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Foreword

Virtual networking has long been the Cinderella of server virtualization, as anyone reading 
VMware release notes can easily attest—with every new vSphere release, we get tons of 
new CPU/RAM optimization features, high availability improvements, better storage con-
nectivity, and networking breadcrumbs.

The traditional jousting between networking and virtualization vendors and the corre-
sponding lack of empathy between virtualization and networking teams in large IT shops 
definitely doesn’t help. Virtualization vendors try to work around the traditional network-
ing concepts (pretending, for example, that Spanning Tree Protocol [STP] and Link 
Aggregation Groups [LAG] don’t exist), while routinely asking for mission-impossible 
feats such as long-distance bridging across multiple data centers. The resulting lack of 
cooperation from the networking team is hardly surprising, and unfamiliar concepts and 
terminology used by virtualization vendors definitely don’t help, either.

The virtualization publishing ecosystem has adjusted to that mentality—we have great 
books on server virtualization management, troubleshooting, high availability, and DRS, 
but almost nothing on virtual networking and its interaction with the outside physical 
world. This glaring omission has finally been fixed—we’ve got a whole book dedicated 
solely to VMware networking.

Who should read this book? In my personal opinion, this book should be manda-
tory reading for anyone getting anywhere near a vSphere host. Server and virtualization 
administrators will get the baseline networking knowledge that will help them understand 
the intricacies and challenges their networking colleagues have to deal with on a daily 
basis, and networking engineers will finally have a fighting chance of understanding what 
goes on behind the scenes of point-and-click vCenter GUI. If nothing else, if you man-
age to persuade the virtualization and networking engineers in your company to read this 
book, they’ll learn a common language they can use to discuss their needs, priorities, and 
challenges.

Although the book starts with rudimentary topics such as defining what a network is, it 
quickly dives into convoluted technical details of vSphere virtual networking, and I have to 
admit some of these details were new to me, even though I spent months reading vSphere 
documentation and researching actual ESXi behavior while creating my VMware Net-
working Technical Deep Dive webinar.

What will you get from the book? If you’re a server or virtualization administrator and 
don’t know much about networking, you’ll learn the concepts you need to understand the 
data center networks and how vSphere virtual networking interacts with them. If you’re a 
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networking engineer, you’ll get the other perspective—the view from the server side, and the 
details that will help you adjust the network edge to interact with vSphere hosts.

Finally, do keep in mind that the other engineer in your organization is not your enemy—
she has a different perspective, different challenges, and different priorities and require-
ments. Statements such as “We must have this or we cannot do that” are rarely helpful in 
this context; it’s way better to ask “Why would you need this?” or “What business problem 
are you trying to solve?”—and this book just might be a piece of the puzzle that will help 
you bridge the communication gap.

Ivan Pepelnjak

CCIE #1354 Emeritus

ipSpace.net



Introduction

In many organizations, there is still no Virtualization Team, or even a dedicated 
Virtualization Person. The care and feeding of a vSphere environment often falls under 
the “Perform other duties as assigned” bullet in the job description of existing server or 
storage administrators. 

Virtualization is a complex subject, interdisciplinary by nature, and truly “getting it” 
requires a solid understanding of servers, storage, and networking. But because new tech-
nologies are often managed by whoever arrived to the meeting last, skill gaps are bound 
to come up. In the authors’ experience, networking is the subject most foreign to admins 
that inherit a vSphere environment. Server and storage teams tend to work rather closely, 
with the network hiding behind a curtain of patch panels. This book is intended to help 
vSphere admins bridge that gap.

This book is not intended to be a study guide for any particular certification. If your goal 
is Network+, CCENT, or beyond, there are other, more comprehensive options available.

Part I, “Physical Networking 101,” is intended to build a foundation of networking knowl-
edge, starting with the very basics of connectivity and building up to routing and switch-
ing. It provides the background and jargon necessary for you to communicate effectively 
with your network team as you scale up your virtualization efforts.

In Part II, ”Virtual Switching,” we look at virtual networking, explaining how and where 
it differs from the physical world we built up in Part I. We go on a guided tour of building 
virtual networks, starting with real-world requirements, and review the virtual and physi-
cal network configuration steps necessary to meet them.

In Part III, ”You Got Your Storage in My Networking: IP Storage,” we add storage into 
the mix, using the same approach from Part II to look at iSCSI and NFS configurations.

Motivation for Writing This Book

Chris: Aside from a grandiose ambition to cross “write a book” off my bucket list, there 
is something inherently romantic about the idea of passing one’s experiences down to the 
next generation of technical professionals. The field of networking is like sailing in dark 
and uncharted waters, with little islands of knowledge along the way. Having made the 
voyage, I felt it best to return as a guide and see if I could both help others through and 
learn more on the second go-round for myself.

Steve: What Chris said, but maybe less flowery. And it seemed like a good idea at the 
time.
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Who Should Read This Book

This book is targeted at IT professionals who are involved in the care and feeding of a 
VMware vSphere environment. These administrators often have strong server or storage 
backgrounds but lack exposure to core networking concepts. As virtualization is interdis-
ciplinary in nature, it is important for vSphere administrators to have a holistic under-
standing of the technologies supporting their environment.

How to Use This Book

This book is split into 19 chapters as described here:

 Part I, “Physical Networking 101”

 Chapter 1, “The Very Basics”: This chapter provides a high-level introduction 
to networking concepts. 

 Chapter 2, “A Tale of Two Network Models”: This chapter describes the pur-
pose of network models and describes the two major flavors.

 Chapter 3, “Ethernet Networks”: This chapter introduces the basics of Ether-
net networks.

 Chapter 4, “Advanced Layer 2”: This chapter builds upon the previous chapter 
by diving into more advanced Ethernet concepts including VLANs, switch 
port types, Spanning Tree Protocol, and Link Aggregation.

 Chapter 5, “Layer 3”: This chapter describes the IP protocol, Layer 3 network-
ing, and supporting applications.

 Chapter 6, “Converged Infrastructure (CI)”: This chapter provides a brief over-
view of converged infrastructure and describes example platforms.

 Part II, “Virtual Switching”

 Chapter 7, “How Virtual Switching Differs from Physical Switching”: This 
chapter highlights the differences in the mechanics and execution between 
physical switches as described in Part I and the virtual switches that are the 
focus of the rest of the book.

 Chapter 8, “vSphere Standard Switch”: This chapter covers the features avail-
able with the vSphere Standard Switch.

 Chapter 9, “vSphere Distributed Switch”: This chapter covers the features 
available with the vSphere Distributed Switch.
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 Chapter 10, “Third Party Switches—1000v”: This chapter covers the features 
available with the Cisco Nexus 1000v virtual switch.

 Chapter 11, “Lab Scenario”: This chapter introduces the lab scenario that is 
used in Chapters 12 and 13, guiding the reader through a design exercise.

 Chapter 12, “Standard vSwitch Design”: This chapter describes the configura-
tion steps necessary to configure the Standard vSwitch to support the use case 
defined in Chapter 11.

 Chapter 13, “Distributed vSwitch Design”: This chapter describes the configu-
ration steps necessary to configure the Distributed vSwitch to support the use 
case defined in Chapter 11, with a focus on the feature differences between the 
Distributed and Standard vSwitches.

 Part III, “You Got Your Storage in My Networking: IP Storage”

 Chapter 14, “iSCSI General Use Cases”: This chapter introduces the concepts 
behind iSCSI and describes an example use case. 

 Chapter 15, “iSCSI Design and Configuration”: This chapter describes the 
configuration steps necessary to configure iSCSI to support the use case 
defined in Chapter 14.

 Chapter 16, “NFS General Use Cases”: This chapter introduces the concepts 
behind NFS and describes an example use case.

 Chapter 17, “NFS Design and Configuration”: This chapter describes the con-
figuration steps necessary to configure NFS to support the use case defined in 
Chapter 16.

 Part IV, “Other Design Scenarios”

 Chapter 18, “Additional vSwitch Design Scenarios”: This chapter describes 
different design options that could be considered for varying hardware 
 configurations.

 Chapter 19, “Multi-NIC vMotion Architecture”: This chapter introduces the 
concepts behind Multi-NIC vMotion and describes the steps necessary to con-
figure it for a sample use case.

 Appendix A, “Networking for VMware Administrators: The VMware User Group”: 
This appendix is a call to action introducing the VMware User Group as a means of 
harnessing the power of the greater VMware community and encouraging the reader 
to get involved.
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Chapter 1

The Very Basics

Key Concepts
  Sneakernet

  Network Effect

  Access, Distribution, and Core

Introduction
If you have a tab-A-into-slot-B understanding of networking, or if your Visio diagrams 
show servers connected to a big black box labeled “Here Be Dragons,” this chapter is the 
place to start. If you are a little more familiar with the fundamentals, and you’re comfort-
able using terms like TCP/IP, Ethernet, and Switch in a sentence, feel free to skip ahead.

If you’re a server admin, you must have some experience with networking—you have 
plugged in a network adapter; you’ve assigned an IP address. But often it is a very user-
centric exposure to the topic, just going through the motions—someone else tells you what 
port to plug into; someone else assigns IP addresses. You go through the motions, but 
you have never needed to understand why. Besides, you have plenty of work to do already, 
and there just aren’t enough hours in the day to know everything about everything. In an 
increasingly virtualized world, though, you will need to know at least a little to get by. 



2 CHAPTER 1  The Very Basics

Reinventing the Wheel
To build  our foundation, imagine a world much like our own, but where the concept of 
networking does not yet exist. Business is still done on computers, or something much like 
them, but no need has yet arisen that would require them to be connected to exchange 
data. On the rare occasions that data does need to be moved from one station to another, 
it is done by copying to removable media—some sort of wax cylinder, presumably—and 
walking it over to another party. After our post-connectivity enlightenment, this arrange-
ment came to be called Sneakernet , as in your sneakers were the transport for the data. 

Let’s say you  work in desktop support, so you are a bit more technically inclined than the 
rest of the business. In between break-fix type work, you and Bob, a coworker in account-
ing, like to exchange pictures of cats, sometimes festooned with silly captions. Not the 
highest-brow pursuit, but it helps the day go by. You and Bob have access to stations with 
scanners and printers, so you’ve been taking pictures at home and bringing them in to 
scan, edit, and print, and you exchange the print-outs via interoffice mail. One day, a new 
green initiative is issued from on high, strictly limiting your ability to use the printers for 
things that are not business-critical. You consider adjusting your workflow to use the wax 
cylinders, but this is not ideal—spare wax cylinders themselves are becoming harder and 
harder to come by. You think to yourself that there must be a better way.

You think back to a game you used to  play as a kid, using two paper cups and a taut string 
to talk to a friend over a longish distance. You’d take turns talking into the cup, then mov-
ing it up to your ear to listen for a response. Then your much smarter friend pointed out 
that if you built two sets, you could talk and listen at the same time—you talk into one cup, 
connected to a cup your friend held up to his ear, he talked into a cup connected to a cup 
you held up to your ear. You know there’s something to this concept you can use here, this 
idea of separate transmit and receive wires, crossed over to allow two parties to communi-
cate. You set to work in your mad scientist basement laboratory.

The next morning, you bring in your results to show Bob. You install a card in each of 
your computers, connect them with a two-wire crossover cable, and install a new appli-
cation that will allow you to send any file down the wire to the other station. You have 
brought along a few new cat pictures for testing, and they transfer from your computer to 
Bob’s without a hitch. You’ve built the first  two-person network.

Bob is blown away, and thrilled to have his work hobby back. Weeks go by with the two 
of you happily shifting files back and forth, until Paul from HR looks over your shoulder 
and catches what you’re up to. He wants in, too. You pause to consider this. Even though 
Paul’s a little weird—he prefers dog pictures—you can see the value of having more than 
just two people  connected. 
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cables degrades over distance, but the box will repeat the signal at full strength, doubling 
your potential range. You decide to call this box a hub , naming it after a children’s televi-
sion channel you had on in the background while developing it.

The next morning, you bring in the hub, a card for Paul, and some new cables. By lunch 
time, you’re up and running. Each picture you select is indiscriminately beamed to the 
other two parties. But Sharon in Legal noticed you stringing cable up in the drop ceiling, 
and she wants in, too. Sharon and Paul don’t get along, though, and Sharon would like to 
be able to send pictures that might portray Paul in a less-than-flattering light. Obviously, 
she’d prefer Paul not receive these.

Back to the drawing board   you go. To meet Sharon’s needs, your transfer application 
needs to become targeted somehow. But your hub will mindlessly repeat anything it 
receives to all connected parties. Maybe, you reason, the problem isn’t the hub, it’s the 
computers connected to it. The cards in your, Sharon’s, and Bob’s machines are all identi-
cal. Maybe you could burn some sort of unique identifier into them,   and then you could 
rewrite the transfer application to use that unique ID. You pull out your parts to get to 
work on the new cards, when it hits you—the hub will repeat everything it gets, so even if 
Sharon sends the picture directly to you, that data will still be repeated back to Paul. Well, 
since you’re changing the cards anyway, you’ll add a bit of programming to them so they 
will disregard any data they receive that is not intended for their specific ID. That should 
work. While you’re down in the lab, you figure you’ll make a bunch of cards. Since you 
don’t know exactly who will get what card yet, you decide to assign them numbers. You 
figure only 15 or so people in the company would ever need them, so you can get away 
with a two-digit identifier, so 00-99. Just prior to setting the ID on the first card, you think 
you’d rather not paint yourself into a corner, and double the ID field instead. Now your 
network could support up to 10,000 devices—unthinkable, but go big or go home.

You bring in the new hardware the next morning and round up Bob, Paul, and Sharon to 
explain the new system. You’ll get 0000, Bob gets 0001, Paul gets 0002, and Sharon gets 
0003. This works well, for a while. Soon you have ten active users in your under-the-table 
network, and you start to feel the strain. Your users complain that it’s hard to remember 
who’s who, and Bob’s been complaining that he hasn’t gotten a single cat picture since you 
replaced his computer a few days prior. He thinks the rest of you are ignoring him.

The solution to Bob’s  problem hits you right away—when you replaced his computer, he 
got a new card from the pile. He’s not 0001 anymore, he’s 0010. You’ll have to let every-
one know this changed. But that will just further fuel the complaints that the numbering 
system is hard to use. What you need is a system that can accommodate friendly names, 
names people can remember. And if the hardware ID changes, that mapping of friendly 
names to hardware IDs needs to be able to be updated automatically, so you don’t have to 
go bother   everyone.
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You create a lookup table , listing everyone’s name, a friendly name—you’ll ask everyone 
what they want to use for their computer name—and the network ID. You decide you will 
distribute this file to everyone each night, at least for now, until you can think of a better 
way to manage this issue of name resolution. The transfer application needs to be rewrit-
ten, again, to support sending files to friendly names in addition to network IDs. You make 
the necessary changes and distribute the new file and instructions. All is well, for a time.

Awareness of your little project has started to increase. Your CIO has heard rumblings and 
demands to know what you’ve been up to. After you explain your work to date, he asks 
if the transfer program can transfer any type of file, or if it’s limited to just silly pictures. 
When you tell him data is data, and any file would work, you see the gears turning in his 
head. He thanks you for your time  and walks off.

A few weeks later, he comes to you with a request to connect every computer in your 
building—500 stations spread across multiple floors. He asks you to think about this and 
get back to him with the details. There will be challenges. Your hub has 16 ports, so that’s 
a problem right off the bat. You don’t see any reason why you couldn’t build a hub with 
500 ports, but what if it failed? Everyone would be offline. And where would you put it? 
There’s nowhere in the building where you could reach every station within the distance 
limits of your cables, and even if there was, creating and installing that many cables of such 
varied lengths would be expensive, in terms of both materials and time.

Well, if the   request is coming from the CIO, maybe time and money aren’t going to be a 
problem, so you start by attacking the first issue, distance. One 500-port hub won’t work, 
but maybe two 250-port hubs would. Since the hubs are repeating everything they hear 
anyway, you figure you should be able to attach two together without a problem. Come to 
think of it, since everything is repeated out of every port, two computers should be able to 
transfer data whether they’re attached to the same hub or chained many hubs away from 
each other. Smaller devices should be easier for you to build, and easier for you to replace 
in the case of failure. After some head scratching and doodling, you decide on a three-
tiered model. At the first, or core, tier,  a single hub will feed hubs in the second, or distribu-
tion,  tier. You’ll put one distribution hub on each floor, and these will feed a third tier of 
hubs, an  access tier. End-user workstations will connect to access hubs distributed through-
out the floor. This will allow you to keep cable runs short and structured, and provide a 
cookie-cutter approach for expanding or deploying to new buildings. 

You run this by the CIO, and he approves. You get to work deploying the new infrastruc-
ture, and before you know it, connectivity is embraced throughout the company, and no 
one can remember how they ever  got by without it.
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Summary

Congratulations, you’ve built your first network. Go ahead and add “networking” as a 
skill in your LinkedIn profile. This has been an egregious oversimplification, sure, but it 
introduces the concepts we build on through these first few chapters. We introduced bits 
and pieces—applications, network cards, cables, and hubs—and we worked through some 
design challenges as we scaled. The next few chapters flesh out these initial concepts in 
greater detail.



Chapter 2

A Tale of Two Network Models

Key Concepts
 Network Model

 Network Architecture

 Layering

 Encapsulation

 OSI Model

 TCP/IP Model

Introduction
In the previous chapter, we worked through a thought experiment where we built a 
 company-wide network from the ground up, from scratch. This approach is not recom-
mended in the real world. 

When building a real network, you have to consider availability of components, support-
ability of the systems, and interoperability with other systems. If every company in the 
world rolled their own network from the ground up, trying to exchange data between 
companies would be a nightmare, more so than usual.

Luckily, we don’t have to do that. We can go out and buy off-the-shelf equipment that 
conforms to well-known networking models, allowing us to build networks in a predictable 
and supportable fashion.



8 CHAPTER 2  A Tale of Two Network Models

A network model  is a conceptual breakdown of networking functions, separating the com-
munications process into layers and describing the interactions between them. A network 
architecture  is a set of documents, each describing bite-sized pieces of the greater system 
conforming to the model. A given document might define a protocol , or a set of rules 
describing how devices communicate. Another document might describe a physical speci-
fication, such as connector type. Yet another might set the rules governing how two other 
components interact. The complete, comprehensive set of documents should describe 
every aspect necessary to build a working network. The only way to be sure that all devices 
in a system can properly communicate is if every component in that system follows the 
same set of rules. 

Way back when, network architectures tended to be proprietary, with each major vendor 
doing their own thing. Later, open standards would be introduced that anyone could fol-
low. There are two open standards models worth talking about—the classic reference 
model used for teaching networking concepts, and the other one that we actually use.

Back in 1977, the International Organization for Standardization began work on the 
Open Systems Interconnection   (OSI) project. They had the best of intentions— bringing 
together representatives from all around the world to build a standards-based system that 
would allow every computer in the world to communicate. At the time, networking tech-
nologies were typically government-sponsored, like ARPANET , or vendor-driven and 
proprietary, like IBM’s Systems Network Architecture (SNA)   or DEC’s DECnet . OSI was 
an attempt to bring technology vendors and other interested parties together to build a 
common framework that anyone could implement, allowing for interoperability. OSI had 
two major components, a seven-layer abstraction model and a suite of protocols designed 
around that model.

About the same time, researchers supporting the Defense Advanced Research Project 
Agency (DARPA)   were working on an open-architecture method of interconnecting dispa-
rate networks. This grew into the Internet protocol suite, commonly referred to as TCP/
IP  after its two most important protocols, Transmission Control Protocol  and Internet 
Protocol . It was quickly adopted. The US Department of Defense mandated TCP/IP as 
the standard for all military networks in March 1982, and the Unix TCP/IP stack was 
placed in the public domain in June 1989, allowing everyone access and effectively starving 
support for other protocol suites, including OSI.

So while the OSI never really took off in a productized sense, the OSI Model remains a 
vital and valuable tool used every day by people around the world for teaching networking 
concepts and describing troubleshooting and design issues. The TCP/IP Model, being the 
underpinnings of nearly every communications device in use today,   is worth some atten-
tion, too.
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Model Behavior
Before delving into the specifics of either model, let’s run through a couple of concepts 
key to understanding how models work.

Layering
To   better understand networking processes, we break them down into more manageable 
layers and define standard interfaces between them. This offers the following benefits:

 Reduced complexity: By breaking the process up into easier-to-consume chunks, 
we make the entire process easier to learn, use, support, and productize. And when 
troubleshooting, we can focus on the parts, not the whole.

 Modularity and interoperability: Vendors can write software that implements func-
tions at one layer, and that software can coexist with other vendors’ software running 
at other layers, so long as they respect the standardized interfaces between layers.

The phone system is an example of layering at work. All you need to know is how to work 
the phone. Dial the number, and the rest is someone else’s problem. You don’t need to 
know anything about circuit-switching, telephone lines, microwave transmissions, under-
sea cables, communications satellites, or cellular networks. Standard interfaces have been 
implemented between your phone and the rest of the telephony infrastructure such that 
your only concerns are whether the phone is working (do you have power, do you have a 
signal) or potential user error (did you dial correctly). 

In layered models, each layer provides a service between a lower and/or a higher layer. 
In making a phone call, you’re asking the infrastructure below you to route the call and 
ring the phone on the other end. The phone here is an endpoint—the device you the user 
interact with directly. When two endpoints communicate, the same layers are exchanging 
information, outsourcing the details of that exchange to lower layers. You make your call; 
you start talking to the person on the other end, or more often, their voicemail, but you 
get the   idea.

Encapsulation
Encapsulation   provides a mechanism for implementing the separation between layers. Each 
layer within a model has a corresponding Protocol Data Unit (PDU)  . All layers but the 
lowest layer will define a header, and the data from the next-highest layer is encapsulated 
as a payload behind that header. The header contains information used by the protocol 
operating at that layer. The PDU is made up of that layer-specific header and the payload 
of lower-layer data. Figure 2.1 illustrates the encapsulation process within the OSI model.
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L7 Header Layer 7 PDUData

L6 Header Layer 6 PDUData

L5 Header Layer 5 PDUData

L4 Header Layer 4 PDUData

L3 Header Layer 3 PDUData

L2 Header L2 Trailer Layer 2 PDUData

Figure 2.1 Encapsulation 

The OSI Model
The OSI Model   consists of seven layers and is depicted in Figure 2.2.

Application

OSI Model

Presentation

Session

Transport

Network

Data Link

Physical

Figure 2.2 The OSI Model 
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From the  bottom up:

 Layer One, the Physical Layer: This  layer deals with the physical transmission 
medium as well as the injection of data onto the media. This includes cable types, 
connectors, pins, encoding, modulation, currents, and the process for activating and 
deactivating the transmission medium. This layer typically references other standards 
defining physical technologies.

 Layer Two, the Data-Link Layer: This  layer handles logical access to the physical 
medium. A   trailer containing a Frame Check Sequence field is added at this layer 
to facilitate error recovery. The OSI Model refers to the PDU at this layer with the 
generic term L2PDU. In the real world, we call them  frames. 

 Layer Three, the Network Layer: This  layer defines logical addressing, routing and 
forwarding, and path determination. Logical addressing  provides each device a 
unique identifier that can be used by the routing process.  Routing determines how 
devices forward packets toward their final destination.  Path determination is the pro-
cess routers use to learn all possible routes to a given destination, and how to deter-
mine the optimal route to use. At this layer, we call the PDU a  packet.

 Layer Four, the Transport Layer: This  layer defines data delivery, including error 
recovery and flow control. At this layer, we call the PDU a  segment.

 Layer Five, the Session Layer: This  layer defines how communications sessions are 
started, managed, and ended.

 Layer Six, the Presentation Layer: This  layer defines data formats and negotiates 
which will be used. Data compression and encryption are addressed here.

 Layer Seven, the Application Layer: This  layer defines the interface between the 
communications driver and local user applications that need to communicate with 
the underlying network. This layer    also defines authentication processes.

Layer Eight

You might  have heard references to “Layer Eight Problems” at some point in your career. 
Layer Eight is often invoked in a sly, snarky sense to say that the root cause of an issue is 
not technical. In some cases, the implication can be that it’s a PEBKAC error , one where 
the Problem Exists Between Keyboard And Chair. Layer Eight is often used in this sense to 
refer to people, management, politics, or money.
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Layers Eight and Nine can also be used in a more constructive sense to refer to people 
and processes. This seems to fit the concepts of layering and encapsulation a bit better—
processes define procedures for people to carry out by using applications, and so on down 
the stack.

Outside of a PearsonVue test center, you are unlikely to ever be forced to recite the seven 
layers in order, but should you feel the need to commit them to memory, a mnemonic 
device could come in handy. 

A mnemonic device  is any easily remembered trigger that can remind you of harder-to-
remember information. Common mnemonics include “Righty-Tighty, Lefty-Loosey” for 
how to work a screwdriver, “Roy G. Biv” for the order of colors in a rainbow, and “King 
Philip Came Over From Great Spain” for remembering the taxonomy classifications.

Entering the term “OSI mnemonic” into your search engine of choice will return a web-
site with a number of mnemonics to choose from, some of which are hilarious, obscene, 
or both—traits that make them all the more likely to stick. Of the G-rated ones, we prefer 
“Please Do Not Take Sales People’s Advice,” as it offers a practical life lesson   as sort of a 
bonus.

The TCP/IP Model
Like the   OSI Model, the TCP/IP Model uses a layering approach to break down and 
compartmentalize functions, but with four layers instead of seven. These are the Applica-
tion Layer, Transport Layer, Internet Layer, and Network Interface Layer, as depicted in 
Figure 2.3.

As with the OSI Model, we    review the layers from the bottom up.

The Network Interface Layer
The Network Interface Layer  defines how a host connects to a network, covering the 
physical connection itself as well as the specifics of the physical media used for data trans-
mission. It’s somewhat confusing that Ethernet is both the key network interface protocol 
and the physical media we concern ourselves with here.

Ethernet will be covered in greater detail in Chapter 3, “Ethernet Networks.”
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Application

Transport

Internet

Network Interface

TCP/IP Model

Figure 2.3 The TCP/IP Model 

The Internet Layer
The Internet Layer  defines mechanisms for addressing and delivering data throughout the 
network. Protocols  operating at this layer include IP, ARP, ICMP, and IGMP.

Internet Protocol (IP)   defines the logical addresses assigned to network devices. This 
address is made up of a network address and a host address. The network address  is used 
to direct data to the proper destination network, and the host address  uniquely identifies 
the host on that destination network. These addresses take the dot-decimal form such as 
192.168.1.100 that you’ve likely encountered before and have assigned countless times to 
various devices. A subnet mask is defined for each IP address    to allow the address to be 
parsed into its network and host portions. 

Address Resolution Protocol (ARP)   is used to translate an IP address to a hardware address for 
the delivery of frames to either the next hop device or to their final destination device. An 
ARP request is sent through the local network asking which network interface has a par-
ticular IP address. The network adapter with that IP address sends an ARP reply, contain-
ing its hardware address. 
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Internet Control Message Protocol (ICMP)   is used to control the flow of data through the 
network, report errors, and perform diagnostics. The most commonly used ICMP com-
mands are ping and tracert, which are used to verify connectivity and identify the pathways 
between hosts.

Internet Group Message Protocol (IGMP)   allows one host to send data to many destination 
hosts at the same time. This is called multicasting  and is so far beyond the scope of this 
book that we hesitate to even bring it up.

The Internet Layer is explored in greater depth   in Chapter 5, “Layer 3.” 

The Transport Layer
The Transport Layer      defines the type of connection between hosts and whether and how 
acknowledgements are sent. From a practical standpoint, there are only two protocol 
options at this layer: Transmission Control Protocol (TCP) and User Datagram Protocol 
(UDP). 

TCP is   a connection-oriented protocol, which establishes, manages, and terminates net-
work connections. TCP guarantees delivery of data and includes support for flow control, 
error checking, and recovering lost data through acknowledgements and retransmissions.

UDP, by   contrast, is a connectionless protocol. UDP data is assumed to not need error 
correction or flow control, and is thus blasted indiscriminately over the network without a 
true connection being established, and without any confirmation that the data has arrived 
at the intended destination. This sounds worse than it is, as UDP is very useful for appli-
cations such as streaming media where data loss is preferable to the delays incurred by 
retransmissions of lost packets, or in situations where error checking can be done more 
effectively by an upper layer   application.

The Application Layer
The TCP/IP Model’s  Application Layer defines services used by software running on the 
endpoint. When applications need access to the underlying network, this layer processes 
their requests by converting them    to a network-transportable format. In doing so, connec-
tions are made over the appropriate ports.

A port  is a type of address assigned to an application or protocol. There are 65,536 pos-
sible TCP/UDP ports. Ports 1 to 1023 are reserved for well-known applications by the 
Internet Corporation for Assigned Names and Numbers (ICANN). Ports 1024 to 49151 
are called registered ports , in that they are also registered with ICANN. Ports 49152 to 
65535 are private, or dynamic , ports used as needed by various applications.
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Port 0

If you were  paying really close attention there, you might have noticed we said there were 
65,536 possible ports and then categorized only 65,535 of them. Technically, the reserved 
port range is 0-1023, but Port 0 is set aside for a specific use and not used to pass traffic. 
Port 0 was intended as a shortcut in Unix socket programming. When port 0 is requested, 
the system assigns the next available dynamic port. This saves the programmer the trouble 
of having to hard-code a port number or write code to determine which dynamic ports are 
available before assigning one.

Protocols running  at this layer include HTTP  (Port 80) for requesting and serving web 
pages, FTP  (Ports 20 and 21) for file transfer, and SMTP  (Port 25) for e-mail. A complete 
list of ports and their assignments is available     at www.iana.org/assignments/port-numbers. 

Comparing OSI and TCP/IP Models
The OSI and TCP/IP Models    have much in common, as they describe the same set of 
things, just differently. A comparison of the layers of each model, how they map to each 
other, and example protocols at each layer is shown in Figure 2.4.

Application

Transport

Internet

Network Interface

HTTP, FTP, SSH, Telnet,
SMTP, POP, DNS

TCP, UDP

IP

Ethernet, Frame Relay,
Token Ring

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Model TCP/IP Model Common Protocols

Figure 2.4 The OSI and TCP/IP Models compared side-by-side 



16 CHAPTER 2  A Tale of Two Network Models

Summary

This chapter described networking in theory, rather than in practice, focusing on intro-
ducing foundational concepts such as network models, layering, and encapsulation. Begin-
ning with the next chapter and through the end of Part I, “Physical Networking 101,” we 
get a bit more hands-on, dealing with the more practical aspects of networking.



Chapter 3

Ethernet Networks

Key Concepts
 Ethernet

 MAC Address

 Collision Domain

 Broadcast Domain

 Repeaters, Hubs, and Switches

 Switching Logic

Introduction
Now it’s time to leave the classroom discussion and get into some nuts and bolts. While 
this book is mainly concerned with virtual networking, at some point your traffic needs to 
hit a physical link if you are going to get anything done. So an understanding of physical 
networking is essential. In this chapter, we discuss Ethernet and the related Layer 1 and 
Layer 2 technologies that you are likely to encounter in the data center. We start with a 
quick history lesson on Ethernet, then move on to cabling technologies, physical address-
ing, and the business of interconnecting devices and forwarding data between them.
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For successful communication over a shared link, you need to have some mechanism 
in place to ensure that only one device can transmit at a time. Ethernet accomplishes 
this through an algorithm called Carrier Sense Multiple Access with Collision Detection 
(CSMA/CD)  .

As even the abbreviation is a mouthful, let’s break it down further. “Carrier Sense” means 
to check the wire first. If another transmission is in progress, wait until the wire is idle 
before transmitting. “Multiple Access” means that more than one device is sharing the 
bus—collisions are possible. “Collision Detect” describes how to detect and react to a col-
lision. As a collision involves multiple simultaneous signals, collisions can be spotted by 
looking for higher-than-expected signal amplitudes. When these are detected, the trans-
mitting stations send a further jamming signal to ensure that all stations are aware of the 
collision, and then employ a back-off algorithm for each station to wait a random amount 
of time     before attempting to retransmit. 

Ethernet Standards and Cable Types
Ethernet is     available in a number of speeds and form-factors. These days, in a modern 
data center, you are most likely to encounter gigabit and 10 gigabit Ethernet, carried over 
either copper or fiber. Outside of the data center, you might be dealing with 100Mbps 
connections, or even wireless, but we’re going to focus the discussion on connectivity 
within the data center, where the magic really happens. 

Fiber Versus Fibre

In the    United States, discussions about fiber in the data center can get confusing quickly. 
Americans use “fiber” to refer to the fiber optic cables themselves. Sometimes, that fiber is 
used to plumb the storage area network (SAN), over which the Fibre Channel Protocol is 
used. So “fiber” is the medium and “Fibre Channel” is a protocol that can be run over that 
medium. Make sense? To complicate things further, Fibre Channel Protocol can be run 
over unshielded twisted pair (UTP) cable, too.

Outside of the United States, “fibre” is the preferred term for the medium as well, leading to 
all sorts of spellcheck frustration. 

For more information on Fibre Channel, we direct you to Storage Implementation in 
vSphere 5.0 by Mostafa Khalil.

Gigabit Ethernet  over copper wire, and its 10 and 100 megabit ancestors, uses UTP 
cabling. These cables consist of four pairs of wires, twisted together down the length of 
the cable, terminating in RJ45 connectors     on each end. 
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Everything You Know About Connectors Is a Lie

You might dismiss this as pedantry, but we just can’t be part of the lie anymore. You know 
that thing at the end of your Cat5 cable? It’s not an RJ45 connector  . An RJ45 connector 
is keyed such that it wouldn’t fit in a standard Ethernet NIC port. The connector used 
on standard UTP cables is an 8P8C  (or 8-position, 8-contact) connector. The real RJ45 
connector is an 8P2C (8-position, 2-contact) type. The standard for which the real RJ45 
plug and socket were designed for never really took off, and the connectors for 8P8C and 
RJ45 look similar enough (minus the keying) that the name RJ45 stuck for both.

With Gigabit Ethernet over copper wire, all four pairs are used to transmit and receive 
simultaneously. This differs from the earlier 10 and 100 megabit standards which defined 
separate send and receive pairs. 

Gigabit   and 10 gigabit Ethernet over fiber involve two strands of fiber optic cabling, a 
transmit strand and a receive strand. The fiber can be multi-mode for relatively short 
distances, or single-mode for longer distances. Single-mode fiber carries only a single 
frequency of not-safe-for-the-eye laser-driven light, while multi-mode carries multiple 
LED-driven frequencies which are harmless if you happen to look at them. In data center 
applications, fiber cables typically terminate in either SC or LC connectors. SC connectors 
 are squarish and use a push-on, pull-off attachment mechanism, with each     transmit/receive 
pair typically held together with a plastic clip. LC connectors  are a smaller form-factor 
option, and use a retaining tab attachment mechanism similar to an RJ45 connector.

Upstream fiber connections typically involve hot-pluggable transceivers. Gigabit interface 
converters (GBICs)   or small form-factor pluggable transceivers (SFPs)   are used to sup-
port gigabit Ethernet connections, and enhanced small form-factor pluggable transceivers 
  (SPF+) are used for 10 gigabit connections. 

Ten gigabit Ethernet over  copper is most commonly found in an SFP+ direct attach form-
factor, in which twinaxial copper is terminated by SFP+ housings attached to the end of 
the cable. Some vendors refer to these as Direct Attach Copper (DAC) cables  . These are 
used for fairly short runs, 1 to 7m for passive cables or up to 15m for active cables, with 
the latter drawing transmission power from the connected device. Ten gigabit copper over 
UTP (10GBase-T) is also available, but is less common at the moment, as upgrading infra-
structure to support it tends to cost more than using existing SFP+ ports. 

Table 3.1 lists a number of commonly used physical Ethernet standards.
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Table 3.1 Common Ethernet Standards 

Common Name Speed IEEE Standard Cable Type and Max Length

Ethernet

10BASE5

10BASE2

10BASE-T

10 Mbps

802.3

802.3

802.3

Copper coaxial, 500m

Copper coaxial, 185m

Copper UTP, 100m

Fast Ethernet 

100BASE-TX

100BASE-FX

100 Mbps

802.3u

802.3u

Copper UTP, 100m

Fiber, 2km

Gigabit Ethernet 

1000BASE-LX

1000BASE-SX

1000BASE-T

1000 Mbps

802.3z

802.3z

802.3ab

Fiber, 5km

Fiber, 500m

Copper UTP, 100m

10 Gigabit Ethernet 

10GBASE-SR

10GBASE-LR

10GBASE-CR

10GBASE-T

10 Gbps

802.3ae

802.3ae

Pending

802.3an

Fiber, 400m

Fiber 10km

Copper twinaxial, 15m

Copper UTP, 100m

Table 3.2 shows a number of common cable connectors and types.

Table 3.2 Common Ethernet Cable Connectors and Types 

Name Image

UTP with RJ45 / 8P8C End
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Name Image

Fibre LC Connector

Fiber SC Connector

GBIC Module

SFP/SFP+ Module

Copper TwinAxial Cable
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Ethernet Addressing
With a   shared bus, all stations are aware of all transmissions. However, as we saw in Chap-
ter 1, “The Very Basics,” some messages are intended for only a single station, some for 
a subset of the stations, and some are intended to be received by all stations. So Ether-
net defines an addressing scheme to allow for communication to be targeted to a single 
receiver, multiple receivers, or all receivers on the bus.

These Layer 2 addresses—dubbed MAC (Media Access Control) addresses   in the IEEE 802.3 
standard—are six bytes long and usually expressed as a string of twelve hexadecimal digits. 
Cisco devices typically separate each set of four digits with a period (1234.5678.90AB). 
Other vendors use a colon or dash between each set of two (12:34:56:78:90:AB or 12-34-
56-78-90-AB). VMware uses the colon notation, so from here on out, we will, too.

These addresses come in three flavors. The first, and the type we spend the most time 
talking about, is a unicast address . Unicast addresses are used to identify a sender and the 
intended recipient of an Ethernet frame. When a network adapter observes a transmission 
on the shared bus, it checks to see if the destination MAC address matches its own. If it 
does, it processes the frame. If it does not, the frame is ignored.

Unicast MAC addresses are required to be globally unique . To support this, manufactur-
ers of physical network adapters encode a MAC address into Ethernet adapters at the 
factory—this address is often referred to as a “burned-in address.” The IEEE assigns 
each manufacturer an organizationally unique identifier (OUI)  , which occupies the first 
half of each MAC address. The manufacturer then assigns the second half of the address. 
VMware has its own OUI (00:50:56) that is used to construct MAC addresses for virtual 
machine network adapters.

Globally Unique, Except When Not

The  IEEE had the best of intentions in requiring that MAC addresses be globally unique, 
but manufacturers have not quite been able to live up to that requirement. Many people 
have had the experience of finding NICs with duplicate MACs, and modern NICs often 
allow you to change the MAC address to a custom-defined value. Global uniqueness has 
become more of a guideline, really. So as long as your MAC address is locally unique within 
your Layer 2 domain, you will be fine.

The two additional types of MAC addresses are used to identify multiple recipients. A 
broadcast destination address  (MAC address FF:FF:FF:FF:FF:FF) is used to indicate that 
all network adapters on the shared bus should process the frame. And multicast destina-
tion addresses  are used to target the frame to a group of network adapters on the bus. 
Multicast MAC addresses will use an OUI of 01:00:5e, with the remaining six bytes being   
user-definable.
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as half-duplex communication . As the number of devices on the shared bus increases, so do 
the chances for collisions. Eventually, sustained communication becomes impossible due 
to constant  collisions.

Because of their propensity for collisions and poor use of bandwidth, a smarter class of 
interconnection devices, called switches , was developed. Switches do not create a single 
shared bus through mindless rebroadcasting. Instead, they examine the destination address 
of each frame to enable forwarding only to the relevant port. And if multiple frames are 
sent to the same destination at the same time, the switch can buffer the frames and send 
them one at a time to avoid  collisions. So, in switches, although the bandwidth of the 
switches’ backplane is shared, the bandwidth of each currently communicating link is not 
shared and the full-rated bandwidth, up to the limitations of the switches’ backplane, is 
available to each set of communicating ports. 

With these features, each switch port becomes its own collision domain. As long as there 
is only one device connected to each port, no collisions can occur. The CSMA/CD algo-
rithm can be disabled, allowing both ends of the connection to send and receive simultane-
ously, effectively doubling performance. This is referred to as full-duplex communication .

While switches can make intelligent forwarding decisions for unicast traffic, they must 
still support broadcast and multicast traffic, allowing a sender to transmit to all or multiple 
connected devices. When a switch port receives a broadcast, it is retransmitted to all other 
ports, which is why a switch and its connected devices are said to be sharing a single broad-
cast domain . When a switch port receives a multicast, it is retransmitted   only to the ports 
associated with that address.

Switching Logic
Let’s  dig a little deeper into how switches work their magic. The switch needs to examine 
each incoming frame and determine whether to forward it or ignore it. To accomplish 
this, the switch needs to learn what MAC address(es) should be associated with each of 
its ports. This mapping is built up over time by the switch by examining the source MAC 
address of each inbound frame. Knowing the source port and the source MAC address, it 
builds a lookup table in a special type of memory designed for super-fast searching called 
Content Addressable Memory (CAM)  . 

After examining the inbound frame’s source address, the switch examines the frame’s des-
tination address and searches its MAC address table for a match. If no match is found, the 
switch floods the frame out of all other ports, the assumption being that the unknown des-
tination address will reply and can then be added to the address table. If a match is found, 
and if that match is a port other than the port the frame arrived on, the switch forwards 
the frame out of the port corresponding to that destination address. If the match is the 
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same port the frame arrived on, the frame is ignored. You might see this behavior if you 
have a hub attached to a switch port. The switch would associate all MAC addresses of 
devices attached to the hub with the same switch port, and the hub would repeat all signals 
received by its connected devices    to the switch port. 

Summary

In this chapter, we dove into Ethernet, discussing the theory of operation, the physi-
cal plumbing, and physical addressing. We also introduced the switch and covered how 
switches make forwarding decisions. The next chapter builds on these ideas, introducing 
advanced Layer Two concepts.



Chapter 4

Advanced Layer 2

Key Concepts
  Virtual LANs (VLANs)

  Trunk Ports

  Access Ports

  Spanning Tree Protocol (STP)

  Link Aggregation

Introduction
In the previous chapters, we’ve mostly discussed the ideas around creating identification 
for various network objects and have described various topologies for networks. This is 
great for simply getting traffic to traverse from one object to another, but there are a few 
advanced topics that are essential for transforming a basic network to one that’s highly 
available and scalable.

In this chapter, you are introduced to three new concepts: a method in which physical 
local area networks (LANs) can be logically divided into virtual LANs (VLANs), tech-
niques used to prevent Layer 2 loops that can seriously reduce a network’s ability to carry 
useful traffic, and a discussion of link aggregation. These three topics are highly relevant in 
modern data centers, especially as they relate to the virtual networking concepts that will 
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be deeply covered in Part 2, “Virtual Switching.” The three major topics that are explored 
in this chapter are usually found in every network you’ll ever encounter—and you’ll see 
exactly why as you read on.

Concepts
A local area network    is a shared resource consumed by each connected device. The goal is 
that each device can communicate effectively. However, sometimes a company might wish 
to separate parts of the network into different functional groups via smaller networks. The 
powers that be might wish to have each department isolated into its own network, or want 
to dedicate a network specifically to an application that drives revenue into the business.

There are significant performance and security advantages that can be realized by hav-
ing multiple LANs. Imagine the scenario where people in the Human Resources (HR) 
department are sending and receiving sensitive personnel files to one another. An isolated 
HR LAN to ensure that no one can accidentally or maliciously view their network traffic 
might be justified in this case. An isolated LAN also ensures that the HR employees do not 
have to share a broadcast domain with other users on the network, which improves perfor-
mance. Finally, a separate LAN limits the spread of certain types of malware.

Let’s look at an example of two different LANs being utilized for a company that wishes 
to isolate the HR desktops from the sales and marketing desktops (see Figure 4.1). Notice 
how this requires two different switches. 

HR
Network

10.0.1.0/24

Common
Network

10.0.2.0/24

HR
Switch

HR
Desktops

Common
Switch

Sales
Desktops

Marketing
Desktops

Figure 4.1 Two isolated physical LANs 

However, purchasing an entire new set of networking gear to isolate the HR employ-
ees is not very cost effective. It would be similar to an airline buying a fleet of jumbo jet 
planes but only letting 10 people board each plane—there’s a lot of wasted capacity and 
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unnecessary overhead. Instead, the idea    of a virtual LAN, or VLAN, was developed as the 
IEEE 802.1Q open standard to allow physical switches to be divided logically to provide 
separate, virtual LANs.

Figure 4.2 represents an Ethernet frame,   with a focus on the 4 bytes that are normally left 
unused. Within these 4 bytes, 12 bits are reserved specifically for a VLAN ID. By popu-
lating the VLAN ID field with a value, we can effectively tag the frame and place it in a 
VLAN segment. 

Destination
Address

Source
Address

802.1Q
VLAN Tag

4 Bytes

Frame
Check

Type/Len Data

Tag
Protocol
ID
0x8100

User
Priority
(3 Bits)

Canonical
Format
Indicator
(1 Bit)

VLAN ID
(12 Bits)

2 Bytes 2 Bytes (Tag Control Information)

Figure 4.2 An Ethernet frame 

A VLAN is defined by adding a 4-byte tag inside of a frame’s header to let all the switches 
know which logical LAN it belongs to. The switches’ ports are programmed to only 
forward frames with specified VLAN numbers and ignore the rest. This lets a network 
administrator control which ports belong to specific VLANs.

Revisiting the company that wants to isolate their HR desktops from the rest of the com-
pany, we now see that only one physical switch is required (see Figure 4.3). The VLAN 
tags are now handling the separation at a logical layer. 

A port which allows only frames for a single VLAN is called an access port  . Traffic that 
enters the port, which is an ingress  action, will have the VLAN tag added to the frame by 
the switch itself. This allows the server attached to the port to be unaware of its VLAN 
membership, effectively letting the server send untagged frames toward the switch. On the 
flip side, traffic that is forwarded out of a port, which is an egress , will have the VLAN tag 
removed so that the server does not see the tag.
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This is where the idea of a native VLAN enters the scene. This is a specially defined VLAN 
that will be used as a default for any traffic that is not tagged. When the switch sees an 
untagged frame enter its port, it looks up the native VLAN number and forwards the 
frame without tagging it with any VLAN information at all. The next hop switch has to 
agree on the VLAN number of the     native VLAN. 

Loop Avoidance and Spanning Tree
Single links    between devices create single points of failure, so it’s natural to want to add 
redundancy. Whenever budget allows, you will also want to introduce redundancy at the 
switch level, dual-connecting access switches to multiple upstream distribution switches, 
for example. This prevents the failure of any single network device causing an outage 
to the system as a whole. This is not without peril, however, as having redundant links 
between switches that carry broadcast traffic can expose a condition called a broadcast storm 
 whereby a switch’s ability to carry real traffic goes to near zero because it’s instead carrying 
a growing and unending cycle of rebroadcasts of broadcast frames. Because Ethernet has 
no internal counter such as a time-to-live to expire traffic, frames that enter a loop do so 
indefinitely—or at least until the network administrator pulls the cable causing the loop, or 
turns on the Spanning Tree Protocol (STP) on each connected switch.

Spanning Tree Overview
Spanning Tree Protocol (STP) is     a very deep topic that causes headaches for many profes-
sional network administrators. We spend the next portion of this chapter getting you up to 
speed on exactly what it is, how it works, and why it is so vital for the operation of a typical 
network.

What Is Spanning Tree?

STP, the IEEE 802.1D open standard, is designed to prevent looping behavior and allow 
network administrators to introduce redundant links without forming a traffic loop. STP 
learns the topology of the network and purposely blocks redundant links that could cause a 
loop. Should an active link fail, STP will unblock links as necessary to restore connectivity.

REAL WORLD EXAMPLE

It’s easy to demonstrate this effect. If you have any cheap, consumer-grade network 
switch, you can plug two of the ports together, plug in your laptop or desktop, and ping 
some IP address to generate an ARP Request broadcast. Since low-end switches have no 
STP running to block the loop, you will observe incredible amounts of activity, that is, a 
broadcast storm on the switch, until you unplug the loop.
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How Does Spanning Tree Work?

All the switches that are actively participating in STP first have to figure out which switch 
will be the root bridge . This is done by election, like picking a president or group leader, 
but with less politics involved.      The root bridge is simply determined from the switch with 
the lowest bridge ID. The switches determine this by exchanging Bridge Protocol Data 
Units (BPDUs)   containing their bridge IDs.

A bridge ID  consists of two parts: the bridge priority and MAC address. By default, all 
switches have a bridge priority of 32,768. An administrator can change the bridge prior-
ity, increasing or decreasing it by multiples of 4,096, to forcefully determine which switch 
will be the root bridge. If all the switches are using the default 32,768 priority, then the 
tie is broken by finding the switch with the lowest MAC address value. It is prudent to set 
a lower bridge priority on the switch you specifically want to be the root bridge, as other-
wise the root bridge role might change to an underpowered or over-utilized switch which 
happens to have the lowest MAC address.

When the root bridge has been identified, the remaining non-root bridge switches in the 
topology do some math homework to determine how they can best send traffic back to the 
root bridge. They exchange BPDUs to determine the network topology and track topol-
ogy changes. Every path to the root bridge has an associated cost. Imagine that you wanted 
to drive from one city to the next and are given many different choices on how to get 
there. You might choose the interstate, which is more mileage but lets you drive at a fast 
speed, or the local roads, which is fewer total miles  but a much slower speed.

Switches look at the speed of each link in each possible path back to the root bridge, in 
search of the lowest total path cost. The path cost is the sum of  each link’s cost value based 
on its data rate. For standard STP (802.1D), the cost values are shown in Table 4.1.

Table 4.1 STP Cost Values 

Data Rate Cost

10 Mbps 100

100 Mbps 19

1000 Mbps (1 Gbps) 4

10000 Mbps (10 Gbps) 2

Looking at the costs, you can see that if STP had to choose between a single 100 Mbps 
link (cost of 19) and four 1,000 Mbps links (cost of 4 * 4 = 16), it would choose the four 
1,000 Mbps links. When the paths have been chosen, the switch ports which connect to 
other switches are  assigned STP roles as follows:
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PortFast
The default      behavior of STP blocks a port until it has listened and learned the traffic on 
that port and determines that it can begin forwarding traffic without creating a loop. This 
is great for switch-to-switch links, but endpoint devices on your network—desktops, serv-
ers, printers, and so on—are usually not capable of creating a network loop. The act of 
blocking traffic for a period of time can cause some headaches and complications, particu-
larly if the workstation or server is trying to use a Preboot Execution Environment (PXE) 
to boot, or requires a DHCP lease for its IP address.

For these endpoint devices, an administrator can enable PortFast on a Cisco device, or des-
ignate a port as an   edge port or “fast uplink” port with other switch vendors. PortFast is an 
extension to 802.1D that allows a port to skip the listening and learning states and transi-
tion directly to the forwarding state. You are effectively telling the switch to go ahead and 
trust the port immediately, and that it does not need to burn time proving that the port 
will not create a loop.

REAL WORLD EXAMPLE

It’s very common, and often recommended by vendors, to enable PortFast for any ports 
connecting to your NICs on a server because they cannot form a loop. All the server NICs 
should be allowed to actively forward traffic.

Of course, exercise caution when enabling PortFast on a switch port, and ensure that no 
network device will be plugged into that port. There is the possibility that someone could 
plug in a rogue network device with an improperly configured STP bridge priority, and 
become the root bridge for your network topology. Though they are out of scope for this 
book, tools such as BPDU Filtering and BPDU Guard can provide a safeguard against this 
     sort of risk.

Rapid Spanning Tree
Although STP         does work as advertised, it’s rather slow to converge. If the network topol-
ogy changes, STP can take anywhere from 30 to 50 seconds to transition ports from block-
ing to forwarding traffic. Most environments consider this an unacceptable outage length. 
In today’s hyper-connected world of always-on technology, can you imagine having your 
entire network down for almost a full minute?
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NOTE

The vast majority of networks do not run the traditional 802.1D STP. It’s become a blanket 
term that refers to any variation of STP that exists today and is easier to say when talking to 
your colleagues about the idea of blocking and forwarding traffic on switch ports.

Rapid Spanning Tree Protocol (RSTP), the IEEE 802.1W open standard, was introduced to 
allow faster network convergence. This protocol requires about 6 seconds to converge and 
uses fewer port states than STP. This is due to a variety of reasons, but mainly the fact 
that the protocol uses proposals and agreements instead of timers and a decoupling of port 
states from  port roles. The three port states used are:

  Discarding: The  port state replaces the STP disabled, blocking, and listening states. 
The port is dropping frames just like with an STP blocking port.

  Learning: At this  point, the port is learning the MAC addresses by examining the 
traffic on the port, but is not forwarding or receiving data traffic.

  Forwarding: The  switch port is forwarding and receiving data traffic.

RTSP also introduces two additional port roles:

  Alternate Port: This is  a blocked port that provides an alternate path to the root 
bridge by means of a different peer switch than the active root port.

  Backup Port: This is  a blocked port that provides a backup path to the root bridge by 
means of a redundant port to the same peer       switch.

Link Aggregation
Not all redundant links between devices are bad things that invoke the wrath of STP. In 
fact, there is an entire set of protocols at your disposal that specifically address some of the 
needs for redundant links, which we cover here.

What Is Link Aggregation?
While   something like STP is necessary to prevent network loops, it sure seems like a 
shame to have perfectly good network connections sit idle, just biding their time waiting 
for a link failure that might never come. We can make these links useful without angering 
STP by using link aggregation. 
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Link aggregation is the act of bundling multiple physical ports into a single logical group-
ing. This prevents any one member of the group from being blocked, as the group appears 
as one logical port to STP.

Link aggregation offers a couple of advantages over discrete links managed by STP:

  Increased Bandwidth and Load Sharing: Because multiple links are active within a 
logical group, additional bandwidth is available among unique sessions of traffic. Per 
Figure 4.7, no single traffic session, such as a single client talking to a single server, 
can use more than one physical link. Think of it like making a large highway with 
multiple lanes: You can fit more cars on the highway, but each car can only take up 
one lane at a time.

Logical
Port

Physical
Ports

Traffic
Source

Traffic
Destination

Port 1/1 Port 1/2

Port Channel 1

Figure 4.7 A data flow with link aggregation from a single source to a single destination travels 
through only one aggregated port.

  Improved Redundancy and Availability: If a single link in the group fails, other links 
continue to pass traffic and the group does not go down. There is no need for the 
STP topology to reconfigure itself or for STP to transition a new link from blocking 
to active.

One of the challenges with link aggregation is that it comes in a number of names, shapes, 
and standards. Terminology varies between vendor implementations, even when imple-
menting the same standards. To un-muddle this, we try to use the generic term Link 
Aggregation Group  , or LAG, to describe the general concept, and use vendor-specific terms 
when talking about their specific   implementations. 
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Implementation Methods

There are many different ways to build a LAG, as each vendor decided to use a slightly 
different name or method in order to accomplish a logical link grouping. This can cause 
confusion and frustration to networking newcomers, so we cover the more common terms 
and technologies used.

802.3ad and 802.1ax – IEEE Open Standard

The     IEEE LAN/MAN Standards Committee sponsored link aggregation in their 802.3ad 
open standard. The idea was to meet a long list of goals for link aggregation through non-
proprietary means. Later, the standard was formally transferred and published as 802.1ax 
to avoid some confusion with other 802.1 layers. The formal definition of 802.1ax is as 
follows:

Link aggregation allows one or more links to be aggregated together to form a link 
aggregation group, such that a media access control (MAC) client can treat the link 
aggregation group as if it were a single link.1

Within the 802.1ax open standard, the IEEE also defines the Link Aggregation Control 
Protocol (LACP)  . The purpose of this protocol is to allow two systems to negotiate a LAG 
using a standard, nonproprietary protocol.

EtherChannel – Cisco

EtherChannel is    a Cisco proprietary way of building a LAG between Cisco switches. It 
can consist of up to 8 active ports to forward traffic and 8 inactive ports, sometimes called 
failover ports , to take over for any active ports that happen to fail. EtherChannel comes in 
two flavors:

  A Static EtherChannel , or “mode on” in Cisco IOS-speak, is manually configured and 
will not use a negotiation protocol to build the LAG. If the network administrator 
inputs the wrong information in the switch, the LAG might still appear to be active 
but might not forward traffic properly.

  A Dynamic EtherChannel  can use one of two protocols to automatically create a LAG: 
Port Aggregation Protocol (PAgP)   or LACP. When a dynamic EtherChannel is cre-
ated, both network switches involved negotiate to form the LAG. If the negotiation 
fails, the LAG is not established.
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Etherchannel Versus Port Channel

Further   complicating any discussion on link aggregation, the terms EtherChannel and Port 
Channel are often used interchangeably. There is a subtle difference, though. When config-
uring an EtherChannel between two switches, you create a Port Channel interface on each 
switch, bundling the physical interfaces together. An EtherChannel, then, is the logical 
pipe between switches consisting of a bundle of cables, while a Port Channel is the logical 
interface terminating the EtherChannel at each end consisting of a bundle of interfaces. Put 
another way, when you make a configuration change to EtherChannel, you do so via the 
Port Channel’s interface. And when these changes are committed, they are automatically 
applied to each of the interfaces from which the EtherChannel has been constructed.

Other Vendor Terminology

Here is   some additional terminology you are likely to encounter when discussing link 
aggregation:

 Trunk (HP): Some documentation  for HP network equipment (and many network 
engineers that used to support said equipment) refers to a LAG as a trunk. This can 
cause confusion between LAGs and links carrying 802.1Q VLAN tags, as the latter 
is termed a trunk by just about everyone else. The HP “trunk” implementation con-
forms to the 802.1ad standard which is what non-HP engineers would call a LAG.

 Multi-Chassis Link Aggregation (Various) or Cross-Stack EtherChannel  (Cisco): A 
multi-chassis  LAG has terminating interfaces on two different nodes. This is a more 
highly available implementation, as the LAG can sustain the loss of a connected tar-
get. Implementation details are vendor-specific and outside the scope of this book, 
but you should know that MC-LAG exists and that it is more robust because the 
loss of a single switch chassis doesn’t mean the loss of the aggregated link. Examples 
include virtual port channel (Cisco) and distributed trunking (HP).

 NIC Teaming: Many endpoint operating systems and hypervisors are capable of logi-
cally bundling network connections. This is typically referred to as NIC teaming 
 or NIC bonding . In these configurations, a software driver must determine how to 
distribute traffic across the uplinks, as the connected physical switches are usually 
unaware of the   teamed configuration.

Dynamic Link Aggregation
As mentioned,    both the 802.3ad and Cisco implementations of link aggregation support 
two methods of building a LAG—static and dynamic. They really are as simple as they 
sound. A static LAG  is manually configured by an administrator and shows an “up” state 



40 CHAPTER 4  Advanced Layer 2

immediately after being created, even if the partner ports on the other end of the wire are 
not properly configured. A dynamic LAG  uses a specific protocol to chat with its partner 
ports to discuss whether or not they are configured properly to form a LAG.

REAL WORLD EXAMPLE

In reality, the major choice of which method to use boils down to what the network 
equipment supports. The VMware vSphere Standard Switch (vSwitch), for example, cannot 
form a dynamic LAG and requires a static LAG if link aggregation is required. Other 
hardware and virtual switches, such as HP ProCurve, Cisco Nexus, and even the VMware 
vSphere Virtual Distributed Switch (version 5.1 and later), support dynamic LAGs using 
LACP. Most network administrators tend to prefer using a dynamic LAG when possible, as 
it helps ensure that the LAG is properly configured.

In today’s  modern switching world, there’s really only one choice for dynamic LAG 
 protocol: LACP. It’s supported by everything you’d ever want to use. That said, it’s not 
unusual to find devices using Cisco’s PAgP in the    wild.

Link Aggregation Control Protocol (LACP)

LACP is   defined in the IEEE 802.3ad open standard and later as 802.1ax. It’s not incred-
ibly important that you understand all the finer details of exactly how the protocol works, 
but you should be aware of the general process used:

 1. A networking device configured to use LACP will generate special LACPDU 
(LACP Data Unit) frames on all the ports that are part of the LAG.

 2. The peer device will receive these special frames and, if also configured for LACP, 
will respond with its own LACPDU frames.

 3. The networking devices will form a dynamic LAG.

Pretty simple!

REAL WORLD EXAMPLE

When working with someone using a Cisco networking device, he or she may refer to 
LACP as “mode active.” That’s because the actual CLI command to create an Ether-
Channel for Cisco requires setting the mode. The choices for LACP modes are “active” 
and “passive.” An active device  will actively seek out a peer device to form a LAG, while a 
passive device  will only listen for requests. At least one of the two devices must be active, or 
else both will only listen. It’s common to set both devices as active to avoid worrying about 
which device will be set   which way. 
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Port Aggregation Protocol (PAgP)

The other  , increasingly irrelevant LAG protocol is Port Aggregation Protocol (PAgP). 
This protocol was developed by Cisco as their own method of dynamically forming LAGs. 
Modern Cisco gear no longer supports PAgP, as the rest of the world has settled     on 
LACP.

Load Distribution Types
When using    LAGs, a method for selecting what traffic will go down what physical port 
must be selected. Each session created between one device and another can only use one 
single port inside the LAG. It is a common misconception to think of traffic being sprayed 
across multiple ports—going back to the car on a highway example, you can’t slice up your 
car and drive in four lanes at the same time. And even if you could, the pieces couldn’t get 
to your destination any faster—and who would insure you?

Every LAG, static or dynamic, uses a load distribution method to determine which traffic 
session maps to which specific port. A LAG is capable of examining the header of frames 
and packets for three types of information:

Source information (src)

Destination information (dst)

Source and destination information (src-dst)

The load distribution logic can extract the following information:

IP Address (ip)

MAC Address (mac)

TCP/UDP Port (port)

You can choose what to look at based on what will best    distribute your specific traf-
fic load. The typical default method is to use source and destination MAC addresses, or 
src-dst-mac. This method is used when you simply do not know if there would be a benefit 
to source-based or destination-based distribution. Packets from host A to host B, host A to 
host C, and host C to host B could all use different ports in the LAG. 

Here are some example use cases and load distribution methods:

Traffic headed for a collection of web servers might benefit from using source IP 
address, or src-ip. With this method, packets from different IP addresses will poten-
tially use different ports in the LAG, but packets from the same IP address will use 
the same port in the LAG. 
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Streaming file transfers to an office building of PC workstations might benefit from 
destination MAC address, or dst-mac. With this method, packets to the same desti-
nation MAC are forwarded over the same port in the LAG, and packets to a different 
destination are sent on a different port in the LAG. 

Application servers that must pass traffic among each other might benefit from 
source and destination port, or src-dst-port. With this method, packets sent between 
hosts using different port numbers could be forwarded on different ports in the 
LAG, while packets sent between hosts on the same port number would be for-
warded over the same port in the    LAG.

PITFALL

Prior to vSphere 5.5, the VMware vSphere Distributed Switch only supports src-dst-ip load 
distribution. Make sure to tell your network administrator to use this method and set the 
load distribution algorithm on the VMware virtual switch to “Route based on IP hash.”

Summary

Now that you’ve been down the road of advanced Layer 2 topics, you might be thinking 
that most of what we’re trying to accomplish here involves the removal of logical loops. 
But keep in mind that a vast amount of effort has been put into creative ways to trick 
the network into thinking that one path exists when, in actuality, there might be mul-
tiple physical paths along the topology. Fortunately, most of what you’ll deal with on the 
vSphere side of the network is completely unable to be looped—this is covered in much 
greater detail in Part 2.

Of much greater importance for your future career as a high-performance networking 
ninja will revolve around the understanding, consumption, and configuration of VLANs. 
Most of your vSphere environment will depend on the correct numbering and presenta-
tion of VLANs so that the guest virtual machines (VMs) can properly communicate with 
one another. Additionally, there are many performance benefits to be realized by using 
VLANs to isolate various types of traffic. Finally, link aggregation increases reliability and 
capacity for critical high volume loads such as vMotion and IP storage. Have no fear: We 
go very deep into these exact topics later on, with real, working examples of the physical 
and logical configuration. 
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Layer 3
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Introduction
With Layers 1 and 2 behind us, we can move on to Layer 3, the Network layer. There 
comes a time when every packet needs to leave its local segment and go off into the world 
to seek its fortune, while we look on with a single tear in our eye and wish it well. In this 
chapter, we describe the process of routing data from one device to another, between net-
works. We start with an overview of the Network layer functions, then move on to logical 
addressing at the Network layer, talk through routing mechanics, and close with describ-
ing a few of the tools supporting the functions at this layer.
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The Network Layer
You might  recall from Chapter 2, “A Tale of Two Network Models,” that the OSI Layer 3 
function is to schlep packets from a sender to a recipient, potentially navigating numerous 
hops along the way. To accomplish this, Network layer protocols support the process of 
forwarding packets, the logical addressing of devices, and methods of learning about con-
nected networks and how to reach them.

Routing and Forwarding
Each host    on a network uses a simple two-step process when determining where to send a 
packet. If the destination address is in the same subnet as the host, the source host simply 
sends the packet directly to that destination host. If the destination address is on a dif-
ferent subnet, the host sends the packet to the router on the subnet. The router exam-
ines the packet, comparing the packet’s destination address to the routing table, looking 
for a match. If a match is found, the router resends the packet out of the corresponding 
interface. 

Connected, Static, and Dynamic Routes
The router compares each packet’s destination address to its routing table. That routing 
table can be populated in three different ways. The first     concerns connected routes. The 
router will automatically add a route to its routing table for subnets it is directly connected 
to, so long as the interface is online and has an Internet protocol (IP) address assigned 
to it. If the router has an interface with the IP address 192.168.1.1 / 24, it will add the 
192.168.1.0 / 24 network to its table, with that interface as the next hop.

The second method is     static routes. For networks that are not directly connected, an admin-
istrator can manually enter a route statement directing a certain network to a certain inter-
face. While this works just fine in a small or steady-state environment, it becomes difficult 
to manage at scale, or when new networks are added regularly.

The third method    , dynamic routes, allows routers to learn routes by way of a routing proto-
col. Each router advertises the routes it knows about to other routers in a topology. When 
a router hears an update with new routes in it, it adds them to its routing table. Routing 
protocols include some mechanism to prevent routing loops from being added to tables, 
and include some sort of metric that routers use to compare learned routes, ensuring that 
the best route to a location is added. 
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The Gateway of Last Resort
Earlier, we       said that if a match in the routing table is found, the router sends the packet 
out of the appropriate interface. Well, what if a match is not found? Often, a router will be 
configured with a gateway of last resort, also called a default route or default gateway. These 
terms can be used interchangeably, but “gateway of last resort” has a bit more flair to it. 
This is a special wildcard static route that says if the packet doesn’t match anything in my 
routing table, shoot it over to this guy, and he’ll know what to do with it.

NOTE

The previous statement holds unless you’re working with a Cisco router on which the 
no ip classless command has been issued. In such a configuration, the gateway of last 
resort can be set, but will be ignored. If a match is not found in the routing table, the packet 
is dropped. 

This concept extends to hosts on the network, too—each host will have its default gateway 
configured to be the router on its subnet. Note that because the default gateway is a wild-
card route for any non-local network, you can only have one per host. Even if your host 
is multi-homed—that is, connected to multiple networks—there can only be one default 
      gateway. 

IP Addressing and Subnetting
Each device     communicating on the network needs a unique IP address. The IP address is 
a 32-bit number, which we shorten into dotted-decimal notation, translating each byte of 
the 32-bit sequence into a decimal value, and separating those numbers with periods. So 
the IP address 204.248.52.7 is really the 32-bit sequence 11001100 11111000 00110100 
00000111. You will often hear each of those decimal chunks referred to as octets , that is, a 
group of eight values.

IP addresses are grouped into sets of contiguous addresses, each of which is an IP network 
or subnet. The addresses within a single subnet will have a common string of values in the 
first part of the address. The full IP address consists of two parts—a  network prefix defin-
ing the network and a host address  identifying the host on that network. All hosts that 
share the same network prefix must be local to each other—there cannot be any routers 
between them. Likewise, hosts that have different network prefixes must be separated by 
a router. 
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Classful Addressing
So, given      a value like 204.248.52.7, how do you tell where the network address ends 
and the host address begins? Back when IP was still just a twinkle in Defense Advanced 
Research Projects Agency’s (DARPA’s) eye, the Internet Engineering Task Force (IETF) 
created request for comments (RFC) 791 to describe different classes of networks usable 
by hosts as unicast addresses. Three classes were defined—Classes A, B, and C. Each class 
has a different length for its network prefix. Class A networks use the first byte of the 
address as the network prefix. Class B networks use the first two bytes, and Class C net-
works use the first three. When describing the network prefix, the convention is to write 
out the numbers in the prefix, and use zeroes for the host portion. Examples would be 
4.0.0.0 for a Class A network, 128.123.0.0 for a Class B network, and 192.123.321.0 for a 
Class C network.

Each class of network can support a set number of hosts. A Class A network reserves the 
first byte for the network prefix, leaving three bytes (or 24 bits) available for host identifi-
cation. The total number of available hosts is then 2^24, minus two reserved addresses per 
network, for a total of sixteen million and change. The last address in the range is reserved 
as a broadcast address. The first address in the range was historically reserved to refer only 
to the network prefix, though modern routing and switching hardware allows the use of 
that address. Class B networks support 2^16 minus two or 65,534 hosts. For Class C, it’s 
2^8 minus two or 254 hosts. Table 5.1 lists the octet ranges, network numbers, total num-
ber of networks, and number of hosts per network for each class.

Table 5.1 Classful Network Descriptions 

Class First Octet Valid Networks Number of Networks Number of Hosts

A 1 – 126 1.0.0.0 – 126.0.0.0 128 (2^7) 16,777,214 (2^24 – 2)

B 128 – 191 128.0.0.0 – 
192.255.0.0

16,384 (2^14) 65,534 (2^16 – 2)

C 192 – 223 192.0.0.0 – 
223.255.255.0

2,097,152 (2^21) 254 (2^8 – 2)

Classless Addressing
This system       of classful addressing was not without its limitations. The supply of classful 
networks was rapidly depleted, and routing tables were becoming difficult to manage. The 
IETF devised a new system for describing networks in RFCs 1518 and 1519, called Class-
less Inter-Domain Routing or CIDR. 
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As with classful addressing, the IP address would be made up of a network prefix and a 
host identifier. But instead of restricting that network prefix to the bit boundary of an 
octet, CIDR allowed the network prefix to be an arbitrary length, through variable-length 
subnet masking (VLSM)  .

CIDR introduces the concept of the  subnet mask, another 32-bit binary number that, 
when paired with an IP address, allows for the network and host portions of the IP address 
to be determined. The binary representation of a subnet mask is always a sequence of con-
tiguous 1s followed by a sequence of 0s. A router performs a logical AND operation on 
the binary values of the IP address and the subnet mask to determine the network portion. 
Another way of looking at this is that the network portion of the IP address is the set of 
bits that correspond to the 1s in the subnet mask. 

Let’s work through a couple of examples. Let’s say we have a host IP address of 
10.20.30.40 and a Class A subnet mask of 255.0.0.0. What is our network address?

Well, the binary representation of 10.20.30.40 is 00001010 00010100 00011110 00101000. 
The binary representation of 255.0.0.0 is 11111111 00000000 00000000 00000000. Let’s 
compare them:

IP:      00001010 00010100 00011110 00101000

Mask:    11111111 00000000 00000000 00000000

Network: 00001010 00000000 00000000 00000000

We can write out the network address by seeing which bits of the IP address map to a 
1 in the subnet address, and then entering zeroes for bits that map to zeroes. Here, that 
becomes 00001010 00000000 00000000 00000000. Converting that to decimal, we get 
10.0.0.0. Often, you’ll see the subnet mask expressed as the number of 1s in the mask—this 
is called CIDR notation. Our network in CIDR notation is 10.0.0.0/8.

Now let’s try one a little more complicated. We’ll use the same IP address, 10.20.30.40, 
but this time our subnet mask will be 255.255.255.224.

Again, the binary representation of 10.20.30.40 is 00001010 00010100 00011110 
00101000. The binary representation of 255.255.255.224 is 11111111 11111111 11111111 
11100000. Let’s compare them:

IP:      00001010 00010100 00011110 00101000

Mask:    11111111 11111111 11111111 11100000

Network: 00001010 00010100 00011110 00100000

This time, our network address came out to 00001010 00010100 00011110 00100000. 
Converting that to decimal and CIDR notation, we        get 10.20.30.32/27. 



50 CHAPTER 5  Layer 3

TIP

There’s a handy online calculator for translating IPs and subnet masks into their network 
address and network range at www.subnet-calculator.com/cidr.php. 

Reserved Addresses
Some IP addresses      are best avoided, as they are reserved for specific purposes. These 
include the smallest and largest IP address in each subnet. The smallest IP address is 
reserved for use as the network address, and the largest is the broadcast address for the 
segment. Other common reserved blocks are 0.0.0.0/8 reserved for wildcard source IP 
addresses, 127.0.0.0/8 reserved for loopback addresses, 169.254.0.0/16 reserved for link 
local addresses (you might recognize these as Automatic Private IP Addresses [APIPA] in 
Windows), and Class D (first octet 224-239) and Class E (first octet 240-255) are reserved 
for multicast and experimental addresses, respectively. 

Other ranges are set aside for use  as private IP space. These include 10.0.0.0/8, 
172.16.0.0/12, and 192.168.0.0/16. Private addresses are typically used inside an orga-
nization where public IP addresses are not needed. Privately addressed devices can still 
access external resources by way of Network Address Translation (NAT). A complete 
list of reserved address ranges can be found in RFC 6890, “Special Purpose IP Address 
Registries.” 

Network Layer Supporting Applications
Having covered addressing and forwarding mechanics, let’s turn to common tools that 
assist Network layer  function, care, and feeding.

DHCP
Every    device on the network needs an IP address, but manually configuring an address for 
each and every device presents logistical challenges as the network grows. Certain impor-
tant devices—routers, switches, and servers, for example—should be configured manually, 
with static IP addresses that do not ever change. This ensures that these devices are always 
reachable at the expected address. Other devices, typically end-user devices, might have 
more transient connections and as such not need permanent, manually assigned addresses. 
For these devices, Dynamic Host Configuration Protocol (DHCP) can be used to allow 
the device to temporarily borrow, or lease, an IP address. DHCP also allows an adminis-
trator to configure other information including the default gateway address, DNS server 
addresses (more on that in a bit), and domain names.
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When DHCP is used, a DHCP server maintains a list of various pools of IP addresses that 
can be used for each subnet. Devices configured to use DHCP issue a broadcast DHCP 
Discover message on their subnet. A DHCP server earmarks an IP address in its pool and 
responds with a broadcast DHCP Offer message directed to the client, which includes a 
proposed IP address, subnet mask, lease duration, and the IP of the DHCP server. The 
client then responds to the server via broadcast with a DHCP Request, indicating that 
the client has accepted the offer. A client might receive offers from multiple DHCP serv-
ers, but will respond with a request to only one. Any other DHCP servers that had sent 
offers will see the broadcast request and return their offered address to their pools. The 
DHCP server then issues a DHCP Acknowledgement to the client, confirming the reser-
vation. The acknowledgment includes any additional configuration parameters that might    
be specified.

DNS
While some    of us are cursed with being able to recall IP addresses they used 20 years ago 
(but not what their wife asked them to do this morning), this is not a fair expectation of 
your end users.

Domain Name Service (DNS) is a centralized mechanism for  mapping user-friendly 
names to IP addresses. When a host is configured to use a DNS server, it will send DNS 
requests to the specified server, asking for translation. The DNS server will then reply 
with the IP address matching the friendly name. Multiple DNS servers can be specified, so 
if the client cannot reach the first server listed, it will try the next server in the list until a 
response is received.

ARP
Remember that    each IP packet must be encapsulated in a Layer 2 frame before it can be 
sent to the next hop. The Address Resolution Protocol (ARP) is used to determine the des-
tination media access control (MAC) address for that frame. 

After a client has resolved a name to an IP address, it determines whether that IP address is 
on its local subnet. If it is, it issues an ARP broadcast on the segment asking for the holder 
of that IP address to respond with its MAC address. If the destination host is not on the 
local subnet, the client issues an ARP request for the default gateway IP address.

ARP requests are not issued for every bit of communication. As a client makes requests, 
the replies are remembered in the ARP cache. Each time a client needs to encapsu-
late a packet in a frame, it checks the ARP cache to see if it has a MAC match for the 
destination IP. 
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Ping
The ping command     allows you to test basic IP connectivity between hosts. It uses the 
Internet Control Message Protocol (ICMP) to send an ICMP echo request to the destina-
tion host. The host is then expected to reply with an ICMP echo reply. When successful, 
you have confirmed that the network can deliver a packet from the source to the destina-
tion and back again.

Ping was named after the sound sonar makes, as the echo request and echo reply function 
is similar to the process  of active sonar. 

Summary

In this chapter, we reviewed the functions of Layer 3, the Network layer. We described 
the Network layer functions, Network layer addressing, the routing and forwarding pro-
cesses, and some utilities that function at and support this layer. In the next chapter, we 
break away from networking theory to investigate a relatively new infrastructure consump-
tion model.
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Introduction
Let’s take a quick detour before we get into virtual networking. Think of it as a quick 
breather, an opportunity to come up for air after the networking concepts we just threw at 
you. So far, we’ve gone over a good bit of networking fundamentals, at some length. It’s 
easy to get lost here, to get so caught up in the particulars of interconnecting devices to the 
point where you forget that those devices are the reason for the network to be there in the 
first place. Something similar often happens with server people, storage people, desktop 
people—everyone with a specialization. When these technologies are treated as discrete 
islands, staffed and procured separately, silos develop and inefficiencies abound.

Converged infrastructure is one approach to solving this problem. A converged infrastruc-
ture  solution packages or otherwise integrates compute, networking, and storage technolo-
gies into a solution that is (ideally) easier to consume, deploy, and manage. In this chapter, 
we go over the basic concepts and provide a few examples of converged solutions that we 
often run into.
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Concepts
To begin,   let’s look at a typical IT shop that has the traditional set of datacenter compo-
nents: rack-mount servers tethered to network switches and a storage array. The personnel 
that manage and maintain this equipment are grouped into teams—the storage team, net-
work team, and server team—and together they make up the Infrastructure Team.

When a new server needs to be added to the datacenter, quite a bit of activity needs to take 
place. Barring any political or procurement shenanigans, the three teams must work in 
harmony in order to get the new server into a production state.

The Server Team has to “rack and stack” the server. This is the process of unloading the 
server into the datacenter, removing it from the packaging, and then finding a rack loca-
tion and mounting it to the rack. They can also be tasked with assigning the server name, 
applying an IP address, and working to complete any other personality attributes of the 
server.

The Network Team might cable the server into the nearby switch and ask the Server 
Team exactly how to configure the port for this server. They often ask questions about 
the VLAN configuration, number of cables needed, and the Maximum Transition Unit 
(MTU) settings to ensure that the port will correctly talk back and forth with the server. 
They might also want to investigate the Network Interface Cards (NICs) to verify what 
MAC addresses will be discovered by the switch for security purposes.

And finally, the Storage Team might need to examine the Host Bus Adapters (HBAs) to 
identify the World Wide Port Names (WWPNs) for building a Storage Area Network 
(SAN) and corresponding zoning configuration. They would then be able to build storage 
constructs, such as Logical Unit Numbers (LUNs) or Volumes, and present them to the 
server.

Sounds exhausting, doesn’t it? Lots of hands are involved, and there are many opportuni-
ties for errors even if everything is communicating perfectly. And while no single set of 
tasks takes too terribly long, the logistics of coordinating the work and conforming to 
change control policies can compound delays, stretching delivery time to crazy lengths. 
We’ve worked with companies that consider a 90-day turnaround from delivery to produc-
tion to be a job   well done. 

Converged Infrastructure Advantages
This model  has been around for many years. And it works, mostly. So why change? 
Well, if you are only adding one or two servers a month, it’s not a big deal to go through 
the multi-team goat rodeo. But what if you want to add 10, 100, or even 1,000 servers a 
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month? You’d need an entire army of engineers to do nothing but add servers. It doesn’t 
scale well and is extremely prone to error.

Converged infrastructure looks to remove large chunks of the human element. It aims to 
combine multiple types of resources into one logical management and control plane. Net-
working is certainly core to this idea, and is typically coupled with both compute and stor-
age. Rather than having silos of IT infrastructure, converged infrastructure supports the 
collapsing of those silos into one team.

Here are some pretty slick advantages to converging the infrastructure:

  Wire once: Much of the networking tasks that were performed by the Networking 
Team are completed during the initial configuration of the solution. As additional 
servers are brought into the datacenter, the physical network remains untouched.

  Agility and flexibility: The majority of configuration is done through automation and 
templates, removing much of the risk associated with human configuration.

  Visibility: The entire solution can be analyzed and configured from a central manage-
ment panel, rather than having to log into multiple portals across a wide variety of 
 disciplines.

Examples
Over the past several years, the number of converged infrastructure offerings has soared. 
The market has reacted favorably to the idea of having simplified management and 
increased flexibility in their datacenter. Each offering has a different twist on exactly how 
they operate, what market segment they are focusing on, and how scalable the solution is. 
We provide a few examples of solutions that we run into in the datacenter. This is not an 
exhaustive list and is only meant to serve as examples of types of converged infrastructure.

Cisco UCS
Cisco’s Unified Computing System (UCS)     was a bit of a blank-slate approach to computing, 
trying to answer the question of what a compute platform should look like in a post-
virtualization world. Cisco’s approach unifies network and storage fabrics within an enclo-
sure, reduces the number of points of management, and provides a policy and pool-based 
approach to server provisioning. It also allows you your choice of blade or rack-mount 
form-factors. 

The smarts of UCS are housed in a pair of fabric interconnects, which run the UCS Man-
ager software to control and manage the entire compute domain. Each fabric interconnect 
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has upstream connections to external network and, optionally, SAN, and downstream 
“server port” connections to fabric extenders, implemented as either IO modules housed 
in blade enclosures, or top-of-rack style Nexus 2000-series devices. Each fabric extender 
functions as a remote line card of the fabric interconnect. The fabric extenders are com-
pletely dependent on the fabric interconnects; they cannot themselves forward traffic. 
Traffic flows into a fabric interconnect via an Uplink Port, then down through a Server 
Port to a fabric extender, and ultimately to the blade server or rack-mount server.

To be clear, this is a rather unique offering in the converged space—typically, converged 
infrastructure limits the design to either blades or a “blade-like” enclosure and does not 
allow you to use a rack-mount server.

Why is this relevant? Not all workloads can fit in a blade form-factor. One example is 
Apache Hadoop—it is a big data analytic cluster that can benefit from having many slow, 
local hard drives to use the inside of each server, more than can fit into a single blade.

Figure 6.1 shows a UCS chassis, with its IO modules connected to a pair of fabric 
    interconnects.

The fabric interconnects function as end-host devices —they act like switches on the server-
facing side, but like server NICs on the network-facing side. This eliminates some of the 
caveats of traditional switches. An end-host device cannot form a loop, and as such, there 
is no spanning tree to concern yourself with. This means that every uplink from the fab-
ric interconnect to the upstream switches can be active. Multiple connections from each 
IO module to its fabric interconnect can also be made without worrying about loops—
depending on your configuration, the links between each IO module and the fabric inter-
connect are treated as a port-channel bundle, or blades are pinned to a particular uplink. 
This ensures that traffic can flow up all uplinks. The fabric interconnects do not learn 
about any of the MAC addresses for entities not within their control. When switching traf-
fic, any destination MAC address that is unknown is forwarded out an uplink port and is 
expected to be handled by a fully featured switch upstream. 

All network configuration necessary for the servers is performed in UCS Manager. You 
define the VLANs, Quality of Service policies, MTU size, and number of NICs each 
server will have. Servers are usually configured to be stateless—a service profile contain-
ing MAC address and World Wide Name (WWN) identity information pulled from 
pools, network, and SAN configuration, and boot from SAN or LAN configuration details 
is associated with the physical blade. This allows for quick and easy replacement in the 
event of a failure—you replace the failed blade and re-associate the service profile to the 
replacement. 
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the architecture is designed to allow a wide variety of blade switches to be used, even from 
other vendors such as Cisco and Brocade.

In contrast to Cisco UCS, where a pair of fabric interconnects form a domain with all of 
the blade enclosures, BladeSystem puts a fair bit of control and management into each 
individual blade enclosure. In fact, each enclosure houses an Onboard Administrator (OA) 
and eight slots for various networking modules. This gives the administrator flexibility to 
custom tailor each enclosure to specific needs (such as the amount or use of Fiber Chan-
nel, Ethernet, or a mix of both). The tradeoff for such flexibility is that each point needs 
to be managed and maintained as an individual entity, although management software 
does exist to allow combined control for the entities via offerings like HP Virtual Connect 
Enterprise and HP OneView. The contrasting point is that Cisco UCS has one point of 
logical management, while HP BladeSystem has many. We’re not prepared to say one is 
any better than the other; this is just a point you should be aware of when working with 
either system.

From a networking perspective, HP BladeSystem is focused on a technology called Virtual 
Connect (VC)  . These are switching modules that work in a transparent mode, which is very 
similar to end-host mode with UCS. The VC modules are typically deployed in pairs that 
sit next to each other within the enclosure. You have the choice of configuring the mod-
ules to be active and passive, where the passive module takes over if the active module fails, 
or running active and active and allowing the underlying vSphere hypervisor to shift traffic 
over to the active module in the case of failure. The decision to choose between active and 
passive versus active and active typically comes down to traffic flows and the north-bound 
switching architecture. HP has what they call a Cook Book to show you how to build 
both—we go into some details on blade server architecture beginning in Chapter 11, “Lab 
Scenario.”

HP BladeSytem gives you the ability to define VLANs, virtual NICs, NIC speeds, and 
so on from within the VC manager. Configuration is done once with a VC Domain (be 
that a single enclosure or multiple enclosures with VC Enterprise Manager) and can then 
be used repeatedly for each current and additional blade. You can also use VLANs that 
exist only within BladeSystem for local traffic, such as vMotion or Fault Tolerance, if 
that would be optimal for your architecture or design. Additional automation and self-
service features are available when BladeSystem is deployed as part of an HP CloudSystem 
Matrix solution. 

Figure 6.2 shows the business end of an HP BladeSystem c7000    enclosure.
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Figure 6.2 HP BladeSystem rear view 

Nutanix Virtual Computing Platform
Nutanix offers   a fresh look at converging the various resource food groups—compute, 
storage, and network—into a single  “hyper-converged” platform. Nutanix’s convergence 
goes to 11, as no remote storage array is involved—everything is baked into a Virtual 
Computing Cluster chassis.

This makes for an interesting experience when focusing on the networking construction, 
because the entire focus is the presentation of traffic into and out of the Nutanix cluster. 
The Ethernet connections that tie into the system are there to give the virtual machines a 
path out of the cluster to communicate with other entities. Each Nutanix node in the clus-
ter provides a series of network adapters that can plug into an upstream switching system, 
making expansion of bandwidth a simple factor of the number of nodes. This is somewhat 
similar to the concept expressed in the “Cisco UCS” section, with the difference being 
that instead of wiring a UCS chassis to a UCS fabric interconnect, you just wire Nutanix 
nodes into an upstream switch that provides both clustering and access to the nodes. The 
remaining node-to-node communication is handled by the system. Other than assigning 
IP addresses, this node-to-node communication is transparent to the administrator. 

Figure 6.3 shows the architecture of the Nutanix Virtual Computing Platform.
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Introduction
Although it’s easy to point to the obvious difference between physical and virtual 
 switching—one is hardware and the other is software—there is a bit more to it than that. 
There are differences both in the process by which traffic is switched, and in the advanced 
services and features offered. In this chapter, we look at how a virtual switch operates on 
a VMware vSphere host running ESXi, along with some of the terminology of logical 
objects represented by the virtual switch.
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Physical and Virtual Switch Comparison
So your    first question might be—what exactly is a virtual switch? After all, the previous 
section of this book focused entirely on the theory and practice of switching, along with 
some routing, and most of it focused on plugging wires into fancy boxes so that data could 
move around.

To begin, let’s start by covering some basic functionality similarities and differences 
between physical and virtual switches. You might be surprised at how alike these two types 
of switches are; the differences can be subtle but have a profound impact on the design and 
configuration of a well-tuned virtual environment.

Similarities
It’s important to note that a VMware virtual switch, or  vSwitch as it is known, doesn’t 
use any special or proprietary type of modification on the traffic. All the frames that flow 
into a vSwitch follow the exact same standards as outlined by the Institute of Electrical 
and Electronics Engineers (IEEE) 802.3 protocol, following the conceptual framework of 
the OSI Model’s Data-Link Layer, and the practical application of the TCP/IP Network 
Interface layer. If you think about it, this makes a lot of sense—as otherwise you’d need 
special equipment just to pass traffic into or out of an ESXi host and its vSwitch.

Figure 7.1 shows the layout of an IEEE 802.3    frame.
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Figure 7.1 An IEEE 802.3 frame layout 

Additionally, ESXi hosts have the ability to use a wide variety of off-the-shelf network 
adapters (NICs) from the likes of Qlogic, Emulex, Intel, and others—consult the Hard-
ware Compatibility List for an authoritative list. These use the standard connector types, 
RJ45/8p8c for copper or any of the standard fiber connector types, just as you would find 
in any other server that was running any other operating system or hypervisor. A vSwitch 
then begins using these network adapters and attached cables to switch traffic.
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Differences
Because     a vSwitch isn’t a physical device, you have some flexibility in configuration. If you 
need a larger number of virtual ports on your vSwitch, you can just edit its properties and 
adjust as needed. With physical switches, this could require a forklift switch upgrade, add-
ing new switches, or adding line cards to a chassis-based switch. 

Switching Decisions
Another   major difference is how a vSwitch handles Layer 2 switching. That is, the knowl-
edge and movement of data to MAC addresses on the network. A physical switch has a 
large table of MAC addresses that it keeps in memory to quickly figure out where a frame 
needs to be sent. The addresses that are remembered are for nodes that are both directly 
and remotely attached to the switch—that is, nodes directly plugged into a switch port and 
also nodes that are connected to another switch’s port.

Figure 7.2 shows the MAC addresses of devices connected to a virtual switch, as found in 
the vSphere Web     Client.

Figure 7.2 A virtual  switch only tracks MAC addresses on its ports
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Keep in mind that the vSwitch is only able to do Layer 2 switching. If a frame is trying to 
reach a MAC address on another VLAN, Layer 3 switching is required and the frame will 
be sent to the physical uplink with the hopes that a higher level switch can perform the 
inter-VLAN     routing.

Physical Uplinks
But not     all ports on a vSwitch are virtual—after all, there has to be some way to get the 
traffic out of the host! This is where those physical network adapters (NICs) come in to 
play as uplinks into the physical network. Each uplink provides a traffic path northbound 
to the upstream physical switch so that data can enter and leave the virtual environment.

Host Network Interface Card (NIC)
An ESXi host’s NICs        act as uplinks for a virtual switch. That is, they are the means by 
which traffic can enter and leave a vSphere host. If desired, you can configure a large num-
ber of NICs—up to 32 1GbE NICs in vSphere 5.1—or as few as one. We tend to think 
that you shouldn’t ever have less than two of anything to avoid creating a single point of 
failure, so shoot for two NICs at a minimum. If you don’t want your traffic to go anywhere 
beyond the ESXi host, you can even create a vSwitch with no uplinks.

You’re also given the choice of speeds for your NICs. This is usually a speed of 1 gigabit 
per second (1 Gbps) or 10 gigabits per second (10 Gbps). You might even notice these val-
ues expressed as “1GbE” and “10GbE”—the capital E denotes Ethernet.

Not all traffic will use the physical uplinks. Sometimes a VM (or even the host) wants to 
communicate with another VM on the same VLAN inside of the same virtual switch on 
the same host. In this case, there’s no need for the traffic to leave the virtual switch and use 
an uplink—the switch knows that both entities are attached to it, and it will simply switch 
the frames locally. In the past, this was sometimes called  “dark traffic” because it was dif-
ficult to track and monitor before more modern virtualization-aware tools and monitoring 
software were developed.

Figure 7.4 illustrates this concept of local vSwitch       dark traffic.
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With version 5.x of vSphere, however, the distributed virtual ports are now   elastic ports 
by default. Elastic means that the virtual switch will manage the quantity of virtual ports 
 automatically—creating and deleting them as needed—without user intervention.

The virtual ports are connected to three different types of ports: VM NICs, VMkernel 
ports, and service console     ports.

Virtual Machine NICs
Every        virtual network adapter that is created, connected, and active within a VM uses up 
a single virtual port on a vSwitch. This is actually how the connection is made between a 
VM NIC and the virtual switch—the virtual port is the bridge to the physical network.

VMkernel Ports
VMkernel ports      are special ports that connect the vSphere host’s VMkernel to the virtual 
switch. After all, the host also needs to talk with other hosts, the vCenter server, and what-
ever else that is important on your network, and that traffic has to be sent out of the virtual 
switch just like all the rest.

VMkernel ports can serve a few different purposes and carry various types of traffic:

 1. Management

 2. vMotion

 3. Fault tolerance logging

 4. iSCSI storage traffic

 5. NFS storage traffic

Service Console
Prior to        vSphere 5, you actually had two choices of ESX to choose from: ESX and ESXi. 
With vSphere 5, the only choice is ESXi. What’s the difference? ESX, sometimes called 
the “classic” hypervisor, actually ran both the virtualization kernel (the VMkernel) along 
with a Console Operating System (COS)  . ESX was a comparably larger installation lead-
ing to a larger attack surface, and so VMware ultimately shelved the classic ESX architec-
ture and now only offers the slim, VMkernel-only version of ESXi.
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However, it is important to understand that classic ESX does not use a Management 
VMkernel port. Instead, it has a special interface called the Service Console for manage-
ment; the COS rather than the VMkernel owned this interface. While it is out of scope 
to go any deeper for this book, it is good to be aware of the legacy architecture if you run 
into it.

VLANs
One final,     but major, component of a virtual switch is VLAN tagging. You might remem-
ber IEEE 802.1q from back in Chapter 4, “Advanced Layer 2.” Virtual switches support 
three different ways to determine how VLANs are handled and where.

External Switch Tagging (EST)
Much like      it sounds, External Switch Tagging (EST) is a configuration where the virtual 
switch is completely ignorant of the VLAN tags. Instead, the external switch that the phys-
ical uplinks are connected to handles all of the VLANs and removes the tags before they 
ever reach the virtual switch.

This is accomplished by setting the physical switch ports on the upstream switch into 
Access mode. When traffic enters an Access port inside the northbound switch, the VLAN 
tag is inspected and removed before the port sends the traffic down to the virtual switch. 
Because of this, the virtual switch will only handle untagged traffic.

Also, because there are no VLAN tags making their way into the virtual switch, the VM 
NIC or VMkernel port are unaware of what VLAN they belong to and never see an 
802.1Q VLAN tag. Everything on that vSwitch then must use that same VLAN—the one 
configured on the access port on the upstream      switch. 

Virtual Switch Tagging (VST)
Virtual Switch Tagging (VST) occurs      when the virtual switch itself is inspecting and adding 
or removing the VLAN tags. In order for this to occur, the upstream switch port that is 
connected to the physical uplink must be configured as a trunk port. This allows the port 
to pass along a defined number of VLAN-tagged traffic down to the virtual switch with 
the tag intact.

When the frame arrives at the virtual switch, it inspects the VLAN tag to see what VLAN 
it belongs to and the destination MAC address. Assuming it finds a VM NIC or VMkernel 
port that matches the VLAN and MAC address, the frame is delivered with the VLAN 
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tag removed. Otherwise, the frame is discarded. When traffic is sent from a VM NIC or 
VMkernel port, the virtual switch makes sure to add the VLAN tag before sending the 
frame to a physical uplink.

VST is similar to EST in that the VM NIC or VMkernel port is unaware of the 802.1Q 
VLAN tag because the virtual switch has removed the tag before delivery.

NOTE

VST is the most popular and common method used by virtualization administrators for 
many reasons. VST is very simple to manage and maintain because the upstream switch 
port is configured as a trunk and requires little to no effort from a network administrator 
to maintain. Also, it grants additional visibility into how the VLANs are laid out for the 
virtualization administrator as you can easily see the tag numbers from the vSphere Client. 
And finally, it allows greater flexibility in the amount of VLANs that can be used on a virtual 
switch over EST, which only allows you to use a single VLAN per physical uplink. Oh, and 
it’s also the method recommended and preferred by      VMware.

Virtual Guest Tagging (VGT)
The final      type of tagging is Virtual Guest Tagging (VGT). In this configuration, the north-
bound switch port is configured as a trunk and passes VLAN tags down to the virtual 
switch. The virtual switch will inspect the VLAN tags to ensure they match the correct 
destination virtual port but will keep the tags intact. The tagged frames are passed along 
in an unaltered state to the VM or VMkernel port. In order for this configuration to work 
properly, the VM must be able to read and understand VLAN tags, as well as tag its own 
traffic that is being sent out.

Figure 7.5 illustrates how the VLAN tag can be added to a NIC from within a 
Windows VM.

VGT is a unique type of configuration and typically reserved for VMs that monitor or 
“sniff” traffic, provide routing services, or have some other need for seeing the frame with 
VLAN tags      intact.
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Figure 7.5  Configuring the VLAN in a Windows guest VM 

Summary

In this chapter, we went over some of the key differences between physical and virtual 
switches. We covered the different ways they process traffic, the different types of virtual 
ports, and the different ways VLANs are handled. In the next chapter, we build on these 
distinctions and get more hands-on as we explore the configuration options available in the 
vSphere Standard Switch. 



Chapter 8

vSphere Standard Switch
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  Virtual Ports
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  Traffic Shaping

  NIC Teaming and Failover

  VMkernel Ports

  Port Groups

Introduction
A VMware ESXi server cannot do much of anything worthwhile without some means of 
getting network traffic to and from the VMs it hosts. Fortunately, VMware realized this 
and has thoughtfully provided two solutions to this problem, the vSphere Standard Switch 
  and the vSphere Distributed Switch. This chapter focuses on the former, the original 
recipe vSwitch that is included with every license level. Don’t let the “standard” part of 
the Standard Switch fool you—it includes a bunch of great features to help you shuffle 
traffic around your network. With that said, let’s look at what makes a VMware Standard 
Switch tick.
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The vSphere Standard Switch
The goal   of VMware’s Standard Switch is to allow network traffic to flow in any scenario. 
This could mean that the ESXi host is not connected to a vCenter server at all, which 
is typically referred to as a “standalone” or “vSphere Hypervisor” install of vSphere. In 
this case,   there’s no higher level of management than the host itself, so the standard level 
switch needs to be able to function with nothing more than the host telling it what to do.

TIP

If you think about it deeper, when you first install VMware ESXi onto a server, it is a blank 
slate—it has no name, IP, or DNS information. While there are ways to script the install to 
auto-assign these identities, no assumptions can be made. This is another reason why the 
standard vSwitch must be able to operate with nothing more fancy than a standalone instal-
lation of ESXi. 

Plane English
Before getting      too far into how the Standard Switch works, we need to introduce a bit of 
terminology. When describing switch functions, we often use the terms “control plane” 
and “data plane.” Control plane traffic and functions can best be thought of as traffic to the 
switch, and data plane traffic is traffic through the switch. Management, monitoring, and 
configuration traffic concerning the switch is control plane traffic. Frames passing from a 
virtual machine (VM) out to the rest of the world would be data plane traffic.

In your typical physical, top-of-rack style switch, control and data planes live within the 
same piece of equipment. With virtual switches, these functions can be separated. 

Control Plane
The control plane of     a standard vSwitch resides on the VMware host. That is, any manipu-
lation of the vSwitch configuration, number of ports, and the way that traffic is moved 
around are all part of the host’s responsibilities. More specifically, it’s the job of the 
hypervisor kernel (called the VMkernel) to make sure that the vSwitch is configured and 
operational.

As such, even when you cluster a bunch of VMware hosts together, each host is respon-
sible for its own standard vSwitches. In the case of a vCenter failure, every host’s standard 
vSwitch would still be configurable by connecting the vSphere client directly to the host.
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Data Plane
Every Standard vSwitch     on a host is responsible for switching frames, which means that 
the data plane is a host’s responsibility. As data enters the host NICs, which form the 
uplinks for a standard vSwitch, the VMkernel makes sure that the frames get to the appro-
priate destination. Sometimes this means that the traffic gets ignored, especially in the case 
of external traffic that enters the vSwitch with an unknown destination MAC address.

vSwitch Properties
Every vSwitch    has two basic properties that can be configured in order to meet the 
requirements of your design and network’s maximum transmission size.

Ports
Ports indicate     the number of virtual ports that will be kept in memory, tracked, and made 
available to VMs, VMkernel ports, and uplinks that reside on the host. One weakness 
of a standard vSwitch is the requirement that the ESXi host be restarted if you change 
the number of ports. Prior to vSphere 4.1, the default number of vSwitch ports was only 
56, leading many a green VMware administrator to hit that limit before realizing it was 
something that could be changed. Over time, VMware listened to the woes of virtualiza-
tion administrators and, in vSphere 4.1, the default number of ports assigned to a standard 
vSwitch has been changed to 128, allowing some breathing room. An administrator can 
adjust the number of ports by powers of 2, from 128 to 256 and so on, all the way up to 
4,096 possible ports.

Figure 8.1 shows the default vSwitch properties dialog in the vSphere Web Client.

REAL WORLD EXAMPLE

If you look at the port count on the classic vSphere client, you might notice that it shows 8 
fewer ports (120) for the default. Hey, who stole my ports? Don’t worry, this is the expected 
behavior. The hypervisor always reserves 8 ports for overhead activities such as network 
discovery, Cisco Discovery Protocol (CDP) traffic, and physical uplinks. On the newer 
vSphere web client, the actual port counts are     shown.
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Figure 8.1 The default vSwitch properties 

Maximum Transmission Unit (MTU)
The other       item that you can configure is the MTU, which is the maximum amount of data 
that can be crammed into a frame’s payload segment. By default, this is 1,500 bytes, which 
is the default for just about any networking device you can buy. You can safely assume that 
all of the physical equipment that runs northbound of the vSwitch will support a 1,500 
MTU or larger, which avoids unnecessary packet fragmentation.

There’s also an option to increase this size and  set it to a “jumbo” size. We do love our 
silly names in this industry. Jumbo frames are just frames larger than the default size of 
1,500. Even setting an MTU of 1,501 is technically enabling jumbo frames. Tremble 
before the mighty, slightly larger frame.

Most of the time, though, the term jumbo frame refers to a frame with an MTU of 9,000 
or higher, though 9,000 is the maximum MTU ESXi will support. If you are talking to a 
network engineer and want to get an idea of what MTU size to set on your vSwitch, ask 
specifically what the MTU value is—don’t just ask if he or she is running jumbo frames. 
This avoids any confusion.

REAL WORLD EXAMPLE

We’ve done a lot of work with people who want to enable jumbo frames thinking that a 
larger number is by default going to increase performance. This is not always true, and 
in some cases, enabling jumbo frames can actually hurt performance. It’s also incredibly 
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difficult to make sure that all of the physical networking equipment is properly configured 
for a jumbo frame size. Make sure that you have a solid technical reason, with performance 
testing, before you worry about increasing your MTU size on your        infrastructure.

Security
The security    settings on a vSwitch are probably one of the most misunderstood portions of 
a vSwitch configuration. There are three settings available for tuning: promiscuous mode, 
MAC address changes, and forged transmits, as shown in Figure 8.2.

Figure 8.2 Security settings on a vSwitch 

Promiscuous Mode
If you     think back to when we covered physical switching, you’ll probably recall that one 
major advantage to it is that we have the ability to switch traffic directly to a single destina-
tion MAC address. Unless the traffic is being flooded, broadcast, or specifically intended 
for a destination, devices on the network do not “see” the other traffic floating across the 
switch. This is great for most use cases as it provides for greater scalability and improved 
performance of the network, and is the default behavior on a standard vSwitch.

There are some situations where we really do want a VM to see traffic that is intended 
for another device. Imagine having some sort of network monitoring VM that needs to 
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sniff traffic. This is where Promiscuous Mode comes in handy. By setting it to Accept, 
we are ordering the vSwitch to share traffic on each VLAN among other VMs on the 
same VLAN.

PITFALL

Promiscuous mode does not allow a VM to see traffic on VLANs that aren’t specified by 
the port group. It can still only see traffic for the VLAN(s) that it belongs to. This is a very 
common     misconception.

MAC Address Changes
The idea     of MAC Address Changes tends to confuse a lot of people, so we’ll go deep 
into this one. First, what exactly is a MAC Address Change from a vSwitch perspective? 
To understand this, you must first know more about how the switch keeps track of MAC 
addresses for VMs.

To begin with, every VM has three different types of MAC addresses: the Initial, Effective, 
and Runtime MAC addresses:

  The Initial MAC address  is configured on the virtual network adapter inside the VM. 
This is something you either let vSphere decide for you when the virtual NIC is 
created or manually set yourself by changing that vSphere-provided value. It is very 
similar to a physical NIC’s burned-in address (BIA).

  The Effective MAC address  is configured within the VM by the guest operating sys-
tem (OS). Typically, the guest OS just uses the Initial MAC address, much like your 
PC will by default use the BIA or your NIC.

  The Runtime MAC address  is the actual live address that is being seen by the 
vSwitch port.

Figure 8.3 shows the Runtime MAC address of a VM in the vSphere Web Client.

So, now that you’re a MAC address expert, let’s go back in and discuss how the vSwitch 
polices MAC Address Changes.

When set to “Accept,” the vSwitch allows the Initial MAC address to differ from the 
Effective MAC address, meaning the guest OS has been allowed to change the MAC 
address for itself. Typically, we don’t want this to happen as a malicious user could try to 
impersonate another VM by using the same MAC address, but there are use cases, such as 
with Microsoft Network Load Balancing (NLB) where it makes sense.
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Figure 8.3 The Runtime MAC address of a VM 

When set to “Reject,” the vSwitch will disable the port if it sees that the guest OS is trying 
to change the Effective MAC address to something other than the Initial MAC address. 
The port will no longer receive traffic until you either change the security policy or make 
sure that the Effective MAC address is the same value as the Initial MAC address.

To sum it up, the MAC Address Changes policy is focused entirely on whether or not a 
VM (or even a VMkernel port) is allowed to change the MAC address it uses for receiving 
traffic. The next section covers sending     traffic.

Forged Transmits
Very similar to     the MAC Address Changes policy, the Forged Transmits policy is con-
cerned with MAC Address Changes, but only as it concerns transmitting traffic.

If set to “Accept,” the VM can put in any MAC address it wishes into the “source address” 
field of a Layer 2 frame. The vSwitch port will just happily let those frames move along to 
their destination.

If the policy is set to “Reject,” the port will interrogate all the traffic that is generated by 
the VM. The policy will check to see if the source MAC address field has been tampered 
with. As long as the source MAC field is the same as the Effective MAC address, the frame 
is allowed by the port. However, if it finds a non-matching MAC address, the frame is 
dropped.

It’s very common to see issues with the Forged Transmit policy when doing nested virtu-
alization. Nesting is  the term used to describe running the ESXi hypervisor inside a VM, 
which then runs other nested VMs with their own unique MAC addresses. The many dif-
ferent MAC addresses will be seen by the port used by the nested hypervisor VM because 
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enable it. Make sure your security team is okay with you using a discovery protocol before 
turning it on, but once on, it makes understanding the neighborhood of physical and virtual 
switches dramatically easier for everyone!

Cisco Discovery Protocol (CDP) 
The    VMware standard vSwitch supports only one single protocol for discovery, the Cisco 
Discovery Protocol. Can you guess which switch manufacturer uses this protocol? We’ll 
give you a hint—it’s not Brocade. 

CDP is a proprietary way to allow switches to chat with one another to figure out who 
they are plugged into. It’s not required for traffic to flow, but it does give administrators 
and engineers a great way to see what device is at the end of a plugged-in port. It also 
updates itself in real time, meaning it has a lot more value than trying to keep your con-
figuration in a spreadsheet or some other manual method. CDP is enabled by default on 
Standard Switches. Figure 8.5 shows the output of the show cdp neighbors command 
on a 3550 switch to which a Standard Switch has been connected.

Figure 8.5 CDP information on a Cisco 3550 switch connected  to two vSwitch uplink ports
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Traffic Shaping
Traffic shaping is    the ability to control the quantity of traffic that is allowed to flow across a 
link. That is, rather than letting the traffic go as fast as it possibly can, you can set limits to 
how much traffic can be sent.

Within a standard vSwitch, you can only enforce traffic shaping on outbound traffic that 
is being sent out of an object—such as a VM or VMkernel port—toward another object. 
This is referred to by VMware as “ingress traffic” and refers to the fact that data is com-
ing into the vSwitch by way of the virtual ports. Later, we cover how to set “egress traffic” 
shaping, which is the control of traffic being received by a port group headed toward a VM 
or VMkernel port, when we start talking about the distributed switch in the next chapter.

Traffic shaping consists of three different control points, as shown in Figure 8.6.

 Average bandwidth (Kbps): The  average amount of bandwidth, measured in kilobits 
per second (Kbps), that you allow the switch to send. There might be short periods 
where the traffic slightly exceeds this value, since it is an average over time, but for 
the most part, it will be enforced and traffic will go no faster than the defined speed 
limit set here.

 Peak bandwidth (Kbps): The  maximum amount of bandwidth that the switch is 
allowed to let through. The use of the peak bandwidth value is determined by how 
often we’ve hit the average bandwidth limitation. Whenever the actual traffic volume 
is lower than the average bandwidth limit, we gain what is called a “burst bonus” 
which can be any number of bytes up to the limit set by the burst size value (covered 
next).

This bonus can be used when there is a pent-up traffic demand to let more traffic 
flow through the switch using data sizes dictated by the burst size value.

 Burst size (KB): This is  an often misunderstood value, so we’ll go into detail. The 
burst size is the actual amount of “burstable” data that is allowed to be transmitted 
at the peak bandwidth rate in kilobytes. Think of the burst bonus as a network traf-
fic savings account. And the burst size is the maximum number of bytes that can go 
into that account. So, when you need to send more traffic than the average band-
width value allows, you transmit a burst of traffic, which is more than the allowed 
average bandwidth. But this burst, which always stays at or below the allowable peak 
bandwidth, will be forced to end when the number of bytes in your traffic savings 
account, your burst bonus,    reaches zero.
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Traffic Shaping Math
Here’s a concrete example showing how to calculate how long traffic will peak in a “best 
case” scenario:

  Let’s assume, for easy math, that you set the average bandwidth value to 1,000 Kbps.

  You also set the peak bandwidth to 2,000 Kbps, which is twice the value of the aver-
age bandwidth.

  Finally, you configure the burst size to 1,000 kilobytes (KB). Hint—don’t forget that 
there are 8 bits in a byte, which means that 1,000 KB is 8,000 Kb. Big “B” is for bytes 
and little “b” is for bits.

If the burst bonus is completely full, which would mean that it’s the full value of the burst 
size (8,000 Kb), then you could peak for 4    seconds:

8,000 Kb burst size / 2,000 Kbps peak bandwidth = 8 / 2 = 4 seconds

NIC Teaming
Let’s take     a well-deserved break from networking math for a moment and shift into the 
fun world of NIC teaming. The concept of teaming goes by many different names: bond-
ing, grouping, and trunking to name a few. Really, it just means that we’re taking multiple 
physical NICs on a given ESXi host and combining them into a single logical link that 
provides bandwidth aggregation and redundancy to a vSwitch. You might think that this 
sounds a little bit like port channels from earlier in the book. And you’re partially right—
the goal is very similar, but the methods are vastly different.

Figure 8.8 shows all the configuration options for teaming and failover.

Let’s go over all of the configuration options for NIC teaming within a vSwitch. These 
options are a bit more relevant when your vSwitch is using multiple uplinks but are still 
valid configuration points no matter     the quantity of uplinks.
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Figure 8.8 Configuration options for teaming and failover, as viewed from the vSphere 
Web Client 

Load Balancing
The first      point of interest is the load-balancing policy. This is basically how we tell the 
vSwitch to handle outbound traffic, and there are four choices on a standard vSwitch:

 1. Route based on the originating virtual port

 2. Route based on IP hash

 3. Route based on source MAC hash

 4. Use explicit failover order

Keep in mind that we’re not concerned with the inbound traffic because that’s not within 
our control. Traffic arrives on whatever uplink the upstream switch decided to put it on, 
and the vSwitch is only responsible for making sure it reaches its destination.

The first option, route based on the originating virtual port, is the default selection for a new 
vSwitch. Every VM and VMkernel port on a vSwitch is connected to a virtual port. When 
the vSwitch receives traffic from either of these objects, it assigns the virtual port an uplink 
and uses it for traffic. The chosen uplink will typically not change unless there is an uplink 
failure, the VM changes power state, or the VM is migrated around via vMotion.
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The second option, route based on IP hash, is used in conjunction with a link aggrega-
tion group (LAG), also called an EtherChannel or port channel. When traffic enters the 
vSwitch, the load-balancing policy will create a      hash value of the source and destination IP 
addresses in the packet. The resulting hash value dictates which uplink will be used.

The third option, route based on source MAC hash, is similar to the IP hash idea, except the 
policy examines only the source MAC address in the Ethernet frame. To be honest, we 
have rarely seen this policy used in a production environment, but it can be handy for a 
nested hypervisor VM to help balance its nested VM traffic over multiple uplinks.

The fourth and final option, use explicit failover order, really doesn’t do any sort of load 
balancing. Instead, the first Active NIC on the list is used. If that one fails, the next Active 
NIC on the list is used, and so on, until you reach the Standby NICs. Keep in mind that 
if you select the Explicit Failover option and you have a vSwitch with many uplinks, only 
one of them will be actively used at any given time. Use this policy only in circumstances 
where using only one link rather than load balancing over all links is desired or required.

NOTE

In almost all cases, the route based on the originating virtual port is more than adequate. 
Don’t try to get fancy with an exotic load-balancing policy unless you see an issue where the 
majority of traffic is being sent down the same uplink and other uplinks are relatively quiet. 
Remember our motto—the simplest designs are almost always the best designs. 

A single VM will not be able to take advantage of more than a single uplink in most circum-
stances. If you provide a pair of 1 Gb Ethernet uplinks to your vSwitch, a VM will still only 
use one of those uplinks at a time. There are exceptions to this concept, such as when a VM 
has multiple virtual NICs attached on a vSwitch with IP hash, but are relatively rare to see in 
production      environments.

Network Failure Detection
When a       network link fails (and they definitely do), the vSwitch is aware of the failure 
because the link status reports the link as being down. This can usually be verified by 
seeing if anyone tripped over the cable or mistakenly unplugged the wrong one. In most 
cases, this is good enough to satisfy your needs and the default configuration of “link status 
only” for the network failure detection is good enough.

But what if you want to determine a failure further up the network, such as a failure 
beyond your upstream connected switch? This is where beacon probing might be able to 
help you out. Beacon probing is actually a great term because it does roughly what it sounds 
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Notify Switches
The Notify Switches configuration      is a bit mystifying at first. Notify the switches about 
what, exactly? By default, it’s set to “Yes,” and as we cover here, that’s almost always a 
good thing.

Remember that all of your upstream physical switches have a MAC address table that they 
use to map ports to MAC addresses. This avoids the need to flood their ports—which 
means sending frames to all ports except the port they arrived on (which is the required 
action when a frame’s destination MAC address doesn’t appear in the switch’s MAC 
address table).

But what happens when one of your uplinks in a vSwitch fails and all of the VMs begin 
using a new uplink? The upstream physical switch would have no idea which port the VM 
is now using and would have to resort to flooding the ports or wait for the VM to send 
some traffic so it can re-learn the new port. Instead, the Notify Switches option speeds 
things along by sending Reverse Address Resolution Protocol (RARP)   frames to the 
upstream physical switch on behalf of the VM or VMs so that upstream switch updates 
its MAC address table. This is all done before frames start arriving from the newly vMo-
tioned VM, the newly powered-on VM, or from the VMs that are behind the uplink port 
that failed and was replaced.

These RARP announcements are just a fancy way of saying that the ESXi host will send 
out a special update letting the upstream physical switch know that the MAC address is 
now on a new uplink so that the switch will update its MAC address table before actu-
ally needing to send frames to that MAC address. It’s sort of like ESXi is shouting to the 
upstream physical switch and      saying, “Hey! This VM is over here now!”

Failback
Since we’re      already on the topic of an uplink failure, let’s talk about Failback. If you have a 
Standby NIC in your NIC Team, it will become Active if there are no more Active NICs 
in the team. Basically, it will provide some hardware redundancy while you go figure out 
what went wrong with the failed NIC. When you fix the problem with the failed Active 
NIC, the Failback setting determines if the previously failed Active NIC should now be 
returned to Active duty.

If you set this value to Yes, the now-operational NIC will immediately go back to being 
Active again, and the Standby NIC returns to being Standby. Things are returned back to 
the way they were before the failure.

If you choose the No value, the replaced NIC will simply remain inactive until either 
another NIC fails or you return it to Active status.
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Failover Order
The final      section in a NIC team configuration is the failover order. It consists of three dif-
ferent adapter states:

  Active adapters: Adapters that are Actively used to pass along traffic.

  Standby adapters: These adapters will only become Active if the defined Active 
adapters have failed.

  Unused adapters: Adapters that will never be used by the vSwitch, even if all the 
Active and Standby adapters have failed.

While the Standby and Unused statuses do have value for some specific configurations, 
such as with balancing vMotion and management traffic on a specific pair of uplinks, it’s 
common to just set all the adapters to Active and let the load-balancing policy do the rest. 
We get more into the weeds on adapter states later on in the book, especially when we 
start talking about iSCSI design and configuration in Part 3, “You Got Your Storage in 
My Networking: IP Storage.”

Hierarchy Overrides
One really    great feature of a vSwitch is the ability to leverage overrides where necessary. 
You won’t see any override information on the vSwitch itself, but they are available on the 
VMkernel ports and VM port groups, which are covered next in this chapter. Overrides 
are simply ways that you can deviate from the vSwitch configuration on a granular level. 
An override example is shown in Figure 8.10.

Figure 8.10 An example override on a failover order 
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For example, let’s say that you have a pair of adapters being used as uplinks on a vSwitch. 
Within the vSwitch, you also have two VMkernel ports configured: one for management 
traffic and another for vMotion traffic. You can use overrides to set specific teaming and 
failover policies for each of those VMkernel ports. This allows you to separate manage-
ment and vMotion traffic during steady-state operation, but still allow both to function in 
the event of a    NIC Failure. 

VMkernel Ports
The VMkernel ports,     which are also referred to as “VMkernel networking interfaces” or 
even “virtual adapters” in various places, are special constructs used by the vSphere host to 
communicate with the outside world. You might recognize these ports due to their naming 
structure of vmk## with the “vmk” portion being a shorthand for VMkernel.

The goal of a VMkernel port is to provide some sort of Layer 2 or Layer 3 services to the 
vSphere host. Although a VM can talk to a VMkernel port, they do not consume them 
directly.

Port Properties and Services
VMkernel       ports have important jobs to do and are vital for making sure that the vSphere 
host can be useful to the VMs. In fact, every VMkernel port can provide any combination 
of the following six services:

  vMotion traffic

  Fault tolerance (FT) logging

  Management traffic

  vSphere replication traffic

  iSCSI traffic

  NFS traffic

Figure 8.11 shows the administratively selectable services that can be enabled on a 
 VMkernel port.

NOTE

While you can enable multiple services on a given VMkernel port, it is often preferable to 
split functions between multiple VMkernel ports. Fault tolerance (FT) logging, in particular, 
is strongly recommended to be segregated from any other function. 
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Figure 8.11  Services that can be enabled on a VMkernel port 

You might notice that two of the services mentioned aren’t shown as services that can be 
enabled: iSCSI traffic  and NFS traffic . The reason is simple—there is no need to tell a 
VMkernel port that it can talk to iSCSI or NFS storage. All VMkernel ports can do this 
natively, and we typically just need to make sure that the IP address assigned to the appro-
priate VMkernel port is on the same subnet as the storage array.

NOTE

There are a lot of interesting design concepts around the use of VMkernel ports for iSCSI 
and NFS storage—feel free to skip ahead to Part 3 of this book if you want to learn more. 
For now, we’ll just accept the fact that a VMkernel port doesn’t need a service enabled to be 
useful for       IP storage traffic.

IP Addresses
Every VMkernel port      will have either an IPv4 or IPv6 address assigned, along with an 
MTU value. You have the choice of using a DHCP server for your IP address—which 
is not recommended for any serious production deployment—or assigning a static 
IP address.

Note that the default gateway and DNS server addresses are not definable by a VMkernel 
port. These values are input into the vSphere host directly. If the subnet you use for the 
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VMkernel port’s IP address does not match the subnet of the destination IP address, the 
traffic will be routed over the VMkernel port that can reach the default gateway. Often, 
but not always, this is vmk0 (the default first VMkernel port created when you install 
ESXi).

TIP

Look carefully at the  MAC address assigned to the vmk0 VMkernel port. Notice anything 
different about it when compared to other VMkernel ports? You should notice that vmk0 
uses the real, burned-in address of the physical NIC instead of a randomly generated 
VMware MAC address. This MAC address is “seeded” at the time of the ESXi installation.

VM Port Groups
The final      topic to touch on is VM port groups, which can be a bit of a struggle to under-
stand at first. Let’s imagine that you have a huge, unconfigured virtual switch with hun-
dreds of ports on it. Chances are, you don’t want all of the ports to be configured the same 
way—some of them will be used by your production VMs, others by your developers’ 
VMs, and even more might be for the engineering VMs.

VM port groups are a way that we can create logical rules around the virtual ports that are 
made available to VMs. It’s common to create a port group for each VLAN and network 
subnet that you want to present to your VMs. VM port groups do not provide vSphere 
services or require IP addresses—they are just ways to configure policy for a group of vir-
tual ports on your vSwitch.

Figure 8.12 shows an example from our lab showing a vSwitch with a VM port group 
named “VM”—not very creative, sure, but it gets the point across. This is where we place 
our VMs, which are SQL, vCenter, and DC in this example. We’ve also disconnected one 
of the network adapters to show what that looks like.

You can also see our VMkernel port named “Management” just below the VM port group. 
It looks a lot like a VM port group, and that might be confusing at first. Don’t worry, 
though—vCenter won’t let you put a VM      onto the “Management” VMkernel port.
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Figure 8.12 An example vSwitch with a VM port group named “VM”  

Summary

We covered a lot of ground here, digging into every nook and cranny of the vSphere 
Standard Switch. You should now feel more knowledgeable about virtual switch configura-
tion options, security settings, discovery settings, traffic-shaping policies, load-balancing 
methods, VMkernel ports, and port group configuration. In the next chapter, we take a 
close look at the options available with the vSphere Distributed Switch, highlighting the 
features that go above and beyond what is available with the Standard Switch.
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Chapter 9

vSphere Distributed Switch

Key Concepts
  dvUplinks

  LLDP

  NetFlow

  Port Mirroring

  Private VLANs

  Egress Shaping

  Load-based Teaming

  Network I/O Control

Introduction to the vSphere Distributed Switch
The vSphere Distributed Switch     (VDS) provides two major benefits to you, the customer. 
First, the VDS offers a centralized control plane for management of your virtual switching, 
taking much of the manual grunt work out of day-to-day administration. Second, the VDS 
offers advanced services and features over the standard switch.
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The VDS sits in the middle of the feature scale, offering more capabilities than the stan-
dard switch, but leaving some room at the table for third-party switches such as the Cisco 
Nexus 1000V. We go further into third-party vSwitches in the next chapter. For now, we 
focus more on the VDS, how it is different from the standard switch, and some of the neat 
buttons and gizmos that it comes loaded with.

Control Plane
The control plane    of the VDS sits at the vCenter layer of the stack. That is, vCenter is the 
vehicle used to create, modify, and remove a VDS and its related virtual port groups. This 
means that you can create your VDS one time and then choose which hosts will use it. It’s a 
similar concept to the vSphere  cluster. On its own, a cluster doesn’t really do anything. You 
can set up the cluster’s High Availability (HA) and Distributed Resource Scheduler (DRS) 
options, but until you actually add some hosts to the cluster, it just sits there looking pretty. 
A VDS is useless until hosts are added to it, and only then does the magic happen.

Each VDS has a quantity of uplinks defined. These are named dvUplinks  with a number 
after them by default, but you can change the name. From a control plane perspective, giv-
ing your uplinks a custom name helps define the role of various uplinks each host will use 
to move traffic into and out of the VDS. When adding a host to the VDS, you map physi-
cal uplink ports to the logical dvUplink ports. Figure 9.1 shows the dvUplinks in a VDS 
using a custom name of “Core 1” and “Core 2” for the pair of dvUplinks.

TIP

Name   your uplinks something descriptive to help with troubleshooting. I like to label mine 
based on the VDS’s purpose, such as “Core-##” or “Storage-##.” You could also call out the 
physical switching infrastructure, such as “TOR-A” or “TOR-B,” to distinguish which top 
of rack (TOR) switch you are connecting to. Avoid using specific switch names or IPs, as 
that information is tracked by CDP or LLDP anyway. More on LLDP in a later section.

Handling vCenter Failure
That VDSes are     managed through vCenter might be causing you some heartburn, as it 
seems to imply a dependency on vCenter availability. You might be wondering what hap-
pens when vCenter goes down—will virtual switching just stop?
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Figure 9.1 The dvUplinks in a VDS 

The short answer is no, switching will continue without interruption. But, hey, we have 
a couple hundred pages to go, so let’s get into the long answer. While it’s true that the 
brains of a VDS lay with the vCenter server, there is a cached copy of the VDS con-
figuration kept on every vSphere host and updated every five minutes. If vCenter fails, 
the host continues to use this cached copy of the VDS configuration. You can log into 
your vSphere host via Secure Shell (SSH) and see the file if you browse to /etc/vmware/
dvsdata.db. The cached database is shown in Figure 9.2. 

When the vCenter server comes back online, you might see a few errors appear stating 
that the VDS configuration is not synchronized to some of your hosts. This will clear up 
shortly as the vCenter VDS configuration is pushed down to the vSphere host during the 
regular five-minute update interval. 
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Figure 9.2 The local cache copy of the VDS database 

Data Plane
Just as with    the Standard Switch, all data plane activity continues to occur down at the 
Host layer. By design, no data is routed through the vCenter server, since it is simply a 
control point. All switching decisions continue to occur on the host itself, following the 
same Layer 2 rules as established in Chapter 3, “Ethernet Networks.” 

Monitoring
The VDS supports     both Cisco Discovery Protocol (CDP) and Link Layer Discovery 
 Protocol (LLDP).
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Cisco Discovery Protocol (CDP)
You might   recall that the standard vSwitch supports CDP, but configuring and managing 
that feature requires using some ESXCLI, PowerCLI, or other command-line methods. 
With the VDS, in addition to enabling CDP or LLDP, you can also set the mode of 
either of these protocols to Listen, Advertise, or Both, directly from the vSphere Client or 
vSphere Web Client. In fact, it’s just a dropdown box in the Discovery Protocol section. 
Neat, huh? This dropdown box is shown in Figure 9.3.

Figure 9.3 Enabling CDP on a VDS with a simple dropdown box 

Link Layer Discovery Protocol (LLDP)
For those   without a Cisco switching environment, you’re in luck. The VDS supports the 
open standards equivalent of CDP, called Link Layer Discovery Protocol (LLDP). For all 
intents and purposes, LLDP will provide anything you would expect from CDP, but works 
across a variety of vendor platforms. Interestingly, more and more Cisco switches are also 
supporting LLDP these days, which helps in a heterogeneous switching environment. 

As shown in Figure 9.3, the option to enable LLDP can be found with the same dropdown 
box used for CDP. You can also configure all three different operational modes: Listen, 
Advertise, or Both.
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TIP

One question that commonly pops up revolves around the desire to set LLDP (or even 
CDP for that matter) into an Advertise or Both mode and what the down side might be. 
We have yet to encounter any environments where having additional information about 
the environment—from a perspective of server or networking—is a bad thing. While some 
organizations will have a policy preventing LLDP or CDP from being enabled in specific, 
compliance-related environments, most are okay with having it on. Check with your security 
and/or networking team first, but chances are high that they will appreciate having visibility 
into the virtual networking       environment.

NetFlow
Now we’re     starting to hit some of the value-add features that people really enjoy about the 
VDS. The first one is NetFlow, and it’s an advanced feature available to you on the VDS. 
NetFlow doesn’t really have anything to do specifically with VMware, but was originally 
developed by Cisco and has become a reasonably standard mechanism to perform network 
analysis. 

In Chapter 7, “How Virtual Switching Differs from Physical Switching,” we mentioned 
the idea of  dark traffic: traffic that might never end up leaving a host. This is because both 
the source and destination VMs are located on the same host. Perhaps two VMs are talk-
ing to one another on the same VLAN and happen to be on the same host. Heck, that’s 
sometimes done on purpose to avoid putting additional stress on the physical network and 
because dark traffic gets switched at a host’s much faster processor/RAM speeds rather 
than at physical networking speeds. NetFlow is a way to monitor and sample IP traffic that 
occurs within your VDS. The configuration is controllable down to the port group level. 
The traffic data is sent to a NetFlow collector running elsewhere on the network. NetFlow 
is commonly used in the physical world to help gain visibility into traffic and understand-
ing just who is sending what and to where. 

NetFlow comes in a variety of versions, from v1 to v10. VMware uses the IPFIX   version 
of NetFlow, which is version 10, and stands for “Internet Protocol Flow Information 
eXport.” IPFIX is actually a melding of NetFlow version 9 with some Internet Engineer-
ing Task Force (IETF) standards, and is sometimes referred to as the “IETF Standardized 
NetFlow 9.” If you find it confusing that version 10 is sometimes called IPFIX 9, you’re 
not alone. To keep things simple, it’s often best to just call it IPFIX and folks will know 
what you mean.
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TIP

vSphere 5.0 uses NetFlow version 5, while vSphere 5.1 and beyond uses IPFIX (version 10). 
If you are using software that requires version 5, or doesn’t support IPFIX, you might want 
to avoid upgrading your vSphere hosts until you can figure out a workaround. vSphere 5.1 
does not support NetFlow version 5.

In order to take advantage of NetFlow, you need to perform two steps. The first is to con-
figure the NetFlow settings on your VDS itself, which we go into deeper here. 

VDS NetFlow configuration is defined by the following items:

  IP Address: This is the IP of the NetFlow Collector where the traffic information 
is sent.

  Port: This is the port used by the NetFlow Collector. It is typically UDP port 2055 
but can vary depending on the vendor collecting the data.

  Switch IP Address: This one can be confusing at first. In a typical hardware     environ-
ment, every switch has some sort of IP identifier for management. By assigning an IP 
address here, the NetFlow Collector will treat the VDS as one single entity. It does 
not need to be a valid, routable IP, but is merely used as an identifier. For example, 
“1.1.1.1” is a valid entry.

These options are shown in Figure 9.4.

Figure 9.4 NetFlow options on a VDS 
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There are also a number of advanced settings that can be tweaked if desired:

  Active flow export timeout in seconds: The amount of time that must pass before 
the switch fragments the flow and     ships it off to the collector. This avoids sending a 
large quantity of data after a particularly long flow occurs.

  Idle flow export timeout in seconds: Similar to the active flow timeout, but for flows 
that have entered an idle state. Think of this as the cleanup necessary to ensure that 
an idle flow gets shipped off to the collector in a timely fashion.

  Sampling rate: This determines the Nth packet to collect. By default, the value is 0, 
meaning to collect all packets. If you set the value to something other than 0, it will 
collect every Nth packet. For example, 3 would only collect every third packet.

  Process internal flows only: Your choices here are enabled or disabled (default). 
Enabling ensures that the only flows collected are ones that occur between VMs on 
the same host. This can be helpful if you are only looking to collect the dark traffic 
flows, already have NetFlow configured on your physical infrastructure, and wish to 
avoid sampling traffic twice (once at the Virtual layer and again at the Physical layer).

The second step is to enable Monitoring on any port groups you need to monitor. 
You’ll quickly figure this out when you set up NetFlow but do not see any traffic flow 
 information—and we’ve done that more than once. The related dialog is shown in 
Figure 9.5. 

Figure 9.5 Enabling NetFlow on a port group 
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Port Mirroring
Occasionally, you’ll     come upon the need to clone traffic on a particular port to another 
port. This goes beyond just monitoring a port—a port mirror actually clones all the traffic 
to a configured destination. There are two main use cases for this: monitoring and capture. 
The two use cases are closely related to one another, but tend to have different end goals 
in mind. For monitoring, you might have a need, be it compliance or some sort of service 
level agreement (SLA), to know exactly what traffic is being sent from one specific device 
to another. The other need, capturing, is commonly found when doing telephony work for 
call recording compliance. For example: capturing voice-over IP (VoIP) traffic so that you 
can have a recording of a phone call in your call center.

This is relatively simple to do in the physical world, and goes by many names: SPAN 
(Switched Port ANalyzer) ports, port mirroring, and port monitoring to name a few. A 
specific source port or VLAN is selected for the configuration, and any traffic that flows 
through that port is cloned to a destination port. The cloning process is usually “dumb” to 
the actual traffic, and just makes an exact copy of the traffic for the destination port. This 
worked well when each port on a switch carried traffic for a single connected server or 
workstation. 

The addition of virtual environments  created a headache for port mirroring. A single 
switch port connected to a vSphere host could now carry traffic for tens or even hundreds 
of virtual servers. It became difficult to mirror traffic for a single virtual server outside of 
some very clunky networking topologies, such as connecting a VM to a specifically dedi-
cated host uplink port. This was wasteful and also limited VM mobility. Other technolo-
gies, such as inclusion of a third party Nexus 1000V switch, could help with this issue, but 
were traditionally reliant upon special networking skills and a higher purchase price.

Starting with vSphere 5.0, the distributed switch began providing the ability to mirror 
traffic for virtual ports. This would allow an administrator to granularly control port mir-
roring for a specific distributed port or ports. The initial offering with the VDS 5.0 was a 
simple configuration where you could mirror distributed ports to other distributed ports 
or an uplink. This is known as “Distributed Port Mirroring (Legacy)” in the VDS 5.1 and 
beyond, and is deprecated. Keep in mind that upgrading a vSphere environment does not 
automatically upgrade an existing VDS—you will have to also perform a VDS upgrade in 
order to enjoy the features found in later VDS versions.

Beginning with the VDS 5.1, four different port mirroring session types are available:

 1. Distributed Port Mirroring: Mirror packets from any number of distributed ports to 
any number of other distributed ports on the same host. If the source and the desti-
nation are on different hosts, this session type does not function.



102 CHAPTER 9  vSphere Distributed Switch

 2. Remote Mirroring Source: Mirror packets from a number of distributed ports to spe-
cific uplink ports on the corresponding host.

 3. Remote Mirroring Destination: Mirror packets from a number of VLANs to distrib-
uted ports.

 4. Encapsulated Remote Mirroring (L3) Source: Mirror packets from a number of 
distributed ports to remote agent’s IP addresses. The VMs’ traffic is mirrored to 
a remote physical destination through an IP tunnel. This is similar     to ERSPAN 
(Encapsulated Remote Switched Port Analyzer).

These options are shown in Figure 9.6.

Figure 9.6 Port mirroring choices with a VDS 5.1 

While the source and destination of each port mirroring choice varies, the properties are 
all relatively similar. In order to configure any port mirroring session, you need to define 
a number of standard properties for the configuration. The set of properties you need to 
configure will change depending on the type of port mirror chosen:

  Name: A name describing the port mirroring session. Try to make this as descrip-
tive as possible without being wordy. Examples include “Mirroring ServerX to 
 DestinationY” or “ServerX to Remote IP.”

  Status: By default, the port mirror will be disabled. You can leave it disabled while 
you create the mirror and then enable later, or enable it during configuration.
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  Session Type: This selects the type of port mirroring session. Choose one of the four 
described in the previous list.

  Encapsulation VLAN ID: The VLAN specified here will be used to encapsulate the 
frames that are being mirrored. This will allow you to ship frames across an uplink 
that might use a different VLAN ID. If you want the port mirror to remember 
the original VLAN ID that the traffic was using, make sure to check the “Preserve 
 Original VLAN” option. Otherwise, the encapsulation VLAN will take its place.

There are also a few advanced properties that can be tweaked. Not all of them will be 
available for each port mirror type, but we cover all of them in this section:

  Normal I/O on destination ports: The description on this is a bit vague. It is asking 
you to decide if you want the destination port to act simply as a port mirror port, or 
if it should accept incoming traffic. By default it is set to “Disallowed” which pre-
vents the destination port from accepting traffic into the port and effectively dedi-
cates the port to the port mirror. For most monitoring applications that simply wish 
to interrogate traffic, leaving the value at “Disallowed” is desired. Keep in mind that 
this also prevents the port from transmitting traffic.

  Mirror packet length (Bytes): This is a size limitation imposed on the mirrored traf-
fic. If you do specify a size, packets that exceed the size will be truncated to the size 
you specified. This can be handy if you are monitoring traffic that includes Jumbo 
Frames, such as storage traffic, but only wish to capture the normal sized frames or 
headers rather than the full payload. Typically you’ll want to leave this field empty 
and specify any packet length limitations on the capture software.

  Sampling rate: Much like with NetFlow’s sampling rate configuration, the port mir-
ror sampling rate determines how many packets to sample. The value of 1, which is 
default, means to capture every packet. Any other value of N means to capture the 
Nth packet. For example, a sampling rate of 7 will capture every seventh packet and 
skip the other six.

  Description: A description for your port mirroring session. No clue why this is listed 
in the Advanced properties section, as it’s a way to help convey the purpose    of your 
session, but there you have it.

These advanced properties are shown in Figure 9.7.
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Figure 9.7 Configuration items for a port mirror session 

Sources for a port mirror session can be one or many distributed ports, or even a range 
of ports. Ports can be used by VMs or VMkernel ports. Each port ID shows the host that 
is servicing the virtual port ID, the connectee of the virtual port, and the direction of the 
    traffic that you wish to capture. Keep in mind that direction is based on perspective: An 
ingress enters a port, while an egress exits a port. When two people are holding a conver-
sation, the person speaking has information egressing his mouth, while the person listen-
ing has information ingressing his ear. 

Source options are shown in Figure 9.8.

Figure 9.8 A sampling of sources for a port mirror session 
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The only exception to this is the Remote Mirroring Destination type, which uses one or 
more VLAN IDs as the source.

Choosing the destination for your port mirror has the most variety. Here is a list of desti-
nation options for each port mirror     type:

  Distributed Port Mirroring: virtual ports

  Remote Mirroring Source: uplinks

  Remote Mirroring Destination: virtual ports

  Encapsulated Remote Mirroring (L3) Source: remote IP

The end result is an entry in the port mirroring section of a VDS that shows a list of all 
sessions. Each session shows the name, type, and status in the top panel, along with the 
properties, sources, and destinations in the lower panel. An active port mirroring session is 
shown in Figure 9.9.

Figure 9.9 An active port mirroring session using Encapsulated Remote Mirroring (L3) Source 

Private VLANs
Sometimes the     use of VLANs isn’t enough to satisfy a design requirement. Perhaps you 
wish to prevent unnecessary consumption of your 4094 VLAN IDs, or have some special 
tenancy requirements that mandate creating isolated environments. This is where the 
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concept of a Private VLAN comes into play. The architectural differences are sort of like 
comparing a single-family home to a high-rise condo building.

In the single-family home scenario, everyone lives in the same house together but they 
occupy different rooms. If you have access to the house, we can trust that you belong in 
the house and we don’t really prevent you from wandering into someone else’s room—
although that’s typically not the polite thing to do. This is much like a regular VLAN. If 
you want to transfer from one person’s home to another, or from one VLAN to another 
VLAN, you have to use a routing device—you can’t just walk in between houses.

Primary VLAN
In a      condo building, each condo itself is an isolated environment within the larger build-
ing. Everyone has access to the condo building’s front door, but not each other’s condo. 
This is sort of how the Private VLAN works. We use the term “Primary VLAN” to 
denote the common VLAN that is used to enter the private set of VLANs. 

Promiscuous VLAN
The Primary VLAN is       connected to the rest of the network infrastructure by way of one 
or more promiscuous ports, also known as P-Ports. Think of the P-Port like the doorway 
into the condo building—everyone has access to it, and it’s how you get in and out of the 
private set of VLANs. Every Private VLAN needs a Primary VLAN with a P-Port, other-
wise there would be no way to get traffic in and out of the networking segment.

Secondary VLANs
Each condo      in the building would represent a “Secondary VLAN,” or sub-VLAN, that can 
re-use VLAN IDs that exist outside of the Private VLAN. That is, if you have a network 
VLAN ID of 100 somewhere on your network, you can also have a Secondary VLAN that 
uses VLAN ID 100 within the scope of the Primary VLAN. However, the Primary VLAN 
must be unique on both networks, or else the network would become confused as to which 
VLAN you are intending traffic to traverse.

Secondary VLAN IDs only exist within the Private VLAN environment, and the tags are 
replaced with the Primary VLAN ID when traffic leaves the Private VLAN. There are 
three types of Secondary VLANs defined in a VMware Distributed Switch: the Promiscu-
ous VLAN, which we already covered, as well as the Community and Isolated VLANs. 

Figure 9.10 shows the process of creating a Private VLAN on a VDS.
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Figure 9.10 Creating a Private VLAN on a Distributed Switch 

Community VLANs
A Community VLAN is      one that allows members to communicate with one another and 
the Promiscuous VLAN. Think of it like a conference room—everyone in a conference 
room can communicate with one another, but cannot talk to those outside of the room 
without assistance. For instance, the previous diagram shows two community VLANs: 200 
and 250. Any VMs placed in Community VLAN 200 would be able to talk to one another 
and also send traffic to the Promiscuous VLAN. They cannot, however, send traffic to the 
other Community VLAN 250 or the Isolated VLAN 600 without direct assistance from a 
routing device in either the Promiscuous VLAN or higher up the networking stack. Figure 
9.11 illustrates traffic flows between secondary VLANs.

You can have as many Community VLANs as you desire, up to the VLAN ID limitation 
of 4094. 
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Figure 9.11 Traffic flows among Secondary VLANs in a Private VLAN 

Isolated VLAN
The final      Secondary VLAN type is the Isolated VLAN. In addition to the rules we cov-
ered for the Community VLAN, VMs inside the Isolated VLAN cannot even talk to one 
another. Any Layer 2 traffic that attempts to go from one VM to another will simply be 
dropped. The VMs can only communicate with the Promiscuous VLAN and beyond.

TIP

Why use an Isolated VLAN? This special type of VLAN has some fantastic uses for work-
loads that will be shared by guest users, such as kiosks. If you place an Internet facing 
gateway device in the Promiscuous VLAN, you can ensure that each kiosk is blocked from 
each other but can still reach the Internet. In fact, most “hoteling” situations deploy an 
Isolated VLAN for just this reason. Still, be careful what you do on the Internet—someone 
is likely monitoring your activities.

Distributed Port Groups
Because multiple      hosts can use a VDS, the port groups must also be distributed. This 
means that no one host owns any part of a VDS, including the distributed port groups. 
In fact, if a VMkernel port wishes to live on a VDS, it must use a distributed port group. 
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This differs from a standard vSwitch configuration in that you are required to create spe-
cial VMkernel network adapters directly in the vSwitch. Additionally, multiple VMkernel 
ports can share the same distributed port group.

TIP

The VDS is owned by a vCenter Datacenter container , rather than a host, and cannot span 
more than a single Datacenter. This means that you can create port groups on a VDS that 
will be consumed by hosts in any cluster that lives in the Datacenter container, or even by 
hosts that are not in a cluster. However, these port groups cannot be used by hosts in a 
different Datacenter container. This makes distributed port groups extremely powerful and 
highly scalable.

Every distributed port group has access to all the uplinks bound to a VDS. Additionally, 
configuration settings and policies, such as the security and teaming values, are applied 
directly to a distributed port group. This means that you can have one distributed port 
group that sets all the uplinks to active and uses VLAN 100, while another port group uses 
an active/passive mix on VLAN 200. It’s common to create a modular design with a variety 
of port groups for different tasks, such as one for each VLAN your guest machines will 
use, vMotion, Management, Fault Tolerance Logging, and more. We cover a lot      more on 
this topic in Chapter 13, “Distributed vSwitch Design.”

VMkernel Ports
Because a       host still needs VMkernel ports (virtual adapters) to handle tasks like manage-
ment traffic and vMotion, there is still a need for VMkernel ports with a VDS. This is 
where things can get a little tricky. VMkernel ports are unique for each host because 
each host has its own vmk numbering scheme and IP configuration details. Therefore, 
 VMkernel ports are configured on each host in vCenter, much like you would with a stan-
dard vSwitch.

The difference is that each VMkernel port exists on a distributed port group. When a 
host has been added to a VDS, options to place its VMkernel ports onto a distributed port 
group appear. A VMkernel port uses the underlying rules from the distributed port group 
to function. Therefore, the underlying hardware configuration is defined by the distrib-
uted port group policies, and the personality of the VMkernel port—the IP address, subnet 
mask, maximum transmission unit (MTU), and so on—is defined by the host itself. Figure 
9.12 shows the VMkernel ports of a host on a VDS.
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Figure 9.12 VMkernel ports on a vSphere host attached to a Distributed vSwitch 

Virtual Machines
When dealing        with VMs attached to a VDS, very little operational changes are required. 
VMs can use ports on any distributed port group, even the ones you have set aside for 
your VMkernel ports to use. It is often best to create specific port groups just for your 
VMs and use a naming scheme that best describes the network, such as the IP segment 
range and VLAN ID.

As an added bonus, keep in mind that because the port groups are distributed, placing a 
VM on a distributed port group reduces risk of a vMotion causing havoc because of a pol-
icy or VLAN ID misconfiguration at the destination host. Every host has the exact same 
port group settings. This makes network troubleshooting slightly easier, as you can often 
determine that a physical network on a host is not configured properly with little trouble-
shooting effort.
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  If you have very bursty traffic that finishes in less than 30 seconds, LBT does not 
trigger a migration. This 30-second threshold exists to prevent thrashing: useless, 
repetitive, expensive work.

NOTE

Although almost   all documentation for LBT talks about the ability to migrate VM virtual 
NICs, it’s important to understand that it can also move around VMkernel ports. If you 
are in a converged infrastructure environment with a limited number of uplinks, it might 
be advantageous to use LBT to move around your VMkernel port assigned to management 
or vMotion in times of uplink bandwidth saturation. Don’t forget that LBT cannot cause 
traffic for a VMkernel port to use multiple uplinks simultaneously—it will only move the 
VMkernel port from one uplink to another.

You might wonder how LBT works when you have multiple distributed port groups all 
sharing the same set of uplinks. After all, each port group can have a different teaming 
policy applied, with some using LBT, others using virtual port ID, and perhaps a few using 
an explicit failover order. Fortunately, because LBT monitors saturation on the uplinks, it 
mixes with other policies very well. If any uplink in the VDS becomes saturated at 75% or 
higher for 30 seconds, any distributed port group with the LBT policy configured triggers 
and attempts to move around workloads. There is no need to have one giant port group 
with all the VMs inside.

In Figure 9.16, the VMs have been split into two different port groups: a green one using 
“route based on originating virtual port ID” (the default) and an orange one using LBT. 
When VM1 begins sending massive amounts of traffic that cause uplink1 to reach 75% or 
higher saturation for 30 seconds or longer, the     orange LBT-enabled port group can still 
move VM2 and VM3 to uplink2 to alleviate the saturation. 
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Figure 9.17 The Resource Allocation screen shows all the NIOC configuration values 

Let’s go over what all the various NIOC configuration settings do:

  Physical Network Adapters: A count of the number of uplinks each host has contrib-
uted to this particular VDS. In our case, we have 3 hosts using the VDS, each with 2 
uplinks. Thus, 3 hosts x 2 uplinks = 6 physical network adapters.

  Bandwidth capacity (Gbit/s): All 6 uplinks discovered from the physical network 
adapters run at 1 Gbit/s; therefore, my total bandwidth capacity for the entire VDS 
is 6 Gbit/s. Note that this is gigabits per second (little “b”) not gigabytes per second 
(big “B”).

  Network I/O Control: Disabled by default, or shows you Enabled if you or someone 
else has turned it on. When Disabled, the NIOC configuration values     have no effect 
on traffic.

Network Resource Pools
You’ll also       notice a list of eight system network resource pools. Each one corresponds to a 
specific type of traffic and allows you to configure values that affect traffic ingress, which 
is from the VDS to its uplink ports. You cannot remove any of the predefined resource 
pools, which are as follows: 

  vMotion Traffic.

  Fault Tolerance (FT) Traffic.
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  vSphere Replication (VR) Traffic: Used by the VR appliance, including VMware Site 
Recovery Manager (SRM).

  iSCSI Traffic.

  Management Traffic.

  NFS Traffic.

  Virtual Machine Traffic: Used for all VMs, although you can create your own user-
defined resource pools. We cover that later in this chapter.

  vSphere SAN Traffic: Used by the Virtual SAN technology that VMware announced 
at VMworld 2013 (vSphere 5.5 or higher only).

Now that you know what types of traffic we can control, let’s review the configurations 
for each:

  Host Limit (Mbps): A traffic limit, defined in megabits per second, which cannot be 
exceeded by the network resource pool. In vSphere 5.1, this is on a per-uplink basis, 
whereas prior to 5.1, it was a per-host limit. As an example with a 5.1 VDS: If you 
were to limit the vMotion network resource pool to 2000 Mbps, but defined mul-
tiple vMotion VMkernel ports on multiple uplinks, each uplink could send traffic 
upstream at a rate of 2000 Mbps. Use limits sparingly as they might artificially create 
network contention for no reason.

  Physical Adapter Shares: The configured shares for an adapter (uplink port). You 
can choose High (100 shares), Normal (50 shares), Low (25 shares), or Custom to 
define a custom quantity of shares up to 100. Shares are ultimately used to calcu-
late what percentage each network resource pool can claim from a physical adapter 
(uplink). The speed of the uplink does not increase or decrease the number of shares 
because percentages are relative to the speed of the uplink.

  Shares Value: The amount of shares set on the network resource pool.

  QoS Priority Tag: This field gives you the ability to set the IEEE 802.1p QoS tag. 
Values range from 0 (lowest) to 7 (highest) priority. Many Layer 2 devices on the 
physical network will inspect this portion of the Ethernet frame and, based on the 
QoS tag value assigned, prioritize or drop traffic. Use with caution and make sure to 
include       your network team in the discussion. 

Shares
Shares cause        the most confusion when it comes to resource pools. As such, let’s address the 
share values set on the network resource pools. First off, shares are a relative value. They 
don’t represent a specific quantity of traffic, and are not used unless the uplink becomes 
saturated with traffic. 
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  100 shares + 50 shares = 150 shares total for this uplink

  VMs would get 100 out of 150 shares, which is 66.7%, and throttled to 66.7% of the 
full 1 Gbps link for a total of 0.667 Gbps or roughly 667 Mbps.

  vMotion would get 50 out of 150 shares, which is 33.3%, and throttled to 33.3% of 
the full 1 Gbps link for a total of 0.333 Gbps or roughly 333 Mbps.

Remember that shares only kick in to control active traffic. In the same scenario we just 
reviewed, we assume that both VMs and vMotion traffic were active and causing conten-
tion. If the entire uplink were taken up with only VM traffic, and no vMotions were occur-
ring, no throttling would occur—there’s only one type of active traffic (VM traffic). The 
VMs would get 100% of the uplink until a vMotion        occurred.

User-Defined Network Resource Pools
Beyond the        system network resource pools, which are included with vSphere and cannot 
be deleted, you are given the opportunity to create your own custom user-defined resource 
pools. These are used by VM port groups of your choosing, such as ones for production, 
development, mission-critical VMs, or whatever. A user-defined resource pool is shown in 
Figure 9.19.

Figure 9.19 My newly created user-defined network resource pool named “Production VMs”  
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You can then apply the network resource pool directly to the port group to ensure that any 
VM that uses the port group will be granted the NIOC configuration values. This process 
is illustrated in Figure 9.20.

Figure 9.20 Applying my user-defined network resource pool named “Production VMs” to the 
VM-1 distributed port group 

Any VMs that do not match a user-defined network resource pool will use the system 
defined pool named “Virtual Machine Traffic.” You can use this as a catch-all resource 
pool for anything that doesn’t have a specific policy defined. 

Summary

In this chapter, we described the architecture of the vSphere Distributed Switch and high-
lighted feature enhancements it offers over the Standard Switch, including support for 
LLDP, NetFlow, port mirroring, Private VLANs, egress shaping, improved load balanc-
ing mechanisms, and Network I/O Control. In the next chapter, we cover the Cisco Nexus 
1000V switch and the features it offers over the VDS.



Chapter 10

Third Party Switches–1000V

Key Concepts
  Cisco Nexus 1000V

  Virtual Supervisor Module (VSM)

  Virtual Ethernet Module (VEM)

  Port Profile

Introduction
Now that     we’ve covered the two types of built-in vSwitches, let’s move into the realm of 
third-party virtual switches and why they came about. Historically, the VMware vSwitches 
have been good enough in many respects to earn a place in the datacenter but did not 
provide enough features or functionality to fully replace the need for intelligent physical 
switches. Advanced features such as ERSPAN, DHCP snooping, and Access Control are 
not available with either the standard or distributed vSwitch. Network administrators use 
these sorts of features to further enhance and control the network but were at a disadvan-
tage in the virtual environment due to a lack of features like these.

Cisco worked to fill this gap by introducing the Cisco Nexus 1000V virtual switch at 
VMworld in 2008. It provided a bridge between the physical and virtual networking 
worlds that many Cisco Nexus and IOS professionals were familiar with using. In fact, it 
looks and feels much like a physical switch does, including a command line interface (CLI) 
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and virtual modules designed to closely emulate their physical counterparts, but with 
improvements necessary to be relevant in a virtual environment. And while it’s true that 
much of the feature gap between the distributed vSwitch and the Nexus 1000V has eroded, 
there are still many reasons that you might want to go down the path of the Nexus 1000V.

In this chapter, we dig into the Cisco Nexus 1000V from an architectural and feature set 
  perspective.

NOTE

You might have also heard about another third-party switch from IBM called the 
Distributed Virtual Switch 5000V  . We are excluding this product because neither of us, nor 
anyone we’ve worked with, has actually seen it in the wild. We’ve heard reports of sightings 
in the woods of the Pacific Northwest, and rumors of a rogue software switch attacking and 
drinking the blood of goats outside of San Antonio, but that’s about it. It’s also not called 
out in any of the more popular reference architectures. Just be aware that it exists, and that 
technically there are two choices for third-party switches with vSphere.

Integration with vSphere
The Nexus 1000V   leverages the VMware vNetwork Distributed Switch Application 
Programming Interface (API) and, therefore, requires VMware vSphere Enterprise Plus 
licensing for any of the hosts that will be participating in the Nexus 1000V switch. This 
doesn’t mean that all of your hosts in your environment must be on this license version. If 
you have a small collection of hosts that are running lower licensed versions, such as Stan-
dard or Enterprise, you will still be able to load the necessary modules required for opera-
tion of the Nexus 1000V on your Enterprise Plus vSphere hosts. There is also no need for 
physical or logical isolation—the hosts that do not use the Nexus 1000V can be managed 
by the same vCenter server, inside the same Datacenter container, or even reside in the 
same cluster together.

In order to visually represent the Nexus 1000V via the vSphere Client or vSphere Web 
Client, VMware constructs   a special vSphere Distributed Switch (VDS) and shows which 
hosts are connected to it. Unlike a normal VDS, which can be edited by a vSphere admin-
istrator, the special Nexus 1000V VDS is read-only within the vSphere client. You can 
view some of the configuration settings from the vSphere Client but are unable to invoke 
any changes. This is because the configuration of the Nexus 1000V takes place on a super-
visor module, just like it would in a physical environment, using the Nexus operating sys-
tem (NX-OS) from Cisco. The main advantage to this method of configuration is that it is 
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The VSM uses three different types of networks to control the Nexus 1000V environment: 
management, packet, and control. Each network has specific tasks to perform and are usu-
ally kept on different VLANs, although it is     not required to do so:

  Management Network: This appears as the mgmt0 interface on the Nexus 1000V. It 
is used to perform administrative work on the Nexus 1000V, such as providing login 
access for configuration. It is also used to talk to the vCenter Server.

  Packet Network: Services such as CDP, IGMP, and LACP use this network.

  Control Network: The VSM uses this network to talk to one another and pass along 
configuration data necessary for the active-to-standby synchronization and to achieve 
high availability. It’s also how the VSMs talk to the VEMs on the vSphere hosts.

All changes to the Nexus 1000V configuration are done via the VSMs, typically via a 
remote console that is connected via SSH, though you can also use the VM console ses-
sion on the active node. Those changes are then communicated to vCenter by means of 
a Server Virtual Switch (SVS) connection  , which is a special relationship created to con-
nect the Nexus 1000V into the VMware vCenter Server. This is a requirement in order to 
communicate data between the two entities, as the vCenter Server will reflect the status of 
the Nexus 1000V configuration by way of Nexus 1000V VDS. 

Here is an example SVS connection:

n1000V# show svs connections 

connection VC:

    ip address: 10.0.0.27

    protocol: vmware-vim https

    certificate: default

    datacenter name: LabDC

    DVS uuid: ac 36 07 51 42 88 d9 ab-03 fe 4f dd d1 32 cc 5c

    config status: Enabled

    operational status: Connected

The connection data tells some important details:

  ip address: The IP address of the vCenter Server.

  protocol: The protocol type used to talk with the vCenter Server, either HTTP or 
HTTPS. In this case, the Nexus 1000V is connected to the HTTPS port, which is 
TCP 443, for a secure connection.

  datacenter: The vCenter Datacenter is LabDC. This is where vCenter will construct 
the distributed vSwitch.
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  DVS uuid: The vCenter universally unique identifier (UUID) value for the distrib-
uted vSwitch that corresponds to the Nexus 1000V switch.

  config status: The current configuration is enabled.

  operational status: The Nexus 1000V is currently connected to the vCenter Server. 
Only one connection is allowed at a time.

At this point, you have a control plane and redundant supervisors, but no configuration. 
Let’s move forward to the next major construct that makes     the Nexus 1000V useful: port 
profiles.

Port Profiles
Port profiles   share some similarities with port groups in VMware vSwitches. Both are used 
to logically define the behavior of virtual ports. The Nexus 1000V uses a variety of port 
profile types to control what types of virtual ports are being created, and how they map to 
either the virtual environment or physical uplinks:

  Ethernet: This  type of port profile is used to define physical uplinks. There are usu-
ally two port profiles of this type: one that is used for mapping the network adapters 
connected to the upstream switches, and another special profile called “Unused_Or_
Quarantine_Uplink” that is used by the Nexus 1000V.

  vEthernet: This  type of port profile is used to define virtual ports. These ports are 
consumed by VMs and VMkernel ports on the vSphere hosts.

When you create an Ethernet port profile, the distributed vSwitch creates an empty uplink 
port group. The VMware administrator would then add hosts to the Nexus 1000V VDS 
and pick which network adapters to include, along with choosing the correct uplink port 
group for those adapters.

Here’s an example   configuration of an Ethernet port profile:

port-profile type ethernet SYSTEM-UPLINK

  vmware port-group

  switchport mode trunk

  switchport trunk allowed vlan 1,2,3,4,5,100-200

  channel-group auto mode on mac-pinning

  no shutdown

  system vlan 2

  description system profile for physical uplinks

  state enabled
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Some of the configuration highlights include:

  vmware port-group: Specifies the type of hypervisor.

  switchport mode trunk: Configures the uplink as a trunk port, which allows for 
802.1Q tags on multiple VLANs.

  switchport trunk allowed vlan #: The VLAN tags that should be passed along by the 
uplink.

  channel-group auto: This command tells the port profile how the link aggrega-
tion group (LAG) should be configured. The “mode” portion can be “mode on” for 
static or “mode active | passive” for LACP. The use of “mac-pinning” is useful for 
environments where the upstream switches do not support port channels. The MAC 
addresses of the VMs are pinned to the uplinks in a round-robin fashion.

  system vlan #: This denotes special VLANs that should be brought up immediately 
without waiting on communication between the VSM and VEM. It’s commonly used 
for any management, control, or storage traffic.

REAL WORLD

Occasionally, there is a need to create additional Ethernet port profiles. This is a rare event, 
but it can be useful when you have disjointed upstream Layer 2 networks. The typical use 
case for this revolves around having isolated networks for DMZ traffic or PCI compliance. 
In this case, you would add the host uplinks (network adapters) to specific port groups that 
match the appropriate Ethernet  port profile.

Every  vEthernet port profile created on the Nexus 1000V will result in a distributed port 
group   being created on the Nexus 1000V VDS. This allows the VMware administrator to 
place VMs or VMkernel ports into the port groups, while the policy remains in the hands 
of the network administrator that is configuring the Nexus 1000V:

port-profile type vethernet BobSponge

  vmware port-group

  switchport mode access

  switchport access vlan 100

  no shutdown

  state enabled

Note that, aside from one applying to physical uplinks and the other applying to vnics, 
the difference between the Ethernet and the vEthernet port profiles shown is that the 
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 vEthernet port profile is configured as an access port that only passes VLAN 100 traffic, 
whereas the Ethernet port profile is configured as a trunking port passing  vlans 1, 2, 3, 4, 
5, and 100-200.

PITFALL

Do not use  the same VLAN across multiple sets of Ethernet port profiles or you will 
encounter some very angry users who are wondering why they can’t connect to their work-
loads. Notice the VLANs defined in the Ethernet and vEthernet port profiles? The Nexus 
1000V will determine which uplink to use based on the traffic’s VLAN tag. In our previous 
examples, the BobSponge port group, which is on VLAN 100, would use the SYSTEM-
UPLINK uplink because it is configured to pass traffic for VLAN 100. But if there were 
more than the Ethernet port profile carrying VLAN 100 traffic, unpredictable switching 
would result. 

This covers the high-level functions necessary to understand some of the operational 
necessities of the Nexus 1000V supervisors. Let’s move along toward the data plane that is 
provided   by the VEMs.

Virtual Ethernet Module
The VEM is      lightweight piece of software that must be installed on any vSphere host that 
wishes to participate in the Nexus 1000V switch. The VEM acts as the data plane on each 
host, handling all of the Layer 2 switching decisions for any traffic that is entering or leav-
ing the Nexus 1000V. It’s important to understand that the VSMs do not switch the data 
plane traffic, and that all traffic is still switched locally on each host by the VEM.

TIP

Installation of the VEM on a vSphere host is typically handled in one of two ways: Either 
embed the VEM files onto a custom vSphere installation ISO or use VMware Update 
Manager (VUM) to push out the VEM files. If you’re using AutoDeploy, you should use 
a custom ISO, especially if you’re operating in a stateless deployment model. For existing 
environments, it is often easiest to push out the software with VUM and move forward 
with the custom ISO for any newly created hosts. Either way, the VEM software is easy to 
deploy.

The VEMs must be able to communicate with the VSMs using the Control Network. 
This is how they are given configuration updates, licensing information, and generally 
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The main advantage to using a shared VMkernel port is the lack of complexity with con-
figuration of additional VMkernel ports and IPs. It does, however, require that your man-
agement VMkernel port reside on the Nexus 1000V. On the flip side, being able to put the 
management VMkernel port on an isolated standard vSwitch is one advantage to having an 
isolated VMkernel port for VEM control traffic.

An example of isolating all VSM-to-VEM traffic onto a standard vSwitch is shown in 
Figure 10.5.

Figure 10.5 An example design showing Layer 3 control and management VMkernel ports on a 
standard vSwitch for  isolation

PITFALL

It’s risky   to use the Nexus 1000V switch for the VSM VMs and/or the VEM’s control and 
packet VMkernel ports. Most admins opt to use a separate standard vSwitch, and some 
decide to use a separate distributed vSwitch. By placing the VMkernel ports on the Nexus 
1000V, you create a scenario where a network administrator could accidently sever commu-
nications between the VSMs and the VEMs with a faulty configuration, which requires a 
painful troubleshooting process to remedy. Be aware of the risk involved if you do decide 
to house the VEM’s VMkernel port(s) on the Nexus 1000V, and communicate the risk to 
your team. A regularly updated backup of your running configuration and flagging critical 
VLANs as System VLANs can go a long way in mitigating the risk.
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VEM Maximums
Each VEM in the environment will consume a virtual port on the Nexus 1000V Ethernet 
switch, which traditionally had 66 ports available: 2 for the VSMs and 64 for VEMs on 
the vSphere hosts. The latest code release for the Nexus 1000V allows for 130 total virtual 
Ethernet ports, which doubles the allowable VEMs to 128 per Nexus 1000V. Knowing 
that you can have 32 nodes (hosts) in a vSphere cluster, this means you could potentially 
have 4 fully populated vSphere clusters (32 nodes x 4 clusters = 128 nodes) managed by a 
single      Nexus 1000V.

Advanced Features
As with   most architectural decisions that occur in the network, there should be a require-
ment met by selecting a technology such as the Nexus 1000V. With VMware’s release 
of vSphere 5.5, even more of the feature disparity between the Distributed vSwitch and 
the Nexus 1000V has been eroded. However, there are still a handful of advantages to 
be gleaned from using the Nexus 1000V in your vSphere environment. It’s important to 
review the various features provided with the different licensing models to see if they will 
meet design requirements or eliminate design constraints.

A Comment on Nexus OS
One of the more intangible advantages of using the Nexus 1000V is the ability to har-
ness a familiar OS for network management: Nexus OS (NX-OS)  . Environments that 
already lean heavily on Nexus will find a familiar configuration environment to their other 
physical switches. This can offload the need for a server or virtualization administrator to 
handle the more nitty-gritty networking configuration and design decisions, allowing them 
to focus simply on consuming port groups for VM and   VMkernel needs.

Licensed Modes of Operation
As of   version 2.1, the Cisco Nexus 1000V offers two modes of licensing: Essential Edi-
tion and Advanced Edition. For those who have vSphere Enterprise Plus licensing, you 
can enjoy the Nexus 1000V Essential Edition for free, or purchase the Advanced Edition 
if there are features you want to take advantage of beyond the free version. Licensing is 
purchased based on the number of physical CPU sockets in the vSphere host. A host with 
2 physical CPU sockets, for example, would require 2 Nexus 1000V licenses.
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Essential Edition
The Essential Edition  comes with the following features:

  VLAN, ACL, QoS: The ability to use 802.1Q for VLAN tagging; Access Control Lists 
(ACL) for permitting and denying traffic; and Quality of Service (QoS) to police 
traffic to and from the VMs and VMkernel ports.

  VXLAN: Virtual Extensible LAN (VXLAN) is a Layer 2 network isolation technology 
that leverages encapsulation to create a large quantity of virtual LANs. It is also a 
popular way to do networking with VMware’s vCloud Director product.

  vPath: Provides a forwarding-plane abstraction and a programmable framework for 
inserting network services such as firewalls, load balancers, and wide area network 
(WAN) optimization at the virtual access layer. 

  LACP: Link Aggregation Control Protocol (802.3ad) for the creation and mainte-
nance of multi-link LAGs.

  NetFlow: See the “NetFlow” section in Chapter 9, “vSphere Distributed Switch.”

  ERSPAN: See the “Port Mirroring” section in Chapter 9.

  vTracker: Provides information about the virtual network environment. Based on the 
data sourced from the vCenter, the CDP, and other related systems connected with 
the Nexus 1000V virtual switch.

  vCenter Plug-in: Provides the server administrators a view of the virtual network and 
a visibility into the networking aspects of the Cisco Nexus 1000V virtual switch by 
way of the    vSphere Web Client.

Advanced Edition
The  Advanced Edition includes all of the features of the Essentials Edition, with the fol-
lowing additions:

  Cisco TrustSec Support: Enables you to build secure networks by establishing clouds 
of trusted network devices. Each device in the cloud is authenticated by its neigh-
bors. Communication on the links between devices in the cloud is secured with a 
combination of encryption, message integrity checks, and data-path replay protec-
tion mechanisms.

  DHCP Snooping: This feature validates the DHCP messages received from an 
untrusted source, filtering out invalid response messages from DHCP servers. By 
default, all vEthernet ports are untrusted, and all Ethernet ports are trusted.
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  IP Source Guard: A per-interface traffic filter that permits IP traffic only when the IP 
address and MAC address of each packet matches the IP and MAC address bindings 
of dynamic or static IP source entries in the DHCP Snooping binding table.

  ARP Inspection: Prevents man-in-the-middle (MITM) attacks by validating that 
MAC addressing being advertised by a network host is not being forged.

  Virtual Security Gateway (VSG): A virtual firewall appliance that provides trusted 
access to virtual datacenter and    cloud environments.

Summary

In this chapter, we described the operation of the Cisco Nexus 1000V and highlighted the 
advantages it offers over the distributed virtual switch. While enhancements to the dis-
tributed virtual switch have reduced some of the use cases for the Nexus 1000V, it remains 
a popular alternative for environments with a more hands-on network team. This ends 
our high-level overview of the types of virtual switches and their features. In the next few 
chapters, we show you how to actually accomplish things with them as we work through 
design exercises.



Chapter 11

Lab Scenario

Key Concepts
  Network Design

  Host Design

  Data Traffic Design

Introduction
Now that you are properly armed and dangerous with a bevy of networking knowledge 
covering the physical and virtual ecosystem, it’s time to roll up your sleeves and get to 
building and configuring your own virtual network. As with most things in technology, try 
not to shoot from the hip—it’s always better to start with a design, including understand-
ing various architectural decisions. This chapter sets you up for success for a real world 
deployment, providing a number of design considerations that are relevant for a wide 
range of virtual networking deployments.

Building a Virtual Network
As you might    imagine from reading the various switching chapters, there are many differ-
ent paths along the journey to a viable and healthy virtual network. Where some folks will 
only need a standard virtual switch with a modest number of VMkernel ports, others will 
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need multiple sets of distributed virtual switches with a large quantity of port groups and 
VMkernel ports. Is either of these right or wrong?

The answer to that question can be found by examining the use cases for these virtual 
networks and the effects they have on the overall design. Consideration must be given to 
factors such as redundancy, load balancing, an appropriate MTU value, and so on to create 
a healthy virtual network.

Before moving on to Chapter 12, “Standard vSwitch Design,” let’s review some of the 
common architectural decisions you’ll need to tackle prior to building your shiny new vir-
tual network.

Architectural Decisions
Most of the questions we go through here sound obvious when they are said aloud. We 
definitely will not argue that point with you. However, it is our experience that, although 
obvious, the questions rarely get asked. Later, when the dust clears and the trouble tickets 
flow, what would have been thoughtful questions to ponder become groans of pain and 
fixes. Even if you plan to move on after building a virtual network, it’s never nice to leave a 
ticking time bomb for the next person who fills your seat. 

The major points of thought for a virtual network revolve around the network design, host 
design, and your expected data traffic. It’s often difficult to pin down specifics on data traf-
fic for a new environment, so you might have to resort to a best guess and tweak as your 
organization    grows.

Network Design
The network design     portion of your architecture focuses on the logical entities necessary 
to create a successful virtual network. We’re not so much concerned with network adapter 
speeds in this section, but rather want to lock down what is necessary to make the network 
operational.

Start by looking at the various   VMkernel services offered by a vSwitch and notate which 
ones you will require (or think you will require later on down the road):

  Management traffic: Because this is used to manage the hosts and provide vSphere 
HA heartbeats, you will always need a VMkernel port for management. This is a 
no-brainer.

  vMotion traffic: Except for in somewhat rare cases where the network will be used 
by nonclustered, standalone hosts, anticipate needing a VMkernel port for  vMotion. 
Yes, you could share this role with the management port, but using a modular 



137Architectural Decisions

design for your network is almost always preferred for ease of management and 
troubleshooting.

  Fault Tolerance (FT) logging: It’s rare to see Fault Tolerance used in the wild due to 
the large number of associated caveats and 1 vCPU limitation. Unless your team, a 
business unit, or your management requests it, it’s okay to skip creating this VMker-
nel port until a later date. Just remember that using FT, which allows you to create 
a “shadow” virtual machine (VM) on another vSphere host, requires a fair bit of 
compatibility between your vSphere hosts and sufficient bandwidth to keep the VMs 
synchronized between hosts.

  vSphere Replication traffic: Unless you plan to utilize vSphere Replication (VR), it’s 
perfectly fine to hold off creating this VMkernel port. If you do plan to use the prod-
uct later, it is a good time to evaluate your network configuration in multiple points 
(the wide area network [WAN] bandwidth, the quantity of workloads to replicate, 
and so on) and also design your VR ports.

  iSCSI traffic: Required if you plan to connect iSCSI storage to your vSphere hosts. 
If not, hold off making a VMkernel port for iSCSI until required. This is covered 
in Chapter 14, “iSCSI General Use Cases,” and Chapter 15, “iSCSI Design and 
Configuration.”

  NFS traffic: Required if you plan to connect NFS storage to your vSphere hosts. 
If not, hold off making a VMkernel port for NFS until required. This will be cov-
ered in Chapter 16, “NFS General Use Cases,” and Chapter 17, “NFS Design and 
Configuration.”

NOTE

The Management VMkernel port is already created during the ESXi installation process. 
That doesn’t mean that you won’t want to document how it is configured and have an 
understanding of the traffic flows       to get to and from that VMkernel port.

Host Design
This portion       of the architecture looks at how the network adapters are configured and 
consumed by the virtual network. This has become less of an exercise with the introduc-
tion of 10 Gb network adapters, which are typically fewer in number on a host, than it was 
during the days of using many 1 Gb network adapters (or network cards that had as many 
as four 1 Gb interfaces).
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When looking at the network adapters and physical host design, there are a few critical 
decisions to make:

  Redundancy: Whenever possible, you’ll want to make sure your virtual networks 
span redundant physical network adapters. This avoids a single point of failure 
scenario in which one single network adapter failure could interrupt the flow of an 
entire traffic type. It’s not enough to use multiple physical ports on the same network 
adapter because the network adapter then becomes the single point of failure. Why 
do we say “whenever possible” and not “always?” Many blade server configurations 
can only accommodate a single network adapter. We don’t want to stop you from 
considering these platforms, but want to highlight that you’re trading a single point 
of failure for the ease of management and density advantages.

  Supported Features: Not all network adapters are created equal. Some support 
advanced features, such as TCP Segmentation Offload (often just called TSO) or 
various MTU values. Others do not. If you have a traffic type that requires specific 
functionality, make sure your underlying physical network adapter can support it.

  Speeds: Oftentimes a physical server comes with a network adapter built in. This 
is called the LAN On Motherboard (LOM)  . The LOMs are often only capable of 
providing 1 Gb speeds. If you are also installing cards capable of providing 10 Gb 
speeds, you won’t want to mix the two speeds for a single traffic type. You could, 
however, use one speed for a specific traffic—such as Management—and the other 
speed for other traffic—such as VM traffic or vMotion.

REAL WORLD

Just about all 10-Gb network adapter manufacturers offer a model with a two-port configu-
ration. We suggest you pick up at least two of these cards for redundancy, even if you 
only plan to use one port on each card—just make sure they are on the official VMware 
Hardware Compatibility List (HCL). Remember that your virtual network can only use 
the physical uplinks to get traffic in and out of the host. Don’t skimp on such an important 
component unless you enjoy being called at night with an outage. Also, remember that 
vSphere HA might trigger a VM restart if it feels that the host has been isolated from the 
cluster, depending       on your HA settings.

Data Traffic Design for Virtual Machines
The final component        to consider is the VM networks, the real data traffic to and from 
VMs. This, you’ll recall, is the important bit—it’s why you’re building the network in the 
first place. Think hard on how you want to configure and label your VM networks. These 
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are the day-to-day networks that you or your team will be working with, and we’ve seen a 
lot of environments that use a very poor or confusing  naming standard.

Some points to consider:

  VLAN tagging: In the vast majority of use cases, you will want to specifically define 
a VLAN ID for each VM port group. This is referred to as Virtual Switch Tag-
ging (VST)   . It also gives you the operational freedom of using trunk ports on your 
upstream physical switch and clearly shows anyone looking at the vSphere Client 
what VLAN the VMs are communicating on.

  MTU: The default  value of 1500 bytes works fine for most folks. It’s rare to change 
this for VM traffic, but a bit more common to increase the value if you plan to use an 
overlay protocol such as virtual extensible LAN (VXLAN) or configure IP storage 
such as iSCSI or NFS. You’ll recall from Chapter 4, “Advanced Layer 2,” that frames 
larger than 1500 bytes are called Jumbo Frames. If you aren’t sure if you need Jumbo 
Frames, leave this setting alone. Every piece of physical networking gear which 
passes your nonstandard-sized frames would also have to be set to the same nonstan-
dard MTU size setting.

  Naming: One of the most overlooked, but probably one of the most important con-
figuration items, is the naming scheme. Calling a VM network “virtual machine 
network 1” works when you have a tiny environment, but will become incredibly 
confusing down the road. The name should convey meaning in a compact format. 
Great names often have the subnet value in them, a designation of the workload type, 
and perhaps even the VLAN ID. For example, the name “SQL_192.168.50.X_V170” 
could communicate that the VM network uses the subnet 192.168.50.0/24 on VLAN 
170 for SQL workloads.

REAL WORLD

Try to avoid using names that include spaces. Instead, use underscores or dashes, as spaces 
often make it more difficult when scripting with PowerShell or other scripting         languages.

Lab Scenario
Rather than    just talk about setting up standard and distributed vSwitches, along with the 
use of iSCSI and NFS storage VMkernel ports, we use our company’s engineering demon-
stration lab to walk you through virtual switch implementation. The equipment we use is 
as follows:





141Lab Scenario

NOTE

Our demo lab is really something, and we love bragging about it. You can see all the toys we 
get to play with at www.thinkahead.com/ahead-aviation/. 

That said, you don’t need any of the equipment we’ve listed here to be successful with    learn-
ing virtual switches, or even to try out creating a virtual network on your own. Much of what 
we cover will be done in a vendor-agnostic manner focusing on generic network adapters. 
You could easily substitute in hardware from HP, Dell, IBM, SuperMicro, or even use VM-
ware Workstation at home to review much of what we cover here. Additionally, if you do 
not have blade servers or 10 Gb Ethernet adapters, we cover rack mount servers with both 
10 Gb and 1 Gb Ethernet in Chapter 18, “Additional vSwitch Design Scenarios,” and Chap-
ter 19, “Multi-NIC vMotion Architecture.”

It is, however, important to emphasize that the equipment we’re using is something you 
might find out in a real world datacenter, so we figured you might want to know what we 
were using in the screenshots to follow.

We’ve also selected the following networks for each type of traffic:

  Management traffic: 10.20.0.0 /16, routable, with a gateway of 10.20.0.1, 
on VLAN 20

  vMotion traffic: 192.168.205.0 /24, non-routable, on VLAN 205

  FT logging: 192.168.210.0 /24, non-routable, on VLAN 210

  VR traffic: Not used

  iSCSI traffic: 192.168.215.0 /24, non-routable, on VLAN 215

  NFS traffic: 192.168.220.0 /24, non-routable, on VLAN 220

NOTE

The items listed are similar to a list you might see while working on a design. See the 
term “non-routable” used after many of the networks? This indicates that there will be no 
gateway for the traffic to use to crossover from one network to another. It also means that 
we’ve avoided creating a VLAN interface for inter-VLAN routing.

It is important that all the VLANs exist on the upstream physical network, as otherwise 
the vSphere host will not be able to communicate using the selected VLANs. In our case, 
the VLANs must be defined within the Cisco UCS domain    itself and in the upstream 
Nexus 7010. Figure 11.2 shows the VLANs defined in Cisco UCS Manager.
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Figure 11.2 The VLANs configured on the upstream Cisco UCS domain 

To tie things together, Figure 11.3 shows a basic view of the lab from the perspective of 
the vSphere Web Client.

The vCenter Server, named Initech Corp, contains a single datacenter in Chicago. This 
datacenter contains a cluster named Production, which is our focus for the remaining 
chapters in this section. Two blades have been added to the cluster, named esx1 and esx2, 
which are identical for our intents and purposes. A single VM exists named vCSA55 which 
runs the vCenter Server Appliance version 5.5. Nothing else has been configured—we’re 
running off the stock default settings for the initial standard vSwitch that the hypervisor 
automatically creates. Welcome to our greenfield deployment, where a near infinite num-
ber of possibilities await.

You might also notice that the value for “NICs” is shown as 2. That’s right, we move 
through the creation of distributed and virtual switching with just a pair of 10 Gb Ethernet 
network adapters, and discuss many of the caveats around this tactic, in Chapter 12 and 
Chapter 13, “Distributed vSwitch Design,” on standard    and distributed vSwitches.
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Figure 11.3 High-level perspective from the vSphere Web Client 

Summary

Behind every great implementation is a great design. In this chapter, we looked over some 
of the decisions you will face when creating your virtual network design. We also locked 
down many of the variables that are used in the upcoming chapters on standard and dis-
tributed vSwitches in our engineering lab.
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Chapter 12

Standard vSwitch Design

Key Concepts
  Defining a Use Case

  Naming Conventions

  Adapter Failover Order

  VMkernel Ports

Introduction
Fasten your seatbelts and please keep your arms and legs inside the car—we’re ready to 
begin building out a network for your virtual infrastructure. If you need a moment to run 
around cheering wildly, we understand. 

Throughout this chapter, we focus on many of the various decision points that will arise 
during an actual implementation of a standard vSwitch in your virtual environment. Some 
of the decision points will not apply to your environment, and you are welcome to skip 
past portions that do not apply. An example would be the creation of Fault Tolerance (FT) 
VMkernel ports if you do not need to use FT for your workloads.

For each decision, we spend some time talking about the reasons behind different decision 
paths. The goal is to arm you with the information necessary to make this chapter work 
for your specific environment, rather than just showing you the mundane steps to build a 
cookie-cutter switch configuration.
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Standard vSwitch Design
A number   of factors might influence the decision to use the standard vSwitch:

  Licensing: You might not have access to vSphere Enterprise Plus licensing, which is 
required to create a distributed vSwitch. Enterprise Plus is considerably more costly 
to acquire (and perhaps even to deploy due to the greater number of features to 
design around), and you might feel that the funds could be better spent elsewhere in 
your environment. 

  Simple Requirements: If you only have a handful of vSphere hosts with very simple 
design requirements, it might be straightforward to use a standard vSwitch. Many of 
the advanced features found in a distributed vSwitch might not apply to your needs. 
This could also complement the licensing point made earlier. 

  Availability and Complexity: The control plane of a standard vSwitch is bound to the 
vSphere host itself, not vCenter, making a standard vSwitch easier to troubleshoot 
and protecting it from vCenter outages. Although many advances in distributed 
vSwitch design have reduced the headaches associated with vCenter Server outages, 
there are still some advantages to having an “out of band” vSwitch for your manage-
ment cluster or components that run critical back-end infrastructure workloads. 

Remember that there is no universal right answer on   vSwitch strategy as long as your 
requirements are met and the desired functionality is achieved.

Sample Use Case
In order to     make this more entertaining, we provide a sample use case and walk through 
the configuration as the chapter progresses.

Initech Corp has a pair of vSphere hosts running ESXi 5.5 in their production data cen-
ter located in Chicago. As the VMware Administrator for the corporation, you have been 
tasked with the creation and configuration of networking for your company’s virtual 
infrastructure. Due to budget constraints, the company has purchased vSphere Enterprise 
licensing, which prevents you from building a virtual network on the distributed vSwitch 
or any other third party switches. You will need to use standard vSwitches. Each vSphere 
host has a pair of 10 Gb Ethernet network adapters connected to a redundant upstream 
physical network. 

The virtual network should be capable of handling traffic for Management, vMotion, FT, 
and NFS storage traffic. It also needs to be able to pass along traffic for three different 
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types of workloads: Web Servers on VLAN 100, Application Servers on VLAN 110, and 
Database Servers on    VLAN 120.

Naming Conventions
After you    have determined what networks you will need, your next step is to identify any 
relevant naming conventions currently in use in your organization, or if they are nonexis-
tent, create your own. We’ll assume that you don’t already have one in place because that 
is more of a challenge. 

We already know that the data center is located in Chicago, and that all hosts live in the 
Production cluster. Let’s take a look at one of our vSphere host’s network configuration, 
shown in Figure 12.1.

Figure 12.1 The initial vSwitch configuration of an ESXi host 

Hey—someone already made a standard vSwitch. Don’t worry, this is entirely normal and 
is part of the ESXi installation process. After all, the host needs some way to communicate 
with the outside world when it has been installed, right?

vSwitch0  is a special standard vSwitch that is autogenerated at the time of install. It will 
always contain two things:

  A Management Network with a VMkernel named vmk0 for your Management traffic

  A port group called “VM Network” for virtual machine networking traffic
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You are not able to easily rename vSwitch0 to anything more descriptive unless you like 
digging around in the command line or through a script. But we think the default name 
vSwitch0 is actually a good thing—if you leave the vSwitch0 name as default, you are 
assured that every single host you create has a vSwitch0, which helps make a standardized 
environment.

NOTE

You’re certainly welcome to change the name of vSwitch0, or even create a new vSwitch 
with a descriptive name and migrate the VMkernel port over, but that    seems like a fair bit of 
extra work for no real gain.

Let’s come up with some names for all of our VMkernel ports:

  Management: “Management Network” sounds fine.

  vMotion: The name “vMotion” is simple and effective.

  Fault Tolerance Logging: Either “FT” or “Fault Tolerance” work well, but I lean 
toward “Fault Tolerance” since not everyone can immediately recognize the acro-
nym “FT.”

  NFS Storage: You could use simply “NFS Storage” to avoid any confusion, as this 
easily proclaims both the protocol (NFS) and the need to pass along storage traffic.

NOTE

You could also add networking and VLAN information to your VMkernel port names, if 
desired, an example being “vMotion_192.168.205.x_V205.”

Let’s also come up with   names for the VM traffic port groups. Great names include some 
sort of detail on the type of workload, the network for that workload, and the VLAN ID. 
Unfortunately, right now we only know the type of workload (Web, Application, and 
Database servers) and the VLAN ID—we don’t know the networks.

After a quick chat with our network engineer friend, we find out that the VLAN networks 
are as follows:

  VLAN 100: 192.168.100.0 /24

  VLAN 110: 192.168.110.0 /24

  VLAN 120: 192.168.120.0 /24
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REAL WORLD

As    with the VMkernel VLANs, you need to ensure that the VM VLANs exist on the 
upstream network device. Otherwise, the VMs will be unable to communicate outside of 
the vSphere host. Most of the issues we’ve seen with VM communication tend to relate to a 
VLAN configuration missing somewhere in the upstream physical network.

Now we have all three pieces of the puzzle, so let’s come up with some descriptive names:

  Web Servers on VLAN 100: Web_192.168.100.x_V100

  Application Servers on VLAN 110: App_192.168.110.x_V110

  Database Servers on VLAN 120: DB_192.168.120.x_V120

See how easily you can read those port group names and know exactly what they do? It 
makes life simple and efficient for any human operator, like you, that has to deal with the 
virtual network. As mentioned earlier, we have avoided spaces in the port group names to 
simplify scripting.

If you have more workloads in your environment, keep going through the exercise and 
identifying all the names you’ll need before moving on. For example, you might need to 
use iSCSI traffic, vSphere Replication, or have ten different types of Database Servers to 
support, each with their own VLAN.

REAL WORLD

Why not just create a bunch of port groups called Port Group 1, Port Group 2, and so 
on? These names make it annoying and difficult to figure out what these port groups are 
used for. We’ve seen many environments with no understandable naming convention, 
requiring tribal knowledge  to decipher the names. Tribal knowledge is any knowledge that 
only certain people know and is not documented anywhere. When someone that had tribal 
knowledge leaves your company, the team suffers as they try to piece together the missing 
information. Squash tribal knowledge by using highly descriptive names for your network 
objects. And document them    for good measure.

Ensuring Quality of Service
The standard    vSwitch has few methods of ensuring quality of service for the traffic that 
is being passed along. You’re mainly limited to traffic shaping of ingress traffic, which is 
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mainly traffic generated by VMs or VMkernel ports on the host to external entities—this 
is sometimes referred to as “outbound” traffic shaping.

You miss out on a fair number of really handy tools, such as Network IO Control (NIOC), 
egress traffic shaping, and the “route based on physical NIC load” policy (often referred to 
as load-based teaming). 

There are, however, a few ways to overcome these limitations:

  Additional network adapters: One of the oldest methods of ensuring QoS for traffic 
is to increase your uplink count by way of multiple network adapters. For example, 
you could designate a pair of ports specifically for your IP Storage traffic. Some 
Converged Network Adapters (CNAs) also support the ability to logically carve up a 
physical network card into multiple virtual network cards, making it appear as if the 
vSphere host has many different network adapters. In this case, you are placing the 
responsibility of enforcing traffic fairness on the CNA.

  Quality of Service (QoS) and Class of Service (CoS): Although the standard vSwitch 
does not allow  you to set the 802.1p priority tag, some upstream physical network 
devices will interrogate and tag traffic for you. You would need to configure the 
upstream network device to correctly understand and prioritize your traffic when it 
receives traffic from the vSphere host.

  Combination approach: Some hardware systems allow you to both logically split 
up your physical network adapter and enforce QoS or CoS tagging on the various 
virtual network adapters. This would allow you to squeeze a fair bit of value out of 
your investment, as these types of solutions typically kick in only when congestion is 
present. If your upstream device supports this configuration, you are often allowed to 
weigh each traffic type against others to determine which one holds more priority, or 
even set hard limits as to how much traffic can be sent during a peak time.

NOTE

The increased availability of 10 Gb Ethernet has placed much of the need for QoS on 
hold—for now. We rarely see a 10 Gb link reach saturation on a vSphere host for any signif-
icant amount of time outside of an intentionally busy period—such as that of a vMotion 
event. However, as systems continue to crave more and more bandwidth, relying on 10 Gb 
to soak up any traffic congestion without any thought into QoS    will eventually stop working 
effectively. 
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Network Adapters
At this point,    you are ready to begin configuring the network. Notice how much empha-
sis was put on proper naming and really thinking about all the required port groups? It’s 
essential to put in the planning time prior to implementation, otherwise you have either a 
sloppy environment that will require re-work to fix, or a suboptimal implementation that 
will haunt you further down the road.

Let’s focus first on the vSphere host named esx2. To begin with, we need to take a good, 
hard look at our vSwitch0 to see if it has all the appropriate network adapters added to it. 
These will act as uplinks for the vSphere host. We’ll select vSwitch0 from host esx2 and 
choose the “Manage the physical network adapters” option. Figure 12.2 shows the results. 

Figure 12.2 Network adapters used by vSwitch0 

Whoops, it looks like only a single uplink, vmnic0, was added. This is the standard behav-
ior for a fresh installation—vSwitch0  grabs the first network adapter, vmnic0, by default. If 
you recall from earlier, each host has two network adapters available, and we need to make 
sure that both of them are added to vSwitch0 to ensure the switch is redundant. 
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REAL WORLD

With very, very few exceptions, every vSwitch you build should have at least two physical 
adapters to act as uplinks. Any time you use a single adapter, you are creating a single point 
of failure, creating havoc if that network adapter were to fail.

We’ll go ahead and click the green plus sign button to add the other network adapter into 
vSwitch0, as indicated in Figure 12.3.

Figure 12.3 The second network adapter is now part of vSwitch0 

NOTE

If your environment has more than two network adapters, it might be worth taking a glance 
at Chapter 18, “Additional vSwitch Design Scenarios,” where we talk about systems that 
have four or more network adapters. We ultimately can’t offer a complete walkthrough for 
every environment, but you should be able to roll with the punches and adapt this guide to 
your specific needs.
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Virtual Machine Traffic
Now we have a fully redundant vSwitch0 that can use either vmnic0 or vmnic1. Let’s build 
some port groups for our VM traffic.

Virtual Machine Port Groups
Our use case    requires networking for three unique VM workloads: one for Web Servers, 
another for Application Servers, and a third for the Database Servers. Because each one of 
these workloads uses a different VLAN ID, we need three unique port groups. You might 
wonder, however, why the port groups must be unique?

Each port group will carry one single VLAN ID because our guest workloads, the servers 
themselves, are not configured to handle VLAN tags. We need to configure the vSwitch 
to handle this on the workload’s behalf, which goes back to the Virtual Switch Tagging 
(VST) methodology outlined in Chapter 7, “How Virtual Switching Differs from Physical 
Switching.” If our workloads could handle VLAN tags, another option would be to use a 
single port group that carried all three VLAN IDs as a trunk, which would be the Virtual 
Guest Tagging (VGT) configuration.

Let’s begin by creating the port group for the Web Servers. To start, navigate to the Host 
and Clusters view in the vSphere Web Client, select host esx2, click on the Manage tab, 
Networking sub-tab, and then select the virtual switch named vSwitch0. Click the “Add 
Host Networking” link on vSwitch0, which looks like a little globe with a plus sign on it. 
The results are shown in Figure 12.4.

Figure 12.4 Adding a new network to vSwitch0 
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Because we want to make a new port group for VMs, we want to select the “Virtual 
Machine Port Group for a Standard Switch” radio button.

The next prompt asks what the target device is. You can leave the default selection of 
“Select an existing standard switch” highlighted with vSwitch0, as shown in Figure 12.5. 
If you chose to rename vSwitch0, or created a new vSwitch, you would want to select that 
vSwitch instead of vSwitch0.

Figure 12.5 Selecting vSwitch0 as the target device 

You are now ready to enter the important details for your VM port group. It really boils 
down to nothing more than a network label (the name) and VLAN ID. Since we’re start-
ing with the Web Server port group, the values would be:

  Network label: Web_192.168.100.x_V100

  VLAN ID: 100

I’ve entered the values shown in Figure 12.6. Note that when you click on the VLAN 
ID box, a few premade selections will appear for None (0) and All (4095). You can safely 
ignore these values and enter your own value—in this case, it is 100.

The last step is to review the requested configuration and click Finish. Congratulations, 
you have created a VM port group, as shown in Figure 12.7!
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Figure 12.6 Entering the network label and VLAN ID for the Web Server port group 

Figure 12.7 The Web Server port group is now part of vSwitch0 
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Note the gold line leading from the Web Server port group to the two physical adapters. 
This indicates that the port group is able to use either network adapter for passing along 
traffic. 

You’re not done yet—there are still two more port groups to create. We’ve gone ahead 
and created them on vSwitch0 and show the final configuration in Figure 12.8. You’ll need 
to repeat the process in this section for the other two VM port groups.

Figure 12.8 All the VM port groups have been created on vSwitch0 

NOTE

Delete the “VM Network” port group if you’re not going to rename and use it for some-
thing else. No sense having a name that doesn’t match the naming convention.

Failover Order
By default,    any new port group created will use the policies inherited by the vSwitch itself. 
For vSwitch0, the policy is to actively use all of the network adapters. We’re going to leave 
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this setting as-is for the VM port groups and let the VMs use either of the two available 
network adapters. In fact, Figure 12.9 provides a view of the default teaming and failover 
policies for vSwitch0. As you can see, both vmnic0 and vmnic1 are listed as Active adapters 
for vSwitch0, meaning they will both be used.

Figure 12.9 Default teaming and failover policies for vSwitch0 

Why? With few exceptions, VMs are some of the least bandwidth hogging entities on a 
network. And, since there is no way to easily load balance them across the two network 
adapters, having two active uplinks with the default “route based on originating virtual 
port” gives them a solid chance at being spread out evenly across the uplinks. 

REAL WORLD

There are some situations where you really should define specific network adapters as Active 
and others as Standby for VM traffic. If you have a specific use case, such as a workload that 
needs to use an uplink that goes to a specific network (such as a DMZ uplink), make sure to 
define a failover policy for that port group. It’s just that we rarely find this the case specifi-
cally for VM throughput—they often consume a very small percentage (<10%) of the total 
bandwidth available to them.

We’ll come back to this in greater detail for the VMkernel ports, since they will be using 
specific failover orders to help alleviate specific traffic congestion    scenarios.
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VMkernel Ports
Now comes     the slightly trickier part of creating a standard vSwitch for the Initech Corp 
environment: configuring VMkernel ports. With a standard vSwitch, creating a new 
VMkernel port automatically generates a new port group for the VMkernel port to live 
inside. VMs cannot use this port group. You can only have one VMkernel port residing 
inside of each port group.

We’ll tackle each of the VMkernel ports needed for this environment in the next few sec-
tions. As a reminder from Chapter 11, “Lab Scenario,” we’re going to use the following 
VLAN IDs for the VMkernel networks:

  Management traffic: 10.20.0.0 /16, routable, with a gateway of 10.20.0.1, on 
VLAN 20

  vMotion traffic: 192.168.205.0 /24, non-routable, on VLAN 205

  FT logging: 192.168.210.0 /24, non-routable, on VLAN 210

  NFS traffic: 192.168.220.0/24, non-routable, on VLAN 220

Management
The Management VMkernel port is      commonly used as the means to manage a host. If 
you were to ping a host by its Fully Qualified Domain Name (FQDN), the IP address you 
received in response should be the one mapped to the Management VMkernel port. It’s 
also what we commonly use when performing work via Secure Shell (SSH).

NOTE

Enabling “Management traffic” on a VMkernel port, such as what is shown in Figures 
12.10 and 12.14, tell vSphere High Availability (HA) which VMkernel port to use for heart-
beats. It’s not actually required for managing the host. Still, it’s often best to leave it on for 
whichever VMkernel port you wish to use to manage the host, which is vmk0 by default.

If you look carefully at vSwitch0, you’ll notice that the Management Network port group 
is in fact just a container that houses a single VMkernel port called vmk0 (see Figure 
12.10). This is used for your host management and is responsible for being the default 
gateway for any unknown VMkernel traffic that doesn’t match a network mapped to any 
other VMkernel port. Don’t let that confuse you—the   default gateway is not used for VM 
traffic in any way. VMs will have a default gateway configured within their operating sys-
tem. The VMkernel default gateway is there only for other VMkernel ports.
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Figure 12.10 vmk0 is the default VMkernel port used for host management 

You cannot put VMs inside of this port group because it is made specifically for a VMker-
nel port. This helps avoid any confusion when an administrator, for example, you, is look-
ing for a network to place a VM on.

NOTE

vmk0  is a special VMkernel port generated by the hypervisor at the time of installation. 
Unlike other VMkernel ports, vmk0 uses the first network adapter’s hardware MAC 
address—also known as the burned-in address (BIA)—as its own MAC address. We find that 
it’s often best to leave vmk0 as the Management VMkernel port and not try to fiddle with it 
to become more than that, as bad things can (and do) happen.

It seems like most of your work is done for the Management VMkernel port, right? Obvi-
ously this port is operational, because otherwise the host would not be able to connect to 
the vCenter Server. However, it’s important to review the failover order for every VMker-
nel port. If you  edit the settings of the Management Network port group (which contains 
vmk0), you’ll see a screen like that shown in Figure 12.11.
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Figure 12.11 The failover policy settings for the Management Network 

Hopefully, you’ll see the same issue here that we see—vmnic0 is set to Active, and vmnic1 
is set to Unused. This means that a failure of vmnic0 will bring down the vmk0 port, even 
if vmnic1 is still operational. We definitely don’t want that; so let’s fix it by modifying the 
failover order for the port group.

In order to balance out the VMkernel ports over a variety of different network adapters, 
we’re going to purposely mark specific network adapters as Active and others as Standby. 
This is to help minimize traffic on any one specific network adapter. It might not make 
total sense now, but we will review the failover settings with each VMkernel port on a one-
by-one basis here, and then go over the entire logical configuration in the final segment 
of this chapter. When you see all of their failover settings together, it should make more 
sense.

For the Management VMkernel port, vmk0, we’re going to set vmnic0 as Active and 
vmnic1 as Standby. Select vmnic1 and click the blue up arrow to change vmnic1 from 
Unused to Standby, as shown in Figure 12.12.

That’s much better. Now, if vmnic0 fails for some reason, vmk0 on the Management Net-
work will be moved over to vmnic1 and the host will remain accessible on the network. 
When vmnic0 is repaired, vmk0 will move back over to vmnic0 due to the fact that the 
Failback option is set to Yes. We have introduced redundancy to this network, which is 
always a good thing to help avoid frantic calls in the middle of the night.
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Figure 12.12 Marking vmnic1 as a Standby adapter for the Management Network 

REAL WORLD

You might also choose to set failback to “No” for the Management VMkernel port to reduce 
the risk of a “Lights On” switching event during physical network maintenance. This occurs 
when the upstream switch is restarted, and then begins initiating the startup process and 
powers on the physical network port. vSphere might incorrectly believe that the port is up 
and available while the upstream switch is still going through the boot process and try to 
erroneously use the port for Management traffic.

Note that we’re not talking about a blocked port via Spanning Tree Protocol (STP). Per the 
Portfast recommended practice mentioned in Chapter 4, “Advanced Layer 2,” you should 
have already configured all your upstream switch ports connected to the vSphere hosts to 
immediately transition to a forwarding      state.

vMotion
Whenever a VM      is whisked away from one vSphere host to another, one or more 
 VMkernel ports with the vMotion service tag will be used to transmit the VM’s running 
state between them. As you might imagine, the amount of traffic traversing the vMotion 
VMkernel port is somewhat bursty. When no vMotions are occurring, the traffic being 
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sent and received is zero. When vMotions are occurring, there is a whole bunch of traffic 
being sent. This makes vMotion a somewhat difficult traffic to plan for in new environ-
ments where you’re not sure just how much workload migration will be taking place.

NOTE

Traditionally, one VMkernel port was created on each host for vMotion traffic, although the 
concept of multiple-NIC vMotion was introduced with vSphere 5.0. In this chapter, Initech 
Corp only has two network adapters, and as such, we don’t want to saturate both of them 
with vMotion traffic simultaneously. However, we do cover multiple-NIC vMotion in detail 
in Chapter 19, “Multi-NIC vMotion Architecture.”

One way to help mitigate the bursty nature of vMotion is to use a failover order to place 
it on a specific network adapter. We’re actually going to ensure that vMotion is Active 
on vmnic1 and Standby on vmnic0, which is the opposite order we used with the Man-
agement traffic in the previous section. This keeps the two from fighting on a standard 
vSwitch unless we’re in a scenario where one of the two network adapters has failed.

To begin with, let’s create the VMkernel port for vMotion by selecting the Add Network-
ing function on vSwitch0—the same function we used to add a VM port group earlier. 
This time, however, choose the “VMkernel Network Adapter” as      your connection type as 
shown in Figure 12.13.

Figure 12.13 Adding a new VMkernel port to vSwitch0 for vMotion traffic 
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Ensure that the target device is vSwitch0 and continue forward. You’ll be greeted with a 
screen asking for a variety of port properties. Let’s review the properties:

  Network label: If you look back at the “Naming Conventions” section, you’ll see we 
decided to call this port group “vMotion.”

  VLAN ID: We’ve already selected VLAN 205 for vMotion, so enter 205 here.

  IP settings: To keep things simple, we’re going to select IPv4, although if you are 
feeling adventurous in your environment, you can feel free to opt for IPv6.

  TCP/IP stack: Use the “Default” stack, as we have no need to use any custom gate-
ways for traffic. (Our vMotion isn’t even routable on our network.)

  Enabled services: Select the “vMotion traffic” checkbox to allow the hypervisor to 
use this VMkernel port for vMotion. If you forget to check this box, the host will not 
be marked as a valid source to send or receive VMs within the vSphere Cluster.

You can also review the settings in Figure 12.14.

Figure 12.14 Port properties for the vMotion VMkernel port 

In the next screen, we need to enter an IP address for this VMkernel port. That’s different 
from what you might remember in the VM port group creation process. This is because a 
VM port group is just a housing for VMs, each of which have their own IP address, while a 
VMkernel port is used by the host to communicate on the network for its services.
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In the case of Initech Corp, we’ve already been assigned a network subnet of 
192.168.205.0/24 to use for vMotion traffic. To make life easier, we’ll pick 192.168.205.2 
since the host we’re configuring is called esx2. The CIDR notation mask of /24 won’t 
work for the vSphere Web Client—we’ll have to provide a full dotted decimal mask. A /24 
translates to 255.255.255.0. Thus, your screen should look something like that shown in 
Figure 12.15.

Figure 12.15 IPv4 settings for the vMotion VMkernel port 

Review your settings and click Finish to complete the vMotion VMkernel port creation. If 
all was successful, you should see that your vSwitch0 now has two VMkernel ports similar 
to that shown in Figure 12.16.

However, notice the failover policy for the new vMotion network uses both vmnic0 and 
vmnic1 as Active adapters? We need to fix that and mark vmnic0 as a Standby adapter. 
Repeat the steps you went through with the Management Network, with two differences: 
Enable the Override checkbox for Failover order, and make sure vmnic0 is Standby and 
vmnic1 is Active.

Figure 12.17 shows that vmnic0 is a standby NIC for our vMotion VMkernel port.

We’ve now made sure that vMotion will primarily use the vmnic1 adapter, and if it fails, 
will switch over to the vmnic0 adapter. Again, introducing redundancy is a great thing that 
should be done whenever possible.
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Figure 12.16 A list of VMkernel ports in use on vSwitch0 

Figure 12.17 Marking vmnic0 as the Standby adapter for vMotion 



166 CHAPTER 12  Standard vSwitch Design

Fault Tolerance
FT offers      VMware Administrators the ability to protect a VM by creating a secondary 
shadow VM that is kept in lockstep on a different vSphere host. If the primary VM is lost 
due to a host failure, the secondary shadow VM is promoted to primary in a very brief 
period of time. The lockstep process, which ensures that the secondary VM is kept in sync 
with the primary VM, is what consumes bandwidth on the FT logging network.

Much like vMotion, it can be difficult to predict how much bandwidth will be needed for 
FT and where it will be needed. While vMotion is bursty in nature, sending traffic from 
one host to another over a short period of time, FT is typically of a longer duration for 
very specific VMs. When an FT relationship is created, the only reason that the FT traf-
fic would cease would be because of a host failure or because the primary or secondary 
VM were moved. For these reasons, we often like to keep FT and vMotion on the same 
network adapter. So, for the FT VMkernel port, we will once again be using vmnic1 as the 
Active adapter and vmnic0 will be marked as the Standby adapter.

Referring to the “VMkernel Ports” section of this chapter, we know that the FT logging 
network is using:

  Network: 192.168.210.0/24

  VLAN ID: 210

Use this information to create a new VMkernel port on vSwitch0. There will be a few 
changes, such as the port properties and IPv4 settings.

Figure 12.18 shows a review of the port properties for the FT VMkernel port.

Figure 12.18 Port properties for the FT VMkernel port 
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The IPv4 Settings for the FT VMkernel port are shown in Figure 12.19.

Figure 12.19 IPv4 settings for the FT VMkernel port 

Don’t forget to change the failover order for the FT network, making vmnic1 the Active 
adapter and vmnic0 a Standby adapter, by selecting vmnic0 and clicking the down arrow 
until it sits in the Standby adapters section. Figure 12.20 shows the end results.

You’re at the home stretch—just one more VMkernel port to create to handle NFS 
 Storage traffic.

Figure 12.20 Marking vmnic0 as the Standby adapter for FT  
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NFS Storage
The final requirement      is to connect NFS Storage to the vSphere hosts. To do this, we 
want to ensure that there is a VMkernel port created that corresponds to the same subnet 
that the NFS storage array lives on. If we don’t, all traffic going back and forth from the 
NFS storage array will be sent out of the default gateway of vmk0, which is not optimal 
and typically not even supported.

REAL WORLD

Sending traffic to the NFS or iSCSI storage array over the default gateway is called 
Routed NFS  or Routed iSCSI . Support for this is shaky at best, and requires a very deep 
understanding of the upstream physical network topology, QoS settings, and some sort of 
priority flow control. Unless you have a team of Network Jedi Masters on staff who can 
guarantee low latency and low packet loss with routed NFS/iSCSI traffic, it’s highly recom-
mended to do Switched NFS or Switched iSCSI, which takes place entirely at Layer 2. This 
requires having a VMkernel port on the same subnet as your NFS or iSCSI storage target. 
For general use cases, see Chapter 14, “iSCSI General Use Cases,” or Chapter 16, “NFS 
General Use Cases,” for more details.

It’s essential to ensure a quality connection to any sort of storage array. VMs are highly 
sensitive to disk-related latency and tolerate loss rather poorly. This is mostly due to the 
fact that VMs are being tricked into thinking they are sending SCSI commands to a local 
device, when in fact those commands are being packaged up into packets and shot off into 
the network to a remote array. It is your job as the VMware Administrator to give those 
packets the best possible chance to reach their destination, and return, in as little time as 
possible.

Because of this fact, we’re going to configure the failover order so that vmnic0 is Active 
and vmnic1 is Standby. In essence, we’re somewhat dedicating vmnic0 to the IP Storage 
traffic, with NFS being the protocol of choice for Initech Corp. While it’s true that the 
Management Network also uses vmnic0, the Management Network consumes a very tiny 
amount of bandwidth (except for when someone is importing a VM into that host, which 
is extremely rare). Additionally, any VM protected by FT will send write IO to the storage 
array and to the secondary VM. Having unique network adapters for both IP Storage and 
FT prevents the write traffic from competing with itself.

Let’s review the network settings for the NFS Storage network:

  Network: 192.168.220.0/24

  VLAN ID: 220
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Creating the VMkernel port is nearly an identical process to the vMotion and FT process 
you followed previously, except there      is no service to enable for NFS.

Figure 12.21 shows a review of the port properties for the NFS Storage VMkernel port.

Figure 12.21 Port properties for the FT VMkernel port 

The IPv4 Settings for the NFS Storage VMkernel port are shown in Figure 12.22.

Figure 12.22 IPv4 settings for the FT VMkernel port 
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NOTE

Does it seem weird that there is no service checkbox for NFS Storage? It might, but rest 
assured, just having a VMkernel port on the same subnet as your NFS storage array will 
ensure that the hypervisor uses this NFS Storage VMkernel port to communicate. But 
don’t take my word for it—SSH to your vSphere host and run “esxcfg-route -l” to view the 
routing table and see a list of known subnets and their related VMkernel ports.

VMkernel Failover Overview
Now that all      of the VMkernel ports are created, let’s take a look at the end results. You 
should see a list of four VMkernel ports on vSwitch0: Management Network (vmk0), 
vMotion (vmk1), FT (vmk2), and NFS Storage (vmk3) (see Figure 12.23).

Figure 12.23 The four VMkernel ports in use on vSwitch0 
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Looking at the failover order for the various VMkernel ports, a pattern emerges. If you 
look carefully at the active and standby use of each network adapter, you’ll find the follow-
ing to be true:

  Active use of vmnic0: Management Network and NFS Storage

  Active use of vmnic1: FT and vMotion

  Standby use of vmnic0: FT and vMotion

  Standby use of vmnic1: Management Network and NFS Storage

  Active use of both vmnic0 and vmnic1: VM port groups (Web, Application, and 
Database Servers)

We’ve basically divided up the two network adapters to handle the two types of traffic that 
are very sensitive to latency or consume a lot of bandwidth: NFS Storage is sensitive to 
latency, and vMotion consumes a lot of bandwidth. They will not use the same network 
adapter as an uplink unless one of the uplinks fails.

The remaining traffic types—Management, FT, and VM traffic—tend to consume a little 
amount of bandwidth or are designed to handle a little bit more latency. VMware HA 
heartbeats on the Management network, for example, can miss a few heartbeats without 
declaring a failure. The vast majority of VMs are already well aware of how flaky a TCP/
IP connection can be and will use the protocol’s resiliency to handle any missed or late 
packets, with the exception being some legacy applications or business critical applications 
(BCAs) that need a large quantity of bandwidth or low latency. Also, FT is very rarely used 
due to the vast number of caveats and limitations.

Therefore, if we were to draw the network paths out as a solid black line for Active and a 
dotted grey line for Standby,      it would look something like Figure 12.24.

NFS Storage VMotion

Management Virtual
Machines

Fault
Tolerance

vmnic0 vmnic1

Figure 12.24 Network adapter paths for vSwitch0 traffic 
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Final Tuning
One last thing    we want to edit is the security settings on vSwitch0. By default, a standard 
vSwitch allows both MAC address changes and forged transmits. This allows a VM to 
modify its effective MAC address for receiving frames and to transmit frames with a differ-
ent MAC address than what has been configured in vSphere. While there are certain situa-
tions that warrant this, it isn’t necessarily something we want enabled.

To remedy this, edit vSwitch0 and set all three security policies to Reject. Unless an 
administrator has manually set an override on the policies, the changes will automatically 
trickle down to the port groups. This configuration is shown in Figure 12.25.

Figure 12.25 Network adapter paths for vSwitch0 traffic 

NOTE

A distributed vSwitch is configured to reject all three security settings by default. A standard 
vSwitch does not. Keep this in mind when you are trying to secure your virtual environment 
using a standard vSwitch.

This concludes the configuration necessary to get your standard vSwitch operational in a 
sleek and efficient manner. Notice that we didn’t go into the settings of vSwitch0 or any of 
the underlying port groups to fiddle with traffic shaping, network failure detection, notify 
switches, or failback? That’s because changes to these settings are often the exception to 
the rule and should only be changed when the use case specifically calls out a need. The 
default values work great for the majority of    environments that exist today.



173Summary

Configuring Additional vSphere Hosts
The changes    made to vSwitch0 have so far only been done on the vSphere host named 
esx2. We still need to execute the entire set of changes to the other vSphere host named 
esx1. Because each vSphere host acts as the control plane for a standard vSwitch, you must 
configure every single vSphere host individually, either by hand or by way of a script.

Make sure that the changes you perform on esx1 are identical to the changes you made on 
esx2, with the exception being IP addresses—each host needs a unique set of IP addresses. 
Here is a list of IP addresses you can use with vSphere host esx1:

  Management traffic: 10.20.105.32 /16 on VLAN 20

  vMotion traffic: 192.168.205.1 /24 on VLAN 205

  FT logging: 192.168.210.1 on VLAN 210

  NFS traffic: 192.168.220.1 /24 on VLAN 220

REAL WORLD

If you think configuring two vSphere hosts by hand is a challenge, try dozens of them! 
While ultimately out of scope for this book, we strongly recommend finding a script written 
in your favorite language, such as VMware PowerCLI, to perform the standard vSwitch 
configuration on your vSphere hosts. This is both much quicker to execute for many 
vSwitches and less error-prone than typing it all by hand. We’re going to assume that you 
don’t have access to Host Profiles since you’re using a    standard vSwitch.

Summary

You should now have a clear concept of the steps necessary to go through the entire pro-
cess of creating a standard vSwitch—from the planning and design to the configuration 
itself. You might also now start to see some of the hassle involved with using a standard 
vSwitch, especially in a larger environment, along with how limited the standard vSwitch 
is from a feature perspective. In the next chapter on the distributed vSwitch, you’ll see a 
much greater set of tools and features available to make life a bit easier and handling traffic 
more efficient.
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Chapter 13

Distributed vSwitch Design

Key Concepts
  Distributed vSwitch Design

 Ensuring Quality of Service (QoS)

 Distributed Port Groups

 Health Check

 Fully Automated Design

 Hybrid Automation Design

Introduction
In the previous chapter,    we took a pair of servers with a freshly installed copy of ESXi 5.5 
and configured a standard vSwitch to support the Initech Corp use case. We’re going to 
take many common components from that use case and apply them again with a few twists. 
By the end of this chapter, you should have a well-designed and implemented distributed 
vSwitch used by our two vSphere hosts and a solid understanding of the many choices that 
are presented with the powerful and feature-rich distributed vSwitch. 
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Distributed vSwitch Design
In the previous   chapter, we highlighted three reasons that you might decide to forgo the 
distributed vSwitch: licensing cost, a small environment size, and control plane availabil-
ity. Now, let’s look at two good reasons why you would want to embrace the distributed 
vSwitch in your environment:

  Feature Requirements: The distributed vSwitch offers a vast number of features 
above and beyond the standard vSwitch. We won’t enumerate them all here, but for 
a full list, refer  to Chapter 9, “vSphere Distributed Switch.” As an example—if you 
require the use of enhanced quality of service control that is not available with your 
upstream hardware, you’ll need to use a distributed vSwitch. You might also need 
a feature that is specifically bundled with vSphere Enterprise Plus, such as  Storage 
Distributed Resource Scheduler (SDRS), vFlash Read Cache, or Auto Deploy. You 
might also want to take advantage of the distributed vSwitch because it is available at 
that license level.

  Larger Environment Size: Larger environments tend to focus on supported “out of 
the box” features to ensure scalability. While it’s true that you can script the creation 
of a standard vSwitch across an environment, not everyone out there wants to go 
through the trouble. For those with double or triple digit quantities of vSphere hosts, 
the ability to easily scale out a distributed vSwitch to the environment is attractive. 
It is worth noting that there is no “correct” environment size necessary to go with a 
distributed vSwitch.

This isn’t the end-all-be-all list of reasons, but two of the   most common that we encounter 
out in the field.

Use Case
Initech Corp    has a pair of vSphere hosts running ESXi 5.5 in their production data center 
located in Chicago. As the VMware Administrator for the corporation, you’ve been tasked 
with the creation and configuration of a virtual network. Due to a requirement for provid-
ing quality of service assurances for network traffic and a need for Storage IO  Control 
(SIOC), the company has purchased vSphere Enterprise Plus licensing, which allows you 
to build a virtual network on the distributed vSwitch. Each vSphere host has a pair of 
10 Gb Ethernet network adapters connected to a redundant upstream physical network.

The virtual network should be capable of handling traffic for Management, vMotion, Fault 
Tolerance (FT), and iSCSI storage. It also needs to be able to pass along traffic for three 
different types of workloads: Web Servers on VLAN 100, Application Servers on VLAN 
110, and Database Servers on VLAN 120.
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NOTE

Yes, we’re throwing you a little curve ball with the iSCSI Storage requirement. We hope 
this will showcase any differences between creating a VMkernel port for NFS versus iSCSI. 
Both NFS and iSCSI are covered in greater detail later    in Chapter 14, “iSCSI General Use 
Cases,” and Chapter 16, “NFS General Use Cases.”

Naming Conventions
To start    with, let’s come up with names for our various VMkernel ports:

  Management: Let’s go with simply “Management” this time around.

  vMotion: The name “vMotion” is simple and effective.

  Fault Tolerance Logging: Either “FT” or “Fault Tolerance” work well, but let’s go 
for “Fault Tolerance” to make it as clear as possible for future administrators.

  iSCSI Storage: We’ll use “iSCSI Storage” to avoid any confusion, as this easily pro-
claims both the protocol (iSCSI) and the need to pass along storage traffic.

NOTE

You could also add networking and VLAN information to your VMkernel distributed port 
group names, if desired. An example being “vMotion_192.168.205.x_V205”—just be careful 
not to make the names too similar to your virtual machine distributed port group names. A 
hurried administrator might add a VM’s network to a VMkernel distributed port group by 
accident.

Just like last time, we did our homework on the various VLAN IDs and subnets used 
for the various VM networks. We’ll keep the names the same, as there is no real need to 
change up the naming convention just because it’s a different type of switch. A name is a 
just a name. Those names, again, are:

  Web Servers on VLAN 100: Web_192.168.100.x_V100

  Application Servers on VLAN 110: App_192.168.110.x_V110

  Database Servers on VLAN 120: DB_192.168.120.x_V120
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NOTE

As a reminder—you need to ensure that the VMkernel and VM VLANs exist on the 
upstream network device to avoid any issues with upstream communications.

And finally, we need to come up with a name for the distributed vSwitch itself. You’ll find 
that the creation wizard tends to call everything “DSwitch #” by default. We don’t really 
see a reason to put the word “DSwitch” into your distributed vSwitch—that seems redun-
dant. It seems fair to just call it something fitting, like “Production_LAN.”

The next part    of the design should focus on how we plan to provide quality of service for 
the network traffic types.

Ensuring Quality of Service
There are a couple   of different methods available for providing some sort of quality of ser-
vice in a virtual network plumbed with a distributed vSwitch. These options are Network 
IO Control (NIOC) and priority tagging with IEEE standard 802.1p. We covered both of 
these technologies in earlier chapters, but let’s review at a high level how each works and 
how we can use them to our advantage.

Network IO Control
NIOC is a     VMware technology used to weigh and limit outbound traffic types within 
vSphere hosts participating in a distributed vSwitch. It uses share values assigned to 
Network Resource Pools to provide a priority scheme for balancing traffic types. This is 
similar to the use of shares with CPU and memory, just with network traffic. Shares only 
become relevant in times of congestion and are dormant at any other time.

There are also limits available to put a hard cap on how much bandwidth can be consumed 
by a specific Network Resource Pool. Limits are always active, no matter the level of con-
gestion, and therefore should be configured only when you have a complete understanding 
and acceptance that you might be leaving perfectly good bandwidth unused. Also, note 
that these limits apply only to traffic coming from VMs but have no affect traffic going 
to VMs.

By combining the concepts of shares and limits, we can help the virtual network under-
stand which traffic should be granted more or less networking bandwidth. This ensures 
that quality of service can be provided to our guest VMs.
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VMware comes with a set of NIOC default configuration values out of the box. Let’s 
review the default pools and their default values for shares and limits:

  Management: Normal shares (50), Unlimited bandwidth

  vMotion: Normal shares (50), Unlimited bandwidth

  Fault Tolerance: Normal shares (50), Unlimited bandwidth

  iSCSI: Normal shares (50), Unlimited bandwidth

  NFS: Normal shares (50), Unlimited bandwidth

  Virtual Machines: High shares (100), Unlimited bandwidth

Figure 13.1 shows how the NIOC values look in the vSphere Web Client. Note that they     
are listed under the Resource Allocation section of a distributed vSwitch.

Figure 13.1 Default NIOC values for a distributed vSwitch 

Did you find the idea of giving VMs a high priority and leaving everything else at a nor-
mal priority surprising? Or how about the idea of giving every type of traffic an unlimited 
amount of bandwidth? Let’s look at it this way—there’s no need to enforce limits or spe-
cial share values unless your use case calls for it. By giving nearly all traffic types a Normal 
share value, we’re saying that everyone gets an even slice of the bandwidth pie. The only 
exception is VMs, which can have a slice of pie that is roughly twice the size of anyone else 
(100 shares for VMs versus 50 shares for anyone else). 
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Share values only affect traffic flows during times of contention, and only for active traffic 
types. Adding all of the above share sizes, we have 450 shares (50 + 50 + 50 + 50 +50 + 50 
+ 100 + 50 = 450). And 50/450 is approximately 11%. So with the previously mentioned 
limits, if every single traffic type were active and causing contention, the VMs have to 
compete with each other over 22% of the bandwidth and the other traffic types each get 
11%. It’s more likely that only a few types of traffic are active at the same time—meaning 
only those active traffic types are used in calculating the bandwidth allocation. If you need 
a refresher on NIOC, refer to the “Network I/O Control” section in Chapter 9.

There’s little need to change the default values for most environments. However, let’s 
imagine that you are a bit squeamish about letting vMotion eat up your entire 10 Gb 
network adapter. So for our environment, we’ll set a vMotion Traffic limit to 80% of an 
uplink by capping it at 8 Gbps, or 8192 Mbps (8 Gbps x 1024 Mbps per Gigabit). This will 
guarantee that vMotion will not hog all of an uplink. We’ll revisit this later after the dis-
tributed vSwitch has been created and we have access to NIOC.

REAL WORLD

As a rule, you do not need to limit vMotion to 8 Gbps in your environment. We’re just 
showing that it’s something you can do if your requirements or comfort level warrant it. 
vMotion loves to eat up the entire uplink if it thinks it can, which has caused us some head-
aches in the     past.

Priority Tagging with 802.1p
Much like     with a VLAN ID tag within an Ethernet frame, the idea behind 802.1p is to 
insert a value into the Priority Code Point (PCP) field. This field is 3 bits long, allowing 
for 8 possibilities (2 values per bit ^ 3 bits = 8 combinations). Priority ranges from 0 (the 
lowest) to 7 (the highest). Within NIOC is the ability to set the priority tag for each type 
of traffic, which is called the “QoS Priority Tag” within vSphere.

By default, NIOC does not set any values for the PCP field. You can edit any of the vari-
ous traffic types and add your own. Keep in mind that 802.1p tags apply to Ethernet 
frames, not IP packets, and thus have some limitations on usefulness when they leave a 
particular network segment.

REAL WORLD

There is no real IEEE standard behind 802.1p. The upstream physical network can ignore 
the tags or process them however they desire. However, it is typical to treat Ethernet frames 
tagged with high value PCP tags with higher priority. What we often find is that physical 
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switches use Weighted Round Robin Scheduling (WRRS) with a buffer for each priority 
level. High priority buffers get picked more often. Make sure to chat with your network 
team and find out if they use 802.1p, agree on a value, and then move forward—don’t just 
pick one all willy-nilly.

However, these tags can be useful when you wish to assign various levels of priority to 
traffic within your Ethernet environment. You could, for example, give a higher weight to 
your iSCSI storage traffic to help avoid congestion in the upstream physical networks.

We won’t be using 802.1p in our example here, but it’s important to know that it exists 
and can be configured on each Network Resource Pool within NIOC. Additionally, one 
neat feature with vSphere 5.5 is the ability to set the tag on a distributed port group with 
a traffic filter. In this format, the tag is called the Class of Service (CoS) value. We go into 
that a bit deeper in the     next segment.

Differentiated Service Code Point
Another     method of providing quality of service is by way of the Differentiated Service 
Code Point (DSCP), a new feature available with vSphere 5.5. DSCP supports 64 different 
tags (0 through 63) and is inserted into the IP packet rather than the Ethernet frame. This 
allows the DSCP tag to provide a more end-to-end level of functionality throughout the 
data center.

The DSCP tag is set within a traffic rule on a port group, as shown in Figure 13.2.

Figure 13.2 Defining a traffic rule with CoS and DSCP values 
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The use of DSCP is pretty far out of scope for our particular use case, but again—you 
should know it exists should you encounter a workload that can benefit from it.

Both CoS and DSCP are great examples of how the physical and virtual networks can 
work together under a common set of rules. Both technologies help ensure that your criti-
cal workloads get the network priority required to meet business     demand.

Creating the Distributed vSwitch
Unlike a  standard vSwitch’s vSwitch0, there is no default distributed vSwitch created for 
you at installation. You have to roll up your sleeves and make one yourself.

To begin, navigate to the network section of the vSphere Web Client and find the 
 Chicago data center. You can then create a distributed vSwitch by way of a right click on 
the data center or a trip to the Actions menu when the data center object is selected. The 
first requirement is a name, as shown in Figure 13.3: Production_LAN.

Figure 13.3 Creating a distributed vSwitch named Production_LAN 

Simple enough, right? Our next choice is a distributed vSwitch version. There are many to 
choose from: 4.0, 4.1, 5.0, 5.1, and 5.5, as shown in   Figure 13.4. Unless you have a legacy 
environment that requires using a legacy version of the distributed vSwitch, go with 5.5. 
And if you have an older existing distributed vSwitch, you can easily upgrade it to a higher 
version, so long as it meets the requirements, without any downtime. Just keep in mind 
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that there is no downgrade to an older version, and that upgrades to a newer version do 
not happen automatically. Each version also shows off a few of the new features that were 
included with that release. 

Figure 13.4 Selecting Distributed Switch version 5.5 

Now we’re prompted on a few specific quantities and features. Let’s review them:

  Number of uplinks: This value determines the maximum number of NIC ports that 
any of this  switch’s hosts can connect to this switch. And because our hosts only have 
two network adapters, we’ll set the number of uplinks to 2. You can always increase 
this value later if you need to.

  Network IO Control (NIOC): This is enabled by default, which is exactly what we 
want. NIOC is one of the best things about a distributed vSwitch and was set to dis-
abled by default in past versions.

  Default port group: Keep this box checked so that we can automatically generate a 
new port group.

  Port group name: Since the wizard is offering to make a port group for us, let’s go 
ahead and have it create one for our Management traffic that we’ll need later on in 
this chapter. Change the name to Management and put it aside for later.

As a result, your wizard should look like that shown in Figure 13.5.
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Figure 13.5 Editing the settings for our new distributed vSwitch 

Congratulations, you just created a distributed vSwitch. The ticker-tape parade is on 
its way. If you navigate to the Network view in the vSphere Web Client,  your environ-
ment should have a VM Network and a Production_LAN network. Underneath the 
 Production_LAN network will be two entities: a port group named Management and an 
uplink group named Production_LAN-DVUplinks-##. Figure 13.6 shows an example of 
what our environment looks like to compare with.

Figure 13.6 A view of the network for the Chicago data center 
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It should feel somewhat empty at this point. That’s because the switch is effectively doing 
nothing right now, with only a very basic configuration. Let’s change that by configuring 
the distributed vSwitch further  and getting it ready for use.

Network Adapters
When we    worked with a standard vSwitch, one of the first things you were asked to do 
was look at the network adapters on vSwitch0 and make sure that both were added to the 
switch. If you tried to do that with a distributed vSwitch, you would quickly find that it’s 
not possible. That’s because it creates a relationship between a distributed uplink and a 
host’s physical network adapter.

If you view the topology of the distributed vSwitch, you’ll see two lonely Uplinks in the 
DVUplinks group on the right with zero NIC Adapters listed, as shown in Figure 13.7.

Figure 13.7 There are no uplinks added to the distributed vSwitch yet  

Don’t worry, this is completely intentional and normal because we haven’t added any hosts 
to the distributed vSwitch yet—remember, the distributed vSwitch is a vCenter construct, 
and therefore hosts must join the switch. This is a bit different from standard vSwitches, 
where we create them on each host individually. As each host is added, we’ll see the quan-
tity of uplinks change. We’ll also see the relationship created between a physical network 
adapter on a host and the logical distributed uplink assignment.

Let’s move along to the port group creation sections and revisit    the network adapters after 
we’re finished adding hosts to the switch. You’ll then be able to easily spot the differences.
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Distributed Port Groups for Virtual Machines
We need    to create three port groups for our VM traffic types: Web, Application, and 
Database. The naming convention chosen earlier is:

  Web Servers on VLAN 100: Web_192.168.100.x_V100

  Application Servers on VLAN 110: App_192.168.110.x_V110

  Database Servers on VLAN 120: DB_192.168.120.x_V120

Let’s begin by creating the Web Servers VM distributed port group. To begin, make sure 
you have the Production_LAN distributed vSwitch highlighted in the vSphere Web Client 
and choose New Distributed Port Group from the Actions menu. Enter the name of the 
distributed port group (see Figure 13.8) and click Next.

Figure 13.8 Creating the Web Server distributed port group  

The next screen will require a number of settings to be filled out. We review them all here:

  Port binding: Although a much more important decision in prior versions, port bind-
ing  has now become a trivial choice in almost all use cases. In particular, as long as 
vCenter is running and the maximum number of switch ports hasn’t been reached, 
static binding , the default choice, and the choice we recommend, ensures that every 
VM on the port group is given a port on the switch regardless of its (the VM’s) 
power state. Dynamic  binding has been deprecated by VMware and plans to termi-
nate their support for it soon. In other words, don’t use it. Ephemeral binding  (no 
binding) offloads port state handling to each ESXi host. This is rather intensive on 
the host and is only needed in corner cases where the vCenter server is offline. 
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  Port allocation: Elastic binding,  the default, is a great way to ensure your ports scale 
and is recommended. It was introduced with vSphere 5.1 as a way to avoid having to 
manually adjust port counts for a distributed port group or consume a greater quan-
tity of memory with a very large port count.

  Number of ports: Because elastic is enabled, the default value of 8 is just fine. You 
could bump up this number if you absolutely hate the number 8 for some reason, but 
there’s little reason to do so.

  Network resource pool: Leave as default during creation. When we visit the NIOC 
settings, you’ll have the opportunity to create resource pools for individual VM dis-
tributed port groups.

  VLAN type: The VMs will need Virtual Switch Tagging (VST), meaning you will 
need to select VLAN. If you were using External Switch Tagging (EST), the type 
would be None, or if you were using Virtual Guest Tagging (VGT), the type would 
be VLAN Trunking.

  VLAN ID: The Web Servers use VLAN 100, so enter 100.

  Advanced customization: Leave this unchecked. Rather than set up the policies on 
a per-distributed port group basis, we’ll show you a trick to configure    all of them 
at once.

The end result should be a settings page similar to that shown in Figure 13.9.

Figure 13.9 Settings used for the Web Server distributed port group 
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Make sure to repeat the process for the two remaining VM distributed port groups. When 
completed, you should have a distributed vSwitch with five total port groups—three for 
the VMs, one for management (that we are not using yet), and one for the DVUplinks, as 
shown in Figure 13.10.

Figure 13.10 The distributed vSwitch now has all three VM distributed port groups 

However, before we move on, it’s important to configure the teaming policy for all of the 
VM port groups. Fortunately, the distributed vSwitch has some tools that make this pain-
less. We’ll walk through this process in the next section.

Load Based Teaming
We’re going     to take advantage of load based teaming (LBT), called “Route based on phys-
ical NIC load” in vSphere, with the VM distributed port groups. This lets the distributed 
vSwitch shift around VM ports from one uplink to another uplink in a congestion scenario 
where one of the uplinks was over 75% utilization for at least 30 seconds.

REAL WORLD

As long as your VMs are running applications that are comfortable with having their port 
moved around, we advise using LBT—although there are some legacy applications that 
don’t take too kindly to having their port moved. You can easily find this out when you try 
to vMotion such a workload to another host. What commonly “breaks” a VM is the process 
of an upstream physical network device learning the MAC address location on a new port 
by way of a Reverse ARP (RARP). Both LBT and vMotion take advantage of a RARP to 
instruct the upstream network as to the new home of the VM.
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To begin the process of configuring LBT, first navigate to the Production_LAN distrib-
uted vSwitch and select Managed Distributed Port Groups from the Actions menu. 
This allows you to manage multiple distributed port groups at one time. Because we only 
want to modify the teaming policy, select the check box next to Teaming and Failover as 
shown in Figure 13.11 and click Next.

Figure 13.11 Managing distributed port groups on the Production_LAN switch 

A list of port groups will appear. Hold the Control key down on your keyboard and select 
all three of the VM distributed port groups (see Figure 13.12). They will highlight in blue, 
allowing you to click Next.

Figure 13.12 Select the 3 VM distributed port groups  
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The next screen will allow you to set any of the teaming and failover policies desired for 
those three VM distributed port groups. The only change we’re looking to make is to the 
load balancing policy. Change it from Route ased on originating virtual port to Route
based on physical NIC load (see Figure 13.13) and click Next.

Figure 13.13 Changing the load balancing policy on the VM distributed port groups 

That’s all there is to it—and you’ve now changed the teaming policy on three VM distrib-
uted port groups at once. This is a neat trick and is one of the many time-saving features 
built into the distributed     vSwitch.

At this point, all of the VM-specific work has been completed. It’s time to tackle the 
VMkernel ports.

Distributed Port Groups for VMkernel Ports
VMkernel ports     live inside of distributed port groups on the distributed vSwitch. In fact, 
VMkernel ports can even coexist with VMs or one another on the same distributed port 
group, although we don’t really advise making that your standard practice.

This means that we must go through another round of creating distributed port groups, 
but this time for the VMkernel ports. There’s very little difference between the two pro-
cesses besides the names and the specific policies configured.
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Thinking back to earlier, we know there are several distributed port groups necessary for 
our VMkernel ports:

  Management: This was done earlier when we made the default distributed port 
group named “Management.”

  vMotion

  Fault Tolerance

  iSCSI Storage

We’ll review each distributed port group needed for the environment and get them all 
created, configured, and ready for use. As a reminder, here is a list of the VLANs used by 
each VMkernel network that were outlined in Chapter 11, “Lab Scenario”:

  Management traffic: 10.20.0.0 /16 on VLAN 20

  vMotion traffic: 192.168.205.0 /24 on VLAN 205

  FT logging: 192.168.210.0 /24 on VLAN 210

  iSCSI traffic: 192.168.215.0 /24 on VLAN 215    

Management
Even though      this distributed port group was created earlier, we never did get the oppor-
tunity to set a VLAN ID for it. By default, it is set to the VLAN ID of “None” which will 
not function for our environment. The ultimate goal is to move the vmk0 VMkernel port 
that sits on vSwitch0 over to this Management distributed port group, so we must make 
sure that the distributed port group is configured properly for Management traffic to flow. 
We also need to adjust the distributed port group failover settings.

First, locate the Management distributed port group in the Production_LAN distributed 
vSwitch and choose the Edit Settings function in the Actions menu. Select the VLAN 
section and make the following changes, as shown in Figure 13.14:

  Change the VLAN type from “None” to “VLAN”

  Set the VLAN ID to “20”
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Figure 13.14 Setting the VLAN ID on the Management distributed port group 

Great, now the distributed port group is on the correct VLAN needed for a management 
VMkernel port. Next, change over to the “Teaming and Failover” section and make the 
following changes (see Figure 13.15):

  Use the blue arrow button to move Uplink 2 down to the Standby uplinks section.

  Click OK.

Figure 13.15 Setting the failover order on the Management distributed port group 
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You’ve now properly configured the Management distributed port group to use Uplink 1 
as an Active network adapter and Uplink 2 as a Standby network adapter.

NOTE

Leave the load balancing policy to Route based on originating virtual port—there is no value 
in having it set to Route based on physical NIC load (LBT). There is only one Active uplink 
available and LBT will not use Standby uplinks. 

vMotion
The next      distributed port group we’ll need is for vMotion. Select the Production_LAN 
distributed vSwitch and choose New Distributed Port Group from the Actions menu. 
Name the new distributed port group vMotion as shown in Figure 13.16, and click Next.

Figure 13.16 Creating the vMotion distributed port group 

Next, we’ll configure the settings needed for the vMotion distributed port group. Leave all 
the values as default, except for the following three:

  VLAN type: VLAN

  VLAN ID: 205

  Customize default policies configuration: Check the box.
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We’re checking the customize box so that you can see the alternative method for configur-
ing the      teaming policy, for when you need to make one-off distributed port groups.

Keep clicking Next until you reach the Teaming and Failover policy settings. Make the 
following change: Using the blue down arrow, drop Uplink 1 down to the Standby uplinks 
section as shown in Figure 13.17.

Figure 13.17 Setting the teaming policy for the vMotion distributed port group 

You can now click Next until you reach the end of the wizard. Click Finish to create the 
vMotion distributed      port group.

Fault Tolerance
The next      distributed port group needed is for Fault Tolerance. Follow the same process 
we went through for vMotion, with the following exceptions:

 Name: Fault Tolerance

 VLAN ID: 210

The end result should look like that shown in Figure 13.18.
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Figure 13.18 Summary of the Fault Tolerance distributed port group policies 

Don’t forget to set Uplink 1 as a Standby uplink for the Fault Tolerance distributed port 
group.

iSCSI Storage
The final      distributed port group we’re going to create is for iSCSI Storage network traf-
fic. This distributed port group will be responsible for making sure that any storage arrays 
that use iSCSI are presented to the VM guests. Much like with our NFS Storage network 
used on the standard vSwitch, the iSCSI Storage network is sensitive to latency and will be 
Active on Uplink 1 and Standby on Uplink 2.

Start off by creating a new distributed port group named iSCSI Storage on VLAN 215. 
For the failover order policy, make sure that Uplink 2 is moved down to the Standby 
uplinks section, as shown in Figure 13.19.

This should look very similar to the failover configuration used on the Management net-
work. Let’s tie together all of the failover orders together in the next section to best under-
stand how traffic will flow to the pair of uplinks.
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Figure 13.19 The failover order policy configured on the iSCSI Storage distributed port group 

VMkernel Failover Overview
Looking at the      failover order for the various VMkernel ports, a pattern emerges. If you 
look carefully at the active and standby use of each network adapter, you’ll find the follow-
ing to be true:

  Active use of vmnic0: Management Network and iSCSI Storage

  Active use of vmnic1: FT and vMotion

  Standby use of vmnic0: FT and vMotion

  Standby use of vmnic1: Management Network and iSCSI Storage

  Active use of both vmnic0 and vmnic1: VM port groups (Web, Application, and 
Database Servers)

Figure 13.20 shows a visual way of looking at the failover settings.

We’ve basically divided up the two network adapters to handle the two types of traffic that 
are very sensitive to latency or consume a lot of bandwidth: iSCSI Storage is sensitive to 
latency, and vMotion consumes a lot of bandwidth. They will not use the same network 
adapter as an uplink unless one of the uplinks fails.
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Figure 13.20 Failover order for the distributed port groups 

NOTE

The iSCSI design used in this chapter supports only a single path to the iSCSI storage array. 
We’re doing this to show isolation methods within a vSwitch, but it’s typically wise to have 
multiple paths to your storage array. If you need multiple paths to your iSCSI storage, it’s 
worth referring to Chapter 14 and Chapter 15, “iSCSI Design and Configuration.”

We’ve now completed all of the preparation work necessary to fully configure the distrib-
uted vSwitch. Yours should look similar to that shown in Figure 13.21.

The vSphere hosts can now be added to the distributed vSwitch.

Figure 13.21 All of the distributed port groups have been created on the distributed vSwitch  
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Adding vSphere Hosts
If you’re    feeling a strange tingle, that’s because the moment has arrived to add vSphere 
hosts to the distributed vSwitch. In our case, there is only one single cluster inside the 
Chicago data center, making the choice of which hosts to add pretty easy. If you have 
many different clusters in your data center, you can pick out the specific clusters of hosts 
you wish to join the distributed vSwitch. It’s best to make sure that all hosts inside of a 
vSphere cluster have access to the same distributed vSwitch, as otherwise you lose out on 
the ability to vMotion across hosts because the source and destination hosts will not have 
the same VM distributed port groups.

There are a few different methods of adding hosts to a distributed vSwitch:

  The kid gloves method: This is sometimes called “walking the host” into a distrib-
uted vSwitch and is commonly used for migrating existing hosts that are running 
VMs without taking an outage. At a high level, this method involves stealing a single 
network adapter from whatever existing vSwitch the host is using and adding it to the 
new distributed vSwitch. We then migrate all the VMs and VMkernel ports over to 
the distributed vSwitch. Finally, we steal the other network adapters and remove the 
old vSwitch.

  The hammer method: This is a “move everything at once” option and is typically 
used for new hosts that are not yet running VMs. Because these are brand new hosts, 
moving them into a distributed vSwitch is somewhat trivial from a risk perspective. 
There are no existing workloads running on the hosts to worry about breaking. As 
such, we can migrate the network adapters and VMkernel ports over in one swoop.

We use the hammer method here, as there is only a single VM running in the Initech 
Corp environment—the vCenter Server Appliance. Let’s kick off the wizard by selecting 
the Production_LAN distributed vSwitch and choosing the Add and Manage Hosts 
option from the Actions menu. Select the Add hosts radio button as shown in    Figure 
13.22 and click Next.

The next screen wants to know which hosts you wish to add. Click on the New hosts but-
ton with the green plus sign and choose both esx1 and esx2, as shown in Figure 13.23. 
Click Next.
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Figure 13.22 Adding the hosts to the Production_LAN distributed vSwitch 

Figure 13.23 Adding the esx1 and esx2 hosts to the distributed vSwitch 
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The next screen requests information on the tasks you wish to perform. Because we’re 
doing the hammer method and moving everything all at once, we choose the following 
check boxes:

  Manage physical adapters: Establishes the relationship between distributed uplinks 
and physical network adapters.

  Manage VMkernel adapters: Allows us to migrate the existing Management VMker-
nel port named vmk0 over to the distributed vSwitch.

  Migrate virtual machine networking: This is optional depending on whether you 
have VMs in your environment. Because we’re running the vCenter Server Appli-
ance on one of the hosts, we need this checked.

Your screen should look like the one shown in Figure 13.24. Click Next.

Figure 13.24 The three tasks necessary to add hosts to the Production_LAN distributed vSwitch 

Your first task is to create a relationship between the physical network adapters on the 
hosts and the distributed uplinks on the distributed vSwitch. This mapping is used to build 
a relationship between physical hardware and logical uplinks.

For both hosts, make the following change:

  Select vmnic0 and click the Assign uplink button. Choose Uplink 1.

  Select vmnic1 and click the Assign uplink button. Choose Uplink 2.

Review your results (see Figure 13.25) and click Next.



201Adding vSphere Hosts

Figure 13.25 Creating a relationship between physical network adapters and the distributed 
uplinks

The next task is to migrate the Management Network VMkernel port, vmk0, over to the 
Management distributed port group. The process is very similar to the previous task: For 
each host, click on vmk0, click on the Assign port group button, and then choose the 
Management distributed port group (see Figure 13.26). When completed, click Next.

Figure 13.26 Migrating the Management Network VMkernel ports over to the Management dis-
tributed port group 



202 CHAPTER 13  Distributed vSwitch Design

REAL WORLD

It’s worth noting that you could also build any other VMkernel ports that you need while in 
this screen using the New adapter button. You will need new VMkernel ports created for 
vMotion, FT, and iSCSI Storage. However, if something goes wrong with the migration, 
you will have wasted a fair bit of time building new adapters and most likely have to repeat 
the work over again. We recommend just waiting until the migration is completed before 
building new VMkernel ports.

Figure 13.27 will show you any impacts to services on the vSphere hosts, or more specifi-
cally, the iSCSI service. Since we’re not using VMkernel port binding for iSCSI and have 
no iSCSI storage mapped to the hosts, both hosts should show an impact level of No 
impact with a green checkmark. We cover iSCSI port binding in greater detail in Chap-
ter 14. You can click Next.

Figure 13.27 Analyzing the impact on host services from the network migration 

The final task is to migrate any existing VMs off the standard vSwitch and onto the newly 
minted distributed vSwitch. Click on any VMs in your environment, select the Assign
port group button, and then choose a destination network. In my case, I’m going to move 
the vCenter Server Appliance over to my Application Servers network, as shown in Figure 
13.28, and then click Next.
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Figure 13.28 Migrating the vCSA55 VM over to the App network 

REAL WORLD

Don’t have any VMs to migrate over? Try creating a fake VM on the standard vSwitch 
so you can migrate it over. Or, better yet, download a small Linux VM appliance off the 
Internet and practice migrating it over to see what happens with performance and pings in 
your lab or test environment. Practice makes perfect.

Click Finish to begin moving over all your vSphere hosts into the distributed vSwitch. If 
you accidently caused an issue where your hosts are unable to talk to vCenter, the Rollback 
feature introduced in vSphere 5.1 should automatically revert your networking configura-
tion back to the previous settings in about 30 seconds. At this point, the vSphere hosts are 
now participating in the distributed vSwitch.

REAL WORLD

Always make sure you have out-of-band access to your vSphere hosts, just in case you 
blow up the network to the point of needing    ESXi Shell or Direct Console User Interface 
(DCUI) access. It happens.
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Creating VMkernel Ports
It’s finally      time to make the VMkernel ports for each vSphere host. There are three 
VMkernel ports needed to satisfy the use case: vMotion, FT, and iSCSI Storage. Here is a 
list of IP addresses we’ll be using on esx1:

  vMotion traffic: 192.168.205.1 /24 on VLAN 205

  FT logging: 192.168.210.1 /24 on VLAN 210

  iSCSI traffic: 192.168.215.1 /24 on VLAN 215

For the other host, esx2, replace all of the fourth octet values of 1 with a 2.

There are many different ways to add VMkernel ports to a host, but we’ll be using 
a method that begins with the network view in the vSphere Web Client. Locate the 
 Production_LAN distributed vSwitch and choose Add and Manage Hosts from the 
Actions menu then choose the Manage host networking radio button, as shown in Fig-
ure 13.29, and click Next.

Figure 13.29 Using the Manage host networking feature to add VMkernel ports 

In the host selection screen, use the Attach hosts button to select both of the vSphere 
hosts, click Next, then choose Manage VMkernel adapters in the tasks screen—uncheck 
all of the other check boxes, as shown in Figure 13.30.
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Figure 13.30 Manage VMkernel adapters to create new VMkernel ports 

Select the vSphere host named esx1 and click the New adapter button (not shown). Use 
the Browse button to find the vMotion distributed port group (see Figure 13.31), click 
OK, and then click Next. 

Figure 13.31 Adding a VMkernel port to the vMotion distributed port group 
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In the Port properties screen (see Figure 13.32), select the vMotion traffic service and 
click Next.

Figure 13.32 Select the vMotion traffic service 

For the IPv4 settings page, choose the radio button for Use static IPv4 Settings and 
enter the IPv4 address and subnet mask for the vMotion VMkernel port: 192.168.205.1 
and 255.255.255.0 (see Figure 13.33). Click Next and then Finish.

Figure 13.33 Setting the IPv4 address and mask for the vMotion VMkernel port 
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Repeat the process in this section for each VMkernel port required:

  Host esx1 Fault Tolerance: Fault Tolerance logging service, IPv4 address 
192.168.210.1, subnet mask 255.255.255.0

  Host esx1 iSCSI Storage: No service, IPv4 address 192.168.215.1, subnet mask 
255.255.255.0

  Host esx2 Fault Tolerance: Fault ToleranceFT logging service, IPv4 address 
192.168.210.2, subnet mask 255.255.255.0

  Host esx2 iSCSI Storage: No service, IPv4 address 192.168.215.2, subnet mask 
255.255.255.0

The end result will look like that shown in Figure 13.34.

Figure 13.34 The new VMkernel ports pending creation 

When you’ve reviewed the new VMkernel ports and verified they look correct, click 
through the wizard and choose Finish. It can take a little while to create that many 
VMkernel ports, so patience is required. When completed, a long list of “Add virtual NIC’ 
tasks will show      completed.
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Moving the vCenter Virtual Machine
When vCenter Server      is running as a VM in the environment, additional considerations 
must be made when attempting to migrate the underlying vSphere to a distributed 
vSwitch. It is highly recommended to use the more delicate method of migration to “walk” 
the VM over to the distributed switch in such a way that negates any network interrup-
tion. Oftentimes the hammer method ends up failing because vCenter attempts to move 
the vCenter Server VM and the physical network adapters at the same time, which ends up 
failing.

We review the steps here at a high level, and then perform a migration:

  Add the vSphere host running vCenter Server to the distributed vSwitch with a 
single network adapter.

  Migrate the VMkernel ports and the vCenter Server VM over to the new distributed 
vSwitch.

  Add any remaining network adapters to the distributed vSwitch.

  Remove the old standard vSwitch, if desired.

Let’s take it step by step in the Initech Corp environment. I’ve placed the vCenter Server 
VM on esx1 and reverted it back to being on a standard vSwitch, as shown in Figure 13.35.

Figure 13.35 The vCenter Server VM using a standard vSwitch on host esx1 
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Let’s begin by adding the vSphere host esx1 to the Production_LAN distributed vSwitch 
and taking one of the network adapters away from the standard vSwitch. Switch to the 
network view in the vSphere Web Client and choose Add and Manage Hosts from the 
Actions menu, then click Next.

Select the host named esx1 and click Next again; then choose the task named Manage
physical adapters and uncheck the boxes next to any other tasks, as shown in Figure 
13.36.

Figure 13.36 Select the Manage Physical Adapters task to begin with

When presented the network adapters for the vSphere host, map vmnic0 to Uplink 1 but 
leave vmnic1 alone (see Figure 13.37). This is the first step in “walking” the host into a 
distributed vSwitch.

Finish the wizard and let it complete changes to the vSphere host. The host has now 
joined the distributed vSwitch with a single network adapter. You can now migrate the 
VMkernel port and vCenter Server VM over to the distributed vSwitch.
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Figure 13.37 Migrate only vmnic0 into Uplink 1, but leave vmnic1 alone 

Select the Production_LAN distributed vSwitch and choose the Add and Manage Hosts 
option from the Actions menu, then choose the Manage host networking option and 
click Next. Select the host named esx1 once again and click Next. This time, we’ll want 
to choose the Manage VMkernel adapters and Migrate virtual machine networking 
check boxes—uncheck the others (see Figure 13.38) and click Next.

Figure 13.38 This time we migrate the VMkernel ports and VM networks  
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For the VMkernel network adapter task, select vmk0, which is on the Management Net-
work on vSwitch0, and assign it to the Management distributed port group (see Figure 
13.39). Click Next and skip the impact analysis screen by clicking Next again.

Figure 13.39 Migrating the vmk0 VMkernel port to the distributed port group named 
Management

The next task is to migrate VM networking. Select the vCenter Server VM and assign it to 
the App Servers distributed port group (see Figure 13.40). Then click Next and Finish the 
wizard to complete the migration.

You might lose connection to your vSphere Web Client for a moment, as the upstream 
switches must receive notifications that the MAC address for your vCenter Server VM has 
moved. The connection should restore itself after a few seconds and you’ll see the tasks 
have completed successfully.

You can now go back through the wizard and assign the remaining network adapter, 
vmnic1, to Uplink 2. Make sure to also go back and delete vSwitch0 if you do not plan on 
using it further, satisfying your      inner administrative OCD.
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Figure 13.40 Migrating the vCenter Server to the App Server distributed port group 

Final Steps
Before moving on, there are a few tuning steps that are advantageous to walk through. 
These provide some final tuning to your distributed vSwitch, along with some warm and 
fuzzies that it has been configured properly.

Health Check
One final step    that is very helpful with the distributed vSwitch involves the Health Check 
feature. This checks the status of the configured VLANs, the MTU size, and any Teaming 
and Failover policies. Before the introduction of Health Check, administrators would have 
to resort to ping tests on each VLAN to ensure that the upstream physical network was 
properly configured and plumbed into the virtual network. Since the feature is free and 
available to use, might as well fire it up to make sure everything is configured properly.

It’s an incredibly easy feature to enable. Navigate to the vSphere Web Client and find the 
Production_LAN distributed vSwitch. Click on the Actions menu, choose All vCenter 
Actions and then Edit Health Check, as shown in Figure 13.41.



213Final Steps

Figure 13.41 Navigating to the Health Check feature 

From here, click the Edit button and set both the VLAN and MTU and Teaming and 
Failover options to Enabled, as shown in Figure 13.42; then click OK. You’ve now turned 
on the Health Check feature for your distributed switch.

Figure 13.42 Enabling the Health Check settings 

When the Health Checks are enabled, click on the Monitor tab and Health sub-tab to see 
the Host member health status. It might take several minutes for the checks to complete 
and the status entities to change from Unknown to another value like Up or Warning.

Let’s look at the VLAN results first to see if any trouble exists. Choose one of the hosts in 
the list to view status details—in this case, we’re choosing to click on esx1 with the results 
shown in Figure 13.43. Can you spot the issues?
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Figure 13.43 VLAN health status on host esx1 

According to Health Check, three of our VLANs are not available on the upstream net-
work device—VLANs 100, 110, and 120. Those are the VM guest networks for Web, 
Application, and Database Servers. If we had tried to place VMs into those distributed port 
groups, they would have failed to communicate with the upstream network.

In this particular case, we purposefully removed some VLANs to show you a failure sce-
nario. Hopefully, you can see just how valuable it is to confirm that the upstream VLANs 
exist prior to putting workloads on the distributed port groups. You can repeat the previ-
ous process to ensure the MTU values match from a host and upstream port perspective, 
and if your teaming and failover policy is proper for the upstream device—this really just 
plays into situations where a Link Aggregation Group (LAG) has been created and will 
typically appear as “Normal” for any    other configuration.

Network Discovery Protocol
Another option       you can set revolves around the discovery protocol used to relate neigh-
bors in the virtual world to the physical world. We previously covered the two options: 
Cisco Discovery Protocol (CDP) for Cisco equipment and Link Layer Discovery Protocol 
(LLDP) for all other equipment. By default, a distributed vSwitch is configured for CDP 
in Listen mode, meaning it will listen for CDP advertisements but not generate any adver-
tisements. You can change this from Listen mode to Both mode—meaning it will both 
Listen and Advertise. 

To make the change, click on the Production_LAN distributed vSwitch, open the 
Actions menu, and choose Edit Settings. Click on the Advanced menu item to reveal the 
discovery protocol configuration. Select the protocol that can be used in your environment 
and change Operation to Both as shown in Figure 13.44.
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Figure 13.44 Allowing the discovery protocol to listen and advertise 

The end result of this change means that the physical network can understand who their 
virtual neighbors are, which can be handy when either troubleshooting or making changes 
to the environment. There are some companies that frown upon having this enabled in 
some segments of the network—such as the DMZ—so ensure that you are cleared to 
advertise to the network prior to making       this change. 

Other Design Considerations
For those looking to ride along the wave of more progressive network design, there are 
design alternatives that we wanted to make you aware of.

Fully Automated Design
In this    particular design, a combination of NIOC and LBT is used to allow the hypervisor 
to completely control and move around traffic. It’s a bit like throwing all the network traf-
fic types into a big pot and letting automation handle the rest.

The teaming for all port groups would be configured to LBT with all network adapters 
set to Active. In a congestion situation, NIOC would begin to enforce bandwidth controls 
based on share values, and LBT would help move traffic from one adapter to another in 
the case of single adapter congestion situations.
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This design sounds great in theory, but we’ve found that most environments choose not to 
go forward with this design for one reason or another. Perhaps they don’t trust the mecha-
nisms to control traffic quickly enough—after all, LBT takes 30 seconds to begin moving 
traffic—or they are just more comfortable with some form of uplink    isolation.

Hybrid Automation Design
This design    approach uses the best of both worlds, combining some manual uplink isola-
tion and some automated triggers with NIOC and LBT.

Oftentimes the vMotion network and/or the IP Storage network (be it iSCSI or NFS 
 storage) are set to use explicit failover order, while the remaining networks are allowed to 
use any uplink with NIOC and LBT controlling uplink and network congestion.

The teaming would look a bit like this:

  Active use of both vmnic0 and vmnic1 with LBT: VM port groups (Web,  Application, 
and Database Servers), Management Network, FT

  Active use of vmnic0: iSCSI Storage

  Active use of vmnic1: vMotion

  Standby use of vmnic0: vMotion

  Standby use of vmnic1: iSCSI Storage   

Which Is Right?
Ultimately, your comfort level of the design is key. The design method we presented 
throughout this chapter is widely accepted and tested, giving you confidence that it will 
work for the majority of environments. However, it’s important to both be aware of and 
understand that there are many different ways to cobble together your virtual networking 
policies, with no one design being the “right” one. If it works, and works well, be satisfied.

Summary

Having gone through a full distributed vSwitch design and implementation, you should 
now have a pretty good idea as to the level of effort and planning necessary to create a suc-
cessful virtual network. Compared to the standard vSwitch, there’s a lot more effort and 
configuration potential with the distributed vSwitch during the initial setup period. How-
ever, once utilized, the distributed vSwitch will provide you with a large quantity of time 
savings from an operational and administrative standpoint.
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Many decision points require collaboration with your networking team. Even if you have 
a grand architecture in mind, you’ll often find that having an engaged networking team, 
where communication flows frequently, to be a huge help. Ultimately, you cannot work in 
a vacuum or else projects will not work as expected.
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Chapter 14

iSCSI General Use Cases

Key Concepts
  Ensuring Quality of Service (QoS)

  iSCSI Initiators, Targets, and Names

  Challenge Handshake Authentication Protocol (CHAP)

  Software iSCSI Adapter

  Hardware iSCSI Adapters

  Network Port Binding

Introduction
One really neat thing about virtualization is that it touches upon so many different disci-
plines. Up to this point, we’ve focused heavily on physical and virtual networking concepts, 
and applied them to example designs in a realistic data center. We’re not done yet—it’s 
time to get your hands dirty with some storage-related work. Or at least storage as it 
relates to virtual networking.

The goal of this chapter is to introduce you to the design choices involved when consum-
ing storage for your vSphere hosts and virtual machines that rides on an Ethernet network. 
Specifically, we’re going to cover the iSCSI protocol.
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Understanding iSCSI
So, what exactly is iSCSI   ? It stands for Internet Small Computer System Interface . Fortu-
nately, no one actually ever says that, because it sounds awkward and takes a long time to 
say. Let’s translate the meaning to “moving SCSI commands  over an Ethernet network” 
to make life easier, because that’s what happens with iSCSI. A SCSI command, which is 
pronounced “scuzzy” and used to read or write data to disk, is encapsulated inside of an IP 
packet and fired off into an Ethernet network to travel toward a storage array and back. 
The network mentioned could be one specifically for iSCSI traffic or your common LAN 
used by servers for other types of traffic. In fact, that brings up a great point—how do we 
make sure that the iSCSI packets reach their destination when there are periods of conges-
tion? After all, Ethernet loves to just drop traffic when congestion occurs, which is a very 
bad thing with storage traffic. 

Lossless Versus Best Effort Protocols
Ethernet     is a best effort protocol, meaning it doesn’t guarantee delivery. That’s why we let 
Transmission Control Protocol (TCP) handle session data—it can monitor the data traf-
fic and request a resend of any missing or dropped packets. The idea is that traffic put into 
the Ethernet network is of a “best effort to get it there” quality. We try our best to make 
sure it reaches its destination, but ultimately it’s no big deal for most traffic types to have a 
few lost packets that are re-sent every once in a while. 

Storage IO is much less tolerant of packet loss than most other traffic types. Imagine that 
your server is trying to read a chunk of data on a storage array, but the network keeps los-
ing it. The server will continue to wait for the data chunk—this is called latency —while 
most likely queuing up additional read requests. Suddenly, you have a bottleneck of read 
requests on the server and it locks up, waiting to get data chunks off the storage array. If 
the server has to wait long enough for the data chunk, the operating system may end up 
crashing (or worse).

It is important, although not strictly required, to provide some sort of priority mechanism 
for your iSCSI storage traffic. This leads us to the concept of     Priority Flow Control. 

Priority-Based Flow Control
We aren’t the    first to notice a need for prioritizing iSCSI traffic. In fact, the IEEE 
802.1Qbb standard outlines a method for allowing Ethernet to do flow control with 
 Priority-based Flow Control (PFC).

The idea is simple, and we won’t go too far into the weeds on it. Imagine you have a busy 
network filled with frames all zooming around going from place to place trying to reach 
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their destinations. All of a sudden, a frame holding an iSCSI packet shows up on the net-
work. Using PFC, the iSCSI packet can be assigned a specific Class of Service (CoS) that 
allows it to have a higher priority on the network. When congestion occurs, a switch is 
able to pause other classes of traffic, such as people surfing the web for cat photos. The 
iSCSI frame is given priority on the network and allowed to continue along, while some of 
those cat photo frames are dropped.

Figure 14.1 shows an example of the default Quality of Service (QoS) configuration for 
Cisco UCS, in which each Priority level is also assigned a CoS.

Figure 14.1 Default values for Cisco UCS QoS 

Two priorities of traffic are enabled—best effort and fiber channel. In times of congestion, 
UCS gives equal bandwidth weight to both traffic types (hence, the 50% value for both 
traffic types). However, fiber channel does not allow packets to be dropped and has a CoS 
of 3, which is higher than the “Any” set by best effort. You could take a similar approach 
and configure iSCSI traffic with a similar priority schema as the fiber channel traffic by 
guaranteeing it a higher CoS and making sure packets are not dropped.

REAL WORLD

For the most part, the creation of various CoSes and their priority in the network will be 
the responsibility of whoever manages the physical network. It is advantageous, however, to 
understand these concepts. There are other methods of controlling QoS, such as creating a 
completely isolated iSCSI network or using rate limits, which exist on the other end of the 
spectrum.

No matter which method you ultimately end up choosing for prioritizing the storage traf-
fic, it’s a good idea to create some level of isolation to curtain off the iSCSI    network. We 
dig into this concept with the use of VLANs for iSCSI.
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VLAN Isolation
There are   multiple advantages to using a dedicated VLAN for your iSCSI storage traffic:

  It can potentially provide a security layer for containing and protecting your storage 
traffic against unwanted attention through proper design and configuration. 

  The VLAN can be created without a gateway, essentially making it non-routable. 
This avoids worrying about other traffic types entering the iSCSI network, or having 
the iSCSI packets somehow route into another network.

  A VLAN acts as a broadcast domain, eliminating unwanted chatter that would be 
reviewed and dropped from the network adapters responsible for sending and receiv-
ing storage traffic.

Since there is really no charge for creating an additional VLAN, there is little reason not 
to move forward with a dedicated iSCSI VLAN. Performance is king with storage, as 
we’ve tried to emphasize repeatedly, and anything you can do to enhance performance 
should be considered and reviewed for your   design.

iSCSI with Jumbo Frames
Since we’re on      the topic of performance, it’s definitely worth taking a look at the Maxi-
mum Transmission Unit (MTU) used for the iSCSI network. You might recall that the 
default MTU value is 1,500 bytes for an Ethernet frame. This is effectively how much data 
can be stuffed into a frame before it is considered full.

The default value of 1,500 bytes is perfectly fine and will operate without issue, but many 
folks often wonder if increasing the MTU value will help with performance. Whenever 
the MTU value is increased beyond the 1,500-byte point, the frame is considered a jumbo 
frame.

NOTE

Most people you chat with are going to assume that a “jumbo frame” has an MTU value of 
9,000 bytes. Strictly speaking, anything over 1,500 bytes is considered to be a jumbo. But 
knowing that 9,000 is the de facto standard can help avoid confusion when talking with 
other networking professionals.

The logic behind increasing the MTU to something like 9,000 bytes is that fewer frames 
are required to send the same amount of data. For example, if you needed to send 9,000 
bytes of data, it would take six regular-sized frames with an MTU of 1,500 bytes (1,500 
bytes * 6 = 9,000 bytes). It would only take one jumbo frame with an MTU of 9,000 bytes. 
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Thus, you have used five fewer frames, which is about 83% more efficient. Additionally, 
the network adapter only had to create one iSCSI frame, meaning less work went into 
packaging and sending the data. With all these positives, you would think everyone would 
be turning on jumbo frames—so why don’t they?

In reality, jumbo frames are hard to implement for existing infrastructures. They require 
ensuring that every single network device between your vSphere host and the storage 
array support jumbo frames: adapters, switches, the array, and so on. For some environ-
ments, this is relatively simple, while others will have to tackle a swath of red tape, change 
controls, and “it isn’t broke” arguments. And there are some situations where you’ll need 
to set the MTU value for your physical network switches to be higher than the VMkernel 
ports, such as 9,216 bytes (see Figure 14.2), due      to additional overhead.

VMkernel
Port

Storage
Array

vSwitch

Network
Adapter

Access
Switch

Other
Switches

Access
Switch

MTU ≥ 9000

Figure 14.2 A complex network topology using jumbo frames 

Unfortunately, we can’t make a clear recommendation either way on this one. It depends 
heavily on your specific use case, network hardware, and company politics. Some folks 
love jumbo frames, other people hate them. Countless masses have done study after study 
showing minor improvements in performance with jumbo frames, while still others show 
minor losses in performance. If you have a new environment where making the MTU 
changes are relatively simple, there’s nothing stopping you from giving it a shot to see if it 
works as advertised in your environment. In Chapter 15, “iSCSI Design and Configura-
tion,” we use jumbo frames just to give      you a taste of the process.

Let’s move on to the guts of what comprises iSCSI.

iSCSI Components
The high-level components of iSCSI are relatively straightforward to learn: an iSCSI ini-
tiator, which lives on the vSphere host, requests storage from the iSCSI target. The two 
exchange data over an iSCSI session. We go deeper into this in the next few sections.
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Initiators
Initiator is a   fancy term to describe the host or device that is accessing the storage array. 
In our case it’s a vSphere host, but it could also be just about any device that is capable of 
speaking iSCSI. When you configure your vSphere host for iSCSI, you are configuring 
the iSCSI initiator with a personality (name), IP information for the network, and perhaps 
some security information.

iSCSI initiators are responsible for locating iSCSI targets, which creates a session for 
exchanging SCSI commands over the IP network. You can see a few examples of some 
iSCSI initiators in Figure 14.3.

Figure 14.3 A few examples of iSCSI initiators on a vSphere host 

Targets
An iSCSI target   is controlled by the storage device or storage array. The target is respon-
sible for maintaining the stored data and making it available to the initiator. The target 
knows what data to make available because it has been associated with any number of 
Logical Unit Numbers (LUNs) on the storage array, usually by way of a storage group 
or some other vendor-specific name for a container of LUNs. The relationship between 
a target and the presented LUNs is called masking —it’s how the storage administrator is 
able to define what is presented to each specific host. Otherwise you’d see all devices on 
the entire storage array, which wouldn’t be all that secure, would it?

Figure 14.4 shows a quick look at an iSCSI software adapter’s target list against a single 
iSCSI server (storage array) named “nas1.glacier.local” on port 3260. Don’t worry; we 
go much deeper into the concept of software and hardware iSCSI adapters in the “iSCSI 
Adapters” section of this chapter.
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Figure 14.4 Targets discovered and in use with an iSCSI adapter 

Notice how there are two buttons available—one for Dynamic Discovery and another for 
Static Discovery? This allows you, the administrator in control, to determine how the ini-
tiator is made aware of the  targets:

  Dynamic Discovery , also commonly referred to as “Send Targets” in VMware docu-
mentation, is a method in which the initiator simply asks the storage array for a list 
of available targets. The storage array will then respond with a list of all the targets 
that can be reached by the initiator. If you are using a large number of targets, or just 
want the targets to automatically appear as they are created, dynamic discovery can 
be quite handy.

  Static Discovery , also called static targets, works very similar to how it sounds. You 
manually enter a list of targets that you wish to establish a session with. The list of 
targets never changes unless an administrator goes in and adds or removes targets 
from the list.

Both the initiator and target have a special naming format. There are a few different types 
of names and methods used when naming   iSCSI devices.

Naming
Warning—here’s   where it gets a little confusing, so it may take you a few passes through 
this segment and some hands-on time with iSCSI to really get it to stick. Let’s start with 
the basics.

Every iSCSI device, no matter if it is an initiator or a target, has a name. This name is 
called the IQN, which means iSCSI Qualified Name  . It has a very odd format that looks 
like this:

iqn.1998-01.com.vmware:esx1-12345678
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Weird, right? Let’s break that down in Table 14.1 to make it more human-readable.

Table 14.1 iSCSI Qualified Name (IQN) Structure

Field Purpose Example

Type Denotes the type of name. All IQNs begin with iqn. iqn

Date Denotes when the company (naming authority) 
took possession of the name in a year-month 
(YYYY-MM) format.

1998-01

Naming Authority Naming authority in reverse, the name of the 
company (naming authority) that produced the 
initiator or target.

com.vmware

Unique String This is the unique string field created by the 
naming authority. For VMware vSphere, it’s the 
name of the vSphere Host with a dash and random 
characters—you can change it to something 
more meaningful if you’d like (such as just the 
hostname).

esx1-12345678

This structure is   used for both sides of the equation—the initiator and the target. Let’s 
break down a target name in a similar fashion to what we did with the initiator name 
previously: 

iqn.2000-01.com.synology:NAS1.PernixData

  The first part of the target name starts with iqn, telling us we’re dealing with an 
iSCSI Qualified Name.

  Next, we can see the date that the company (naming authority) registered the name, 
which was January 2000 in this case.

  The naming authority is com.synology, which is synology.com in reverse.

  The final portion, which is the unique string, indicates that the name of the storage 
array is NAS1 and the target’s locally significant name is PernixData. Remember that 
the target can put whatever it wants in this segment, so it will change depending on 
the vendor and/or your specific configuration of the storage.

Knowing all the nitty-gritty about the IQN isn’t all that important for day-to-day opera-
tions, but we find it is good to know how the vendor is using the unique string portion and 
how to read   an IQN.
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There are also two other another naming formats that you might encounter, although 
rarely:

  Extended Unique Identifier (EUI)

  T11 Network Address Authority (NAA)

Now that we know how the initiator and target talk to one another, let’s move onto ways 
to secure the connection   with authentication.

Security with CHAP
Even if the       iSCSI Server (storage array) is limited to a specific VLAN, and you have made 
that VLAN nonroutable and isolated, there is still a chance that some unwanted entity 
could find a way to communicate with your server. In this case, some folks wish to secure 
the connection between their vSphere environment and the iSCSI storage with one addi-
tional layer of authentication.

Rather than encrypting the traffic itself, VMware vSphere only supports the use of the 
Challenge Handshake Authentication Protocol (CHAP) to secure iSCSI connections. 
Either one or both sides of the exchange require a password, called the secret , in order to 
establish an iSCSI session. And additionally, the password exchange occurs periodically 
throughout the duration of the iSCSI session to prevent relay attacks. Also, a hash of the 
password, rather than the password in clear text, is what actually gets exchanged.

There are two major methods you can employ with CHAP:

  Unidirectional CHAP: The target authenticates the initiator.

  Bidirectional CHAP: The target authenticates the initiator and the initiator authenti-
cates the target.

The choice of CHAP implementation largely depends on what your storage array supports 
and what type of iSCSI network adapter you are using. Table 14.2 shows publicly pub-
lished support for the various CHAP security levels with VMware vSphere 5.5.

Table 14.2 CHAP Security Levels 

Security Level Description Support

None No authentication. Software iSCSI

Dependent hardware iSCSI

Independent hardware iSCSI
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Security Level Description Support

Use unidirectional 
CHAP if required by 
target

The host prefers a non-CHAP 
connection, but can use a CHAP 
connection if required by the target.

Software iSCSI

Dependent hardware iSCSI

Use unidirectional 
CHAP unless prohibited 
by target

The host prefers CHAP, but can 
use non-CHAP connections if the 
target does not support CHAP.

Software iSCSI

Dependent hardware iSCSI

Independent hardware iSCSI

Use unidirectional 
CHAP

The host requires successful CHAP 
authentication. The connection fails 
if CHAP negotiation fails.

Software iSCSI

Dependent hardware iSCSI

Independent hardware iSCSI

Use bidirectional CHAP The host and the target support 
bidirectional CHAP.

Software iSCSI

Dependent hardware iSCSI

Managing and editing the authentication type for an iSCSI adapter is relatively straight-
forward. Select       the network adapter and edit the Authentication method from the default 
of None to whichever method you have determined is necessary in your environment. In 
the example shown in Figure 14.5, Use unidirectional CHAP has been chosen. It’s good 
to have a chat with your security team to find out if this is necessary since it can add an 
extra dimension of complexity to your host and storage configuration.

Figure 14.5 Configuring CHAP on an iSCSI network adapter 
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Figure 14.10 Adapter details from an independent hardware iSCSI adapter 

NOTE

Many Converged Network Adapters (CNAs)   or Universal CNAs (UCNAs)   have the ability 
to perform both standard Ethernet networking and iSCSI or Fiber Channel over Ethernet 
(FCoE) functions—but not both iSCSI and FCoE at the same time. Just be on the lookout 
for TOE versus full protocol offload. This applies to network adapters in both traditional 
PCIe card format and blade server mezzanine card format. 

iSCSI Design
Now that     you are armed and dangerous with a solid understanding of iSCSI, its compo-
nents, and the various adapters, let’s shift into a design discussion. There are a few differ-
ent methods available to you for designing the virtual network for iSCSI, and you should 
be aware of the benefits and drawbacks of each.

Because iSCSI uses the TCP/IP stack, it is reliant upon certain rules followed by the 
vSphere host. One such rule is how routing table lookups are performed. Whenever you 
are trying to reach a destination in a network, the vSphere host examines its routing table 
to determine if it has a VMkernel port on the intended network.

NOTE

If you are using an independent hardware iSCSI adapter (iSCSI HBA), the routing table on 
the vSphere host is no longer relevant. The iSCSI adapter handles all of the IP connectivity 
without involving the host.
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For example, if your iSCSI server has an IP of 192.168.1.22 with a subnet mask of 
255.255.255.0, then the destination network for all iSCSI traffic is 192.168.1.0 /24. If you 
attempt to send iSCSI traffic to this network, the host will look through its routing table 
to find a VMkernel port that is also in the 192.168.1.0 /24 network. It will also see if you 
have manually created any static routes. If there are no matches, the host will be forced to 
use the default gateway to reach your iSCSI server. Generally, that is not what you want to 
happen.

REAL WORLD

Any time a VMkernel port on the destination network cannot be found, you’re entering 
the realm of routed iSCSI. This means we are using routing to reach the destination, which 
involves multiple networks and ultimately increased latency due to additional hops. Routed 
iSCSI is nearly always a corner case and should be avoided unless absolutely necessary.

Knowing this, let’s discuss some design ramifications of the two methods available for 
relating iSCSI traffic to physical     network adapters.

NIC Teaming
The first      design option is to use NIC teaming, which is something you should be reason-
ably familiar with from other traffic types like Management and VM Traffic. NIC teaming 
dictates that we provide two or more network adapters and allow the teaming policy to 
determine where to place the workload. It works great for VMs and some types of man-
agement traffic. Unfortunately, it’s not a very good way to handle iSCSI traffic.

To understand why, let’s go back to the routing table discussion from earlier. Let’s say 
there is a VMkernel port, vmk1, named “iSCSI” that is operational and on the same subnet 
as the iSCSI server. When iSCSI traffic wants to reach the iSCSI server, the host locates 
the VMkernel port because the routing table tells the host that the “iSCSI” VMkernel port 
is on the same subnet as our iSCSI server. However, the VMkernel port can only operate 
on a single physical network adapter, even if multiple adapters are available, as shown in 
Figure 14.11.

Therefore, all iSCSI traffic would use only vmnic0. The other network adapter, vmnic1, 
would sit there idle unless vmnic0 failed—at which point vmnic1 would take over as the 
active network adapter and vmk1 would point itself at vmnic1.

You might think that you can get around this issue by creating a second VMkernel port. 
So you add a second VMkernel port, vmk2, and name it “iSCSI2” with an IP address 
of 192.168.1.110. A diagram of this model is shown in Figure 14.12. Let’s see how that 
would work.
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The routing table is unchanged. The host does not use multiple VMkernel ports to reach 
the same network. In this case, vmk1 was the first entry in the routing table for the net-
work 192.168.1.0 / 24. It will remain in the routing table until that VMkernel port is either 
removed or reconfigured to a different network.

Because of this behavior, standard NIC teaming is a rather poor choice for iSCSI storage. 
Its only real advantage is the ability to do routed iSCSI traffic, which is not supported by      
the other design method: network port binding.

Network Port Binding
The highly       preferred method for doing iSCSI storage traffic with vSphere is network port 
binding. This allows you to use a multipathing design to pass along iSCSI storage traffic. 
There’s really no reason to avoid this design unless your use case strictly prohibits the abil-
ity to use switching, not routing, for your iSCSI storage network.

Network port binding requires a rather stringent configuration so that the host under-
stands exactly what you are trying to do. We can boil down the requirements to these 
items:

  Every network adapter that will pass along iSCSI traffic has a single, unique 
 VMkernel port for iSCSI traffic.

  Each VMkernel port cannot be used by more than one single network adapter.

There are two different ways you can build this relationship—a multiple vSwitch design 
and a single vSwitch design. They are both equally effective and are ultimately driven by 
the quantity and layout of your network adapters.

Multiple vSwitch Design
The multiple   vSwitch design uses an entire vSwitch to isolate the VMkernel ports and net-
work adapters from one another. Each vSwitch will house a single iSCSI VMkernel port 
and a single network adapter. Figure 14.13 shows the multiple vSwitch design.

Notice that the routing table is no longer shown? Because we’re using network port bind-
ing, the routing table is no longer the determining factor for which VMkernel port is used 
for iSCSI traffic. The Path Selection Policy  , or PSP, is now in charge of determining 
which network adapter will send traffic. Using this approach, we have effectively mini-
mized the importance of the vSphere network configuration and are instead living in the 
realm of storage.
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The major difference with the single vSwitch design is that it uses failover order to isolate 
the VMkernel port onto a network adapter. Let’s review the failover order for the two 
VMkernel ports:

  vmk1: Active on vmnic0, Unused on vmnic1

  vmk2: Active on vmnic1, Unused on vmnic0

NOTE

The design diagram assumes only two network adapters named vmnic0 and vmnic1. If you 
have more adapters, make sure that all but one adapter is set to Unused for each VMkernel 
port. It is very important to select Unused and not Standby for port binding; the wizard 
does not allow a configuration where Standby has been chosen.

By setting this failover order, we’ve isolated each VMkernel port to a single network 
adapter. If the Active network adapter fails, the VMkernel port will no longer remain 
functional, which is the desired result. The PSP will cease using this dead path and shift 
all traffic to the surviving paths. Additionally, assuming your vendor supports RR IO, you 
can utilize two or more network adapters simultaneously, which can lead to an improved 
quantity         of throughput.

Boot from iSCSI
It can be   somewhat annoying to have hard disks inside your vSphere server, especially at 
scale. One potential solution to this is to avoid using local disks inside of the server and 
instead boot from a LUN on your storage array. This is usually referred to as “Boot from 
SAN” or BFS if you’re short on time. VMware has supported booting from SAN using the 
iSCSI protocol since ESXi 4.1. This is supported even with the software iSCSI adapter. 
But wait, you might ask—how do I boot from the SAN using a software iSCSI adapter 
when the hypervisor isn’t installed yet?

The trick is to use a special type of network adapter that supports iSCSI Boot Firmware 
Table (iBFT)  . Think of this as a type of helper that knows the details necessary to find 
the iSCSI server, connect to a target, and mount a LUN for booting. You can find over 
200 supported network adapters in the Hardware Compatibility List (HCL) on VMware’s 
website. Just make sure to set the “What are you looking for?” field to IO Devices, 
the I/O Device Type to Network, and then look for the keyword iBFT, as shown in 
Figure 14.15.
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Figure 14.15 A list of network adapters that support iBFT 

The high level steps necessary to install ESXi   using this method are:

 1. Boot up your   server and press the vendor-required keystrokes to enter the configura-
tion of your network adapter.

 2. Configure the adapter with your iSCSI IP, mask, and target information.

 3. Save your configuration and restart the server, but do not enable the iSCSI boot.

 4. Present the VMware ESXi installation media to the server using an ISO, DVD, or 
whatever method you prefer.

 5. While the server boots up, the network adapter will contact your storage target and 
connect to the boot LUN.

 6. When prompted by the installation media, begin an install of ESXi to the iSCSI 
boot LUN.

 7. Remove the ESXi installation media and restart.

 8. Reconfigure your network adapter to boot to iSCSI.

Keep in mind that the detailed steps vary depending on the type of hardware you select. 

REAL WORLD

When creating  a unique LUN for your server to boot from, try to make sure the host-
facing LUN ID (often called the Host ID) is 0. Almost all vendor hardware that has a boot 
configuration will assume LUN 0 is the boot LUN, although we have run into a few that 
look for some oddball number. Consider LUN 0 the de facto standard booting ID or read 
the vendor documentation carefully. Additionally, we often like to make sure that only the 
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boot LUN is presented to a host the first time you install the hypervisor onto it. After all, 
you don’t want to accidently install ESXi to the wrong LUN, especially if it contains valid 
data and is wiped by the install process!

There are   many advantages to using a boot from SAN architecture:

  Hardware Upgrades: If you need to upgrade the ESXi server hardware, just remove 
the server and plug in a new one, then reconfigure the network adapter—no hyper-
visor reinstall necessary.

  Hardware Mobility: The ESXi server can change personalities by changing boot 
LUNs, such as a boot LUN for ESXi 5.1 production and a boot LUN for ESXi 5.5 
to test the new features.

  Reduced Capital Expenses (CapEx): You’ve already purchased that big, redundant 
storage array, and wish to use it for booting to save on a large quantity of hard drives 
inside of your servers.

Do keep in mind that booting from SAN increases your vSphere host failure domain to 
include your SAN and the storage array itself. If the SAN is unavailable, your hosts can no 
longer boot, though running hosts should chug along fine as the hypervisor is loaded into 
RAM. Usually, though, if the SAN is unavailable, you have bigger concerns. 

NOTE

Let’s be clear. We’re not fans of booting from iSCSI—there are much better ways to do this, 
such as stateless Auto Deploy. This doesn’t mean iSCSI boot can’t or shouldn’t be used, but 
we view it as a lot of additional complexity added for something as trivial as the hypervisor, 
which should be as stateless as possible anyway. Simplicity is the cornerstone of all great   
designs.

Summary

Whew, what an adventure through the land of iSCSI. You should now be familiar with 
all the components within the iSCSI stack, along with a foundational knowledge around 
the architecture necessary to get iSCSI humming along. We also poked into the two 
major design scenarios used with iSCSI networking. It’s time to apply all that newly 
found knowledge! The next chapter focuses on the design and configuration steps needed 
to create a real-world, working implementation of iSCSI networking to connect to an 
iSCSI LUN.
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Chapter 15

iSCSI Design and Configuration

Key Concepts
  iSCSI Network Address Scheme

  Network Port Binding

  iSCSI Server and Target Discovery

  CHAP Authentication

  Path Selection Policies

Introduction
It’s time for the fun part: getting your hands dirty with some iSCSI design and configura-
tion. This chapter focuses heavily on a real-world scenario involving the use of iSCSI to 
map and present storage for your virtual workloads. Because it’s important to expose you 
to as many variations as possible, our use case is going to include a lot of extra require-
ments that might not come up when and if you need to use iSCSI. It’s perfectly okay if you 
don’t end up implementing some of the features we use here, such as CHAP, because it’s 
ultimately your specific use case that determines what is implemented.

Without further ado, let’s get cracking.
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iSCSI Design
All great implementations stem from much time spent thinking about the overall design. 
And all poor implementations skip the design step and go straight into clicking but-
tons. We hate poor implementations, so we start with the design for our scenario to kick 
things off.

Use Case
The use case      scenario plays out as follows:

Your boss at Initech Corp is looking to add storage to the virtual environment using 
a new storage array. In order to keep costs down, he wants you to use the exist-
ing Ethernet network to attach the array instead of purchasing the infrastructure 
required to implement a new fiber channel SAN. Additionally, many of your criti-
cal virtual workloads require block-based storage—meaning they must be able to 
directly manipulate the blocks inside of a volume or LUN—to meet software support 
requirements. Reviewing the options with various storage array vendor specification 
sheets, you realize that the only option you have is to implement the iSCSI protocol. 

The iSCSI storage design needs to be able to handle a large quantity of storage traf-
fic during peak times. It also needs to be as secure as possible to meet the security 
requirements set by your audit team.

There are a few nuggets of information that help feed a design based on the scenario:

  “Critical virtual workloads” are being supported, which most likely drive the need for 
low latency and multiple paths to storage for redundancy.

  You must use the “Ethernet network” to reduce cost and support “block-based stor-
age” for workload software support—this is a constraint that limits the design to 
iSCSI or Fiber Channel over Ethernet (FCoE). However, because your storage array 
vendor supports only iSCSI, you are constrained to iSCSI.

  “Large quantity of storage traffic” might tip you in favor of using a large Maximum 
Transmission Unit (MTU) value to be able to further saturate the Ethernet network 
with iSCSI data.

  “Be as secure as possible” feeds many different requirements, such as the need for an 
isolated iSCSI VLAN, not routing the iSCSI VLAN, and potentially using CHAP 
for the initiator and target.

Not everyone will read the use case and come to the same conclusions, but it is impor-
tant to at least call out the requirements and constraints to determine what choices are 
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available. For example, you might determine that having 10 Gb Ethernet is enough to 
meet the “large quantity of storage traffic” requirement    without using jumbo frames.

REAL WORLD

It’s hard  to design in a bubble. When given a use case that is open ended, as this one is, it’s 
best to talk out your thoughts on the design with your team and with other stakeholders in 
the design. This ensures that you have buy-in from all parties who have an investment in the 
success of your architecture, as well as other pairs of eyes to pick out any requirements or 
constraints you might have missed. Lack of communication is often the root cause of many 
design flaws.

Naming Conventions
We’re going    to build upon the work completed in Chapter 13, “Distributed vSwitch 
Design.” It doesn’t matter that we’re using a Distributed vSwitch, as the design is almost 
identical for a Standard vSwitch: a Standard vSwitch requires building a VMkernel Net-
work Adapter directly on the vSwitch, where a Distributed vSwitch requires first building 
a distributed port group and then a VMkernel port.

While much of the work has already been completed in the Distributed vSwitch chapter, 
there are some changes that we’re going to make. This will modify the original design 
from one that is not optimal into one that is superb.

First off, our vSphere hosts have only two network adapters—vmnic0 (Uplink 1) and 
vmnic1 (Uplink 2). So we need two distributed port groups, one for each network adapter, 
in order to use network port binding. We’ve decided to use vmnic0 for the “A” side of 
iSCSI, and vmnic1 for the “B” side of iSCSI.

Thus, the names and failover order will look like:

  Distributed port group #1: iSCSI_A, Uplink 1 Active, Uplink 2 Unused

  Distributed port group #2: iSCSI_B, Uplink 2 Active, Uplink 1 Unused

Notice the naming structure? We’ve denoted that both distributed port groups will handle 
iSCSI traffic and are using a common SAN-naming structure of “A” and “B” fabrics.

The next items we need to call out are the VMkernel ports. There’s an existing VMkernel 
port, vmk3, on each host. However, we need two of them, one for each network port bind-
ing. Let’s verify and create the following:

  VMkernel Port #1: vmk3 for the “A” iSCSI network

  VMkernel Port #2: vmk4 for the “B” iSCSI network
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We’ve drawn up a table containing the IP addresses for the first five hosts to help you visu-
alize how this works (see Table 15.2). The network address structure allows for 100 hosts, 
which is okay because the storage array we’re using would wither under the IO stress long 
before we exhausted the IP address list. If you need more addresses for your environment, 
you could use a larger subnet or a unique subnet for each vSphere cluster.

Table 15.2 iSCSi IP Addresses for Initech Corp Hosts

Host iSCSI A Network Address iSCSI B Network Address

ESX1 192.168.215.1 192.168.215.101

ESX2 192.168.215.2 192.168.215.102

ESX3 192.168.215.3 192.168.215.103

ESX4 192.168.215.4 192.168.215.104

ESX5 192.168.215.5 192.168.215.105

This has an added bonus of making it easy to eyeball the IP address and know which host 
is using it, because the last octet in the IP address is equal to the host name’s number. If 
you have the ability to make the numbering scheme simple like this, go for it. But don’t 
sweat it if the numbers don’t jibe, it’s not that terribly important.

The iSCSI Server address will be 192.168.215.254, which is the last     IP address in the 
range.

vSwitch Configuration
It’s time to build out our iSCSI network. We start by ensuring that all the needed distrib-
uted port groups have been created, followed by the VMkernel ports, and then we bind 
them together using network port binding.

iSCSI Distributed Port Groups
Based     on the design, we need two distributed port groups:

  Distributed port group #1: iSCSI_A

  Distributed port group #2: iSCSI_B

We already have one created named “iSCSI_Storage” that can be reconfigured. From 
the vSphere Web Client, navigate to the Networking pane, select the iSCSI_Storage 
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There, iSCSI_A is now named and configured properly. It’s time to build the iSCSI_B dis-
tributed port group. Start by clicking on the Production_LAN Distributed vSwitch, open 
the Actions menu, and choose New Distributed Port Group. When the wizard opens, 
enter the name iSCSI_B as shown in Figure 15.4.

Figure 15.4 Creating the iSCSI_B distributed port group 

In the configure settings screen, make sure to set the VLAN type to VLAN and enter the 
VLAN being used for iSCSI—215. Also, check the box for Customize default policies 
configuration, as shown in Figure 15.5, so that we can set the teaming and failover policy 
in the wizard.

Figure 15.5 Configure settings for the iSCSI_B distributed port group 
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Keep clicking Next until you arrive at the Teaming and Failover screen in the wizard. 
Select Uplink 1 and click the blue down arrow until it is in the Unused uplinks group. 
Make sure that Uplink 2 remains in the Active uplinks group, as shown in Figure 15.6.

Figure 15.6 Failover order for the iSCSI_B distributed port group 

Complete the wizard with default values and click Finish. There should now be both an 
iSCSI_A and iSCSI_B distributed port group.

NOTE

We’ve only made two distributed port groups because we only want to use two network 
adapters. You can use more network adapters than just two if you wish, but the rules still 
apply: Each VMkernel port can only have one active uplink. All other uplinks must be set to 
Unused in order for the port binding wizard to complete successfully and build unique paths 
to the iSCSI     target.

VMkernel Ports
The next      step is to create the necessary VMkernel ports for our iSCSI network. One 
VMkernel port already exists, vmk3, and has the correct IP address. It should also be in 
the iSCSI_A distributed port group, since that’s how it was configured in Chapter 13. This 
leaves us with the new VMkernel port, vmk4, for the iSCSI_B distributed port group.
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NOTE

There is nothing significant about the vmk number. It’s just a way we can track the 
VMkernel port number for this walkthrough. Yours will most likely be a different number 
from ours, and that’s perfectly fine. It’s wise to try and use the same vmk numbers on each 
host to enforce consistency, improve identification, and assist troubleshooting, but not 
required.

Let’s go ahead and create vmk4. Start by visiting the vSphere Web Client, navigate to the 
Host and Clusters pane, and select host esx1. From there, click the Manage tab, choose 
the Networking sub-tab, and click on the VMkernel adapters menu item. The list looks 
like that shown in Figure 15.7.

Figure 15.7 A list of VMkernel adapters on host esx1 

Click on the Add host networking icon, which looks like a small globe with a green plus 
sign, and choose the VMkernel Network Adapter radio button, as shown in Figure 15.8. 
Click Next.
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Figure 15.8 Adding a VMkernel network adapter to host esx1 

In the select target device screen, choose the distributed port group named iSCSI_B, as 
shown in Figure 15.9. Click Next until you reach the IPv4 Settings configuration page.

Figure 15.9 Put the new VMkernel network adapter on the iSCSI_B distributed port group 

Enter the IPv4 address and subnet mask for the iSCSI_B network on host esx1. Refer to 
Table 15.2 for the values, which we have put into Figure 15.10.
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Figure 15.10 Configuring the new VMkernel network adapter on the iSCSI_B distributed 
port group 

Complete the wizard with default values and click Finish. The end result should be a 
new VMkernel port, which is vmk4 for our environment, as shown in Figure 15.11.

Figure 15.11 Host esx1 now has both the iSCSI_A and iSCSI_B VMkernel ports added 
and configured
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You need to repeat this section for the other host, esx2. Make sure to use the correct IP 
address as described in Table 15.2. When completed, you can move on to the fun bit—
network port binding.

Network Port Binding
It’s now      time to blur the lines between network and storage a bit. In order to create a 
relationship between the VMkernel ports and the physical network adapters, we need to 
enable the software iSCSI adapter  . Think of it like the glue that binds the two together.

Start by opening the vSphere Web Client, navigating to the Hosts and Clusters pane, and 
choosing host esx1. From there, click the Manage tab, the Storage sub-tab, and select 
Storage Adapters from the list (see Figure 15.12). The software iSCSI adapter is missing 
from the list.

Figure 15.12 A list of storage adapters on the esx1 host 

Click the green plus sign button to add a new storage adapter, and select the software 
iSCSI adapter. A warning appears stating:

A new software iSCSI adapter will be added to the list. After it has been added, 
select the adapter and use the Adapter Details section to complete the configuration.

Click OK to continue. The host kicks off a task to create the new software iSCSI adapter. 
When complete, the storage adapter list refreshes and a new adapter named iSCSI 
Software Adapter appears. The adapter is automatically assigned an IQN and given 
a vmhba value—this is an assignment provided by the vSphere host for any Host Bus 
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 Adapters (HBAs). Click on the iSCSI software adapter to view the properties, as shown in 
Figure 15.13.

Figure 15.13 The new software iSCSI adapter on host esx1 

Now, click on the Network Port Binding tab in the Adapter Details section. Because this 
is a brand new adapter, the list is empty with a “No VMkernel network adapters are bound 
to this iSCSI host bus adapter” statement. Let’s fix that. Start by clicking the green plus 
sign to add a new binding, which begins a binding wizard, as shown in Figure 15.14.

Figure 15.14 Creating new bindings on the iSCSI software adapter 
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This is a great figure to help pull all of the concepts of network port binding together. 
Here, you can see the relationship between a distributed port group, the VMkernel 
port, and the physical network adapter. Creating a port binding formally recognizes this 
relationship.

Click on the first item on the list, which is the iSCSI_A port group, to get details. The 
Port group policy on the Status tab should be Compliant in order to proceed. If so, click 
the OK button, then repeat the process for the iSCSI_B port group. When finished, the 
network port binding list shows two port groups bound, one for iSCSI_A and the other 
for iSCSI_B, with a policy status of compliant and a path status of Not Used, as shown in 
Figure 15.15.

Figure 15.15 A list of network port bindings on the software iSCSI adapter 

The reason we see a path status of Not Used is because there are no iSCSI targets con-
nected. The paths are literally not being used by anything. This persists until we add stor-
age in the next section.

Jumbo Frames
This is a       good point to take a breather and decide if you want to introduce jumbo frames 
to the mix. It’s good to make up your mind now before you start consuming storage, as 
it can be risky to change later when workloads are in production. We cover all the MTU 
changes that need to be made on the virtual environment size, but remember that all the 
devices between your ESXi server and the storage array must support jumbo frames in 
order for this to work optimally.
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In our use case, we have decided that the requirements justify the use of jumbo frames. We 
have verified with our network team that jumbo frames have been enabled on all physical 
devices between the hosts and the storage array. So, we need to edit the MTU size on the 
following objects in the vSphere environment: the Production_LAN Distributed vSwitch 
and both VMkernel ports. Navigate to the Networking pane in the vSphere Web Client 
and click on the Production_LAN Distributed vSwitch. From there, open the Actions 
menu and choose Edit Settings. Select the Advanced menu and change the MTU value 
to 9,000, as shown in Figure 15.16, then click OK.

Figure 15.16 Setting the MTU to 9,000 on the Production_LAN Distributed vSwitch 

The Distributed vSwitch should quickly configure itself to the new MTU value. You can 
now navigate to the Hosts and Clusters pane in the vSphere Web Client, click on host
esx1, then find the Manage tab, Networking sub-tab, and the VMkernel adapters menu 
item to view a list of all the VMkernel ports on the host.

Edit both the iSCSI VMkernel ports, which are vmk3 and vmk4 in this environment, by 
changing the MTU value in the NIC settings menu as shown in Figure 15.17.
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Figure 15.17 Setting the MTU to 9,000 on the iSCSI VMkernel ports within host esx1 

Repeat this process for host esx2, along with any other hosts you have in your environ-
ment. It’s now time to add an iSCSI storage array, find some targets, and mount storage.

Adding iSCSI Devices
Now that the entire iSCSI network is properly configured and operational, we can point 
our iSCSI initiators toward some iSCSI targets and begin mounting storage. The Initech 
Corp storage admin has already carved up several LUNs on the storage array and pre-
sented them to three different iSCSI targets: production, development, and engineering. 

iSCSI Server and Targets
We’re    going to connect to the array using dynamic discovery (send targets) to show you 
how to map three different targets using a single iSCSI server IP. If you recall from earlier, 
the storage array is located at 192.168.215.254 /24.

From the vSphere Web Client, navigate to the Hosts and Clusters pane, select host esx1, 
click on the Manage tab, the Storage sub-tab, and the Storage Adapters menu item. 
From there, click on the iSCSI Software Adapter, which is vmhba33 for Initech Corp, 
and then click on the Targets menu in the adapter details bottom pane, as shown in 
Figure 15.18.
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Figure 15.18 An empty list of targets for our iSCSI software adapter on host esx1 

Click the Dynamic Discovery button, and then click Add. Enter the storage array’s IP 
address into the iSCSI server field, and leave the port set to the default of 3260, as shown 
in Figure 15.19. We’ll leave the “Inherit settings from parent” check box checked for now, 
but we come back to the authentication settings later.

Figure 15.19 Configuring the iSCSI Server address 
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Click OK to finish the wizard. At this point, a warning states that a rescan of the storage 
adapter is recommended, including a yellow warning triangle next to vmhba33. Kick off 
a rescan for the adapter by making sure that the iSCSI Software Adapter is selected and 
clicking the rescan button, which looks like a grey box, as shown in Figure 15.20.

Figure 15.20 Rescanning the iSCSI Software Adapter for new storage devices 

When the rescan is completed, check the list of targets for the iSCSI software adapter by 
clicking the Static Discovery button. Figure 15.21 shows that the send targets method has 
found three iSCSI targets for production, development, and engineering. 

Figure 15.21 The iSCSI Server has revealed three unique iSCSI targets 

Congratulations, we’ve successfully verified end-to-end connectivity of the iSCSI network. 
Go ahead and do a celebration dance, unless you’re at work—your coworkers might not 
appreciate your magnificent triumph to the same degree. In that case, find someone for a 
high five.
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REAL WORLD

Why not just configure CHAP first? It’s often best to slowly walk your way into a new 
configuration, and we prefer to save authentication for after we know that the network is 
operational. Otherwise, if the connection were unsuccessful, you would not know whether 
it was the network connectivity or the authentication causing problems. By making small 
configuration changes that lead up to a final configuration, we ensure that each step was 
successful.

Authentication with CHAP
It’s time to       add a bit of security to the mix using CHAP. There are two ways that CHAP is 
typically employed for an environment:

 Discovery Authentication: CHAP  can be used by the iSCSI Server to protect the dis-
covery of targets via dynamic discovery (send targets).

 Target Authentication: CHAP  can also be used to protect the iSCSI target, pre-
venting the initiator from being able to view the devices associated with a target. 
In this case, you can discover the target itself but cannot view the devices without 
authentication.

The security manager at Initech Corp has mandated that CHAP is only required on the 
Production iSCSI target. This opens up a variety of options for CHAP configuration since 
the authentication credentials can be configured in a variety of locations:

Configure CHAP on the iSCSI Software Adapter (vmbha33) and let the server and 
target inherit the settings. 

Configure CHAP on the iSCSI Server entry and let the target inherit the settings.

Configure CHAP on the iSCSI Target directly.

If you have different secret passwords for each target, you have to configure them directly 
on the target. In this case, we configure the authentication credentials on the iSCSI server 
object and let the target inherit the configuration.

To begin, open the vSphere Web Client and navigate to the Hosts and Clusters pane; then 
select host esx1, click the Manage tab, the Storage sub-tab, and select Storage Adapters 
from the       menu. From there, click on the iSCSI Software Adapter vmhba33 and choose 
Targets in the adapter details pane. Make sure the iSCSI Server 192.168.215.254:3260 is 
selected and click Authentication, as shown in Figure 15.22.
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Figure 15.22 Configuring authentication on the iSCSI Server entry 

In the Authentication Settings screen, change the authentication method from None 
to Use Unidirectional CHAP if Required by Target and enter the name and 
secret (see Figure 15.23). In our case, the name is swingline and the password is 
 1weLoveREDStapl3rs!—this is a strong password. In a production environment, it’s best 
to use a lengthy password that includes greater complexity to weed out brute force attacks. 
When entered, click OK.

Figure 15.23 Entering the CHAP credentials 
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Make sure to rescan your iSCSI Software Adapter and ensure that the new CHAP creden-
tials are working properly. If the configuration was successful, you should be able to see all 
the devices associated with the target that required CHAP.

Click on the Devices tab to view all the LUNs available. In our case, each iSCSI target is 
associated with a single LUN, which are outlined in Table 15.3.

Table 15.3 iSCSI Target and LUN Associations

iSCSI Target CHAP Required? Size

Production Yes 10 GB

Development No 9 GB

Engineering No 8 GB

Figure 15.24 shows a view of the devices (LUNs) from the vSphere Web Client.

Figure 15.24 Available LUNs through the iSCSI targets 

Make sure to visit host esx2 and repeat the steps necessary to configure CHAP authentica-
tion. When completed, we’ll put the LUNs to good use and start creating datastores for 
the VMs.

Creating VMFS Datastores
Because the    devices, or LUNs, are now available to the hosts, they can be used as VMFS 
datastores. The process for consuming iSCSI LUNs is identical to a local disk, fiber chan-
nel LUN, or any other block device.

From the vSphere Web Client, navigate to the Hosts and Clusters pane and select host
esx1. Open the Actions menu and choose New Datastore. Work through the first two 
screens in the wizard, making sure that the host is esx1 and the type is VMFS, before you 
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get to the name and device selection screen. You should see the three available LUNs as 
potential choices, as shown in Figure 15.25.

Figure 15.25 Available LUNs through the iSCSI targets 

We made it easy for you by making sure that no two LUNs were the same size. The 10 
GB LUN must be the one for production because it is the only choice with a capacity of 
10 GB. This is a handy trick for making it easier to find a LUN, but certainly not required. 
You could also record the full name of the device or only connect one target at a time.

Enter a Datastore Name at the top—we’re going to use Production_01. Then select the 
10 GB LUN from the device selection area. Continue through the wizard and accept the 
remaining defaults. A task will begin to format the VMFS datastore. When completed, 
click on the Related Objects tab followed by the Datastores sub-tab to see the new 
datastore. You should be able to see the newly created Production_01 datastore, as shown 
in Figure 15.26.

Figure 15.26 The datastores available on host esx1 
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Congratulations, you now have an operational datastore mounted over the iSCSI protocol. 
It’s slightly smaller than 10 GB due to some formatting and overhead data, but that is to 
be expected. Continue adding datastores for the Development and Engineering depart-
ments, naming their datastores Development_01 and Engineering_01. The end result 
should look like that shown in Figure 15.27.

Figure 15.27 All the iSCSI-presented LUNs are now formatted as VMFS datastores  

There’s no need to repeat these steps for any of the other hosts. Rescan the iSCSI software 
adapter on host esx2 and it will realize that it now has access to the new VMFS datastores.

If you recall from earlier, one of our requirements is to ensure that we allow for a large 
quantity of throughput on the network adapters. One way to do this—assuming it is sup-
ported by your    workload and storage array—is to use Round Robin for your Path Selec-
tion Policy (PSP).

Path Selection Policy
We’re going    to change the PSP for the Production_01 datastore from Fixed, the default 
for our particular storage array type, to Round Robin. To do this, we need to drill into the 
multipathing policy configured on the datastore.

Open the vSphere Web Client and navigate to the Storage pane. Select the datastore 
named Production_01 from the list; then click the Manage tab and the Settings sub-tab. 
From there, pick the Connectivity and Multipathing menu item. You should see both 
hosts, esx1 and esx2, in the list connections, as shown in Figure 15.28.
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Figure 15.28 The hosts connected to the Production_01 datastore 

In order to edit the multipathing policy, you need to select host esx1 and choose the Edit
Multipathing option in the bottom pane. Change the PSP from Fixed (VMware) to 
Round Robin (VMware). At this point, the paths will grey out because there is no need 
to select a path (see Figure 15.29) —they will both be used in a Round Robin fashion. By 
default, 1,000 IO will be sent down one path, then 1,000 IO down the next path, in an 
alternating fashion.

Figure 15.29 Changing the default PSP from Fixed to Round Robin 

Repeat the process for the other host, esx2. Now both hosts will use the Round Robin 
PSP to send data to the storage array, which will use both network adapters. Keep in mind 
that anytime you change the PSP for a LUN on a host, you must repeat that change for 
all other hosts that access that same LUN. Otherwise, weird (and often bad) things might 
happen.
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REAL WORLD

Exercise caution before you just go wildly changing the PSP for a datastore. Carefully verify 
that all the VMs using the datastore support the new policy. For example, until vSphere 5.5 
was released, Round Robin was not supported for LUNs mapped by raw device mappings 
(RDMs) used with shared storage clustering (such as Microsoft SQL) failover clusters, also 
referred to as MSCS or Microsoft Clustering Services). Additionally, make sure your storage 
array vendor supports Round Robin. Failure to do so can result in an outage or    data loss—or 
an “oopsie” to use the technical term.

Summary

You should now feel confident about the process required to design and configure your 
iSCSI SAN to include the virtual network. Using Ethernet to send and receive storage 
traffic is not that labor-intensive to implement, but requires a lot of thought behind the 
architecture. Data traffic is very sensitive to latency and lost packets, and requires that you 
treat it with a very high priority on the network. By respecting this fact, you can success-
fully deploy iSCSI or any other IP-based storage protocol, as many others can attest.
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Chapter 16

NFS General Use Cases

Key Concepts
  Network File System (NFS) Protocol

  NFS Exports and Daemons

  Access Control Lists (ACLs)

Introduction
Another   IP based storage protocol that is supported by VMware vSphere is Network 
File System (NFS). For long periods of time, it was shuffled off into a dark corner, being 
branded as a protocol good for nothing more than mounting ISO files to virtual guests. 
For the past several years, however, NFS has gained a lot of traction as a valid tool in 
enterprise architecture for presenting storage to a VMware virtual infrastructure. It is a 
protocol that is difficult to properly design for but very simple to operate and consume. In 
this chapter, we go deep into the weeds on how to be successful with NFS from a network-
ing perspective.

Understanding NFS
The   name “Network File System” tends to cause a lot of confusion, so let’s address that 
first. NFS is a file system protocol, not a file system itself, and is only responsible for get-
ting data to and from a storage array. The storage array can run whatever file system it 
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wishes. There is no such thing as formatting a partition with “NFS” because, again, it’s 
just a protocol. Furthering the confusion, the disk type field in vSphere shows “NFS” 
when connected via the NFS protocol. Just think of it as an abstraction of the storage 
array’s underlying file system. 

KEY TAKEAWAY

NFS is a file system protocol, not a file system.

NFS has traditionally been much more flexible than VMFS. For example, there is no 
vSphere-imposed limitation on the size of a datastore—it’s up to the storage array to pro-
vide the limit. Additionally, NFS does not have LUN locking issues, as with block storage, 
because locking occurs at the individual file level. Since a VM can only run on a single host 
at any given time, having a lock on a file (such as a VM Disk [VMDK]) is acceptable.

Due to its incredible flexibility and access to large quantities of capacity, NFS became a 
popular method for providing storage for things like ISO files, log files, and other non-
VM workload objects that have no serious performance needs. An administrator could 
whip up an NFS configuration in a short period of time and easily share out very large 
datastores to all the hosts in multiple clusters with ease. As lower-latency, priority-based 
Ethernet networking technology became more affordable and powerful, NFS began to 
gain some fame. The fact that the NFS client in ESX/ESXi has matured over the years has 
also promoted NFS to an active role supporting more intense workloads.

REAL WORLD

To be clear, we’ve seen entire corporations run hundreds and thousands of production VMs 
on NFS. In each case, NFS met the design use case and was architected to fulfill the require-
ments and constraints. There is nothing inherently better or worse about NFS. We just 
want you to know that it’s a perfectly valid design  option for many environments.

Lossless Versus Best Effort Protocols
In Chapter 14, “iSCSI General Use Cases,” we     talk about ensuring priority for iSCSI stor-
age traffic. The same rules apply here. Both are forms of IP storage that use an Ethernet 
network to pass along data. And Ethernet is a best effort protocol that is expected to drop 
traffic from time to time. You can use methods like Priority-based Flow Control (PFC) 
to configure Classes of Service (CoS) that avoid dropping NFS traffic during times of 
congestion. 
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VLAN Isolation
The same   idea for VLAN isolation, which we also cover heavily in Chapter 14, is relevant 
for NFS. If you plan to run both protocols to run VMs, it’s best to create unique VLANs 
for each. This enhances security because no one breach will result in both networks being 
compromised.

Additionally, having a unique VLAN for each traffic type aids in troubleshooting and any 
environment changes. For example, if you need to do maintenance on the NFS VLAN, 
it would most likely not affect the iSCSI VLAN, meaning you would only need to issue 
a change control request for the NFS network. There are very few valid reasons to avoid 
creating a dedicated VLAN for NFS, so it’s best to assume that you’ll need   one.

NFS with Jumbo Frames
Jumbo frames,      which allow frames with a payload size configured beyond 1,500 bytes, are 
about as sticky of a subject with NFS as they are with iSCSI. Some people absolutely swear 
by the idea of using jumbo frames, and others have been horribly scarred by the process or 
see little to no benefit. It’s important to note that it can be an operational nightmare to try 
and configure the end-to-end networking stack to support a Maximum Transmission Unit 
(MTU) beyond the 1,500 byte default, as shown in Figure 16.1 with a value of 9,000.

VMkernel
Port

Storage
Array

Network
Adapters

vSwitch

Network
Adapter

Access
Switch

Other
Switches

Access
Switch

MTU ≥ 9000

Figure 16.1 A complex network topology using jumbo frames 

If you are working with a brand new environment and can easily make changes to the net-
working components, both physical and virtual, the stress is significantly reduced. Having 
an issue with a mismatched MTU value prior to going into production just means making 
a few tweaks during the day. It is entirely different to try and get an outage or maintenance 
window for a large quantity of production switching gear and arrange for the appropriate 
staff to be on hand during a night or      weekend. 



272 CHAPTER 16  NFS General Use Cases

NFS Components
Before we get into the bits and pieces that make up NFS, we should clear up a few terms. 
Connecting to storage via NFS is often referred to as consuming network-attached storage 
(NAS)  . Connecting to storage via iSCSI is referred to as accessing a storage area network 
(SAN)  . What’s the difference between NAS and SAN? NAS is file-based storage; SAN is 
block-based storage. With NAS, something else is doing the heavy lifting of providing a 
file system to the storage consumer, and the host manipulates files on that remote file sys-
tem. With SAN, the host is consuming raw chunks of disk and must build a file system on 
top of them.

VMware supports NFS version 3. This is a rather old implementation that was solidified 
back in 1995. It has aged gracefully, though, and supports the ability to provide a large 
quantity of addressable storage. Let’s start by defining the various components of NFS. 

Exports
A storage   array that wishes to share out storage over NFS must create an export. Think 
of it like sharing a folder or directory with the network in that you are making a container 
available for others to consume storage space. In fact, the storage array (which often runs 
a variant of Linux or UNIX) literally has a file called “exports” that lists out all the various 
directories that are shared out, who can read them, and what permissions they have on the 
directory. In some ways, the idea of an export is very similar to a target in the iSCSI world. 
We’re defining which clients can connect, what the client can see, and what the client 
can do.

Data in a file system lives inside a volume, which is similar to the LUN concept used with 
block storage. A volume  is a logical abstraction of disk—it could be the entire disk device, 
such as an entire RAID-5 set, or just a portion of the disk. Volumes allow a storage array 
to abstract physical disk configurations from the file system, granting additional control 
over how files are isolated by the file system. 

Adding it all together, the entire stack looks similar to Figure 16.2.

Daemons
In order to   share, retrieve, and write data to the network, the storage array requires the 
help of a daemon. Daemons are background services that do work for a Linux system 
without requiring a person to activate or interact with them. If you’ve ever worked with a 
Service in Windows, you already have a good idea of what a daemon is.
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Figure 16.2 The various layers in sharing storage via an export 

A storage array that implements NFS employs several different daemons to share out the 
file system data over NFS. These are commonly:

  Rpc.nfsd: The main NFS daemon

  Rpc.lockd: A legacy daemon that handled file locking

  Rpc.statd: Used by rpc.lockd to implement lock recovery when the NFS server 
machine crashes and reboots

  Rpc.mountd: Handles requests from a host to mount storage

  Rpc.rquotad: Provides quota information on the volume

While each storage array will add their own twist to NFS, the basic components do not 
change—there is always an export for you to mount storage and daemons that are provid-
ing the   storage.

Mount Points
Now that   we’ve covered much of the storage array side of the equation, let’s focus on 
the vSphere host. Every vSphere host has an NFS Client   used to mount storage on an 
NFS export. The NFS Client is visible in the Security Profile of each host and should be 
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enabled if you plan to use NFS storage. Figure 16.3 shows an example from the vSphere 
Web Client showing that the NFS Client has been enabled.

Figure 16.3 Enabling the NFS Client is required to use NFS storage 

Very little information is required to mount an NFS datastore. The host just needs to know:

  What to call the datastore within vSphere

  The IP address or fully qualified domain name (FQDN) of the storage array

  The folder path (export) on the storage array

  Whether the NFS datastore should be mounted in read-only mode (optional)

All the remaining work is done by the underlying   network configuration. As storage is 
added to a host, some additional fun commands are available via the ESXi Shell:

  Examining the state of various NFS processes using the ps command, such 
as ps -tgs | egrep -I '(wid|nfs)' to see the nfsRemountHandler and 
 nfsLockFileUpdate processes. This can be handy if troubleshooting running pro-
cesses with VMware Support. 

  Examining the status of various NFS mounts using the esxcfg-nas -l command. 
We use this from time to time to see the status of various mounted storage exports.

Figure 16.4 shows both these commands in use.
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Figure 16.4 Examining NFS processes and mounts using ESXi Shell 

Security with ACLs
Let’s imagine      you had two exports: Production and Development. Production is needed to 
be available for hosts in the 10.20.0.0/16 subnet, while Development is used by hosts in the 
10.30.0.0/16 subnet. Both sets of hosts need to read and write to the NFS storage array. In 
order to control access to the two exports, an Access Control List (ACL) is employed.

The exports file would look something like this:

  /Production 10.20.0.0/255.255.0.0 (rw)

  /Development 10.30.0.0/255.255.0.0 (rw)

Notice that we’re creating a relationship between a path on the file system and the hosts 
that can use that path. The (rw) indicates that hosts are allowed to issue both reads and 
writes, whereas (ro) would allow only reads (read-only). If you ever mount an NFS export 
and cannot issue writes, one common point of troubleshooting is to check the permissions 
of the export to ensure it is (rw).

Additionally, the type of user account accessing the export can also come into consider-
ation. The two major users are:

  Nobody or “NFSnobody”: This is very similar to a guest account and should be 
avoided for vSphere hosts. You are typically allowed to mount NFS storage as 
“Nobody” but unable to write files or perform any useful activities.

  Root: By using the no_root_squash parameter on an NFS export, we prevent the 
export from assigning a host the Nobody level of access.

While it’s important to verify the proper way to configure NFS storage for VMware 
vSphere with your storage array vendor, it almost always boils down to making sure of the 
following:

 1. The export is properly assigned read-write (rw) permission.

 2. The export is set to no_root_squash. 
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NOTE

vSphere likes to mount NFS with full permissions, and defaults to doing so using the “root” 
user. NFS, by default, will “squash” root access to the exports unless the no_root_squash 
parameter is      included. 

Network Adapters
There are no    specific network adapters designed for NFS storage. This is different from 
the concepts of dependent and independent hardware network adapters described in 
Chapter 14 on iSCSI. As long as your network adapter is supported by VMware via the 
Hardware Compatibility List (HCL), it will work with NFS.

With that said, there are definitely some advantages to using a network adapter that sup-
ports TCP Offload Engine (TOE)  . These cards allow the TCP/IP stack to be offloaded 
from the hypervisor and onto the network adapter, thus freeing up some valuable CPU 
cycles. Keep in mind, however, that CPU is often the one resource that most VMware 
environments have in abundance. Unless you’re worried about being CPU-constrained, 
such as with a virtual business critical application (VBCA) or end user computing (EUC) 
workloads, it’s often best to spend your budget on something other than a network adapter 
with TOE.

REAL WORLD

TOE is included in many of the latest generation enterprise-grade network adapters, so you 
might have little choice in deciding if you want it or not. Typically, the choice comes up for 
those deciding on adapters in the midrange market. Most consumer grade network adapters 
do not have TOE      capabilities.

NFS Design
NFS is one     of the harder protocols to design around if your goal is resiliency and perfor-
mance. This mainly stems from the fact that VMware only supports NFS version 3, which 
has absolutely no ability to perform multipathing. This means that each NFS export you 
mount storage to will always have just one active path to use for IO—period! This doesn’t 
mean that you have a single point of failure—there can be many other passive paths set 
aside in the event of failure, such as a dead switch or failed network adapter. But only one 
path will ever be active. Parallel NFS, often just shortened to pNFS, is only available in 
NFS version 4.1 or later. 
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The NFS VMkernel port, vmk4, was configured with the IP 10.0.251.52/24, and the NFS 
storage array has been configured with the IP 10.0.251.21/24. Whenever the host needs to 
communicate with the NFS export, it first does a routing table lookup to see how to reach 
the target array. Because vmk4 is on the 10.0.251.0/24 network, and is the first (and only) 
VMkernel port on that network, it is selected as the VMkernel port used to transfer traffic.

In the event of a vmnic0 failure, the VMkernel port (vmk4) is migrated over to vmnic1 by 
the host. Because both uplinks are marked active, there is no failback—vmnic1 will con-
tinue to be used by vmk4 until an administrator manually moves it back or until vmnic1 
fails. This helps avoid the VMkernel port from being rapidly shifted around, which is 
called flapping . 

NOTE

Implementing load balancing by way of a Link Aggregation Group (LAG) on this pair of 
NICs does not typically help since there is just one source IP and one target IP. Most 
LAG-hashing algorithms would always put the traffic onto the same uplink anyway. No 
point in increasing complexity for minimal return.

Let’s review the single network design:

  One NFS network and NFS VLAN

  One export on the storage array

  One IP address on the storage array

  One active path to the      storage

Multiple Networks
Because      each export can only have a single active path for IO, one way to introduce addi-
tional paths for active IO is simply to mount to multiple exports. Having a pair of unique 
networks can make this possible. For this example, let’s use the previous existing NFS 
network, 10.0.251.0/24, but also add in a new one using 10.0.252.0/24. We’ll also add on 
another VMkernel port for the new network using the IP 10.0.252.52/24.

This will require a few changes on the storage array. It must be able to use multiple IP 
addresses. This is commonly done using either a Virtual IP (VIP) address or Logical IP 
(LIP) address, but could also be done by adding additional network adapters to the storage 
array and assigning an IP address to the device. In our example, we give the NFS storage 
array an IP for each network: 10.0.251.21/24 and 10.0.252.21/24. 
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REAL WORLD

The multiple network design is still rather popular for hosts that use many different 1 Gb 
connections to the network, as a single 1 Gb link has a reasonable potential for saturation 
with storage traffic. Many designs we’ve seen call for using four 1 Gb connections with 
two networks, which allows for full bandwidth availability even in a failure scenario of an 
adapter, switch, or port. It’s often overkill to use this design for 10 Gb networks.

Let’s review the multiple network design:

  Two NFS networks and NFS VLANs

  Two exports on the storage array

  Two IP addresses on the storage array

  Two active storage      paths

Link Aggregation Group
The final design       allows for the use of a LAG. From a load distribution perspective, since 
they use the same IP-hashing algorithm, the type of LAG, static or dynamic, can be con-
sidered irrelevant. However, in link failure situations, static LAG requires administrator 
intervention where dynamic lag does not. And unless you’re running a vSphere version 
prior to 5.1, which doesn’t support dynamic LAG, you’ll likely choose dynamic instead.

In the LAG design, the two uplinks are placed in a LAG on the upstream switch. The 
VMkernel port is also set to a teaming policy of Route based on IP hash as shown in 
 Figure 16.7.

Only a single VMkernel port is required on the vSphere host, but the storage array must 
have two IP addresses on the NFS network. This is due to the requirement of using an IP 
hash. If the source and destination IP address are always the same, the hash results will also 
always be the same. The vSphere routing table will always use a single VMkernel port for 
a single network, so it’s not possible to use different source IP addresses. Therefore, you 
must introduce different destination IP addresses to the storage array for the hash results 
to differ—we’re going to use 10.0.251.20 and 10.0.251.21. It’s also critical that the two 
storage array IP addresses have unique least       significant bits.
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Figure 16.7 The Route Based on IP Hash teaming policy is used for a LAG  

UNDERSTANDING THE LEAST SIGNIFICANT BIT

The last bit in an IP address is known as the Least Significant Bit   or LSB. When doing an IP 
hash, the LSB is used to determine which uplink is used for traffic. If two IP addresses have 
identical LSBs, the hash results are the same—and therefore the same uplink will be chosen.

In our example, we have used 10.0.251.20 and 10.0.251.21. Look at the binary values of 
each:

10.0.251.20: 00001010 00000000 11111011 00010100

10.0.251.21: 00001010 00000000 11111011 00010101

Notice how the first binary address ends with a 0, and the second address ends with a 1. 
These are different, and thus the IP hash results will be different.

The LAG design also requires using multiple mount points—one mount for each of the 
storage array’s unique IP addresses. Figure 16.8 shows the overall design.
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Let’s review the LAG network design:

  One NFS network and NFS VLAN

  Two exports on the storage array

  Two IP addresses on the storage array

  Two active storage       paths

Summary

In this chapter, we walked through the various design considerations of NFS, including 
the components necessary to make NFS operational. Although the NFS architecture does 
not allow for true multipathing, we reviewed many ways to introduce additional active 
paths to the design. The design that fits your environment will be highly dependent on 
your use case and your array, and is often not applicable to another company’s environ-
ment. Over the course of the next chapter, we get some actual exposure to a real environ-
ment that is using NFS storage for running VMs.
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Chapter 17

NFS Design and Configuration

Key Concepts
  NFS Network Address Scheme

  Naming a Standard vSwitch

  Mounting an NFS Datastore

Introduction
Now that the concepts of attaching NFS storage have been explored, we’re ready to begin 
applying that shiny new knowledge into a working design and configuration. This chapter 
focuses on implementing NFS storage in a new environment to meet a specific use case. 
Because there are so many different ways to go about the configuration, we also hit on the 
various decision points and alternative methods.

NFS Design
Every design should be crafted in order to meet a specific use case, working to satisfy 
requirements, work within constraints, and mitigate risks. Creating a network for NFS 
traffic is no different. Let’s begin by examining the use case.
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Use Case
The      use case scenario will play out as follows:

Initech Corp has decided to open a new branch office in Portland, Oregon, for the 
handful of sales staff that cover the western US territories. The company has pro-
vided three vSphere hosts running ESXi 5.5 Enterprise that were already gently used 
at another location. The hosts will use four different 10 Gb network adapters across 
two physical cards as uplinks to the physical network. All hosts and components are 
listed in the VMware hardware compatibility list (HCL) for ESXi 5.5.

The IT manager at Initech Corp has mandated that the storage solution must be 
cost-effective and re-use the existing Ethernet network. She has purchased a small 
storage array capable of providing storage via the NFS protocol and provided a net-
work and VLAN for storage traffic. You’ve been tasked with making sure that all the 
vSphere hosts have been properly configured to participate in the NFS network.

Let’s take a look at the use case to identify some key decision points:

  This is a new branch office. The design work completed in Chapter 12, “Standard 
vSwitch Design,” which provided NFS storage at the Chicago data center, is no 
longer a constraint.

  We’re using the Enterprise license, which does not allow for the creation of a 
distributed vSwitch.

  There are four 10 Gb network adapters across two physical cards in each host. It 
will make a great bit of sense to split up the adapters by function. We’re going to 
take two network adapters for NFS storage and leave the remaining two for all other 
functions: Management, vMotion, and Virtual Machine traffic.

The requirements seem straightforward, so let’s move on    to providing naming 
conventions.

Naming Conventions
Even though    this is an entirely new office and vSphere cluster, there’s no need to start 
from scratch on the naming conventions. In fact, using standardized names across geo-
graphically dispersed locations is a great thing—it makes the environments uniform and 
easier to troubleshoot.
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Let’s start by focusing on virtual network components. We’re going to need a new stan-
dard vSwitch for our NFS network, which will give itself the default name of vSwitch# 
(with # being the first available number). There’s really no need to use such a boring name 
for a new switch, so let’s make the name Storage_Switch.

Additionally, we need a name for the VMkernel port. This particular design only requires 
a single network for NFS traffic, and as such, we only need one VMkernel port. We could 
easily call the VMkernel port “NFS”—but what about future growth? There might come 
a day that more VMkernel ports and NFS networks are required. So, let’s make sure we 
name the VMkernel port in a way that can be added to later and call the VMkernel port 
“NFS_1.”

Network Addresses
The IT manager     has already assigned an NFS network and VLAN:

  NFS Network: 10.0.251.0 /24.

  NFS VLAN: 251.

  The VLAN is nonroutable.

Knowing that the VLAN is nonroutable gives us a clue that there are no other IPs on the 
network that have been taken for a default gateway, although it’s often best to confirm. 
We’ll use the IP addresses shown in Table 17.1. 

Table 17.1 NFS Network Addresses

Name Type IP Address

ESX0 vSphere Host 10.0.251.10

ESX1 vSphere Host 10.0.251.11

ESX2 vSphere Host 10.0.251.12

NFS-Storage Storage Array 10.0.251.20

The final topology will look like that shown in Figure 17.1.
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Figure 17.2 Starting the SSH daemon on the first vSphere host 

Find the SSH service and, if the daemon shows Stopped, make sure to select SSH and 
click the Start button. It might take up to a minute for the SSH service to start and 
become available.

You can now use an SSH client of your choice (such as PuTTY) to open a session to the 
vSphere host. When connected, issue the following two commands:

  To create the new vSwitch: esxcli network vswitch standard 
add -v Storage_Switch

  To verify the new vSwitch is created: esxcli network vswitch standard list

The results will look similar to the output shown in Figure 17.3.

Figure 17.3 Creating a new vSwitch named Storage_Switch 



290 CHAPTER 17  NFS Design and Confi guration

Assuming you see your new Storage_Switch, you can now close the SSH connection and 
stop the SSH service.

REAL WORLD

Get in the habit of tidying up any access changes you’ve made before moving on. It’s easy to 
forget that you enabled SSH and get in trouble with the security team.

The new Storage_Switch is in need of your configuration expertise, as it is just a shell of a 
vSwitch in its current state, naked and vulnerable (see Figure 17.4). 

Figure 17.4 The new Storage_Switch is an empty shell  

Repeat the steps in this section for the other hosts. Let’s get some network adapters added 
and make the new vSwitch feel a little more useful.

Network Adapters
The design     calls for using two uplinks, vmnic2 and vmnic3, on this new vSwitch. These 
network adapters are on different physical cards, which prevent a single point of failure. 
To add them, open the vSphere Web Client and navigate to the Hosts and Clusters pane. 
Then, click on the Manage tab, the Networking sub-tab, and the Virtual switches menu 
item. Find the Storage_Switch vSwitch in the virtual switches list and click the Manage
Physical Network Adapters button, which looks like a green card with a grey wrench.

Click the green plus sign to add network adapters. We’ve added both in the previous 
 figure, vmnic2 and vmnic3, and have verified that they show a status of Connected without 
any warnings or errors. Click OK to complete the wizard and verify the new switch con-
figuration. The vSwitch should now look more like that shown in Figure 17.6.
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Figure 17.5 Adding network adapters to the Storage_Switch 

Figure 17.6 Storage_Switch now has a pair of 10 Gb network adapters  

Repeat the steps in this section for the other hosts. It’s now time to build out a new 
VMkernel port for the NFS traffic network.

VMkernel Ports
It’s now     necessary to create a VMkernel port on the same network and VLAN as the NFS 
storage array. Open the vSphere Web Client and navigate to the Hosts and Clusters pane. 
Then, click on the Manage tab, the Networking sub-tab, and the Virtual switches menu 
item. Find the Storage_Switch vSwitch in the virtual switches list and click the Add host 
networking icon with the little globe and green plus sign.
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When the wizard begins, select the VMkernel Network Adapter type and click Next as 
shown in Figure 17.7.

Figure 17.7 Beginning the wizard to add a new VMkernel port 

Make sure to choose the Storage_Switch as your target device and click Next again. 
It’s now time to enter the port properties for this VMkernel port. Enter the following 
information:

  Network label: NFS_1

  VLAN ID: 251

Leave the remaining items as the defaults shown in Figure 17.8.

Click Next to reach the IPv4 Settings page of the wizard. Enter the following:

  Use static IPv4 settings

  IPv4 address: 10.0.251.12 (because this is host ESX2)

  Subnet mask: 255.255.255.0

You can now click Next and Finish the wizard. Repeat the steps in this section for the 
other hosts.
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Figure 17.8 Entering the port policy information for NFS_1 

Figure 17.9 Assigning IPv4 address information for NFS_1 

REAL WORLD

Why not   DHCP for the VMkernel port address? It’s rarely a good idea to create depen-
dencies for your storage network. If something were to happen to your DHCP server, 
your host would be unable to receive an IPv4 address. Additionally, should the IP address 
assigned by the DHCP server change, the NFS mount might fail due to a new IP outside of 
the access control list (ACL) range. Stick to static IP addresses.
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The Storage_Switch should now look healthy and useful with a valid VMkernel port and 
two active network adapters, as shown in Figure 17.10.

Figure 17.10 The completed and operational Storage_Switch 

To celebrate this newfound success, let’s mount some NFS storage. This will ultimately 
validate that the configuration is operational and also allow you to begin using the hosts.

Mounting NFS Storage
Open the   vSphere Web Client and navigate to the Hosts and Clusters pane. Right click 
on the host ESX2 and choose New Datastore to begin the NFS datastore mount process. 
We begin by mounting the Production datastore, creatively named Production, as shown 
in Figure 17.11.

Figure 17.11 Creating a new datastore over NFS 
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Enter the name Production and click Next. Choose NFS as your storage type and click 
Next. Then enter the following configuration details (see Figure 17.12):

  Server: 10.0.251.20

  Folder: /volume1/Production

Figure 17.12 The Production NFS configuration details 

Click Next and then Finish to complete the wizard. If all was successful, you should now 
have a new datastore named Production added to host ESX2. To verify this, select host 
ESX2 and then click on the Related Objects tab and Datastores sub-tab. You can see the 
new Production datastore in Figure 17.13, along with some other NFS and VMFS data-
stores there were previously configured.

Figure 17.13 The Production NFS datastore is available for use  
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At this point, you can repeat the steps performed in this section for the remaining hosts, or 
use a very handy feature found in the vSphere Web Client to add the NFS datastore to all 
your hosts.

Adding NFS datastores to each host individually was a painful truth of the past. It’s super 
easy to globally create or add an NFS datastore with the vSphere Web Client (version 5.1 
or better). Just right click on your vSphere Cluster and choose New Datastore. The 
steps are almost identical to this section, except you also get the opportunity to select 
which hosts should see the storage. As you can see in Figure 17.14, we chose to add the 
NFS datastore to every host except ESX2 (because we already did that).

Figure 17.14 Mounting an NFS datastore to many hosts in a cluster 

That’s it—you’re now ready to start creating VMs on the fancy new NFS datastore.

Summary

In this chapter, we went over an example use case that involved a branch office desiring 
to consume storage via NFS. Although many different constraints were imposed upon us, 
such as a lower tier of vSphere licensing, we managed to design a very simple and powerful 
network for NFS traffic. The design would easily work in a 1 Gb network adapter environ-
ment without any changes, with the second uplink being available in case of a failure.



Chapter 18

Additional vSwitch Design 
Scenarios

Key Concepts
  Gather Requirements

  Design Options

  Use Case

  Hardware Redundancy

  Fault Isolation

Introduction
Back in Chapters 12, “Standard vSwitch Design,” and 13, “Distributed vSwitch Design,” 
we walked you through a virtual network design exercise for a server with two 10-Gigabit 
Ethernet (Gb) NICs. This is the most common configuration we run into, but we recog-
nize that there are many other adapter combinations that are out there, and some might 
be more relevant to you. In this chapter, we go through options for configuring virtual 
networks with 2, 4, 6, and 8 network adapters, including options for use cases with and 
without Ethernet-based storage. Here, we focus on the logical configuration. The detailed 
step-by-step instruction offered in Chapters 12 and 13 can be referenced when it comes 
time to actually build the vSwitches. 
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Use Case
As we did    earlier, we start with a snappy company overview, for color. Vandelay Industries 
is embarking upon a virtualization project. They are considering two possible hardware 
configurations: blade servers with two converged networking adapters or rack mount 
servers with four built-in 1 Gb adapters. The former would involve an investment in 
10 Gb infrastructure; the latter would allow them to use existing switch ports. The rack-
mount option also gives them the option of adding additional NICs for more capacity 
and redundancy. Vandelay has not ruled out a hybrid approach—they might have 10 Gb 
ports become available as part of another project and would like to see options for using 
them. If they do add extra NICs, they expect to add two dual-port adapters for up to four 
additional 1 Gb or 10 Gb ports. They have stressed “up to,” as they might only cable one 
uplink per adapter to reduce overall port consumption. 

In short, they haven’t made any real decisions on the hosts’ network configuration. They 
want to see every option available, and then make a decision. Sound familiar?

The virtual networking requirements are a little closer to ironed-out. The Vandelay design 
must support a Management network, a vMotion network, and virtual machine (VM) traf-
fic for the three VM workloads we’ve come to know and love: Web servers on VLAN 100, 
Application servers on VLAN 110, and Database servers on VLAN 120. 

Storage connectivity is still up in the air. Their new array will support access via either 
NFS or FiberChannel. If they go with the former, the hosts must support two additional 
networks for NFS. If they go with the latter, the hosts will have a pair of FiberChannel 
HBAs for storage connectivity, allowing us to avoid provisioning    virtual storage networks. 

Naming Standards
As before, we start with defining    names for these networks:

  Management Traffic on VLAN 20: Management Network 

  vMotion Traffic on VLAN 205: vMotion

  NFS Network #1 on VLAN 220: NFS_V220 

  NFS Network #2 on VLAN 221: NFS_V221

  Web Servers on VLAN 100: Web_192.168.100.x_V100

  Application Servers on VLAN 110: App_192.168.110.x_V110

  Database Servers on VLAN 120: DB_192.168.120.x_V120
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Six Network Ports
Adding more     network adapters gives us even more options. In the two- and four-uplink 
scenarios, we used a single network controller, either a mezzanine card in the two-uplink 
blade scenario, or an on-board network controller in the four-uplink rack-mount scenario. 
These represent single points of failure. By this point in the book, we hope that we have 
sufficiently beaten into you the idea that single points of failure should be avoided wher-
ever possible. Adding additional network adapters for this use case allows us to protect 
some functions from these single points of failure. 

SORT OF

In the rack-mount scenarios, the quad-port network controller is embedded into the system 
board. Adding NICs can protect us from the effects of that particular bit of silicon failing, 
but if a larger problem takes out the system board entirely, no number of extra NICs will 
save you.

Figure 18.5 provides a logical depiction of how our vmnics will be distributed between 
physical network adapters.

Onboard Quad-Port NIC

vmnic0

vmnic3

vmnic2

vmnic1

PCI-E Dual-Port NIC#1

vmnic4

vmnic5

PCI-E Dual-Port NIC#2

vmnic6

vmnic7

Figure 18.5 Sample vmnic placement 

Your hardware might enumerate the vmnics differently, so creating a diagram like this 
for your environment can be very helpful in designing the networking and avoiding single 
points of failure.
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In six 1 Gb scenarios, we assume that two ports per adapter are cabled—vmnic0 and 
vmnic1 on the onboard controller, vmnic4 and vmcni5 on NIC #1, and vmnic6 and vnic7 
on NIC #2. In the four 1 Gb + 2 10 Gb scenarios, we assume all four on-board ports are 
cabled, plus vmnic4 on NIC #1 and vmnic6     on NIC #2. 

With Ethernet-based Storage—Six 1 Gb
With six        available uplink ports spread across three discrete network adapters, we have 
breathing room to allow each of our three major functions to get its own pair of ports. 
Management and vMotion will share one pair, the two NFS networks will share another 
pair, and VM connectivity will share a third. We will create a separate vSwitch for each 
pair of uplinks, and ensure that the uplinks assigned to each vSwitch are not on the same 
physical adapter, as shown in Figure 18.6. 

vSwitch0

vmnic0

vmnic4

Management

vMotion

vSwitch1

vmnic6

NFS #1

NFS #2

vSwitch2

vmnic7

vmnic5
Virtual

Machines

vmnic1

Figure 18.6 A six-uplink vSwitch configuration, with Ethernet-based storage 
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Without Ethernet-based Storage—Six 1 Gb
If Ethernet-based storage       is not required, we can dedicate four uplinks to VM traffic. 
Again, we will distribute vSwitch uplinks across physical adapters, as shown in Figure 18.7. 

Management

vMotion
vSwitch0

vmnic0

vmnic4

Virtual
Machines

vmnic7

vSwitch1

vmnic5

vmnic6

vmnic1

Figure 18.7 A six-uplink vSwitch, configuration, without Ethernet-based storage 

With Ethernet-based Storage—Four 1 Gb + Two 10 Gb
A split         configuration mixing 1 Gb and 10 Gb interfaces is an interesting approach. You 
might be asking, if I have two 10 Gb interfaces available, why not just ignore the 1 Gb 
interfaces, and configure everything to just use those as described earlier in the chapter? In 
most cases, that would be the way to go unless there are specific requirements for physical 
separation. Let’s pretend Vandelay is insisting on physical separation between manage-
ment, storage, and VM traffic. In this case, you would need to determine which function 
would benefit most from the 10 Gb ports. In Vandelay’s case, let’s say storage activity 
is expected to be fairly low, but network access to VMs is expected to be fairly high. In 
such a case, we would give the 10 Gb adapters to VM traffic, and carve up the on-board 
ports into a pair for management and vMotion, and a pair for NFS. This is shown in 
Figure 18.8.
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vSwitch0

vmnic0

vmnic4

Management

vMotion

vSwitch1

vmnic6

NFS #1

NFS #2

vSwitch2

10 GbE

vmnic7

vmnic5
Virtual

Machines

vmnic1

Figure 18.8 A six-uplink vSwitch, configuration, with Ethernet-based storage 

Without Ethernet-based Storage—Four 1 Gb + Two 10 Gb
Removing         the Ethernet-based storage requirement leaves us with two available ports, and 
no obvious place to re-allocate them. We already have two 10 Gb interfaces allocated to 
VM traffic, two more 1 Gb connections aren’t going to help a ton there, and mixing NICs 
of different speeds in the same port group is frowned upon. If Vandelay had a requirement 
to support VMs with differing connectivity requirements, such as DMZ VMs that needed 
uplinks connected to another set of switches, those two available ports could be used for 
that. That would look something like Figure 18.9.

DMZ NETWORK

A DMZ network  is one isolated from the main network, usually for security or compliance 
reasons. DMZ networks are typically run on separate physical switching infrastructures, 
so trunking them with other internal VLANs is usually not possible. If VMs need to be 
connected to these networks, the underlying ESXi hosts will need additional physical 
NICs connected to the DMZ infrastructure.
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vSwitch0

vmnic0

vmnic4

Management

vMotion

vSwitch1

vmnic6

DMZ VMs

vSwitch2

10 GbE

vmnic7

vmnic5
Virtual

Machines

vmnic1

Figure 18.9 A six-uplink vSwitch configuration, with DMZ connectivity 

Eight Network Adapters
Eight available uplink ports give us a good bit of breathing room. We should be able to 
provide physical separation for every major function, but we’re contributing quite a bit 
of cable sprawl in the process. We’re also reaching a point where we need to consider 
whether the complexity of the solution might outweigh any benefits derived. 

With Ethernet-based Storage—Eight 1 Gb
With        eight uplinks, we can dedicate a pair of uplinks to Management/vMotion and a pair 
of uplinks to IP storage, and the remaining four uplinks to VM guest traffic. All func-
tions can be spread across more than one physical adapter, ensuring no single points of 
failure. Feels good, right? Just don’t look behind the rack. This configuration is shown in 
Figure 18.10.
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Management

vMotion

NFS #1

NFS #2

Virtual
Machines

vSwitch0

vmnic0

vmnic4

vSwitch1

vmnic5

vmnic1

vmnic7

vSwitch2

vmnic6

vmnic3

vmnic2

Figure 18.10 An eight-uplink vSwitch configuration, with Ethernet-based storage 

Without Ethernet-based Storage—Eight 1 Gb
If we don’t        need the storage networks, we can either fold vmnic1 and vmnic5 into the VM 
traffic vSwitch, or find some other use for them. We could use them for DMZ connec-
tivity, as shown in the previous section. Another option would be to configure them for  
multi-NIC vMotion, as shown in Figure 18.11. Multi-NIC vMotion is discussed in detail 
in Chapter 19, “Multi-NIC vMotion Architecture.” 
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Management

vMotion #1

vMotion #2

vMotion #3

Virtual
Machines

vSwitch0

vmnic0

vmnic4

vSwitch1

vmnic5

vmnic1

vmnic7

vSwitch2

vmnic6

vmnic3

vmnic2

Figure 18.11 An eight-uplink vSwitch with multi-NIC vMotion 

With Ethernet-based Storage—Four 1 Gb + Four 10 Gb
As before, if         we have four 10 Gb interfaces available, you really need to consider whether 
you need to bother with the 1 Gb ports. Absent a requirement to physically separate func-
tions, we would recommend using the two or four network adapter approaches, whichever 
best fits the situation. But, if you really need the management network segregated, Figure 
18.12 shows one way to do it. In this approach, we have used the on-board 1 Gb ports for 
management and multi-NIC vMotion, and used the 10 Gb ports for storage and VM net-
works. The storage and VM vSwitches have their uplinks split between the two dual-port 
10 Gb adapters. 
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vSwitch0

vmnic0

vmnic1

Management

vMotion #1

vSwitch1

vmnic3

vmnic2 vMotion #2

vMotion #3

vSwitch2

vmnic6

vSwitch3

10 GbE

10 GbE

vmnic7

vmnic5
Virtual

Machines

vmnic4 NFS #1

NFS #2

Figure 18.12 An eight-uplink vSwitch, with Ethernet-based storage 

Without Ethernet-based Storage—Four 1 Gb + Four 10 Gb
If storage networks         are not needed, that frees up two 10 Gb ports that can either be added 
to the VM traffic vSwitch or repurposed. Here, we’ve elected to use the 10 Gb ports for 
blistering-fast multi-NIC vMotion, and re-use the 1 Gb ports for DMZ connectivity, as 
shown in Figure 18.13.
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vSwitch0

vmnic0

vmnic1

Management

vMotion #1

DMZ VMs

vSwitch1

vmnic3
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vMotion #2

vMotion #3
vSwitch2

vmnic6

vSwitch3

10 GbE

10 GbE
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vmnic5
Production

VMs

vmnic4

Figure 18.13 An eight-uplink vSwitch configuration with multi-NIC vMotion and DMZ connectivity 

Summary

In this chapter, we worked through a number of design options for building vSwitches 
with varying numbers and types of uplinks. While we couldn’t possibly cover every combi-
nation of requirements and options, we hope we’ve covered a representative sample, allow-
ing you to apply the guidance here to the unique sets of circumstances you encounter in 
your environments. 
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Multi-NIC vMotion Architecture

Key Concepts
  Is Multi-NIC vMotion Right for You?

  Verifying Available Bandwidth

  Controlling Bandwidth Usage

Introduction
It would be difficult to overstate how big a deal vMotion is, and how important it was in 
revolutionizing the world of x86 server virtualization. The ability to migrate the work-
ing state of a virtual machine (VM) from one physical server to another, without down-
time, was a game changer. We remember our first vMotions as something like a religious 
experience. 

It has been interesting to watch the acceptance of vMotion over time, as it has gained the 
trust of various user communities—typically starting with development and test servers, 
then less-critical production workloads, and all the way up to mission-critical applications. 
In some cases, though, vMotion can begin to saturate its underlying network when used 
with very large, critical workloads. To combat this, VMware introduced the ability to use 
multiple network adapters for vMotion in vSphere 5.0. 
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Multi-NIC vMotion Use Cases
The best    designs are tailored to a use case with a set of requirements, constraints, and risks 
to work against. Deciding to use multi-NIC vMotion is no different. Because it does add 
an additional level of complexity to your environment, it’s best to know why you would 
design and configure multi-NIC vMotion for your workloads.

In our experience, it really boils down to two different use cases:

  Large or High-Performance Workloads: Your critical workloads are large enough 
that a single 1 Gb or 10 Gb link does not satisfy your requirements for vMotion. 
Either the vMotion would take too long, affecting performance, or it would have dif-
ficulty keeping up with your workload’s memory write rate (an application that issues 
a high volume of writes to memory).

  Host Maintenance: The VMs on your vSphere hosts are evacuated for maintenance 
activities on a regular basis. A reduction in time waiting on vMotions would directly 
benefit the operations staff handling maintenance such as firmware upgrades, kernel 
patching, and hardware upkeep. 

While we certainly won’t stop you from implementing multi-NIC vMotion for whatever 
reason strikes your fancy, do know that there will be little if any benefit in doing so unless 
either of those use cases applies. Just cranking up the juice on vMotion speed won’t make 
much of a difference if your workloads are all relatively small, and if your hosts are rarely 
taken offline for maintenance. We want to continue to stress our belief that simple designs 
are better, and you can always come back and add this feature later if you truly need it. 
That said, we move on from here assuming that you’re doing this for a    good reason.

Design
Compared to    some of the previous configuration chapters on iSCSI and NFS (see Part 3, 
“You Got Your Storage in My Networking: IP Storage”), where we spent a large quantity 
of time focusing on design, there’s considerably less to worry about with vMotion design. 
This is mostly due to the nature of how VMware engineered vMotion, allowing it to func-
tion with complete awareness of the topology, and giving the vSphere host complete con-
trol over the traffic. A host is never surprised by vMotion traffic—it’s an expected event.

The first portion of the design revolves around the need to ensure there is enough band-
width available for vMotion to play nicely with other traffic types—Management, VMs, or 
any IP Storage. If the virtual environment is saturated with network traffic, adding more 
vMotion traffic will only cause problems. In most environments, however, the network is 
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largely idle, which allows for much of the unused bandwidth to be put to good use toward 
vMotion.

Verifying Available Bandwidth
Answering the      available bandwidth question is straightforward for an existing 
 environment—you can examine the average and peak network usage by looking at the rel-
evant counters on the vCenter Server, VMware’s vCenter Operations Manager software, 
or some other third-party tool. In brand new environments, this can get a little tricky—it 
is best to work with your application teams to understand the required network perfor-
mance to gain insight and develop an educated guess on network requirements.

To view network traffic in the vSphere Web Client, follow these steps:

 1. Select a host.

 2. Click on the Monitor tab.

 3. Click on the Performance sub-tab.

 4. Select Advanced from the menu.

Change the View dropdown to Network and click on the Chart Options link to adjust the 
time span. We’ve set it to one week for the example show in Figure 19.1.

Figure 19.1 Network traffic on host esx2 
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This particular host, esx2.glacier.local, looks relatively idle (because it has been) and would 
easily be able to handle increased vMotion traffic. You would then want to repeat this 
exercise for any other hosts that would participate in multi-NIC vMotion.

NOTE

Although we show a week of time in this example, you might need to stretch your timeline 
out to multiple weeks or months to get a good feel for your traffic patterns. Or, check 
around to see if any of your colleagues are running a corporate network traffic      monitor.

Controlling vMotion Traffic
Even though     we’ve verified that there is unused bandwidth for vMotion to consume, 
we still don’t want vMotion to go nuts and crush the host’s network adapters. Although 
 vMotion doesn’t typically take that long to complete, it does try to squeeze every last drop 
of bandwidth it can from a network adapter. Without proper controls in place, this could 
adversely affect VM performance—and remember, VMs are first-class citizens in a virtual 
infrastructure.

In a best-case scenario, you have dedicated 1 GbE or 10 GbE network adapters that are 
used only for vMotion. In this scenario, there is no harm in letting vMotion run without 
any controls because there are no other types of traffic on the network adapters. In reality 
though, this scenario is extremely rare—most everyone we’ve met has to share network 
adapters between vMotion and other types of traffic.

This leads us to the idea of using one of the following control methods:

  Standard vSwitch: Ingress traffic shaping only

  Distributed vSwitch: Ingress and egress traffic shaping

  Either type of vSwitch: Upstream physical switch control

Distributed vSwitch Design
When combined    , Network IO Control (NIOC)   and traffic shaping work great to control 
vMotion traffic flows. If you need a refresher, refer to Chapter 9, “vSphere Distributed 
Switch,” and read the “Network I/O Control” and “Traffic Shaping” sections. NIOC is 
used to control the source of vMotion traffic, meaning the host that is currently running 
the VM, while traffic shaping can be used to protect the destination for the vMotion traf-
fic, meaning the host where the VM is moving toward.
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With NIOC enabled on a distributed vSwitch, any host looking to send a VM to another 
host will be constrained by the configured network resource pool share values in times of 
congestion or an admin defined limit.

Let’s use an example where an administrator has turned on NIOC and has kicked off a 
vMotion task over a 10 Gb network adapter. The host has decided that due to current traf-
fic flow congestion and defined share values, it will only use 5 Gbps of bandwidth for the 
vMotion. The destination host will     receive traffic equal to about 5 Gbps. This example 
could be equally valid if the administrator had defined a hard limit of 5 Gbps in NIOC. 
Figure 19.2 shows this example scenario in detail.

Source Host
Sending 5 Gbps

vMotion VMkernel

Distributed vSwitch

VM VMVM

Destination Host
Sending 5 Gbps

vMotion VMkernel

VM

egress

vMotion Direction

ingress

Figure 19.2 vMotion traffic flowing from a source host to a destination host 

For most environments, the flow we’ve described is typical. It could be that the Distrib-
uted Resource Scheduler (DRS) has decided to move a VM, or an administrator has manu-
ally executed the task. In some cases, it might be that an administrator has toggled the host 
into maintenance mode, triggering DRS to evacuate the VMs to other hosts. But what if 
we had a scenario where two source hosts were both sending VMs to a single destination 
host as shown in Figure 19.3?

Because NIOC is only able to control ingress traffic—that is, traffic entering the Distrib-
uted vSwitch from a VMkernel that is destined for another host—the destination host is 
being hammered with two vMotion traffic flows that consume nearly all of the 10 Gb net-
work adapter’s bandwidth. While this is definitely an edge case, it does illustrate a possible 
congestion issue on the vMotion network. 
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Source Host
Sending 5 Gbps

vMotion VMkernel

VM VMVM

Destination Host
Sending 10 Gbps

vMotion VMkernel

VMVM

egress

vMotion Direction

ingress

Source Host
Sending 5 Gbps

vMotion VMkernel

Distributed vSwitch

VM VMVM

ingress

Figure 19.3 Multiple source hosts sending vMotion traffic to a single destination host 

Egress traffic shaping   can be used to combat this scenario. In this case, egress is a flow out 
of the Distributed vSwitch and into the vMotion VMkernel port, as shown in Figure 19.4.

Source Host
Sending 4 Gbps

vMotion VMkernel

VM VMVM

Destination Host
Sending 8 Gbps

vMotion VMkernel

VMVM

egress

vMotion Direction

ingress

Traffic Shaping Rule
Egress = 8 Gbps

Source Host
Sending 4 Gbps

vMotion VMkernel

Distributed vSwitch

VM VMVM

ingress

Figure 19.4 The traffic shaping egress rule limits vMotion to 8 Gbps 

By creating an egress limitation of 8 Gbps on the vMotion port group (8 Gbps being an 
arbitrary number that we chose for this example), we’ve effectively told vMotion that it’s 
not allowed to use more than 8 Gbps on a single network adapter. An example of the con-
figuration is shown in Figure 19.5.

This is still much faster     than having a single network adapter for vMotion, since two 
adapters at 8 Gbps is a total of 16 Gbps of available vMotion bandwidth, or 60% more 
than what a single network adapter could provide. You could also choose to raise the 
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egress traffic shaping limitation to a higher value for increased vMotion performance, such 
as 9 Gbps or 9.5 Gbps. The point is that it is a good idea to impose some kind of limit to 
ensure that other traffic is not starved during times when there might be many vMotions 
    going on.

Figure 19.5 An example traffic shaping rule for a vMotion port group 

Standard vSwitch Design
A Standard vSwitch is     limited to controlling traffic via ingress traffic shaping. This allows 
setting a hard limit on how much bandwidth a source host can send to a destination host. 
There is no way to configure network resource pools to throttle vMotion traffic during 
congestion, nor is there a way to use egress traffic shaping. 

For these reasons, it’s a bit more tricky—but not impossible—to have solid control over 
multi-NIC vMotion traffic with a Standard vSwitch. You could, for example, use either 
dedicated network adapters and completely eliminate the issue, or in some cases, rely on 
your upstream physical switches to properly throttle your vMotion traffic.

Upstream Physical Switch Design
In some      scenarios, there’s a desire to completely remove bandwidth control from the 
vSphere environment and stick it in the upstream switch. This can be beneficial if you 
already have policies configured at this layer and it avoids the need to configure traffic 
shaping in two places—the physical switch and the virtual switch.
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REAL WORLD

Control your vMotion traffic from either the physical switch or virtual switch, but not from 
both. Having two control points to manage is complex and difficult to troubleshoot.

One common method of executing on this strategy in the converged infrastructure (blade 
server) world is to present virtual NICs (vNICs) to your vSphere host. Each vNIC pre-
tends to have bandwidth equal to the physical network adapter, such as 10 Gb. You can 
then apply control policies to the vNIC, such as bandwidth limitations and congestion 
rules, so that it knows how to prioritize traffic flows. Ultimately, this process depends on 
your hardware vendor’s ability to present and control traffic. However, those specifics are 
beyond the scope of this     book.

Configuring Multi-NIC vMotion
We’re going    to walk through the configuration of multi-NIC vMotion using two network 
adapters on a Distributed vSwitch. While you’re certainly welcome to use more than 
that—up to the maximum configuration of four 10 Gb or sixteen 1 Gb with vSphere 5.1 
and later—the process is the same for any number of adapters.

We’re going to assume that you have an operational Distributed vSwitch with two uplinks 
on each vSphere host:

  dvUplink1 is mapped to vmnic0.

  dvUplink2 is mapped to vmnic1.

We’re also going to magically declare that vMotion will use VLAN 253 on the subnet 
10.0.253.0 /24, which is not routable on our physical network—this prevents vMotion traf-
fic from trying to crossover to another network, and prevents other networks from enter-
ing the vMotion network.

Let’s review the various components necessary to get multi-NIC vMotion operational.

Distributed Port Groups
To begin with,      we need two port groups specifically crafted for vMotion traffic. For sim-
plicity’s sake, let’s call the port groups vMotion-A and vMotion-B. Each vMotion port 
group needs to be assigned to VLAN ID 253.
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The port group failover policies should be configured as follows:

  vMotion-A: vmnic1 is Active; vmnic6 is Standby.

  vMotion-B: vmnic6 is Active; vmnic1 is Standby.

NOTE

Why did we choose to mark the second vmnic as Standby instead of Unused? All vMotion 
VMkernel ports will attempt to communicate with the destination host VMkernel ports. 
If one of the network adapters fails, the VMkernel port must be allowed to move over to 
a Standby adapter. Otherwise, the VMkernel port will be unable to communicate on the 
vMotion network and your vMotions will fail. 

All other policies can remain at default value for now. Create the distributed port groups 
using the same steps found in Chapter 13, “Distributed vSwitch Design.”

The end result is a port group that looks like Figure 19.6.

Figure 19.6 The vMotion-A port group configuration summary 

Now we need to build out the vMotion VMkernel ports.
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VMkernel Ports
You need      a unique vMotion VMkernel port for each network adapter you want vMotion 
to utilize. Because we’re using two network adapters for multi-NIC vMotion, we need two 
VMkernel ports and two unique IP addresses.

Both of the VMkernel ports need to use the vMotion network—which is 10.0.253.0 /24—
without conflicting with another IP on the network. We also strongly advise using a single 
Layer 2 network for all vMotion VMkernel ports because you have no control over which 
VMkernel port on the source host talks to any particular VMkernel port on the destina-
tion host. One easy way to avoid IP conflicts is to slice up the subnet into vMotion A and B 
addresses; for example:

  The vMotion-A portion of the subnet will be 10.0.253.50 through 10.0.253.99.

  The vMotion-B portion of the subnet will be 10.0.253.150 through 10.0.253.199.

You are free to slice up your network however you wish, but we find it pleasing to have IP 
addresses that end with similar digits (such as 50 and 150). For the first host we’re going to 
configure, called esx1, we’ll use:

  vMotion-A: 10.0.253.51

  vMotion-B: 10.0.253.151

Create the vMotion VMkernel ports using the same steps found in Chapter 13. The end 
result is a VMkernel port that looks like that shown in Figure 19.7.

Figure 19.7 The vMotion-A VMkernel port configuration summary 

Repeat this section for all other hosts that need to participate in multi-NIC vMotion. 
Congratulations, you now have an environment configured to use multiple network 
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adapters during a vMotion. If absolutely necessary, you can mix hosts configured for 
multi-NIC vMotion with hosts that only have a single vMotion NIC—and it will work—
but it sort of defeats the purpose. We’d only really suggest doing this if you’re migrating 
to a new environment or have some corner case that requires it.  

To verify that both network adapters are participating in vMotion, migrate a VM from one 
host to another and then check the “Maximum” network performance statistics on either 
the source or destination host for both vmnics, as shown in Figure 19.8.

Figure 19.8 A stacked network statistics graph showing both vmnic1 and vmnic6 sending traffic  

Both vmnic1 and vmni6, the two dvUplinks we chose to use for vMotion, show the correct 
amount of maximum network activity simultaneously in the third network spike, which 
peaks at 20 Gbps. It’s a bit easy to see this in a controlled environment with no other sig-
nificant workloads using the adapters and is mainly here to demonstrate a point and give 
you the      warm and fuzzies. 

Traffic Shaping
As a final,     optional step, we’ll configure traffic shaping for the two vMotion port groups. 
Because earlier examples focused on using an 8 Gbps limit, we’ll configure that here. But 
again, this is an optional step to help solve a corner case where multiple vSphere hosts are 
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sending vMotion traffic to a single destination host. If your environment has little risk of 
encountering this scenario, you can skip this configuration item. 

On each of the two vMotion port groups, edit the policy settings and configure egress traf-
fic shaping as follows:

  Status: Enabled

  Average bandwidth (kbit/s): 8388608 (multiply 8 Gbit/s by 1024 to convert to 
Mbit/s, then by 1024 again to convert to Kbit/s))

  Peak bandwidth (kbit/s): 8388608

  Burst size (KB): 1

The results are shown in Figure 19.9.

Figure 19.9 Egress traffic shaping configuration for the vMotion port group 

Summary

vMotion is a superb technology that many businesses rely on for meeting workload 
resource needs, maintenance activities, and data center migrations. Occasionally, a single 
uplink no longer satisfies the requirements for a design, which evolved into the necessity 
to use multiple uplinks. In this chapter, we explored the use cases for multi-NIC vMotion 
and offered some considerations that should be made before implementing this feature. 
We then walked through an example configuration and verification.



Appendix A

Networking for VMware 
Administrators: The VMware 
User Group

The VMware User Group
We   wanted to leave you with one last plug, and we’re suckers for a good pun. After the 
wide array of quality titles from VMware Press, the next best way to learn more and stay 
on top of new VMware-related developments is to engage with the VMware commu-
nity. The VMware User Group (VMUG) is a great way to get involved. Consisting of a 
global steering committee and local chapters, VMUG offers local groups, user confer-
ences, special interest groups, and eLearning opportunities, all built on the idea of get-
ting VMware users together and allowing them to trade experiences and learn from each 
other. It’s free to join and worth every penny. You can get more information (and join) at 
www.vmug.com.
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