Linux Containers
and Virtualization

Utilizing Rust for Linux Containers

Second Edition

Shashank Mohan Jain

APIESS®

Linux Containers and
Virtualization

Utilizing Rust for Linux
Containers

Second Edition

Shashank Mohan Jain

Apress’

Linux Containers and Virtualization: Utilizing Rust for Linux Containers

Shashank Mohan Jain
Bengaluru, India

ISBN-13 (pbk): 978-1-4842-9767-4 ISBN-13 (electronic): 978-1-4842-9768-1
https://doi.org/10.1007/978-1-4842-9768-1

Copyright © 2023 by Shashank Mohan Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi

Development Editor: James Markham

Copy Editor: Bill McManus

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at https://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

https://doi.org/10.1007/978-1-4842-9768-1

Table of Contents

About the AUthOrc.sccemmssemmmmsnnmmssssmssssnnsssns s ssnsssssnnssssnnssssnnnnns ix
About the Technical REVIEWETcssesssssnsssssnsssssnsssssnsssssnsssssnsssssansnss xi
Chapter 1: Virtualization BaSiCSccssussssessssssssnsnssssssnssssssssnsnssssssnnnsssss 1
History of Virtualization............cccocvvrvnne s 1
What IS VIirtualization? ... 2
VM-Based Virtualizationccoeeerneeneneneresc s sesesennenens 3
Container-Based Virtualizationccoveeerenrnscnnneserese e 3

L] VT £ 4
Virtual Maching MONItOrc.voeeererrncsrese e 4
DEVICE MOTEI ... 5
Memory VIirtualizationcocoeereeenncnenese s s 6
Shadow Page TabIes.........c.cccvrierrenrn e 7
Nested Page Tables with Hardware Supportccccocvvvnininnsnincennsencennen 7

CPU Virtualization...........ccocverermnnsnesensssssssess s sssesssssssaes 8
Binary Translation in the Case of Full Virtualizationc.ccocveevirievnieniennenn 9
Paravirtualization in the Case of XEN with Hypercalls.............cccvveriernreriernenn 9

10 VIFUANZATIONc.coveecereresece s 11
FUll VItUAlIZALION ... s 11
Paravirtualization...........c.coonennnnss s 11

E 1] 14 7 14

ii

https://doi.org/10.1007/978-1-4842-9768-1_1
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec1
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec2
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec3
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec4
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec5
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec6
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec7
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec8
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec9
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec10
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec11
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec12
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec13
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec14
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec15
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec16
https://doi.org/10.1007/978-1-4842-9768-1_1#Sec17

TABLE OF CONTENTS

Chapter 2: HypervisSors......ccuemmmmmssssnmsssssssnmssssssssssssssssssssssssssssssssnnnss 15
The Intel VE-X InStruction Set...........covieeinnnesccs e 15
The QUICK EMUIALOT........cccoveeereeeeereereecre e 19
Creating a VM Using the KVM Module..........ccccorvrmrnsennnnneneseressesesesessesesessesenns 21
Vhost-Based Data CommuniCationc.ccovenernsesnenesesesssesssesesssesesesessenens 22
What IS an eventfd? ... 24
Alternative Virtualization Mechanisms...........ccoorinrnnnnnnnnns e 25

UNIKEIMEIS ...t e 26
ProjeCt DUNEcoee ettt e 28
L0 N 29
Summary of Alternative Virtualization Approachescceevvververeressensenenns 30
11T 111 - o O 31

Chapter 3: NameSPACEeS...ccucurrsssnrrssansmssansesssnsesssnsesssnsesssnnssssnnssssnnssssns 33

NamMESPACE TYPES ...coverririrerirrir st nne 34
UTS e e 35
PID .ottt 35
10T T 35
A0 o T 37
IPG .ot 37
(0] o OSSOSO 37
L1 38

Data Structures for Linux NameSPaCESccovvvvriereninsnsenesssessessessesessessessens 38

Adding a Device t0 @ NAMESPACEcceveerrrrerrsesmrreserrssesesesess s sessesessesessans 45

1] 4= O 45

chapter 4: cgroupslll47
Creating a SAMPIE CQroUDvvvvrerrerererrerrerersesessessessessesessessessessssessessessessssessesses 48
COrOUD TYPES....veueeerueerreeris st se e se s se e se et b e s bt e e e e e ne s 52

iv

https://doi.org/10.1007/978-1-4842-9768-1_2
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec1
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec2
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec3
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec4
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec5
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec6
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec7
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec8
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec9
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec10
https://doi.org/10.1007/978-1-4842-9768-1_2#Sec11
https://doi.org/10.1007/978-1-4842-9768-1_3
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec1
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec2
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec3
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec4
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec5
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec6
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec7
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec8
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec9
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec10
https://doi.org/10.1007/978-1-4842-9768-1_3#Sec11
https://doi.org/10.1007/978-1-4842-9768-1_4
https://doi.org/10.1007/978-1-4842-9768-1_4#Sec1
https://doi.org/10.1007/978-1-4842-9768-1_4#Sec2

TABLE OF CONTENTS

CPU COrOUP....creerrerrrrerersersessssersessessssessessesssssssessessesssssssessesssssssessessesssssnsssseses 52
BIOCK /0 COIOUPS ..c.veererserressrersersessssessessesssssssessessesssssssessesssssssessessssassensesaes 63
Understanding Fairness ..o s ssessssessessens 68
Understanding Throttlingccooeoreernrcnreseree e 71
SUMMANY....eiierrriserre s e se s s e ne s e e nre e 81
Chapter 5: Layered File Systemsccuucemmmmssssnmnmnssssssnmsssssssssssssnsnns 83
A File SyStem PriMEr........ccccvieernierinesenese s se s srs e e sessases 83
Brief Overview of Pseudo File SYStemSccovvvvvveriennsnsenens s e sessesennens 87
Understanding layered File SYSTEMS........ccccvrvivrrvnienienensensesessssessesessesessessensens 89
The Union File SYSIEM ...t se e 90
OVEHAYFS ... e 90
SUMMANY....eiieerrreere s s n e nre e 93
Chapter 6: Creating a Simple Container Frameworkoooseeenennnneas 95
The UTS NamMESPACEccerrererrrererreserrnessssesessesessssessssessssesesssssssssesssssnsssssssssssnnes 95
Golang INSLAllAtionccccviererirrrir e 97
Building a Container with @ NamesSpace........cccvcvvrrerererrerseressssessessessessssessensens 98
Adding More NameSpPaCEScccvverereirnsnesesissesse s s s s s ssessssessesnes 100
Launching a Shell Program Within the Containerc.c.ccovveireirnccnnccsennenes 107
Providing the Root File System ... 110
The Mount Proc File SYStEM ... 116
Enabling the Network for the Container.........c.cccvvriervrnsninie s senrere e 119
Virtual Networking: A Brief PHMErccccvvvvrievninsniene s sessessensens 119
Enabling Cgroups for the CONtainerccccveevvrerveriernnensensere s sesessessssessessenes 134
311111117 OO 143

https://doi.org/10.1007/978-1-4842-9768-1_4#Sec3
https://doi.org/10.1007/978-1-4842-9768-1_4#Sec4
https://doi.org/10.1007/978-1-4842-9768-1_4#Sec5
https://doi.org/10.1007/978-1-4842-9768-1_4#Sec6
https://doi.org/10.1007/978-1-4842-9768-1_4#Sec7
https://doi.org/10.1007/978-1-4842-9768-1_5
https://doi.org/10.1007/978-1-4842-9768-1_5#Sec1
https://doi.org/10.1007/978-1-4842-9768-1_5#Sec2
https://doi.org/10.1007/978-1-4842-9768-1_5#Sec3
https://doi.org/10.1007/978-1-4842-9768-1_5#Sec4
https://doi.org/10.1007/978-1-4842-9768-1_5#Sec5
https://doi.org/10.1007/978-1-4842-9768-1_5#Sec6
https://doi.org/10.1007/978-1-4842-9768-1_6
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec1
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec2
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec3
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec4
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec5
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec6
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec7
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec8
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec9
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec10
https://doi.org/10.1007/978-1-4842-9768-1_6#Sec11

TABLE OF CONTENTS

Chapter 7: Why Choose Rustccccmrnssmmnmmsssssnnnmssssssssssssssssssssssnns 145
L C LT 11T 0 o 145
Rust INSTAIALIONccoveeeeceree s 146
L1 LT 10 SRR RTR 147
D L B] L TSRS 150

Primitive Data TYPESccovverererernse s e snsneens 150
Compound Data TYPEScvrverererinrirere s se s saesnes 152
T (0] TN 158
Defining FUNCLIONS.......ccvivirirrere s ses e ssesnens 158
Calling FUNCLIONScvcerevieserce e snesae e saesnes 159
FUNCLION ArgUMENTES ...cceeeeceirer e ss e snens 159
Function Return ValUES...........ccovriisnmnennnsse e 160
Function Scope and Lifetime.......cccocvvvvrnnininie e sessesensens 161
Function OVerloading..........ccccvverrererersensesensnsensessessssessessessesessessessessssesessens 161
(€ TC] 1] 1 O 162
LT o T 1T 0 = L o R 163
If/EISE StateMENTScceeveeccrerere s 163
0T 0L OSSR 164
Match EXPressions ... s s s e ssssessesnens 165
Exception Handling ... s 166
Rust Security FEAtUrEs........cocvvrernsrencsrsse s 169
OWNErsShip SYSTEMcccvrcerrcrere s 170
L) TSR 171
Pattern MatChing..........ccoveevrenernse s 173
ClOSUIES....ceveereresessesesre e s s n e nnnra e nennis 176
L LSS 178
SUMMANY ...t r e r e e nr e e 180

https://doi.org/10.1007/978-1-4842-9768-1_7
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec1
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec2
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec3
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec4
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec5
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec6
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec10
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec11
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec12
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec13
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec14
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec15
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec16
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec17
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec18
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec19
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec20
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec21
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec22
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec23
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec24
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec25
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec26
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec27
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec28
https://doi.org/10.1007/978-1-4842-9768-1_7#Sec29

TABLE OF CONTENTS

Chapter 8: Containers in Rust..........ccccennsemmnnnsssnnnmmssssssssssssssssssssnns 181
Refreshing Linux NamesSpaces?.........cccevvererrnvernenesesessssesesesessssesessesessssessens 181
Creating a PID NAMEeSPACEccccvrererirrinreriernsisses s sss s sse s 182
Creating a Network NameSpacecccvevvererenesssmsesesessssesessesessssessssesessesenns 187
Creating @ Mount NameSPaCE.........ccocvererenerrnsesssesesssessssesesse s sssesessesessens 191
Writing Complete Container Codecuovervrrrerierennsenseresesessessessessesessessesaes 194
SUMMAIY.c.veiteitrerere s sere e sse s e sa e e s s s sa e e s e saesaese e e saesaesae e s e saesaesseenansnens 200

1T = 201

vii

https://doi.org/10.1007/978-1-4842-9768-1_8
https://doi.org/10.1007/978-1-4842-9768-1_8#Sec1
https://doi.org/10.1007/978-1-4842-9768-1_8#Sec2
https://doi.org/10.1007/978-1-4842-9768-1_8#Sec3
https://doi.org/10.1007/978-1-4842-9768-1_8#Sec4
https://doi.org/10.1007/978-1-4842-9768-1_8#Sec5
https://doi.org/10.1007/978-1-4842-9768-1_8#Sec6

About the Author

Shashank Mohan Jain has been working in the IT industry for more than
20 years, mainly in the areas of cloud computing and distributed systems.
He has a keen interest in virtualization techniques, security, and complex
systems. Shashank has 39 software patents (many yet to be published) to
his name in the area of cloud computing, IoT, and machine learning. He
has been a speaker at multiple reputed cloud conferences. Shashank holds
Sun, Microsoft, and Linux kernel certifications.

ix

About the Technical Reviewer

Nikhil Jain is an Ansible expert with over 12
years of DevOps experience. He has been
using Ansible and contributing to it from its
inception. He currently works closely with
Ansible Engineering.

He is an open source enthusiast and is part
of the Ansible Pune Meetup Organizing team.
He has presented multiple Ansible sessions
at various global and local events. Apart from

sitting in front of his computer automating
things using Ansible, he loves watching sports
and is a regular part of the local cricket team.

CHAPTER 1

Virtualization Basics

This chapter explains the basics of virtualization, which will be helpful
for you to know when you create your own slimmed-down version of a
container framework like Docker in subsequent chapters. Before we get
into that process, you need to understand how the Linux kernel supports
virtualization and how the evolution of the Linux kernel and CPUs has
helped advance virtual machines in terms of performance, which in turn
led to the creation of containerization technologies.

This chapter also explains what a virtual machine is and what is
happening under its hood. We also look into some of the basics of
hypervisors, which make it possible to run a virtual machine in a system.

History of Virtualization

Prior to the virtualization era, the only way to provision full physical
servers was via IT. This was a costly and time-consuming process. One of
the major drawbacks of this method was that the machine’s resources—
like the CPU, memory, and disks—remained underutilized. To get around
this, the notion of virtualization started to gain traction.

The history of virtualization goes back to the 1960s, when Jim
Rymarczyk, who was a programmer with IBM, started virtualizing the IBM
mainframe. IBM designed the CP-40 mainframe for internal usage. This
system evolved into the CP-67, which used partition technology to run
multiple applications at once. Finally came UNIX, which allowed multiple

© Shashank Mohan Jain 2023
S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1_1

https://doi.org/10.1007/978-1-4842-9768-1_1#DOI

CHAPTER 1 VIRTUALIZATION BASICS

programs to run on the x86 hardware. Still, the problem of portability
remained. In the early 1990s, Sun Microsystems came up with Java, which
allowed the “write once, run anywhere” paradigm to spread its wings. A
user could now write a program in Java that could run across a variety of
hardware architectures. Java did this by introducing intermediary code
(called bytecode), which could then be executed on a Java runtime across
different hardware architectures. This was the advent of process-level
virtualization, whereby the Java runtime environment virtualized the
POSIX layer.

In the late 1990s, VMware stepped in and launched its own
virtualization model. This was related to virtualizing the actual hardware,
like the CPU, memory, disks, and so on. This meant that on top of the
VMware software (also called the hypervisor), we could run operating
systems themselves (called guests). This in turn meant that developers
were not restricted to just running Java programs, but could run any
program meant to be run on the guest operating system (OS).

Around 2001, VMware launched the ESX and GSX servers. GSX was a
Type 2 hypervisor, meaning it needed an operating system like Windows
to run guests. ESX was a Type 1 hypervisor (succeeded by VMware ESXi),
which allowed guest OSs to be run directly on the hypervisor.

What Is Virtualization?

Virtualization provides abstraction on top of the actual resources we want
to virtualize. The level at which this abstraction is applied changes the way
that different virtualization techniques look.

At a higher level, there are two major virtualization techniques based
on the level of abstraction:

e Virtual machine (VM) based

e Container based

CHAPTER 1 VIRTUALIZATION BASICS

Apart from these two virtualizing techniques, there are other
techniques, such as unikernels, which are lightweight, single-purpose
VMs. IBM is currently attempting to run unikernels as processes with
projects like Nabla. In this book, we will mainly look only at VM-based
virtualization and container-based virtualization.

VM-Based Virtualization

The VM-based approach virtualizes the complete OS. The abstraction it
presents to the VM is in the form of virtual devices like virtual disks, virtual
CPUs, and virtual NICs. In other words, the VM-based approach virtualizes
the complete instruction set architecture (ISA); as an example, the x86 ISA.

With virtual machines, multiple OSs can share the same hardware
resources, with virtualized representations of each of the resources
available to the VM. For example, the OS on the virtual machine (also
called the guest) can continue to do I/0 operations on a disk (in this case,
it’s a virtual disk), thinking that it’s the only OS running on the physical
hardware (also called the host), although in actuality, it is shared by
multiple VMs as well as by the host OS.

VMs are very similar to other processes in the host OS. VMs execute
in a hardware-isolated virtual address space and at a lower privilege level
than the host OS. The primary difference between a process and a VM is
the application binary interface (ABI) exposed by the host to the VM. In the
case of a process, the exposed ABI has constructs like network sockets, File
Descriptors (FDs), and so on, whereas with full-fledged OS virtualization,
the ABI has a virtual disk, a virtual CPU, virtual network cards, and so on.

Container-Based Virtualization

This form of virtualization doesn’t abstract the hardware but uses
techniques within the Linux kernel to isolate access paths for different
resources. It carves out a logical boundary within the same operating

CHAPTER 1 VIRTUALIZATION BASICS

system. As an example, container-based virtualization provides a separate
root file system, a separate process tree, a separate network subsystem,
and so on.

Hypervisors

A special piece of software is used to virtualize the OS, called the
hypervisor. The hypervisor itself has two parts:

e Virtual machine monitor (VMM): Used for trapping
and emulating the privileged instruction set (which
only the kernel of the operating system can perform)

o Device model: Used for virtualizing the I/O devices

Virtual Machine Monitor

Since the hardware is not available directly on a virtual machine (although
in some cases it can be), the VMM traps privileged instructions that access
the hardware (like disk/network card) and executes these instructions on
behalf of the virtual machine.

The VMM has to satisfy three properties (Popek and Goldberg, 1973):

o Isolation: Should isolate guests (VMs) from each other.

o Equivalency: Should behave the same with or without
virtualization. This means the majority (almost all)
of the instructions are run on the physical hardware
without any translation, and so on.

e Performance: Should perform as good as it does
without any virtualization. This again means that the
overhead of running a VM is minimal.

CHAPTER 1 VIRTUALIZATION BASICS

Some of the common functionalities of the VMM are as follows:

e Doesnot allow the VM to access privileged states; that
is, things like manipulating the state of certain host
registers should not be allowed from the VM. The VMM
will always trap and emulate those calls.

e Handles exceptions and interrupts. If a network call
(i.e., arequest) is issued from within a VM, it will be
trapped in the VMM and emulated. On receipt of a
response over the physical network/NIC, the CPU will
generate an interrupt and deliver it to the actual VM
that it’s addressed to.

e Handles CPU virtualization by running the majority
of the instructions natively (within the virtual CPU
of the VM) and only trapping for certain privileged
instructions. This means the performance is almost as
good as native code running directly on the hardware.

e Handles memory-mapped I/O by mapping the calls to
the virtual device-mapped memory in the guest to the
actual physical device-mapped memory. For this, the
VMM should control the physical memory mappings
(guest physical memory to host physical memory).
More details are provided later in this chapter.

Device Model

The device model of the hypervisor handles the I/O virtualization again by
trapping and emulating and then delivering interrupts back to the specific

virtual machine.

CHAPTER 1 VIRTUALIZATION BASICS

Memory Virtualization

One of the critical challenges with virtualization is how to virtualize
the memory. The guest OS should have the same behavior as the
nonvirtualized OS. This means that the guest OS should probably be at
least perceive that it controls the memory.

In the case of virtualization, the guest OS cannot be given direct access
to the physical memory. That means the guest OS should not be able to
manipulate the hardware page tables, as this can lead to the guest taking
control of the physical system.

Before we delve into how this is tackled, a basic understanding of
memory virtualization is needed, even in the context of normal OS and
hardware interactions.

The OS provides its processes a virtual view of memory; any access
to the physical memory is intercepted and handled by the hardware
component called the memory management unit (MMU). The OS sets up
the CR3 register (via a privileged instruction) and the MMU uses this entry
to walk the page tables to determine the physical mapping. The OS also
takes care of changing these mappings when allocation and deallocation of
physical memory happens.

Now, in the case of virtualized guests, the behavior should be similar.
The guest should not get direct access to the physical memory, but should
be intercepted and handled by the VMM.

Basically, there are three memory abstractions involved when running
a guest OS:

e Guestvirtual memory: This is what the process
running on the guest OS sees.

e Guest physical memory: This is what the guest
OS sees.

e System physical memory: This is what the VMM sees.

CHAPTER 1 VIRTUALIZATION BASICS

There are two possible approaches to handle this:
e Shadow page tables

o Nested page tables with hardware support

Shadow Page Tables

In the case of shadow page tables, the guest virtual memory is mapped
directly to the system physical memory via the VMM. This improves
performance by avoiding one additional layer of translation. But this
approach has a drawback: when there is a change to the guest page tables,
the shadow page tables need to be updated. This means there has to be a
trap and emulation into the VMM to handle this. The VMM can do this by
marking the guest page tables as read-only. That way, any attempt by the
guest OS to write to them causes a trap and the VMM can then update the
shadow tables.

Nested Page Tables with Hardware Support

Intel and AMD provided a solution to this problem via hardware
extensions. Intel provides something called an Extended Page Table (EPT),
which allows the MMU to walk two page tables.

The first walk is from the guest virtual memory to the guest physical
memory, and the second walk is from the guest physical memory to
the system physical memory. Since all this translation now happens in
the hardware, there is no need to maintain shadow page tables. Guest
page tables are maintained by the guest OS, and the other page table is
maintained by the VMM.

With shadow page tables, the translation look-aside buffer (TLB,
part of the MMU) cache needs to be flushed on a context switch, that is,
bringing up another VM. By contrast, in the case of an extended page table,

CHAPTER 1 VIRTUALIZATION BASICS

the hardware introduces a VM identifier via the address space identifier,
which means the TLB cache can have mappings for different VMs at the
same time, which is a performance boost.

CPU Virtualization

Before we look into CPU virtualization, you should understand the concept
of protection rings built into the x86 architecture. These rings allow the
CPU to protect memory and control privileges and determine what code
executes at what privilege level.

The kernel runs in the most privileged mode, Ring 0, and the user
space used for running processes runs in Ring 3.

The hardware requires that all privileged instructions be executed in
Ring 0. If any attempt is made to run a privileged instruction in Ring 3,
the CPU generates a fault. The kernel has registered fault handlers and,
based on the fault type, a fault handler is invoked. The corresponding fault
handler does a sanity check on the fault and processes it. If a sanity check
passes, the fault handler handles the execution on behalf of the process. In
the case of VM-based virtualization, the VM is run as a process on the host
0S, so if a fault is not handled, the whole VM could be killed.

At a high level, privilege instruction execution from Ring 3 is controlled
by a code segment register via the code privilege level (CPL) bit. All calls
from Ring 3 are gated to Ring 0. As an example, a system call can be made
by an instruction like syscall (from user space), which in turn sets the
right CPL level and executes the kernel code with a higher privilege level.
Any attempt to directly call high-privilege code from upper rings leads to a
hardware fault.

The same concept applies to a virtualized OS. In this case, the guest
is deprivileged and runs in Ring 1 and the process of the guest runs in
Ring 3. The VMM itself runs in Ring 0. With fully virtualized guests, any

CHAPTER 1 VIRTUALIZATION BASICS

privileged instruction has to be trapped and emulated. The VMM emulates

the trapped instruction. Over and above the privileged instructions, the

sensitive instructions also need to be trapped and emulated by the VMM.
Older versions of x86 CPUs are not virtualizable, which means not

all sensitive instructions are privileged. Instructions like SGDT, SIDT,

and more can be executed in Ring 1 without being trapped. This can be

harmful when running a guest OS, as this could allow the guest to peek

at the host kernel data structures. This problem can be addressed in

two ways:

o Binary translation in the case of full virtualization

o Paravirtualization in the case of XEN with hypercalls

Binary Translation in the Case
of Full Virtualization

In this case, the guest OS is used without any changes. The instructions
are trapped and emulated for the target environment. This causes a lot of
performance overhead, as lots of instructions have to be trapped into the
host/hypervisor and emulated.

Paravirtualization in the Case of XEN
with Hypercalls

To avoid the performance problems related to binary translation when
using full virtualization, we use paravirtualization, wherein the guest
knows that it is running in a virtualized environment and its interaction
with the host is optimized to avoid excessive trapping. As an example, the
device driver code is changed and split into two parts. One is the back end,
which is with the hypervisor, and the other is the front end, which is with
the guest. The guest and host drivers now communicate over ring buffers.

CHAPTER 1 VIRTUALIZATION BASICS

The ring buffer is allocated from the guest memory. Now the guest can
accumulate/aggregate data within the ring buffer and make one hypercall
(i.e., a call to the hypervisor, also called a kick) to signal that the data is
ready to be drained. This avoids excessive traps from the guest to the host
and is a performance win.

In 2005, x86 finally became virtualizable. Intel introduced one more
ring, called Ring -1, which is also called virtual machine extensions (VMX)
root mode. The VMM runs in VMX root mode and the guests run in non-
root mode.

This means that guests can run in Ring 0 and, for the majority of the
instructions, there is no trap. Privileged/sensitive instructions that guests
need are executed by the VMM in root mode via the trap. These switches
are called VM Exits (i.e., the VMM takes over instruction executions from
the guest) and VM Entries (the VM gains control from the VMM).

Apart from this, the virtualizable CPU manages a data structure
called the VM control structure (VMCS), and it has the state of the VM
and registers. The CPU uses this information during the VM Entries and
Exits. The VMCS structure is like task_struct, the data structure used
to represent a process. One VMCS pointer points to the currently active
VMCS. When there is a trap to the VMM, VMCS provides the state of all the
guest registers, like the reason of exit, and so on.

Advantages of hardware-assisted virtualization are two-fold:

e No binary translation
¢ No OS modification

The problem is that the VM Entries and Exits are still heavy calls
involving a lot of CPU cycles, as the complete VM state has to be saved and
restored. Considerable work has gone into reducing the cycles of these
entries and exits. Using paravirtualized drivers helps mitigate some of
these performance concerns. The details are explained in the next section.

10

CHAPTER 1 VIRTUALIZATION BASICS

10 Virtualization

There are generally two modes of 1O virtualization:
e Full virtualization

e Paravirtualization

Full Virtualization

With full virtualization, the guest OS does not know that it’s running on
a hypervisor and doesn’t need any changes to run on that hypervisor.
Whenever the guest makes I/0 calls, they are trapped on the hypervisor
and the hypervisor performs the I/0 on the physical device.

Paravirtualization

In this case, the guest OS is made aware that it’s running in a virtualized
environment and special drivers are loaded into the guest to take care of
the I/0. The system calls for I/O are replaced with hypercalls.

Figure 1-1 shows the difference between paravirtualization and full

virtualization.

Guest OS 2
Paravirt Guest

Trap Host Side

Emulate

Physical Devices Physical Devices

Figure 1-1. Difference between full and paravirtualized drivers

11

CHAPTER 1 VIRTUALIZATION BASICS

With the paravirtualized scenario, the guest-side drivers are called the
front-end drivers and the host-side drivers are called the back-end drivers.
Virtio is the virtualization standard for implementing paravirtualized
drivers. The front-end network or I/0 drivers of the guest are implemented
based on the Virtio standard, and the front-end drivers are aware that they
are running in a virtual environment. They work in tandem with the back-
end Virtio drivers of the hypervisor. This working mechanism of front-end
and back-end drivers helps achieve high-performance network and disk
operations and is the reason for most of the performance benefits enjoyed
by paravirtualization.

As mentioned, the front-end drivers on the guests implement a
common set of interfaces, as described by the Virtio standard. When an
I/0 call has to be made from the process in the guest, the process invokes
the front-end driver API and the driver passes the data packets to the
corresponding back-end driver through the virtqueue (the virtual queue).

The back-end drivers can work in two ways:

e They can use QEMU emulation, which means the
Quick Emulator (QEMU) emulates the device call via
system calls from the user space. This means that the
hypervisor lets the user-space QEMU program make
the actual device calls.

e They can use mechanisms like vhost, whereby the
QEMU emulation is avoided and the hypervisor kernel
makes the actual device call.

As mentioned, communication between front-end and back-end
Virtio drivers is done by the virtqueue abstraction. The virtqueue presents
an API to interact with, which allows it to enqueue and dequeue buffers.
Depending on the driver type, the driver can use zero or more queues.

In the case of a network driver, it uses two virtqueues—one queue for the
request and the other to receive the packets. The Virtio block driver, on the
other hand, uses only one virtqueue.

12

CHAPTER 1 VIRTUALIZATION BASICS

Consider this example of a network packet flow, where the guest wants
to send some data over the network:

1. The guest initiates a network packet write via the
guest kernel.

2. The paravirtualized drivers (Virtio) in the guest take
those buffers and put them into the virtqueue (tx).

3. The back end of the virtqueue is the worker thread,
and it receives the buffers.

4. The buffers are then written to the tap device file
descriptor. The tap device can be connected to a
software bridge like an OVS or Linux bridge.

5. The other side of the bridge has a physical interface,
which then takes the data out over the physical layer.

In this example, when a guest places the packets on the tx queue,
it needs a mechanism to inform the host side that there are packets for
handling. There is an interesting mechanism in Linux called eventfd that’s
used to notify the host side that there are events. The host watches the
eventfd for changes.

A similar mechanism is used to send packets back to the guest.

As you saw in earlier sections, the hardware industry is catching up
in the virtualization space and is providing more and more hardware
virtualization, be it for CPUs (introducing a new ring) and instructions
with vt-x or be it for memory (extended page tables).

Similarly, for I/0 virtualization, hardware has a mechanism called
an I/O memory management unit, which is similar to the CPU memory
management unit (previously introduced) but is just for I/O-based
memory. With the CPU MMU concept, the device memory access is
intercepted and mapped to allow different guests. Guests are physically
mapped to different physical memory and access is controlled by the I/O
MMU hardware. This provides the isolation needed for device access.

13

CHAPTER 1 VIRTUALIZATION BASICS

This feature can be used in conjunction with something called single root
I/0 virtualization (SRIOV), which allows an SRIOV-compatible device to be
broken into multiple virtual functions. The basic idea is to bypass the hypervisor
in the data path and use a pass-through mechanism, wherein the VM directly
communicates with the devices. Details of SRIOV are beyond the scope of
this book. Curious readers can follow these links for more about SRIOV:

https://blog.scottlowe.org/2009/12/02/what-is-sr-iov/

https://fir3net.com/Networking/Protocols/what-is-
sr-iov-single-root-i-o-virtualization.html

Summary

In this chapter, we first delved into the history and evolution of
virtualization. We explored its beginnings with IBM mainframes in the
1960s, followed by the introduction of UNIX and Java, which paved the way
for process-level virtualization. The late 1990s saw VMware’s entry into the
virtualization scene, enabling the virtualization of actual hardware.

We next discussed two major virtualization techniques: VM-based
virtualization, which virtualizes the entire OS, and container-based
virtualization, which creates logical boundaries within the Linux kernel.

This chapter also explained the role of hypervisors, comprising the
virtual machine monitor (VMM) and the device model, in managing
the virtualized environments. We also examined memory and CPU
virtualization techniques, such as shadow page tables and nested page
tables with hardware support. Additionally, we explored the advantages of
paravirtualization and Virtio drivers in optimizing I/O operations.

Overall, this chapter provided a comprehensive understanding of
virtualization’s key concepts and its importance in modern computing

environments.

14

https://blog.scottlowe.org/2009/12/02/what-is-sr-iov/
https://fir3net.com/Networking/Protocols/what-is-sr-iov-single-root-i-o-virtualization.html
https://fir3net.com/Networking/Protocols/what-is-sr-iov-single-root-i-o-virtualization.html

CHAPTER 2

Hypervisors

In Chapter 1, we discussed what virtualization is and covered the two
types of virtualization—VM based and container based. The coverage of
VM-based virtualization briefly discussed the role and importance of the
hypervisor, which facilitates the creation of virtual machines.

In this chapter, we do a deep dive into hypervisors. Most of the
chapter explains virtualization using components like the Linux Kernel
Virtual Machine (KVM) and the Quick Emulator (QEMU). Based on these
components, we then look at how VMs are created and how data flow
between the guest and the hosts is facilitated.

Linux provides hypervisor facilities by using the QEMU in the user
space and a specialized kernel module called the KVM (the Linux Kernel
Virtual Machine). The KVM uses the Intel vt-x extension instruction
set to isolate resources at the hardware level. Since the QEMU is a user-
space process, the kernel treats it like other processes from a scheduling
perspective.

Before we discuss the QEMU and KVM, let’s touch upon Intel’s vt-x
and its specific instruction set.

The Intel Vi-x Instruction Set

Intel’s virtualization technology (VT) comes in two flavors:
e Vtx (for Intel x86 IA-32 and 64-bit architectures)
e Vt-i (for the Itanium processor line)

© Shashank Mohan Jain 2023 15
S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1_2

https://doi.org/10.1007/978-1-4842-9768-1_1
https://doi.org/10.1007/978-1-4842-9768-1_2#DOI

CHAPTER 2 HYPERVISORS

They are similar as far as functionalities. To understand the need for
virtualization support at the CPU level, let’s quickly review how programs
and the OS interact with the CPU, as well as how programs in the VM
interact with the CPU.

In the case of regular programs running on the host, the OS translates
the program instructions into CPU instructions that are executed by
the CPU.

In the case of a virtual machine, to run the programs within the VM,
the guest OS translates program instructions into virtual CPU instructions
and the hypervisor then converts these into instructions for the
physical CPU.

As you can see, for the VM, the program instructions are translated
twice—the program instructions are translated into virtual CPU
instructions and the virtual CPU instructions are translated into physical
CPU instructions.

This results in large performance overhead and slows down the
VM. CPU virtualization, like the vt-x feature, enables complete abstraction
of the full prowess of the CPU to the VM so that all the software in the VM
can run without a performance hit; it runs as if it were on a dedicated CPU.

The vt-x also solves the problem whereby the x86 instructions
architecture cannot be virtualized. According to the Popek and Goldberg
principle for virtualization (https://en.wikipedia.org/wiki/Popek
and_Goldberg virtualization requirements), introduced in Chapter 1,
all sensitive instructions must also be privileged. Privileged instructions
cause a trap in user mode. In x86, some instructions are sensitive but not
privileged. This means running them in the user space would not cause a
trap. In effect, this means they are not virtualizable. An example of such an
instruction is POPE

16

https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
https://doi.org/10.1007/978-1-4842-9768-1_1

CHAPTER 2 HYPERVISORS

vt-x simplifies the virtual machine monitor (VMM) software by
closing virtualization holes by design:

e Ring compression: Without vt-x, the guest OS runs in
Ring 1 and the guest OS apps run in Ring 3. To execute
the privileged instructions in the guest OS, we need
higher privileges, which are by default not available
to the guest (due to security reasons). Therefore, to
execute those instructions, we need to trap into the
hypervisor (which runs in Ring 0 with more privileges),
which can then execute the privileged instruction on
behalf of the guest. This is called ring compression or
deprivileging. vt-x avoids this by running the guest OS
directly in Ring 0.

o Non-trapping instructions: Instructions like POPF
on x86, which ideally should trap into the hypervisor
because they are sensitive instructions, actually don’t
trap. This is a problem, as we need program control to
shift to the hypervisor for all sensitive instructions. vt-x
addresses this by running the guest OS in Ring 0, where
instructions like POPF can trap into the hypervisor

running in Ring -1.

o Excessive trapping: Without vt-x, all sensitive and
privileged instructions trap into the hypervisor in Ring
0. With vt-x this becomes configurable and depends
on the VMM as to which instructions cause a trap and
which can be safely handled in Ring 0. Details of this
are beyond the scope of this book.

vt-x adds two more modes: the non-root mode (in Ring -1) is where
the VMM runs, and the root mode (in Ring 0) is where the guest OS runs.

17

CHAPTER 2 HYPERVISORS

To understand how these modes are involved in program execution,
let’s look at an example. Say that a program is being executed in a VM
and, during the course of its execution, it makes a system call for I/O. As
discussed in Chapter 1, guest programs in user space are executed in
Ring 3. When the program makes an I/O call (which is a system call), these
instructions are executed at the guest OS kernel level (Ring 0). The guest
OS by itself cannot handle 1/0 calls, so it delegates them to the VMM
(Ring -1). When the execution goes from Ring 0 to Ring -1, it’s called a
VMEZxit, and when the execution comes back from Ring -1 to Ring 0, it’s
called a VMEntry. This is all shown in Figure 2-1.

User Mode (Ring 3) Root Mode (Ring 0) VMM (Ring -1
EnterUser Mode [« Issue Guest ioct! }.7
| VMEnter)
Execute
Program Program Execution Handle SYSCALL
inGuest
¥
AN Yes, VMExit
S 1
NO ‘
1
,/t\ No Handle 10
(./"’ Signal \“\.w
""-\._\Pending':_‘/-"'
Yes, VMExit |

Figure 2-1. Program execution in the guest with an 1/0 call

Note Before we dive into the QEMU, as a side note, | want to bring
your attention to some interesting projects in virtualization, like
Dune, which runs a process within the VM environment rather than a
complete OS. In root mode, it’s the VMM that runs. This is the mode
where the KVM runs.

18

https://doi.org/10.1007/978-1-4842-9768-1_1

CHAPTER 2 HYPERVISORS

The Quick Emulator

The QEMU runs as a user process and handles the KVM kernel module. It
uses the vt-x extensions to provide the guest with an isolated environment
from a memory and CPU perspective. The QEMU process owns the guest
RAM and is either memory mapped via a file or anonymous. Virtual CPUs
are scheduled on the physical CPUs.

The main difference between a normal process and a QEMU process
is the code executed on those threads. In the case of the guest, since it’s
the virtualized machine, the code executes the software BIOS and the
operating system.

Figure 2-2 shows how the QEMU interacts with the hypervisor.

User User User

Linux

Hardware

Figure 2-2. QEMU interaction with the hypervisor

19

CHAPTER 2 HYPERVISORS

The QEMU also dedicates a separate thread for I/O. This thread runs an
event loop and is based on the non-blocking mechanism. It registers the file
descriptors for I/0. The QEMU can use paravirtualized drivers like virtio to
provide guests with virtio devices, such as virtio-blk for block devices and
virtio-net for network devices. Figure 2-3 shows the specific components
that facilitate communication between the guest and the host (hypervisor).

QEMU Process

QEMU Guest

Virt-Queue (shared memory

between host and guest)

. Host Kernel

Figure 2-3. How a virtual device in the guest OS interacts with the
physical device in the hypervisor layer

In Figure 2-3, you see that the guest within the QEMU process
implements the front-end driver, whereas the host implements the back-
end drivers. The communication between front-end and back-end drivers
happens over specialized data structures, called virtqueues. Any packet
that originates from the guest is first put into the virtqueue, and then the

20

CHAPTER 2 HYPERVISORS

host-side driver is notified over a hypercall to drain the packet for actual
processing to the device. There can be two variations of this packet flow, as
follows:

e The packet from the guest is received by the QEMU and
then pushed to the back-end driver on the host. One
example is virtio-net.

o The packet from the guest directly reaches the host via
what is called a vhost driver. This bypasses the QEMU
layer and is relatively faster.

Creating a VM Using the KVM Module

To create a VM, a set of ioctl calls has to be made to the kernel KVM
module, which exposes a /dev/kvm device to the guest. In simplistic terms,
these are the calls from the user space to create and launch a VM:

1. KVM CREATE VM: This command creates a new VM
that has no virtual CPUs and no memory.

2. KVM SET USER MEMORY REGION: This command
maps the user-space memory for the VM.

3. KVM CREATE IRQCHIP / KVM CREATE VCPU:
This command creates a hardware component
like a virtual CPU and maps them with vt-x

functionalities.

4. KVM SET REGS / SREGS / KVM SET FPU / KVM SET
CPUID / KVM SET MSRS / KVM SET VCPU EVENTS
/ KVM SET LAPIC: These commands are hardware
configurations.

5. KVM RUN: This command starts the VM.

21

CHAPTER 2 HYPERVISORS

KVM RUN starts the VM and internally is the VMLaunch instruction
invoked by the KVM kernel module that puts the VM code execution
into non-root mode. It then changes the instruction pointer to the code
location in the guest’s memory. This is a slight oversimplification, as the
module does much more to set up the VM, including setting up the VMCS
(VM Control Structure), and so on.

Vhost-Based Data Communication

Any discussion about hypervisors would be incomplete without showing

a concrete example. We'll look at an example of a network packet flow
(depicted in Figure 2-4) in the context of the vhost-net device drivers.
When we use the vhost mechanism, the QEMU is out of the data plane and
there is direct communication between the guest and host over virtqueues.
The QEMU remains in the control plane, where it sets up the vhost device
on the kernel using the ioctl command:

/dev/vhost-net device

22

CHAPTER 2 HYPERVISORS

VM1

9.1 Rx data from
used queue, free
the vring descriptor

1. Fill Data 9.1 free entry
in used queue

2. Notify Host

3. vm exit, signal io 10.2 notified by irgfd, 8.1 notified by irgfd,
eventfd inject interrupt to VM inject interrupt to VM

Vhost 9.2 call signalfd

IR e 8.2 put the transmitted A1 cof sporalic
fetch data address to avail data into used ring

queue >
6. poll data from tap and

5. zerocopy tx to tap 7.2 call the callback of copy to guest
zerocopy data

Tap Network Stack

Figure 2-4. Network packet flow

When the device is initialized, a kernel thread is created for the
specific QEMU process. This thread handles the I/0 for the specific guest.
The thread listens to events on the host side, on the virtqueues. When
an event arrives to drain the data (in virtio terminology, it’s called a kick
(hypercall)), the I/0 thread drains the packet from the tx (transmission)
queue of the guest. The thread then transmits this data to the tap device,
which it makes it available to the underlying bridge/switch in order to
transmit it downstream to an overlay or routing mechanism.

The KVM kernel module registers the eventfd for the guest. This a
file descriptor that’s registered for the guest (by the QEMU) with the KVM
kernel module. The FD is registered against a guest I/0 exit event (a kick),
which drains the data.

23

CHAPTER 2 HYPERVISORS

What Is an eventfd?

An eventfd is an interprocess communication (IPC) mechanism that
offers a wait-notify facility between user-space programs or between the
kernel and the user space. The idea is simple. In the same way that we
have file descriptors for files, we can create file descriptors for events.
The benefit here is that the FDs can then be treated like other FDs and
can be registered with mechanisms like poll, select, and epoll. The
mechanisms can then facilitate a notification system when those FDs are
written to.

The consumer thread can be made to wait on an epoll object via
epoll wait. Once the producer thread writes to the FD, the epoll
mechanism will notify the consumer (again depending on the edge or level
triggers) of the event.

Edge-triggered means that you only get notified when the event is
detected (which takes place, say instantaneously), while level-triggered
means you get notified when the event is present (which will be true over a
period of time).

For example, in an edge-triggered system, if you want a notification to
signal you when data is available to read, you'll only get that notification
when data was not available to read before but now is. If you read some of
the available data (so that some of the data is still available to read), you
will not get another notification. If you read all of the available data, you
will get another notification when new data becomes available to read
again. In a level-triggered system, you'd get that notification whenever data
is available to read.

The host uses an eventfd by using ioeventfd to send data from
the guest to the host and irqfd to receive an interrupt from the host to
the guest.

24

CHAPTER 2 HYPERVISORS

Another use case for eventfds is the out of memory (OOM) cgroup.
The way this works is that whenever the process exceeds the memcg limit,
the OOM Kkiller can decide to kill it or, if this behavior is disabled, the kernel
can do the following

1. Create the eventfd.
2. Write the OOM event to the eventfd.

The process thread will block until the event is generated. Once the
event is generated, the thread is woken up to react to the OOM notification.

The difference between eventfd and a Linux pipe is that the pipe
needs two file descriptors, whereas eventfd just needs one.

The vhost I/0 thread watches for the eventfd. Whenever the I/0 event
happens from the guest, the I/O thread for the guest gets informed that it
has to drain the buffers from the tx queue.

Similar to ioeventfd, there is an irqfd. The QEMU user space also
registers this (irqfd) FD for the guest. The guest driver listens for changes
to those FDs. The reason for using this is to pass interrupts back to the
guest to notify the guest-side driver to process the packets. Taking the
previous example, when the packets have to be sent back to the guest, the
I/0 thread fills up the rx queue (the receive queue) buffers for the guest
and the interrupt injection is done to the guest via irgfd. In the reverse
path of packet flow, the packets received on the host over the physical
interface are sent to the tap device. The thread that’s interfacing with the
tap device receives the packets to fill up the rx buffers for the guest. It then
notifies the guest driver over irqfds. Figure 2-4 shows this process.

Alternative Virtualization Mechanisms

Having covered virtualization via VM-based mechanisms, it’s time to
briefly look at other means of virtualization that depart from container
isolation, like the namespaces/cgroups-based mechanism that Docker

25

CHAPTER 2 HYPERVISORS

uses. The point of this section is to understand that it is possible to do the
following:

¢ Reduce the interfaces exposed by different software
layers like the VMM in order to reduce attack vectors.
The attack vectors can come in the form of exploits,
like memory exploits that install malicious software or
control the system by elevating privileges.

e Use hardware isolation to isolate the different
containers/processes we run.

In summary, we can get the isolation levels of VMs with a reduced or
minimalistic exposed machine interface and with a provisioning speed
similar to that of containers.

We have already discussed how VMs, with the help of the VMM, isolate
these workloads. The VMM exposes the machine model (x86 interface),
whereas the container exposes the POSIX interface. The VMM, with
hardware virtualization, can isolate CPU, memory, and I/0 (vt-d, SRIOV;
and IOMMU). Containers that share the kernel provide this feature via
namespaces and cgroups, but are still considered a weaker alternative to
the hardware-based isolation techniques.

So, is there a way to get the two worlds closer? One of the goals would
be to reduce the attack vector by employing a minimalistic interface
approach. What this means is that, instead of exposing complete POSIX
API to apps or a complete machine interface to the guest OS, we provide
only what the app/OS needs. This is where we started to see the evolution
of how the unikernel and the library OS started to happen.

Unikernels

Unikernels provide the mechanism, via toolchains, for preparing a
minimalistic OS. This means that if the application only needs network

26

CHAPTER 2 HYPERVISORS

APIs, then the keyboard, mouse devices, and their drivers are not
packaged. This reduces the attack vector considerably.

One of the early problems with unikernels was that they had to be
built across different models of device drivers. With the advent of I/O
virtualization and virtio drivers, this problem is somewhat resolved, as
the unikernels can now be built with exact virtio devices and the drivers
needed for the apps on the guest. This means the guest can be a unikernel
(library OS) sitting on top of, say, a hypervisor like KVM. This still has
limitations, as the QEMU or the user-space part still has a good amount of
codebase, all of which is subject to exploits.

To achieve further minimalism, one solution is to package the VMM
alongside the unikernel, meaning the VMM now plays the role of the
QEMU for the unikernel, but per instance. The VMM code is limited to
the needed functionality and facilitates memory-based communication
between the guest and the VMM. With this model, multiple VMMs can be
made to sit on the hypervisor. The VMM role facilitates I/O and creates the
guest unikernel using the hardware isolation capabilities.

The unikernel itself is a single process with no multithreading
capabilities, as shown in Figure 2-5.

Unikernel

Unikernel

= Unikernel+Monitor

QEMU

Linux /KVM

Linux /KVM

Figure 2-5. The unikernel is a single process with no multithreading
capabilities

27

CHAPTER 2 HYPERVISORS

In Figure 2-5, observe that the image on the left is running a VMM
and the QEMU combined, to run unikernels on top, whereas the image
on the right shows a VMM (monitor) like UKVM packaged alongside
the unikernel. So basically we have reduced the code (the QEMU) and
thereby have eliminated a significant attack vector. This is in line with the
minimalistic interfaces approach we talked about previously.

Project Dune

A careful reader can easily make out that the vt-x isolation on the memory
and CPU is not opinionated about running only a guest OS code in the
guest’s memory. Technically, we can provision different sandboxing
mechanisms on top of this hardware isolation. This is precisely what
Project Dune does. On top of the hardware isolation of vt-x, Dune doesn’t
spin a guest OS, but rather a Linux process. This means the process is
made to run in Ring 0 of the CPU and has the machine interface exposed
to it. The process can be made to sandbox by

1. Running the trusted code of the process in Ring 0.
This is basically the library that Dune calls 1ibdune.

2. Running the untrusted code in Ring 3.

The Dune architecture is shown in Figure 2-6.

28

CHAPTER 2 HYPERVISORS

Untrusted Code

Ring 3

Normal Process

Non Root(ring 0) Ring 3

Dune Module
Kernel

VMX (Running in Ring -1)

Figure 2-6. The Dune architecture

To bootstrap the process, Dune creates an operating environment,
which entails setting up the page tables (the CR3 register is pointing to the
root). It also sets up the interrupt descriptor table (IDT) for the hardware
exceptions. The trusted and untrusted code runs in the same address
space, wherein the memory pages of the trusted code are protected by
supervisor bits in page table entries. The system calls trap into the same
process and are interposed with hypercalls to the VMM. For more details
on Dune, check out http://dune.scs.stanford.edu/.

novm

novm is another type of hardware container and also is an alternate form
of virtualization. (It also uses the KVM APIs to create the VM by using the
/dev/kvm device file.) Instead of presenting a disk interface to the VM,

29

http://dune.scs.stanford.edu/

CHAPTER 2 HYPERVISORS

novm presents a file system (9p) interface to the VM. This allows packaging
of software that we want to provision as a container. There is no BIOS,

and the VMM simply puts the VM in 32-bit protected mode directly. This
makes the provisioning process faster, because steps like device probing
are not needed.

Summary of Alternative
Virtualization Approaches

In summary, this section covered three alternative virtualization
approaches: the first approach packages a unikernel with a minimal

OS interface, the second approach gets rid of the OS interface and runs

a process within Ring 0 directly, and the third approach provides a file
system into the VM instead of block devices directly and optimizes booting
aspects.

These approaches provide good isolation at the hardware level and
very fast spin-up times, and they might be a good fit for running serverless
workloads and other cloud workloads.

Do other approaches exit? Of course. Companies like Cloudflare and
Fastly are trying to address virtualization by offering isolation within a
process. The intent is to use the capabilities of certain languages to have
the following:

e Code flow isolation via control flow integrity
e Memory isolation
o Capability-based security

We could then use these primitives to build sandboxes within each
process itself. This way, we can get even faster boot times for the code we
want to execute.

30

CHAPTER 2 HYPERVISORS

WebAssembly is leading the innovation in this space. The basic idea
is to run WebAssembly, a.k.a. Wasm modules, within the same process
(the WASM runtime). Each module is isolated from the other modules, so
we get one sandbox per tenant. This fits well into the serverless computer
paradigms and probably prevents problems like cold start.

On a side note, there is a new functionality called hotplug capability
that makes the devices dynamically available in the guest. The hot
plugging capability allows developers to dynamically resize the block
devices, as an example, without restarting the guest. There is also the
hotplug-dimm module, which allows developers to resize the RAM
available to the guest.

Summary

This chapter focused on Linux’s hypervisor facilities, particularly the
QEMU and the KVM. The KVM utilizes Intel’s vt-x extension instruction
set to achieve hardware-level resource isolation. By running the QEMU

in user space, the kernel treats it as any other process from a scheduling
perspective. The Intel vt-x instruction set consists of two flavors: Vt-x for
Intel x86 IA-32 and 64-bit architectures, and Vt-i for the Itanium processor
line. The need for CPU virtualization support arises from the fact that VMs
require translating program instructions twice, resulting in performance
overhead. Vt-x simplifies the VMM software by running the guest OS
directly in Ring 0, avoiding ring compression and excessive trapping.

The QEMU operates as a user process and interfaces with the KVM
kernel module, utilizing vt-x extensions to isolate the guest’s environment in
terms of memory and CPU. The QEMU owns the guest RAM, which can be
either memory-mapped via a file or anonymous. The QEMU also handles
1/0 through a separate thread using paravirtualized drivers like virtio to
provide virtual devices to guests. Communication between the guest OS
and the host occurs over specialized data structures called virtqueues.

31

CHAPTER 2 HYPERVISORS

Creating a VM using the KVM module involves a set of ioct1 calls
from user space to create and launch a VM. KVM RUN starts the VM, putting
it into non-root mode using the VMLaunch instruction, which sets the
guest’s code execution in motion.

The chapter also briefly touched upon alternative virtualization
mechanisms, such as unikernels, which package minimalistic OS
interfaces, and Project Dune, which runs a Linux process in Ring 0 without
spinning up a guest OS. Furthermore, novm provides hardware containers
with a file system interface, optimizing booting processes. These
approaches offer good hardware-level isolation and fast spin-up times,
making them suitable for cloud workloads and serverless environments.
The chapter concluded by mentioning innovative approaches like
Cloudflare and Fastly, using control flow integrity, memory isolation, and
capability-based security to build sandboxes within processes themselves,
potentially achieving even faster boot times for executed code, especially
with the rise of WebAssembly (Wasm) modules.

32

CHAPTER 3

Namespaces

In this chapter, we touch upon an important aspect of Linux containers,
called Linux namespaces. Namespaces allow the kernel to provide
isolation by restricting the visibility of the kernel resources like mount
points, network subsystems among processes scoped to different
namespaces.

Today, containers are the de facto cloud software provisioning
mechanism. Containers provide fast spin-up times and have less overhead
than virtual machines. There are certain very specific reasons behind these
features.

As introduced in Chapter 1, VM-based virtualization emulates the
hardware and provides an OS as the abstraction. This means that a bulk of
the OS code and the device drivers are loaded as part of the provisioning.
By contrast, containers virtualize the OS itself. This means that there are
data structures within the kernel that facilitate this separation. Most of the
time, we are not clear as to what is happening behind the covers.

Linux containers are made of three Linux kernel primitives:

e Linux namespaces
e Cgroups (covered in depth in Chapter 4)

e Layered file systems (covered in depth in Chapter 5)

© Shashank Mohan Jain 2023 33
S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1_3

https://doi.org/10.1007/978-1-4842-9768-1_1
https://doi.org/10.1007/978-1-4842-9768-1_4
https://doi.org/10.1007/978-1-4842-9768-1_5
https://doi.org/10.1007/978-1-4842-9768-1_3#DOI

CHAPTER 3 NAMESPACES

A namespace is a data structure which provides logical isolation within
the Linux kernel. A namespace controls visibility within the kernel. All
the controls are defined at the process level. That means a namespace
controls which resources within the kernel a process can see. Think of the
Linux kernel as a guard protecting resources like OS memory, privileged
CPU instructions, disks, and other resources that only the kernel should be
able to access. Applications running within user space should only access
these resources via a trap, in which case the kernel takes over control and
executes these instructions on behalf of the user space-based applications.
As an example, an application that wants to access a file on a disk has to
delegate this call to the kernel via a system call (which internally traps into
the kernel) to the Linux kernel, which then executes this request on behalf
of the application.

Since there could be many user space-based applications running
in parallel on a single Linux kernel, we need a way to provide isolation
between these user space-based applications. Isolation means that there
should be some kind of sandboxing of the individual application so that
certain resources in the application are confined to that sandbox. As an
example, we would like to have a file system sandbox, which would mean
that within that sandbox, we could have our own view of the files. That
way, multiple such sandboxes could be run over the same Linux kernel
without interfering with each other.

Sandboxing is achieved by using namespaces.

Namespace Types

This section explains the different namespaces that exist within the Linux
kernel and discusses how they are realized within the kernel.

34

CHAPTER 3 NAMESPACES

UTS

This namespace allows a process to see a separate hostname other than
the hostname within the global namespace of the host.

PID

The processes within the PID namespace have a different process tree.
They have an init process with PID 1. At the data-structure level, though,
the processes belong to one global process tree, which is visible only at the
host level. Tools like ps or direct usage of the /proc file system from within
the namespace will list the processes and their related resources for the
process tree within the namespace.

Mount

Mount is one of the most important namespaces. It controls which mount
points a process should be able to see. If a process is within a namespace,
it can only see the mounts within that namespace.

A small detour might be of help to explain how mount propagation
works with containers. A mount in the kernel is represented by a data
structure called vfsmount. All mounts form a tree-like structure, with a
child mount structure holding a reference to the parent mount structure.

All code displayed here is taken from Linux Kernel 4.15.18:

struct vfsmount {
struct list _head mnt_hash;
struct vfsmount *mnt_parent; /* fs we are mounted on */
struct dentry *mnt_mountpoint; /* dentry of mountpoint */
struct dentry *mnt_root; /* root of the
mounted tree*/

35

CHAPTER 3 NAMESPACES

struct super_block *mnt_sb; /* pointer to

superblock */

struct list _head mnt_mounts; /* list of children,
anchored here */

struct list_head mnt_child; /* and going through

their mnt_child */

atomic_t mnt_count;

int mnt_flags;

char *mnt_devname; /* Name of device e.g.

/dev/dsk/hda1 */
struct list head mnt_list;

b

Whenever a mount operation is invoked, a vfsmount structure is
created and the dentry of the mount point as well as the dentry of the
mounted tree are populated. A dentry is a data structure that maps the
inode to the filename.

Apart from mount, there is a bind mount, which allows a directory
(instead of a device) to be mounted at a mount point. The process of bind
mounting results in creating a vfsmount structure that points to the dentry
of the directory.

Containers work on the concept of bind mounts. So, when a volume is
created for a container, it’s actually a bind mount of a directory within the
host to a mount point within the container’s file system. Since the mount
happens within the mount namespace, the vfsmount structures are scoped
to the mount namespace. This means that, by creating a bind mount of a
directory, we can expose a volume within the namespace that’s holding
the container.

36

CHAPTER 3 NAMESPACES

Network

A network namespace gives a container a separate set of network
subsystems. This means that the process within the network namespace
will see different network interfaces, routes, and iptables. This separates
the container network from the host network. We will study this in more
depth in Chapter 6 when we look at an example of the packet flow between
two containers in different namespaces on the same host as well as
containers in different namespaces within the same host.

IPC

This namespace scopes IPC constructs such as POSIX message queues.
Between two processes within the same namespace, IPC is enabled, but
it will be restricted if two processes in two different namespaces try to

communicate over IPC.

Cgroup

This namespace restricts the visibility of the cgroup file system to the
cgroup the process belongs to. Without this restriction, a process could
peek at the global cgroups via the /proc/self/cgroup hierarchy. This
namespace effectively virtualizes the cgroup itself.

Apart from the namespaces mentioned here, as of the writing of this
there is one more namespace called the time namespace.

37

https://doi.org/10.1007/978-1-4842-9768-1_6

CHAPTER 3 NAMESPACES
Time
The time namespace has two main use cases:

o Changes the date and time inside a container

o Adjusts the clocks for a container restored from a
checkpoint

The kernel provides access to several clocks: CLOCK_REALTIME, CLOCK _
MONOTONIC, and CLOCK BOOTTIME. The latter two clocks are monotonic,
but the start points for them are not well defined (currently start point is
system startup time, but the POSIX says “since an unspecified point in the
past”) and are different for each system. When a container migrates from
one node to another, all the clocks are restored to their consistent states. In
other words, they have to continue running from the same point at which
they were dumped.

Data Structures for Linux Namespaces

Now that you have a basic idea about namespaces, you are prepared to
study the details about how some of the data structures in the Linux kernel
allow this separation when it comes to Linux containers. The term used for
these structures is Linux namespaces.

The kernel represents each process as a task_struct data structure.
The following shows details of this structure and lists some of its members:

/* task _struct member predeclarations (sorted
alphabetically): */

struct audit_context;

struct backing_dev_info;

struct bio_list;

struct blk_plug;

struct capture_control;

38

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

CHAPTER 3

cfs_xq;
fs_struct;
futex_pi_state;
io_context;
mempolicy;
nameidata;
nsproxy;
perf_event_context;
pid_namespace;
pipe_inode_info;
rcu_node;
reclaim_state;
robust_list_head;
root_domain;

xq;

sched_attr;
sched_param;
seq_file;
sighand_struct;
signal_struct;
task_delay_info;
task_group;

The nsproxy structure is a holder structure for the different

namespaces that a task (process) belongs to:

struct

nsproxy {

atomic_t count;

struct uts_namespace *uts ns;

struct ipc_namespace *ipc ns;

struct mnt_namespace *mnt_ns;

struct pid_namespace *pid ns_for_ children;
struct net *net_ns;

NAMESPACES

39

CHAPTER 3 NAMESPACES

struct time namespace *time ns;
struct time _namespace *time ns_ for children;
struct cgroup namespace *cgroup ns;

}s

extern struct nsproxy init nsproxy;

The nsproxy structure holds the eight namespace data structures. The
missing one is the user namespace, which is part of the cred data structure
in the task_struct.

There are three system calls that can be used to put tasks into specific
namespaces: clone, unshare, and setns. The clone and setns calls result
in creating a nsproxy object and then adding the specific namespaces
needed for the task.

For purposes of illustration, the remainder of this section focuses
specifically on network namespaces. A network namespace is represented
by a net structure. Part of that data structure is shown here:

struct net {
/* First cache line can be often dirtied.
* Do not place read-mostly fields here.

*/
refcount_t passive; /* To decide when
the network
* namespace should
be freed.
*/
refcount_t count; /* To decide when
the network
* namespace should
be shut down.
*/
spinlock_t rules_mod_lock;
unsigned int dev_unreg_count;

40

unsigned int

int
spinlock_t
atomic_t

struct list_head

struct list_head

struct 1list_node

#ifdef CONFIG_KEYS
struct key_tag

#tendif

struct usexr_namespace

struct ucounts
struct idr

struct ns_common
struct list_head
struct proc_dir_entry

dev_base_seq;

ifindex;
nsid_lock;
fnhe_genid;

list;

exit_list;

cleanup_list;

CHAPTER 3 NAMESPACES

/* protected by
rtnl_mutex */

/* 1ist of network
namespaces */

/* To linked to
call pernet exit

* methods on

dead net (

* pernet ops rwsem
read locked),

* or to unregister
pernet ops

* (pernet_ops_rwsem
write locked).

*/
/* namespaces on
death row */

key_domain; / Key domain of

*user_ns;

*ucounts;

netns_ids;
ns;
dev_base_head;
*proc_net;

operation tag */

/* Owning user
namespace */

41

CHAPTER 3 NAMESPACES

struct proc_dir_entry *proc_net_stat;
#ifdef CONFIG_SYSCTL

struct ctl_table_set sysctls;
#endif

struct sock *rtnl; /* rtnetlink
socket */

struct sock *genl_sock;

struct uevent_sock *uevent_sock; /* uevent
socket */

struct hlist_head *dev_name_head;

struct hlist_head *dev_index_head;

struct raw_notifier_head netdev_chain;

One of the elements of this data structure is the user namespace
to which this network namespace belongs. Apart from that, the major
structural part of this is net_ns_ipv4, which includes the routing table, net
filter rules, and so on:

struct netns_ipv4 {

#ifdef CONFIG_SYSCTL
struct ctl_table_header *forw_hdr;
struct ctl_table_header *frags_hdr;
struct ctl_table_header *ipv4_hdr;
struct ctl_table_header *route_hdr;
struct ctl_table_header *xfrmq_hdr;

#endif
struct ipv4_devconf *devconf_all;
struct ipv4_devconf *devconf_dflt;
struct ip_ra_chain __rcu *ra_chain;
struct mutex ra_mutex;

#ifdef CONFIG_IP_MULTIPLE_TABLES
struct fib_rules_ops *rules_ops;

42

bool

unsigned int

struct fib_table __rcu
struct fib_table __rcu

#endif
bool

#ifdef CONFIG_IP_ROUTE_CLASS
Int

#endif
struct hlist_head *
bool
struct sock *
struct sock * __percp
struct sock *m
struct inet_peer_base
struct sock * __percp
struct fqdir *

#ifdef CONFIG_NETFILTER
struct xt_table
struct xt_table
struct xt_table
struct xt_table

#ifdef CONFIG_SECURITY
struct xt_table

#endif
struct xt_table

#endif
int sysctl_icmp_echo_i.

*
*
*

*
*
*
int sysctl_icmp_echo_i.

int sysctl_icmp_ignore
int sysctl_icmp_ratelil

CHAPTER 3 NAMESPACES

fib_has_custom_rules;
fib_rules_require_fldissect;
*fib_main;
*fib_default;

fib_has_custom_local_routes;
ID
fib_num_tclassid_users;

fib_table_hash;

fib_offload_disabled;

fibnl;

u *icmp_sk;

c_autojoin_sk;
*peers;

u *tcp_sk;

fqdir;

iptable_filter;
iptable_mangle;
iptable_raw;
arptable_filter;

iptable_security;
nat_table;
gnore_all;
gnore_broadcasts;

_bogus_error_responses;
mit;

43

CHAPTER 3 NAMESPACES

int sysctl_icmp_ratemask;

int sysctl_icmp_errors_use_inbound_ifaddr;
struct local_ports ip_local_ports;

int sysctl_tcp_ecn;

int sysctl_tcp_ecn_fallback;

int sysctl_ip_default_ttl;

int sysctl_ip_no_pmtu_disc;

int sysctl_ip_fwd_use_pmtu;

int sysctl_ip_fwd_update_priority;

int sysctl_ip_nonlocal_bind;

int sysctl_ip_autobind_reuse;

/* Shall we try to damage output packets if routing dev
changes? */

int sysctl_ip_dynaddr;

This is how the iptables and routing rules are all scoped into the
network namespace.

Other data structures of relevance here are the net_device (this is
how the kernel represents the network card/device) and sock (a kernel
representation of a socket data structure). These two structures allow the
device to be scoped into a network namespace as well as the socket to be
scoped to the namespace. Both these structures can be part of only one
namespace at a time. We can move the device to a different namespace via
the iproute2 utility.

Here are some of the user-space commands to handle the network

namespaces:
e Ip netns add testns: Adds a network namespace

o Ip netns del testns:Deletes the mentioned

namespace

o Ip netns exec testns sh:Executes a shell within the
testns namespace

44

CHAPTER 3 NAMESPACES

Adding a Device to a Namespace

To add a device to a namespace, first create a veth pair device (this device
can be used to join two namespaces):

ip link add vetho type veth peer name vethi
Then add one end of the veth pair to the network namespace testns:
ip link set vethi netns testns

The other end (vetho) is in the host namespace, so any traffic sent to
vetho ends up on veth1in the testns namespace.

Assume that we run an HTTP server in the testns namespace, which
means the listener socket is scoped to the testns namespace, as explained
previously in the sock data structure. So, a TCP packet to be delivered to
the IP and port of the application within the testns namespace would be
delivered to the socket scoped within that namespace.

This is how the kernel virtualizes the operating system and various
subsystems like networking, IPC, mounts, and so on.

Summary

In this chapter, you learned about the Linux namespaces and how they
facilitate isolation between user space-based applications. We also looked
into how different Linux kernel-based data structures are used to realize
the different namespaces. Going forward, we will look into how the Linux
kernel provides resource limits to the different user space-based processes
so that one process doesn’t hog the resources of the operating system.

45

CHAPTER 4

Cgroups

In Chapter 3, you learned how to control visibility of Linux processes by
using namespaces and learned how they are realized within the kernel.
In this chapter, we explore another important aspect—resource control—
which enables us to apply quotas to various kernel resources.

As you learned in Chapter 3, namespaces enable us to restrict the
visibility of resources for processes, which we did by putting the processes
in separate namespaces. Chapter 3 also covered the data structures
involved in the kernel, to give you an understanding of how a namespace is
realized within the Linux kernel.

Now we address the question, “Is restricting visibility good enough
for virtualization, or do we need to do more”? Assume we run tenant1
processes in one namespace and tenant2 processes in a separate
namespace. Although the processes can’t access each other’s resources
(mount points, process trees, and so on), as those resources are scoped
to the individual namespace, we don’t achieve true isolation just via this
scoping.

As an example, what stops tenant1 from launching a process that
possibly could hog the CPU via an infinite loop? Flawed code can keep
leaking memory (say, for example, it takes a big chunk of the OS page
cache). A misbehaving process can create tons of processes via forking,
launch a fork bomb, and crash the kernel.

© Shashank Mohan Jain 2023 47
S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1_4

https://doi.org/10.1007/978-1-4842-9768-1_3
https://doi.org/10.1007/978-1-4842-9768-1_3
https://doi.org/10.1007/978-1-4842-9768-1_3
https://doi.org/10.1007/978-1-4842-9768-1_4#DOI

CHAPTER4 CGROUPS

This means we need a way to introduce resource controls for processes
within the namespace. This is achieved using a mechanism called control
groups, commonly known as cgroups. Cgroups work on the concept of
cgroup controllers and are represented by a file system called cgroupfs in
the Linux kernel.

The version of cgroups currently being used is cgroup v2. In this
chapter we explore some details about how cgroups work as well as some
of the cgroup controllers that exist in the kernel code. We also look at how
the cgroups are realized within the Linux kernel. But before that, let’s
briefly see what cgroups are all about.

First, to use the cgroup, we need to mount the cgroup file system at a
mount point, as follows:

mount -t cgroup2 none $MOUNT POINT

The difference between cgroup version vl and v2 is that, while
mounting in v1, we could have specified the mount options to specify the
controllers to enable, in cgroup v2, no such mount option can be passed.

Creating a Sample Cgroup

Let’s create a sample cgroup called mygrp. To create a cgroup, we first need
to create a folder where the cgroup artifacts are stored, as follows:

mkdir mygrp

Now we can create a cgroup using the following commands:

Note cgroupz2 is supported in kernel version 4.12.0-rc5 onward. |
am working on Ubuntu 20.04.6 LTS, which has kernel version 5.15.0.

mount -t cgroup2 none mygrp

48

CHAPTER4 CGROUPS

root@osboxes:~# mkdir mygrp

root@osboxes:~# mount -t cgroup2 none mygrp
root@osboxes:~# cd mygrp
root@osboxes:~/mygrp# 1ls -1

total ©

-r--r--r-- 1 root root © Jul 2 00:29 cgroup.controllers
-rw-r--r-- 1 root root © Jul 2 00:29 cgroup.max.depth
-rw-r--r-- 1 root root @ Jul 2 00:29 cgroup.max.descendants
-rw-r--r-- 1 root root @ Jul 2 00:29 cgroup.procs
-r--r--r-- 1 root root ® Jul 2 00:29 cgroup.stat

-rw-r--r-- 1 root root @ Jul 2 00:29 cgroup.subtree_control
-rw-r--r-- 1 root root @ Jul 2 00:29 cgroup.threads
drwxr-xr-x 2 root root ® Jul 2 00:29 init.scope

drwxr-xr-x 52 root root ® Jul 2 00:29 system.slice
drwxr-xr-x 4 root root © Jul 2 00:25 user.slice
root@osboxes:~/mygrp# [}

We created a directory called mygrp and then mounted the cgroup v2
file system on it. When we navigate inside the mygrp directory, we can see
multiple files there:

o cgroup.controllers: This file contains the supported
controllers. All controllers that are not mounted on
cgroup v1 will show up. Currently on my system, [have
a cgroup vl mounted by systemd. The following shows
that all the controllers are there:

root@oshoxes :~/mygrp# mount | grep cgroup

tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)

cgroup2 on /sys/fs/cgroup/unified type cgroup? (rw,nosuid,nodev,noexec,relatime)

cgroup on /sys/fs/coroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr, name=systend)
cgroup on /sys/fs/coroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio)

cgroup on Jfsys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory)

cogroup on /sys/fs/caroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event)
coroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpu,cpuacct)
cogroup on /sys/fs/cgroup/hugetlb type coroup (rw,nosuid,nodev,noexec,relatime,hugetlb)

cgroup on /sys/fs/cgroup/devices type caroup (rw,nosuid,nodev,noexec,relatime,devices)

caroup on /sys/fs/cgroup/freezer type caroup (rw,nosuid,nodev,noexec,relatime,freezer)

cgroup on /sys/fs/coroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset)

nana an frant fmearn fume carcin? frw ralatimal

49

CHAPTER4 CGROUPS

Only after unmounting the controllers from v1
should v2 show these controllers. Sometimes

we might need to add the kernel boot parameter
systemd.unified cgroup hierarchy=1 and reboot
the kernel to make these changes effective. After
making the changes on my machine, I see the
following controllers:

root@osboxes:~# mount -t cgroup2 none mygrp

root@osboxes:~# cd mygrp/

root@osboxes:~/mygrp# 1s

cgroup.controllers cgroup.max.depth cgroup.max.descendants
root@osboxes :~/mygrp# cat cgroup.controllers

cpu 1o memory

root@osboxes:~/mygrp# |

50

cgroup.procs: This file contains the processes within
the root cgroup. No PIDs will be there when the cgroup
is freshly created. By writing the PIDs to this file, they
become part of the cgroup.

cgroup.subtree control: This holds controllers that
are enabled for the immediate subgroup.

Enabling and disabling controllers in the immediate
subgroups of a parent is done only by writing into
its cgroup.subtree control file. So, for example,
enabling the memory controller is done using this:

echo "+memory" > mygrp/cgroup.subtree control
And disabling it is done using this:
echo "-memory" > mygrp/cqgroup.subtree control

cgroup.events: This is the cgroup core interface file.
This interface file is unique to non-root subgroups. The
cgroup.events file reflects the number of processes

cgro

CHAPTER4 CGROU

attached to the subgroup, and it consists of one item—
populated: value. The value is 0 when there are no
processes attached to that subgroup or its descendants,
and 1 when there are one or more processes attached
to that subgroup or its descendants.

PS

Apart from these files, controller-specific interface files are also created.

As an example, for memory controllers, a memory.events file is created,
which can be monitored for events like out of memory (OOM). Similarly, a
PID controller has files like pids .max to avoid situations like a fork bomb.
In my example, I created a child cgroup under mygrp. The following
files appear under the child directory:
root@osboxes : ~/mygrp# cd child/
root@osboxes :~/mygrp/child# 1s

cgroup.controllers cgroup.max.depth cgroup.procs cgroup.subtree_control
cgroup.events cgroup.max.descendants cgroup.stat cgroup.threads
SNSRI ase g 27 IR R

S pul T LR a

We can see controller-specific files like memory.max. The interface
file called memory.events lists the different events like oom, which can be
enabled and disabled:

The next section explains how cgroups are implemented within the
kernel and how they enable resource control.

51

CHAPTER4 CGROUPS

Cgroup Types

There are different types of cgroups, based on which resources we want to
control. The two types of cgroups we will cover here are as follows:

e CPU: Provides CPU limits to user-space processes

¢ BlockI/0: Provides I/O limits on block devices for
user-space processes

CPU Cgroup

From the kernel perspective, let’s see how a cgroup is realized. CPU
cgroups can be realized on top of two schedulers:

o Completely fair scheduler
¢ Real-time scheduler

In this chapter, we discuss only the completely fair scheduler (CFS).
The CPU cgroup provides different types of CPU resource control:

e cpu.shares: Contains an integer value that specifies
a relative share of CPU time available to the tasks in a
cgroup. For example, tasks in two cgroups that have
cpu.shares set to 100 will receive equal CPU time,
but tasks in a cgroup that have cpu.shares set to 200
receive twice the CPU time of the tasks in a cgroup
where cpu.shares is set to 100. The value specified in
the cpu.shares file must be 2 or higher.

e cpu.cfs_quota_us: Specifies the total amount of time
in microseconds (s, represented here as “us”) for
which all tasks in a cgroup can run during one period
(as defined by cpu.cfs_period us). As soon as tasks

52

CHAPTER4 CGROUPS

in a cgroup use all the time specified by the quota, they
are stopped for the remainder of the time specified by
the period and not allowed to run until the next period.

e cpu.cfs_period_us: Specifies the period from which
CPU quotas for cgroups (cpu.cfs_quota_us) are carved
out and the quota and period parameters operate on a
per CPU basis. Consider these examples:

— To allow the cgroup to be able to access a single CPU
for 0.2 second of every second, set cpu.cfs_quota us
to 200000 and cpu.cfs_period us to 1000000.

— To allow a process to utilize 100% of a single CPU, set
cpu.cfs_quota_us to 1000000 and cpu.cfs_period us
to 1000000.

— To allow a process to utilize 100% of two CPUs, set cpu.
cfs_quota_us to 2000000 and cpu.cfs_period us
to 1000000.

To understand both of these control mechanisms, we can look into
the aspects of the Linux CFS task scheduler. The aim of this scheduler
is to grant a fair share of the CPU resources to all the tasks running on
the system.

We can break up these tasks into two types:

o CPU-intensive tasks: Tasks like encryption, machine
learning, query processing, and so on

o I/0-intensive tasks: Tasks that are using disk or
network I/0 like database clients

The scheduler has the responsibility of scheduling both kinds of tasks.
The CFS uses a concept of vruntime. vruntime is a member of the sched
entity structure, which is a member of the task_struct structure (each
process is represented in Linux by a task_struct structure):

53

CHAPTER4 CGROUPS

struct

task struct {

int prio, static prio, normal prio;

unsigned int rt_priority;
struct list head run_list;

const struct sched class *sched class;
struct sched entity se;
unsigned int policy;

cpumask t cpus_allowed;

unsigned int time_slice;

};

struct

#ifdef

54

}
sched_entity {

/* For load-balancing: */

struct load weight load;

struct rb_node run_node;

struct list head group_node;

unsigned int on_rq;

u64 exec_start;

u64 sum_exec_runtime;

u64 vruntime;

u64 prev_sum exec_runtime;
ué4 nr_migrations;

struct sched statistics statistics;

CONFIG_FAIR_GROUP_SCHED

Int depth;

struct sched entity *parent;

/* rq on which this entity is (to be) queued: */
struct cfs_rq *cfs_1q;

/* rq "owned" by this entity/group: */

struct cfs_rq *my_q;

/* cached value of my q->h_nr_running */
unsigned long runnable_weight;

CHAPTER4 CGROUPS

The task_struct structure has a reference to sched_entity, which
holds a reference to vruntime.
vruntime is calculated using these steps:

1. Compute the time spent by the process on the CPU.

2. Weigh the computed running time against the

number of runnable processes.

The kernel uses the update_curr function defined in the https://
elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c file.

/*
* Update the current task's runtime statistics.
*/

static void update curr(struct cfs rq *cfs rq)

{

struct sched entity *curr = cfs_rq->curr;
u64 now = rq clock task(rq of(cfs rq));
ub4 delta exec;

if (unlikely(!curr))
return;

delta_exec = now - curr->exec_start;

if (unlikely((s64)delta_exec <= 0))
return;

curr->exec_start = now;

schedstat_set(curr->statistics.exec_max, max(delta_exec,
curr->statistics.exec_max));

curr->sum_exec_runtime += delta exec;
schedstat_add(cfs_rg->exec_clock, delta_exec);
curr->vruntime += calc_delta fair(delta exec, curr);

update min_vruntime(cfs rq);

55

https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c
https://elixir.bootlin.com/linux/latest/source/kernel/sched/fair.c

CHAPTER4 CGROUPS

if (entity is task(curr)) {
struct task struct *curtask = task of(curr);
trace sched stat runtime(curtask, delta exec, curr-
>vruntime);
cgroup_account_cputime(curtask, delta exec);
account_group exec_runtime(curtask, delta exec);

}

account_cfs rq runtime(cfs rq, delta exec);

The function first calculates the delta_exec, which is the time
spent by the current task on the CPU. This delta_exec is then passed
as a parameter to another function call, named calc_delta fair. This
call returns the weighted value of the process runtime in relation to the
number of runnable processes. Once vruntime is calculated, it’s stored as
part of the sched_entity structure.

Also, as part of updating the vruntime for the task, the update curr
function calls update_min_vruntime. This calculates the smallest value of
vruntime among all runnable processes and adds it to a red-black tree as
the leftmost node. The CFS scheduler can then look into the red-black tree
to schedule the process that has the lowest vruntime.

Basically, the CFS scheduler schedules its heuristic’s schedules and
I/0-intensive tasks more frequently, but gives more time to the CPU-
intensive tasks in a single run. This also could be understood from the
vruntime concept discussed previously. Since I/O tasks are mostly waiting
for network/disk, their vruntimes values tend to be smaller than CPU
tasks. That means the I/0 tasks will be scheduled more frequently. The
CPU-intensive tasks will get more time once they are scheduled to do the
work. This way, CFS tries to attain a fair scheduling of tasks.

Let’s pause for a minute and think about a potential problem this
scheduling could lead to

56

CHAPTER4 CGROUPS

Assume you have two processes, A and B, belonging to different users.
These processes each get 50% share of the CPU. Suppose a user owning
process A launches another process, called A1. Now CFS will give a 33%
share to each process. This effectively means that users of process A and Al
now get 66% of the CPU. A classic example is a database like PostgreSQL,
which creates processes per connection. As number of connections
grows, the number of processes grows. If fair scheduling is in place, each
connection would tend to take away the share of the other non-Postgre
processes running on the same machine.

This problem led to group scheduling. To understand this concept, let’s
look at another kernel data structure:

/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load weight load;
unsigned int nr_running;
unsigned int h_nr_running; /* SCHED_{NORMAL, BATCH,
IDLE} */
unsigned int idle_h nr running; /* SCHED_IDLE */
ub4 exec_clock;
u64 min_vruntime;

#ifndef CONFIG_64BIT
u64 min_vruntime_copy;
#endif

struct rb_root cached tasks timeline;
};

/>I<
* 'curr' points to currently running entity on
this cfs_rq.
* It is set to NULL otherwise (i.e. when none are
currently running).
*/

57

CHAPTER4 CGROUPS

struct sched_entity *curr;
struct sched_entity *next;
struct sched_entity *last;
struct sched_entity *skip;

This structure holds the number of runnable tasks in the nr_running
member. The curr member is a pointer to the current running scheduling
entity or the task.

Also, the sched_entity structure is now represented as a hierarchical
data structure:

struct sched_entity {
/* For load-balancing: */
struct load_weight load;

struct rb_node run_node;
struct list_head group_node;
unsigned int on_xq;
u64 exec_start;
u64 sum_exec_runtime;
ué64 vruntime;
ué64 prev_sum_exec_runtime;
ué64 nr_migrations;
struct sched_statistics statistics;
#ifdef CONFIG_FAIR_GROUP_SCHED
Int depth;
struct sched_entity *parent;
/* rq on which this entity is (to be) queued: */
struct cfs_xq *cfs_xq;
/* rq "owned" by this entity/group: */
struct cfs_xq *my_q;
/* cached value of my q->h_nr running */
unsigned long runnable_weight;

58

CHAPTER4 CGROUPS

#endif
#ifdef CONFIG_SMP
/*
* Per entity load average tracking.
*
* Put into separate cache line so it does not
* collide with read-mostly values above.
*/
struct sched_avg avg;
#endif
b5

This means there can now be sched_entities structures that are
not associated with a process (task_struct). Instead, these entities can
represent a group of processes. Each sched_entity now maintains a run
queue of its own. A process can be moved to the child schedule entity,
which means it will be part of the run queue that the child schedule entity
has. This run queue can represent the processes in the group.

The code flow in the scheduler would do the following.

Pick_next_entity method is called to pick up the best candidate for
scheduling. We assume that there is only one group running at this time.
This means that the red-black tree associated with the sched entity
process is blank. The method now tries to get the child sched_entity of
the current sched_entity. It checks the cfs_rg, which has the processes of
the group enqueued. The process is scheduled.

The vruntime is based on the weights of the processes within the
group. This allows us to do fair scheduling and prevent processes within a
group from impacting the CPU usage of processes within other groups.

With the understanding that processes can be placed into groups, let’s
see how bandwidth enforcement can be applied to the group. Another
data structure called cfs_bandwidth, defined in sched.h, plays a role:

59

CHAPTER4 CGROUPS

struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH

raw_spinlock_t lock;

ktime_t period;

u64 quota;

u64 runtime;

s64 hierarchical_quota;
u8 idle;

u8 period_active;

u8 distribute_running;
u8 slack_started;
struct hrtimer period_timer;
struct hrtimer slack_timer;

struct list_head throttled_cfs_rq;
/* Statistics: */

Int nr_periods;

Int nr_throttled;

u64 throttled_time;
#endif

};

This structure keeps track of the runtime quota for the group. The cff_
bandwith_used function is used to return a Boolean value when the check
is made in the account_cfs_rq_runtime method of the fair scheduler
implementation file. If no runtime quota remains, the throttle cfs rq
method is invoked. It dequeues the task from the run queue of the
sched_entity and sets the throttled flag. The function implementation is
shown here:

static void throttle cfs rq(struct cfs_rq *cfs rq)

{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs b = tg cfs bandwidth(cfs _rq->tg);

60

CHAPTER4 CGROUPS

struct sched _entity *se;

long task delta, idle_task delta, dequeue = 1;
bool empty;

se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

/* Freeze hierarchy runnable averages while throttled */
rcu_read lock();

walk tg tree from(cfs rq->tg, tg throttle down, tg nop,
(void *)rq);

rcu_read unlock();

task_delta = cfs_rg->h_nr_running;
idle task_delta = cfs_rg->idle_h_nr_running;

for _each_sched entity(se) {
struct cfs_rq *qcfs rq = cfs_rq of(se);

/* Throttled entity or throttle-on-deactivate */
if (!se->on_1q)
break;

if (dequeue) {
dequeue_entity(qcfs rq, se, DEQUEUE SLEEP);
} else {
update load avg(qcfs rq, se, 0);
se_update_runnable(se);

}

qcfs_rq->h_nr_running -= task_delta;
qcfs_rqg->idle h nr_running -= idle task_delta;

if (qcfs_rg->load.weight)
dequeue = 0;

61

CHAPTER4 CGROUPS

if (!se)
sub_nr_running(rq, task delta);

cfs_rq->throttled = 1;
cfs_rg->throttled clock = rq clock(rq);

raw_spin_lock(&cfs_b->lock);
empty = list empty(&cfs _b->throttled cfs rq);

/*
* Add to the head of the list, so that an
already-started
* distribute cfs_runtime will not see us. If distribute
cfs_runtime is
* not running, add to the tail so that later runqueues
don't get starved.
*/
if (cfs_b->distribute running)
list add rcu(8cfs _rg->throttled list, &cfs b-
>throttled cfs_1q);
else
list add tail rcu(&cfs_rq->throttled list, &cfs b-
>throttled cfs _1q);

/*
* If we're the first throttled task, make sure the
bandwidth
* timer is running.
*/
if (empty)
start _cfs_bandwidth(cfs b);

raw_spin_unlock(&cfs_b->lock);

62

CHAPTER4 CGROUPS

This explains how the CPU cgroups allow tasks/processes to be
grouped and can use the CPU shares mechanism to enforce fair scheduling
within a group. This also explains how quota and bandwidth enforcement
is accomplished within a group. We now discuss the other cgroup type,
which enforces resource limits on block I/0.

Block 1/0 Cgroups

The purpose of the block I/O cgroup is twofold:

o Provides fairness to the individual cgroup: Makes use
of a scheduler called complete fair queuing

¢ Does block I/0 throttling: Enforces a quota on the
block I/0 (bytes as well as iops) per cgroup

Before delving into details of how the cgroup for block I/0 is
implemented, we’ll take a small detour to investigate how the Linux block
1/0 works. Figure 4-1 is a high-level block diagram of how the block I/0
request flows through the user space to the device.

63

CHAPTER4 CGROUPS

/' v\ User Space

Buffered I/O\i Kernel
Page Cache

File Systems

Block Layer

Driver

Figure 4-1. The block 1/0 request flows through the user space to
the device

The application issues a read/write request either via the file system
or via memory-mapped files. In either case, the request hits the page
cache (kernel buffer for caching file data). With a file system-based call,
the virtual file system (VFS) handles the system call and invokes the
underlying registered file system.

The next layer is the block layer where the actual I/O request is
constructed. There are three important data structures within the block layer:

e request_queue: A single queue architecture is where
there is one request queue per device. This is the
queue where the block layer, in tandem with the I/0
scheduler, queues the request. The device driver drains
the request queue and submits the request to the
actual device.

64

CHAPTER4 CGROUPS

o request: The request structure represents the single
I/0 request to be delivered to the I/O device. The
request is made of a list of bio structures.

e Dbio: The bio structure is the basic container for block
I/0. Within the kernel is the bio structure. Defined
in <linux/bio.h>, this structure represents block
I/0 operations that are in flight (active) as a list of
segments. A segment is a chunk of a buffer that is

contiguous in memory.

Diagrammatically, the bio structure is shown in Figure 4-2.

struct bio

bi_io_vec _\ bi_idx

\

\
\
 / \ |

bio_vec|bio_vec|bio_vec|bio_vec

\
‘/ \\. I\
| A
page
. page
| J

page

page structures
involved in block I/O operation

\
\\
g,

~—

Figure 4-2. The bio structure represents block 1/0 operations that
are in flight (active) as a list of segments

list of bio_vec structures, bio_vent in all

65

CHAPTER4 CGROUPS

bio vec represents a specific segment and has a pointer to the page
holding the block data at a specific offset.

The requests are submitted to the request queue and drained by the
device driver. The important data structures involved in implementing the
block I/0 cgroup within the Linux kernel are shown here:

struct blkcg {
struct cgroup subsys state css;
spinlock t lock;
struct radix_tree root blkg tree;
struct blkcg gq _ rcu *blkg hint;
struct hlist head blkg list;
struct blkcg policy data *cpd[BLKCG_MAX POLS];

#ifdef CONFIG_CGROUP WRITEBACK
struct list head cgwb list;
refcount_t cgwb_refcnt;

#endif

struct list_head all blkcgs node;
}s

This structure represents the block I/0 cgroup. Each block I/0 cgroup
is mapped to a request queue, as explained previously

/* association between a blk cgroup and a request queue */
struct blkcg gq {

/* Pointer to the associated request queue */

struct request queue *q;

struct list head q_node;

struct hlist node blkcg node;

struct blkcg *blkcg;

/*

66

};

CHAPTER4 CGROUPS

* Each blkg gets congested separately, and the congestion
state is

* propagated to the matching bdi writeback congested.

*/

struct bdi_writeback congested *wb_congested;

/* A1l non-root blkcg gq's are guaranteed to have access to
parent */
struct blkcg gq *parent;

/* Request allocation list for this blkcg-q pair */
struct request list rl;

/* Reference count */
atomic_t refcnt;

/* Is this blkg online? Protected by both blkcg and q
locks */
bool online;

struct blkg rwstat stat_bytes;
struct blkg rwstat stat ios;
struct blkg policy data *pd[BLKCG_MAX POLS];

struct rcu_head rcu_head;
atomic_t use delay;
atomic64_t delay nsec;
atomic64_t delay start;
ub4 last delay;

int last _use;

Each request queue is associated with a block I/O cgroup.

67

CHAPTER4 CGROUPS

Understanding Fairness

Fairness in this context means that each cgroup should get a fair share of
the I/0 issued to the device. To accomplish this, a CFQ (Complete Fair
Queuing) scheduler must be configured. Without cgroups in place, the
CFQ scheduler assigns each process a queue and then gives a time slice to
each queue, thereby handling fairness.

A service tree is a list of active queues/processes on which the
scheduler runs. So basically, the CFQ scheduler services requests from the
queues on the service tree.

With cgroups in place, the concept of a CFQ group is introduced. Now,
instead of scheduling per process, the scheduling happens at the group
level. This means each cgroup has multiple service trees on which the
group queues are scheduled. Then there is a global service tree on which
the CFQ groups are scheduled.

The CFQ group structure is defined as follows:

struct cfq_group {
/* must be the first member */
struct blkg policy data pd;
/* group service tree member */
struct rb _node rb node;
/* group service tree key */
u64 vdisktime;
/*
* The number of active cfqgs and sum of their weights
under this
* cfqg. This covers this cfqg's leaf weight and all children's

* weights, but does not cover weights of further descendants.
*

68

CHAPTER4 CGROUPS

* If a cfgg is on the service tree, it's active. An active cfqg
* also activates its parent and contributes to the

children weight

* of the parent.

*/

int nr_active;

unsigned int children_weight;

/*

vfraction is the fraction of vdisktime that the tasks in this
cfqg are entitled to. This is determined by compounding the
ratios walking up from this cfqg to the root.

It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
vfractions on a service tree is approximately 1. The sum may
deviate a bit due to rounding errors and fluctuations
caused by

* cfqgs entering and leaving the service tree.

*/

* unsigned int vfraction;

/*

* There are two weights - (internal) weight is the

weight of this

*
*
*
*
*
*
*

* cfqg against the sibling cfqgs. leaf weight is the weight of
* this cfqg against the child cfqgs. For the root cfqg, both
* weights are kept in sync for backward compatibility.

*/

unsigned int weight;

unsigned int new_weight;

unsigned int dev_weight;

unsigned int leaf weight;

unsigned int new_leaf weight;

69

CHAPTER4 CGROUPS

70

unsigned int dev_leaf weight;

/* number of cfqq currently on this group */

int nr_cfqq;

/*

* Per group busy queues average. Useful for workload
slice calc.

* We create the array for each prio class but at runtime
it is used

* only for RT and BE class and slot for IDLE class
remains unused.

* This is primarily done to avoid confusion and a gcc
warning.

*/

unsigned int

busy queues avg[CFQ PRIO NR]; /*

*rr lists of queues with requests. We maintain service
trees for

*RT and BE classes. These trees are subdivided in subclasses
* of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For
* the IDLE class there is no subclassification and all the
CFQ queues go on

* a single tree service tree idle.

* Counts are embedded in the cfq rb root

*/

struct cfq rb root service trees[2][3];

struct cfq rb root service tree idle;

ub4 saved wl slice;

enum wl type t saved wl type;

enum wl class t saved wl class;
/* number of requests that are on the dispatch list or
inside driver */

int dispatched;

CHAPTER4 CGROUPS

struct cfq_ttime ttime;

struct cfqg_stats stats; /* stats for this cfqg */
/* async queue for each priority case */ struct
cfq_queue *async_cfqq[2][IOPRIO BE NR]; struct

cfq_queue *async_idle cfqq;

b

Each CFQ group contains an “io weight” value that can be configured
in cgroup. The CFQG’s (CFQ groups) vdisktime decides its position on the
“cfqg service tree,” and then it’s charged according to the “io weight”.

Understanding Throttling

Throttling provides a means to apply resource limits to the block I/O. This
enables the kernel to control the max block I/0 that a user-space process
can get. The kernel realizes this via the block I/O cgroup.

Throttling the block I/O per cgroup is done using a set of different
functions. The first function is blk_throttl_bio and it’s defined in blk-
throttle.c (see https://elixir.bootlin.com/1linux/latest/source/
block/blk-throttle.c):

bool blk throtl bio(struct request queue *q, struct blkcg gq
*blkg, struct bio *bio)
{
struct throtl gnode *qn = NULL;
struct throtl grp *tg = blkg to_tg(blkg ?: q->root blkg);
struct throtl service queue *sq;
bool rw = bio data dir(bio);
bool throttled = false;
struct throtl _data *td = tg->td;

WARN_ON_ONCE(!rcu read lock held());

71

https://elixir.bootlin.com/linux/latest/source/block/blk-throttle.c
https://elixir.bootlin.com/linux/latest/source/block/blk-throttle.c

CHAPTER4 CGROUPS

/* See throtl charge bio() */
if (bio flagged(bio, BIO THROTTLED) || !tg->has rules[rw])
goto out;

spin lock irq(q->queue _lock);
throtl update latency buckets(td);

if (unlikely(blk queue bypass(q)))
goto out_unlock;

blk throtl assoc bio(tg, bio);
blk throtl update idletime(tg);
sq = &tg->service queue;

again:
while (true) {
if (tg->last Ilow overflow time[rw] == 0)
tg->last _low overflow time[rw] = jiffies;

throtl downgrade check(tg);
throtl upgrade check(tg);

/* Throtl is FIFO - if bios are already queued, we
should queue */
if (sq->nr_queued[rw])

break;

/* If above limits, break to queue */
if (!tg _may dispatch(tg, bio, NULL)) {
tg->last _low overflow time[rw] = jiffies;

if (throtl can upgrade(td, tg)) {
throtl upgrade state(td);
goto again;

72

CHAPTER4 CGROUPS

break;
}
/* Within limits, let's charge and dispatch directly */
throtl charge bio(tg, bio);

/>I<
* We need to trim slice even when bios are not
being queued
* otherwise it might happen that a bio is not
queued for
* a long time and slice keeps on extending, and
trim is not
* called for a long time. Now if limits are reduced
suddenly
* we take into account all the IO dispatched so far
at the new
* low rate and newly queued IO gets a really long
dispatch time.
*
* So keep on trimming slice even if bio is not queued.
*/
throtl trim slice(tg, 1w);

/*
* @bio passed through this layer without being
throttled.

* Climb up the ladder. If we're already at the top, it
* can be executed directly.
>I<>I</

qn

5q

tg

&tg->gnode_on_parent[rw];
sq->parent _sq;
sq_to_tg(sq);

73

CHAPTER4 CGROUPS

74

if (Itg)

goto out_unlock;

}

/* Out-of-1imit, queue to @tg */
throtl log(sq, "[%c] bio. bdisp=%11lu sz=%u bps=%1lu
lodisp=%u iops=%u queued=%d/%d",
rw == READ ? 'R' : 'W',
tg->bytes disp[rw], bio->bi iter.bi size,
tg bps 1limit(tg, mw),
tg->io disp[rw], tg iops limit(tg, rw),
sq->nr_queued[READ], sq->nr_queued[WRITE]);

tg->last low overflow time[rw] = jiffies;
td->nr_queued[rw]++;
throtl add bio tg(bio, gn, tg);

throttled = true;

/*
* Update @tg's dispatch time and force schedule
dispatch if @tg
* was empty before @bio. The forced scheduling isn't
likely to
* cause undue delay as @bio is likely to be dispatched
directly if
* @tg's disptime is not in the future.
*/
if (tg->flags & THROTL TG WAS EMPTY) {
tg update disptime(tg);
throtl schedule next dispatch(tg->service queue.parent
sq, true);

CHAPTER4 CGROUPS

out_unlock:
spin_unlock irq(q->queue_lock);

out:
bio set flag(bio, BIO THROTTLED);

#ifdef CONFIG BLK DEV_THROTTLING LOW
if (throttled || !td->track bio latency)
bio->bi_issue.value |= BIO ISSUE THROTL SKIP LATENCY;
#endif

return throttled;

The following code snippet checks if the bio can be dispatched to be
pushed to the device driver:

if (!tg_may dispatch(tg, bio, NULL)) { tg-
>last_low overflow time[rw] = jiffies;
if (throtl can upgrade(td, tg)) {
throtl upgrade state(td);
goto again;
}

break;

}

The tg_may_dispatch definition is shown here:
static bool tg may dispatch(struct throtl grp *tg, struct

bio *bio, unsigned long *wait)

bool rw = bio data dir(bio);
unsigned long bps wait = 0, iops wait = 0, max_wait = 0;
/*

75

CHAPTER4 CGROUPS

76

* Currently the whole state machine of group depends on
first bio
* queued in the group bio list. So one should not be calling
* this function with a different bio if there are other bios
* queued.
*/
BUG ON(tg->service queue.nr queued[rw] 8&
bio != throtl peek queued(&tg->service queue.queued[1w]));
/* If tg->bps = -1, then BW is unlimited */
if (tg bps limit(tg, rw) == U64 MAX 8&
tg iops limit(tg, rw) == UINT MAX) {
if (wait)
*wait = 0;
return true;
}
/*
* If the previous slice expired, start a new one, otherwise
* renew/extend the existing slice to make sure it is at
least throtl slice interval
* long since now. The new slice is started only for empty
throttle
* group. If there is queued bio, that means there
should be an
* active slice and it should be extended instead.
*/
if (throtl slice used(tg, rw) 8&
I (tg->service_queue.nr_queued[rw]))
throtl start new slice(tg, rw);
else {
if (time_before(tg->slice end[rw],
jiffies + tg->td->throtl slice))

CHAPTER4 CGROUPS

throtl extend slice(tg, rw,
jiffies + tg->td->throtl slice);
}
if (tg with _in bps limit(tg, bio, &bps wait) &&
tg with_in_iops limit(tg, bio, &iops wait)) {
if (wait)
*wait = 0;
return true;
}
max_wait = max(bps wait, iops wait);
if (wait)
*wait = max_wait;
if (time before(tg->slice end[rw], jiffies + max wait))
throtl extend slice(tg, rw, jiffies + max _wait);
return false;
The snippet
if (tg with_in bps limit(tg, bio, &bps wait) &&
tg with_in_iops limit(tg, bio, &iops wait)) {
if (wait)
*wait = 0;
return true;

This determines if the bio is within the limits for that cgroup or not. As
evident, it checks both the bytes per sec limit and the I/O per sec limit for
the cgroup.

If the limit is not exceeded, the bio is first charged to the cgroup:

/* within limits, let's charge and dispatch directly */ throtl_
charge bio(tg, bio);
static void throtl charge bio(struct throtl grp *tg, struct
bio *bio) {

bool rw = bio data dir(bio);

77

CHAPTER4 CGROUPS

unsigned int bio_size =
throtl bio data size (bio);

/* Charge the bio to the group */

tg->bytes disp[rw] += bio_size;

tg->io_disp[rw]++;

tg->last _bytes disp[rw] += bio size;

tg->last_io disp[rw]++;

/*

* BIO_THROTTLED is used to prevent the same bio to be
throttled

* more than once as a throttled bio will go through blk-
throtl the

* second time when it eventually gets issued. Set it
when a bio

* is being charged to a tg.

*/

if (!bio flagged(bio, BIO THROTTLED))

bio _set flag(bio, BIO THROTTLED);
}

This function charges the bio (the bytes and iops) to the throttle

group. It then passes the bio up to the parent, as evident in the

following code:

/*

78

* @bio passed through this layer without being throttled.
* Climb up the ladder. If we’re already at the top, it
* can be executed directly.

*/

gn = &tg->gnode_on_parent[rw];
sq = sq->parent_sq;

tg = sq_to_tg(sa);

CHAPTER4 CGROUPS

If the limits are exceeded, the code takes a different flow. The following
code snippet is called:

throtl add bio tg(bio, gn, tg);
throttled = true;

Let’s look at the throtl add bio tg function in more detail:

/**

* throtl add bio tg - add a bio to the specified throtl grp
* @bio: bio to add

* @gn: gnode to use

* @tg: the target throtl grp

Add @bio to @tg's service queue using @qn. If @qn is not
specified,
tg->gnode_on_self[] is used.
*/
static void throtl add bio tg(struct bio *bio, struct
throtl gnode *qgn,
struct throtl grp *tg)

struct throtl service queue *sq = &tg-
>service queue; bool rw = bio data_dir(bio);
if (!qgn)
gn = &tg->gnode_on_self[rw];
/*
* If @tg doesn't currently have any bios queued in
the same
* direction, queueing @bio can change when @tg should be
* dispatched. Mark that @tg was empty. This is
automatically
* cleared on the next tg update disptime().

79

CHAPTER4 CGROUPS

*/
if (!sg->nr_queued[rw])
tg->flags |= THROTL_TG_WAS_EMPTY;
throtl gnode add bio(bio, gn, &sqg->queued[1w]);
sq->nr_queued[Tw]++;
throtl_enqueue_tg(tg);
}

This function adds the bio to the throttle service queue. This queue
acts as a mechanism to throttle the bio requests. The service request is
then drained later:

/**

*blk_throtl drain - drain throttled bios

*@q: request queue to drain throttled bios for

*Dispatch all currently throttled bios on @q through

- >make_request fn().

*/
void blk throtl drain(struct request queue *q)
__releases(qg->queue lock) acquires(qg->queue lock)

struct throtl data *td = q-

>td; struct blkcg gq *blkg;

struct cgroup subsys state *pos _css;

struct bio *bio;

int rw;

queue_lockdep assert held(q);

rcu_read lock();
/*
* Drain each tg while doing post-order walk on the blkg
tree, so

80

CHAPTER4 CGROUPS

* that all bios are propagated to td->service_
queue. It'd be
* better to walk service queue tree directly but
blkg walk is
* easier.
*/
blkg for each descendant post(blkg, pos css, td->queue-
>root_blkg)
tg drain _bios(8blkg to tg(blkg)->service queue);
/* finally, transfer bios from top-level tg's into
the td */
tg_drain_bios(&td->service_queue);
rcu_read unlock();
spin_unlock_irq(qg->queue_lock);
/* all bios now should be in td->service queue, issue them
*/ for (rw = READ; rw <= WRITE; rw++)
while ((bio = throtl pop queued(&td-
>service queue.queued[rw],
NULL)))
generic_make request(bio);
spin lock irq(q->queue_lock);

Summary

In this chapter we looked at how resources for a tenant can be constrained
using a mechanism in the Linux kernel called cgroups. We covered various
data structures within the Linux kernel that enable the cgroups. We also
examined some code examples showing how cgroups can be enabled from
user-space applications.

81

CHAPTER 5

Layered File Systems

In Chapters 3 and 4, we addressed the topics of process isolation via
Linux namespaces and resource control for individual processes via
cgroups, respectively. Now we delve into the topic of layered file systems,
which constitute the third building block of the Linux container, after
namespaces and cgroups. This chapter describes how layered files systems
enable file sharing on the host and how this helps in running multiple
containers on the host.

Let’s start by discussing what a file system is.

A File System Primer

The Linux philosophy is to treat everything as a file. As an example, socket,
pipe, and block devices are all represented as files in Linux.

The file systems in Linux act as containers to abstract the underlying
storage in the case of block devices. For non-block devices like sockets and
pipes, there are file systems in memory that have operations that can be
invoked using the standard file system API.

© Shashank Mohan Jain 2023 83
S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1_5

https://doi.org/10.1007/978-1-4842-9768-1_3
https://doi.org/10.1007/978-1-4842-9768-1_4
https://doi.org/10.1007/978-1-4842-9768-1_5#DOI

CHAPTER 5 LAYERED FILE SYSTEMS

Linux abstracts all file systems using a layer called the virtual file
system (VES). All file systems register with the VFS. The VFS has the
following important data structures:

o File: This represents the open file and captures the
information, like offset, and so on. The user space has
a handle to an opened file via a structure called the file
descriptor. This is the handle used to interface with the
file system.

o Inode: This is mapped 1:1 to the file. The inode is one
of the most critical structures and holds the metadata
about the file. As an example, it includes in which
data blocks the file data is stored and which access
permissions are on the file. This info is part of the
inode. Inodes are also stored on disk by the specific file
system, but there is a representation in memory that’s
part of the VFS layer. The file system is responsible for
enumerating the VES inode structure.

o Dentry: This is the mapping between the filename and
inode. This is an in-memory structure and is not stored
on disk. This is mainly relevant to lookup and path
traversal.

e Superblock: This structure holds all the information
about the file system, including how many blocks are
there, the device name, and so on. This structure is
enumerated and brought into memory during a mount
operation.

Each of these data structures holds pointers to their specific
operations. As an example, file has file ops for reading and writing and
superblock has operations via super ops to mount, unmount, and so on.

84

CHAPTER 5 LAYERED FILE SYSTEMS

The mount operation creates a vfsmount data structure, which holds
areference to a new superblock structure created from the file system to
be mounted on the disk. The dentry has a reference to the vfsmount. This
is where the VFS distinguishes between a directory and a mount point.
During a traversal, if the vfsmount is found in a dentry, the inode number 2
on the mounted device is used (inode 2 is reserved for the root directory).

So how does this all fit together in the case of a block device? Say
that the user-space process makes a call to read a file. The system call is
made to the kernel. The VFS checks the path and determines if there are
dentries cached from the root. As it traverses and finds the right dentry,
it locates the inode for the file to be opened. Once the inode is located,
the permissions are checked and the data blocks are loaded from the disk
into the OS page cache. The same data is moved into the user space of the
process.

The page cache is an interesting optimization in the OS. All reads
and writes (except direct I/O) happen over the page cache. The page
cache itself is represented by a data structure called address_space. This
address_space holds a tree of memory pages, and the file inode holds a
reference to that address_space data structure.

Figure 5-1 shows how a file maps into the page cache. This is also
the key to understanding how operations like mmap for memory-mapped
files work.

Memory Pages

Inode

—/
i_mapping address_space =
—

Figure 5-1. Mapping a file to a page cache

85

CHAPTER 5 LAYERED FILE SYSTEMS

If the file read request is in the page cache (which is determined via the
address_space structure of the file’s inode), the data is served from there.
Whenever a write call is made on the file via the file descriptor, the

writes are first written to the page cache. The memory pages are marked
dirty and the Linux kernel uses the write-back cache mechanism, which
means there are threads in the background (called pdflush) that drain
the page cache and write to the physical disk via the block driver. The
mechanism of marking pages dirty doesn’t happen at the page level.
Pages can be 4KB in size and even a minimal change will then cause a full
page write.

To avoid that, there are structures that have more fine-grained
granularity and represent a disk block in memory. These structures are
called bugffer heads. For example, if the block size is 512 bytes, there are
eight buffer heads and one page in the page cache. That way, individual
blocks can be marked dirty and made part of the writes.

The buffers can be explicitly flushed to disk via these system calls:

o sync(): Flushes all dirty buffers to disk.

o fsync(fd): Flushes only the file-specific dirty buffers to
disk, including the changes to inode.

o fdatasync(fd): Flushes only the dirty data buffers of
the file to disk. Doesn’t flush the inodes.

Here’s an example of how this sync process works:
1. Checkif the superblockis dirty.
2. Write back the superblock.
3. [Iterate over each inode from the inode list:
a. If the inode is dirty, write it back.
b. If the page cache of the inode is dirty, write it back.

c. Clear the dirty flag.

86

CHAPTER 5 LAYERED FILE SYSTEMS

Figure 5-2 shows the file system’s different layers under the kernel.

Kernel

Virtual File System

Ext4 ProcFS (Memory
Based)

Hardware

Figure 5-2. The different layers of a file system under the kernel

Examples of different kinds of file systems include:

o Ext4: This file system is used to access the underlying
block devices.

e ProcFS: This is an in-memory file system and is used to
provide features. This is also called a pseudo file system.

Brief Overview of Pseudo File Systems

Recall that the general philosophy of Linux is that everything is a file.
Working on that premise, pseudo file systems expose some of the kernel’s
resources over the file interface. One such file system is procfs.

The procfs file system is mounted on the rootfs under the proc
directory. The data under procfs is not persisted and all operations
happen in memory.

87

CHAPTER 5

LAYERED FILE SYSTEMS

Some of the structures exposed via procfs are explained in the

following table:

Structure Description

/proc/cpuinfo CPU details like cores, CPU size, make, etc.

/proc/meminfo Information about physical memory.

/proc/interrupts Information about interrupts and handlers.

/proc/vmstat Virtual memory stats.

/proc/filesystems Active file systems on the kernel.

/proc/mounts Current mounts and devices; this will be specific to the
mount namespace.

/proc/uptime Time since the kernel was up.

/proc/stat System statistics.

/proc/net Network-related structures like TCP sockets, files, etc.
proc also exposes some process-specific information
via files.

/proc/pid/cmdline Command-line name of the process.

/proc/pid/environ Environment variables of the process.

/proc/pid/mem Virtual memory of the process.

/proc/pid/maps Mapping of the virtual memory.

/proc/pid/fdinfo Open file descriptors of the process.

/proc/pid/task Details of the child processes.

88

CHAPTER 5 LAYERED FILE SYSTEMS

Understanding layered File Systems

Now that you have a better understanding of the file systems in Linux, it’s
time to take a look at the layered file systems in Linux.

A layered file system allows files to be shared on disk, thereby saving
space. Since these files are shared in memory (loaded in page cache), a
layered file system allows optimal space utilization as well as faster bootup.

Consider an example of running ten Cassandra databases on the same
host, each database running its own namespaces. If we have separate
file systems for each database’s different inodes, we don’t enjoy these
advantages:

e Memory sharing
o Sharing on disk

By contrast, a layered file system is broken into layers and each layer is
aread-only file system. Since these layers are shared across the containers
on the same host, they tend to use storage optimally. And, since the inodes
are the same, they refer to the same OS page cache. This makes things
optimal from all aspects.

Compare this to VM-based provisioning, where each rootfs
is provisioned as a disk. This means they all have different inode
representations on the host and there is no optimal storage as compared to
the containers.

Hypervisors also tend to reach optimization using techniques like KSM
(Kernel Same Page Merging) so they can deduplicate across VMs for the
same pages.

Next, we discuss the concept of union file systems, which is a type of
layered file system.

89

CHAPTER 5 LAYERED FILE SYSTEMS

The Union File System

According to Wikipedia, the union file system is a file system service for
Linux, FreeBSD, and NetBSD that implements a union mount for other
file systems. It allows files and directories of separate file systems, known
as branches, to be transparently overlaid, forming a single coherent file
system. The contents of any directories that have the same path within the
merged branches will be seen together in a single merged directory, within
the new virtual file system.

So, basically, a union file system allows you to take different file
systems and create a union of their contents, with the top layer providing
aview of all the files underlying it. If duplicate files are found, the top layer
supersedes the layers below it.

OverlayFS

This section looks at OverlayFS as one example of a union file system.
OverlayFS has been part of the Linux Kernel since 3.18. It overlays (as
the name suggests) the contents of one directory onto other. The source
directories can be on different disks or file systems.

With OverlayFS v1, there were only two layers, and they were used to
create a unified layer, as shown in Figure 5-3.

Overlayf]

Upperf]

Lowerfq]

Figure 5-3. OverlayFS vl with two layers (upper and lower)

90

CHAPTER 5 LAYERED FILE SYSTEMS

OverlayFS v2 has three layers:
e Base: This is the base layer. This is primarily read-only.

e Overlay: This layer provides visibility from the base
layer and allows users to add new files/directories. If
any files from the base layer change, they are stored in
the next layer.

o Diff: The changes made in the overlay layer are stored
in the diff layer. Any changes to files in the base layer
lead to copying the file from the base layer to the diff
layer. The changes are then written in the diff layer.

Let’s look at an example of how OverlayFS v2 works:

root@instance-1:~# mkdir base diff overlay workdir
root@instance-1:~% echo "test data" > base/testl
root@instance-1l:~# sudo mount \

> -t overlay \

> -0 lowerdir=base,upperdir=diff,workdir=workdir)\
> overlay \

> overlay

root@instance-1:~% l

We create a file in the overlay directory and can see that it appears
indiff:

root@instance-1:~/overlay# touch test2
root@instance-1:~/overlay# 1s

testl test2

root@instance-1:~/overlay# cd ../dif

-bash: cd: ../dif: No such file or directory
root@instance-1:~/overlay# cd ../diff
root@instance-1:~/diff# 1ls

test2

CHAPTER 5 LAYERED FILE SYSTEMS

We now modify the test1 file:

diff# nano testl
/diff# cd /overlay
overlay# nano testl
overlay# cat testl
/overlay# cd ../base
/base# cat testl

If we check the file in the diff directory, we see the changed file.
However, if we go to the base directory, we still see the old file. This means
that when we modified the file in the base directory, it was copied to the
diff directory first, after which the changes were made.

After these examples are executed, if users wanted to do a cleanup of
resources, they could execute the following command to unmount the
OverlayFS:

root@instance-1: umount overlay

After the unmount is complete, the directories can also be removed if
desired.

Let’s now consider how container engines like Docker implement this
process. There is an Overlay2 storage driver in Docker, which you can find
out more about at https://github.com/moby/moby/blob/master/daemon/
graphdriver/overlay2/overlay.go.

Docker creates multiple read layers (base layers) and one read/write
layer called the container layer (in our case, the overlay layer).

The multiple read layers can be shared across different containers
on the same host, thereby attaining very high optimization. As hinted at
earlier, since we have the same file system and the same inodes, the OS
page cache is also shared across all containers on the same host.

92

https://github.com/moby/moby/blob/master/daemon/graphdriver/overlay2/overlay.go
https://github.com/moby/moby/blob/master/daemon/graphdriver/overlay2/overlay.go

CHAPTER 5 LAYERED FILE SYSTEMS

Contrary to this, if we see a Docker driver device mapper, since it gives
a virtual disk for each layer, we might not experience the sharing we get
with OverlayFS. But now, even with the device mapper usage in Docker, we
can pass the -shared-rootfs option to the daemon to share the rootfs.
This basically works by creating a device for the first container base
image and then doing bind mounts for subsequent containers. The bind
mounts allow us to preserve the same inodes, and therefore the page cache
is shared.

Summary

This chapter provided a comprehensive overview of file systems, including
the concept of layered file systems with a focus on OverlayFS. It explained
how Linux treats everything as a file and uses the virtual file system to
abstract various file systems. The VFS employs essential data structures
like File, Inode, Dentry, and Superblock to manage file operations
efficiently. It details how the page cache optimizes read and write
operations by caching recently accessed data in memory. The chapter
then explored the advantages of layered file systems, where multiple read-
only layers can be combined, enabling files to be shared and efficiently
managed. It also discussed how container engines like Docker utilize
OverlayFS to optimize storage and facilitate shared inodes, leading to a
more efficient use of the OS page cache.

93

CHAPTER 6

Creating a Simple
Container Framework

In the previous chapters, you learned about the important building

blocks of the container framework: namespaces, cgroups, and layered file

systems. In this chapter, you learn how these building blocks make up the

container framework by building your own simple container framework.
Since we have covered the basics of what constitutes a container, it is time

to look at how to write your own simple container. By the end of this chapter,

you will have created your own simple container using namespace isolation.

Let’s get started.

| have tested the commands that appear in the chapter on Ubuntu
19.04 with Linux Kernel 5.0.0-13.

The UTS Namespace

The first command we explore is called unshare. This command allows
you to unshare a set of namespaces from the host. We will enter a new uts
namespace and change the hostname within that namespace:

root@osboxes:~# unshare -u /bin/bash
root@osboxes:~# hostname test

© Shashank Mohan Jain 2023 95
S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1_6

https://doi.org/10.1007/978-1-4842-9768-1_6#DOI

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

root@osboxes:~# hostname
test

root@osboxes:~# exit
exit

root@osboxes:~# hostname
osboxes

After entering the UTS namespace, we changed the hostname to test,
and this is what is reflected within that namespace. Once we exit and
reenter the host namespace, we get the host namespace.

The command unshare -u /bin/bash creates the uts namespace and
executes our process (/bin/bash) within that namespace. Note that if we
don’t change the hostname after entering the namespace, we still get the
hostname of the host. This is not desirable, as we need a way to set this
before executing our program within the namespace.

This is where we will explore writing a container using Go (also
called Golang) and then set up namespaces before we launch the process
within the container. Golang is the most common systems programming
language around. It is used to create container runtimes like Docker, as
well as container orchestration engines like Swarm and Kubernetes. Apart
from that, it has been used in various other systems programming settings.
It’s a good idea to have a decent understanding of Golang before you delve
into the code in this chapter.

Naturally, writing the container in Golang first requires installing
Golang on the VM or on the machine on which you are working, as
described next. (For complete instructions on Golang download and
installation, visit https://go.dev/doc/install.)

96

https://go.dev/doc/install

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

Golang Installation

Here are the quick Golang install commands:

root@osboxes:~# wget https://go.dev/d1/go1.20.6.11inux-
amdé4. tar.gz
root@osboxes:~# tar -C /usr/local -xzf go1.20.6.linux-
amd64.tar.gz

You can add the following line to /root/.profile to add the Golang
binaries to the system PATH variable:

root@osboxes:~# export PATH=$PATH:/usr/local/go/bin
Then run this command in your terminal:
root@osboxes:~# source ~/.profile

To check if Go (Golang) is installed properly, you can run this
command:

root@osboxes:~# go version

If the installation was successful, you should see the following output:

root@instance-1:/home/jain_sm# go version

go version gol.20.6 linux/amdé4
Now we will build a container with only a namespace and then keep

modifying the program to add more functionalities, like shell support,
rootfs, networking, and cgroups.

97

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

Building a Container with a Namespace

Let’s revisit Linux namespaces briefly before we build the container.
Namespaces are in the Linux kernel, similar to sandbox kernel resources
like file systems, process trees, message queues, and semaphores, as well
as network components like devices, sockets, and routing rules.

Namespaces isolate processes within their own execution sandbox so that
they run completely isolated from other processes in different namespaces.

There are six namespaces which are covered here namely PID, Mount,
UTS, Network, IPC and User namespaces:

o PID: The processes within the PID namespace have a
different process tree. They have an init process with a
PID of 1.

¢ Mount: This namespace controls which mount points
a process can see. If a process is within a namespace, it
will only see the mounts within that namespace.

o UTS: This allows a process to see a different namespace
than the actual global namespace.

o Network: This namespace gives a different network
view within a namespace. Network constructs like
ports, iptables, and so on, are scoped within the
namespace.

o IPC: This namespace confines interprocess
communication structures like pipes within a specific
namespace.

o User: This namespace allows for a separate user and
group view within the namespace.

We don’t discuss the cgroup namespace here, which (as described in
Chapter 3) also allows the cgroups to be scoped into their own namespaces.

98

https://doi.org/10.1007/978-1-4842-9768-1_3

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

Now let’s get our hands dirty and create a Go class called myuts. go.
Copy the following snippet and use go build myuts.go to get the myuts
binary. Also execute the myuts binary as the root user.

package main
import (
"fmt"
"os"
"os/exec"
"syscall"
)
func main() {
cmd := exec.Command("/bin/bash™)
// The statements below refer to the input, output and error
streams of the process created (cmd)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
//setting an environment variable
cmd.Env = []string{"name=shashank"}
// the command below creates a UTS namespace for the process

cmd. SysProcAttr = &syscall.SysProcAttr{
Cloneflags: syscall.CLONE_NEWUTS,
}
if err := cmd.Run(); err != nil {
fmt.Printf("Error running the /bin/bash command -
%s\n", err)
0s.Exit(1)

99

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

This is a simple Go program that executes a shell, sets up the I/O
streams for the process, and then sets one env variable. Then it uses the
following command to create a UTS namespace:

cmd.SysProcAttr = &syscall.SysProcAttr{
Cloneflags: syscall.CLONE_NEWUTS,

It then passes the CLONE flags (in this case, we just pass UTS as the
Clone flag). The clone flags control which namespaces are created for the
process.

After that, we build and run this Golang process. We can see whether
the new namespace was created by using the proc file system and checking
the proc/<<pid>>/ns:

root@osboxes:~/book prep# 1ls -1i /proc/self/ns/uts
15738 lrwxrwxrwx 1 root root 0 Jul 13 15:53 /proc/self/ns/uts
-> 'uts:[4026531838]"

root@osboxes:~/book_prep# ./myuts
root@osboxes:/root/book prep# 1ls -1i /proc/self/ns/uts

17043 lrwxrwxrwx 1 root root 0 Jul 13 16:06 /proc/self/ns/uts
-> 'uts:[4026532325]"

root@osboxes:/root/book prep#exit

First, we print the namespace of the host and then we print the
namespace of the container we are in.
We can see that the uts namespaces are different.

Adding More Namespaces

Now that you know how to create a UTS namespace, this section
demonstrates how to add more namespaces.

100

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

First, we add more clone flags, in order to create more namespaces for

the container we are creating:

package main
import (
"fmt"
"os"
"os/exec"
"syscall"
)
func main() {
cmd := exec.Command("/bin/bash")
cmd.Stdin = o0s.Stdin
cmd.Stdout = os.Stdout

cmd.Stderr = os.Stderr

cmd.Env = []string{"name=shashank"}

//command below creates the UTS, PID and IPC , NETWORK and

USERNAMESPACES

cmd.SysProcAttr = &syscall.SysProcAttr{

Cloneflags: syscall.CLONE_NEWNS |

syscall.CLONE_NEWUTS |
syscall.CLONE_NEWIPC |
syscall.CLONE_NEWPID |
syscall.CLONE_NEWNET |
syscall.CLONE_NEWUSER,

}

if err := cmd.Run(); err != nil {

fmt.Printf("Error running the /bin/bash command -

%s\n", err)

0s.Exit(1)

}

}

101

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

In the code above we added more namespaces via the clone flag. We
build and run the program as follows:

root@osboxes:~/book _prep# ./myuts
nobody@osboxes:/root/book prep$ 1ls -1i /proc/self/ns/ total 0
17488 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 cgroup ->
'cgroup:[4026531835]"

17483 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 ipc ->
"ipc:[4026532335]"

17487 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 mnt ->
'mnt:[4026532333]"

17481 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 net ->
"net:[4026532338]"

17484 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 pid ->
'pid:[4026532336]"

17485 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 pid for_
children -> 'pid:[4026532336]"

17489 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 time ->
"time:[4026531834]"

17490 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 time for_
children -> 'time:[4026531834]"

17486 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 user ->
'user:[4026532325]"

17482 lrwxrwxrwx 1 nobody nogroup O Jul 14 16:10 uts ->
"uts:[4026532334]"

We have the namespaces this container belongs to. Now we see
that the ownership belongs to nobody. This is because we also used a
user namespace as a clone flag. The container is now within a new user
namespace. User namespaces require that we map the user from the
namespace to the host. Since we have not done anything yet, we still see
nobody as the user.

102

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

We now add user mapping to the code:

package

import (

main

II_Fmt n

0sS

"os/exec'

"syscall”

)

func main() {

cmd

cmd.
cmd.
cmd.
cmd.

cmd.

:= exec.Command("/bin/bash™)
Stdin = o0s.Stdin

Stdout = os.Stdout

Stderr = os.Stderr

Env = []string{"name=shashank"}

SysProcAttr = &syscall.SysProcAttr{

Cloneflags: syscall.CLONE_NEWNS |
syscall.CLONE_NEWUTS |
syscall.CLONE_NEWIPC |
syscall.CLONE_NEWPID |
syscall.CLONE_NEWNET |
syscall.CLONE_NEWUSER,

UidMappings: []syscall.SysProcIDMap{

{
ContainerID: O,
HostID: os.Getuid(),
Size: 1,

})

b

103

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

GidMappings: []syscall.SysProcIDMap{

{
ContainerID: o,
HostID: os.Getgid(),
Size: 1,

}J

b
}

if err := cmd.Run(); err != nil {
fmt.Printf("Error running the /bin/bash command -
%s\n", err)
os.Exit(1)

You can see that we have UidMappings and GidMappings. We have a
field called ContainerID, which we are setting to 0. This means we are
mapping the uid and gid 0 within the container to the uid and gid of the
user who launched the process.

There is one interesting aspect I would like to touch upon in the
context of user namespaces: you don’t need to be the root on the host
in order to create a user namespace. This provides a way to create
namespaces, and thereby containers, without being the root on the
machine, which is a big security win, as providing root access to a process
can be hazardous. If programs are launched as the root, any compromise
to those programs can give root privileges to the attacker. In turn, the
whole machine gets compromised.

Technically, you can be non-root on the host and then create a user
namespace and other namespaces within that user namespace. Mind you,
all the other namespaces, if launched without a user namespace, will need
root access.

104

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

If we take the previous example, where we are passing all the flags
together, the system first creates a user namespace and places all the other
namespaces within that user namespace.

I cannot cover the user namespace topic in its entirety here, but it is
an interesting area for curious readers to explore. One area I can mention
straightaway is that of Docker builds, wherein we need root access to build
an image within a container. This is necessary for many reasons, as we
need some layered file systems mounted within the container, and creating
a new mount requires root privilege.

The same holds for setting up virtual network devices like virtual
ethernet (veth) pair in order to wire containers to the host. Having said
that, there has been momentum in the area of rootless containers, which
allow developers to run containers without the root. If you want to
read about this topic in more detail, check out the following: https://
rootlesscontaine.rs/ and https://github.com/rootless-containers.

What we have achieved thus far is the ability to launch a process within
a set of namespaces. But we definitely need more, including a way to
initialize these namespaces before we launch the container.

Back to the program we created. Let’s build and run it:

root@osboxes:~/book_prep# ./myuts
root@osboxes:/root/book prep# whoami
root

root@osboxes:/root/book prep# id
uid=0(root) gid=0(root) groups=0(root)

Now we see that the user within the container is the root.

The program checks the first argument. If the first command is run,
then the program executes /proc/self/exe, which is simply saying
“execute yourself” (/proc/self/exe is the copy of the binary image of the
caller itself).

105

https://rootlesscontaine.rs/
https://rootlesscontaine.rs/
https://github.com/rootless-containers

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

You might be wondering why we need to execute /proc/self/exe.
When we execute this command, it launches the same binary with some
arguments (in our case, we pass fork as the argument to it). Once we are
into different namespaces, we need some setup for the namespaces, like
setting the hostname, before we launch the process within the container.

Executing /proc/self/exe gives us the opportunity to set up the
namespaces like so:

1. Setthe hostname.

2. Within the mount namespace, we do a pivot root,
which allows us to switch the root file system. It does
this by copying the old root to some other directory
and making the new path the new root. This
pivot root has to be done from within the mount
namespace, as we don’t want to move the rootfs off
the host. We also mount the proc file system. This
is done because the mount namespace inherits the
proc of the host and we want a proc mount within
the mount namespace.

3. Once the namespaces are initialized and set up, we
invoke the container process (in this case, the shell).

Running this program launches the shell into a sandbox confined by
the proc mount, and uts namespace.

Now we work on initializing the namespaces before launching the
process within the container. In the following example, we will have a
different hostname in the uts namespace. In the following code, we make
the required changes.

We have a function parent that performs the following:

1. Clones the namespaces.

2. Launches the same process again via /proc/self/
exe and passes a child as the parameter.

106

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

Now the process is called again. Checks in the main function lead to
invocations of the child function. Now you can see that we cloned the
namespaces. All we do now is change the hostname to myhost within the
uts namespace. Once that is done, we invoke the binary passed as the
command-line parameter (in this case, /bin/bash).

Launching a Shell Program Within the
Container

The previous sections explained how to create different Linux namespaces.
This section explains how to enter those namespaces. Entering the
confines of the namespaces can be done by launching a program/process
within the namespaces. The following program launches a shell program
within these namespaces.

package main

import (
"fmt"
"os"
"os/exec"
"syscall"
)

func main() {
switch os.Args[1] {
case "parent":
parent()
case "child":
child()
default:
panic("help")

107

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

// the parent function invoked from the main program which sets
up the needed namespaces
func parent() {
cmd := exec.Command("/proc/self/exe",
append([]string{"child"}, os.Args[2:]...)...)
cmd.Stdin = o0s.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = []string{"name=shashank"}
cmd. SysProcAttr = &syscall.SysProcAttr{
Cloneflags: syscall.CLONE_NEWNS |
syscall.CLONE_NEWUTS |
syscall.CLONE_NEWIPC |
syscall.CLONE_NEWPID |
syscall.CLONE_NEWNET |
syscall.CLONE_NEWUSER,
UidMappings: []syscall.SysProcIDMap{

{
ContainerID: o,
HostID: os.Getuid(),
Size: 1,
b
})
GidMappings: []syscall.SysProcIDMap{
{
ContainerID: O,
HostID: os.Getgid(),
Size: 1,
})
}J

108

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

must(cmd.Run())
}
// this is the child process which is a copy of the parent
program itself.
func child () {
cmd := exec.Command(os.Args[2], os.Args[3:]...)

cmd.Stdin = o0s.Stdin

cmd.Stdout = os.Stdout

cmd.Stderr = os.Stderr
//the command below sets the hostname to myhost. Idea here is
to showcase the use of UTS namespace
must(syscall.Sethostname([]byte("myhost")))
// this command executes the shell which is passed as a program
argument
must(cmd.Run())
}
func must(err error) {

if err != nil {

fmt.Printf("Error - %s\n", err)

Upon executing the program, we can launch the binary within the new
namespaces (note that the hostname is set to myhost):

root@osboxes:~/book_prep# ./myuts parent /bin/bash
root@myhost:/root/book prep# hostname

myhost

root@myhost:/root/book prep#

After the uts namespace, it’s time to get more adventurous. We now
work on initializing the mount namespace.

109

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

One thing to understand here is that all mounts from the host are
inherited within the mount namespace. Therefore, we need a mechanism
to clear the mounts and only make mounts for the mount namespace
visible within that namespace.

Before we move ahead, one of the things to understand conceptually
is the system call pivot_root. This system call allows us to change the root
file system for the process. It mounts the old root to some other directory
(in the following example, the author used pivot root as the directory to
mount the old root on) and mounts the new directory on /. This allows us
to clear all the host mounts within the namespace.

Again, we need to be inside the mount namespace before we
invoke the pivot root. Since we already have a hook on namespace
initialization (via the /proc/self/exe hack), we need to introduce a pivot
root mechanism.

Providing the Root File System

We will use the rootfs from busybox (rootfs tar file), which you can
download from

https://github.com/ericchiang/containers-from-scratch/
releases/download/v0.1.0/rootfs.tar.gz

After downloading rootfs.tar.gz, extract it to /root/book prep/
rootfs in your system. This location is referred to in this code as the
location of rootfs. As shown in Figure 6-1, the contents of /root/book
prep/rootfs should look the same on your system.

110

https://github.com/ericchiang/containers-from-scratch/releases/download/v0.1.0/rootfs.tar.gz
https://github.com/ericchiang/containers-from-scratch/releases/download/v0.1.0/rootfs.tar.gz

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

root@osboxes:~/book_prep/rootfs# 1ls -1

total 48

drwxr-xr-x 2 root root 12288 Jun 23 2016 bin
drwxr-xr-x Sys Ssys 4096 Jun 23 2016 dev
drwxr-xr-x root root 4096 Jun 23 2016 etc
drwxr-xr-x 99 99 4096 Jun 23 2016 home
drwxr-xr-x root root 4096 Jun 23 2016 lib
Lrwxrwxrwx root root 3 Jun 23 2016 lib64 -> 1lib

drwxr-xr-x
drwxr-xr-x
drwxrwxrwt

root root 4096 Jul 11 07:55 proc
root root 4096 Jun 23 2016 root
root root 4696 Jun 23 2016 [

drwxr-xr-x 3 root root 4096 Jun 23 2016 usr

drwxr-xr-x 4 root root 46096 Jun 23 2016 var

root@osboxes:~/book_prep/rootfss |

B WNNNENNNNN

Figure 6-1. The contents of the /root/book_prep/rootfs path

After extracting the rootfs, we can see the directory structure under
the rootfs directory:

root@osboxes :~/book_prep/rootfs# 1s

bin dev etc home T1ib 1ib64 root [El usr var
root@osboxes :~/book_prep/rootfs# cd

root@osboxes :~/book_prep# |

The following program does a pivot root to the rootfs within the
mount namespace.

The mount namespace becomes important, as it allows us to sandbox
the file system mounts. This is one way to get an isolated view of the
file system hierarchy and see what is present on the host or on different
sandboxes running on the same host.

As an example, assume there are two sandboxes—sandboxA and
sandboxB—running on the host. When sandboxA gets its own mounts, its
file system sees a different and isolated mount from what sandboxB sees,
and neither can see the mounts of the host. This provides security at the
file system level, as individual sandboxes cannot access files from different
sandboxes or from the host.

111

CHAPTER 6 CREATING A SIMPLE CONTAINER FRAMEWORK
package main

import (
“fmt"
"os"
"os/exec"
"path/filepath”

"syscall”
)

func pivotRoot(newroot string) error {
putold := filepath.Join(newroot, "/.pivot root")
//if err != nil {
//return err
/)
// Ensure putold is removed after the function returns

// Bind mount newroot to putold to make putold a valid
mount point

if err := syscall.Mount(newroot, newroot, "", syscall.MS
BIND|syscall.MS REC, ""); err != nil {

return err

}

// create putold directory
if err := os.MkdirAll(putold, 0700); err != nil{
return err

}
// Call pivot root

if err := syscall.PivotRoot(newroot, putold); err != nil {
return err

}

// Change the current working directory to the new root

112

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

if err := os.Chdir("/"); err != nil {
return err

}

// Unmount putold, which now lives at /.pivot root
if err := syscall.Unmount("/.pivot root", syscall.MNT_
DETACH); err != nil {

return err
}
return nil
}
func parent() {
cmd := exec.Command("/proc/self/exe",

append([]string{"child"}, os.Args[2:]...)...)
cmd.Stdin = o0s.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = []string{"name=shashank"}
cmd. SysProcAttr = &syscall.SysProcAttr{
Cloneflags: syscall.CLONE_NEWNS |
syscall.CLONE_NEWUTS |
syscall.CLONE _NEWIPC |
syscall.CLONE_NEWPID |
syscall.CLONE_NEWNET |
syscall.CLONE_NEWUSER,
UidMappings: []syscall.SysProcIDMap{

{
ContainerID: 0,
HostID: os.Getuid(),
Size: 1,

})

b

113

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

GidMappings: []syscall.SysProcIDMap{

{
ContainerID: o,
HostID: os.Getgid(),
Size: 1,
}J
b
}
must(cmd.Run())

}

func child() {
// Set the hostname for the child process
must(syscall.Sethostname([]byte("myhost")))

// Now execute the command specified in the command-line
arguments
cmd := exec.Command(os.Args[2], os.Args[3:]...)
cmd.Stdin = o0s.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
must(mountProc("/root/book prep/rootfs"))
must(syscall.Sethostname([]byte("myhost")))
if err := pivotRoot("/root/book prep/rootfs"); err != nil{
fmt.Printf("Error running pivot root - %s\n",err)
os.Exit(1)
}
must(cmd.Run())

}

func must(err error) {

114

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

if err != nil {
fmt.Printf("Exrror - %s\n", err)

}

func main() {

switch os.Args[1] {

case "parent":
parent()

case "child":
child()

default:
panic("help")

}

// this function mounts the proc filesystem within the
// new mount namespace
func mountProc(newroot string) error {

source := "proc"

target := filepath.Join(newroot, "/proc")
fstype := "proc"

flags := 0

data := ""

//make a Mount system call to mount the proc filesystem within
the mount namespace
0s.MkdirAll(target, 0755)
if err := syscall.Mount(
source,
target,
fstype,
uintptr(flags),
data,

115

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

); err != nil {
return err

}

return nil

After executing the following program, we can see the directories
under rootfs, see that the hostname has changed, and see the uid as 0
(the root within the container):

root@osboxes :~/book_prep# ./myuts parent /bin/sh

/ #1s
p 1ib64
/ # hostname
myhost
/ # id
uid=0(root) gid=0(root) groups=0(root)
/ &

We still have a problem. By default, the proc mount is not there. We
need the proc mount to provide information about different processes
running within the namespace and as an interface to the kernel for other
utilities, as explained in the pseudo file systems in Chapter 5. We need to
mount the proc file system within the mount namespace.

The Mount Proc File System

Next we add the new mountProc function to the program:

func mountProc(newroot string) error {

source := "proc"

target := filepath.Join(newroot, "/proc")
fstype := "proc"

flags := 0

data := ""

116

https://doi.org/10.1007/978-1-4842-9768-1_5

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

//make a Mount system call to mount the proc filesystem within
the mount namespace
0s.MkdirAll(target, 0755)
if err := syscall.Mount(
source,
target,
fstype,
uintptr(flags),
data,
); err != nil {
return err

}

return nil

Now, when we run ps inside the container to list the processes running
within the sandbox, we get the output shown here. The reason for this is
that ps uses the /proc file system.

f e e e m e —— ————— e

root@oshoxes: ~7book_p re-_'B# :’/myu ts hngrér;:c : ?b1 n/sh

/ # ps

PID USER TIME COMMAND
1 root 0:00 /proc/self/exe child /bin/sh
6 root 0:00 /bin/sh
7 root 0:00 ps

/ #|

We can use the nsenter command to enter the created container
namespaces. To try that, let the created container be in the running state
and open another Linux terminal. Then run this command:

ps -ef | grep /bin/sh
You should see output similar to the following. In my case, my

container’s PID is 5387. Users should use the PIDs on their own machines.

117

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

|[root@osboxes:~# ps -ef | grep /bin/sh

Iroot 5387 3829 0 14:00 pts/1 00:00:00 ./myuts parent /bis
hcot 5392 5387 0 14:00 pts/1 00:00:00 /prac/self/exe ch1]d
root 5397 5392 0 14:00 pts/1 00:00:00

root 5574 5560 0 14:04 pts/0 00:00:00 grep --color=auto

Iroot@osboxes:~# nsenter -a -t 5397 /bin/bash
nsenter: failed to execute /bin/bash: No such file or directory
"oot@osboxes ~# nsenter -a -t 5397 /bin/sh

i/ #|

Executing nsenter -a -t 5387 /bin/sh allows this shell to be created
in the namespaces of the process with the PID 5387, as shown.
Overall the code is doing the following things:

e The program accepts a command-line argument to
determine whether it will act as the parent or the child
process.

o [Ifit’'s the “parent” process, it creates a child process
with certain configurations.

e The child process is created with isolated namespaces
for the mount, UTS (host and domain name), IPC
(inter-process communication), PID (process ID),
network, and user.

e The pivotRoot() function is used to change the
root file system. It sets up a temporary directory and
performs the root file system change operation.

o The “parent” process starts the child process and waits
for it to finish executing.

o [Ifit'sthe “child” process, it executes a command based
on the provided arguments.

e ThemountProc() function is used to mount the /proc
file system within the new namespace.

o The hostname is set to a specific value.

118

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

o The pivotRoot() function is called to change the root
file system to a different directory.

o The specified command is executed within the new
environment.

o There’s also a utility function called must() that
handles error checking and printing error messages.

Enabling the Network for the Container

In previous sections, we created a container with uts, PID, and mount
namespaces. We didn’t add the network namespace. In this section, we
discuss how to set up network namespaces for the container.

Before we delve into the networking topic, I will provide a brief
primer on virtual devices in Linux, which are essential for understanding
container-based networks, or for that matter any virtual networking.

Virtual Networking: A Brief Primer

In a virtualized world, there is a need to send packets across virtual
machines to the actual physical devices, between VMs, or between
different containers. We need a mechanism to use virtualized devices in
this way. Linux provides a mechanism to create virtual network devices,
called tun and tap. The tun device acts at Layer 3 of the network stack,
which means it receives the IP packets. The tap device acts at Layer 2,
where it receives raw Ethernet packets.

Now one might ask, what are these devices used for? Consider a
scenario where containerA needs to send packets outbound to another
container. The packets from one packet are transmitted to the host
machine, which smartly uses a tap device to pass the packet to a software
bridge. The bridge can then be connected to another container.

119

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

Let’s see how these tap devices work with a simple example. The
following creates two tap devices, called mytap1 and mytap2:

jain sm@instance-1:~$ sudo su
root@instance-1:/home/jain_sm# ip tuntap add name mytapl mode tap
root@instance-1:/home/jain_sm# ip tuntap add name mytap2 mode tap

Listing the tap devices, we can see there are two network interfaces:

root@instance-1:/home/jain_sm# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc nogqueue state UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
wvalid _1ft forever preferred 1ft forever
ineté ::1/128 scope host
valid_lft forever preferred lft forever
2: ensd: <BROADCAST,MULTICAST,UP, LOWER UP> mtu 1460 qdisc mq state UP group default glen 1000
link/ether 42:01:0a:80:00:02 brd ff:ff:££:££.££:€¢
inet 10.128.0.2/32 brd 10.128.0.2 scope global ensd
valid_lft forever preferred lft forever
inet6 feB80::4001:aff:fef0:2/64 scope link
valid 1ft forever preferred lft forever
3: mytapl: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN group default glen 1000
link/ether le:34:fc:78:28:f6 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.10/32 scope global mytapl
valid _1ft forever preferred lft forever
4: mytap2: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN group default glen 1000
link/ether 36:df:e9:2c:ad:76 brd ff:ff:ff:ff:ff:£f
inet 10.0.0.11/32 scope global mytap2
valid lft forever preferred 1ft forever

We assign IP addresses to these devices:

:ootoinstanca-l:Ihonelgain:sn# i; addr add 10.0.0.10 dev mytapl ¥
root@instance-1:/home/jain_sm# ip addr add 10.0.0.11 dev mytap2

Running a simple ping from one device to the other results in the
following:
root@instance-1:/home/jain sm# ping -I 10.0.0.10 -cl 10.0.0.11

?ING 10.0.0.11 (10.0.0.11) from 10.0.0.10 : 56(84) bytes of data.
54 bytes from 10.0.0.11: icmp seg=1 ttl=64 time=0.054 ms

--—- 10.0.0.11 ping statistics ---

L packets transmitted, 1 received, 0% packet loss, time Oms
ctt m;n/avglmaxlmdev =70f054/9.05410.05410.000 ms

120

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

In these examples, we explicitly created two tap devices and tried a
ping between the two.

We can also use veth pairs, which can be thought of as virtual cables
that connect the virtual devices. They are used in openstack to connect
software bridges.

First, we create a veth pair as follows:

root@instance-1:/home/jain_sm# ip link add firsttap type veth peer name secondtap

This creates two tap interfaces, called firstap and secondtap.

Now, we add IP addresses to the tap devices and run a ping:
root@instance-1:/home/jain_sm# ip addr add 10.0.0.12 dev firsttap
root@instance-1:/home/jain_sm# ip addr add 10.0.0.13 dev secondtap
root@instance-1:/home/jain_sm# ping -I 10.0.0.12 -cl 10.0.0.13

PING 10.0.0.13 (10.0.0.13) from 10.0.0.12 : 56(84) bytes of data.
64 bytes from 10.0.0.13: icmp_seg=1l ttl=64 time=0.032 ms

With a basic understanding of tun and tap devices, let’s move on to
how the networking setup should work between the namespace created
for the container and the host’s namespace. For that process, we follow
these steps:

1. Create a Linux bridge on the host.
2. Create a veth pair.

3. Connect one end of the veth pair must be connected
to the bridge.

4. Connect the other end of the bridge to the network
interface on the container namespace.

These steps are illustrated in Figure 6-2.

121

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

Host Namespace Container
Namespace

Figure 6-2. Networking between the container’s namespace and the
host’s namespace

Now we modify the code to enable the network namespace:
package main

import (
“fmt"
"os"
"os/exec"
“time"
"path/filepath”
"syscall”

"net

)

func pivotRoot(newroot string) error {
putold := filepath.Join(newroot, "/.pivot root")
//if err != nil {
//return err
// }
// Ensure putold is removed after the function returns

// Bind mount newroot to putold to make putold a valid
mount point

122

}

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

if err := syscall.Mount(newroot, newroot,
BIND|syscall.MS REC, ""); err != nil {
return err

, syscall.MS_

// create putold directory
if err := os.MkdirAll(putold, 0700); err != nil{

}

}

return err

// Call pivot_root
if err := syscall.PivotRoot(newroot, putold); err != nil {
return err

}

// Change the current working directory to the new root
if err := os.Chdir("/"); err != nil {
return err

}

// Unmount putold, which now lives at /.pivot root
if err := syscall.Unmount("/.pivot root", syscall.MNT
DETACH); err != nil {

return err

}

return nil

func parent() {

cmd := exec.Command("/proc/self/exe",
append([]string{"child"}, os.Args[2:]...)...)
cmd.Stdin = os.Stdin

cmd. Stdout = os.Stdout

cmd.Stderr = os.Stderr

123

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

cmd.Env = []string{"name=shashank"}
cmd. SysProcAttr = &syscall.SysProcAttr{
Cloneflags: syscall.CLONE_NEWNS |
syscall.CLONE_NEWUTS |
syscall.CLONE_NEWIPC |
syscall.CLONE_NEWPID |
syscall.CLONE_NEWNET |
syscall.CLONE_NEWUSER,
UidMappings: []syscall.SysProcIDMap{

{
ContainerID: 0,
HostID: os.Getuid(),
Size: 1,
}J
}J
GidMappings: []syscall.SysProcIDMap{
{
ContainerID: O,
HostID: os.Getgid(),
Size: 1,
}J
b

must(cmd.Start())

pid := fmt.Sprintf("%d", cmd.Process.Pid)
fmt.Printf("obtaibed pid %s",pid)

// Code below does the following

// Creates the bridge on the host

// Creates the veth pair

// Attaches one end of veth to bridge

124

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

// Attaches the other end to the network namespace. This is
interesting
// as we now have access to the host side and the network side
until // we block.
netsetgoCmd := exec.Command("/usr/local/bin/netsetgo”,
"-pid", pid)
if err := netsetgoCmd.Run(); err != nil {
fmt.Printf("Error running netsetgo - %s\n", err)
os.Exit(1)
}
if err := cmd.Wait(); err != nil {
fmt.Printf("Error waiting for reexec.Command - %s\n", err)
os.Exit(1)

func child() {
// Set the hostname for the child process
must(syscall.Sethostname([]byte("myhost")))

// Now execute the command specified in the command-line
arguments
cmd := exec.Command(os.Args[2], os.Args[3:]...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
must(mountProc("/root/book prep/rootfs"))
must(syscall.Sethostname([]byte("myhost")))
if err := pivotRoot("/root/book prep/rootfs"); err != nil{
fmt.Printf("Error running pivot root - %s\n",err)
0s.Exit(1)

}

125

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

if err := waitForNetwork(); err != nil {
fmt.Printf("Error waiting for network -
%s\n", err)
0s.Exit(1)

}

must(cmd.Run())
}

func must(err error) {
if err != nil {
fmt.Printf("Exrror - %s\n", err)

}

func main() {

switch os.Args[1] {

case "parent":
parent()

case "child":
child()

default:
panic("help")

}

func waitForNetwork() error {
maxWait := time.Second * 3
checkInterval := time.Second
timeStarted := time.Now()
for {
interfaces, err := net.Interfaces()
if err !'= nil {

126

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

return err
}
// pretty basic check ...
// > 1 as a lo device will already exist
if len(interfaces) > 1 {
return nil
}
if time.Since(timeStarted) > maxWait {
return fmt.Errorf("Timeout after %s waiting for network"
maxhWait)
}
time.Sleep(checkInterval)
}
}

// this function mounts the proc filesystem within the
// new mount namespace
func mountProc(newroot string) error {

source := "proc"

target := filepath.Join(newroot, "/proc")
fstype := "proc"

flags := 0

data := ""

)

//make a Mount system call to mount the proc filesystem within

the mount namespace
0s.MkdirAll(target, 0755)
if err := syscall.Mount(
source,
target,
fstype,
uintptr(flags),
data,

127

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

); err != nil {
return err

}

return nil

There are a few aspects that are worth considering here. In the earlier
code examples, we initialized namespaces (like changing the hostname
and pivot root) in the child method. Then we launched the shell (/bin/
sh) within the namespaces. This mechanism worked because we just
needed to initialize the namespaces, and that was being done within the
namespaces themselves. When it comes to the network namespace, we
need to carry out certain activities like the following:

e Create a bridge on the host.

o Create the veth pair and make one end connect to
the bridge on the host and the other end within the
network namespace.

The problem with the current way is that when we launch the shell,
we remain in the namespace until we purposely exit it. So, we need a way
to return the code immediately in the API so we can execute the network
setup on the host and join the veth pairs.

Fortunately, the cmd.Run command can be broken into two parts:

o cmd.Start() returns immediately.
o cmd.Wait() blocks until the shell is exited.

We use this to our advantage in the parent() function method. We
execute the cmd. Start () funciton, which returns immediately.

After the start method, we use a library called netsetgo (created by
Ed King from Pivotal). It does the following.

128

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

1. Creates the bridge on the host.
2. Creates the veth pair.
3. Attaches one end of the veth pair to the bridge.

4. Attaches the other end to the network namespace.
This is interesting, as we now have access to the host
side and the network side until we block.

Follow the instructions to download and install netsetgo:

wget "https://github.com/teddyking/netsetgo/releases/
download/0.0.1/netsetgo"

sudo mv netsetgo /usr/local/bin/

sudo chown root:root /usr/local/bin/netsetgo

sudo chmod 4755 /usr/local/bin/netsetgo

In fact, a lot of these explanations are adapted from Ed King’s
examples.
The related code snippet is shown here:

must(cmd.Start())

pid := fmt.Sprintf("%d", cmd.Process.Pid)

netsetgoCmd := exec.Command("/usr/local/bin/netsetgo”,

"-pid", pid)

if err := netsetgoCmd.Run(); err != nil {
fmt.Printf("Error running netsetgo - %s\n", err)
0s.Exit(1)

}

if err := cmd.Wait(); err != nil {
fmt.Printf("Error waiting for reexec.Command - %s\n", err)
0s.Exit(1)

129

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

Once this is done, we use cmd.Wait (), which relaunches the program
(/proc/self/exe). Then we execute the child process and go ahead with
all the other initializations. After the initializations, we can launch the shell
within the namespaces.

Next, we should verify the network communication from the host to
the container and from the container to the host. First run this program:

/myuts parent /bin/sh

Within the container shell, run the ip a command. You should see the
container’s IP address, as shown here:

ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default
qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
5: veth1@if6: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
noqueue state UP group default glen 1000
link/ether e2:8c:f0:b8:35:45 brd ff:ff:ff:ff:ff:ff
inet 10.10.10.2/24 scope global veth1
valid 1ft forever preferred 1ft forever
inet6 fe80::e08c:foff:feb8:3545/64 scope link
valid 1ft forever preferred 1ft forever

Keep the container running and open another terminal (a bash shell)
on the host. Run the following command, which pings the container’s IP:

ping 10.10.10.2

130

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

osboxes@osboxes: ~

osboxes@osboxes:~5 ping 10.16.16.2

PING 16.16.10.2 (10.10.10.2) 56(84) bytes of data.

64 bytes from 10.10.10.2: icmp_seq=1 ttl=64 time=0.098 ms
164 bytes from 10.10.10.2: icmp_seq=2 ttl=64 time=0.045 ms

s

5---10.10.10.2 ping statistics ---

{2 packets transmitted, 2 received, 0% packet loss, time 24ms
rtt minfavg/max/mdev = 0.045/0.071/0.098/0.027 ms
osboxes@osboxes:~$

Note that we are able to ping the container’s IP address from the host.

Now try pinging the host IP address from the container. First, get the
host IP address by running the ifconfig command. As you can see here,
my host IP address is 10.0.2.15:

osboxes@osboxes: ~

ssboxes@osboxes:~$ ifconfig
borgo: flags=4163<UP,BROADCAST ,RUNNING ,MULTICAST> mtu 1560
inet 10.10.10.1 netmask 255.255.255.0 broadcast 0.0.0.0
inet6 fe80::ec28:c2ff:fe14:dc29 prefixlen 64 scopeid Ox20<link>
ether 4a:d8:23:9f:4a:2e txqueuelen & (Ethernet)
RX packets 45 bytes 2864 (2.8 KB)
RX errors ® dropped ® overruns ® frame ©
TX packets 369 bytes 20423 (20.4 KB)
TX errors ® dropped ® overruns @ carrier 8 collisions @

enpBs3: flags=4163<UP,BROADCAST ,RUNNING ,MULTICAST> mtu 1500
inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.6.2.255
inet6 feBO::ce61:badf:3cb9:32c® prefixlen 64 scopeid Ox28<link>
ether ©8:00:27:92:f8:21 txqueuelen 10660 (Ethernet)
RX packets 611 bytes 510075 (510.0 KB)
RX errors ® dropped ® overruns ® frame 0
TX packets 398 bytes 44160 (44.1 KB)
TX errors © dropped © overruns @ carrier & collisions ©

Now ping this host IP address from the container:

/ # ping 18.0.2.15

PING 10.0.2.15 (10.6.2.15): 56 data bytes

64 bytes from 10.0.2.15: seq=0 ttl=64 time=06.050 ms
64 bytes from 10.0.2.15: seg=1 ttl=64 time=0.061 ms
64 bytes from 16.0.2.15: seq=2 ttl=64 time=0.078 ms
64 bytes from 10.6.2.15: seq=3 ttl=64 time=0.083 ms
AC

--- 10.0.2.15 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = ©.050/0.068/0.083 ms

/ #

131

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

As you can see, we could ping from the container to the host as well as
from the host to the container, so networking communication is working
both ways.

Overall the code does the following things:

e The program accepts a command-line argument to
determine whether it will act as the “parent” or “child”
process.

o Ifit’s the “parent” process, it executes the parent()
function. If it’s the “child” process, it executes the
child() function. If neither “parent” nor “child” is
provided as an argument, the program raises a panic
with the message help.

o ThewaitForNetwork() function is defined to check for
network availability. It repeatedly checks the network
interfaces until either a network interface other than
the loopback interface is found or a timeout of 3
seconds is reached.

e ThemountProc() function is defined to mount the /
proc file system within a specified root directory.
It creates the target directory if it doesn’t exist and
mounts the /proc file system onto that directory.

o The pivotRoot() function is defined to pivot the root
file system. It sets up a temporary directory (putold)
to satisfy the pivot_root requirement that the new
root and putold directories must reside on different
file systems. It mounts the new root directory onto
itself, creates the putold directory, performs the pivot
operation to change the root file system, sets the
current working directory to the new root, unmounts
putold, and removes it.

132

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

The parent() function is defined to create a child
process with isolated namespaces. It uses the exec.
Command function to execute a command within a
child process. The command is the current program
itself, with additional arguments to indicate it should
act as the “child” process. It sets the standard input,
output, and error streams for the child process, sets
an environment variable, and configures various
namespaces (CLONE_NEWNS, CLONE_NEWUTS,
CLONE_NEWIPC, CLONE_NEWPID, CLONE_
NEWNET, and CLONE_NEWUSER). It also maps the
user and group IDs from the host to the container
namespaces. The child process is started, and its PID is
obtained.

The netsetgoCmd command is executed to set up
network-related configurations for the child process.
It creates a bridge, a virtual Ethernet pair, and attaches
one end of the virtual Ethernet to the bridge and the
other end to the child process’s network namespace.

The child() function is defined to execute a command
within a child process. It uses exec.Command to execute
the command specified in the program’s command-
line arguments. It sets the standard input, output, and
error streams for the child process. It calls mountProc()
to mount the /proc file system, sets the hostname, calls
pivotRoot () to change the root file system, waits for
the network to be available using waitForNetwork(),
and starts the command execution.

The must () function is a utility function used to handle
errors. If an error is passed to it, it prints an error
message.

133

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

Let’s recap what we have achieved thus far:

e« We created a container with unshare and demonstrated
the ability to change the hostname within a uts

namespace.

e We created a container with Golang with namespaces
like UTS and user.

e We added a mount namespaces and demonstrated how
a separate proc file system can be mounted within the
namespace.

e We added network capabilities to the namespace,
which allow us to communicate between the container
namespaces and the host namespace.

Enabling Cgroups for the Container

We earlier mounted a cgroup on /root/mygrp. We created a directory
child within it. Now we will put our process within the cgroup and cap its
maximum memory.

Here is the sample code snippet:

func enableCgroup() {
cgroups := "/root/mygrp"
pids := filepath.Join(cgroups, "child")
must(ioutil.WriteFile(filepath.Join(pids, "memory.max"),
[]byte("2M"), 0700))
must(ioutil.WriteFile(filepath.Join(pids, "cgroup.procs"),
[]byte(strconv.Itoa(os.Getpid())), 0700))

134

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

In this code snippet, we add the PID of the process we create within
the container (/bin/sh) to the cgroup.procs file and cap the maximum
memory for the process to 2MB.

Before executing this code, you need to make one configuration
change to the OS. Open the /etc/default/grub file using Nano or your
favorite editor:

nano /etc/default/qgrub

In this file, you have to modify the GRUB_CMDLINE LINUX DEFAULT key
to add systemd.unified cgroup_hierarchy=1. Refer to the following
image for clarification.

GRUB_CMDLINE LINUX_DEFAULT="quiet splash systemd.unified_
cgroup_hierarchy=1"

root@osboxes: ~/src

GRUB_DEFAULT=0

GRUB_TIMEOUT=0

GRUB_DISTRIBUTOR="1sb_release -1 -s 2> /dev/null || echo Deblan’
GRUB_CMDLINE_LINUX_DEFAULT="qulet splash systemd.unified_cgroup_hlerarchy=1"

After the update, run the command and reboot the system:
sudo update-grub
After the system reboots, run this command:

cat /proc/cmdline

135

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

root@osboxes:~/src# cat /proc/cmdline

BOOT_IMAGE=/vmlinuz-5.0.0-13-generic root=UUID=03e8c4b4-3806-4e6c-a727-f36adso2f
fid ro quiet splash systemd.unified_cgroup_hierarchy=1

root@osboxes:~/src#

You should see systemd.unified cgroup hierarchy=1 as the BOOT _
IMAGE key in the /proc/cmdline.

To create a cgroup, run the following commands in the terminal. Use
the same folders we used in the program.

mkdir -p /root/mygrp
mount -t cgroup2 none /root/mygrp
mkdir -p /root/myqgrp/child

Now you can run this program:
package main

import (
“fmt"
"os"
"os/exec"
"time"
"path/filepath”
"syscall"
"io/ioutil"
"strconv"

net"

)

func enableCgroup() {
cgroups := "/root/mygrp"
pids := filepath.Join(cgroups, "child")
//0s.Mkdir(filepath.Join(pids, "smj"), 0755)

136

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

must(ioutil.WriteFile(filepath.Join(pids, "memory.max"),
[]byte("2M"), 0700))
// Removes the new cgroup in place after the
container exits
//must(ioutil.WriteFile(filepath.Join(pids, "notify on_
release"), []byte("1"), 0700))
must(ioutil.WriteFile(filepath.Join(pids, "cgroup.procs"),
[]byte(strconv.Itoa(os.Getpid())), 0700))

}

func pivotRoot(newroot string) error {
putold := filepath.Join(newroot, "/.pivot root")
//if err != nil {

//return err

/)

// Ensure putold is removed after the function returns

// Bind mount newroot to putold to make putold a valid
mount point

if err := syscall.Mount(newroot, newroot, "", syscall.MS
BIND|syscall.MS REC, ""); err != nil {

return err

}

// create putold directory
if err := os.MkdirAll(putold, 0700); err != nil{
return err

}
// Call pivot root

if err := syscall.PivotRoot(newroot, putold); err != nil {
return err

}

// Change the current working directory to the new root

137

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

if err := os.Chdir("/"); err != nil {
return err

}

// Unmount putold, which now lives at /.pivot root
if err := syscall.Unmount("/.pivot root", syscall.MNT_
DETACH); err != nil {

return err

}

return nil

}

func parent() {
cmd := exec.Command("/proc/self/exe",
append([]string{"child"}, os.Args[2:]...)...)
cmd.Stdin = o0s.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = []string{"name=shashank"}
cmd. SysProcAttr = &syscall.SysProcAttr{
Cloneflags: syscall.CLONE_NEWNS |
syscall.CLONE_NEWUTS |
syscall.CLONE_NEWIPC |
syscall.CLONE_NEWPID |
syscall.CLONE_NEWNET |
syscall.CLONE_NEWUSER,
UidMappings: []syscall.SysProcIDMap{

{
ContainerID: o,
HostID: os.Getuid(),
Size: 1,

b

b
138

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

GidMappings: []syscall.SysProcIDMap{

{
ContainerID: o,
HostID: os.Getgid(),
Size: 1,

}J

b
}
must(cmd.Start())

pid := fmt.Sprintf("%d", cmd.Process.Pid)
fmt.Printf("obtaibed pid %s",pid)
// Code below does the following
// Creates the bridge on the host
// Creates the veth pair
// Attaches one end of veth to bridge
// Attaches the other end to the network namespace. This is
interesting
// as we now have access to the host side and the network side
until // we block.
netsetgoCmd := exec.Command("/usr/local/bin/netsetgo”,
"-pid", pid)
if err := netsetgoCmd.Run(); err != nil {
fmt.Printf("Error running netsetgo - %s\n", err)
os.Exit(1)
}
if err := cmd.Wait(); err != nil {
fmt.Printf("Error waiting for reexec.Command - %s\n", err)
os.Exit(1)

139

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

func child() {
// Set the hostname for the child process
enableCgroup()
must(syscall.Sethostname([]byte("myhost")))

// Now execute the command specified in the command-line
arguments
cmd := exec.Command(os.Args[2], os.Args[3:]...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
must(mountProc("/root/book prep/rootfs"))
must(syscall.Sethostname([]byte("myhost")))
if err := pivotRoot("/root/book prep/rootfs"); err != nil{
fmt.Printf("Error running pivot root - %s\n",err)
os.Exit(1)
}
if err := waitForNetwork(); err != nil {
fmt.Printf("Error waiting for network -
%s\n", err)
0s.Exit(1)

}

must(cmd.Run())
}

func must(err error) {
if err != nil {
fmt.Printf("Exrror - %s\n", err)

140

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

func main() {

switch os.Args[1] {

case "parent":
parent()

case "child":
child()

default:
panic("help")

}

func waitForNetwork() error {
maxWait := time.Second * 3
checkInterval := time.Second
timeStarted := time.Now()
for {
interfaces, err := net.Interfaces()
if err !'= nil {
return err
}
// pretty basic check ...
// > 1 as a lo device will already exist
if len(interfaces) > 1 {
return nil
}
if time.Since(timeStarted) > maxWait {
return fmt.Errorf("Timeout after %s waiting for network",
maxWait)

}
time.Sleep(checkInterval)

}

141

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

// this function mounts the proc filesystem within the
// new mount namespace
func mountProc(newroot string) error {

source := "proc"

target := filepath.Join(newroot, "/proc")
fstype := "proc"

flags := 0

data := ""

//make a Mount system call to mount the proc filesystem within
the mount namespace

os.MkdirAll(target, 0755)

if err := syscall.Mount(

source,
target,
fstype,
uintptr(flags),
data,

); err != nil {
return err

}

return nil

}

proceeding text shows the process PID added to the cgroup and the
value stored in the memory.max file, which we defined in the program.

142

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

root@instance-1:~/mygrp# 1s

cgroup.controllers cgroup.subtree control
cpuset.cpus.effective io.cost.model

memory.pressure sys-kernel-debug.mount
cgroup.max.depth cgroup.threads

cpuset.mems.effective io.cost.qos

memory.stat sys-kernel-tracing.mount
cgroup.max.descendants child

dev-hugepages .mount io.pressure
proc-sys-fs-binfmt_misc.mount system.slice

cgroup.procs Cpu.pressure
dev-mqueue.mount io.stat
sys-fs-fuse-connections.mount user.slice

cgroup.stat cpu.stat init.scope
memory.numa_stat sys-kernel-config.mount

The proceeding text shows the process PID added to the cgroup and
the value stored in the memory .max file

root@instance-1:~/mygrp# cd child
root@instance-1:~/mygrp/child# cat cgroup.procs

991
1018

root@instance-1:~/mygrp/child# cat memory.max
2097152

Summary

In the chapter, we covered the basics of how Linux containers can be
created in golang.

143

CHAPTER6 CREATING A SIMPLE CONTAINER FRAMEWORK

The chapter covered the specifics of Linux containers (namespaces,
cgroups, and union file systems) and how containers are realized
within the Linux kernel. We wrote a Linux container and saw how, with
some simple programming, we can create a simple container runtime
like Docker.

You are advised to go over each exercise and try different combinations
of the code. As an example, you could do the following:

1. Tryanew rootfs rather than busybox.
2. Try container-to-container networking.
3. Experiment with more resource controls.

4. Run an HTTP server within one container and an
HTTP client within another container and establish

communication over HTTP.

You should now have a decent idea as to what happens under the
hood within a container. Therefore, when you use different container
orchestrators like Kubernetes or Swarm, you’ll more easily understand
what is actually happening.

144

CHAPTER 7

Why Choose Rust

In previous chapters you learned about virtualization in depth and how
different resources like memory, CPU, and networks are virtualized both
in context of VM and containers. We did a deep dive into container-based
virtualization and explored with Golang-based programs how to create
container sandboxes.

In this chapter we cover the basics of the Rust programming language,
which allows us to build more secure container sandboxes owing to the
inherent constructs of Rust programming which are more secure.

Introduction

A few years back, as a programmer struggling with constant memory bugs
and erratic behavior in my code, I was desperate for a solution. That’s
when I stumbled upon Rust, a programming language that claimed to
alleviate these issues and more. Intrigued, I decided to give it a try. To my
surprise, Rust not only guaranteed memory and thread safety, but also
boasted a contemporary syntax and a thriving community. Its ownership
and borrowing mechanisms have enabled me to craft efficient code, free of
memory leaks or data races.

Rust’s package manager, Cargo, streamlines my dependency
management and project building, and a plethora of community-
created libraries and frameworks enable me to dive into projects without
reinventing the wheel.

© Shashank Mohan Jain 2023 145
S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1_7

https://doi.org/10.1007/978-1-4842-9768-1_7#DOI

CHAPTER 7 WHY CHOOSE RUST

But what truly captivates me is Rust’s emphasis on performance.

Its zero-cost abstractions facilitate high-level programming without
sacrificing performance, rivaling lower-level languages like C.

And as a programmer well versed in systems programming, I find
Rust’s focus on safety to be particularly well suited for an area notorious for
security vulnerabilities. Rust enables me to effortlessly create secure and
sturdy systems code.

I am enamored with Rust and its countless advantages. Crafting code
that is not only safe and efficient but also elegant and comprehensible
brings me immense joy. And with a helpful Rust community ever-ready
to lend a hand and impart wisdom, I feel like I have finally found my
programming home.

In the end, discovering Rust not only addressed my programming
woes, but also reignited my passion for the craft. That’s enough of a reason
to learn this beautiful language known as Rust.

We will introduce the language in the next few pages, before we build a
compelling use case like creating a Linux container with Rust.

Rust Installation

To install Rust on Ubuntu, follow these steps. These steps are specific to
Ubuntu and will be different for different Distros of Linux:

1. Update the package index and install the required
dependencies:

sudo apt update
sudo apt install curl build-essential

2. Download and run the Rust installation script:

curl --proto '=https' --tlsvi.2 -sSf https://
sh.rustup.rs | sh

146

CHAPTER 7 WHY CHOOSE RUST

The installation script will prompt you to proceed
with the installation. Press 1 and then press Enter to
proceed with the default installation.

After the installation is complete, you'll see a
message instructing you to add the Cargo and Rust
binaries to your PATH. Add the following line to
your ~/.bashrc, ~/.bash_profile, or ~/.zshrc
file, depending on which shell you use:

export PATH="$HOME/.cargo/bin:$PATH"

Source the updated configuration file to make the
changes take effect in your current shell session:
If you're using Bash:

source ~/.bashrc
If you're using Zsh:

source ~/.zshrc

Verity the installation by checking the version of the
Rust compiler:

rustc --version

Variables

Similar to numerous other programming languages, Rust employs

variables. Variables serve to store data in computer memory, allowing for

its usage and manipulation throughout the program. Rust boasts unique

characteristics to bolster code safety, with variables being integral to these

147

CHAPTER 7 WHY CHOOSE RUST

Variable declaration in Rust is achieved by using the let keyword
succeeded by the variable’s name and its type. For instance, to declare a
variable x of type 132 (32-bit integer), we can write the following:

Note For the code examples in this chapter, you can also try the
code at the Rust Playground: https://play.rust-lang.org/.

let x: i32;

If we want to assign an initial value to the variable, we can do it using
the equals (=) sign, like this:

let x: 132 = 42;

Rust also offers type inference, which means that, in many cases, you
don’t have to explicitly specify the type. The compiler can infer the type
based on the value assigned:

let x = 42; // x is inferred to be of type i32

It is crucial to understand that Rust variables are, by default,
immutable, meaning their values cannot be altered once assigned:

let x = 42;
Then we cannot assign a new value to x like this:
X = 24; // This will result in a compile-time error

However, we can make a variable mutable by using the mut keyword,
like this:

let mut x = 42;
X = 24; // This will work fine

148

https://play.rust-lang.org/

CHAPTER 7 WHY CHOOSE RUST
The following is an example of variable declaration in Rust:

fn main() {
let x: i32 = 42; // Declare an immutable variable x of
type 132
let mut y = 24; // Declare a mutable variable y with
initial value 24
y = 12; // Assign a new value to y

let z = x + y; // Declare a new variable z that is the sum
of x and y

println!("x = {}", x); // Print the value of x
println!("y = {}", y); // Print the value of y
println!("z = {}", z); // Print the value of z

}
Its output is as follows:
X = 42
y =12
z =54

In the prior example, we declare an immutable variable x of type 132
and a mutable variable y with an initial value of 24. We then assign a new
value 12 to y. Next, we declare a new variable z that is the sum of x and y.
Finally, we print the values of x, y, and z.

The following is another example of variable declaration in Rust:

fn main() {
let x = 42; // Declare a variable x of type i32 (type is
inferred)
let mut y = x; // Declare a mutable variable y with initial
value of x
y = 12; // Assign a new value to y

149

CHAPTER 7 WHY CHOOSE RUST

println!("x = {}", x); // Print the value of x
println!("y = {}", y); // Print the value of y
}
Output:
X = 42
y = 12

In this example, we declare a variable x with an initial value of 42. We
then declare a mutable variable y with the initial value of x. We assign a
newvalueof 12 toy.

Data Types

Rust has several built-in data types that allow developers to store,
manipulate, and access data in different ways. Understanding the different
data types is a fundamental aspect of Rust programming.

Primitive Data Types

Rust has the following primitive data types:

e Bool: Bool is a primitive type in Rust that represents a
boolean value. It can have two possible values, true or
false. For example:

let is_rust_awesome: bool = true;

o Char: Char is a primitive type in Rust that represents
a single Unicode scalar value. It is denoted by single
quotes, ' '. For example:

let letter: char = 'A‘;

150

CHAPTER 7 WHY CHOOSE RUST

Integer: Rust offers four separate integer types, having
both signed and unsigned versions. The types include
18,116,132, 164, and their corresponding unsigned
counterparts u8, u16, u32, and u64. The signed integers
employ the i prefix, while unsigned integers use the

u prefix, as shown in the following examples. The size
and range of these integer types differ accordingly.

let a: i32 = 42;
let b: u8 = 255;

Floating-point: Rust has two different floating-point
types, 32 and 64, as shown in the following examples.
They represent single- and double-precision floating-
point values, respectively.

let x: 32
let y: f64

3.14159;
2.71828;

Unit type: Unit type is a special type in Rust that has
only one possible value, (). Itis used when a function
does not return anything or when we need to represent
a void value. In the following example, the greet()
function doesn’t return any value; it just prints a
message. Calling greet () and assigning its return value
to result assigns the unit type () to result.

fn greet() {
println!("Hello, Shashank!");

}
fn main() {

let result: () = greet();
}

151

CHAPTER 7 WHY CHOOSE RUST

Compound Data Types

Rust also has compound data types that can be used to group values of
different types into a single type. The two main compound data types in
Rust are tuples and arrays:

o Tuple: A tuple is a collection of values of different
types. Tuples are declared using parentheses, (). For
example:

let person: (&str, i32) = ("Alice", 32);

e Array: An array is a fixed-size collection of values of the
same type. Arrays are declared using square brackets,
[]. For example:

let numbers: [i32; 5] = [1, 2, 3, 4, 5];

Apart from the built-in data types, Rust enables developers to fashion
custom data types employing structs, enums, and unions. These data types
facilitate the construction of intricate data structures that depict real-world
entities.

Structs, enums, and unions constitute three composite data types
in Rust, which permit the bundling of data and the creation of novel
types with distinct attributes compared to built-in types. In the following
sections, we'll delve into each of these data types and examine examples to
clarify their application.

Structs

In Rust, structs are a fundamental data type that enables the grouping of
related data and the creation of new types with distinct characteristics
from the built-in types. For instance, we can define a basic struct as
follows:

152

CHAPTER 7 WHY CHOOSE RUST

struct Rectangle {
width: u32,
height: u32,

In this example, we've defined a struct called Rectangle that has two
fields: width and height. The width and height fields are both of type u32,
which is an unsigned 32-bit integer. We can use this struct to represent a
rectangle with a given width and height.

We can create instances of the Rectangle struct like this:

let rect = Rectangle { width: 30, height: 50 };

This creates a new Rectangle instance with a width of 30 and a
height of 50.
We can access the fields of a struct using dot notation like this:

println!("The area of the rectangle is {} square pixels.",
rect.width * rect.height);

This will print The area of the rectangle is 1500 square pixels.
to the console.
The following is the complete code:

struct Rectangle {
width: u32,
height: u32,

}
fn main() {
let rect = Rectangle { width: 30, height: 50 };
println!(
"The area of the rectangle is {} square pixels.",
rect.width * rect.height
)5
}

153

CHAPTER 7 WHY CHOOSE RUST

Enums

Enums are another fundamental data type in Rust. They allow us to
define a type that can have one of several variants. Here’s an example of a
simple enum:

enum Fruit {
Apple,
Banana,
Orange(String),
Mango { ripeness: u8 },

In this example, we have an enum called Fruit that can represent
different types of fruit. The first two variants, Apple and Banana, have no
associated values. The third variant, Orange, takes a String parameter to
represent the variety of the orange. This allows us to differentiate between
different types of oranges, like "navel" oranges and "blood" oranges. The
fourth variant, Mango, is a bit more complex. It takes a named parameter,
ripeness, which is a u8 value representing how ripe the mango is. This
allows us to represent different degrees of ripeness, from unripe to fully ripe.

The following enum can be used to represent a variety of different
fruits and their associated characteristics, showcasing how enums in Rust
can be used to create flexible and powerful data types.

let my fruit = Fruit::Orange(String::from("navel™));

In this example, we're creating a variable called my fruit using the
Fruit enum. We're using the Orange variant, and passing in the String
value "navel" to represent the variety of the orange.

This variable could be used later on in the program to represent the fruit
we’re working with, allowing us to handle different types of fruit using a
single enum type. For example, we could write a function that takes a Fruit
parameter and performs different actions based on the variant of the enum.

154

CHAPTER 7 WHY CHOOSE RUST

We can use a match expression to handle the different variants of the
Fruit enum as follows. Don’t worry about the match part for now. We will
cover it in later sections in the context of loops and conditions.

match my fruit {
Fruit::Apple => println!("This is an apple!"),
Fruit::Banana => println!("This is a banana!"),
Fruit::Orange(variety) => println!("This is an orange of
the {} variety!", variety),
Fruit::Mango { ripeness } => println!("This is a mango that
is {}% ripe!", ripeness),

Following is the complete code for showing how matching expressions
work with enums:

enum Fruit {

Apple,
Banana,
Orange(String),
Mango { ripeness: u8 },
}
fn main() {
let my fruit = Fruit::Orange(String::from("navel"));
match my fruit {
Fruit::Apple => println!("This is an apple!"),
Fruit::Banana => println!("This is a banana!"),
Fruit::Orange(variety) => println!("This is an orange
of the {} variety!", variety),
Fruit::Mango { ripeness } => println!("This is a mango
that is {}% ripe!", ripeness),
}
}

155

CHAPTER 7 WHY CHOOSE RUST

In this example, we're using a match statement to perform different
actions based on the variant of the Fruit enum stored in the my fruit
variable. If my_fruit contains the Apple variant, we print "This is
an apple!" to the console. If it contains the Banana variant, we print
"This is a banana!".Ifit contains the Orange variant, we extract the
associated String value using a variable variety and use it to print "This
is an orange of the {variety} variety!".Finally, ifit contains
the Mango variant, we extract the associated u8 value using a named
parameter ripeness and use it to print "This is a mango that is
{ripeness}% ripe!".

Using a match statement with an enum allows us to handle different
cases in a clean and concise way, making our code more readable and
easier to maintain.

Unions

Unions are similar to structs in that they allow us to group related data
together. However, unions have a different set of properties. Specifically,
they allow us to define a type that can hold one of several different types of
data, but only one at a time. Here’s an example of a simple union:

union IntOrFloat {
i: i32,
f: 32,

In this example, we've defined a union called IntOrFloat that can
hold either an 132 or an 32, but not both at the same time. We can use
this union to represent a value that could be either an integer or a floating-
point number.

We can create instances of the IntOrFloat union like this:

let value = IntOrFloat { f: 3.14 };

156

CHAPTER 7 WHY CHOOSE RUST

This creates a new IntOrFloat instance with the f field set to 3. 14.
Unions are another way to combine different types of data under a
single type. However, unlike structs and enums, unions can only hold one
value at a time. The size of the union is determined by the largest member.
This makes a union useful in situations where you need to store different

types of data in the same space.
Here’s an example of a union:

union Data {

num: i32,
ptr: *const i32,
}
fn main() {
let mut data = Data { num: 42 };
unsafe {
println!("data.num = {}", data.num);
data.ptr = &data.num as *const i32;
println!("data.ptr = {:?}", data.ptr);
}
}
The following output of the prior program shows the functioning
of unions:
data.num = 42
data.ptr = 0x7ffc403337d0

In this example, we define a union called Data that can hold either an
132 or a pointer to an 132. We then create an instance of the union and
initialize it with the value 42. We then use the unsafe keyword to assign the
address of the num field to the ptr field, and print out both fields.

157

CHAPTER 7 WHY CHOOSE RUST

Note Rust’s data types provide a powerful and flexible way to
represent complex data structures in your code. Understanding how
to use them effectively is key to writing high-quality Rust programs.

Functions

Functions are a fundamental building block of Rust programs. They allow
you to group together a set of instructions that can be executed repeatedly
and, potentially, with different arguments. In this section, we’ll explore
Rust’s functions in more detail, including how to define them, pass
arguments, and return values.

Defining Functions

Functions in Rust are defined using the fn keyword, followed by the
function name, and then a set of parentheses that may include zero or
more arguments. Here’s an example:

fn greet(name: &str) {
println!("Hello, {}!", name);

In this example, we define a function called greet that takes a single
argument of type &str (a string slice) and prints out a greeting message
using that argument. The function does not return a value.

158

CHAPTER 7 WHY CHOOSE RUST

Calling Functions

Once you've defined a function, you can call it from other parts of your
code using the function name followed by a set of parentheses containing
any arguments. Here’s an example:

fn main() {
greet("Isha");
greet("Shashank");

In this example, we call the greet function twice with different names.
When the program is run, it will print out two greeting messages, one for

each name.

Function Arguments

Functions in Rust can take zero or more arguments, which are defined
within the parentheses following the function name. Arguments can be of
any valid Rust data type, including custom structs and enums. Here’s an
example:

struct Book {
title: String,
author: String,
year: u32,

}

fn print_book(book: 8Book) {
println!(""{}" by {} ({})", book.title, book.author,
book.year);

159

CHAPTER 7 WHY CHOOSE RUST

fn main() {
let beginning = Book {
title: "Beginning of Infinity".to string(),
author: "David Deutche".to string(),
year: 2011,

};
print_book(&beginning);

In this example, we have a Book struct that contains fields for the title,
author, and year of publication. We also have a function called print_book
that takes a reference to a Book struct and prints out the title, author, and
year in a formatted string.

Inmain(), we create a Book instance called beginning, and pass a
reference to it to the print_book function. The function then prints out the
book’s title, author, and year using the formatted string.

Using a struct like Book allows us to group related data together and
pass it around as a single entity. We can then define functions that operate
on this data in a clean and organized way, making our code more modular
and easier to read.

Function Return Values

Functions in Rust can also return values using the -> syntax followed by
the return type. Here’s an example:

fn square(x: i32) -> i32 {

X * x
}
fn main() {

let result = square(4);

println!("4 squared is {}", result);
}

160

CHAPTER 7 WHY CHOOSE RUST

In this example, we define a function called square that takes a single
132 argument and returns the square of that argument. The main function
calls the square function with an argument of 4, and then prints out
the result.

Function Scope and Lifetime

Variables defined within a function have a scope that is limited to that
function. They are created when the function is called, and destroyed
when the function returns. This means that they cannot be accessed from
other parts of your code. Here’s an example:

fn main() {
let x = 42;
{
let y = 13;
println! ("x = {}, y = 3", %, y);
}
// y is not in scope here
println!("x = {}", x);

In this example, we define a variable x within the main function, and
then define another variable y within a block scope. When the program is
run, it will print out the values of x and y within the block scope, and then
print out the value of x again outside of the block scope.

Function Overloading

As far as Rust as a programming language is concerned, function
overloading is not supported, unlike in programming languages such
as C++, as the Rust language designers decided to use generics as an
alternative.

161

CHAPTER 7 WHY CHOOSE RUST

Generics

The use of generics is a flexible means to write functions and data
structures that work with any type, not just specific ones. Using type
parameters by enclosing them in angle brackets (<>) after the name of the
function allows the function to operate with any type. For example:

fn max<T>(a: T, b: T) -> T
where T: std::cmp::PartialOrd

{
ifa>b{
a
} else {
b
}
}

In this example, the max function takes two parameters of the same
type T and returns a value of type T. The where clause specifies that T must
implement the PartialOrd trait, which is required for comparing values
with >. The PartialOrd trait is a Rust standard library trait that defines the
partial cmp method for comparing values. For now don’t worry about
traits, as we will cover them in the last section of this chapter.

You can also use generics with structs and enums to define data
structures that can hold any type. For example:

struct Pair<T> {
first: T,
second: T,

162

CHAPTER 7 WHY CHOOSE RUST

enum Option<T> {
None,
Some(T),

In these examples, Pair and Option are parameterized by type T, so
they can hold values of any type.

In conclusion, Rust allows you to write functions that work with
different types using generics. This allows you to write more reusable code
that can work with any type that implements the required traits. Rust does
not support function overloading, but the use of generics provides a more
flexible alternative.

Conditional Logic

In Rust, there are several ways to implement conditions and control flow,
including if/else statements, loops, and match expressions.

If/Else Statements

If/else statements are used to implement simple conditions in Rust. These
statements evaluate a condition and perform specific actions depending
on whether the condition is true or false.

Here is an example:

fn main() {
let num = 10;

if num < 5 {
println!("The number is less than 5.");
} else {
println!("The number is greater than or equal to 5.");

163

CHAPTER 7 WHY CHOOSE RUST

In this example, the program checks if the value of numis less than 5.
If it is, it prints "The number is less than 5." Otherwise (else), it prints
"The number is greater than or equal to 5."

Loops

Loops are used to execute a block of code repeatedly until a specific
condition is met. In Rust, there are three types of loops: loop, while, and

for. As an example:

fn main() {
let mut counter = 0;

loop {
counter += 1;

if counter == 10 {
break;

}

println!("The counter is {}", counter);

In this example, the program initializes a variable counter to 0 and
then enters an infinite loop using the loop keyword. Inside the loop, the
program increments the value of counter by 1 and checks if it equals 10. If
it does, the loop is exited with a break statement.

The while keyword is used to create a loop that executes as long as a
specific condition is true. Here’s an example:

fn main() {
let mut counter = 0;

while counter < 10 {

164

CHAPTER 7 WHY CHOOSE RUST

counter += 1;

}

println!("The counter is {}", counter);

In this example, the program initializes a variable counter to 0 and then
enters awhile loop that continues to execute as long as the value of counter is
less than 10. Inside the loop, the program increments the value of counter by 1.

The for keyword is used to iterate over a range or collection of values.
Here’s an example:

fn main() {
for i in 0..10 {
println!("The value of i is {}", i);

Match Expressions

Match expressions are used to compare a value against a set of patterns
and perform different actions based on which pattern matches. In
Rust, match expressions are a powerful tool for implementing complex

conditions and control flow. Here’s an example:

fn main() {
let number = 6;
match number {
0 => println!("Number is zero"),
1 | 2 => println!("Number is one or two"),
3..=5 => println!("Number is between three and five"),
=> println!("Number is greater than five"),

165

CHAPTER 7 WHY CHOOSE RUST

In this example, the match statement is used to compare the value of
the number variable against different patterns. The patterns are listed after
the match keyword and are separated by =>.

The first pattern matches when number is equal to 0 and prints "Number
is zero". The second pattern matches when number is equal to 1 or 2 and
prints "Number is one or two".The third pattern matches when number
is between 3 and 5 (inclusive) and prints "Number is between three
and five".The pattern is a catch-all pattern that matches anything
not previously matched, and prints "Number is greater than five"in
this case.

The . .= operator is used to create an inclusive range in Rust. In this
example, it is used to match any number between 3 and 5, inclusive.

The match statement is a powerful tool in Rust that can be used to
handle different cases and patterns in a concise and readable way. It is
often used in Rust programs for error handling, as well as for pattern
matching in functional programming.

Exception Handling

In Rust, error handling is based on the concept of Result and the
panic! macro.

The Result type in Rust is used to represent either a successful value or
an error. It is defined as follows:

enum Result<T, E> {
0k(T),
Err(E),

Here, T represents the type of the successful value, while E represents
the type of the error. The Ok variant holds the successful value, while the
Exr variant holds the error value.

166

CHAPTER 7 WHY CHOOSE RUST

When a function can potentially fail, it should return a Result type.
The caller of the function can then handle the result using pattern
matching, as shown in the following example:

use std::fs::File;
use std::io::Read;
fn read file(filename: &str) -> Result<String,
std::io::Error> {
let mut file = File::open(filename)?;

let mut contents = String::new();
file.read to string(&mut contents)?;

Ok (contents)
}
fn main() {
match read file("example.txt") {
Ok(contents) => println!("File contents: {}",
contents),
Err(err) => println!("Error reading file: {}", err),
}
}

In this example, we have a function called read file that attempts
to open a file, read its contents into a string, and return the string as a
Result. If any of these operations fail, the corresponding std: :io: :Exrror
isreturned as an Exr value. In the main function, we use a match expression
to handle the Result, printing the file contents if the operation was
successful or the error message if it failed.

Rust does not have traditional exception handling like many other
programming languages, but it does have a feature called panic! that
can be used to abort the program and print an error message. Here’s an
example:

167

CHAPTER 7 WHY CHOOSE RUST

fn divide(a: i32, b: i32) -> i32 {
if b ==0 {
panic!("Attempt to divide by zero");

}
a/b

}

fn main() {
let result = divide(10, 2);
println!("10 / 2 = {}", result);
divide(10, 0);

}

This example should result in the following output:

Finished dev [unoptimized + debuginfo] target(s) in 0.98s
Running ~target/debug/playground”
thread 'main' panicked at 'Attempt to divide by zero', src/
main.rs:3:9
note: run with "RUST_BACKTRACE=1" environment variable to
display a backtrace

In this example, we have a function called divide that attempts to
divide two integers and return the result. If the second argument is 0, we
use panic! to abort the program and print an error message. In the main
function, we call divide twice: once with valid arguments and once with
an invalid argument. The first call succeeds and prints the result, but the
second call fails and causes the program to abort.

While panic! is not a traditional exception-handling mechanism, it
can be used in situations where an unrecoverable error has occurred and
the program cannot continue. Rust also provides a catch_unwind function
that can be used to catch panics in library code, but this is generally not
recommended for application-level error handling.

168

CHAPTER 7 WHY CHOOSE RUST

Rust Security Features

Rust, a systems programming language, was initially unveiled by Mozilla in
2010. Its primary objective is to deliver memory safety while preserving optimal
performance. As a language, Rust is designed to be safe, concurrent, and
speedy. Additionally, it is a strongly typed language, which implies that each
value in Rust possesses a fixed type that remains unaltered during runtime.

A key aspect of Rust is its unique ownership system, specifically designed
to avoid typical errors like null pointer exceptions and data races. In Rust,
each value has a designated owner who has exclusive access to it. When
the owner goes out of scope, the value gets dropped, consequently freeing
its memory. Additionally, the ownership system incorporates the concept
of borrowing, which permits multiple references to a value to coexist
simultaneously, provided that only one of these references is mutable.

Lifetimes are another essential aspect of Rust, serving as a mechanism
to monitor relationships between value references. In Rust, every reference
possesses a lifetime that dictates the duration of its validity. By checking
lifetimes during compile time, the Rust compiler aids in avoiding frequent
errors like dangling pointers.

Rust encompasses a variety of features that contribute to its power
and expressiveness, such as pattern matching, closures, and traits. Pattern
matching enables developers to compare values against specific patterns,
simplifying the handling of distinct cases. Closures represent functions
capable of capturing variables from their surrounding scope for later use.
Traits, akin to interfaces in other languages, allow developers to specify a
collection of methods that a type must implement.

Rust is a modern and sturdy programming language that is great for
creating secure software. It prioritizes safety and speed, which makes it
very popular among developers working on complex code. Additionally,
Rust has a clear and flexible language structure with many advanced
features, which makes it an attractive choice for system programmers to
use to create compelling applications.

169

CHAPTER 7 WHY CHOOSE RUST

Ownership System

In Rust, variables function similarly to how ownership works when selling
say a book to a friend. The person to whom you sell the book possesses it
and can use it however they please. In the same way in Rust, when a value
is assigned to a variable, the variable becomes the owner of the value. If the
variable is then passed to a function or assigned to another variable, the
ownership is transferred to the new variable, and the old one no longer has
ownership. This feature allows Rust to manage memory precisely, which
can improve code efficiency and help prevent bugs.

Rust’s ownership system is a fundamental feature aimed at preventing
prevalent programming mistakes, such as null pointer exceptions and
data races. Within Rust, each value is assigned an owner who has exclusive
access to it. As the owner goes out of scope, the value gets dropped,
subsequently releasing its memory. This method guarantees that values
remain valid and that no unforeseen interactions occur between various
sections of the program.

The ownership system in Rust encompasses borrowing, a feature that
permits the coexistence of multiple references to a single value, provided
that only one reference is mutable. In the book example this would be
more like lending the book, where you can take the ownership back. This
enables developers to craft code that is both secure and efficient. For
instance, creating numerous read-only references to the same value allows
for sharing the data without copying it. This approach proves especially
beneficial when working with sizable data structures.

The following in an example of moving a value from one variable to
another:

let mut s1 = String::from("shashank");

let s2 = s1;

// Here, ownership of the string "shashank" is moved from
"s1” to "s2°

170

CHAPTER 7 WHY CHOOSE RUST
Returning ownership from a function works as follows:

fn create vector() -> Vec<i32y {
let v = vec![1, 2, 3, 4, 5];
v // Return ownership of the vector to the caller

}
fn main() {
let my vector = create vector();
println!("my vector: {:?}", my vector);
}

This code example features a function called create_vector(), which
generates a vector comprising five integers. The function passes ownership
of the vector to the caller by using the variable v, which is moved
automatically out of the function and into the variable my_vector.

As aresult of the function call, my_vector is now in possession of the
vector’s ownership. We can utilize my vector to access and modify the
data within the vector.

This example highlights how Rust’s ownership system enables the
transfer of value ownership between functions, ensuring that each value
has only one owner at any given point. It also demonstrates how Rust’s
built-in data structures, such as vectors, work in unison with ownership to
efficiently manage memory.

Lifetimes

To draw a comparison with real life, imagine you're hosting a party and
you want to ensure that there is enough food for everyone. You contract a
caterer to supply food for the duration of the event. However, the caterer
needs to know when the party will end to make sure that they bring
enough food for the whole event. This is similar to how lifetimes work in
Rust. They specify how long a borrowed value will be used so that Rust can

manage memory correctly.

171

CHAPTER 7 WHY CHOOSE RUST

For instance, if a function returns a reference to a variable, Rust needs
to know that the reference will not be utilized after the variable goes out of
scope, to prevent the reference from being utilized after the variable has
been deallocated.

Lifetimes in Rust are a technique for tracking the connections between
references to values. Each reference has a lifetime in Rust, indicating how
long the reference is valid. The Rust compiler validates lifetimes during
compile time, which helps avoid typical errors such as dangling pointers.
Lifetimes can be indicated using syntax such as 'a or 'b, and they are
employed to ensure that references do not exist beyond the lifespan of the
values they refer to.

Lifetimes are especially crucial when working with mutable references
in Rust. Only one mutable reference can exist to a specific value at a time,
which prevents data races that occur when multiple threads try to modify the
same data concurrently. By enforcing strict guidelines surrounding mutable
references, Rust guarantees that programs are both safe and efficient.

The following is an example of using a reference with a shorter lifetime:

fn print first word(s: 8str) {
let first word = s.split whitespace().next().unwrap();
println!("{}", first word);

}

fn main() {
let my string = String::from("hello shashank");
print_first word(8my_string[..5]); // Pass a reference to
the first 5 characters of the string

}

Here’s an example of using a reference with a longer lifetime:

fn get longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
X

172

CHAPTER 7 WHY CHOOSE RUST

} else {
y

}
}
fn main() {

let s1 = "hello";

let s2 = "shashank";

let result = get longest(si, s2);

println!("The longest string is: {}", result);
}

In this example, s1 represents a string literal with the value "hello",
while s2 is another string literal containing the value "shashank". The get
longest function is subsequently called using these two string references
as arguments, with the outcome assigned to the variable result.

The get_longest function evaluates the lengths of both input strings
and returns a reference to the lengthier string. As "shashank" is longer
than "hello" in this instance, the function provides a reference to the
string "shashank", which is then allocated to the variable result.

Pattern Matching

Picture yourself playing “Guess Who?” with a friend. In this game, both
players have a set of cards featuring various characters, and they take turns
asking yes-or-no questions to deduce the other’s character. For instance,
asking “Does your character wear glasses?” allows you to eliminate characters
without glasses if your friend answers affirmatively. This resembles Rust’s
pattern matching concept, where values are tested against specific patterns,
leading to different actions based on the outcomes. Rust’s pattern matching
is commonly employed to destructure complex types like enums or structs,
facilitating easier access to their fields or variants. It also aids in writing
concise and clear code when handling diverse cases or error conditions.

173

CHAPTER 7 WHY CHOOSE RUST

In Rust, pattern matching is a robust feature that empowers developers
to compare values against distinct patterns, enabling the management of
various cases in a program. For instance, pattern matching can address
errors or process different kinds of input data.

Rust’s pattern matching is especially potent due to its capacity to
destructure values, allowing for the extraction of values from intricate data
structures like tuples or enums. Furthermore, pattern matching can be
utilized to match ranges, boolean values, and other primitive types.

The following is an example of matching on an enum variant:

enum Animal {

Cat,
Dog,
Rabbit,
Bird,

}

fn main() {

let pets = vec![
Animal::Cat,
Animal: :Dog,
Animal::Rabbit,
Animal::Bird,
Animal::Cat,
Animal: :Dog,
Animal::Rabbit,
Animal::Bird,

for pet in pets {
match pet {
Animal::Cat => println!("You have a cat as a pet!"),

174

CHAPTER 7 WHY CHOOSE RUST

Animal::Dog => println!("You have a dog as a pet!"),
Animal::Rabbit => println!("You have a rabbit

as a pet!"),

Animal::Bird => println!("You have a bird as a pet!"),

This code defines an enumeration (enum) called Animal with four
variants: Cat, Dog, Rabbit, and Bird. Each variant represents a different
type of animal. In the main() function, a vector called pets is created
and populated with instances of the Animal enum. The vector contains
two instances of each animal variant: Cat, Dog, Rabbit, and Bird. The
code then enters a for loop that iterates over each element in the pets
vector. The match expression is used to match each variant of the Animal
enum and perform a specific action based on the matched variant. For
each petin pets, the match expression checks the variant and executes
the corresponding code block. It prints a message indicating the type of
animal the pet represents. The output will be something like this:

You have a cat as a pet!
You have a dog as a pet!
You have a rabbit as a pet!
You have a bird as a pet!
You have a cat as a pet!
You have a dog as a pet!
You have a rabbit as a pet!
You have a bird as a pet!

175

CHAPTER 7 WHY CHOOSE RUST

The following is an example of matching on a range:

fn main() {
let num = 5;
match num {

1..=3 => println!("Small"),
4..=6 => println!("Medium"),
_ => println!("Large"),

This code demonstrates the usage of the match expression with range
patterns to categorize a number into different size categories.

In the main() function, a variable num is assigned the value 5. The
match expression is used to compare the value of num against different
range patterns. Each pattern is separated by => and followed by an
associated code block. The first pattern, 1. .=3, represents a range from 1
to 3 (inclusive). If the value of num falls within this range, the corresponding
code block println!("Small") will be executed. The second pattern,
4..=6, represents a range from 4 to 6 (inclusive). If the value of num falls
within this range, the code block println!("Medium") will be executed.
The underscore (_) acts as a wildcard pattern and matches any value that
did not match the previous patterns. In this case, if the value of num does
not fall within the ranges specified in the previous patterns, the code block
println!("Large") will be executed.

Since the value of numis 5, it falls within the range of 4. .=6, and
therefore the code block println!("Medium") will be executed.

Closures

Picture yourself as a teacher tasked with grading students’ homework.
Each student has unique homework, yet you must apply the same grading
criteria to all homework. One method involves writing the grading criteria

176

CHAPTER 7 WHY CHOOSE RUST

on a whiteboard and having students grade their work using those criteria.
This is analogous to a closure in Rust—a code block that can be defined
once and reused with varying input values. Rust closures are functions
that capture variables from their surrounding environment, which can be
stored in variables or passed as arguments to other functions. Closures are
beneficial for creating adaptable code for different situations or inputs.

Closures enable the creation of concise and expressive code by
capturing variables from their enclosing scope for later use. They are
particularly helpful when working with iterators, a crucial feature in Rust.

Iterators in Rust are lazily evaluated, meaning values are generated
only as needed. This approach is often more efficient than generating all
values simultaneously. Closures are used to define operations that should
be performed on each value generated by an iterator.

The following is an example of defining a closure and using it
with map:

fn main() {
let numbers

vec![1, 2, 3, 4, 5];

let squares = numbers.iter().map(|x| x * x);
for sq in squares {

println!("{}", sq);

}

Capturing a variable from the enclosing scope can be achieved
like this:

fn main() {
let name = "Shashank";
let greet = || println!("Hello, {}!", name);
greet();

177

CHAPTER 7 WHY CHOOSE RUST

Traits

Picture yourself searching for a new car with specific requirements—it
must be fast, reliable, and fuel-efficient. These criteria are comparable

to “traits” as they outline the desired characteristics in a car. While car
shopping, you can compare models based on how well they meet your
requirements. Similarly, in Rust, fraits define a collection of behaviors or
features a type must possess. Traits enable you to write generic code that
works with any type exhibiting those behaviors or features, just as you can
compare any car that satisfies your requirements.

Like interfaces in other languages, traits allow developers to specify a
set of methods that a type must implement. This facilitates writing generic
code compatible with various types. Traits can be employed to define
shared functionality, such as serialization or comparison.

Traits prove particularly valuable when working with generics in Rust.
Generics empower developers to create code compatible with multiple
data types. Traits are used to outline the available operations on those
types, ensuring the code is both safe and efficient.

In the example below, we will demonstrate how to use Traits in Rust:

// Define a trait for any object in the game
trait GameObject {
fn update(8mut self);

}

trait Renderable {
fn render(&self);

}

struct Player {
x: 132,
y: 32,

}

178

CHAPTER 7 WHY CHOOSE RUST

impl GameObject for Player {
fn update(8mut self) {
self.x += 1.0;
self.y += 1.0;

}

impl Renderable for Player {
fn render(&self) {
println!("Rendering player at ({}, {})", self.x, self.y);

}

}

struct Enemy {
x: 32,
y: 32,

}

impl GameObject for Enemy {
fn update(8mut self) {
self.x -= 1.0;
self.y -= 1.0;

}

impl Renderable for Enemy {
fn render(&self) {
println!("Rendering enemy at ({}, {})", self.x, self.y);

179

CHAPTER 7 WHY CHOOSE RUST

fn main() {
let mut player = Player { x: 0.0, y: 0.0 };
let mut enemy = Enemy { x: 10.0, y: 10.0 };

player.update();
player.render();

enemy.update();
enemy.render();

In this example, we establish a GameObject trait representing any
object within the game and a Renderable trait representing objects that
can be displayed on the screen. We then define two structs: Player and
Enemy, implementing the GameObject and Renderable traits for each.

Within the main function, we instantiate both Player and Enemy
structs, calling the update and render methods for each.

This example illustrates how traits can be employed in Rust to outline
shared behavior for distinct object types and how structs can implement
multiple traits to define their behavior in various contexts. In this case,
we utilize the GameObject trait to describe common behavior for in-game
objects and the Renderable trait to specify behavior for objects that can be
rendered onscreen.

Summary

In this chapter we looked at the basics of Rust programming to get a feel of
what the language brings to the table. We covered various aspects related
to different programming constructs and covered advanced features
related to the security aspects advocated by Rust. In Chapter 8 we will

visit the Linux namespaces and related concepts needed to create a Linux
container in Rust.

180

https://doi.org/10.1007/978-1-4842-9768-1_8

CHAPTER 8

Containers in Rust

In Chapter 7 we looked at basic Rust programming constructs and
identified what makes Rust a secure language. We also examined in detail
various Rust structures that can be used to accomplish safe programming.
In this chapter we explore how to use Rust to create Linux containers and
sandboxes. We will mainly focus on the concept of namespaces under Rust
and how to use them for process isolation.

Refreshing Linux Namespaces?

Linux namespaces are like a superpower for the Linux kernel. They give
processes their own secret hideouts where they can do their thing without
anyone else snooping around. It’s like having separate little worlds within the
big Linux universe. These worlds have their own stuff (resources) like network
interfaces, IDs, and even file systems, so no one steps on each other’s toes.
It’s like having multiple parties going on at the same time without any drama
or fights breaking out. People who work with Linux love using namespaces
because they make life so much easier. It’s a clever way to keep resources
within linux processes more organized and prevent chaos from taking over.

Here is a brief review of some of the namespaces we will be using in
this chapter to create a Linux container in Rust:

o PID: Isolates the process ID number space.

o Network: Provides a separate network stack for each
namespace.
© Shashank Mohan Jain 2023 181

S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1_8

https://doi.org/10.1007/978-1-4842-9768-1_7
https://doi.org/10.1007/978-1-4842-9768-1_8#DOI

CHAPTER 8 CONTAINERS IN RUST

e Mount: Allows each namespace to have its own set of
file system mounts.

In Rust, the Nix library (https://crates.io/crates/nix) provides a

way to create and manage Linux namespaces.

1. Install Rustin the Linux VM: https://www.rust-
lang.org/tools/install. I use Ubuntu as the
operating system, so all examples given in this
chapter work on Ubuntu.

2. Install dependencies to get started:

sudo apt-get install build-essential

Creating a PID Namespace

This section describes how to create a PID namespace using Rust.
First create a new project by using the following command:

cargo new <<project name>>

Then change directory to into the project root using cd <<project
name>>. The directory structure looks like this

my_project_name/

F— src/

| L— main.rs
L— Cargo.toml

182

https://crates.io/crates/nix
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install

CHAPTER 8 CONTAINERS IN RUST

Since this project uses the Nix library, create a Cargo.toml file in the

root directory with the following content:

[dependencies]

nix

use
use
use
use
use

= "0.22.1"

Now edit main.rs and add the following code:

nix::sched::{clone, CloneFlags};
nix::sys::signal::{self, Signal};
nix::unistd::{execvp, ForkResult};
std::ffi::CString;

std::slice;

// Function to be executed in the child process

fn child function() -> isize {

// Check if we are in the new PID namespace

if nix::unistd::getpid() == nix::unistd::Pid::from raw(1) {
println!("We are in the new PID namespace!");

} else {
println!("We are still in the old PID namespace.");

}

// Return a value indicating the child process's
exit status

// You can change this value as per your requirement
0

183

CHAPTER 8 CONTAINERS IN RUST

fn main() {
// Define the stack size for the child process
let stack_size = 1024 * 1024; // 1MB stack size for the
child process

// Allocate memory for the child process stack
let mut child stack = vec![0; stack size];

// Define the flags for the clone system call
let flags = CloneFlags::CLONE_NEWPID;

// Execute the clone system call to create a new process
match unsafe {
// Obtain a mutable pointer to the child stack
let child stack ptr = child stack.as mut ptr();
// Create a slice from the child stack pointer and the
stack size
let child stack slice = slice::from raw parts_
mut(child stack ptr, stack size);

// Call the clone system call with the child function,
child stack, flags, and None for the closure argument
clone(
Box: :new(child function),
child stack slice,
flags,
None,
)
A
Ok(child pid) => {
// Check if we are in the parent or child process
if child pid == nix::unistd::Pid::from raw(0) {
// Parent process

184

CHAPTER 8 CONTAINERS IN RUST

// Wait for the child process to terminate

match nix::sys::wait::waitpid(child_

pid, None) {
Ok(_) => println!("Child process
terminated"),
Err(err) => eprintln!("Failed to wait for
child process: {:?}", err),

}

} else {
// Child process

// Set up signal handling for SIGCHLD
unsafe {
signal::signal(Signal::SIGCHLD,
signal::SigHandler::SigIgn)
.expect("Failed to set SIGCHLD

handler");
}
// Execute a new program in the new PID
namespace
let program = CString::new("/bin/sh").unwrap();
let args = [

CString::new("/bin/sh™).unwrap(),
CString: :new("-c").unwrap(),
CString::new("echo Hello from the new PID
namespace") .unwrap(),

I

// Execute the specified program with the given
arguments

execvp(&program, &args).expect("Failed to
execute program");

185

CHAPTER 8 CONTAINERS IN RUST

}
}

Err(err) => eprintln!("Failed to create new process:

{:?}", err),

The preceding code utilizes the Nix library to accomplish two
tasks: create a new PID namespace and execute a program within that
namespace.

The child function() is a function that will be executed specifically
in the child process. Its purpose is to determine whether the process
is in the new or old PID namespace and print an appropriate message
accordingly.

In the main function we start by defining the size of the stack that
will be allocated for the child process. Next we create a buffer to hold the
stack of the child process, and then we set the flags for creating a new PID
namespace.

Next we invoke the clone() function to create a new process. It takes
as arguments the child function to be executed in the child process, the
buffer representing the child process stack, the flags for creating a new PID
namespace, and additional options (none in this case).

If the clone function call is successful, the return value contains the
process ID of the child process. We use this information to determine if we
are in the parent or child process.

If we are in the parent process, we wait for the child process to
terminate using the waitpid function from the Nix library and print a
message accordingly. If we are in the child process, we set up the handling
of the SIGCHLD signal to ignore it. This is accomplished using the signal
function from the Nix library.

186

CHAPTER 8 CONTAINERS IN RUST

Finally, we execute a new program within the new PID namespace
using the execvp function from the Nix library. We specify the program to
be executed ("/bin/sh") and any command-line arguments as an array. In
this case, we execute a shell command to printHello from the new PID
namespace.

The code combines various Nix library functions and Rust language
features to achieve the goal of creating a new PID namespace and
executing a program within it, demonstrating the functionality and
capabilities of namespace isolation.

Build and execute the program using the following commands:

cargo build
cargo run

Creating a Network Namespace

This section presents an example of how to create a new network
namespace in Rust. The following code demonstrates how to create a new
network namespace and verify its isolation by inspecting the network
configuration using the ip a command.

use nix::sched::{clone, CloneFlags};

use nix::sys::wait::{waitpid, WaitPidFlag};
use nix::unistd::{execvp, ForkResult};

use std::ffi::CString;

use std::process::Command;

// Function to be executed in the child process

fn child function() -> isize {
// Validate network configuration within the new network
namespace
let output = Command::new("ip")

.arg("a")

187

CHAPTER 8 CONTAINERS IN RUST

}

.output()
.expect("Failed to execute command");

// Print the network configuration within the new network
namespace

println!("Network configuration within the new network
namespace:\n{}", String::from utf8 lossy(&output.stdout));

0

fn main() {

188

// Define the stack size for the child process
let stack size = 1024 * 1024; // 1MB stack size for the
child process

// Allocate memory for the child process stack
let mut child stack = vec![0; stack size];

// Define the flags for the clone system call
let flags = CloneFlags::CLONE_NEWNET;

// Execute the clone system call to create a new process
match unsafe {
// Obtain a mutable pointer to the child stack
let child stack ptr = child stack.as mut ptr();
// Create a slice from the child stack pointer and the
stack size
let child stack slice = std::slice::from raw parts
mut(child stack ptr, stack size);

// Call the clone system call with the child function,
child stack, flags, and None for the closure argument
clone(

Box: :new(child function),

CHAPTER 8 CONTAINERS IN RUST

child stack_slice,
flags,
None,

)

o

Ok(child pid) => {
// Check if we are in the parent or child process
if child pid == nix::unistd::Pid::from raw(0) {

// Parent process

// Wait for the child process to terminate
waitpid(child pid, Some(WaitPidFlag::empty())).
expect("Failed to wait for child process");
println!("Child process terminated");

} else {
// Child process

// Specify the program and arguments to execute
within the new network namespace
let program = CString::new("/bin/sh").unwrap();
let args = [
CString: :new("/bin/sh").unwrap(),
CString::new("-c").unwrap(),
CString::new("echo Hello from the new
network namespace").unwrap(),

15

// Execute the specified program with the given
arguments

execvp(&program, &args).expect("Failed to
execute program");

189

CHAPTER 8 CONTAINERS IN RUST

Err(err) => eprintln!("Failed to create new process:
{:?2}", err),

In the code we define the size of the stack for the child process and
create a buffer for the stack.

The CloneFlags: :CLONE_NEWNET flag is set to indicate that we want to
create a new network namespace.

We use the clone function to clone the current process, specifying the
child function, stack, flags, and options. This creates a child process in a
new network namespace.

If we are in the parent process, we wait for the child process to
terminate and print a message indicating the termination.

If we are in the child process, we use the execvp function to replace the
current process with a new program execution. In this case, we execute the
shell command echo "Hello from the new network namespace”.

Within the child process, we execute the ip a command using the
Command struct from the std: :process module. This command retrieves
the network configuration within the new network namespace.

The output of the ip a command is captured and printed, displaying
the network configuration within the new network namespace.

Running the preceding code produces the following network
configuration output, which confirms that the code successfully created
a new network namespace. It shows that the loopback interface (1o) is
present in the namespace, but it is currently inactive (state DOWN). This is
expected as the loopback interface is typically brought up by the operating
system or network configuration tools.

By inspecting the network configuration output, we can verify that the
new network namespace is isolated from the host network namespace.

190

CHAPTER 8 CONTAINERS IN RUST

root@instance-1:/home/jain_sm/pid-namespace-test# Network
configuration within the new network namespace:
1: lo: <LOOPBACK> mtu 65536 gdisc noop state DOWN group default
qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

In the provided network configuration output, we can see that there
is a loopback interface (10) present in the namespace. The state DOWN
indicates that the loopback interface is currently inactive. This is expected
since the interface is typically brought up by the operating system or
network configuration tools.

Creating a Mount Namespace

In Unix and Linux operating systems, there is a unique approach to
handling file systems compared to Windows. Instead of having separate
drives like C: and D:, Unix and Linux adopt a single directory hierarchy
starting from the root directory (/). To make a file system accessible, it
needs to be attached, or “mounted,” to a specific directory within this
hierarchy. For instance, when you connect a USB drive to your computer,
the system may automatically mount the file system on the USB drive to a
directory such as /media/usb. Consequently, any files present on the USB
drive become accessible under that directory.

On the other hand, a mount namespace represents a feature provided
by the Linux kernel that enables individual processes to possess their own
distinct perspective of the system’s mount points. This isolation capability
allows different processes to observe diverse sets of files at the same
path within the file system. Mount namespaces play a crucial role in the
functioning of containers. When a process operates within a container, it
obtains its dedicated mount namespace, ensuring that it remains isolated
from the rest of the system’s files.

191

CHAPTER 8 CONTAINERS IN RUST
Here is an example of how to create a new mount namespace in Rust:

extern crate nix;
extern crate libc;

use nix::mount::{mount, umount2, MsFlags, MntFlags};
use nix::sched::{unshare, CloneFlags};

use nix::sys::stat::Mode;

use nix::unistd::{execvp,chdir,ForkResult, chroot};
use nix::NixPath;

use std::ffi::CString;

use std::os::unix::prelude::AsRawFd;

use std::os::unix::io::FromRawFd;

use std::fs;

use std::os::unix::fs::symlink;

fn main() {
match unsafe { unshare(CloneFlags::CLONE_NEWNS |
CloneFlags::CLONE_NEWPID) } {
ok(_) =>{

// Create a new directory to be used as the
new root
fs::create dir all("/tmp/newroot").expect("Failed
to create /tmp/newroot directory");

// Make the mounts in the new mount
namespace private
mount (
None: :<&str>,
wm
None: :<8str>,
MsFlags::MS PRIVATE | MsFlags::MS REC,
None: :<&str>,

192

}

CHAPTER 8 CONTAINERS IN RUST
.expect("Failed to make mounts private");

// Mount the /proc file system as private within
the new mount namespace
mount::<str, str, str, str>(

Some("proc"),

"/proc”,

Some("proc"),

MsFlags::MS_PRIVATE,

None: :<8str>,

)

.expect("Failed to mount /proc");

// Set the new root as the current root
chroot("/").expect("Failed to change root");

// Validate mounted file systems within the new
mount namespace
let program = CString::new("/bin/sh").unwrap();
let args = [
CString::new("/bin/sh").unwrap(),
CString::new("-c").unwrap(),
CString::new("mount -1").unwrap(),

I

// Execute the specified program with the given
arguments

execvp(&program, &args).expect("Failed to execute
program");

Err(err) => eprintln!("Failed to create new process:

{:2}", err),

193

CHAPTER 8 CONTAINERS IN RUST

In the preceding code, we do a few things.

We use unshare, which creates a new mount namespace. Next we use
bind mount to mount the root directory of host to some path on root.

This will copy all the rootfs mounts to this place. For this code I am
not doing it and using the host root itself.

Then mount the /proc at /proc.

Then you can chroot into that directory.

From there you can launch the program/shell into the namespace.

Writing Complete Container Code

Here is the complete container code, which creates all three namespaces
and gives us a shell within the isolated environment we created:

extern crate nix;
extern crate libc;

use nix::mount::{mount, MsFlags};

use nix::sched::{clone, unshare, CloneFlags};
use nix::sys::wait::{waitpid, WaitPidFlag};
use nix::unistd::{execvp, chroot};

use nix::sys::signal::{self, Signal};

use std::ffi::CString;

use std::os::unix::prelude::AsRawFd;

//use std::os::unix::io::FromRawFd;

use std::fs;

//use std::os::unix::fs::symlink;

use std::process;

fn network namespace() {
// Create a new network namespace
match unsafe { unshare(CloneFlags::CLONE_NEWNET) } {

Ok(_) => {

194

CHAPTER 8 CONTAINERS IN RUST

// Perform network-related configuration within the
new network namespace

println!("We are in the new network namespace!");

}

Err(err) => eprintln!("Failed to create new network

namespace: {:?}", err),

}

fn pid_namespace() {
// Create a new PID namespace
match unsafe { unshare(CloneFlags::CLONE_NEWPID) } {
ok(_) => {
// Perform PID-related configuration within the new
PID namespace

println!("We are in the new PID namespace!");

}

Err(err) => eprintln!("Failed to create new PID

namespace: {:?}", err),

}

fn mount_namespace() {
// Create a new mount namespace
match unsafe { unshare(CloneFlags::CLONE_NEWNS) } {
ok(_) => {

// Create a new directory to be used as the
new root
fs::create dir all("/tmp/newroot").expect("Failed
to create /tmp/newroot directory");

195

CHAPTER 8 CONTAINERS IN RUST

}

// Make the mounts in the new mount
namespace private
mount (
None: :<8str>,
s
None: :<&str>,
MsFlags::MS PRIVATE | MsFlags::MS REC,
None: :<8str>,

)

.expect("Failed to make mounts private");

// Mount the /proc file system as private within
the new mount namespace
mount::<str, str, str, str>(

Some("proc"),

"/proc”,

Some("proc"),

MsFlags::MS_PRIVATE,

None: :<8str>,

)

.expect("Failed to mount /proc");

// Set the new root as the current root
chroot("/").expect("Failed to change root");

println!("We are in the new mount namespace!");

Err(err) => eprintln!("Failed to create new mount
namespace: {:?}", err),

}

fn child function() -> isize {

196

CHAPTER 8 CONTAINERS IN RUST

network namespace();
pid namespace();
mount_namespace();

// Execute an interactive shell within the namespace
let program = CString::new("/bin/sh").unwrap();
let args = [
CString: :new("/bin/sh").unwrap(),
1;

execvp(&program, &args).expect("Failed to execute
program");

// The execvp call replaces the current process, so this
line should not be reached
println!("Execvp failed!");

// Exit the child process
process::exit(1);

}

fn main() {
let stack_size = 1024 * 1024; // 1MB stack size for the
child process
let mut child stack = vec![0; stack size];

let flags = CloneFlags::CLONE_NEWNET | CloneFlags::CLONE_
NEWPID | CloneFlags::CLONE_NEWNS;

match unsafe {
let child stack ptr = child stack.as mut ptr();
let child stack slice = std::slice::from raw parts
mut(child stack ptr, stack size);

197

CHAPTER 8 CONTAINERS IN RUST

clone(
Box::new(child function),
child stack_ slice,
flags,
None,
)
A
Ok(child pid) => {
if child pid == nix::unistd::Pid::from raw(0) {
// Parent process
waitpid(child pid, Some(WaitPidFlag::empty())).
expect("Failed to wait for child process");
println!("Child process terminated");
} else {
// Child process
// Set up signal handling for SIGCHLD
unsafe {
signal::signal(Signal::SIGCHLD,
signal::SigHandler::SigIgn)
.expect("Failed to set SIGCHLD
handler");

}

Err(err) => eprintln!("Failed to create new process:
{:?}", err),

198

CHAPTER 8 CONTAINERS IN RUST

Here is what you will see as output:

root@instance-1:/home/jain_sm/pid-namespace-test# We are in the

new network namespace!

We are in the new PID namespace!

We are in the new mount namespace!

The following list summarizes the role of each of the functions in the

preceding code:

network namespace(): This function creates a brand-
new environment just for networking resource. In this
special space, network interfaces, IP addresses, and
routing tables are kept separate from the rest of the
system. It’s like having a secret network club where only
certain processes can hang out. To make this happen,
the function uses the unshare() function with a special
flag called CloneFlags: : CLONE_NEWNET.

pid namespace(): This function creates the PID
namespace, a unique playground for processes. Inside
this space, each process gets its very own set of PIDs.
It’s like giving each process its own special ID card that
only works within that namespace. To make this magic
happen, the function also uses the unshare() function,
but this time with the CloneFlags: :CLONE_NEWPID flag.

mount_namespace(): This function creates a

whole new world for file systems. It’s like having

a separate universe where you can mount and
unmount file systems without affecting the rest of
the system. To make this happen, the function uses
the unshare() function again, but this time with the
CloneFlags: :CLONE_NEWNS flag. It does some extra

199

CHAPTER 8 CONTAINERS IN RUST

tricks, like creating a new root directory and isolating
the mounts from the rest of the system. It even mounts
the /proc file system specifically for process-related

information.

o child function(): This function is where the
real action starts. It is like the VIP entrance to the
namespaces party. It calls the network namespace(),
pid namespace(), and mount_namespace() functions
to set up the desired namespaces. Then, it throws an
interactive shell using the execvp() function. This
basically swaps the child process with a fancy shell
process, so you can have a chat with it inside the
created namespaces. How cool is that?

o main(): The big boss of the program, this function
prepares the stage for the child process and sets the
flags for the desired namespaces. Using the clone()
function, it creates a new child process. If it’s the parent
process which is running then, it waits patiently for the
child to finish its thing. Once the child is done, it prints
a message saying so. On the other hand, if it’s the child
process, it’s all about setting up some special handling
for signals by the parent process and then diving right
into the child function().

Summary

In this chapter we looked at how to create isolated sandboxes in Rust
using examples of a PID namespace, network namespace, and mount
namespace. Building upon the knowledge of what these namespaces are,
we gave explored how to create these namespaces in Rust as well as how to
create a small container using them.

200

Index

A

address_space, 85
Alternative virtualization
mechanisms
Docker, 26
hotplug capability, 31
novm, 29, 30
POSIX interface, 26
project dune, 28, 29
unikernels, 27, 28, 30
WebAssembly, 31
Application binary interface
(ABI), 3

B

Back-end drivers, 12, 20
Bind mount, 36
Block devices, 83, 85
Block I/0 cgroup
bio structure, 65
bio_vec, 66
purpose, 63
request, 65
request flows, user space to
device, 64
request_queue, 64
Branches, 90

© Shashank Mohan Jain 2023

S. M. Jain, Linux Containers and Virtualization,
https://doi.org/10.1007/978-1-4842-9768-1

Buffer heads, 86
bytecode, 2

C

CFQ group, 68, 71
cgroup.controllers, 49
cgroup.events, 50
cgroup.procs, 50
Cgroups
and cap, 134
cgroup controllers, 48
CPU (see CPU cgroups)
creation, 48-51, 136
fairness, 68-71
GRUB_CMDLINE_LINUX_
DEFAULT, 135
memory.max file, 142
mygrp, 48, 49
PID, 135, 142
system reboots, 135
throttling, 71-80
version vl and v2, 48
cgroup.subtree_control, 50
child() function, 133
child_function(), 200
clone flags, 100
clone() function, 200

201

https://doi.org/10.1007/978-1-4842-9768-1#DOI

INDEX

CLONE_NEWNS flag, 199
Cloudflare, 32
cmd.Wait(), 130
Code privilege level (CPL), 8
Complete container code, 194-200
Compound data types
application, 152
array, 152
tuples, 152
Conditional logic
break statement, 164
for keyword, 165
If/else statements, 163
loops, 164
while keyword, 164
Container-based virtualization, 3-4
Container framework
cgroups, 134-143
Golang install, 97
Mount Proc FS, 116-119
namespaces, 98-107
network namespaces, 119-134
root FS, 110-116
unshare, 95
UTS namespace, 95, 96
shell program, 107-110
ContainerID, 104
Container layer, 92
Container’s IP, 130, 131
Control groups, see Cgroups
CPU cgroups
block1/0, 63-66
cff_bandwith_used function, 60
cfs_bandwidth, 59

202

CPU resource control,
types, 52, 53

curr member, 58

delta_exec, 56

group scheduling, 57

I/0 tasks, 56

Pick_next_entity, 59

sched_entities, 58, 59

schedulers, 52

task_struct structure, 55

types, 53

update_curr function, 55

vruntime, 53, 56, 59

CPU virtualization

binary translation, 9

CPL, 8

paravirtualization, 9, 10

protection rings, 8

D

Dentry, 36, 84, 85
Device model, 4, 5
Dune architecture, 28, 29

E

Enums, 154
Apple and Banana, 154
Mango, 154
match expression, 155
matching expressions, 155
match statement, 156
Orange, 154

String value, 156

ESX, 2

eventfd, 13
edge-triggered system, 24
epoll_wait, 24
ioeventfd, 24, 25
I/0 thread, 25
IPC, 24
irqfd, 25
network packet flow, 23
vs. Linux pipe, 25
ooM, 25

Excessive trapping, 17

Extended Page Table (EPT), 7, 13

F

Fairness, 68-71

Fastly, 32

File descriptor (FDs), 13, 20,

23-25, 84, 86

File system (FS)
layered, 89
mountProc, 116-119
OverlayFS, 90-93
primer, 83-87
procfs, 87
pseudo, 87-89
union, 90
VES, 84

firstap, 121

Front-end drivers, 12, 20

FS primer
address_space, 85

block device, 85

buffer heads, 86

except direct 1/0, 85

Ext4, 87

fdatasync(fd), 86

file descriptor, 86

file maps into page
cache, 85

fsync(fd), 86

layers under kernel, 87

Linux abstracts, 84

in Linux act, 83

ProcFS, 87

sync(), 86

vfsmount data structure, 85

write call, 86

Full virtualization, 9, 11
Functions, 158

arguments, 159
calling, 159
defining, 158
greet, 159
overloading, 161
print_book, 160
return values, 160
scope, 161

Generics, 162

angle brackets, 162
Pair and Option, 163
PartialOrd trait, 162
structs, 162

INDEX

203

INDEX

GidMappings, 104

Go, 96

Golang installation, 97
GSX, 2

Guests, 2, 3

H

Hardware-assisted
virtualization, 10

Host, 3
Hotplug capability, 31
hotplug-dimm module, 31
Hypercall, 10
Hypervisors, 2, 89

device model, 5

software, 4

VMM, 4, 5

Inode, 84
Instruction set
architecture (ISA), 3
Intel Vt-x instruction set, 15-18
Interprocess communication
(IPC), 24, 37, 45,98, 118
ioeventfd, 25
I/0 memory management unit, 13
10 virtualization
full virtualization, 11
modes, 11
paravirtualization, 11, 12
IPC namespace, 37

204

J

Java programs, 2

K

Kernel Virtual Machine (KVM),
15,19, 21-23, 27

KSM (kernel same page merging), 89

KVM kernel module, 22, 23

L

Layered FS, 89

Linux containers, 33, 38, 144

Linux namespaces, 33, 38, 98,
107, 180-182

match statement, 156, 166
Match expressions, 165-166
memory.events, 51
Memory management unit
(MMU), 6, 13

memory.max file, 142
Memory virtualization

EPT, 7

guest OS, 6

memory abstractions, 6

shadow page tables, 7
Mount namespace, 191, 194
mountProc FS, 116-119
mountProc() function, 132
Multiple read layers, 92

must() function, 119, 133
mygrp, 49

mytapl, 120

mytap2, 120

myuts binary, 99
myuts.go, 99

N

Namespaces, 33, 48, 122-128
add device, 45
and set up, 106
cgroups, 37, 98
clone flags, 100, 102
container, 101
controls, 34
function parent, 106
GidMappings, 104
Golang process, 100
hostname, 106
I/0 streams, 100
isolation, 34
IPC, 37, 98
Linux kernel, 34, 98
mount, 35-36, 98, 106, 182
myuts binary, 99
myuts.go, 99
network, 37, 98, 181
non-root, 104
PID, 35, 98
pivotroot, 106
process ID number, 181
/proc/self/exe, 106
time, 38-44

INDEX

UidMappings, 104
user space-based
applications, 34
UTSs, 35, 98, 100, 106
veth pairs, 105
netsetgo, 128, 129
netsetgoCmd command, 133
Network namespace, 37, 40, 44,
122,187
clone function, 190
CLONE_NEWNET flag, 190
configuration, 188
virtual networking, 119-134
Nix library, 182, 183, 187
Non-block devices, 83
Non-trapping instructions, 17
novm, 29, 32
nsproxy structure, 39, 40

O

Out of memory (OOM), 25, 51
OverlayFS
base layer, 91
diff directory, 92
diff layer, 91
directory, 91
Docker driver device
mapper, 93
Linux Kernel, 90
multiple read layers, 92
OverlayFS v1, 90
OverlayFS v2, 91
unmount, 92

205

INDEX

P

Paravirtualization, 9, 10
back-end drivers, 12
eventfd, 13
vs. full virtualization, 11
network packet flow, 13
SRIOV, 14
virtqueue, 12

parent() function, 133

pdflush, 86

PID namespace, 35, 182, 186, 199

pivot_root, 110
pivotRoot() function, 119, 132
Pivot root, 106
Primitive data types
bool, 150
char, 150
floating-point, 151
integer, 151
unit type, 151
proc mount, 116
procfs S, 87
Project Dune, 28
Protection rings, 8
Pseudo FS, 87-89

Q

Quick Emulator (QEMU), 15
guest, 20
hypervisor, 19
1/0, 20, 31
KVM kernel module, 19, 31
packet flow, 21

206

virtio-blk, 20
virtio-net, 20
virtqueues, 20

R

Read-only FS, 89
Rectangle struct, 153
Root file system, 119
rootfs, 93
Root FS, 110-116
Rootless containers, 105
Rust, 145
advantages, 146
Animal enum, 175
closures, 177
configuration, 147
create_vector(), 171
data types, 150
compound, 152
primitive, 150

emphasis on performance, 146

enums, 154

error handling, 166
exception handling, 167
functions, 158
GameObiject trait, 180
get_longest function, 173
guarantees, 172
installation, 146, 147
lifetimes, 172

Linux container, 146
main() function, 176
match expressions, 165

mount namespace, 192
ownership, 170
package manager, 145
panic, 167
pattern matching, 173, 174
read_file, 167
security reatures
memory safety, 169
ownership system, 169
software, 169
value references, 169
structs, 152
traits, 178
unions, 156
update and render methods, 180
variable, 148-150, 170
Rust’s ownership system, 171

S

secondtap, 121

Service tree, 68

Shadow page tables, 7

Shell program, 107-110

Single root I/O virtualization
(SRIOV), 14

std::process module, 190

Structs, 152

Superblock, 84

T

tap devices, 23, 25, 119-121
tap interfaces, 121

INDEX

task_struct data structure, 38
testns namespace, 45
Throttling, 71-80

Time namespace, 38-44

tun and tap, 119

tun device, 119

U

UidMappings, 104
Unikernels, 3, 26-28
Union FS, 90
Unions

Data, 157

IntOrFloat, 156
Unix and Linux operating

systems, 191

unshare() function, 199
Utility function, 119
UTS namespace, 95, 96, 106, 109

\'

veth pairs, 105, 121, 128
vismount, 35, 36, 85
Vhost based data
communication, 22, 23
Virtio, 12
Virtqueue, 12, 13, 20, 23, 31
Virtual file system (VFS), 64, 84, 85
dentry, 84
file, 84
inode, 84
superblock, 84

207

INDEX

Virtualization
abstraction, 2
container-based approach, 3
CPU, 8-10
guests, 2
history, 1,2
hypervisors, 2, 4 (see also
Hypervisors)
intermediary code, 2
I/0,11-14
memory, 6-8
process-level, 2
techniques, 2
unikernels, 3
VM-based approach, 3
Virtual machine (VM), 2-4, 16
Virtual machine extensions (VMX)
root mode, 10
Virtual machine monitor (VMM),
4-10, 17, 18, 26-30
Virtual networking
child() function, 133
cmd.Start(), 128
cmd.Wait(), 128, 130
container’s IP, 130, 131
container’s namespace, 122
host IP address, 131
host’s namespace, 121, 122
mountProc() function, 132

208

must() function, 133
netsetgo, 128, 129
netsetgoCmd command, 133
network interfaces, 120
network namespace, 122-128
IP packets, 119
parent/child process, 132
parent() function, 133
pivotRoot() function, 132
tap interfaces, 121
tun and tap devices, 119-121
veth pairs, 121, 128
VMs, 119
waitForNetwork() function, 132
VM-based provisioning, 89
VM-based
virtualization, 3, 8, 33
VM control structure
(VMCS), 10, 22
VM Entries, 10, 18
VM Exits, 10, 18
VMware, 2
vruntime, 53, 55, 56, 59

W XY,Z
waitForNetwork() function, 132

waitpid function, 186
WebAssembly, 31

