Mastering KVM
Virtualization

Dive in to the cutting edge techniques of Linux KVM
virtualization, and build the virtualization solutions your
datacentre demands

Mastering KVM Virtualization

Dive in to the cutting edge techniques of Linux KVM
virtualization, and build the virtualization solutions your
datacentre demands

Humble Devassy Chirammal
Prasad Mukhedkar
Anil Vettathu

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Mastering KVM Virtualization

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016
Production reference: 2180816

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-905-4

www . packtpub.com

www.packtpub.com

Credits

Authors
Humble Devassy Chirammal

Prasad Mukhedkar
Anil Vettathu

Reviewers
Aric Pedersen

Ranjith Rajaram

Amit Shah

Commissioning Editor
Kunal Parikh

Acquisition Editor
Shaon Basu

Content Development Editor
Shweta Pant

Technical Editor
Saurabh Malhotra

Copy Editors
Sneha Singh

Stephen Copestake

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Authors

Humble Devassy Chirammal works as a senior software engineer at Red Hat
in the Storage Engineering team. He has more than 10 years of IT experience and his
area of expertise is in knowing the full stack of an ecosystem and architecting the
solutions based on the demand. These days, he primarily concentrates on GlusterFS
and emerging technologies, such as IaaS, PaaS solutions in Cloud, and Containers.
He has worked on intrusion detection systems, clusters, and virtualization. He is an
Open Source advocate. He actively organizes meetups on Virtualization, CentOS,
Openshift, and GlusterFS. His Twitter handle is @hchiramm and his website is
http://www.humblec.com/.

I would like to dedicate this book in the loving memory of my
parents, C.O.Devassy and Elsy Devassy, whose steady, balanced,
and loving upbringing has given me the strength and determination
to be the person I am today. I would like to thank my wife, Anitha,
for standing beside me throughout my career and for the effort

she put in taking care of our son Heaven while I was writing this
book. Also, I would like to thank my brothers Sible and Fr. Able
Chirammal, without whose constant support this book would not
have been possible.

Finally, a special thanks to Ulrich Obergfell for being an inspiration,
which helped me enrich my knowledge in virtualization.

http://www.humblec.com/

Prasad Mukhedkar is a senior technical support engineer at Red Hat. His area
of expertise is designing, building, and supporting IT infrastructure for workloads,
especially large virtualization environments and cloud IaaS using open source
technologies. He is skilled in KVM virtualization with continuous working
experience from its very early stages, possesses extensive hands-on and technical
knowledge of Red Hat Enterprise Virtualization. These days, he concentrates
primarily on OpenStack and Cloudforms platforms. His other area of interest
includes Linux performance tuning, designing highly scalable open source identity
management solutions, and enterprise IT security. He is a huge fan of the Linux
"GNU Screen" utility.

Anil Vettathu started his association with Linux in college and began his career as
a Linux System Administrator soon after. He is a generalist and is interested in Open
Source technologies. He has hands on experience in designing and implementing
large scale virtualization environments using open source technologies and has
extensive knowledge in libvirt and KVM. These days he primarily works on

Red Hat Enterprise Virtualization, containers and real time performance tuning.
Currently, he is working as a Technical Account Manager for Red Hat. His website
ishttp://anilv.in.

I'd like to thank my beloved wife, Chandni, for her unconditional
support. She took the pain of looking after our two naughtiest kids,
while I enjoyed writing this book. I'd like also like to thank my
parents, Dr Annieamma & Dr George Vettathu, for their guidance
and to push me hard to study something new in life. Finally,

I would like to thank my sister Dr. Wilma for her guidance

and my brother Vimal.

About the Reviewers

Aric Pedersen is the author of cPanel User Guide and Tutorial and Web Host Manager
Administration Guide, both written for Packt Publishing. He has also served as a
reviewer for CUPS Administrative Guide, Linux E-mail, and Linux Shell Scripting
Cookbook, published by Packt Publishing.

He has over 11 years of experience working as a systems administrator. He currently
works for http://www.hostdime.com/, the world-class web host and global data
center provider, and also for https://netenberg. com/, the makers of Fantastico,
the world's most popular web script installer for cPanel servers.

I would like to thank Dennis and Nicky, who have helped me in
innumerable ways with their friendship over the past several years.

I'd also like to thank my mother and the rest of my family, Allen,
Ken, Steve, and Michael, because without them, nothing I've done
would have been possible.

http://www.hostdime.com/
https://netenberg.com/

Ranjith Rajaram works as a Senior Principle Technical Support Engineer at a
leading open source Enterprise Linux company. He started his career by providing
support to web hosting companies and managing servers remotely. He has also
provided technical support to their end customers. Early in his career, he has worked
on Linux, Unix, and FreeBSD platforms.

For the past 12 years, he has been continuously learning something new. This is what
he likes and admires about technical support. As a mark of respect to all his fellow
technical support engineers, he has included "developing software is humane but
supporting them is divine" in his e-mail signature.

At his current organization, he is involved in implementing, installing, and
troubleshooting Linux environment networks. Apart from this, he is also
an active contributor to the Linux container space, especially using
Docker-formatted containers.

As a reviewer this is his second book. His earlier book was Learning RHEL
Networking from Packt Publishing.

Amit Shah has been working on FOSS since 2001, and QEMU/KVM virtualization
since 2007. He currently works as a senior software engineer in Red Hat. He has
reviewed KVM Internals and Performance Tuning chapters.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

A big thank you to the KVM, QEMU, libvirt & oVirt community
for wonderful opensource projects.

We would also thank our reviewers and readers for supporting us.

Table of Contents

Preface iX
Chapter 1: Understanding Linux Virtualization 1
What is virtualization? 2
Why should | use Linux virtualization? 2
Types of virtualization 2
Advantages of virtualization 3
Operating system virtualization/partitioning 7
Full virtualization 10
Paravirtualization 1"
Hardware assisted virtualization 12
Introducing VMM/hypervisor 13
Type 1 and Type 2 hypervisors 14
Open source virtualization projects 15
Xen 16
Introducing KVM 17
High-level overview of KVM 18
What Linux virtualization offers you in the cloud 19
Summary 19
Chapter 2: KVM Internals 21
Getting acquainted with libvirt and its implementation 21
Internal workings of libvirt 24
Time to think more about QEMU 32
Qemu — KVM internals 35
Data structures 37
Threading models in QEMU 41
KVM in action 43
KVM APls 46

[il

Table of Contents

Anonymous inodes and file structures 47
Data structures 48
Execution flow of vCPU 52
Summary 57
Chapter 3: Setting Up Standalone KVM Virtualization 59
Getting acquainted with libvirt 60
Host system requirements 62
Determining the right system requirements for your environment 63
Physical CPU 63
CPU cores 64
Physical memory 65
Storage 66
Network 67
Setting up the environment 67
Installing virtualization packages 68
Starting the libvirt service 69
Validate and understand your system's virt capabilities 69
Hardware configuration examples 73
Summary 75
Chapter 4: Getting Started with libvirt and Creating
Your First Virtual Machines 77
Introducing virt-manager 78
The Virtual Networks tab 80
NATed virtual network 81
Routed virtual network 81
Isolated virtual network 81
Default network 81
Storage tab 84
Creating virtual machines using the Virtual Machine Manager 85
Creating a new virtual machine wizard 86
The Network installation (HTTP, FTP, or NFS) method 92
Network Boot (PXE) 93
Importing an existing disk image 94
Introducing virt-install 95
Installing a Windows 7 Guest using the virt-install command 95
Automated virtual machine deployment 96
Introducing virt-builder 96
Introducing oz 99
The oz configuration file 102
Creating a virtual machine using oz 103
Summary 104

Lii]

Table of Contents

Chapter 5: Network and Storage 105
Virtual networking 106
Virtual networking using libvirt 110

Isolated virtual network 111
Routed virtual network 122
Editing a virtual network 127
NATedvirtual network 129
MacVTap 134
PCI passthrough 135
It's all about storage! 136
Working with unmanaged storage 137
Creating a disk image and attaching it to a guest 137
Getting image information 138
Attach a disk using virt-manager 139
Attach a disk using virsh 140
Working with managed storage 141
Storage management console 142
Creating storage pools 144
File system directory backed storage pool 144
LVM Volume Group backed storage pool 146
iSCSI backed storage pool 148
Creating an ISO image library 149
Deleting a storage pool 150
Deleting storage pool using virt-manager 151
Deleting storage pool using virsh 151
Creating storage volumes 152
Creating volume using virsh command 153
Deleting a volume using the virsh command 153
Summary 154

Chapter 6: Virtual Machine Lifecycle Management 155
QEMU guest agent 161
Virtual video cards and graphics 162

Virtual video card 162
Graphics 164
VNC graphics server 164
SPICE graphics server 165
Adding SPICE graphics server 166
Methods to access a virtual machine console 167
VM migration 170
Offline migration 170
Live or online migration 170

[iii]

Table of Contents

Benefits of VM migration 171
Setting up the environment 172
Shared storage 172
Offline migration 174
What if | start the VM accidently on both the hypervisors? 175
Enabling lockd 176
Live or online migration 178
Future of migration 183
Summary 183
Chapter 7: Templates and Snapshots 185
Introducing virtual machine templates 185
Working with templates 187
Creating templates 187
Example 1 — preparing a CentOS 7 template with a complete LAMP stack 188
Example 2 — preparing a Windows 7 template with a MySQL database 190
Deploying virtual machines from a template 192
Deploying VMs using the clone provisioning method 192
Deploying VMs using the thin provisioning method 193
Snapshots 194
VM disk image formats 196
Converting a VM disk format 198
Working with internal snapshots 198
Creating the first internal snapshot 199
Creating an internal snapshot with a custom name and description 199
Creating multiple snapshots 200
Reverting to internal snapshots 202
Deleting internal snapshots 202
Managing snapshots using virt-manager 203
Working with external disk snapshots 205
Creating an external disk snapshot 205
What is quiesce? 208
Reverting to external snapshots 209
Deleting external disk snapshots 212
Best practices for dealing with snapshots 215
Summary 215
Chapter 8: Kimchi — An HTML5-Based Management Tool
for KVM/libvirt 217
Libvirt Web API 218
Introduction to the Kimchi project 219
Kimchi architecture 220
Setting up Kimchi server 220
Starting kimchid service 221

[iv]

Table of Contents

Managing KVM virtualization infrastructure using kimchi WebUI 224
Creating virtual machines through Kimchi WebUI 226
Editing a virtual machine's resource allocation 232
Accessing a virtual machine's graphical console 233
Permissions and user access control 234
Monitoring and managing a host system with the Kimchi WebUI 235
Host system management using the Kimchi-Ginger plugin 237
Managing virtual machine through android phones 238
Summary 240
Chapter 9: Software-Defined Networking for KVM Virtualization 241
Introducing Software Defined Networking 241
Limitations of Linux bridges 245
Introducing Open vSwitch 245
Comparison between Linux bridge and Open vSwitch 246
Open vSwitch architecture 246
Open vSwitch installation and setup 248
Starting openvswitch.service 248
Open vSwitch kernel module 250
Getting started with the Open vSwitch command-line interface 250
Setting up your first Open vSwitch bridge 252
Configuring an Open vSwitch bridge manually using
the ovs-vsctl command 252
Configuring an Open vSwitch bridge using network scripts 254
Integrating KVM VMs and OVS 256
VLANs with Open vSwitch 260
Configuring VLANSs for KVM virtual machines 261
Using libvirt integration 266
Open vSwitch QoS — controlling KVM VM traffic 268
Applying traffic rate limiting 270
Controlling outbound (egress) traffic 271
Applying traffic shaping 272
Overlay networks 274
Configuring Open vSwitch tunnels with VxLan 274
KvmHOST1 host side configuration 275
kvmHOST2 host configuration 276
Network port mirroring 278
Configuring port mirroring 279
Managing Open vSwitch using the OpenDaylight SDN controller 282
Installing the OpenDaylight controller (ODL-sys) 285
Hardware requirements 285
Installing and configuring ODL 285

[v]

Table of Contents

Adding an Open vSwitch (vswitch001) instance to the OpenDaylight controller

on system (ODL-sys) 286
Installing flows on the OVS bridge using OpenDaylight Dashboard 290
Basic Open vSwitch troubleshooting 293
Summary 296
Chapter 10: Installing and Configuring the Virtual
Datacenter Using oVirt 297
Introducing oVirt 298
oVirt architecture 298
The oVirt engine 300
The oVirt node 301
Storage 302
Networking 303
Installing the oVirt engine 304
Preparing the system for oVirt engine installation 304
Installing oVirt node 310
Summary 315
Chapter 11: Starting Your First Virtual Machine in oVirt 317
Getting acquainted with oVirt data center and cluster 317
Initiating an oVirt data center 318
Creating storage domains 324
Creating logical networks 327
Creating and starting a virtual machine 329
What next? 333
Summary 334
Chapter 12: Deploying OpenStack Private Cloud backed by
KVM Virtualization 335
OpenStack architecture 336
Core OpenStack components 336
OpenStack deployment 338
RDO OpenStack 338
RDO OpenStack deployments methods 339
Installing Packstack 339
Launching First Instance 341
Troubleshooting the virtualization layer of OpenStack 345
Accessing the instance configuration database 347
QEMU Monitor Protocol 348
Summary 352

[vil

Table of Contents

Chapter 13: Performance Tuning and Best Practices in KVM 353
VirtlO 354
CPU tuning 356

The number of vCPUs 357
CPU configuration 358
CPU topology 360
CPU pinning 360
The numactl command 361
Working with memory 367
Memory allocation 367
Memory tuning 369
Memory backing 371
locked 372
nosharepages 372
hugepages 373
Getting acquainted with Kernel Same Page merging 376
KSM packages and files 379
Tuning CPU and memory with NUMA 383
What is NUMA? 383
NUMA memory allocation policies 387
numatune 387
emulatorpin 389
KSM and NUMA 391
Automatic NUMA balancing 392
Understanding numad and numastat 393
Disk and block I/0O tuning 396
Cache mode 398
I/O mode 400
I/O tuning 401
Networking tuning in KVM 402
How to turn it on? 404
KVM guest time-keeping best practices 407
kvm-clock 408
Summary 409

Chapter 14: V2V and P2V Migration Tools 411
Introducing the virt-v2v utility 411
How does virt-v2v work? 412

Getting the virt-v2v utility 413
Preparing for the v2v conversion 413

Conversion process 415

[vii]

Table of Contents

VMware guest conversion 415
Converting a VMware vSphere guest to a standalone KVM host 416
Converting a VMware vSphere guest to oVirt 416
Converting a VMware vSphere guest to an OpenStack-Glance repository 417

Xen guest conversion 418

Converting standalone KVM guests to an oVirt Virtualization

platform and the OpenStack cloud 419

Troubleshooting virt-v2v related issues 420

Physical system to virtual conversion 421
Creating a virt-p2v bootable image 421

Can we convert any physical computers to virtual using virt-v2v? 422

Booting a physical system using a virt-p2v bootable disk for conversion 423
Converting virtual machines from unsupported

virtualization platforms 426
List of input and output methods supported with virt-v2v 427
Summary 428
Appendix: Converting a Virtual Machine into a Hypervisor 429
How to turn a virtual machine into a hypervisor? 429
Introducing nested KVM 429
How to enable nested KVM? 429

Index 431

[viii]

Preface

Mastering KVM Virtualization is a culmination of all the knowledge that we have
gained by troubleshooting, configuring, and fixing the bug on KVM virtualization.
We have authored this book for system administrators, DevOps practitioners,

and developers who have a good hands-on knowledge of Linux and would like

to sharpen their open source virtualization skills. The chapters in this book are
written with a focus on practical examples that should help you deploy a robust
virtualization environment, suiting your organization's needs. We expect that, once
you finish the book, you should have a good understanding of KVM virtualization
internals, the technologies around it, and the tools to build and manage diverse
virtualization environments. You should also be able to contribute to the awesome
KVM community.

What this book covers

Chapter 1, Understanding Linux Virtualization, talks about the prevailing technologies
used in Linux virtualization and their advantages over others. It starts with basic
concepts of Linux virtualization and advantages of Linux-based virtualization
platforms and then moves on to hypervisor/VMM. This chapter ends with how
Linux is being used in private and public cloud infrastructures.

Chapter 2, KVM Internals, covers the important data structures and functions which
define the internal implementation of libvirt, gemu, and KVM. You will also go
through the life cycle of vCPU execution and how gemu and KVM perform
together to run a guest operating system in the host CPU.

[ix]

Preface

Chapter 3, Setting Up Standalone KVM Virtualization, tells you how to set up your
Linux server to use KVM (Kernel-based Virtual Machine) and libvirt. KVM is for
virtualization and libvirt is for managing the virtualization environment. You will
also learn how to determine the right system requirements (CPU, memory, storage,
and networking) to create your own virtual environment.

Chapter 4, Getting Started with libvirt and Creating Your First Virtual Machines, will

tell you more about libvirt and its supported tools, such as virt-manager and virsh.
You will dig more into the default configurations available in libvirt. You will install
a new virtual machine using virt-manager as well virt-install and also learn about
advanced virtual machine deployment tools, such as virt-builder and oz.

Chapter 5, Network and Storage, is one of the most important chapters that teaches
you about virtual networking and storage, which determine the QoS of your virtual
machine deployments. In virtual networking, you will learn in detail about bridging,
different bridging concepts, and the methods you can adopt for a fault tolerant
network layer for virtual machines. You will understand how to segregate the
network with the use of tagged vLan bridges. In storage, you will learn how

to create storage pools for our virtual machines from storage backends such as

fiber channel (FC), ISCSI, NFS, local storage, and so on. You will also learn how

to determine the right storage backend for your virtual machines.

Chapter 6, Virtual Machine Lifecycle Management, discusses the tasks of managing
virtual machines. You will learn about the different statuses of virtual machines
and methods to access a virtual machine that includes spice and VNC. You will
understand the use of guest agents. You will also learn how to perform offline
and live migration of virtual machines.

Chapter 7, Templates and Snapshots, tells us how to create templates of Windows
and Linux for rapid VMs provisioning. The chapter will also teach us how

to create external and internal snapshots and when to use which snapshot.
Snapshot management, including merge and deletion is also covered with
snapshot best practice.

Chapter 8, Kimchi, An HTML5-Based Management Tool for KVM/libvirt, explains how
to manage KVM virtualization infrastructure remotely, using libvirt-based web
management tools. You will learn how to create new virtual machines, remotely
adjust an existing VM's resource allocation, implement user access controls, and so
on over the Internet using Kimchi WebUL. It also introduces VM-King, an Android
application that lets you manage KVM virtual machines remotely from your
Android mobile or tablet.

[x]

Preface

Chapter 9, Software-Defined Networking for KVM Virtualization, covers the use of
SDN approach in KVM virtualization using Open vSwitch and supporting tools
that include OpenDayLight SDN controller. You will learn about Open vSwitch
installation and setup, creating vLans for KVM virtual machines, applying
granular traffic and policy control to KVM VMs, creating overlay networks, and
port mirroring and SPAN. You will also learn how to manage Open vSwitch using
OpenDayLight SDN controller.

Chapter 10, Installing and Configuring the Virtual Datacenter Using oVirt, oVirtis a
virtual datacenter manager and is considered as the open source replacement of
VMware vCenter. It manages virtual machines, hosts, storage, and virtualized
networks. It provides a powerful web management interface. In this chapter, we
will cover oVirt architecture, oVirt engine installation, and oVirt node installation.

Chapter 11, Starting Your First Virtual Machine in oVirt, tells us how to initiate an oVirt
datacenter in order to start your first virtual machine. This initialization process will
walk you through creating a datacenter, adding a host to datacenter, adding storage
domains, and its backend. You will learn about configuring networking.

Chapter 12, Deploying OpenStack Private Cloud backed by KVM Virtualization, covers
the most popular open source software platform to create and manage public and
private laaS cloud. We will explain the different components of OpenStack. You will
set up an OpenStack environment and will start your first instance on it.

Chapter 13, Performance Tuning and Best Practices in KVM, tells us how performance
tuning can be done on a KVM setup. It will also discuss the best practices that can be
applied in a KVM setup to improve the performance.

Chapter 14, V2V and P2V Migration Tools, will tell you how to migrate your existing
virtual machines that are running on proprietary hypervisors to a truly open source
KVM hypervisor using virt-v2v tool. You will also learn how to migrate physical
machines to virtual machines and run them on the cloud.

Appendix, Converting a Virtual Machine into a Hypervisor, this will tell you how you
can turn a VM into a hypervisor by using specific method.

[xi]

Preface

What you need for this book

This book is heavily focused on practical examples; due to the nature of the content,
we recommend that you have a test machine installed with Fedora 22 or later to
perform the tasks laid out in the book. This test machine should have a minimum
of 6 GB memory with an Intel or AMD processor that supports virtualization.

You should be able to do most of the examples using nested virtual machines.

Who this book for

This book is for system administrators, DevOps practitioners and developers who
have a good hands-on knowledge of Linux and would like to sharpen their skills of
open source virtualization.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"These ioctls () fundamentally map to the system KVM level, VM level, and
vCPU level ."

A block of code is set as follows:

switch (run-sexit reason)
case KVM_EXIT IO:
DPRINTF ("handle io\n");
/* Called outside BQL */
kvm_handle io(run->io.port, attrs,
(uint8_ t *)run + run->io.data offset,
run->io.direction,

run->io.size,
run->1io.count) ;

ret = 0;

break;

[xii]

Preface

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

include/linux/kvm host.h :

struct kvm {
struct mm_struct *mm; /* userspace tied to this vm */
struct kvm vcpu *vcpus [KVM MAX VCPUS] ;
struct kvm_io_bus *buses[KVM_NR_BUSES] ;
struct kvm coalesced mmio ring *coalesced mmio_ring;

}
Any command-line input or output is written as follows:
#git clone git://git.gemu-project.org/gemu.git

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "If you
want to connect to the remote hypervisor, check Connect to remote host and fill
the details."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

[xiii]

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http: //www.packtpub.
com/sites/default/files/downloads/Mastering KVM Virtualization
ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

[xiv]

http://www.packtpub.com/sites/default/files/downloads/Mastering_KVM_Virtualization_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Mastering_KVM_Virtualization_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Mastering_KVM_Virtualization_ColorImages.pdf

Preface

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[xv]

Understanding Linux
Virtualization

This chapter provides the reader with an insight into the prevailing technologies

in Linux virtualization and their advantage over others. There are a total of 14
chapters in this book, which are lined up to cover all the important aspects of KVM
virtualization, starting from KVM internals and advanced topics such as software
defined networking, performance tuning, and optimization, to physical to

virtual migration.

In this chapter, we will cover the following topics:

* Linux virtualization and its basic concepts

* Why you should use Linux virtualization

* Hypervisor/VMM

* What Linux virtualization offers you in the cloud

* Public and private clouds

1
‘Q Before you start, check out the homepage of the book http://bit.ly/

mkvmvirt to see the new updates, tips and version changes.

[11]

http://bit.ly/mkvmvirt
http://bit.ly/mkvmvirt

Understanding Linux Virtualization

What is virtualization?

In philosophy, virtual means "something that is not real". In computer science,
virtual means "a hardware environment that is not real". Here, we duplicate the
functions of physical hardware and present them to an operating system. The
technology that is used to create this environment can be called virtualization
technology, in short, virtualization. The physical system that runs the virtualization
software (hypervisor or Virtual Machine Monitor) is called a host and the virtual
machines installed on top of the hypervisor are called guests.

Why should | use Linux virtualization?

Virtualization first appeared in Linux in the form of User-mode Linux (UML)

and it started the revolution required to bring Linux into the virtualization

race. Today, there is a wide array of virtualization options available in Linux to
convert a single computer into multiple ones. Popular Linux virtualization solutions
include KVM, Xen, QEMU, and VirtualBox. In this book, we will be focusing on
KVM virtualization.

Openness, flexibility, and performance are some of the major factors that attract
users to Linux virtualization. Just like any other open source software, virtualization
software in Linux is developed in a collaborative manner; this indirectly brings
users the advantages of the open source model. For example, compared to closed
source, open source receives wider input from the community and indirectly helps
reduce research and development costs, improves efficiency, and performance and
productivity. The open source model always encourages innovation. The following
are some of the other features that open source provides:

* User-driven solutions for real problems

* Support from the community and a user base who help fellow users to
solve problems

e Provides choice of infrastructure

* Control of data and security, as the code is freely available to read,
understand, and modify when required

* Avoid lock-in flexibility to migrate the entire load with comparable product
and stay free from vendor lock-in

Types of virtualization

Simply put, virtualization is the process of virtualizing something such as hardware,
network, storage, application, access, and so on. Thus, virtualization can happen to
any of the components.

[2]

Chapter 1

[Refer to the Advantages of virtualization section for more details on]
s

different possibilities in virtualization.

For example:

SDN or Software-Defined Networking, https://en.wikipedia.org/
wiki/Software-defined networking. These techniques are examples
of network virtualization, https://en.wikipedia.org/wiki/Network
virtualization.

Software Defined Storage (SDS), https://en.wikipedia.org/wiki/
Software-defined_storage. This is part of storage virtualization,
https://en.wikipedia.org/wiki/Storage virtualization.

The application streaming, remote desktop service, and desktop
virtualization techniques fall into the category of application virtualization,
https://en.wikipedia.org/wiki/Application virtualization.

However, in the context of our book, we will discuss virtualization mainly in terms
of software (hypervisor-based) virtualization. From this angle, virtualization is the
process of hiding the underlying physical hardware so that it can be shared and
used by multiple operating systems. This is also known as platform virtualization.
In short, this action introduces a layer called a hypervisor/ VMM between the
underlying hardware and the operating systems running on top of it. The operating
system running on top of the hypervisor is called the guest or virtual machine.

Advantages of virtualization

Let's discuss some of the advantages of virtualization:

Server consolidation: It is well understood that virtualization helps in saving
power and having a smaller energy footprint. Server consolidation with
virtualization will also reduce the overall footprint of the entire data center.
Virtualization reduces the number of physical or bare metal servers, reducing
networking stack components and other physical components, such as racks.
Ultimately, this leads to reduced floor space, power savings, and so on. This
can save you more money and also help with energy utilization. Does it also
ensure increased hardware utilization? Yes, it does. We can provision virtual
machines with the exact amount of CPU, memory, and storage resources

that they need and this will in turn make sure that hardware utilization

is increased.

[31]

https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Network_virtualization
https://en.wikipedia.org/wiki/Network_virtualization
https://en.wikipedia.org/wiki/Software-defined_storage
https://en.wikipedia.org/wiki/Software-defined_storage
https://en.wikipedia.org/wiki/Storage_virtualization
https://en.wikipedia.org/wiki/Application_virtualization

Understanding Linux Virtualization

Service isolation: Suppose no virtualization exists; in this scenario, what's
the solution to achieve service isolation? Isn't it that we need to run one
application per physical server? Yes, this can make sure that we achieve
service isolation; however, will it not cause physical server sprawl,
underutilized servers, and increased costs? Without any doubt, I can say that
it does. The server virtualization helps application isolation and also removes
application compatibility issues by consolidating many of these virtual
machines across fewer physical servers. In short, service isolation technique
this brings the advantage of simplified administration of services.

Faster server provisioning: Provisioning a bare metal system will consume
some time, even if we have some automated process in the path. But in case
of virtualization, you can spawn a virtual machine from prebuilt images
(templates) or from snapshots. It's that quick, as you can imagine. Also, you
really don't have to worry about physical resource configuration, such as
"network stack", which comes as a burden for physical or bare metal

server provisioning.

Disaster recovery: Disaster recovery becomes really easy when you have
a virtualized data center. Virtualization allows you to take up-to-date
snapshots of virtual machines. These snapshots can be quickly redeployed
so you can reach to a state where everything was working fine. Also,
virtualization offers features such as online and offline VM migration
techniques so that you can always move those virtual machines elsewhere
in your data center. This flexibility assists with a better disaster recovery
plan that's easier to enact and has a higher success rate.

Dynamic load balancing: Well, this depends on the policies you set.

As server workloads vary, virtualization provides the ability for virtual
machines, which are overutilizing the resources of a server, to be moved (live
migration) to underutilized servers, based on the policies you set. Most of the
virtualization solutions come with such policies for the user. This dynamic
load balancing creates efficient utilization of server resources.

[4]

Chapter 1

Faster development and test environment: Think of this, if you want to
test environment in a temporary manner. It's really difficult to deploy

it in physical servers, isn't it? Also, it won't be of much worth if you set

up this environment in a temporary manner. But it's really easy to set

up a development or test environment with virtualization. Using a guest
operating system/ VM enables rapid deployment by isolating the application
in a known and controlled environment. It also eliminates lots of unknown
factors, such as mixed libraries, caused by numerous installs. Especially, if
it's a development or test environment, we can expect severe crashes due
to the experiments happening with the setup. It then requires hours of
reinstallation, if we are on physical or bare metal servers. However, in case
of VM, it's all about simply copying a virtual image and trying again.

Improved system reliability and security: A virtualization solution adds a
layer of abstraction between the virtual machine and the underlying physical
hardware. It's common for data on your physical hard disk to get corrupted
due to some reason and affect the entire server. However, if it is stored in a
virtual machine hard disk, the physical hard disk in the host system will be
intact, and there's no need to worry about replacing the virtual hard disk. In
any other instance, virtualization can prevent system crashes due to memory
corruption caused by software such as the device drivers. The admin has

the privilege to configure virtual machines in an independent and isolated
environment. This sandbox deployment of virtual machines can give more
security to the infrastructure because the admin has the flexibility to choose
the configuration that is best suited for this setup. If the admin decides that

a particular VM doesn't need access to the Internet or to other production
networks, the virtual machine can be easily configured behind the network
hop with a completely isolated network configuration and restrict the access
to the rest of the world. This helps reduce risks caused by the infection

of a single system that then affects numerous production computers or
virtual machines.

[51]

Understanding Linux Virtualization

* OSindependence or a reduced hardware vendor lock-in: Virtualization
is all about creating an abstraction layer between the underlying hardware
and presenting a virtual hardware to the guest operating systems running
on top of the stack. Virtualization eliminates the hardware vendor lock-
in, doesn't it? That being said, with virtualization the setup has to be tied
down to one particular vendor/ platform/server, especially when the
virtual machines don't really care about the hardware they run on. Thus,
data center admins have a lot more flexibility when it comes to the server
equipment they can choose from. In short, the advantage of virtualization
technology is its hardware independence and encapsulation. These features
enhance availability and business continuity. One of the nice things about
virtualization is the abstraction between software and hardware.

v

irtualization

< Network> CSoftware> < Storage > Vi O.S :
) A) L ' R) o irtualization/
Virtualization Virtualization Vm;alllzeitlon Virtualization Partitioning
Hypervisor Based Solaris Containers, Parellel's
Virtualization which is popular OpenVZ...etc
/ on x86¢hardware \
Full Para Hardware
Virtualization Virtualization Assisted
(Binary (Modified Virtualization (Intel
Translation) Guest 0S) VT, AMD V)

[6]

Chapter 1

As we discussed in the preceding section, even though virtualization can be achieved
in different areas, I would like to talk more about operating system virtualization
and software virtualization.

Operating system virtualization/
partitioning

The operating system virtualization technique allows the same physical host to

serve different workloads and isolate each of the workloads. Please note that these
workloads operate independently on the same OS. This allows a physical server to
run multiple isolated operating system instances, called containers. There is nothing
wrong if we call it container-based virtualization. The advantage of this type of
virtualization is that the host operating system does not need to emulate system call
interfaces for operating systems that differ from it. Since the mentioned interfaces are
not present, alternative operating systems cannot be virtualized or accommodated in
this type of virtualization. This is a common and well-understood limitation of this
type of virtualization. Solaris containers, FreeBSD jails, and Parallel's OpenVZ fall
into this category of virtualization. While using this approach, all of the workloads
run on a single system. The process isolation and resource management is provided
by the kernel. Even though all the virtual machines/containers are running under
the same kernel, they have their own file system, processes, memory, devices, and so
on. From another angle, a mixture of Windows, Unix, and Linux workloads on the
same physical host are not a part of this type of virtualization. The limitations of this
technology are outweighed by the benefits to performance and efficiency, because
one operating system is supporting all the virtual environments. Furthermore,
switching from one partition to another is very fast.

[71

Understanding Linux Virtualization

Before we discuss virtualization further and dive into the next type of virtualization,
(hypervisor-based/software virtualization) it would be useful to be aware of

some jargon in computer science. That being said, let's start with something called
"protection rings". In computer science, various hierarchical protection domains/
privileged rings exist. These are the mechanisms that protect data or faults based

on the security enforced when accessing the resources in a computer system. These
protection domains contribute to the security of a computer system.

Ring 1 Least privileged

Ring 0

Kernel

Device drivers .
Most privileged

Device drivers

Applications

Source: https://en.wikipedia.org/wiki/Protection ring

As shown in the preceding figure, the protection rings are numbered from the

most privileged to the least privileged. Ring 0 is the level with the most privileges
and it interacts directly with physical hardware, such as the CPU and memory.

The resources, such as memory, I/O ports, and CPU instructions are protected via
these privileged rings. Ring 1 and 2 are mostly unused. Most of the general purpose
systems use only two rings, even if the hardware they run on provides more CPU
modes (https://en.m.wikipedia.org/wiki/CPU_modes) than that. The main two
CPU modes are the kernel mode and user mode. From an operating system's point of
view, Ring 0 is called the kernel mode/supervisor mode and Ring 3 is the user mode.
As you assumed, applications run in Ring 3.

[8]

https://en.wikipedia.org/wiki/Protection_ring
https://en.m.wikipedia.org/wiki/CPU_modes

Chapter 1

Operating systems, such as Linux and Windows use supervisor/kernel and user
mode. A user mode can do almost nothing to the outside world without calling on
the kernel or without its help, due to its restricted access to memory, CPU, and I/O
ports. The kernels can run in privileged mode, which means that they can run on
ring 0. To perform specialized functions, the user mode code (all the applications
run in ring 3) must perform a system call (https://en.m.wikipedia.org/wiki/
System_call) to the supervisor mode or even to the kernel space, where a trusted
code of the operating system will perform the needed task and return the execution
back to the user space. In short, the operating system runs in ring 0 in a normal
environment. It needs the most privileged level to do resource management and
provide access to the hardware. The following image explains this:

Ring 3 User Application 5
Ring 2 []
Ring 1 [} ! /0 call
Ring 0 [Guestos] :
\L privileged /
H/W L

The rings above 0 run instructions in a processor mode called unprotected. The
hypervisor/Virtual Machine Monitor (VMM) needs to access the memory, CPU,
and I/O devices of the host. Since, only the code running in ring 0 is allowed to
perform these operations, it needs to run in the most privileged ring, which is Ring
0, and has to be placed next to the kernel. Without specific hardware virtualization
support, the hypervisor or VMM runs in ring 0; this basically blocks the virtual
machine's operating system in ring-0. So the VM's operating system has to reside
in Ring 1. An operating system installed in a VM is also expected to access all the
resources as it's unaware of the virtualization layer; to achieve this, it has to run in
Ring 0 similar to the VMM. Due to the fact that only one kernel can run in Ring 0 at
a time, the guest operating systems have to run in another ring with fewer privileges
or have to be modified to run in user mode.

This has resulted in the introduction of a couple of virtualization methods called full
virtualization and paravirtualization, which we will discuss in the following sections.

[o]

https://en.m.wikipedia.org/wiki/System_call
https://en.m.wikipedia.org/wiki/System_call

Understanding Linux Virtualization

Full virtualization

In full virtualization, privileged instructions are emulated to overcome the
limitations arising from the guest operating system running in ring 1 and VMM
runnning in Ring 0. Full virtualization was implemented in first-generation x86
VMMs. It relies on techniques, such as binary translation (https://en.wikipedia.
org/wiki/Binary translation) to trap and virtualize the execution of certain
sensitive and non-virtualizable instructions. This being said, in binary translation,
some system calls are interpreted and dynamically rewritten. Following diagram
depicts how Guest OS access the host computer hardware through Ring 1 for
privileged instructions and how un-privileged instructions are executed

without the involvement of Ring 1:

Direct
Execution
of User
Requests

Guest OS

Binary
Translation
of 0S

Host Computer Requests
System Hardware

With this approach, the critical instructions are discovered (statically or dynamically
at runtime) and replaced with traps into the VMM that are to be emulated in
software. A binary translation can incur a large performance overhead in
comparison to a virtual machine running on natively virtualized architectures.

{ Application Ring 3
3! (unmodified) .
! Ring 1
ot Guest 0S g
\\ privileged
D . Binary . .
B H
driver translation ypervisor | Ring O

E = 1

[10]

https://en.wikipedia.org/wiki/Binary_translation
https://en.wikipedia.org/wiki/Binary_translation

Chapter 1

However, as shown in the preceding image, when we use full virtualization

we can use the unmodified guest operating systems. This means that we don't

have to alter the guest kernel to run on a VMM. When the guest kernel executes
privileged operations, the VMM provides the CPU emulation to handle and modify
the protected CPU operations, but as mentioned earlier, this causes performance
overhead compared to the other mode of virtualization, called paravirtualization.

Paravirtualization

In paravirtualization, the guest operating system needs to be modified in order

to allow those instructions to access Ring 0. In other words, the operating system
needs to be modified to communicate between the VMM /hypervisor and the guest
through the "backend" (hypercalls) path.

[Please note that we can also call VMM a hypervisor.]

Ring 3
: Direct
Ring 2
ne Execution
] of User
Ring 1 Requests

'Hypercalls' to the
Virtualization
Layer replace
Non-virtualizable
0S Instructions

Paravirtualized

Ring 0 Guest OS

Virtualization Layer

Host Computer
System Hardware

Paravirtualization (https://en.wikipedia.org/wiki/Paravirtualization)isa
technique in which the hypervisor provides an API and the OS of the guest virtual
machine calls that API which require host operating system modifications. Privileged
instruction calls are exchanged with the API functions provided by the VMM. In this
case, the modified guest operating system can run in ring 0.

[11]

https://en.wikipedia.org/wiki/Paravirtualization

Understanding Linux Virtualization

As you can see, under this technique the guest kernel is modified to run on the
VMM. In other terms, the guest kernel knows that it's been virtualized. The
privileged instructions/operations that are supposed to run in ring 0 have been
replaced with calls known as hypercalls, which talk to the VMM. The hypercalls
invoke the VMM to perform the task on behalf of the guest kernel. As the guest
kernel has the ability to communicate directly with the VMM via hypercalls, this
technique results in greater performance compared to full virtualization. However,
This requires specialized guest kernel which is aware of para virtualization technique
and come with needed software support.

Hardware assisted virtualization

Intel and AMD realized that full virtualization and paravirtualization are the major
challenges of virtualization on the x86 architecture (as the scope of this book is
limited to x86 architecture, we will mainly discuss the evolution of this architecture
here) due to the performance overhead and complexity in designing and maintaining
the solution. Intel and AMD independently created new processor extensions of

the x86 architecture, called Intel VT-x and AMD-V respectively. On the Itanium
architecture, hardware-assisted virtualization is known as VT-i. Hardware assisted
virtualization is a platform virtualization method designed to efficiently use full
virtualization with the hardware capabilities. Various vendors call this technology by
different names, including accelerated virtualization, hardware virtual machine, and
native virtualization.

For better support of for virtualization, Intel and AMD introduced Virtualization
Technology (VT) and Secure Virtual Machine (SVM), respectively, as extensions
of the IA-32 instruction set. These extensions allow the VMM/hypervisor to run a
guest OS that expects to run in kernel mode, in lower privileged rings. Hardware
assisted virtualization not only proposes new instructions, but also introduces a new
privileged access level, called ring -1, where the hypervisor/ VMM can run. Hence,
guest virtual machines can run in ring 0. With hardware-assisted virtualization,

the operating system has direct access to resources without any emulation or

OS modification. The hypervisor or VMM can now run at the newly introduced
privilege level, Ring -1, with the guest operating systems running on Ring 0. Also,
with hardware assisted virtualization, the VMM /hypervisor is relaxed and needs to
perform less work compared to the other techniques mentioned, which reduces the
performance overhead.

[12]

Chapter 1

Ring 3 User Application 5
Ring 2 [}
Ring 1 [} i 1/O call
Ring 0 [GuestoS } /

\L privileged ,’I
Ring 1 Hypervisor L

\L L

H/W

In simple terms, this virtualization-aware hardware provides the support to build
the VMM and also ensures the isolation of a guest operating system. This helps to
achieve better performance and avoid the complexity of designing a virtualization
solution. Modern virtualization techniques make use of this feature to provide
virtualization. One example is KVM, which we are going to discuss in detail in the
scope of this book.

Introducing VMM/hypervisor

As its name suggests, the VMM or hypervisor is a piece of software that is
responsible for monitoring and controlling virtual machines or guest operating
systems. The hypervisor/ VMM is responsible for ensuring different virtualization
management tasks, such as providing virtual hardware, VM life cycle management,
migrating of VMs, allocating resources in real time, defining policies for virtual
machine management, and so on. The VMM/hypervisor is also responsible for
efficiently controlling physical platform resources, such as memory translation and
I/O mapping. One of the main advantages of virtualization software is its capability
to run multiple guests operating on the same physical system or hardware. The
multiple guest systems can be on the same operating system or different ones. For
example, there can be multiple Linux guest systems running as guests on the same
physical system. The VMM is responsible to allocate the resources requested by
these guest operating systems. The system hardware, such as the processor, memory,
and so on has to be allocated to these guest operating systems according to their
configuration, and VMM can take care of this task. Due to this, VMM is a critical
component in a virtualization environment.

[13]

Understanding Linux Virtualization

Depending on the location of the VMM /hypervisor and where it's placed, it is
categorized either as type 1 or type 2.

Type 1 and Type 2 hypervisors

Hypervisors are mainly categorized as either Type 1 or Type 2 hypervisors, based on
where they reside in the system or, in other terms, whether the underlying operating
system is present in the system or not. But there is no clear or standard definition of
Type 1 and Type 2 hypervisors. If the VMM/hypervisor runs directly on top of the
hardware, its generally considered to be a Type 1 hypervisor. If there is an operating
system present, and if the VMM /hypervisor operates as a separate layer, it will be
considered as a Type 2 hypervisor. Once again, this concept is open to debate and
there is no standard definition for this.

A Type 1 hypervisor directly interacts with the system hardware; it does not need
any host operating system. You can directly install it on a bare metal system and
make it ready to host virtual machines. Type 1 hypervisors are also called Bare
Metal, Embedded, or Native Hypervisors.

oVirt-node is an example of a Type 1 Linux hypervisor. The following figure
provides an illustration of the Type 1 hypervisor design concept:

VM1 VM2

Hypervisor

Here are the advantages of Type 1 hypervisors:

* Easy to install and configure

* Small in size, optimized to give most of the physical resources to the hosted
guest (virtual machines)

* Generates less overhead, as it comes with only the applications needed to run
virtual machines

* More secure, because problems in one guest system do not affect the other
guest systems running on the hypervisor

However, a type 1 hypervisor doesn't favor customization. Generally, you will not be
allowed to install any third party applications or drivers on it.

[14]

Chapter 1

On the other hand, a Type 2 hypervisor resides on top of the operating system,
allowing you to do numerous customizations. Type 2 hypervisors are also known
as hosted hypervisors. Type 2 hypervisors are dependent on the host operating
system for their operations. The main advantage of Type 2 hypervisors is the
wide range of hardware support, because the underlying host OS is controlling
hardware access. The following figure provides an illustration of the Type 2
hypervisor design concept:

VM1 VM2

Hypervisor Software

Deciding on the type of hypervisor to use mainly depends on the infrastructure of
where you are going to deploy virtualization.

Also, there is a concept that Type 1 hypervisors perform better when compared to
Type 2 hypervisors, as they are placed directly on top of the hardware. It does not
make much sense to evaluate performance without a formal definition of Type 1 and
Type 2 hypervisors.

Open source virtualization projects

The following table is a list of open source virtualization projects in Linux:

Project Virtualization Type Project URL

KVM (Kernel-based Virtual Full virtualization http://www.linux-kvm.org/

Machine)

VirtualBox Full virtualization https://www.virtualbox.org/

Xen Full and paravirtualization http://www.xenproject.org/

Lguest Paravirtualization http://lguest.ozlabs.org/

UML (User Mode Linux) http://user-mode-linux.
sourceforge.net/

Linux-VServer http://www.linux-vserver.org/
Welcome to Linux-VServer.org

[15]

http://www.linux-kvm.org/
https://www.virtualbox.org/
http://www.xenproject.org/
http://lguest.ozlabs.org/
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://www.linux-vserver.org/Welcome_to_Linux-VServer.org
http://www.linux-vserver.org/Welcome_to_Linux-VServer.org

Understanding Linux Virtualization

In upcoming sections, we will discuss Xen and KVM, which are the leading open
source virtualization solutions in Linux.

Xen

Xen originated at the University of Cambridge as a research project. The first public
release of Xen was in 2003. Later, the leader of this project at the University of
Cambridge, Ian Pratt, co-founded a company called XenSource with Simon Crosby
(also of the University of Cambridge). This company started to develop the project
in an open source fashion. On 15 April 2013, the Xen project was moved to the

Linux Foundation as a collaborative project. The Linux Foundation launched a

new trademark for the Xen Project to differentiate the project from any commercial
use of the older Xen trademark. More details about this can be found at xenproject.
org website.

Xen hypervisor has been ported to a number of processor families, for example,
Intel IA-32/64, x86_64, PowerPC,ARM, MIPS, and so on.

Xen can operate on both para virtualization and Hardware-assisted or Full
Virtualization (HVM), which allow unmodified guests. A Xen hypervisor runs guest
operating systems called Domains. There are mainly two types of domains in Xen:

* Dom0

* DomU

Console

Applications

DomO Kernel Guest OS

Drivers PV front

Applications Applications

Guest OS Guest OS

Memory CPUs

Source: http://www.xenproject.org/

[16]

xenproject.org
xenproject.org
http://www.xenproject.org/

Chapter 1

Dom Us are the unprivileged domains or guest systems. Dom 0 is also known as the
privileged domain or the special guest and has extended capabilities. The Dom Us
or guest systems are controlled by Dom 0. That said Dom 0 contains the drivers for
all the devices in the system. Dom 0 also contains a control stack to manage virtual
machine creation, destruction, and configuration. Dom 0 also has the privilege

to directly access the hardware; it can handle all the access to the system's I/O
functions and can interact with the other Virtual Machines. Dom 0 sets the Dom Us,
communication path with hardware devices using virtual drivers. It also exposes a
control interface to the outside world, through which the system is controlled. Dom
0 is the first VM started by the system and it's a must-have domain for a Xen Project
hypervisor.

If you want to know more about the Xen project, please refer to

http://wiki.xenproject.org/wiki/Xen Overview or

http://xenproject.org

Introducing KVM

Kernel-based Virtual Machine (KVM) represents the latest generation of open
source virtualization. The goal of the project was to create a modern hypervisor that
builds on the experience of previous generations of technologies and leverages the
modern hardware available today (VI-x, AMD-V).

KVM simply turns the Linux kernel into a hypervisor when you install the KVM
kernel module. However, as the standard Linux kernel is the hypervisor, it benefits
from the changes to the standard kernel (memory support, scheduler, and so on).
Optimizations to these Linux components (such as the new scheduler in the 3.1
kernel) benefit both the hypervisor (the host operating system) and the Linux guest
operating systems. For I/O emulations, KVM uses a userland software, QEMU;
Qemu is a userland program that does hardware emulation.

It emulates the processor and a long list of peripheral devices: disk, network, VGA,
PCI, USB, serial/ parallel ports, and so on to build a complete virtual hardware on
which the guest operating system can be installed and this emulation is powered
by KVM.

[17]

http://wiki.xenproject.org/wiki/Xen_Overview
http://xenproject.org

Understanding Linux Virtualization

High-level overview of KVM

The following figure gives us a high-level overview of the user mode and kernel
mode components of a KVM:

gemu-kvm
(user mode code)

-~ ioctl() |interface -
kvm.ko ('/dev/kvm')

(kernel mode code)

kvm-amd.ko kvm-intel.ko

vendor-/technology-specific (AMD SVM, Intel VMX)

A separate gemu-kvm process is launched for each virtual machine by 1ibvirtd

at the request of system management utilities, such as virsh and virt-manager.
The properties of the virtual machines (number of CPUs, memory size, I/O device
configuration) are defined in separate XML files, which are located in the directory
/etc/libvirt/gemu. libvirtd uses the details from these XML files to derive the
argument list that is passed to the gemu-kvm process.

Here is an example:

gemu 14644 9.8 6.8 6138068 1078400 ? S1 03:14 97:29 /usr/
bin/gemu-system-x86_ 64 -machine accel=kvm -name guestl -S -machine
pc--m 5000 -realtime mlock=off -smp 4,sockets=4,cores=1,threads=1
-uuid 7a615914-ea0d-7dab-e709-0533c00b921f -no-user-config

-nodefaults -chardev socket,id=charmonitor-drive file=/dev/vms/
hypervisor2, if=none, id=drive-virtio-disk0, format=raw, cache=none,aio=na
tive -device id=net0,mac=52:54:00:5d:be:06

Here, an argument similar to -m 5000 forms a 5 GB memory for the virtual machine,
--smp = 4 points to a 4 vCPU that has a topology of four vSockets with one core for
each socket.

Details about what 1ibvirt and gemu are and how they communicate each other to
provide virtualization, are explained in Chapter 2, KVM Internals.

[18]

Chapter 1

What Linux virtualization offers you in
the cloud

Over the years, Linux has become the first choice for developing cloud-based
solutions. Many successful public cloud providers use Linux virtualization to
power their underlying infrastructure. For example, Amazon, the largest IaaS cloud
provider uses Xen virtualization to power their EC2 offering and similarly it's KVM
that powers Digital Ocean. Digital Ocean is the third largest cloud provider in the
world. Linux virtualizations are also dominating the private cloud arena.

The following is a list of open source cloud software that uses Linux virtualization
for building laaS software:

* Openstack: A fully open source cloud operating system, this consists of
several open source sub-projects that provide all the building blocks to
create an laaS cloud. KVM (Linux Virtualization) is the most-used (and
best-supported) hypervisor in OpenStack deployments. It's governed by
the vendor-agnostic OpenStack Foundation. How to build an OpenStack
cloud using KVM is explained in detail in Chapter 6, Virtual Machine Lifecycle
Management and Chapter 7, Templates and Snapshots.

* Cloudstack: This is another open source Apache Software Foundation
(ASF) controlled cloud project to build and manage highly-scalable multi-
tenant laaS cloud, which is fully compatible with EC2/S3 APIs. Although it
supports all top-level Linux hypervisors. Most Cloudstack users choose Xen,
as it is tightly integrated with Cloudstack.

* Eucalyptus: This is an AWS-compatible private cloud software for
organizations to reduce their public cloud cost and regain control over
security and performance. It supports both Xen and KVM as a computing
resources provider.

Summary

In this chapter, you have learned about Linux virtualization, its advantages, and
different types of virtualization methods. We also discussed the types of hypervisor
and then went through the high-level architecture of Xen and KVM, and popular
open source Linux virtualization technologies.

In the next chapter, we will discuss the internal workings of 1ibvirt, gemu, and
KVM, and will gain knowledge of how these components talk to each other to
achieve virtualization.

[19]

KVM Internals

In this chapter, we will discuss the important data structures and the internal
implementation of libvirt, QEMU, and KVM. Then we will dive into the execution
flow of a vCPU in the KVM context.

In this chapter, we will cover:

* The internal workings of libvirt, QEMU, and KVM.
* Important data structures and code paths of libvirt, QEMU, and KVM.
* Execution flow of vCPUs

* How all these communicate with each other to provide virtualization

Getting acquainted with libvirt and its
implementation

As discussed in a previous chapter, there is an extra management layer called
libvirt which can talk to various hypervisors (for example: KVM/QEMU, LXC,
OpenVZ, UML, and so on) underlying it. libvirt is an open source Application
Programming Interface (API). At the same time, it is a daemon and a management
tool for managing different hypervisors as mentioned. libvirt is in use by various
virtualization programs and platforms; for example, graphical user interfaces are
provided by GNOME boxes and virt-manager (http://virt-manager.org/). Don't
confuse this with virtual machine monitor/ VMM which we discussed in Chapter 1,
Understanding Linux Virtualization.

[21]

http://virt-manager.org/

KVM Internals

The command line client interface of libvirt is the binary called virsh. libvirt is also
used by other higher-level management tools, such as oVirt (www.ovirt.org):

Virsh Openstack Ovirt virt-manager
LiBVIRT <

A,

/ SEELSS | ~
HOEOEOEOE

Most people think that libvirt is restricted to a single node or local node where it is
running; it's not true. libvirt has remote support built into the library. So, any libvirt
tool (for example virt-manager) can remotely connect to a libvirt daemon over the
network, just by passing an extra —-connect argument. One of libvirt's clients (the
virsh binary provided by the libvirt-client package) is shipped in most distributions
such as Fedora, CentOS, and so on.

As discussed earlier, the goal of the libvirt library is to provide a common and stable
layer to manage VMs running on a hypervisor. In short, as a management layer it

is responsible for providing the API that does management tasks such as virtual
machine provision, creation, modification, monitoring, control, migration, and so on.
In Linux, you will have noticed some of the processes are deamonized. The libvirt
process is also deamonized, and it is called 1ibvirtd. As with any other daemon
process, the libvirtd provides services to its clients upon request. Let us try to
understand what exactly happens when a libvirt client such as virsh or virt-manager
requests a service from libvirtd. Based on the connection URI (discussed in the
following section) passed by the client, libvirtd opens a connection to the hypervisor.
This is how the clients virsh or virt-manager ask the libvirtd to start talking to

the hypervisor. In the scope of this book, we are aiming at KVM virtualization
technology. So, it would be better to think about it in terms of a QEMU/KVM
hypervisor instead of discussing some other hypervisor communication from
libvirtd. You may be a bit confused when you see QEMU/KVM as the underlying
hypervisor name instead of either QEMU or KVM. But don't worry, all will become
clear in due course. The connection between QEMU and KVM is discussed in the
following. For now just know that there is a hypervisor that uses both the QEMU
and KVM technologies.

[22]

www.ovirt.org

Chapter 2

Let us go back to the connection URI we passed with the libvirt client virsh. As
we are concentrating on QEMU/KVM virtualization, the connection URI, which
has been passed from the client has, strings of "QEMU", or will have the following
skeleton when passed to libvirt to open a connection:

* gemu://xxxx/system

® gemu://xxxx/session

The former (gemu: //xxxx/system) basically requests to connect locally as the 'root'
to the daemon supervising QEMU and KVM domains or virtual machines. However,
the latter (gemu: //xxxx/session) requests to connect locally as a "normal user"
to its own set of QEMU and KVM domains. Previously, I mentioned that libvirt
also supports remote connections; luckily, to achieve this functionality, it is only
required to have a small change in the connection URI. That said, it can establish a
remote connection by changing some strings in the connection URI. For example,
the common format for the connection URI is as follows:

driver [+transport] :// [username@] [hostname] [:port]/ [path]

[?Pextraparameters]

A simple command line example of a virsh binary for a remote connection would be

as follows:

$ virsh --connect gemu+ssh://root@remoteserver.yourdomain.com/system list

--all

As shown in the virsh command example (gemu+ssh://root@remoteserver.
yourdomain.com/system), remote URIs are formed by taking ordinary local URIs

and adding a hostname and/or transport name:

Libvirt Client URI
Application qemu://___..'

Driver
Api Xen

Qemu

Test

Public

Remote

IRt

Api

Libvirt Deamon

Driver
Api Xen

Qemu

Public

Test

Remote

Tl

Api

[23]

KVM Internals

The preceding figure shows the remote connection established to talk to the libvirt
running on a remote or other system. The details of the driver API or driver
implementation follow later. When using a URI scheme of "remote", it will tell the
remote libvirtd server to probe for the optimal hypervisor driver. The following
sections will provide some details about "remote" drivers. Refer to the following
URLs for more details on what options can be given for a remote connection URI:

®* http://libvirt.org/remote.html#Remote URI reference
* http://libvirt.org/remote.html

To understand how libvirt really works, let us look at the code. This section contains
some developer-oriented details; if you are not at all keen to know about how libvirt
works internally, you can skip this part. If you are in half a mind, go through it!

Internal workings of libvirt

Let me give some details about the following libvirt source code. If you really want
to know more about the implementation, it is good to poke around in the libvirt
source code. Get the libvirt source code from the libvirt Git repository:

[root@nodel # git clone git://libvirt.org/libvirt.git
Once you clone the repo, you can see the following hierarchy of files in the repo:

LhumbLe-tap 1% Ls
AUTHORS. in configure.ac libvirt-admin.pc.in
COPYING libvirt-lxc.pc.in README
COPYING.LESSER 1libvirt.pc.in README -hacking
libvirt-qemu.pc.in run.in
bootstrap.conf libvirt.spec.in

cfg.mk Makefile.am TODO
ChangelLog-old HACKING Makefile.nonreentrant
config-post.h mingw-libvirt.spec. in
[humble-1lap 1% [

libvirt code is based on the C programming language; however, libvirt has language
bindings in different languages such as c#, Jgava, 0Caml, Perl, PHP, Python,

Ruby, and so on. For more details on these bindings, please refer to: https://
libvirt.org/bindings.html. The main (and few) directories in the source code

are docs, daemon, src, and so on. The libvirt project is well documented and the
documentation is available in the source code repo and also at http://libvirt.org.

[24]

http://libvirt.org/remote.html%23Remote_URI_reference
http://libvirt.org/remote.html%23Remote_URI_reference
http://libvirt.org/remote.html
http://libvirt.org/remote.html
https://libvirt.org/bindings.html
https://libvirt.org/bindings.html
http://libvirt.org

Chapter 2

Let us move on. If we look at the libvirt internals, we can see libvirt operates or
starts the connection path based on driver modes. That said, different types or

levels of driver are part of the libvirt implementation. At the time of initialization,
these drivers are registered with libvirt. If you are confused by the term "drivers",
they are basic building blocks for libvirt functionality to support the capability to
handle specific hypervisor driver calls. These drivers are discovered and registration
happens at the time of connection processing, as you can see at http://libvirt.
org/api.html:

"Each driver has a registration API, which loads up the driver specific function
references for the libvirt APIs to call. The following is a simplistic view of the
hypervisor driver mechanism. Consider the stacked list of drivers as a series of
modules that can be plugged into the architecture depending on how libvirt is
configured to be built"

Driver
Api Xen
Libvirt Client URI ;{ Qemu
Application gemu://..... 7
Public
Api

As in the preceding figure, there is a Public API that is exposed to the outside world.
Depending on the connection URI (for example: virsh --connect QEMU://xxxx/
system) passed by the clients, when initializing the library, this Public API delegates
its implementation to one or more internal drivers. Yes, there are different categories
of driver implementations in libvirt. For example, there are hypervisor, interface,
network, nodeDevice, nwfilter, secret, storage, and so on. Refer to driver.h
inside the libvirt source code to know about the driver data structures and other
functions associated with the different drivers.

For example:

struct virConnectDriver ({
virHypervisorDriverPtr hypervisorDriver;
virInterfaceDriverPtr interfaceDriver;
virNetworkDriverPtr networkDriver;

[25]

http://libvirt.org/api.html
http://libvirt.org/api.html

KVM Internals

virNodeDeviceDriverPtr nodeDeviceDriver;
virNWFilterDriverPtr nwfilterDriver;
virSecretDriverPtr secretDriver;
virStorageDriverPtr storageDriver;

i

struct fields are self-explanatory and convey which type of driver is represented
by each of the field members. As you might have assumed, one of the important
or main drivers is hypervisor driver, which is the driver implementation of
different hypervisors supported by libvirt. The drivers are categorized as primary
and secondary drivers. The hypervisor driver is a primary-level driver and there
is always a hypervisor driver active. If the libvirt daemon is available, usually
a network and storage driver are active as well. So, the libvirt code base is well
segregated and for each supported hypervisor there is a driver implementation
(or there should be). The following list gives us some idea about the hypervisors
supported with libvirt. In other words, hypervisor-level driver implementations exist
for the following hypervisors (reference# README and the libvirt source code):

* Dbhyve: The BSD hypervisor

* esx/: VMware ESX and GSX support using vSphere API over SOAP

* hyperv/: Microsoft Hyper-V support using WinRM

* 1xc/: Linux Native Containers

* openvz/: OpenVZ containers using CLI tools

* phyp/: IBM Power Hypervisor using CLI tools over SSH

* gemu/: QEMU / KVM using QEMU CLI/monitor

* remote/: Generic libvirt native RPC client

* test/: A "mock" driver for testing

* uml/: User Mode Linux

* vbox/: Virtual Box using the native API

* vmware/: VMware Workstation and Player using the vmrun tool

* xen/: Xen using hypercalls, XenD SEXPR, and XenStore

* xenapi: Xen using libxenserver

[26]

Chapter 2

Previously, I mentioned that there are secondary-level drivers as well. Not all, but
some secondary drivers (see the following) are shared by several hypervisors. That
said, currently these secondary drivers are used by hypervisors such as the LXC,
OpenVZ, QEMU, UML, and Xen drivers. The ESX, Hyper-V, Power Hypervisor,
Remote, Test, and VirtualBox drivers all implement secondary drivers directly.

Examples of secondary-level drivers include:

* cpu/: CPU feature management

* interface/: Host network interface management

* network/: Virtual NAT networking

* nwfilter/: Network traffic filtering rules

* node device/: Host device enumeration

* secret/:Secret management

* security/: Mandatory access control drivers

* storage/: Storage management drivers
Node resource operations, which are needed for the management and provisioning
of virtual machines (also known as guest domains), are also in the scope of the
libvirt APL The secondary drivers are consumed to perform these operations, such

as interface setup, firewall rules, storage management, and general provisioning of
APIs. From https://libvirt.org/api.html:

"OnDevice the application obtains a virConnectPtr connection to the hypervisor
it can then use it to manage the hypervisor's available domains and related
virtualization resources, such as storage and networking. All those are exposed
as first class objects and connected to the hypervisor connection (and the node or
cluster where it is available)".

[27]

https://libvirt.org/api.html

KVM Internals

The following figure shows the five main objects exported by the API and the
connections between them:

virDomainPtr

virStoragePoolPtr

virConnectPtr virStorageVolPtr

virNetworkPtr

I will give some details about the main objects available in the libvirt code.
Most functions inside libvirt make use of these objects for their operations:

e virConnectPtr: As we discussed earlier, libvirt has to connect to a
hypervisor and act. The connection to the hypervisor has been represented
as this object. This object is one of the core objects in libvirt's API.

* virDomainPtr: VMs or Guest systems are generally referred to as domains
in libvirt code. virDomainPtr represents an object to an active/defined
domain/ VM.

* virStorageVolbtr: There are different storage volumes, exposed to the
domains/ guest systems. virstoragevolPtr generally represen20t one
of the volumes.

* virStoragePoolpbtr: The exported storage volumes are part of one of the
storage pools. This object represents one of the storage pools.

* virNetworkptr: Inlibvirt, we can define different networks. A single virtual
network (active/defined status) is represented by the virNetworkptr object.

[28]

Chapter 2

You should now have some idea about the internal structure of libvirt
implementations; this can be expanded further:

[humble-lap 1% cd src/qemu/

[humble-lap 1% 1s

EVENTHANDLERS. txt gemu_cgroup.h gemu_hostdev.h gemu_monitor_json.h
Llibvirtd qemu.aug gemu_command.c qgemu_hotplug.c gemu_monitor_text.c
MIGRATION, txt gemu_command.h gemu_hotplug.h gemu_monitor_text.h
gemu_agent.c gemu.conf gemu_hotplugpriv.h gemu process.c
gemu_agent.h gemu_conf.c gemu_interface.c gemu_process.h

gemu_blockjob.c gemu_conf.h gemu_interface.h gemu_processpriv.h
gemu_blockjob.h gemu_domain.c gemu migration.c test libvirtd gemu.aug.in
gemu_capabilities.c qemu domain.h gemu migration.h THREADS . txt
gemu_capabilities.h qgemu_driver.c qgemu_monitor.c

gemu_capspriv.h gemu_driver.h gemu_monitor.h

gemu_cgroup.c gemu_hostdev.c gemu monitor json.c

[humble-lap 1% I

On different hypervisor driver implementation our area of interest is on QEMU/
KVM. So, let's explore it further. Inside the src directory of the libvirt source code
repository, there is a directory for QEMU hypervisor driver implementation code.

I would say, pay some attention to the source files, such as gemu_driver.c,
which carries core driver methods for managing QEMU guests.

For example:

static virDrvOpenStatus gemuConnectOpen (virConnectPtr conn,
virConnectAuthPtr auth ATTRIBUTE UNUSED,
unsigned int flags

libvirt makes use of different driver codes to probe the underlying hypervisor/
emulator. In the context of this book, the component of libvirt responsible for finding
out the QEMU/KVM presence is the QEMU driver code. This driver probes for the
gemu-kvm binary and /dev/kvm device node to confirm the KVM fully-virtualized
hardware-accelerated guests are available. If these are not available, the possibility
of a QEMU emulator (without KVM) is verified with the presence of binaries such

as gemu, gemu-system-x86_ 64, gemu-system-mips, gemu-system-microblaze,
and so on.

[29]

KVM Internals

The validation can be seen in gemu-capabilities.c:

from (gemu-capabilities.c)

static int virQEMUCapsInitGuest (.., .. , virArch hostarch,
virArch guestarch)

{

binary = virQEMUCapsFindBinaryForArch (hostarch, guestarch);

/* gemu-kvm/kvm binaries can only be used if

* - host & guest arches match
* - hostarch is x86_ 64 and guest arch is 1686 (needs -cpu gemu32)
* - hostarch is aarché4 and guest arch is armv7l (needs -cpu
aarché64=0ff)
* - hostarch and guestarch are both ppcé64é+* */
native kvm = (hostarch == guestarch) ;
x86_ 320n64 kvm = (hostarch == VIR ARCH X86 64 && guestarch == VIR
ARCH _1686) ;
arm 32on64 _kvm = (hostarch == VIR ARCH AARCH64 && guestarch== VIR

ARCH_ARMVT7L) ;

ppc64 _kvm = (ARCH IS PPC64 (hostarch) && ARCH IS PPC64 (guestarch)) ;
if (native kvm || x86 320n64 kvm || arm 32on64 kvm || ppc64 kvm) {
const char *kvmbins[] = {

"/usr/libexec/gemu-kvm", /* RHEL */

"gemu-kvm", /* Fedora */

"kvm", /* Debian/Ubuntu */)i
kvmbin = virFindFileInPath (kvmbins[i]) ;
virQEMUCapsInitGuestFromBinary (caps, binary, gemubinCaps, kvmbin, kvm
binCaps, guestarch) ;

Then, KVM enablement is performed as shown in the following;:

int virQEMUCapsInitGuestFromBinary (..., *binary, gemubinCaps, *kvmbin,
kvmbinCaps, guestarch)

{

[30]

Chapter 2

if (virFileExists("/dev/kvm") && (virQEMUCapsGet (gemubinCaps, QEMU
CAPS _KVM) ||

virQEMUCapsGet (gemubinCaps, QEMU CAPS ENABLE KVM) ||
kvmbin))

haskvm = true;

Even though it's self-explanatory, libvirt's QEMU driver is looking for different
binaries in different distributions and in different paths —for example, gemu-kvm
in RHEL/Fedora. Also it finds a suitable QEMU binary based on the architecture
combination of both host and guest. If both the QEMU binary and KVM presence
are found, then KVM is fully virtualized and hardware-accelerated guests will

be available. It's also libvirt's responsibility to form the entire command line
argument for the QEMU-KVM process. Finally, after forming the entire command
(gemu-command. c) line arguments and inputs, libvirt calls exec () to create a
QEMU-KVM process:

util/vircommand.c
static int virExec (virCommandPtr cmd) {

if (cmd->env)

execve (binary, cmd-s>args, cmd-s>env) ;
else

execv (binary, cmd-s>args);

In KVM land, there is a misconception that libvirt directly uses the device file (/dev/
kvm) exposed by KVM kernel modules, and instructs KVM to do the virtualization
via the different ioctls () available with KVM. This is indeed a misconception! As
mentioned earlier, libvirt spawns the QEMU-KVM process and QEMU talks to the
KVM kernel modules. In short, QEMU talks to the KVM via different ioctl () to
the/dev/kvm device file exposed by the KVM kernel module. To create a VM (for
example: virsh create), all libvirt does is to spawn a QEMU process, which in
turns creates the virtual machine. Please note that a separate QEMU-KVM process
is launched for each virtual machine by libvirtd. The properties of virtual machines
(the number of CPUs, memory size, and I/O device configuration) are defined in
separate XML files, which are located in the /etc/libvirt/gemu directory. libvirtd
uses the details from these XML files to derive the argument list that is passed to the
QEMU-KVM process. The libvirt clients issue requests via the AF_UNIX socket /var/
run/libvirt/libvirt-sock on which libvirtd is listening.

[31]

KVM Internals

Well, we discussed libvirt and its connection to QEMU/KVM; however, users/
developers periodically pose this question: Why do we need libvirt and what
advantages does it bring? I would say this is best answered by Daniel P. Berrange,
one of the core maintainers of libvirt, here: https://www.berrange.com/
posts/2011/06/07/what-benefits-does-libvirt-offer-to-developers-
targetting-QEMUKVM/.

Time to think more about QEMU

Quick Emulator (QEMU) was written by Fabrice Bellard (creator of FFmpeg), and is
free software and mainly licensed under GNU General Public License (GPL).

QEMU is a generic and open source machine emulator and virtualizer. When used
as a machine emulator, QEMU can run OSs and programs made for one machine
(for example: an ARM board) on a different machine (for example: your own PC). By
using dynamic translation, it achieves very good performance (see www.QEMU. org).

Let me rephrase the preceding paragraph and give a more specific explanation.
QEMU is actually a hosted hypervisor/ VMM that performs hardware virtualization.
Are you confused? If yes, don't worry. You will get a better picture by the end of this
chapter, especially when you go through each of the interrelated components and
correlate the entire path used here to perform virtualization. QEMU can act as an
Emulator or Virtualizer:

* Qemu as an Emulator: In Chapter 1, Understanding Linux Virtualization, we
briefly discussed binary translation. When QEMU operates as an emulator,
it is capable of running operating systems/programs made for one machine
type on a different machine type. How is this possible? It just uses binary
translation methods. In this mode, QEMU emulates CPUs through dynamic
binary translation techniques and provides a set of device models. Thus, it is
enabled to run different unmodified guest operating systems with different
architectures. The binary translation is needed here because the guest code
has to be executed in the host CPU. The binary translator that does this job
is known as Tiny Code Generator (TCG); it's a Just-In-Time compiler. It
transforms the binary code written for a given processor to another one (for
example: ARM in X86):

[32]

https://www.berrange.com/posts/2011/06/07/what-benefits-does-libvirt-offer-to-developers-targetting-QEMUKVM/
https://www.berrange.com/posts/2011/06/07/what-benefits-does-libvirt-offer-to-developers-targetting-QEMUKVM/
https://www.berrange.com/posts/2011/06/07/what-benefits-does-libvirt-offer-to-developers-targetting-QEMUKVM/
www.QEMU.org

Chapter 2

"The Tiny Code Generator (TCG) aims to remove the shortcoming
of relying on a particular version of GCC or any compiler, instead
incorporating the compiler (code generator) into other tasks per-
formed by QEMU at run time. The whole translation task thus
consists of two parts: blocks of target code (IBs) being rewritten
in TCG ops - a kind of machine-independent intermediate nota-
tion, and subsequently this notation being compiled for the host's
architecture by TCG. Optional optimisation passes are performed
between them.

TCG requires dedicated code written to support every architecture
it runs on."

(TCG info from Wikipedia https://en.wikipedia.org/wiki/QEMU#Tiny
Code_Generator)

Guest Code

gen_intermediate_code()

Tiny Code Generator

Operations

tcg_gen_code()

Host Code

Tiny Code Generator in QEMU

[33]

https://en.wikipedia.org/wiki/QEMU#Tiny_Code_Generator
https://en.wikipedia.org/wiki/QEMU#Tiny_Code_Generator

KVM Internals

Qemu as a virtualizer: This is the mode where QEMU executes the guest
code directly on the host CPU, thus achieving native performance. For
example, when working under Xen/KVM hypervisors, QEMU can operate
in this mode. If KVM is the underlying hypervisor, QEMU can virtualize
embedded guests such as Power PC, S390, x86, and so on. In short, QEMU

is capable of running without KVM, using the previously mentioned binary
translation method. This execution will be slower when compared to the
hardware-accelerated virtualization enabled by KVM. In any mode (either as
a virtualizer or emulator), QEMU DOES NOT ONLY emulate the processor, it
also emulates different peripherals, such as disks, networks, VGA, PCI, serial
and parallel ports, USB, and so on. Apart from this I/O device emulation,
when working with KVM, QEMU-KVM creates and initializes virtual
machines. It also initializes different posix threads for each virtual CPU (refer
to the following figure) of a guest. Also, it provides a framework to emulate
the virtual machine's physical address space within the user mode address
space of QEMU-KVM:

User Space
Applications

A Hardware Emulation
KVM FileSystem and Qemu
guest Block Devices

Drivers in guest Kernel

[vepuO] [vepul] [vepuN T |0thread

A A

f v A, A A \

[KVM Kernel Module]

Filesystem and Block Devices

LINUX KERNEL

Physical Drivers

N -
(oo) (omi)
[HARDWARE |
Coso) Cos) Coss)

[34]

Chapter 2

To execute the guest code in the physical CPU, QEMU makes use of posix threads.
That said, the guest virtual CPUs are executed in the host kernel as posix threads.
This itself brings lots of advantages, as these are just some processes for the host
kernel in a high-level view. From another angle, the user space part of the KVM
hypervisor is provided by QEMU. QEMU runs the guest code via the KVM kernel
module. When working with KVM, QEMU also does I/O emulation, I/O device
setup, live migration, and so on.

QEMU opens the device file (/dev/kvm) exposed by the KVM kernel module and
executes ioctls () on it. Please refer to the next section on KVM to know more
about these ioctls (). To conclude, KVM makes use of QEMU to become a complete
hypervisor, and KVM is an accelerator or enabler of the hardware virtualization
extensions (VMX or SVM) provided by the processor to be tightly coupled with the
CPU architecture. Indirectly, this conveys that virtual systems also have to use the
same architecture to make use of hardware virtualization extensions/capabilities.
Once it is enabled, it will definitely give better performance than other techniques
such as binary translation.

Qemu — KVM internals
Before we start looking into QEMU internals, let's clone the QEMU git repository:

#git clone git://git.gemu-project.org/gemu.git

[35]

KVM Internals

Once it's cloned, you can see a hierarchy of files inside the repo, as shown in the
following screenshot:

[numbte-tap TF IS

accel.c fsdev gdev-monitor.c target-cris
alo-posix.c gdbstub . c gdict-test-data. txt target-1386
alo-win32.c gdb-xml gemu-bridge-helper.c target-1m32
arch_init.c HACKING gemu-char.c target-m&sk
@sync.c hmp. ¢ gemu-doc. texi target-microblaze
audio hmp-commands. hx gemu-ga. texi target-mips
backends hmp-commands-info.hx gemu-1img.c target-moxie
balloon.c hmp . h gemu-img-cmds. hx target-openrisc
block hw gemu-img. texi target-ppc
block.c include gemu-io.c target-s390x
blockdev.c ichandler.c gemu-ic-cmds.c target-sh4
blockdev-nbd. c ioport.c gemu-log.c target-sparc
blockjob.c 1othread.c gemu-nbd. c target-tilegx
bootdevice.c kvm-all.c gemu-nbd. tex1 target-tricore
bsd-user kvm-stub.c gemu. nsi target-unicore32
bt-host.c libdecnumber gemu-options.h target-xtensa
bt-vhei.c LICENSE gemu-options.hx tcg

Changelog linux-headers gemu-options-wrapper.h tcg-runtime. c
CODING _STYLE linux-user qemu. sasl tci.c

configure main-loop.c emu-Seccomp. c tests

contrib MAINT AINERS gemu-tech, texi thread-pool. c
COPYING Makefile gemu-timer.c thunk.c
COPYING.LIB Makefile.ohjs qga tpm.c

Cpu-exec.c Makefile. target qjson.c trace
Cpu-exXec-common.c MEmory.c qmp. ¢ trace-events
cpus.c memory_mapplng.c gmp-commands ., hx translate-all.c
cputlb.c migration gqobject translate-all.h
crypto module-common.c qom translate-common.c
cscope.out monitor. c qtest.c ui
default-configs nbd.c README USer-exec.c
device-hotplug.c net replay util
device_tree.c numa. c roms VERSION

disas 05-posix.c rules.mak version.rc
disas.c 05-win3z.c scripts vli.c
dma-helpers.c page_cache.c slirp Xen-common. c
docs pc-bios softmmu_template.h xen-common-stub.c
dtc piliman spice-gemu-char.c xen-hvm.c

dump . c po stubs xen-hvm-stub.c
exec.c qapl target-alpha Ken-mapcache.c
fpu qapl-schema. json target-arm

Some important data structures and ioctls () make up the QEMU userspace and
KVM kernel space. Some of the important data structures are KVMState, CPU{X86}
State, MachineState, and so on. Before we further explore the internals, I would like
to point out that covering them in detail is beyond the scope of this book; however, I
will give enough pointers to understand what is happening under the hood and give
additional references for further explanation.

[36]

Chapter 2

Data structures

In this section, we will discuss some of the important data structures of QEMU.

The KVMState structure contains important file descriptors of VM representation in
QEMU. For example it contains the virtual machine file descriptor, as shown in the
following code:

struct KVMState (kvm-all.c)
int £d;
int vmfd;
int coalesced mmio;
struct kvm_coalesced mmio_ring *coalesced mmio ring; ...}

QEMU-KVM maintains a list of CPUX86State structures, one structure for each
virtual CPU. The content of general purpose registers (as well as RSP and RIP) is
part of the CPUX865tate:

struct CPUState ({ typedef struct CPUX86State (
target-i386/cpu.h)
int nr_cores; {
int nr threads; /* standard registers */
. target ulong regs[CPU NB
int kvm £d; REGS] ;

uinté64_t system_time_msr;
uinté4_t wall_clock_msr;

struct KvMState *kvm state;
struct kvm_run *kvm_ run

/* exception/interrupt
handling */

int error code;

int exception is_int;

[37]

KVM Internals

Various ioctls () exist: kvm_ioctl(), kvm vm ioctl (), kvm vecpu ioctl(),
kvm_device_ioctl (), and so on. For function definitions, please visit kvm-all.c
inside the QEMU source code repo. These ioctls () fundamentally map to the
system KVM level, VM level, and vCPU level. These ioctls () are analogous to

the ioctls () categorized by KVM. We will discuss this when we dig further into
KVM internals. To get access to these ioctls () exposed by the KVM kernel module,
QEMU-KVM has to open /dev/kvm, and the resulting file descriptor is stored in
KvMState->fd:

* kvm_ioctl(): These ioctl () s mainly execute on the KVMState->fd
parameter, where KVMState->fd carries the file descriptor obtained by
opening /dev/kvm.

For example:

kvm ioctl (s, KVM CHECK EXTENSION, extension);
kvm ioctl (s, KVM CREATE VM, type);

* kvm_vm_ioctl (): These ioctl () s mainly execute on the KVMState->vmfd
parameter.

For example:

kvm_vm ioctl (s, KVM_CREATE VCPU, (void *)kvm arch vcpu id(cpu)) ;
kvm_vm ioctl (s, KVM_SET USER MEMORY REGION, &mem) ;

* kvm_vcpu_ioctl (): These ioctl () s mainly execute on the CPUState->kvm_
fd parameter, which is a vCPU file descriptor for KVM.

For example:
kvm vcpu ioctl (cpu, KVM RUN, O0);

* kvm_device_ioctl(): These ioctl () s mainly execute on the
device fd parameter.

For example:

kvm device ioctl(dev_fd, KVM HAS DEVICE ATTR, &attribute) ? 0 : 1;

kvm-all.c is one of the important source files when considering QEMU
KVM communication.

Now let us move on and see how a virtual machine and vCPUs are created and
initialized by a QEMU in the context of KVM virtualization.

[38]

Chapter 2

kvm_init () is the function that opens the KVM device file as shown in the following
and it also fills £d [1] and vmfd [2] of KVMState:

static int kvm init (MachineState *ms)

{

KVMState *s;
s = KVM_STATE (ms->accelerator) ;

s->vmfd = -1;
s->fd = gemu_open("/dev/kvm", O RDWR) ; --->[1]
do {
ret = kvm ioctl(s, KVM_CREATE VM, type); --->[2]
} while (ret == -EINTR);

s->vmfd = ret;
ret = kvm_arch init (ms, s); ---> (target-i386/kvm.c:)

}

As you can see in the preceding code, the ioctl () with the KvM_CREATE VM
argument will return vmfd. Once QEMU has £d and vmfd, one more file descriptor
has to be filled, which is just kvm_£d or vcpu £d. Let us see how this is filled

by QEMU:

main() ->
-> cpu_init (cpu_model) ;
[#define cpu_init (cpu model) CPU(cpu x86 init (cpu model))]
->cpu_x86 create ()
->gemu_init_vcpu
->gemu_kvm_start vcpul()
->gemu_thread_create
->gemu_kvm_cpu_ thread fn()
->kvm_init_vcpu (CPUState *cpu)
int kvm_init vcpu (CPUState *cpu)
{
KVMState *s = kvm_state;
ret = kvm vm ioctl (s, KVM CREATE VCPU, (void *)kvm arch vcpu id(cpu)) ;

[39]

KVM Internals

cpu->kvm fd = ret; ---> [vCPU £d]

mmap size = kvm ioctl(s, KVM_GET VCPU MMAP SIZE, 0);
cpu->kvm_run = mmap (NULL, mmap size, PROT READ | PROT WRITE,
MAP_SHARED, cpu->kvm_fd, 0); [3]

ret = kvm _arch init vecpu(cpu) ; [target-1386/kvm.c]

Some of the memory pages are shared between the QEMU-KVM process and
the KVM kernel modules. You can see such a mapping in the kvm_init_vcpu ()
function. That said, two host memory pages per vCPU make a channel for
communication between the QEMU user space process and the KVM kernel
modules: kvm_run and pio_data. Also understand that, during the execution of
these ioctls () that return the preceding fds, the Linux kernel allocates a file
structure and related anonymous nodes. We will discuss the kernel part later
when discussing KVM.

We have seen that vCPUs are posix threads created by QEMU-KVM. To run guest
code, these vCPU threads execute an ioctl () with KVM_RUN as its argument,
as shown in the following code:

int kvm _cpu exec (CPUState *cpu)
struct kvm_run *run = cpu->kvm_run;
run_ret = kvm_vcpu ioctl (cpu, KVM_RUN, 0);

}

The same function kvm_cpu_exec () also defines the actions that need to be taken
when the control comes back to the QEMU-KVM user space from KVM with a VM
exit. Even though we will discuss later on how KVM and QEMU communicate
with each other to perform an operation on behalf of the guest, let me touch upon
this here. KVM is an enabler of hardware extensions provided by vendors such as
Intel and AMD with their virtualization extensions such as SVM and VMX. These
extensions are used by the KVM to directly execute the guest code on host CPUs.
However if there is an event, for example, as part of an operation guest kernel code
access hardware device register which is emulated by the QEMU, KVM has to

exit back to QEMU and pass control. Then QEMU can emulate the outcome of the
operation. There are different exit reasons, as shown in the following code:

[40]

Chapter 2

switch (run-sexit reason)
case KVM_EXIT IO:
DPRINTF ("handle_io\n") ;

case KVM_EXIT MMIO:
DPRINTF ("handle mmio\n") ;

case KVM_EXIT IRQ WINDOW OPEN:
DPRINTF ("irg window_ open\n") ;

case KVM_EXIT SHUTDOWN:
DPRINTF ("shutdown\n") ;
case KVM_EXIT UNKNOWN:

case KVM_EXIT INTERNAL ERROR:

case KVM_EXIT SYSTEM EVENT:
switch (run->system event.type) {
case KVM_SYSTEM EVENT SHUTDOWN:

case KVM_SYSTEM EVENT RESET:

case KVM_SYSTEM EVENT CRASH:

Threading models in QEMU
QEMU-KVM is a multithreaded, event-driven (with a big lock) application.
The important threads are:

* Main thread

* Worker threads for virtual disk I/O backend

* One thread for each virtual CPU

[41]

KVM Internals

For each and every VM, there is a QEMU process running in the host system. If the
guest system is shut down this process will be destroyed/exited. Apart from vCPU
threads, there are dedicated iothreads running a select (2) event loop to process I/O
such as network packets and disk I/O completion. IO threads are also spawned by
QEMU. In short, the situation will look like this:

£)

Guest Physical RAM (Belongs to
Virtual Address Space of
gemu-kvm Process in host system)

KVM
GUEST QEMU
vepu vepu .
thread]’ thread lothead]
KVM Guest

Before we discuss this further, there is always a question about the physical memory
of guest systems: Where is it located? Here is the deal: the guest RAM is assigned
inside the QEMU process's virtual address space, as shown in the preceding figure.
That said, the physical RAM of the guest is inside the QEMU Process Address space.

* More details about threading can be fetched from the threading model
at: blog.vmsplice.net/2011/03/gemu-internals-overall-
architecutre-and-html?m=1.

[42]

 blog.vmsplice.net/2011/03/qemu-internals-overall-architecutre-and-html?m=1
 blog.vmsplice.net/2011/03/qemu-internals-overall-architecutre-and-html?m=1

Chapter 2

The event loop thread is also called iothread. Event loops are used for timers, file
descriptor monitoring, and so on. main_loop_wait () is the QEMU main event loop
thread, which is defined as shown in the following. This main event loop thread is
responsible for, main loop services include file descriptor callbacks, bottom halves,
and timers (defined in gemu-timer.h). Bottom halves are similar to timers that
execute immediately, but have a lower overhead, and scheduling them is wait-free,
thread-safe, and signal-safe.

File:vl.c
static void main_loop (void) {
bool nonblocking;
int last_io = 0;
do {
nonblocking = !kvm enabled() && !xen enabled() && last _io > 0;

last _io = main_loop wait (nonblocking) ;

} while (!main loop should exit());

}

Before we leave the QEMU code base, I would like to point out that there are mainly
two parts to device codes. For example, the directory hw/block/ contains the host
side of the block device code, and hw/block/ contains the code for device emulation.

KVM in action

Time to discuss KVM! The fundamentals KVM developers followed were the same
as the Linux kernel: "Don't reinvent the wheel". That said, they didn't try to change
the kernel code to make a hypervisor; rather, the code was developed by following
the new hardware assistance in virtualization (VMX and SVM) from hardware
vendors as a loadable kernel module. There is a common kernel module called
kvm.ko and there are hardware-based kernel modules such as kvm-intel.ko
(Intel-based systems) or kvm-amd.ko (AMD-based systems). Accordingly, KVM
will load the kvm-intel.ko (if the vmx flag is present) or kvm-amd.ko (if the svm flag
is present) modules. This turns the Linux kernel into a hypervisor, thus achieving
virtualization. The KVM is developed by qumranet and it has been part of the Linux
kernel since version 2.6.20. Later qumranet was acquired by Red Hat.

[43]

KVM Internals

KVM exposes a device file called /dev/kvm to applications to make use of the
ioctls () provided. QEMU makes use of this device file to talk with KVM and

to create, initialize, and manage the kernel mode context of virtual machines.
Previously, we mentioned that the QEMU-KVM user space hosts the virtual
machine's physical address space within the user mode address space of QEMU-
KVM, which includes memory-mapped I/O. KVM helps to achieve that. There are
more things achieved with the help of KVM. Below are some of those.

* Emulation of certain I/O devices, for example (via "mmio") the per-CPU local
APIC and the system-wide IOAPIC.

e Emulation of certain "privileged" (R/W of system registers CR0, CR3 and
CR4) instructions.

* The facilitation to run guest code via VMENTRY and handling of
"intercepted events" at VMEXIT.

* '"Injection" of events such as virtual interrupts and page faults into the flow
of execution of the virtual machine and so on are also achieved with the help
of KVM.

Once again, let me say that KVM is not a hypervisor! Are you lost? OK, then let me
rephrase that. The KVM or kernel-based virtual machine is not a full hypervisor;
however, with the help of QEMU and emulators (a slightly modified QEMU for I/O
device emulation and BIOS), it can become one. KVM needs hardware virtualization-
capable processors to operate. Using these capabilities, KVM turns the standard
Linux kernel into a hypervisor. When KVM runs virtual machines, every VM is

a normal Linux process, which can obviously be scheduled to run on a CPU by

the host kernel as with any other process present in the host kernel. In Chapter 1,
Understanding Linux Virtualization, we discussed different CPU modes of execution. If
you recollect, there is mainly a USER mode and a Kernel /Supervisor mode. KVM is
a virtualization feature in the Linux kernel that lets a program such as QEMU safely
execute guest code directly on the host CPU. This is only possible when the target
architecture is supported by the host CPU.

However, KVM introduced one more mode called the guest mode! In nutshell, guest
mode is the execution of guest system code. It can either run the guest user or the
kernel code. With the support of virtualization-aware hardware, KVM virtualizes
the process states, memory management, and so on.

[44]

Chapter 2

With its hardware virtualization capabilities, the processor manages the processor
states by Virtual Machine Control Structure (VMCS) and Virtual Machine Control
Block (VMCB) for the host and guest operating systems, and it also manages the
I/O and interrupts on behalf of the virtualized operating system. That said, with the
introduction of this type of hardware, tasks such as CPU instruction interception,
register read / write support, memory management support (Extended Page Tables
(EPT) and NPT), interrupt handling support (APICv), IOMMU, and so on, came in.

KVM uses the standard Linux scheduler, memory management, and other services.
In short, what KVM does is help the user space program to make use of hardware
virtualization capabilities. Here, you can treat QEMU as a user space program

as it's well-integrated for different use cases. When I say "hardware-accelerated
virtualization", I am mainly referring to Intel VI-X and AMD-Vs SVM. Introducing
Virtualization Technology processors brought an extra instruction set called Virtual
Machine Extensions or VMX.

With Intel's VT-x, the VMM runs in "VMX root operation mode", while the guests
(which are unmodified OSs) run in "VMX non-root operation mode". This VMX
brings additional virtualization-specific instructions to the CPU such as VMPTRLD,
VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH,
VMRESUME, VMXOFF, and VMXON. The virtualization mode (VMX) is turned
on by VMXON and can be disabled by VMXOFF. To execute the guest code, one
has to use VMLAUNCH/VMRESUME instructions and leave VMEXIT. But wait,
leave what? It's from nonroot operation to root operation. Obviously, when we

do this transition, some information needs to be saved so that it can be fetched
later. Intel provides a structure to facilitate this transition called Virtual Machine
Control Structure (VMCS); this handles much of the virtualization management
functionality. For example, in the case of VMEXIT, the exit reason will be recorded
inside this structure. Now, how do we read or write from this structure? VMREAD
and VMWRITE instructions are used to read or write to the fields of VMCS structure.

[45]

KVM Internals

There is also a feature available from recent Intel processors that allows each guest
to have its own page table to keep track of memory addresses. Without EPT, the
hypervisor has to exit the virtual machine to perform address translations and

this reduces performance. As we noticed in Intel's virtualization-based processors'
operating modes, AMD's Secure Virtual Machine (SVM) also has a couple of
operating modes, which are nothing but Host mode and Guest mode. As you would
have assumed, the hypervisor runs in Host mode and the guests run in Guest

mode. Obviously, when in Guest mode, some instructions can cause VMEXIT and
are handled in a manner that is specific to the way Guest mode is entered. There
should be an equivalent structure of VMCS here, and it is called Virtual Machine
Control Block (VMCB); as discussed earlier, it contains the reason of VMEXIT. AMD
added eight new instruction opcodes to support SVM. For example, the VMRUN
instruction starts the operation of a guest OS, the VMLOAD instruction loads the
processor state from the VMCB, and the VMSAVE instruction saves the processor
state to the VMCB. Also, to improve the performance of Memory Management Unit,
AMD introduced something called NPT (Nested Paging), which is similar to EPT

in Intel.

KVM APIs

As mentioned earlier, there are three main types of ioctl()s.

Three sets of ioctl make up the KVM APIL. The KVM APl is a set of ioctls that
are issued to control various aspects of a virtual machine. These ioctls belong
to three classes:

* System ioctls: These query and set global attributes, which affect the
whole KVM subsystem. In addition, a system ioctl is used to create
virtual machines.

* VM ioctls: These query and set attributes that affect an entire virtual
machine — for example, memory layout. In addition, a VM ioctl is used
to create virtual CPUs (vCPUs). It runs VM ioctls from the same process
(address space) that was used to create the VM.

* Vcpuioctls: These query and set attributes that control the operation of a
single virtual CPU. They run vCPU ioctls from the same thread that was
used to create the vCPU.

[46]

Chapter 2

To know more about the ioctls () exposed by KVM and the ioctl () s that belong
to a particular group of f£d, please refer to KvM. h:

For example:

/* ioctls for /dev/kvm fds: */

#define KVM _GET_API VERSION _IO(KVMIO, 0x00)
#define KVM_CREATE VM _IO(KVMIO, 0x01) /* returns a VM fd
*/

/* ioctls for VM fds */

#define KVM_ SET MEMORY REGION _IOW(KVMIO, 0x40, struct kvm memory
region)
#define KVM_ CREATE VCPU IO (KVMIO, 0x41)

/* ioctls for vcpu fds */

#define KVM_ RUN _IO(KVMIO, 0x80)
#define KVM_ GET_REGS _IOR(KVMIO, 0x81, struct kvm regs)
#define KVM_SET REGS _IOW(KVMIO, 0x82, struct kvm regs)

Anonymous inodes and file structures

Previously, when we discussed QEMU, we said the Linux kernel allocates
file structures and sets its £_ops and anonymous inodes. Let's look into the
kvm-main. c file:

static struct file operations kvm chardev ops = {
.unlocked_ioctl = kvm dev_ioctl,
.compat_ioctl
.llseek

kvm dev_ioctl,

noop_1llseek,
Vi
kvm_dev_ioctl ()
switch (ioctl) ({
case KVM GET API VERSION:

if (arg)

goto out;
r = KVM _API VERSION;
break;

case KVM CREATE VM:

[47]

KVM Internals

r = kvm _dev_ioctl create vm(arg) ;
break;
case KVM_CHECK EXTENSION:
r = kvm_vm_ioctl check extension generic (NULL, arg);
break;
case KVM_GET VCPU MMAP SIZE:

}

As such as kvm_chardev_ fops, there exist kvm _vm_ fops and kvm_vcpu fops:

static struct file operations kvm vm fops = {
.release = kvm_vm_release,
.unlocked ioctl = kvm vm_ ioctl,
.llseek = noop_1llseek,
yi
static struct file operations kvm vcpu fops = {
.release = kvm_vcpu release,
.unlocked ioctl = kvm vcpu ioctl,
.mmap = kvm_vcpu_mmap,

.1llseek

noop_1llseek,

}i
An inode allocation may be seen as follows:

anon_inode getfd("kvm-vcpu", &kvm vcpu fops, vepu, O RDWR | O
CLOEXEC) ;

Data structures

From the perspective of the KVM kernel modules, each virtual machine is
represented by a kvm structure:

include/linux/kvm host.h
struct kvm {
struct mm_struct *mm; /* userspace tied to this vm */

struct kvm vcpu *vcpus [KVM_MAX VCPUS] ;

[48]

Chapter 2

struct kvm io bus *buses[KVM NR BUSES] ;

struct kvm coalesced mmio ring *coalesced mmio ring;

}

As you can see in the preceding code, the kvm structure contains an array of pointers
to kvm_vcpu structures, which are the counterparts of the CPuxgéstate structures in
the QEMU-KVM user space. A kvm_vcpu structure consists of a common part and an
x86 architecture-specific part, which includes the register content:

struct kvm_vepu {

struct kvm *kvm;
int cpu;

int vcpu id;
struct kvm run *run;
struct kvm vcpu arch arch;
The x86 architecture-specific part of the kvm_vcpu structure contains fields to which

the guest register state can be saved after a VM exit and from which the guest
register state can be loaded before a VM entry:

arch/x86/include/asm/kvm_host.h
struct kvm vecpu arch {

unsigned long regs [NR_VCPU REGS] ;
unsigned long cro0;
unsigned long cr0_guest owned bits;
struct kvm lapic *apic; /* kernel irqgchip context */

struct kvm mmu mmu;

struct kvm pio request pio;
void *pio_data;

/* emulate context */

[49]

KVM Internals

struct x86 emulate ctxt emulate ctxt;

int (*complete userspace io) (struct kvm vcpu *vcpu) ;

}

As you can see in the preceding code, kvm_vcpu has an associated kvm_run structure
used for the communication (with pio_data) between the QEMU userspace and the
KVM kernel module as mentioned earlier. For example, in the context of VMEXIT,
to satisfy the emulation of virtual hardware access, KVM has to return to the QEMU
user space process; KVM stores the information in the kvm_run structure for QEMU
to fetch it:

/usr/include/linux/kvm.h:
/* for KVM RUN, returned by mmap (vcpu_ fd, offset=0) */
struct kvm_run {

/* in */

__u8 request interrupt window;

__u8 paddingl[7];

/* out */

_u32 exit reason;

__u8 ready for interrupt injection;
~_u8 if flag;

__u8 padding2[2];

...... . union {
/* KVM_EXIT UNKNOWN */
struct {
__u64 hardware exit reason;
} hw;
/* KVM_EXIT FAIL ENTRY */
struct {
__u64 hardware entry failure reason;
} fail entry;
/* KVM_EXIT EXCEPTION */

struct {
__u32 exception;
__u32 error_ code;
}oex;
/* KVM_EXIT IO */
struct {

#define KVM EXIT IO IN 0
#define KVM_EXIT IO OUT 1
__u8 direction;

[50]

Chapter 2

__u8 size; /* bytes */

__ulé port;

__u32 count;

__u64 data_ offset; /* relative to kvm run start
*/

} io;
}
The kvm_run struct is an important data structure; as you can see in the preceding

code, the union contains many exit reasons, such as KVM_EXIT FAIL_ENTRY,
KVM_EXIT IO, and so on.

When we discussed hardware virtualization extensions, we touched upon VMCS
and VMCB. These are important data structures when we think about hardware-
accelerated virtualization. These control blocks help especially in VMEXIT scenarios.
Not every operation can be allowed for guests; at the same time, it's also difficult
if the hypervisor does everything on behalf of the guest. Virtual machine control
structures such as VMCS or VMCB control the behavior. Some operations are
allowed for guests, such as changing some bits in shadowed control registers,

but others are not. This clearly provides a fine-grained control over what guests
are allowed to do and not do. VMCS control structures also provide control over
interrupt delivery and exceptions. Previously, we said the exit reason of VMEXIT
is recorded inside the VMCS; it also contains some data about it. For example, if a
write access to a control register caused the exit, information about the source and
destination registers is recorded there.

Let us see some of the important data structures before we dive into the vCPU
execution flow.

The Intel-specific implementation is in vmx . ¢ and the AMD-specific implementation
is in svm. ¢, depending on the hardware we have. As you can see, the following
kvm_vcpu is part of vepu_vmx. The kvm_vepu structure is mainly categorized as a
common part and architecture specific part. The common part contains the data
which is common to all supported architectures and architecture specific, for
example, x86 architecture specific (guest's saved general purpose registers) part
contains the data which is specific to a particular architecture. As discussed earlier,
the kvm_vcpus kvm_run and pio_data are shared with the userspace.

[51]

KVM Internals

The vcpu vmx and vepu_svm structures (mentioned next) have a kvm_vepu
structure, which consists of an x86-architecture-specific part (struct 'kvm vecpu_
arch') and a common part and also, it points to the vmcs and vmeb structures
accordingly:

vepu_vmx structure vcpu_svm structure
struct vepu vmx { struct vcpu svm {
struct kvm_vcpu struct kvm_vcpu vcpu;
vepu;

ce struct vmcb *vmcb;
struct loaded vmcs

vmes01l; }
struct loaded_ vmcs

*loaded_vmcs;

The vepu_vmx or vepu_svm structures are allocated by the following code path:

kvm_arch vcpu create()
->kvm_x86_ ops->vcpu_ create
->vcpu_create() [.vcpu create = svm_create vcpu,
.vcpu_create = vmx create_ vcpu,]

Please note that the VMCS or VMCB store guest configuration specifics such as
machine control bits and processor register settings. I would suggest you examine
the structure definitions from the source. These data structures are also used by the
hypervisor to define events to monitor while the guest is executing. These events can
be intercepted and these structures are in the host memory. At the time of VMEXIT,
the guest state is saved in VMCS. As mentioned earlier the, VMREAD instruction
reads the specified field from the VMCS and the VMWRITE instruction writes the
specified field to the VMCS. Also note that there is one VMCS or VMCB per vCPU.
These control structures are part of the host memory. The vCPU state is recorded in
these control structures.

Execution flow of vCPU

Finally, we are into the vCPU execution flow which helps us to put everything
together and understand what happens under the hood.

I hope you didn't forget that the QEMU creates a posix thread for a vCPU of the
guest and ioctl (), which is responsible for running a CPU and has the KVM_RUN
arg (#define KVM_RUN_IO (KVMIO, 0x80)). vCPU thread executes ioctl (..,
KVM_RUN, ...) torun the guest code. As these are posix threads, the Linux kernel
can schedule these threads as with any other process/thread in the system.

[52]

Chapter 2

Let us see how it all works:

Qemu-kvm User Space:
kvm_init vecpu ()
kvm_arch init vepu()
gemu_init vecpu()

gemu_kvm_start vcpu()

gemu_kvm_cpu_ thread fn()

while (1) {
if (cpu_can run(cpu))
r =

}

kvm_cpu exec (CPUState *cpu)

-> run_ret =

kvm_vecpu ioctl (cpu, KVM RUN,

kvm_cpu exec (cpu) ;

0);

According to the underlying architecture and hardware, different structures are
initialized by the KVM kernel modules and one among them is vmx_x86_ops/
svm_x86_ops (owned by either the kvm-intel or kvm-amd module), as can be seen
in the following. It defines different operations that need to be performed when the
vCPU is in context. The KVM makes use of the kvm_x86_ops vector to point either of
these vectors according to the KVM module (kvm-intel or kvm-amd) loaded for the
hardware. The "run" pointer defines the function, which needs to be executed when
the guest vCPU run is in action and handle_exit defines the actions needed to be

performed at the time of a vmexit:

vepu_vmx structure

vcpu_svm structure

static struct kvm_x86_ops vmx_
x86_ops = {

. vcpu_create
create_vcpu ’

= VmX_

.run = vmx_vcpu_run,
.handle_exit
handle exit,

= VmX_

static struct kvm x86 ops svm x86
ops = {

.vcpu_create =
vepu,

svm_create_
.run = svm_vcpu_run,

.handle_exit = handle_exit,

[53]

KVM Internals

The run pointer points to vmx_vcpu_run or svm_vcpu_run accordingly. The
functions svm_vcpu_run or vinx_vecpu_run do the job of saving KVM host registers,
loading guest o/s registers, and svM_VMLOAD instructions. We walked through the
QEMU KVM user space code execution at the time of vcpu run, once it enters the
kernel via syscall. Then, following the file operations structures, it calls kvm_vcpu_
ioctl (); this defines the action to be taken according to the ioctl () it defines:

static long kvm vcpu ioctl (struct file *filp,
unsigned int ioctl, unsigned long arg) {
switch (ioctl) ({
case KVM_RUN:

kvm_arch vcpu ioctl run(vcpu, vcpu->run);
->vcpu_load
-> vmx_vcpu_load
->vcpu_run (vepu) ;
->vcpu_enter guest
->Vmx_Vvcpu_run

}

We will go through vepu_run () to understand how it reaches vmx_vecpu_run or
SVm_vcpu_run.

static int vepu run(struct kvm vcpu *vecpu) {

for (;;) {
if (kvm_vecpu_running(vepu)) {
r = vcpu enter guest (vcpu) ;
} else {
r = vecpu block (kvm, vecpu) ;

}

Once it's in vcpu_enter guest (), you can see some of the important calls
happening when it enters guest mode in the KVM:

static int vcpu enter guest (struct kvm vcpu *vcpu)

kvm x86 ops->prepare_guest switch (vcpu) ;
vcpu->mode = IN GUEST MODE;

__kvm guest _enter() ;

kvm x86 ops->run(vcpu) ;

[54]

Chapter 2

[vimx vcpu run or svm _vcpu run]

vcpu->mode = OUTSIDE GUEST MODE;
kvm guest exit();
r = kvmm _x86 ops->handle exit (vcpu) ;
[vimx handle exit or handle exit]

You can see a high-level picture of VMENTRY and VMEXIT from the vcpu_enter
guest () function. That said, VMENTRY ([vmx_vcpu run or svm_vcpu_run]) is
just a guest operating system executing in the CPU; different intercepted events can
occur at this stage, causing a VMEXIT. If this happens, any vmx_handle_exit or
handle_exit will start looking into this exit cause. We have already discussed the
reasons for VMEXIT in previous sections. Once there is a VMEXIT, the exit reason is
analyzed and action is taken accordingly.

vmx_handle_exit () is the function responsible for handling the exit reason:

/ * The guest has exited. See if we can fix it or if we need
userspace
assistance. */

static int vmx _handle exit (struct kvm_ vcpu *vcpu)

{

/* The exit handlers return 1 if the exit was handled fully and guest
execution

may resume. Otherwise they set the kvm run parameter to indicate
what needs

to be done to userspace and return 0. */

static int (*const kvm vmx_exit handlers[]) (struct kvm vcpu *vcpu) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT REASON_ EXTERNAL INTERRUPT] = handle external interrupt,
[EXIT REASON TRIPLE FAULT] = handle triple fault,
[EXIT REASON IO INSTRUCTION] = handle io,
[EXIT REASON CR ACCESS] = handle cr,
[EXIT REASON_ VMCALL] = handle_vmcall,
[EXIT REASON_ VMCLEAR] = handle vmclear,
[EXIT REASON_ VMLAUNCH] = handle vmlaunch,

[55]

KVM Internals

kvm_vmx_exit_handlers[] is the table of VM exit handlers, indexed by "exit
reason". Similar to Intel, the svm code has handle exit ():

static int handle exit (struct kvm vcpu *vcpu)

{

struct vcpu svm *svm = to_svm(vcpu) ;
struct kvm run *kvm _run = vcpu->run;
u32 exit_code = svm->vmcb->control.exit_code;

return svm exit handlers[exit code] (svm) ;

}

handle_exit () has the svm_exit_handler array, as shown in the following section.

If needed KVM has to fall back to userspace (QEMU) to perform the emulation as
some of the instructions has to be performed on the QEMU emulated devices. For
example to emulate i/ o port access, the control goes to userspace (QEMU):

kvm-all.c:

static int (*const svm exit handlers|[]) (struct vcpu_svm *svm) = {
[SVM_EXIT READ CRO] = cr_interception,
[SVM_EXIT READ CR3] = cr_interception,
[SVM_EXIT READ CR4] = cr_interception,
[SVM_EXIT INTR] = intr interception,
[SVM_EXIT NMI] = nmi_interception,
[SVM_EXIT SMI] = nop on interception,
[SVM_EXIT IOIO] = io_interception,
[SVM_EXIT VMRUN] = vmrun_interception,
[SVM_EXIT VMMCALL] = vmmcall interception,
[SVM_EXIT VMLOAD] = vmload interception,
[SVM_EXIT VMSAVE] = vmsave interception,

switch (run->exit reason) {
case KVM_EXIT IO:
DPRINTF ("handle io\n");
/* Called outside BQL */

kvm_handle io(run->io.port, attrs,

(uint8_t *)run + run->io.data offset,
run->io.direction,

run->io.size,
run->1io.count) ;

ret = 0;

break;

[56]

Chapter 2

Summary

In this chapter, we discussed important data structures and functions that define
the internal implementation of libvirt, QEMU, and KVM. We also discussed the
vCPU execution life cycle and how QEMU and KVM perform together to run
guest operating systems in host CPUs. We also discussed the hardware support for
virtualization, the important concepts around it, and how it plays a role in KVM
virtualization. With these concepts and illustrations in mind, we can explore KVM
virtualization in greater detail.

In the next chapter, we will see how to set up a standalone KVM, along with libvirt
management tools.

[57]

Setting Up Standalone
KVM Virtualization

In the second chapter, you learned about KVM internals; now in this chapter,
you will learn about how to set up your Linux server as a virtualization host. We
are talking about using KVM for virtualization and libvirt as the virtualization
management engine.

KVM enables virtualization and readies your server or workstation to host the
virtual machines. In technical terms, KVM is a set of kernel modules for an x86
architecture hardware with virtualization extensions; when loaded, it converts a
Linux server into a virtualization server (hypervisor). The loadable modules are
kvm.ko, which provides the core virtualization capabilities and a processor-specific
module, kvm-intel .ko or kvm-amd.ko.

According to https://en.wikipedia.org/wiki/Hypervisor. A
% hypervisor or virtual machine monitor (VMM) is a piece of computer
’ software, firmware, or hardware that creates and runs virtual machines.

It is not enough to just load the KVM kernel modules to start your virtual machines.
You need an emulator to emulate the hardware peripherals for your virtual
machines. It is now time to introduce QEMU.

Quick Emulator (QEMU) is an open source machine emulator. This emulator will
help you to run the operating systems that are designed to run one architecture on
top of another one. For example, Qemu can run an OS created on the ARM platform
on the x86 platform; however, there is a catch here. Since QEMU uses dynamic
translation, which is a technique used to execute virtual machine instructions

on the host machine, the VMs run slow.

[59]

https://en.wikipedia.org/wiki/Hypervisor

Setting Up Standalone KVM Virtualization

If QEMU is slow, how can it run blazing fast KVM-based virtual machines at a near
native speed? KVM developers thought about the problem and modified QEMU as
a solution. This modified QEMU is called gemu-kvm, which can interact with KVM
modules directly and safely execute instructions from the VM directly on the CPU
without using dynamic translations. In short, we use gemu-kvm binary to run the
KVM-based virtual machines.

It is getting more and more confusing, right? If gemu-kvm can run a virtual machine,
then why do you need to use 1ibvirt. The answer is simple, 1ibvirt manages
gemu-kvm and gemu-kvm runs the KVM virtual machines.

The gemu-kvm binary is now deprecated and all of the codes in that are

now merged with the gemu-system-x86_64 binary. For the purpose of
= understanding, we are using gemu-kvm. Some Linux distributions still

carry gemu-kvm.

Without further ado, let us see what topics will be covered in this chapter:

* Introduction to libvirt
* libvirt management tools
* Hardware setup recommendations

Getting acquainted with libvirt

Libvirt is a set of API libraries that sits in between the end user and the hypervisor.
The hypervisor can be built using any virtualization technology that libvirt supports.
At the time of writing, libvirt supports the following hypervisors:

* The KVM/QEMU Linux hypervisor

* The Xen hypervisor on Linux and Solaris hosts

* The LXC Linux container system

* The OpenVZ Linux container system

* The User Mode Linux paravirtualized kernel

* The VirtualBox hypervisor

* The VMware ESX and GSX hypervisors

* The VMware Workstation and Player hypervisors

* The Microsoft Hyper-V hypervisor

* The IBM PowerVM hypervisor

* The Parallels hypervisor

* The Bhyve hypervisor

[60]

Chapter 3

libvirt acts as a transparent layer that takes commands from users, modifies them
based on the underlying virtualization technology, and then executes them on the
hypervisor. This means that if you know how to use libvirt-based management tools,
you should be able to manage the preceding set of hypervisors without knowing
them individually. You can select any virtualization management technology. They
all use libvirt as their backend infrastructure management layer, even though the
frontend tools look different; for example, oVirt, Red Hat Enterprise Virtualization
(RHEV), OpenStack, Eucalyptus, and so on. This book is all about KVM libvirt and
its tools.

In the following figure, we will summarize how everything is connected:

oVirt, Openstack, etc.

virish @ virt-manager

gemu-kvm

4
VM

Physical Machine (Linux)

E—L

Libvirt will take care of the storage, networking, and virtual hardware requirements
to start a virtual machine along with VM lifecycle management.

Here's how easy it is to start VM using libvirt. Here, we are starting a VM named
TestVM using virsh.

virsh start TestVM

virsh is the frontend command line that interacts with the
libvirt service and virt-manager is its GUI frontend.
’ You will learn more about these tools later on in the book.

[61]

Setting Up Standalone KVM Virtualization

In the backend, you can see that libvirt initiated the gemu process with a bunch
of options:

gemu-system-x86 64 -machine accel=kvm -name TestVM -S -machine
pc-i440fx-1.6,accel=kvm,usb=off -m 4000 -realtime mlock=off -smp
2,sockets=2,cores=1, threads=1 -uuid 39ac4786-1leca-1092-034c-edb6£93d291c
-no-user-config -nodefaults -chardev socket,id=charmonitor,path=/var/lib/
libvirt/qgemu/TestVM.monitor, server,nowait -mon chardev=charmonitor,id=mo
nitor,mode=control -rtc base=utc -no-shutdown -device piix3-usb-uhci,id=
usb,bus=pci.0,addr=0x1.0x2 -drive file=/dev/vms/TestVM, if=none,id=drive-
virtio-disk0, format=raw, cache=none,aio=native -device virtio-blk-pc
i,scsi=off,bus=pci.0,addr=0x4,drive=drive-virtio-disk0,id=virtio-
disk0,bootindex=2 -netdev tap,fd=27,id=hostnet0,vhost=on,vhostfd=28
-device virtio-net-pci,netdev=hostnet0,id=net0,mac=52:54:00:a5:cd:61,bu
s=pci.0,addr=0x3,bootindex=1 -chardev pty,id=charserial0 -device isa-se
rial,chardev=charserial0,id=serial0 -device usb-tablet,id=input0 -vnc
127.0.0.1:2 -device cirrus-vga,id=video0O,bus=pci.0,addr=0x2 -device
virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x5

. While introducing libvirt, we deliberately avoided mentioning many
% features of libvirt. This is done to make the concept clearer and focus on
=" the key functions of libvirt. When you progress through the chapters, you
will get introduced to those features.

Now, you are familiar with the key components required to use KVM-based
virtualization. Before we learn how to set up the environment, we should take
a look at the system requirements.

Host system requirements

A virtual machine needs a certain amount of CPU, memory, and storage to be
assigned to it. This means that the number of virtual machines you are planning
to run on that particular host decides the hardware requirements for the KVM
hypervisor.

Let's start with the minimum requirements to start two simple virtual machines on
KVM with 756 MB of RAM each:

¢ An Intel or AMD 64-bit CPU that has virtualization extension, VT-x for Intel
and AMD-V for AMD.

* 2GBRAM.

* 8 GB free disk space on KVM hypervisor after Linux OS installation.

* 100 Mbps network.

[62]

Chapter 3

For the examples in the book, we are using Fedora 21. However, you
+ are free to use any Linux distribution (Ubuntu, Debian, CentOS, and
% so on) that has KVM and libvirt support. We assume that you have
’ already installed a Fedora 21 or a Linux distribution with all the basic
configurations, including the networking.

Determining the right system requirements

for your environment

This is a very important stage and we need to get this right. Having the right system
configuration is the key to getting native-like performance from the virtual machines.
Let us start with the CPU.

Physical CPU

An Intel or AMD 64-bit CPU that has virtualization extension, VT-x for Intel and
AMD-V for AMD.

To determine whether your CPU supports the virtualization extension, you can
check for the following flags:

grep --color -Ew 'svm|vmx|lm' /proc/cpuinfo

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall
nx rdtscp lm constant tsc arch perfmon pebs bts rep good nopl xtopology
nonstop tsc aperfmperf pni dtes64 monitor ds cpl vmx smx est tm2 ssse3
cxl6 xtpr pdcm sse4 1 sse4 2 popcnt lahf 1m ida dtherm tpr shadow vnmi
flexpriority ept wvpid

The svm flag means that the CPU has AMD-V, vmx flag means that the CPU has vT-x,
and 1m means a 64-bit support.

If your CPU supports a virtualization extension, then your system is probably
ready to host the KVM virtual machines. You will also notice that the appropriate
KVM modules get loaded automatically with no additional configuration. To verify
whether the modules are loaded or not, use following command:

lsmod | grep kvm
kvm intel 148081 9
kvm 461126 1 kvm intel

[63]

Setting Up Standalone KVM Virtualization

If the system is AMD, you will see kvm_amd instead of kvm_intel.

If you do not see the preceding CPU flags, or all the KVM modules are not loaded,
but you are sure that the system supports virtualization extensions, then try the
following troubleshooting steps:

1. Reboot the system and go to the BIOS.

2. Go to advanced options for CPU. Enable Intel Virtualization Technology or
Virtualization Extensions. For AMD, it should be enabled by default. The
exact words might be different depending on your BIOS.

Restart the machine.

You should now see the KVM modules loaded. If you still do not see them as
loaded, then try loading them manually.

modprobe kvm kvm_intel Or modprobe kvm kvm_ amd

5. If you are able to load them manually but they still don't work, then it is time
to involve your hardware vendor or double-check the processor details on
respective Intel or AMD product pages.

In addition to the virtualization extension, you may need to enable Intel VT-d or
AMD IOMMU (AMD-Vi) in the BIOS. These are required for direct PCI device
assignment to virtual machines, for example, to assign a physical Network Interface
Card (NIC) from the hypervisor to the virtual machine; we will be covering more
about this in the upcoming chapters.

CPU cores

If you are planning to run server-class virtual machines, then one core per
vCPU is recommended. When counting cores, do not count the hyperthreaded
cores on the Intel CPUs, just the actual cores. Of course, you can overcommit the
number of vCPUs available as more than the actual cores but it comes with a
performance penalty.

If you are planning to run desktop-class virtual machines or less CPU-intensive
virtual machines, then you can safely overcommit the CPU since the performance
takes a back seat here and priority changes to VM density per hypervisor more than
the performance.

Overcommitting means assigning more virtual resources than
s the physical resources available.

[64]

Chapter 3

There is no crystal clear definition of how many VMs you can run on a hypervisor. It
all depends upon the type of workload inside the VMs and how much performance
degradation you can afford. If all the VMs run CPU intensive tasks, then
overcommitting vCPUs is a bad idea.

a1

Q Use the 1scpu command to see your CPU topology.

Physical memory

A simple rule of thumb you can use to decide how much memory you need for the
physical node is to add up all the memory you plan to assign to virtual machines and
add an additional 2 GB of RAM for the hypervisor itself to use.

This is the expected configuration if you are planning to run memory intensive
workloads.

Similar to the CPU, KVM also supports memory overcommitting. This means that
you can assign more memory to the VMs than the hypervisor actually has, with the
risk of running out of memory. Usually this type of allocation is done for desktop
class virtual machines or test virtual machines.

You can use the following formulas to find how much RAM will be available to
the VMs:

* For systems with memory up to 64 GB:
RAM - 2 GB = Amount of RAM available to VMs in GBs

* For systems with memory above 64 GB:
RAM - (2 GiB + .5* (RAM/64)) = Amount of RAM available to VMs in GBs

We are adding 500 MiB to every 64 GB added to the hypervisor + a mandatory 2 GB.
Use this formula to get a rough idea of how much memory is available for the virtual
machines. In some workloads, you may not need more than 5 GB of RAM space

for the hypervisor, even if our formula suggests that you may need to keep 10 GB
reserved for the hypervisor software on a system with 1 TB of RAM.

[65]

Setting Up Standalone KVM Virtualization

Storage

When considering the storage space for the hypervisor, you need to factor in the
space required for the OS installation, SWAP, and virtual machines disk usage.

How much SWAP space is recommended?

Determining the ideal amount of SWAP space needed is a bit complicated. If you
are not planning to do any memory overcommit, then you can use the following

suggestion for an oVirt Node, which is a dedicated KVM hypervisor for running

the VMs only:

* 2 GB of swap space for systems with 4 GB of RAM or less

* 4 GB of swap space for systems with 4 GB and 16 GB of RAM

* 8 GB of swap space for systems with 16 GB and 64 GB of RAM

* 16 GB of swap space for systems with 64 GB and 256 GB of RAM

If you are planning to do a memory overcommit, you will need to add additional
swap space. If the overcommit ratio is .5 (that is, 50% more than the available
physical RAM), then you need to use the following formula to determine the
SWAP space:

(RAM x 0.5) + SWAP for OS = SWAP space required for overcommitting

For example, if your system has 32 GB RAM and you are planning to use a .5
overcommit ratio, then the SWAP space required is (32 *.5) + 8§ = 24 GB.

A virtual disk can be stored as a file in the local file system storage (ext3, ext4, xfs,
and so on) or in a shared file storage (NFS, GlusterFS, and so on). A virtual disk can
also be created from block devices, such as LVM, a locally partitioned disk, iSCSI
disk, Fibre Channel, FCoE, and so on. In short, you should be able to attach any block
device that the hypervisor sees to a VM. As you have guessed by now, the space is
decided by how much disk space VMs will require or the applications installed in it.
In storage, you can also do overcommitting similar to what we explained for CPU
and memory, but it is not recommended for virtual machines that do heavy I/O
operations. An overcommitted virtual disk is called a thin provisioned disk.

Further explanation about CPU, memory, and storage overcommitting will be given
in the later chapters that cover virtual machines performance tuning.

[66]

Chapter 3

Network

One NIC with a bandwidth of at least 1 GBps is recommended for smooth
network operation, but again, it totally depends on how you configure your
virtual network infrastructure and how the network requirement varies according
to various scenarios.

It is suggested to bind multiple network interfaces together into a single channel
using Linux bonding technology and build virtual machine network infrastructure
on top of it. It will help in increasing the bandwidth and providing redundancy.

There are several bonding modes but not all are supported for
. building virtual network infrastructure. Mode 1 (active-backup),
Mode 2 (balance-xor), Mode 4 (802.3ad/LACP), and Mode 5
e (balance-tlb) are the only supported bonding modes; the remaining
bonding modes are not suitable. In Mode 1 and Mode 4 are highly
recommended and stable.

Setting up the environment

This section guides you through the process of installing virtualization packages,
starting with the libvirt service and validating that the system is ready to host virtual
machines using KVM virtualization technology.

We assume that you have a Fedora 21 system ready with a graphical user
interface loaded and Internet connectivity to access the default Fedora
yum repository through which the required KVM virtualization packages
can be downloaded. We also assume that the Virtualization Technology
(VT) feature is enabled in your server's BIOS.

To verify whether the default yum repository is enabled or not on your system, use
the yum repolist command. This command lists the yum repositories defined on
the system:

- Updates

[67]

Setting Up Standalone KVM Virtualization

Look for a repository named Fedora 21 - X86-64 in the output. It is where you
will find an access to all the KVM virtualization packages.

Installing virtualization packages

This is the first step to converting your Fedora 21 server or workstation system
into a virtualization host. Actually, this is a very easy thing to do. As root, you just
have to execute the yum install <packagess command, where <packages>isa
space-separated list of package names.

The minimum required packages for setting up a virtualization environment on the
Fedoraleyskﬂnarelibvirt,qemu—kvm,andxdlt—managen

So you should use the following yum command:

yum install gemu-kvm libvirt virt-install virt-manager virt-install -y

There are many dependent packages which are installed along with the preceding
packages but you do not need to worry what those are or remember their names, the
yum command will automatically detect the dependency and resolve it for you.

The yum groupinstall method can also be used to install the necessary and
optional packages required for setting up the KVM virtualization environment:

#yum groupinstall "virtualization" -y

It will install the guestfs-browser, libguestfs-tools, python-libguestfs, virt-
top packages along with the core components, such as libvirt and gemu-kvm.

Here is the output of yum groupinfo "virtualization" for your reference:

#yum groupinfo "virtualization"
Group: Virtualization
Group-Id: virtualization
Description: These packages provide a virtualization environment.
Mandatory Packages:
+virt-install

Default Packages:

[68]

Chapter 3

libvirt-daemon-config-network
libvirt-daemon-kvm

gemu-kvm
+virt-manager
+virt-viewer

Optional Packages:
guestfs-browser
libguestfs-tools
python-libguestfs

virt-top

For the time being, we would suggest that you install just the core packages using
the yum install command to avoid any confusion. In later chapters, the optional
utilities available for KVM virtualization are thoroughly explained with examples
and installation steps.

Starting the libvirt service

After installing the KVM virtualization packages, the first thing that you should do

is start a libvirt service. As soon as you start the libvirt service, it will expose a rich
Application Programmable Interface (API) to interact with gemu-kvm binary. Clients
such as virsh and virt-manager, among others, use this API to talk with gemu-kvm
for virtual machine life cycle management. To enable and start the service, run the
following command:

systemctl enable libvirtd && systemctl start libvirtd

\
‘Q Use libvirtd --version command to find out the libvirt

version in use.

Validate and understand your system'’s virt
capabilities
Before creating virtual machines, it's very important to validate the system and

make sure that it meets all the prerequisites to be a KVM virtualization host, and
understand what are its virt capabilities.

[69]

Setting Up Standalone KVM Virtualization

Knowing this information will help you to plan the number of virtual machines
and their configuration that can be hosted on the system. There are two important
commands that help in validating a system configuration for KVM. Let's start with
virt-host-validate

virt-host-validate: Executing this command as root user will perform
sanity checks on KVM capabilities to validate that the host is configured in a
suitable way to run the libvirt hypervisor drivers using KVM virtualization.

For example: TestSys1 has all the necessary packages required for KVM

virtualization but lacks hardware virtualization support. In this case, it will
print out the following;:

root@'TestSysl ~]#virt-host-validate

QEMU: Checking for hardware virtualization
WARN (Only emulated CPUs are available, performance will be
significantly limited)

QEMU: Checking for device /dev/vhost-net : PASS
QEMU: Checking for device /dev/net/tun : PASS
LXC: Checking for Linux >= 2.6.26 : PASS

This output clearly shows that hardware virtualization is not enabled on the
system and only "qemu" support is present, which is very slow as compared
to gemu-kvm.

It's the hardware virtualization support which helps the KVM (gemu-kvm) virtual
machines to have direct access to the physical CPU and helps it reach nearly native
performance. Hardware support is not present in a standalone gemu.

Now, let's see what other parameters are checked by the virt-host-validate
command when it's executed to validate a system for KVM virtualization:

/dev/kvm: The KVM drivers create a /dev/kvm character device on

the host to facilitate direct hardware access for virtual machines. Not
having this device means that the VMs won't be able to access physical
hardware, although it's enabled in the BIOS and this will reduce the VMs,
performance significantly.

/dev/vhost-net: The vhost -net driver creates a /dev/vhost -net character
device on the host. This character device serves as the interface to configure
the vhost-net instance. Not having this device significantly reduces the
virtual machine's network performance.

[70]

Chapter 3

/dev/net/tun: This is another character special device used for creating
tun/tap devices to facilitate network connectivity for a virtual machine.
The tun/tap device will be explained in detail in future chapters. For
now, just understand that having a character device is important for KVM
virtualization to work properly.

Always ensure that virt-host-validate passes all the sanity checks before creating
the virtual machine on the system. You will see the following output on the system
where it validates all the parameters:

[root@kvmHOST ~]# virt-host-validate

QEMU:
QEMU:
QEMU:
QEMU:

LXC:

Checking for hardware virtualization : PASS
Checking for device /dev/kvm : PASS
Checking for device /dev/vhost-net : PASS
Checking for device /dev/net/tun : PASS
Checking for Linux >= 2.6.26 : PASS

[root@kvmHOST ~]#

The second command is virsh. virsh (virtualization shell) is a command-line
interface for managing the VM and the hypervisor on a Linux system. It uses the
libvirt management API and operates as an alternative to the graphical virt-manager
and a Web-based kimchi-project. The virsh commands are segregated under various
classifications. The following are some important classifications of virsh commands:

Guest management commands (for example start, stop)

Guest monitoring commands (for example memstat, cpustat)

Host and hypervisors commands (for example capabilities, nodeinfo)
Virtual networking commands (for example net-1list, net-define)
Storage management commands (for example pool-1list, pool-define)

Snapshot commands (create-snapshot -as)

M To learn more about virsh, we recommend that you read the
main page of virsh. virsh is a very well-documented command.
#man virsh to access man pages of virsh command.

[71]

Setting Up Standalone KVM Virtualization

The reason why we introduced the virsh command in this chapter is because virsh
can display a lot of information about the host's capabilities, such as, the host CPU
topology, memory available for virtual machines, and so on. Let's take a look at the
output of the virsh nodeinfo command, which will give us the physical node's
system resource information:

#virsh nodeinfo

CPU model: x86 64
CPU(s) : 4

CPU frequency: 2534 MHz
CPU socket(s): 1

Core(s) per socket: 2
Thread(s) per core: 2

NUMA cell(s): 1

Memory size: 7967796 KiB

[% You must be the root to run virsh commands.]

In the virsh nodeinfo output, you can see the system hardware architecture,

CPU topology, memory size, and so on. Obviously, the same information can also
be gathered using the standard Linux commands, but you will have to run multiple
commands. You can use this information to decide whether or not this is a suitable
host to create your virtual machine suitable, in the sense of hardware resources.

Another important command is #virsh domcapabilities. The virsh
domcapabilities command displays an XML document describing the capabilities
of gemu-kvm with respect to the host and libvirt version. Knowing the emulator's
capabilities is very useful. It will help you determine the type of virtual disks you can
use with the virtual machines, the maximum number of vCPUs that can be assigned,
and so on.

[72]

Chapter 3

Hardware configuration examples

Let us take a look at some common hardware configurations; the domcapabilities
options of virsh commands will show you the host capabilities. You can parse the
output to find the exact supported value of a particular hardware configuration
which you can present to a virtual machine. The following is the maximum vcpu
that you can present to a VM:

[root@kvmHOST ~]1# virsh domcapabilities | grep -i max
<vepu max='255'/>

[root@kvmHOST ~]#

As per the output, on this host a maximum of 255 vcpus can be defined for a
virtual machine:

[root@kvmHOST ~]# virsh domcapabilities | grep diskDevice -A 5
<enum name='diskDevice'>
<value>disk</value>
<value>cdrom</value>
<value>floppy</value>
<value>lun</value>
</enum>

[root@kvmHOST ~]#

As per the output, disk, cdrom, floppy, and lun type devices can be used with the
virtual machine on this host.

A lot of the physical node's hypervisor capabilities are exposed by this command.
Explaining all of these capabilities is beyond the scope of this book, so you may
want to try running this command in your own environment to see what it reports.
Alternatively, it might be good to link it to a definitive online resource. Hence,

we suggest that you run the command on your system and learn its capabilities.

[73]

Setting Up Standalone KVM Virtualization

Along with 1ibvirt and the gemu-kvm packages, we also installed the virt-manager
package on the system. As stated earlier, the virt-manager is a GUI tool for
managing either a local or a remote hypervisor. For now, before finishing this
chapter we just want to show you how to start a virt-manager and connect it to a
local KVM hypervisor:

1. First, ensure that the libvirtd service is in a running state and the virt-host-
validate command passes all its checks.

2. Then, navigate to the application from Menu | System tools | and click on
Virtual Machine Manager.

3. After clicking on the virt-manager, a Virtual Machine Manager graphical
tool connected to the local hypervisor (qemu-kvm) should be opened as
shown in the following screenshot:

i Virtual Machine Manager - o x|
File Edit View gHelp
=

Name ~ | CPU usage Host CPU usage Disk IO

[74]

Chapter 3

4. In case it could not search the local hypervisor and connect to it, click on
the File menu and open the Add Connection dialogue box and fill in the
connection details:

m Add Connection x

Hypervisor: QEMU/KVM

<)

O Conngct to remote host

Method:
Username:

Hostname:

Autoconnect:

Generated URL: gemu:///system

Cancel | Connect |

The preceding hypervisor item should be set to gEMU/KVM from the dropdown list
and then you can click on Connect. That's it; it will connect the virt-manager to the
local gemu-kvm hypervisor through the libvirt. If you want to connect to the remote
hypervisor, check Connect to remote host and fill in the details.

If your virt-manager has successfully connected to the local KVM hypervisor, you
are ready to create virtual machines. If the connection fails, check the /user-home/ .
cache/virt-manager/virt-manager.log log file.

Summary

In this chapter, we learned about KVM virtualization, along with libvirt management
tools. We also learned about the various tools associated with KVM and libvirt, along
with sample hardware configurations that will make your system run smoothly.

In the next chapter, you will learn more about the virsh command and its syntax
through examples. You will also learn how to use virt-manager to create virtual
machines using it. It will also explain the virt-manager and virsh command in
more detail, with examples of how to create virtual machines.

[75]

Getting Started with libvirt
and Creating Your First
Virtual Machines

In Chapter 3, Setting Up Standalone KVM Virtualization, you installed and started the
libvirtd services. You were also introduced to the libvirt tools virt-manager and
virsh, which help you manage virtual machines.

New users always prefer the GUI rather than text-based commands. Hence we are
starting with virt-manager. We also think understanding virt-manager will fast-
forward the learning process of managing virtual machines using libvirt and later
with virsh. Whenever possible we will present you with the equivalent virsh
command so that you can try and learn both virt-manager and virsh.

In this chapter, we will cover the following topics:

* All about virt-manager

* Default virtual storage and network configurations

* Various guest installations methods (PXE/ISO/NETWORK/IMPORT)
* Using the virt-builder and oz utilities to rapidly create multiple VMs

[77]

Getting Started with libvirt and Creating Your First Virtual Machines

Introducing virt-manager

The virt-manager application is a Python-based desktop user interface for managing
virtual machines through libvirt. It primarily targets KVM VMs, but also manages
Xen and LXC (Linux containers) among others. virt-manager displays a summary
view of running VMs, supplying their performance and resource utilization statistics.
Using the virt-manager graphical interface, one can easily create new VMs, monitor
them, and make configuration changes when required. An embedded VNC and
SPICE client viewer presents a full graphical console to the VM.

As we mentioned in Chapter 3, Setting Up Standalone KVM Virtualization, virtual
machines need CPU, memory, storage, and networking resources from the host. In
this chapter we will explain the basic configuration of the KVM host and creating
virtual machines using virt-manager.

Let's start the Virtual Machine Manager by executing the virt-manager command
or by pressing Alt + F2 and it will then display the dialog box of virt-manager.

If you are not the root user, you will be prompted for the root password before
continuing. Here the password authentication is handled by the polkit framework.
polkit is an authorization API intended to be used by privileged programs (for
example, system daemons) offering services to unprivileged programs.

If you wish to allow certain groups or users to access virt-manager without
providing root credentials, a polkit rule needs to be created. The rule file has
to be created in the /etc/polkit-1/rules.d directory.

For example, if you want all the users in the wheel group to have direct access
to virt-manager without entering root password, create the /etc/polkit-1/
rules.d/70-1libvirtd.rules file and then write:

polkit.addRule (function(action, subject) {

if (action.id == "org.libvirt.unix.manage" && subject.local &&
subject.active && subject.isInGroup ("wheel")) {

return polkit.Result.YES;

}
1)

Save and close the file. The libvirtd daemon monitors polikit's rules.d directory for
changed content and automatically reloads the rules if changes are detected, so you
don't need to reload the process with systemctl. If you've done it right, you should
see that you can now launch virt-manager as the users in the wheel group without
entering the password. To add users in the wheel group run:

usermod -G wheel <username>

[78]

Chapter 4

If you examine the polkit rule carefully you will notice that it checks to see if the user
is in the wheel group, is on a local, and has an active session. If so then the result on
the org.libvirt.unix.manage action is a YES to allow the action. This could also be
configured as:

* NO: Reject the access request (return polkit.Result.No;)

* AUTH SELF: Request the user's own password (return polkit.Result .AUTH_
SELF;)

* AUTH_ADMIN: Request the password for an admin on the system (return
polkit.Result.AUTH ADMIN

Once virt-manager is opened, go to Edit | Connection Details to access the options
to configure network and storage:

QEMU/KVM Connection Details vl Al %
File
Overview Virtual Networks Storage Metwork Interfaces
Basic details

Name: lQEMUEKVMl

Libvirt URI: gemu:j//system
Autoconnect: [

CPU usage

Memory usage

0 MiB of 15.37 GiB

The Overview tab will give basic information on the libvirt connection URI, CPU,
and memory usage pattern of the host system. Virtual Networks and Storage will
present the details of the network and storage pools that can be used by the virtual
machines. The Network Interfaces tab will give details of the host network and
will offer options to configure them. We will cover this in more detail in Chapter 5,
Network and Storage.

[79]

Getting Started with libvirt and Creating Your First Virtual Machines

The Virtual Networks tab

The Virtual Networks tab allows us to configure various types of virtual network
and monitor their status:

QEMU/KVM Connection Details (on localhost.localdomain) v ()X

File

Overview Virtual Networks Storage Metwork Interfaces

=] .
L defoult Marne: default

Device: virbrQ

State: Active
Autostart [+ On Boot

w» [Pv4 configuration
Network: 152.168.124.0/24

DHCP range: 192168.124.2 - 192.168.124.254
Forwarding: =g] NAT

» Qo5 configuration
Enable inbound Qo5

Enable outbound GioS

%+ @ Apply

Using the Virtual Networks tab you will be able to configure the following types of
virtual network:

e NATed
e Routed
e Isolated

[80]

Chapter 4

NATed virtual network

A NAT-based virtual network provides outbound network connectivity to the
virtual machines. That means the VMs can communicate with the outside network
based on the network connectivity available on the host but none of the outside
entities will be able to communicate with the VMs. In this setup, the virtual machines
and host should be able to communicate with each other through the bridge interface
configured on the host.

Routed virtual network

A routed virtual network allows the connection of virtual machines directly to the
physical network. Here VMs will send out packets to the outside network based on
the routing rules set on the hypervisor.

Isolated virtual network

As the name implies, this provides a private network between the hypervisor and
the virtual machines.

We will cover each network configuration in detail in the next chapter (as well as
other network implementations used in production environments) with practical
examples. In this chapter, we will be concentrating on the default virtual network,
which uses NAT. Once you understand how default networks work, it is very easy
to understand other network topologies.

Use virsh net list --all to list the virtual networks. --al1 is used to list both
active and inactive virtual networks. If --al1 is not specified only active virtual
networks will be listed:

virsh net-list --all

Name State Autostart Persistent

default active yes yes

Default network

As mentioned earlier, the default network is a NAT-based virtual network. It allows
virtual machines to communicate with the outside networks irrespective of the active
network interface (Ethernet, wireless, VPN, and so on) available on the hypervisor. It
also provides a private network with IP and a DHCP server so that the VMs will get
their IP addresses automatically.

[81]

Getting Started with libvirt and Creating Your First Virtual Machines

Check the details provided about the default network in the previous screenshot:

default is the Name of the virtual network. This is provided when you
create a virtual network.

Device represents the name of bridge created on the host. The bridge
interface is the main component for creating virtual networks. We will
cover bridges in greater depth in a later chapter.

State represents the state of the virtual network. It can be active or inactive.

Autostart shows whether the virtual network should be started when you
activate the libvirtd service.

IPv4 Configuration provides the details of the private network, the DHCP
range that will be provided to the VMs, and the forwarding mode. The
forwarding mode can be NAT or isolated.

You can stop the default network using the red "stop sign" button and start
again using the PLAY button. The + button is used for creating new virtual
networks, which we will cover in the next chapter. The x button is used for
deleting virtual networks.

You can see the same details using the virsh command:

virsh net-info default

Name: default

UUID: ba551355-0556-4d32-87b4-653f4a74e09f
Active: yes

Persistent: yes

Autostart: yes

Bridge: virbr0

[82]

Chapter 4

virsh net-dumpxml default
<network>
<name>default</name>
<uuid>ba551355-0556-4d32-87b4-653f4a74e09f</uuid>
<forward mode='nat'>
<nat>
<port start='1024' end='65535'/>
</nat>
</forward>
<bridge name='virbr0' stp='on' delay='0"'/>
<mac address='52:54:00:d1:56:2e'/>
<ip address='192.168.124.1"' netmask='255.255.255.0"'>
<dhcp>
<range start='192.168.124.2' end='192.168.124.254"'/>
</dhcp>
</ip>

</network>

Some of the basic commands that will get you started with the default network
are as follows:

* Virtual network configuration files are stored in /etc/libvirt/gemu/
networks/ as XML files. For the default network itis /etc/libvirt/gemu/
networks/default.xml.

* This virsh command net-destroy will stop a virtual network and net -
start will start a virtual network. Do not issue these commands when
virtual machines are active using the virtual network. It will break the
network connectivity for the virtual machine.

* # virsh net-destroy default:The default network is destroyed.

* # virsh net-start default: The default network is started.

[83]

Getting Started with libvirt and Creating Your First Virtual Machines

Storage tab

This tab allows you to configure various types of storage pool and monitor their
status. The following screenshot shows the Storage tab:

QEMU/KVM Connection Details (on localhost.localdomain) vl (a) X
File
Cverview Virtual Networks Storage MNetwork Interfaces
default Name: default
Filesystem Directory
Size: 4302 GiB Free / 146 GiB In Use
Locotion: /var/lib/liovirt/imoages
State: Active
Autostart: [+ On Boot
Volurnes | & | @&
& pie Apply

The Storage tab provides details of the storage pools available. A storage pool is just
a store for saved virtual machine disk images.

At the time of writing, libvirt supports creating storage pools from the different
types of source shown in the following screenshot; directory and LVM are the
most commonly used. We will look into this in greater detail in the next chapter:

[84]

Chapter 4

QEMU/KVM Connection Details (on localhost.localdomain) v (~) (%
Eile

Overview Virtual Networks Storage Metwork Interfoces

Add a New Storage Pool (on localhost.loca’ x
default

Filesystem Directory . Create storage pool

Select the storage pool type you would like to configure.
Name:

Type: dir: Filesystem Directory

disk: Phiysical Disk Device

fs: Pre-Formatted Block Device
gluster: Gluster Filesystem

iscsi ISCS| Target

logical: LVM Volurme Group

rngath: Multipoth Device Enurnerctor
netfs: Metwork Exported Directory
rbd RADOS Block Device/Ceph

scsi; SCSI Host Adopter

sheepdog: Sheepdog Filesystemn
+ X |G

Default storage pool: Default is the name of file-based storage pool that libvirt
created to store its virtual machine image file. The location of this storage pool is
in /var/lib/libvirt/images.

Creating virtual machines using the
Virtual Machine Manager

The following methods are available with virt-manager for Guest OS installation:

* Local installation media (ISO Image or CD-ROM)
* Network installation (HTTP, FTP, or NFS)
* Network boot (PXE)

* Importing existing disk images

[85]

Getting Started with libvirt and Creating Your First Virtual Machines

In this section, we will create new virtual machines running different operating
systems, each using one of the aforementioned installation methods, so that by
the end of this chapter you will be familiar with all the available methods for
creating virtual machines and will thoroughly understand the Create a new
virtual machine wizard.

We will create the following Guest OS:

* Windows 7
* CentOS6
To create the VM using a graphical interface, start the Virtual Machine Manager by

executing the virt-manager command or open it from the Applications | System
Tools menu.

Creating a new virtual machine wizard

From Virtual Machine Manager, click on the Create a new virtual machine button
on the toolbar or select File | New Virtual Machine to open the wizard, which
allows creating new virtual machines from virt-manager.

The wizard breaks down the virtual machine creation process into five steps:

Choosing the installation method.
Configuring the installation media.
Memory and CPU configuration.

Virtual machine storage configuration.

SAEE

Naming the guest OS and networking configuration.

Let's create a virtual machine and install the CentOS 6.5 operating system using the
Local Install media (ISO Image or CD-ROM) method.

[86]

Chapter 4

This installation method requires the operating system installation media to be
inserted into the system's CD-ROM tray, available in ISO form locally, or available
over the network. The ideal location to keep the ISO file is /var/1ib/libvirt/
images, which acts as the default storage pool for virt-manager with all the SELinux
and other permissions set properly. If the ISO file is stored somewhere else on the
system, ensure that virt-manager can access it before you continue.

1. Once you have ensured that virt-manager has access to the installation
media, the wizard will ask you to choose how you would like to install the
operating system. Select Local install media (ISO Image or CDROM) and
click on the Forward button:

New VM 4

File Edit Viewd m Create a new virtual machine

= =

Connection: localhost (QEMU/KVM)

localhost (GEML) I

Choose how you would like to install the operating system

* Local install media (ISO image or CDROM)
Netwaork Install (HTTP, FTP, or NFS)
MNetwork Boot (PXE)

_ Import existing disk image

Cancel Back Forward

[87]

Getting Started with libvirt and Creating Your First Virtual Machines

2. Clicking on the Forward button will take you to Step 2 where you have to
specify the ISO image location. If you are using a physical DVD or CD,
select that:

New VM

m Create a new virtual machine

F E

ep 2of 5

Locate your install media

Use CDROM or DVD

No device present ™

* Use |SO image:

HfCent05-6.5-x86_64-minimal.iso b Browse...

~' Automatically detect operating system based on install media

05 type: Linux
Version: CentOS 6.5

Cancel Back Forward

virt-manager automatically detects the operating system based on the install
media. It uses the OS information database provided by 1ibosinfo. At the
time of writing, the 1ibosinfo database contains information on nearly 302
operating systems, including Windows, Linux, Unix, and all of the most
important Linux distributions. You can extract the operating system list from
the 1ibosinfo database by running the sinfo-query os command.

It's important to select the correct operating system name
M because the emulated hardware selection for the virtual machine
Q is closely mapped to the operating system type set. For example,
by default for windows OS, the virtual disk format is selected as
IDE whereas for Linux operating system it's the virtio disk.

[88]

Chapter 4

3. On the next screen, specify the memory and CPU that you want allocate for
the virtual machine:

New VM

m Create a new virtual machine

Choose Memory and CPU settings

Memory (RAM): | 993 | — ‘ MiB
Up to 993 MiB available on the host

CPUs: ‘ 1 ‘

Up to 1 available

l Cancel || Back || Forward ‘

4. The wizard shows the maximum amount of CPUs and memory you can
allocate. Configure these settings and click Forward to configure storage for
the virtual machine:

New VM

m Create a new virtual machine

| Enable storage for this virtual machine

(*) Create a disk image on the computer's hard drive

9.0 - + |GB

18.0 GIiB available in the default location

() Allocate entire disk now

¢ ! Select managed or other existing storage

‘ Browse... H ‘

‘ Cancel H Back ‘| Forward ‘

[89]

Getting Started with libvirt and Creating Your First Virtual Machines

5.

Make sure you assign sufficient space for your virtual machine. By default,

it creates a virtual disk at the /var/lib/libvirt/gemu location, which is

the default pool. If there are any other custom storage pools defined on the
system, select Managed or other existing storage and either directly enter the
path of the disk or click on the Browse button, which will open the Locate or
create storage volume dialog box where you can select an existing volume

or create a new one from the defined storage pool, if any available. You will
learn about storage pools and how to create them in the next chapter.

. Thereis also a radio button, Allocate entire disk now, to
& choose a disk allocation method; deselecting this button will
L result in a thin-provisioned disk and selecting it will result in
a thick-provisioned disk (also called a pre-allocated disk).

The next and final step is naming the guest and networking configuration.
The default machine name is based on the selected OS (for example,
centosé .5 for a CentOS 6.5 VM). You can change it to whatever name you
want to give but note that only underscores (_), periods (.), and hyphens (-)
are supported:

New VM

E Create a new virtual machine
—— Ste

ep 5of 5

Ready to begin the installation
Mame: | centos6.5

05: Cent05 6.5
Install: Local CDROM/ISO
Memory: 993 MIB
CPUs: 1
Storage: 9.0 GIiB ivar/lib/libvirt/images/centos6.5-2.qeo...

Customize configuration before install

¥ Advanced options
Virtual network 'default’ : NAT =

+ Set a fixed MAC address

52:54:00:9c:8e:b3

Cancel Back Finish

[90]

Chapter 4

Expanding Advanced options will bring up the virtual network
configuration setting. By default, KVM provides NAT-like bridged
networking. The virtual machines connected to this NAT do not appear on
the network as their own devices, but will have network access through the
host operating system settings. If you're planning to run server software or a
webserver on your virtual machine and want it accessible from other devices
on the network, you'll have to use other virtual networking configurations
such as Linux bridge or macvtap.

Set a fixed MAC Address allows you to define a custom MAC address for
your virtual machine. The default MAC address range used by libvirt is
52:54:00.

7. If you prefer to further configure the virtual machine's hardware first, check
the Customize configuration before install box first before clicking Finish.
Doing so will open another wizard that will allow you to add, remove, and
configure the virtual machine's hardware settings.

8. If everything goes well, a virtual console for the newly created VM appears.
The new domain name appears in the domain list in the Virtual Machine
Manager window. The installation starts with the boot: prompt just as an
installation would start on native hardware:

File Virtual Machine View Send Key

|g| o ~ HE .

Welcome to CentDS for x86_64

Disc Found

To begin testing the media before
installation press OK.

Choose Skip to skip the media test
and start the installation.

Getting Started with libvirt and Creating Your First Virtual Machines

9. The last step in the installation wizard is clicking the Reboot button to reboot
the system and complete the installation. After the VM reboots you will see
the operating system login screen.

The Network installation (HTTP, FTP, or NFS)
method

This method involves the use of a mirrored Red Hat Enterprise Linux, CentOS, or
Fedora installation tree to install a guest. Virtual Machine creation and supported
guest operating system installation using this method also involves five steps,
starting with the installation method section and moving on to naming the

guest and networking configuration.

The steps are the same as the ISO installation procedure except for step 2
(configuring the installation media). Instead of an ISO image, here we need
to pass the URL of the RHEL/CentOS installation tree:

New VM

E Create a new virtual machine

F E

':l_' L O 2

Provide the operating system install URL

URL: | e le.com/RHEL-5-Server/U10/x86_64/0 | ¥

* URL Options
Kickstart URL: hd

Kernel options:

~ Automatically detect operating system based on install media

OS type: Linux
Version: Red Hat Enterprise Linux 5.8

Cancel Back Forward

Optionally, you can also use Kickstart URL to point to your kickstart file for
unattended guest installation, and Kernel options to pass a custom kernel boot
parameter if required.

[92]

Chapter 4

Network Boot (PXE)

This method uses a Preboot eXecution Environment (PXE) server to install the guest
virtual machine. PXE Guest installation requires a PXE server running on the same
subnet where you wish to create the virtual machine and the host system must have
network connectivity to the PXE server.

The default NATed network created by virt-manager is not compatible with PXE
installation, because a virtual machine connected to the NAT does not appear on
the network as its own device, and therefore the PXE server can't see it and can't
send the required data to perform the installation. To use PXE Guest OS installation,
you need either a software network bridge or a macvtap-based network on the

host system. Here, for example, we will use a macvtap-based network and initiate
the installation.

1. Select PXE as the installation method in the Create a New Virtual Machine
wizard and follow the rest of the steps to configure the ISO installation
procedure except for step 5 where the network is configured:

L% Specifying an operating system is required for best performance
¥ Advanced options
Host device ethO: macvtap b

Source mode: | Bridge ~

» In most configurations, macvtap does not work for
= host to quest network communication.

+ Set a fixed MAC address

52:54:00:b8:5f:d3

Cancel Back Finish

2. In Advanced options use Host device ethO:macvtap from the drop-down list
and set Source mode to Bridge. Set a custom MAC address if you need to
and click on the Finish button to begin the installation.

[93]

Getting Started with libvirt and Creating Your First Virtual Machines

Importing an existing disk image

As the name suggests, this allows you to import a pre-installed and configured disk
image instead of doing a manual installation. The disk image must contain a bootable
operating system. This is commonly used for distributing pre-built appliance images
and also for moving a virtual machine from one host to another in offline mode.

Importing a disk is much faster than other options for preparing a virtual machine.
Many Linux distros are available as pre-configured bootable disk images.

You can download a pre-configured disk Fedora 22 image here:
L https://getfedora.org/en/cloud/download/.

1. Launch the Create a New Virtual Machine wizard from the virt-manager
GUI and select Import existing disk image as the OS installation method.

2. Provide the existing image path. Make sure it's stored in one of the defined
storage pools or a place that is accessible by virt-manager. Click on the
Forward button and follow the remaining steps, which are the same as the
ISO installation procedure (except for the step that requires a virtual machine

to be ready):
New VM
E Create a new virtual machine
— Step2ofd
Provide the existing storage path:
Browse...
Choose an operating system type and version
0S5 type: | Generic g
Version: | Generic b
Cancel Back Forward

[94]

https://getfedora.org/en/cloud/download/

Chapter 4

Introducing virt-install

virt-install is an interactive command-line tool that can be used to set up the
guest and then start the installation process.

Execute the virt-install command as root to begin. There are many options
available with virt-install that can be passed as arguments to configure the
installation to meet your virtual machine creation requirements. virt-install is a
scripting-friendly command. It can be easily embedded in scripts to automate virtual
machine creation.

Installing a Windows 7 Guest using the
virt-install command

Before starting the operating system installation using the virt-install command,
it is necessary to have a virtual disk created. To create a virtual disk, use the gemu-
img command:

1. Create a virtual disk of the desired size. Here for example, we will create
a 20 GB disk with the raw disk format:

gemu-img create -f raw -o size=10G /var/lib/libvirt/qgemu/win7.img

2. Then start virt-install by running the following command:
virt-install \
--name Win7 \
--ram 1024 \
--disk path=./var/lib/libvirt/qemu/win7.img \
--vcpus 1 \
--os-type Windows \
--os-variant Windows7 \
--network bridge=virbr0 \
--graphics vnc,port=5999 \
--console pty,target type=serial \

--cdrom ./win7.iso \
Similarly, you can use the virt-install -promot command for interactive

installation. It will ask you to enter the above information sequentially and
interactively.

[95]

Getting Started with libvirt and Creating Your First Virtual Machines

3. Just like with the Virtual Machine Manager, after creating the virtual
machine you have to take the console of the VM and proceed with
actual guest installation. To take the virtual machine console, use the
virt-viewer utility:

virt-viewer <virtual machine > name

Automated virtual machine deployment

Virtual machine creation and guest operating system installation are two different
tasks. Creating a VM is like provisioning new PC hardware, but you need to install
the OS separately

As you have seen with virt-manager or virt-install, a VM is first configured with the
desired hardware resources, then you use one of the support installation methods
to install the OS. Installing the actual operating system (also known as the Guest in
virtualization terminology) is done in exactly same manner as on a physical system;
the operating system's installer asks for configuration details and configures the
system accordingly.

What if both of these tasks are combined and a virtual machine is created (along with
a full operating system installation) in one go? It would clearly help to deploy the
virtual machines much more rapidly and in a more automated way.

Tools such as virt-builder and 0z can be used to combine these two tasks and
accelerate the installation of new VM images by eliminating the need to manually
install an OS. Let's first see what virt-builder is and how it works, with an example.

Introducing virt-builder

virt-builder is a command-line tool that creates disk images using cleanly prepared,
digitally signed OS templates and customizes them to quickly build new virtual
machines. virt-builder can build images for Fedora, Ubuntu, CentOS, Debian, and a
few others.

This utility is provided by the 1ibguestfs-tools-c package and can be installed by
running the yum install libguestfs-tools-c -y command.

[96]

Chapter 4

this repository Internet connectivity is mandatory. Without this, the tool
A

Please note that virt-builder by default downloads OS templates from the
http://libguestfs.org/download/builder/ repository; to access

will not work unless there is a local repository available. virt-builder's
local repository creation is beyond the scope of this book. However, the
procedure is well documented in the virt-builder man page.

For instance, if you want to create a CentOS 7.1 Guest with a 50 GB disk, using
virt-builder this is as easy as running the following command:

cd /var/lib/libvirt/qemu/ ; /usr/bin/virt-builder centos-7.1 --format
raw --size 50G

[
[
[
[
[
[

1.

l.xz

2.
2.
14.
149.
179.
180.

0]

0]
0]
0]
0]
0]
0]

Downloading: http://libguestfs.org/download/builder/centos-

Planning how to build this image

Uncompressing

Resizing (using virt-resize) to expand the disk to 50.0G
Opening the new disk

Setting a random seed

Setting passwords

virt-builder: Setting random password of root to Arw83LnDi66eMcmh

[198.0] Finishing off

Output file: centos-7.1l.img
Output size: 50.0G
Output format: raw
Total usable space: 48.1G
Free space: 47.3G (98%)

Now enter the second command:

#virt-install --name centos --ram 1028 --vcpus=2 --disk path=/var/lib/
libvirt/gemu/centos-7.1l.img --import

As you can see, it first downloaded the template, uncompressed it, resized the disk
image to fit the given size, seeded data from the template to the image, customized
it (set a random root password), and then finished. The resulting VM has no user
accounts, has a random root password, and only uses the minimum amount of disk
space required by the OS itself, but will grow up to 50 GB if needed.

[97]

http://libguestfs.org/download/builder/

Getting Started with libvirt and Creating Your First Virtual Machines

The image is stored in the /var/1ib/libvirt/gemu/ directory with centos-
7.1.img as the name.

The second command —virt-install —just imported the image and created a
virtual machine out of it.

Running virsh list --all will list the newly created virtual machine and
#virsh start <vmnames> will start it. To log in as the root user use the random
root password displayed in the output; your virtual machine is now ready.

In this example, root password is the only customization that is done but there

are many other customizations that can be done —for example, installing software,
setting the hostname, editing arbitrary files, creating users, and so on. To learn more
about the possible customization that can be done for a guest, refer to the man page
for virt-builder and #virt-builder --note <guest > as they list the kickstart
and installation scripts used for that particular guest.

virt-builder caches the downloaded template in the current user's home directory.
The location of the cache is $XDG_CACHE HOME/virt-builder/ or $HOME/ .cache/
virt-builder.

You can print out information about the cache directory, including which guests are
currently cached, by running the virt-builder --print-cache command:

virt-builder --print-cache

cache directory: /root/.cache/virt-builder

centos-6 x86_64 no
centos-7.0 x86_64 no
centos-7.1 x86_64 cached
cirros-0.3.1 x86 64 no
debian-6 x86_64 no
debian-7 x86_64 no
debian-8 x86_64 no
fedora-18 x86_64 no
fedora-19 x86_64 no
fedora-20 x86_64 no
fedora-21 x86_64 no
fedora-21 aarch64 no
fedora-21 armv71l no
fedora-21 ppcé64 no

[98]

Chapter 4

fedora-21 ppc64le no
fedora-22 x86 64 no
fedora-22 aarch64 no
fedora-22 armv7l no
scientificlinux-6 x86 64 no
ubuntu-10.04 x86 64 no
ubuntu-12.04 x86 64 no
ubuntu-14.04 x86 64 no

Here you can see that the centos-7.1 template is cached. The next time you create
a centos-7.1 guest it will use the cached template and create the virtual machine
even faster.

The cache can be deleted by running the following command to free up space:

#virt-builder --delete-cache

You can even download all (current) templates to the local cache by executing the
virt-builder --cache-all-templates command.

1
‘Q Use the - -verbose switch if you encounter any problems with

virt-builder to produce verbose output.

While virt-builder is very fast, it only works with Linux guests. However, this utility
is limited for Linux guests only and lacks Windows guest support; this is where the
oz utility comes into the picture. If you want something more flexible, use oz.

Introducing oz
oz is another utility for creating Just Enough Operating System (JEOS) guests. It
facilitates the automatic installation of operating systems with only minimal up-front
input from the end user. The input for oz is a template (TDL format) which describes
the instructions for creating the image:

* The ISO or URI on which the image will be based

* Disksize

* The extra packages to install

* The commands to execute after the image is created

* The files to inject after the image is created

[99]

Getting Started with libvirt and Creating Your First Virtual Machines

It can automatically install a wide variety of OSes, including Windows. Under the
hood it uses a set of predefined kickstart files for Red Hat-based systems, preseed
files for Debian-based systems, and XML files that allow unattended Windows
installs to automate the installation.

Currently, it supports the i386 and x86_64 architectures. The following is a list of
OSes that it supports:

Debian: 5, 6, 7

Fedora Core: 1, 2,3,4,5, 6

Fedora: 7, 8,9,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21
FreeBSD: 10

Mageia: 4

Mandrake: 8.2, 9.1, 9.2, 10.0, 10.1

Mandriva: 2005, 2006.0, 2007.0, 2008.0

OpenSUSE: 10.3,11.0,11.1,11.2, 11.3, 11.4,12.1,12.2,12.3,13.1
RHEL 2.1: GOLD, U2, U3, U4, U5, U6

RHEL 7: Beta, 0

RHEL/CentOS 3: GOLD, U1, U2, U3, U4, U5, U6, U7, U8, U9

RHEL/ CentOS/Scientific Linux 4: GOLD, U1, U2, U3, U4, U5, U6, U7,
U8, U9

RHEL/OL/CentOS/Scientific Linux{,CERN} 5: GOLD, U1, U2, U3, U4, U5,
Use, U7, U§, U9, U10, Ul1

RHEL/OL/CentOS/Scientific Linux{,CERN} 6: 0, 1, 2, 3, 4, 5
RHL:7.0,7.1,7.2,7.3,8,9

Ubuntu: 5.04, 5.10, 6.06[.1,.2], 6.10, 7.04, 7.10, 8.04[.1,.2,.3,.4], 8.10, 9.04,
9.10, 10.04[.1,.2,.3], 10.10, 11.04, 11.10, 12.04[.1,.2,.3,.4,.5], 12.10, 13.04, 13.10,
14.04[.1], 14.10

Windows: 2000, XP, 2003, 7, 2008, 2012, 8, 8.1

[100]

Chapter 4

The procedure for creating a virtual machine using oz is as follows:

1. Install the oz and 1ibguestfs-tools packages using the
following command:

#yum install -y oz libguestfs-tools

2. Get the ISO media of the desired operating system that you wish to install
using oz. For Linux guests, a network-based installation tree exposed over
HTTP can also be used. For example:

[e]

For Fedora 22: http://dl. fedoraproject.org/pub/fedora/
linux/releases/22/Server/x86 64/os/

For CentOS 7: http://mirrors.dcarsat.com.ar/centos/7/os/
x86 64/

3. Create a simple TDL (Template Definition Language) file. All the supported
attributes for a TDL file can be found here: https://github.com/
clalancette/oz/wiki/Oz-template-description-language

4. Run the oz-install command to build an image:

#oz-install -u -d3 TDL FILE PATH

Syntax:

* u: After installation, perform the customization

* d: Turn up the logging level. The levels are:

o

[e]

o

[e]

o

0: Errors only (this is the default)

1: Errors and warnings

2: Errors, warnings, and information
3: All messages

4: All messages, prepended with the level and classname

This will result in a libvirt XML file (containing the image path and other
parameters), which you can use to immediately boot the guest:

virsh define <xml fikes>

virsh start <vm name>

[101]

http://dl.fedoraproject.org/pub/fedora/linux/releases/22/Server/x86_64/os/
http://dl.fedoraproject.org/pub/fedora/linux/releases/22/Server/x86_64/os/
http://mirrors.dcarsat.com.ar/centos/7/os/x86_64/
http://mirrors.dcarsat.com.ar/centos/7/os/x86_64/
https://github.com/clalancette/oz/wiki/Oz-template-description-language
https://github.com/clalancette/oz/wiki/Oz-template-description-language

Getting Started with libvirt and Creating Your First Virtual Machines

The oz configuration file

/etc/oz/oz.cfgis the oz file for VM configuration. It's in the standard INI format
with four sections: paths, 1ibvirt, cache, and icicle. Let's look at the content of
the file:

[paths]

output dir = /var/lib/libvirt/images
data dir = /var/lib/oz
/var/lib/oz/screenshots

screenshot dir =
sshprivkey = /etc/oz/id rsa-icicle-gen

[libvirt]
uri = gemu:///system
image type = raw

type = kvm

bridge name = virbro0
cpus =1

memory = 1024

[cache]
original media = yes
modified media

no
jeos = no

[icicle]
safe generation = no

The following are some important configuration directives of which you should
be aware:

* output_dir: This describes the location in which to store images after they
are built. The default location is /var/lib/libvirt/images/. If you wish to
storage the resultant image in some other location, you can change it here.

* bridge_name: The bridge to which the VM should be connected. By default it
uses virbro.

* memory: Using the configuration directive you can define how much memory
should be used inside the virtual machine.

* cpus: This defines how many CPUs should be used for the virtual machine.

All other configuration directive usage is documented at https://github.com/
clalancette/oz/wiki/oz-customize

[102]

https://github.com/clalancette/oz/wiki/oz-customize
https://github.com/clalancette/oz/wiki/oz-customize

Chapter 4

Creating a virtual machine using oz

For demonstration purposes, let's create a Windows 7 virtual machine with the
following configuration:

The resultant virtual machine should have 2048 memory assigned to it
The bridge to which the virtual machine is connected should be vswitch
The disk size should be 50G

The install media should be an ISO file stored locally on the system

To create a virtual machine with preceding configuration using oz tool, perform the
following steps:

1.

First edit the /etc/oz/oz.cfg file, set the memory and bridge configuration
directives accordingly, and then save the file and exit:

memory = 2048
bridge name = vswitch

Create a TDL file named win7. td1 containing the following element
and save it at the /root/ location (you can use vi or any other editor
of your choice):

<template>

<name>win7jeos</name>

<os>

<name>Windows</name>

<version>7</versions>

<arch>i386</arch>

<install type='iso's>
<iso>file:///path/to/isos/win2k.iso</iso>
</install>

<key>MY KEY HERE</key>

</os>

<disk>

<gize>50</size>

</disk>

<description>Minimal Windows7 </descriptions>
</template>

o

Replace file:///path/to/isos/win2k.iso with the actual path of
the ISO file

° Replace My_KEY HERE with a valid key

[103]

Getting Started with libvirt and Creating Your First Virtual Machines

[Windows requires a key, so oz will fail if the <key>]
'

element is missing.

3. Nowrunoz-install:

#oz-install -u -d3 /root/win7.tdl

4. Completion of a successful oz-install should look like this:
[. . .1
INFO:0z.Guest.windows7:Cleaning up after install

Libvirt XML was written to win7jeos feb 11-2016

5. Define the virtual machine using virsh command and start it:

#virsh define win7jeos_feb 11-2016

#virsh start win7jeos

Summary

In this chapter you first learned about the default network and storage configuration
set by libvirt to facilitate the required infrastructure for virtual machine creation and
then learned the different guest installation methods, which include PXE, Network,
ISO, and importing a pre-configured bootable OS image. We also have seen how
virt-builder and oz help in rapidly creating virtual machines.

In the next chapter, we will provide more detailed information about virtual storage
and networks.

[104]

Network and Storage

In the world of virtualization, networking and storage can be put into two categories:

Physical: A network and storage infrastructure that is built with the help

of a host system to provide networking and storage needs for the virtual
machines. In the case of networking, this includes layer 3 and 2 components
of the network, software bridge, iptables rules, and so on. In the case of
storage, this includes storage devices to provide storage to hypervisor
(SAN, ISCS], and so on), LVM, different file systems, NFS, and so on.

Virtual: A network and storage infrastructure, which is created with
the help of virtualization software; it includes both emulated and
paravirtualized network and storage devices created inside the VM
and the virtual devices created on the host to provide network a
connectivity and storage to the VMs.

When you imagine your virtualization infrastructure in these terms, it is easy
to understand the whole setup. This approach is also good when you want to
troubleshoot the environment.

In this chapter, we are going to discuss network and storage configuration for KVM
virtualization. We will cover the following topics:

Creation of Linux bridge
What are TUN and TAP devices

Various network connectivity options available for KVM VMs Virtual
Storage Pools Creation

[105]

Network and Storage

Virtual networking

Many people consider virtual networking in libvirt to be complicated. Perhaps it
is the number of options available to provide networking to a virtual machine that

makes the libvirt networking appear complicated.

The main component of libvirt networking is the virtual network switch, also known
as the bridge. You can imagine a bridge as a physical switch. In a real switch, there
are a limited number of physical ports to attach to your servers. Here, on the Linux
bridge, there are unlimited numbers of virtual ports to which the interfaces to virtual
machines are attached. Similar to a physical switch, bridge learns the MAC addresses
from the packets it receives and stores those MAC addresses in the MAC table. The
packet (frames) forwarding decisions are taken based on the MAC addresses that it
learned and stored in the MAC table.

We mentioned about the interfaces attached to the ports of a bridge. These interfaces

are special network devices called TAP devices. If you try to imagine this in physical
network terms, consider TAP devices as the network cable that carries the Ethernet

frames between your virtual machine and bridge. This TAP device is a part of TUN/

TAP implementation available within the Linux kernel.

G

TUN, which stands for "tunnel", simulates a network layer device and it
operates at OSI reference model's layer 3 packets, such as IP packets. TAP
(namely a network tap) simulates a link layer device and it operates at
OSl reference model's layer 2 packets, such as Ethernet frames. TUN is
used with routing, while TAP is used to create a network bridge.

Before moving to the next topic, we will create a bridge and then add a TAP device

to it.

Make sure the bridge module is loaded into the kernel. If it is not loaded, use
modprobe bridge to load the module:

lsmod | grep bridge

bridge

114688 1 ebtable broute

Run the following command to create a bridge called tester:

brctl addbr tester

[Note: The brctl command is provided by the package bridge-utils.]

[106]

Chapter 5

Let's see if the bridge is created:

brctl show
bridge name bridge id STP enabled interfaces

tester 8000.460a80dd627d no

The # brctl show command will list all the available bridges on the server, along
with some basic information, such as the ID of the bridge, Spanning Tree Protocol
(STP) status, and the interfaces attached to it. Here the tester bridge does not have
any interfaces attached to its virtual ports.

A Linux bridge will also be shown as a network device. To see the network details of
the bridge tester, use the ip command:
ip link show tester

6: tester: <BROADCAST,MULTICAST>mtu 1500 gdiscnoop state DOWN mode
DEFAULT group default link/ether 26:84:f2:£8:09:e0 brdff:ff:ff:ff:ff:£f

You can also use ifconfig to check and configure the network settings for a Linux
bridge; ifconfig is relatively easy to read and understand but not as feature-rich as
ip command:
ifconfig tester
tester: flags=4098<BROADCAST,MULTICAST>mtu 1500
ether26:84:f2:f8:09:e0txqueuelen 1000 (Ethernet)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
The Linux bridge tester is now ready. Let's create and add a TAP device to it.

First check if the TUN/TAP device module is loaded into the kernel. If not, you
already know the drill:

lsmod | greptun
tun 28672 1

Run the following command to create a tap device named vm-vnic:

ip tuntap add dev vm-vnic mode tap
ip link show vm-vnic

7: vm-vnic: <BROADCAST,MULTICAST>mtu 1500 gdiscnoop state DOWN
mode DEFAULT group default glen 500 link/ether 46:0a:80:dd:62:7d
brdff:ff:ff:f£f:ff:ff

[107]

Network and Storage

We now have a bridge named tester and a tap device named vm-vnic. Let's add
vm-vnic to tester.

brctl addif tester vm-vnic
brctl show
bridge name bridge id STP enabled interfaces

tester 8000.460a80dd627d no vm-vnic

You can see that vm-vnic is an interface added to the bridge tester. Now vm-vnic
can act as the interface between your virtual machine and the bridge tester, which in
turn enables the virtual machine to communicate with other virtual machines added
to this bridge:

Linux Bridge
(virtual Switch)

It is time to put on your thinking cap. See if you can answer the following questions;
don't worry, we'll answer them later in this chapter. The questions are:

* Did you notice any difference in the MAC address of the bridge tester when
you added the TAP device vm-vnic?

* Isit possible to assign an IP address to a bridge? If yes, why might you need
to do that?

* Try to understand the details when you run, the # brctlshowmacs tester
command?

We will now show you how to remove all the things that you just created. We will
not need them for the rest of this chapter.

[108]

Chapter 5

Remove the vm-vnic tap device from the tester bridge:

brctl delif tester vm-vnic
brctl show tester
bridge name bridge id STP enabled interfaces

tester 8000.460a80dd627d no

Once the vm-vnic is removed from the bridge, remove the tap device using
the ip command:

ip tuntap del dev vm-vnic mode tap

Finally, remove the tester bridge:

brctl delbr tester; echo $?
0

If you want to see all the available options, then run brectl -help:

brctl --help

Usage: brctl [commands]

commands :
addbr <bridge> add bridge
delbr <bridge> delete bridge
addif <bridge><device> add interface to bridge
delif <bridge><device> delete interface from bridge
hairpin <bridge><port> {on|off} turn hairpin on/off
setageing <bridge><time> set ageing time
setbridgeprio <bridge><prio> set bridge priority
setfd <bridge><time> set bridge forward delay
sethello <bridge><time> set hello time
setmaxage <bridge><time> set max message age
setpathcost <bridge><port><cost> set path cost
setportprio <bridge><port><prio> set port priority
show [<bridge> 1] show a list of bridges
showmacs <bridge> show a list of mac addrs
showstp <bridge> show bridge stp info
stp <bridge> {on|off} turn stp on/off

[109]

Network and Storage

These are the same steps that libvirt carried out in the backend while enabling
or disabling networking for a virtual machine. We want you to understand this
procedure thoroughly before moving ahead.

Virtual networking using libvirt

In the previous chapter, we introduced you to some of the available options of
virtual networking in libvirt. In this chapter, we will revisit them again in detail.

The types of virtual networking available are as follows:

e Isolated virtual network
¢ Routed virtual network
e NATed virtual network

* Bridged network using a physical NIC, VLAN interface, bond interface,
and bonded VLAN interface

* MacVTap
* PCI passthrough NPIV
e OVS

Additionally, we will cover the details of enabling DHCP and DNS for your virtual
network and the Default virtual network that comes preconfigured with libvirt.

Before starting, let's go back to Chapter 3, Setting Up Standalone KVM Virtualization,
and create one more Linux virtual machine. This is required to do the hands on.

[110]

Chapter 5

Isolated virtual network

As the name suggests, we we are creating a closed network for the virtual machines.
In this configuration, only the virtual machines which are added to this network can

communicate with each other:

Virtual switch: Isolated mode

Host Server

G

No external network X
traffic gets to, nor
comes from, the
virtual machines

virtual network switch
in isolated mode

192.168.10.y

As you can see in the preceding image, even the host will be able to communicate

with the virtual machines added to this virtual network.

To create an isolated virtual network using virt-manager, perform the

following steps:

1. Navigate to virt-manager | Edit | Connection details | Virtual Networks.

Click on the + sign.

[111]

Network and Storage

2. Enter the name of the virtual network as isolated:

Create a new virtual network

' Create virtual network

Choose a name for your virtual network:

MNetwork Name:

isoLated|

& Example: networkl

| Cancel H Back H Forward ‘

[112]

Chapter 5

3. Skip the IPv4 address configuration:

Create a new virtual network

' i Create virtual network

Choose IPv4 address space for the virtual network:

|| Enable IPv4 network address space definition

‘ Cancel || Back ‘ ‘ Forward |

[113]

Network and Storage

4. Disable the IPv6 address configuration:

Create a new virtual network

' | Create virtual network

Choose IPvé address space for the virtual network:

|_| Enable IPv6 network address space definition

‘ Cancel H Back H Forward ‘

[114]

Chapter 5

5. Select only Isolated virtual network and leave DNS Domain Name blank.
Click on Finish to create the isolated virtual network:

Create a new virtual network

' | Create virtual network

Connected to a physical network:
(» Isolated virtual network

() Forwarding to physical network

Destination:| Any physical device v ‘

Mode: | NAT hd ‘

|| Enable IPv6 internal routing/networking

If an IPv6 network address is not specified, this
will enable IPvé& internal routing between virtual
machines. By default, IPv4 internal routing is

| |

‘ Cancel H Back H Finish |

enabled.

DMS Domain Name:

[115]

Network and Storage

6. Check the details of the isolated virtual network:

QEMU/KVM Connection Details X
File
Overview Virtual Networks Storage MNetwork Interfaces
B default Name: isolated

evice: vibrl

State: |53 Active

Autostart: (v On Boot

Domain: isolated

¥ QoS configuration
Enable inbound QoS

Enable outbound Qo5

+ ® Apply

We will now create the isolated network using the virsh command. For that, we
need to create an XML file with the following contents and save it as isolated.xml:

cat isolated.xml
<network> <name>isolated</name>

</network>
Here:

* <network>: This is used for defining the virtual network.
* <name>: This is used for defining the name of the virtual network.
Here, it is isolated.

To define a network using the XML file created in the preceding section, use the net-
define option of the virsh command followed by the path of the XML file:

virsh net-define isolated.xml

Network isolated defined from isolated.xml

[116]

Chapter 5

Once the network is defined, you can list all the available networks using the
net-list command:

virsh net-list --all

Name State Autostart Persistent
default active yes yes
isolated inactive no yes

In the preceding output, you can see that the Linux bridge named isolated is now
defined (added/created). Let's see the XML file 1ibvirt being created based on the
configuration we provided through the isolated.xml. Use the net - dumpxml option,
as shown in the following command, to get the details of the a Linux bridge:

virsh net-dumpxml isolated

<network>

<name>isolated</name>
<uuid>84147b7d-a95f-4bc2-a4d9-80baab391al8</uuid>
<bridge name='virbrl' stp='on' delay='0'/>

<mac address='52:54:00:0e:c2:b5'/>

</network>

Here, you can see that libvirt added a few additional parameters. Each is explained
in the following points:

* <uuid>: A unique ID of your bridge.

* <bridge>: Used for defining the bridge details. Here, the name of the bridge
is virbri, with STP ON and DELAY 0. These are the same parameters you
can control using the brct1 command. STP is set by stp and DELAY by
setfd. Go back and check the brct1 command options.

* <mac>: The MAC address of the bridge to be assigned at the time of
the creation.

As you can see, libvirt added the rest of the required parameters; you can mention
these in your XML file when required. Our recommendation is that you leave it to
libvirt to avoid conflicts.

M net-create is similar to net -def ine. The difference is that it will
Q not create a persistent virtual network. Once destroyed, it is removed
and has to be created again using the net -create command.

[117]

Network and Storage

Once you define a network using net -define, the configuration file will be stored
in /etc/libvirt/gemu/networks/ as an XML file with the same name as your
virtual network:

cat /etc/libvirt/gemu/networks/isolated.xml
<!l--

WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE
OVERWRITTEN AND LOST. Changes to this xml configuration should be made
using:

virsh net-edit isolated

or other application using the libvirt API.

<network>

<name>isolated</name>
<uuid>84147b7d-a95f-4bc2-a4d9-80baab391al8</uuid>

<bridge name='virbrl' stp='on' delay='0'/>

<mac address='52:54:00:0e:c2:b5'/>

</network>

The isolated virtual network is now defined. Let's activate it. For virt-manger

(fig 4-8), use the play and stop buttons after selecting the isolated virtual network.
The button that shows a red circle with an x in the middle is used for un-defining
the network. Un-defining a virtual network will remove it permanently:

QEMU/KVM Connection Details x
File
Virtual Networks
@ default Name: isolated
Device: virbrl
State: Inactive
Autostart: MNewver
} QoS configuration
%+ | | ®

[118]

Chapter 5

M Use Autostart if you want to start the virtual network automatically
when libvirt service is started. Using virsh, itis virsh net-
autostart isolated

Let's now activate an isolated virtual network using virsh. If the virtual network is
activated using virt-manager, deactivate it using the stop button:

virsh net-start isolated

Network isolated started

virsh net-list --all

Name State Autostart Persistent
default active yes yes
isolated active no yes

The state is changed from inactive to active. The virtual network (bridge) is now
ready to use.

How do you add a virtual network interface card to a virtual machine?

In order to use the preceding virtual network, right-click on your virtual machine

| Open | Virtual Hardware details (the bulb icon) | Add Hardware | Network.
Select Network source as isolated; the MAC address will be generated by libvirt
and Device model as virtio. Click on Finish. The other two device models, e1000
(Intel) and rt11839 (Realtek), are not recommended for production workloads
as they are emulated devices and do not give the best performance. They are mostly
used while installing legacy operating systems that do not have support for virtio
devices. For Linux, you need to use kernel version 2.6.25 or higher, as older kernels
do not support virtio devices

[119]

Network and Storage

For Windows, you have to install the virtio drivers separately. We will cover more
on virtio in our virtualization optimization chapter:

F22-01 Virtual Machine X

mn
o

Virtual Machine View Send Key

Add New Virtual Hardware

=
=
g Overview M Controller
Performance Network source: | Virtual network 'isolated' : Isolated network, internal and host routing only ~
{:3 Processor L'J Input
MAC address: ~ 52:54:00:97:c1:54
== Memory B Graphics

$ Boot Options B Sound Device model: virtio 7
(L3 SCSIDisk 1 =] Serial
©) IDE CDRCM 1 -’-Gl Parallel

=@ (<] Console

IL/I Tablet = Channel

) Mouse & USB Host Device
== Keyboard PCl Host Device
@ Display Spice B video

ﬁ} Sound: iché i} Watchdog

e Serial 1 Filesystem

Gy Channel gemu-g |& Smartcard

Gams Channel spice .@ USB Redirection

B vigeo aixL o TPM
MF Controller USB RNG
ﬁ Controller PCI 4% Panic Notifier

Add Hardwara SaEt ol

A virtio virtual NIC can be added while the virtual machine is running; it will be
ready to use inside the virtual machine immediately.

Let's add a virtual NIC to the other virtual machine. In our environment, the name of
the virtual machine is F22-02.

Before attaching a second NIC, we will get the details of the current virtual NIC
attached to the virtual machine F22-02 using domif1list. The output of this
command will help you define the parameters while attaching a second virtual NIC
to the virtual machine:

virsh domiflist F22-02

Interface Type Source Model MAC

vnet2 network default virtio 52:54:00:b0:50:98

Interface - Name of the tap interface attached to the bridge.

Type - Type of device

[120]

Chapter 5

Source - Name of the virtual network.
Model - Virtual NIC model.
MAC - MAC address of the virtual NIC (not the MAC of vnet2).

Let's attach a new virtual interface to F22-02:

virsh attach-interface --domain F22-02 --source isolated --type network
--model virtio --config --live

Interface attached successfully

virsh domiflist F22-02

Interface Type Source Model MAC

vnet2 network default virtio 52:54:00:b0:50:98
vnet3 network isolated virtio 52:54:00:2b:0d:0c

You have attached the virtual network interface of type virtio. The interface is
using an isolated virtual network. There are two new options in this command,
which is not self explanatory:

* --config: This will make the change persistent in the next startup of the VM.

* --live: This will inform libvirt that you are attaching the NIC to a live
virtual machine. Remove - -1ive if the virtual machine is not running.

1
‘Q If you just wanted to attach a virtual network interface temporarily to

a virtual machine, just use --1ive and ignore --config.

Another option that might be useful for some is - -mac. This can be used to add a
custom MAC address.

Let's now check how the bridge for the isolated virtual interface is created and the
interfaces attached.

The bridge interface created by the virtual network is virbri. How did we find it?
Remember the net - dumpxml option.

Now you know the bridge name. Let's see the interfaces that are attached to
the bridge:

brctl show virbrl

bridge name bridge id STP enabled interfaces
virbrl 8000.5254000ec2b5 yes virbrl-nic
vnetl
vnet3

[121]

Network and Storage

The virbri-nic interface is created by libvirt when it starts virbri. The purpose

of this interface is to provide a consistent and reliable MAC address for the virbrl
bridge. The bridge copies the MAC address of the first interface, which is added to
it, and virbri-nic is always the first interface added to it by libvirt and never being
removed till the bridge is destroyed.

vnetl and vnet3 are the virtual network interfaces added to the respective VMs.

You can now assign IPs to these newly added interfaces and see if you will be able to
ping the virtual machines added to the isolated network. We are leaving that task to
you. Will you be able to ping your virtual machines from the hypervisor?

Now, let's remove the new interface added to the virtual machine F22-02 using
virsh. In a production environment, be careful when you execute with the --1ive
option. It can disrupt the existing network activity:

virsh detach-interface --domain F22-02 --type network --mac
52:54:00:2b:0d:0c

--config --live

Interface detached successfully

Even if the topic is about isolated virtual networks, we have covered other
operations on virtual network and virtual NIC. These operations are similar
for all virtual networks.

Routed virtual network

In a routed mode, the virtual network is connected to the physical network using

the IP routes specified on the hypervisor. These IP routes are used to route the

traffic from the virtual machines to the network attached to the hypervisor. The key
point that you need to remember with this configuration is that you need to set up
the correct IP route on your router or gateway devices also so that the reply packet
should reach the hypervisor back. If there are no routes defined, the reply packet will
never reach the host. This mode is not commonly used, unless you have a special

use case to create a network with this complexity. The following image shows how a
routed network works in the real world:

[122]

Chapter 5

Virtual switch: Routed mode

Host Server

G

The host acts as a
router, letting the

outside world Virtual
communicate with Machine
the virtual machines 192.168.10.x
by IP address. virtual network switch
in routed mode Virtual
10.10.10.100, Machine
and 10.10.10.101, 192.168.10.y

in this example.

Create a new virtual network

i |£'—I Create virtual network

Choose a name for your virtual network:

M

> Example: networkl

MNetwork Name:

| Cancel || Back | Forward

Let's first do the configuration using virt-manager. The name of the virtual network
is routed, as shown in the following screenshot:

[123]

Network and Storage

Enable IPv4 only. Disable DHCP and Static Routes. Here, we are using
192.168.10.0/24 as our network. libvirt will automatically assign a gateway for
the network. Usually, it is going to be the first IP in the range, 192.168.10.1 and is
assigned to the bridge interface. In step 2 of the Create virtual network wizard, tick
Enable IPv4 network address space definition and Enable DHCPv4. The default
DHCP range is 192.168.100.128 - 192.168.100.254; you are free to change it as
per your need:

Create a new virtual network

Create virtual network

Choose IPv4 address space for the virtual network:

+! Enable IPv4 network address space definition

Metwork: | 192.168.10.0/24

» Hint: The network should be chosen from one of the |Pvd
private address ranges. eg 10.0.0.0/8 or 192.168.0.0/16

Gateway: 192.168.10.1
Type: Private

Enable DHCPv4

Enable Static Route Definition

Cancel Back Forward

[124]

Chapter 5

After specifying the DHCP range, click on the Forward button. In step 3, you can
optionally enable IPv6 configuration:

Create virtual network

Choose IPv6 address space for the virtual network:

Enable IPv6 network address space definition

Cancel Back Forward

We are going to skip step 3, which is the IPv6 configuration. You can enable it later
by editing the configuration file using the virsh command. We will provide a
sample configuration for you to check. If required, you can enable it at this stage.
We are leaving that to your choice.

[125]

Network and Storage

In the final step, choose the host interface where you would like to forward the traffic
(for us it is em1) from this virtual network and select the Mode as Routed. Click on
Finish to create this virtual network:

Create a new virtual network

|£_| Create virtual network

Connected to a physical network:
Isolated virtual network

¢ Forwarding to physical network
Destination: | Physical device eml =

Mode: Routed hd

Enable IPv6 internal routing/netwaorking

If an IPvE network address is not specified, this will enable IPv6
internal routing between virtual machines. By default, IPv4
internal routing is enabled.

DMNS Domain Name: | |

Cancel Back Finish

Let's now create the same configuration using virsh instead of the GUI tool. Delete
the routed virtual network you have just created and open a terminal window.

Create an XML configuration file similar to the following example and save it as
routed.xml. Once the configuration file is ready, you can start defining the network:
cat routed.xml
<network>
<name>routed</name>
<forward dev='eml' mode='route'>
<interface dev='eml'/>
</forward>
<ip address='192.168.10.1' netmask='255.255.255.0"'>
</ip>

[126]

Chapter 5

</network>

virsh net-define routed.xml

Network routed defined from routed.xml:

virsh net-start routed
Network routed started

virsh auto-start routed

Network route marked as auto start:

virsh net-info routed

Name: routed

UUID: 9ald8de7-5627-4£f08-a3d1-836b7a5fe060
Active: yes

Persistent: yes

Autostart: yes

Bridge: virbr2

Editing a virtual network

Let's edit a routed virtual network and modify the routing configuration so that the
packets from the virtual machines can be forwarded to any interface available on the
host based on IP route rules specified on the host. The aim of this example is to show
how to modify a virtual network once it is created with your configuration.

Before editing the virtual network, you need to stop the virtual network first:

virsh net-destroy routed

Network routed destroyed
Edit the network using net-edit:
virsh net edit routed

net-edit will make a temporary copy of the configuration file used by routed
in /tmp and then open vim using that temp file. Here we are going to edit the
<forwards> tag.

Old configuration:

<forward dev='eml' mode='route'>
<interface dev='eml'/>

</forward>

[127]

Network and Storage

New configuration:

After editing, save it using :wq. If you make a mistake, virsh will prompt you.
Here, we removed < from <forward> and then tried to save the configuration:

Even if you do not get a warning message, it is highly recommended that you verify
the configuration change using the net - dumpxml command:

virsh net-dumpxml routed

<network>

<name>routed</name>
<uuid>9ald8de7-5627-4£08-a3d1-836b7a5fe060</uuid>
<forward mode='route'/>

<bridge name='virbr2' stp='on' delay='0"'/>

<mac address='52:54:00:f1:cb:30'/>

<ip address='192.168.10.1' netmask='255.255.255.0"'>
</ip>

</network>

To enable IPv6, you can add a similar to the preceding configuration. The IPv6
address provided is an example:

<ip family="ipvé6" address="2001:db8:ca2:2::1" prefix="64" >

[128]

Chapter 5

After verifying the configuration, start the virtual network using net-start,
as shown in the following command:

virsh net-start routed

Network "routed" started

NATed virtual network

NATed mode is the most commonly used virtual networking when you want to set
up a test environment on your laptop or test machine. This mode allows the virtual
machines to communicate with the outside network without using any additional
configuration. This method also allows communication between the hypervisor and
the virtual machines. The major drawback of this virtual network is that none of the
systems outside the hypervisor can reach the virtual machines.

The NATed virtual network is created with the help of iptables, specifically using
the masquerading option. Hence, stopping iptables when VMs are in use can cause
network disruption inside the virtual machines:

Virtual switch: NAT mode

Host Server

G

10.10.10.190

All communication to
systems outside of

the host, appears to Virtual
come from the host Machine
IP address. 192.168.10.x
o virtual network switch
10.10.10.190 in this in NAT mode Virtual
example. Machine
192.168.10.y

[129]

Network and Storage

Let's create a virtual network in NATed mode using virt-manager. The steps are
similar to a routed virtual network, but instead of choosing the routed method,
you select NAT and click on the Finish button:

Create a new virtual network

‘5_| Create virtual network

Step 4 of 4

Connected to a physical network:
Isolated virtual network

+ Forwarding to physical network
Destination: | Any physical device =

Mode: NAT -

Enable IPv6 internal routing/networking

If an IPvE netwaork address is not specified, this will enable IPvé
internal routing between virtual machines. By default, IPv4
internal routing is enabled.

DMS Domain Name:

Cancel Back Finish

If you are not able reach or ping systems after configuring the NATed network,
make sure that the value of sysctl net.ipv4.ip forwardis 1.

Bridged network using a physical NIC, VLAN interface, bond interface, and
bonded VLAN interface (aka shared physical interface)

In most of the production environment, you will be using a bridge configuration
that directly connects a physical NIC to the bridge. The primary reason for using
this configuration is that your virtual machine will act as a system that is in the same
network as the physical NIC. Unlike the NATed mode, virtual machines can be
accessed directly using their IP address, which is essential when you host a service
on your virtual machines.

[130]

Chapter 5

In our test setup, we have three interfaces available: etho, eth1, and eth2. etho has
an IP assigned and is used as the management interface. Management interface is
an interface used to access the host machine through SSH or similar method with
an IP configured. Other two interfaces, eth1 and eth2, are dedicated for bridge
configuration and do not have IPs configured.

The general workflow for creating a bridge with shared physical interface(s) is
as follows:

1. Complete the physical interfaces' configuration with no IPs. This includes
configuring VLAN, bonding, and and so on.

2. Once the physical interfaces are configured, add the final interface to the
bridge. It could be a single interface (eth1), bonded interface (bondo),
VLAN (ethl.121 or bondo.121), andand so on.

3. Optionally, you can assign an IP to the bridge, not to the physical interface.
If you have the management interface, always create a bridge without an IP,
unless there is a special requirement.

Your first task is to configure a bridge named br0 using etho.

Fedora uses Network Manager for its network configuration and does not

enable SysVinit based network service by default. In our setup, disable Network
Manager and enable the network service. As this is a dedicated hypervisor, disable
Network Manager.

Create (or modify) the files, ifcfg-ethl and ifcfg-bro, so that it will look like the
following. You can avoid the comments part:

cd /etc/sysconfig/network-scripts

cat ifcfg-ethl

DEVICE=ethl

TYPE=Ethernet

#Replace the following with your ethl interface MAC address
HWADDR=52:54:00:32:56:aa

ONBOOT=yes

#Prevent Network Manager from managing this interface,ethl
NM CONTROLLED=no

#Add this interface to bridge br0

BRIDGE=bro0

cat ifcfg-bro

DEVICE=bro0

[131]

Network and Storage

#Initiate bridge creation process for this interface
TYPE=Bridge

ONBOOT=yes

NM CONTROLLED=no

#Set the bridge forward delay to O.
DELAY=0

Enable the network service and start it.
systemctl enable network

systemctl disable NetworkManager

ifup br0; ifup ethl

brctl show

bro

The bro bridge is created with the eth1 interface. You can now start using bro while
creating VM's network interfaces. We assume that you have more than one NICs on
the host to create virtual networks. If there is only one interface make sure you assign
an IP address in the bridge configuration file to access the host over the network.

We will now create a bond (bondo0) using eth1 and eth2 and add it to bro:

ifdown br0; ifdown ethl
cat ifcfg-ethl
DEVICE=ethl
TYPE=Ethernet
HWADDR=52:54:00:32:56:aa
ONBOOT=yes

NM CONTROLLED=no
SLAVE=yes

MASTER=bond0

cat ifcfg-eth2
DEVICE=eth2
TYPE=Ethernet
HWADDR=52:54:00:a26:02:51
ONBOOT=yes

NM CONTROLLED=no
SLAVE=yes

MASTER=bond0

cat ifcfg-bond0
DEVICE=bond0

ONBOOT=yes

Here we are using bonding mode 1 (active-backup)

[132]

Chapter 5

BONDING OPTS='mode=1 miimon=100"
BRIDGE=bro0

NM CONTROLLED=no

ifup bondO

brctl show

The bro bridge is now created with the bondo bond interface. The following diagram
will explain the current configuration:

< -
e
< e

a1

‘Q Using bonding modes one (active-backup) and four (802.3ad) are

considered stable when used with the bridge.

We will now modify ifcfg-bondo so that it will create a tagged VLAN named
bond0.123 and will be added to the bro bridge:
ifdown bond0; ifdown bro0

cp ifcfg-bond0 ifcfg-bond0.123

cat ifcfg-bond0.123

DEVICE=bond0.123

ONBOOT=yes

BONDING OPTS='mode=1 miimon=100"
BRIDGE=br0

NM CONTROLLED=no

VLAN=yes

Now edit i fcfg-bond0 and comment out BRIDGE=bro (#BRIDGE=br0):

ifup bond0.123

[133]

Network and Storage

M If you would like to configure custom MTU, add MTU to all
Q configuration files, including the bridge. The same MTU should
also be added inside a virtual machine's interface configuration.

MacVTap

MacVTap is used when you do not want to create a normal bridge, but want the
users in local network to access your virtual machine. This connection type is not
used in production systems and is mostly used on workstation systems.

Navigate to Add Hardware | Network to add a virtual NIC as the MacVTap
interface using virt-manager. At Network source, select the physical NIC interface
on the host where you want to enable MacVTap:

Add New Virtual Hardware x

B Controller
=! Network Network source: | Host device enpOs25: macvtap ~

© Input

Source mode: | Bridge -
= Graphics

» In meost configurations, macvtap does not work for
HF Sound & host to guest network communication.

Serial
MAC address: v] | 52:54:00:ea:c1:94
Parallel
Console Device model: Hypervisor default -
Channel
USB Host Device
PCl Host Device
Video

Watchdog

» Virtual port

O W2 &EH044

Filesystem
Smartcard

USE Redirection
TPM

RNG

HH LS

Panic Notifier

Cancel Finish

[134]

Chapter 5

The following is the corresponding configuration from the VM:

<interface type='direct's>
<mac address='52:54:00:7b:4b:8c'/>
<source dev='enp0s25' mode='bridge'/>

<model type='virtio'/>

PCI passthrough

PCI passthrough is used to pass through PCI devices on the host to a virtual
machine. This is primarily used to directly pass network interfaces on the host to a
virtual machine for increased performance.

To enable PCI passthrough, you have to use the following steps:

1. Enable Intel VT-d or AMD IOMMU in the BIOS and kernel:
vi /etc/sysconfig/grub

2. Modify GRUB_CMDLINE_ LINUX= to append intel_iommu=on or
amd_iommu=on:

‘-Z.I.'II:_-III-I INE_LINUX=" rd. lvm. lv=fedora/swap rhgb quiet intel_iommu=onl]

3. Rebuild the grub2 configuration file as follows and then reboot
the hypervisor:

grub2-mkconfig -o /boot/grub2/grub.cfg

[135]

Network and Storage

4. Navigate to Hardware | PCI Host Device and select the PCI device to

pass through:

Add New Virtual Hardware x

N

Storage
Controller
MNetwork
Input
Graphics
Sound
Serial
Parallel
Console
Channel
USBE Host Device

PCl Host Device

Video
Watchdog
Filesystem
Smartcard

USB Redirection
TPM

RNG

Panic Notifier

PCI Device

Host Device:

0000:03:00:0 Intel Corporation Wireless 7260

‘ Cancel H Finish ‘

It's all about storage!

Similar to virtual network infrastructure, we need a storage backend to create and

save the virtual disks. There is an option to choose a wide variety of storage solution
is as backend for virtual machines, from normal file-based storage to logical volume
managed storage, gluster container, and many more. Storage backend is created and

managed using the libvirt storage API and is called a "storage pool".

In this section, you will learn how to work with unmanaged and managed storage.
You will also see how to create storage pools and volumes, including some of the
newer options, such as ceph block storage, which allows us to create really large

sized virtual disks and attach them to a virtual machine. You will also learn how to

attach multiple disks to a single VM.

[136]

Chapter 5

Working with unmanaged storage

Storage, which is not directly controlled and monitored by libvirt, is still used

with virtual machines and is called unmanaged storage. This means that you can
straightforwardly use any file or block a device that is available/visible on your host
system as a virtual disk, provided the appropriate permissions are set. This provides
the quickest way to have storage available for virtual machines. This approach is
particularly useful in adding a secondary disk to a virtual machine.

You can attach network shared disks to your virtual machine and take a backup, or
let's take an example where you noticed that the root partition (LVM) of your virtual
machine has become full and the guest operating system is alarming loudly. It's
going to crash if the root filesystem is not expanded.

This is an urgent situation; to save the guest operating system from crashing,

you either have to free up some space or expand the root filesystem by adding a
secondary disk to the virtual machine; however, you notice that there is no space left
in the default storage pool to create a secondary disk. However, there is free space
available on the host machine.

You can use that free space available on the host machine to create a disk image and
then attach that image as vDisk to the virtual machine to perform a resize on the root
filesystem of the VM. This should save the virtual machine from crashing.

Creating a disk image and attaching it to a
guest

Disk images are standard files stored on the host's filesystem. They are large and act
as virtualized hard drives for guests. You can create such files using the dd command
as shown:

dd if=/dev/zero of=/vms/dbvm disk2.img bs=1G count=10
Here is the translation of this command for you:

Duplicate data (dd) from the input file (if) of /dev/zero (virtual limitless supply of
0s) into the output file (of) of /vms/dbvm_disk2.img (disk image) using blocks of 1G
size (bs = block size)and repeat this (count) just once (10).

dd is known to be a resource-hungry command, It may cause I/O
. problems on the host system, so it's good to first check available free
% memory and I/O state of the host system, and then only, run it. If the
L system is already loaded, lower the block size to MB and increase the
count to match the size of file you wanted (use bs=1M, count=10000
instead of bs=1G count=10).

[137]

Network and Storage

/vms/dbvm_disk2.img is the result of the preceding command. The image now has
10 GB preallocated and ready to use with guests either as boot disk or second disk.
Similarly, you can also create thin-provisioned disk images. Preallocated and thin-
provisioned (sparse) are disk allocation methods or you may also call it as format.
Each comes with its own advantages and disadvantages. If you are looking for I/O
performance, go for preallocated format but if you have some non-IO intensive load,
choose thin-provisioned.

* Preallocated: Preallocated virtual disk allocates the space right away at the
time of creation. A virtual disk with a preallocated format has significantly
faster write speeds than a virtual disk with a thin provisioning.

* Thin-Provisioned: In this method, space will be allocated for the volume as
needed. For example, if you create a 10G virtual disk (disk image) with sparse
allocation. Initially, it would just take a couple of MB of space from your
storage and grow as it receives write from the virtual machine up to 10G size.
This allows storage over commitment under the assumption that the given
disk space. To create a thin-provisioned disk, use the seek option with the ad
command, as shown in the following command:

dd if=/dev/zero of=/vms/dbvm disk2 seek.imgbs=1G seek=10 count=0

Now, you might be wondering how one can identify what disk allocation method
a certain virtual disk uses. There is a good utility for finding out, gemu- img. This
command allows you to read the metadata of a virtual image. It also supports
creating a new disk and performing low level format conversion.

Getting image information

The info parameter of the gemu-img command displays information about a disk
image, including the absolute path of image, file format, and virtual and disk size.
By looking at the virtual and disk size of the disk, one can easily identify what disk
allocation policy is in use. As an example, let's look at two of the disk images

we created:

gemu-img info /vms/dbvm disk2.img
image: /vms/dbvm disk2.img

file format: raw

virtual size: 10G (10737418240 bytes)
disk size: 10G

#gemu-img info /vms/dbvm disk2 seek.img
image: /vms/dbvm disk2 seek.img

file format: raw

virtual size: 10G (10737418240 bytes)
disk size: 10M

[138]

Chapter 5

See the disk size line of both the disks. It's showing 10G for /vms/dbvm_disk2.img,
whereas for /vms/dbvm disk2 seek.img, it's 10M MiB. This difference is because the
second disk uses a thin-provisioning format. virtual size is what guests see and
disk size is what space the disk reserved on the host. If both the sizes are the same,
it means the disk is preallocated. A difference means that the disk uses the thin-
provisioning format.

Now let's attach the disk image to a virtual machine; you can attach it using virt-
manager or CLI alternative virsh.

Attach a disk using virt-manager

Start virt-manager from the host system's graphical desktop environment. It can also
be started remotely using SSH, as demonstrated in the following command:

ssh -X host's address
[remotehost] # virt-manager

1. In the Virtual Machine Manager main window, select the virtual machine to
which you want to add the secondary disk.

2. Go to the virtual hardware details window and click on the Add Hardware
button located at the bottom-left side of the dialog box.

3. In Add New Virtual Hardware, select Storage component amount other
storage: addnewvirtualhardware:

Add New Virtual Hardware

CETT—

[Controller

& Network Create a disk image on the computer's hard drive
U Input 80 - + |GB

L] Graphics 22.3 GIB available in the default location

B Sound

| serial */ Select managed or other existing storage

=l parallel Browse... Ivms/dbvm_disk2.img

=] Console
=l Cnannel Device type: | [] Disk device 7
«% USB Host Device
PCl Host Device EUSEYEES il M
= video)

) » Advanced options
[Watchdog
[Filesystem
= Smartcard
@ USB Redirection
& TPM
RNG
E

% Panic Notifier

Cancel Finish

[139]

Network and Storage

4. Choose Select Managed or other existing storage and either browse and
point to the dbvm_disk2. img file from the /vms directory or directly enter
the path of the file and click Finish.

. Here, we used disk image, but you are free to use any
& storage device that is present on the host system, such as
s a LUN, entire physical disk (/dev/sdb) or disk partition

(/dev/sdbl), or LVM logical volume.

5. Clicking on the Finish button will attach the selected disk image (file) as a
second disk to the virtual machine using the default configuration. The same
operation can be quickly performed using the virsh command.

Attach a disk using virsh

virsh is a very powerful command-line alternative for virt-manager. You can
perform an action in a second that would take minutes to perform through a
graphical interface such as virt-manager. It provides an attach-disk option to
attach a new disk device to a virtual machine. There are lots of switches provided
with attach-disk:

attach-disk domain source target [[[--live] [--config]l | [--current]] |
[--persistent]] [--targetbusbus] [--driver driver] [--subdriversubdriver]
[--iothreadiothread] [--cache cache] [--type type]l [--mode model
[--sourcetypesourcetype] [--serial serial] [--wwnwwn] [--rawio]
[--address address] [--multifunction] [--print-xml]

But in a normal scenario, the following are sufficient to perform hot-add disk
attachment to a virtual machine:

#virsh attach-disk F22-01 /vms/dbvm disk2.img vdb --live --config

Here, F22-01 is the virtual machine to which a disk attachment is executed. Then
there is the path of disk image. vdb is the target disk name that would be visible
inside the guest operating system. - - 1ive means performing the action while the
virtual machine is running, and - -conf ig means attaching it persistently across
reboot. Not adding a - -config switch will keep the disk attached only till reboot.

[140]

Chapter 5

HotPluggingSupport: "acpiphp" kernel module should be loaded
. ina Linux guest operating system in order to recognize a hot-
% added disk; "acpiphp" provides legacy hotplugging support,
L= whereas "pciehp" provides native hotplugging support . "pciehp"
is dependent on "acpiphp". Loading "acpiphp" will automatically
load "pciehp" as a dependency.

You can use virsh domblklist <vm_name>command to quickly identify how
many vDisks are attached to a virtual machine. Here is an example:

virsh domblklist F22-01 --details

Type Device Target Source
file disk vda /var/lib/libvirt/images/fedora2l.qgcow2
file disk vdb /vms/dbvm_disk2 seek.img

It clearly indicates that the two vDisks connected to the virtual machine are both file
images. They are visible to the guest OS as vda and vdb respectively, and in the last
column of the disk images path on the host system.

Working with managed storage

libvirt supports the following storage pool types:

* -dir: Uses the filesystem directory to store virtual disks

* -disk: Uses physical hard disks to create virtual disks

* -fs: Uses pre-formatted partitions to store virtual disks

* -netfs: Uses network-shared storage like NFS to store virtual disks
* -gluster: Allows using the gluster filesystem to store virtual disks
* -iscsi: Uses network-shared ISCSI storage to store virtual disks

* -scsi: Uses local SCSI storage to store virtual disks

* -1vm: Depends on LVM volume groups to store virtual disks

* -rbd: Allows connecting ceph storage for virtual disks

[141]

Network and Storage

Covering all these storage pool types in details is not possible in this chapter, and is
not required, as the steps to create a storage pool are almost identical; you just need
to have a basic understanding of your chosen storage backend. These are some of the
important and widely used storage pools that we are going to cover in this chapter:

* Filesystem Directory (local)
* LVM Volume Group (local)
* NFS Storage Pool

* iSCSI backend (shared)

The storage that is controlled and monitored by libvirt in terms of
_ storage pools and storage volumes is called as managed storage here.
A pool is a generic container for various storage objects. There are
= several types of storage pools. Starting from a simple local directory to
advance network shares like ceph storage volumes are part of storage
pool and they are actually the virtual disks used by virtual machines.

Storage management console

Virtual Machine Manager (virt-manager) provides a very sophisticated yet easy to
use interface for configuring and managing storage pools. To access this console:

1. Open the virt-manager graphical interface.

2. Then go to the Edit menu and select Connection Details. Click on the
Storage tab of the Connection Details window, virt-manager | Click Edit |
Connection Details | Storage:

[142]

Chapter 5

QEMU/KVM Connection Details x
File
Overview Virtual Networks Storage Network Interfaces

default Name: default
Filesystem Directory

Size: 23.08 GIiB Free [3.87 GiB In Use
Location: /var/lib/libvirt/images
State: 53] Active

Autostart: [+ On Boot

Volumes | # | &

: S
% L RpDy

All the storage pools are listed in the left column and in the right pane; you will get
the overview of the selected pool that includes the following information:

Name: The name of storage pool
Size: This tells us how much free space is available and how much is utilized

Location: The path of the storage backend where actual vDisk data will
be stored

State: State tells us the pool status; whether it's active and in use
or suspended

Autostart: If checked, the storage pool will be started upon system boot
otherwise it will require manual interaction to start the pool

Volumes: This lists all the virtual disks (volumes) that exist in the pool,
including their name, size, and it facilitates creating new volumes. There are
three buttons. Buttons with a "plus" symbol denote adding new volume, a
button with a "half round arrow" symbol denotes refresh, and the last one is
for delete, which is represented by a "red circle".

[143]

Network and Storage

By default, libvirt creates a directory backend storage pool with the name
default. You can also use the virsh command to list the storage pools
available on the system:

[root@Fedora22]# virsh pool-list

Name State Autostart

default active yes

To get more information about a specific storage domain use:

[root@Fedora22 ~]# virsh pool-info default

Name: default

UUID: 3efb9c2b-2fa8-41cd-9e9e-de2eafa3b4ab
State: running

Persistent: yes

Autostart: yes

Capacity: 26.00 GiB

Allocation: 4.00 GiB

Available: 23.00 GiB

The last three parameters actually indicate the usage of the storage pool. You can
see that out of a total 26 GiB capacity, 4 GiB has been used (allocated) and 23 GiB is
available for use.

Creating storage pools

Storage pools can be created with virt-manager or through its CLI alternative,
virsh. First we will see how to create different types of storage pools using the
Storage Management console and then using virsh. The XML definition file of each
storage pool is stored in /etc/libvirt/storage. Make sure that it does not get
modified manually or deleted.

File system directory backed storage pool

Directory backend storage is more commonly known as file-based storage.
In file-based storage and VM, diskshare is stored and managed within a
standard directory created on the host machine (or node). In simple terms,
you create a directory on the host system and designate it as a controlled
place to store virtual disks.

[144]

Chapter 5

The files created under this directory act as virtual disks, and they can be fully
allocated raw files, sparsely allocated raw files or qcow?2, which is a special
disk format.

To create a pool, open the Virtual Machine Manager graphical interface and follow

the following steps:
1. Go to the Storage tab in the Connection Details window of virt-manager.
2. Start the Add a New Storage Pool wizard by clicking on the + button
(located on the bottom-left side).
3. Enter a name and set the type as dir:Filesystem Directory, and then click
on the Forward button.
4. The next step has different configuration parameters depending on the

storage type selected. For filesystem directories, just input the Target Path
and you're done. In the Target Path input box, enter the directory path where
you wish to store virtual disks and hit the Finish button, and your directory
based storage pool is ready:

Add a New Storage Pool

Create storage pool

arget Path: | /vms Browse

ancel Dack rinsn

Directory permissions should be owned by a root user with the permission set to
700. If SELinux is in enforcing mode. The following context needs to be set:

semanage fcontext -a -t virt image t "/vms(/.*)?"

[145]

Network and Storage

Directory-based storage pools may take up all available disk space where they are
located. You should store the directory on its own partition so you don't fill up the
host's main partition.

virsh makes life even easier; after running just three commands, the storage pool will
get ready for use. The commands are:

#virsh pool-define-as dedicated storagedir dir - - - - "/vms"
#virsh pool-build dedicated storage

#virsh pool-start dedicated storage

The first command just defines the storage domain. It creates an XML definition file
from the input located in the /etc/libvirt/storage/ directory, and the second
command (pool-build) is what actually builds the storage pool. It creates the
directory if it doesn't exist and sets the correct SELinux context. To verify the
creation of storage pool run the following;:

#virsh pool-list --all
Name State Autostart
dedicated storage inactive no

default active yes

Notice that the storage pool is created but is in an inactive state. To activate it and set
it to automatically start, run the following;:

#virsh pool-start dedicated storage

#virsh pool-autostart dedicated storage

#virsh pool-list

Name State Autostart

dedicated storage active yes

default active yes

LVM Volume Group backed storage pool

Logical Volume Manager is the most flexible and widely used storage technology on
Linux. You can use LVM logical volumes as virtual disks. Just enter the pre-defined
LVM volume group name (path), or build a new volume group using the Add a New
Storage Pool wizard:

[146]

Chapter 5

Add a New Storage Pool

. Create storage pool
Step 2 of 2

Target Path: ‘ | v Browse
Source Path: - Browse
Build Pool:
Cancel Back Finish

* Target Path is the location of the existing LVM volume group

* Source Path is the optional device to build a new LVM volume group

For example, let's assume that you have sdb and sdc disks attached to your host
machine; you want to convert them into a single physical volume and create

a volume group out of them in order to provide space for all of your virtual
machine disks.

For this requirement, you will not need to go through the regular pvcreate,
vgcreate way instead. Just open the Add a New Storage Pool wizard, provide sdb,
and sdc as source devices, tick the Build Pool checkbox, and hit the Finish button.

The Build Pool checkbox instructs virt-manager to create a new LVM volume group.
It will convert sdb and sdc devices into a physical volume and create a new LVM
volume group on top of them and use it as storage pool.

To create an LVM backend storage pool using virsh, use the same pool-define-as
and pool-build options:

virsh pool-define-as lvmpool logical - - /dev/sdb2 vgl /dev/vgl

virsh pool-build lvmpool

virsh pool-start lvmpool ; virsh pool-autostart dedicated storage

[147]

Network and Storage

Here:

* lvmpool is the name of the storage pool
* /dev/vdbl is used as a physical volume to build to the vg

* vgl is the name of the LVM volume group

iISCSI backed storage pool

Internet Small Computer System Interface (iSCSI) is a network protocol for
sharing storage devices. For iSCSI communication, iSCSI Initiator and iSCSI Target
components talk with each other and construct a Storage Area Network, similar to
the Fiber channel.

Unlike an LVM volume group, iSCSI volumes cannot be created via the libvirt API.
Volumes must be preallocated on the iSCSI server (the iSCSI target). Once you have a
iSCSI volumes created and ready for use, go to the Add a New Storage Pool wizard
and select the type as iscsi:ISCSI Target and press Forward, which will bring the
following window (step 2):

Add a New Storage Pool
eate storage pool
Target Path: /dev/disk/by-path x Browse
Host Name:
Source IGN: - Browse
Initiator IGN:
Cancel Back Finish

[148]

Chapter 5

Enter the following information and click Finish to get your iSCSI-based storage
domain ready:

* Target Path: Root location for identifying new storage volume
* Host Name: Name of the host sharing the storage (iscsi target)
* Source IQN: Path on the host that is being shared (IscsiLuns IQN)

* Initiator IQN: Your host system's iSCSI initiator qualified name

Creating an ISO image library

Although a guest operating system on the virtual machine can be installed from
physical media doing passthrough host's CD/DVD drive to the virtual machine, it's
not the most efficient way. Reading from a DVD drive is slow when compared to
read ISO from a hard disk, so the better way is to store ISO files (or logical CDs) used
to install operating systems and applications for the virtual machines in a file based
storage pool and create an ISO image library.

To create an ISO image library, you can either use a virt-manager or a virsh
command. Let's see how to create an ISO image library using the virsh command:

1. First, create a directory on the host system to store . iso images:
#mkdir /iso_lib

2. Set correct permissions. It should be owned by a root user with permission
set to 700. If SELinux is in enforcing mode, the following context needs to
be set:

#chmod 700 /iso_lib

semanage fcontext -a -t virt image t "/iso 1lib(/.*)?"

3. Define the ISO image library using the virsh command, as shown in
the following;:

#virsh pool-define-as iso_ librarydir - - - - "/iso lib"
#virsh pool-build iso library

#virsh pool-start iso library

In the preceding example, I used the name iso_library to
%ji‘ demonstrate how to create a storage pool that will hold ISO
’ images, but you are free to use any name you wish.

[149]

Network and Storage

4.

Verify that the pool (ISO image library) got created:

#virsh pool-info iso library

Name: iso library

UUID: 959309c8-846d-41dd-80db-7a6e204£320e
State: running

Persistent: yes

Autostart: no

Capacity: 49.09 GiB

Allocation: 8.45 GiB

Available: 40.64 GiB

Now you can copy or move the .iso images to /iso_1lib directory.

Upon copying the .iso files in /iso_1ib directory, refresh the pool and then
check its contents:

virsh pool-refresh iso library

Pool iso_library refreshed

virsh vol-list iso library

Name Path

centos6.iso /iso_lib/centosé6.iso
Fedora2l.iso /iso_lib/Fedora2l.iso
Fedora22.iso /iso_lib/Fedora22.iso
Win7.iso /iso_lib/Win7.iso

It will list all the ISO images stored in the directory, along with their path.
These ISO images can now be used directly with a virtual machine for guest
operating system installation, software installation, or upgrades.

Deleting a storage pool

Deleting a storage pool is fairly easy. Please note that deleting a storage domain
will not remove any file/block device. It just disconnects the storage from the
virt-manager. The file/block device has to be removed manually.

[150]

Chapter 5

Deleting storage pool using virt-manager

First, stop the storage pool. To do this, select the storage pool you want to stop and
click on the red X icon at the bottom of the Storage window:

QEMU/KVM Connection Details X
File
Overview Virtual Networks Storage Network Interfaces
15y default Name: stagging

Filesystem Directory

. Size: 22.71 GiB Free [4.23 GiB In Use
stagging
Filesystem Directory Location: Jfvms
State: B |nactive

Autostart: (v On Boot
Volumes

Volumes ¥ Size Format Used By

+ || 2@ Apply

Clicking on the red X icon will make the storage domain inactive. Clicking the trash
can icon will remove the storage domain.

Deleting storage pool using virsh

The sequence is the same; you first need to stop the pool by running: virsh pool-
destroy <pool-names>, and then undefine it using virsh pool-undefine<pool-
name>.

[151]

Network and Storage

Creating storage volumes

Storage volumes are created on top of storage pools and attached as virtual disks to
virtual machines. In order to create a storage volume, start the "Storage Management
console", navigate to virt-manager | Click Edit | connection Details | Storage and
select the storage pool where you want to create a new volume; click on the Create
New Volume button (+):

’ Mame dedicated_storage

Add a Storage Volume

= Active” Create New

e [Of oot VOIUME
; ; Create storage volume
es | # | @

| Create a storage unit to be used directly by a virtual machine.

dbvm_disk2.img 10.00 GiB raw f |

Name: .qcow2

dbvm_disk2_seek.img 10.00 GiB raw f
Format: | qcow2 ¥

}» Backing store

Storage Volume Quota
dedicated_storage’s available space: 8.28 GiB

Max Capacity: 8.0 - + |GB

Cancel

Next, provide the name of the new volume, choose the disk allocation format for it,
and click on the Finish button to build the volume and get it ready to attach to a VM.
You can attach it using the usual virt-manager or the virsh command.

There are several disk formats that are supported by libvirt (raw, cow, gcow, gcow2,
ged, vindk). Use the disk format that suits your environment and set the proper

size in Max Capacity and Allocation fields to decide whether you wish to go with
preallocated disk allocation or thin-provisioned. If you keep the disk size the same
in Max Capacity and Allocation, it will be preallocated rather than thin-provisioned.
Note that the gcow2 format does not support the thick disk allocation method.

[152]

Chapter 5

In Chapter 7, Templates and Snapshots, all the disk formats are explained in detail.
For now, just understand that gcow2 is a specially designed disk format for KVM
virtualization. It supports the advanced features needed for creating internal
snapshots.

Creating volume using virsh command

The syntax to create a volume using virsh command is as follows:

virsh vol-create-as dedicated storage vm voll 10G

Here, dedicated_storage is the storage pool, vim_vol1 is the volume name,
and 10 GB is the size:

virsh vol-info --pool dedicated storage vm voll

Name: vm_voll
Type: file
Capacity: 1.00 GiB
Allocation: 1.00 GiB

The virsh command and arguments to create a storage volume
are almost same regardless of the type of storage pool it is created
' on. Just enter the appropriate input for a - -pool switch.

Deleting a volume using the virsh command

The syntax to delete a volume using virsh command is as follows:
#virsh vol-delete dedicated storage vm vol2

Executing this command will remove the vim_vol2 volume from the
dedicated_storage storage pool.

The virsh command and arguments to create a storage volume
are almost the same, regardless of the type of storage pool it is
' created on. Just enter the appropriate input for - -pool option.

[153]

Network and Storage

Summary

In this chapter, we covered various virtual network and storage configurations for
KVM virtualization. We also looked into various aspects of storage management.
In the next chapter, we will see the lifecycle management of a virtual machine.

[154]

Virtual Machine Lifecycle
Management

In the previous chapters, we have covered some of the main operations on a virtual
machine. You have learned the steps to create a virtual machine. In this chapter, we
are going to cover the major tasks associated with a system administrator to manage
a virtual machine, including offline and live migration of a virtual machine. You
might see some commands revisited or repeated from the previous chapters. You
need a Fedora 22 virtual machine ready to follow the examples in this chapter. You
can download fedora from the following link:

https://getfedora.org/en/workstation/download/

We will start this chapter by describing the state of a virtual machine during
its lifecycle:

Undefined: This is a state where the virtual machine is neither created nor
defined in libvirt.

Defined/Shutoff: In this state, libvirt is aware of the virtual machine.
The configuration file to define and start a virtual machine is available in
/etc/libvirt/gemu. We can also call this state as stopped or shut down.

Running: This state is self explanatory. The virtual machine is started

by libvirt.

Shutdown: The virtual machine's OS has been notified about the shutdown
and it is stopping its processes for a graceful shutdown.

Paused: The virtual machine has been moved from a running state to a
suspended state. The memory image has been stored temporarily. The
virtual machine can be resumed without the guest OS being aware.

[155]

https://getfedora.org/en/workstation/download/

Virtual Machine Lifecycle Management

* Saved: In this state, the virtual machine is in a permanent suspend mode.
The memory state has been dumped to a file stored in a persistent storage.
The virtual machine can be resumed to the original running state from this
saved state file.

* Idle: This state means that a virtual machine is waiting on I/O, or has gone
to sleep as it has no job to perform.

* Crashed: The virtual machine has crashed. It could be a QEMU process killed
or core dumped.

* Dying: The virtual machine has neither shut down nor crashed. It could be
due to a failure in the shutdown process also.

* Pmsuspended: The virtual machine has been suspended by the guest OS's
power management.

The current status of a virtual machine is displayed on the opening screen of the
virt-manager. When you right-click on a virtual machine, virt-manager will present
options to change the status of a virtual machine:

Virtual Machine Manager
File Edit View Help
lE-rl IEI Open iji| |£| -
Name
 QEMLU/KVM
F22-01
= Paused
F22-02 Run
Running Resume
jL3)| fedora22
Running Eml_ Reboot
Clone... Shut Down
Migrate... Force Reset
Delete Force Off
Open Save

Let us now check the options available in virsh.

[156]

Chapter 6

To check the status of all virtual machines defined and running on the hypervisor,
execute the following command:

virsh list --all

Domain F22-01 is being shutdown

Id

12
13
14

Name State
F22-02 paused
fedora22 running
F22-01 in shutdown

The virsh list command has a couple of options to filter the output displayed,
based on the status of the virtual machines. These filter options are very useful

when you have to automate the actions based on a virtual machine's status using
custom scripts:

inactive: This lists the inactive domains

all: This lists the inactive & active domains

transient: This lists the transient domains

-persistent: This lists the persistent domains
with-snapshot: This lists the domains with an existing snapshot
without-snapshot: This lists the domains without a snapshot
state-running: This lists the domains in running state
state-paused: This lists the domains in paused state
state-shutoff: This lists the domains in shutoff state
state-other: This lists the domains in other states
autostart: This lists the domains with autostart enabled

no-autostart: This lists the domains with autostart disabled

with-managed-save: This lists the domains with managed save state

without-managed-save: This lists the domains without managed save

uuid: This lists the uuid's only
name: This lists the domain names only
table: This lists the table (default)

managed-save: This marks the inactive domains with managed save state

title: shows domain title

[157]

Virtual Machine Lifecycle Management

To get help on virsh use virsh help. An example of the command is virsh help
list.

Let's now play with some virsh commands that are used to change the status of a
virtual machine. In most cases, the command itself answers its purpose.

start: Start a (previously defined) inactive domain. Previously defined means you
should be able to list the domain using virsh list --inactive:

* shutdown: Gracefully shuts down a domain

* reboot: Reboots a domain

When you issue virsh shutdown vm_name Or virsh reboot vm_name and the VM
is not responding to the commands, then you need to check if the ACPI service is
active in VM OS:

* reset: This resets a domain. Imagine this command to be a power
cycle operation.

* destroy: This destroys (stops) a domain. This is like you pulling a power
cable from the server. libvirt will just kill the associated QEMU process
for the VM in the hypervisor. You need to use destroy if the VM is not
responding to any of the virsh commands, and if you cannot access its
console, the VM has either crashed or the status shown is incorrect.

Before going to the next option, try out the preceding commands yourself and
understand the results.

Let's take a look at a set of virsh commands, which will help you to create/define a
virtual machine:

* create: This creates a domain from an XML file. Using this option, you can
start a virtual machine using its XML file. This virtual machine is not defined
in libvirt. Once stopped, it disappears from libvirt till you start using it again
virsh create /location/vm name.xml.

* define: This defines (but doesn't start) a domain from an XML file. Here you
add the virtual machine to libvirt.

¢ undefine: This undefines a domain. undefine will remove a virtual machine
from libvirt.

[158]

Chapter 6

Let's try those commands with a real world example. The following step is also one
of the backup strategies, which we are going to describe in the next chapter.

1. First dump a defined VM's configuration file. In this example, the name of
the VM is F22-03:

virsh dumpxml F22-03 > /root/F22-03.xml

2. We have now saved the configuration file of F22-03 as an XML file. Just open
the file and try to understand the tags.

3. Remove the virtual machine from libvirt. Executing undefine alone will not
remove the underlying storage:

virsh undefine F22-03

virsh list --all
Id Name State

virsh create F22-03.xml
Domain F22-03 created from F22-03.xml

virsh list
Id Name State

18 F22-03 running

virsh destroy F22-03
Domain F22-03 destroyed

virsh list --all
Id Name State

virsh define F22-03.xml --validate
Domain F22-03 defined from F22-03.xml

virsh list --all
Id Name State

- F22-03 shut off

[159]

Virtual Machine Lifecycle Management

You can now start the VM as usual. Once it starts try the following commands
yourself and observe the state changes:

* suspend: Suspend a domain

* resume: Resume a domain
An advanced level of suspend and resume is save and restore. Here you are saving
the machine state to a file and then restoring it later. This feature comes in handy
for system administrators when they want to make an unscheduled restart of the

virtual environment and one of the domains has an application that needs a complex
starting process:

virsh save F22-03 /root/F22-03_before host_ reboot

libvirt will stop the virtual machine after saving the state to a file.

virsh restore /root/F22-03 before host reboot
There are some interesting add-on commands once the image is saved:

* save-image-define: Redefines the XML for a domain's saved state file
* save-image-dumpxml: Saves state domain information in XML

* save-image-edit: Edits XML for a domain's saved state file

Once the VM is saved, it is not mandatory to restore it from the saved image file.
You can always start the VM as usual.

There is one more option, called managedsave. This will save the state file
automatically in /var/lib/libvirt/qgemu/save. When the VM starts next time,
libvirt will try to restore it from the state file saved there. If the VM fails to start, do
not panic, just delete the file using managedsave-remove and start the VM again.
Our recommendation is to always use save instead of managedsave. Try to run
virsh managedsave vm_name and virsh start vm_ name.

[160]

Chapter 6

QEMU guest agent

libvirt uses the QEMU guest agent which runs inside a Guest OS as a service. It acts
as a communication channel between the hypervisor and the guest. Hypervisor uses
this channel to fetch information of the Guest OS or issue commands to the Guest
OS. The communication protocol used to issue commands to the Guest OS is Qemu
Machine Protocol (QMP). For example, libvirt uses a guest agent to fetch network
and filesystem details from the guest. The communication between the guest agent
and hypervisor happens through a virtio-serial, or through an isa-serial channel
named org.gemu.guest_agent. 0. On the hypervisor side, a corresponding Linux
socket file will also be created in /var/lib/libvirt/qgemu/channel/target/.

For Fedora 22 it is as follows:

file /var/lib/libvirt/gemu/channel/target/fedora22.org.gemu.guest
agent.0

/var/lib/libvirt/gemu/channel/target/fedora22.org.gemu.guest agent.0:
socket

The same socket file will be shared by multiple Fedora 22 instances. This means that
you will not see socket files created for every VM you start on the hypervisor.

Now you can install the guest agent on Fedora. On other distributions, the package
name should be the same.

dnf install gemu-guest-agent
Stop and start the VM. Once started, check if the service is started:
systemctl status gemu-guest-agent

Now from the hypervisor, check if the guest agent is working;:

virsh gemu-agent-command F22-01 '{"execute": "guest-info"}' --pretty
{
"return": {
"version": "2.3.0",
"supported commands": [
{

"enabled": true,
"name": "guest-get-memory-block-info",
"success-response": true

.

<truncated>

[161]

Virtual Machine Lifecycle Management

Remember that the agent uses QMP and QMP uses JSON formatting. The output

of the preceding command shows all the supported guest agent commands.

Try to find some interesting commands and execute them yourself; for example,
guest-get-fsinfo, guest-network-get-interfaces, and so on. How do you
find the IP address assigned to your VM or filesystem details without logging into it?

QEMU provides a guest agent for Microsoft Windows. But we will cover that in the
next chapter. For the adventurous and those who can't wait, we are giving the link

to get the agent and drivers for Windows: https://fedoraproject.org/wiki/
Windows_Virtio Drivers. We recommend installing the guest agent after creating a
new VM.

Virtual video cards and graphics

In order to make the graphics work on virtual machines, QEMU needs to provide
two components to its virtual machines: a virtual video card and a method or
protocol to access the graphics from the client.

Virtual video card

The purpose of the graphics card is to provide graphics output to a display device. A
virtual graphics card can also perform the same function. QEMU supports emulation
of multiple graphics cards, and you can use libvirt to add those emulated graphic
cards to the virtual machines. The emulated graphic cards options are:

* Cirrus (Default in libvirt): Cirrus Logic GD5446 Video card. All Windows
versions starting from Windows 95 should recognize and use this graphic

card. For optimal performance, use 16-bit color depth in the guest and the
host OS.

* VGA: Standard VGA card with Bochs VBE extensions. If your guest OS
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
to use high resolution modes (>= 1280x1024x16), then you should use
this option.

* VMVGA: VMWare SVGA-II compatible adapter. Use it if you have a
sufficiently recent XFree86/XOrg server or a Windows guest with a driver
for this card.

* QXL: The QXL paravirtual graphic card. It is VGA-compatible (including
VESA 2.0 VBE support), although it works best with installed QXL guest
drivers. This is the recommended choice when using the spice protocol.

[162]

https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers

Chapter 6

There is also a Xen video card option available, which is used when you use Xen
virtualization and it is not compatible with KVM.

When you install a virtual machine, libvirt will automatically choose an appropriate
card based on the VM OS you select at the time of the installation. For latest OS
versions, such as Fedora 18, and later the card will be QXL, but for Windows or
older Linux distros, it will be Cirrus.

Adding or removing a virtual graphics card model is easy using a virt-manager.
The following screenshot tells how you can add a new Video Device to a virtual
machine. For changing the existing Video Device associated with the virtual
machine. Open virt-manager, take the virtual machine's console, and click on Video
< Model > under Show Hardware Settings details. This setting can be edited only
when the virtual machine is in the "off" state:

F22-01 Virtual Machine x
File Edit 'v'i.-: File Virtual Machind Add New Virtual Hardware
SIS U e
B Controller
g Overview & Network Model: Cirrus
QEMU/KVM
Performance U Input QXL
F22-0 .
3 processor = Graphics VGA
F22-02 |9 Memory B Sound v
s Boot Options = Sserial
F22-03 |) Yen
ool |2 scsiDisk1 |4 Parallel
() IpEcDrROM1 |4 Console
2 NiC :81:8a:0f <6 Channel
IL/I Tablet USB Host Device
) Mouse 4% PCl Host Device
EEETEET Bl Watchdog
Eif sound:iche | Filesystem
ey Serial 1 & Smartcard
& Channel gemu: @ USB Redirection
=1 Channel spice 3 TPM
B video axL RNG
m} Controller USE |4 Panic Notifier
m Controller PCI_ - -
Add Hardware T S —

[163]

Virtual Machine Lifecycle Management

Graphics

You have now configured your virtual video card. Now you need a method to access
the graphics. In a physical system, it is done through a monitor. But in the case of
virtual machines, it is done through graphic servers; Spice, and VNC are two graphic
servers that KVM virtualization supports currently. Why do we call them graphics
servers? Because when you start a virtual machine, based on the graphics you have
chosen, QEMU will start Spice or VNC network servers, which are attached to the
virtual machine's virtual graphics card. When you access your virtual machines
through a console using a client, you are basically connecting to these network

ports and accessing the graphics from the virtual machines.

VNC graphics server

When the VNC graphics server is enabled through libvirt, QEMU will redirect the
graphics output to its inbuilt VNC Server implementation. The VNC Server will
listen to a network port where the VNC clients can connect.

The following screenshot shows how to add a VNC graphics server:

Add New Virtual Hardware

B Controller
& Network Type: | VNC server -

¥ Input

Bf Sound Port: Auto 5900 +

Address: | Hypervisor default w7

< serial Password:

;(-:| Parallel
=] Console Keymap: | Auto w7
;(-:| Channel

USE Hest Device

PCl Host Device

B video

B watchdog

D Filesystem

&5 Smartcard

) USB Redirection

O TPM

RNG

Panic Notifier

Cancel Finish

[164]

Chapter 6

When adding VNC graphics, you will be presented with the options shown in
preceding figure:
* Type: The type of the graphics server. Here, it is VNC

* Address: VNC Server listening address. It can be all, localhost, or an IP
address. By default, it is localhost only.

* Port: VNC Server listening port. You can either choose auto, where libvirt
defines the port based on the availability, or you can define one yourself.
Make sure it does not create a conflict.

* Password: Password protecting the VNC access.
* Keymap: If you want to use a specific keyboard layout instead of an auto
detected one.

You can do the same using the command-line tool virt-xml.

Add VNC graphics £22-01 and then modify its VNC listening IP to 192.168.122.1:

virt-xml £22-01 --add-device --graphics type=vnc
virt-xml £22-01 --edit --graphics listen=192.168.122.1

This is how it looks in the £22-01 XML configuration file:

<graphics type='vnc' port='-1l' autoport='yes' listen='192.168.122.1'>
<listen type='address' address='192.168.122.1'/>

</graphics>
You can also use virsh edit £22-01 and change the parameters individually.
Why VNC?

You can use VNC when you access VMs on LAN or you access the VMs directly
from the console. It is not a good idea to expose VMs over a public network
using VNG, as the connection is not encrypted. VNC is a good option if the VMs
are servers with no GUI installed. Another point which is in favor of VNC is the
availability of clients. You can access VM from any OS platform, as there will be a
VNC viewer available for that platform.

SPICE graphics server

Like KVM, a Simple Protocol for Independent Computing Environments (SPICE)
is one of the best innovations that came into open source virtualization technologies.
It propelled the open source virtualization to a large virtual desktop infrastructure
(VDI) implementation.

[165]

Virtual Machine Lifecycle Management

Note: Qumranet originally developed SPICE as a closed source codebase
in 2007. Red Hat, Inc acquired Qumranet in 2008, and in December 2009,
decided to release the code under an open-source license and treat the
L.~ protocol as an open standard.

Source: https://en.wikipedia.org/wiki/SPICE (protocol).
Difference between SPICE and VNC.

SPICE is the only open source solution available on Linux, that gives a two-way
audio. It has high quality 2D rendering capabilities which can make use of a client
system's video card capabilities. SPICE also supports encryption, compression,

and USB passthrough over the network. For a complete list of features, you can

visit http://www.spice-space.org/features.html. If you are a developer and
want to know about the internals of SPICE, visit http://www.spice-space.org/
documentation.html. If you are planning for VDI or installing VMs that needs GUI,
SPICE is the best option for you.

SPICE may not be compatible with some older VMs, as they do not have

support for QXL. In those cases, you can use SPICE along with other
T video generic virtual video cards.

Adding SPICE graphics server

Libvirt now selects SPICE as the default graphics server for most VM installations.
You have to use the same procedures that we mentioned earlier for VNC to add the
SPICE graphics server. Just change the VNC to SPICE in the dropdown. Here you
will get an additional option to select a TLS port, as SPICE supports encryption:

[166]

https://en.wikipedia.org/wiki/SPICE_(protocol)
http://www.spice-space.org/features.html
http://www.spice-space.org/documentation.html
http://www.spice-space.org/documentation.html

Chapter 6

Add New Virtual Hardware
B Controller
= Network Type: | Spice server -
& Input
m‘“’ npu Address: | Hypervisor default 7
Ef sound Port: Auto 5900 +
o .
..,_| Serial TLS port: Auto 5901 -+
= Parallel
,-_;| Console Password:
-
ﬂ-" Channel Keymap: | Auto -
#% USB Host Device
PCI Host Device
B video
B watchdog
Filesystem
& Smartcard
@ USB Redirection
O TPM
RNG
Panic Notifier

Cancel Finish

Methods to access a virtual machine console

There are multiple ways to connect to a VM console. If your environment has a full
GUI access, then the easiest method is to use the virt-manager console itself.

virt-viewer is another tool that can give access to your virtual machine console.
This tool is very helpful if you are trying to access a VM console from a remote
location. In the following example, we are going to make a connection to a remote
hypervisor that has an IP 192.168.122.1. The connection is tunneled through an
SSH session and is secure.

[167]

Virtual Machine Lifecycle Management

The first step is to set up an authentication system without a password between your
client system and the hypervisor.

On the client machine:

$ ssh-keygen
$ ssh-copy-id root@192.168.122.1
$ virt-viewer -c gemu+ssh://root@192.168.122.1/system

You will be presented with a list of VMs available on the hypervisor. Select the one
you have to access, as shown:

Choose a virtual machine

Available virtual machines

Cancel Connect

To connect to a VM's console directly, use the following;:

$ virt-viewer -c gemu+ssh://root@192.168.122.1/system F22-01

If your environment is restricted to only a text console, then you have to rely on
your favorite virsh. To be more specific, virsh console vm_name. This needs some
additional configuration inside the VM OS.

If your Linux distro is using GRUB (not GRUB2), append the following line to
your existing boot Kernel line in /boot /grub/grub. conf and shutdown the
virtual machine.

console=tty0 console=ttyS0,115200

[168]

Chapter 6

If your Linux distro is using GRUB2, then steps become a little complicated. Note
that the following command has been tested on a Fedora 22 VM. For other distros,
the steps to configure GRUB2 might be different though the changes required on
GRUB configuration file should remain the same:

cat /etc/default/grub (only relevant variables are shown)
GRUB_TERMINAL OUTPUT=" console"

GRUB_CMDLINE LINUX="rd.lvm.lv=fedora/swap rd.lvm.lv=fedora/root rhgb
quiet"

The changed configuration is as follows:

cat /etc/default/grub (only relevant variables are shown)
GRUB_TERMINAL OUTPUT="serial console"

GRUB_CMDLINE LINUX="rd.lvm.lv=fedora/swap rd.lvm.lv=fedora/root
console=tty0 console=ttysSo"

grub2-mkconfig -o /boot/grub2/grub.cfg
Now shut down the virtual machine. Start it using virsh:
virsh start F22-01 --comnsole

s Gon Vew Sewcn Temnd Tios leep

raan L unaaT o b qaa s

L Fadora (4.0 3301 22 am6 54) 22 (wenty Teo)

[169]

Virtual Machine Lifecycle Management

To connect to a virtual machine console that has already started:

virsh console F22-01

Or from a remote client:

$ virsh -c gemu+ssh://root@192.168.122.1/system console F22-01

Connected to domain F22-01:

Escape character is "]
Fedora release 22 (Twenty Two)
Kernel 4.0.4-301.£fc22.x86 64 on an x86 64 (ttysSo0)

localhost login:

In some cases, we have seen a console command stuck at *1. To work around it,
press the enter key multiple times to see the login prompt. Sometimes configuring
a text console is very useful when you want to capture the boot messages for
troubleshooting purposes.

Use ctrl +] to exit from the console.

VM migration

Virtualization is all about flexibility. Migration is one of the features in virtualization
that showcase its flexibility. What is migration then? In simple terms, it enables

you to move your virtual machine from one physical machine to another physical
machine with a very minimal downtime or no downtime.

There are two types of migration: offline and online migration.

Offline migration

As the name suggests, during offline migration, the state of the VM will be
either shut down or suspended. The VM will be then resumed or started at the
destination host.

Live or online migration

In this type of migration, the VM is migrated to the destination host while it's
running on the source host. The process is invisible to the users who are using the
virtual machines. They will never know that the virtual machine they are using has
been transferred to another host while they are working on it. Live migration is one
of the main features that made virtualization so popular.

[170]

Chapter 6

Migration implementation in KVM is unique. It does not need any support from the
virtual machine. It means that you can live migrate any virtual machines irrespective
of the OS they are using. Another unique feature of KVM live migration is that it is
almost hardware independent. You should ideally be able to live migrate a virtual
machine running on a hypervisor that has an AMD processor to an Intel-based
hypervisor.

Benefits of VM migration

The most important benefit of VM live migration is increased uptime and reduced
downtime. A carefully designed virtualized environment will give you the maximum
uptime for your application. The second most important benefit is saving energy
and going green. You can easily consolidate your virtual machines based on the load
and usage to a smaller number of hypervisors during off hours. Once the virtual
machines are migrated, you can power off the unused hypervisors.

Other benefits include easy hardware/software upgrade process by moving your
VM between different hypervisors. Once you have the capability to move your
virtual machines freely between different physical servers the benefits are countless.
VM migration needs proper planning in place. There are some basic requirements
the migration looks for. Let's see them one by one. The migration requirements for
production environments

VM should be using a storage pool, which is created on a shared storage. The name
of the storage pool and the virtual disks path should remain the same on both
hypervisors (source and destination hypervisors). Check Chapter 5, Network and
Storage to know the steps on how to create a storage pool using a shared storage:

» Itis possible to do live storage migration using a storage pool that is created
on a non-shared storage. You only need to maintain the same storage
pool name and file location. But shared storage is still recommended on a
production environment.

* If there is an unmanaged virtual disk attached to a VM which uses an FC,
an ISCSI, LVM, and so on. The same storage should be available on both
hypervisors.

* The virtual networks used by the VMs should be available on
both hypervisors.

* Bridge, which is configured for a networking communication, should be
available on both the hypervisors.

[171]

Virtual Machine Lifecycle Management

* Migration may fail if the major versions of libvirt and gemu-kvm on the
hypervisors are different. But you should be able to migrate the VMs
running on a hypervisor that has a lower version of libvirt or gemu-kvm to a
hypervisor that has higher versions of those packages without any issues.

* The time on both the source and destination hypervisors should be synced. It
is highly recommended that you sync the hypervisors using the same NTP or
Precision Time Protocol (PTP) servers.

* Itis important that the systems use a DNS server for name resolution.
Adding the host details on /etc/hosts will not work. You should be able to
resolve the hostnames using the host command.

Setting up the environment

Let's build the environment to do VM migration —both offline and live migrations.
The following diagram depicts two standard KVM virtualization hosts running VMs
with a shared storage:

Shared
Storage

Shared storage

We start this by setting up a shared storage. In this example, we are using NFS as
the shared storage. We use NFS because it is simple to set up, thus helping you to
follow the migration examples easily. In actual production, it is recommended to use
ISCSI-based or FC-based storage pools. NFS is not a good choice when the files are
large and the VM performs heavy I/O operations. Gluster is a good alternative to
NFS and we would say that you should try it. Gluster is well integrated in LIbvirt.
You can re-visit Chapter 5, Network and Storage, to know how to create a storage pool
using ISCSI or FC.

We created the following NFS share on a Fedora 22 server. The name of the server is
nfs-01.

[172]

Chapter 6

Exporting directory /testvms from nfs-01:
echo '/testvms *(rw,sync,no root squash)' >> /etc/export
Allow the NFS service in firewall:

firewall-cmd --get-active-zones
FedoraServer
interfaces: eth0
firewall-cmd --zone=FedoraServer --add-service=nfs

firewall-cmd --zone=FedoraServer --list-all
Start NFS service:

systemctl start rpcbind nfs-server
systemctl enable rpcbind nfs-server

showmount -e

Confirm that the share is accessible from your KVM hypervisors. In our case it is

f22-01.example.local and £22-02.example.local:

mount 192.168.122.1:/testvms /mnt

If mounting fails, disable the firewall on the NFS server and recheck the mount.

Unmount the volume once you have verified the NFS mount point from both

hypervisors:

umount /mnt

On £22-01 and £22-02, create a storage pool named testvms:

mkdir -p /var/lib/libvirt/images/testvms/
virsh pool-define-as \

--name testvms \

--type netfs \

--source-host 192.168.122.1 \

--source-path /testvms \

--target /var/lib/libvirt/images/testvms/

virsh pool-start testvms

virsh pool-autostart testvms

Storage pool testvms is now created and started on two hypervisors.

[173]

Virtual Machine Lifecycle Management

Network: In this example, we are going to isolate the migration and virtual machine
traffic. It is highly recommended that you do this isolation in your production.
There are two main reasons for this:

* Network performance: Migration of VM uses the full bandwidth of the
network. If you use the same network for VM traffic network and migration
(live), it will choke that network, thus affecting the servicing capability of
VMs. You can control the migration bandwidth, but it will increase the
migration time. Here is how we create the isolation:
£22-01 -- eth0 (192.168.0.5) <<--switch------ > eth0 (192.168.0.6) -- £22-02

ethl -> bril <==---- switch------ > ethl -> brl

etho interfaces on £22-01 and £22-02 are used for migration as well as
administrative tasks. They have an IP assigned and connected to a network
switch. Bridge br1 is created using eth1 on both £22-01 and £22-02. br1
does not have an IP address assigned and is used exclusively for VM traffic.
It is also connected to a network switch.

* Security: It is always recommended that you keep your management
network and virtual network isolated. You don't want your users to mess
with your management network where you access your hypervisors and do
the administration.

Offline migration

Let's start with offline migration. In this migration, libvirt will just copy VM's XML
configuration file from the source to the destination. It also assumes that you have
the same shared storage pool created and ready to use at the destination.

As the first step in the migration process, you need to set up a two way
password-less SSH authentication on the participating hypervisors. In our
example, they are £22-01 and £22-02.

For the following exercises, disable SELinux temporarily.

In /etc/sysconfig/selinux, change SELINUX=enforcing to SELINUX=permissive.

[174]

Chapter 6

On £f22-01.example.local:

ssh-keygen

ssh-copy-id root@f22-02.example.local
On f22-02.example.local

ssh-keygen

ssh-copy-id root@f22-01.example.local

You should now be able to log in to the hypervisors without typing a password.

Let's do an offline migration of vm1, which is already installed, from £22-01 to
£22-02. The general format of migration command looks similar to the following:
virsh migrate migration-type options name-of-the-vm destination-uri
on £22-01

£22-01]# virsh migrate --offline --verbose --persistent vml gemu+ssh://
£22-02.example.local/system

Migration: [100 %]
On £22-02
£22-02]1# virsh list --all
virsh list --all
Id Name State
- vml shut off
£22-02]# virsh start vml

Domain vml started

You can do an offline migration even if the VM is running.

What if | start the VM accidently on both the

hypervisors?

Accidently starting the VM on both the hypervisors can be a sysadmin's nightmare. It
can lead to filesystem corruption especially when the filesystem inside the VM is not
cluster aware. Developers of libvirt thought about this and came up with a locking
mechanism. In fact, they came up with two locking mechanisms. When enabled, will
prevent the VMs from starting at the same time on two hypervisors.

[175]

Virtual Machine Lifecycle Management

The two locking mechanisms are:

* lockd: lockd makes use of POSIX fentl () advisory locking capability.
It was started by virtlockd daemon. It requires a shared file system
(preferably NFS), accessible to all the hosts which share the same
storage pool.

* sanlock: This is used by oVirt projects. It uses a disk paxos algorithm for
maintaining continuously renewed leases.

For libvirt only implementations, we prefer 1ockd over sanlock. It is best to use
sanlock for oVirt.

Enabling lockd

For image-based storage pools which are POSIX compliant, you can enable it easily
byLHmonunenﬁnglock_manager = "lockd" in /etc/libvirt/gemu.conf or on
both hypervisors:

Now, enable and start the virtlockd service on both the hypervisors. Also, restart
libvirtd on both the hypervisors.

systemctl enable virtlockd; systemctl start virtlockd

systemctl restart libvirtd

systemctl status virtlockd

Starting vm1 on £22-02:

[root@f22-02]# virsh start vml

Domain vml started

Starting the same vm1 on £22-01:

[root@f22-01]# virsh start vml
error: Failed to start domain vml

error: resource busy: Lockspace resource '/var/lib/libvirt/images/
testvms/vml.gcow2' is locked

Another method to enable 1ockd is to use a hash of the disk's file path. Locks are
saved in a shared directory that is exported through the NFS, or similar sharing, to
the hypervisors. This is very useful when you have virtual disks, which are created
and attached using multipath LUN. fcnt1 () cannot be used in these cases. We
recommend that you use the following method to enable the locking.

[176]

Chapter 6

On the NFS server:

echo /flockd * (rw,no _root squash) >> /etc/exports
service nfs reload

showmount -e

Export list for

/flockd *

/testvms *

Add the following to both the hypervisors in /etc/fstab:

echo "192.168.122.1:/flockd /flockd nfs rsize=8192,wsize=8192,timeo=
14,intr,sync" >> /etc/fstab

mkdir -p /var/lib/libvirt/lockd/flockd

mount -a

echo 'file lockspace dir = "/var/lib/libvirt/lockd/flockd"' >> /etc/
libvirt/gemu-lockd.conf

reboot both hypervisors

Once rebooted, verify that the 1ibvirtd and virtlockd started correctly on both
the hypervisors:

[root@f22-01 ~]# virsh start vml
Domain vml started

[root@f22-02 flockdl# 1s

36b8377a5b0cc272a5b4e50929623191c027543c4facblc6f3c35bacaa7455ef
5le3ed692£fdf92ad54c6£234£742bb00d4787912a8a674fb5550b1b826343dd6

vml has two virtual disks. One created from an NFS storage pool and the other
created directly from a multipath LUN.

vm1 fails to start on £22-02.

[root@f22-02 ~]# virsh start vml
error: Failed to start domain vml

error: resource busy: Lockspace resource
'51le3ed692fdf92ad54c6£234£742bb00d4787912a8a674fb5550b1b826343dd6"' is
locked

[177]

Virtual Machine Lifecycle Management

When using LVM volumes that can be visible across multiple host systems, it is
desirable to do the locking based on the unique UUID associated with each volume,
instead of their paths. Setting this path causes libvirt to do UUID based locking

for LVM.

lvm lockspace dir = "/var/lib/libvirt/lockd/lvmvolumes"

When using SCSI volumes that can be visible across multiple host systems, it is
desirable to do locking based on the unique UUID associated with each volume,
instead of their paths. Setting this path causes libvirt to do UUID-based locking
for SCSL.

scsi_lockspace dir = "/var/lib/libvirt/lockd/scsivolumes™

Like file lockspace_dir, the preceding directories should also be shared with
the hypervisors.

Note: If you are not able to start VMs due to locking errors, just
make sure that they are not running anywhere and then delete the
lock files. Start the VM again.

Y

We deviated a little from migration for the lockd topic. Let's get back to migration.

Live or online migration

This is where the migration gets interesting, and it is one of the most useful features
of virtualization.

Before we start the process, let's go a little deeper to understand what happens
under the hood. When we do a live migration, we are moving a live VM while
users are accessing it. This means that the users shouldn't feel any disruption in
VM availability when you do a live migration.

Live migration is a five stage, complex process, even though none of these processes
are exposed to the sysadmins. libvirt will do the necessary work once the VM
migration action is issued. The stages through which a VM migration goes are
explained in the following:

[178]

Chapter 6

Stage 1: Preparing the destination

When you initiate live migration, the source libvirt (SLibvirt) will contact

the destination libvirt (DLibvirt) with the details of VM, which is going to be
transferred live. DLibvirt will pass this information to the underlying QEMU
with relevant options to enable live migration. QEMU will start the actual
live migration process by starting the VM in pause mode, and start listening
on a TCP port for VM data. Once the destination is ready DLibvirt will
inform SLibvirt with the details of QEMU. By this time, QEMU, at the source,
is ready to transfer the VM and connects to destination TCP port.

Stage 2: Transfer the VM

When we say transferring the VM; we are not transferring the whole VM,
only the parts that are missing at the destination are transferred; for example,
the memory and state of the virtual devices (VM State). Other than the
memory and VM state, all other stuffs (virtual network, virtual disks and
virtual devices) are available at the destination itself. Here is how QEMU
moves the memory to destination.

The VM will continue running at the source and the same VM is started in
pause mode at the destination.

In one go, we will transfer all the memory used by the VM to the destination.
The speed of transfer depends upon the network bandwidth. Suppose VM

is using 10 GiB, it will take the same time to transfer 10 GiB of data using
SCP to destination. In default mode, it will make use of the full bandwidth.
That is the reason we are separating the administration network from the VM
traffic network.

Once the whole memory is at the destination, QEMU starts transferring

the dirty pages (pages which are not yet written to the disk). If it is a busy
VM, the number of dirty pages will be high and it takes time to move them.
Remember dirty pages will always be there and there is no state of zero dirty
pages on a running VM. Hence QEMU will stop transferring the dirty pages
when it reaches a low threshold (50 or fewer pages). It will also consider
other factors, such as iterations, amount of dirty pages generated, and so

on. This can also be determined by migrate-setmaxdowntime which is

in milliseconds.

Stage 3: Stop the VM at the source

Once the amount of dirty pages reaches the said threshold, QEMU will stop
the VM on destination. It will also sync the virtual disks.

[179]

Virtual Machine Lifecycle Management

* Stage 4: Transfer VM state

In this stage, QEMU will transfer the state of the VM's virtual devices and
remaining dirty pages to destination as fast as possible. We cannot limit the
bandwidth at this stage.

* Stage 5: VM continuation

At the destination, the VM will be resumed from the paused state. Virtual
NICs become active and the bridge will send out gratuitous ARPs to
announce the change. After receiving the announcement from the bridge,
the network switches will update their respective ARP cache and start
forwarding the data for the VM to the new hypervisors.

Note that stages 3, 4, and 5 will be completed in milliseconds. If some errors happen,
QEMU will abort the migration and the VM will continue running on the source
hypervisor. In all through the migration process, libvirt from both participating
hypervisors will be monitoring the migration process.

Our VM, vm1 is now running on £22-01 safely with 1ockd enabled. We are going to
live migrate vm1 to £22-02.

Open the TCP ports used for migration. You only need to do that at the destination
server. You end up migrating VMs from both servers. Open the ports on all the
participating hypervisors:

firewall-cmd --zone=FedoraServer --add-port=49152-49216/tcp --permanent

Check the name resolution on both the servers:

[root@f22-01 ~]# host £22-01.example.local
£22-01l.example.local has address 192.168.122.5
[root@f22-01 ~]# host £22-02.example.local
£22-02.example.local has address 192.168.122.6
[root@f22-02 ~]# host £22-01.example.local
£22-01l.example.local has address 192.168.122.5
[root@f22-02 ~]# host £22-02.example.local
£22-02.example.local has address 192.168.122.6

Check and verify all the virtual disks attached are available at the destination,
on the same path with the same storage pool name. This is applicable to attached
unmanaged (ISCSI and FC LUNS, and so on) virtual disks also:

Check and verify all the network bridges and virtual networks used by the VM
available at the destination.

[180]

Chapter 6

Now initiate the migration:
virsh migrate --live vml gemu+ssh://£22-02.example.local/system
--verbose --persistent

Migration: [100 %]

Our VM is using only 512 MB. All the five stages completed in a second.
--persistant is optional but we recommend adding that.

This is the output of ping during the migration process: 0% packet-less.

ping 192.168.122.24

PING 192.168.122.24 (192.168.122.24) 56(84) bytes of data.

64 bytes from 192.168.122.24: icmp seq=12 ttl=64 time=0.338 ms

64 bytes from 192.168.122.24: icmp seqg=13 ttl=64 time=3.10 ms

64 bytes from 192.168.122.24: icmp seqg=14 ttl=64 time=0.574 ms

64 bytes from 192.168.122.24: icmp seqg=15 ttl=64 time=2.73 ms

64 bytes from 192.168.122.24: icmp seq=16 ttl=64 time=0.612 ms
--- 192.168.122.24 ping statistics ---

17 packets transmitted, 17 received, 0% packet loss, time 16003ms

rtt min/avg/max/mdev = 0.338/0.828/3.101/0.777 ms

If you get the following error message, change cache to none on the virtual
disk attached:

virsh migrate --live vml gemu+ssh://£22-02.example.local/system
--verbose

error: Unsafe migration: Migration may lead to data corruption if disks

use cache != none

virt-xml vml --edit --disk target=vda,cache=none

target is the disk to change cache. You can find the target name by running
virsh dumpxml wvml.

You can try a few more options while performing a live migration:

* --unndefinesource: Undefines the domain on the source host
* --suspend: Leaves the domain paused on the destination host.
* --compressed: Activates compression of memory pages that have to be

transferred repeatedly during live migration

* --abort-on-error: Cancels the migration if a soft error (for example
error) happens during the migration

* --unsafe: Forces a migration when libvirt suspects a data corruption

1/O

[181]

Virtual Machine Lifecycle Management

Now let's move to another type of migration, where you transfer the underlying
virtual disks of a running VM along with its memory. It is also known as live storage
migration. Here, virtual disks are saved on a non-shared storage. When you initiate
this migration, the image file is copied first and then the memory:

[root@f22-02 ~1# l1ls /var/lib/libvirt/images/testvm.gcow2

ls: cannot access /var/lib/libvirt/images/testvm.qgcow2: No such file or
directory

[root@f22-01 ~]# virsh migrate --live --persistent --verbose --copy-
storage-all testvm gemu+ssh://£22-02.example.local/system

Migration: [100 %]

[root@f22-02 ~]1# ls /var/lib/libvirt/images/testvm.gcow2
/var/lib/libvirt/images/testvm.gcow2

- -copy-storage-inc will only transfer the changes:

[root@f22-01 ~]1# virsh migrate --live --verbose --copy-storage-inc
testvm gemu+ssh://£22-02.example.local/system

Migration: [100 %]

Live storage migration is a good option to have, but it is not something you can
use regularly like a normal live migration. This consumes a lot of bandwidth
based on the disk size. In a production environment, use a shared storage for
migration activities.

Additionally, libvirt virsh also supports the following options:

* virsh migrate-setmaxdowntime domain: This will set a maximum possible
downtime for a domain that is being live-migrated to another host. The
specified downtime is in milliseconds. The downtime is calculated based on
the dirty pages to be transferred.

* virsh migrate-compcache domain [--size bytes]:Sets and/or gets
the size of the cache (in bytes) used for compressing repeatedly transferred
memory pages during live migration. When called without size, the
command just prints the current size of the compression cache. When the
size is specified, the hypervisor is asked to change the compression cache to
size bytes and then the current size is printed (the result may differ from the
requested size due to rounding done by the hypervisor). The size option is
supposed to be used while the domain is being live-migrated as a reaction to
the migration process and increasing number of compression cache misses
obtained from domjobinfo.

[182]

Chapter 6

* virsh migrate-setspeed domain bandwidth: Sets the maximum
migration bandwidth (in MiB/s) for a domain, which is being migrated to
another host. Bandwidth is interpreted as an unsigned long value. Specifying
a negative value results in an essentially unlimited value being provided
to the hypervisor. The hypervisor can choose whether to reject the value or
convert it to the maximum value allowed.

* virsh migrate-getspeed domain:Get the maximum migration bandwidth
(in MiB/s) for a domain.

* virsh migrate-setspeed domain bandwidth: Sets the migration
bandwidth in MiB/sec for the specified domain, which is being
migrated to another host.

* virsh migrate-getspeed domain:Gets the maximum migration
bandwidth that is available in MiB/ sec for the specified domain.

Future of migration

Currently, the KVM is using precopy migration, that is, the VM is started when
memory is in destination; remember Stage 2. The plan is to implement postcopy, so
that the VM will be started at the destination instantly, and then move the memory
based on the request from the VM. Risk is that if the source is lost all VM is gone.
The advantage is that there is less downtime.

Summary

In this chapter, we covered various states of virtual machines, setting virtual
hardware that includes display protocols, and how to enhance graphical
performance by installing QEMU guest agent. Then we covered VM migration in
detail and live and offline VM migration. In the next chapter, we will explore Kimchi.

[183]

Templates and Snapshots

Virtualization is not just about server consolidation, it also provides agility benefits
such as faster provisioning, snapshots, and uncomplicated yet viable backup and
recovery options that aren't easily available within the physical world.

You have already learned how efficiently a physical server can be turned into
multiple virtual servers using the virtualization technologies provided in Linux. In
this chapter, you'll learn how to keep those virtual machines up and running using
snapshots, do rapid VM provisioning using templates, and take backups to react
appropriately to disaster situations.

Introducing virtual machine templates

A virtual machine template (more commonly referred to as simply a template)

is a pre-configured operating system image that can used to quickly deploy

virtual machines. Using templates, you can avoid many repetitive installation and
configuration tasks. The result is a fully installed, ready to operate (virtual) server in
less time than manual installation would take.

Consider this example; suppose you wish to create four Apache web servers to

host your web applications. Normally, with the traditional manual installation
method, you would first have to create four virtual machines with specific hardware
configurations, install an operating system on each of them one by one, and then
download and install the required apache packages using yum or some other
software installation method. This is a time-consuming job as you will be mostly
doing repetitive work but with a template approach. However, it can be done in
considerably less time. How? Because you will bypass operating system installation
and other configuration tasks and directly spawn virtual machines from a template
that consists of a pre-configured operating system image containing all the required
web servers packages ready for use.

[185]

Templates and Snapshots

The following screenshot shows the steps involved in the manual installation
method. You can clearly see that steps 2-5 are just repetitive tasks performed across
all four virtual machines and they would have taken up most of the time required to
get your apache web servers ready:

Step 5

Step 4

Step 3

Step 2

Step 1

Configure
webserver

Install webserver
Packages

Configure software
repository

Install Operating
system

Create VM1

Configure
webserver

Install webserver
Packages

Configure software
repository

Install Operating
system

Create Vm2

Configure
webserver

Install webserver
Packages

Configure software
repository

Install Operating
system

Create Vm3

Configure
webserver

Install webserver
Packages

Configure software
repository

Install Operating
system

Create Vm4

Now see how the number of steps is drastically reduced by simply following Steps
1-5 once, creating a template, and then using it to deploy four identical VMs. This
will save you a lot of time:

Step 5

Step 4

Step 3

Step 2

Step 1

Configure
webserver

Install webserver
Packages

Create a
Template

Configure software
repository

Install Operating
system

Create VM

Deploy VM1 with
webserver ready

Deploy VM2 with
webserver ready

Deploy VM3 with
webserver ready

Deploy VM4 with
webserver ready

[186]

Chapter 7

Working with templates

In this section, you will learn how to create templates of Windows and Linux
virtual machines using the virt-clone option available in virt-manager. Although
the virt-clone utility was not originally intended for creating templates, when
used with virt-sysprep and other operating system sealing utilities it serves that
purpose. Be aware that a clone is just a single copy of a virtual machine, whereas

a template is a master copy of the virtual machine that can be used to create

many clones.

You will also learn how to create and manage templates with the help of the virsh
and gemu-img commands and deploy virtual machines from a template using the
thin and clone methods:

* Thin method: A virtual machine deployed using the thin cloning mechanism
uses the template image as a base image in read-only mode and links an
additional "copy on write image" to store newly generated data. It requires
less disk space but cannot run without access to the base template image.

* Clone method: A virtual machine deployed using the full cloning
mechanism creates a complete copy of the virtual machine that is fully
independent of the original VM or VM template. But it requires the same
disk space as the original.

Creating templates

Templates are created by converting a virtual machine into a template. This is
actually a three-step procedure that includes:

1. Installing and customizing the virtual machine, with all the desired software,
which will become the template or base image.

2. Removing all system-specific properties to ensure that machine-specific
settings are not propagated through the template such as SSH host keys,
persistent network configuration, the MAC address, and user accounts.

3. Mark the virtual machine as a template by renaming it with template
as a prefix.

To understand the actual procedure let's create two templates and deploy a virtual
machine from them.

[187]

Templates and Snapshots

Example 1 — preparing a CentOS 7 template with a
complete LAMP stack

1. Create a virtual machine and install CentOS 7.0 on it using the installation
method that your prefer. Keep it minimal as this virtual machine will be used
as the base for the template that is being created for this example.

2. SSH into or take control of the virtual machine and install the LAMP stack. I
assume you are aware of the procedure to install the LAMP stack on CentOS.

If you need to recap LAMP stack installation, the following
article by Mitchell explains LAMP stack installation on RHEL?7 in
a very simple way:
/A https://www.digitalocean.com/community/
tutorials/how-to-install-linux-apache-mysqgl-php-
lamp-stack-on-centos-7

3. Once the required LAMP settings are configured the way you want them,
shutdown the virtual machine and run the virt-sysprep command to seal it:

KVMHOST# virsh shutdown CentOS ; sleep 10 ; virsh list --all
Domain CentOS is being shutdown

Id Name State

- CentoOS shut off

What is virt-sysprep?

This is a command-line utility provided by libguestfs-tools-c packages to

ease the sealing and generalizing procedure of Linux virtual machine. It prepares a
Linux virtual machine to become a template or clone by removing system-specific
information automatically so that clones can be made from it. virt-sysprep can also
customize a virtual machine, for instance by adding SSH keys, users, or logos.

There are two ways to invoke virt-sysprep against a Linux virtual machine, using
the -d or -a options. The first option points to the intended guest using its name or
UUID and the second one points to a particular disk image. This gives the flexibility
to use the virt-sysprep command even if the guest is not defined in libvirt.

[188]

https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-on-centos-7
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-on-centos-7
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-on-centos-7

Chapter 7

Once the virt-sysprep command is executed, it performs a bunch of sysprep
operations that make the virtual machine image clean by removing system-specific
information from it. Add the - -verbose option to the command if you are interested
in knowing how this command works in the background:

KVMHOST# virt-sysprep -d CentOS
0.0] Examining the guest
19.4] Performing "abrt-data"
19.4] Performing "bash-history" ..

20.0] Performing "udev-persistent-net"

[

[

[

[

[20.0] Performing "utmp"
[20.0] Performing "yum-uuid"
[20.1] Performing "customize"
[20.1] Setting a random seed
[

20.5] Performing "lvm-uuids"

This is actually truncated output; by default it
— performs 32 operations.

You can also choose which specific sysprep operations you want to use. To get a list
of all the available operations, run the virt-sysprep --list-operationcommand.
The default operations are marked with an asterisk. You can change the default
operations using the - -operations switch followed by a comma-separated list of
operations that you want to use. See the following example:

virt-sysprep --operations ssh-hostkeys,udev-persistent-net -d CentOS
[0.0] Examining the guest
[19.6] Performing "ssh-hostkeys"

19.6] Performing "udev-persistent-net"

Notice that this time it only performed the ssh-hostkeys and udev-persistent-
net operations instead of the typical 32 operations. It's up to you how much cleaning
you would like to undertake in the template.

Now we can mark this virtual machine as a template by adding the word template
as a prefix in its name. You can even undefine the virtual machine from libvirt after
taking a backup of its XML file.

[189]

Templates and Snapshots

Warning: Make sure that from now on this virtual machine is never

started; otherwise, it will lose all sysprep operation and can even cause
/"
problems with virtual machines deployed using the thin method.

In order to rename a virtual machine, use virt-manager and, to take a backup of the
XML configuration of the virtual machine, run:

#virsh dumpxml Template CentOS /root/Template CentOS.xml

virsh list --all

Id Name State

24 Fed21 running
- Template CentOS shut off
- Win7 01 shut off

Template_CentOS, our template, is ready and visible in the virsh 1ist command.

Example 2 — preparing a Windows 7 template with a
MySQL database

Currently virt-sysprep does not work for Windows guests and there is little
chance support will be added anytime soon. So in order to generalize a Windows
machine would have to access the Windows system and directly run Sysprep.

The System Preparation (Sysprep) tool is a native Windows utility to remove
system-specific data from Windows images. To know more about this utility,
refer to this article:

https://technet .microsoft.com/en-us/library/cc721940%28v=ws.10%29.
aspx
1. Create a virtual machine and install the Windows 7 operating system on it.

2. Install MySQL software and, once it's configured the way you want, restart it
and follow the following steps to generalize it:

1. Log on as the administrator user, type regedit into the Run box, and
press Enter to launch the registry editor.

2. On the left pane, expand the HKEY LOCAL_MACHINE branch and
navigate to SYSTEM | SETUP.

[190]

https://technet.microsoft.com/en-us/library/cc721940%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc721940%28v=ws.10%29.aspx

Chapter 7

3. On the main pane, right click to add a new string value using
New | String Value and name it UnattendFile.

4. Right-click on the newly created UnattendFile string and select
Modify, type a:\sysprep. inf in the value data field and press OK.
At the end it should display as:

Value name: UnattendFile Value data: a:\sysprep.inf

5. Now launch the sysprep application. The .exe file of sysprep is
present in C: \Windows\System32\sysprep\. Navigate there by
entering sysprep in the run box and double-click on sysprep. exe.

6. Under System Cleanup Action, select Enter System Out-of-Box-
Experience (OOBE) and tick the Generalize checkbox if you need to
change the computer's system identification number (SID).

7. Under Shutdown options, select Shutdown and click on the OK
button. The virtual machine will now go through the sealing process
and shut down automatically.

3. This time, instead of renaming the virtual machine name with the prefix
template, we will undefine it from libvirt after taking a backup of its XML
file. In order to do this, run:

#virsh dumpxml Win7 01 > /root/Win7.xml

This will create a /root/Win7_01.xml file. Here I choose /root as the location to
back up the file but you may use any different location. Note down the attached disk
image path of the virtual machine by running;:

KVMHOST#virsh domblklist Win7

Target Source

hda /vms/win7 .qcow2

In this win7 virtual machine, /vms/win7.gcow2 is the disk image and it's detected as
hda inside the guest operating system. Now undefine the virtual machine:

KVMHOST#virsh undefine Win?7

Domain Win7 has been undefined

Once the virtual machine is undefined it will not appear in the virt-manager or
virsh list --all command output.

[191]

Templates and Snapshots

Deploying virtual machines from a
template

In the previous section, we created two template images; the first template image
is still defined in libvirt as vm and named Template Cent0Os but the second is
undefined from libvirt after saving its XML file at /root /win7.xml and the sealed
image at /vms/win7.gcow2.

Deploying VMs using the clone
provisioning method

Perform the following steps to deploy the VM using clone provisioning;:

1. Open the Virtual Machine Manager (virt-manager), then select the
Template_CentOS virtual machine. Right-click on it and select the
Clone option, which will open the Clone Virtual Machine window:

Clone Virtual Machine

Create clone based on: Template_CentOS

Mame: | Template_CentOS-clone

Networking: AT (52:54:00:fe:4d:ff) Details...

Storage: (| CentOS7
Clone this disk (8.0 GiB) >

':E_:' Cent0S-7-x86_64-Minimal-1503-01.iso (Removable, Read OnLy}
Share disk with Template_CentOS 7

i Cloning creates a new, independent copy of the original disk. Sharing
uses the existing disk image for both the original and the new machine.

L4 Cloning does not alter the guest OS contents. If you need to do things
like change passwords or static [Ps, please see the virt-sysprep(1) tool.

Cancel Clone

[192]

Chapter 7

2.

Provide a name for the resulting virtual machine and click on the Clone
button to start the deployment. Wait till the cloning operation finishes.

Once it's finished, your newly deployed virtual machine is ready to use and
you can start using it:

KVMHOST# virsh list --all
Id Name State
24 Fed21l running
- CentOS_LAMP1 shut off
- CentOS_LAMP2 shut off
- Template CentOS shut off

CentOS_LAMP1 and CentOS_LAMP2 are two virtual machines deployed from
Template_CentOS but as we used clone provisioning they are independent;
even if you remove Template_Cent0s they will operate just fine.

Deploying VMs using the thin
provisioning method

Perform the following steps to get started with VM deployment using the thin
provisioning method:

1.

Create two new gcow2 images using /vms/win7.raw as the backing file:
gemu-img create -b /vms/win7.img -f gcow2 /vms/vml.gcow2

#gemu-img create -b /vms/win7.img -f gcow2 /vms/vm2.gcow2

Verify that the backing file attribute for newly created gcow2
images is pointing correctly to the image /vms/win?7.raw, using
the gemu-img command:

gemu-img info /vms/vm2.gcow2

image: /vms/vm2.gcow2

file format: gcow2

virtual size: 10G (10737418240 bytes)
disk size: 196K

cluster size: 65536

backing file: /vms/win7.img

Format specific information:

[193]

Templates and Snapshots

compat: 1.1
lazy refcounts: false
refcount bits: 16

corrupt: false

3. Now deploy the virtual machines named windows1 and Windows2 using the
virt-clone command:

virt-clone --original-xml=/root/small.xml -f /vms/vml.gcow2 -n
Windows7-01 --preserve-data

virt-clone --original-xml=/root/large.xml -f /vms/vm2.gcow2 -n
Windows7-02 --preserve-data
4. Use the virsh command to verify if they are defined:

virsh list --all

Id Name State

24 Fed21 running
- CentOS_LAMP1 shut off
- Template CentOS shut off
- Windows7-01 shut off
- Windows7-02 shut off

5. Start the virtual machines and download something on to them; you will
notice that the guest disk image size is just the size of your download:

du -sh /vms/vml.qgcow2

196K /vms /vml.gcow2

Snapshots

A VM snapshot is a file-based representation of the system state at a particular point
in time. The snapshot includes configuration and disk data. With a snapshot, you
canrevert a VM to a point in time, which means by taking a snapshot of a virtual
machine you preserve its state and can easily revert to it in the future if needed.
Snapshots have many use cases, such as saving a VM's state before a potentially
destructive operation.

[194]

Chapter 7

For example, suppose you want to make some changes on your existing web server
virtual machine, which is running fine at the moment, but you are not certain if

the changes you are planning to make are going to work or break something. In
that case you can take a snapshot of the virtual machine before doing the intended
configuration changes and if something goes wrong, you can easily revert to the
previous working state of the virtual machine by restoring the snapshot.

libvirt supports taking live snapshots. You can take a snapshot of a virtual machine
while the guest is running. However, if there are any I/ O-intensive applications
running on the VM, it is recommended to shutdown or suspend the guest first to
guarantee a clean snapshot.

There are mainly two classes of snapshots for libvirt guests: internal and external;
each has its own benefits and limitations:

* Internal snapshot: Internal snapshots are contained completely within a
gcow? file. Before snapshot and after snapshot bits are stored in a single
disk, allowing for greater flexibility. virt-manager provides a graphical
management utility to manage internal snapshots. The following are the
limitations of an internal snapshot:

o

Supported only with the gcow2 format

[e]

VM is paused while taking the snapshot

° Doesn't work with LVM storage pools

* External snapshot: External snapshots are based on a copy-on-write concept.
When a snapshot is taken, the original disk image becomes read-only and a
new overlay disk image is created to accommodate guest writes:

<« ;
base.img
base.img current.img
Read Only Writable

The overlay disk image is initially created as zero bytes in length and it can grow

to the size of the original disk. The overlay disk image is always gcow2. However,
external snapshots work with any base disk image. You can take external snapshot of
raw disk images, gcow2, or any other libvirt-supported disk image format. However,
there is no GUI support available yet for external snapshots so they are more
expensive to manage as compared to internal snapshots.

[195]

Templates and Snapshots

VM disk image formats

We have already learned that internal snapshots require the virtual disk to be in the
gcow2 format. Before we go further with some examples on how to create snapshots
and manage them, let's talk about disk formats. libvirt supports several types of
virtual disk format:

* raw: An exact byte-for-byte copy of the original disk without any
other metadata

* Dbochs: Bochs disk image format

* cloop: Compressed loopback disk image format

* cow: User mode Linux disk image format

* dmg: Mac disk image format

* iso: CDROM disk image format

* gcow: QEMU v1 disk image format

* gcow2: QEMU v2 disk image format

* ged: QEMU Enhanced disk image format

* vmdk: VMware disk image format

* vpc: VirtualPC disk image format
As you can see, proprietary disk formats are supported, along with KVM, native
gcow2, and other open source formats, so you can download a VM exported in . vpc
format and import it into libvirt to create a new virtual machine without needing

disk image conversion or additional software. While libvirt can work with all of
these disk formats, not all of them are ideal for regular use in a KVM environment.

It is always recommended to convert disk images to either raw or gcow2 in order to
achieve good performance. So raw and gcow2 are the most important formats? No.
They are definitely not the most important. There happen to be some good reasons in
this case to use them; let's understand the raw format first.

raw: This is a direct representation of a disk's structure. It has no additional
metadata or structure and thus has very little overhead and therefore a performance
advantage. However it lacks features such as snapshots (internal), compression, and
so on. If you want to run any highly I/ O-intensive application on virtual machines
this format is recommended as it gives near-native performance.

[196]

Chapter 7

gcow2: This format is designed for virtualization with cloud-like use cases in mind.
It supports a range of special features including read-only backing files, snapshots
(internal and external), compression, and encryption. It supports pre-allocation as
well as the on-demand allocation of blocks and is the most recommended format
to use.

You can use one of two methods to identify what format a VM disk image is in:
* The file command:

qcow?2 format:
file diskl
diskl: QEMU QCOW Image (v3), 1073741824 bytes

Raw format:

file disk2
diskd: data

The £ile command is a standard Linux utility to classify filesystem objects,

for example file, directory, and link. It uses a magic number embedded in files to
determine the file format. In the preceding examples, disk1 and disk2 are the name
of the disk image files on the host. disk1 is the QEMU QCOW image, and disk2 is
raw data file:

* The gemu-img command:

gemu-img info diskl
image: diskl
file format: gcow2
virtual size: 1.0G (1073741824 bytes)
disk size: 196K
cluster size: 65536
Format specific information:
compat: 1.1
lazy refcounts: false
refcount bits: 16

corrupt: false

The info option of the gemu-img command provides detailed information about the
disk image formats supported by KVM virtualization.

[197]

Templates and Snapshots

Converting a VM disk format

Although it sounds a big task, converting a disk image from one format to another
is relatively straightforward. The gemu-img convert command can do conversion
between multiple formats:

e RAW to QCOW2:

$ gemu-img convert -f raw -O gcow2 vm diskl.img vm diskl.gcow2
* QCOW2to RAW:

$ gemu-img convert -f gcow2 -O ram vm disk2.gcow2 vm disk2.img

Working with internal snapshots

In this section, you'll learn how to create, delete, and restore internal snapshots
(offline/ online) for a virtual machine. You'll also learn how to use virt-manager to
manage internal snapshots.

Internal snapshots work only with gcow2 disk images so first make sure that the
virtual machine for which you want to take a snapshot uses the gcow2 format for

the base disk image. If not, convert it to gcow2 using the gemu-img command. An
internal snapshot is a combination of disk snapshots and the VM memory state, It's a
kind of checkpoint to which you can revert easily when needed.

I am using a Cent0S_01 virtual machine here as an example to demonstrate internal
snapshots. The centos_01 VM is residing on a directory filesystem-backed storage
pool and has a gcow2 image acting as a virtual disk.

The following command lists the snapshot associated with a virtual machine:

virsh snapshot-list CentOS 01

Name Creation Time State

As can be seen, currently there are no existing snapshots associated with the
virtual machine; the Cent0S_01, virsh snapshot-1list command lists all of

the available snapshots for the given virtual machine. The default information
includes the snapshot name, creation time, and domain state. There is a lot of other
snapshot-related information that can be listed by passing additional options to the
snapshot-1ist command.

[198]

Chapter 7

Creating the first internal snapshot
The easiest and preferred way to create internal snapshots for a virtual machine on
KVM host is through virsh command. virsh has a series of options listed in the
following to create and manage snapshots:

* snapshot-create: Create a snapshot from XML

* snapshot-create-as: Create a snapshot from a set of arguments

* snapshot-current: Get or set the current snapshot

* snapshot-delete: Delete a domain snapshot

* snapshot-dumpxml: Dump XML for a domain snapshot

* snapshot-edit: Edit XML for a snapshot

* snapshot-info: Get snapshot information

* snapshot-list: List snapshots for a domain

* snapshot-parent: Get the name of the parent of a snapshot

* snapshot-revert: Revert a domain to a snapshot

The following is a simple example of creating a snapshot. Running the following
command will create an internal snapshot for virtual machine Centos_01:

#virsh snapshot-create CentOS 01

Domain snapshot 1439949985 created

By default, a newly created snapshot gets a unique number as its name. To create

a snapshot with a custom name and description, use the snapshot-create-as
command. The difference between these two commands is that the latter one allows
passing configuration parameters as an argument whereas the earlier does not.

It only accepts XML files as the input. We are using snapshot -create-as in this
chapter as it's more convenient and easy to use.

Creating an internal snapshot with a custom name
and description

To create an internal snapshot for the centos_01 VM with the name Snapshot 1
and the description First snapshot, type the following command:

#virsh snapshot-create-as CentOS 01 --name "Snapshot 1"
--description"First snapshot" --atomic

[199]

Templates and Snapshots

With the - -atomic option specified, libvirt will guarantee that the snapshot either
succeeds or fails with no changes. It's always recommended to use the - -atomic
option to avoid any corruption while taking the snapshot. Now check the
snapshot-1list output:

virsh snapshot-list CentOS 01
Name Creation Time State

snapshotl 2015-08-19 08:41:23 +0530 running

Our first snapshot is ready to use and we can now use it to revert the VM's state

if something goes wrong in the future. This snapshot was taken while the virtual
machine was in a running state. The time to complete snapshot creation depends on
how much memory the virtual machine has and how actively the guest is modifying
that memory at the time.

. Note that the virtual machine goes into paused while snapshot
% creation is in progress; therefore it is always recommended you take
s~ the snapshot while the VM is not running. Taking a snapshot from a
guest that is shut down ensures data integrity.

Creating multiple snapshots

We can keep creating more snapshots as required. For example, if we create two
more snapshots, so that we have a total of three, the output of snapshot-1list will
look like this:

#virsh snapshot-list CentOS 01 --parent

Name Creation Time State Parent
Snapshotl 2015-08-19 09:00:13 +0530 running (null)
Snapshot2 2015-08-19 09:00:43 +0530 running Snapshotl
Snapshot3 2015-08-19 09:01:00 +0530 shutoff Snapshot2

Here, I used -parent switch, which prints the parent-children relation of snapshots.
The first snapshot's parent is (null), which means it was created directly on the
disk image, and snapshot1 is the parent of snapshot2 and snapshot2 is the parent
of snapshot3. This helps us know the sequence of snapshots. A tree-like view of
snapshots can also be obtained using the - -tree option:

#virsh snapshot-list CentOS_ 01 --tree
Snapshotl

[200]

Chapter 7

+- Snapshot2

+- Snapshot3

Now check the state column, which tells whether the particular snapshot is live or
offline. In the preceding example, the first and second snapshots were taken while
the VM was running whereas the third was taken when the VM was shut down.
Restoring to a shutoff state snapshot will cause the VM to shutdown:

You can also, use the gemu- img command utility to get more information about
internal snapshots —for example, the snapshot size, snapshot tag, and so on. In below
example output you can see that the disk named as vmdisk1.gcow2 three snapshot
with different tags. This also show you when was particular snapshot was take, its
date and time:

#gemu-img info /var/lib/libvirt/qemu/vmdiskl.gcow2
image: /var/lib/libvirt/gemu/vmdiskl.qgcow2

file format: gcow2

virtual size: 8.0G (8589934592 bytes)

disk size: 1.6G

cluster size: 65536

Snapshot list:

D TAG VM SIZE DATE VM CLOCK

1 1439951249 220M 2015-08-19 07:57:29 00:09:36.885
2 Snapshotl 204M 2015-08-19 09:00:13 00:01:21.284
3 Snapshot2 204M 2015-08-19 09:00:43 00:01:47.308
4 Snapshot3 0 2015-08-19 09:01:00 00:00:00.000

Format specific information:

It can also be used to check the integrity of the gcow2 image using the check switch:

#gemu-img check /var/lib/libvirt/qgemu/vmdiskl.gcow2
No errors were found on the image.
If any corruption occurred in the image, the preceding command will throw an error.

One should immediately take a backup from the virtual machine as soon as an error
is detected in the gcow2 image.

[201]

Templates and Snapshots

Reverting to internal snapshots

The main purpose of taking snapshots is to revert to a clean/working state of
the VM when needed. Let's take an example. Suppose, after taking Snapshot3
of your virtual machine, you installed an application that messed up the whole
configuration of the system. In such a situation, the VM can easily reverted to
the state it was in when Snapshot3 was created. To revert to a snapshot, use the
snapshot -revert command:

#virsh snapshot-revert <vm-name> --snapshotname "Snapshotl™"

If you are reverting to a shutdown snapshot, then you will have to start the VM
manually. Use the ' - -running' switch with virsh snapshot-revert to get it
started automatically.

Deleting internal snapshots

Once you are certain that you no longer need a snapshot, you can and should delete
it to save space. To delete a snapshot of a VM, use the snapshot-delete command.
From our previous example, let's remove the second snapshot:

#virsh snapshot-list CentOS_01

Name Creation Time State

Snapshotl 2015-08-19 09:00:13 +0530 running
Snapshot2 2015-08-19 09:00:43 +0530 running
Snapshot3 2015-08-19 09:01:00 +0530 shutoff
snapshot4 2015-08-19 10:17:00 +0530 shutoff

virsh snapshot-delete CentOS 01 Snapshot2
Domain snapshot Snapshot2 deleted
virsh snapshot-list CentOS_01

Name Creation Time State

Snapshotl 2015-08-19 09:00:13 +0530 running
Snapshot3 2015-08-19 09:00:43 +0530 running
snapshot4 2015-08-19 10:17:00 +0530 shutoff

[202]

Chapter 7

Managing snapshots using virt-manager

Recently, virt-manager was given a user-interface for creating and managing VM
snapshots. At present, it works only with gcow2 images but soon there will be
support for raw as well. Taking a snapshot with virt-manager is actually very easy;
to get started, open virt-manager (Virtual Machine Manager) and click on the virtual
machine for which you would like to take a snapshot.

The snapshot Ul button is present on the toolbar; this button gets activated only
when the VM uses a gcow2 disk:

CentOS_01 on QGEMU/KVM

File Virtual Machine View SendKey

- J

This is how its main screen looks:

CentOS_01 Virtual Machine x

File Virtual Machine View 5Send Key

I—E—I 3 | u 0 7 Lﬁl

m Snapshot1 Snapshot 'Snapshot1":

L STIER Timestamp: 2015-08-19 09:00:13
i Snapshot2 /| VM State: |E3| Running

= WM State: Run...

D iption:
Snapshot3 escription

VM State: Shutoff

snapshot4

WM State: Shutoff
Screenshot: No screenshot available

‘B’ - _" @ .i.|_-|_- L

[203]

Templates and Snapshots

The Manage VM snapshot Ul is actually pretty straightforward. It is divided into
two panes. The left side pane lists all the snapshots and the right side displays
information about the selected snapshot, including the snapshot name, timestamp,
VM state, description, and a screenshot:

Create snapshot x

Name: snopshot?
Status: I3 Running

Description: Snapshot prior applying patch set #1041

Screenshot:

Cancel Finish

To create a new snapshot, click on the + button located at the bottom left.
The Create snapshot dialog box will open. Enter the snapshot name, add an
informative description, and hit the Finish button. Your snapshot is ready.

To remove or revert a snapshot, use the Run Selected Snapshot and
Delete Selected Snapshot ® buttons respectively. The Refresh button
reloads snapshot changes.

[204]

Chapter 7

Working with external disk snapshots

You learned about internal snapshots in the previous section. Internal snapshots are
pretty simple to create and manage. Now let us explore external snapshots. External
snapshotting is all about overlay image and backing_ file. Basically, it turns
backing_file into the read-only state and starts writing on the overlay image.

backing file: The original disk image of a virtual machine (read-only)
A~ overlay image: The snapshot image (writable)

If something goes wrong, you can simply discard the overlay_ image and you are
back to the original state.

With external disk snapshots, the backing file can be any disk image (raw, gcow,
even vmdk) unlike internal snapshots, which only support the gcow2 image format.

Creating an external disk snapshot

I am using a win7_01 virtual machine here as an example to demonstrate external
snapshots. This VM resided in a filesystem storage pool named vmstorel and has a
raw image acting as a virtual disk:

virsh domblklist Win7 01 --details
Type Device Target Source

file disk vda /vmstorel/win7 01.img

1. Checking the virtual machine you want to take a snapshot of is running;:
virsh list
Id Name State

4 Win7 01 running

You can take an external snapshot while a virtual machine is running or
when it is shut down. Both live and offline snapshot methods are supported.

2. Create a snapshot (disk-only) of the guest this way:

virsh snapshot-create-as Win7 01 snapshotl "My First Snapshot"
--disk-only --atomic

[205]

Templates and Snapshots

Some details of the flags used:

The --disk-only parameter takes a snapshot of just the disk.

% The atomic parameter ensures that the snapshot either runs
completely or fails without making any changes. This is used for
integrity and to avoid any possible corruption.

3. Now check the snapshot-1ist output:
virsh snapshot-list Win7 01
Name Creation Time State

snapshotl 2015-08-21 10:21:38 +0530 disk-snapshot

4. Now the snapshot has been taken, but it is only a snapshot of the disk's state;
the contents of memory have not been stored:

virsh snapshot-info Win7 01 snapshotl

Name: snapshotl
Domain: Win7 01
Current: no

State: disk-snapshot
Location: external <<
Parent: -

Children: 1

Descendants: 1

Metadata: yes

5. Now list all the block devices associated with the virtual machine once again:
#virsh domblklist Win7 01
Target Source

vda /vmstorel/win7 01.snapshotl

Notice that the source got changed after taking the snapshot. Let us gather
some more information about this new image /vmstorel/win7_01.
snapshotl:

#gemu-img info /vmstorel/win7 01.snapshotl
image: /vmstorel/win7 01.snapshotl

file format: gcow2

[206]

Chapter 7

virtual size: 19G (20401094656 bytes)
disk size: 1.6M

cluster size: 65536

backing file: /vmstorel/win7 01.img

backing file format: raw

Note that the backing file field is pointing to /vmstorel/win7_01.img.

This indicates that the new image /vmstorel/win7_01.snapshotl is now
a read/write snapshot of the original image /vmstorel/win7_01.img; any
changes made to win7_01. snapshot1 will not be reflected in win7_01.img:
/vmstorel/win7 0l.img = is backing file (original disk)

/vmstorel/win7 01l.snapshotl = is newly created overlay image where
now all the writes are happening

Now let's create one more snapshot. This time we will save it to a different
place on the host system. By default the snapshot is created in the same
storage pool where the original virtual machine disk resides:

#virsh snapshot-create-as Win7 01 snapshot2 "Second Snapshot"
--disk-only --diskspec vda, snapshot=external, file=/snapshot store/
win7_ 0l.snapshot2 --atomic

Domain snapshot snapshot2 created
virsh domblklist Win7 01 --details
Type Device Target Source

file disk vda /snapshot_store/win7 01.snapshot2

Here we used the - -diskspec option to create a snapshot in the desired location.
The option needs to be formatted in exactly this way: disk [, snapshot=type]
[,driver=type] [, file=name] format.

Disk: The target disk shown in virsh domblklist <vm names.
Snapshot: Internal or external.
Driver: libvirt.

File: The path of the location where you want to create the resulting snapshot
disk. You can use any location; just make sure the appropriate permissions
have been set.

[207]

Templates and Snapshots

Let's create one more snapshot:
virsh snapshot-create-as Win7 01 snapshot3 "Third Snapshot" --disk-only
--quiesce

Domain snapshot snapshot3 created

Notice that this time I added one more option: --quiesce. Let's discuss this in the
next section.

What is quiesce?

Quiesce is a file system freeze (fsfreeze/fsthaw) mechanism. This puts the guest

file systems into a consistent state. If this step is not taken, anything waiting to be
written to disk will not be included in the snapshot. Also, any changes made during
the snapshot process may corrupt the image. To work around this, the gemu-guest
agent needs to be installed on, and running inside, the guest. Snapshot creation will
fail with an error:

error: Guest agent is not responding: Guest agent not available for now

Always use this option to be on the safe side while taking a snapshot. Guest tool
installation is covered in Chapter 5, Network and Storage; you might want to revisit
this and install the guest agent in your virtual machine if it's not already installed.

We have created three snapshots so far. Let us see how they are connected with each
other to understand how an external snapshot chain is formed:

1. List all the snapshots associated with the virtual machine:

virsh snapshot-list Win7_ 01

Name Creation Time State

snapshotl 2015-08-21 10:21:38 +0530 disk-snapshot
snapshot2 2015-08-21 11:51:04 +0530 disk-snapshot
snapshot3 2015-08-21 11:55:23 +0530 disk-snapshot

2. Check which is the current active (read/write) disk/snapshot for the
virtual machine:

virsh domblklist Win7 01
Target Source

vda /snapshot store/win7 01.snapshot3

[208]

Chapter 7

3. You can enumerate the backing file chain of the current active (read/write)
snapshot using the - -backing-chain option provided with gemu-img.

--backing-chain will enumerate information about backing files in a disk
image chain. Refer to the following for a further description:

gemu-img info --backing-chain /snapshot store/win7 01.
snapshot3 |grep backing

backing file: /snapshot store/win7 01.snapshot2

backing file format: gcow2

backing file: /vmstorel/win7_01.snapshotl

backing file format: gcow2

backing file: /vmstorel/win7 01.img

backing file format: raw

From the preceding details we can see the chain is formed in the following manner:

Read Only Read Only Read Only Read/Write
/vmstorel « /vmstorel « /snapshot_store « /snapshot_store
/win7_01.img /win7_01.snapshotl /win7_01.snapshot2 /win7_01.snapshot3

Base Disk shapshot 1 shapshot 2 shapshot 3

So it has to be read as: snapshot3 has snapshot2 as its backing file, snapshot2
has snapshot1 as its backing file, and snapshot1 has the base image as its
backing file. Currently snapshot3 is the current active snapshot, where 1ive
guest writes happen.

Reverting to external snapshots

External snapshot support in libvirt is still incomplete. Snapshots can be created
online or offline but there is no built-in feature to revert to or delete snapshots.
If you try to revert an external snapshot using virsh, it will throw an error:

virsh snapshot-revert Win7 0l --snapshotname "snapshot3"

error: unsupported configuration: revert to extermal snapshot not
supported yet

[209]

Templates and Snapshots

Does that mean that, once an external disk snapshot is taken for a virtual machine,
there is no way to revert to that snapshot? No it's not like that; you can definitely
revert to a snapshot but there is no libvirt support to accomplish this. You will have
to revert manually by manipulating the domain XML file.

Take as an example a win7_01 VM that has three snapshots associated with it:

virsh snapshot-list Win7 01

Name Creation Time State

snapshotl 2015-08-21 10:21:38 +0530 disk-snapshot
snapshot2 2015-08-21 11:51:04 +0530 disk-snapshot
snapshot3 2015-08-21 11:55:23 +0530 disk-snapshot

Suppose you want to revert to snapshot2. The solution is to shutdown the virtual
machine (yes, a shutdown/power off is mandatory) and edit its XML file to point to
the snapshot2 disk image as the boot image:

1. Locate the disk image associated with snapshot2. We need the absolute path
of the image. One can simply look into the storage pool and get the path but
the best option is to check the snapshot XML file. How? Get help from your
friend virsh:

virsh snapshot-dumpxml Win7 01 --snapshotname snapshot2 | grep
'source file' | head -1

<source file='/snapshot store/win7_ 01.snapshot2'/>

2. /snapshot_ store/win7 01.snapshot2 is the file associated with
snapshot2. Verify that it's intact and properly connected to the
backing file:

#gemu-img check /snapshot store/win7 01l.snapshot2
No errors were found on the image.

46/311296 = 0.01% allocated, 32.61% fragmented, 0.00% compressed
clusters

Image end offset: 3670016

[210]

Chapter 7

If checking against the image produces no errors, this means backing

file is correctly pointing to the snapshot1 disk. All good. If an error is

detected in the gcow2 image, use the -r leaks/all parameter. It may

help repair the inconsistencies but this isn't guaranteed:

Excerpt from gemu-img manpage:

The - switch with gemu- img tries to repair any inconsistencies that are
% found during the check. -r leaks repairs only cluster leaks, whereas -r
all fixes all kinds of errors, with a higher risk of choosing the wrong fix
or hiding corruption that has already occurred:

gemu-img info /snapshot store/win7 01.snapshot2 | grep
backing

backing file: /vmstorel/win7 01.snapshotl

backing file format: gcow2

It is time to manipulate the XML file. You can remove the currently attached
disk from the VM and add /snapshot_store/win7 01.snapshot2.
Alternatively, edit the virtual machine's XML file by hand and modify the
disk path. One of the better options is to use the virt-xml command:
#virt-xml Win7 01 --remove-device --disk target=vda

#virt-xml --add-device --disk /snapshot store/win7_ 01.snapshot2, fo
rmat=gcow2,bus=virtio

This should add win7 01 .snapshot2 as the boot disk for the virtual
machine; you can verify that by executing;:
#virsh domblklist Win7 01

Target Source

vda /snapshot store/win7 01.snapshot2

There are many options to manipulate a VM XML file in the virt-xml
command. Refer to its man page to get acquainted with it. It can also be
used in scripts.

Start the virtual machine and you are back to the state when snapshot2
was taken. Similarly, you can revert to snapshot1 or the base image
when required.

[211]

Templates and Snapshots

Deleting external disk snapshots

Deleting external snapshots is somewhat tricky. An external snapshot cannot be
deleted directly, unlike an internal snapshot. It first needs to be manually merged
with the base layer or towards the active layer; only then can you remove it. There
are two live block operations available for merging online snapshots:

blockcommit: Merges data with the base layer. Using this merging
mechanism you can merge overlay images into backing files. This is the
fastest method of snapshot merging because overlay images are likely to be
smaller than backing images.

blockpull: Merges data towards the active layer. Using this merging
mechanism you can merge data from backing file to overlay images.
The resulting file will always be gcow2.

Merging external snapshots using blockcommit

The vM1 virtual machine has a base image (raw) called vm1 . img with a chain of
four external snapshots. /vmstorel/vml.snap4 is the active snapshot image where
live writes happen; the rest are in read-only mode. Our target is to remove all the
snapshots associated with this virtual machine:

1.

List the current active disk image in use:
#virsh domblklist VM1
Target Source

hda /vmstorel/vml.snap4

Here we can verify that the /vmstorel/vml.snap4 image is the currently
active image on which all writes are occurring.

Now enumerate the backing file chain of /vmstorel/vml.snap4:

#gemu-img info --backing-chain /vmstorel/vml.snap4 | grep backing
backing file: /vmstorel/vml.snap3

backing file format: gcow2

backing file: /vmstorel/vml.snap2

backing file format: gcow2

backing file: /vmstorel/vml.snapl

backing file format: gcow2

backing file: /vmstorel/vml.img

backing file format: raw

[212]

Chapter 7

3. Time to merge all the snapshot images into the base image:
virsh blockcommit VM1 hda --verbose --pivot --active
Block Commit: [100 %]

Successfully pivoted

4. Now, check the current active block device in use:

virsh domblklist VM1

Target Source

hda /vmstorel/vml.img

Notice that now the current active block device is the base image and all
writes are switched to it, which means we successfully merged the snapshot
images into the base image. But the snapshot-1ist output shows that there
are still snapshots associated with the virtual machine:

virsh snapshot-list VM1

Name Creation Time State
snapl 2015-08-22 09:10:56 +0530 shutoff
snap2 2015-08-22 09:11:03 +0530 shutoff
snap3 2015-08-22 09:11:09 +0530 shutoff
snap4 2015-08-22 09:11:17 +0530 shutoff

If you want to get rid of this, you will need to remove the appropriate metadata and
delete the snapshot images. As mentioned earlier, libvirt does not have complete
support for external snapshots. Currently, it can just merge the images but no
support is available for automatically removing snapshot metadata and overlaying
image files. It has to be done manually:

To remove snapshot metadata, run:

#virsh snapshot-delete VM1l snapl --children --metadata
#virsh snapshot-list VM1

Name Creation Time State

[213]

Templates and Snapshots

Merging external snapshots using blockpull

The vM2 virtual machine has a base image (raw) called vm1 . img with only one
external snapshot. The snapshot disk is the active image where live writes happen
and the base image is in read-only mode. Our target is to remove snapshots
associated with this virtual machine:

1.

List the current active disk image in use:
#virsh domblklist VM2
Target Source

hda /vmstorel/vm2.snapl

Here we can verify that the /vmstorel/vm2.snap1l image is the currently
active image on which all writes are occurring.

Now enumerate the backing file chain of /vmstorel/vml.snap4:

#gemu-img info --backing-chain /vmstorel/vm2.snapl | grep backing
backing file: /vmstorel/vml.img

backing file format: raw

Merge the base image into the snapshot image (base to overlay

image merging):

#virsh blockpull VM2 --path /vmstorel/vm2.snapl --wait --verbose
Block Pull: [100 %]

Pull complete

Now check the size of /vmstorel/vm2.snap1l. It got considerably larger

because we pulled the base_image and merged it into the snapshot image to
get a single file.

Now you can remove the base_image and snapshot metadata:

#virsh snapshot-delete VM1 snapl --metadata

We ran the merge and snapshot deletion tasks while the virtual machine is in the
running state, without any downtime. blockcommit and blockpull can also be used
to remove a specific snapshot from the snapshot chain. See the man page for virsh
to get more information and try it yourself. You may refer to the following URL:

http://wiki.gemu.org/Features/Snapshots

This link will provide you with a lot more information about how snapshots work.

[214]

http://wiki.qemu.org/Features/Snapshots

Chapter 7

Best practices for dealing with snapshots

* When you take a VM snapshot, you are creating new delta copy of the
virtual machine disk, gemu2, or a raw file and then you are writing to that
delta. So the more data you write, the longer it's going to take to commit
and consolidate it back into the parent. Yes, you will eventually need to
commit snapshots, but it is not recommended you go into production with a
snapshot attached to the virtual machine.

* Snapshots are not backups; they are just a picture of a state, taken at a
specific point in time, to which you can revert when required. Therefore,
do not rely on it as a direct backup process.

* Don't keep a VM with a snapshot associated with it for long time. As soon as
you verify that reverting to the state at the time a snapshot was taken is no
longer required, merge and delete the snapshot immediately.

* Use external snapshots whenever possible. The chances of corruption are
much lower in external snapshots when compared to internal snapshots.

* Limit the snapshot count. Taking several snapshots in a row without any
cleanup can hit virtual machine and host performance as gemu will have
to trawl through each image in the snapshot chain to read a new file from
base image.

* Have Guest Agent installed in the virtual machine before taking snapshots,
Certain operations in the snapshot process can be improved through support
from within the guest.

* Always use the - -quiesce and --atomic options while taking snapshots.

Summary

In this chapter, you learned how to create Windows and Linux templates for rapid
VM provisioning. We also saw how to create external and internal snapshots and
when to use each. Snapshot management including merge and deletion is also
covered, together with snapshot best practices.

[215]

Kimchi — An HTML5-Based
Management Tool for
KVM/libvirt

This chapter explains how to manage the KVM virtualization infrastructure remotely
using libvirt-based web management tools. You will learn how to create new

virtual machines, adjust an existing VM's resource configuration settings remotely,
implement user access controls, and so on, through a browser using Kimchi Web-
based UL. It also introduces VM-King, an Android application which helps you
manage KVM virtual machines remotely from your Android mobile or tablet.

The following topics will be covered in this chapter:

* Libvirt APIs

* Introduction to the Kimchi project

* Setting up a Kimchi server

* Managing KVM virtualization infrastructure using Kimchi WebUI
* Creating virtual machines through Kimchi Web-based Ul

* Managing virtual machine remotely using the vim_king android application

[217]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

Libvirt Web API

In Chapter 2, KVM Internals, you learned about libvirt. It provides a set of stable
APIs to manage virtualization infrastructure on a host machine. This includes
storage, networks, network interface, host devices, hypervisor, and virtual
machines. It basically acts as an intermediary between hypervisor (qemu-kvm)
and user-space applications.

The libvirt API supports C and C++ directly and has bindings for other languages,
such as C#, Java, Python, OCaml, PHP, and Ruby.

The virt-manager, is a de facto GUI tool that manages KVM virtualization and uses
a Python binding, whereas the virsh command is written in the C-programming
language. The virt-manager application logic is written in Python, while the Ul is
constructed with the help of Glade and GTK+.

Similarly, a WebUI can also be constructed using a libvirt Python binding so

that you can access libvirt (virtual machines) directly from your Web application
written in Python, with no need to have the virt-manager or libvirt-based CLI/GUI
tools installed.

The biggest and most obvious advantage of accessing libvirt through Web
applications is flexibility. A Web application can be accessed from any computer,
no matter what operating system it uses. This means that you can easily access
and manage your virtual machines from Intranet or, Internet through a browser.

Detailed information about how to use libvirt-API bindings with various languages
is documented at http://libvirt.org/bindings.html.

You can create your own Web application or simply start using one on of the
pre-created web-based management tools available for libvirt. There are
several tools, some are commercial, but most are free. The list is available
athttp://www.linux-kvm.org/page/Management Tools.

[218]

http://libvirt.org/bindings.html
http://www.linux-kvm.org/page/Management_Tools

Chapter 8

Introduction to the Kimchi project

Kimchi is an HTML5-based management tool for KVM. Among the various tools
listed on http://www.linux-kvm.org/page/Management Tools, to manage KVM
infrastructure, Kimchi is simple to configure and use. The management console
provided by Kimchi is feature-rich and cross browser and platform. It is also a
perfect tool for any small organization that wants to create its own private cloud
without investing considerable resources and money.

The Kimchi project was started by Adam Litke and Anthony
Liguori in 2012. The first community version (v0.1) was released
"~ in2013. The current version is 1.5.0.

Kimchi is a lightweight and easy to install tool that gives you a great Web-based
graphical interface for your KVM VMs very quickly, thus allowing you to control
their life cycle (power on/ off /resume) and access the display console over browser
with no additional software installed. You can also create templates and use ISO
images to create new virtual machines. Here are some important features of Kimchi:

* Cross browser and platform: It works on any client that has a modern
Web browser.

* Supports PAM and LDAP based user authentication.

* Supports user access control. You can control which user see which VMs.

* I18n support; currently it supports English, Portuguese, and Chinese.

* Allows host software management. You can upgrade the packages on the
host system through Kimchi WebUI.

* Federation feature: You can register Kimchi server on openSLP and discover
peers in the same network.

* noVNC/Websocket and Spice HTMLS5 for the in-browser VM console.
* Host management using the Ginger admin plugin.

* Provides RestAP], allowing integration with external systems to manage
KVM infrastructure.

[219]

http://www.linux-kvm.org/page/Management_Tools

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

Kimchi architecture

Kimchi uses Python binding to communicate with libvirt. It comprise four main
modules written in Python to facilitate interaction with libvirt, and Ngnix is
used as a Web application server to serve the Ul that is developed in HTML5 +
JavaScript + CSS:

Ngnix (Web Application Server)

VM, Template, Storage, Network

Controllers Ul (HTML 5 javascript, CSS)

VM, Template, Storage, Network Models (Python)

Libvirt Ginger

VM1 VM2 VM3

High-level architecture of Kimchi

Setting up Kimchi server

Kimchi is now available in Fedora 22 stable repository; so to install it, as root, you
just have to execute the # dnf install kimchi command and this will install
Kimchi and all of its dependencies. You can always use sudo if you don't want to
login as a root user but still execute the command with root privileges.

Although Kimchi is now available in Fedora 22 stable repository, the version is
not the latest. If you want to use the latest version head to Kimchi's community
’ website at http://kimchi-project.github.io/kimchi/.

[220]

http://kimchi-project.github.io/kimchi/

Chapter 8

They provide the latest version packages for Fedora, openSUSE, Ubuntu, and RHEL.
You can download the rpm from http://kimchi-project.github.io/kimchi/
downloads/ and then install it using the following commands:

$yum localinstall <local rpm path> or

$yum localinstall http://kimchi-project.github.io/kimchi/downloads/
kimchi-1.5.0-0.fc22.noarch.rpm

If you wish to use Ginger, an open source host management plug-in for Kimchi,
it needs to be complied from the source. As of now, there are no rpm packages
available for a Ginger plug-in.

1. Download the latest version of Ginger from GitHub:

#cd /opt ; git clone https://github.com/kimchi-project/ginger.git.

2. Build Ginger using the following command:

##./autogen.sh --system

3. [Install ginger using the following command:

make

sudo make install

This will install the Ginger plugin; you can verify whether the installation succeeded
or failed by looking at the /usr/local/share/kimchi/plugins directory. If a
directory with the name ginger is created there, it means that the installation

was successful:

1s /usr/local/share/kimchi/plugins/

ginger

Starting kimchid service
After installing the Kimchi package, the first thing you need to do is start its service
to get it up:

systemctl restart kimchid.service

Once the service is started, you can access Kimchi using a Web browser,
https://localhost:8001. By default, it uses port number 8001 for HTTPS
and 8000 for HTTP redirector.

[221]

http://kimchi-project.github.io/kimchi/downloads/
http://kimchi-project.github.io/kimchi/downloads/

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

netstat -ntlp | grep nginx:
L

To access Kimchi from Internet or intranet, use the https://
IPADDRESS:8001/ URL, where IPADDRESS is the IP address that

you configured for the server during installation. For example, if its
10.65.209.103,the URLishttps://10.65.209.103:8001/ or
https:kimchi.example.com:8001 provided that 10.65.209.103
resolves to kimchi .example.com.

tep 0 0 0.0.0.0:8000 0.0.0.0:*
LISTEN 8356/nginx: master

tep 0 0 0.0.0.0:8001 0.0.0.0:*
LISTEN 8356/nginx: master

You can change the access ports to whatever ports you want by editing
its main configuration file /etc/kimchi/kimchi . conf. After changing
the ports, make sure you add appropriate iptable rules to allow access.

The main configuration file of Kimchi is divided into four sections; server, logging,
display, and authentication. Let's see what configurative directives there are in each
of these sections:

The Server section consists of various settings to control the access of Kimchi
WebUI. The following are some important configuration parameters:
[server]

Hostname or IP address to listen on

#host = 0.0.0.0

By default, Kimchi listens on all networks. If you want to restrict a access to
particular subnet or IP address, uncomment the "host" directive and specify
the network subnet or a comma separated list of IP addresses:

Port to listen on
#port = 8000
If present, start an SSL-enabled server on the given port

#ssl port = 8001

Default access ports are sooo (HTTP) and soo1 (HTTPS), the application
actually works only on the HTTPS, sooo HTTP is just a redirector. Pointing
your browser to http:localhost:8000 will automatically redirect you to
https:localhost:8001. You can change these default ports by editing the
preceding two directives. These two directives are directly reflected with the
listen directives in the /etc/nginx/conf.d/kimchi. conf Nginx Web server
configuration file.

[222]

Chapter 8

The Logging section consists of only two settings, which are:

Log directory

#log dir = /var/log/kimchi

Logging level: debug, info, warning, error or critical

#log level = debug

It is recommended to keep it to default logging setting, but keep in mind
that the debug logging can consume a lot of disk space. Moreover, right
now there are no logrotate scripts available for these log files and it is not
managed by rsyslog daemon to send logs to the centralized log server.

The Display section is there for just one directive. That is, a port for
websocket proxy to listen on. A websocket is used to for noVNC and
HTMLS spice console.

The Authentication section consists of settings to manage authentication for
the WebUI. The default method is via Pluggable Authentication Module
(PAM). However, it can also be configured with enterprise directory servers,
such as Microsoft Active Directory or FreelPA using the Idap protocol.

I have configured it with a FreeIPA server so that all the users in my
directory server can access the Kimchi WebUI and take console of the
virtual machines:

If specified method to ldap, following fields need to be
specified.

ldap server domain name used to authenticate.

ldap server = "kvm.example.com"

Search tree base in ldap

ldap search base = "ou=People, dc=kvm,dc=example, dc=com"
User id filter

ldap_search filter = "uid=%(username)s"

User IDs regarded as kimchi admin

ldap_admin id = "admin@kvm.example.com"

systemctl restart kimchid.service

_ Configuration changes made in /etc/kimchi/kimchi.conf

% can be effective only when the kimchid service is restarted. So

< make sure that you restart the service upon making changes in
the configuration file.

[223]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

Managing KVM virtualization
infrastructure using kimchi WebUI

To access the Kimchi WebUI, open your Web browser and type https://<IP/FQDN
of your host>:8001.

Proceed past any SSL warnings and continue to the interface. You should see
something similar to the following screenshot:

o Kimchi

Kimchi login panel

By default, Kimchi uses PAM for authenticating users, so you can log in with the
credentials of the root user. You can also login as other local users available on the
system, but they will not see any virtual machines unless required permissions
are granted.

Once you are logged in as a root user, you should be able to see a screen like the
following screenshot, listing all guest virtual machines defined on the host. It
displays resource utilization for the running virtual machines, you have buttons
to perform shutdown, restart, and connect to console by clicking on action:

[224]

Chapter 8

y Kimchi
Host s Templates Storage Network
Name CPU Disk /O Network O Livetile Actions
Cent0S 01 d)
’ VM
Actions -
KB/s KB/s
Templatel (b
-~ VM
Actions -
KB/s KB/s
VM1 (b
e il . VM
Actions -
KBfs KB/s
vm2 d’
|Gl VM
Actions b4
KB/s KB/s
e o no
o o
Actions -
KB/s KB/s

Guests tab in Kimchi WebUI

The small button located at the right-hand corner, with the power icon, indicates
a virtual machine's state; green means that it's running and red means shutdown/
power off.

[225]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

Creating virtual machines through
Kimchi WebUI

Kimchi uses the concepts of templates that can be re-used to create similar guests.
Its a two step task to create a virtual machine:

1. Create a template from an ISO or a pre-installed guest OS image file.

2. Deploy the VM from the template; Kimchi automatically allocates a new disk
and gets emulated hardware configuration according to the template chosen.

To create a new guest, click on the Guests menu item, and then click on the
green + icon. Simply give your virtual machine a name, select a template to
build it from, and click on Create. That's all.

Create a New Virtual Machine

1. Virtual Machine Name
The name used to identify the virtual machine. If omitted, a name will be chosen based on the template used.

vml

2. Template

Please choose a template.

VM ®

RHEL6.5 opensusel3.2.1441427332525 ubuntul4.10.1441427287735

®

ubuntul4.10.1441427332587

L}

Create a New Virtual Machine dialogue box

[226]

Chapter 8

Your virtual machine is ready. Memory, CPU, vDisk size, and other configurations
options are inherited from the template to the virtual machine. If your template is
ISO backed, you will have to manually install the operating system on the newly
created virtual machine, but if it's image backed, the manual guest operating
system installation is not required. The template configuration includes the
following information:

¢ The local or remote ISO for the OS
e Number of CPUs

* Amount of memory

e Disk size

* Storage pool to allocate disk from

e Networks to be used

You can view or modify templates by clicking on the Templates menu item in the
top navigation bar:

» Kimchi

Host Guests

Templates Storage Network

RHEL6.5

=

=

@ ubuntul4.10...

[+

opensusel3.... @ ubuntul4.10...
Actions w m’— Actions W Actions W

Actions ¥

Template tab

[227]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

Templates with an earth icon indicate that its source image is located on the Internet,
whereas a template with a disk icon indicates that source images are located locally
on the host systems's file system.

To create a new template, click on the + sign in the right-hand corner. You can create
a template using an ISO image or a local image file, as well as remote ISO images:

The local . iso or image files should be stored in /var/1ib/
kimchi/isos so that the template and guest creation dialogs
’ can see them automatically.

Add Template

Where is the source media for this template?

g Local ISO Image
& Local Image File

@ Remote I1SO Image

Add Template dialogue box

[228]

Chapter 8

The remote ISO option looks for ISO images on the respective vendor's website;
by default, Kimchi configures remote ISO access from the following Linux
distribution files:

1ls /etc/kimchi/distros.d/

debian.json fedora.json gentoo.json opensuse.json ubuntu.json

You can also configure your own JSON file with a path to your local ISO library or
vault similar to what I defined for Windows 7:

Win7.json
[
{

"name": "Win7 Professional",

"os_ distro": "Windows",

"os_arch": "x86 64",

"path": "http://vault.server.example.com/win7.iso"

}

Save the file and it will appear in the Remote ISO Image window.

For local ISO images, you can directly specify the path of the . iso image present on
the host system or click on the Search ISOs button:

Add Template

4m Local 15O Image

Search 1SOs

O 1 want to use a specific 1SO file

Search ISOs will find out all the . iso images on the host system and give you a list.
You can the required image and make a template out of it.

[229]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

Similarly, you can manage the storage pool by going to the storage menu and then
creating a new storage by clicking on the + sign. It supports NFS, iSCSI, and Fiber
Channel-backed storage pool creation:

1. Storage Pool Name

2. Storage Pool Type

DIR

3. NFS

iSCSI

LOGICAL

SCSI Fibre Channel

Define a New Storage Pool

The name used to identify the storage pools, and it should not be empty.

brage Pool must have a unique path.
when it does not already exist in your system.

The following screenshot shows the Storage tab where the storage pool can be
listed and managed. You can list volumes in a pool by clicking on the down-arrow
button in the right-hand corner of the pool. Each thumbnail of the vDisk contains
informative details, such as the type, format, allocation statistics, and so on:

[230]

Chapter 8

vmstorel 48% =] jvmstorel dir 49.1G 23.4G6 | Actions » || A

@ vml.img @ vml.snapl @ vml.snap2

Type: file Capacity: 8.0G Type: file Capacity: 8.0G Type: file
Format: raw Allocation: 1.0G Format: gcow2 | Allocation: 196... Format: gcow2

@ vm1l.snap3 @ vm1l.snap4 @ vmz.img

Type: file Capacity: 8.0G Type: file

Type: file Capacity: 8.06 Type: file Capacity: 8.0G
Allecation: 8.0G Format: gcow2

Format: gcow2 | Allocation: 196... Format: gcow2 | Allocation: 196... Format: raw

vmstore2 27% i /dev/vmstore2 logical 29.3G 8.0G Actions W= ~

Storage tab

Network can also be managed by clicking on the network menu; you can create
a new network with a Private Virtual Network (Isolated), Masqueraded Virtual
Network (Outside-reach), or Aggregated Public Network (In-outside Reach):

Create a network

1. Network Name

@ Name should not contain ' and "',

2. Network Type

) Isolated: no external network connection
) NAT: outbound physical network coennection only
@ Bridged: Virtual machines are connected to physical network directly

Destination: etho v

Enable VLAN
VLAN ID:

Create a network dialogue box

[231]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

The following screenshot shows the Network tab in Kimchi. You can see the
default NAT network and the three custom networks, named Netl, Net2, and
Net3. To create a new network, click on the + button located in the upper-left
corner of the page:

) Kimchi

Host Templates Storage Network
Network Name State Network Type Interface Address Space Actions
Netl isolated irbrl 192.168.0.0/24 Actions
Net2 1at virbr2)2.168.1.0/24 Actions w
Net3 e bridged =th0 0.65.208.0/22 Actions W
default - na virbre 192.168.122.0/24 Actions w

Network tab

Starting and stopping guests
To start a guest, click on Actions to activate the menu and then click on Start.

To stop a guest, click on Actions and then click on Stop.

Editing a virtual machine's resource
allocation

To change the resource allocation of a virtual machine, for example, to change the
memory and CPU allocation, select the VM and click on the Action button. It will
show you the list of actions that can be performed against the virtual machine. For
now, forget about other options and simply click on Edit; this will open an Edit
Guest dialogue box through which you can change the resource allocations,

such as memory size, vCPUs numbers, and so on:

[232]

Chapter 8

Edit Guest

General Storage Interface Permission Host PCI Device Snapshot

Name
CPUs
Memory (MB)

lcon

Edit Guest dialogue box

Accessing a virtual machine's graphical

console

Kimchi provides noVNC or Spice HTML5 console access options for
virtual machines.

You can define which option to use at the template level. To access a console, click on
the preview image on the Guests tab, or click on Actions and then click on Connect.

This opens a new browser tab containing a graphical interface, using which, the user
can interact with the guest machine.

Your browser should allow pop-up windows to get a

noVNC/Spice window. If your browser blocks pop-ups,

you will not be able to see the graphical console.

[233]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

Permissions and user access control

By default, only the root user can see all the virtual machines; other local or ldap
users would be able to login, but will see a No guests found message when they
click on the Guests tab. This is because of the user access control capability

of Kimchi.

You (administrator) can decide which user can see and operate which virtual
machines. To set access permission on a virtual machine, log in as a root user
and perform the following steps:

1. Select an existing VM and navigate to Actions | Edit.

2. This will open the Edit Guest dialogue box. There is a Permission tab,
just besides the Interface tab. Click on it.

3. The following screenshot shows the Permission tab, through which you can
set the permission. On the left, there is a list of local system users and group.
You can select the desired user/group and move it to the right-hand side box
to give that user access to the virtual machine:

Edit Guest
General Storage Interface Permission Host PCI Device Snapshot
Available system users and groups Selected system users and groups
[| [
Users Groups Users Groups
& halt &» abrt & prasad
& root & adm
& shutdown &» apache >
& sync & audio _
& avahi
& avahi-autoipd
&» bin
& brlapi
o cdcom [~

Save

[234]

Chapter 8

Here, for example, user prasad is added to the access list of the virtual machine
named RHEL6_Prasad by the root (administrator). Now, when the user prasad logs
in to Kimchi WebU], only one virtual machine will be visible to him despite the fact
that there are many virtual machine defined on the same host machine:

) Kimchi & prasad -

Guests Storage Network

Name CPU Disk /O Network I/O Livetile Actions

RHEL6_Prasad d’

Actions v

KB/s KB/s

Monitoring and managing a host system with the
Kimchi WebUI

You can monitor the performance of your host system by clicking on the Host menu
item. There are Shut down and Restart buttons to manage the lifecycle of the host. It
also allows you to connect the console of the host, but this functionality is currently
limited to the IBM Power System only.

[235]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

The first section gives the basic information about the host system, that includes,
OS Distro, OS Version, Number of CPU, and Memory size, and the second section
displays host performance statistics, including CPU, Memory, Network IO, and
Disk 10O:

J'l Kimchi B root ~

Host Gapests Tempiates Storage Ketwari

E i =

= Basic Information

05 Distra Fadora

05 s an Z2

05 Code Mame Tty Two

Procossor el Xoon E312xx | Sandy Bndge|
cPuls] 4

Mizmary 95358

= System Statistics

o bl 100H: LRt tean

BO.E%

Momory Awzdanie

7.83GE

= Raad Rate
000845
Wirde Rate
faloal: i

The Host menu item in the Kimchi WebUI is only visible to a root
%j%“ user. Normal users will not be able to access it because this menu

Y

item is disabled for them.

[236]

Chapter 8

It also facilitates updating the rpm packages and yum repository configuration.
The packages that require updates are listed in the Software Updates dialog box:

» Software Updates

Package Name Wersion Architectune Repository
~ Repositories
St
1o W Enalbled
dechora Foedora Srelexsever - nasearch brue
todara. detgemo Fadora dncleaseeer - Snanaanch - Debug e
fedora: source Fodora frefeaseee - Sowce

(<] 1 | iz|_

It actually uses the #yum check-update command in the background to get a list of
the packages those had updates that needed to be applied. You can update a package
individually, or perform the Update All function. It also allows you to manage the
yum repositories on the host. You can add a new repository, or delete or edit an
existing yum repository. This makes the RPM package management easier and

more configurable.

Host system management using the
Kimchi-Ginger plugin

Ginger is an open source host management plugin for Kimchi. With the Ginger
plugin installed, you get extended management options for the host system.

[237]

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

The current features include:

* Retrieving system health (sensors) stats
* User login account management

* Network interface configuration

* Configuration backup

* + Power (ppc) firmware update

* + Power policy management

The Kimchi-Ginger plugin is at present tightly integrated with
the IBM Power system. For the IBM Power system, it provides
the following additional functionalities.

There are many use cases for Kimchi. Using this simple yet powerful tool, you can
even start your own virtual private server (VPS) offering service. It's a community
project backed by many open source contributors, thus making it more stable and
feature-rich. The following are some of the features that are planned for future
development of Kimchi:

* OVS bridges

* Logical Storage Pool extension

* OVA support

* Support creation of non-sparse disk

* VM/Template Hooks

* oVirt node integration

If you would like to learn more about Kimchi and get involved, subscribe to
https://groups.google.com/forum/#! forum/project-kimchi.

Managing virtual machine through
android phones

Nowadays, there are many free and commercial applications available for the
Android mobile operating system, which allow you to manage your virtual
machines remotely from your mobile or tablet. The following are some free
apps that work great with libvirt:

[238]

https://groups.google.com/forum/#!forum/project-kimchi

Chapter 8

Application name: VM-king

Download URL: http://bit.ly/216SWle

The supported functions are:

Start/pause/managedSave/stop/destroy VM

Restore and delete Snapshots

Getting a screenshot of the running VMs

Getting the remote display (VNC/Spice) connection information
Encrypted storage of your SSH connection credentials

Supports SSH password and RSA key authentication

Application name: VM Manager

Download URL: http://bit.1ly/1Sf0OY6a

The supported functions are:

start/ pause/ managedsave/stop/destroy VM

Changing a VM's emulated hardware configuration

Application name: aSPICE: Secure SPICE Client

Download URL: bit.1y/1vVOY1IP

The supported functions are:

Control any SPICE-enabled gemu virtual machine with ANY guest OS
Multi-factor (two-factor) SSH authentication in the Pro version

Multi-touch control over the remote mouse. One finger taps left-clicks,
two-finger taps right-clicks, and three-finger taps middle-clicks

Sound support pinch-zooming

Dynamic resolution changes that allow you to reconfigure your desktop
while connected and control the other virtual machines from BIOS to OS

Full rotation support. Use the central lock rotation on your device to
disable rotation

Full desktop visibility even with soft keyboard extended

UI casing for different screen sizes (for tablets and smartphones)

[239]

http://bit.ly/216SW1e
http://bit.ly/1SfOY6a
bit.ly/1VOYlIP

Kimchi - An HTML5-Based Management Tool for KVM/libvirt

Summary

In this chapter, you learned how to install Kimchi and use it to manage your
standalone KVM host and virtual machines remotely through a modern
Web-browser. You also learned how to implement role-based access control for
virtual machines, monitor performance of the host system through Kimchi HTML5
WebU]I, and got an idea about android applications available to manage KVM virtual
machines remotely.

[240]

Software-Defined Networking

for KVM Virtualization

Everyone is talking about Software-Defined Networking (SDN) these days. It is
often referred to as a technology revolution that was much needed for computer
networks, especially in the cloud and virtualization world which tends to have

a rapid provisioning of network services for virtual machines, multi tenancy
support, and improved network visibility. The core concept of SDN is to decouple
the control plane from the forwarding plane and enable innovation through
network programmability. In this chapter we will be covering the SDN approach
in KVM virtualization using the Open vSwitch and supporting tools that includes
OpenDaylight SDN controller. You will learn about:

OpenvSwitch installation and setup

Creating VLANSs for KVM virtual machines

Applying granular traffic and policy control to KVM VMs
Creating overlay networks

Port mirroring and SPAN

Managing OpenvSwitch using the OpenDaylight SDN Controller

Introducing Software Defined Networking

Let us start with a formal definition of SDN, The following definition cited comes
from the Open Networking Foundation (ONF) (www . opennetworking. org),which
is a user-driven nonprofit organization dedicated to the promotion and adoption of
SDN through open standards development.

[241]

www.opennetworking.org

Software-Defined Networking for KVM Virtualization

SDN is an emerging architecture that is dynamic, manageable, cost-effective, and
adaptable, making it ideal for the high-bandwidth, dynamic nature of today's
applications. This architecture decouples network control and forwarding
functions, enabling network control to become directly programmable and the
underlying infrastructure to be abstracted for applications and network services.
The OpenFlow® protocol is a foundational element for building SDN solutions.

The key themes of the ONF definition are:

* Separation of the control from the forwarding plane
* Software programmability for network elements

* Centralized network control and management

What do we mean by the decoupling of forwarding from the control plane? What
are the forwarding plane and data plane exactly? These are probably the questions
in your mind now, right?

They are conceptual terms in the networking world. To get a fair understanding of
what the control plane and data plane, also known as forwarding plane are, let us go
back in time and recap how an Ethernet Hub device used to work.

Ethernet Hub: No Intelligence addressing or knowledge. It acts as a repeater
and simply forwards data to every other port it has (kind of "broadcasting"). You
can think of hub forwarding decisions as, "Oh! I see bits! Let's forward them to
everyone." This is the simplest way to create a network:

Node E Node F Node G Node H

Frame from Hub repeats frame
Node A NIC out each port.
to Node G 1 Collision Domain

Node A Node B Node C Node D

[242]

Chapter 9

But this simplest of approaches to creating networks had various disadvantages,
such as broadcast storms, the inefficient use of bandwidth, and looping. The primary
reason for an Ethernet hub device to fail was not having software intelligence in it. A
hub device used to do just forwarding work, transferring the bits (packets) received
at one port to all its connected ports. The only thing it knew was how to send a
packet to a port. This bit to bit packet transferring is referred to as the Data Plane/
Forwarding Plane. There was no control plane (software intelligence) for Ethernet
hubs as they were intended for small networks with very little traffic.

Due to its dumb approach of managing network traffic, Ethernet hub technology
soon got replaced by the new-world L2 network device referred to as a network
switch (also called a switching hub, bridging hub, and officially a MAC bridge). If
you compare a Network Switch with an Ethernet hub, from the hardware (physical)
appearance point of view both will look pretty much identical but there is a major
distinction between both and that is software intelligence:

* A Network switch has inbuilt software intelligence. This software intelligent
logic orchestrates the dumb forwarding plane to send received packets on the
correct interfaces. This intelligent logic is called routing and, together with
some other sophisticated features, such as QoS and rate limiting, is what is
called the control plane. In a nutshell: the control plane is where forwarding
and routing decisions are made (software logic).

* The data plane is where the data forwarding action takes place (instructions
to carry traffic over the hardware).

The following diagram shows the functioning of a network device. Network devices
have a control plane that provides information used to build a forwarding table with
the data plane that consults the forwarding table. The forwarding table is used by the
network device to make a decision on where to send frames or packets entering the
device. Both of these planes exist directly on the networking device:

CONTROL PLANE
PROVIDES DATA TO BUILD FORWARDING TABLE
— DATA PLANE >
FRAMES IN LOOKS TO FORWARDING TABLE FOR ROUTING DECISIONS FRAMES OUT

I repeat here, in traditional networking both control and data planes reside directly
on the networking device, whether a network switch or router.

[243]

Software-Defined Networking for KVM Virtualization

The SDN architecture decouples the network control and forwarding functions,
enabling the network control to become directly programmable and the underlying
infrastructure to be abstracted for the applications and network service. You can see
how SDN differs from traditional networking in the following screenshot:

Applications T
) :
=
°
o2
=
5
A
APL ,__l APL =z
SDN
Controller
B @) d B @) [|
OVSDB I OpenFlow Proctol S
E-}
Network Infrastructure g
b
D D D ||
[| [| []

Notice how control and data planes are separated and how this separation helps
applications to directly control the network, opening new doors for innovation.
Let us examine the component illustrated in the screenshot in detail to gain more
knowledge of SDN concepts:

¢ Network infrastructure: This consists of network devices such as routers and
switches, both physical as well as virtual.

* Controller: This encompasses software based on a centralized controller,
which could be on a server that talks to all the devices in the network using
open API's, such as OpenFlow or OVMDB.

. A centralized controller does not mean a single controller;
a it can logically be a centralized controller that exists in
s multiple datacenters with all the redundancy needed for
critical servers.

[244]

Chapter 9

* Applications: This encompasses the variety of applications for which the
network exists. This includes voice, video, enterprise applications, and
security appliances such as intrusion detection. These applications can talk
to the controller using open API's to give them what they want. For example,
Voice traffic may ask the controller to be treated with the least latency while
an enterprise backup server may tell the controller to give it bandwidth
whenever it is available.

Note: The conversation between the controller and applications
is referred to as northbound and conversation between the
s . .
controller and switches is referred to as southbound.

This was just a brief overview. There are many more use cases and benefits of SDN.
For more details on SDN I recommend reading this IEEE paper, "Software-Defined
Networking: A Comprehensive Survey" available here for download:
http://arxiv.org/abs/1406.0440.

Limitations of Linux bridges

Guest (VM) networking in KVM has traditionally been done using Linux bridging,
which performs well. It is simple to configure and manage but was not originally
designed for virtual networking and therefore poses integration and management
challenges. It does not support tunneling protocols and is apparently not an
OpenFlow-compatible device, limiting the scope of innovation and scaling problems,
so there was need of a more intelligent virtual switching device. That place has been
taken by Open vSwitch in the Linux world. The following table shows how Open
vSwitch is superior to Linux bridge when it comes to virtual networking.

Introducing Open vSwitch

Open vSwitch is an open source OpenFlow-capable virtual switch. If you're familiar
with VMware, think of it as an open source distributed virtual switch. To give you
a fair idea of how great Open vSwitch (OVS) is, here is a brief feature list, as of
version 2.3:

* Visibility into inter VM communication via NetFlow and sFlow

* Standard 802.1q VLAN model via trunking

* Per VM interface traffic policing

* NIC bonding

[245]

http://arxiv.org/abs/1406.0440

Software-Defined Networking for KVM Virtualization

* OpenFlow protocol support

* Multiple tunneling protocols such as GRE, VxLAN, IPSec,
and GRE over IPSEC

* Mobility of states

See the full feature list here: http://Openvswitch.org/features/.

Comparison between Linux bridge and Open
vSwitch

Before we go further and learn more about Open vSwitch including its architecture,
let us quickly see how Open vSwitch is more feature-rich and powerful by
comparing it with Linux bridge in terms of the operational functionalities provided:

Open vSwitch Linux bridge
* Designed for virtual and cloud * Originally not designed for virtual
networking networking.
* Full L2-L4 matching capability * Just L2 device
* Decision in UserSpace * Scaling is limited
* ACLs, QoS, Bonding * Simple forwarding
* Mobility of state * Not suitable for cloud environment
* OpenFlow controller * No tunneling support
* Distributed vSwitches
* netflow and sflow support

Open vSwitch architecture

The implementation of Open vSwitch is broken down into two parts, the Open
vSwitch kernel module (Data Plane) and user space tools (Control Plane).

Since the incoming data packets have to be processed as fast as possible, the data
plane of Open vSwitch was pushed to the kernel space:

[246]

http://Openvswitch.org/features/

Chapter 9

Control Cluster

ovshd-server ovs-vswitchd

User
Kernel
Management Protocol (6632/TCP) OVS Kernel Module

OpenFlow (6633/TCP)
<— Netlink

The data path (OVS kernel module) uses the netlink socket to interact with the
vswitchd daemon that implements and manages any number of OVS switches on
the local system. The SDN Controller interacts with vswitchd using the OpenFlow
protocol. The ovsdb-server maintains the switch table database and external clients
can talk to the ovsdb-server using json rpc; JSON is the data format. The ovsdb
database currently contains around 13 tables and this database is persistent

across restarts.

Open vSwitch works in two modes, normal and flow mode. This chapter will
primarily concentrate on how to bring up a KVM VM connected to Open vSwitch's
bridge in standalone/normal mode and will a give brief introduction to flow mode
using the OpenDaylight controller:

* Normal Mode: As the name suggests, in this mode the Open vSwitch
bridge handles all the switching/forwarding functionality by itself. In this
mode OVS acts as a 12 learning switch. This mode is specifically useful
when configuring several overlay networks is what your target rather than
manipulating switch's flow.

* Flow Mode: In flow mode, the Open vSwitch bridge flow table is used to
decide on which port the receiving packets should be forwarded to. The
flow table is managed by a remote SDN controller. You can install or remove
control flows using the SDN controller connected to the bridge or using
the of ct1 command. This mode allows a greater level of abstraction and
automation; the SDN controller exposes the REST API. The applications
can make use of this API to directly manipulate the bridge's flows to meet
network needs.

[247]

Software-Defined Networking for KVM Virtualization

Open vSwitch installation and setup

Starting with Fedora 16 the Open vSwitch user space tools and the required kernel
modules are included in the Fedora distribution. There is no need to do any source
compilation; the Kernel module (forwarding plane) is already there in the Fedora
kernel. To get user space tools, just install the packages named openvswitch. This
package is present in the official fedora DNF repository:

dnf install openvswitch

The Open vSwitch package contains all the required user space tools including the
ovsdb and a series of command-line utilities to configure, monitor, and manage
Open vSwitch instances. The following are the important configuration files in
Open vSwitch:

#rpm -gc openvswitch
/etc/logrotate.d/openvswitch
/etc/openvswitch/conf.db
/etc/openvswitch/system-id.conf

/etc/sysconfig/openvswitch

* /etc/logrotate.d/openvswitch controls log rotation for all the Open
vSwitch logs /var/log/openvswitch/*.log. By default the logs are
compressed and then rotated daily.

* /etc/openvswitch/conf.db is not actually a configuration file but it is the
database used by Open vSwitch to store and retrieve configurations.

* /etc/openvswitch/system-id.conf is created by the Open vSwitch startup
script using uuidgen and it is used by controllers to distinguish between
multiple machines.

* /etc/sysconfig/openvswitchis a configuration-cum-environment file
for Open vSwitch. The configuration parameters set in this file act as
environmental variables for Open vSwitch daemons.

Starting openvswitch.service

On completing the installation of the Open vSwitch packages, the first step towards
using Open vSwitch capabilities and features with KVM virtual networking is
starting openvswitch. service and marking it as starting automatically on boot.

The openvswitch.service comprises two daemons. One is a database and another
is the switch itself.

[248]

Chapter 9

To start openvswitch. service, simply run:

#/bin/systemctl start openvswitch.service

Running this command will start the service in runtime. You can check the status of
the service by running;:
systemctl status openvswitch.service

openvswitch.service - Open vSwitch

Loaded: loaded (/usr/lib/systemd/system/openvswitch.service; enabled;
vendor preset: disabled)

Active: active (exited) since Fri 2015-11-06 11:52:54 IST; 44min ago
Process: 4029 ExecStop=/bin/true (code=exited, status=0/SUCCESS)
Process: 4099 ExecStart=/bin/true (code=exited, status=0/SUCCESS)

Main PID: 4099 (code=exited, status=0/SUCCESS)

CGroup: /system.slice/openvswitch.service

Active: active in the earlier output highlights the status. As soon as the service
is started, it loads the required Open vSwitch kernel module and performs
initialization startup routines such as creating your Open vSwitch database and
running daemons. The database is created using the schema available here:
/usr/share/openvswitch/vswitch.ovsschema.

Note: In the event of a failure in the service startup, the first thing
% you should do is look at the logs and find out what error caused
T the failure in starting the service.

To access openvswitch service logs, run the following command:

#journalctl -u openvswitch

The log files of both ovsdb-server and ovs-vswitchd are stored in the /var/log/
openvswitch directory.

In order to enable the service on boot, run the following command:

#isystemctl enable openvswitch.service'

[249]

Software-Defined Networking for KVM Virtualization

Open vSwitch kernel module

When you start openvswitch. service, the first thing it does is load the kernel
module required for switching the datapath. The OVS kernel module is named
openvswitch in Fedora. You can also load it manually by running the following
command as root:

#modprobe openvswitch

To get more information about the openvswitch kernel module, use the modinfo
command as shown in the following:

#modinfo openvswitch

filename: /1lib/modules/4.1.6-200.£fc22.x86 64/kernel/net/openvswitch/
openvswitch.ko.xz

license: GPL

description:0Open vSwitch switching datapath

depends: libecrc32c

intree: Y

vermagic: 4.1.6-200.£c22.x86 64 SMP mod unload

signer: Fedora kernel signing key

sig key: 95:D8:8B:1A:62:3B:BF:DF:EF:E2:58:6B:05:ED:0A:C5:C2:88:C1:3A

Getting started with the Open vSwitch
command-line interface

This section gives a quick overview of various command-line interfaces available
for managing different aspects of virtual networking infrastructure, either locally
or remotely.

OVS-<functionalitys is the naming convention used for Open vSwitch commands.
To get the list of all the OVS commands available on your system, just type ovs

in your terminal and press the Tab key twice. The following are the important
commands for configuration and troubleshooting Open vSwitch:

#ovs-vsctl: This command is used to set up, maintain, and inspect various OVS
switch configurations. It provides a high-level interface for Open vSwitch Database
to query and apply changes on runtime.

[250]

Chapter 9

There are many different options you can carry out with this command-line tool.
Here are some of the most commonly used options with the ovs-vsctl commands:

ovs-vsctl show: A very handy and frequently used command. It gives the
current running configuration of the switch. Detailed information on how to
read its output is explained in the next section.

#ovs-vsctl list-br:Shows the names of all the configured bridges. The
output is sorted in ascending order.

#ovs-vsctl list-ports <bridges: Shows the names of all the ports on
BRIDGE.

#ovs-vsctl list interface <bridges:show the names of all the
interfaces on BRIDGE

#ovs-vsctl add-br <bridges>: Creates a bridge in the switch database.

#ovs-vsctl add-port <bridges : <interfaces: Binds an interface
(physical or virtual) to the Open vSwitch bridge.

#ovs-ofctl and ovs-dpctl: These two commands are used for
administering and monitoring flow entries. You learned that OVS manages
two kinds of flow:

o

OpenFlows: The flows managed at the control plane

[e]

Datapath: A kernel flow. A kind of cached version of OpenFlow

o

#ovs-ofctl speaks to OpenFlow module, whereas ovs-dpctl
speaks to the Kernel module.

The following two are the most used options for each of these commands:

#ovs-ofctl show <BRIDGE>: Shows brief information about the switch,
including the port number to port name mapping.

#ovs-ofctl dump-flows <Bridges>: Examines OpenFlow tables.

#ovs-dpctl show: Prints basic info about all the logical datapaths, referred
to as "bridges," present on the switch.

#ovs-dpctl dump-£flows: It shows the flow cached in datapath.

ovs-appctl: This command offers a way to send commands to a running
Open vSwitch and gathers information that is not directly exposed to

the ovs-ofctl command. This is the Swiss Army knife of OpenFlow
troubleshooting.

#ovs-appctl bridge/dumpflows <brs: Examines flow tables and offers
direct connectivity for VMs on the same hosts.

#ovs-appctl fdb/show <brs: Lists mac/vlan pairs learned.

[251]

Software-Defined Networking for KVM Virtualization

The Man pages of each of the preceding commands contain detailed information in
easy-to-understand language. Don't forget that there is extensive help by following
any command with a - -help option.

Setting up your first Open vSwitch bridge

Open vSwitch bridge setup can be done in multiple ways. 0vs-vsct1l is the primary
command to create, remove, and administer Open vSwitch. Operations performed
using OVS-vsctl are persistent across system reboot. However, the IP address
assigned to the bridge interface will not be persistent unless a matching ifcfg file

is created manually. Another method of creating an Open vSwitch bridge is using
network scripts in the same way that a Linux bridge is generally created, The benefit
of the latter option is a greater level of integration with the operating system.

We will first see how to create an OVS bridge manually using ovs-vsctl and then
using a network script with an example. I am using my two KVM hypervisors to
demonstrate the procedure. They are named KVMHOST1 and KVMHOST2.

Note: Open vSwitch is not compatible with NetworkManager yet. Before
creating an OVS bridge, make sure that NetworkManager is disabled and
the classic networking service is enabled instead:

% * Disable NetworkManager service:

$ systemctl disable NetworkManager.service

* Enable classic networking;:

$ systemctl enable network.service

Configuring an Open vSwitch bridge manually
using the ovs-vsctl command

The following steps demonstrate how to configure an isolated OVS bridge. Isolated
bridges will not have connectivity to the physical network of the host system.
Isolated networks are useful for testing and development environments.

[252]

Chapter 9

Before you run the command to configure the OVS bridge, make sure all the Open
vSwitch services are up and running. Once confirmed, run the following commands
to create a vSwitch-based bridge named vswitcho01 and display the current state of
Open vSwitch database contents:

[root@kvmHOST1 ~]# ovs-vsctl add-br vswitchO001l
[root@kvmHOST1 ~]# ovs-vsctl show

[root@kvmHOST1 ~]# ovs-vsctl show
e9¢c72657-5021-4db6-8cda-52adec50a53d
Bridge "vswitch001"

Port "vswitchOO1l"

"vswitchOO1l"

type: internal

ovs version: "2.4.0"

Note that, on creating a bridge, the system creates an internal interface whose
name corresponds to the name of the bridge; you can check it using the
ifcomfig command:

[root@kvmHOST1 ~]1# ifconfig vswitch001
vswitch001l: f£lags=4098<BROADCAST,MULTICAST> mtu 1500
ether 12:ff:be:9b:24:4d txqueuelen 0 (Ethernet)

What is type internal? It indicates a simulated network device that sends and
receives traffic. An internal interface whose name is the same as its bridge's name
is called the "local interface." Optionally, an IP address can be assigned to the
interface. This will help the host system communicate with the virtual machine,
useful in many ways.

A quick note on the output of the 0vVs-vsctlshow command:

* uuid: The uuid in the first line is a unique identification of the vSwitch.
This uuid is generated at the time of initializing the Open vSwitch instance.
At the moment we just have one bridge named vswitchi.

* Port: The ports attached to the bridge.

* Interface: The interface that logically corresponds to a port.

[253]

Software-Defined Networking for KVM Virtualization

Configuring an Open vSwitch bridge using

network scripts
To get the OVS bridge and its configuration a little more permanent with an IP

address assignment, the preferred approach is to use a network script. The following
steps demonstrate how to configure an OVS bridge named vswitcho002 and connect
physical interface etho as UPLINK. The UPLINK is used to get virtual machines on

the physical network:

1.

Make sure etho does not have an IP Address assigned to it. If you have only
one Ethernet card attached the system, you will have to get its console access
because this bridge configuration will move the IP Address from etho to the

vswitch002 interface.

Once that is verified, create a configuration file for the Open vSwitch bridge.

Name the file i fcfg-vmswitch002 and save it to the /etc/sysconfig/

network-scripts directory. The most important part is at the bottom of the
script; we are telling the system that the type of bridge is ovsBridge and our
device type is ovs. This way the Open vSwitch kernel module will be used:

[root@kvmHOST2] cat /etc/sysconfig/network-scripts/

DEVICE="vswitch002"
BOOTPROTO="dhcp"
DEFROUTE="yes"

IPV4 FAILURE FATAL="yes"
IPV6INIT=no

ONBOOT="yes"
TYPE="OVSBridge"
DEVICETYPE="ovs"

"OVSBridge", parameter configure
<name>.

"DEVICETYPE" Always set to "ovs".

and set an OVS bridge named

. In this example, I am using DHCP lease to get the
% IP address. If you don't have a DHCP server in your
A environment, use the standard IFCFG script parameters

to configure a static IP address.

[254]

Chapter 9

3. Now configure the /etc/sysconfig/network-scripts/ifcfg-etho file to
get this interface added to the vswitcho02 OVS bridge.

DEVICE="ethO"

ONBOOT="yes"

HWADDR="XX: XX : XX : XX : XX : XX"

TYPE="OVSPort"

DEVICETYPE="ovs"

OVS_BRIDGE:“vswitchOOZ"

TYPE="OVSPort" = Treat this device as OVSPort.

OVS_BRIDGE="vswitch002" = is the parameter that tell to connect
this device to "vswitch002" OVS bridge as port.

Restart the network service to get the bridge ready.
Check the Open vSwitch bridge configuration with the ovs-vsctl show
command as shown next:

[root@kvmHOST2 ~]1# ovs-vsctl show
429d7£42-5£52-4b65-a856-41bd0ae5be88

Bridge "vswitchO0O02"

Port "vswitchO0O02"

Interface "vswitchOO1l"

type: internal

Port "ethO"

Interface "ethO"

ovs_version: "2.4.0"

6. Check by pinging the gateway. You will be able to ping it but notice that the
IP address is now set on the vswitcho02 interface and etho is working as an
uplink. It is also possible to create a bond interface and attach it to the bridge
using the same approach.

There are many other options for OVS bridge configurations. It is strongly
recommended you go through this README file to know more about Open vSwitch
integration with Red Hat's network scripts: /usr/share/doc/Open vSwitch/
README . RHEL.

[255]

Software-Defined Networking for KVM Virtualization

Integrating KVM VMs and OVS

You learned how to create an OVS bridge and were introduced to various Open
vSwitch command-line tools. Now it's time to start using Open vSwitch as a virtual
networking infrastructure for the KVM virtual machines and experience the features
and all the great benefits it provides.

For existing virtual machines, it is good to attach the virtual machine directly to

the Open vSwitch bridge by modifying its XML file. Let us take the example of the
virtual machine vMo001. This VM is currently attached to a regular Linux bridge
named bro on the same host on which we created the vswitchoo1 OVS bridge. The
following procedure demonstrates the steps to migrate VMs from the Linux bridge
to the smarter Open vSwitch bridge:

1. Check the network configuration of the virtual machine. virsh will be
handy in performing this task. The dumpxml option prints VM configuration
information in XML:

[root@kvmHOST1 ~]# virsh dumpxml vm00l | grep -i 'interface type'
-A 5

<interface type='bridge'>

<mac address='52:54:00:ce:51:53'/>
<source bridge='br0'/>

<target dev='vnet0'/>

<model type='rtl8139'/>

<alias name='net0'/>

source bridge and target dev are particularly important elements in
identifying to which bridge a virtual machine is attached.

Note: vnet * is a naming convention used by KVM
. hypervisor for automatically generated TUN devices.
% It can optionally set to Custom name . Looking at these
s two elements in a VM's XML file we can quickly identify
that the vm001 is currently attached to the Linux bridge
named br0 with the vnet 0 TUP device.

Another method to get this info is to use the domiflist option with the
virsh command. This option prints a table showing brief information about
all virtual interfaces associated with the VM:

#virsh domiflist wvm001

Interface Type Source Model MAC

Chapter 9

vnet0 bridge bro0 rtl8139 52:54:00:ce:51:53

'brctl shows' command confirms that br0 is a Linux bridge

#brctl show

bridge namebridge id STP enabledinterfaces
bro 8000.fe54006cd757no vnet0
vnetl

2. To migrate this virtual machine from the vswitchoo1 Linux bridge to the
vswitcho01l OVS bridge and name its port in the OVS bridge vmoo1_vpo1,
shut down the VM and edit its XML configuration for the Ethernet interface:

#virsh edit vm 02

<interface type='bridge'>
<mac address='52:54:00:ce:51:53"'!'/>
<source bridge=vswitch001l/><- name of your OVS bridge

<virtualport type='openvswitch'/>< - This is important option to
add/

<target dev=<vm00l vpOl><- set up name of port IN OVS bridge (i.e
'vswitchO0O01')

<model type='virtio'/>

</interface>

The virtualport line marks the interface of an Open vSwitch port. The port
name is optional, but very useful when you perform diagnostic procedures.

Note: I strongly recommend setting the target device name.
This is the name of the network interface seen on Open
vSwitch. I always start the name with veth. The number
+ following is the interface number on the guest and I add
%“ the name of the VM. So veth0-vmtest corresponds to
eth0 on the guest vmtest. If you do not set the interface
name, you will get vnet<some numbers. If you have to
troubleshoot something on the virtual network, predefined
interface names help a lot.

3. Now start the virtual machine:

#virsh start vm00l

[257]

Software-Defined Networking for KVM Virtualization

4. Check the ovs-vsctl configuration to verify that the VM is now using;:
openvswitch bridge "vswitch00l" for network connectivity.
[root@kvmHOST1 ~]#ovs-vsctl show
e9c72657-5021-4db6-8cda-52adec50a53d

Bridge "vswitchOO1"
Port "vswitchOO1l"
Interface "vswitch001"
type: internal

Port "vm00l vpOl"
Interface "vm00l vpOl"
ovs_version: "2.4.0"

[root@kvmHOST1 ~]#

5. Port "vm001_vpo1" in above output belongs to the "vmoo1" virtual machine.
Double verify this by running virsh domiflist vmoo1:

[root@nkvmHOST1 ~]# virsh domiflist wvmO001l
Interface Type Source Model MAC

vm001 vpO0l bridge vswitch001l rtl18139 52:54:00:ce:51:53

This is a lengthy procedure; imagine how boring and time-consuming it would be
if you have many virtual machines and wished to migrate them to Open vSwitch
bridge. Is there quicker way to accomplish this? Yes, you can do it just by running a
single-line command. Awesome but which command, and how?

Remember the virt-xml command? The same command can be used here to make
this migration task a single command job:

#virt-xml vm 01 --edit --network virtualport type='openvswitch', source=vs
witch001, target=vm001l vpOl

Even better, virt-xml is scripting-friendly; you can use the for loop and other bash
scripting features for automation purposes, for example, to update the network
configuration of all the VMs defined on the host:

#for i in $(virsh list --all --name) ; do virt-xml $i --edit --network
source=NewNetwork ; done

[258]

Chapter 9

For new virtual machines, the easiest and most practical way is to create a libvirt
network that points to the OVS bridge. The following steps demonstrate how to
create a libvirt network:

1.

libvirt configurations are in XML files so the first step is to create a network
xml file. See the following example:

#cat ovs-network.xml

<network>

<name>NewNetwork</name>

<forward mode='bridge'/>

<bridge name='vswitchl'/>
<virtualport type='openvswitch'/>

</network>

Make sure that the name attribute of the bridge element exactly matches the
vSwitch bridge name and the type attribute of the virtualport element
matches Open vSwitch.

Once the XML file is ready, define the libvirt network, autostart it on host
boot, and start it:
#virsh net-define ovs-network.xml

Network vswitch-net defined from ovs-network.xml

virsh net-start vswitch-net

Network vswitch-net started

virsh net-autostart vswitch-net

Network vswitch-net marked as autostarted

This will create a virtual network named NewNetwork that is Open
vSwitch-compatible. You can verify its status and other information
by running the following:

virsh net-info NewNetwork

Name: NewNetwork
UUID: ee50a6£9-b298-4a72-89e4-47b411402fce
Active: yes

Persistent: yes
Autostart: yes

Bridge: vswitchO1l

[259]

Software-Defined Networking for KVM Virtualization

5. With this libvirt network in an active state, you can directly attach new
virtual machines to this network (or remove one). When you start the VM
attached to this virtual network, it will pass the necessary parameters to OVS
to apply the configuration automatically.

6. Select New Network in the new Network Selection of the virtual machine
creation wizard of virt-manager to get the VM directly connected to Open
vSwitch bridge. This is shown in the following screenshot:

New VM (on kvmHOST1)
m Create a new virtual machine
m— Step 4

of 4

Ready to begin the installation
Mame: | vm0010

0S: Generic
Install: Import existing OS image
Memaory: 1024 MiB
CPUs: 1
Storage: 1.5 GiB /var/lib/libvirt/images/myvm.img

Customize configuration before install

» Network selection

Virtual network 'NewNetwork' : Bridge network -

Cancel Back Finish

VLANs with Open vSwitch

Open vSwitch supports VLANS (Virtual LANs). You can create tagged as well as
native VLANS on an OVS bridge to segment the network into different broadcast
domains so that packets are only switched between ports that are designated for the
same VLAN. The following are a few advantages of VLANS:

* Increased bandwidth usage: less broadcast traffic on segments

* Security enhanced: different VLANSs cannot communicate directly

* Isolated environments for specialized network applications

[260]

Chapter 9

Configuring VLANSs for KVM virtual machines

Let's consider a scenario. In a single Open vSwitch bridge, add two different VLANs
and connect four guests to it. Two in VLANT1 with tag 10 and the others in VLAN2
with tag 20. As a result, VMS can communicate in the same VLAN, whereas, between
different VLANSs, they cannot:

1. This walkthrough assumes you already have four virtual machines defined
on the host and they are connected to an OVS bridge.

2. Iam using an OVS bridge named vswitcho01 and four fedora 21
VMs —Fedl, Fed2, Fed3, and Fed4 —to demonstrate the procedure:

[root@KVMHOST1 ~]# virsh list

IdName State

15Fedl running
16Fed2 running
17Fed3 running
18Fed4 running

[root@kvmHOST1 ~]ovs-vsctl show
e9c72657-5021-4db6-8cda-52adec50a53d
Bridge "vswitch001"
Port "fed4"
Interface "fed4"
Port "vswitch001™"
Interface "vswitchOO1l"
type: internal
Port "fedl"
Interface "fedl"
Port "fed3"
Interface "fed3"
Port "fed2"
Interface "fed2"

ovs version: "2.4.0"

[261]

Software-Defined Networking for KVM Virtualization

Presently, all these four virtual machines are in a single network subnet.
All the virtual machines can communicate with each other.

. Note: virsh domifnet <vmname> comes in handy
& if custom target names are not set to the VM's network

interface. This command will help you to identify which
VNET mapped to which VMs.

3. Add Fed1 and Fed2 VMs as an "access port" on vlanio:

VLanl

[root@kvmHOST1 ~]# ovs-vsctl set port fedl tag=10
[root@kvmHOST1 ~]# ovs-vsctl set port fed2 tag=10

vLan2:

4. Add red3 and Fed4 VMs as an "access port" on vlan20:
[root@kvmHOST1 ~]1# ovs-vsctl set port fed3 tag=20
[root@kvmHOST1 ~]1# ovs-vsctl set port fed4 tag=20

5. Verify the changes by checking the ovs-vswitch output:

[root@kvmHOST1 ~]# ovs-vsctl show
e9c72657-5021-4db6-8cda-52adec50a53d
Bridge "vswitch001"

Port "fed4"

tag: 20

Interface "fed4"

Port "vswitchOO1l"

Interface "vswitchOO1l"

type: intermnal

Port "fedl"

tag: 10

Interface "fedl"

Port "fed3"

tag: 20

Interface "fed3"

Port "fed2"

[262]

Chapter 9

tag: 10
Interface "fed2"

ovs version: "2.4.0"

Notice the tag field in the port section of the earlier command. The default
VLAN_mode used is "access", the native mechanism of the VLAN. A VLAN tag is
added when packets enter an access port, and stripped off when leaving an access
port. Other VLAN_modes are native—tagged, native—untagged, and trunk.

With this setting, pinging from Fed1 to Feda fails, As these two VMs are on two
different VLANSs although on the same OVS bridge, pinging from Fed3 to Fed4
succeeds, as these two VMs are on the same VLAN. This is true with Fed1 to Fed2;
these two VMs can communicate with each other.

Let's consider scenario two: four virtual machines with three VLANSs to isolate traffic
from different applications running on them. All four virtual machines should be
accessible to each other over three different network subnets.

This walkthrough assumes you already have four virtual machines defined on the
host and they are connected to an OVS bridge.

I am using an OVS bridge named vswitch001 and four fedora 21 VMs —Fed1, Fedz2,
Fed3, and Fed4 —to demonstrate the procedure:

1. Current Configuration, No VLAN configuration. All four virtual machines
can communicate with each other on a single subnet:

[root@kvmHOST1 ~]ovs-vsctl show
e9¢c72657-5021-4db6-8cda-52adec50a53d
Bridge "vswitchO0O1™"

Port "fed4"

Interface "fed4"

Port "vswitchOO1l"

Interface "vswitch001"

type: internal

Port "fedl"

Interface "fedl"

Port "fed3"

Interface "fed3"

Port "fed2"

Interface "fed2"

ovs_version: "2.4.0"

[263]

Software-Defined Networking for KVM Virtualization

2.

Modify the OVS ports of the four virtual machines.
ovs-vsctl set port fedl trunks=20,30,40
ovs-vsctl set port fed2 trunks=20,30,40
ovs-vsctl set port fed3 trunks=20,30,40
ovs-vsctl set port fed4 trunks=20,30,40

Verify the changes by checking the ovs-vsctl show command output as
shown next:
ovs-vsctl show
e9c72657-5021-4db6-8cda-52adec50a53d
Bridge "vswitchOO1"
Port "fed4"
trunks: [20, 30, 40]
Interface "fed4"
Port "vswitchOO1l"
Interface "vswitch001"
type: internal
Port "fedl"
trunks: [20, 30, 40]
Interface "fedl"
Port "fed3"
trunks: [20, 30, 40]
Interface "fed3"
Port "fed2"
trunks: [20, 30, 40]
Interface "fed2"

ovs_version: "2.4.0"

Notice the trunks field in the port section of the earlier command.
VLAN_mode trunks allow passing traffic from multiple VLANSs through
a port. Here, the allowed list is VLAN 20,30, 40. This is the tagged
implementation of VLAN.

Another quick way to check the OVS port configuration is to use the
ovsdb-clientMonitor command:

[root@kvmHOST1 ~]# ovsdb-client monitor Port name, trunks --detach

row action name trunks

bcabc803-8da7-41da-9172-7806965401ff initial "fedl"[20, 30, 40]
9el2eb7d-£31£f-481lc-bbdb-3a8a4cdfff31l initial "vswitchO001l" []

[264]

Chapter 9

f4e6c670-b441-4383-9acd-e95eb97ce45b initial "fed2"[20, 30, 40]
36c7e644-771c-494a-8b70-fa6f7a3effel initial "fed4"[20, 30, 40]
ec6a6272-£f944-4£02-ab8f-45f984cfced9 initial "fed3"[20, 30, 40]
[root@kvmHOST1 ~]#

4. Take the console of the virtual machines and configure a VLAN-tagged
interface in the guest operating system:

[root@Fedl] #vconfig add eth0 20 ; ifconfig eth0.20 192.168.20.1
[root@Fedl] #vconfig add eth0 30 ; ifconfig eth0.20 192.168.30.1
[root@Fedl] #vconfig add eth0 40 ; ifconfig eth0.20 192.168.40.1

Repeat these steps on the other three VMs. Make sure you use a different IP address,
You may also want to create IFCFG scripts to make the setting persistent across
reboots. Use cat /proc/net/VLAN/config to verify the tagged interfaces status:

[root@Fedl]l# cat /proc/mnet/vlan/config

VLAN Dev name | VLAN ID

Name-Type: VLAN NAME TYPE RAW PLUS VID NO PAD
eth0.20 | 20 | etho

eth0.30 | 30 | etho

eth0.40 | 40 | etho

Result:

With this setting in place, all four VMs will be able to communicate with each other
over three different subnets.

Note that, if you want the virtual machines to receive untagged

(native VLAN) traffic as well as tagged (trunked) traffic, set the
’ vlan mode to native-untagged:

#ovs-vsctl set port <port> vlan mode=native-untagged

To verify which VLAN_mode is currently in use for a particular port or group of
ports, use the ovsdb-client command as shown next:

ovs-vsctl --format table --column=name,vlan mode list port
name vlan mode

"fed4"trunk

"fed2"trunk

"vswitchO0O01l" []

"fed3"trunk

"fedl"native-untagged

[265]

Software-Defined Networking for KVM Virtualization

Using libvirt integration

If you find this manual method of configuring OVS vLANSs a bit hard to remember
and lengthy, the portgroup feature of libvirt will make it much easier. portgroup
provides a method of easily putting guest connections to the network into different
classes, with each class potentially having a different level or type of service.

We can create multiple portgroup classes specifying specific VLAN configurations
and then use them while creating new virtual machines or by editing existing VM
network configurations.

Let us see how to configure portgroups for our existing libvirt NewNetwork network
and how to connect a virtual machine to the specific trunk or VLAN easily:

1.

First check the libvirt network present on the system using the
virsh net-list command:

#virsh net-list

Name State Autostart Persistent
default active yes yes
NewNetwork active no yes

Modify the desired libvirt network's XML definition to include the portgroup
assignments as shown next, using virsh net-edit commands:

<portgroup name='novlan' default='yes'>
</portgroup>
<portgroup name='vlan-finance'>
<vlan>
<vlan-mode=native-tagged>
<tag id='10'/>
</vlan>
</portgroup>
<portgroup name='vlan-marketing'>
<vlan trunk='yes'>
<tag id='20'/>
<tag id='30'/>
<tag id='30'/>
</vlan>

</portgroup>

[266]

Chapter 9

3. Restart the libvirt network to select changes:

[root@kvmHOST1] # n=NewNetwork; virsh net-destroy $n ; virsh net-
start $n

Network NewNetwork destroyed

Network NewNetwork started

4. Dump the XML definition of the libvirt network to ensure the portgroup
configuration has loaded:
[root@kvmHOST1 ~]# virsh net-dumpxml NewNetwork
<network>
<name>NewNetwork</name>
<uuid>03£f36174-04cb-4446-87ba-729a4dee4dfd</uuid>
<forward mode='bridge'/>
<bridge name='vswitch001l'/>
<virtualport type='openvswitch'/>
<portgroup name='novlan' default='yes'>
</portgroup>
<portgroup name='vlan-finance'>
<vlan>
<tag id='10'/>
</vlan>
</portgroup>
<portgroup name='vlan-markating'>
<vlan trunk='yes'>
<tag id='20"'/>
<tag id='30'/>
<tag id='30'/>
</vlan>
</portgroup>

</network>

As you can see from the preceding, we modified the libvirt NewNetwork network
and created three portgroups: noVLAN, VLAN-finance, and VLAN-marketing.

The noVLAN portgroup is the default portgroup and has noVLAN configurations
defined. The VLAN-finance portgroup has tag 10 VLAN defined and the
VLAN-marketing portgroup has a VLAN trunk defined for tag 10,20,30.

[267]

Software-Defined Networking for KVM Virtualization

Now you can use these portgroups through virt-manager or virt-install to get your
virtual machine connected to specific VLAN tags or trunks.

New VM (on kvmHOST1)

Create a new virtual machine
Step 4 of 4

Ready to begin the installation
Mame: | Userl0_Finance

0S: Generic
Install: Import existing OS image
Memory: 1024 MiB
CPUs: 1
Storage: 0.0 GiB /var/lib/libvirt/images/.img
Customize configuration before install

Defined portgroups are listed here., User can choose

~ the desired one.
» Network selection

Virtual network 'NewNetwork' : Bfdge network

Portgroup: | vlan-finance -

Cancel Finish

With this approach you can quickly attach VMs to desired VLAN or trunks.

Open vSwitch QoS - controlling KVM VM
traffic

Open vSwitch is aimed at addressing shortcomings in using bridging in virtualized
environments. One of the great features of Open vSwitch over Linux bridging is the
ability to set very granular network traffic, shaping and policing rules on the virtual
switch to implement network QoS. The network QoS (quality of service) refers to
the ability of the network to handle traffic such that it meets the service needs of
certain applications. It is often used as a synonym for traffic control. The following
screenshot shows how QoS helps in managing traffic:

[268]

Chapter 9

Normal traffic

Entertainment traffic

Critical traffic

Bandwidth Use without Qos control

Normal traffic

Entertainment traffic

Critical traffic

With proper QoS implementation in place, one can limit the input or output
transmission rate of a class of traffic based on user-defined criteria. The previous
screenshot shows how network shaping of entertainment traffic helped boost critical
application performance by dedicating the required network bandwidth. The
network QoS technique is widely used by IaaS providers to restrict bandwidth

of the VPS (Virtual Private Server) depending on the hosting plan.

The terms input (inbound) and output (outbound) are more often referred to as
ingress and egress in networking terminology when it comes to QoS. Ingress =
packets entering your network, egress= packets exiting the network. Ingress policing
is used for incoming traffic at the interface and QoS or Queue shaping is used for
egressing (outgoing). Before we start with the actual implementation of QoS, it is
important to understand what policing and shaping are:

* Policing: This network traffic controlling mechanism can be used to ingress
or egress on an interface. It simply drops or remarks excess packets. There is
no queuing or buffering. It controls the output rate by dropping packets.

* Shaping: This network traffic controlling mechanism is for ingress traffic
only. It buffers and queues excess packets, meaning there is less chance of
causing retransmissions due to dropped packets.

Controlling the inbound (ingress) traffic of VMs: In order to apply QoS on a
VM to control its inbound traffic, modify its interface table to configure an ingress
policing rule.

[269]

Software-Defined Networking for KVM Virtualization

There are two rules to set:

* ingress_policing rate: The maximum rate (in Kbps) that this VM should
be allowed to send

* ingress_policing burst: A parameter to the policing algorithm to indicate
the maximum amount of data (in Kb) that this interface can send beyond the
policing rate

Use Case: Virtual Machine (Fed1) is your file hosting server. Users connect to it to
download files or images. You recently noticed that, due to very high download
requests, this VM is eating your network bandwidth causing problems for other
critical VMs. Rate limiting is an ideal solution for this.

Applying traffic rate limiting
Let us see how we can apply traffic rate limiting on an interface for designing
Network QoS. The steps mentioned next will walk you through the procedure:

1. As arate limiting policy is applied on the interface, find out the
corresponding network interface name of the virtual machine.
virsh domiflist <vm-names isahandy command for this:

[root@kvmHOST1 ~]1# virsh domiflist Fedl
Interface Type Source Model MAC

fedl bridge NewNetwork virtio 52:54:00:b3:40:

2. SSH to the virtual machine and check what the current ingress traffic
bandwidth is. I am using the iperf command to determine it. There are
many other utilities available such as netperf, check speed, and so on:

[root@Fedl ~]1# iperf -s

Server listening on TCP port 5001

TCP window size: 85.3 KByte (default)

[4] local 10.0.0.1 port 5001 connected with 10.0.0.2 port 35322
[ID] Interval Transfer Bandwidth

[4] 0.0- 5.0 sec 3.81 GBytes 6.51 Gbits/sec

iperf -s startiperf in server mode. Notice that the bandwidth shows 6.51
Gbits/sec. Huge!

[270]

Chapter 9

To rate-limit Fed1 to 20 Mbps, use these commands:
ovs-vsctl set interface fedl ingress policing rate=20000

ovs-vsctl set interface fedl ingress policing burst=200

To see the current limits applied for the fed1 network interface, run this
command: #ovs-vsctl list interface fedl and look for values in the
ingress policing rate and ingress policing burst columns or use
this more fine-tuned method to fetch details from the ovsdb. #ovsdb-client
monitor Interface name, ingress policing burst, ingress policing
rate --detach

3. Now SSH the same system and run the iperf command again:
[root@Fedl ~]#iperf -s
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)

[3] local 10.0.0.1 port 55922 connected with 10.0.0.2 port 5001
[ID] Interval Transfer Bandwidth
[31 0.0- 6.0 sec 1.58 MBytes 2.23 Mbits/sec

Check the bandwidth, It reduced to 2.23 Mbits from 6.51 Gbits. You can
change the bandwidth limit on the fly.

4. To remove the applied limits, set the value of the preceding two parameters
to zero:

#ovs-vsctl set interface fedl ingress policing rate=0

#ovs-vsctl set interface fedl ingress policing burst=0

Zero (0) means none, no limit applied.

Controlling outbound (egress) traffic

Network traffic that begins inside a network and proceeds through its routers to
a destination somewhere outside the network is egress traffic. It is applied at port
level. You can create queues with different speeds, and put packets into those
different queues depending on QoS policy.

One or more QoS policy can be assigned to a port. Each QoS policy consists of a class
and a qdiscs. Classes and qdisc use the Linux kernel's tc implementation.

[271]

Software-Defined Networking for KVM Virtualization

Use Case: You created 10 VMs and gave them to your students for their project work,
Students found these systems (VMs) are connected to a high-speed network and the
download speed is amazing so they could not resist it and started downloading huge
files from the Internet. You can use network shaping features to prevent this and
give just the required network bandwidth to your students. You may give a

higher bandwidth to the student who is leading the project and a limited one

to the members.

Applylng traffic shaping
Create a queue (g0) with the required network bandwidth. Here in this
example I am limiting the egress traffic bandwidth to 10 Mbps:

#ovs-vsctl --id=@g0 create queue other-config:min-rate=10000000
other-config:max-rate=10000000

Here:

[e]

min-rate: Its minimum guaranteed bandwidth in bytes

o

max-rate: Its maximum allowed bandwidth, in bytes

Setting both min-rate and max-rate to the same value will give the same
speed permanently. You can also configure rate limiting policing here by
setting the max-rate value higher than min-rate and applying the gos rate
limiting mechanism,

2. List the currently available queues on the ovs switch:
[root@kvmHOST1 ~]# ovs-vsctl list queue

_uuid : 05c73c42-3191-4025-96ce-cd6b86ab2775

dscp : [l

external ids : {}

other config : {max-rate="10000000", min-rate="10000000"}

3. Create a gos (newqos) and connect a queue into the gos:
#tovs-vsctl create gos type=linux-htb queues=0=05c¢73c42-3191-4025-
96ce-cd6b86ab2775

4. List the currently available queues on the ovs switch:
[root@kvmHOST1 ~]1# ovs-vsctl list qgos

_uuid : 09£5b3c4-35b7-4326-bae8-780b7ccadb3f
external ids : {}

other config : {}

queues : {0=05c73c42-3191-4025-96ce-cd6b86ab2775}
type : linux-htb

[272]

Chapter 9

. Note: The QoS can be enforced using Linux HTB (Linux
% Hierarchical Token Bucket — please read up on this) or
s Linux HSFC (Linux Hierarchical Fair Service Curve —
please read up on this).

Apply this QoS to a virtual machine's port. Use virsh domiflist <vm_
name> to find out the network port name of the VM:

[root@kvmHOST1 ~]# ovs-vsctl --column=name,gos list port fedl
name : "fedl™

gos : 09f5b3c4-35b7-4326-bae8-780b7ccadb3f
[root@kvmHOST1 ~]#

SSH to the virtual machine and check the inbound speed by downloading
any file from the Internet. It should be limited to 10 Mbps. Test the result on
the Fed1 machine using iperf:

Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)

[4] local 10.0.0.1 port 5001 connected with 10.0.0.2 port 35325
[ID] Interval Transfer Bandwidth
[41 0.0- 6.1 sec 7.00 MBytes 9.57 Mbits/sec

Bandwidth is now 9.57 Mbits. Before applying the network shaping it was
6.51 Gbits/sec.

It is also possible to create qos and queue together. An example is given next:
root@switch:~# ovs-vsctl set port ethl gos=@newgos -- --id=@newgos
create gos type=linux-htb queues=0=@q0 -- --id=@g0 create queue

other-config:min-rate=2000000 other-config:max-rate=2000000

To deconfigure the QoS record from a port, run:

#ovs-vsctl clear Port ethl gos

To remove qos and the | queue, run:

ovs-vsctl destroy gos (uuid)

ovs-vsctl destroy Queue (uuid)

or
"ovs-vsctl -- --all destroy Queue"
"ovs-vsctl -- --all destroy gos"

[273]

Software-Defined Networking for KVM Virtualization

Overlay networks

Overlay networks are industry-standard techniques designed to achieve Network
Virtualization. Network Overlays such as Virtual eXtensible Local Area Network
(VXLAN) and Generic Routing Encapsulation (GRE) achieve network virtualization
by overlaying layer-2 networks over physical layer-3 networks, which enables
network scalability and the efficient use of current network infrastructure.

Open vSwitch supports multiple tunneling protocols (GRE, VXLAN, STT, and
Geneve, with IPsec support), which allow scaling private networks over public
networks. You can connect two or more Open vSwitches running on different hosts
with each other and form a distributed switch.

Use Case of overlay networks: Suppose you have an application cluster (five VMs
serving as nodes) on the KVM1-Mumbai-DC host, The cluster is architectured on a
private network that is isolated to the host, The recent growth of your application
requires more nodes on the cluster but you found there is no scope to create new
VMs on the host as it is already over-utilized. As the cluster is on a private network
there is no scope to live-migrate VMs and do the load balancing and so on.

Solution: Get a new host, perhaps KvM2 -Mumbai -DC. Install Open vSwitch. Create
an OVS bridge with the exact same name that you have on KVM1-Mumbai-DC.
Connect these two switches to each other using a GRE or VxLan tunnel. Now, create
VMs (nodes) on this new host and connect to your private network that is shared
between two hosts using a VxLan tunnel.

Configuring Open vSwitch tunnels with
VxLan

The following diagram represents two instances running on two separate hosts
connected by a VxLan tunnel. Also illustrated are the required supporting physical
and virtual components. VTEP interfaces allows us to create Layer 2 network over
layer 2.

[274]

Chapter 9

>

IP=10.0.0.1 IP=10.0.0.2

MAC=52:54:00:0e:08:b3 MAC=52:54:00:30:de:e3

VNI=10 VNI=10

KUTHOSTE 192.168.1.10 192.168.1.20 KaHOST2

1

L3 Network
[[] VXLAN segment-1 w/ VNI=10

VTEPs responsible for
encap/decap packets at
both ends of the wire

The example depicted earlier steps through the creation of a VXLaN tunnel between
two OVS bridges running on two separate bare metal hosts named KvMhost1 and
KvMhost2.

KvmHOST1 host side configuration

We have to first create a virtual tunnel endpoint and then connect it to the virtual
tunnel endpoint created on a second host to form the tunnel. The following steps are
involved in VTEP creation:

1.

First verify to which OVS bridge the vm1 is connected:
#virsh domiflist vml
Interface Type Source Model MAC

vnet0 bridge vswitch vlans portgroup rtl8139
52:54:00:b7:d1:3a
Check the configuration of the ovs switch:
ovs-vsctl show
6el121fc0-2£f05-42a3-b265-7e5ab958bb91l

Bridge vswitch

Port "vnetO"

Interface "vnetO"

Port vswitch

Interface vswitch

type: intermnal

ovs_version: "2.4.0"

[275]

Software-Defined Networking for KVM Virtualization

3. Ensure the connectivity between kvmhost1 and kvmhost2 host over the layer

3 IP address. Check the ping result: $ping 192.168.1.20.

4. Run the ovs-vsctl command on kvmhost1 to create the tunnel and link it to

the bridge on kvmhost2:

#ovs-vsctl add-port vswitch vxlanl -- set interface vxlanl
type=vxlan options:remote ip=192.168.1.20

5. Re-check the ovs switch configuration and ensure the interface with vxlan

has been created:

Bridge vswitch

Port "vxlanl"

Interface "vxlanl"

type: vxlan

options: {remote ip="192.168.1.20"}
Port "vnetO"

Interface "vnetO"

Port vswitch

Interface vswitch

type: intermnal

ovs version: "2.4.0"

kvmHOST2 host configuration

Repeat the same steps on KVMHOST?2 that are performed on HOST1. Just ensure
that the remote_ip option for the vxlan interface is set properly. The exact steps are

documented next:

1. First check to which ovs bridge the vm2 is connected:
#virsh domiflist wvm2

Interface Type Source Model MAC

vnet0 bridge vswitch vlans portgroup rtl8139 52:54:00:fa:e9%:a3

2. Check the configuration of the ovs switch:
#ovs-vsctl show
Obc49cle-71c6-4b80-8£f14-d83ddf332eac

Bridge vswitch
Port vswitch

Interface vswitch

[276]

Chapter 9

type: internal
Port "vnetO"
Interface "vnetO"

ovs version: "2.4.0"

3. Ensure connectivity between the kvmhost2 and kvmhost1 hosts over layer 3.
Ping result. Check $ping 192.168.1.10.

4. Run the ovs-vsctl command on kvmhost2 to create the tunnel and link it to
the bridge on kvmhost1:

$ovs-vsctl add-port vswitch vxlanl -- set interface vxlan2
type=vxlan options:remote ip=192.168.1.10

5. Re-check the ovs switch configuration and ensure the interface with vxlan
has been created:

Bridge vswitch

Port "vxlanl"

Interface "vxlan2"

type: vxlan

options: {remote ip="192.168.1.10"}
Port "vnetO"

Interface "vnetO"

Port vswitch

Interface vswitch

type: internal

ovs version: "2.4.0"

The preceding configuration example is for two hosts. In this example, the VXLAN
tenant IP addresses are 10.0.0.0/24 and the hypervisor IP network that serves it
is 192.168.1.10/24. This example uses an OVS instance named vswitch. The OVS
instance has the following interfaces attached:

A VXLAN port named vxlani that uses UDP port 478 9 and vnid 11. A tap interface
for the VM named VNETO.

With this configuration in place, 10.0.0.1 can communicate with 10.0.0.2 as if
they have a direct L2 connection between them.

[277]

Software-Defined Networking for KVM Virtualization

Ping results:

ping 10.0.0.1 -c 2

PING 10.0.0.1 (10.0.0.1): 56 data bytes

64 bytes from 10.0.0.1: seqg=0 ttl=64 time=3.010 ms
64 bytes from 10.0.0.1: seqg=1l ttl=64 time=3.639 ms

ping 10.0.0.2 -c 2

PING 10.0.0.2 (10.0.0.2): 56 data bytes

64 bytes from 10.0.0.2: seqg=0 ttl=64 time=3.984 ms
64 bytes from 10.0.0.2: seqg=1l ttl=64 time=3.694 ms

"tcpdump -i vnetO" on hosts show Vxlan encapsulation

tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode

listening on vnetO, link-type EN1OMB (Ethernet), capture size 262144
bytes

01:32:47.601984 IP 192.168.1.10.55453 > 192.168.1.20.vxlan: VXLAN, flags
[I] (0x08), vni 11

Similarly, a GRE tunnel can be created; just change the interface type to gre and you
have a GRE tunnel instead of a VxLan one.

Hostl : ovs-vsctl add-port brl grel -- set interface grel type=gre
options:remote ip=192.168.1.20

Host2 : ovs-vsctl add-port brl grel -- set interface grel type=gre
options:remote ip=192.168.1.10

Network port mirroring

Open vSwitch supports port mirroring features out-of-the-box. This feature is exactly
similar to the port mirroring capability available on the new-generation physical
switches. With port mirroring, network administrators can get an insight into what
kind of traffic is flowing on the network and implement traffic analysis systems

such as IDS/IPS. It is also helpful in troubleshooting network-related issues in the
virtual infrastructure.

[278]

Chapter 9

The basic purpose of port mirroring is to replicate layer 3 traffic flowing from one or
more virtual ports to a designated port. It's easy to implement but take the following
into consideration before you go ahead and configure it:

* A virtual machine with port mirroring enabled uses more host CPU and
RAM as compared to other virtual ports.

* Port Mirroring may reduce the network latency if not implemented correctly.

* Be aware that enabling port mirroring reduces user privacy. Plain passwords
will be clearly visible to analysis tools.

Configuring port mirroring

To implement port mirroring with Open vSwitch, the first thing to do is to create and
add a mirror to the bridge:

#ovs-vsctl -- --id=@m create mirror name=M1l -- add bridge vswitch001

mirrors @m

Here we're actually running two ovs-vswitch commands at once; each

command is introduced by --. The first command creates a mirror named M1 and,
thanks to the --id=em part, saves its UUID in the "variable" @m, which remains
available for later commands and associates the newly created mirror with the

<vswitcho001> bridge,

The mirror information is stored in ovsdb immediately and you get a mirror visible
on the OVS bridge. Initially, it's a blank mirror; it will not copy any packets:

#ovs-vsctl list mirror

_uuid

external ids
name

output port
output vlan
select all
select dst port
select src port
select vlan

statistics

: bdfdc9e4-d6db-4a45-a3ac-6alladdccc95

: {}

: M1

[1
[1

: false

[1
[1
[1

: {}

[279]

Software-Defined Networking for KVM Virtualization

In order to start the mirroring, you have to define a source or destination port (or
both) and an output_port. The source and destination port terminology is a little
confusing. At first it looks as if the source is where we want to capture the traffic
from and the destination port is where to dump the captured traffic, but it's not like
that. Let's get a clear understanding of the terminology used:

* select_dst_port: Ports on which incoming packets are selected
for mirroring,.

* select_src_port: Ports on which outgoing packets are selected
for mirroring,.

* select_all: This is Boolean. When set to true, every packet (incoming or
outgoing) on any port connected to the bridge will be mirrored.

* output_port: Specifies to which port we want to send the mirrored traffic.
So now we have the mirror associated with the OVS bridge. The next step is
to configure its source ports and destination ports, for example, if you want
to mirror all traffic going in and out of the fed1 port and we want to send it
to the dummyo01 bridge port.

The fed1 port belongs to the virtual machine named Fed1 and the dummy01 port is

a dummy port created for testing purposes. You may choose any other port that is
connected to the bridge. It could be your IDS VM port or the packet analysis system's
port. The following are the steps:

1. First verify that fed1 does indeed belong to the Fed1 virtual machine.
[root@kvmHOST1 ~]# virsh domiflist Fedl
Interface Type Source Model MAC

fedl bridge NewNetwork virtio 52:54:00:6c:92:c7

2. Create a dummy01 port on the host and on the ovs bridge.
#ip link add name dummyO0 type dummy
#tovs-vsctl add-port vswitch001l dummyO

3. Add the fed1 portin select_dst_port and select_src_port to start
capturing its incoming and outgoing traffic:
[root@kvmHOST1 ~]# ovs-vsctl -- --id=@fedl get port fedl -- set
mirror M1 select_src_port=@fedl select_dst_port=@fedl

[280]

Chapter 9

Check the ovs-vsctl list mirror output to ensure that the fed1 port

is configured to capture incoming and outgoing packets. The mirror
configuration of the bridge doesn't accept the name; it shows the uuid of the
port. If you are not sure about the uuid of the port whose traffic you want to
mirror, check the output of ovs-vsctl list port <port-name>command:

[root@kvmHOST1 ~]# ovs-vsctl list mirror

_uuid : bdfdc9e4-d6édb-4a45-a3ac-6alladdccc95
external ids : {}

name : M1

output port : [l

output vlan : [1

select all : false

select dst port : [aldf93f2-9e50-4c2e-9e71-7a8a6619e406]
select src port : [aldf93f2-9e50-4c2e-9e71-7a8a6619e406]
select vlan : [1

statistics : {}

Now set the output_port attribute, specifying where to dump the capture
packets. In our case, it's dummy0:

[root@kvmHOST1 ~]# ovs-vsctl --column= uuid list port dummyO
_uuid : a5add212-58ff-438f-bbf2-c8ca850a4e8a
[root@kvmHOST1 ~]#

#ovs-vsctl set mirror mymirror output-port=a5add212-58ff-438f-
bbf2-c8ca850a4e8a

root@kvmHOST1 ~]# ovs-vsctl list mirror

_uuid : bdfdc9e4-dédb-4a45-a3ac-6alladdccc95
external ids : {}

name : mymirror

output port : abadd212-58ff-438f-bbf2-c8ca850a4e8a <<
output vlan : [1

select all : false

select dst port : [aldf93f2-9e50-4c2e-9e71-7a8a6619e406]
select src port : [aldf93f2-9e50-4c2e-9e71-7a8a6619e406]
select vlan : [1

statistics : {tx bytes=0, tx packets=0}

[281]

Software-Defined Networking for KVM Virtualization

6. With this, OVS should do the port mirroring of any traffic that is flowing
from the fed1 port to dummy0. You can quickly verify that by using tcpdump.
Start packet capturing:
on dummyO :

[root@kvmHOST1 ~]1# ip link set dummyO up
[root@kvmHOST1 ~]# tcpdump -i dummy0

7. Now send or receive some traffic on the Fed1 VM. A ping test should be
adequate to verify this:

[root@kvmHOST1 ~1# tcpdump -i dummyO

15:46:01.239593 IP 10.0.0.1 > 10.0.0.2: ICMP echo request, id 917,
seq 3, length 64

15:46:01.240342 IP 10.0.0.2 > 10.0.0.1: ICMP echo reply, id 917,
seq 3, length 6

This HTTPD traffic:

15:46:55.318655 IP 10.0.0.2.37591 > 10.0.0.1.http: Flags [P.], seq 1:73,
ack 1, win 913, options [nop,nop,TS val 21775344 ecr 21777310], length
72: HTTP: GET / HTTP/1.1

Are you more interested in watching all traffic passing through the OVS bridge,
instead of a single port? If so, the quickest way to mirror all traffic passing through
the bridge to a given port is to use the select_all property of the mirror:

ovs-vsctl -- --id=@dummy0 get port dummy0 -- set mirror mymirror
select all=true output-port=@dummyO

How about VLANSs? Yes, VLAN traffic can also be mirrored. Use select-VLAN and
output-VLAN attributes to disable mirroring. Run:

#ovs-vsctl clear bridge vswitch00l mirrors

Managing Open vSwitch using the
OpenDaylight SDN controller

Till now we have seen how Open vSwitch works in normal mode. In normal
mode, Open vSwitch works just like a typical L2 learning switch with an option

to manipulate the flow using the ofct1 command. While this approach offers
features such as tunneling, QoS, Overlay, and SPAN natively, the real value comes
from being able to directly influence flow tables, creating a powerful L2-1.4 service
insertion in the Open vSwitch data plane to bring programmability to otherwise
inflexible networks.

[282]

Chapter 9

By connecting an Open vSwitch to an SDN controller, we get the level of abstraction
and automation required to revolutionize networking. It essentially turns OVS into
an access layer to the virtual environment, taking instructions from the centralized
controller that pushes flows down to the vSwitch. The following diagram represents
the high-level architecture of Open vSwitch integration with a SDN controller:

Central view point

Controller
A openflow protocol
Push down rule J
v flow table

O Openflow switch I:I

This diagram can be broken down into three parts: flow tables installed on switches,
an SDN controller, and an OpenFlow protocol for the SDN controller to talk securely
with switches.:

* The flow table is the network switch's intelligence that is referred by its data
plane to decide how to transfer received packets.

* The OpenFlow protocol is the key enabler of Software Defined Networking.
The SDN controller interacts with Open vSwitch, using OpenFlow protocol
to manipulate and add fields in a frame of traffic (L2 to L4) to make decisions
programmatically. This decision might be to modify some fields, or to
encapsulate the frame inside something else, or simply forward out a port.
OpenFlow is defined in RFC 7426.

* AnSDN controller is an application in software-defined networking that
manages the control plane of one or more switches via OpenFlow channels. It
also provides a network-wide abstraction for applications through a rich set
of REST APIs that add programmable capability for networks.

[283]

Software-Defined Networking for KVM Virtualization

Today, there are many SDN Controllers on the market, Both proprietary and open
source options are available. OpenDaylight is an open source SDN controller with
the largest community support and is most often regarded as the industry's de facto
standard. Hence, I have chosen this controller to demonstrate implementation of
Open vSwitch in flow mode to manage KVM VMs networks. Fundamentally,

any SDN controller that supports the OpenFlow protocol can be used with

Open vSwitch.

I'll walk you through the process of installing and configuring OpenDaylight on
a Fedora 22 System, connecting Open vSwitch to the controller, and basic flow
management methods.

These steps assume that you've already configured OVS and it is being used to
facilitate network connectivity for the KVM VMs. The following screenshot shows
the basic topology of what we have going on here:

OpenDayLight

vswitchOO
192.168.1.20 192.168.1.10

Two systems: ODL- sys is where the OpenDaylight application is installed and
KVMHOST1 is the KVM Hypervisor with four virtual machines connected to the
vswitch001 OVS bridge. The VM network is 10.0.0.0/24 and it's an isolated network.
Both systems (kVMHOST001 and ODL-sys) are connected over an interface network
and are part of the 192.168.1.0/24 subnet.

[284]

Chapter 9

Installing the OpenDaylight controller
(ODL-sys)

You need Fedora 22 x86_64 system. The OpenDaylight Hydrogen release is available
through the yum repository.

Hardware requirements

The minimum and recommended hardware requirements outlined here are based
on a typical small- to medium-sized installation. You can also use a VM for the
OpenDaylight controller system. It is also feasible to install the OpenDaylight
controller on the same system where OVS is being used.

Minimum:

e A dual core CPU

* 4 GB of available system RAM if Data Warehouse is not installed and if
memory is not being consumed by existing processes

* 25GB of locally accessible, writable, disk space
* 1 Network Interface Card (NIC) with bandwidth of at least 1 Gbps

Installing and configuring ODL

Perform the following steps to get started:

1. Configure the OpenDaylight yum repository:

#rpm -ivh https://nexus.opendaylight.org/content/repositories/
opendaylight-yum-fedora-19-x86 64/rpm/opendaylight-
release/0.1.0-2.fcl9.noarch/opendaylight-release-0.1.0-2.£fcl9.
noarch.rpm

2. Install the OpenDaylight server and its dependencies:

#yum install opendaylight-serviceprovider

3. Start the OpenDaylight server and enable it on boot:

systemctl enable opendaylight-controller.service
systemctl disable opendaylight-controller.service

systemctl start opendaylight-controller.service

[285]

Software-Defined Networking for KVM Virtualization

4. Now access the OpenDaylight dashboard from the following URL: http://
ip-address:8080:

[Note: Configure the firewall to open ports 8080 and 8181.]

OPEN

7‘:'-& Log In

Default credentials: user: admin and password: admin

Adding an Open vSwitch (vswitch001) instance to
the OpenDaylight controller on system (ODL-sys)

The following procedure outlines how to add an Open vSwitch (referred to as a node
by ODL):

1. Make sure that that the ODL-sysnetwork-pingable port 6633 is open.
The OpenDaylight controller listens on OpenFlow port 6633 to connect
to its nodes.

[286]

Chapter 9

2. Specify the ODL SDN controller address on the vswitcho01 bridge using
the set-controller option for the ovs-vsctl command as follows #ovs-vsctl
set-controller bridge target is the syntax. Target may use any of the
following forms: ssl:ip[:port], tcp:ip[:port], unix:file, pssl: [port]
[:ip]. By default, the OpenDaylight controller uses tcp:ip [port] as the
target form on the fedora 22 system:\

#ovs-vsctl set-controller vswitchOOl
192.168.1.20:6634

3. Execute ovs-vsctl show and verify that the switch is connected to
the controller:

[root@kvmHOST1 ~]# ovs-vsctl show
e9¢c72657-5021-4db6-8cda-52adec50a53d

Bridge "vswitch0O01"

Controller "tcp:192.168.1.2:6633"

is_connected: true

Port "vswitch001™"

Interface "vswitchO0O1"

type: internal
Look at Controller "tcp:192.168.1.2:6634" and is_connected: true;
this means that your Open vSwitch connects properly to the OpenFlow
controller.

4. Now login to the OpenDaylight dashboard, You will see that the SDN
controller has learned the node and its topology. OpenDaylight uses the Link
Layer Discovery protocol to learn about ports connected to the switch:

o3 Learno -
Static Route Configuration Subnel Galeway Configuration m
o, q,

[287]

Software-Defined Networking for KVM Virtualization

5. Now ping the virtual machines connected to the OVS bridge and monitor the

OF flow table of the switch:
"#ovs-ofctl ofctl dump-xml vswitch001™"

6. You will notice that the first packet arriving on the switch's datapath goes to
the SDN Controller (SlowPath). The controller maintains the MAC table of
the switch; using this, it decides which port the packet needs to send on. It
works as illustrated in the following diagram:

Physical Hardware/Hypervisor
=
Open vSwitch Controller
or Controller (x)

wi B w2

g *,,,,,,J o)
% | Open vSwitch Data Path 1 g
|)

The first packet goes through the slowpath to learn the destination port and
install the flow on the datapath; subsequent packets use the installed flow without
requiring each packet to go to the controller, They directly use the fastpath (data
path). However, note that each Flow Table entry has two timers:

<—» First Packet in a Flow
Subsequent Packets

* idle_timeout: The seconds when there are no matching packets and after
which the flow is removed (zero means never timeout)

* hard_timeout: Seconds after which the flow is removed (zero mean
never timeout)

If both idle timeout and hard timeout are set, then the flow is removed
when the first of the two expires. Let us learn more about OpenFlow via the
following example:

A simple example of OpenFlow:

cookie=0x0, duration=14.604s, table=0, n packets=61, n bytes=7418,
idle timeout=10, hard timeout=30,tcp, vlan tci=0x0000, dl
src=52:54:00:CE:51:52, dl dst=52:54:00:CE:51:53, nw src=10.0.0.1, nw_
dst=10.0.0.2, nw tos=0, tp src=22, tp dst=554 actions=output:1

It's self-explanatory. If the traffic comes in from src MAC address
52:54:00:CE:51:52 destination mac address 52:54:00:CE: 5153, traffic is TCP
traffic, src ip=10.0.0.1, dest ip=10.0.0.2, TCP source port 22, TCP destination
port 554 forward the packet to port 1 (actions:1).

[288]

Chapter 9

Using OpenFlow allows us to create powerful L2-L4 service insertions. A flow

contains entries that match the packets and apply actions that may include packet
forwarding, packet modification, and others. The following diagram gives a basic
idea about flow tables:

Rule

Action

Packet+byte counters

« Forward packet to zero or more ports
« Encapsulate and forward to controller
* Send to normal processing pipeline

* Modify Fields
¢ Any extensions you add!

Switch
Port

VLAN
ID

VLAN
pcp

MAC
src

MAC
dst

Eth
type

IP
Src

IP
Dst

IP
ToS

IP
Prot

L4
sport

L4
dport

+ mask what fields to match

Basically, rules are used to create expressions. If expressions match, the defined

action is applied. OpenFlow supports extensive flow matching capabilities
that include:

Meta - Tunnel ID, In Port, QoS priority, skb mark
Layer 2 - MAC address, VLAN ID, Ethernet type
Layer 3 - IPv4/IPvo6 fields, ARP
Layer 4 - TCP/UDP, ICMP, ND

Chain of actions, output to ports (single, range, flood, and mirror)

Discard, resubmit to another table

Packet mangling (Push/Pop VLAN header, TOS...)
Send to controller, learn
Set tunnel ID

[289]

Software-Defined Networking for KVM Virtualization

The Software Defined Networking with OpenFlow book authored by Siamak
Azodolmolky has much more detail about OpenFlow protocol and flow.
You are highly recommended to refer to this book to learn more about
L SDN. The book can be bought here:

https://www.packtpub.com/networking-and-servers/
software-defined-networking-openflow

Another highly recommended tool to learn OpenFlow protocols is FlowSim
https://flowsim. flowgrammable.org/FlowSim is designed to simulate five
different versions of the OpenFlow switch data plane, their documentation is clear
and easy to understand, and the simulator really imparts a high-level knowledge of
OpenFlow.

Installing flows on the OVS bridge using
OpenDaylight Dashboard

Example 1: Block all inbound and outbound ICMP traffic from the switch. With this
flow inserted, no ICMP traffic should be allowed to traverse through any port of the
OVS bridge.

Perform the following steps:
1. Login to OpenDaylight Dashboard; admin:admin are the default credentials.

Change the password ASAP.

2. Click the Flows tab and then the Add Flow Entry button located on the top
left-hand side.

3. Complete the fields under Add Flow Entry. First name the flow and select
the node (vSwitch).

4. Scroll down to the Layers section, In the Protocol section type icmp and
select Drop as the action:

[290]

https://www.packtpub.com/networking-and-servers/software-defined-networking-openflow
https://www.packtpub.com/networking-and-servers/software-defined-networking-openflow
https://flowsim.flowgrammable.org/

Chapter 9

Add Flow Entry

Source Port

Range: 0 - 65535

Destination Port

Range: 0 - 65535
Protocaol
icmp

Actions

géPlease Select an Action j

Action Data
Drop
Drop

Install Flow Close

Click on the Install Flow button.
Try pinging between your virtual machines, It should not work.
Verify the installed flow on the switch using the ovs-ofctl command:

"#OVS-ofctl dump-flows <bridge -names" gives usinformation about the
flows installed:

[root@kvmHOST1 ~]# watch -nl ovs-ofctl dump-flows vswitch001

cookie=0x0, duration=168.943s, table=0, n packets=0, n bytes=0,
idle age=168, priority=500,icmp actions=drop

[291]

Software-Defined Networking for KVM Virtualization

Example 2: If a TCP packet destined for port 8080 arrives on the OVS bridge, modify
the port to 80. The following are the installation steps:

1. Add flows with the following details:

Add Flow Entry

Source Port

Range: 0 - 65535
Destination Port

8080|

Range: 0 - 65535

Protocol
tep
Actions
Controller A
Action Data
Destination Port 80
Install the flow.

3. s

"#OVS-ofctl dump-flows <bridge -names>" gives us information about
the flows installed:

[root@kvmHOST1 ~]# ovs-ofctl dump-flows vswitch001
NXST FLOW reply (xid=0x4):

cookie=0x0, duration=2.427s, table=0, n packets=0, n bytes=0,
idle age=2, priority=500,tcp,tp dst=8080 actions=mod tp dst:80

There are many more use cases. Modifying the network source and destination
is useful in many scenarios. A typical scenario is a load-balancing application or
redirecting to a Beta version. The user believes they "talk" with 10.0.0.2 butit's
actually connected to 10.0.0.3 on another port.

[292]

Chapter 9

The enqueuing action is very helpful in shaping network traffic, for example
by giving the lowest speed to entertainment traffic and the highest to critical
business applications.

Further, OpenDaylight exposes a RESTful API that makes it really easy for apps
to control networks. The API accepts regular get/post/put/delete HTTP requests,
passing JSON payloads.

Basic Open vSwitch troubleshooting

Open vSwitch is a rather complex system that consists of multiple components

and protocols. In the event of problems, it may be very difficult to keep track of the
specific level of the problem. However, Open vSwitch provides many tools and the
database it uses (OVSDB) is very easy to read and understand. The objective of this
section is to provide basic guidelines for diagnosing problems arising from the use of
Open vSwitch:

* Log Files: Logs are the most important and vital source of information when
it comes to troubleshooting or diagnosing problems. OpenvSwitch's core
components record logs in the/var/log/openvswitch/ovs-vswitchd.log
and /var/log/openvswitch/ovsdb-server.log files. If a problem occurs in
starting up the Open vSwitch service, first review these logs.

* Built-in VLOG facility: Open vSwitch has a built-in logging mechanism
called VLOG. The VLOG facility exposes deep internal information about
various components. First, determine at what level your problem is
occurring. Is it a bonding problem?

#ovs-appctl vlog/list

Run the earlier command and find out the Open vSwitch module corresponding to
the bond and check what verbosity is set:

[root@kvmHOST1 openvswitchl# ovs-appctl vlog/list | grep -i bond
bond OFF ERR INFO

Verbosity levels are emer, err, warn, info, or dbg); dbg is what we need
while troubleshooting problems. To enable debug logging use the syntax of
ovs-appctl to customize VLOG as follows.

#ovs-appctl vliog/set modulel:facilityl[:levell]
For example, enabling debug logging for the bonding module:

#ovs-appctl vlog/set ANY:dbg:INFO

[293]

Software-Defined Networking for KVM Virtualization

The man page of ovs-appctl explains other options available to tune and configure
Open vSwitch logging.

Check the bridge or port configurations by querying OVSDB. ovsdb-client is an
interface provided to interact with the ovsdb-server:

#ovsdb-client list-dbs: Prints databases present on the system.

ovsdb-client list-tables: Prints tables in the database. The following is a list
of tables in the Open_vSwitch database:

®* Controller

® Bridge
® Queue
® TIPFIX

®* NetFlow

® Open vSwitch

® QoS

¢ Port
® gsFlow
¢ SSL

® Flow Sample Collector Set
® Mirror

®* Flow Table

®* Interface

® AutoAttach

¢ Manager

"ovsdb-client list-columns <table names": Prints columns in a particular
table. There are many columns in each table.

"#ovsdb-client monitor <table names<cloumn name> --detach": Prints the
content of the columns. You can also get output in various formats, including table,
list, HTML, CSV, and JSON.

ovsdb-tool showlogshows data inserted into ovsdb, its Open vSwitch
configuration data; this can be very handy in understanding the configuration
history of a vSwitch.

[294]

Chapter 9

For OpenFlow-related issues,: ovs-ofct1l speaks to the OpenFlow module and it
comes with many debugging options:

#ovs-ofctl dump-flows <OVS bridge>

#ovs-ofctl snoop <OVS bridge>

See "hidden" flows (inband, failopen, and so on) using;:

ovs-appctl bridge/dump-flows <OVS bridge>

For kernel datapath-related issues: ovs-dpctl speaks to the kernel module. To check
datapaths and their attached interfaces use: #ovs-dpctl show <OVS Bride >and
to exact match flows cached in the datapath use: #ovs-dpctl dump-flows <OVS
Bridge> and to get Top like behavior for ovs-dpctl dump-flows use OVS-dpctl-
top command.

When configuring a VLAN, make sure the vlan_mode set for the port is correct.
Sometimes, users configure VLAN tagging with vlan mode access and expect it to
work with a tagged VLAN:

[root@kvmHOST1 openvswitchl# ovs-vsctl --format=table --column=name,vlan_
mode list port

name vlan mode

"vswitchO0O01l" []

"vnetl"access

"vnetO"access

"vm001l vpOl" trunk

access, native-tagged, native-untagged, and trunk are four VLAN modes
supported by Open vSwitch.

Reading an Open vSwitch bridge configuration by querying database or using
command-line tools although gives us the required information, having an
illustrated view of various network configurations including OVS will surely
help in quickly getting a fair understanding of the OVS configuration.

Show My Network State is a good utility for graphically displaying the virtual
and physical network topology inside a single host. The tool is available here for
download: https://sites.google.com/site/showmynetworkstate/.

[295]

https://sites.google.com/site/showmynetworkstate/

Software-Defined Networking for KVM Virtualization

I find this utility extremely helpful while debugging Open vSwitch-related issues.
The following screenshot shows how it looks:

physical interface

ovs bridge

12tp tunnel

vswitch(bridge) linux bridge

ovs-internal

gre tunnel

patch port

veth pair

— 2 [> = bed(bridge)
vswitch i e

test(bridge)

| enol | | eno2 |

Summary

In this chapter, we covered the practical use of SDN with KVM virtualization. We
installed Open vSwitch and configured it to facilitate virtual networking for VMs.
We also implemented advanced networking features such as VLANSs, overlay
networks, port mirroring, and so on, and then learned about the open source SDN
controllers on the OpenDaylight market. The last section of the chapter covered
general troubleshooting steps for Open vSwitch.

In the next chapter, we will learn about the configuration of oVirt and familiarize
ourselves with the advanced enterprise virtualization features it provides.

[296]

10

Installing and Configuring the
Virtual Datacenter Using oVirt

Until now we have been trying to learn virtualization using a single system or two.
What if your environment has grown big? Or if your management has decided to
virtualize most of your physical systems, for efficiency and hence reduce costs?

You are now staring at hundreds of virtual machines scattered around multiple
KVM hypervisors. Your head is filled with questions. How am I going to monitor
and manage the vast pool of virtual machines? What about resource allocation? How
will I make sure that high availability works for my clusters? What if a hypervisor
goes down? Will I be able to manage everything using virsh, virt-manager, and
kimchi? Then somebody says it is time introduce VM$. Only VM$ can manage
virtual machines on a larger scale. But you are a fighter. You want open source in
your environment where you are in control, not any proprietary solutions company.
You opened your browser and searched for open source virtual machine
manager. The first result points to a website named http://www.ovirt.org/ and
you started smiling. You found what you were looking for —a centralized enterprise
class virtualization manager.

In this chapter, we will cover the following topics:

¢ The oVirt architecture
* The oVirt engine installation

¢ The oVirt node installation

[297]

http://www.ovirt.org/

Installing and Configuring the Virtual Datacenter Using oVirt

Introducing oVirt

oVirt is a virtual data center manager. It manages virtual machines, hosts, storage,
and virtualized networks. It provides a powerful web management interface. Virtual
machines are managed using libvirt and vdsm (a host service that runs along with
libvirt). The hypervisors use KVM to run the virtual machines.

Remember, just like KVM and SPICE, oVirt also came from Qumranet. It started

as a closed source desktop virtualization manager developed on .NET and runs on
Windows servers. When Red Hat acquired Qumranet, they open sourced the project
and ported the code to Java and named the project as oVirt. oVirt is an upstream
project for Red Hat Enterprise Virtualization (RHEV).

_oVirtis a huge product with hundreds of features. Covering them all
a in two chapters is not possible. What we did is, we identified the core
% features in oVirt and explained the backend. This should provide you
with a strong basis in oVirt which will help you explore oVirt in detail.

oVirt is all about scaling up the virtualization environment from a single hypervisor
managed by virt-manager or virsh to a multi-hypervisor multiuser environment. We
will start by understanding the oVirt architecture.

oVirt architecture

There is no better representation of an oVirt architecture than the following figure.
This is taken from http://www.ovirt.org/:

[298]

http://www.ovirt.org/

Chapter 10

Web Admin/ Linux REST
Custom Apps CLI API

Web browser
User Portal

)

@i §

i

LN

Y
Y

LDAP /IPA Active Directory - Web Service ~ REST API - Web App
— HTTPS
& —— SSH/SSL
=" Backend
Java
/ Linux
09
VDSM VDSM
PostgreSQL | | Console Access
B ribvirit B ibvirit

[]
=

-

Host Hypervisor

SPICE or VNC

—— SOAP - Internal Web Service

Lets try to understand the preceding figure. In the simplest form, consider oVirt as a
remote management tool to manage multiple libvirt-based hypervisors that use KVM

as the virtualization technology.
It has four major components:

* oVirt engine
* oVirtnode

» Storage

* Networking

[299]

Installing and Configuring the Virtual Datacenter Using oVirt

The oVirt engine

The oVirt engine is a JBoss-based Java application that runs as a web service. In
the previous diagram, an oVirt engine is represented by the back end. It is the
management component of the oVirt infrastructure and is installed on a dedicated
Linux server. The oVirt engine uses PostgreSQL as its database. In our examples,
we use Fedora as the Linux server. The main functions of the oVirt engine are

the following:

VM lifecycle management: These are operations to manage a
virtual machine.

Authentication: Uses LDAP/IPA (http://www.freeipa.org/page/Main_
page) and Active Directory.

Network management: Manages network on both hypervisor nodes and
virtual machines.

Storage management: Manages shared storage used for creating virtual
machines and virtual disks attached to virtual machines.

Monitoring: Virtual machines, storage, network, and hypervisor nodes.

High Availability: When an oVirt node fails, it restarts virtual machines on
other nodes.

Live migration: Live migration of virtual machines and storage.

System scheduler: Continuously load balances virtual machines based on the
cluster resource polices. This also includes aggregating virtual machines on
fewer hosts for power saving.

Virtual machine image management: Creates and removes virtual disks,
templates, and snapshots.

Importing and exporting virtual machines.

Communication: The oVirt engine interacts with the oVirt nodes through a
VDSM service that runs on each node. The VDSM service is also known as
host agent.

[300]

http://www.freeipa.org/page/Main_Page
http://www.freeipa.org/page/Main_Page

Chapter 10

The oVirt node

In simple terms, an oVirt node is a hypervisor that contains just enough packages to
be part of the oVirt virtual data center and can run virtual machines. It only contains
a minimal set of packages to run the OS and the virtualization management tools. An
oVirt node is the workhorse in an oVirt data center. It is a dump host that performs
the task delegated to it by an oVirt engine and gathers details of the infrastructure
for an oVirt engine to act upon. The oVirt engine interacts with the oVirt node using
the Virtual Desktop and Server Manager (VDSM). The VDSM then interacts with
the libvirt service, to check if those instructions need VM lifecycle management.
VDSM is referred to as a host agent. Similar to libvirt, the VDSM is also developed in
Python. The primary functions of the VDSM include storage management, network
management, and VM lifecycle management with the help of libvirt.

An oVirt node has the following packages installed (other than the basic packages
required for it to run):
* gemu-kvm: This provides QEMU.

* gemu-kvm-tools: This provides the kvm_stat command. It is a Python script
that retrieves runtime statistics from the KVM kernel module and is used to
diagnose the guest behavior visible to KVM.

* vdsmand related packages: This provides a VSDM service for managing the
node from oVirt Engine.

* vdsm-cli: Its the command-line interface to VDSM service.
e libvirt: This provides the libvirt service.
* spice-server: This is used to provide remote connections for the

virtual machines.

There are two ways to set up an oVirt node. Install a minimal Fedora or CentOS
server, add it to oVirt Manager or use a

[301]

Installing and Configuring the Virtual Datacenter Using oVirt

Storage

oVirt can make use of both local storage or shared storage to store virtual machine
disks and snapshots. One exception is ISO files, which are used for installing virtual
machines that need a shared storage (NFS). When you create and attach storage

to an oVirt infrastructure, it is called a storage domain. Understanding the storage
domain is very important when you work with oVirt infrastructure. This includes
understanding the architecture of a storage domain and its types. We will discuss its
architecture in the next chapter.

The storage domain in oVirt can be classified into two categories, based on the type
of storage you use: a local storage domain or a shared storage domain.

Storage domains are attached to hypervisor nodes only.
%= They are not attached to an oVirt engine server.

A local storage domain is storage that is attached directly to an oVirt node that is not
shared or accessed by any other nodes. Usually, it is created from the local disk itself.
In production environments, it is very unlikely that you use local storage, the oVirt
data center, created from a local storage domain due to its limitations. One major
limitation is that you will not be able to migrate the virtual machines between nodes.
It functions like a standalone libvirt host.

A shared storage domain, like a local storage domain, is also attached directly to the
oVirt nodes. The difference is that it is shared on all the nodes that are part of the
oVirt data center. The shared storage domains are created from a centralized storage
system. oVirt supports the following centralized storage systems:

* Network File System (NFS) and Parallel NFS (pNFS)
* Internet Small Computer System Interface (iSCSI)

* Fibre Channel Protocol (FCP)

* GlusterFS

We classified the storage domains as local and shared them based on the type of
storage you use. Now we will again classify a storage domain based on its purpose:

* Data domain: A data domain acts as the storage for everything related to
virtual disks used by virtual machines. It is used for storing virtual disks,
snapshot disks, metadata, and so on. oVirt uses a data domain for all the
storage operations of its VMs.

[302]

Chapter 10

Data domain cannot be shared among oVirt data centers.

* Export domain: As the name suggests, export domains are used for exporting
and importing virtual machines. An export domain can be used to backup
virtual machines or move virtual machines between two oVirt data centers.

An export domain can be created from an NFS share. oVirt
s allows only one export domain per data center.

* ISO domain: An ISO domain is used to store ISO files and is created from
NFS share only. If your environment does not have network booting such as
PXE you need ISOs to boot or install virtual machines.

An ISO domain is the only type of storage domain that can
&~ be shared across different data centers simultaneously.

Networking

The networking architecture in oVirt is not very complicated and makes use of the
Linux bridge in the backend. It is similar to what you learned in libvirt networking
in Chapter 4, Getting Started with libvirt and Creating Your First Virtual Machines. oVirt
uses the term Logical Network when defining a new network, that is, you create a
logical network and apply to all participating oVirt nodes. By default, all data centers
in oVirt have a logical network named oVirt. You can perform advanced tasks,

such as creating a vlan, a simple bond, and bonding over the vlan using the oVirt
management interface. We will discuss logical networks more in the next chapter.

Now, you have an idea about oVirt and its architecture. Lets start setting up the
environment by first installing the oVirt engine and then the oVirt nodes.

[303]

Installing and Configuring the Virtual Datacenter Using oVirt

Installing the oVirt engine

Lets first take a look at the minimum system requirements to install
oVirt 3.5 Manager:

¢ A dual core CPU

* 4GBRAM

* 25GB free space
* 1GiBNIC

* Fedora 20

Now we will check the actual requirements for installing oVirt 3.5 Manager:

* A quad core or better CPU
* 16 GB of system RAM to start with, and an option to increase as per the need
* 50 GB free space, ideally on LVM
* 1GiBNIC
* Fedora 20
We assume that you already have a Fedora 20 server installed. If you need help to

install Fedora 20, follow the instructions at https://docs . fedoraproject .org/en-
US/Fedora/20/html/Installation Guide/index.html

It is also important that you dedicate this server, exclusively, to an oVirt engine.
This will make the installation less complicated and error free.

Preparing the system for oVirt engine
installation

Perform the following steps to prepare your system:

1. Set the hostname. This hostname should be resolvable using your DNS
server. Name resolution is very important for an oVirt environment:

[root@ovirt ~]# hostnamectl set-hostname ovirt.example.local
[root@ovirt ~]# host ovirt.example.local

ovirt.example.local has address 192.168.122.8

2. Update and reboot the system:
[root@ovirt ~]# yum update -y

[root@ovirt ~]# reboot

[304]

https://docs.fedoraproject.org/en-US/Fedora/20/html/Installation_Guide/index.html
https://docs.fedoraproject.org/en-US/Fedora/20/html/Installation_Guide/index.html

Chapter 10

3. [Install the oVirt engine repository and then install the oVirt-engine package:

yum install http://plain.resources.ovirt.org/pub/yum-repo/ovirt-
release35.rpm

yum -y install ovirt-engine

The installation will take some time, as it has to download and install a long
list of packages.

4. Once the package installation is finished, start the oVirt installation:

[root@ovirt ~]# engine-setup --generate-answer=/root/ovirt-
answer. txt

% We have removed some messages from the
=" succeeding output.

Configure Engine on this host (Yes, No) [Yes]: Yes (This will
start the engine installation)

Websocket proxy?

Configure WebSocket Proxy on this host (Yes, No) [Yes]: Yes

Configuring a websocket proxy server will allow users to connect to virtual machines
via the noVNC or HTML 5 consoles.

Do you want Setup to configure the firewall? (Yes, No) [Yes]: Yes

The host name should be resolvable using the host command:
Host fully qualified DNS name of this server [ovirt.example.locall]:
ovirt.example.local

--== DATABASE CONFIGURATION ==--

Here, we are going with the local postgres DB:

Where is the Engine database located? (Local, Remote) [Locall: Local

Setup can configure the local postgresql server automatically for the
engine to run. This may conflict with existing applications.

Would you like Setup to automatically configure postgresqgl and create
Engine database, or prefer to perform that manually? (Automatic, Manual)
[Automatic] : Automatic

--== OVIRT ENGINE CONFIGURATION ==--

Enter the oVirt engine administrator password. Admin is the only user created in
oVirt DB. To add more users, you have to join a directory server, such as Windows
Active Directory or IPA (https://www.freeipa.org/page/Main_Page).

[305]

https://www.freeipa.org/page/Main_Page

Installing and Configuring the Virtual Datacenter Using oVirt

We are also enabling both Gluster and the virtualization manager GUI. oVirt can also
be used to manage Gluster bricks, which is all together a different topic; however,

it is recommended that you enable it while installing.

Engine admin password:

Confirm engine admin password:

Application mode (Virt, Gluster, Both) [Both]:

--== PKI CONFIGURATION ==--

This is used to create the certificate:

Organization name for certificate [example.locall:

--== APACHE CONFIGURATION ==--

Do not use the oVirt engine server to run any other web application.
Setup can configure the default page of the web server to present the
application home page. This may conflict with existing applications.

Do you wish to set the application as the default page of the web server?
(Yes, No) [Yes]:

Setup can configure apache to use SSL using a certificate issued from the
internal CA.

Do you wish Setup to configure that, or prefer to perform that manually?
(Automatic, Manual) [Automatic]:

--== SYSTEM CONFIGURATION ==--

In our setup, we are using the engine server as the ISO domain. In production,
always create that use a dedicated NFS server for the purpose. We do not want the
NFS network traffic to flood the oVirt engine server.

Configure an NFS share on this server to be used as an ISO Domain? (Yes,
No) [Yes]:
Local ISO domain path [/var/lib/exports/iso]:

Local ISO domain ACL - note that the default will restrict access to
ovirt.example.local only, for security reasons [ovirt.example.local(rw)]:

Local ISO domain name [ISO DOMAIN] :

--== CONFIGURATION PREVIEW ==--

[306]

Chapter 10

This is the summary of your configuration. If everything is fine, go ahead and finish
the setup. Otherwise, type cancel and run the engine setup again.

Application mode : both
Firewall manager : firewalld
Update Firewall : True

Host FQDN : ovirt.example.local

Engine database name: engine

Engine database secured connection : False
Engine database host: localhost

Engine database user name : engine

Engine database host name validation : False
Engine database port: 5432

Engine installation : True

NFS setup : True

PKI organization : example.local

NFS mount point : /var/lib/exports/iso

NFS export ACL : ovirt.example.local (rw)
Configure local Engine database : True
Set application as default page : True
Configure Apache SSL: True

Configure WebSocket Proxy : True

Engine Host FQDN : ovirt.example.local

Please confirm installation settings (OK, Cancel) [OK]:
INFO] Stage: Transaction setup

[

[INFO] Stopping engine service

[INFO] Stopping ovirt-fence-kdump-listener service
[INFO] Stopping websocket-proxy service

[INFO] Stage: Misc configuration

[INFO] Stage: Package installation

[INFO] Stage: Misc configuration

[INFO] Initializing PostgreSQL

[INFO] Creating PostgreSQL 'engine' database

[INFO] Configuring PostgreSQL

[INFO] Creating/refreshing Engine database schema
[INFO] Upgrading CA

[INFO] Creating CA

[INFO] Configuring WebSocket Proxy

[

INFO] Generating post install configuration file '/etc/ovirt-engine-
setup.conf.d/20-setup-ovirt-post.conf’

[INFO] Stage: Transaction commit

[307]

Installing and Configuring the Virtual Datacenter Using oVirt

[INFO] Stage: Closing up
[INFO] Restarting nfs services

--== SUMMARY ==--

SSH fingerprint: AQ0:F7:96:9F:31:92:8A:10:9E:DE:9A:31:61:74:5C:C4
Internal CA 82:47:1C:7F:C0:09:CE:82:78:62:08:4E:0E:DF:84:23:F1:0E:71:A4
Web access is enabled at:
http://ovirt.example.local:80/ovirt-engine
https://ovirt.example.local:443/ovirt-engine
Please use the user "admin" and password specified in order to login

--== END OF SUMMARY ==--
[INFO] Execution of setup completed successfully

Installation has finished and you can now log in to the oVirt manager using the URL
mentioned in the summary. For us itis http://ovirt.example.local/ovirt-
engine.

When you open the URL you will be greeted with a web page shown in the
following screenshot that shows links to three types of portals:

oVirt OPEN VIRTUALIZATION MANAGER

Welcome to Open Virtualization Manager

Portals Downloads

[308]

http://ovirt.example.local/ovirt-engine
http://ovirt.example.local/ovirt-engine

Chapter 10

Let's discuss the fields shown in the screenshot:

* User Portal: Used by non-administrator users to manage their virtual
machines. This user interface provides very limited functions that are
confined to virtual machine management.

* Administration Portal: Used by an oVirt administrator to manage the oVirt
environment. We are focusing on Administrator Portal.

* Reports Portal: Used to generate reports regarding the environment.
The reports are not in real time.

Click on Administration Portal and log in as user admin.

[We will cover Administration Portal in detail in Chapter 11,]
~

Starting Your First Virtual Machine in oVirt.

Do Hame Desain Tipe S Fres Space. e Space. Totd spacs R

143 Earre s Saplay

[309]

Installing and Configuring the Virtual Datacenter Using oVirt

If something goes wrong, you can check the installation logs at /var/log/ovirt-
engine/setup/ovirt-engine-setup-XX.log. When installing a production system
it is a good idea to watch the logs in real time (# tailf ovirt-engine-setup-XX.
log) and monitor the progress of the installation. If you face some unrecoverable
errors, then you need to start the installation again, by executing the following
commands:

engine-cleanup

yum remove ovirt-engine

yum install ovirt-engine

engine-setup

Installing oVirt node

Perform the following steps to install an oVirt node:

1.

Download the ovirt-node-iso rpm to oVirt Manager server.

wget http://resources.ovirt.org/pub/ovirt-3.5/rpm/el7/noarch/
ovirt-node-iso-3.5-0.999.201504280931.el7.centos.noarch.rpm

yum localinstall ovirt-node-iso-3.5-0.999.201504280931.el7.
centos.noarch.rpm

yum install livecd-tools

Locate the ISO file in /usr/share/ovirt-node-iso/:

livecd-iso-to-disk --format --reset-mbr /usr/share/ovirt-node-
iso/ovirt-node-iso-3.5-0.999.201504280931.el7.centos.iso /dev/sdb

/dev/sdb is the location of the USB disk.

You can also initiate the installation from PXE as follows:

livecd-iso-to-pxeboot /usr/share/ovirt-node-iso/ovirt-node-
is0-3.5-0.999.201504280931.el7.centos.iso

Use the automatically generated configuration file in your PXE server
for PXE booting. Here, we are using the USB disk to boot and install the
oVirt node.

Once booted, you will be greeted with the following screen. Select Start Ovirt
Node to continue:

[310]

Chapter 10

oVirt Node Hypervisor 3.5 (0.999.201504280931.el?.centos)

Start Owvirt Node

Troubleshoot ing

z\o\)

Use the arrow keys to do the navigation and the Tab key to
switch through the options.

5. Select Install Hypervisor and press Enter.

oVirt Node Hypervisor 3.5-8.999.281584288931.el7.centos

Installation

< Install Hypervisor 3.5-8.999.281584288931.el17.centos >

Info: Virtwalization hardware was detected and is enabled

< Quit >

Press esc to guit.

[311]

Installing and Configuring the Virtual Datacenter Using oVirt

6. In the next screen, select the HDD to install the oVirt node.

oVirt Node Hypervisor 3.5-8.999.281584288931.el17.centos

Please select the disk to use for booting oVirt Mode Hypervisor

Location Device Name Size (GB)
Local (Virtio) uda ol

1 - 1)

< Dther dewvice: >
Disk Details

Device D ovuda
Model : None
Bus Type : Local (Wirtio)
Serial : None

Size (GB) : 2B
Description: virtio disk
< Quit > < Back > < Continue >

Press esc to guit.

7. Use the default partitioning and continue.

oVirt Node Hyperwvisor 3.5-8.999.281584288931.el7.centos

Storage Uolumes

Drive =size: 28488 MB
Please enter the =sizes for the following partitions in MB

Fill disk with Data partition [X]
UEFI-Bios: 296

Root & RootBackup: 512

(2 partitions at 51ZMB each)

Swap MB: 3896
Config MB: 5

Logging MB: 2848

Data MB: 13251

< Quit > < Back > < Continue >

Press esc to quit.

[312]

Chapter 10

8. Confirm the details.

oVirt Node Hyperwvisor 3.5-8.999.2081584288931.el7.centos

9. Set the password for the admin user and select Install.

oVirt Node Hypervisor 3.5-8.999.281584288931.el17.centos

[313]

Installing and Configuring the Virtual Datacenter Using oVirt

10. The installation will take few minutes to complete. Reboot.

oVirt Node Hypervisor 3.5-8.999.281584288931.el17.centos

Installing oVirt Node Hypervisor

Starting .

(1/6) Writing configuration file (Done)

(2-6) Partitioning and Creating File Systems on '[’'~devsvda’]l’ (Done)d
(3-6) Setting Admin Password (Done)

(4-6) Installing Image and Bootloader Configuration to 'rdevswda’ (Done)l
(5-6) Setting keyboard layout to “us’ (Done)

(6+6) Configuring Local KDump (Done)d

< Reboot >

Press esc to guit.

11. Once rebooted, log in as user admin and not root.

oVirt Node Hypervisor 3.5-8.999.281584288931.el7.centos

System Information
Network
Security Managed by: olirt Engine
Keyboard https:/- ovirt.example.local 443
Logg ing Status: Uirtualization hardware was detected and
Kdump is enabled
Remote Storage
Monitoring Networking: Connected ethfd
Diagnostics [Pv4: None
olUirt Engine IPub: [feBB::5854:ff :febZ:7abB1]
Performance
Hosted Engine Logs: Local Only
Plugins Running UMs: B8
Press FB for support menu
¢ View Host Key > ¢ View CPU Details >
< 3et Console Path >
< Lock > < Log Off > < Restart > < Power Off >

Fress esc to quit.

[314]

Chapter 10

Summary

In this chapter, you got an introduction to oVirt, its architecture, and installation. In
the next chapter, we will learn how to start your first virtual machine using oVirt.

[315]

11

Starting Your First Virtual
Machine in oVirt

In Chapter 10, Installing and Confiquring the Virtual Datacenter Using oVirt, you learned
the architecture of oVirt and installed the oVirt engine and an oVirt node. In this
chapter, you will learn how to initiate an oVirt data center in order to start your

first virtual machine. This initialization process will walk you through the

following topics:

* Creating a data center
* Adding a host to a data center
* Adding storage domains and its backend

* Configuring networking

Getting acquainted with oVirt data center
and cluster

An oVirt data center is like a physical data center. It has multiple servers and various
storage and network options. Every oVirt data center needs a cluster, a data storage
domain, and a logical network named ovirtmgmt.

The purpose of an oVirt cluster is to group its hypervisor or oVirt nodes. A data
center can have multiple clusters. In general, hypervisors in an oVirt cluster have
same CPUs and the same network configurations. Another name for an oVirt
cluster is migration domain, as you can only live migrate virtual machines
within hypervisors in a cluster.

[317]

Starting Your First Virtual Machine in oVirt

Every hypervisor in an oVirt data center should have access to the storage domain
created for the data center. If you cannot give access for storage to any of the
hypervisors, then you have to create a new data center and cluster for them.

Initiating an oVirt data center

Let's first create a data center by performing the following steps:

1. Go to the oVirt engine page and click on Administration Portal.

2. Once you are logged in as an admin user, you will be presented with a page
as shown in fig 8-3. The installation procedure will automatically create a
data center and a cluster named Default. In our exercise, we will not use the
Default data center, instead we will create a new one named DevDC. Go to the
Data centers tab and click on new.

New Data Center

Mame [pevnC |
Description | |
Storage Type | Shared v |
Compatibility Version (35 v
Quota Mode [Disabled v
Comment | |

QK | Cancel
R R S———————————

fig 11-1

Enter the name of the data center as DevDC. Storage type is Shared, as we
are going to use a shared storage infrastructure. Compatibility version will
remain 3.5 and Quota mode as Disabled. Quota is used to restrict the access
of cluster resources, such as storage and network.

3. Click on OK to create the data center. Now, you will be presented with
a screen that will give you an option to configure a cluster. Click on
configure cluster.

[318]

Chapter 11

m Data Center | DevDC b |

Optimization

Resilience Policy Mame |DevCIuster01
Cluster Policy Description |
Console

Fencing Policy

|
|
Comment [|
|
|

CPU Type | Intel SandyBridge Family r
Compatibility Version [35 v
Enable Virt Senice rd

Enable Gluster Service

Enable to set WM maintenance reason

Fequired Random Number Generator sources:

Jdevw/random source

Jdewhwrng source

ﬂ Cancel
—

fig 11-2

Enter the name of the cluster as DevCluster01 and select a CPU type based
on your hypervisors, CPU type. We are leaving the other options as default.
You can change these settings later, as required, by editing the cluster. Click
on OK to create the cluster.

The oVirt engine can be used to manage cluster nodes also,
but here we are only using the oVirt service.

Now, you have created a data center named DevDC and a cluster under it
named DevCluster01l.

4. The next step is to add a hypervisor to the data center. Let's go back to the
previously installed hypervisor in Chapter 10, Installing and Configuring the
Virtual Data Center Using oVirt and configure networking.

[319]

Starting Your First Virtual Machine in oVirt

5. On the hypervisor console, login as admin user and go to the Network tab
(fig 11-3). Select the network interface you wish to configure and press Enter.

oUirt Node Hypervisor 3.5-8.999.2Z081584288931.el17.centos

fig 11-3

This will take you to the next screen (fig 11-4), where you configure IPv4 or
IPv6. In our example, we are only enabling IPv4.

6. Save to start the network configuration.

fig 11-4

[320]

Chapter 11

7. Once the network configuration is done, go to security and enable SSH Login
(fig 11-5). Save to start the SSH service.

oVirt Node Hypervisor 3.5-8.999.281584288931.el17.centos

fig 11-5

If you want to check the configuration manually, press the F2 key.
; This will take you to the rescue shell with root access where you can
issue commands to check the configuration. As direct root access
L . . .
is disabled, system admins usually SSH as admin user to an oVirt
node and then press F2 to get into the console to troubleshoot.

[321]

Starting Your First Virtual Machine in oVirt

8.

Now add this hypervisor to your data center DevDC by going to the oVirt
Engine tab (fig 11-6) and add Management Server as the oVirt engine
hostname. You can also enter the IP address of the oVirt engine server but
using hostname is recommended. Now click on Save & Register. If you add
a password, this will enable the SSH service on the oVirt node, which will
help the administrator to initiate the hypervisor addition process from

the oVirt engine. In this case, you do not need to add the management
server details.

oVirt Node Hypervisor 3.5-8.999.2081584288931.el7.centos

10.

fig 11-6

On successful completion you will see your host under the Hosts tab waiting
for approval (fig 11-7).

Select the host and click on Approve.

You will be asked to configure power management, which is an optional step
to enable fencing of Host, thus ensuring high availability of VMs. Leave it
unconfigured for now. However, if you plan to use the host in a production
environment, then configuring the power management is important. While
approving the hypervisor, make sure that you have selected the right data
center and cluster. You can change it later by going to Edit properties after
putting the host into the Maintenance mode.

[322]

Chapter 11

Data Centers | Clusters Hosts Networks | Storage Disks Virtual Machines Fools Templates
Hew Remove Apprave Assign Tags
Name HosmameP Cluster Status
%1
fig 11-7

During the approval process, the oVirt engine will configure the host's vdsm
service so that it can have a secure connection over SSL with the vdsm service. The
libvirt service will also be reconfigured. This process will also add and configure
the ovirtmgmt logical network on the host, which is nothing but a bridge name,
ovirtmgmt. Once approved, your host's status will change to Up (fig 11-8).

Mew Edit Maintenance Select as SPM Assign Tags Refresh Capabilties

Hame 4 HosmamelP Cluster Data Center Status

fig 11-8

The output of the brctl show command is captured from the node01.example.
local host after the approval process. Here you can see that the ovirtmgmt bridge
has been:

node0l # brctl show
bridge name bridge id STP enabled interfaces

ovirtmgmt 8000.525400627ab0 no ethO

In some cases, your host will not be activated due to the
M wrong CPU type selected for the cluster. To know the correct
Q CPU type, after selecting the Host, go to the Hardware
Information tab at the bottom of the admin portal and then
modify the cluster's CPU type accordingly.

At this stage, you can install one more hypervisor and add it to your data center by
following the steps laid out in the preceding section.

[323]

Starting Your First Virtual Machine in oVirt

Creating storage domains

To create storage domains, we will use an ISCSI storage which is already configured.
You can proceed with the following steps:

1. Go to the Storage tab and click on New Domain. You'll get a screen similar
to the following screenshot:

Mame [pata_Domain_o1 | Description | |

Data Center [Default (v3) v| Comment | |

Domain Function / Storage Type Format

Use Host nodedl.example local v |

~ Discover Targets

Address 192.168.122.1| User Authentication:
Port 3260 CHAF username I:l CHAP password I:l
Discover
Login All
Target Hame Address Port
=ign.2003-01.org linux-iscsi. 3260 >
LUN ID Dev. Size Hpath Vendor ID ProductID Serial
360014056el6al8hlalG420083; 20GE 1 LIO-ORG rhev_lund SLIO-ORG_rhev_lu

w

]
]
=

fig 11-9

2. Choose a Name for your storage domain, select Storage Type as Data ISCSI,
expand Discover Targets to enter the target address, and click on Discover.
The discover process will find the target.

3. Use Login All to get LUNS. Select the LUNs you want to use to create the
data domain and click on OK.

During the initiation process, the domain status will remain locked and then
automatically change the status to UP. In this way, we can add an NFS data
domain as well as an ISO Domain.

4. When you create an NFS share to use with the oVirt engine, make sure you
change the owner and group ID of that directory to 36 before exporting it (
chown 36:36 </NFS/exports). The reason for this is that all operations
initiated by vdsm service used uid 36. The following id command output
will show the details of the user and the group used by uid 3é:

node0l1l # id 36
uid=36 (vdsm) gid=36 (kvmm) groups=36 (kvm),179 (sanlock), 107 (gemu)

[324]

Chapter 11

Domain Name Domain Type Storage Type Format Cross Data Center Status Total Space Free Space
4 Data_Domain_01 Data i5CSI Vi Active 19 GB 15GB
a
4 StorageOne Data (Master) NFS Vi Active 49 GB 32 6B
fig 11-10

5. Now, you can go back to Hosts and check the status of the host. You can see
that it has now become a Storage Pool Manager (SPM) host:

fig 11-11

The SPM host is responsible for all storage-related operations. For example, if you
add a virtual disk, that operation will be initiated and carried out by the SPM host.
No other host will do a write operation on the storage other than the SPM host.

If there is no SPM host, the data center will become unusable until a new host takes
over the SPM role. This is one of the primary reasons why you configure power
management for your hosts. When power management is configured, oVirt can
automatically initiate a fence on the current SPM host when it becomes nonfunctional
or not reachable from the oVirt engine server. Fencing the faulty SPM host will

make sure that it is not doing any storage operations on the storage domains, thus
avoiding data corruption. If no fencing is configured, you have to manually reboot
the faulty SPM host and then right-click on the faulty SPM host and use the confirm
host has been rebooted option to choose another host as the SPM.

We will now check what happened in the backend when you created your
storage domains:

* If the shared storage is a block device (ISCSI, FC, and so on), oVirt will make
use of the multipath to group the LUNSs together and then create a logical
volume group using the multipath device as the physical volume. fig 11-12
shows the output of the multipath -11 command, where 3600**1c is the
multipath device created from the ISCSI LUN we added:

360014056e16a18b1al64200832935blc dm=-0 LIO-0RG, rhev_1lun®
i featur ' hwhandler="0" wp=rw

cy="'roul obin 0' p status=active
active ready running

fig 11-12

[325]

Starting Your First Virtual Machine in oVirt

* Infig 11-13, you will see the output of the pvs command, which shows the
details of the VG created on top of 3600**1c. oVirt will generate a random
UUID using uuidgen to create the VG name. Once created, the details will be
added to its database:

PV VG Fmt Attr PSize PFree

832935h1lc 4343e974-1359-4b86-bf1f-508dd436504b lvm2 a-- 19.62g 15.75g

fig 11-13

* How will you know which UUID is used to create your data domain? In the
case of VGs, the oVirt uses VG tags to store its metadata. To find your VG,
use vgs -o name,tags | grep <data domain name> --color.In our
case, the name of the data domain is Data Domain 01:

fig 11-14

* Aless nerdy method is to use the vdsclient command, which is used to
interact with the vdsm service:

node0l # vdsClient -s 0 getStorageDomainInfo 4343e974-1359-4b86-bflf-508dd436504b
uuid = 4343e974-1359-4b86-bf1f-508dd436504b
vguuid = dmQ82i-vLkh-q0jZ-jWxQ-tL2w-Au9e-vGawgu
state = 0K

version 3

=

0]
role = Regular
IS

type CSI

class = Data

pool ['00000002-0002-0002-0002-0000000001e9"]
name = Data_Domain_01

fig 11-15

1
‘Q vdsClient --help will show the complete list of supported vdsm

commands.

[326]

Chapter 11

* oVirt also creates the following LVs for its storage operations (fig 11-16):

node@l # lvs -o name,vg_name
LV VG
lefab7e7-d943-4806-8128-05680dce584a 4343e974-1359-4b86-bf1f-508dd436504b
58306bT8-418b-40a8-9522-a4d19de71144 4343e974-1359-4b86-bf1f-508dd436504b
ids 4343e974-1359-4b86-bflf-508dd436504b

inbox 4343e974-1359-4bh86-hflf-508dd436504h
leases 4343e974-1359-4b86-hflf-508dd436504h
master 4343e974-1359-4b86-bf1f-508dd436504b
metadata 4343e974-1359-4b86-bf1-508dd436504b
outhox 4343e974-1359-4bh86-hflf-508dd436504h

fig 11-16

In the case of file-based storage, instead of VGs and LVs, oVirt will be creating
corresponding directories. Use the mount command on the oVirt node to find the
NFS mount points used to mount the NFS shares and then issue the tree /mount/
point command to see the storage domain structure.

Creating logical networks

As explained earlier, logical networks are nothing but the bridges configured on the
oVirt nodes. They are created in order to segregate the traffic. For example, if you use
the ovirtmgmt logical network for every purpose, including the VM traffic, which
includes live migration traffic, display traffic, and so on, it can choke the bandwidth.
Therefore, we create multiple logical networks using different NICs based on the VM
traffic and purpose. To create a logical network, follow these steps:

1. Go to the Network tab and click on New Logical Network.

2. Select your Data Center and enter a name for the logical network.
Here, it is vmdata.

[327]

Starting Your First Virtual Machine in oVirt

3. Make sure that the VM network option is enabled and click on OK,
otherwise it will create a non-bridge interface, which can only be used
for VM live migration or to display network traffic.

==

Cluster
WNIC Profiles L=e ymdata

[DevDC v

|
|
Description | |
|

Comment |

Export

Create on external provider

External Provider [v]

Fhysical Metwork | |

Network Parameters

Network Label [
Enable VLAN tagging l:l

< VM network
T
@ Default (1500)

L OK | Cancel)

fig 11-17

Once the logical network is created, you have to apply that logical network to

each host. If this step is not done, your host status will change from UP to NON
OPERATIONAL. Non-operational status means that cluster resources (storage and
network) are missing from the hosts.

To apply the newly created logical network: navigate to the Hosts tab, click on the
host, (here, it is node01). Under host the Network Interfaces (fig 11-18), click Setup
Host Networks.

General Virtual Machines | Network Interfaces

Setup Host Metworks Save Metwork Configuration

fig 11-18

[328]

Chapter 11

Drag and drop vindata to a free interface and click on OK to save the configuration.
In our case, the free interface is ethl.

Setup Host node0l.example.local Networks

Drag to make changes
Interfaces Assigned Logical Netwaorks Unassigned Logical Netwarks
» il etho # A ovittmgmt vl @b & _.
?‘]um £ avmdata IR 4
External Logical Networks @
fig 11-19

Now let's check on node01. You can see a bridge named vmdata created and attached
to ethl. Repeat the same procedure for other nodes.

node0l # brctl show

bridge name bridge idSTP enabled interfaces ovirtmgmt 8000.525400627
abOno eth0 vmdata 8000.525400e5a57¢c no ethl

Creating and starting a virtual machine

Now we have all the infrastructure support (storage, network, and hosts) for creating
a virtual machine. Before creating, we need to do one more task to upload an ISO
image to the ISO storage domain. To upload, go to the RHEV Manager server and
run the following set of commands.

e List the ISO Domains:

engine-iso-uploader list (enter the admin user password when
prompted)

* Upload the ISO image centos7.iso:

engine-iso-uploader upload -i ISO Domain centos7.iso (enter the
admin user password when prompted)

[329]

Starting Your First Virtual Machine in oVirt

Now, there is one more method where you copy the image directly to the NFS share.

If you have exported the directory /isos/, then use the following steps to copy the
ISO image:

* On the NFS Server, type the following command:

cp /location/image.iso /isos/*/
images/11111111-1111-1111-1111-111111111111

chown 36.36 /isos/*/images/11111111-1111-1111-1111-111111111111/
image.iso

Let's create a virtual machine in oVirt now:

1. Go to Virtual Machines | New VM and select Cluster as DevDC/
DevCluster01.

2. Choose the OS type and then add a Name for the VM. Press OK to continue.

[cenera [

[pefautrpetaurt ~|
Console
Based on Template [Brank |
Template Sub Version |base template (1) ;I
Operating System |Linux v |
Instance Type |Custom ;l
Optimized for | Server v |
MName firstwv |
Description | |
Comment | |
fig 11-20

3. In the next screen you will be asked to configure the virtual disk for the
VM. Choose the size and storage domain you need to create the virtual disk.
Click on OK.

[330]

Chapter 11

O\nternal ®External (Direct Lun)

Size(GB) 5 |
Alias firstvM_Diskl |
Description | |
Interface |\.-’irtlo A |
Allocation Policy |Thin Fraovision i |
Storage Domain |Data_Domain_Ul (15 GE free 0of 19 |
Disk Profile [Data_Domain_o1 v |

fig 11-21

Your virtual machine is now ready to start.

4. If you simply start the virtual machine, it does not have any OS to boot,
so you need to attach the uploaded ISO image and then start the virtual
machine. For this, select and right-click on the virtual machine you just
created and choose the option Run Once.

5. Clicking on Run Once will open a window. In that window, check the
Attach CD option, select the ISO you wish to use for booting, and click
on OK (fig 11-22).

Run Virtual Machine(s) =

-Boot Options

Aftach Floppy | v |

#| Aftach CD |centus?.isu A\ | 2

Boot Sequence:

Hard Disk . "
CD-ROM
[etwark I:FI :":E:I

Dowm
Enahle boot menu
Run Stateless

Start in Pause Mode

fig 11-22

[331]

Starting Your First Virtual Machine in oVirt

VM will start now. In order to access the VM console, use the green TV icon at the
top panel.

Once the installation is finished, you can stop the virtual machine and start it
normally. When you start the virtual machine, the engine will send the details for
starting a VM to the VDSM service. VDSM will then pass that to libvirt and libvirt
will start the virtual machine. Here, the VDSM service is the bridge between the
oVirt engine and libvirt:

fig 11-23

We will now check some of the common oVirt engine commands used:

* engine-config: This command is used for changing the default options of
the oVirt engine. The changes will be written directly to the database. Since
the database is modified, you have to restart the ovirt-engine service to
apply newly set parameters. To get a list of configurable parameters, run
engine-config --1list. The command can then be used to reset the admin
password as shown:

engine-config -s AdminPassword=interactive

systemctl restart ovirt-engine

* engine-manage-domains: This command is used to integrate oVirt with
directory services.

* engine-backup: This command is used to backup and restore the oVirt
engine. To backup, run the following command:

engine-backup --mode=backup --scope=all --file=backup.bz2
--log=backup.log

Restore is not as straightforward as the backup. It needs some additional
configuration and changes. You can find those details at http://www.ovirt.
org/develop/release-management /features/engine/engine-backup.

[332]

http://www.ovirt.org/develop/release-management/features/engine/engine-backup
http://www.ovirt.org/develop/release-management/features/engine/engine-backup

Chapter 11

* ovirt-shell: This is an interesting tool. It can be used as a direct
replacement for GUI System administrators love this tool a lot, as it allows
them to do a lot of automation work. To use ovirt-shell, install ovirt-
engine-cli. It can be installed on any Fedora system and is independent of
the oVirt engine server.

yum install ovirt-engine-cli
Now, download the certificate file and save it in your home directory:

wget http://ovirt.example.local/ca.crt
ovirt-shell -1 https://ovirt.example.local/api -u admin@internal -A
ca.crt

Once you are in the shell, try the following commands. Use the Tab key to navigate
and find commands. Try the following commands:

[ovirt shell (connected)l# list vms

[ovirt shell (connected)]# show vm <VM Name>

[ovirt shell (connected)]# action vm <VM Name> start

What next?

oVirt has so many operations that it, in itself, needs a book to cover everything.

Our intent was to get you started with oVirt with some details of the backend
operations. oVirt supports quota, QOS, snapshot, templating, desktop pools, storage
live migration, advanced network configurations including vlan and bonding, vdsm
hooks, and so on. It also supports a powerful reporting tool and API support.

We recommend you visit the following websites to learn more on the topic:
® http://www.ovirt.org/documentation/admin-guide/administration-
guide/

®* https://www.packtpub.com/virtualization-and-cloud/getting-
started-ovirt-33

* https://www.packtpub.com/virtualization-and-cloud/getting-
started-red-hat-enterprise-virtualization

® http://www.ovirt.org/develop/api/rest-api/rest-api/

® http://www.ovirt.org/documentation/how-to/reports/reports/

[333]

http://www.ovirt.org/documentation/admin-guide/administration-guide/
http://www.ovirt.org/documentation/admin-guide/administration-guide/
https://www.packtpub.com/virtualization-and-cloud/getting-started-ovirt-33
https://www.packtpub.com/virtualization-and-cloud/getting-started-ovirt-33
https://www.packtpub.com/virtualization-and-cloud/getting-started-red-hat-enterprise-virtualization
https://www.packtpub.com/virtualization-and-cloud/getting-started-red-hat-enterprise-virtualization
http://www.ovirt.org/develop/api/rest-api/rest-api/
http://www.ovirt.org/documentation/how-to/reports/reports/

Starting Your First Virtual Machine in oVirt

Summary

In this chapter, you learned about creating your first virtual machine using oVirt.
During the process you have learned to configure a data center, cluster, storage
domain, and logical network. You also learned about some common commands
used by oVirt engine.

In the next chapter, you will learn about the OpenStack platform, which is used to
create public and private cloud environments.

[334]

12

Deploying OpenStack Private
Cloud backed by
KVM Virtualization

OpenStack is and has been one of the hottest projects in cloud computing for 5 years
running. OpenStack provides an open source software platform for creating and
managing public and private Infrastructure As A Service for new scale out-based
workload. There are various independent components/ projects in OpenStack that
work together to build highly scalable cloud infrastructures.

OpenStack Compute (Nova) is one of the core components of OpenStack and provides
computing power to run cloud workloads. Nova itself is not virtualization software
but it is a framework that supports multiple hypervisors including those from
VMware, Citrix, and Microsoft, to name a few. To date, however, OpenStack's strength
lies in KVM. Various surveys (such as OpenStack Superuser [1]) clearly show that

the majority of OpenStack deployments, at nearly 90 percent, are based on KVM and
this book's aim is to touch on all the aspects of KVM virtualization and its usage.We
have included this short chapter covering how KVM powers OpenStack Cloud, along
with brief information on how to debug the virtualization layer of OpenStack and best
practices for building and managing the OpenStack environment.

[1]:http://superuser.OpenStack.org/articles/OpenStack-users-share-how-
their-deployments-stack-up

[335]

http://superuser.OpenStack.org/articles/OpenStack-users-share-how-their-deployments-stack-up
http://superuser.OpenStack.org/articles/OpenStack-users-share-how-their-deployments-stack-up

Deploying OpenStack Private Cloud backed by KVM Virtualization

OpenStack architecture

Let us begin with understanding the OpenStack architecture. At first glance, the
OpenStack architecture looks complex because of its modular design. OpenStack

is not a single piece of software, it is an umbrella over multiple independent

projects (components), each managing a dedicated resource of the infrastructure
independently while working together with each other. The following screenshot
shows the core components in the OpenStack Kilo version, a collection of interacting
components that control compute, storage, and networking resources.

| Openstack API |
Horizon (Dashboard)
Heat | e Swift .| .__,_-Qé_l_igmetagr Glance
(Orchestration) (Object Storage) g (Metering) ™| (tmage Service) |
[p Keystone
3 : (Identity Service)
Nova — “ffi Neutron .~ | | . Clinder.;.---|:f Trove
(Compute) == |..-{Networking) | (Block Storage) (DBaas)
v
KVM Febora/CentOS/RHEL Linux Operating System

Overview of OpenStack

Administrators use a Web-based interface to control, provision, and automate
OpenStack resources. Additionally, programmatic access to the OpenStack
infrastructure is facilitated through an extensive REST API, which enables a
rich set of add-on capabilities.

Core OpenStack components

The preceding screenshot shows the core components of OpenStack and how they
work together. Each component has a well-defined API, except for Horizon, the
Web GUI

[336]

Chapter 12

For internal communication within each component, OpenStack uses Advanced
Message Queuing Protocol (AMQP). AMQP is a Protocol for enterprise messaging.
The official specification of AMQP is available here: http://www.amgp.org/.

Each OpenStack component requires a separate database. The database can be
MySQL, MariaDB, or PostgreSQL; the default is MariaDB. The following is a brief
introduction to each component.

Compute service (Nova): Provisions and manages virtual machines, creating
a redundant and horizontally scalable cloud computing platform. It is both
hardware- and hypervisor-agnostic and has a distributed and asynchronous
architecture that provides high availability and tenant-based isolation.

Block storage (Cinder): Provides persistent block storage for virtual machine
instances. The ephemeral storage of deployed instances is non-persistent,
hence any data generated by the instance is destroyed once the instance is
terminated. Cinder uses persistent volumes that are attached to instances for
data longevity, and it is possible for instances to boot from a Cinder volume
rather than from a local image.

Virtual network (Neutron): OpenStack virtual networking is a pluggable
"networking as a service" framework for managing networks and IP
addresses. This framework supports several flexible network models,
including Dynamic Host Configuration Protocol (DHCP) and VLAN.

Image management (Glance): Provides discovery, registration, and delivery
services for virtual disk images. The images can be stored on multiple back-
end storage units and are cached locally to reduce image staging time

Authentication (Keystone): Provides a central and unified authorization
mechanism for all OpenStack users and services across all projects.

It supports integration with existing authentication services such as
Lightweight Directory Access Protocol (LDAP).

Telemetry (Ceilometer): Provides the infrastructure to collect measurements
within OpenStack. Delivers a unique point of contact for billing systems to
acquire all of the measurements needed to establish customer billing across
all current OpenStack core components. An administrator can configure the
type of data collected to meet operating requirements.

[337]

http://www.amqp.org/

Deploying OpenStack Private Cloud backed by KVM Virtualization

* Dashboard (Horizon): An extensible, web-based application that runs as a
Hypertext Transfer Protocol (HTTP) service, enabling cloud administrators
and users to control and provision compute, storage, and networking
resources.

* Object Storage (Swift): Cloud storage software that is built for scale and
optimized for durability, availability, and concurrency across the entire data
set. It can store and retrieve lots of data with a simple API, and is ideal for
storing unstructured data that can grow without bounds. (Ceph is used in
this reference architecture, instead of Swift, to provide object storage service.)

* Orchestration (Heat): An orchestration engine to launch multiple composite
cloud applications based on templates in the form of text files. It is able to
launch other existing templates such as AWS CloudFormation.

The previous components are core components of OpenStack. Many optional
components (more commonly known as OpenStack projects) are also available.

A list of OpenStack components is available here: https://www.OpenStack.org/
software/project-navigator.

We encourage you to browse OpenStack Project Navigator to learn more about the
various projects.

OpenStack deployment

OpenStack in on the same path as Linux. In the Linux world, there are many Linux
distributions to choose from. Similarly there are now many OpenStack distributions;
some are community supported and freely available while most are commercial.
Head to the OpenStack Marketplace, https://www.OpenStack.org/marketplace/
distros/, for a list of all the tested OpenStack distributions. In this chapter, we will
be using the RDO OpenStack distribution.

RDO OpenStack

This freely-available, community-supported distribution of OpenStack runs on Red
Hat Enterprise Linux, CentOS, Fedora, and their derivatives. RDO is easy to install,
contains the latest OpenStack bits and is supported by a large community that is
always there when you need help. RDO is facilitated by Red Hat and available at
https://www.rdoproject.org/ for download and use.

[338]

https://www.OpenStack.org/software/project-navigator
https://www.OpenStack.org/software/project-navigator
https://www.OpenStack.org/marketplace/distros/
https://www.OpenStack.org/marketplace/distros/
https://www.rdoproject.org/

Chapter 12

RDO OpenStack deployments methods

Deploying RDO OpenStack requires you to install all of the services that are part of
the distribution. There are three ways to install and configure RDO OpenStack:

Install and configure each service manually. This requires a lot of time and
effort from an administrative point of view. Details of how each OpenStack
service can be installed and configured manually are provided in the
following documentation: http://docs.OpenStack.org/kilo/install-
guide/install/yum/content/.

Use RDO-Manager: RDO-Manager is an OpenStack deployment and
management tool for RDO. It is based on the OpenStack TripleO project and
its philosophy is inspired by the SpinalStack project. More information about
this deployment method is available here: https://www.rdoproject.org/
rdo-manager/.

Use Packstack to install and configure RDO: Packstack can be run
interactively by prompting users for required details to install each service,
you can perform an all-in-one installation, or it can read the required details
from an "answer file" configured up-front, by using a command such as
packstack --gen-answer-file=GEN_ ANSWER FILE.

Installing Packstack

Packstack installation is a quick and easy process. RDO OpenStack deployment
using Packstack is broken down into three simple steps and it takes around 20
minutes to complete the installation.

Prerequisites

Software: Fedora 21 and later 64-bit or any other RHEL-based Linux
distributions such as CentOS and Scientific Linux.

Hardware: A machine with at least 4 GB RAM, multi-processors with
hardware virtualization extensions, and at least one network adapter.

[339]

http://docs.OpenStack.org/kilo/install-guide/install/yum/content/
http://docs.OpenStack.org/kilo/install-guide/install/yum/content/
https://www.rdoproject.org/rdo-manager/
https://www.rdoproject.org/rdo-manager/

Deploying OpenStack Private Cloud backed by KVM Virtualization

* Other requirements:

o

The system must have Internet connectivity or access to locally
created RDO package repositories.

The Network Manager service must be disabled on the system as
OpenStack networking currently does not properly work on any
system that has the Network Manager service enabled. To disable
Network Manager, run the following code:

#systemctl stop NetworkManager.Service

#systemctl disable NetworkManager.Service

The time on the system must be synchronized with a time server.

Installing the Packstack installer

Install the required packages for the Packstack installation. To do this, start
by configuring the RDO software repository on the system by running the
following command:

#rpm -ivh https://repos.fedorapeople.org/repos/OpenStack/OpenStack-kilo/
rdo-release-kilo-1l.noarch.rpm

Next, run the following command:
#yum install -y OpenStack-packstack

Several other packages will be installed as well as the Packstack software.

Running Packstack to install OpenStack

Once the required packages have been installed, the OpenStack deployment
can begin.

To do this, run the following command:

#packstack --allinone

The installation will take about 15-20 minutes to complete and it will install and
automatically configure all the core OpenStack services on your system. Once the
process is complete, it will summarize the installation as follows:

% Tnstallation completed successfully ***

Additional information:

* A new answer file was created in: /root/packstack-
answers-20151207-132535. txt

[340]

Chapter 12

* File /root/keystonerc admin has been created on OpenStack client host
192.168.1.10. To use the command line tools you need to source the file.

* To access the OpenStack Dashboard browse to http://192.168.1.10/
dashboard .

Please, find your login credentials stored in the keystonerc admin in
your home directory.

* To use Nagios, browse to http://192.168.1.10/nagios username:
nagiosadmin, password: e32fe7ed5fa54d6d

* The installation log file is available at: /var/tmp/
packstack/20151207-132534-8roLyQ/OpenStack-setup.log

* The generated manifests are available at: /var/tmp/packstack/20151207-
132534-8roLyQ/manifests

Now you can log in to the OpenStack web interface "Horizon" by going to
http://$YOURIP/dashboard. The username is admin. The password can be
found in the keystonerc_admin file in the /root/ directory.

Launching First Instance

The OpenStack dashboard is really easy to use. Log in to the dashboard, then switch
to the Instances page using the switcher on the left-hand pane. The Instances page
displays all running instances and there is a Launch Instance button on the top
toolbar. Clicking on Launch Instance will bring up the Launch Instance dialog.
Input an instance name, select the flavor, boot source, and network, then select
Launch, and it will create the instance, which you can access over a VNC connection.

An instance can also be launched from the command line. The following is the
typical procedure to launch the instance:

1. First make sure all OpenStack services are running properly by executing
the #0penStack-status command. This command shows an overview
of installed OpenStack services and basic information managed by
those services.

2. After verifying all the services are running properly, source the
keystonerc_admin file present at the /root/ directory. This file contains
the keystone API endpoint and credentials. This is the entry point from
which to access OpenStack. When you source this file, the OpenStack access
details are exported in the environment and made available to various
OpenStack client utilities on the cloud:

#source keystonerc_admin

[341]

http://$YOURIP/dashboard

Deploying OpenStack Private Cloud backed by KVM Virtualization

3. Before launching an instance, we need an operating system image in the
image repository: Glance project. Packstack deployment downloads and
adds the CirrOS image in the repository by default. CirrOS is a tiny Linux
operating system specially meant for OpenStack testing.

#glance image-1list will list the images currently available in the
Glance repository.

To import any other pre-made images, use the glance create-image command.
Fedora cloud images are available here to download and they can be used with
OpenStack: https://getfedora.org/cloud/download/.

Example: Uploading the Fedora22 image

In the following example, I downloaded the Fedora image locally on my
OpenStack AIO system and uploaded it to the Glance image repository by
running the following command:

#glance image-create --name "Fedora22" --container-format --disk-format
gcow2 --file Fedora-Cloud-Base-22.x86_64.gcow2

The output of the previous command is as follows:

[342]

https://getfedora.org/cloud/download/

Chapter 12

Now we check the available flavor. Flavors are virtual hardware templates
in OpenStack, defining the memory size, disk, vCPUs, and so on. To list the
available flavors, run the #nova flavor-1list command. The output of the
command is as follows:

There are two other things that are needed to launch an instance: keypairs and
security groups.

Keypairs are used for a password-less login to the instance created on OpenStack.
Each keypair has two parts: the public key and the private key. The public key is
what is injected into instances. The private key is what you save in a . pem file on
your local machine. You use your private key to SSH into your instance.

1. Run the following command to create a new keypair:

#nova keypair-add key-NAME

2. Once the keypair has been created, it will output PRIVATE KEY on the
console. Copy it and store it somewhere with the . pem extension.

#nova keypair-list will list the keys present in your tenant.

[343]

Deploying OpenStack Private Cloud backed by KVM Virtualization

3. Security groups are sets of IP filter rules that are attached to an instance's
networking. They are used to filter packets even before they reach the
instance. They are the gatekeeper for your instances. From the command line,
you can get a list of security groups for the project you're acting by using the
nova command:

To create a new security group, use the nova secgroup-create
command as shown next:

© This creates the empty security group. To add IP filter rules, use the
following syntax:

#nova secgroup-add-rule <secgroup> <ip-proto> <from-port>
<to-port> <cidr>

admin)]#

° Tolist all the IP filter rules in a security group, run the following
syntax as shown in the screenshot:

[344]

Chapter 12

[e]

Check what networks are available for instances. #neutron net-
list lists the logical network defined. To create a new logical
network, use #neutron net-create:

Now you can spawn an instance. Have the following details handy before
you fire the command that will spawn an instance:

° Instance name

° Glance image name

o

Flavor name
° Network ID

o

Security Group name

Boot an instance:

root@ (keystone admin)]l# nova boot --flavor=ml.tiny --image
Fedora22 --nic net-id=90905851-38c7-41d4-a331-515c¢725075ec
--security-groups default --key-name john FirstInstance

This will create an instance named FirstInstance using the Fedora22
image, connected to the private logical network with virtual hardware
configuration defined in m1 . tiny flavor and the public key injected for
password-less login.

You can access it using the IP address assigned it from your logical network.
To discover the IP address of the instance, run the following;:

(keystone admin)1# nova show FirstInstance | grep -i network
| private network | 10.0.0.3

Troubleshooting the virtualization layer
of OpenStack

KVM is the de facto hypervisor choice for OpenStack compute as service. There are
plenty of native KVM debugging mechanisms that you can use for troubleshooting
issues that occur while launching an instance on your OpenStack environment.
Alternatively, if something unusual suddenly happened with a critical instance,
libvirt and QEMU provide a rich set of debugging controls that allow us to query
(or modify) the state of virtual machines in distress.

[345]

Deploying OpenStack Private Cloud backed by KVM Virtualization

The following log files play a very important role in troubleshooting compute layer
issues. Please note these files are on the nova compute hosts nodes:

/var/log/nova/nova-api.log
/var/log/nova/nova-compute.log
/etc/libvirt/qgemu/*.xml
/var/lib/nova/instances/*

/var/lib/libvirt/qemu/

/var/1lib/libvirt/gemu/ is the directory where QEMU creates a log file for each
instance or VM that was started on the node. If there is an I/ O problem faced by
the instance, or storage performance is degraded, QEMU quickly detects that and
records this in the <vm_name>. log file. Here, <vm_name> is the libvirt v that gets
created in the background when you run an instance. You can correlate the instance
name and vm name using the UUID:

nova list --minimal

| 442db95c-4a01-40el-8560-a6ab2d6c5908 | FirstInstance |
| 6a5b77ac-£f57d-45e7-ae99-a56469e9eddd | SeccondInstance |

Here, on this host, two instances are running named FirstInstance and
SecondInstance. If yourun virsh list or grep kvmin the ps aux command,
you will see two virtual machines with different names:

[root@dhcp210-192 ~ (keystone admin)]l# virsh list

Id Name State
2 instance-00000002 running
3 instance-00000003 running

To match the running VMs with the nova ID names, run the following command:

[root@dhcp210-192 ~(keystone admin)]l# virsh list --uuid
442db95c-4a01-40el-8560-a6ab2d6c5908
6a5b77ac-£57d-45e7-ae99-a56469e9eddd

Match the UUID displayed in the virsh command output with the ID of the
nova instance.

[346]

Chapter 12

Accessing the instance configuration
database

All the instance configurations are stored in the nova database. Sometimes
accessing the database gives good information for troubleshooting purposes. For
example, Instance creation fails with an error. Identifying on which compute-
node the particular instance was scheduled to run will give us a starting point for
troubleshooting. The instance table in the nova database holds all the information,
including the host details. To access the nova database, follow the following steps:

1.

SSH into the your OpenStack AIO system and run the mysql command to get
into the database:

mysql

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 559251

Server version: 5.5.42-MariaDB-wsrep MariaDB Server, wsrep 25.11.
r4026

Copyright (c) 2000, 2015, Oracle, MariaDB Corporation Ab and
others.

Type 'help;' or '\h' for help. Type '\c' to clear the
current input statement.

MariaDB [(none)]>

At the MariaDB prompt, you can use the SHOW DATABASES command to list
all the databases configured on the system. See the following output:

MariaDB [(none)]> SHOW DATABASES;

| information schema |
| cinder |
| glance |
| keystone |
| mysql |
| neutron |
| nova |
| performance schema |
| test |

9 rows in set (0.00 sec)

[347]

Deploying OpenStack Private Cloud backed by KVM Virtualization

3. To connect a database, execute the use MySQL query followed by the
database name, as shown next. Here, we are connecting to the nova database:

MariaDB [(none)]> USE NOVA
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

The sHow TABLES query displays all the tables present in the database.

A table named instance in the nova database holds all the configuration-
related information about the instances. You can query this table to fetch
required diagnostic information.

The following example will return all the records from the instance table for which
instance status is stopped.

MariaCB [nov SELEC , _mb FROM instances WHERE vm_state='stopped';

-

"
|
"
|
|
"
2

2 rows in set (0.00 sec)

Similarly you can query the VMs that are in the error state: just change vm_state
to error. You can make use of the SQL query language and collect all the required
information from the database for an issue investigation.

QEMU Monitor Protocol

QEMU Monitor Protocol (QMP) is a JSON-based protocol that allows applications
to communicate with a QEMU instance. The gemu-monitor-command provided

by the virsh shell allows users to interact with the QEMU monitor from the
command line.

To enumerate all available QMP commands for a particular virtual machine,
run the following:

#virsh gemu-monitor-command

<vmm_name> --pretty ' {"execute" : "query-commands"} '

[348]

Chapter 12

There are many query commands that can expose a lot of internal information that is
not exposed to OpenStack and is vital for effective root cause analysis. For example,
query-block returns detailed information about block devices being used by the
virtual machine.

#virsh gemu-monitor-command instance-00000002 --pretty
'{"execute":"query-block"}

{

"return": [
{
"io-status": "ok",
"device": "drive-virtio-diskO",
"locked": false,
"removable": false,
"inserted": {
"iops rd": 0,
"image": {
"backing-image": {
"virtual-size": 41126400,

"filename": "/var/lib/nova/instances/ base/
d5068b90842c6b574b2e5319279d970447627085",

"format": "raw",
"actual-size": 18173952
}I
"virtual-size": 1073741824,

"filename": "/var/lib/nova/instances/442db95c-4a01-
40el-8560-a6ab2d6c5908/disk",

"cluster-size": 65536,

"format": "gcow2",

"actual-size": 1904640,

"format-specific": {
"type": "qcow2",
"data": {

[349]

Deploying OpenStack Private Cloud backed by KVM Virtualization

"compat": "1.1",

"lazy-refcounts": false

}l
"backing-filename": "/var/lib/nova/instances/ base/
d5068b90842c6b574b2e5319279d970447627085",

"dirty-£flag": false
} ’

"iops wr": 0,
"ro": false,
"backing file depth": 1,
n drv n s n qCOW2 n ,
"jops": O,
"bps wr": 0,

"backing file": "/var/lib/nova/instances/ base/
d5068b90842c6b574b2e5319279d970447627085",

"encrypted": false,
llbpsll : 0 ,
"bps rd": 0,

"file": "/var/lib/nova/instances/442db95c-4a01-40el-8560-
a6ab2d6c5908/disk",

"encryption key missing": false

}
"type": "unknown"
}
libvirt debug logs:

libvirt plays very a important role in the OpenStack nova component: it handles all
management and interaction with QEMU. The default logging level set for libvirt is a
warning message only; enabling more verbose logging helps in tracing orchestration-
level issues more efficiently. To enable debug logging for the libvirt daemon,
perform the following steps:

1. Uncomment the log_level option and set the option that you would

like to use:
0 - None
1 - debug

2 - Information
3 - Warnings
4

- Errors

[350]

Chapter 12

2. The following is an example:

vi /etc/libvirt/libvirtd.conf

log level =1

vi /etc/libvirt/libvirtd.conf
log outputs="1l:file:/var/log/libvirt/libvirtd.log"

3. Restart libvirt daemon:

#systemctl restart libvirtd.service

Collecting vimcore from instances

When you need to investigate and debug complex guest performance problems,
such as the guest going unresponsive, the instance's memory state can be dumped
into a file and analyzed to get a detailed insight into what exactly is happening with
the instance.

The virsh dump command is used to collect a vincore from a virtual machine from
the hypervisor.

The command's syntax is as follows:

virsh dump <domain> /target/save/path/<virtual machine>.vmcore <opts>

The options are as follows:

- --bypass-cache: Will not collect the file system cache.

--1live: The domain continues to run until the core dump is complete,
rather than immediately pausing.

--crash: The domain is halted with a crashed status, rather than left in a
paused state.

--reset: The domain is reset after a successful dump.
- -verbose: Increases the verbosity of the command output.

--memory-only: The file is an elf file, and will only include domain memory
and CPU common register values. It is very useful if the domain uses host
devices directly.

[351]

Deploying OpenStack Private Cloud backed by KVM Virtualization

Summary

In this chapter, you learned a very high level overview of OpenStack, how to
deploy RDO OpenStack, and how to use various KVM debugging mechanisms to
troubleshoot issues that may occur at the OpenStack compute layer. For further
information on OpenStack, refer to OpenStack Essentials and Mastering OpenStack by
Packt Publishing.

The next chapter covers debugging and performance-tuning in detail.

[352]

15

Performance Tuning and
Best Practices in KVM

In this chapter, we will see how performance tuning can be done on a KVM setup.
We will also discuss the best practices that can be applied in a KVM setup to improve
performance. We have included steps to tune different components such as CPUs,
memory, networking, blocks and time keeping.

Performance tuning is a trial-and-error process. Virtual machines host different type
of applications and hence the type of tuning required varies with virtual machines.
In most cases default configuration is enough to get a decent performance. Before
performance tuning we should understand all the components involved, the options
available and the subsystems. Then we can start implementing the options, gather
the results, and finally come to a conclusion. It is not possible to grab and fix in

the performance world. It has to be done by a trial-and-error method. Either your
setup is bare-metal or virtualized. One common way to improve performance is

to run the software on a supported hardware configuration and always make sure
the minimal /recommended configuration is met to run the environment. If these
prerequisites are not met, it can affect the performance a lot. One other way is to
allocate the required resources instead of wasting lots of them. There should be
proper planning, because the environments may scale in future.

[353]

Performance Tuning and Best Practices in KVM

Before diving into the virtualization or performance-tuning of VMs, I would like

to recall or reiterate the KVM fundamentals. As we discussed in earlier chapters,
guest systems or VMs are simple Linux processes in the host system. vCPUs are
Linux POSIX threads. So obviously, the scheduling subsystem of Linux or the
Linux scheduler will take care of these threads/processes. Don't get confused about
the term "threads"; threads are lightweight processes in Linux. As discussed in
Chapter 2, KVM Internals Linux Kernel features are by default inherited by KVM;
thus NUMA, memory support such as hugepages are available for KVM, because in
short, KVM turns Linux systems into a hypervisor.

This chapter gives some insights into best practices and performance-tuning options
available with KVM. Well, as everyone says, Performance tuning is an art. There is no

tool that maximizes performance gain in all scenarios; because environments differ,

performance has to be tuned accordingly.

The earlier chapters talked about paravirtualized drivers available with KVM.
Para-virtualized drivers are designed for improving performance in virtualization.
When we talk about KVM, the paravirtualization drivers are virtio drivers. Virtio
drivers are not limited to KVM hypervisors though. We will start with virtio drivers
and then will dive into different subsystem tuning and best practices.

We will cover the following topics:

* CPU and memory tuning

* Understanding NUMA, CPU, and memory tuning with NUMA
* Disk and block I/O tuning

* Network tuning

* KVM best practices

VirtlO

In the virtualization world, a comparison is always made with bare-metal systems.
Paravirtualized drivers enhance the performance of guests and try to retain
near-bare-metal performance. It is recommended to use paravirtualized drivers for
fully virtualized guests, especially when the guest is running with I/ O-heavy tasks
and applications. Virtio is an API for virtual IO and was developed by Rusty Russell
in support of his own virtualization solution, called 1guest. Virtio was introduced to
achieve a common framework for hypervisors for 1O virtualization.

[354]

Chapter 13

In short, when we use paravirtualized drivers, the guest operating system is aware
that it's running on a hypervisor and includes drivers that act as the front end. The
front end drivers are part of the guest system. When there are emulated devices and
someone wants to implement backend drivers for these devices, hypervisors do this
job. The frontend and backend drivers communicate through a path that is nothing
but virtio. KVM uses virtio drivers as paravirtualized device drivers. This is also
available for Windows guest machines running on KVM hosts:

Linux guest
Front-end drivers
/,/’/ virtio \“\\\
Back-end drivers Back-end drivers
KVM]]]] lguest
(Linux hypervisor) Device emulation Device emulation (Linux hypervisor)
Hardware

Source: http://www. ibm.com/developerworks/library/l-virtio/

There are mainly two layers (virt queue and virtual ring) to support communication
between the guest and the hypervisor.

Virt queue and virtual ring (vring) is the transport mechanism implementation

in virtio. Virt queue (virtio) is the queue interface that attaches the frontend and
backend drivers. Each virtio device has its own virt queues and requests from
guest systems are put into these virtual queues. Each Virt queue has its own ring,
called a vring, which is where the memory is mapped between the gemu and guest.
You can find the source for the various front end drivers within the . /drivers
subdirectory of the Linux kernel. There are different virtio drivers available for

use in a KVM guest.

The devices are emulated in QEMU, and the drivers are part of the Linux kernel,
or an extra package for Windows guests. Some examples of device/driver pairs:

e virtio-net: The virtio network device is a virtual Ethernet card. Virtio-net
provides the driver for this.

* virtio-blk: The virtio block device is a simple virtual block device (that is, a
disk). Virtio-blk provides the block device driver for the virtual block device.

* virtio-balloon: The virtio memory balloon device is a device for managing
guest memory.

[355]

http://www.ibm.com/developerworks/library/l-virtio/

Performance Tuning and Best Practices in KVM

* virtio-scsi: The virtio SCSI host device groups together one or more disks
and allows communicating to them using the SCSI protocol.

* virtio-console: The virtio console device is a simple device for data input
and output between the guest and host userspace.

* virtio-rng: The virtio entropy device supplies high-quality randomness for
guest use, and so on.

In general you should make use of these virtio devices in your KVM setup for
better performance.

To know more about the virtio specification refer to http://docs.oasis-open.org/
virtio/virtio/v1.0/virtio-v1.0.html.

CPU tuning

I would like to reiterate that vCPUs are POSIX threads in the KVM host. You can
allocate vCPUs for guest systems according to your needs. However, to get the
maximum or optimal performance, it is always better to allocate required virtual
CPUs for each guest based on the expected load of the guest operating system.
There is nothing wrong with allocating more than is needed; however, it may cause
scaling issues in future, when considering the host system as a single unit serving all
configured guests.

There is also a misconception that the number of vCPUs defined by all of the guest
systems should be less than the total number of CPUs available in the HOST system.
To expand further on this thought, if the total number of CPUs available in the
HOST system is 32, some people think they can only define eight vCPUs each if
they defined four guests in the system. There is no rule like that. Generally speaking,
these vCPUs are lightweight processes running in your KVM hosts that get
scheduled by the Linux scheduler based on the scheduling policy currently in place,
which is supposed to treat all the processes running in the system in a fair way.

That said, KVM supports overcommitting virtualized CPUs. The rule that has to
be applied here is that virtualized CPUs can be overcommitted as far as the load
limits of guest virtual machines allow. However, real attention has to be paid here,
otherwise it can badly hurt the performance if the vCPU load is increased near

to 100%.

[356]

http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html

Chapter 13

The number of vCPUs

Considering the performance impact of vCPU allocation or overcommitting, you
should make sure the number of vCPUs (SMP guest) assigned for a single system
does not exceed the total number of physical cores in the KVM host. For example: if
the physical system has eight cores, you should not assign more than eight vCPUs
to a single guest. If you do so, there is a huge possibility of significant performance
degradation. There is nothing wrong with assigning eight vCPUs to a single guest
in this scenario; this should work as expected. As mentioned earlier, these rules will
fit best when the guest system load is limited or less than 100%. A word of caution
here on overcommitting CPUs: you should not overcommit CPUs in your production
environments without validating the worst cases that can occur. We say the CPUs
are overcommitted when the sum of vCPUs for all guest systems defined in a KVM
host is greater than the number of host CPUs on the system. You overcommit CPUs
with one or multiple guests if the total number of vCPUs is greater than the number
of host CPUs. So test well before you implement this in production systems. Client
utilities such as virt-manager give a warning (Figure 2) when you try to overcommit
the number of vCPUs.

For example, in our system, there are four available CPUs, so when I try to allocate
more than four vCPUs, I get a warning that says Overcommitting vCPUs can hurt
performance, as shown in the following screenshot:

File Virtual Machne View Send Key

- - B

B Overview

& Boot Options
— |DE Disk 1 Configuration

IDE COROM 1 Copy host CPU canfiguration
% VirtlQ Disk 1 Model: | coretuo
& NIC o 2041

Mause
= Keyboard
M Display Spice

= Topology
Manually set CPU topology

~ Pinning

1 Controller USB Default pinning (ex: 0,1.3-6.7)

I Controlier PCI Gunerate from host NUMA configuration
B Control lter HDE

I Controller VirtlQ Seriat

§# USB Redirector 1

§ USB Redirector 2

Addd Hardwars Cancal | | Apply

Figure 2: CPU tuning window

[357]

Performance Tuning and Best Practices in KVM

When we look at the preceding screenshot showing the CPU/processor
configuration of a guest system, there are four main parts:

* The Number of vCPUs
* Configuration
* Topology

* Pinning
We just covered the first in the preceding paragraphs.

Let's move on to the second part: CPU configuration.

CPU configuration

Use this option to select the CPU configuration type, based on the desired CPU
model. Expand the list to see available options, or click the Copy host CPU
configuration button to detect and apply the physical host's CPU model and
configuration. Once you select a CPU configuration, the available features/
instructions of the CPU are displayed and can be individually enabled/disabled
in the CPU Features list.

irtual Maching x
File Virtual Machine View Send Key Application Default
- . @ Hypervisor Default
Clear CPU configuration
B Overview CPUs
86
B Performance Logica
5 Memary Broadwell
7 Maximu
4 Boot Options Broadwell-noTSX
=% IDE Disk 1 Configur.
9" Canrae
IDE COROM 1 Copy
core2duo
4 VirtlO Disk 1 Model:
= NIC :c8:42:41
" * Topaola
ot Pl
= Keyboard cpubd-rhels
Socket
M pi
Display: Spice Haswell
B Sound: iché Cores:
Haswell-naT5%
= Serial 1 !
fIrEM!L 233
2 Channel spice i
B video GAL * Pinfing |yrmé.4
-) f2 (e20.1.35.7)
B Controller USB Default 70 o 0,1.3-5,
5 Controller PCI Metalem 1 hast MUMA configuration
M Controller IDE
J Opteron_61
M Controller VirtlD Serial
o Opteron_G2
§ USB Redirectar 1 prers
0 USB Redirector 2 Opteron.G3
Opteron. G4
Opteron_GS
Penryn
pentium
pentium2

Addd Hardware Cancel Apply
-

Figure 3: CPU configuration window

[358]

Chapter 13

Depending on the version of the KVM software you have on your system, the
available CPU configuration also differs. In my system (Fedora 22), I have the
previously listed (Figure 3) CPU configuration. This option gives the flexibility of
allocating the desired CPU model to the virtual machine. There is also an option
(Copy host CPU configuration) that can copy the KVM host CPU model and
configuration to the guest. Depending on the virt-manager version in use, you may
get the option in the virt-manager GUI to individually select/deselect the CPU
features for the CPU configuration you selected. One of the best practices is to copy
the host CPU configuration over the manual configuration:

SR —
humble-lap $ virsh capabilities
<capabilities>

<host>

<uuid>bf4ad3ce-e99c-4bc5-b2f2-8aacfcfcd552</uuid>

<cpu=
<arch>x86_64</arch>
<model>Broadwell</model=>
<vendor=Intel</vendor=
<topology sockets='1l' cores='2' threads='2'/>
<feature name='invtsc'/=
<feature name='abm'/>
<feature name='pdpelgb' />
<feature name='rdrand' />
<feature name='flé6c'/>
<feature name='osxsave' />
<feature name='pdcm'/>
<feature name='xtpr'/>
<feature name='tm2'/>
<feature name='est'/>
<feature name='smx'/>
<feature name='vmx'/>
<feature name='ds cpl' />
<feature name='monitor' /=
<feature name='dtes64' /=
<feature name='pbe' />
<feature name='tm'/>
<feature name='ht'/>
<feature name='ss'/>
<feature name='acpi'/>
<feature name='ds' />
<feature name='vme'/>
<pages unit='KiB' size='4'/>
<pages unit='KiB' size='2048'/>

</cpu>

Figure 4: Host CPU feature list

[359]

Performance Tuning and Best Practices in KVM

CPU topology

The third stage in CPU tuning is the CPU topology configuration, as shown in Figure
5. You can configure the number of sockets, cores, and threads for your virtual
machine, as shown:

Topology
¥ Manually set CPU topology

Sockets: |4
Cores: 1

Threads: |1

Figure 5: CPU topology

Although your environment may dictate other requirements, selecting the desired
number of sockets, but with only a single core and a single thread, usually gives the
best performance results and is the recommended setting.

CPU pinning

The fourth tuning option is vCPU pinning. When it comes to the performance tuning
part of CPU, one of the best known techniques is vCPU pinning. Let's discuss this
option in more detail. Obviously, wrong vCPU pinning can have a great impact

on performance and can badly affect your KVM setup. First of all, why is pinning
needed? The process of pinning specific vCPUs on a physical CPU can increases

the CPU hit ratio. Whenever you pin a vCPU to a physical host CPU or subset of
CPUs, you have to consider whether you are working on a NUMA (Non Uniform
Memory Access)-capable system or not. If the system is NUMA-capable, extra care
should be taken while doing the pinning process. Large performance improvements
can be obtained by adhering to the system's specific NUMA topology. The Generate
from host NUMA configuration option helps us to automatically generate a pinning
configuration that is valid for the host. However, if the system is not NUMA-capable,
you may encounter a message similar to that seen in the following screenshot when
you try to generate the aforementioned configuration:

[360]

Chapter 13

Input Errer

Error generating CPU configuration
Capabilities only show <= 1 cell. Not NUMA capable

OK

Figure 6: Generating from the NUMA configuration

We will discuss more about NUMA configurations and vCPU tuning later in this
chapter. Confirmation of NUMA availability can be done by methods discussed in
the following sections.

The numactl command

The first option to confirm NUMA availability uses the numactl command as
shown next:

humble-lap $ numactl --hardware
available: 1 nodes (0)

node ©® cpus: 0 1 2 3

node O size: 7668 MB

node 0 free
node distar
node [0}

0: 10

Figure 7: numactl hardware

[361]

Performance Tuning and Best Practices in KVM

It lists only one node. Even though this conveys the unavailability of NUMA,
further clarification can be done by running the following command:

humble-lap $ cat /sys/kernel/debug/sched features

This will not list NUMA flags if the system is not NUMA-aware. If the system is NOT
NUMA-capable, the Generate from host NUMA configuration option will result in
an error.

As a best practice, what you should remember here is, do not use this option if the
guest system has more vCPUs than a single NUMA node where it's running. Even if the
NUMA is available, the vCPUs are bound to the NUMA node and not to a particular
physical CPU. We will discuss NUMA aware CPU tuning later in this chapter.

Till now, I have been using the term CPU Pinning; this is nothing but the process of
setting the "affinity" between the vCPU and the physical CPU of the host, so that the
vCPU will be executing in that physical CPU only. Use virsh vcpupin command for a
1:1 binding of vCPU to a physical CPU or to a subset of physical CPUs:

[humble-lap]$ virsh vcpupin---help
NAME
vcpupin - control or query domain vcpu affinity

SYNOPSIS
vcpupin =domain= [--vcpu <number=] [--cpulist <string=] [--config] [--live] [--current]

DESCRIPTION
Pin domain VCPUs to host physical CPUs.

OPTIONS
[--domain] <string> domain name, id or uuid
--vcpu <number> vcpu number
--cpulist <string> host cpu number(s) to set, or omit option to query
--config affect next boot
--live affect running domain
--current affect current domain

[CHELNEY |

Figure 8: virsh vCPUpin help command output
There are couple of best practices when doing vCPU pinning:

* If the number of guest vCPUs is more than the single NUMA node CPUs,
don't go for the default pinning option we discussed earlier.

* If the physical CPUs are spread across different NUMA nodes, it is always
better to create multiple guests and pin vCPUs of each guest to physical
CPUs in the same NUMA node. This is because accessing different NUMA
nodes, or running across multiple NUMA nodes, significantly degrades
performance for physical and virtualized tasks.

[362]

Chapter 13

Reference: https://docs.fedoraproject.org/en-US/Fedora/13/html/
Virtualization Guide/ch25s06.html for more details.

Let us look at the steps of vCPU pinning:

1. Execute virsh node info to gather details about host CPU configuration.

humble-1lap $ virsh nodeinfo
CPU mode'l: x86_64
CPU(s): 4

CPU frequency: 2895 MHz

CPU socket(s): 1

Core(s) per socket: 2

Thread(s) per core:

NUMA cell(s): 1

Memory size: 7852832 KiB

Figure 9: virsh nodeinfo command output

2. The next step is to get the CPU topology by executing command virsh
capabilities and check the section tagged <topologys:

<topology>
<cells num='1'>
<cell id='0'>
<memory unit='KiB'>7852832</memory>
<pages unit='KiB' size='4'>1963208</pages>
<pages unit='KiB' size='2048'>0</pages>
<distances>
<sibling id='0' value='10'/>
</distances>
<cpus num='4'>
<cpu id='0' socket id='0' core_id='0' siblings='0-1'/>
<cpu id='1' socket id='0' core_id='0' siblings='0-1'/>
<cpu id='2' socket id='0' core_id='1' siblings='2-3'/>
<cpu id='3' socket id='0' core_id='1' siblings='2-3'/>
</cpus=
</cell>
</cells>
</topology=>

Figure 10: virsh capabilities topology

Figure 10 shows that NUMA is not available in this system (<cell id='0">).

[363]

https://docs.fedoraproject.org/en-US/Fedora/13/html/Virtualization_Guide/ch25s06.html
https://docs.fedoraproject.org/en-US/Fedora/13/html/Virtualization_Guide/ch25s06.html

Performance Tuning and Best Practices in KVM

3. Once we have identified the topology of our host, the next step is to
start pinning the vCPUs. Let's first check the current affinity or pinning
configuration with the guest named centos-1 that has four vCPUs:

humble-lap $ virsh vcpupin centos-1
/CPU: CPU Affinity

humble-lap $ J}

Figure 11: virsh vCPUpin info

The output in figure 11 means the guest vCPUs can run any of the physical
CPUs (0-3). The method we use now to pin vCPUs is known as static
placement, as seen in the guest XML file:

<vCPU placement='static'>4</vCPU>

4. Letus pin vCPU 1 to CPU 3 of the host:

humble-lap $ virsh vcpupin centos-1 1 3

humble-lap $ virsh vcpupin centos-1
VCPU: CPU Affinity

humble-lap $ virsh dumpxml centos-1

<domain type='kvm' id='2'>
<name>centos-l</name=
<uuid=>4fe91628-1bdc-4765-8101-d6387400c4c9</uuid=
<memory unit='KiB'=>2097152</memory>
<currentMemory unit='KiB'=>2097152</currentMemory=>
<vcpu placement='static'>4</vcpu=>
<cputune=

<vcpupin vcpu='l' cpuset='3'/>

</cputune>

Figure 12: virsh vCPUpin process

[364]

Chapter 13

The vCPU with id 1 is pinned to the physical CPU with ID 3. The output in figure-12
verifies that the vCPU pin on running VM completed successfully. To know more
about the placement options available in the vCPU tag, refer: http://libvirt.org/
formatdomain.html#elementsCPUAllocation.

Notice the CPU affinity listed in the virsh command and the<cputunes tag in the
XML dump of the running guest. As the XML tag says, this comes under the CPU
tuning section of the guest. It is also possible to configure a set of physical CPUs for a
particular vCPU instead of a single physical CPU. For more details on vCPU pinning,
please refer to http://libvirt.org/formatdomain.html#elementsCPUTuning.

There are a couple of things to remember. vCPU pinning can improve performance;
however, it depends on the host configuration and the other settings on the system.
Make sure you do enough tests and validate the settings.

Let us try to change the vCPU pinning again:

humble-lap $ virsh vcpupin centos-]
humble-lap $ virsh vcpupin centos-1 1
humble-lap $ virsh vcpupin centos-]

humble-lap $ virsh vcpupin centos-]

humble-lap $ virsh vcpupin centos-]
(CPU: CPU Affinity

Figure 13: virsh vCPUpin process - 2

[365]

http://libvirt.org/formatdomain.html#elementsCPUAllocation
http://libvirt.org/formatdomain.html#elementsCPUAllocation
http://libvirt.org/formatdomain.html#elementsCPUTuning

Performance Tuning and Best Practices in KVM

You can also make use of virsh vcpuinfo to verify the pinning.

* The output of the vepuinfo command is as follows:

humble-lap $ virsh vcpuinfo
error: command 'vcpuinfo' requires <domain> option
humble-lap $ virsh vcpuinfo centos-1

0

3
running
8.7s

s

1

2
running
7.2s

--y-

2

3
running
9.9s

e |

3

1

running

5.6s5
CPU Affinity: -y--

Figure 14: virsh vepunfo verification

* virsh dumpxml output of the guest looks like the following:

<vcpu placement='static'>4</vCPU>
<cputune>
<vcpupin vCPU='1l' CPUset='2"'/>
<vcpupin vCPU='2' CPUset='3"'/>
<vcpupin vCPU='3' CPUset='1l'/>
<vcpupin vCPU='0' CPUset='3"'/>
</cputunes>

One more attribute called emulatorpin can be a sub-attribute to the <cputunes>
element. We will discuss emulatorpin in detail when we discuss NUMA.

Let us now explore the memory tuning options.

[366]

Chapter 13

Working with memory

Memory is a precious resource for most environments, isn't it? Thus, the efficient
use of memory should be achieved by tuning it. The first rule in optimizing KVM
memory performance is not to allocate more resources to a guest during setup than it

will use!

We will discuss the following in greater detail:

* Memory allocation
* Memory tuning

* Memory backing

Memory allocation

Let us start by how to allocate memory for a virtual system or guest. To make the
allocation process simple, we will consider the libvirt client virt-manager again.
Memory allocation can be done from the window shown in the following screenshot.

centos-1 Virtual Machine

File Virtual Machine View Send Key

= w o[- &

Memory

g Overview
Total host memory: 7668 MiB

Performance
i:} Processor Current allocation: 2048 - + |MiB

Maximum allocation: 2048 + |[MiB

Boot Options

Figure 15: Memory allocation window
As you can see in the preceding figure, there are two main options: Current
allocation and Maximum allocation:

* Maximum allocation: The runtime maximum memory allocation of the
guest. This is the maximum memory that can be allocated to the guest when

it's running

[367]

Performance Tuning and Best Practices in KVM

* Current allocation: The actual allocation of memory for the guest. This value
can be less than the maximum allocation, to allow for ballooning up the
guest's memory on the fly

--snip-- from http://libvirt.org/formatdomain.
html#elementsMemoryAllocation

<domain>

<maxMemory slots='16' unit='KiB'>1524288</maxMemory>
<memory unit='KiB'>524288</memory>
<currentMemory unit='KiB'>524288</currentMemory>

</domain>

The virsh command can be used to tune these parameters or configurations. The
relevant virsh commands are setmem and setmaxmem. The following screenshot
shows the command options and parameter explanation:

f humble-lab j$ virsh setmem --help
NAME
setmem - change memory allocation

SYNOPSIS
setmem <domain> <size> [--config] [--live] [--current]

DESCRIPTION
Change the current memory allocation in the guest domain.

OPTIONS
[--domain] <string> domain name, id or uuid
[--size] <=number> new memory size, as scaled integer (default KiB)
--config affect next boot
--live affect running domain
--current affect current domain

humble-lap 1% virsh setmaxmem --help
NAME
setmaxmem - change maximum memory limit

SYNOPSIS
setmaxmem <domain> <size> [--config] [--live] [--current]

DESCRIPTION
Change the maximum memory allocation limit in the guest domain.

OPTIONS
[--domain] <string> domain name, id or uuid
[--size] <number> new maximum memory size, as scaled integer (default KiB)
--config affect next boot
--live affect running domain
--current affect current domain

Figure 16: virsh setmem/setmaxmem options

[368]

Chapter 13

If NUMA is present the process of memory tuning can be a little tricky. We will
discuss that in the NUMA section.

Memory tuning
The memory tuning options are added under <memtune> of the guest configuration
file.

The guest XML representation of memory tuning can be represented as follows:

<domain>

<memtune>
<hard limit unit='G's>l</hard limits>
<soft_limit unit='M'>128</soft_ limit>
<swap_hard limit unit='G'>2</swap hard limits>
<min guarantee unit='bytes'>67108864</min guaranteex>

</memtune>

</domain>

Refer to http://libvirt.org/formatdomain.
i html#elementsMemoryTuning for more details.

The virt admin can configure the memory settings of a guest manually. If <memtune>
configuration is omitted, the default memory settings apply for a guest. The virsh
command in play here is:

virsh memtune <virtual machine> --parameter size

parameter can have any of the following values; this best practice is well
documented in the man page:

--snip -- from virsh man page
--hard-limit
The maximum memory the guest can use.
--soft-limit
The memory limit to enforce during memory contention.

--swap-hard-limit

[369]

http://libvirt.org/formatdomain.html#elementsMemoryTuning
http://libvirt.org/formatdomain.html#elementsMemoryTuning

Performance Tuning and Best Practices in KVM

The maximum memory plus swap the guest can use. This has to be more
than hard-limit value provided.

--min-guarantee
The guaranteed minimum memory allocation for the guest.

--/snip--

The default/current values that are set for the memtune parameter can be fetched as
shown next:

[humble-lap 1% virsh list
Id Name

centos-1 running

[humble-lap 1% virsh memtune centos-1
hard limit : 9007199254740988
soft_limit ! 9007199254740988
swap_hard limit: 9007199254740988

[humble-1ap 15

Figure 17: virsh memtune value listing
As mentioned in the same man page:

"For QEMU/KVM, the parameters are applied to the QEMU process as a whole.
Thus, when counting them, one needs to add up guest RAM, guest video RAM,
and some memory overhead of QEMU itself. The last piece is hard to determine so
one needs guess and try. For each tunable, it is possible to designate that unit the
number is in on input, using the same values as for <memory>. For backwards
compatibility, output is always in KiB."

When setting hard_1limit, one should not set this value too low, because the
guest/domain may get killed by the kernel if this value is too low. To determine
the memory needed for a process to run is an undecidable problem.

To know more about how to set these parameters, please see the help output for the
memtune command in the following screenshot:

[370]

Chapter 13

humble-lap $ virsh help memtune
NAME
memtune - Get or set memory parameters

SYNOPSIS
memtune <domain> [--hard-limit <number=] [--soft-limit <number=]
[--swap-hard-limit <number=>] [--min-guarantee =number=>] [--config]
[--live] [--current]

DESCRIPTION
Get or set the current memory parameters for a guest domain.
To get the memory parameters use following command:

virsh # memtune <domain=

OPTIONS

[--domain] <string> domain name, id or uuid

--hard-limit <number> Max memory, as scaled integer (default Ki
B)

--soft-limit <number> Memory during contention, as scaled integ
er (default KiB)

--swap-hard-1limit <number> Max memory plus swap, as scaled inte
ger (default KiB)

--min-guarantee <number> Min guaranteed memory, as scaled integ
er (default KiB)

--config affect next boot

--live affect running domain

--current affect current domain

humble-lap $ [

Figure 18: virsh memtune help

As we have covered memory allocation and tuning, the final option is
memory backing.

Memory backing

Following is the guest XML representation of memory backing:

<domain>

<memoryBacking>
<hugepages>
<page size="1" unit="G" nodeset="0-3,5"/>
<page size="2" unit="M" nodeset="4"/>
</hugepages>
<nosharepages/>

[371]

Performance Tuning and Best Practices in KVM

<locked/>
</memoryBacking>

</domain>

You may have noticed there are three main options for memory backing: hugepages,
nosharepages, and locked.

Let us go through them one by one, starting with locked.

locked

As mentioned in earlier chapters, in a KVM environment, the guest memory lies in
the process address space of the gemu-kvm process in the KVM host. These guest
memory pages can be swapped out by the Linux kernel at any time based on the
requirement the host has. 1ocked helps us here! If you have set the memory backing
option of guest to 1ocked, the host will not swap out memory pages that belong to
the virtual system or guest. The virtual memory pages in the host system memory
are locked when this option is enabled:

<memoryBackings>
<locked/>
</memoryBacking>

Note that, when setting 1ocked, a hard_1limit must be set in the <memtune> element
to the maximum memory configured for the guest, plus any memory consumed by
the process itself.

nosharepages

Following is the XML representation of nosharepages from guest configuration file:

<memoryBackings>
<nosharepages/>
</memoryBacking>

There are different mechanisms that can enable sharing of memory when the
memory pages are identical. Techniques such as KSM (kernel same page merging)
share pages among guest systems. The nosharepages option instructs the
hypervisor to disable shared pages for this guest. I.e. setting nosharepages
prevents the host from merging the same memory used among guests.

[372]

Chapter 13

hugepages
The third and final option is hugepages; which can be represented in XML format
as follows:

<memoryBackings>
</hugepages>
</memoryBacking>

Hugepages were introduced in the Linux kernel to improve the performance of
memory management. Memory is managed in blocks known as pages. Different
architectures (1386, ia64) support different page sizes. x86 CPUs usually address
memory in 4 KB pages, but they are capable of using larger 2 MB to 1 GB pages
known as hugepages. CPUs have a built-in memory management unit (MMU)
that contains a list of these pages. The pages are referenced through page tables and
each page has a reference in the page table. When a system wants to handle a huge
amount of memory, there are mainly two options. One of them involves increasing
the number of page table entries in the hardware MMU. The second method
increases the default page size. If we opt for the first method of increasing the page
table entries, it is really expensive. The hardware MMU in a modern processor only
supports hundreds or thousands of page table entries and will struggle when it deals
with lots of page table entries or manipulations based on a high number of entries.

The second and more efficient method when dealing with large amounts memory
management is hugepages or increased page sizes. The page tables used by 2 MB
pages are suitable for managing multiple gigabytes of memory, whereas the

page tables of 1 GB pages are best for scaling to terabytes of memory. Hugepages
can significantly increase performance, particularly for large memory-intensive
workloads. Most of the known Linux distributions are able to more effectively
manage large amounts of memory by increasing the page size through the use of
hugepages. A process can use hugepage memory support to improve performance
by increasing CPU cache hits against the Translation LookAside Buffer (TLB). You
already know guest systems are simply processes in a Linux system, thus the KVM
guests are eligible to do the same.

A TLB is a cache used for virtual-to-physical address translations.
+ Typically, this is a very scarce resource on processors. Operating systems
% try to make the best use of a limited number of TLB resources. This
g optimization is more critical now, as bigger and bigger physical memories
(several GB) are more readily available.

[373]

Performance Tuning and Best Practices in KVM

The aforementioned XML entries for hugepages instruct the hypervisor that the
guest should have its memory allocated using hugepages instead of the normal
native page size. If the system is NUMA capable, latest version of libvirt can set
hugpages specifically for each NUMA node. The <page> element was introduced
by libvirt to satisfy this. It has one compulsory attribute 'size' which specifies that
hugepages should be used (especially useful on systems supporting hugepages
of different sizes).We will discuss this in detail later, when we discuss CPU and
memory tuning in NUMA-capable systems.

Before we move on, we should also mention Transparent Hugepages (THP).
THP is an abstraction layer that automate the hugepage size allocation base
on the application request.

Transparent Hugepage support can be entirely disabled, or can only be enabled
inside MADV_HUGEPAGE regions (to avoid the risk of consuming more memory
resources), or enabled system-wide. There are three main options for configuring
THP in a system: always, madvise, and never:

humble-lap $ cat/sys/kernel/mm/transparent hugepage/enabled always
[madvise] never

humble-lap $

From the above output, we can see that the current THP setting in my system is
madvise. The other options can be enabled by the following method:

echo always >/sys/kernel/mm/transparent hugepage/enabled
echo madvise >/sys/kernel/mm/transparent hugepage/enabled
echo never >/sys/kernel/mm/transparent hugepage/enabled

In short, what these values meant are enabled” value can be set to:

* always: Always use THP

* madvise: Use hugepages only in virtual memory areas (VMAs) marked with
MADV_HUGEPAGE

e never: Disable the feature

[374]

Chapter 13

System settings for performance are automatically optimized by THP. By allowing
all free memory to be used as a cache, performance is increased. It is possible to

use static hugepages when THP is in place or in other way THP won't prevent

using static method. However, when static hugepages are not used, KVM will use
transparent hugepages instead of the regular 4 Kb page size. The advantages we

get by using hugepages for a KVM guest's memory are that less memory is used for
page tables and TLB misses are reduced; obviously, this increases performance. But
keep in mind that when using hugepages for guest memory, you can no longer swap
or balloon guest memory.

Let us have a quick look at how to use static hugepages in your KVM setup:

[humble-lap 1% cat /proc/meminfo |grep -i huge
Anon Pages: 0 kB

Pages Total:]

Pages Free: 0

Pages Rsvd:

Pages Surp: 0

pagesize: 2048 kB
[humble-lap 15 |

In the above screenshot, we can see that the hugepage size in this system is 2 MB.

1.

View the current hugepages value by running the following command or
fetch it from sysfs, as shown next:

[humble-lap]1$ cat /proc/sys/vm/nr hugepages

[humble-lap 1$

From sysfs use the sysctl -a |grep huge command:

pages treat _as movable
tlb_shm group = 0
Nr_ pages = 0

nr_ pages _mempolicy = 0
.nr_overcommit pages = 0

[375]

Performance Tuning and Best Practices in KVM

3. As the hugepage size is 2 MB here, we can set hugepages in increments of 2
MB. To set the number of hugepages to 26,000, use the following command:

#echo 26000 > /proc/sys/vm/nr hugepages

Total memory assigned for hugepages cannot be used by applications that
are not hugepage aware. L, if you over alocate hugepages normal fuctioning
of the host system can get affected.

4. To make it persistent, you can use the following;:

sysctl -w vm.nr hugepages=<number of hugepages>

5. Then, mount the hugepages and restart the libvirtd service:
mount -t hugetlbfs hugetlbfs /dev/hugepages
sysctl start libvirtd

[humble-lap 1% mount |grep huge
cgroup on /sys/fs/cgroup/ tlb type cgroup (rw,nosuid,nodev,noexec, relatime,
1b)
tlbfs on /dev/ pages type tlbfs (rw, relatime,seclabel)
[humble-lap 1% cd /dev/hugepages/

[humble-lap 1% 1s

[humble-lap 1% cd libvirt/
[humble-lap 1% 1s

6. Restart the hugepage-configured guest (<memoryBacking></hugepages></
memoryBackings>). The VM will now start using the hugepages. Verify this
using the command cat /proc/meminfo |grep -i huge on the host..

Getting acquainted with Kernel Same
Page merging
According to the KVM official documentation:

KSM is a memory-saving deduplication feature that merges anonymous (private)
pages (not pagecache ones). Although it started this way, KSM is currently
suitable for more than Virtual Machine use, as it can be useful to any application
that generates many instances of the same data

http://www.Linux-kvm.org/page/KSM

[376]

http://www.Linux-kvm.org/page/KSM

Chapter 13

As is well understood from the earlier quote, KSM is a feature that allows sharing
identical pages between the different processes running in the system. We may
presume that the identical pages may exist due to certain reasons — for example, if
there are multiple processes spawned from the same binary or something similar.
There is no rule like that though. KSM scans these identical memory pages and
consolidates a Copy on write (COW) shared page. Well, if you don't know what I
meant by COW, it is nothing but a mechanism by which, when there is an attempt
to change a memory region that is shared and common to more than one process,
the process that requests the change gets a new copy and the changes are saved in it.
The same applies here. Even though the consolidated COW shared page is accessible
by all the processes, whenever a process tries to change the content (here a write

to the page), the process gets a new copy with the changes. By now, you will have
understood that, by using KSM, we can reduce physical memory consumption. In
the KVM context, this can really add value, because guest systems are gemu-kvm
processes in the system and there is a huge possibility that all the VM processes will
have a good amount of similar memory.

For the KSM to work, the process/application has to register its memory pages
with KSM. In KVM land, KSM allows guests to share identical memory pages, thus
achieving an improvement in memory consumption. Most of the shared pages are
usually common libraries, or other identical, high-use data. This shared page or
memory is marked as "copy on write". In short, KSM avoids memory duplication
and it's really useful when similar guest operating systems are present in a

KVM environment.

From the preceding theory, it's obvious that KSM provides enhanced memory speed
and utilization. Mostly, this common shared data is stored in the cache or in main
memory, which causes fewer cache misses for the KVM guests. Also, KSM can
reduce the overall memory footprint of guests so that in one way, it allows the user
to do memory overcommitting in a KVM setup, thus supplying greater utilization
of available resources. However we have to keep in mind that KSM requires

more CPU resources to identify the duplicate pages and to perform tasks such as
sharing/merging.

[377]

Performance Tuning and Best Practices in KVM

Previously, I mentioned that the processes have to mark the "pages" to show that
they are eligible candidates for KSM to operate. The marking can be done by a
process based on the MADV_MERGEABLE flag, which we will discuss in the next
section. You can explore the use of this flag from the madvise man page:

--snip -- from #man 2 madvise
MADV_MERGEABLE (since Linux 2.6.32)

Enable Kernel Samepage Merging (KSM) for the pages in the range specified

by addr and length. The kernel reqularly scans those areas of user memory that
have been marked as mergeable, looking for pages with identical content. These
are replaced by a single write-protected page (that is automatically copied if a
process later wants to update the content of the page). KSM merges only private
anonymous pages (see mmap(2)).

The KSM feature is intended for applications that generate many instances of the
same data (e.g., virtualization systems such as KVM). It can consume a lot of
processing power; use with care. See the Linux kernel source file Documentation/
vmy/ksm.txt for more details.

The MADV_MERGEABLE and MADV_UNMERGEABLE operations are
available only if the kernel was configured with CONFIG_KSM.

So, the kernel has to be configured with KSM, For example:

humble-lap $ cat /etc/redhat-release

Fedora release 22 (Twenty Two)

humble-lap $ uname -r

4.2.3-200, fc22.x86_64

humble-lap $ cat /boot/config-4.2.3-200.fc22.x86 64 |grep CONFIG_KSHM

humble-lap $ dnf install ksm

Figure 20: KSM capability checking in the kernel

To explore KSM further, we will discuss the packages available and the options to
configure KSM.

[378]

Chapter 13

KSM packages and files

The KSM package in Fedora 22 provides the following files. Service configuration
files and binaries such as ksmct1 and ksmtuned are also part of this package:

humble-lap $ rpm -ql ksm
/etc/ksmtuned.conf
/etc/sysconfig/ksm
/usr/lib/systemd/system/ksm.service

Jusr/lib/systemd/system/ksmtuned.service
Jusr/libexec/ksmctl
Jusr/sbin/ksmtuned

humble-lap $ fi

Figure 21 : Listing KSM package files

The information about the KSM service can be fetched from the sysfs filesystem.
There are different files available in this location, reflecting the current KSM status.
These are updated dynamically by the kernel, and it has a precise record of KSM
usage and statistics:

humble-lap $ 1s /sys/kernel/mm/ksm/*
/sys/kernel/mm/ksm/full_scans
/sys/kernel/mm/ksm/merge_across_nodes
/sys/kernel/mm/ksm/pages shared
/sys/kernel/mm/ksm/pages_sharing

/sys/kernel/mm/ksm/pages_to_scan

/sys/kernel/mm/ksm/pages_unshared

/sys/kernel/mm/ksm/pages volatile

/sys/kernel/mm/ksm/run

/sys/kernel/mm/ksm/sleep_millisecs
humhle-1an ¢ 0

Figure 22: sysfs entries for KSM

In an upcoming section, we will discuss the ksmtuned service and its configuration
variables. As ksmtuned is a service to control KSM, its configuration variables are
analogous to the files we see in the systs filesystem. We will list the files present in
sysfs here, with a small note about what each means:

* full scans: Full scans run

* merge_across_nodes: Whether pages from different NUMA nodes
can be merged

* pages_shared: Total pages shared

[379]

Performance Tuning and Best Practices in KVM

* pages_sharing: Pages presently shared

® pages to scan: Pages not scanned

* pages_unshared: Pages no longer shared

* pages_volatile: Number of volatile pages
* run: Whether the KSM process is running

* sleep_millisecs: Sleep milliseconds

It is also possible to tune these parameters with the flexible virsh command.

The virsh node-memory-tune command does this job for you. For example, the
following specifies the number of pages to scan before the shared memory service
goes to sleep:

virsh node-memory-tune --shm-pages-to-scan number

As with any other service, the ksmtuned service also has logs stored in a log file,
/var/log/ksmtuned. KSM tuning activity is stored in this log file if the DEBUG=1
line is added in the /etc/ksmtuned.conf file.

Refer to https://www.kernel.org/doc/Documentation/vm/ksm. txt for
more details.

Once we start the KSM service as shown next, you can watch the values get changed
depending on the KSM service in action:

#systemctl start ksm
The KSM service starts a kernel thread called ksmd as verified here:

[humble-lap 1% systemctl status ksm
® ksm.service - Kernel Samepage Merging
Loaded: loaded (/usr/lib/systemd/system/ksm.service; enabled; vendor preset: enabled)
Active: active (exited) since Fri 2015-11-20 14:57:49 IST; 3h 21min ago
Process: 1327 ExecStart=/usr/libexec/ksmctl start (code=exited, status=08/SUCCESS)
Main PID: 1327 (code=exited, status=0/SUCCESS)
CGroup: /system.slice/ksm.service

Warning: Journal has been rotated since unit was started. Log output is incomplete or unavailable.
[humble-lap 1% ps aux |grep ksm
root 39 0.0 0.0 0 07 SN 14:56 0:00 [ksnd]

Figure 23: ksm service command and ps command output

[380]

https://www.kernel.org/doc/Documentation/vm/ksm.txt

Chapter 13

Once the KSM service is started, watch the changes by querying sysfs as shown in
Figure 24. You can see some of the values getting changed when KSM is active:

humble-lap $ cat /sys/kernel/mm/ksm/+

-lap $ cat /sys/kernel/mm/ksm/*

-lap $ cat /sys/kernel/mm/ksm/*

humble-lap $ cat /sys/kernel/mm/ksm/full_scans
10
humble-lap $ cat /sys/kernel/mm/ksm/*

humble

Figure 24: sysfs entries for the KSM service

Let us explore the ksmtuned service in more detail. The ksmtuned service is designed
in such a way that it goes through a cycle of actions and adjusts KSM; this cycle of
actions will continue in a loop. Whenever a guest system is created or destroyed,
libvirt will notify the ksmtuned service.

The /etc/ksmtuned. conf file is the configuration file for the ksmtuned service.
The following file output is the default ksmtuned. conf file:

[381]

Performance Tuning and Best Practices in KVM

Here is a brief explanation of the configuration parameters available. You can see
these configuration parameters match with the KSM files in sysfs:

Configuration file for ksmtuned.
How long ksmtuned should sleep between tuning adjustments
KSM_MONITOR INTERVAL=60

Millisecond sleep between ksm scans for 16Gb server.

+H

Smaller servers sleep more, bigger sleep less.
KSM_SLEEP MSEC=10

#KSM_NPAGES BOOST - is added to the “npages” value, when “free memory"
is less than “thres".
KSM_NPAGES BOOST=300

KSM_NPAGES DECAY - is the value given is subtracted to the “npages”
value, when “free memory~ is greater than “thres™.
KSM_NPAGES DECAY=-50

KSM_NPAGES MIN - is the lower limit for the “npages™ value.
KSM_NPAGES MIN=64

#KSM_NPAGES_MAX - is the upper limit for the “npages” value.
KSM_NPAGES MAX=1250

KSM_THRES_COEF - is the RAM percentage to be calculated in parameter
“thres™.
KSM_THRES_COEF=20

KSM_THRES_CONST - If this is a low memory system, and the “thres~
value is less than “KSM_THRES_CONST , then reset “thres” value to
“KSM_THRES_CONST" value.

KSM_THRES CONST=2048

These configuration parameters in the /etc/ksmtuned. conf file instruct the KSM
action. For example, npages sets how many pages KSM will scan before ksmd goes
to sleep. It will be set at /sys/kernel/mm/ksm/pages_to_scan.thres sets the
activation threshold, in kbytes. A KSM cycle is triggered when the thres value is
added to the sum of all gemu-kvm processes when RSZ exceeds the total system
memory. This parameter is the equivalent in Kbytes of the percentage defined in the
KSM_THRES_COEF parameter.

[382]

Chapter 13

Well, KSM is designed to improve performance and to allow memory overcommits.
It serves this purpose in most environments; however, KSM may introduce a
performance overhead in some setups or environments. Also, there is a concern that
KSM may open a channel that could potentially be used to leak information across
guests. If you have these concerns or if you see/experience KSM is not helping to
improve the performance of your workload, KSM can be disabled.

To disable KSM, stop the ksmtuned and ksm services in your system by executing;:

#systemctl stop ksm
#systemctl stop ksmtuned

Till now, we have gone through different tuning options for CPU and memory.

We have covered the available options and their basic usage. However, we should
keep pushing CPU and memory tuning in NUMA-aware systems. Even though we
touched on NUMA tuning for CPU and memory earlier, we skipped some features;
let's cover them now.

Tuning CPU and memory with NUMA

Before we start tuning CPU and memory for NUMA-capable systems, let's see what
NUMA is and how it works.

What is NUMA?

NUMA is an abbreviation for Non Uniform Memory Access:

2520 295t

BUS BUS

(MerLory | (MerLory |

DSM Network
with Directory

Figure 25: Reference from Wikipedia

[383]

Performance Tuning and Best Practices in KVM

Think about NUMA as a system where you have more than one system bus, each
serving a small set of processors and associated memory. Each group of processors
has its own memory and possibly its own I/O channels. It may not possible to
stop or prevent access across these groups. Each of these groups is known as a
NUMA node.

In this concept, if a process/thread is running on a NUMA node, the memory on the
same node is normally called local memory and memory residing on another node is
known as foreign/remote memory. This implementation is different from the SMP
(Symmetric Multiprocessor System), where the access time for all of the memory is
the same for all the CPUs.

There exists something called the NUMA ratio, a measure of how quickly a CPU
can access local memory compared to how quickly it can access remote/foreign
memory. For example, if the NUMA ratio is 2.0, then it takes twice as long for a CPU
to access remote memory. If the NUMA ratio is 1, it is symmetric multiprocessing
(SMP). The greater the ratio, the more it costs to access the memory of other nodes.
Before we explore tuning in more depth, let's discuss exploring the NUMA topology
of a system. One of the easiest ways to show the current NUMA topology is via the
numactl command:

[humble-numaserver]$ numactl -H
nodes (0-1)
cpus: @ 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 size: 131026 MB
free: 114933 MB
cpus: 1 357 9 11 13 15 17 19 21 23 25 27 29 31
size: 131072 MB

free: 112458 MB
» distances:
0 1

10 20
1: 20 10
[humble-numaserver 1% i

Figure 26: numactl output

[384]

Chapter 13

The above numactl output conveys that there are 32 CPUs in the system and

they belong to the two NUMA nodes. It also lists the memory associated with
each NUMA node and the node distance. When we discussed vCPU pinning, we
displayed the topology of the system using virsh capabilities. This command can
give further details, as shown next:

-
<topology>
=cells num='2"'=>
<cell id='0's>
=memory unit='KiB'=134171180</memory=
<pages unit='KiB' size='4'>33542795</pages>
<pages unit='KiB' size='2048'=0</pages>
<distances>
<sibling id='0"' value='10"'/>
<sibling id='1' walue='20'/>
</distances=
<Cpus num='15"'=>
<cpu id='0' socket_id='0' core_id='0' siblings='0,16'/=
<cpu id='2' socket_id='0' core_id='1' siblings='2,18'/>
<cpu id='4' socket_id='0' core_id='2' siblings='4,20'/>
<cpu id='6' socket_id='0' core_id='3' siblings='6,22"'/>
<cpu id='8B' socket_id='0' core_id='4' siblings='8,24'/>
<cpu id='10' socket_id='0"' core_id='5"' siblings='10,26"'/>
<cpu id='12' socket_id='0' core_id='6' siblings='12,28'/>
<cpu id='14' socket_id='0"' core_id='7' siblings='14,30'/>
<cpu id='18' socket_id='0' core_id='0' siblings='0,16'/>
<cpu id='18"' socket_id='0"' core_id='1"' siblings='2,18"'/>
<cpu id='20' socket_id='0' core_id='2' siblings='4,20'/>
<cpu id='22' socket_id='0"' core_id='3"' siblings='6,22"'/>
<cpu id='24' socket_id='0' core_id='4' siblings='8,24'/>
<cpu id='26' socket_id='0' core_id='5"' siblings='10,26'/>
<cpu id='28' socket_id='0' core_id='6' siblings='12,28'/>
<cpu id='30' socket_id='0' core_id='7' siblings='14,30'/>
</cpus=>
</cell=
<cell id='1'>
<memory unit='KiB'=134217728</memory=
<pages unit='KiB' size='4'>33554432</pages>
<pages unit='KiB' size='2048'=0</pages>
<distances>
<sibling id='0' value='20'/=>
<sibling id='1' value='10'/>
=/distances=
<Cpus num='1g"'>
<cpu id='1' socket_id='1l' core_id='0' siblings='1,17'/>
<cpu id='3"' socket_id='l' core_id='l' siblings='3,19'/>
<cpu id='5' socket_id='l' core_id='2' siblings='5,21'/>
<cpu id='7' socket_id='l' core_id='3"' siblings='7,23'/>
<cpu id='9' socket_id='l' core_id='4' siblings='9,25'/>
<cpu id='11' socket_id='l' core_id='5' siblings='11,27'/>
<cpu id='13' socket_id='l' core_id='6' siblings='13,29'/>
<cpu id='15' socket_id='l' core_id='7' siblings='15,31'/>
<cpu id='17' socket_id='l' core_id='0' siblings='1,17'/=>
<cpu id='19' socket_id='1"' core_id='1' siblings='3,19'/>
<cpu id='21' socket_id='l' core_id='2' siblings='5,21'/>
<cpu id='23' socket_id='1' core_id='3"' siblings='7,23'/>
<cpu id='25' socket_id='l' core_id='4' siblings='59,25'/>
=cpu 1d='27' socket_id='1' core_id='5' siblings='11,27'/>
<cpu id='29' socket_id='l' core_id='6' siblings='13,29'/>
<cpu id='31' socket_id='1l"' core_id='7' siblings='15,31"'/>
</cpus=>
</cell=
</cells=>
</topology>

Figure 27: NUMA topology of a system

[385]

Performance Tuning and Best Practices in KVM

To get a graphical view of the NUMA topology (please refer to the following figure),
you can make use of a command called 1stopo, that is available with the hwloc-gui
package in Red Hat-based systems:

Machine (255CE)

| NUMANode P#) (125GE)

Sacket PAO O PCIEER: 1525
| L3 (20MB) | E
| L2 (256KE) | | L2(25%KE) | | L2(256K5) | | L2 (256KB) | | L2(25%KE) | | L2(256KE) | | L2 (256KB) | | L2(25KE) |
PCIBIBG: 1528
| L1d (32K5) | | Lld (3ZKB) | | L1d (32KB) | | L1d (32KB) | | Lld (3ZKE) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | E
| L1i (32KE) || L1i (32KE) | | L1i (32KE) | | L1i (32KE) | | L1i (32KE) | | L1i (32KE) | | L1i (32KE) | | L1i (32KE) |
{1 pc1iomnwsh
CoreP#0 CoreP#L CorePr2 CareP#3 CoreP# CorcP#5 Core P CoreP#T
PUP#0 FUPs2 L Pet PLP#6 FU P FUPFIO PLP#2 FUPs14
10
POIAER:1521
PUP#E FUPSE FUPFH0 PLIP#22 FUP#24 FPUPsH® PUPFH FUP#30 -
PCI8E6:1521

02
(1 (] L L PCT102b:053

—— Poraes1do:

| NUMANode PFL (125GE) |
Socket P

| L3 (20ME) |

| L2 (255K) || L2 (2568K8) | | L2 (255K) | | L2 (256KB) | | L2(256KEB) | | 1.2 (255KE) | | 12 (25K EB) | | L2 (255KEB) |

| Lid (32KE) || L1d (32KE) | | L1d (32KE) | | L1d (32KB) | | L1d (32KE) | | L1d (32KE) | | L1d (32KB) | | L1d (32KE) |

| L1i (3ZKE) || L1i (32KE) | | L1i (32KB) | | L1i (32KB) | | L1i (32KE) | | L1i (32KB) | | L1i (32KB) | | L1i (32KE) |
CorcPA0 CorcPAL CorcPr2 CorcP#Fs CorcPr4 CorcP#5 Corc PG CorePAT
PUP# PUPSI FUPES PUPET FU P PUPSLL PUP#I FUP#S
FUP#HT PUP#S FUP#21 FUP#2I FUP#25 PUPSIT FUP#S FUPB#31

|Host: humble-gerver

Figure 28: istopo command to visualize the NUMA topology

This screenshot also shows the PCI devices associated with the NUMA nodes. For
example, em* (network interface) devices are attached to the NUMA node 0. Once
we have the NUMA topology of the system and understand it, we can start tuning it
especially for KVM virtualized setup.

[386]

Chapter 13

NUMA memory allocation policies

The XML representation of NUMA tuning is as follows. You can see that tuning
NUMA introduces a new element tag called numatune:

<domain>

<numatunes>
<memory mode="strict" nodeset="1-4,%3"/>

</numatune>
</domain>
This is also configurable via the virsh command, as shown next:

[humble-lap 1$ virsh numatune --help
NAME
numatune - Get or set numa parameters

SYNOPSIS
numatune <domain> [--mode <string=] [--nodeset <string=] [--config] [--livel [--current]

DESCRIPTION
Get or set the current numa parameters for a guest domain.
To get the numa parameters use following command:

virsh # numatune <domain>

OPTIONS
[--domain] <string> domain name, id or uuid
--mode <string> HNUMA mode, one of strict, preferred and interleave
or a number from the virDomainNumatuneMemMode enum
--nodeset <string> MNUMA node selections to set
--config affect next boot
--live affect running domain
--current affect current domain

[humble-1ap 1% |

Figure 29: virsh numatune output

numatune

The XML representation of this tag can be shown as follows:

<domain>

<numatune>
<memory mode="strict" nodeset="1-4,%3"/>

[387]

Performance Tuning and Best Practices in KVM

<memnode cellid="0" mode="strict" nodeset="1"/>
<memnode cellid="2" mode="preferred" nodeset="2"/>

</numatune>

</domain>

Even though the element called numatune is optional, it is provided to tune the
performance of the NUMA host by controlling the NUMA policy for the domain
process. The main sub-tags of this optional element are memory and nodeset.
Some notes on these sub tags follow:

memory: The optional memory element specifies how to allocate memory for
the domain process on a NUMA host. It contains several optional attributes.
The attribute mode is interleave, strict, or preferred; the default

is strict.

Three policy types define how memory is allocated from the nodes in
a system:

© Strict : The default operation is for the allocation to fall back to other
NUMA nodes if the memory cannot be allocated on the target node.
The strict policy means that the allocation will fail if the memory
cannot be allocated on the target node.

° Interleave: Memory pages are allocated across nodes specified by a
nodemask, but are allocated in a round-robin fashion.

° Preferred: Memory is allocated from a single preferred memory node.
If sufficient memory is not available, memory can be allocated from
other nodes.

nodeset: The nodeset attribute specifies NUMA nodes, using the same
syntax as the cpuset attribute for the vCPU element. nodeset is a list
of NUMA nodes used by the host for running the domain. Its syntax is a
comma-separated list, with - for ranges and * to exclude a node.

One of the important attributes here is placement:

" Attribute placement can be used to indicate the memory placement mode for
domain process, its value can be either "static" or "auto", defaults to placement of
vCPU, or "static" if nodeset is specified. "auto" indicates the domain process will
only allocate memory from the advisory nodeset returned from querying numad,
and the value of attribute nodeset will be ignored if it's specified. If placement of
vCPU is 'auto', and numatune is not specified, a default numatune with placement
'auto" and mode 'strict' will be added implicitly."

[388]

Chapter 13

Reference: http://libvirt.org/formatdomain.html#element sNUMATuUning.

If we expand the earlier strings or if we conclude these hierarchies, we will arrive at
the following summary:

There are implicit inheritance rules between the placement mode you use for
<vepus and <numatunes:

* The placement mode for <numatune> defaults to the same placement mode
as <vecpus> or to static if <nodeset> is specified

e Similarly, the placement mode for <vcpu> defaults to the same placement
mode as<numatune> or to static if <cpuset> is specified

This means that CPU tuning and memory tuning for domain processes can be
specified and defined separately, but they can also be configured to be dependent
on the other's placement mode.

There are some more things to consider when thinking about vCPU pinning in the
NUMA context. We discussed the basis of vCPU pinning earlier in this chapter. In
short, it gives similar advantages to task pinning on bare-metal systems. It increases
cache efficiency. One example of this is an environment where all vCPU threads are
running on the same physical socket, therefore sharing an L3 cache domain. When
we discussed vCPU pinning, we said we should take care of some fundamental
tuning issues when NUMA is present, because combining vCPU pinning with
numatune can avoid NUMA misses. The performance impacts of NUMA misses are
significant, generally starting at a 10% performance hit or higher. vCPU pinning
and numatune should be configured together. As a use case, if the virtual machine is
performing storage or network I/O tasks, it can be beneficial to pin all vCPUs and
memory to the same physical socket that is physically connected to the I/O adapter.

emulatorpin

We pointed out that emualtorpin can fall into the CPU tune element. The XML
representation of this would be as follows:

<domains>
<Ccputune>
<emulatorpin cpuset="1-3"/>
</cputunes>

</domains>

[389]

http://libvirt.org/formatdomain.html#elementsNUMATuning

Performance Tuning and Best Practices in KVM

The emulatorpin element is optional and is used to pin the emulator (qemu-kvm)

to a host physical CPU. This does not include vCPU or IO threads from the VM. It
contains one required attribute CPU set specifying the physical CPUs to pin to. The
<emulatorpins> tag provides a method of setting a precise affinity to emulator thread
processes. As a result, vhost threads running on the same subset of physical CPUs
and memory, will benefit from cache locality. If this is omitted, emulator is pinned
to all the physical CPUs of the host system by default.

Please note that <vcpupin>, <numatunes, and
. <emulatorpins> should be configured together to achieve
% optimal, deterministic performance when you tune a
L= NUMA-capable system. Before we leave this section, there
are a couple more things to cover: guest system NUMA
topology and hugepage memory backing with NUMA.

Guest NUMA topology can be specified using the <numa> element in the guest XML
configuration; some call this virtual NUMA:

<CPU>

<numa>
<cell id='0' CPUs='0-3' memory='512000' unit='KiB'/>
<cell id='1l' CPUs='4-7' memory='512000' unit='KiB'
memaccess="'shared'/>
</numa>

</CPU>

Guest NUMA topology can be specified using the <numa > tag inside the <cpu> tag
in the guest virtual machine's XML. Each cell element specifies a NUMA cell or a
NUMA node. The <cpus> tag specifies the CPU or range of CPUs that are part of the
node. Memory specifies the node memory in kibibytes (that is, blocks of 1,024 bytes).
Also, the optional attribute memaccess can control whether the memory is to be
mapped as "shared" or "private". This is valid only for hugepages-backed memory.
Each cell or node is assigned a cellid or nodeid in increasing order, starting from 0.

[390]

Chapter 13

Previously, we discussed the memorybacking element, which can be specified to use
hugepages in guest configurations. When NUMA is present in a setup, the optional
nodeset attribute may come in handy as it ties a given guest's NUMA nodes to
certain hugepage sizes:

<memoryBacking>
<hugepages>
<page size="1" unit="G" nodeset="0-3,5"/>
<page size="2" unit="M" nodeset="4"/>
</hugepages>
</memoryBacking>

In simple terms, hugepages from the host can be allocated to multiple guest NUMA
nodes using the preceding configuration. The <page> element is introduced to
satisfy the requirement. It has one compulsory attribute size which specifies that
hugepages should be used (especially useful on systems supporting hugepages of
different sizes). The default unit for the size attribute is kilobytes (a multiplier of
1,024). If you want to use a different unit, use the optional unit attribute. This can
optimize memory performance, as guest NUMA nodes can be moved to host NUMA
nodes as required, while the guest can continue to use the hugepages allocated by
the host.

NUMA tuning also has to consider the NUMA node locality for PCI devices,
especially when a PCI device is being passed through to the guest from the host.
If the relevant PCI device is affiliated to a remote numa node, this can affect data
transfer and thus hurt performance.

The easiest way to display the NUMA topology and PCI device affiliation is
using the istop command that we discussed earlier. The non-graphic form of
the same command can also be used to discover this configuration. Please refer
to earlier sections.

KSM and NUMA

We discussed KSM in enough detail in previous sections. KSM is capable of
detecting that a system is using NUMA memory and controlling merging pages
across different NUMA nodes. If you remember, we encountered a sysfs entry
called merge across_node when we fetched KSM entries from sysfs. We can use
this parameter to control the merging of pages belonging to different NUMA nodes.

[humble-numaserver]$ cat /sys/kernel/mm/ksm/merge across nodes
1

[humble-numaserver]$

[391]

Performance Tuning and Best Practices in KVM

By default, pages from all nodes can be merged together. When this parameter is set
to zero, only pages from the same node are merged.

In general, unless you are oversubscribing or overcommitting the system memory,
you will get better runtime performance by disabling KSM sharing.

When KSM merges across nodes on a NUMA host with multiple guest virtual
machines, guests and CPUs from more distant nodes can suffer a significant
increase in access latency to the merged KSM page.

Obviously, you know the guest XML entry (the memorybacking element) for
asking the hypervisor to disable shared pages for the guest. If you don't remember,
please read the memory tuning section for details of this element. Even though we
can configure NUMA manually, there exists something called Automatic NUMA
balancing. We did mention it earlier. Let's see what this concept involves.

Automatic NUMA balancing

The main aim of automatic NUMA balancing is to improve the performance of
different applications running in a NUMA-aware system. The strategy behind its
design is simple: an application will generally perform best when the threads of

its processes are accessing memory on the same NUMA node where the threads

are scheduled by the kernel. Automatic NUMA balancing moves tasks (threads or
processes) closer to the memory they are accessing. It also moves application data

to memory closer to the tasks that reference it. This is all done automatically by the
kernel when automatic NUMA balancing is active. Automatic NUMA balancing will
be enabled when booted on hardware with NUMA properties. The main conditions
or criteria are:

* numactl --hardware: Shows multiple nodes
* cat /sys/kernel/debug/sched_features: Shows NUMA in the flags

To illustrate the second point:

[humble-numaserver]$ cat /sys/kernel/debug/sched features

GENTLE_FAIR SLEEPERS START DEBIT NO NEXT BUDDY LAST BUDDY CACHE HOT BUDDY
WAKEUP PREEMPTION ARCH POWER NO HRTICK NO DOUBLE TICK LB BIAS NONTASK
POWER TTWU QUEUE NO FORCE SD OVERLAP RT RUNTIME SHARE NO LB MIN NUMA
NUMA_ FAVOUR HIGHER NO NUMA RESIST LOWER

We can check whether it is enabled in the system via the following method:

[humble-numaserver]$ cat /proc/sys/kernel/numa balancing
1
[humble-numaserver]$

[392]

Chapter 13

Obviously, we can disable Automatic NUMA balancing via

echo 0 > /proc/sys/kernel/numa balancing

The Automatic NUMA balancing mechanism works based on the number
of algorithms and data structures. The internals of this method are based
on the following:

* NUMA hinting page faults
* NUMA page migration

* Task grouping

* Fault statistics

* Task placement

* Pseudo-interleaving, and so on

. For more details, refer to: http://events.
% Linuxfoundation.org/sites/events/files/slides/
S summit2014_riel chegu w 0340 automatic_numa

balancing 0.pdf

Any further explanation of these concepts is beyond the scope of this book. The
preceding presentation provides details about how these parameters are applied and
performance benchmarking. Please note that manual NUMA tuning of applications
will override automatic NUMA balancing, disabling the periodic unmapping of
memory, NUMA faults, migration, and automatic NUMA placement of those
applications. Also, in some cases, system-wide manual NUMA tuning is preferred.

One of the best practices or recommendations for a KVM guest is to limit its
resource, to the amount of resources on a single NUMA node. Put simply,
this avoids unnecessarily splitting resources across NUMA nodes, which
can degrade performance.

Understanding numad and numastat

There is a daemon to control efficient use of CPU and memory on systems with
NUMA topology. numad is known as the Automatic NUMA Affinity Management
Daemon. It monitors NUMA topology and resource usage within a system in order
to dynamically improve NUMA resource allocation and management;

numad is a user-level daemon that provides placement advice and process
management for efficient use of CPUs and memory on systems with NUMA

topology.

[393]

http://events.Linuxfoundation.org/sites/events/files/slides/summit2014_riel_chegu_w_0340_automatic_numa_balancing_0.pdf]
http://events.Linuxfoundation.org/sites/events/files/slides/summit2014_riel_chegu_w_0340_automatic_numa_balancing_0.pdf]
http://events.Linuxfoundation.org/sites/events/files/slides/summit2014_riel_chegu_w_0340_automatic_numa_balancing_0.pdf]
http://events.Linuxfoundation.org/sites/events/files/slides/summit2014_riel_chegu_w_0340_automatic_numa_balancing_0.pdf]

Performance Tuning and Best Practices in KVM

Numad is a system daemon that monitors NUMA topology and resource usage.
It will attempt to locate processes for efficient NUMA locality and affinity,
dynamically adjusting to changing system conditions. Numad also provides
guidance to assist management applications with initial manual binding of CPU
and memory resources for their processes. Note that numad is primarily intended
for server consolidation environments, where there might be multiple applications
or multiple virtual guests running on the same server system. Numad is most
likely to have a positive effect when processes can be localized in a subset of the
system's NUMA nodes. If the entire system is dedicated to a large in-memory
database application, forexample, especially if memory accesses will likely remain
unpredictable, numad will probably not improve performance.

Please keep in mind that, when numad is enabled, its behavior overrides the default
behavior of automatic NUMA balancing. To adjust and align the CPUs and memory
resources automatically according to the NUMA topology, we need to run numad. To
use numad as an executable, just run:

numad
You can check whether this is started as shown:

[humble-numaserver]1$ ps aux |grep numad

root 9170 0.0 0.0 93596 2828 ? Ssl Novl7 06:49 numad

Once the numad binary is executed it will start the alignment as shown next. In my
system, I have the following virtual machines running.

[humble-numaserver]1$ virsh list

Id Name State

12 rhel7.0 running
17 rhel7-atomic3 running
19 rhel7-atomic2 running
20 rhel7-atomicl running
24 fedora2l running
25 rhel7.0-2 running

[394]

Chapter 13

If you watch the numad actions in the /var/log/numad log file, you can see
similar messages!

Tue Nov 17 06:49:43 2015: Changing THP scan time in /sys/kernel/mm/
transparent hugepage/khugepaged/scan sleep millisecs from 10000 to 1000
ms.

Tue Nov 17 06:49:43 2015: Registering numad version 20140225 PID 9170

Tue Nov 17 06:49:45 2015: Advising pid 1479 (gemu-kvm) move from nodes
(0-1) to nodes (1)

Tue Nov 17 06:49:47 2015: Including PID: 1479 in CPUset: /sys/fs/cgroup/
CPUset/machine.slice/machine-gemu\x2dfedora2l.scope/emulator

Tue Nov 17 06:49:48 2015: PID 1479 moved to node(s) 1 in 3.33 seconds

Tue Nov 17 06:49:53 2015: Advising pid 20129 (gemu-kvm) move from nodes
(0-1) to nodes (0)

Tue Nov 17 06:49:54 2015: Including PID: 20129 in CPUset: /sys/fs/cgroup/
CPUset/machine.slice/machine-gemu\x2drhel7\x2datomic3.scope/emulator

Tue Nov 17 06:49:54 2015: PID 20129 moved to node(s) 0 in 0.84 seconds
Tue Nov 17 11:03:06 2015: Advising pid 2194 (gemu-kvm) move from nodes
(0-1) to nodes (0)

Tue Nov 17 11:03:06 2015: Including PID: 2194 in CPUset: /sys/fs/cgroup/
CPUset/machine.slice/machine-gemu\x2drhel7\x2datomicl.scope/emulator

Tue Nov 17 11:03:07 2015: PID 2194 moved to node(s) 0 in 0.31 seconds

From the preceding messages, it is understood some actions were performed by
numad when we started the binary. You can use the numastat command, covered
in an upcoming section, to monitor the difference before and after running the
numad service.

numad will be running in your system until stopped with the following command:
numad -i 0

Please remember, stopping numad does not remove the changes it has made to
improve NUMA affinity. If system use changes significantly, running numad again
will adjust the affinity to improve performance under the new conditions. Now let's
move on to numastat.

"numastat- Show per-NUMA-node memory statistics for processes and the
operating system"

[395]

Performance Tuning and Best Practices in KVM

The numact1 package provides the numactl binary/command and the numad
package provides the numad binary/command:

[humble-numaserver]1$ numastat -c qemu-kvm
Per-node process memory usage (in MBs)

PID Node 0 Node 1 Total

1479 (gemu-kvm) 16 8865 8875

2119 (gemu-kvm) 667 77 744

2194 (qgemu-kvm) 1465 0 1465

18404 (qgemu-kvm) 30 25 54

20129 (gemu-kvm) 2182 0 2182

32548 (qemu-kvm) 34 16 50

Total 4389 8982 13371

Figure 30: numastat command output for gemu-kvm process

The multiple memory tuning options we used has to be thoroughly tested using
different workloads before moving the VM to production.

Before we jump on to the next topic, a word of caution! It is harder to live-migrate a
pinned guest across hosts, because a similar set of backing resources/configurations
may not be available on the destination or target host where the VM is getting
migrated. For example, the target host may have a different NUMA topology. You
should consider this fact when you tune a KVM environment. Automatic NUMA
balancing may help, to a certain extent, the need for manually pinning guest
resources, though.

Disk and block I/O tuning

We will start with disk options, transport, and image formats. Later we move onto
block I/O tuning.

The virtual disk of a VM can be either block device or image file.

For better VM performace a block device based virtual disk is preferred over a image
file that resides on a remote file system like NFS, GlusterFS, etc. However, we cannot
ignore that the file backend helps the virt admin to better manage guest disks and it
is immensely helpful in some scenarios. From our experience, we have noticed most
users make use of disk image files, especially when performance is not much of a
concern. Keep in mind that the total number of virtual disks that can be attached to

a VM has a limit. At the same time, there is no restriction on mixing and using block
devices and files and using them as storage disks for the same guest.

[396]

Chapter 13

As mentioned earlier, a guest treats the virtual disk as its storage. When an
application inside a guest operating system writes data to the local storage of the
guest system, it has to pass through a couple of layers. That said, this I/O request has
to traverse through the filesystem on the storage and the I/O subsystem of the guest
operating system. After that, the gemu-kvm process passes it to the hypervisor from
the guest OS. Once I/O is within the relam of the hypervisor, it starts processing

the I/O like any other applications running in the host operating system. Here you
can see the number of layers the I/O has to pass through to complete an I/O. Hence
the block device backend performs better than the image file backend.

The following are our observations on disk backends and file or image based
virtual disks:

* A file image is part of host filesystem and; it creates an additional resource
demand for I/O operations compared to the block device backend

* Using sparse image files helps to over allocate host storage but its usage will
reduce the performance of virtual disk

* Improper partitioning of guest storage when using disk image files can cause
unnecessary 1/O operations. Here we are mentioning about the alignment of
standard partition units

At the start of this chapter, we discussed virtio drivers, which give better
performance. So, it's recommended you use the virtio disk bus when configuring the
disk rather than the IDE bus. The virtio_blk driver uses the VirtlO API to provide
high performance for storage I/O device, thus increasing storage performance
especially in large enterprise storage systems. We discussed different storage formats
available in earlier chapters; however, the main ones are the raw and gcow formats.
The best performance will be achieved when you are using the raw format. There is
obviously a performance overhead delivered by the format layer when using gcow.
Because the format layer has to perform some operations at times. for example if you
want to grow a gcow image, it has to allocate the new cluster and so on. However
gcow would be an option if you want to make use of features such as snapshots.
These extra facilities are provided with the image format, gcow. Some performance
comparisons can be found at http://www.Linux-kvm.org/page/Qcow2.

For more details on gcow, refer to https://people.gnome.org/~markmec/gcow-
image-format.html and https://en.wikipedia.org/wiki/Qcow.

[397]

http://www.Linux-kvm.org/page/Qcow2
https://people.gnome.org/~markmc/qcow-image-format.html
https://people.gnome.org/~markmc/qcow-image-format.html
https://en.wikipedia.org/wiki/Qcow

Performance Tuning and Best Practices in KVM

There are three options that can be considered for I/O tuning:

* Cache Mode
e [/Omode
* /O tuning.

Readonly:
Shareable:

~ Advanced options

Disk bus: VirtlO -
Serial number:
Storage format: qcow2

~ Performance options

Cache mode: Hypervisor defauli = ~

IO mode: | Hypervisor defauli ~

¥ 1O Tuning
KiBytes/Sec IOPS/Sec
Read: | O + [0 +
Write: | O + [0 +
Total: | O + |0 +

Virtual disk configuration

Cache mode
The next figure comes in handy when we think about different cache settings and
their effect on I/O when originating from guest systems:

[398]

Chapter 13

Host
Om Bm. 0o oo
| | | | | | | |
writeback writethrough none directsync
vy v Host Page Cache
Disk Cache Y
v Physical Disk vV

Disk cache modes

The following are the different cache modes:

None: Maybe you have heard about the flag called 0_DIRECT; it allows
process to specify performing I/O without using the OS cache layer. The
cache=none option is analogous to that. When this option has been set,
the host page cache is bypassed and I/O happens directly between the
gemu-kvm userspace buffers and the underlying storage device. That
said, I/O from the guest is not cached on the host, but may be kept

in a writeback disk cache. Use this option for guests with large I/O
requirements. cache=none is considered to be the best choice. Also

this is the only option to support migration.

writethrough: This matches the semantics of 0_bpsync. The I/O from the
guest is cached on the host but written through to the physical medium.

In this scenario, writes are reported as completed only when the data has
been committed to the storage device. Even though it assures data integrity,
this mode is slower and prone to scaling problems. But this mode can be

an option when a small number of guests with lower I/O requirements

is in place. This cache mode is suggested for guests that do not support a
writeback cache where migration is not needed.

[399]

Performance Tuning and Best Practices in KVM

* writeback: In this scenario, I/ O from the guest is cached on the host. The
hostpage cache is used and writes are reported to the guest as completed
when placed in the hostpage cache; the normal page cache management will
handle commitment to the storage device.

* directsync: Similar to writethrough butI/O from the guest bypasses the
host page cache. In this configuration, the writes are reported as completed
only when the data has been committed to the cache=writeback storage
device, and when it is also desirable to bypass the host page cache.

* unsafe: The host may cache all disk I/O, and sync requests from guests are
ignored, similarly to the mode. It's unsafe because there is a huge risk of data
loss in the event there is a host failure. However, this may come in handy
when doing a guest installation or similar tasks.

* default: If no cache mode is specified, the system's default settings
are chosen.

The cache option settings can reflect in the guest XML as follows:

<disk type='file' device='disk'>
<driver name='gemu' type='raw'cache='writeback'/>

But the final configuration is I/O mode.

/0 mode

The XML representation of I/O mode configuration is similar to the following:

<disk type='file' device='disk'>
<driver name='gemu' type='raw'io='threads'/>

There are three main options available for I/O mode:

* IO=native: This mode refers to an asynchronous kernel I/O (AIO) with
direct I/ O options. This is expected to perform better on block devices;
however when we use this option it requires cache=none/directsync to be
set. If this cache option is not set, libvirt will fallback to io=threads mode.

e T0=threads: The default is host user-mode-based threads, which can be
set by the io=threads option. This asynchronous IO mode is expected to
perform better on file systems.

* I0=default: The default will be taken into account. In short, you should
consider using io=native for block device-based VMs.

[400]

Chapter 13

I/0 tuning

Limiting the disk I/O of each guest may be required especially, when multiple
guests exist in your setup. This is because, if only one guest is keeping the host
system busy with the number of disk I/Os generated from it, it's not fair! Generally
speaking, it is the system/virt administrator's responsibility to ensure all the running
guests gets enough resources to work on—in other words, Quality of Service (QOS)!
This is to be guaranteed. Even though disk I/O is not the only resource that has to

be considered to guarantee this, this has some importance. This tuning can prevent a
guest system from over-utilizing shared resources and impacting the performance of
other guests systems coexisting in the same hypervisor. This is really a requirement,
especially when the host system is serving a VPS or a similar kind of service. KVM
gives the flexibility to do I/O throttling independently to each block device attached

to a guest and supports limits on throughput and I/ O operations.

This can be achieved via the virsh blkdeviotune command. The different options

that can be set using this command are displayed next:

[humble-lab 1% virsh blkdeviotune --help
NAME

blkdeviotune - Set or query a block device I/0 tuning parameters.

SYNOPSIS

blkdeviotune <domain> <device> [--total-bytes-sec <number=] [--read
-bytes-sec <number>] [--write-bytes-sec <number>] [--total-iops-sec <nu
mber=>] [--read-iops-sec <number=] [--write-iops-sec <number=] [--total-
bytes-sec-max <number>] [--read-bytes-sec-max <number>] [--write-bytes-
sec-max <number>] [--total-iops-sec-max <number>] [--read-iops-sec-max
<number>] [--write-iops-sec-max <number>] [--size-iops-sec <number>] [-

-config] [--live] [--current]

DESCRIPTION

Set or query disk I/0 parameters such as block throttling.

OPTIONS
[--domain] <string> domain name, id or uuid
[--device] <string> block device

--total-bytes-sec <number> total throughput limit in bytes per sec

--read-bytes-sec <number> read throughput limit in bytes per secon

--write-bytes-sec <number> write throughput limit in bytes per sec

--total-iops-sec <number> total I/0 operations limit per second
--read-iops-sec <number> read I/0 operations limit per second
--write-iops-sec <number> write I/0 operations limit per second
--total-bytes-sec-max <number> total max in bytes
--read-bytes-sec-max <number> read max in bytes
--write-bytes-sec-max <number> write max in bytes
--total-iops-sec-max <number> total I/0 operations max
--read-iops-sec-max <number> read I/0 operations max
--write-iops-sec-max <number> write I/0 operations max

--size-iops-sec <number> I/0 size in bytes
--config affect next boot

--live affect running domain
--current affect current domain

virsh blkdeviotune command

[401]

Performance Tuning and Best Practices in KVM

Details about parameters such as total-bytes-sec, read-bytes-sec, write-
bytes-sec, total-iops-sec, and so on, are well understood from the preceding
command output and also documented in the virsh command man page.

For example, to throttle disk vdb on a virtual machine called centos-1 to 2000 1/O
operations per second and 50 MB-per-second throughput, run this command:

virsh blkdeviotune centos-1 vdb --total-iops-sec 2000 --total-bytes-sec
52428800

Networking tuning in KVM

What I have seen in most KVM environment is that all the network traffic from a
guest will take a single network path. There won't be any traffic segregation, which
causes congestion in most KVM setups. As a first step for network tuning, I would
advise trying different networks or dedicated networks for management, backups, or
live migration. But when you have more than one network interface for your traffic,
please try to avoid multiple network interfaces for the same network or segment.

If this is at all in play, apply some network tuning that is common for such setups;
for example, use arp_filter to prevent ARP Flux, an undesirable condition that

can occur in both hosts and guests and is caused by the machine responding to ARP
requests from more than one network interface:

echo 1 > /proc/sys/net/ipv4/conf/all/arp filter or edit /etc/sysctl.conf
to make this setting persistent.

For more information on arp flux please refer to http: //Linux-ip.net/html/
ether-arp.html#ether-arp-flux.

The next tuning can be done on the driver level; that said, by now we know that
virtio drivers give better performance compared to emulated device APIs. So,
obviously using the virtio_net driver in guest systems should be taken into
account. When we use the virtio_ net driver, it has a backend driver in gemu that
takes care of the communication initiated from the guest network. Even if this was
performing better, some more enhancements in this area introduced a new driver
called vhost net.vhost net is a character device that can be used to reduce the
number of system calls involved in virtio networking. In other words, vhost provides
in-kernel virtio devices for KVM (https://lwn.net/Articles/346267/). Even
though vhost is a common framework that can be used by different drivers, the
network driver, vhost_net, was one of the first drivers. The following screenshot
will make this clearer:

[402]

http://Linux-ip.net/html/ether-arp.html#ether-arp-flux
http://Linux-ip.net/html/ether-arp.html#ether-arp-flux
https://lwn.net/Articles/346267/

Chapter 13

vhost_net

Source: access.redhat .com

As you may have noticed, the number of context switches is really reduced with the
new path of communication. The good news is that there is no extra configuration
required in guest systems to support vhost because there is no change to the
frontend driver.

vhost_net reduces copy operations, lowers latency and CPU usage, and thus yields
better performance. First of all, the kernel module called vhost_net (refer to the
screenshot in the next section) has to be loaded in the system. As this is a character
device inside the host system, it creates a device file called /dev/vhost-net

on the host. This character device serves as the interface for configuring the

vhost -net instance.

[403]

access.redhat.com

Performance Tuning and Best Practices in KVM

How to turn it on?

When QEMU is launched with -netdev tap, vhost=on, it opens /dev/vhost-net
and initializes the vhost -net instance with several ioct1 () calls. This initialization
process binds gemu with a vhost -net instance, along with other operations such as
feature negotiations and so on:

[humble-lap 1$ lsmod |grep vhost
_net

macvtap
tun

20480 1

32768 1 _net
20480 1 _net
28672 4 _net

[humble-1lap 1% modinfo vhost net

filename:
alias:
alias:

description:

author:
license:
version:
srcversion:
GELENEH
intree:
vermagic:
signer:
sig_key:
sig_|
parm:

[humble-1lap 1%

/lib/modules/4.2.3-200. fc22.x86_64/kernel/drivers/vhost/vhost net.ko.xz
devname:vhost-net

char-major-10-238

Host kernel accelerator for virtio net

Michael S. Tsirkin

GPL v2

0.0.1

1EDCOA4AEC45D8FO33AT71FE

vhost, tun, macvtap

Y

4,2.3-200.fc22.x86 64 SMP mod unload

Fedora kernel signing key
6B:32:69:BB:F8:47:97:01:C8:03:15:FB:5F:36:8A:F9:24:52:07:BE

sha256

experimental zcopytx:Enable Zero Copy TX; 1 -Enable; ® - Disable (int)

[humble-lap]1$ modinfo --parameters vhost net
experimental zcopytx:Enable Zero Copy TX; 1 -Enable; 0 - Disable (int)
[humble-lap 1%

vhost kernel module information

A snip from my KVM host is shown next:

--snip-- of gemu-kvm process

-netdev tap, £fd=25,id=hostnet0,vhost=on,vhostfd=27

-device virtio-net-pci,

netdev=hostnet0, id=net0,mac=52:54:00:49:3b:95,bus=pci.0,addr=0x3

--/snip--

One of the parameters available with the vhost_net module is experimental
zcopytx. What does it do? This parameter controls something called Bridge zero
Copy Transmit. Let's see what this means:

--snip-- from http://www.google.com/patents/US20110126195

[404]

Chapter 13

"A system for providing a zero copy transmission in virtualization environment
includes a hypervisor that receives a guest operating system (OS) request
pertaining to a data packet associated with a guest application, where the data
packet resides in a buffer of the guest OS or a buffer of the guest application and
has at least a partial header created during the networking stack processing. The
hypervisor further sends, to a network device driver, a request to transfer the data
packet over a network via a network device, where the request identifies the data
packet residing in the buffer of the guest OS or the buffer of the guest application,
and the hypervisor refrains from copying the data packet to a hypervisor buffer."

If your environment uses large packet sizes, this parameter configuration may have
a noticeable effect. The host CPU overhead is reduced by configuring this parameter
when the guest communicates to the external network. This does not affect the
performance in the following scenarios:

* Guest to guest communication
* Guest to host

* Small packet workloads

Also, the performance improvement can be obtained by enabling multi queue virtio-
net (https ://fedoraproject.org/wiki/Features/MQ virt io_net).

One of the bottlenecks when using virtio-net was its single RX and TX queue.
Even though there are more vCPUs, the networking throughput was affected by
this limitation. Guests cannot transmit or retrieve packets in parallel as virtio-net
has only one TX and RX queue. To solve this limitation, multi queue virtio net was
developed. Till this implementation happened virtual NICs could not utilize the
multi queue support that is available in the Linux kernel. tap/virtio-net backend
had to serialize the co-current transmission/receiving request, which comes from
different CPUs that caused the performance overhead.

This bottleneck is lifted by introducing multiqueue support in both frontend and
backend drivers. This also helps guests scale with more vCPUs.

To start a guest with two queues, you could specify the queues parameters to both
tap and virtio-net, as follows:

#gemu-kvm -netdev tap,queues=2,... -device virtio-net-pci,queues=2,...

[405]

https://fedoraproject.org/wiki/Features/MQ_virtio_net

Performance Tuning and Best Practices in KVM

The equivalent guest XML is as follows:

<interface type='network's>
<source network='default'/>
<model type='virtio'/>
<driver name='vhost' queues='M'/>
</interfaces>

Where 'M' can be 1 to 8, as the kernel supports up to eight queues for a multi-queue
tap device. Once it's configured for gemu, inside the guest, we need to enable multi
queue support by the ethtool command. Enable the multi queue through ethtool
(where the value of K is from 1 to M) by:

#ethtool -L eth0 combined 'K'
Multi Queue virtio-net provides the greatest performance benefit when:

» Traffic packets are relatively large.

* The guest is active on many connections at the same time, with traffic
running between guests, guest to host, or guest to an external system.

* The number of queues is equal to the number of vCPUs. This is because
multi-queue support optimizes RX interrupt affinity and TX queue selection
in order to make a specific queue private to a specific vCPU.

In spite of these, please test the impact in your setup, because the CPU consumption
will be greater in this scenario even though the network throughput is impressive.

Other networking tuning options are device assignment and Single Root IO
Virtualization(SR-IOV). Device assignment is nothing but directly assigning a host
physical NIC to the guest system. Obviously, this can result in better performance,
but please note that the device won't be usable for hosts and other guest systems.
Please refer to the previous chapters for more information on how to do device
assignment and SR-IOV in KVM land:

[406]

Chapter 13

SR-10V PCI Device (NIC)

Guest 1 Guest 2
Guest 0S Guest 0S
Virtual Virtual
NIC NIC
- Physical NIC
Hypervisor Driver
1/0 MMU (Intel VT-d or AMD IOMMU)
Virtual Virtual .
L | ‘ N Physical
Function Function Furiten

Host System

Additional references:

SR-IOV picture

https://fedoraproject.org/wiki/Features/KVM PCI Device Assignment

https://fedoraproject.org/wiki/Features/SR-I0V

KVM guest time-keeping best practices

There are different mechanisms for time keeping. One of the best known techniques

is Network Time Protocol (NTP) .This is a networking protocol for clock

synchronization between computer systems over packet-switched, variable-latency
data networks. One thing that needs to be considered in a virtualization environment
is the maxim that the guest time should be in sync with the hypervisor/host, because
it affects lots of guest operations and can cause unpredictable results if they are not

in sync.

[407]

https://fedoraproject.org/wiki/Features/KVM_PCI_Device_Assignment
https://fedoraproject.org/wiki/Features/SR-IOV

Performance Tuning and Best Practices in KVM

There are different ways to achieve time sync, however; it depends on the setup you
have. I have seen people using NTP, setting the system clock from the hardware
clock using hwelock -s and so on. The first thing that needs to be considered

here is trying to make the KVM host time in sync and stable. You can use NTP-like
protocols to achieve this. Once it's in place, the guest time has to be kept in sync.
Even though there are different mechanisms for doing that, the best option would be
using kvm-clock!

kvm-clock

kvm-clock is also known as a virtualization-aware (paravirtualized) clock device.
When kvm-clock is in use, the guest asks the hypervisor about the current time,
guaranteeing both stable and accurate timekeeping. The functionality is achieved by
the guest registering a page and sharing the address with the hypervisor. This is a
shared page between the guest and the hypervisor. The hypervisor keeps updating
this page unless it is asked to stop. The guest can simply read this page whenever

it wants time information. However, please note that the hypervisor should

support kvm-clock for the guest to use it. For more details, you can reference
https://lkml.org/1lkml/2010/4/15/355.

You can verify whether kvm_clock is loaded inside the guest via the
following method:

[root@kvmguest 14§ dmesg |grep kvm-clock

[0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00

[0.000000] kvm-clock: CPU 0, msr 4:27£fcf001, primary CPU clock

[0.027170] kvm-clock: CPU 1, msr 4:27fcf041, secondary CPU clock

[0.376023] kvm-clock: CPU 30, msr 4:27fcf781, secondary CPU clock
[0.388027] kvm-clock: CPU 31, msr 4:27fcf7cl, secondary CPU clock
[0.597084] Switched to clocksource kvm-clock

Further verification on, currently the guest uses it as a clock source can be done by:

[root@kvmguest]1$ cat /sys/devices/system/clocksource/clocksource0/
current clocksource

kvm-clock

[root@kvmguest 1§

So, use kvm_clock (it's a recommended practice) to achieve the best result!

[408]

https://lkml.org/lkml/2010/4/15/355

Chapter 13

Summary

In this chapter, we went through the performance tuning aspects of a KVM setup.
Starting with the virtio framework, we went through various subsystems, such

as CPU and memory, disk and block I/O, network time keeping, and tuning
possibilities. We also covered NUMA concepts, Hugepages, KSM, and the tuning
that can be applied with it. Performance has to be measured and you have to come
up with the best options to match your scenario.

In the next chapter, we will discuss how to migrate your virtual machines running
on foreign hypervisors to the KVM hypervisor using the virt-v2v tool. We will also
discuss physical machine-to-virtual machine migration in the next chapter.

[409]

14

V2V and P2V Migration Tools

V2V is a process in which you move VMs that are virtualized on one vendor's
virtualization platform to another, whereas P2V involves moving all the data from a
physical system to a virtualized infrastructure in order to gain all the flexibility and
cost-saving benefits of virtualization. In this chapter, you will learn how to migrate
virtual machines running on foreign hypervisors to a KVM hypervisor using a virt-
v2v tool. You will also learn how to migrate physical machines to virtual machines
and then run them on the cloud.

Introducing the virt-v2v utility

virt-v2v is a special command-line utility, using which we can convert VMs from

a foreign hypervisor to run on a KVM hypervisor managed by libvirt, OpenStack,
oVirt, and Red Hat Enterprise Virtualization (RHEV). virt-p2v is a companion tool
of virt-v2v that comes as an ISO or CD image to help a physical machine's conversion
to a virtual machine.

However, is a special utility to convert a virtual machine from one platform to
another or physical to virtual server conversion really required? Can't we just copy
the bits residing on a physical disk to a virtual disk, such as dd + nc? This might be
the question in your mind. If it is, then it's a valid question indeed.

System conversion using utilities such as dd and nc works. You will be able to
migrate the systems from virtual to virtual, as well as physical to virtual, but with
partial success. It also involves a lot of manual work, so there is a high chance

of failure.

[411]

V2V and P2V Migration Tools

To automate the conversion process, a specialized tool is required as virtual to
virtual or physical to virtual system conversions are not just copying bits from one
disk to another, along with copying data from one location to another. It is very
important to inject KVM paravirtualized drivers and modify some internal low-level
guest operating system configurations. virt-v2v does automation of all the manual
work involved in the system conversion. You just need to run the command

and it will perform all the necessary actions to successfully and quickly migrate

the systems.

virt-v2v can currently convert RHEL4, RHEL 5, RHEL 6, RHEL 7, Windows XP,
Windows Vista, Windows 7, Windows Server 2003, Windows Server 2008 virtual
machines running on Xen, VMware ESX, and physical systems to KVM hypervisors.

The following source hypervisors are currently supported by virt-v2v:

* libvirt-managed Xen
* VMware vSphere ESX/ESXi—versions 3.5, 4.0, 4.1, 5.0, 5.1, and 5.5

How does virt-v2v work?

In order to convert a virtual machine from foreign hypervisors to run on KVM
hypervisors, the virt-v2v utility performs the following steps:

1. Retrieve guest configuration (xml) from the hypervisor
2. Export a disk image

3. Modify the disk image
4

Create a guest on the target hypervisor

virt-v2v connects to the target hypervisor using libvirt, retrieves the
specified virtual machine configuration and disk path, and then transfers
. the disk image over the network to the conversion server. Next, we will
% modify this image to install a virtio driver (network and block). We will
L= then update the guest operating system configuration to match the KVM
environment that includes updating the /etc/fstab and xorg. conf
file, rebuilding initrd, removing blkid. tab, and finally creating a guest
on the target KVM host.

[412]

Chapter 14

Getting the virt-v2v utility

The virt-v2v utility is shipped as an RPM package. The package is available in the
Fedora base channel. To install it, we will use the dnf package manager by running
the following command:

#dnf install virt-vav

The system on which the virt-v2v package is installed is referred to as the virt-v2v
conversion server. It can be installed on a virtual or physical system.

Preparing for the v2v conversion

virt-v2v has a number of possible input and output modes, which are selected using
the -1 and -o options. The input is the source hypervisor and the output is the
destination hypervisor. If you want to convert the virtual machine from VMware,
select VMware as the input and choose the destination where you want to run the
virtual machine upon conversion. It can be oVirt, glance, or a standalone KVM host.
The following diagram depicts a typical virtual to virtual migration procedure:

e °* Libguestfs inspection performed.
@ - Device type changed virtio.
) « Libvirt XML defination created.
« KVM Related changes made

The Virtual Machine image is retrieved

-(VM START Action
The Virtual Machine Image copy request m m G Disk Imported iin
» defined storage pool
_ Network connection established
« . —
™ Network connection request with
Foreign hypervisor
Hypervisor virt-v2v server

The following are the prerequisites of a V2V migration using the virt-v2v utility.
Guest operating system-specific prerequisites:

* Linux: Make sure that the Linux operating system running on the system is
supported by virt-v2v and the kernel in use contains the virtio drivers. You
can quickly check whether the virtio drivers are present in the kernel or not
by running the following command:

#lsmod | grepvirtio

virtio 4977 O

[413]

V2V and P2V Migration Tools

If the output of the preceding command is blank, it means that the virtio
drivers are not present in the kernel that you are using on the system.
You may want to upgrade the kernel to the latest version.

Windows: Make sure that the following checklist is followed:

[e]

Install the 1ibguest fs-winsupport package on the host running
virt-v2v. This package provides support for NTFS, which is used by
many Windows systems.

Install the virtio-win package on the host running virt-v2v. This
package provides paravirtualized block and network drivers for
Windows guests:

yum install libguestfs-winsupportvirtio-win on virt- v2v
conversion server.

Disable the Anti-Virus (AV) software if any installed, as in some
circumstances it may prevent new drivers that virt-v2v installs
from working.

Disable Group Policy before doing the conversion, as in some
circumstances it may prevent new drivers that virt-v2v installs,
from working.

Source hypervisor-specific prerequisites:

KVM: Ensure that SSH is enabled and listening on the default port. Root
login over SSH must be allowed. Make sure that the PermitRootLogin
directive set to yes in /etc/ssh/sshd config.

VMware vSphere: Make sure that the following checklist is followed:

o

[e]

o

Remove VMware-Tools installed on the system
Enable SSH access to the system with permit root login

virt-v2v directly talks to vCenter in order to perform the conversion,
so you need either administrator-user credentials or a user with a
custom non-administrator role, with a minimum set of permissions
to access datastores and virtual machine configurations

XEN Virtualization: The conversion guest must have access to the packages
repository as new kernel and drivers need to be downloaded, and SSH
should be enabled.

[414]

Chapter 14

Conversion process

During the conversion, depending on the source hypervisor selection, the virt-v2v
utility performs the following actions:

* Removes the kernel package if it's a paravirtualized guest

¢ Removes the the Xen drivers, such as xen_net, xen_blk, and so on

* If the guest has several kernels installed, it will find out the newest
kernel containing virtio drivers

* If the new kernel supports virtio, replace the network driver with virtio_net
and block driver with virtio_blk; otherwise use non-virtio drivers

* Replaces the display driver with cirrus
* Updates the /etc/fstab configuration of modprobe

e Makes sure that initrd can boot the real root device

To convert a virtual machine, the syntax is as follows:

virt-v2v -i<input target> -o <output target> -os<output storage>

virt-v2v -ic<libvirtURI><guest name> -o <output target> -os<output
storage > --network <network>

virt-v2v has number of possible options to customize the output, --no-trim all
says not to trim the resulted disk. -of is to change the output disk format. For a
complete list of the parameters available with virt-v2v, refer to the virt-v2v main
page, available here: http://libguestfs.org/virt-v2v.1.html.

Performing live v2v is not supported yet. Ensure that the virtual
s machine is stopped prior to running the v2v conversion process on it.

VMware guest conversion

Let's see how to move virtual machines from the VMware vSphere platform to a
KVM hypervisor.

[415]

http://libguestfs.org/virt-v2v.1.html

V2V and P2V Migration Tools

Converting a VMware vSphere guest to a
standalone KVM host

To convert a virtual machine to a standalone KVM host, perform the following steps:

1. Run the following command, using values from your system. In this
example, esxhostl.example.comis the VMware vCenter server, vM001
is the name of the virtual machine, and /var/tmp is the local repository to
store the image:

virt-v2v -ic vpx://admin@esxhostl.example.com/Datacenter/esxi
"vm001l" -o local -os /var/tmp

2. Onrunning this command, virt-v2v will ask for the password for admine
esx.example.com. You can enter the password interactively or by using
the - -password-£file option.

In non-production environments, the VMware vCenter server may have
- anonvalid certificate, for example, a self-signed certificate. In this case,
% certificate checking can be explicitly disabled by adding ?no_verify=1
e to the connection URI, as shown in the following example:

. -ic esx://esx.example.com?no verify=1

The conversion process will take some time to complete. You will be shown the
progress and the conversion step that is currently in progress on the console. The
time to complete the process depends on the virtual machine disk size and the
network bandwidth. As the disk is transferred over the network, it is recommended
to have at least 1 G Ethernet link.

On successful completion, virt-v2v will create a new libvirt domain XML file and
disk image in the /var/tmp directory. You can define the virtual machine using
virsh define <xml file path> and it will be listed in your virt-manager and
other libvirt connections.

Converting a VMware vSphere guest to oVirt

The procedure is same as the previous one, except you need to point the output
storage to your oVirt export storage domain:

1. Create an NFS export domain. Attach this to the oVirt data center. Make sure
that the host acting as the virt-v2v conversion server has access it.

[416]

Chapter 14

2. Shut down the virtual machine and uninstall VMware Tools on the guest
operating system.
3. Now convert the virtual machines using the following command:

virt-v2v -icvpx://admin@esxhostl.example.com/Datacenter/esxi
"vm002 -o rhev -osovirt.nfs:/export domain --network ovirt

Here:

° -ic: This is the URI of your ESX host.

° -o: This is the output method. No explicit method is available for
oVirt; however, the RHEV method works out of box.

° -os: This is the output storage, the NFS export storage domain path,
where you wish to save the converted virtual machine image. The
domain must be in a format, for example, ovirt.nfs:/export_
domain.

° -network: This is the network where the virtual machine will
be mapped.

Optionally, you can create a virt-v2v profile. It is very useful when
K= alarge number of virtual machine migrations are planned.

4. Import the virtual machine from the export storage domain into oVirt.

Converting a VMware vSphere guest to an
OpenStack-Glance repository

The procedure to convert a VMware guest to OpenStack is a bit different than
converting to an oVirt or standalone KVM host. You will first need to install the
OpenStack-Glance package on the virt-v2v conversion host and set the environment
variables pointing to the OpenStack keystone API and its access credentials.

The steps are outlined as follows:

1. Install the Glance service client binary and tools on the virt-v2v
conversion server:
dnf install python-glanceclient

[417]

V2V and P2V Migration Tools

2.

Copy the /root/keystonerc_admin file from your OpenStack controller
node to the virt-v2v conversion server and source it:

#source /root/keystonerc_admin

#cat /root/keystonerc_admin

export OS USERNAME=admin

export OS_TENANT NAME=admin

export OS PASSWORD=my password

export OS AUTH URL=http://192.0.2.1:5000/v2.0/

Set the LIBGUESTFS_BACKEND method to direct:
export LIBGUESTFS BACKEND=direct

Now you can run virt-v2v:
virt-v2v -ic 'vpx://vcenterl.example.com/datacentername/

esxihostl.example.com?no verify=1' "guestvml" -o glance

Enter your vCenter administrator password when prompted. This process
can take a long time.

Once the conversion is completed, log in to your OpenStack Dashboard and
confirm that the image has been uploaded in Project | Compute | Images.

Xen guest conversion

virt-v2v does not yet natively support converting virtual machines from Citrix's
Xen-based virtualization. However you can use virt-v2v for converting virtual
machines running on old Xen implementations in CentOS5 or similar hosts that
is managed by libvirt.

The following things are to be checked before initiating conversion:

Make sure that the virtual machine that needs to be migrated to the KVM
hypervisor has access to the YUM repository in order to download a
non-Xen kernel and some other stuff.

Make sure that the SSH connection is enabled on Xen Domo0.

Once you confirm the preceding options, you can start converting your Xen
virtual machines using the following commands.

The following are the different targets to which a Xen VM can be converted:

To convert a Xen virtual machine to a KVM standalone host, run the
following command:

virt-v2v -ic 'xen+ssh://root@xen.example.com' rhel5-1l-xen' -o
local -os /v2vconvert/ -on rhel5-1-kvm

[418]

Chapter 14

This command will convert a virtual machine named rhel5-1-xen to a local
KVM hypervisor. Store its disk in the /v2vconvert directory and renames it
as rhels-1-kvm. In virt-manager, it will be listed rhel5-1-kvm.

To convert a Xen virtual machine to an oVirt virtual data center, run the
following command:

virt-v2v -icxen+ssh://root@xen.example.com' -o rhev -osstorage.
example.com:/exportdomain --network ovirt rhel5-2-xen

This command will convert the virtual machine named rhel5-2-xen to the
oVirt format and store it in an oVirt export storage domain-backed storage.
example.com: /exportdomain NFS share.

To convert a Xen virtual machine to an OpenStack Glance image repository,
run the following command:

virt-v2v -icxen+ssh://root@xen.example.com' -o glance rhel5-3-xen

& Make sure that you export your openstackkeystonerc
= admin file before initiating conversion of the virtual machine.

This command will convert the virtual machine named rhels-3-xen to your
OpenStack Glance image repository.

Converting standalone KVM guests to
an oVirt Virtualization platform and the
OpenStack cloud

In order to convert guests from a standalone KVM system to oVirt, perform the
following steps:

1.

Create an NFS export domain. Attach this to the oVirt data center. Make sure
that the host acting as virt-v2v conversion server has access it.

Shut down the virtual machine. Make sure that SSH is enabled on the host.

Convert the virtual machine using the following command:

#virt-v2v -icqgemu+ssh://root@kvmhost.example.com/system -o rhev
-osstorage.example.com: /exportdomain --network ovirtguest name

[419]

V2V and P2V Migration Tools

kvmhost .example.com/system: This is the KVM host from
e where the virtual machine needs to be migrated.

Import the virtual machine from the export storage domain into Ovirt.

o

To convert guests from a standalone KVM system to Glance, run the
following command:

#virt-v2v -icqgemu+ssh://root@kvmhost.example.com/system -o
rhev -o glance vm001

This command will convert the vmo01 virtual machine Windows 7
guest to your OpenStack Glance image repository from the
kvmhost .example . com host.

A few things to note here are as follows:

Make sure that you export your openstackkeystonerc_admin file before
initiating conversion of the virtual machine

Make sure that ibguestfs-winsupport and virto-win packages are
installed on the virt-v2v conversion server

Troubleshooting virt-v2v related issues

Here are a few points to keep in mind while troubleshooting virt-v2v:

Ensure that the required v2v packages are installed on the virt-v2v
conversion server. For example, libguestfs-winsupport and virtio-win
are installed when a Windows guest migration is planned.

Ensure that SSH is enabled on the source host machine.

Make sure that the Export Storage domain has enough space to accommodate
new virtual machines.

Verify that the virt-v2v command syntax that is being used is correct.
The virt-v2v man page has a detailed explanation of each parameter and
examples are also included.

Everything fine, but the migration is still failing?

[420]

Chapter 14

In such a situation, enabling virt-v2v debug logs will be helpful. Virt-v2v debug
logs can be enabled by prefixing the virt-v2v command with the following
environment variables:

LIBGUESTFS_TRACE=1
LIBGUESTFS_ DEBUG=1

The following is what the command will look like:

#LIBGUESTFS_TRACE=1 LIBGUESTFS_DEBUG=1 virt-v2v -icxen+ssh://root@vmhost.
example.com -o rhev -osstorage.example.com:/exportdomain --network
ovirtguest name 2>&1 | tee virt-v2v.log

Physical system to virtual conversion

virt-v2v can to talk to a foreign hypervisor to obtain a VM's virtual hardware
information and metadata. But when the source is a physical system, virt-v2v cannot
gather information on hardware. To solve this virt-v2v relies on a small bootable
image to run a tool named virt-p2v on the physical host. virt-p2v sends the physical
system's data over SSH to the virt-v2v host, which then convert it to a VM on the
target hypervisor.

Creating a virt-p2v bootable image

virt-p2v bootable media is unfortunately not available on any official Fedora site for
download. You will need build it on your own using either the virt-p2v-make-
disk (http://libguestfs.org/virt-p2v-make-disk.1l.html) or virt-p2v-
make-kickstart (http://libguestfs.org/virt-p2v-make-kickstart.1l.html)
utilities. Both these utilities are part of the virt-v2v package. Perform the following
steps in order to create a virt-p2v bootable image:

1. Write a virt-p2v bootable USB key on /dev/sdx:
#virt-p2v-make-disk -o /dev/sdX fedora-22

This command will write the virt-p2v to /dev/sdx USB drive and
make it bootable.

2. Create a virt-p2v bootable ISO and burn on DVD:

#virt-p2v-make-kickstart fedora

This will build a kickstart file for Fedora. The kickstart file will be called
p2v.ks and is located in the current directory.

[421]

http://libguestfs.org/virt-p2v-make-disk.1.html
http://libguestfs.org/virt-p2v-make-kickstart.1.html

V2V and P2V Migration Tools

3. Once you have the kickstart file, you can use livecd-creator(8)
(http://man.he.net/mans/livecd-creator) to make a live CD:

#livecd-creator p2v.ks

This http://oirase.annexia.org/virt-p2v/ directory
contains the unofficial virt-p2v ISOs and PXE boot images. You
I~
may use them if you don't wish to build virt-p2v on your own.

The resulting virt-p2v tool allows you to convert physical hosts into virtual
machines. This is accomplished by the network booting the physical host with the
virt-p2v boot image, which then copies the disk image and network configuration to
the virt-v2v server for conversion.

Can we convert any physical computers
to virtual using virt-v2v?

Many a times, you must have thought whether it is possible to convert a physical
computer to a virtual system using virt-v2v. It depends on the physical system
configuration. I have tested converting many physical computers and it worked
absolutely fine. However, there are some restrictions that apply to P2V. To perform
a P2V conversion, your physical system must have the following prerequisites:

* They must have at least 512 MB of RAM.
* They cannot have any volumes larger than 2040 GB.

* virt-v2v supports P2V conversion for computers based on the x86 or
x86_64 architecture. You won't able able convert computers with Itanium
architecture-based operating systems.

* Computers with their root filesystem root on a software RAID md device
cannot be converted to virtual machines.

* The operating system installed on the computer must be supported to run as
a guest on KVM.

* They must have at least one Ethernet connection.
If your physical computer meets the preceding basic hardware requirements, it will

successfully boot the P2V client. The following diagram depicts a typical physical to
virtual migration:

[422]

http://man.he.net/man8/livecd-creator
http://oirase.annexia.org/virt-p2v/

Chapter 14

Boot the physical system using the
virt-p2v iso

The system appears in export
virt-v2v conversion server modifies copied image, storage domain to import into
Create an ovt descriptor and put the converted the data storage domain.
image in export storage domain.

virt-v2v conversion server
Export storage domain attached to ovirt 1ter must be from this sy

Booting a physical system using a virt-p2v
bootable disk for conversion

The following are the steps to convert a physical system to a virtual system.
The following steps should be run in the same sequence as documented:

1. Boot the physical system using virt-p2v. The virt-p2v client comes with a
sleek and minimal, yet complete configuration GUI. The first dialog looks

similar to the following image:

[ViIrt-pEv [X

Connect to a virt-v2v conversion server over 55H:

Conversion servern |

SSH port |22

User name: |rc:|ot

Password: |
] Use sudo when running virt-v2v
Test connection |
i Configure network ... | About virt-p2v 1.20.4 ... | et

[423]

V2V and P2V Migration Tools

2. The virt-p2v looks for a DHCP server for network confirmation from DHCP.
If there is no DHCP server on the network, click on the Configure Network
button and press Enter to open the Network Connections dialog box:

| virt-pdv |

Connect to a virt-w2v conversion server over 55H:

Conversion server: | Hetwork Connections | %
55H port Name Last Used Add
Ear mEme w Ethernet . Exit
eth0 4 minutes ago
Password:
Delete
Configure netwaorl

Close

3. On completing the network configuration, enter the details of the conversion
server: the hostname, SSH port number, remote username, and either the
password or SSH identity (private key) URL:

[wirt-pav | >

Connect to a virt-v2v conversion server over 55H:

Conversion server: |I-wmhost.exomple.coml

55H port |22

User narme: |root

Password: I..........

] Use sudo when running virt-v2v

Test connection'

Connected to the conversion server,
» Press the "Mext’ button to configure the conversion process.

Configure network ... About virt-p2v 1.30.4 ... | Mext

[424]

Chapter 14

4. In order to perform the conversion, the virt-p2v needs root privileges on the

virt-v2v conversion server. If the root SSH login is not allowed on the virt-

v2v conversion server, tick the Use sudo when running virt-v2v checkbox to

elevate privileges of the root user using sudo.

5. You must click on the Test connection button first to test the SSH connection

for the conversion server. If this is successful, then click the Next button to

move to the next button.

6. Clicking on the Next button will bring the main configuration of the virt-p2v

client. The configuration is divided into four parts. Starting with the target

profile, where you can specify the Name of the resulted virtual machine,
vCPU, and Memory configurations.

Virt-p2v | %
Target properties Fixed hard disks
N 1 i
n SPT Convert |De\r|ce |S\ze [GB) ‘Modet
Ve vda 14
Mernory (MB):|1024
Removable media
Convert |Device
Wirt-v2v output options
Output to (-o): local
Qutput conn. [-oc):
Output storage (-os):|/var/tmp

Output format (-of):

Output allocation [-oa): sparse Network interfaces
Convert |Deu|ce Connect to virtual network

Enable server-side debugging 7] default

= (This is saved in /tmp on%he conversion server) Eﬁ%‘ﬂmﬁ B
o Hat, Inc

Information

virt-p2v (client) 1.30.4

virt-v2v (conversion server) 1.30.4

Back | Start conversion ‘

7. In the right-hand column, there are three panels that control which hard

disks, removable media devices, and network interfaces will be created in

the output guest. Normally, leaving these in the default settings is fine.

8. In the bottom left corner, virt-v2v output options is where you can specify

the output target, output connection, output storage location, output format,

and the end output allocation. By default, the output disk is set to sparse.

[425]

V2V and P2V Migration Tools

9. Specify the conversion target to the same as we used with the virt-v2v
command and click the start button to initiate the conversion. You will
get the progress dialog once the conversion is completed. The system is
powered off automatically, as shown in the following image:

I Vir-pav [X]
supermin: INTernal INSMog cre-ITU-LKO.XZ B
supermin: running xz

done with xz 4415 read

supermin: internal insmod creB.ko.xz

SUpermin: running xz

done with xz 4423 read

supermin: internal insmod libere32cko.xz

supermin: running xz

done with xz 5295 read

supermin: picked /sys/block/sdb/dev as root device

supermin: creating /dev/root as block special 815

supermin: mounting new root on /root

0.620708] EXT4-fs (sdb): mountlnc\cJ; ext? file systern using the ext4 subsystem

0.6268469] EXT4-fs (sdb): mounted filesystem without journal. Opts:
supermin: chroot
Stortln% finit script .

0.798415] rondom systemd-tmpfile urandom read with 746 bits of entropy available
fusrfllbftmpﬂles d/systemd.conf26] Failed to replace specifiers: /run/log/journal/%m
fusr/lib/trpfiles.d/systemd.conf 28] Failed to replace specifiers: /frun/log/journal/%m
fusr/lib/tmpfiles.d/systemd.conf27] Failed to replace specifiers: /run/log/journal/%m
fusr/lib/tmpfiles.d/systemd.conf32] Failed to replace specifiers: /var/log/journal/%m
fusr/lib/trmpfiles.d/systemd.confi34] Failed to replace specifiers: /var/log/journal/%m
fusr/lib/tmpfiles.d/systemd.confi3s] Failed to replace specifiers: /var/log/journal/%m
starting version 219
SpeC|f|ed group input’ unknown

9252960] intel_rapl no valid rapl domains found in package 0
0965836 random: nonblocking pool is initialized
| 1.2134647] clocksource: tsc mosk: Oxffffffffffffffff max_cycles: 0x2N3fIB0S3, max_idle_ns: 44079527048
ns
finit line B&: fsys/block/hd*/queue/scheduler No such file or directory
finit line 8&: fsys/block/ubd*/queue/scheduler: No such file or directory Ad|

Log files and debu% information is saved to this directory on the conversion serven
[trpivirt-p2v-20151120-bd2ustir

Doing conversion ...

Cancel conversion ‘ Reboot

Converting virtual machines from
unsupported virtualization platforms

If you have a virtual machine running on VirtualBox, Oracle VM, or any other
unsupported virtualization platforms and wish to convert it to KVM then you have
two options available.

The first option is to export the virtual machine from your virtualization platform to
open virtualization format (ova). Copy this ova container to the virt-v2v conversion
server and use ova as the input for the virt-v2v command:

#export pool=default
#virt-v2v -i ova -os $pool ovafile

[426]

Chapter 14

This command will read the manifest bundled into the ova file, and create a virtual
machine on the local standalone KVM host. The resulting disk image is stored in a
libvirt storage pool, named default.

The second option is to consider the virtual machine as a physical system and use
virt-p2v method to convert it.

Now you may have a question, how virt-v2v identify the guest operating system?

virt-v2v uses the virt-inspector utility to inspect the actual OS inside the guest image.
This will detect the OS type (Windows/Linux), version (XP/2003/?), and other
OS-dependent information.

List of input and output methods supported

with virt-v2v
Input:

* -i disk: This is used to read from local disk images (mainly for testing).

e -ilibvirt: This is used to read from any libvirt source. As libvirt can
connect to many different hypervisors, it is used to read guests from
VMware, RHEL 5 Xen, and more. The -ic option selects the precise
libvirt source.

* -ilibvirtxml: This is used to read from libvirt XML files. This is the method
used by virt-p2v(1) behind the scenes.

* -i ova: This is used to read from a VMware ova source file.

* -o glance: This is used to write to OpenStack Glance.

Output:

* -o libvirt: Thisis used to write to any libvirt target. Libvirt can connect
to local or remote KVM hypervisors. The -oc option selects the precise
libvirt target.

* -0 local: Thisis used to write to a local disk image with a local libvirt
configuration file (mainly for testing).

* -o gemu: This writes to a local disk image with a shell script to boot the guest
directly in gemu (mainly for testing).

* -o rhev: This is used to write to a RHEV-M/oVirt target. -o vdsmis only
used when virt-v2v runs under VDSM control.

[427]

V2V and P2V Migration Tools

Summary

This chapter covered virtual to virtual and physical to virtual conversions using the
virt-v2v utility, covering Windows and Linux system conversion. It also covered
how to move a physical system to virtual and then to the cloud, and how to
troubleshoot virt-v2v-related issues by enabling debug loggings.

[428]

Converting a Virtual Machine
into a Hypervisor

KVM needs the virtualization extension (# egrep ' (vmx|svm)' /proc/cpuinfo) of
CPU to run as a hypervisor. This means that you need multiple bare metal systems
to test the examples provided in this book, which is a challenge for most of the
sysadmins. What if you can test everything using your laptop?

Introducing nested KVM

Nested KVM is technology that enables KVM to run virtual machines inside a virtual
machine. This enables the virtualization extension available on a physical CPU inside
a virtual CPU.

How to enable nested KVM?
By default, nested KVM is disabled.

Open /etc/modprobe.d/kvm. conf as root user using a text editor like vim. If the file
does not exist create /etc/modprobe.d/kvm. conf:

* #Uncomment kvm_intel line if your CPU make is Intel

* #options kvm_intel nested=1

e #Uncomment kvm_intel line if your CPU make is AMD

* #options kvm_amd nested=1

[429]

Converting a Virtual Machine into a Hypervisor

Save the file and reboot the system. Once the system reboots verify nested
by checking.

cat /sys/module/kvm intel/parameters/nested
Y

For AMD, the file to check is /sys/module/kvm_intel/parameters/nested:

on GEMU/KVM x
File Virtual Machine View Send Key
N 8l x |
B overview CPUs
B Performance Logical host CPUs: &
m Current allocation: 1 +
== Memory
: Maximum allocation: | 1 +
4% Boot Options
— VirtlO Disk 1 Configuration
IDE COROM 1 Oopy hest CPU configuration
NI, o5 SEA2 Model: | Westmere -
L& Tablet
Fig -1

After verifying nested status, change the CPU model of the VM to match host's CPU;
that is, enable Copy host CPU configuration (Fig-1). Start the VM and execute egrep

' (vimx | svm) ' /proc/cpuinfo in the VM. You should be able to see vimx or svm in
the output based on the host CPU model.

Your VM can now create its own virtual machines for the purpose of testing.

[430]

Index

A unsafe 400
writeback 400
Advanced Message Queuing writethrough 399
Protocol (AMQP) CentOS 7 template
about 337 preparing, with LAMP stack 188
reference 337 clone provisioning method
Apache Software Foundation (ASF) 19 used, for deploying VMs 192, 193
Application Programming Cloudstack 19
Interface (API) 21 cluster 317
applications 245 containers 7
aSPICE: Secure SPICE Client application controller 244
download link 239 Copy on write (COW) shared page 377
automated virtual machine deployment core OpenStack components
about 96 defining 336-338
oz, defining 99-101 CPU and memory
virt-builder, defining 96-99 tuning, with NUMA 383
CPU cores 64
B CPU pinning

about 360-362

Bare Metal 14 numactl command 361

best practices, KVM guest time-keeping CPU tuning
about 407, 408 about 356
kvm-clock 408 CPU configuration 358
binary translation CPU pinning 360
reference 10 CPU topology 360
bridge number of vCPUs 357
about 106
creating, with shared physical D

interfaces 131-133
data structures
C defining 37-40, 48-51

. . device assignment 406
cache mode, disk and block I/O tuning device/driver pair examples, virtio

about 398, 399 virtio-balloon 355
default 400 virtio-blk 355

directsync 400 virtio-console 356
none 399

[431]

virtio-net 355
virtio-rng 356
virtio-scsi 356
disk and block I/O tuning
about 396-398
block device I/O tuning 401, 402
cache mode 398, 399
I/O mode 400
I/0O tuning 401, 402
Domains 16
Dynamic Host Configuration
Protocol (DHCP) 337

E

Embedded 14
emulatorpin 389-391
environment
libvirt service, starting 69
setting up 67, 68
virt capabilities, validating 69-72
virtualization packages, installing 68, 69
Ethernet Hub 242-245
Eucalyptus 19
Extended Page Tables (EPT) 45
external disk snapshots
creating 205-208
deleting 212
quiesce 208, 209
reverting, to external snapshots 209-211
working with 205
external snapshots
merging, blockcommit used 212, 213
merging, blockpull used 214

F

Fedora
about 22
reference 101
Fibre Channel Protocol (FCP) 302
file structures
and inodes 47, 48
First Instance
launching 341-345

FlowSim
reference 290
full virtualization 10,11

G

Generic Routing Encapsulation (GRE) 274
GlusterFS 302

GNU General Public License (GPL) 32
graphics 164

H

hard_timeout 288
hardware assisted virtualization
defining 12,13
hardware configuration examples
defining 73-75
host agent 300
host system
managing, with Kimchi WebUI 235-237
monitoring, with Kimchi WebUI 235-237
requirements 62
host system management
defining, Kimchi-Ginger
plugin used 237, 238
hugepages 373
hypervisor
type 1 hypervisors 14
type 2 hypervisors 14
hypervisor/VMM 3

idle_timeout 288
Infrastructure As A Service 335
inodes
and file structures 47, 48
instance configuration database
accessing 347, 348
internal snapshots
creating, with custom name
and description 199
deleting 202
first internal snapshot, creating 199
multiple snapshots, creating 200, 201

[432]

reverting to 202

working with 198
Internet Small Computer

System Interface (iSCSI) 302

I/O mode

10=default 400

IO=native 400

IO=threads 400

J

Just Enough Operating System (JEOS) 99

K

Kernel-based Virtual Machine (KVM)
about 17
defining 43-45
high-level overview 18
KVM APIs 46
networking tuning 402, 403
Kernel Same Page merging (KSM)
about 377,378
and NUMA 391
packages and files 379-383
Kimchi project
architecture 220
defining 219
Kimchi server
kimchid service, starting 221-223
setting up 220, 221
kvm-clock
about 408
reference 408
KVM guest time-keeping
best practices 407
kvm.ko 43
KVM virtualization infrastructure
managing, kimchi WebUI used 224, 225
KVM VMs
integrating, with OVS 256-260
KVM VM traffic
controlling 268, 269

L

LAMP stack installation
reference 188
libvirt
defining 21-24, 60-62
functions 28
implementing 21-24
used, for virtual networking 110
working 24-31
libvirt-API bindings
reference 218
libvirt Web API
defining 218
Lightweight Directory Access
Protocol (LDAP) 337
Linux bridges
limitations 245
Linux virtualization
defining 19
using 2
lockd
enabling 176-178
logical networks
creating 327-329
LXC (Linux containers) 78

MacVTap 134,135
memory
about 367
current allocation 368
maximum allocation 367
memory allocation 367, 368
memory backing 371
memory tuning 369-371
working with 367
memory backing
about 371
hugepages 373-376
locked 372
nosharepages 372

[433]

memory management unit (MMU) 373
migration

future 183

live or online migration 178-183
multi queue virtio-net

reference 405

N

Native Hypervisor 14
nested KVM
about 429
enabling 429, 430
Network File System (NFS) 302
network infrastructure 244
networking tuning, KVM
enabling 404-406
performing 402, 403
Network Interface Card (NIC) 64
network port mirroring
about 278
configuring 279-282
Network Time Protocol (NTP) 407
new virtual machine wizard
creating 86-91
NUMA
about 383-386
automatic NUMA balancing 392, 393
numactl command
using 361-366
numad 393, 394
NUMA memory allocation policies
about 387
emulatorpin 389
numatune 387-389
numastat 395, 396
numatune
about 387, 388
memory element 388
nodeset attribute 388
placement attribute 388

(0

OpenDaylight controller (ODL-sys)

flows, installing on OVS bridge 290-293

hardware requisites 285
installing 285

ODL, configuring 285, 286
ODL, installing 285, 286
Open vSwitch (vswitch001) instance,
adding 286-290
OpenFlow
example 288
Open Networking Foundation (ONF)
about 241
key themes 242
open source
features 2
open source virtualization projects
about 15, 16

Kernel-based Virtual Machine (KVM) 17

references 15
Xen 16,17
OpenStack
about 335
references 339
virtualization layer,
troubleshooting 345, 346
OpenStack architecture
core components 336-338
defining 336
OpenStack components
Authentication (Keystone) 337
Block storage (Cinder) 337
Compute service (Nova) 337
Dashboard (Horizon) 338
Image management (Glance) 337
Object Storage (Swift) 338
Orchestration (Heat) 338
Telemetry (Ceilometer) 337
Virtual network (Neutron) 337
OpenStack deployment
defining 338
RDO OpenStack 338
OpenStack environment
reference 335
open virtualization format (ova) 426
Open vSwitch (OVS)
about 245
architecture 246, 247
command-line interface 250-252
installation 248
KVM VMg, integrating 256-260

[434]

managing, OpenDaylight SDN controller
used 282-284
Open vSwitch kernel module 250
openvswitch.service, starting 248, 249
reference 246
setup 248
troubleshooting 293-295
versus Linux bridge 246
Open vSwitch bridge
configuring manually, ovs-vsctl command
used 252, 253
configuring, network scripts used 254, 255
setting up 252
Open vSwitch tunnels configuration,
with VxLan
KvmHOST1 host side
configuration 275, 276
kvmHOST?2 host configuration 276, 277
performing 274, 275
operating system partitioning 7-9
operating system virtualization 7-9
output_port 280
overlay networks 274
oVirt
about 298, 303, 333
architecture 298, 299
components 299
defining 298
networking 303
oVirt engine 300
oVirt node 301
references 333
storage 302
reference 298
oVirt data center
defining 317
initiating 318-323
oVirt engine
about 300, 319
commands, defining 332, 333
functions 300
installing 304
system, preparing for installation 304-310
reference 304
oVirt manager
reference 308
ovirtmgmt 317

oVirt node
about 301
installing 310-314

ovs-vsctl commands
#ovs-appctl bridge/dumpflows
 251
#ovs-appctl fdb/show
 251
#ovs-dpctl dump-flows 251
#ovs-dpctl show 251
#ovs-ofctl 251
#ovs-ofctl dump-flows <Bridge> 251
#ovs-ofctl show <BRIDGE> 251
#ovs-vsctl add-br <bridge> 251
#ovs-vsctl add-port <bridge> 251
#ovs-vsctl list-br 251
#ovs-vsctl list interface <bridge> 251
#ovs-vsctl list-ports <bridge> 251
ovs-appctl 251
ovs-dpctl 251
ovs-vsctl show 251

oz
configuration file 102
defining 99-101
reference 102
used, for creating virtual machine 103, 104

P

Packstack

about 339

installing 339

Packstack installer, installing 340

prerequisites 339

running, for installing OpenStack 340, 341
Parallel NFS (pNFS) 302
paravirtualization

about 11

reference 11
PCI passthrough

about 135

enabling 135
permissions

and user access control 234
physical CPU 63, 64
physical memory 65
Pluggable Authentication

Module (PAM) 223

policing 269

[435]

Precision Time Protocol (PTP) servers 172
pre-configured disk Fedora 22 image
reference 94

Q

qcow
references 397
QEMU guest agent 161, 162
QEMU internals
defining 35, 36
QEMU/KVM
reference 32
QEMU Monitor Protocol (QMP)
defining 348-351
Quality of Service (QOS) 401
Quick Emulator (QEMU)
about 32, 59
data structures 37-40
defining 32-36
models, threading 41-43
reference 32
quiesce 208, 209

R

RDO-Manager
about 339
reference 339
RDO OpenStack
defining 338
deployments methods 339
Packstack, installing 339
reference 338
Red Hat Enterprise Virtualization
(RHEV) 61, 298, 411
routed virtual network
about 122-127
virtual network, editing 127-129

S

Secure Virtual Machine (SVM) 12, 46
select_all 280

select_dst_port 280

select_src_port 280

shaping 269

shared storage
about 172-174
offline migration 174-176
Show My Network State
about 295
reference 295
Simple Protocol for
Independent Computing
Environments (SPICE) 165
Single Root IO Virtualization(SR-IOV) 406
snapshots
about 194, 195
best practices 215
VM disk image formats 196, 197
snapshots, for libvirt guests
external snapshot 195
internal snapshot 195
Software-Defined Networking (SDN)
about 3, 241, 242
reference 3
Software Defined Storage (SDS)
reference 3
Spanning Tree Protocol (STP) 107
SPICE graphics server
about 165, 166
adding 166-169
reference 166
standalone KVM guests
converting, to OpenStack cloud 419
converting, to oVirt Virtualization
platform 419
storage
about 66, 136
deleting, with virsh command 153
disk image, attaching to guest 137, 138
disk image, creating 137, 138
image information, obtaining 138
ISO image library, creating 149, 150
managed storage, working with 141, 142
management console 142-144
pool, deleting 150
pools, creating 144
SWAP space 66
unmanaged storage, working with 137
virsh, used for attaching disk 140, 141
virt-manager, used for
attaching disk 139, 140

[436]

volumes, creating with virsh command 153 traffic rate limiting

volumes, deleting 152 applying 270, 271
storage domains outbound (egress) traffic, controlling 271
creating 324-327 traffic shaping, applying 272, 273
data domain 302 Translation LookAside Buffer (TLB) 373
export domain 303 Transparent Hugepages (THP) 374
ISO domain 303 troubleshooting
storage pool Open vSwitch 293-295
deleting 150 TUN 106
deleting, virt-manager used 151 type 1 hypervisors
deleting, with virsh 151 advantages 14
file system directory backed
storage pool 144, 145 U

Internet Small Computer System Interface .
(iSCSI) backed storage pool 148, 149 User-mode Linux (UML) 2
LVM Volume Group backed

storage pool 146-148 \
Storage Pool Manager (SPM) 325 V2V 411
storage pool types vCPU
:3;21}%}1 execution flow 52-55
P version packages
reference 221
-gluster 141 virsh
:ECmSI 11;111 used, for attaching disk 140, 141
e 1al used, for creating volume 153
B used, for deleting storage pool 151
rbd used, for deleting volume 153
-scsi 141 . virt-builder
System Preparation (Sysprep) tool reference 97
about 190

virt-install

reference 190 defining 95

T used, for installing Windows 7 Guest 95, 96
virtio
TAP devices 106 abogt 354. -
TDL (Template Definition Language) device/driver pair examples 355, 356
reference 101 drivers 355
templates reference 356

clone method 187 virt-manager
creating 187 defining 78,79

defining 187 Storage tab 84, 85
thin method 187 reference 21
thin provisioning method used, for attaching disk 139, 140
used, for deploying VMs 193, 194 used, for deleting storage pool 151
Tiny Code Generator (TCG) used, for managing snapshots 203, 204
about 32 Virtual Networks tab 80

reference 33

[437]

virt-p2v bootable disk
used, for booting physical system 423-425
virt-p2v bootable image
creating 421
virt-sysprep 188-190
virtual conversion
physical system 421
Virtual Desktop and Server
Manager (VDSM) 301
virtual disk
preallocated 138
thin-provisioned 138
Virtual eXtensible Local Area
Network (VXLAN) 274
virtualization
about 2,185
advantages 3-5
types 2,3
Virtualization Technology (VT) 12, 67
Virtual Machine Control
Block (VMCB) 45, 46
Virtual Machine Control
Structure (VMCS) 45
Virtual Machine Manager
existing disk image, importing 94
Network Boot (PXE) 93
network installation (HTTP, FTP, or NFS)
method 92
used, for creating virtual machines 85, 86
Virtual Machine Monitor (VMM) 9
virtual machines (VMs)
actions 157-160
converting, from unsupported
virtualization platforms 426, 427
creating 329-333
creating, through Kimchi WebUI 226-232
deploying, clone provisioning
method used 192,193
deploying, from template 192
deploying, thin provisioning
method used 193, 194
graphical console, accessing 233
lifecycle 155-157
managing, through android
phones 238, 239
resource allocation, editing 232
starting 329-333

templates, defining 185, 186
turning, into hypervisor 429
virtual networking
about 106-109
isolated virtual network 111-121
libvirt, using 110
NATed virtual network 129, 130
routed virtual network 122-127
types 110
Virtual Networks tab
about 80
default network 81-83
isolated virtual network 81
NATed virtual network 81
routed virtual network 81
virtual private server (VPS) 238
virtual video card
about 162
Cirrus 162
QXL 162
VGA 162
VMVGA 162
virt-v2v utility
conversion process 415
defining 411, 412
input and output methods 427
obtaining 413
prerequisites 413, 414
source hypervisors-specific
prerequisites 414
troubleshooting 420
reference 415
used, for converting physical computers
to virtual 422
v2v conversion, preparing for 413, 414
working 412
VLANS (Virtual LANSs)
about 260
advantages 260
VLANSs, with Open vSwitch
about 260
configuring, for KVM
virtual machines 261-265
libvirt integration, using 266, 267
Open vSwitch QoS 268, 269
vmcore
collecting, from instances 351

[438]

VM disk format W
converting 198

VMM/hypervisor Windows
defining 14 reference link, for agents and drivers 162
VM migration Windows 7 template
about 170 preparing, with MySQL database 190, 191
benefits 171
environment, setting up 172 X

live or online migration 170

offline migration 170 Xen
VMware guests conversion 415 reference 16
Xen guests

VMware vSphere guest
converting, to OpenStack-Glance
repository 417
converting, to oVirt 416, 417
converting, to standalone KVM host 416
VNC graphics server 164, 165
VPS (Virtual Private Server) 269

converting 418, 419

[439]

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Linux Virtualization

	What is virtualization?
	Why should I use Linux virtualization?
	Types of virtualization
	Advantages of virtualization

	Operating system virtualization/partitioning
	Full virtualization
	Paravirtualization

	Hardware assisted virtualization
	Introducing VMM/hypervisor
	Type 1 and Type 2 hypervisors

	Open source virtualization projects
	Xen
	Introducing KVM
	High-level overview of KVM

	What Linux virtualization offers you in the cloud
	Summary

	Chapter 2: KVM Internals

	Getting acquainted with libvirt and its implementation
	Internal workings of libvirt
	Time to think more about QEMU
	Qemu – KVM internals
	Data structures
	Threading models in QEMU

	KVM in action
	KVM APIs

	Anonymous inodes and file structures
	Data structures

	Execution flow of vCPU
	Summary

	Chapter 3: Setting Up Standalone
KVM Virtualization

	Getting acquainted with libvirt
	Host system requirements
	Determining the right system requirements for your environment
	Physical CPU
	CPU cores
	Physical memory
	Storage
	Network

	Setting up the environment
	Installing virtualization packages
	Starting the libvirt service
	Validate and understand your system's virt capabilities

	Hardware configuration examples
	Summary

	Chapter 4: Getting Started with libvirt and Creating Your First Virtual Machines

	Introducing virt-manager
	The Virtual Networks tab
	NATed virtual network
	Routed virtual network
	Isolated virtual network
	Default network

	Storage tab

	Creating virtual machines using the Virtual Machine Manager
	Creating a new virtual machine wizard
	The Network installation (HTTP, FTP, or NFS) method
	Network Boot (PXE)
	Importing an existing disk image

	Introducing virt-install
	Installing a Windows 7 Guest using the
virt-install command

	Automated virtual machine deployment
	Introducing virt-builder
	Introducing oz
	The oz configuration file
	Creating a virtual machine using oz

	Summary

	Chapter 5: Network and Storage

	Virtual networking
	Virtual networking using libvirt
	Isolated virtual network
	Routed virtual network
	Editing a virtual network

	NATedvirtual network

	MacVTap
	PCI passthrough
	It's all about storage!
	Working with unmanaged storage
	Creating a disk image and attaching it to a guest
	Getting image information
	Attach a disk using virt-manager
	Attach a disk using virsh
	Working with managed storage
	Storage management console
	Creating storage pools
	File system directory backed storage pool
	LVM Volume Group backed storage pool
	iSCSI backed storage pool

	Creating an ISO image library
	Deleting a storage pool
	Deleting storage pool using virt-manager
	Deleting storage pool using virsh

	Creating storage volumes
	Creating volume using virsh command
	Deleting a volume using the virsh command

	Summary

	Chapter 6: Virtual Machine Lifecycle Management

	QEMU guest agent
	Virtual video cards and graphics
	Virtual video card
	Graphics
	VNC graphics server
	SPICE graphics server
	Adding SPICE graphics server

	Methods to access a virtual machine console

	VM migration
	Offline migration
	Live or online migration
	Benefits of VM migration
	Setting up the environment

	Shared storage
	Offline migration
	What if I start the VM accidently on both the hypervisors?

	Enabling lockd
	Live or online migration
	Future of migration

	Summary

	Chapter 7: Templates and Snapshots

	Introducing virtual machine templates
	Working with templates
	Creating templates
	Example 1 – preparing a CentOS 7 template with a complete LAMP stack
	Example 2 – preparing a Windows 7 template with a MySQL database

	Deploying virtual machines from a template
	Deploying VMs using the clone provisioning method
	Deploying VMs using the thin provisioning method
	Snapshots
	VM disk image formats
	Converting a VM disk format

	Working with internal snapshots
	Creating the first internal snapshot
	Creating an internal snapshot with a custom name and description
	Creating multiple snapshots
	Reverting to internal snapshots
	Deleting internal snapshots

	Managing snapshots using virt-manager
	Working with external disk snapshots
	Creating an external disk snapshot
	What is quiesce?
	Reverting to external snapshots
	Deleting external disk snapshots

	Best practices for dealing with snapshots

	Summary

	Chapter 8: Kimchi – An HTML5-Based Management Tool for
KVM/libvirt

	Libvirt Web API
	Introduction to the Kimchi project
	Kimchi architecture

	Setting up Kimchi server
	Starting kimchid service

	Managing KVM virtualization infrastructure using kimchi WebUI
	Creating virtual machines through Kimchi WebUI
	Editing a virtual machine's resource allocation
	Accessing a virtual machine's graphical console
	Permissions and user access control
	Monitoring and managing a host system with the Kimchi WebUI

	Host system management using the
Kimchi-Ginger plugin

	Managing virtual machine through android phones
	Summary

	Chapter 9: Software-Defined Networking for KVM Virtualization

	Introducing Software Defined Networking
	Limitations of Linux bridges

	Introducing Open vSwitch
	Comparison between Linux bridge and Open vSwitch
	Open vSwitch architecture

	Open vSwitch installation and setup
	Starting openvswitch.service
	Open vSwitch kernel module
	Getting started with the Open vSwitch command-line interface
	Setting up your first Open vSwitch bridge
	Configuring an Open vSwitch bridge manually using the ovs-vsctl command
	Configuring an Open vSwitch bridge using network scripts

	Integrating KVM VMs and OVS
	VLANs with Open vSwitch
	Configuring VLANs for KVM virtual machines
	Using libvirt integration
	Open vSwitch QoS – controlling KVM VM traffic

	Applying traffic rate limiting
	Controlling outbound (egress) traffic
	Applying traffic shaping

	Overlay networks
	Configuring Open vSwitch tunnels with VxLan
	KvmHOST1 host side configuration
	kvmHOST2 host configuration

	Network port mirroring
	Configuring port mirroring

	Managing Open vSwitch using the OpenDaylight SDN controller
	Installing the OpenDaylight controller
(ODL-sys)
	Hardware requirements
	Installing and configuring ODL
	Adding an Open vSwitch (vswitch001) instance to the OpenDaylight controller on system (ODL-sys)
	Installing flows on the OVS bridge using OpenDaylight Dashboard

	Basic Open vSwitch troubleshooting
	Summary

	Chapter 10: Installing and Configuring the Virtual Datacenter Using oVirt

	Introducing oVirt
	oVirt architecture
	The oVirt engine
	The oVirt node
	Storage
	Networking

	Installing the oVirt engine
	Preparing the system for oVirt engine installation
	Installing oVirt node

	Summary

	Chapter 11: Starting Your First Virtual Machine in oVirt

	Getting acquainted with oVirt data center and cluster
	Initiating an oVirt data center

	Creating storage domains
	Creating logical networks
	Creating and starting a virtual machine
	What next?
	Summary

	Chapter 12: Deploying OpenStack Private Cloud backed by
KVM Virtualization

	OpenStack architecture
	Core OpenStack components

	OpenStack deployment
	RDO OpenStack
	RDO OpenStack deployments methods
	Installing Packstack

	Launching First Instance
	Troubleshooting the virtualization layer of OpenStack
	Accessing the instance configuration database
	QEMU Monitor Protocol
	Summary

	Chapter 13: Performance Tuning and Best Practices in KVM

	VirtIO
	CPU tuning
	The number of vCPUs
	CPU configuration
	CPU topology
	CPU pinning
	The numactl command

	Working with memory
	Memory allocation
	Memory tuning
	Memory backing
	locked
	nosharepages
	hugepages

	Getting acquainted with Kernel Same Page merging
	KSM packages and files

	Tuning CPU and memory with NUMA
	What is NUMA?
	NUMA memory allocation policies
	numatune
	emulatorpin

	KSM and NUMA
	Automatic NUMA balancing
	Understanding numad and numastat

	Disk and block I/O tuning
	Cache mode
	I/O mode
	I/O tuning

	Networking tuning in KVM
	How to turn it on?

	KVM guest time-keeping best practices
	kvm-clock

	Summary

	Chapter 14: V2V and P2V Migration Tools

	Introducing the virt-v2v utility
	How does virt-v2v work?
	Getting the virt-v2v utility
	Preparing for the v2v conversion
	Conversion process

	VMware guest conversion
	Converting a VMware vSphere guest to a standalone KVM host
	Converting a VMware vSphere guest to oVirt
	Converting a VMware vSphere guest to an OpenStack-Glance repository

	Xen guest conversion
	Converting standalone KVM guests to an oVirt Virtualization platform and the OpenStack cloud
	Troubleshooting virt-v2v related issues
	Physical system to virtual conversion
	Creating a virt-p2v bootable image

	Can we convert any physical computers to virtual using virt-v2v?
	Booting a physical system using a virt-p2v bootable disk for conversion

	Converting virtual machines from unsupported virtualization platforms
	List of input and output methods supported with virt-v2v

	Summary

	Appendix: Converting a Virtual Machine into a Hypervisor

	How to turn a virtual machine into a hypervisor?
	Introducing nested KVM
	How to enable nested KVM?

	Index

