Reverse ARP (RARP). Both LBT and vMotion take advantage of a RARP to
instruct the upstream network as to the new home of the VM.

189Distributed Port Groups for Virtual Machines

To begin the process of configuring LBT, first navigate to the Production_LAN distrib-
uted vSwitch and select Managed Distributed Port Groups from the Actions menu.
This allows you to manage multiple distributed port groups at one time. Because we only
want to modify the teaming policy, select the check box next to Teaming and Failover as
shown in Figure 13.11 and click Next.

Figure 13.11 Managing distributed port groups on the Production_LAN switch

A list of port groups will appear. Hold the Control key down on your keyboard and select
all three of the VM distributed port groups (see Figure 13.12). They will highlight in blue,
allowing you to click Next.

Figure 13.12 Select the 3 VM distributed port groups

190 CHAPTER 13 Distributed vSwitch Design

The next screen will allow you to set any of the teaming and failover policies desired for
those three VM distributed port groups. The only change we’re looking to make is to the
load balancing policy. Change it from Route ased on originating virtual port to Route
based on physical NIC load (see Figure 13.13) and click Next.

Figure 13.13 Changing the load balancing policy on the VM distributed port groups

That’s all there is to it—and you’ve now changed the teaming policy on three VM distrib-
uted port groups at once. This is a neat trick and is one of the many time-saving features
built into the distributed vSwitch.

At this point, all of the VM-specific work has been completed. It’s time to tackle the
VMkernel ports.

Distributed Port Groups for VMkernel Ports
VMkernel ports live inside of distributed port groups on the distributed vSwitch. In fact,
VMkernel ports can even coexist with VMs or one another on the same distributed port
group, although we don’t really advise making that your standard practice.

This means that we must go through another round of creating distributed port groups,
but this time for the VMkernel ports. There’s very little difference between the two pro-
cesses besides the names and the specific policies configured.

191Distributed Port Groups for VMkernel Ports

Thinking back to earlier, we know there are several distributed port groups necessary for
our VMkernel ports:

 Management: This was done earlier when we made the default distributed port
group named “Management.”

 vMotion

 Fault Tolerance

 iSCSI Storage

We’ll review each distributed port group needed for the environment and get them all
created, configured, and ready for use. As a reminder, here is a list of the VLANs used by
each VMkernel network that were outlined in Chapter 11, “Lab Scenario”:

 Management traffic: 10.20.0.0 /16 on VLAN 20

 vMotion traffic: 192.168.205.0 /24 on VLAN 205

 FT logging: 192.168.210.0 /24 on VLAN 210

 iSCSI traffic: 192.168.215.0 /24 on VLAN 215

Management
Even though this distributed port group was created earlier, we never did get the oppor-
tunity to set a VLAN ID for it. By default, it is set to the VLAN ID of “None” which will
not function for our environment. The ultimate goal is to move the vmk0 VMkernel port
that sits on vSwitch0 over to this Management distributed port group, so we must make
sure that the distributed port group is configured properly for Management traffic to flow.
We also need to adjust the distributed port group failover settings.

First, locate the Management distributed port group in the Production_LAN distributed
vSwitch and choose the Edit Settings function in the Actions menu. Select the VLAN
section and make the following changes, as shown in Figure 13.14:

 Change the VLAN type from “None” to “VLAN”

 Set the VLAN ID to “20”

192 CHAPTER 13 Distributed vSwitch Design

Figure 13.14 Setting the VLAN ID on the Management distributed port group

Great, now the distributed port group is on the correct VLAN needed for a management
VMkernel port. Next, change over to the “Teaming and Failover” section and make the
following changes (see Figure 13.15):

 Use the blue arrow button to move Uplink 2 down to the Standby uplinks section.

 Click OK.

Figure 13.15 Setting the failover order on the Management distributed port group

193Distributed Port Groups for VMkernel Ports

You’ve now properly configured the Management distributed port group to use Uplink 1
as an Active network adapter and Uplink 2 as a Standby network adapter.

NOTE

Leave the load balancing policy to Route based on originating virtual port—there is no value
in having it set to Route based on physical NIC load (LBT). There is only one Active uplink
available and LBT will not use Standby uplinks.

vMotion
The next distributed port group we’ll need is for vMotion. Select the Production_LAN
distributed vSwitch and choose New Distributed Port Group from the Actions menu.
Name the new distributed port group vMotion as shown in Figure 13.16, and click Next.

Figure 13.16 Creating the vMotion distributed port group

Next, we’ll configure the settings needed for the vMotion distributed port group. Leave all
the values as default, except for the following three:

 VLAN type: VLAN

 VLAN ID: 205

 Customize default policies configuration: Check the box.

194 CHAPTER 13 Distributed vSwitch Design

We’re checking the customize box so that you can see the alternative method for configur-
ing the teaming policy, for when you need to make one-off distributed port groups.

Keep clicking Next until you reach the Teaming and Failover policy settings. Make the
following change: Using the blue down arrow, drop Uplink 1 down to the Standby uplinks
section as shown in Figure 13.17.

Figure 13.17 Setting the teaming policy for the vMotion distributed port group

You can now click Next until you reach the end of the wizard. Click Finish to create the
vMotion distributed port group.

Fault Tolerance
The next distributed port group needed is for Fault Tolerance. Follow the same process
we went through for vMotion, with the following exceptions:

 Name: Fault Tolerance

 VLAN ID: 210

The end result should look like that shown in Figure 13.18.

195Distributed Port Groups for VMkernel Ports

Figure 13.18 Summary of the Fault Tolerance distributed port group policies

Don’t forget to set Uplink 1 as a Standby uplink for the Fault Tolerance distributed port
group.

iSCSI Storage
The final distributed port group we’re going to create is for iSCSI Storage network traf-
fic. This distributed port group will be responsible for making sure that any storage arrays
that use iSCSI are presented to the VM guests. Much like with our NFS Storage network
used on the standard vSwitch, the iSCSI Storage network is sensitive to latency and will be
Active on Uplink 1 and Standby on Uplink 2.

Start off by creating a new distributed port group named iSCSI Storage on VLAN 215.
For the failover order policy, make sure that Uplink 2 is moved down to the Standby
uplinks section, as shown in Figure 13.19.

This should look very similar to the failover configuration used on the Management net-
work. Let’s tie together all of the failover orders together in the next section to best under-
stand how traffic will flow to the pair of uplinks.

196 CHAPTER 13 Distributed vSwitch Design

Figure 13.19 The failover order policy configured on the iSCSI Storage distributed port group

VMkernel Failover Overview
Looking at the failover order for the various VMkernel ports, a pattern emerges. If you
look carefully at the active and standby use of each network adapter, you’ll find the follow-
ing to be true:

 Active use of vmnic0: Management Network and iSCSI Storage

 Active use of vmnic1: FT and vMotion

 Standby use of vmnic0: FT and vMotion

 Standby use of vmnic1: Management Network and iSCSI Storage

 Active use of both vmnic0 and vmnic1: VM port groups (Web, Application, and
Database Servers)

Figure 13.20 shows a visual way of looking at the failover settings.

We’ve basically divided up the two network adapters to handle the two types of traffic that
are very sensitive to latency or consume a lot of bandwidth: iSCSI Storage is sensitive to
latency, and vMotion consumes a lot of bandwidth. They will not use the same network
adapter as an uplink unless one of the uplinks fails.

197Distributed Port Groups for VMkernel Ports

iSCSI
Storage

vMotion

Management Virtual
Machines

Fault
Tolerance

vmnic0 vmnic1

Figure 13.20 Failover order for the distributed port groups

NOTE

The iSCSI design used in this chapter supports only a single path to the iSCSI storage array.
We’re doing this to show isolation methods within a vSwitch, but it’s typically wise to have
multiple paths to your storage array. If you need multiple paths to your iSCSI storage, it’s
worth referring to Chapter 14 and Chapter 15, “iSCSI Design and Configuration.”

We’ve now completed all of the preparation work necessary to fully configure the distrib-
uted vSwitch. Yours should look similar to that shown in Figure 13.21.

The vSphere hosts can now be added to the distributed vSwitch.

Figure 13.21 All of the distributed port groups have been created on the distributed vSwitch

198 CHAPTER 13 Distributed vSwitch Design

Adding vSphere Hosts
If you’re feeling a strange tingle, that’s because the moment has arrived to add vSphere
hosts to the distributed vSwitch. In our case, there is only one single cluster inside the
Chicago data center, making the choice of which hosts to add pretty easy. If you have
many different clusters in your data center, you can pick out the specific clusters of hosts
you wish to join the distributed vSwitch. It’s best to make sure that all hosts inside of a
vSphere cluster have access to the same distributed vSwitch, as otherwise you lose out on
the ability to vMotion across hosts because the source and destination hosts will not have
the same VM distributed port groups.

There are a few different methods of adding hosts to a distributed vSwitch:

 The kid gloves method: This is sometimes called “walking the host” into a distrib-
uted vSwitch and is commonly used for migrating existing hosts that are running
VMs without taking an outage. At a high level, this method involves stealing a single
network adapter from whatever existing vSwitch the host is using and adding it to the
new distributed vSwitch. We then migrate all the VMs and VMkernel ports over to
the distributed vSwitch. Finally, we steal the other network adapters and remove the
old vSwitch.

 The hammer method: This is a “move everything at once” option and is typically
used for new hosts that are not yet running VMs. Because these are brand new hosts,
moving them into a distributed vSwitch is somewhat trivial from a risk perspective.
There are no existing workloads running on the hosts to worry about breaking. As
such, we can migrate the network adapters and VMkernel ports over in one swoop.

We use the hammer method here, as there is only a single VM running in the Initech
Corp environment—the vCenter Server Appliance. Let’s kick off the wizard by selecting
the Production_LAN distributed vSwitch and choosing the Add and Manage Hosts
option from the Actions menu. Select the Add hosts radio button as shown in Figure
13.22 and click Next.

The next screen wants to know which hosts you wish to add. Click on the New hosts but-
ton with the green plus sign and choose both esx1 and esx2, as shown in Figure 13.23.
Click Next.

199Adding vSphere Hosts

Figure 13.22 Adding the hosts to the Production_LAN distributed vSwitch

Figure 13.23 Adding the esx1 and esx2 hosts to the distributed vSwitch

200 CHAPTER 13 Distributed vSwitch Design

The next screen requests information on the tasks you wish to perform. Because we’re
doing the hammer method and moving everything all at once, we choose the following
check boxes:

 Manage physical adapters: Establishes the relationship between distributed uplinks
and physical network adapters.

 Manage VMkernel adapters: Allows us to migrate the existing Management VMker-
nel port named vmk0 over to the distributed vSwitch.

 Migrate virtual machine networking: This is optional depending on whether you
have VMs in your environment. Because we’re running the vCenter Server Appli-
ance on one of the hosts, we need this checked.

Your screen should look like the one shown in Figure 13.24. Click Next.

Figure 13.24 The three tasks necessary to add hosts to the Production_LAN distributed vSwitch

Your first task is to create a relationship between the physical network adapters on the
hosts and the distributed uplinks on the distributed vSwitch. This mapping is used to build
a relationship between physical hardware and logical uplinks.

For both hosts, make the following change:

 Select vmnic0 and click the Assign uplink button. Choose Uplink 1.

 Select vmnic1 and click the Assign uplink button. Choose Uplink 2.

Review your results (see Figure 13.25) and click Next.

201Adding vSphere Hosts

Figure 13.25 Creating a relationship between physical network adapters and the distributed
uplinks

The next task is to migrate the Management Network VMkernel port, vmk0, over to the
Management distributed port group. The process is very similar to the previous task: For
each host, click on vmk0, click on the Assign port group button, and then choose the
Management distributed port group (see Figure 13.26). When completed, click Next.

Figure 13.26 Migrating the Management Network VMkernel ports over to the Management dis-
tributed port group

202 CHAPTER 13 Distributed vSwitch Design

REAL WORLD

It’s worth noting that you could also build any other VMkernel ports that you need while in
this screen using the New adapter button. You will need new VMkernel ports created for
vMotion, FT, and iSCSI Storage. However, if something goes wrong with the migration,
you will have wasted a fair bit of time building new adapters and most likely have to repeat
the work over again. We recommend just waiting until the migration is completed before
building new VMkernel ports.

Figure 13.27 will show you any impacts to services on the vSphere hosts, or more specifi-
cally, the iSCSI service. Since we’re not using VMkernel port binding for iSCSI and have
no iSCSI storage mapped to the hosts, both hosts should show an impact level of No
impact with a green checkmark. We cover iSCSI port binding in greater detail in Chap-
ter 14. You can click Next.

Figure 13.27 Analyzing the impact on host services from the network migration

The final task is to migrate any existing VMs off the standard vSwitch and onto the newly
minted distributed vSwitch. Click on any VMs in your environment, select the Assign
port group button, and then choose a destination network. In my case, I’m going to move
the vCenter Server Appliance over to my Application Servers network, as shown in Figure
13.28, and then click Next.

203Adding vSphere Hosts

Figure 13.28 Migrating the vCSA55 VM over to the App network

REAL WORLD

Don’t have any VMs to migrate over? Try creating a fake VM on the standard vSwitch
so you can migrate it over. Or, better yet, download a small Linux VM appliance off the
Internet and practice migrating it over to see what happens with performance and pings in
your lab or test environment. Practice makes perfect.

Click Finish to begin moving over all your vSphere hosts into the distributed vSwitch. If
you accidently caused an issue where your hosts are unable to talk to vCenter, the Rollback
feature introduced in vSphere 5.1 should automatically revert your networking configura-
tion back to the previous settings in about 30 seconds. At this point, the vSphere hosts are
now participating in the distributed vSwitch.

REAL WORLD

Always make sure you have out-of-band access to your vSphere hosts, just in case you
blow up the network to the point of needing ESXi Shell or Direct Console User Interface
(DCUI) access. It happens.

204 CHAPTER 13 Distributed vSwitch Design

Creating VMkernel Ports
It’s finally time to make the VMkernel ports for each vSphere host. There are three
VMkernel ports needed to satisfy the use case: vMotion, FT, and iSCSI Storage. Here is a
list of IP addresses we’ll be using on esx1:

 vMotion traffic: 192.168.205.1 /24 on VLAN 205

 FT logging: 192.168.210.1 /24 on VLAN 210

 iSCSI traffic: 192.168.215.1 /24 on VLAN 215

For the other host, esx2, replace all of the fourth octet values of 1 with a 2.

There are many different ways to add VMkernel ports to a host, but we’ll be using
a method that begins with the network view in the vSphere Web Client. Locate the
 Production_LAN distributed vSwitch and choose Add and Manage Hosts from the
Actions menu then choose the Manage host networking radio button, as shown in Fig-
ure 13.29, and click Next.

Figure 13.29 Using the Manage host networking feature to add VMkernel ports

In the host selection screen, use the Attach hosts button to select both of the vSphere
hosts, click Next, then choose Manage VMkernel adapters in the tasks screen—uncheck
all of the other check boxes, as shown in Figure 13.30.

205Adding vSphere Hosts

Figure 13.30 Manage VMkernel adapters to create new VMkernel ports

Select the vSphere host named esx1 and click the New adapter button (not shown). Use
the Browse button to find the vMotion distributed port group (see Figure 13.31), click
OK, and then click Next.

Figure 13.31 Adding a VMkernel port to the vMotion distributed port group

206 CHAPTER 13 Distributed vSwitch Design

In the Port properties screen (see Figure 13.32), select the vMotion traffic service and
click Next.

Figure 13.32 Select the vMotion traffic service

For the IPv4 settings page, choose the radio button for Use static IPv4 Settings and
enter the IPv4 address and subnet mask for the vMotion VMkernel port: 192.168.205.1
and 255.255.255.0 (see Figure 13.33). Click Next and then Finish.

Figure 13.33 Setting the IPv4 address and mask for the vMotion VMkernel port

207Adding vSphere Hosts

Repeat the process in this section for each VMkernel port required:

 Host esx1 Fault Tolerance: Fault Tolerance logging service, IPv4 address
192.168.210.1, subnet mask 255.255.255.0

 Host esx1 iSCSI Storage: No service, IPv4 address 192.168.215.1, subnet mask
255.255.255.0

 Host esx2 Fault Tolerance: Fault ToleranceFT logging service, IPv4 address
192.168.210.2, subnet mask 255.255.255.0

 Host esx2 iSCSI Storage: No service, IPv4 address 192.168.215.2, subnet mask
255.255.255.0

The end result will look like that shown in Figure 13.34.

Figure 13.34 The new VMkernel ports pending creation

When you’ve reviewed the new VMkernel ports and verified they look correct, click
through the wizard and choose Finish. It can take a little while to create that many
VMkernel ports, so patience is required. When completed, a long list of “Add virtual NIC’
tasks will show completed.

208 CHAPTER 13 Distributed vSwitch Design

Moving the vCenter Virtual Machine
When vCenter Server is running as a VM in the environment, additional considerations
must be made when attempting to migrate the underlying vSphere to a distributed
vSwitch. It is highly recommended to use the more delicate method of migration to “walk”
the VM over to the distributed switch in such a way that negates any network interrup-
tion. Oftentimes the hammer method ends up failing because vCenter attempts to move
the vCenter Server VM and the physical network adapters at the same time, which ends up
failing.

We review the steps here at a high level, and then perform a migration:

 Add the vSphere host running vCenter Server to the distributed vSwitch with a
single network adapter.

 Migrate the VMkernel ports and the vCenter Server VM over to the new distributed
vSwitch.

 Add any remaining network adapters to the distributed vSwitch.

 Remove the old standard vSwitch, if desired.

Let’s take it step by step in the Initech Corp environment. I’ve placed the vCenter Server
VM on esx1 and reverted it back to being on a standard vSwitch, as shown in Figure 13.35.

Figure 13.35 The vCenter Server VM using a standard vSwitch on host esx1

209Adding vSphere Hosts

Let’s begin by adding the vSphere host esx1 to the Production_LAN distributed vSwitch
and taking one of the network adapters away from the standard vSwitch. Switch to the
network view in the vSphere Web Client and choose Add and Manage Hosts from the
Actions menu, then click Next.

Select the host named esx1 and click Next again; then choose the task named Manage
physical adapters and uncheck the boxes next to any other tasks, as shown in Figure
13.36.

Figure 13.36 Select the Manage Physical Adapters task to begin with

When presented the network adapters for the vSphere host, map vmnic0 to Uplink 1 but
leave vmnic1 alone (see Figure 13.37). This is the first step in “walking” the host into a
distributed vSwitch.

Finish the wizard and let it complete changes to the vSphere host. The host has now
joined the distributed vSwitch with a single network adapter. You can now migrate the
VMkernel port and vCenter Server VM over to the distributed vSwitch.

210 CHAPTER 13 Distributed vSwitch Design

Figure 13.37 Migrate only vmnic0 into Uplink 1, but leave vmnic1 alone

Select the Production_LAN distributed vSwitch and choose the Add and Manage Hosts
option from the Actions menu, then choose the Manage host networking option and
click Next. Select the host named esx1 once again and click Next. This time, we’ll want
to choose the Manage VMkernel adapters and Migrate virtual machine networking
check boxes—uncheck the others (see Figure 13.38) and click Next.

Figure 13.38 This time we migrate the VMkernel ports and VM networks

211Adding vSphere Hosts

For the VMkernel network adapter task, select vmk0, which is on the Management Net-
work on vSwitch0, and assign it to the Management distributed port group (see Figure
13.39). Click Next and skip the impact analysis screen by clicking Next again.

Figure 13.39 Migrating the vmk0 VMkernel port to the distributed port group named
Management

The next task is to migrate VM networking. Select the vCenter Server VM and assign it to
the App Servers distributed port group (see Figure 13.40). Then click Next and Finish the
wizard to complete the migration.

You might lose connection to your vSphere Web Client for a moment, as the upstream
switches must receive notifications that the MAC address for your vCenter Server VM has
moved. The connection should restore itself after a few seconds and you’ll see the tasks
have completed successfully.

You can now go back through the wizard and assign the remaining network adapter,
vmnic1, to Uplink 2. Make sure to also go back and delete vSwitch0 if you do not plan on
using it further, satisfying your inner administrative OCD.

212 CHAPTER 13 Distributed vSwitch Design

Figure 13.40 Migrating the vCenter Server to the App Server distributed port group

Final Steps
Before moving on, there are a few tuning steps that are advantageous to walk through.
These provide some final tuning to your distributed vSwitch, along with some warm and
fuzzies that it has been configured properly.

Health Check
One final step that is very helpful with the distributed vSwitch involves the Health Check
feature. This checks the status of the configured VLANs, the MTU size, and any Teaming
and Failover policies. Before the introduction of Health Check, administrators would have
to resort to ping tests on each VLAN to ensure that the upstream physical network was
properly configured and plumbed into the virtual network. Since the feature is free and
available to use, might as well fire it up to make sure everything is configured properly.

It’s an incredibly easy feature to enable. Navigate to the vSphere Web Client and find the
Production_LAN distributed vSwitch. Click on the Actions menu, choose All vCenter
Actions and then Edit Health Check, as shown in Figure 13.41.

213Final Steps

Figure 13.41 Navigating to the Health Check feature

From here, click the Edit button and set both the VLAN and MTU and Teaming and
Failover options to Enabled, as shown in Figure 13.42; then click OK. You’ve now turned
on the Health Check feature for your distributed switch.

Figure 13.42 Enabling the Health Check settings

When the Health Checks are enabled, click on the Monitor tab and Health sub-tab to see
the Host member health status. It might take several minutes for the checks to complete
and the status entities to change from Unknown to another value like Up or Warning.

Let’s look at the VLAN results first to see if any trouble exists. Choose one of the hosts in
the list to view status details—in this case, we’re choosing to click on esx1 with the results
shown in Figure 13.43. Can you spot the issues?

214 CHAPTER 13 Distributed vSwitch Design

Figure 13.43 VLAN health status on host esx1

According to Health Check, three of our VLANs are not available on the upstream net-
work device—VLANs 100, 110, and 120. Those are the VM guest networks for Web,
Application, and Database Servers. If we had tried to place VMs into those distributed port
groups, they would have failed to communicate with the upstream network.

In this particular case, we purposefully removed some VLANs to show you a failure sce-
nario. Hopefully, you can see just how valuable it is to confirm that the upstream VLANs
exist prior to putting workloads on the distributed port groups. You can repeat the previ-
ous process to ensure the MTU values match from a host and upstream port perspective,
and if your teaming and failover policy is proper for the upstream device—this really just
plays into situations where a Link Aggregation Group (LAG) has been created and will
typically appear as “Normal” for any other configuration.

Network Discovery Protocol
Another option you can set revolves around the discovery protocol used to relate neigh-
bors in the virtual world to the physical world. We previously covered the two options:
Cisco Discovery Protocol (CDP) for Cisco equipment and Link Layer Discovery Protocol
(LLDP) for all other equipment. By default, a distributed vSwitch is configured for CDP
in Listen mode, meaning it will listen for CDP advertisements but not generate any adver-
tisements. You can change this from Listen mode to Both mode—meaning it will both
Listen and Advertise.

To make the change, click on the Production_LAN distributed vSwitch, open the
Actions menu, and choose Edit Settings. Click on the Advanced menu item to reveal the
discovery protocol configuration. Select the protocol that can be used in your environment
and change Operation to Both as shown in Figure 13.44.

215Other Design Considerations

Figure 13.44 Allowing the discovery protocol to listen and advertise

The end result of this change means that the physical network can understand who their
virtual neighbors are, which can be handy when either troubleshooting or making changes
to the environment. There are some companies that frown upon having this enabled in
some segments of the network—such as the DMZ—so ensure that you are cleared to
advertise to the network prior to making this change.

Other Design Considerations
For those looking to ride along the wave of more progressive network design, there are
design alternatives that we wanted to make you aware of.

Fully Automated Design
In this particular design, a combination of NIOC and LBT is used to allow the hypervisor
to completely control and move around traffic. It’s a bit like throwing all the network traf-
fic types into a big pot and letting automation handle the rest.

The teaming for all port groups would be configured to LBT with all network adapters
set to Active. In a congestion situation, NIOC would begin to enforce bandwidth controls
based on share values, and LBT would help move traffic from one adapter to another in
the case of single adapter congestion situations.

216 CHAPTER 13 Distributed vSwitch Design

This design sounds great in theory, but we’ve found that most environments choose not to
go forward with this design for one reason or another. Perhaps they don’t trust the mecha-
nisms to control traffic quickly enough—after all, LBT takes 30 seconds to begin moving
traffic—or they are just more comfortable with some form of uplink isolation.

Hybrid Automation Design
This design approach uses the best of both worlds, combining some manual uplink isola-
tion and some automated triggers with NIOC and LBT.

Oftentimes the vMotion network and/or the IP Storage network (be it iSCSI or NFS
 storage) are set to use explicit failover order, while the remaining networks are allowed to
use any uplink with NIOC and LBT controlling uplink and network congestion.

The teaming would look a bit like this:

 Active use of both vmnic0 and vmnic1 with LBT: VM port groups (Web, Application,
and Database Servers), Management Network, FT

 Active use of vmnic0: iSCSI Storage

 Active use of vmnic1: vMotion

 Standby use of vmnic0: vMotion

 Standby use of vmnic1: iSCSI Storage

Which Is Right?
Ultimately, your comfort level of the design is key. The design method we presented
throughout this chapter is widely accepted and tested, giving you confidence that it will
work for the majority of environments. However, it’s important to both be aware of and
understand that there are many different ways to cobble together your virtual networking
policies, with no one design being the “right” one. If it works, and works well, be satisfied.

Summary

Having gone through a full distributed vSwitch design and implementation, you should
now have a pretty good idea as to the level of effort and planning necessary to create a suc-
cessful virtual network. Compared to the standard vSwitch, there’s a lot more effort and
configuration potential with the distributed vSwitch during the initial setup period. How-
ever, once utilized, the distributed vSwitch will provide you with a large quantity of time
savings from an operational and administrative standpoint.

217Summary

Many decision points require collaboration with your networking team. Even if you have
a grand architecture in mind, you’ll often find that having an engaged networking team,
where communication flows frequently, to be a huge help. Ultimately, you cannot work in
a vacuum or else projects will not work as expected.

This page intentionally left blank

Chapter 14

iSCSI General Use Cases

Key Concepts
 Ensuring Quality of Service (QoS)

 iSCSI Initiators, Targets, and Names

 Challenge Handshake Authentication Protocol (CHAP)

 Software iSCSI Adapter

 Hardware iSCSI Adapters

 Network Port Binding

Introduction
One really neat thing about virtualization is that it touches upon so many different disci-
plines. Up to this point, we’ve focused heavily on physical and virtual networking concepts,
and applied them to example designs in a realistic data center. We’re not done yet—it’s
time to get your hands dirty with some storage-related work. Or at least storage as it
relates to virtual networking.

The goal of this chapter is to introduce you to the design choices involved when consum-
ing storage for your vSphere hosts and virtual machines that rides on an Ethernet network.
Specifically, we’re going to cover the iSCSI protocol.

220 CHAPTER 14 iSCSI General Use Cases

Understanding iSCSI
So, what exactly is iSCSI ? It stands for Internet Small Computer System Interface . Fortu-
nately, no one actually ever says that, because it sounds awkward and takes a long time to
say. Let’s translate the meaning to “moving SCSI commands over an Ethernet network”
to make life easier, because that’s what happens with iSCSI. A SCSI command, which is
pronounced “scuzzy” and used to read or write data to disk, is encapsulated inside of an IP
packet and fired off into an Ethernet network to travel toward a storage array and back.
The network mentioned could be one specifically for iSCSI traffic or your common LAN
used by servers for other types of traffic. In fact, that brings up a great point—how do we
make sure that the iSCSI packets reach their destination when there are periods of conges-
tion? After all, Ethernet loves to just drop traffic when congestion occurs, which is a very
bad thing with storage traffic.

Lossless Versus Best Effort Protocols
Ethernet is a best effort protocol, meaning it doesn’t guarantee delivery. That’s why we let
Transmission Control Protocol (TCP) handle session data—it can monitor the data traf-
fic and request a resend of any missing or dropped packets. The idea is that traffic put into
the Ethernet network is of a “best effort to get it there” quality. We try our best to make
sure it reaches its destination, but ultimately it’s no big deal for most traffic types to have a
few lost packets that are re-sent every once in a while.

Storage IO is much less tolerant of packet loss than most other traffic types. Imagine that
your server is trying to read a chunk of data on a storage array, but the network keeps los-
ing it. The server will continue to wait for the data chunk—this is called latency —while
most likely queuing up additional read requests. Suddenly, you have a bottleneck of read
requests on the server and it locks up, waiting to get data chunks off the storage array. If
the server has to wait long enough for the data chunk, the operating system may end up
crashing (or worse).

It is important, although not strictly required, to provide some sort of priority mechanism
for your iSCSI storage traffic. This leads us to the concept of Priority Flow Control.

Priority-Based Flow Control
We aren’t the first to notice a need for prioritizing iSCSI traffic. In fact, the IEEE
802.1Qbb standard outlines a method for allowing Ethernet to do flow control with
 Priority-based Flow Control (PFC).

The idea is simple, and we won’t go too far into the weeds on it. Imagine you have a busy
network filled with frames all zooming around going from place to place trying to reach

221Understanding iSCSI

their destinations. All of a sudden, a frame holding an iSCSI packet shows up on the net-
work. Using PFC, the iSCSI packet can be assigned a specific Class of Service (CoS) that
allows it to have a higher priority on the network. When congestion occurs, a switch is
able to pause other classes of traffic, such as people surfing the web for cat photos. The
iSCSI frame is given priority on the network and allowed to continue along, while some of
those cat photo frames are dropped.

Figure 14.1 shows an example of the default Quality of Service (QoS) configuration for
Cisco UCS, in which each Priority level is also assigned a CoS.

Figure 14.1 Default values for Cisco UCS QoS

Two priorities of traffic are enabled—best effort and fiber channel. In times of congestion,
UCS gives equal bandwidth weight to both traffic types (hence, the 50% value for both
traffic types). However, fiber channel does not allow packets to be dropped and has a CoS
of 3, which is higher than the “Any” set by best effort. You could take a similar approach
and configure iSCSI traffic with a similar priority schema as the fiber channel traffic by
guaranteeing it a higher CoS and making sure packets are not dropped.

REAL WORLD

For the most part, the creation of various CoSes and their priority in the network will be
the responsibility of whoever manages the physical network. It is advantageous, however, to
understand these concepts. There are other methods of controlling QoS, such as creating a
completely isolated iSCSI network or using rate limits, which exist on the other end of the
spectrum.

No matter which method you ultimately end up choosing for prioritizing the storage traf-
fic, it’s a good idea to create some level of isolation to curtain off the iSCSI network. We
dig into this concept with the use of VLANs for iSCSI.

222 CHAPTER 14 iSCSI General Use Cases

VLAN Isolation
There are multiple advantages to using a dedicated VLAN for your iSCSI storage traffic:

 It can potentially provide a security layer for containing and protecting your storage
traffic against unwanted attention through proper design and configuration.

 The VLAN can be created without a gateway, essentially making it non-routable.
This avoids worrying about other traffic types entering the iSCSI network, or having
the iSCSI packets somehow route into another network.

 A VLAN acts as a broadcast domain, eliminating unwanted chatter that would be
reviewed and dropped from the network adapters responsible for sending and receiv-
ing storage traffic.

Since there is really no charge for creating an additional VLAN, there is little reason not
to move forward with a dedicated iSCSI VLAN. Performance is king with storage, as
we’ve tried to emphasize repeatedly, and anything you can do to enhance performance
should be considered and reviewed for your design.

iSCSI with Jumbo Frames
Since we’re on the topic of performance, it’s definitely worth taking a look at the Maxi-
mum Transmission Unit (MTU) used for the iSCSI network. You might recall that the
default MTU value is 1,500 bytes for an Ethernet frame. This is effectively how much data
can be stuffed into a frame before it is considered full.

The default value of 1,500 bytes is perfectly fine and will operate without issue, but many
folks often wonder if increasing the MTU value will help with performance. Whenever
the MTU value is increased beyond the 1,500-byte point, the frame is considered a jumbo
frame.

NOTE

Most people you chat with are going to assume that a “jumbo frame” has an MTU value of
9,000 bytes. Strictly speaking, anything over 1,500 bytes is considered to be a jumbo. But
knowing that 9,000 is the de facto standard can help avoid confusion when talking with
other networking professionals.

The logic behind increasing the MTU to something like 9,000 bytes is that fewer frames
are required to send the same amount of data. For example, if you needed to send 9,000
bytes of data, it would take six regular-sized frames with an MTU of 1,500 bytes (1,500
bytes * 6 = 9,000 bytes). It would only take one jumbo frame with an MTU of 9,000 bytes.

223iSCSI Components

Thus, you have used five fewer frames, which is about 83% more efficient. Additionally,
the network adapter only had to create one iSCSI frame, meaning less work went into
packaging and sending the data. With all these positives, you would think everyone would
be turning on jumbo frames—so why don’t they?

In reality, jumbo frames are hard to implement for existing infrastructures. They require
ensuring that every single network device between your vSphere host and the storage
array support jumbo frames: adapters, switches, the array, and so on. For some environ-
ments, this is relatively simple, while others will have to tackle a swath of red tape, change
controls, and “it isn’t broke” arguments. And there are some situations where you’ll need
to set the MTU value for your physical network switches to be higher than the VMkernel
ports, such as 9,216 bytes (see Figure 14.2), due to additional overhead.

VMkernel
Port

Storage
Array

vSwitch

Network
Adapter

Access
Switch

Other
Switches

Access
Switch

MTU ≥ 9000

Figure 14.2 A complex network topology using jumbo frames

Unfortunately, we can’t make a clear recommendation either way on this one. It depends
heavily on your specific use case, network hardware, and company politics. Some folks
love jumbo frames, other people hate them. Countless masses have done study after study
showing minor improvements in performance with jumbo frames, while still others show
minor losses in performance. If you have a new environment where making the MTU
changes are relatively simple, there’s nothing stopping you from giving it a shot to see if it
works as advertised in your environment. In Chapter 15, “iSCSI Design and Configura-
tion,” we use jumbo frames just to give you a taste of the process.

Let’s move on to the guts of what comprises iSCSI.

iSCSI Components
The high-level components of iSCSI are relatively straightforward to learn: an iSCSI ini-
tiator, which lives on the vSphere host, requests storage from the iSCSI target. The two
exchange data over an iSCSI session. We go deeper into this in the next few sections.

224 CHAPTER 14 iSCSI General Use Cases

Initiators
Initiator is a fancy term to describe the host or device that is accessing the storage array.
In our case it’s a vSphere host, but it could also be just about any device that is capable of
speaking iSCSI. When you configure your vSphere host for iSCSI, you are configuring
the iSCSI initiator with a personality (name), IP information for the network, and perhaps
some security information.

iSCSI initiators are responsible for locating iSCSI targets, which creates a session for
exchanging SCSI commands over the IP network. You can see a few examples of some
iSCSI initiators in Figure 14.3.

Figure 14.3 A few examples of iSCSI initiators on a vSphere host

Targets
An iSCSI target is controlled by the storage device or storage array. The target is respon-
sible for maintaining the stored data and making it available to the initiator. The target
knows what data to make available because it has been associated with any number of
Logical Unit Numbers (LUNs) on the storage array, usually by way of a storage group
or some other vendor-specific name for a container of LUNs. The relationship between
a target and the presented LUNs is called masking —it’s how the storage administrator is
able to define what is presented to each specific host. Otherwise you’d see all devices on
the entire storage array, which wouldn’t be all that secure, would it?

Figure 14.4 shows a quick look at an iSCSI software adapter’s target list against a single
iSCSI server (storage array) named “nas1.glacier.local” on port 3260. Don’t worry; we
go much deeper into the concept of software and hardware iSCSI adapters in the “iSCSI
Adapters” section of this chapter.

225iSCSI Components

Figure 14.4 Targets discovered and in use with an iSCSI adapter

Notice how there are two buttons available—one for Dynamic Discovery and another for
Static Discovery? This allows you, the administrator in control, to determine how the ini-
tiator is made aware of the targets:

 Dynamic Discovery , also commonly referred to as “Send Targets” in VMware docu-
mentation, is a method in which the initiator simply asks the storage array for a list
of available targets. The storage array will then respond with a list of all the targets
that can be reached by the initiator. If you are using a large number of targets, or just
want the targets to automatically appear as they are created, dynamic discovery can
be quite handy.

 Static Discovery , also called static targets, works very similar to how it sounds. You
manually enter a list of targets that you wish to establish a session with. The list of
targets never changes unless an administrator goes in and adds or removes targets
from the list.

Both the initiator and target have a special naming format. There are a few different types
of names and methods used when naming iSCSI devices.

Naming
Warning—here’s where it gets a little confusing, so it may take you a few passes through
this segment and some hands-on time with iSCSI to really get it to stick. Let’s start with
the basics.

Every iSCSI device, no matter if it is an initiator or a target, has a name. This name is
called the IQN, which means iSCSI Qualified Name . It has a very odd format that looks
like this:

iqn.1998-01.com.vmware:esx1-12345678

226 CHAPTER 14 iSCSI General Use Cases

Weird, right? Let’s break that down in Table 14.1 to make it more human-readable.

Table 14.1 iSCSI Qualified Name (IQN) Structure

Field Purpose Example

Type Denotes the type of name. All IQNs begin with iqn. iqn

Date Denotes when the company (naming authority)
took possession of the name in a year-month
(YYYY-MM) format.

1998-01

Naming Authority Naming authority in reverse, the name of the
company (naming authority) that produced the
initiator or target.

com.vmware

Unique String This is the unique string field created by the
naming authority. For VMware vSphere, it’s the
name of the vSphere Host with a dash and random
characters—you can change it to something
more meaningful if you’d like (such as just the
hostname).

esx1-12345678

This structure is used for both sides of the equation—the initiator and the target. Let’s
break down a target name in a similar fashion to what we did with the initiator name
previously:

iqn.2000-01.com.synology:NAS1.PernixData

 The first part of the target name starts with iqn, telling us we’re dealing with an
iSCSI Qualified Name.

 Next, we can see the date that the company (naming authority) registered the name,
which was January 2000 in this case.

 The naming authority is com.synology, which is synology.com in reverse.

 The final portion, which is the unique string, indicates that the name of the storage
array is NAS1 and the target’s locally significant name is PernixData. Remember that
the target can put whatever it wants in this segment, so it will change depending on
the vendor and/or your specific configuration of the storage.

Knowing all the nitty-gritty about the IQN isn’t all that important for day-to-day opera-
tions, but we find it is good to know how the vendor is using the unique string portion and
how to read an IQN.

227iSCSI Components

There are also two other another naming formats that you might encounter, although
rarely:

 Extended Unique Identifier (EUI)

 T11 Network Address Authority (NAA)

Now that we know how the initiator and target talk to one another, let’s move onto ways
to secure the connection with authentication.

Security with CHAP
Even if the iSCSI Server (storage array) is limited to a specific VLAN, and you have made
that VLAN nonroutable and isolated, there is still a chance that some unwanted entity
could find a way to communicate with your server. In this case, some folks wish to secure
the connection between their vSphere environment and the iSCSI storage with one addi-
tional layer of authentication.

Rather than encrypting the traffic itself, VMware vSphere only supports the use of the
Challenge Handshake Authentication Protocol (CHAP) to secure iSCSI connections.
Either one or both sides of the exchange require a password, called the secret , in order to
establish an iSCSI session. And additionally, the password exchange occurs periodically
throughout the duration of the iSCSI session to prevent relay attacks. Also, a hash of the
password, rather than the password in clear text, is what actually gets exchanged.

There are two major methods you can employ with CHAP:

 Unidirectional CHAP: The target authenticates the initiator.

 Bidirectional CHAP: The target authenticates the initiator and the initiator authenti-
cates the target.

The choice of CHAP implementation largely depends on what your storage array supports
and what type of iSCSI network adapter you are using. Table 14.2 shows publicly pub-
lished support for the various CHAP security levels with VMware vSphere 5.5.

Table 14.2 CHAP Security Levels

Security Level Description Support

None No authentication. Software iSCSI

Dependent hardware iSCSI

Independent hardware iSCSI

228 CHAPTER 14 iSCSI General Use Cases

Security Level Description Support

Use unidirectional
CHAP if required by
target

The host prefers a non-CHAP
connection, but can use a CHAP
connection if required by the target.

Software iSCSI

Dependent hardware iSCSI

Use unidirectional
CHAP unless prohibited
by target

The host prefers CHAP, but can
use non-CHAP connections if the
target does not support CHAP.

Software iSCSI

Dependent hardware iSCSI

Independent hardware iSCSI

Use unidirectional
CHAP

The host requires successful CHAP
authentication. The connection fails
if CHAP negotiation fails.

Software iSCSI

Dependent hardware iSCSI

Independent hardware iSCSI

Use bidirectional CHAP The host and the target support
bidirectional CHAP.

Software iSCSI

Dependent hardware iSCSI

Managing and editing the authentication type for an iSCSI adapter is relatively straight-
forward. Select the network adapter and edit the Authentication method from the default
of None to whichever method you have determined is necessary in your environment. In
the example shown in Figure 14.5, Use unidirectional CHAP has been chosen. It’s good
to have a chat with your security team to find out if this is necessary since it can add an
extra dimension of complexity to your host and storage configuration.

Figure 14.5 Configuring CHAP on an iSCSI network adapter

233iSCSI Design

Figure 14.10 Adapter details from an independent hardware iSCSI adapter

NOTE

Many Converged Network Adapters (CNAs) or Universal CNAs (UCNAs) have the ability
to perform both standard Ethernet networking and iSCSI or Fiber Channel over Ethernet
(FCoE) functions—but not both iSCSI and FCoE at the same time. Just be on the lookout
for TOE versus full protocol offload. This applies to network adapters in both traditional
PCIe card format and blade server mezzanine card format.

iSCSI Design
Now that you are armed and dangerous with a solid understanding of iSCSI, its compo-
nents, and the various adapters, let’s shift into a design discussion. There are a few differ-
ent methods available to you for designing the virtual network for iSCSI, and you should
be aware of the benefits and drawbacks of each.

Because iSCSI uses the TCP/IP stack, it is reliant upon certain rules followed by the
vSphere host. One such rule is how routing table lookups are performed. Whenever you
are trying to reach a destination in a network, the vSphere host examines its routing table
to determine if it has a VMkernel port on the intended network.

NOTE

If you are using an independent hardware iSCSI adapter (iSCSI HBA), the routing table on
the vSphere host is no longer relevant. The iSCSI adapter handles all of the IP connectivity
without involving the host.

234 CHAPTER 14 iSCSI General Use Cases

For example, if your iSCSI server has an IP of 192.168.1.22 with a subnet mask of
255.255.255.0, then the destination network for all iSCSI traffic is 192.168.1.0 /24. If you
attempt to send iSCSI traffic to this network, the host will look through its routing table
to find a VMkernel port that is also in the 192.168.1.0 /24 network. It will also see if you
have manually created any static routes. If there are no matches, the host will be forced to
use the default gateway to reach your iSCSI server. Generally, that is not what you want to
happen.

REAL WORLD

Any time a VMkernel port on the destination network cannot be found, you’re entering
the realm of routed iSCSI. This means we are using routing to reach the destination, which
involves multiple networks and ultimately increased latency due to additional hops. Routed
iSCSI is nearly always a corner case and should be avoided unless absolutely necessary.

Knowing this, let’s discuss some design ramifications of the two methods available for
relating iSCSI traffic to physical network adapters.

NIC Teaming
The first design option is to use NIC teaming, which is something you should be reason-
ably familiar with from other traffic types like Management and VM Traffic. NIC teaming
dictates that we provide two or more network adapters and allow the teaming policy to
determine where to place the workload. It works great for VMs and some types of man-
agement traffic. Unfortunately, it’s not a very good way to handle iSCSI traffic.

To understand why, let’s go back to the routing table discussion from earlier. Let’s say
there is a VMkernel port, vmk1, named “iSCSI” that is operational and on the same subnet
as the iSCSI server. When iSCSI traffic wants to reach the iSCSI server, the host locates
the VMkernel port because the routing table tells the host that the “iSCSI” VMkernel port
is on the same subnet as our iSCSI server. However, the VMkernel port can only operate
on a single physical network adapter, even if multiple adapters are available, as shown in
Figure 14.11.

Therefore, all iSCSI traffic would use only vmnic0. The other network adapter, vmnic1,
would sit there idle unless vmnic0 failed—at which point vmnic1 would take over as the
active network adapter and vmk1 would point itself at vmnic1.

You might think that you can get around this issue by creating a second VMkernel port.
So you add a second VMkernel port, vmk2, and name it “iSCSI2” with an IP address
of 192.168.1.110. A diagram of this model is shown in Figure 14.12. Let’s see how that
would work.

236 CHAPTER 14 iSCSI General Use Cases

The routing table is unchanged. The host does not use multiple VMkernel ports to reach
the same network. In this case, vmk1 was the first entry in the routing table for the net-
work 192.168.1.0 / 24. It will remain in the routing table until that VMkernel port is either
removed or reconfigured to a different network.

Because of this behavior, standard NIC teaming is a rather poor choice for iSCSI storage.
Its only real advantage is the ability to do routed iSCSI traffic, which is not supported by
the other design method: network port binding.

Network Port Binding
The highly preferred method for doing iSCSI storage traffic with vSphere is network port
binding. This allows you to use a multipathing design to pass along iSCSI storage traffic.
There’s really no reason to avoid this design unless your use case strictly prohibits the abil-
ity to use switching, not routing, for your iSCSI storage network.

Network port binding requires a rather stringent configuration so that the host under-
stands exactly what you are trying to do. We can boil down the requirements to these
items:

 Every network adapter that will pass along iSCSI traffic has a single, unique
 VMkernel port for iSCSI traffic.

 Each VMkernel port cannot be used by more than one single network adapter.

There are two different ways you can build this relationship—a multiple vSwitch design
and a single vSwitch design. They are both equally effective and are ultimately driven by
the quantity and layout of your network adapters.

Multiple vSwitch Design
The multiple vSwitch design uses an entire vSwitch to isolate the VMkernel ports and net-
work adapters from one another. Each vSwitch will house a single iSCSI VMkernel port
and a single network adapter. Figure 14.13 shows the multiple vSwitch design.

Notice that the routing table is no longer shown? Because we’re using network port bind-
ing, the routing table is no longer the determining factor for which VMkernel port is used
for iSCSI traffic. The Path Selection Policy , or PSP, is now in charge of determining
which network adapter will send traffic. Using this approach, we have effectively mini-
mized the importance of the vSphere network configuration and are instead living in the
realm of storage.

239Boot from iSCSI

The major difference with the single vSwitch design is that it uses failover order to isolate
the VMkernel port onto a network adapter. Let’s review the failover order for the two
VMkernel ports:

 vmk1: Active on vmnic0, Unused on vmnic1

 vmk2: Active on vmnic1, Unused on vmnic0

NOTE

The design diagram assumes only two network adapters named vmnic0 and vmnic1. If you
have more adapters, make sure that all but one adapter is set to Unused for each VMkernel
port. It is very important to select Unused and not Standby for port binding; the wizard
does not allow a configuration where Standby has been chosen.

By setting this failover order, we’ve isolated each VMkernel port to a single network
adapter. If the Active network adapter fails, the VMkernel port will no longer remain
functional, which is the desired result. The PSP will cease using this dead path and shift
all traffic to the surviving paths. Additionally, assuming your vendor supports RR IO, you
can utilize two or more network adapters simultaneously, which can lead to an improved
quantity of throughput.

Boot from iSCSI
It can be somewhat annoying to have hard disks inside your vSphere server, especially at
scale. One potential solution to this is to avoid using local disks inside of the server and
instead boot from a LUN on your storage array. This is usually referred to as “Boot from
SAN” or BFS if you’re short on time. VMware has supported booting from SAN using the
iSCSI protocol since ESXi 4.1. This is supported even with the software iSCSI adapter.
But wait, you might ask—how do I boot from the SAN using a software iSCSI adapter
when the hypervisor isn’t installed yet?

The trick is to use a special type of network adapter that supports iSCSI Boot Firmware
Table (iBFT) . Think of this as a type of helper that knows the details necessary to find
the iSCSI server, connect to a target, and mount a LUN for booting. You can find over
200 supported network adapters in the Hardware Compatibility List (HCL) on VMware’s
website. Just make sure to set the “What are you looking for?” field to IO Devices,
the I/O Device Type to Network, and then look for the keyword iBFT, as shown in
Figure 14.15.

240 CHAPTER 14 iSCSI General Use Cases

Figure 14.15 A list of network adapters that support iBFT

The high level steps necessary to install ESXi using this method are:

 1. Boot up your server and press the vendor-required keystrokes to enter the configura-
tion of your network adapter.

 2. Configure the adapter with your iSCSI IP, mask, and target information.

 3. Save your configuration and restart the server, but do not enable the iSCSI boot.

 4. Present the VMware ESXi installation media to the server using an ISO, DVD, or
whatever method you prefer.

 5. While the server boots up, the network adapter will contact your storage target and
connect to the boot LUN.

 6. When prompted by the installation media, begin an install of ESXi to the iSCSI
boot LUN.

 7. Remove the ESXi installation media and restart.

 8. Reconfigure your network adapter to boot to iSCSI.

Keep in mind that the detailed steps vary depending on the type of hardware you select.

REAL WORLD

When creating a unique LUN for your server to boot from, try to make sure the host-
facing LUN ID (often called the Host ID) is 0. Almost all vendor hardware that has a boot
configuration will assume LUN 0 is the boot LUN, although we have run into a few that
look for some oddball number. Consider LUN 0 the de facto standard booting ID or read
the vendor documentation carefully. Additionally, we often like to make sure that only the

241Summary

boot LUN is presented to a host the first time you install the hypervisor onto it. After all,
you don’t want to accidently install ESXi to the wrong LUN, especially if it contains valid
data and is wiped by the install process!

There are many advantages to using a boot from SAN architecture:

 Hardware Upgrades: If you need to upgrade the ESXi server hardware, just remove
the server and plug in a new one, then reconfigure the network adapter—no hyper-
visor reinstall necessary.

 Hardware Mobility: The ESXi server can change personalities by changing boot
LUNs, such as a boot LUN for ESXi 5.1 production and a boot LUN for ESXi 5.5
to test the new features.

 Reduced Capital Expenses (CapEx): You’ve already purchased that big, redundant
storage array, and wish to use it for booting to save on a large quantity of hard drives
inside of your servers.

Do keep in mind that booting from SAN increases your vSphere host failure domain to
include your SAN and the storage array itself. If the SAN is unavailable, your hosts can no
longer boot, though running hosts should chug along fine as the hypervisor is loaded into
RAM. Usually, though, if the SAN is unavailable, you have bigger concerns.

NOTE

Let’s be clear. We’re not fans of booting from iSCSI—there are much better ways to do this,
such as stateless Auto Deploy. This doesn’t mean iSCSI boot can’t or shouldn’t be used, but
we view it as a lot of additional complexity added for something as trivial as the hypervisor,
which should be as stateless as possible anyway. Simplicity is the cornerstone of all great
designs.

Summary

Whew, what an adventure through the land of iSCSI. You should now be familiar with
all the components within the iSCSI stack, along with a foundational knowledge around
the architecture necessary to get iSCSI humming along. We also poked into the two
major design scenarios used with iSCSI networking. It’s time to apply all that newly
found knowledge! The next chapter focuses on the design and configuration steps needed
to create a real-world, working implementation of iSCSI networking to connect to an
iSCSI LUN.

This page intentionally left blank

Chapter 15

iSCSI Design and Configuration

Key Concepts
 iSCSI Network Address Scheme

 Network Port Binding

 iSCSI Server and Target Discovery

 CHAP Authentication

 Path Selection Policies

Introduction
It’s time for the fun part: getting your hands dirty with some iSCSI design and configura-
tion. This chapter focuses heavily on a real-world scenario involving the use of iSCSI to
map and present storage for your virtual workloads. Because it’s important to expose you
to as many variations as possible, our use case is going to include a lot of extra require-
ments that might not come up when and if you need to use iSCSI. It’s perfectly okay if you
don’t end up implementing some of the features we use here, such as CHAP, because it’s
ultimately your specific use case that determines what is implemented.

Without further ado, let’s get cracking.

244 CHAPTER 15 iSCSI Design and Confi guration

iSCSI Design
All great implementations stem from much time spent thinking about the overall design.
And all poor implementations skip the design step and go straight into clicking but-
tons. We hate poor implementations, so we start with the design for our scenario to kick
things off.

Use Case
The use case scenario plays out as follows:

Your boss at Initech Corp is looking to add storage to the virtual environment using
a new storage array. In order to keep costs down, he wants you to use the exist-
ing Ethernet network to attach the array instead of purchasing the infrastructure
required to implement a new fiber channel SAN. Additionally, many of your criti-
cal virtual workloads require block-based storage—meaning they must be able to
directly manipulate the blocks inside of a volume or LUN—to meet software support
requirements. Reviewing the options with various storage array vendor specification
sheets, you realize that the only option you have is to implement the iSCSI protocol.

The iSCSI storage design needs to be able to handle a large quantity of storage traf-
fic during peak times. It also needs to be as secure as possible to meet the security
requirements set by your audit team.

There are a few nuggets of information that help feed a design based on the scenario:

 “Critical virtual workloads” are being supported, which most likely drive the need for
low latency and multiple paths to storage for redundancy.

 You must use the “Ethernet network” to reduce cost and support “block-based stor-
age” for workload software support—this is a constraint that limits the design to
iSCSI or Fiber Channel over Ethernet (FCoE). However, because your storage array
vendor supports only iSCSI, you are constrained to iSCSI.

 “Large quantity of storage traffic” might tip you in favor of using a large Maximum
Transmission Unit (MTU) value to be able to further saturate the Ethernet network
with iSCSI data.

 “Be as secure as possible” feeds many different requirements, such as the need for an
isolated iSCSI VLAN, not routing the iSCSI VLAN, and potentially using CHAP
for the initiator and target.

Not everyone will read the use case and come to the same conclusions, but it is impor-
tant to at least call out the requirements and constraints to determine what choices are

245iSCSI Design

available. For example, you might determine that having 10 Gb Ethernet is enough to
meet the “large quantity of storage traffic” requirement without using jumbo frames.

REAL WORLD

It’s hard to design in a bubble. When given a use case that is open ended, as this one is, it’s
best to talk out your thoughts on the design with your team and with other stakeholders in
the design. This ensures that you have buy-in from all parties who have an investment in the
success of your architecture, as well as other pairs of eyes to pick out any requirements or
constraints you might have missed. Lack of communication is often the root cause of many
design flaws.

Naming Conventions
We’re going to build upon the work completed in Chapter 13, “Distributed vSwitch
Design.” It doesn’t matter that we’re using a Distributed vSwitch, as the design is almost
identical for a Standard vSwitch: a Standard vSwitch requires building a VMkernel Net-
work Adapter directly on the vSwitch, where a Distributed vSwitch requires first building
a distributed port group and then a VMkernel port.

While much of the work has already been completed in the Distributed vSwitch chapter,
there are some changes that we’re going to make. This will modify the original design
from one that is not optimal into one that is superb.

First off, our vSphere hosts have only two network adapters—vmnic0 (Uplink 1) and
vmnic1 (Uplink 2). So we need two distributed port groups, one for each network adapter,
in order to use network port binding. We’ve decided to use vmnic0 for the “A” side of
iSCSI, and vmnic1 for the “B” side of iSCSI.

Thus, the names and failover order will look like:

 Distributed port group #1: iSCSI_A, Uplink 1 Active, Uplink 2 Unused

 Distributed port group #2: iSCSI_B, Uplink 2 Active, Uplink 1 Unused

Notice the naming structure? We’ve denoted that both distributed port groups will handle
iSCSI traffic and are using a common SAN-naming structure of “A” and “B” fabrics.

The next items we need to call out are the VMkernel ports. There’s an existing VMkernel
port, vmk3, on each host. However, we need two of them, one for each network port bind-
ing. Let’s verify and create the following:

 VMkernel Port #1: vmk3 for the “A” iSCSI network

 VMkernel Port #2: vmk4 for the “B” iSCSI network

247vSwitch Confi guration

We’ve drawn up a table containing the IP addresses for the first five hosts to help you visu-
alize how this works (see Table 15.2). The network address structure allows for 100 hosts,
which is okay because the storage array we’re using would wither under the IO stress long
before we exhausted the IP address list. If you need more addresses for your environment,
you could use a larger subnet or a unique subnet for each vSphere cluster.

Table 15.2 iSCSi IP Addresses for Initech Corp Hosts

Host iSCSI A Network Address iSCSI B Network Address

ESX1 192.168.215.1 192.168.215.101

ESX2 192.168.215.2 192.168.215.102

ESX3 192.168.215.3 192.168.215.103

ESX4 192.168.215.4 192.168.215.104

ESX5 192.168.215.5 192.168.215.105

This has an added bonus of making it easy to eyeball the IP address and know which host
is using it, because the last octet in the IP address is equal to the host name’s number. If
you have the ability to make the numbering scheme simple like this, go for it. But don’t
sweat it if the numbers don’t jibe, it’s not that terribly important.

The iSCSI Server address will be 192.168.215.254, which is the last IP address in the
range.

vSwitch Configuration
It’s time to build out our iSCSI network. We start by ensuring that all the needed distrib-
uted port groups have been created, followed by the VMkernel ports, and then we bind
them together using network port binding.

iSCSI Distributed Port Groups
Based on the design, we need two distributed port groups:

 Distributed port group #1: iSCSI_A

 Distributed port group #2: iSCSI_B

We already have one created named “iSCSI_Storage” that can be reconfigured. From
the vSphere Web Client, navigate to the Networking pane, select the iSCSI_Storage

249vSwitch Confi guration

There, iSCSI_A is now named and configured properly. It’s time to build the iSCSI_B dis-
tributed port group. Start by clicking on the Production_LAN Distributed vSwitch, open
the Actions menu, and choose New Distributed Port Group. When the wizard opens,
enter the name iSCSI_B as shown in Figure 15.4.

Figure 15.4 Creating the iSCSI_B distributed port group

In the configure settings screen, make sure to set the VLAN type to VLAN and enter the
VLAN being used for iSCSI—215. Also, check the box for Customize default policies
configuration, as shown in Figure 15.5, so that we can set the teaming and failover policy
in the wizard.

Figure 15.5 Configure settings for the iSCSI_B distributed port group

250 CHAPTER 15 iSCSI Design and Confi guration

Keep clicking Next until you arrive at the Teaming and Failover screen in the wizard.
Select Uplink 1 and click the blue down arrow until it is in the Unused uplinks group.
Make sure that Uplink 2 remains in the Active uplinks group, as shown in Figure 15.6.

Figure 15.6 Failover order for the iSCSI_B distributed port group

Complete the wizard with default values and click Finish. There should now be both an
iSCSI_A and iSCSI_B distributed port group.

NOTE

We’ve only made two distributed port groups because we only want to use two network
adapters. You can use more network adapters than just two if you wish, but the rules still
apply: Each VMkernel port can only have one active uplink. All other uplinks must be set to
Unused in order for the port binding wizard to complete successfully and build unique paths
to the iSCSI target.

VMkernel Ports
The next step is to create the necessary VMkernel ports for our iSCSI network. One
VMkernel port already exists, vmk3, and has the correct IP address. It should also be in
the iSCSI_A distributed port group, since that’s how it was configured in Chapter 13. This
leaves us with the new VMkernel port, vmk4, for the iSCSI_B distributed port group.

251vSwitch Confi guration

NOTE

There is nothing significant about the vmk number. It’s just a way we can track the
VMkernel port number for this walkthrough. Yours will most likely be a different number
from ours, and that’s perfectly fine. It’s wise to try and use the same vmk numbers on each
host to enforce consistency, improve identification, and assist troubleshooting, but not
required.

Let’s go ahead and create vmk4. Start by visiting the vSphere Web Client, navigate to the
Host and Clusters pane, and select host esx1. From there, click the Manage tab, choose
the Networking sub-tab, and click on the VMkernel adapters menu item. The list looks
like that shown in Figure 15.7.

Figure 15.7 A list of VMkernel adapters on host esx1

Click on the Add host networking icon, which looks like a small globe with a green plus
sign, and choose the VMkernel Network Adapter radio button, as shown in Figure 15.8.
Click Next.

252 CHAPTER 15 iSCSI Design and Confi guration

Figure 15.8 Adding a VMkernel network adapter to host esx1

In the select target device screen, choose the distributed port group named iSCSI_B, as
shown in Figure 15.9. Click Next until you reach the IPv4 Settings configuration page.

Figure 15.9 Put the new VMkernel network adapter on the iSCSI_B distributed port group

Enter the IPv4 address and subnet mask for the iSCSI_B network on host esx1. Refer to
Table 15.2 for the values, which we have put into Figure 15.10.

253vSwitch Confi guration

Figure 15.10 Configuring the new VMkernel network adapter on the iSCSI_B distributed
port group

Complete the wizard with default values and click Finish. The end result should be a
new VMkernel port, which is vmk4 for our environment, as shown in Figure 15.11.

Figure 15.11 Host esx1 now has both the iSCSI_A and iSCSI_B VMkernel ports added
and configured

254 CHAPTER 15 iSCSI Design and Confi guration

You need to repeat this section for the other host, esx2. Make sure to use the correct IP
address as described in Table 15.2. When completed, you can move on to the fun bit—
network port binding.

Network Port Binding
It’s now time to blur the lines between network and storage a bit. In order to create a
relationship between the VMkernel ports and the physical network adapters, we need to
enable the software iSCSI adapter . Think of it like the glue that binds the two together.

Start by opening the vSphere Web Client, navigating to the Hosts and Clusters pane, and
choosing host esx1. From there, click the Manage tab, the Storage sub-tab, and select
Storage Adapters from the list (see Figure 15.12). The software iSCSI adapter is missing
from the list.

Figure 15.12 A list of storage adapters on the esx1 host

Click the green plus sign button to add a new storage adapter, and select the software
iSCSI adapter. A warning appears stating:

A new software iSCSI adapter will be added to the list. After it has been added,
select the adapter and use the Adapter Details section to complete the configuration.

Click OK to continue. The host kicks off a task to create the new software iSCSI adapter.
When complete, the storage adapter list refreshes and a new adapter named iSCSI
Software Adapter appears. The adapter is automatically assigned an IQN and given
a vmhba value—this is an assignment provided by the vSphere host for any Host Bus

255vSwitch Confi guration

 Adapters (HBAs). Click on the iSCSI software adapter to view the properties, as shown in
Figure 15.13.

Figure 15.13 The new software iSCSI adapter on host esx1

Now, click on the Network Port Binding tab in the Adapter Details section. Because this
is a brand new adapter, the list is empty with a “No VMkernel network adapters are bound
to this iSCSI host bus adapter” statement. Let’s fix that. Start by clicking the green plus
sign to add a new binding, which begins a binding wizard, as shown in Figure 15.14.

Figure 15.14 Creating new bindings on the iSCSI software adapter

256 CHAPTER 15 iSCSI Design and Confi guration

This is a great figure to help pull all of the concepts of network port binding together.
Here, you can see the relationship between a distributed port group, the VMkernel
port, and the physical network adapter. Creating a port binding formally recognizes this
relationship.

Click on the first item on the list, which is the iSCSI_A port group, to get details. The
Port group policy on the Status tab should be Compliant in order to proceed. If so, click
the OK button, then repeat the process for the iSCSI_B port group. When finished, the
network port binding list shows two port groups bound, one for iSCSI_A and the other
for iSCSI_B, with a policy status of compliant and a path status of Not Used, as shown in
Figure 15.15.

Figure 15.15 A list of network port bindings on the software iSCSI adapter

The reason we see a path status of Not Used is because there are no iSCSI targets con-
nected. The paths are literally not being used by anything. This persists until we add stor-
age in the next section.

Jumbo Frames
This is a good point to take a breather and decide if you want to introduce jumbo frames
to the mix. It’s good to make up your mind now before you start consuming storage, as
it can be risky to change later when workloads are in production. We cover all the MTU
changes that need to be made on the virtual environment size, but remember that all the
devices between your ESXi server and the storage array must support jumbo frames in
order for this to work optimally.

257vSwitch Confi guration

In our use case, we have decided that the requirements justify the use of jumbo frames. We
have verified with our network team that jumbo frames have been enabled on all physical
devices between the hosts and the storage array. So, we need to edit the MTU size on the
following objects in the vSphere environment: the Production_LAN Distributed vSwitch
and both VMkernel ports. Navigate to the Networking pane in the vSphere Web Client
and click on the Production_LAN Distributed vSwitch. From there, open the Actions
menu and choose Edit Settings. Select the Advanced menu and change the MTU value
to 9,000, as shown in Figure 15.16, then click OK.

Figure 15.16 Setting the MTU to 9,000 on the Production_LAN Distributed vSwitch

The Distributed vSwitch should quickly configure itself to the new MTU value. You can
now navigate to the Hosts and Clusters pane in the vSphere Web Client, click on host
esx1, then find the Manage tab, Networking sub-tab, and the VMkernel adapters menu
item to view a list of all the VMkernel ports on the host.

Edit both the iSCSI VMkernel ports, which are vmk3 and vmk4 in this environment, by
changing the MTU value in the NIC settings menu as shown in Figure 15.17.

258 CHAPTER 15 iSCSI Design and Confi guration

Figure 15.17 Setting the MTU to 9,000 on the iSCSI VMkernel ports within host esx1

Repeat this process for host esx2, along with any other hosts you have in your environ-
ment. It’s now time to add an iSCSI storage array, find some targets, and mount storage.

Adding iSCSI Devices
Now that the entire iSCSI network is properly configured and operational, we can point
our iSCSI initiators toward some iSCSI targets and begin mounting storage. The Initech
Corp storage admin has already carved up several LUNs on the storage array and pre-
sented them to three different iSCSI targets: production, development, and engineering.

iSCSI Server and Targets
We’re going to connect to the array using dynamic discovery (send targets) to show you
how to map three different targets using a single iSCSI server IP. If you recall from earlier,
the storage array is located at 192.168.215.254 /24.

From the vSphere Web Client, navigate to the Hosts and Clusters pane, select host esx1,
click on the Manage tab, the Storage sub-tab, and the Storage Adapters menu item.
From there, click on the iSCSI Software Adapter, which is vmhba33 for Initech Corp,
and then click on the Targets menu in the adapter details bottom pane, as shown in
Figure 15.18.

259Adding iSCSI Devices

Figure 15.18 An empty list of targets for our iSCSI software adapter on host esx1

Click the Dynamic Discovery button, and then click Add. Enter the storage array’s IP
address into the iSCSI server field, and leave the port set to the default of 3260, as shown
in Figure 15.19. We’ll leave the “Inherit settings from parent” check box checked for now,
but we come back to the authentication settings later.

Figure 15.19 Configuring the iSCSI Server address

260 CHAPTER 15 iSCSI Design and Confi guration

Click OK to finish the wizard. At this point, a warning states that a rescan of the storage
adapter is recommended, including a yellow warning triangle next to vmhba33. Kick off
a rescan for the adapter by making sure that the iSCSI Software Adapter is selected and
clicking the rescan button, which looks like a grey box, as shown in Figure 15.20.

Figure 15.20 Rescanning the iSCSI Software Adapter for new storage devices

When the rescan is completed, check the list of targets for the iSCSI software adapter by
clicking the Static Discovery button. Figure 15.21 shows that the send targets method has
found three iSCSI targets for production, development, and engineering.

Figure 15.21 The iSCSI Server has revealed three unique iSCSI targets

Congratulations, we’ve successfully verified end-to-end connectivity of the iSCSI network.
Go ahead and do a celebration dance, unless you’re at work—your coworkers might not
appreciate your magnificent triumph to the same degree. In that case, find someone for a
high five.

261Adding iSCSI Devices

REAL WORLD

Why not just configure CHAP first? It’s often best to slowly walk your way into a new
configuration, and we prefer to save authentication for after we know that the network is
operational. Otherwise, if the connection were unsuccessful, you would not know whether
it was the network connectivity or the authentication causing problems. By making small
configuration changes that lead up to a final configuration, we ensure that each step was
successful.

Authentication with CHAP
It’s time to add a bit of security to the mix using CHAP. There are two ways that CHAP is
typically employed for an environment:

 Discovery Authentication: CHAP can be used by the iSCSI Server to protect the dis-
covery of targets via dynamic discovery (send targets).

 Target Authentication: CHAP can also be used to protect the iSCSI target, pre-
venting the initiator from being able to view the devices associated with a target.
In this case, you can discover the target itself but cannot view the devices without
authentication.

The security manager at Initech Corp has mandated that CHAP is only required on the
Production iSCSI target. This opens up a variety of options for CHAP configuration since
the authentication credentials can be configured in a variety of locations:

Configure CHAP on the iSCSI Software Adapter (vmbha33) and let the server and
target inherit the settings.

Configure CHAP on the iSCSI Server entry and let the target inherit the settings.

Configure CHAP on the iSCSI Target directly.

If you have different secret passwords for each target, you have to configure them directly
on the target. In this case, we configure the authentication credentials on the iSCSI server
object and let the target inherit the configuration.

To begin, open the vSphere Web Client and navigate to the Hosts and Clusters pane; then
select host esx1, click the Manage tab, the Storage sub-tab, and select Storage Adapters
from the menu. From there, click on the iSCSI Software Adapter vmhba33 and choose
Targets in the adapter details pane. Make sure the iSCSI Server 192.168.215.254:3260 is
selected and click Authentication, as shown in Figure 15.22.

262 CHAPTER 15 iSCSI Design and Confi guration

Figure 15.22 Configuring authentication on the iSCSI Server entry

In the Authentication Settings screen, change the authentication method from None
to Use Unidirectional CHAP if Required by Target and enter the name and
secret (see Figure 15.23). In our case, the name is swingline and the password is
 1weLoveREDStapl3rs!—this is a strong password. In a production environment, it’s best
to use a lengthy password that includes greater complexity to weed out brute force attacks.
When entered, click OK.

Figure 15.23 Entering the CHAP credentials

263Adding iSCSI Devices

Make sure to rescan your iSCSI Software Adapter and ensure that the new CHAP creden-
tials are working properly. If the configuration was successful, you should be able to see all
the devices associated with the target that required CHAP.

Click on the Devices tab to view all the LUNs available. In our case, each iSCSI target is
associated with a single LUN, which are outlined in Table 15.3.

Table 15.3 iSCSI Target and LUN Associations

iSCSI Target CHAP Required? Size

Production Yes 10 GB

Development No 9 GB

Engineering No 8 GB

Figure 15.24 shows a view of the devices (LUNs) from the vSphere Web Client.

Figure 15.24 Available LUNs through the iSCSI targets

Make sure to visit host esx2 and repeat the steps necessary to configure CHAP authentica-
tion. When completed, we’ll put the LUNs to good use and start creating datastores for
the VMs.

Creating VMFS Datastores
Because the devices, or LUNs, are now available to the hosts, they can be used as VMFS
datastores. The process for consuming iSCSI LUNs is identical to a local disk, fiber chan-
nel LUN, or any other block device.

From the vSphere Web Client, navigate to the Hosts and Clusters pane and select host
esx1. Open the Actions menu and choose New Datastore. Work through the first two
screens in the wizard, making sure that the host is esx1 and the type is VMFS, before you

264 CHAPTER 15 iSCSI Design and Confi guration

get to the name and device selection screen. You should see the three available LUNs as
potential choices, as shown in Figure 15.25.

Figure 15.25 Available LUNs through the iSCSI targets

We made it easy for you by making sure that no two LUNs were the same size. The 10
GB LUN must be the one for production because it is the only choice with a capacity of
10 GB. This is a handy trick for making it easier to find a LUN, but certainly not required.
You could also record the full name of the device or only connect one target at a time.

Enter a Datastore Name at the top—we’re going to use Production_01. Then select the
10 GB LUN from the device selection area. Continue through the wizard and accept the
remaining defaults. A task will begin to format the VMFS datastore. When completed,
click on the Related Objects tab followed by the Datastores sub-tab to see the new
datastore. You should be able to see the newly created Production_01 datastore, as shown
in Figure 15.26.

Figure 15.26 The datastores available on host esx1

265Adding iSCSI Devices

Congratulations, you now have an operational datastore mounted over the iSCSI protocol.
It’s slightly smaller than 10 GB due to some formatting and overhead data, but that is to
be expected. Continue adding datastores for the Development and Engineering depart-
ments, naming their datastores Development_01 and Engineering_01. The end result
should look like that shown in Figure 15.27.

Figure 15.27 All the iSCSI-presented LUNs are now formatted as VMFS datastores

There’s no need to repeat these steps for any of the other hosts. Rescan the iSCSI software
adapter on host esx2 and it will realize that it now has access to the new VMFS datastores.

If you recall from earlier, one of our requirements is to ensure that we allow for a large
quantity of throughput on the network adapters. One way to do this—assuming it is sup-
ported by your workload and storage array—is to use Round Robin for your Path Selec-
tion Policy (PSP).

Path Selection Policy
We’re going to change the PSP for the Production_01 datastore from Fixed, the default
for our particular storage array type, to Round Robin. To do this, we need to drill into the
multipathing policy configured on the datastore.

Open the vSphere Web Client and navigate to the Storage pane. Select the datastore
named Production_01 from the list; then click the Manage tab and the Settings sub-tab.
From there, pick the Connectivity and Multipathing menu item. You should see both
hosts, esx1 and esx2, in the list connections, as shown in Figure 15.28.

266 CHAPTER 15 iSCSI Design and Confi guration

Figure 15.28 The hosts connected to the Production_01 datastore

In order to edit the multipathing policy, you need to select host esx1 and choose the Edit
Multipathing option in the bottom pane. Change the PSP from Fixed (VMware) to
Round Robin (VMware). At this point, the paths will grey out because there is no need
to select a path (see Figure 15.29) —they will both be used in a Round Robin fashion. By
default, 1,000 IO will be sent down one path, then 1,000 IO down the next path, in an
alternating fashion.

Figure 15.29 Changing the default PSP from Fixed to Round Robin

Repeat the process for the other host, esx2. Now both hosts will use the Round Robin
PSP to send data to the storage array, which will use both network adapters. Keep in mind
that anytime you change the PSP for a LUN on a host, you must repeat that change for
all other hosts that access that same LUN. Otherwise, weird (and often bad) things might
happen.

267Summary

REAL WORLD

Exercise caution before you just go wildly changing the PSP for a datastore. Carefully verify
that all the VMs using the datastore support the new policy. For example, until vSphere 5.5
was released, Round Robin was not supported for LUNs mapped by raw device mappings
(RDMs) used with shared storage clustering (such as Microsoft SQL) failover clusters, also
referred to as MSCS or Microsoft Clustering Services). Additionally, make sure your storage
array vendor supports Round Robin. Failure to do so can result in an outage or data loss—or
an “oopsie” to use the technical term.

Summary

You should now feel confident about the process required to design and configure your
iSCSI SAN to include the virtual network. Using Ethernet to send and receive storage
traffic is not that labor-intensive to implement, but requires a lot of thought behind the
architecture. Data traffic is very sensitive to latency and lost packets, and requires that you
treat it with a very high priority on the network. By respecting this fact, you can success-
fully deploy iSCSI or any other IP-based storage protocol, as many others can attest.

This page intentionally left blank

Chapter 16

NFS General Use Cases

Key Concepts
 Network File System (NFS) Protocol

 NFS Exports and Daemons

 Access Control Lists (ACLs)

Introduction
Another IP based storage protocol that is supported by VMware vSphere is Network
File System (NFS). For long periods of time, it was shuffled off into a dark corner, being
branded as a protocol good for nothing more than mounting ISO files to virtual guests.
For the past several years, however, NFS has gained a lot of traction as a valid tool in
enterprise architecture for presenting storage to a VMware virtual infrastructure. It is a
protocol that is difficult to properly design for but very simple to operate and consume. In
this chapter, we go deep into the weeds on how to be successful with NFS from a network-
ing perspective.

Understanding NFS
The name “Network File System” tends to cause a lot of confusion, so let’s address that
first. NFS is a file system protocol, not a file system itself, and is only responsible for get-
ting data to and from a storage array. The storage array can run whatever file system it

270 CHAPTER 16 NFS General Use Cases

wishes. There is no such thing as formatting a partition with “NFS” because, again, it’s
just a protocol. Furthering the confusion, the disk type field in vSphere shows “NFS”
when connected via the NFS protocol. Just think of it as an abstraction of the storage
array’s underlying file system.

KEY TAKEAWAY

NFS is a file system protocol, not a file system.

NFS has traditionally been much more flexible than VMFS. For example, there is no
vSphere-imposed limitation on the size of a datastore—it’s up to the storage array to pro-
vide the limit. Additionally, NFS does not have LUN locking issues, as with block storage,
because locking occurs at the individual file level. Since a VM can only run on a single host
at any given time, having a lock on a file (such as a VM Disk [VMDK]) is acceptable.

Due to its incredible flexibility and access to large quantities of capacity, NFS became a
popular method for providing storage for things like ISO files, log files, and other non-
VM workload objects that have no serious performance needs. An administrator could
whip up an NFS configuration in a short period of time and easily share out very large
datastores to all the hosts in multiple clusters with ease. As lower-latency, priority-based
Ethernet networking technology became more affordable and powerful, NFS began to
gain some fame. The fact that the NFS client in ESX/ESXi has matured over the years has
also promoted NFS to an active role supporting more intense workloads.

REAL WORLD

To be clear, we’ve seen entire corporations run hundreds and thousands of production VMs
on NFS. In each case, NFS met the design use case and was architected to fulfill the require-
ments and constraints. There is nothing inherently better or worse about NFS. We just
want you to know that it’s a perfectly valid design option for many environments.

Lossless Versus Best Effort Protocols
In Chapter 14, “iSCSI General Use Cases,” we talk about ensuring priority for iSCSI stor-
age traffic. The same rules apply here. Both are forms of IP storage that use an Ethernet
network to pass along data. And Ethernet is a best effort protocol that is expected to drop
traffic from time to time. You can use methods like Priority-based Flow Control (PFC)
to configure Classes of Service (CoS) that avoid dropping NFS traffic during times of
congestion.

271Understanding NFS

VLAN Isolation
The same idea for VLAN isolation, which we also cover heavily in Chapter 14, is relevant
for NFS. If you plan to run both protocols to run VMs, it’s best to create unique VLANs
for each. This enhances security because no one breach will result in both networks being
compromised.

Additionally, having a unique VLAN for each traffic type aids in troubleshooting and any
environment changes. For example, if you need to do maintenance on the NFS VLAN,
it would most likely not affect the iSCSI VLAN, meaning you would only need to issue
a change control request for the NFS network. There are very few valid reasons to avoid
creating a dedicated VLAN for NFS, so it’s best to assume that you’ll need one.

NFS with Jumbo Frames
Jumbo frames, which allow frames with a payload size configured beyond 1,500 bytes, are
about as sticky of a subject with NFS as they are with iSCSI. Some people absolutely swear
by the idea of using jumbo frames, and others have been horribly scarred by the process or
see little to no benefit. It’s important to note that it can be an operational nightmare to try
and configure the end-to-end networking stack to support a Maximum Transmission Unit
(MTU) beyond the 1,500 byte default, as shown in Figure 16.1 with a value of 9,000.

VMkernel
Port

Storage
Array

Network
Adapters

vSwitch

Network
Adapter

Access
Switch

Other
Switches

Access
Switch

MTU ≥ 9000

Figure 16.1 A complex network topology using jumbo frames

If you are working with a brand new environment and can easily make changes to the net-
working components, both physical and virtual, the stress is significantly reduced. Having
an issue with a mismatched MTU value prior to going into production just means making
a few tweaks during the day. It is entirely different to try and get an outage or maintenance
window for a large quantity of production switching gear and arrange for the appropriate
staff to be on hand during a night or weekend.

272 CHAPTER 16 NFS General Use Cases

NFS Components
Before we get into the bits and pieces that make up NFS, we should clear up a few terms.
Connecting to storage via NFS is often referred to as consuming network-attached storage
(NAS) . Connecting to storage via iSCSI is referred to as accessing a storage area network
(SAN) . What’s the difference between NAS and SAN? NAS is file-based storage; SAN is
block-based storage. With NAS, something else is doing the heavy lifting of providing a
file system to the storage consumer, and the host manipulates files on that remote file sys-
tem. With SAN, the host is consuming raw chunks of disk and must build a file system on
top of them.

VMware supports NFS version 3. This is a rather old implementation that was solidified
back in 1995. It has aged gracefully, though, and supports the ability to provide a large
quantity of addressable storage. Let’s start by defining the various components of NFS.

Exports
A storage array that wishes to share out storage over NFS must create an export. Think
of it like sharing a folder or directory with the network in that you are making a container
available for others to consume storage space. In fact, the storage array (which often runs
a variant of Linux or UNIX) literally has a file called “exports” that lists out all the various
directories that are shared out, who can read them, and what permissions they have on the
directory. In some ways, the idea of an export is very similar to a target in the iSCSI world.
We’re defining which clients can connect, what the client can see, and what the client
can do.

Data in a file system lives inside a volume, which is similar to the LUN concept used with
block storage. A volume is a logical abstraction of disk—it could be the entire disk device,
such as an entire RAID-5 set, or just a portion of the disk. Volumes allow a storage array
to abstract physical disk configurations from the file system, granting additional control
over how files are isolated by the file system.

Adding it all together, the entire stack looks similar to Figure 16.2.

Daemons
In order to share, retrieve, and write data to the network, the storage array requires the
help of a daemon. Daemons are background services that do work for a Linux system
without requiring a person to activate or interact with them. If you’ve ever worked with a
Service in Windows, you already have a good idea of what a daemon is.

273NFS Components

Export

Directory
(Path)

Volume

Device

Disks

Layer

/Production 10.20.0.0/
255.255.0.0 (rw)

/Production

Volume 4

dev/sdc

RAID 5
d0,d1,d2,d3

Example

Figure 16.2 The various layers in sharing storage via an export

A storage array that implements NFS employs several different daemons to share out the
file system data over NFS. These are commonly:

 Rpc.nfsd: The main NFS daemon

 Rpc.lockd: A legacy daemon that handled file locking

 Rpc.statd: Used by rpc.lockd to implement lock recovery when the NFS server
machine crashes and reboots

 Rpc.mountd: Handles requests from a host to mount storage

 Rpc.rquotad: Provides quota information on the volume

While each storage array will add their own twist to NFS, the basic components do not
change—there is always an export for you to mount storage and daemons that are provid-
ing the storage.

Mount Points
Now that we’ve covered much of the storage array side of the equation, let’s focus on
the vSphere host. Every vSphere host has an NFS Client used to mount storage on an
NFS export. The NFS Client is visible in the Security Profile of each host and should be

274 CHAPTER 16 NFS General Use Cases

enabled if you plan to use NFS storage. Figure 16.3 shows an example from the vSphere
Web Client showing that the NFS Client has been enabled.

Figure 16.3 Enabling the NFS Client is required to use NFS storage

Very little information is required to mount an NFS datastore. The host just needs to know:

 What to call the datastore within vSphere

 The IP address or fully qualified domain name (FQDN) of the storage array

 The folder path (export) on the storage array

 Whether the NFS datastore should be mounted in read-only mode (optional)

All the remaining work is done by the underlying network configuration. As storage is
added to a host, some additional fun commands are available via the ESXi Shell:

 Examining the state of various NFS processes using the ps command, such
as ps -tgs | egrep -I '(wid|nfs)' to see the nfsRemountHandler and
 nfsLockFileUpdate processes. This can be handy if troubleshooting running pro-
cesses with VMware Support.

 Examining the status of various NFS mounts using the esxcfg-nas -l command.
We use this from time to time to see the status of various mounted storage exports.

Figure 16.4 shows both these commands in use.

275NFS Components

Figure 16.4 Examining NFS processes and mounts using ESXi Shell

Security with ACLs
Let’s imagine you had two exports: Production and Development. Production is needed to
be available for hosts in the 10.20.0.0/16 subnet, while Development is used by hosts in the
10.30.0.0/16 subnet. Both sets of hosts need to read and write to the NFS storage array. In
order to control access to the two exports, an Access Control List (ACL) is employed.

The exports file would look something like this:

 /Production 10.20.0.0/255.255.0.0 (rw)

 /Development 10.30.0.0/255.255.0.0 (rw)

Notice that we’re creating a relationship between a path on the file system and the hosts
that can use that path. The (rw) indicates that hosts are allowed to issue both reads and
writes, whereas (ro) would allow only reads (read-only). If you ever mount an NFS export
and cannot issue writes, one common point of troubleshooting is to check the permissions
of the export to ensure it is (rw).

Additionally, the type of user account accessing the export can also come into consider-
ation. The two major users are:

 Nobody or “NFSnobody”: This is very similar to a guest account and should be
avoided for vSphere hosts. You are typically allowed to mount NFS storage as
“Nobody” but unable to write files or perform any useful activities.

 Root: By using the no_root_squash parameter on an NFS export, we prevent the
export from assigning a host the Nobody level of access.

While it’s important to verify the proper way to configure NFS storage for VMware
vSphere with your storage array vendor, it almost always boils down to making sure of the
following:

 1. The export is properly assigned read-write (rw) permission.

 2. The export is set to no_root_squash.

276 CHAPTER 16 NFS General Use Cases

NOTE

vSphere likes to mount NFS with full permissions, and defaults to doing so using the “root”
user. NFS, by default, will “squash” root access to the exports unless the no_root_squash
parameter is included.

Network Adapters
There are no specific network adapters designed for NFS storage. This is different from
the concepts of dependent and independent hardware network adapters described in
Chapter 14 on iSCSI. As long as your network adapter is supported by VMware via the
Hardware Compatibility List (HCL), it will work with NFS.

With that said, there are definitely some advantages to using a network adapter that sup-
ports TCP Offload Engine (TOE) . These cards allow the TCP/IP stack to be offloaded
from the hypervisor and onto the network adapter, thus freeing up some valuable CPU
cycles. Keep in mind, however, that CPU is often the one resource that most VMware
environments have in abundance. Unless you’re worried about being CPU-constrained,
such as with a virtual business critical application (VBCA) or end user computing (EUC)
workloads, it’s often best to spend your budget on something other than a network adapter
with TOE.

REAL WORLD

TOE is included in many of the latest generation enterprise-grade network adapters, so you
might have little choice in deciding if you want it or not. Typically, the choice comes up for
those deciding on adapters in the midrange market. Most consumer grade network adapters
do not have TOE capabilities.

NFS Design
NFS is one of the harder protocols to design around if your goal is resiliency and perfor-
mance. This mainly stems from the fact that VMware only supports NFS version 3, which
has absolutely no ability to perform multipathing. This means that each NFS export you
mount storage to will always have just one active path to use for IO—period! This doesn’t
mean that you have a single point of failure—there can be many other passive paths set
aside in the event of failure, such as a dead switch or failed network adapter. But only one
path will ever be active. Parallel NFS, often just shortened to pNFS, is only available in
NFS version 4.1 or later.

278 CHAPTER 16 NFS General Use Cases

The NFS VMkernel port, vmk4, was configured with the IP 10.0.251.52/24, and the NFS
storage array has been configured with the IP 10.0.251.21/24. Whenever the host needs to
communicate with the NFS export, it first does a routing table lookup to see how to reach
the target array. Because vmk4 is on the 10.0.251.0/24 network, and is the first (and only)
VMkernel port on that network, it is selected as the VMkernel port used to transfer traffic.

In the event of a vmnic0 failure, the VMkernel port (vmk4) is migrated over to vmnic1 by
the host. Because both uplinks are marked active, there is no failback—vmnic1 will con-
tinue to be used by vmk4 until an administrator manually moves it back or until vmnic1
fails. This helps avoid the VMkernel port from being rapidly shifted around, which is
called flapping .

NOTE

Implementing load balancing by way of a Link Aggregation Group (LAG) on this pair of
NICs does not typically help since there is just one source IP and one target IP. Most
LAG-hashing algorithms would always put the traffic onto the same uplink anyway. No
point in increasing complexity for minimal return.

Let’s review the single network design:

 One NFS network and NFS VLAN

 One export on the storage array

 One IP address on the storage array

 One active path to the storage

Multiple Networks
Because each export can only have a single active path for IO, one way to introduce addi-
tional paths for active IO is simply to mount to multiple exports. Having a pair of unique
networks can make this possible. For this example, let’s use the previous existing NFS
network, 10.0.251.0/24, but also add in a new one using 10.0.252.0/24. We’ll also add on
another VMkernel port for the new network using the IP 10.0.252.52/24.

This will require a few changes on the storage array. It must be able to use multiple IP
addresses. This is commonly done using either a Virtual IP (VIP) address or Logical IP
(LIP) address, but could also be done by adding additional network adapters to the storage
array and assigning an IP address to the device. In our example, we give the NFS storage
array an IP for each network: 10.0.251.21/24 and 10.0.252.21/24.

280 CHAPTER 16 NFS General Use Cases

REAL WORLD

The multiple network design is still rather popular for hosts that use many different 1 Gb
connections to the network, as a single 1 Gb link has a reasonable potential for saturation
with storage traffic. Many designs we’ve seen call for using four 1 Gb connections with
two networks, which allows for full bandwidth availability even in a failure scenario of an
adapter, switch, or port. It’s often overkill to use this design for 10 Gb networks.

Let’s review the multiple network design:

 Two NFS networks and NFS VLANs

 Two exports on the storage array

 Two IP addresses on the storage array

 Two active storage paths

Link Aggregation Group
The final design allows for the use of a LAG. From a load distribution perspective, since
they use the same IP-hashing algorithm, the type of LAG, static or dynamic, can be con-
sidered irrelevant. However, in link failure situations, static LAG requires administrator
intervention where dynamic lag does not. And unless you’re running a vSphere version
prior to 5.1, which doesn’t support dynamic LAG, you’ll likely choose dynamic instead.

In the LAG design, the two uplinks are placed in a LAG on the upstream switch. The
VMkernel port is also set to a teaming policy of Route based on IP hash as shown in
 Figure 16.7.

Only a single VMkernel port is required on the vSphere host, but the storage array must
have two IP addresses on the NFS network. This is due to the requirement of using an IP
hash. If the source and destination IP address are always the same, the hash results will also
always be the same. The vSphere routing table will always use a single VMkernel port for
a single network, so it’s not possible to use different source IP addresses. Therefore, you
must introduce different destination IP addresses to the storage array for the hash results
to differ—we’re going to use 10.0.251.20 and 10.0.251.21. It’s also critical that the two
storage array IP addresses have unique least significant bits.

281NFS Design

Figure 16.7 The Route Based on IP Hash teaming policy is used for a LAG

UNDERSTANDING THE LEAST SIGNIFICANT BIT

The last bit in an IP address is known as the Least Significant Bit or LSB. When doing an IP
hash, the LSB is used to determine which uplink is used for traffic. If two IP addresses have
identical LSBs, the hash results are the same—and therefore the same uplink will be chosen.

In our example, we have used 10.0.251.20 and 10.0.251.21. Look at the binary values of
each:

10.0.251.20: 00001010 00000000 11111011 00010100

10.0.251.21: 00001010 00000000 11111011 00010101

Notice how the first binary address ends with a 0, and the second address ends with a 1.
These are different, and thus the IP hash results will be different.

The LAG design also requires using multiple mount points—one mount for each of the
storage array’s unique IP addresses. Figure 16.8 shows the overall design.

283Summary

Let’s review the LAG network design:

 One NFS network and NFS VLAN

 Two exports on the storage array

 Two IP addresses on the storage array

 Two active storage paths

Summary

In this chapter, we walked through the various design considerations of NFS, including
the components necessary to make NFS operational. Although the NFS architecture does
not allow for true multipathing, we reviewed many ways to introduce additional active
paths to the design. The design that fits your environment will be highly dependent on
your use case and your array, and is often not applicable to another company’s environ-
ment. Over the course of the next chapter, we get some actual exposure to a real environ-
ment that is using NFS storage for running VMs.

This page intentionally left blank

Chapter 17

NFS Design and Configuration

Key Concepts
 NFS Network Address Scheme

 Naming a Standard vSwitch

 Mounting an NFS Datastore

Introduction
Now that the concepts of attaching NFS storage have been explored, we’re ready to begin
applying that shiny new knowledge into a working design and configuration. This chapter
focuses on implementing NFS storage in a new environment to meet a specific use case.
Because there are so many different ways to go about the configuration, we also hit on the
various decision points and alternative methods.

NFS Design
Every design should be crafted in order to meet a specific use case, working to satisfy
requirements, work within constraints, and mitigate risks. Creating a network for NFS
traffic is no different. Let’s begin by examining the use case.

286 CHAPTER 17 NFS Design and Confi guration

Use Case
The use case scenario will play out as follows:

Initech Corp has decided to open a new branch office in Portland, Oregon, for the
handful of sales staff that cover the western US territories. The company has pro-
vided three vSphere hosts running ESXi 5.5 Enterprise that were already gently used
at another location. The hosts will use four different 10 Gb network adapters across
two physical cards as uplinks to the physical network. All hosts and components are
listed in the VMware hardware compatibility list (HCL) for ESXi 5.5.

The IT manager at Initech Corp has mandated that the storage solution must be
cost-effective and re-use the existing Ethernet network. She has purchased a small
storage array capable of providing storage via the NFS protocol and provided a net-
work and VLAN for storage traffic. You’ve been tasked with making sure that all the
vSphere hosts have been properly configured to participate in the NFS network.

Let’s take a look at the use case to identify some key decision points:

 This is a new branch office. The design work completed in Chapter 12, “Standard
vSwitch Design,” which provided NFS storage at the Chicago data center, is no
longer a constraint.

 We’re using the Enterprise license, which does not allow for the creation of a
distributed vSwitch.

 There are four 10 Gb network adapters across two physical cards in each host. It
will make a great bit of sense to split up the adapters by function. We’re going to
take two network adapters for NFS storage and leave the remaining two for all other
functions: Management, vMotion, and Virtual Machine traffic.

The requirements seem straightforward, so let’s move on to providing naming
conventions.

Naming Conventions
Even though this is an entirely new office and vSphere cluster, there’s no need to start
from scratch on the naming conventions. In fact, using standardized names across geo-
graphically dispersed locations is a great thing—it makes the environments uniform and
easier to troubleshoot.

287NFS Design

Let’s start by focusing on virtual network components. We’re going to need a new stan-
dard vSwitch for our NFS network, which will give itself the default name of vSwitch#
(with # being the first available number). There’s really no need to use such a boring name
for a new switch, so let’s make the name Storage_Switch.

Additionally, we need a name for the VMkernel port. This particular design only requires
a single network for NFS traffic, and as such, we only need one VMkernel port. We could
easily call the VMkernel port “NFS”—but what about future growth? There might come
a day that more VMkernel ports and NFS networks are required. So, let’s make sure we
name the VMkernel port in a way that can be added to later and call the VMkernel port
“NFS_1.”

Network Addresses
The IT manager has already assigned an NFS network and VLAN:

 NFS Network: 10.0.251.0 /24.

 NFS VLAN: 251.

 The VLAN is nonroutable.

Knowing that the VLAN is nonroutable gives us a clue that there are no other IPs on the
network that have been taken for a default gateway, although it’s often best to confirm.
We’ll use the IP addresses shown in Table 17.1.

Table 17.1 NFS Network Addresses

Name Type IP Address

ESX0 vSphere Host 10.0.251.10

ESX1 vSphere Host 10.0.251.11

ESX2 vSphere Host 10.0.251.12

NFS-Storage Storage Array 10.0.251.20

The final topology will look like that shown in Figure 17.1.

289vSwitch Confi guration

Figure 17.2 Starting the SSH daemon on the first vSphere host

Find the SSH service and, if the daemon shows Stopped, make sure to select SSH and
click the Start button. It might take up to a minute for the SSH service to start and
become available.

You can now use an SSH client of your choice (such as PuTTY) to open a session to the
vSphere host. When connected, issue the following two commands:

 To create the new vSwitch: esxcli network vswitch standard
add -v Storage_Switch

 To verify the new vSwitch is created: esxcli network vswitch standard list

The results will look similar to the output shown in Figure 17.3.

Figure 17.3 Creating a new vSwitch named Storage_Switch

290 CHAPTER 17 NFS Design and Confi guration

Assuming you see your new Storage_Switch, you can now close the SSH connection and
stop the SSH service.

REAL WORLD

Get in the habit of tidying up any access changes you’ve made before moving on. It’s easy to
forget that you enabled SSH and get in trouble with the security team.

The new Storage_Switch is in need of your configuration expertise, as it is just a shell of a
vSwitch in its current state, naked and vulnerable (see Figure 17.4).

Figure 17.4 The new Storage_Switch is an empty shell

Repeat the steps in this section for the other hosts. Let’s get some network adapters added
and make the new vSwitch feel a little more useful.

Network Adapters
The design calls for using two uplinks, vmnic2 and vmnic3, on this new vSwitch. These
network adapters are on different physical cards, which prevent a single point of failure.
To add them, open the vSphere Web Client and navigate to the Hosts and Clusters pane.
Then, click on the Manage tab, the Networking sub-tab, and the Virtual switches menu
item. Find the Storage_Switch vSwitch in the virtual switches list and click the Manage
Physical Network Adapters button, which looks like a green card with a grey wrench.

Click the green plus sign to add network adapters. We’ve added both in the previous
 figure, vmnic2 and vmnic3, and have verified that they show a status of Connected without
any warnings or errors. Click OK to complete the wizard and verify the new switch con-
figuration. The vSwitch should now look more like that shown in Figure 17.6.

291vSwitch Confi guration

Figure 17.5 Adding network adapters to the Storage_Switch

Figure 17.6 Storage_Switch now has a pair of 10 Gb network adapters

Repeat the steps in this section for the other hosts. It’s now time to build out a new
VMkernel port for the NFS traffic network.

VMkernel Ports
It’s now necessary to create a VMkernel port on the same network and VLAN as the NFS
storage array. Open the vSphere Web Client and navigate to the Hosts and Clusters pane.
Then, click on the Manage tab, the Networking sub-tab, and the Virtual switches menu
item. Find the Storage_Switch vSwitch in the virtual switches list and click the Add host
networking icon with the little globe and green plus sign.

292 CHAPTER 17 NFS Design and Confi guration

When the wizard begins, select the VMkernel Network Adapter type and click Next as
shown in Figure 17.7.

Figure 17.7 Beginning the wizard to add a new VMkernel port

Make sure to choose the Storage_Switch as your target device and click Next again.
It’s now time to enter the port properties for this VMkernel port. Enter the following
information:

 Network label: NFS_1

 VLAN ID: 251

Leave the remaining items as the defaults shown in Figure 17.8.

Click Next to reach the IPv4 Settings page of the wizard. Enter the following:

 Use static IPv4 settings

 IPv4 address: 10.0.251.12 (because this is host ESX2)

 Subnet mask: 255.255.255.0

You can now click Next and Finish the wizard. Repeat the steps in this section for the
other hosts.

293vSwitch Confi guration

Figure 17.8 Entering the port policy information for NFS_1

Figure 17.9 Assigning IPv4 address information for NFS_1

REAL WORLD

Why not DHCP for the VMkernel port address? It’s rarely a good idea to create depen-
dencies for your storage network. If something were to happen to your DHCP server,
your host would be unable to receive an IPv4 address. Additionally, should the IP address
assigned by the DHCP server change, the NFS mount might fail due to a new IP outside of
the access control list (ACL) range. Stick to static IP addresses.

294 CHAPTER 17 NFS Design and Confi guration

The Storage_Switch should now look healthy and useful with a valid VMkernel port and
two active network adapters, as shown in Figure 17.10.

Figure 17.10 The completed and operational Storage_Switch

To celebrate this newfound success, let’s mount some NFS storage. This will ultimately
validate that the configuration is operational and also allow you to begin using the hosts.

Mounting NFS Storage
Open the vSphere Web Client and navigate to the Hosts and Clusters pane. Right click
on the host ESX2 and choose New Datastore to begin the NFS datastore mount process.
We begin by mounting the Production datastore, creatively named Production, as shown
in Figure 17.11.

Figure 17.11 Creating a new datastore over NFS

295Mounting NFS Storage

Enter the name Production and click Next. Choose NFS as your storage type and click
Next. Then enter the following configuration details (see Figure 17.12):

 Server: 10.0.251.20

 Folder: /volume1/Production

Figure 17.12 The Production NFS configuration details

Click Next and then Finish to complete the wizard. If all was successful, you should now
have a new datastore named Production added to host ESX2. To verify this, select host
ESX2 and then click on the Related Objects tab and Datastores sub-tab. You can see the
new Production datastore in Figure 17.13, along with some other NFS and VMFS data-
stores there were previously configured.

Figure 17.13 The Production NFS datastore is available for use

296 CHAPTER 17 NFS Design and Confi guration

At this point, you can repeat the steps performed in this section for the remaining hosts, or
use a very handy feature found in the vSphere Web Client to add the NFS datastore to all
your hosts.

Adding NFS datastores to each host individually was a painful truth of the past. It’s super
easy to globally create or add an NFS datastore with the vSphere Web Client (version 5.1
or better). Just right click on your vSphere Cluster and choose New Datastore. The
steps are almost identical to this section, except you also get the opportunity to select
which hosts should see the storage. As you can see in Figure 17.14, we chose to add the
NFS datastore to every host except ESX2 (because we already did that).

Figure 17.14 Mounting an NFS datastore to many hosts in a cluster

That’s it—you’re now ready to start creating VMs on the fancy new NFS datastore.

Summary

In this chapter, we went over an example use case that involved a branch office desiring
to consume storage via NFS. Although many different constraints were imposed upon us,
such as a lower tier of vSphere licensing, we managed to design a very simple and powerful
network for NFS traffic. The design would easily work in a 1 Gb network adapter environ-
ment without any changes, with the second uplink being available in case of a failure.

Chapter 18

Additional vSwitch Design
Scenarios

Key Concepts
 Gather Requirements

 Design Options

 Use Case

 Hardware Redundancy

 Fault Isolation

Introduction
Back in Chapters 12, “Standard vSwitch Design,” and 13, “Distributed vSwitch Design,”
we walked you through a virtual network design exercise for a server with two 10-Gigabit
Ethernet (Gb) NICs. This is the most common configuration we run into, but we recog-
nize that there are many other adapter combinations that are out there, and some might
be more relevant to you. In this chapter, we go through options for configuring virtual
networks with 2, 4, 6, and 8 network adapters, including options for use cases with and
without Ethernet-based storage. Here, we focus on the logical configuration. The detailed
step-by-step instruction offered in Chapters 12 and 13 can be referenced when it comes
time to actually build the vSwitches.

298 CHAPTER 18 Additional vSwitch Design Scenarios

Use Case
As we did earlier, we start with a snappy company overview, for color. Vandelay Industries
is embarking upon a virtualization project. They are considering two possible hardware
configurations: blade servers with two converged networking adapters or rack mount
servers with four built-in 1 Gb adapters. The former would involve an investment in
10 Gb infrastructure; the latter would allow them to use existing switch ports. The rack-
mount option also gives them the option of adding additional NICs for more capacity
and redundancy. Vandelay has not ruled out a hybrid approach—they might have 10 Gb
ports become available as part of another project and would like to see options for using
them. If they do add extra NICs, they expect to add two dual-port adapters for up to four
additional 1 Gb or 10 Gb ports. They have stressed “up to,” as they might only cable one
uplink per adapter to reduce overall port consumption.

In short, they haven’t made any real decisions on the hosts’ network configuration. They
want to see every option available, and then make a decision. Sound familiar?

The virtual networking requirements are a little closer to ironed-out. The Vandelay design
must support a Management network, a vMotion network, and virtual machine (VM) traf-
fic for the three VM workloads we’ve come to know and love: Web servers on VLAN 100,
Application servers on VLAN 110, and Database servers on VLAN 120.

Storage connectivity is still up in the air. Their new array will support access via either
NFS or FiberChannel. If they go with the former, the hosts must support two additional
networks for NFS. If they go with the latter, the hosts will have a pair of FiberChannel
HBAs for storage connectivity, allowing us to avoid provisioning virtual storage networks.

Naming Standards
As before, we start with defining names for these networks:

 Management Traffic on VLAN 20: Management Network

 vMotion Traffic on VLAN 205: vMotion

 NFS Network #1 on VLAN 220: NFS_V220

 NFS Network #2 on VLAN 221: NFS_V221

 Web Servers on VLAN 100: Web_192.168.100.x_V100

 Application Servers on VLAN 110: App_192.168.110.x_V110

 Database Servers on VLAN 120: DB_192.168.120.x_V120

302 CHAPTER 18 Additional vSwitch Design Scenarios

Six Network Ports
Adding more network adapters gives us even more options. In the two- and four-uplink
scenarios, we used a single network controller, either a mezzanine card in the two-uplink
blade scenario, or an on-board network controller in the four-uplink rack-mount scenario.
These represent single points of failure. By this point in the book, we hope that we have
sufficiently beaten into you the idea that single points of failure should be avoided wher-
ever possible. Adding additional network adapters for this use case allows us to protect
some functions from these single points of failure.

SORT OF

In the rack-mount scenarios, the quad-port network controller is embedded into the system
board. Adding NICs can protect us from the effects of that particular bit of silicon failing,
but if a larger problem takes out the system board entirely, no number of extra NICs will
save you.

Figure 18.5 provides a logical depiction of how our vmnics will be distributed between
physical network adapters.

Onboard Quad-Port NIC

vmnic0

vmnic3

vmnic2

vmnic1

PCI-E Dual-Port NIC#1

vmnic4

vmnic5

PCI-E Dual-Port NIC#2

vmnic6

vmnic7

Figure 18.5 Sample vmnic placement

Your hardware might enumerate the vmnics differently, so creating a diagram like this
for your environment can be very helpful in designing the networking and avoiding single
points of failure.

303Six Network Ports

In six 1 Gb scenarios, we assume that two ports per adapter are cabled—vmnic0 and
vmnic1 on the onboard controller, vmnic4 and vmcni5 on NIC #1, and vmnic6 and vnic7
on NIC #2. In the four 1 Gb + 2 10 Gb scenarios, we assume all four on-board ports are
cabled, plus vmnic4 on NIC #1 and vmnic6 on NIC #2.

With Ethernet-based Storage—Six 1 Gb
With six available uplink ports spread across three discrete network adapters, we have
breathing room to allow each of our three major functions to get its own pair of ports.
Management and vMotion will share one pair, the two NFS networks will share another
pair, and VM connectivity will share a third. We will create a separate vSwitch for each
pair of uplinks, and ensure that the uplinks assigned to each vSwitch are not on the same
physical adapter, as shown in Figure 18.6.

vSwitch0

vmnic0

vmnic4

Management

vMotion

vSwitch1

vmnic6

NFS #1

NFS #2

vSwitch2

vmnic7

vmnic5
Virtual

Machines

vmnic1

Figure 18.6 A six-uplink vSwitch configuration, with Ethernet-based storage

304 CHAPTER 18 Additional vSwitch Design Scenarios

Without Ethernet-based Storage—Six 1 Gb
If Ethernet-based storage is not required, we can dedicate four uplinks to VM traffic.
Again, we will distribute vSwitch uplinks across physical adapters, as shown in Figure 18.7.

Management

vMotion
vSwitch0

vmnic0

vmnic4

Virtual
Machines

vmnic7

vSwitch1

vmnic5

vmnic6

vmnic1

Figure 18.7 A six-uplink vSwitch, configuration, without Ethernet-based storage

With Ethernet-based Storage—Four 1 Gb + Two 10 Gb
A split configuration mixing 1 Gb and 10 Gb interfaces is an interesting approach. You
might be asking, if I have two 10 Gb interfaces available, why not just ignore the 1 Gb
interfaces, and configure everything to just use those as described earlier in the chapter? In
most cases, that would be the way to go unless there are specific requirements for physical
separation. Let’s pretend Vandelay is insisting on physical separation between manage-
ment, storage, and VM traffic. In this case, you would need to determine which function
would benefit most from the 10 Gb ports. In Vandelay’s case, let’s say storage activity
is expected to be fairly low, but network access to VMs is expected to be fairly high. In
such a case, we would give the 10 Gb adapters to VM traffic, and carve up the on-board
ports into a pair for management and vMotion, and a pair for NFS. This is shown in
Figure 18.8.

305Six Network Ports

vSwitch0

vmnic0

vmnic4

Management

vMotion

vSwitch1

vmnic6

NFS #1

NFS #2

vSwitch2

10 GbE

vmnic7

vmnic5
Virtual

Machines

vmnic1

Figure 18.8 A six-uplink vSwitch, configuration, with Ethernet-based storage

Without Ethernet-based Storage—Four 1 Gb + Two 10 Gb
Removing the Ethernet-based storage requirement leaves us with two available ports, and
no obvious place to re-allocate them. We already have two 10 Gb interfaces allocated to
VM traffic, two more 1 Gb connections aren’t going to help a ton there, and mixing NICs
of different speeds in the same port group is frowned upon. If Vandelay had a requirement
to support VMs with differing connectivity requirements, such as DMZ VMs that needed
uplinks connected to another set of switches, those two available ports could be used for
that. That would look something like Figure 18.9.

DMZ NETWORK

A DMZ network is one isolated from the main network, usually for security or compliance
reasons. DMZ networks are typically run on separate physical switching infrastructures,
so trunking them with other internal VLANs is usually not possible. If VMs need to be
connected to these networks, the underlying ESXi hosts will need additional physical
NICs connected to the DMZ infrastructure.

306 CHAPTER 18 Additional vSwitch Design Scenarios

vSwitch0

vmnic0

vmnic4

Management

vMotion

vSwitch1

vmnic6

DMZ VMs

vSwitch2

10 GbE

vmnic7

vmnic5
Virtual

Machines

vmnic1

Figure 18.9 A six-uplink vSwitch configuration, with DMZ connectivity

Eight Network Adapters
Eight available uplink ports give us a good bit of breathing room. We should be able to
provide physical separation for every major function, but we’re contributing quite a bit
of cable sprawl in the process. We’re also reaching a point where we need to consider
whether the complexity of the solution might outweigh any benefits derived.

With Ethernet-based Storage—Eight 1 Gb
With eight uplinks, we can dedicate a pair of uplinks to Management/vMotion and a pair
of uplinks to IP storage, and the remaining four uplinks to VM guest traffic. All func-
tions can be spread across more than one physical adapter, ensuring no single points of
failure. Feels good, right? Just don’t look behind the rack. This configuration is shown in
Figure 18.10.

307Eight Network Adapters

Management

vMotion

NFS #1

NFS #2

Virtual
Machines

vSwitch0

vmnic0

vmnic4

vSwitch1

vmnic5

vmnic1

vmnic7

vSwitch2

vmnic6

vmnic3

vmnic2

Figure 18.10 An eight-uplink vSwitch configuration, with Ethernet-based storage

Without Ethernet-based Storage—Eight 1 Gb
If we don’t need the storage networks, we can either fold vmnic1 and vmnic5 into the VM
traffic vSwitch, or find some other use for them. We could use them for DMZ connec-
tivity, as shown in the previous section. Another option would be to configure them for
multi-NIC vMotion, as shown in Figure 18.11. Multi-NIC vMotion is discussed in detail
in Chapter 19, “Multi-NIC vMotion Architecture.”

308 CHAPTER 18 Additional vSwitch Design Scenarios

Management

vMotion #1

vMotion #2

vMotion #3

Virtual
Machines

vSwitch0

vmnic0

vmnic4

vSwitch1

vmnic5

vmnic1

vmnic7

vSwitch2

vmnic6

vmnic3

vmnic2

Figure 18.11 An eight-uplink vSwitch with multi-NIC vMotion

With Ethernet-based Storage—Four 1 Gb + Four 10 Gb
As before, if we have four 10 Gb interfaces available, you really need to consider whether
you need to bother with the 1 Gb ports. Absent a requirement to physically separate func-
tions, we would recommend using the two or four network adapter approaches, whichever
best fits the situation. But, if you really need the management network segregated, Figure
18.12 shows one way to do it. In this approach, we have used the on-board 1 Gb ports for
management and multi-NIC vMotion, and used the 10 Gb ports for storage and VM net-
works. The storage and VM vSwitches have their uplinks split between the two dual-port
10 Gb adapters.

309Eight Network Adapters

vSwitch0

vmnic0

vmnic1

Management

vMotion #1

vSwitch1

vmnic3

vmnic2 vMotion #2

vMotion #3

vSwitch2

vmnic6

vSwitch3

10 GbE

10 GbE

vmnic7

vmnic5
Virtual

Machines

vmnic4 NFS #1

NFS #2

Figure 18.12 An eight-uplink vSwitch, with Ethernet-based storage

Without Ethernet-based Storage—Four 1 Gb + Four 10 Gb
If storage networks are not needed, that frees up two 10 Gb ports that can either be added
to the VM traffic vSwitch or repurposed. Here, we’ve elected to use the 10 Gb ports for
blistering-fast multi-NIC vMotion, and re-use the 1 Gb ports for DMZ connectivity, as
shown in Figure 18.13.

310 CHAPTER 18 Additional vSwitch Design Scenarios

vSwitch0

vmnic0

vmnic1

Management

vMotion #1

DMZ VMs

vSwitch1

vmnic3

vmnic2

vMotion #2

vMotion #3
vSwitch2

vmnic6

vSwitch3

10 GbE

10 GbE

vmnic7

vmnic5
Production

VMs

vmnic4

Figure 18.13 An eight-uplink vSwitch configuration with multi-NIC vMotion and DMZ connectivity

Summary

In this chapter, we worked through a number of design options for building vSwitches
with varying numbers and types of uplinks. While we couldn’t possibly cover every combi-
nation of requirements and options, we hope we’ve covered a representative sample, allow-
ing you to apply the guidance here to the unique sets of circumstances you encounter in
your environments.

Chapter 19

Multi-NIC vMotion Architecture

Key Concepts
 Is Multi-NIC vMotion Right for You?

 Verifying Available Bandwidth

 Controlling Bandwidth Usage

Introduction
It would be difficult to overstate how big a deal vMotion is, and how important it was in
revolutionizing the world of x86 server virtualization. The ability to migrate the work-
ing state of a virtual machine (VM) from one physical server to another, without down-
time, was a game changer. We remember our first vMotions as something like a religious
experience.

It has been interesting to watch the acceptance of vMotion over time, as it has gained the
trust of various user communities—typically starting with development and test servers,
then less-critical production workloads, and all the way up to mission-critical applications.
In some cases, though, vMotion can begin to saturate its underlying network when used
with very large, critical workloads. To combat this, VMware introduced the ability to use
multiple network adapters for vMotion in vSphere 5.0.

312 CHAPTER 19 Multi-NIC vMotion Architecture

Multi-NIC vMotion Use Cases
The best designs are tailored to a use case with a set of requirements, constraints, and risks
to work against. Deciding to use multi-NIC vMotion is no different. Because it does add
an additional level of complexity to your environment, it’s best to know why you would
design and configure multi-NIC vMotion for your workloads.

In our experience, it really boils down to two different use cases:

 Large or High-Performance Workloads: Your critical workloads are large enough
that a single 1 Gb or 10 Gb link does not satisfy your requirements for vMotion.
Either the vMotion would take too long, affecting performance, or it would have dif-
ficulty keeping up with your workload’s memory write rate (an application that issues
a high volume of writes to memory).

 Host Maintenance: The VMs on your vSphere hosts are evacuated for maintenance
activities on a regular basis. A reduction in time waiting on vMotions would directly
benefit the operations staff handling maintenance such as firmware upgrades, kernel
patching, and hardware upkeep.

While we certainly won’t stop you from implementing multi-NIC vMotion for whatever
reason strikes your fancy, do know that there will be little if any benefit in doing so unless
either of those use cases applies. Just cranking up the juice on vMotion speed won’t make
much of a difference if your workloads are all relatively small, and if your hosts are rarely
taken offline for maintenance. We want to continue to stress our belief that simple designs
are better, and you can always come back and add this feature later if you truly need it.
That said, we move on from here assuming that you’re doing this for a good reason.

Design
Compared to some of the previous configuration chapters on iSCSI and NFS (see Part 3,
“You Got Your Storage in My Networking: IP Storage”), where we spent a large quantity
of time focusing on design, there’s considerably less to worry about with vMotion design.
This is mostly due to the nature of how VMware engineered vMotion, allowing it to func-
tion with complete awareness of the topology, and giving the vSphere host complete con-
trol over the traffic. A host is never surprised by vMotion traffic—it’s an expected event.

The first portion of the design revolves around the need to ensure there is enough band-
width available for vMotion to play nicely with other traffic types—Management, VMs, or
any IP Storage. If the virtual environment is saturated with network traffic, adding more
vMotion traffic will only cause problems. In most environments, however, the network is

313Design

largely idle, which allows for much of the unused bandwidth to be put to good use toward
vMotion.

Verifying Available Bandwidth
Answering the available bandwidth question is straightforward for an existing
 environment—you can examine the average and peak network usage by looking at the rel-
evant counters on the vCenter Server, VMware’s vCenter Operations Manager software,
or some other third-party tool. In brand new environments, this can get a little tricky—it
is best to work with your application teams to understand the required network perfor-
mance to gain insight and develop an educated guess on network requirements.

To view network traffic in the vSphere Web Client, follow these steps:

 1. Select a host.

 2. Click on the Monitor tab.

 3. Click on the Performance sub-tab.

 4. Select Advanced from the menu.

Change the View dropdown to Network and click on the Chart Options link to adjust the
time span. We’ve set it to one week for the example show in Figure 19.1.

Figure 19.1 Network traffic on host esx2

314 CHAPTER 19 Multi-NIC vMotion Architecture

This particular host, esx2.glacier.local, looks relatively idle (because it has been) and would
easily be able to handle increased vMotion traffic. You would then want to repeat this
exercise for any other hosts that would participate in multi-NIC vMotion.

NOTE

Although we show a week of time in this example, you might need to stretch your timeline
out to multiple weeks or months to get a good feel for your traffic patterns. Or, check
around to see if any of your colleagues are running a corporate network traffic monitor.

Controlling vMotion Traffic
Even though we’ve verified that there is unused bandwidth for vMotion to consume,
we still don’t want vMotion to go nuts and crush the host’s network adapters. Although
 vMotion doesn’t typically take that long to complete, it does try to squeeze every last drop
of bandwidth it can from a network adapter. Without proper controls in place, this could
adversely affect VM performance—and remember, VMs are first-class citizens in a virtual
infrastructure.

In a best-case scenario, you have dedicated 1 GbE or 10 GbE network adapters that are
used only for vMotion. In this scenario, there is no harm in letting vMotion run without
any controls because there are no other types of traffic on the network adapters. In reality
though, this scenario is extremely rare—most everyone we’ve met has to share network
adapters between vMotion and other types of traffic.

This leads us to the idea of using one of the following control methods:

 Standard vSwitch: Ingress traffic shaping only

 Distributed vSwitch: Ingress and egress traffic shaping

 Either type of vSwitch: Upstream physical switch control

Distributed vSwitch Design
When combined , Network IO Control (NIOC) and traffic shaping work great to control
vMotion traffic flows. If you need a refresher, refer to Chapter 9, “vSphere Distributed
Switch,” and read the “Network I/O Control” and “Traffic Shaping” sections. NIOC is
used to control the source of vMotion traffic, meaning the host that is currently running
the VM, while traffic shaping can be used to protect the destination for the vMotion traf-
fic, meaning the host where the VM is moving toward.

315Design

With NIOC enabled on a distributed vSwitch, any host looking to send a VM to another
host will be constrained by the configured network resource pool share values in times of
congestion or an admin defined limit.

Let’s use an example where an administrator has turned on NIOC and has kicked off a
vMotion task over a 10 Gb network adapter. The host has decided that due to current traf-
fic flow congestion and defined share values, it will only use 5 Gbps of bandwidth for the
vMotion. The destination host will receive traffic equal to about 5 Gbps. This example
could be equally valid if the administrator had defined a hard limit of 5 Gbps in NIOC.
Figure 19.2 shows this example scenario in detail.

Source Host
Sending 5 Gbps

vMotion VMkernel

Distributed vSwitch

VM VMVM

Destination Host
Sending 5 Gbps

vMotion VMkernel

VM

egress

vMotion Direction

ingress

Figure 19.2 vMotion traffic flowing from a source host to a destination host

For most environments, the flow we’ve described is typical. It could be that the Distrib-
uted Resource Scheduler (DRS) has decided to move a VM, or an administrator has manu-
ally executed the task. In some cases, it might be that an administrator has toggled the host
into maintenance mode, triggering DRS to evacuate the VMs to other hosts. But what if
we had a scenario where two source hosts were both sending VMs to a single destination
host as shown in Figure 19.3?

Because NIOC is only able to control ingress traffic—that is, traffic entering the Distrib-
uted vSwitch from a VMkernel that is destined for another host—the destination host is
being hammered with two vMotion traffic flows that consume nearly all of the 10 Gb net-
work adapter’s bandwidth. While this is definitely an edge case, it does illustrate a possible
congestion issue on the vMotion network.

316 CHAPTER 19 Multi-NIC vMotion Architecture

Source Host
Sending 5 Gbps

vMotion VMkernel

VM VMVM

Destination Host
Sending 10 Gbps

vMotion VMkernel

VMVM

egress

vMotion Direction

ingress

Source Host
Sending 5 Gbps

vMotion VMkernel

Distributed vSwitch

VM VMVM

ingress

Figure 19.3 Multiple source hosts sending vMotion traffic to a single destination host

Egress traffic shaping can be used to combat this scenario. In this case, egress is a flow out
of the Distributed vSwitch and into the vMotion VMkernel port, as shown in Figure 19.4.

Source Host
Sending 4 Gbps

vMotion VMkernel

VM VMVM

Destination Host
Sending 8 Gbps

vMotion VMkernel

VMVM

egress

vMotion Direction

ingress

Traffic Shaping Rule
Egress = 8 Gbps

Source Host
Sending 4 Gbps

vMotion VMkernel

Distributed vSwitch

VM VMVM

ingress

Figure 19.4 The traffic shaping egress rule limits vMotion to 8 Gbps

By creating an egress limitation of 8 Gbps on the vMotion port group (8 Gbps being an
arbitrary number that we chose for this example), we’ve effectively told vMotion that it’s
not allowed to use more than 8 Gbps on a single network adapter. An example of the con-
figuration is shown in Figure 19.5.

This is still much faster than having a single network adapter for vMotion, since two
adapters at 8 Gbps is a total of 16 Gbps of available vMotion bandwidth, or 60% more
than what a single network adapter could provide. You could also choose to raise the

317Design

egress traffic shaping limitation to a higher value for increased vMotion performance, such
as 9 Gbps or 9.5 Gbps. The point is that it is a good idea to impose some kind of limit to
ensure that other traffic is not starved during times when there might be many vMotions
 going on.

Figure 19.5 An example traffic shaping rule for a vMotion port group

Standard vSwitch Design
A Standard vSwitch is limited to controlling traffic via ingress traffic shaping. This allows
setting a hard limit on how much bandwidth a source host can send to a destination host.
There is no way to configure network resource pools to throttle vMotion traffic during
congestion, nor is there a way to use egress traffic shaping.

For these reasons, it’s a bit more tricky—but not impossible—to have solid control over
multi-NIC vMotion traffic with a Standard vSwitch. You could, for example, use either
dedicated network adapters and completely eliminate the issue, or in some cases, rely on
your upstream physical switches to properly throttle your vMotion traffic.

Upstream Physical Switch Design
In some scenarios, there’s a desire to completely remove bandwidth control from the
vSphere environment and stick it in the upstream switch. This can be beneficial if you
already have policies configured at this layer and it avoids the need to configure traffic
shaping in two places—the physical switch and the virtual switch.

318 CHAPTER 19 Multi-NIC vMotion Architecture

REAL WORLD

Control your vMotion traffic from either the physical switch or virtual switch, but not from
both. Having two control points to manage is complex and difficult to troubleshoot.

One common method of executing on this strategy in the converged infrastructure (blade
server) world is to present virtual NICs (vNICs) to your vSphere host. Each vNIC pre-
tends to have bandwidth equal to the physical network adapter, such as 10 Gb. You can
then apply control policies to the vNIC, such as bandwidth limitations and congestion
rules, so that it knows how to prioritize traffic flows. Ultimately, this process depends on
your hardware vendor’s ability to present and control traffic. However, those specifics are
beyond the scope of this book.

Configuring Multi-NIC vMotion
We’re going to walk through the configuration of multi-NIC vMotion using two network
adapters on a Distributed vSwitch. While you’re certainly welcome to use more than
that—up to the maximum configuration of four 10 Gb or sixteen 1 Gb with vSphere 5.1
and later—the process is the same for any number of adapters.

We’re going to assume that you have an operational Distributed vSwitch with two uplinks
on each vSphere host:

 dvUplink1 is mapped to vmnic0.

 dvUplink2 is mapped to vmnic1.

We’re also going to magically declare that vMotion will use VLAN 253 on the subnet
10.0.253.0 /24, which is not routable on our physical network—this prevents vMotion traf-
fic from trying to crossover to another network, and prevents other networks from enter-
ing the vMotion network.

Let’s review the various components necessary to get multi-NIC vMotion operational.

Distributed Port Groups
To begin with, we need two port groups specifically crafted for vMotion traffic. For sim-
plicity’s sake, let’s call the port groups vMotion-A and vMotion-B. Each vMotion port
group needs to be assigned to VLAN ID 253.

319Confi guring Multi-NIC vMotion

The port group failover policies should be configured as follows:

 vMotion-A: vmnic1 is Active; vmnic6 is Standby.

 vMotion-B: vmnic6 is Active; vmnic1 is Standby.

NOTE

Why did we choose to mark the second vmnic as Standby instead of Unused? All vMotion
VMkernel ports will attempt to communicate with the destination host VMkernel ports.
If one of the network adapters fails, the VMkernel port must be allowed to move over to
a Standby adapter. Otherwise, the VMkernel port will be unable to communicate on the
vMotion network and your vMotions will fail.

All other policies can remain at default value for now. Create the distributed port groups
using the same steps found in Chapter 13, “Distributed vSwitch Design.”

The end result is a port group that looks like Figure 19.6.

Figure 19.6 The vMotion-A port group configuration summary

Now we need to build out the vMotion VMkernel ports.

320 CHAPTER 19 Multi-NIC vMotion Architecture

VMkernel Ports
You need a unique vMotion VMkernel port for each network adapter you want vMotion
to utilize. Because we’re using two network adapters for multi-NIC vMotion, we need two
VMkernel ports and two unique IP addresses.

Both of the VMkernel ports need to use the vMotion network—which is 10.0.253.0 /24—
without conflicting with another IP on the network. We also strongly advise using a single
Layer 2 network for all vMotion VMkernel ports because you have no control over which
VMkernel port on the source host talks to any particular VMkernel port on the destina-
tion host. One easy way to avoid IP conflicts is to slice up the subnet into vMotion A and B
addresses; for example:

 The vMotion-A portion of the subnet will be 10.0.253.50 through 10.0.253.99.

 The vMotion-B portion of the subnet will be 10.0.253.150 through 10.0.253.199.

You are free to slice up your network however you wish, but we find it pleasing to have IP
addresses that end with similar digits (such as 50 and 150). For the first host we’re going to
configure, called esx1, we’ll use:

 vMotion-A: 10.0.253.51

 vMotion-B: 10.0.253.151

Create the vMotion VMkernel ports using the same steps found in Chapter 13. The end
result is a VMkernel port that looks like that shown in Figure 19.7.

Figure 19.7 The vMotion-A VMkernel port configuration summary

Repeat this section for all other hosts that need to participate in multi-NIC vMotion.
Congratulations, you now have an environment configured to use multiple network

321Confi guring Multi-NIC vMotion

adapters during a vMotion. If absolutely necessary, you can mix hosts configured for
multi-NIC vMotion with hosts that only have a single vMotion NIC—and it will work—
but it sort of defeats the purpose. We’d only really suggest doing this if you’re migrating
to a new environment or have some corner case that requires it.

To verify that both network adapters are participating in vMotion, migrate a VM from one
host to another and then check the “Maximum” network performance statistics on either
the source or destination host for both vmnics, as shown in Figure 19.8.

Figure 19.8 A stacked network statistics graph showing both vmnic1 and vmnic6 sending traffic

Both vmnic1 and vmni6, the two dvUplinks we chose to use for vMotion, show the correct
amount of maximum network activity simultaneously in the third network spike, which
peaks at 20 Gbps. It’s a bit easy to see this in a controlled environment with no other sig-
nificant workloads using the adapters and is mainly here to demonstrate a point and give
you the warm and fuzzies.

Traffic Shaping
As a final, optional step, we’ll configure traffic shaping for the two vMotion port groups.
Because earlier examples focused on using an 8 Gbps limit, we’ll configure that here. But
again, this is an optional step to help solve a corner case where multiple vSphere hosts are

322 CHAPTER 19 Multi-NIC vMotion Architecture

sending vMotion traffic to a single destination host. If your environment has little risk of
encountering this scenario, you can skip this configuration item.

On each of the two vMotion port groups, edit the policy settings and configure egress traf-
fic shaping as follows:

 Status: Enabled

 Average bandwidth (kbit/s): 8388608 (multiply 8 Gbit/s by 1024 to convert to
Mbit/s, then by 1024 again to convert to Kbit/s))

 Peak bandwidth (kbit/s): 8388608

 Burst size (KB): 1

The results are shown in Figure 19.9.

Figure 19.9 Egress traffic shaping configuration for the vMotion port group

Summary

vMotion is a superb technology that many businesses rely on for meeting workload
resource needs, maintenance activities, and data center migrations. Occasionally, a single
uplink no longer satisfies the requirements for a design, which evolved into the necessity
to use multiple uplinks. In this chapter, we explored the use cases for multi-NIC vMotion
and offered some considerations that should be made before implementing this feature.
We then walked through an example configuration and verification.

Appendix A

Networking for VMware
Administrators: The VMware
User Group

The VMware User Group
We wanted to leave you with one last plug, and we’re suckers for a good pun. After the
wide array of quality titles from VMware Press, the next best way to learn more and stay
on top of new VMware-related developments is to engage with the VMware commu-
nity. The VMware User Group (VMUG) is a great way to get involved. Consisting of a
global steering committee and local chapters, VMUG offers local groups, user confer-
ences, special interest groups, and eLearning opportunities, all built on the idea of get-
ting VMware users together and allowing them to trade experiences and learn from each
other. It’s free to join and worth every penny. You can get more information (and join) at
www.vmug.com.

This page intentionally left blank

Index

Symbols
1 Gb network adapters

eight adapters design scenario
with Ethernet-based storage, 306-307
with FibreChannel storage, 307-308

four adapters plus four 10 Gb adapters design
scenario
with Ethernet-based storage, 308-309
with FibreChannel storage, 309-310

four adapters plus two 10 Gb adapters design
scenario
with Ethernet-based storage, 304-305
with FibreChannel storage, 305-306

six adapters design scenario
with Ethernet-based storage, 303
with FibreChannel storage, 304

8P8C connectors, 20
10 Gb network adapters

four adapters design scenario
with Ethernet-based storage, 300-301
with FibreChannel storage, 301

four adapters plus four 1 Gb adapters design
scenario
with Ethernet-based storage, 308-309
with FibreChannel storage, 309-310

two adapters design scenario, 299
with Ethernet-based storage, 299
with FibreChannel storage, 300

two adapters plus four 1 Gb adapters design
scenario
with Ethernet-based storage, 304-305
with FibreChannel storage, 305-306

10 Gigabit Ethernet
cable types, 21
over copper, 20
over fi ber, 20

802.1ax standard (link aggregation), 38
802.1p (priority tagging), distributed vSwitches,

180-181

A
Access Control Lists (ACLs), NFS, 275-276
access ports, 29

servers attached, 31
access tier, 5
ACLs (Access Control Lists), NFS, 275-276
active devices (link aggregation), 40
adapters

confi guration, NFS, 290-291
dependent hardware iSCSI adapters, 231-232
host design, 137-138
independent hardware iSCSI adapters,

232-233
NFS, 276
software iSCSI adapters, 230-231

Address Resolution Protocol (ARP), 13, 51
addresses

Ethernet, 23
IP addressing, 47

classful addressing, 48
classless addressing, 48-49
reserved addresses, 50

network addresses
iSCSI design, 246-247
NFS design, 287-288

switches, 25-26
Advanced Edition (Cisco Nexus 1000V), 133-134
AlohaNet, 18
alternate ports (RSTP), 36
application layer

OSI Model, 11
TCP/IP Model, 14-15

architecture
Cisco Nexus 1000V, 123

advantages, 132
VEM (virtual Ethernet module), 128-132
VSM (virtual supervisor module), 124-126

designing virtual networks, 135-136
data traffi c design, 138-139

326 architecture

VEM (virtual Ethernet module), 128-132
VSM (virtual supervisor module), 124-126

licensing, 132-134
port profi les, 126-128
vSphere integration, 122-123

Cisco UCS (Unifi ed Computing System), 55-57
classful addressing, 48
Classless Inter-Domain Routing (CIDR), 48-49
clusters, comparison with distributed vSwitches,

94
CNAs (Converged Network Adapters), 233
collision domains, 24
collisions, 18-19

avoiding with switches, 25
on hubs, 24

communication, importance of, 245
community VLANs, 107-108
confi guring

distributed port groups for VMkernel ports,
190-197

distributed vSwitches
discovery protocol settings, 214-215
Health Check feature, 212-214
LBT (load based teaming), 188-190
network adapters, 185
port groups, 186-188

multi-NIC vMotion, 318
distributed port groups, 318-319
traffi c shaping, 321-322
VMkernel ports, 320-321

network adapters, NFS, 290-291
standard vSwitches

failover order, 156-157
iSCSI distributed port groups, 247-250
iSCSI jumbo frames, 256-258
iSCSI network port binding, 254-256
iSCSI VMkernel ports, 250-253
multiple hosts, 173
network adapters, 151-152
NFS, 288-290
port groups, 153-156
security settings, 172

VMkernel ports, 158
failover order, 170-171
Fault Tolerance port, 166-167
Management port, 158-161
NFS, 291-294
NFS Storage port, 168-169
vMotion port, 161-165

host design, 137-138
iSCSI, 233-239. See also iSCSI; network

design
lab scenario, 139-143
network design, 136-137
NFS, 276-283. See also NFS; network

design
ARP (Address Resolution Protocol), 13, 51
ARPANET, 8
attenuation, 24
authentication, CHAP, 227-229, 261-263
available bandwidth, verifying, 313-314
average bandwidth, 80

B
backup ports (RSTP), 36
bandwidth, verifying availability, 313-314
beacon probing, 84-85
best effort protocols, 220, 270
BladeSystem, 57-59
BLK (Blocked Port) switch ports, 34
blocking state (ports), 34
booting from iSCSI, 239-241
BPDUs (Bridge Protocol Data Units), 33
bridge IDs, 33
Bridge Protocol Data Units (BPDUs), 33
broadcast addresses, 23
broadcast domains, 25
broadcast storms, 32
burst size, 80

C
cables, Ethernet, 19-21
CAM (Content Addressable Memory), 25
Carrier Sense Multiple Access with Collision

Detection (CSMA/CD), 19
CDP (Cisco Discovery Protocol), 79, 97

changing to Both mode, 214-215
CHAP (Challenge Handshake Authentication

Protocol), 227-229, 261-263
CIDR (Classless Inter-Domain Routing), 48-49
Cisco Discovery Protocol (CDP), 79, 97

changing to Both mode, 214-215
Cisco Nexus 1000V, 121-122

architecture, 123
advantages, 132

327designing virtual networks

reasons for using, 176
sample use case, 176-177

multi-NIC vMotion, 312
distributed vSwitch design, 314-317
standard vSwitch design, 317
traffi c control methods, 314-318
upstream physical switch design, 317
verifying bandwidth, 313-314

standard vSwitches
naming conventions, 147-149
reasons for using, 146
sample use case, 146-147

designing virtual networks, 135-136
data traffi c design, 138-139
eight network adapters scenario

1 Gb adapters with Ethernet-based
storage, 306-307

1 Gb adapters with FibreChannel storage,
307-308

1 Gb and 10 Gb adapters with
Ethernet-based storage, 308-309

1 Gb and 10 Gb adapters with
FibreChannel storage, 309-310

four network adapters scenario
with Ethernet-based storage, 300-301
with FibreChannel storage, 301

host design, 137-138
iSCSI, 233-234

naming conventions, 245-246
network addresses, 246-247
network port binding, 236-239
NIC teaming, 234-236
use case, 244-245

lab scenario, 139-143
naming conventions, 298
network design, 136-137
NFS, 276

LAG (link aggregation group) design,
280-283

multiple network design, 278-280
naming conventions, 286
network addresses, 287-288
single network design, 277-278
use case, 286

six network adapters scenario, 302-303
1 Gb adapters with Ethernet-based

storage, 303
1 Gb adapters with FibreChannel storage,

304

connected routes, 46
connectors

Ethernet, 21
RJ45, 20

Console Operating System (COS), 67
Content Addressable Memory (CAM), 25
control planes, 72

distributed vSwitches, 94-95
converged infrastructure, 53

advantages, 54-55
BladeSystem, 57-59
Nutanix Virtual Computing Platform, 59-60
traditional IT teams compared, 54
UCS (Unifi ed Computing System), 55-57

Converged Network Adapters (CNAs), 233
core tier, 5
COS (Console Operating System), 67
Cross-Stack EtherChannel, 39
CSMA/CD (Carrier Sense Multiple Access with

Collision Detection), 19

D
DAC (Direct Attach Copper) cables, 20
daemons

NFS, 272-273
SSH, starting, 288

dark traffi c, 65-66, 98
DARPA (Defense Advanced Research Project

Agency), 8
data-link layer (OSI Model), 11
data planes, 72-73

distributed vSwitches, 96
data traffi c design, 138-139
Data center containers, distributed port

groups, 109
datastores (VMFS), creating, 263-265
DECnet, 8
default gateways, 47, 158
default routes, 47
Defense Advanced Research Project Agency

(DARPA), 8
dependent hardware iSCSI adapters, 231-232
Designated Port (DP) switch ports, 34
designing

distributed vSwitches
fully automated design, 215-216
hybrid automation design, 216
naming conventions, 177-178

328 designing virtual networks

load balancing, 112-115
multi-NIC vMotion design, 314-317
naming conventions, 177-178
NetFlow, 98-100
Network I/O Control, 115-116

network resource pools, 116-117
shares, 117-119
user-defi ned network resource pools,

119-120
port mirroring, 101-105
private VLANs, 105

community VLANs, 107-108
isolated VLANs, 108
primary VLANs, 106
promiscuous VLANs, 106
secondary VLANs, 106-107

quality of service, 178
DSCP (Differentiated Service Code

Point), 181-182
NIOC (Network IO Control), 178-180
priority tagging, 180-181

reasons for using, 176
sample use case, 176-177
traffi c shaping, 111
vCenter failure, 94-96
VMkernel port confi guration, 109-110,

190-191
failover order, 196-197
Fault Tolerance distributed port group,

194-195
iSCSI Storage distributed port group,

195-196
Management distributed port group,

191-192
vMotion distributed port group, 193-194

distribution tier, 5
DMZ networks, 305
DNS (Domain Name Service), 51
DP (Designated Port) switch ports, 34
DSCP (Differentiated Service Code Point),

181-182
dvUplinks, 94
dynamic binding, 186
Dynamic Discovery, 225
Dynamic EtherChannel, 38
Dynamic Host Confi guration Protocol (DHCP),

50-51
dynamic LAG, 40

1 Gb and 10 Gb adapters with
Ethernet-based storage, 304-305

1 Gb and 10 Gb adapters with
FibreChannel storage, 305-306

two network adapters scenario, 299
with Ethernet-based storage, 299
with FibreChannel storage, 300

use case, 298
DHCP (Dynamic Host Confi guration Protocol),

50-51
addresses, VMkernel ports, 293

Differentiated Service Code Point (DSCP),
181-182

Direct Attach Copper (DAC) cables, 20
discarding state (ports), 36
discovery

authentication, 261
distributed vSwitches, 96-98
iSCSI targets, 225
protocol, distributed vSwitch settings,

214-215
standard vSwitches, 78-79

distributed port groups, 108-109
iSCSI confi guration, 247-250
multi-NIC vMotion confi guration, 318-319
VMkernel ports on, 109-110
VMs (virtual machines) on, 110

Distributed Virtual Switch 5000V, 122
distributed vSwitches, 93

adding vSphere hosts, 198-203
creating VMkernel ports, 204-207
migrating vCenter Server VM, 208-212

Cisco Nexus 1000V integration, 122
confi guration

discovery protocol settings, 214-215
Health Check feature, 212-214
LBT (load based teaming), 188-190
network adapters, 185
port groups, 186-188

control plane, 94-95
creating, 182-185
data plane, 96
designing

fully automated design, 215-216
hybrid automation design, 216
multi-NIC vMotion, 317

discovery, 96-98
distributed port groups, 108-110

329four network adapters design scenario

four 1 Gb plus four 10 Gb network
adapters design scenario, 308-309

four 1 Gb plus two 10 Gb network
adapters design scenario, 304-305

four network adapters scenario, 300-301
six 1 Gb network adapters design

scenario, 303
two network adapters scenario, 299

switches. See switches
VEM (virtual Ethernet module), 128-132

exports, NFS, 272-273
External Switch Tagging (EST), 68

F
failback, 86
failover order, 87

Standard Switch confi guration, 156-157
VMkernel distributed port groups, 196-197
VMkernel ports, 159-161, 170-171

failover ports, 38
failure of vCenter, handling, 94-96
Fast Ethernet cable types, 21
Fault Tolerance distributed port group,

confi guration, 194-195
Fault Tolerance VMkernel port, confi guration,

166-167
fi ber, terminology usage, 19
fi bre, terminology usage, 19
Fibre Channel Protocol, 19
FibreChannel storage

eight 1 Gb network adapters design scenario,
307-308

four 1 Gb plus four 10 Gb network adapters
design scenario, 309-310

four 1 Gb plus two 10 Gb network adapters
design scenario, 305-306

four network adapters scenario, 301
six 1 Gb network adapters design scenario,

304
two network adapters scenario, 300

fl apping, 278
Forged Transmits setting, standard vSwitches,

77-78
forwarding state (ports), 34-36
four network adapters design scenario

with Ethernet-based storage, 300-301
with FibreChannel storage, 301

dynamic link aggregation, 39-41
dynamic ports, 14
dynamic routes, 46

E
edge ports, 35
Effective MAC address, 76
egress actions, 29
egress traffi c shaping, 111

multi-NIC vMotion, 316-317
eight network adapters design scenario

1 Gb adapters
with Ethernet-based storage, 306-307
with FibreChannel storage, 307-308

1 Gb and 10 Gb adapters
with Ethernet-based storage, 308-309
with FibreChannel storage, 309-310

elastic binding, 187
elastic ports, 67
enabling

NFS Client, 273-274
software iSCSI adapter, 254-256

encapsulation, 9-10
end-host devices, 56
enhanced small form-factor pluggable

transceivers (SFP+), 20
ephemeral binding, 186
Essential Edition (Cisco Nexus 1000V), 133
EST (External Switch Tagging), 68
ESX, ESXi compared, 67
ESXi

ESX compared, 67
installing, 240

EtherChannel, 38
Port Channel versus, 39

Ethernet, 18
addressing, 23
cable types, 19-21
extending segments, 24-26
frames, VLAN ID, 29
history of, 18-19
iSCSI. See iSCSI
operational overview, 18-19
port profi les, 126-127
standards, 19-21
storage

eight 1 Gb network adapters design
scenario, 306-307

330 frames

I
iBFT (iSCSI Boot Firmware Table), 239
IBM Distributed Virtual Switch 5000V, 122
ICMP (Internet Control Message Protocol), 14,

52
ID fi elds, 4
IEEE 802.3 frame layout, 62
IEEE open standard for link aggregation, 38
IGMP (Internet Group Message Protocol), 14
independent hardware iSCSI adapters, 232-233
ingress actions, 29
Initial MAC address, 76
initiators, iSCSI, 224
installing ESXi, 240
Internet Control Message Protocol (ICMP), 14,

52
Internet Group Message Protocol (IGMP), 14
Internet Layer (TCP/IP Model), 13-14
Internet Protocol (IP), 8, 13
Internet Protocol Flow Information eXport

(IPFIX), 98
Internet Small Computer System Interface.

See iSCSI
IP addressing, 47

classful addressing, 48
classless addressing, 48-49
reserved addresses, 50
VMkernel ports, 89, 293

IPFIX (Internet Protocol Flow Information
eXport), 98

IQN (iSCSI Qualifi ed Name) structure, 225-226
iSCSI (Internet Small Computer System

Interface), 220
booting from, 239-241
CHAP security, 227-229, 261-263
creating VMFS datastores, 263-265
dependent hardware iSCSI adapters, 231-232
independent hardware iSCSI adapters,

232-233
initiators, 224
jumbo frames, 222-223
lossless versus best effort protocols, 220
naming conventions, 225-227
network design, 233-234

naming conventions, 245-246
network addresses, 246-247
network port binding, 236-239
NIC teaming, 234-236
use case, 244-245

frames, 11
IEEE 802.3 layout, 62
jumbo frames

iSCSI, 222-223, 256-258
NFS, 271

MTU (maximum transmission unit), 74-75
VLAN ID, 29

FTP, 15
full-duplex communication, 25
fully automated design, 215-216

G
gateways

default, 158
of last resort, 47

GBICs (Gigabit interface converters), 20
Gigabit Ethernet

cable types, 21
over copper wire, 19
over fi ber, 20

Gigabit interface converters (GBICs), 20
globally unique addresses, 23
groups

distributed port groups, 108-109
VMkernel ports on, 109-110
VMs (virtual machines) on, 110

VM ports, 90-91

H
half-duplex communication, 25
hardware IDs, 4
Health Check feature, 212-214
history of Ethernet, 18-19
host NICs (network interface cards), 65-66
hosts

adding to distributed vSwitches, 198-203
creating VMkernel ports, 204-207
migrating vCenter Server VM, 208-212

addresses, 13, 47
designing, 137-138

HP BladeSystem, 57-59
HTTP, 15
hubs, 4-5, 24-25
hybrid automation design, 216
hyper-converged platforms, 59

331Media Access Control addresses

link aggregation
802.1ax open standard, 38
dynamic link aggregation, 39-41
EtherChannel, 38
load distribution, 41-42
operational overview, 36-37
vendor terminology, 39

Link Aggregation Control Protocol (LACP), 38,
40

Link Aggregation Group (LAG), 37
design, NFS, 280-283

listening state (ports), 34
LLDP (Link Layer Discovery Protocol), 97-98
load balancing

distributed vSwitches, 112-115
policy, 83-84

Load Based Teaming (LBT), 112-115
distributed vSwitch confi guration, 188-190

load distribution in link aggregation, 41-42
local area networks (LANs), isolating, 28
locally unique addresses, 23
logical addressing, 11
LOM (LAN On Motherboard), 138
lookup tables, 5
loop avoidance, 32

RSTP (Rapid Spanning Tree Protocol),
35-36

STP (Spanning Tree Protocol)
operational overview, 32-34
PortFast, 35

lossless protocols, 220, 270
LSB (Least Signifi cant Bit), 281
LUN IDs for boot LUNs, 240

M
MAC (Media Access Control) addresses, 23

changing, standard vSwitches, 76-77
VMkernel ports, 90
vSwitches, 63-64

Management distributed port group,
confi guration, 191-192

Management VMkernel port, confi guration,
158-161

mapping iSCSI targets, 258-260
masking, 224
Maximum Transmission Unit. See MTU
Media Access Control addresses. See MAC

addresses

OSI layers, 229-230
PFC (Priority-based Flow Control), 220-221
PSP (Path Selection Policy), 265-267
software iSCSI adapters, 230-231
targets, 224-225

mapping, 258-260
VLAN isolation, 222
vSwitch confi guration

distributed port groups, 247-250
jumbo frames, 256-258
network port binding, 254-256
VMkernel ports, 250-253

iSCSI Boot Firmware Table (iBFT), 239
iSCSI Qualifi ed Name (IQN) structure, 225-226
iSCSI Storage distributed port group,

confi guration, 195-196
iSCSI traffi c, VMkernel ports, 89
isolated VLANs, 108

J
jumbo frames, 74

iSCSI, 222-223, 256-258
NFS, 271

L
LACP (Link Aggregation Control Protocol), 38,

40
LAG (Link Aggregation Group), 37

design, NFS, 280-283
LAN On Motherboard (LOM), 138
LANs (local area networks), isolating, 28
latency, 220
Layer 2 mode, VEM (virtual Ethernet module),

129-130
Layer 2 switching, vSwitches, 63-64
Layer 3 mode, VEM (virtual Ethernet module),

130-131
Layer Eight (OSI Model), 11
layering, 9

OSI Model, 11
TCP/IP Model, 12-15

LBT (Load Based Teaming), 112-115
distributed vSwitch confi guration, 188-190

LC connectors, 20
learning state (ports), 34-36
Least Signifi cant Bit (LSB), 281
licensing Cisco Nexus 1000V, 132-134

332 Metcalfe’s Law

native VLANs, 31
nesting, 77
NetFlow, 98-100
network adapters. See also ports

confi guration, NFS, 290-291
dependent hardware iSCSI adapters, 231-232
distributed vSwitch confi guration, 185
eight network adapters design scenario

1 Gb adapters with Ethernet-based
storage, 306-307

1 Gb adapters with FibreChannel storage,
307-308

1 Gb and 10 Gb adapters with
Ethernet-based storage, 308-309

1 Gb and 10 Gb adapters with
FibreChannel storage, 309-310

four network adapters design scenario
with Ethernet-based storage, 300-301
with FibreChannel storage, 301

host design, 137-138
independent hardware iSCSI adapters,

232-233
NFS, 276
six network adapters design scenario, 302-303

1 Gb adapters with Ethernet-based
storage, 303

1 Gb adapters with FibreChannel storage,
304

1 Gb and 10 Gb adapters with
Ethernet-based storage, 304-305

1 Gb and 10 Gb adapters with
FibreChannel storage, 305-306

software iSCSI adapters, 230-231
Standard Switch confi guration, 151-152
two network adapters design scenario, 299

with Ethernet-based storage, 299
with FibreChannel storage, 300

network addresses, 13
iSCSI design, 246-247
NFS design, 287-288

network architectures, 8
network-attached storage (NAS), 272
network failure detection, 84-85
Network File System. See NFS (Network File

System)
network interface cards (NICs)

teaming, 82-83
failback, 86
failover order, 87

Metcalfe’s Law, 3
migrating vCenter Server VM to distributed

vSwitch, 208-212
mirroring. See port mirroring
mnemonic devices, 12
monitoring distributed vSwitches

NetFlow, 98-100
port mirroring, 101-105

mount points, NFS, 273-275
mounting NFS, 294-296
MTU (Maximum Transmission Unit)

data traffi c design, 139
iSCSI, 222-223, 256-258
NFS, 271
Standard Switch property, 74-75

multicast addresses, 23
multicasting, 14
multi-chassis link aggregation, 39
multi-NIC vMotion

confi guration, 318
distributed port groups, 318-319
traffi c shaping, 321-322
VMkernel ports, 320-321

design, 312
distributed vSwitch design, 314-317
standard vSwitch design, 317
traffi c control methods, 314-318
upstream physical switch design, 317
verifying bandwidth, 313-314

eight network adapters design scenario,
307-308

use cases, 312
multiple hosts, standard vSwitches confi guration,

173
multiple network design, NFS, 278-280
multiple vSwitch design, iSCSI network port

binding, 236-238

N
naming

distributed vSwitches, 177-178
iSCSI, 225-227, 245-246
NFS design, 286
standard vSwitches, 147-149
uplinks, 94
virtual network design, 298
VMs (virtual machines), 139

NAS (network-attached storage), 272

333NX-OS (Nexus OS)

Nexus 1000V. See Cisco Nexus 1000V
Nexus OS (NX-OS), 132
NFS (Network File System)

daemons, 272-273
explained, 269-270
exports, 272-273
four network adapters scenario, 300-301
jumbo frames, 271
lossless versus best effort protocols, 270
mount points, 273-275
mounting, 294-296
network adapters, 276
network design, 276

LAG (link aggregation group), 280-283
multiple networks, 278-280
naming conventions, 286
network addresses, 287-288
single network, 277-278
use case, 286

security, 275-276
traffi c, VMkernel ports, 89
two network adapters scenario, 299
VLAN isolation, 271
vSwitch confi guration, 288-290

network adapters, 290-291
VMkernel ports, 291-294

NFS Client, enabling, 273-274
NFS Storage VMkernel port, confi guration,

168-169
NIC bonding, 39
NICs (network interface cards)

teaming, 39, 82-83
failback, 86
failover order, 87
iSCSI network design, 234-236
load-balancing policy, 83-84
network failure detection, 84-85
Notify Switches confi guration, 86

virtual machine NICs, 67
virtual switches, 65-66

NIOC (Network I/O Control), 178-180
distributed vSwitches, 115-116

network resource pools, 116-117
shares, 117-119
user-defi ned network resource pools,

119-120
vMotion traffi c control, 314

Notify Switches confi guration, 86
Nutanix Virtual Computing Platform, 59-60
NX-OS (Nexus OS), 132

load-balancing policy, 83-84
network failure detection, 84-85
Notify Switches confi guration, 86

virtual machine NICs, 67
virtual switches, 65-66

Network Interface Layer (TCP/IP Model), 12
Network I/O Control (NIOC), 178-180

distributed vSwitches, 115-116
network resource pools, 116-117
shares, 117-119
user-defi ned network resource pools,

119-120
vMotion traffi c control, 314

Network layer (OSI Model), 11, 46
ARP (Address Resolution Protocol), 51
connected routes, 46
DHCP (Dynamic Host Confi guration

Protocol), 50-51
DNS (Domain Name Service), 51
dynamic routes, 46
gateway of last resort, 47
IP addressing, 47

classful addressing, 48
classless addressing, 48-49
reserved addresses, 50

ping command, 52
routing and forwarding, 46
static routes, 46

network models, 8
comparison, 15
encapsulation, 9-10
layering, 9
OSI Model, 10-12
TCP/IP Model, 12-15

network port binding (iSCSI)
confi guration, 254-256
network design, 236-239

network prefi xes, 47
network resource pools, 116-117

shares, 117-119
user-defi ned, 119-120

networks
design, 136-137
Ethernet. See Ethernet
explained, 2-5
LANs (local area networks), isolating, 28
VLANs

native VLANs, 31
operational overview, 29-30
trunking, 30-32

334 octets

PortFast, 35
ports, 14. See also network adapters; switches

access ports, 29
servers attached, 31

distributed port groups, 108-109
multi-NIC vMotion confi guration,

318-319
VMkernel ports on, 109-110
VMs (virtual machines) on, 110

edge ports, 35
elastic ports, 67
link aggregation

802.1ax open standard, 38
dynamic link aggregation, 39-41
EtherChannel, 38
load distribution, 41-42
operational overview, 36-37
vendor terminology, 39

network port binding
iSCSI confi guration, 254-256
iSCSI network design, 236-239

RSTP (Rapid Spanning Tree Protocol), 36
Standard Switch property, 73-74
STP (Spanning Tree Protocol), 33-34
traffi c port groups, naming conventions, 148
trunk ports, 31
virtual ports, 66-67

Service Console, 67
virtual machine NICs, 67

VM port groups, 90-91
VMkernel ports, 67, 88

Cisco Nexus 1000V, 131
confi guration, 158-171
creating for vSphere hosts, 204-207
distributed port group confi guration,

190-197
IP addresses, 89
iSCSI confi guration, 250-253
moving with LBT, 114
multi-NIC vMotion confi guration,

320-321
network design, 136-137
NFS confi guration, 291-294
properties and services, 88-89

P-Ports, 106
presentation layer (OSI Model), 11
primary VLANs, 106
prioritizing traffi c, standard vSwitches, 150
Priority-based Flow Control (PFC), 220-221

O
octets, 47
organizationally unique identifi er (OUI), 23
OSI Model, 8-12

comparison with TCP/IP Model, 15
in iSCSI, 229-230

dependent hardware iSCSI adapters, 231
independent hardware iSCSI adapters,

232
software iSCSI adapters, 230

OUI (organizationally unique identifi er), 23
overrides, standard vSwitches, 87-88

P
packets, 11

connected routes, 46
dynamic routes, 46
gateway of last resort, 47
routing and forwarding, 46
static routes, 46

PAgP (Port Aggregation Protocol), 38, 41
passive devices (link aggregation), 40
path cost, 33
path determination, 11
Path Selection Policy (PSP), 236

iSCSI, 265-267
PDU (Protocol Data Unit), 9
peak bandwidth, 80
PEBKAC errors, 11
performance, jumbo frames, 75
permissions, NFS, 275-276
PFC (Priority-based Flow Control), 220-221
physical layer (OSI Model), 11
physical switches, comparison with virtual

switches, 62-65
physical uplinks, 65-66
ping command, 52
planes, explained, 72-73
Port 0, 15
Port Aggregation Protocol (PAgP), 38, 41
port binding, 186
Port Channel, EtherChannel versus, 39
port groups

distributed vSwitch confi guration, 186-188
Standard Switch confi guration, 153-156

port mirroring, 101-105
port profi les, Cisco Nexus 1000V, 126-128

335shares, network resource pools

resource pools, 116-117
shares, 117-119
user-defi ned, 119-120

Reverse Address Resolution Protocol (RARP),
86

RJ45 connectors, 20
root bridges, 33
Root Port (RP) switch ports, 34
Routed iSCSI, 168
Routed NFS, 168
routers

connected routes, 46
dynamic routes, 46
gateway of last resort, 47
routing and forwarding, 46
static routes, 46

routing, 11
RP (Root Port) switch ports, 34
RSTP (Rapid Spanning Tree Protocol), 35-36
Runtime MAC address, 76

S
sample use cases. See use cases
SAN (storage area network), 272
SC connectors, 20
SCSI commands, 220
secondary VLANs, 106-107
secrets, 227
security

CHAP, 227-229, 261-263
NFS, 275-276
standard vSwitches, 75

confi guration settings, 172
Forged Transmits, 77-78
MAC address changes, 76-77
Promiscuous Mode, 75-76

segments, 11
Server Virtual Switch (SVS) connections, 125
servers, access ports, 31
Service Console, 67
services, VMkernel ports, 88-89
session layer (OSI Model), 11
SFP+ (enhanced small form-factor pluggable

transceivers), 20
SFPs (small form-factor pluggable transceivers),

20
shared-bus Ethernet, 18
shares, network resource pools, 117-119

priority tagging, distributed vSwitches, 180-181
private IP addresses, 50
private VLANs, 105

community VLANs, 107-108
isolated VLANs, 108
primary VLANs, 106
promiscuous VLANs, 106
secondary VLANs, 106-107

Promiscuous Mode, standard vSwitches, 75-76
promiscuous VLANs, 106
properties

standard vSwitches, 73
MTU (maximum transmission unit), 74-

75
ports, 73-74

VMkernel ports, 88-89
Protocol Data Unit (PDU), 9
protocols, 8

Application Layer (TCP/IP Model), 15
authentication in iSCSI, 227-229, 261-263
discovery, 79, 96-98, 214-215
dynamic link aggregation, 40-41
Internet Layer (TCP/IP Model), 13-14
lossless versus best effort, 220, 270
Network layer (OSI Model), 50-52
NFS (Network File System), 269
Transport Layer (TCP/IP Model), 14

PSP (Path Selection Policy), 236
iSCSI, 265-267

Q
quality of service

distributed vSwitches, 178
DSCP (Differentiated Service Code

Point), 181-182
NIOC (Network I/O Control), 178-180
priority tagging, 180-181

standard vSwitches, 149-150

R
Rapid Spanning Tree Protocol (RSTP), 35-36
RARP (Reverse Address Resolution Protocol),

86
registered ports, 14
repeaters, 24
reserved addresses, 50

336 single network design, NFS

quality of service, 149-150
reasons for using, 146
sample use case, 146-147
security settings, 75

Forged Transmits, 77-78
MAC address changes, 76-77
Promiscuous Mode, 75-76

traffi c shaping, 80-82
VM port groups, 90-91
VMkernel port confi guration, 158

failover order, 170-171
Fault Tolerance port, 166-167
Management port, 158-161
NFS Storage port, 168-169
vMotion port, 161-165

VMkernel ports, 88
IP addresses, 89
properties and services, 88-89

standards, Ethernet, 19-21
starting SSH daemon, 288
static binding, 186
Static Discovery, 225
Static EtherChannel, 38
static LAG, 39
static routes, 46
storage

Ethernet-based storage
eight 1 Gb network adapters design

scenario, 306-307
four 1 Gb plus four 10 Gb network

adapters design scenario, 308-309
four 1 Gb plus two 10 Gb network

adapters design scenario, 304-305
four network adapters scenario, 300-301
six 1 Gb network adapters design

scenario, 303
two-network adapters scenario, 299

FibreChannel storage
eight 1 Gb network adapters design

scenario, 307-308
four 1 Gb plus four 10 Gb network

adapters design scenario, 309-310
four 1 Gb plus two 10 Gb network

adapters design scenario, 305-306
four network adapters scenario, 301
six 1 Gb network adapters design

scenario, 304
two-network adapters scenario, 300

iSCSI. See iSCSI
NFS. See NFS (Network File System)

single network design, NFS, 277-278
single vSwitch design, iSCSI network port

binding, 238-239
six network adapters design scenario, 302-303

1 Gb adapters
with Ethernet-based storage, 303
with FibreChannel storage, 304

1 Gb and 10 Gb adapters
with Ethernet-based storage, 304-305
with FibreChannel storage, 305-306

small form-factor pluggable transceivers
(SFPs), 20

SMTP, 15
SNA (Systems Network Architecture), 8
Sneakernet, 2
software iSCSI adapters, 230-231

enabling, 254-256
Spanning Tree Protocol (STP)

operational overview, 32-34
PortFast, 35
RSTP (Rapid STP), 35-36

SSH daemon, starting, 288
standalone vSphere, 72
standard vSwitches, 72

confi guration
failover order, 156-157
iSCSI distributed port groups, 247-250
iSCSI jumbo frames, 256-258
iSCSI network port binding, 254-256
iSCSI VMkernel ports, 250-253
multiple hosts, 173
network adapters, 151-152
NFS, 288-290
port groups, 153-156
security settings, 172

discovery, 78-79
multi-NIC vMotion design, 317
naming conventions, 147-149
NIC teaming, 82-83

failback, 86
failover order, 87
load-balancing policy, 83-84
network failure detection, 84-85
Notify Switches confi guration, 86

overrides, 87-88
planes, explained, 72-73
properties, 73

MTU (maximum transmission unit),
74-75

ports, 73-74

337user-defi ned network resource pools

three-tiered models, 5
TOE (TCP Offl oad Engine), 276
traditional IT teams, converged infrastructure

compared, 54
traffi c

data traffi c design, 138-139
vMotion traffi c, controlling, 314-318

traffi c port groups, naming conventions, 148
traffi c shaping

distributed vSwitches, 111
multi-NIC vMotion, 316-317, 321-322
standard vSwitches, 80-82, 149-150

Transmission Control Protocol (TCP), 8, 14
transport layer

OSI Model, 11
TCP/IP Model, 14

tribal knowledge, 149
trunk ports, 31
trunking, 30-32
trunks in link aggregation, 39
two network adapters design scenario, 299

with Ethernet-based storage, 299
with FibreChannel storage, 300

two-person networks, 2

U
UCNAs (Universal CNAs), 233
UCS (Unifi ed Computing System), 55-57
UDP (User Datagram Protocol), 14
unicast addresses, 23
Unifi ed Computing System (UCS), 55-57
Universal CNAs (UCNAs), 233
uplinks, 65

host NICs, 65-66
naming, 94

upstream physical switch design, multi-NIC
vMotion, 317

use cases
distributed vSwitches, 176-177
iSCSI design, 244-245
multi-NIC vMotion, 312
NFS design, 286
standard vSwitches, 146-147
virtual network design, 298

User Datagram Protocol (UDP), 14
user-defi ned network resource pools, 119-120

storage area network (SAN), 272
STP (Spanning Tree Protocol)

operational overview, 32-34
PortFast, 35
RSTP (Rapid STP), 35-36

subnet masks, 49
subnetting, 47

classful addressing, 48
classless addressing, 48-49
reserved addresses, 50

SVS (Server Virtual Switch) connections, 125
switches, 25-26. See also ports

Cisco Nexus 1000V. See Cisco Nexus 1000V
distributed vSwitches. See distributed

vSwitches
loop avoidance, 32

RSTP (Rapid Spanning Tree Protocol),
35-36

STP (Spanning Tree Protocol), 32-35
physical versus virtual, 62-65
standard vSwitches. See standard vSwitches

discovery, 78-79
NIC teaming, 82-87
overrides, 87-88
planes, explained, 72-73
properties, 73-75
security settings, 75-78
traffi c shaping, 80-82
VM port groups, 90-91
VMkernel ports, 88-89

trunk ports, 31
upstream physical switch design, multi-NIC

vMotion, 317
virtual switches

physical uplinks, 65-66
virtual ports, 66-67
VLAN tagging, 68-70

Systems Network Architecture (SNA), 8

T
target authentication, 261
targets, iSCSI, 224-225

mapping, 258-260
TCP (Transmission Control Protocol), 8, 14
TCP Offl oad Engine (TOE), 276
TCP/IP Model, 8, 12-15
third-party switches. See Cisco Nexus 1000V

338 variable-length subnet masking (VLSM)

virtual ports, 66-67
Service Console, 67
virtual machine NICs, 67
VMkernel ports, 67

VLAN tagging, 68
EST (External Switch Tagging), 68
VGT (Virtual Guest Tagging), 69-70
VST (Virtual Switch Tagging), 68-69

VLAN isolation
iSCSI, 222
NFS, 271

VLANs (virtual LANs)
Ethernet port profi les, 128
native VLANs, 31
operational overview, 29-30
private VLANs, 105

community VLANs, 107-108
isolated VLANs, 108
primary VLANs, 106
promiscuous VLANs, 106
secondary VLANs, 106-107

trunking, 30-32
VEM (virtual Ethernet module), 129-130

VLAN tagging, 68
data traffi c design, 139
EST (External Switch Tagging), 68
VGT (Virtual Guest Tagging), 69-70
VST (Virtual Switch Tagging), 68-69

VLSM (variable-length subnet masking), 49
VM (virtual machine)

data traffi c design, 138-139
on distributed port groups, 110

VM port groups, 90-91
VMFS datastores, creating, 263-265
vmk0 VMkernel port, 159
VMkernel ports, 67

Cisco Nexus 1000V, 131
confi guration, 158

failover order, 170-171
Fault Tolerance port, 166-167
Management port, 158-161
NFS, 291-294
NFS Storage port, 168-169
vMotion port, 161-165

creating for vSphere hosts, 204-207
on distributed port groups, 109-110
distributed port group confi guration,

190-191

V
variable-length subnet masking (VLSM), 49
VC (Virtual Connect), 58
vCenter failure, handling, 94-96
vCenter Server VM, migrating to distributed

vSwitch, 208-212
VDS (vSphere Distributed Switches). See

distributed vSwitches
VEM (virtual Ethernet module), 123, 128-132
versions, distributed vSwitches, 182
vEthernet port profi les, 126-128
VGT (Virtual Guest Tagging), 69-70
Virtual Connect (VC), 58
virtual Ethernet module (VEM), 123, 128-132
Virtual Guest Tagging (VGT), 69-70
virtual LANs. See VLANs
virtual machine NICs, 67
virtual machines (VMs)

data traffi c design, 138-139
on distributed port groups, 110

virtual networks, designing, 135-136
data traffi c design, 138-139
eight network adapters scenario, 306-310
four network adapters scenario, 300-301
host design, 137-138
iSCSI, 233-239. See also iSCSI, network

design
lab scenario, 139-143
naming conventions, 298
network design, 136-137
NFS, 276-283. See also NFS, network design
six network adapters scenario, 302-306
two network adapters scenario, 299-300
use case, 298

virtual ports, 66-67
Service Console, 67
virtual machine NICs, 67
VMkernel ports, 67

virtual supervisor module (VSM), 123-126
Virtual Switch Tagging (VST), 68-69, 139
virtual switches. See also distributed vSwitches;

standard vSwitches
Cisco Nexus 1000V. See Cisco Nexus 1000V
comparison with physical switches, 62-65
physical uplinks, 65

host NICs, 65-66

339vSwitches

failover order, 196-197
Fault Tolerance port, 194-195
iSCSI Storage port, 195-196
Management port, 191-192
vMotion port, 193-194

iSCSI confi guration, 250-253
moving with LBT, 114
multi-NIC vMotion confi guration, 320-321
network design, 136-137
standard vSwitches, 88

IP addresses, 89
properties and services, 88-89

vMotion
confi guration, 318

distributed port groups, 318-319
traffi c shaping, 321-322
VMkernel ports, 320-321

design, 312
distributed vSwitch design, 314-317
standard vSwitch design, 317
traffi c control methods, 314-318
upstream physical switch design, 317
verifying bandwidth, 313-314

multi-NIC use cases, 312
vMotion distributed port group, confi guration,

193-194
vMotion VMkernel port, confi guration, 161-165
VMUG (VMware User Group), 323
VMware standard vSwitches. See standard

vSwitches
VMware User Group (VMUG), 323
volumes, 272
VSM (virtual supervisor module), 123-126
vSphere, Cisco Nexus 1000V integration,

122-123
vSphere Distributed Switches (VDS). See

distributed vSwitches
vSphere hosts, adding to distributed vSwitches,

198-203
creating VMkernel ports, 204-207
migrating vCenter Server VM, 208-212

vSphere Hypervisor, 72
vSphere standard vSwitches. See standard

vSwitches
VST (Virtual Switch Tagging), 68-69, 139
vSwitch0, 147

network adapters, 151

vSwitches. See also distributed vSwitches;
standard vSwitches

comparison with physical switches, 62-65
multiple vSwitch design, iSCSI network port

binding, 236-238
single vSwitch design, iSCSI network port

binding, 238-239

