

MEAP Edition
Manning Early Access Program

Learn Docker
in a Month of Lunches

Version 7

Copyright 2020 Manning Publications

For more information on this and other Manning titles go to
manning.com

©Manning Publications Co. To comment go to liveBook

https://www.manning.com/
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

welcome
Hello there! Thanks for getting involved in the MEAP for Learn Docker in a Month of Lunches. I
hope you find the book useful and I’ll be glad to hear any feedback you have. My name’s Elton
and I work at Docker as an Architect. I’ve been using Docker since the earliest releases and
I’ve helped organizations at every stage in their container journey. I’ve been fortunate to
travel the world, speaking at conferences and running workshops on Docker, and I’m distilling
many years of using and teaching Docker into this book.

Learn Docker in a Month of Lunches is aimed at new and improving Docker users. The
learning path takes you from the basics of containers through packaging your own applications
to run in Docker to running at scale in production-grade environments. The chapters start
simple and gradually grow more complex, saving the more advanced architectural topics for
last. If you’re completely new to containers, this book will take you on a logical and, hopefully,
pleasant journey. If you already have some experience with Docker, it’s fine to skip around
the chapters — though I’m confident that you’ll learn something new, even from Chapter 1. :)

I want to say one important thing about Learn Docker in a Month of Lunches: I want it to
be as accessible as possible. Too many Docker books assume that you’re a Linux guru, and
they give you exercises that work only on Intel machines and make sense only if you’ve spent
years working as a sysadmin. This book is different. All the code samples and exercises are
cross-platform and work on Windows, Mac, Linux, Intel, and Arm. You should be able to follow
along with Windows 10 on your desktop, OSX on your MacBook, or Debian on your Raspberry
Pi. I’ve also tried hard to assume a minimum amount of background knowledge — Docker
crosses the boundaries of architecture, development, and operations, and I’ve tried to do the
same. This book should work for you whatever your background in IT.

The Month of Lunches format is well suited for learning Docker, which breaks down nicely
into task-driven topics. The focus is on hands-on learning, so I’ve provided lots of Try It Now
exercises, enough background information to fill in the blanks, and labs for you to work
through in every chapter. You should find a logical progression from one chapter to the next.
If you think I’ve taken weird leaps between chapters, if code samples don’t work for you, or if
something just doesn’t make sense, please flag it in Manning’s liveBook's Discussion Forum.

Thanks again for joining me.

—Elton Stoneman

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

brief contents
WEEK 1: UNDERSTANDING DOCKER CONTAINERS AND IMAGES

 1 Before you begin

 2 Understanding Docker and running Hello World

 3 Building your own Docker images

 4 Packaging applications from source code as Docker images

 5 Sharing images with Docker Hub and other registries

 6 Using Docker Volumes for persistent storage

WEEK 2: RUNNING DISTRIBUTED APPLICATIONS IN CONTAINERS

 7 Defining and running multi-container apps with Docker Compose

 8 Supporting reliability with health checks and dependency checks

 9 Adding observability with containerized monitoring

 10 Running multiple environments with Docker Compose

 11 Building and testing distributed applications with Docker and Docker Compose

WEEK 3: RUNNING AT SCALE WITH A CONTAINER ORCHESTRATOR

12 Understanding Orchestration: Docker Swarm and Kubernetes

13 Deploying distributed applications stacks in Docker Swarm

14 Automating releases with upgrades and rollbacks

15 Configuring Docker for secure remote access and CI/CD

16 Building Docker images which run anywhere: Linux, Windows, Intel and Arm

WEEK 4: GETTING YOUR CONTAINERS READY FOR PRODUCTION

17 Optimizing your Dockerfiles for size, speed and security

18 Application configuration management in containers

19 Writing and managing application logs with Docker

20 Controlling HTTP traffic to containers with a reverse proxy

21 Asynchronous communication with a message queue

22 Never the end

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

1
Before You Begin

Docker is a platform for running applications in lightweight units called containers. Containers
have taken hold in software everywhere, from serverless functions in the cloud to strategic
planning in the enterprise. Docker is becoming a core competency for operators and
developers across the industry – in the latest Stack Overflow survey, Docker polled as people’s
number 1 "most wanted" technology.

And Docker is a simple technology to learn. You can pick up this book as a complete
beginner and you’ll be running containers in Chapter 2 and packaging applications to run in
Docker in Chapter 3. Each chapter focuses on practical tasks, with examples and labs that
work on any machine that runs Docker – Windows, Mac and Linux users are all welcome here.

The journey you’ll follow in this book has been honed from the many years I’ve been
teaching Docker. Every chapter is hands-on – except this one. It’s important to understand
just how containers are being used in the real world, and the type of problems they solve
before you start learning Docker, and that’s what I’ll cover here. This chapter also describes
how I'll be teaching Docker, so you can figure out if this is the right book for you.

Now let's look at what people are doing with containers - I'll cover the five main scenarios
where organizations are seeing huge success with Docker. You’ll see the wide range of
problems you can solve with containers, some of which will certainly map to scenarios in your
own work. By the end of this chapter you’ll understand why Docker is a technology you need
to know, and you’ll see how this book will get you there.

1.1 Why containers will take over the world
My own Docker journey started in 2014 where I was working on a project delivering APIs for
Android devices. We started using Docker for development tools – source code and build
servers. Then we gained confidence and started running the APIs in containers for test

1

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

environments. By the end of the project every environment was powered by Docker, including
production where we had strict requirements for availability and scale.

When I moved off the project, the handover to the new team was a single README file in a
GitHub repo. The only requirement to build, deploy and manage the app – in any environment
– was Docker. New developers just grabbed the source code and ran a single command to
build and run everything locally. Administrators used the exact same tools to deploy and
manage containers in the production cluster.

Normally on a project of that size, handovers take two weeks. New developers need to
install specific versions of half a dozen tools, and administrators need to install half a dozen
completely different tools. Docker centralizes the toolchain and makes everything so much
easier for everybody, that I thought one day every project would have to use containers.

I joined Docker in 2016 and I’ve spent the last few years watching that vision becoming
reality. Docker is approaching ubiquity, partly because it makes delivery so much easier, and
partly because it’s so flexible – you can bring it into all your projects, old and new, Windows
and Linux. Let’s look at where containers fit in those projects.

1.1.1 Migrating apps to the cloud

Moving apps to the cloud is top of mind for many organizations. It's an attractive option - let
Microsoft or Amazon or Google worry about servers, disks, networks and power. Host your
apps across global datacenters with practically limitless potential to scale. Deploy to new
environments within minutes, and get billed only for the resources you’re using. But how do
you get your apps to the cloud?

There used to be two options for migrating an app to the cloud: Infrastructure as a Service
(IaaS), and Platform as a Service (PaaS). Neither option was great. Your choice was basically
a compromise – choose PaaS and run a project to migrate all the pieces of your application to
the relevant managed service from the cloud. That's a difficult project and it locks you in to a
single cloud, but it does get you lower running costs. The alternative is IaaS where you spin
up a virtual machine for each component of your application. You get portability across clouds
but much higher running costs. Figure 1.1 shows how a typical distributed application looks
with a cloud migration using IaaS and PaaS.

2

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 1.1 The original options for migrating to the cloud - use IaaS and run lots of inefficient VMs with high
monthly cost, or use PaaS and get lower running costs but spend more time on the migration

Docker offers a third option without the compromise. You migrate each part of your
application to a container, and then you can run the whole application in containers using
Azure Kubernetes Service or Amazon's Elastic Container Service, or on your own Docker
cluster in the datacenter. You’ll learn in Chapter 7 how to package and run a distributed
application like this in containers, and in Chapters 13 and 14 how to run at scale in production.
Figure 1.2 shows the Docker option, which gets you a portable application you can run at low
cost in any cloud – or in the datacenter, or on your laptop.

3

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 1.2 The same app migrated to Docker before moving to the cloud. This application has the cost benefits
of PaaS with the portability benefits of IaaS and the ease of use you only get with Docker

It does take some investment to migrate to containers, but it's mostly about building your
existing installation steps into scripts called Dockerfiles, and your deployment documents into
descriptive application manifests using the Docker Compose or Kubernetes format. You don't
need to change code, and the end result runs in the same way using the same technology
stack on every environment, from your laptop to the cloud.

1.1.2 Modernizing legacy apps

You can run pretty much any app in the cloud in a container, but you won’t get the full value
of Docker or the cloud platform if it's an older, monolithic design. Monoliths work just fine in
containers, but they limit your agility. You can do an automated staged rollout of a new
feature to production in 30 seconds with containers. But if the feature is part of a monolith
built from two million lines of code, you've probably had to sit through a two week regression
test cycle before you get to the release.

Moving your app to Docker is a great first step to modernizing the architecture, adopting
new patterns without needing a full rewrite of the app. The approach is simple – you start by
moving your app to a single container with the Dockerfile and Docker Compose syntax you’ll
learn in this book. Now you have a monolith in a container.

Containers run in their own virtual network, so they can communicate with each other
without being exposed to the outside world. That means you can start breaking your
application up, moving features into their own containers, so gradually your monolith evolves

4

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

into a distributed application with the whole feature set being provided by multiple containers.
Figure 1.2 shows how that looks with a sample application architecture.

Figure 1.3 Decomposing a monolith into a distributed application without rewriting the whole project. All the
components run in Docker containers, and a routing component decides whether requests are fulfilled by the
monolith or a new microservice.

This gives you a lot of the benefits of a microservice architecture. Your key features are in
small, isolated units which you can manage independently. That means you can test changes
quickly because you’re not changing the monolith, only the containers that run your feature.
You can scale features up and down, and you can use different technologies to suit
requirements.

Modernizing older application architectures is easy with Docker – you’ll do it yourself with
practical examples in Chapters 20 and 21. You deliver a more agile, scalable and resilient app
and you get to do it in stages, rather than stopping for an 18-month rewrite.

5

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

1.1.3 Building New Cloud Native Apps

Docker helps you get your existing apps to the cloud, whether they’re distributed apps or
monoliths. If you have monoliths, Docker helps you break them up into modern architectures,
whether you’re running in the cloud or in the data center. And brand-new projects built on
cloud native principles are greatly accelerated with Docker.

The Cloud Native Computing Foundation (CNCF) characterizes these new architectures as
using "an open source software stack to deploy applications as microservices, packaging each
part into its own container, and dynamically orchestrating those containers to optimize
resource utilization".

Figure 1.4 shows a typical architecture for a new microservices application – this is a demo
application from the community which you can find on GitHub at
https://github.com/microservices-demo:

Figure 1.4 Cloud native applications are built with microservice architectures where every component runs in a
container

6

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://www.cncf.io/
https://github.com/microservices-demo

It's a great sample application if you want to see how microservices are actually implemented.
Each component owns its own data and exposes it through an API. The front end is a web
application which consumes all the API services. The demo application uses various
programming languages and different database technologies. But every component has a
Dockerfile to package it, and the whole application is defined in a Docker Compose file.

You’ll learn in Chapter 4 how you can use Docker to compile code, as part of packaging
your app. That means you don’t need any development tools installed to build and run apps
like this. Developers can just install Docker, clone the source code, and build and run the
whole application with a single command.

Docker also makes it easy to bring third-party software into your application, adding
features without writing your own code. Docker Hub is a public service where teams share
software which runs in containers. The CNCF publishes a map of open-source projects you can
use for everything from monitoring to message queues, and they're all available for free from
Docker Hub.

1.1.4 Technical Innovation – Serverless And More

One of the key drivers for modern IT is consistency: teams want to use the same tools,
processes and runtime for all their projects. You can do that with Docker, using containers for
everything from old .NET monoliths running on Windows to new Go applications running on
Linux. You can build a Docker cluster to run all those apps, so you build, deploy and manage
your entire application landscape in the same way.

Technical innovation shouldn't be separate from business-as-usual apps. Docker is at the
heart of some of the biggest innovations, so you can continue to use the same tools and
techniques as you explore new areas. One of the most exciting innovations (after containers,
of course) is serverless functions. Figure 1.5 shows how you can run all your applications -
legacy monoliths, new cloud native apps and serverless functions - on a single Docker cluster,
which could be running in the cloud or the datacenter:

7

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 1.5 A single cluster of servers running Docker can run every type of application, and you build, deploy
and manage them all in the same way no matter what architecture or technology stack they use

Serverless is all about containers. The goal of serverless is for developers to write function
code, then push it to a service, and that service builds and packages the code. When
consumers use the function the service starts an instance of the function to action the request.
There are no build servers, pipelines or production servers to manage, it's all taken care of by
the platform.

Under the covers, all the cloud serverless options use Docker to package the code, and
containers to run functions. But functions in the cloud aren’t portable – you can’t take your
AWS Lambda function and run it in Azure, because there isn't an open standard for serverless.
If you want serverless without cloud lock-in, or if you’re running in the data center, you can
host your own platform in Docker using Nuclio, OpenFaaS or Fn Project – which are all popular
open-source serverless frameworks.

Other major innovations like machine learning, blockchain and IoT benefit from the
consistent packaging and deployment model of Docker. You’ll find the main projects all deploy

8

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

to Docker Hub – TensorFlow and Hyperledger are good examples. And IoT is particularly
interesting, as Docker have partnered with Arm to make containers the default runtime for
edge and IoT devices.

1.1.5 Digital transformation with DevOps

All these scenarios are about technology, but the biggest problem facing many organizations is
operational – particularly so for larger and older enterprises. Teams have been siloed into
"developers" and "operators", responsible for different parts of the project lifecycle. Problems
at release time become a blame cycle, and quality gates are put in to prevent future failures.
Eventually you have so many quality gates you can only manage two or three releases a year,
and they are risky and labor intensive.

DevOps aims to bring agility to software deployment and maintenance by having a single
team own the whole application lifecycle, combining "dev" and "ops" into one deliverable.
DevOps is mainly about cultural change, and it really can take organizations from huge
quarterly releases, to small daily deployments. But it's hard to do that without changing the
technologies the team uses.

Operators may have a background in tools like Bash, Nagios, PowerShell and System
Center. Developers work in Make, Maven, NuGet and MSBuild. It’s difficult to bring a team
together when they don't use common technologies, which is where Docker really helps. You
can underpin your DevOps transformation with the move to containers, and suddenly the
whole team is working with Dockerfiles and Docker Compose files, speaking the same
languages and working with the same tools.

It goes further too. There's a powerful framework for implementing DevOps called CALMS
– Culture, Automation, Lean, Metrics and Sharing. Docker works on all those initiatives:
automation is central to running containers, distributed apps are built on lean principles,
metrics from production apps and from the deployment process can be easily published and
Docker Hub is all about sharing and not duplicating effort.

1.2 Is this book for you?
The five scenarios I've outlined cover pretty much all the activity that's happening in the IT
industry right now, and I hope it's clear that Docker is the key to it all. This is the book for you
if you want to put Docker to work on this kind of real-world problems. It takes you from zero
knowledge through to running apps in containers on a production-grade cluster.

The goal of this book is to teach you how to use Docker, so I don’t go into much detail on
how Docker itself works under the hood. I won't talk in detail about containerd or lower level
details like Linux cgroups and namespaces or the Windows Host Compute Service. If you want
the internals, Manning’s Docker in Action is a great choice.

The samples in this book are all cross-platform, so you can work along using Windows, Mac
or Linux – including Arm processors, so you can use a Raspberry Pi too. I use different
programming languages but only those which are cross-platform, so among others I use .NET

9

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Core instead of .NET Framework (which only runs on Windows). If you want to learn Windows
containers in depth, my blog is a good source for that.

Lastly this book is specifically on Docker – so when it comes to production deployment I’ll
be using Docker Swarm, the clustering technology built into Docker. In Chapter 12 I talk about
Kubernetes and how to choose between Swarm and Kubernetes, but I don’t go into detail on
Kubernetes. Kubernetes needs a month of lunches itself, but Kubernetes is just a different way
of running Docker containers so everything you learn in this book applies.

1.3 How to use this book
This book follows the month of lunches principles: you should be able to work through each
chapter in an hour, and work through the whole book in a month. "Work" is the key word
here, because the daily 60 minutes should be enough time to read the chapter, work through
the try-it-now exercises, and have a go at the hands-on lab. It's working with containers that
will really cements the knowledge you gain in each chapter.

1.3.1 Your learning journey

Docker is a great technology to teach, because you can easily build a clear learning path that
starts simple and gradually adds more and more until you get to production. This book follows
a proven path I’ve used in dozens of workshops, webinars and training sessions.

Chapters 2 through 6 cover the basics. Here you’ll learn how to run containers, how to
package applications for Docker and share them on Docker Hub and other servers. You'll also
learn about storage in containers, and how you can work with stateful applications (like
databases) in Docker.

Chapters 7 through 11 move onto running distributed applications, where each component
runs in a container connected to a virtual Docker network. It’s where you’ll learn about Docker
Compose and patterns for making your containerized application production-ready - including
healthchecks and monitoring. This section also covers moving apps between environments and
building a CI process with Docker.

Chapters 12 through 16 are about running distributed applications using a container
orchestrator, which is a cluster of machines all running Docker. You’ll learn about joining
servers together and extend your knowledge of Docker Compose to deploy applications on the
cluster. You’ll also learn how to build Docker containers which are cross-platform so they run
on Windows, Linux, Intel and Arm. That portability is a key feature of Docker which will
become increasingly important as more clouds support cheaper, more efficient Arm
processors.

Chapters 17 through 21 cover more advanced topics. There's production readiness in here,
with hints for optimizing your Docker containers, and patterns for integrating your
application's logging and configuration with the Docker platform. This also covers approaches
for breaking down monolithic applications into multiple containers, using powerful
communication patterns: reverse proxies and message queues.

10

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The final chapter offers guidance on moving on with Docker – how to run a proof-of-
concept to move your own applications to Docker, how to get stakeholders on-board in your
organization and planning for your path to production. By the end of the book you should be
confident to bring Docker into your daily work.

1.3.2 Try-it-nows

Every chapter of the book has guided exercises for you to complete. The source code for the
book is all on GitHub at https://github.com/sixeyed/diamol - you’ll clone that when you set up
your lab environment, and use it for all the sample commands, which have you building and
running apps in containers.

Many chapters build on work from earlier in the book, but you do not need to follow all the
chapters in order. In the exercises you’ll package applications to run in Docker, but I’ve
already packaged them all and made them publicly available on Docker Hub. That means you
can follow the samples at any stage using my packaged apps.

If you can find time to work through the samples though, you’ll get more out of this book
than if you just skim the chapters and run the final sample application :)

1.3.3 Hands-on labs

Each chapter also ends with a hands-on lab which invites you to go further than the try-it-now
exercises. These aren't guided – you’ll get some instructions and some hints, and then it will
be down to you to complete the lab. There are sample answers for all the labs in the
sixeyed/diamol GitHub repo, so you can check what you’ve done - or see how I’ve done it if
you don’t have time for one of the labs.

1.3.4 Additional resources

The main place to look further into the topics from the book is Docker’s own documentation at
docs.docker.com, which covers everything from setting up the Docker engine, through syntax
for Dockerfiles and Docker Compose, to Docker Swarm and Docker’s Enterprise product range.

Docker is a popular topic on social media too, Docker posts daily on Twitter and Facebook
and you’ll find a lot of my content out there too. You can follow me on Twitter
@EltonStoneman, my blog is blog.sixeyed.com, and I post YouTube videos at
youtube.com/eltonstoneman.

1.4 Creating your lab environment
Now let’s get started. All you need to follow along with this book is Docker and the source
code for the samples.

1.4.1 Install Docker

The free Docker Community Edition is fine for development and even production use. If you’re
running a recent version of Windows 10 or Mac OS X, the best option is Docker Desktop; older

11

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://github.com/sixeyed/diamol
http://docs.docker.com/
https://twitter.com/EltonStoneman
http://blog.sixeyed.com/
http://youtube.com/eltonstoneman

versions can use Docker Toolbox. Docker also supplies installation packages for all the major
Linux distributions. Start by installing Docker using the most appropriate option for you.

INSTALL DOCKER DESKTOP ON WINDOWS 10

You need Windows 10 Professional or Enterprise to use Docker Desktop, and you'll want to
make sure that you have all the Windows updates installed - you should be on release 1809 as
a minimum (run winver from the command line to check your version). Browse to
https://www.docker.com/products/docker-desktop and choose to install the stable version.
Download the installer and run it, accepting all the defaults. When Docker Desktop is running
you’ll see Docker’s whale icon in the taskbar near the Windows clock.

INSTALL DOCKER DESKTOP ON MAC OS X

You need OS X Sierra 10.12 or above to use Docker Desktop for Mac - click the Apple icon in
the top left of the menu bar and select About this Mac to see your version. Browse to
https://www.docker.com/products/docker-desktop and choose to install the stable version.
Download the installer and run it, accepting all the defaults. When Docker Desktop is running
you’ll see Docker’s whale icon in the Mac menu bar near the clock.

INSTALL DOCKER TOOLBOX

If you're using an older version of Windows or OS X, then you can use Docker Toolbox. The
end experience with Docker is the same, but there are a few more pieces behind the scenes.
Browse to https://docs.docker.com/toolbox and follow the instructions – you’ll need to set up
Virtual Machine software first, like VirtualBox (Docker Desktop is a better option if you can use
it, because you don’t need a separate VM manager).

INSTALL DOCKER COMMUNITY EDITION AND DOCKER COMPOSE

If you're running Linux your distribution probably comes with a version of Docker you can
install, but you don’t want to use that. It will likely be a very old version of Docker, because
the Docker team now provide their own installation packages. You can use a script which
Docker updates with each new release to install Docker in a non-production environment -
browse to https://get.docker.com and follow the instructions to run the script.

INSTALL DOCKER ON WINDOWS SERVER OR LINUX SERVER DISTRIBUTIONS

Production deployments of Docker can use the Community Edition, but if you want a
supported container runtime you can use the commercial version provided by Docker, called
Docker Enterprise. Docker Enterprise is built on top of the Community Edition, so everything
you learn in this book works just as well with Docker Enterprise. There are versions for all the
major Linux distributions and for Windows Server 2016 and 2019. You can find all the Docker
Enterprise editions together with installation instructions on Docker Hub at
https://hub.docker.com/search/?q=&type=edition&offering=enterprise.

12

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://docs.docker.com/toolbox
https://get.docker.com/
https://hub.docker.com/search/?q=&type=edition&offering=enterprise

1.4.2 Verify your Docker setup

There are several components which make up the Docker platform, but for this book you just
need to verify that Docker is running and Docker Compose is installed.

First check Docker itself with the docker version command:

PS>docker version
Client: Docker Engine - Community
Version: 19.03.0-beta3
API version: 1.40
Go version: go1.12.4
Git commit: c55e026
Built: Thu Apr 25 19:05:10 2019
OS/Arch: windows/amd64
Experimental: true

Server: Docker Engine - Community
Engine:
 Version: 19.03.0-beta3
 API version: 1.40 (minimum version 1.24)
 Go version: go1.12.4
 Git commit: c55e026
 Built: Thu Apr 25 19:06:34 2019
 OS/Arch: windows/amd64
 Experimental: true

Your output will be different from mine, because the versions will have changed and you might
be using a different operating system – but as long as you can see a version number for the
Client and the Server, then Docker is working fine. Don't worry about what the client and
server are just yet, you'll learn about the architecture of Docker in the next chapter.

Next you need to test Docker Compose, which is a separate command line that also
interacts with Docker. Run docker-compose version to check:

PS>docker-compose version
docker-compose version 1.24.0, build 0aa59064
docker-py version: 3.7.2
CPython version: 3.6.8
OpenSSL version: OpenSSL 1.0.2q 20 Nov 2018

Again, your exact output will be different from mine, but as long as you get a list of versions
with no errors, then you are good to go.

1.4.3 Download the source code for the book

The source code for this book is in a public Git repository on GitHub. If you have a Git client
installed, just run:

git clone sixeyed/diamol

If you don’t have a Git client, browse to https://github.com/sixeyed/diamol and click the
"Clone or download" button to download a ZIP file of the source code to your local machine,
and expand the archive.

13

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://github.com/sixeyed/diamol

1.5 Being immediately effective
"Immediately effective" is another principle of the month of lunches series. In all the chapters
that follow the focus is on learning skills and putting them into practice.

Every chapter starts with a short introduction to the topic, followed by try it now exercises
where you put the ideas into practice using Docker. Then there’s a recap with some more
detail that fills in some of the questions you may have from diving in, and lastly a hands-on
lab for you to go the next stage.

All the topics center around tasks which are genuinely useful in the real world. You’ll learn
how to be immediately effective with the topic during the chapter, and you’ll finish by
understanding how to apply the new skill. Let’s start running some containers!

14

https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

2
Understanding Docker and

running Hello World

It’s time to get hands-on with Docker. In this chapter you’ll get lots of experience with the
core feature of Docker: running applications in containers. There’s some background here
which will help you understand exactly what a container is, and why containers are such a
lightweight way to run apps. Mostly you’ll be following try-it-now exercises, running simple
commands to get a feel for this new way to work with applications.

2.1 Running Hello World in a container
Let’s get started with Docker the same way we would with any new computing concept:
running Hello World. You have Docker up and running from Chapter 1, so open your favorite
terminal - that could be Terminal on the Mac or a Bash shell on Linux, and I recommend
PowerShell in Windows.

You’re going to send a command to Docker, telling it to run a container which prints out
some simple "Hello, World" text.

TRY IT NOW Enter this command, which will run Hello World container:

docker container run diamol/ch02-hello-diamol

When we’re done with this chapter, you’ll understand exactly what’s happening here. For now
just take a look at the output. It will be something like this (see figure 2.1):

15

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 2.1 The output from running the Hello World container. You can see Docker downloading the application
package (called an "image"), running the app in a container and showing the output.

There’s a lot in that output. I’ll trim future code listings to keep them short, but this is the
very first one and I wanted to show it in full so we can dissect it.

First of all, what’s actually happened? The docker container run command tells Docker
to run an application in a container. This application has already been packaged to run in
Docker and published on a public site which anyone can access. The container package (which
Docker calls an "image") is named diamol/ch02-hello-diamol (I use the acronym diamol

16

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

throughout this book - it stands for Docker In A Month Of Lunches). The command you’ve just
entered tells Docker to run a container from that image.

Docker needs to have a copy of the image locally before it can run a container using the
image. The very first time you run this command you won’t have a copy of the image, and you
see that in the output line 1: “unable to find image locally”. Then Docker downloads the image
(which Docker calls “pulling”), and you see that the image has been downloaded.

Now Docker starts a container using that image. The image contains all the content for the
application, and instructions telling Docker how to start the application. The application in this
image is just a simple script, and you see the output which starts Hello from Chapter 2!. It
writes out some details about the computer it’s running on:

• The machine name, in this example 2cff9e95ce83
• The operating system, in this example Linux 4.9.125-linuxkit x86_64
• The network address, in this example 172.17.0.3

I said your output will be “something like this” – it won’t be exactly the same, because some
of the information the container fetches depends on your computer. I ran this on a machine
with a Linux operating system and a 64-bit Intel processor. If you run it on a Windows
machine, the I’m running on line will show this instead:

I'm running on:
Microsoft Windows [Version 10.0.17763.557]

If you’re running on a Raspberry Pi, the output will show that it’s using a different processor
(armv7l is the codename for ARM’s 32-bit processing chip, and x86_64 is the code for Intel’s
64-bit chip):

I'm running on:
Linux 4.19.42-v7+ armv7l

This is a very simple example application, but it shows the core Docker workflow. Someone
packages their application to run in a container (I did it for this app, but you will do it yourself
in the next chapter), then publishes it so it’s available to other users, and then anyone with
access can run the app in a container. Docker calls this build, share and run.

It’s a hugely powerful concept, because the workflow is the same no matter how
complicated the application is. In this case it was a simple script, but it could be a Java
application with several components, configuration files and libraries. The workflow would be
exactly the same. And Docker images can be packaged to run on any computer that supports
Docker, which makes the app completely portable - portability is one of Docker’s key benefits.

What happens if you running a container using the same command?

TRY IT NOW Repeat the exact same Docker command:

17

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker container run diamol/ch02-hello-diamol

You’ll see similar output to the first run, but there will be differences. Docker already has a
copy of the image locally so it doesn’t need to download the image first, it gets straight to
running the container. The container output shows the same operating system details,
because you’re using the same computer. But the computer name and the IP address of the
container will be different:

Hello from Chapter 2!

My name is:
858a26ee2741

Im running on:
Linux 4.9.125-linuxkit x86_64

My address is:
inet addr:172.17.0.5 Bcast:172.17.255.255 Mask:255.255.0.0

Now my app is running on a machine with the name 858a26ee2741 and the IP address
172.17.0.5. The machine name will change every time, and the IP address will often change,
but every container is running on the same computer, so where do these different machine
names and network addresses come from? We’ll dig into a little theory next to explain that,
and then it’s back to the exercises.

2.2 So what is a container?
A Docker container is the same idea as a physical container – think of it like a box with an
application in it. Inside the box the application seems to have a computer all to itself, it has its
own machine name and IP address, and it also has its own disk drive (Windows containers
have their own Windows Registry too). Figure 2.2 shows how the apps is boxed by the
container:

Figure 2.2 An app inside the container environment

18

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Those things are all virtual resources – the hostname, IP address and file system are created
by Docker. They’re logical objects which are managed by Docker, and they’re all joined
together to create an environment where an application can run. That’s the “box” of the
container.

The application inside the box can’t see anything outside the box, but the box is running on
a computer, and that computer can also be running lots of other boxes. The applications in
those boxes have their own environments (managed by Docker) and they can’t see anything
outside their box.

One thing is very important about containers - they have these separate environments, but
they all share the CPU and memory of the computer, and they all share the computer’s
Operating System – you can see in figure 2.3 how containers on the same computer are
isolated:

Figure 2.3 Multiple containers on one computer share the same OS, CPU and memory

Why is this so important? It fixes two conflicting problems in computing: isolation and density.
Density means running as many applications on your computers as possible, to utilize all the
processor and memory that you have. But apps may not work nicely with other apps – they
might use different versions of Java or .NET, they may use incompatible versions of tools or
libraries, or one might have a heavy workload and starve the others of processing power.

19

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Applications really need to be isolated from each other, and that stops you running lots on a
single computer, so you don’t get density.

The original attempt to fix that problem was to use Virtual Machines (VMs). Virtual
Machines are a similar idea to containers, in that they give you a box to run your application –
but for a VM that box needs its own Operating System, it doesn’t share the OS of the
computer where the VM is running. Figure 2.4 shows the difference between containers and
VMs:

Figure 2.4 Multiple VMs on one computer each have their own OS

That may look like a small difference in the diagrams, but it has huge implications. Every VM
needs its own Operating System, and that OS can use gigabytes of memory and lots of CPU
time – soaking up compute power which should be available for your applications. There are
other concerns too, like licensing costs for the OS and the maintenance burden of installing OS
updates. VMs provide isolation at the cost of density.

Containers give you both. Each container shares the Operating System from the computer
running the container, and that makes them extremely lightweight. Containers start quickly
and run lean, so you can run many more containers than VMs on the same hardware -

20

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

typically five to ten times as many. You get density, but each app is in its own container, so
you get isolation too. That’s another key feature of Docker: efficiency.

So now we know how Docker does its magic, in the next exercise we’ll work more closely
with containers.

2.3 Connecting to a container like a remote computer
The first container we ran just did one thing – the application printed out some text and then
it ended. There are plenty of situations where one thing is all you want to do. Maybe you have
a whole set of scripts that automate some process. Those scripts need a specific set of tools to
run, so you can’t just share the scripts with a colleague, you need to also share a document
that describes setting up all the tools, and your colleague needs to spend hours installing
them. Instead you could package the tools and the scripts in a Docker image, share the image
and then your colleague can run your scripts in a container with no extra setup work.

You can work with containers in other ways too. Next you’ll see how you can run a
container and connect to a terminal inside the container, just as if you were connecting to a
remote machine. You use the same docker container run command, but pass some
additional flags to run an interactive container with a connected terminal session.

TRY IT NOW Run the following command in your terminal session:

docker container run --interactive --tty diamol/base

The --interactive flag tells Docker you want to set up a connection to the container, and the
--tty flag means you want to connect to a terminal session inside the container. The output
will show Docker pulling the image, and then you’ll be left with a command prompt. That
command prompt is for a terminal session inside the container, as you can see in figure 2.5:

21

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 2.5 Running an interactive container and connecting to the container’s terminal

The exact same Docker command works in the same way on Windows, but you’ll drop into a
Windows command line session instead:

Microsoft Windows [Version 10.0.17763.557]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\>

Either way, now you’re inside the container and you can run any commands that you can
normally run in the command line for the Operating System.

TRY IT NOW Run the commands hostname and date and you’ll see details of the container’s

environment:

/ # hostname
f1695de1f2ec
/ # date
Thu Jun 20 12:18:26 UTC 2019

You’ll need some familiarity with your command line if you want to explore further, but what
you have here is a local terminal session connected to a remote machine – the machine just
happens to be a container which is running on your computer. For instance if you use Secure

22

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Shell (SSH) to connect to a remote Linux machine, or Remote Desktop (RDP) to connect to a
remote Windows Server Core machine, you’ll get exactly the same experience as you have
here with Docker.

Remember that the container is sharing your computer’s Operating System, which is why
you see a Linux shell if you’re running Linux and a Windows command line if you’re using
Windows. Some commands are the same for both (try ping google.com), but others have
different syntax (you use ls to list directory contents in Linux, and dir in Windows).

Docker itself has the same behavior whichever Operating System or processor you’re
using, it’s the application inside the container which sees it’s running on an Intel-based
Windows machine or an Arm-based Linux one. You manage containers with Docker in the
same way, whatever is running inside them.

TRY IT NOW Open up a new terminal session and you can get details of all the running containers with the

command:

docker container ls

The output shows you information about each container, including the image it’s using, the
container ID and the command Docker ran inside the container when it started:

CONTAINER ID IMAGE COMMAND CREATED STATUS f1695de1f2ec
diamol/base "/bin/sh" 16 minutes ago Up 16 minutes

If you have a keen eye, you’ll notice the container ID is the same as the hostname inside the
container. Docker assigns a random ID to each container it creates, and part of that ID is used
for the hostname. There are lots of docker container commands which you can use to interact
with a specific container, which you can identify using the first few characters of the container
ID you want.

TRY IT NOW docker container top lists the processes running in the container – I’m using f1 as a

short form of the container ID f1695de1f2ec:

> docker container top f1
PID USER TIME COMMAND
69622 root 0:00 /bin/sh

If you have multiple processes running in the container, Docker will show them all. That will
be the case for Windows containers, which always have several background processes running
in addition to the container application.

TRY IT NOW docker container logs displays any log entries the container has collected:

> docker container logs f1
/ # hostname
f1695de1f2ec

23

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Docker collects log entries using the output from the application in the container. In the
case of this terminal session I see the commands I ran and their results, but for a real
application you would see your code’s log entries. For example a Web application may write a
log entry for every HTTP request processed, and these will show in the container logs.

TRY IT NOW docker container inspect shows you all the details of a container:

> docker container inspect f1
[
 {
 "Id": "f1695de1f2ecd493d17849a709ffb78f5647a0bcd9d10f0d97ada0fcb7b05e98",
 "Created": "2019-06-20T12:13:52.8360567Z"

The full output shows lots of low-level information including the paths of the container’s virtual
filesystem, and the virtual Docker network the container is connected to. It comes as a large
chunk of JSON, which is great for automating with scripts, but not so good for a code listing in
a book – so I’ve just shown the first few lines.

These are the commands you’ll use all the time when you’re working with containers, when
you need to troubleshoot application problems, or check if processes are using lots of CPU, or
to see the networking Docker has set up for the container.

There’s another point to these exercises, which is to help you realise that as far as
Docker’s concerned, containers all look the same. Docker adds a consistent management layer
on top of every application. You could have a 10-year-old Java app running in a Linux
container, a 15-year-old .NET app running in a Windows container, and a brand-new Go
application running on a Raspberry Pi. You’ll use the exact same commands to manage them –
run to start the app, logs to read out the logs, top to see the processes and inspect to get
the details.

Now we’ve seen a bit more of what you can do with Docker, we’ll finish with some
exercises for a more useful application. You can close the second terminal window you opened
(where you ran docker container logs), go back to the first terminal – which is still connected
to the container – and run exit to close the terminal session.

2.4 Hosting a website in a container
So far we’ve run a few containers. The first couple ran a task which printed some text and

then exited. The next used the interactive flags and that connected us to a terminal session in
the container, which stayed running until we exited the session. docker container ls will
show you have no containers, because the command only shows running containers.

TRY IT NOW Run docker container ls --all, which shows all containers - in any status:

> docker container ls --all
CONTAINER ID IMAGE COMMAND CREATED

STATUS

24

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

f1695de1f2ec diamol/base "/bin/sh" About an hour ago
Exited (0)

858a26ee2741 diamol/ch02-hello-diamol "/bin/sh -c ./cmd.sh" 3 hours ago
Exited (0)

2cff9e95ce83 diamol/ch02-hello-diamol "/bin/sh -c ./cmd.sh" 4 hours ago
Exited (0)

The containers have the status Exited. There are a couple of really key things to understand
here.

First: containers are only running while the application inside the container is running. As
soon as the application process ends, the container goes into the exited state. Exited
containers don’t use any CPU time or memory. The “Hello World” container exited
automatically as soon as the script completed. The interactive container we were connected to
exited as soon as we exited the terminal application.

Second: containers don’t disappear when they exit. Containers in the exited state still
exist, which means you can start them again, check the logs, and you can copy files to and
from the container’s filesystem. You only see running containers with docker container ls, but
Docker doesn’t remove exited containers unless you explicitly tell it to do so. Exited containers
still take up space on disk, because their filesystem is kept on the computer’s disk.

So what about starting containers which stay in the background and just keep running?
That’s actually the main use-case for Docker, running server applications like websites, batch
processes and databases.

TRY IT NOW Here’s a simple example, running a website in a container:

docker container run --detach --publish 8088:80 diamol/ch02-hello-diamol-web

This time the only output you’ll see is a long container ID, and you get returned to your
command line. The container is still running in the background.

TRY IT NOW Run docker container ls and you’ll see that the new container has the status “Up”:

> docker container ls
CONTAINER ID IMAGE

COMMAND CREATED STATUS PORTS
NAMES

e53085ff0cc4 diamol/ch02-hello-diamol-web
"bin\\httpd.exe -DFOR…" 52 seconds ago Up 50 seconds 443/tcp,
0.0.0.0:8088->80/tcp reverent_dubinsky

The image you’ve just used is diamol/ch02-hello-diamol-web. That image includes the
Apache web server and a simple HTML page. When you run this container you have a full web
server running, hosting a custom website. Containers that sit in the background and listen for
network traffic (HTTP requests in this case) need a couple of extra flags in the container run
command:

25

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

• --detach – starts the container in the background and shows the container ID
• --publish – publishes a port from the container to the computer

Running a detached container just puts the container in the background so it starts up and
stays hidden, like a Linux daemon or a Windows Service. Publishing ports needs a little more
explanation. When you install Docker it injects itself into your computer’s networking layer.
Traffic coming into your computer can be intercepted by Docker and then Docker can send
that traffic into a container.

Containers aren’t exposed to the outside world by default. They have their own IP address
but that’s an IP address which Docker creates, for a network which Docker manages – the
container is not attached to the physical network of the computer. Publishing a container port
means Docker listens for network traffic on the computer port, and then sends it into the
container. In this case traffic sent to the computer on port 8088 will get sent into the
container on port 80 – you can see the traffic flow in figure 2.5:

Figure 2.6 The physical and virtual networks for computers and containers

26

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

In this example my computer is the machine running Docker, and it has the IP address
192.168.2.150. That’s the IP address for my physical network, and it was assigned by the
router when my computer connected. Docker is running a single container on that computer,
and the container has the IP address 172.0.5.1. That address is assigned by Docker for a
virtual network managed by Docker. No other computers in my network can connect to the
container’s IP address, because it only exists in Docker – but they can send traffic into the
container, because the port has been published.

TRY IT NOW Browse to http://localhost:8088 on a browser. That’s an HTTP request to the local

computer, but the response (see figure 2.6) comes from the container:

Figure 2.7 The web application served from a container on the local machine

One thing you definitely won’t learn from this book is effective website design.
This is a very simple website, but even so this app still benefits from the portability and

efficiency that Docker brings. The web content is packaged with the web server, so the Docker
image has everything it needs. A web developer can run a single container on their laptop and
the whole application – from the HTML to the web server stack – will be exactly the same as
when an operator runs the app on 100 containers across a server cluster in production.

The application in this container keeps running indefinitely, so the container will keep
running too. You can use the docker container commands we’ve already used to manage it.

TRY IT NOW docker container stats is another useful one, it shows a live view of how much CPU,

memory, network and disk the container is using:

> docker container stats e53
CONTAINER ID NAME CPU % PRIV WORKING SET NET I/O BLOCK

I/O
e53085ff0cc4 reverent_dubinsky 0.36% 16.88MiB 250kB / 53.2kB 19.4MB

/ 6.21MB

27

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

When you’re done working with the container, you can remove it with docker container rm
and the container ID, using the --force flag to force removal if the container is still running.
We’ll end this exercise with one last command that you’ll get used to running regularly.

TRY IT NOW Run this command to remove all your containers:

docker container rm --force $(docker container ls --all --quiet)

The $() syntax sends the output from one command into another command – it works just as
well on Linux and Mac terminals, and on Windows PowerShell. Combining these commands
gets a list of all the container IDs on your computer, and removes them all. Use with caution,
because it won’t ask for confirmation, but this is a good way to tidy up your containers.

2.5 Understanding how Docker runs containers
We’ve done a lot of try-it-now exercises in this chapter, and you should be happy now with the
basics of working with containers.

In the first try-it-now for this chapter I talked about the build, share, run workflow which
is at the core of Docker. That workflow makes it very easy to distribute software – I've built all
the sample container images and shared them, knowing you can run them in Docker and they
will work the same for you as they do for me. A huge number of projects now use Docker as
the preferred way to release software. You can try a new piece of software – say
Elasticsearch, or the latest version of SQL Server or the Ghost blogging engine – with the
same type of docker container run commands you’ve been using.

We’re going to end with a little more background, so you have a solid understanding of
what’s actually happening when you run applications with Docker. Installing Docker and
running containers is deceptively simple – there are actually a few different components
involved, which you can see in figure 2.7:

28

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 2.8 The components of Docker

• The Docker Engine is the management component of Docker. It looks after the local
image cache, downloading images when you need them, and reusing them if they’re
already downloaded. It also works with the Operating System to create containers,
virtual networks and all the other Docker resources. The Engine is a background
process which is always running (as a Linux daemon or a Windows Service).

• The Docker Engine makes all the features available through the Docker API, which
just a standard HTTP-based REST API. You can configure the Engine to make the API
accessible only from the local computer (which is the default), or available to other
computers on your network.

• The Docker Command-Line Interface (CLI) is a client of the Docker API. When you
run docker commands, the CLI actually sends them to the Docker API and the Docker
Engine does the work.

It’s good to understand the architecture of Docker. The only way to interact with the Docker
Engine is through the API, and there are different options for giving access to the API and
securing it. The CLI works by sending requests to the API.

So far we’ve used the CLI to manage containers on the same computer where Docker is
running, but you can point your CLI to the API on a remote computer running Docker and

29

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

control containers on that machine – that’s what you’ll do to manage containers in different
environments, like your build servers, test and production. The Docker API is the same on
every Operating System, so you can use the CLI on your Windows laptop to manage
containers on your Raspberry PI, or on a Linux server in the cloud.

The Docker API has a published specification, and the Docker CLI is not the only client.
There are several graphical user interfaces which connect to the Docker API and give you a
visual way to interact with your containers. The API exposes all the details about containers,
images and the other resources Docker manages so it can power rich dashboards like the one
in figure 2.8:

Figure 2.9 Docker Universal Control Plane, a graphical user interface for containers

This is Universal Control Plane (UCP), a commercial product from the company behind Docker.
Portainer is another option, which is an open-source project. Both UCP and Portainer run as
containers themselves, so they’re easy to deploy and manage.

We won’t be diving any deeper into the Docker architecture than this. The Docker Engine
uses a component called containerd to actually manage containers, and containerd in turn

30

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://docs.docker.com/ee/ucp/
https://www.portainer.io/
https://containerd.io/

makes use of Operating System features to create the virtual environment that is the
container.

You don’t need to understand the low-level details of containers, but it is good to know
this: containerd is an open-source component overseen by the Cloud Native Computing
Foundation, and the specification for running containers is open and public, it’s called the
Open Container Initiative (OCI).

Docker is by far the most popular and easy to use container platform, but it’s not the only
container runtime. You can confidently invest in containers without being concerned that
you’re getting locked in to one vendor’s platform.

2.6 Lab: exploring the container filesystem
This is the first lab in the book, so here’s what it’s all about. The lab sets you a task to

achieve by yourself, which will really help you cement what you’ve learned in the chapter.
There will be some guidance and a few hints, but mostly this is about you going further than
the proscriptive try-it-now exercises and finding your own way to solve the problem.

Every lab has a sample solution on the book’s GitHub repository. It’s really worth you
spending some time trying it out yourself, but if you want to check my solution you can find it
here:

• https://github.com/sixeyed/diamol/tree/master/ch02/lab

So here we go: your task is to run the website container from this chapter, but replace the
index.html file so when you browse to the container you see a different homepage (you can
use any content you like). Remember that the container has its own filesystem, and in this
application the website is serving files which are on the container’s filesystem.

Here are some hints to get you going:

• You can run docker container to get a list of all the actions you can perform on a
container

• Add --help to any docker command and you’ll see more detailed help text
• In the diamol/ch02-hello-diamol-web Docker image, the content from the website is

served from the directory /usr/local/apache2/htdocs (that’s
C:\usr\local\apache2\htdocs on Windows).

Good luck :)

31

https://www.cncf.io/
https://www.cncf.io/
https://github.com/sixeyed/diamol/tree/master/ch02/lab
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

3
Building your own Docker images

You ran some containers in the last chapter and used Docker to manage them. Containers
provide a consistent experience across applications, no matter what technology stack the app
uses. Up till now you’ve used Docker images which I’ve built and shared, and in this chapter
you’ll see how to build your own images. This is where you’ll learn about the Dockerfile
syntax, and some of the key patterns you will always use when you containerize your own
apps.

3.1 Using a container image from Docker Hub
We’ll start with the finished version of the image you’ll build in this chapter, so you can see
how it’s been designed to work well with Docker. The try-it-now exercises all use a simple
application called web-ping which checks if a website is up. The app will run in a container,
and make HTTP requests to the URL for my blog, every 3 seconds until the container is
stopped.

You know from Chapter 2 that docker container run will download the container image
locally if it isn’t already on your machine, that's because software distribution is built into the
Docker platform. You can leave Docker to manage this for you, so it pulls images when they’re
needed - or you can explicitly pull images using the Docker CLI.

TRY IT NOW Pull the container image for the web-ping application:

docker image pull diamol/ch03-web-ping

You’ll see output similar to mine in figure 3.1:

32

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 3.1 Pulling an image from Docker Hub

The image name is diamol/ch03-web-ping. It’s stored on Docker Hub, which is the default
location where Docker looks for images. Image servers are called registries and Docker Hub is
a public registry you can use for free. Docker Hub also has a Web interface, and you’ll find
details about this image at https://hub.docker.com/r/diamol/ch03-web-ping.

There’s some interesting output from the docker image pull command, which shows you
how images are stored. A Docker image is logically one thing, you can think of it as a big zip
file that contains the whole application stack – this image has the NodeJS runtime together
with my application code.

During the pull you don’t see one single file downloaded, you see lots of downloads in
progress. Those are called image layers. A Docker image is physically stored as lots of small
files, and Docker assembles them together to create the container’s file system. When all the
layers have been pulled, the full image is available to use.

TRY IT NOW Let’s run a container from the image and see what the app does:

docker container run -d --name web-ping diamol/ch03-web-ping

The -d flag is a short form of --detach, so this container will run in the background. The
application runs like a batch job with no user interface. Unlike the website container we ran

33

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://hub.docker.com/r/diamol/ch03-web-ping

detached in Chapter 2, this one doesn’t accept incoming traffic so you don’t need to publish
any ports.

There’s one new flag in this command which is --name. You know that you can work with
containers using the ID that Docker generates, but you can also give them a friendly name.
This container is called web-ping, and you can use that name to refer to the container instead
of the random ID.

My blog is getting pinged by the app running in your container now. The app runs in an
endless loop, and you can see what it’s doing using the same docker container commands
you’re familiar with from Chapter 2.

TRY IT NOW Have a look at the logs from the application, which are being collected by Docker:

docker container logs web-ping

You’ll see output like that in figure 3.2, showing the app making HTTP requests to
blog.sixeyed.com:

Figure 3.2 The web-ping container in action, sending constant traffic to my blog

34

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

An app which makes web requests and logs out how long the response took is fairly useful –
you could use it as the basis for monitoring the uptime of a website. But this application looks
like it’s hard-coded to use my blog, so it’s pretty useless to anyone but me.

Except that it isn’t. The application can actually be configured to use a different URL, a
different interval between requests and even a different type of HTTP call. This app reads the
configuration values it should use from the system’s environment variables.

Environment variables are just key-value pairs that the Operating System provides. They
work in the same way on Windows and Linux and they’re a very simple way to store small
pieces of data. Docker containers also have environment variables, but instead of coming from
the computer’s Operating System, they’re set up by Docker in the same way that Docker
creates a hostname and IP address for the container.

The web-ping image has some default values set for environment variables. When you run
a container, those environment variables are populated by Docker and that’s what the app
uses to configure the website URL. You can specify different values for environment variable
when you create the container, and that will change the behavior of the app.

TRY IT NOW Remove the existing container, and run a new one with a value specified for the TARGET

environment variable:

docker rm -f web-ping
docker container run --env TARGET=google.com diamol/ch03-web-ping

Your output this time will look like mine in figure 3.3:

Figure 3.3. A container from the same image, sending traffic to Google

This container is doing something different. Firstly it’s running interactively, because you
didn’t use the --detach flag, so the output from the app is shown on your console. The

35

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

container will keep running until you end the app by pressing Ctrl-C. Secondly it’s pinging
google.com now instead of blog.sixeyed.com.

This is going to be one of your major takeaways from this chapter – Docker images may be
packaged with a default set of configuration values for the application, but you should be able
to provide different configuration settings when you run a container.

Environment variables are a very simple way to achieve that. The web-ping application
code looks for an environment variable with the key TARGET. That is set in the image with a
value of blog.sixeyed.com, but you can provide a different value with the docker container
run command, using the --env flag. Figure 3.4 shows how containers have their own settings,
different from each other and from the image:

Figure 3.4 Environment variables in Docker images and containers

The host computer has its own set of environment variables too, but they’re separate from the
containers. Each container only has the environment variables which Docker populates. The
important thing in figure 3.4 is that the web-ping application is the same in each container –
they use the same image, so the app is running the exact same set of binaries, but the
behavior is different because of the configuration.

It’s down to the author of the Docker image to provide that flexibility, and you’re going to
see how to do it now, when you build your first Docker image from a Dockerfile.

3.2 Writing your first Dockerfile
The Dockerfile is a simple script you write to package up an application – it’s a set of
instructions, and a Docker image is the output. The Dockerfile syntax is simple to learn, and
you can package up any kind of app using a Dockerfile. As scripting languages go it is very

36

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

flexible. Common tasks have their own commands, and for anything custom you need to do
you can use standard shell commands (Bash on Linux or PowerShell on Windows).

Code listing 3.1 shows the full Dockerfile to package up the web-ping application:

Code listing 3.1 The web-ping Dockerfile

FROM diamol/node

ENV TARGET="blog.sixeyed.com"
ENV METHOD="HEAD"
ENV INTERVAL="3000"

WORKDIR /web-ping
COPY app.js .

CMD ["node", "/web-ping/app.js"]

Even if this is the first Dockerfile you’ve ever seen, I’d say you could have a good guess what’s
happening here. The Dockerfile instructions are FROM, ENV, WORKDIR, COPY and CMD; they’re in
capitals but that’s a convention, not a requirement. Here’s the breakdown for each instruction:

• FROM – every image has to start from another image. In this case, the web-ping image
will use the diamol/node image as its starting point. That image has NodeJS installed,
which is everything the web-ping application needs to run.

• ENV – sets values for environment variables. The syntax is [key]=”[value]”, there are
three ENV instructions here, setting up three different environment variables.

• WORKDIR – creates a directory in the container image file system, and sets that to be
the current working directory. The forward-slash syntax works for Linux and Windows
containers, so this will create /web-ping on Linux and C:\web-ping on Windows.

• COPY – copies files or directories from the local filesystem into the container image. The
syntax is [source path] [target path] – in this case, I’m copying app.js from my
local machine into the working directory in the image.

• CMD – specifies the command to run when Docker starts a container from the image.
This runs NodeJS, starting the application code in app.js.

That’s it. Those instructions are pretty much all you need to package your own applications in
Docker, and in those five lines there are already some good practices.

TRY IT NOW You don’t need to copy and paste this Dockerfile, it’s all there in the book’s source code which

you cloned or downloaded in Chapter 1. Navigate to where you downloaded it and check you have all the files

to build this image:

cd ch03/exercises/web-ping
ls

You should see that you have three files:

• Dockerfile (no file extension) which has the same content as Code Listing 3.1

37

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

• app.js which has the NodeJS code for the web-ping application
• README.md which is just documentation for using the image

You can see these in figure 3.5:

Figure 3.5 The content you need to build the Docker image

You don’t need to have any understanding of NodeJS or Javascript to package this app and
run it in Docker. If you do look at the code in app.js you’ll see it’s pretty basic, and it uses
standard NodeJS libraries to make the HTTP calls and to get configuration values from
environment variables.

In this directory you have everything you need to build your own image for the web-ping
application.

3.3 Building your own container image
Docker needs to know a few things before it can build an image from a Dockerfile. It needs a
name for the image, and it needs to know the location for all the files that it’s going to
package into the image. You already have a terminal open in the right directory, so you’re
ready to go.

TRY IT NOW Turn this Dockerfile into a Docker image by running docker image build:

38

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker image build --tag web-ping .

The --tag argument is the name for the image, and the final argument is the directory where
the Dockerfile and related files are. Docker calls this directory the “context”, and the period
means use the current directory. You’ll see output from the build command, executing all the
instructions in the Dockerfile. My build is here in figure 3.6:

Figure 3.6 Output from building the web-ping Docker image

39

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

If you get any errors from the build command, you first need to check that the Docker Engine
is started. You need the Docker Desktop Docker app to be running on Windows or Mac (check
for the whale icon in your taskbar). Then check you’re in the right directory. You should be in
the ch03-web-ping directory where the Dockerfile and the app.js file are. Lastly check you’ve
entered the build command correctly – the period at the end of the command is required, to
tell Docker the build context is the current directory.

If you get a warning during the build about file permissions, that's because you're using
the Docker command line on Windows to build Linux containers, thanks to Docker Desktop's
Linux container mode. Windows doesn’t record file permissions in the same way that Linux
does, so the warning is telling you all the files copied from your Windows machine are set with
full read and write permissions in the Linux Docker image.

When you see the "successfully built" and "successfully tagged" messages in the output,
your image is built. It’s stored locally in your image cache, and you can see it with the Docker
command to list images.

TRY IT NOW List all the images where the tag name starts with “w”:

docker image ls w*

You’ll see your web-ping image listed:

> docker image ls w*
REPOSITORY TAG IMAGE ID CREATED SIZE
web-ping latest f2a5c430ab2a 14 minutes ago 75.3MB

You can use this image in exactly the same way as the one you downloaded from Docker Hub,
the contents of the app are the same and the configuration settings can be applied with
environment variables.

TRY IT NOW Run a container from your own image to ping Docker’s website every five seconds:

docker container run -e TARGET=docker.com -e INTERVAL=5000 web-ping

Your output will be like mine in figure 3.7, with the first log line confirming that the target web
URL is docker.com, and the ping interval is 5000 milliseconds:

40

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 3.7 Running the web-ping container from your own image

That container is running in the foreground, so you’ll need to stop it with Ctrl-C. That ends the
application and the container will go into the exited state.

You’ve packaged a simple application to run in Docker, but the process is exactly the same
for more complicated apps. You write the Dockerfile with all the steps to package your app,
collect the resources you need to go into the Docker image, and decide how you want users of
your image to configure the behavior of the app.

3.4 Understanding Docker images and image layers
You’ll be building plenty more images as you work through this book. We’ll stick with this
simple one for the rest of the chapter and use it to get a better understanding of how images
work, and the relationship between images and containers.

The Docker image contains all the files you packaged, which become the container’s
filesystem - and it also contains a lot of metadata about the image itself. That includes a brief
history of how the image was built. You can use that to see each layer of the image, and the
command that built the layer.

TRY IT NOW Check the history for your web-ping image:

docker image history web-ping

You’ll see an output line for each image layer; these are the first few (abbreviated) lines from
my image:

> docker image history diamol/ch03-web-ping
IMAGE CREATED CREATED BY
47eeeb7cd600 30 hours ago /bin/sh -c #(nop) CMD ["node" "/web-ping/ap…

41

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

<missing> 30 hours ago /bin/sh -c #(nop) COPY file:a7cae366c9996502…
<missing> 30 hours ago /bin/sh -c #(nop) WORKDIR /web-ping

The CREATED BY commands are the Dockerfile instructions – there’s a one-to-one relationship,
so each line in the Dockerfile creates an image layer. We’re going to dip onto a little more
theory here, because understanding image layers is your key to making the most efficient use
of Docker.

A Docker image is a logical collection of image layers. Layers are the files which are
physically stored in the Docker engine’s cache. Here’s why that’s important: image layers can
be shared between different images and different containers. If you have lots of containers all
running NodeJS apps, they will all share the same set of image layers that contain the NodeJS
runtime. Figure 3.7 shows how that works:

Figure 3.8 How image layers are logically built into Docker images

The image diamol/node has a slim Operating System layer, and then the NodeJS runtime. The
Linux image takes up about 75Mb of disk (the base OS layer for Windows containers is larger,
so the Windows version of the image uses closer to 300Mb). Your web-ping image is based on
diamol/node, so it starts with all the layers from that image – that’s what the FROM
instruction in the Dockerfile gives you. The app.js file you package on top of the base image
is only a few kilobytes in size, so how big is the web-ping image in total?

TRY IT NOW You list images with docker image ls, which also shows the size of the image. If you don’t

include a filter in the command, you’ll see all images:

42

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker image ls

Your output will be like mine in figure 3.8:

Figure 3.9 Listing images to see their sizes

It looks like all the NodeJS images take up the same amount of space – 75Mb each on Linux.
There are three of those: diamol/node, the original sample app you pulled from Docker Hub in
diamol/ch03-web-ping, and the version you built yourself in web-ping. They should be
sharing the base image layers, but the output from docker image ls suggests they're each
75Mb in size, so that’s 75*3=225Mb in total.

Not exactly. The Size column you see is the logical size of the image – that’s how much
disk space the image would use if you didn’t have any other images on your system. If you do
have other images which share layers, then the disk space Docker uses is much smaller. You
can’t see that from the image list, but there are Docker system commands which tell you
more.

TRY IT NOW My image list shows a total of 363.96Mb of images, but that’s the total logical size. The

system df command shows exactly how much disk space Docker is using:

docker system df

You can see in figure 3.9 that my image cache is actually using 202.2Mb – meaning 163Mb of
image layers are being shared between images, a 45% saving on disk space. The amount of
disk space you save through reuse is typically much larger, when you have a large number of
application images all sharing the same base layers for the runtime. Those base layers might
have Java, .NET Core, PHP – whatever technology stack you use, Docker’s behavior is the
same.

43

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 3.10 Checking Docker’s disk space usage

One last piece of theory. If image layers are shared around, then they can’t be edited –
otherwise a change in one image would cascade to all the other images that share the
changed layer. Docker enforces that by making image layers read-only. Once you create a
layer by building an image, that layer can be shared by other images, but it can’t be changed.
You can take advantage of that to make your Docker images smaller and your builds faster, by
optimizing your Dockerfiles.

3.5 Optimizing Dockerfiles to use the image layer cache
There’s a layer of your web-ping image which contains the application’s JavaScript file. If you
make a change to that file and rebuild your image, you’ll get a new image layer. Docker
assumes the layers in a Docker image follow a defined sequence, so if you change a layer in
the middle of that sequence, Docker doesn’t assume it can re-use the later layers in the
sequence.

TRY IT NOW Make a change to the app.js file in the ch03-web-ping directory. It doesn’t have to be a

code change, just adding a new empty line at the end of the file will do. Then build a new version of your

Docker image:

docker image build -t web-ping:v2 .

You’ll see the same output as mine in figure 3.10. Steps 2 through 5 of the build use layers
from the cache, and steps 6 and 7 generate new layers:

44

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 3.11 Building an image where layers can be used from the cache

Every Dockerfile instruction results in an image layer, but if the instruction doesn’t change
between builds, and the content going into the instruction is the same, then Docker knows it
can use the previous layer in the cache. That saves executing the Dockerfile instruction again
and generating a duplicate layer. The input is the same, so the output will be the same and
Docker can just use what’s already there in the cache.

Docker calculates if the input has a match in the cache by generating a hash, which is like
a digital fingerprint representing the input. The hash is made from the Dockerfile instruction
and the contents of any files being copied. If there’s no match for the hash in the existing
image layers, then Docker executes the instruction – and that breaks the cache. As soon as

45

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

the cache is broken, Docker executes all the instructions that follow, even if they haven’t
changed.

That has an impact even in this small example image. The app.js file has changed since
the last build, so the COPY instruction in step 6 needs to run. The CMD instruction in step 7 is
the same as the last build, but because the cache was broken at step 6, that instruction runs
as well.

Any Dockerfile you write should be optimized so that the instructions are ordered by how
frequently they change – with instructions that are unlikely to change at the start of the
Dockerfile, and instructions most likely to change at the end. The goal is that most builds will
only need to execute the last instruction, using the cache for everything else. That saves time,
disk space and network bandwidth when you start sharing your images.

There are only seven instructions in the web-ping Dockerfile, but it can still be optimized.
The CMD instruction doesn’t need to be at the end of the Dockerfile, it can be anywhere after
the FROM instruction and still have the same result. It’s unlikely to change so you can move it
nearer the top. And one ENV instruction can be used to set multiple environment variables, so
the three separate ENV instructions can be combined. The optimized Dockerfile is shown in
Code Listing 3.2:

Code listing 3.2 The optimized web-ping Dockerfile

FROM diamol/node

CMD ["node", "/web-ping/app.js"]

ENV TARGET="blog.sixeyed.com" \
 METHOD="HEAD" \
 INTERVAL="3000"

WORKDIR /web-ping
COPY app.js .

TRY IT NOW The optimized Dockerfile is in the source code for this chapter too. Switch to the web-ping-

optimized folder, and build the image from the new Dockerfile:

cd ../web-ping-optimized
docker image build -t web-ping:v3 .

You won’t notice too much difference from the last build. There are five steps instead of seven,
but the end result is the same – you can run a container from this image and it behaves just
like the other versions. But now if you change the application code in app.js and rebuild, all
the steps come from the cache except the final one, which is exactly what you want because
that’s all you’ve changed.

That’s all for building images in this chapter. You’ve seen the Dockerfile syntax and the key
instructions you need to know, and you’ve learned how to build and work with images from
the Docker CLI.

46

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

There are two more important things to take from this chapter, which will be of good
service to you in every image you build: optimize your Dockerfiles, and make sure your image
is portable so you use the same image when you deploy to different environments. That’s
really just about taking care with how you structure your Dockerfile instructions, and making
sure the application can read configuration values from the container. It means you can build
images quickly, and when you deploy to production you're using the exact same image that
was quality-approved in your test environments.

3.6 Lab
Okay, it’s lab time. The goal here is to answer this question: how do you produce a Docker
image without a Dockerfile? The Dockerfile is there to automate the deployment of your app,
but you can’t always automate everything. Sometimes you need to run the application and
finish off some steps manually, and those steps can’t be scripted.

This lab is a much simpler version of that. You’re going to start with an image on Docker
Hub: diamol/ch03-lab. That image has a file at the path /diamol/ch03.txt. You need to
update that text file and add your name at the end. Then produce your own image with your
changed file. You’re not allowed to use a Dockerfile :)

There’s a sample solution on the book’s GitHub repository if you need it, you’ll find it here:

• https://github.com/sixeyed/diamol/tree/master/ch02/lab

Here are some hints to get you going:

• Remember the -it flags let you run to a container interactively
• The filesystem for a container still exists when it is exited
• There are lots of commands you haven’t used yet. docker container --help will

show you two that could help you solve the lab.

47

https://github.com/sixeyed/diamol/tree/master/ch02/lab
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

4
Packaging applications from

source code into Docker Images

Building Docker images is easy. In Chapter 3 you learned that you just need a few instructions
in a Dockerfile to package an application to run in a container. There’s one other thing you
need to know to package your own applications – you can also run commands inside
Dockerfiles. Commands execute during the build, and any filesystem changes from the
command get saved in the image layer. That makes Dockerfiles about the most flexible
packaging format there is; you can expand Zip files, run Windows installers and do pretty
much anything else. In this chapter you’ll use that flexibility to package applications from
source code.

4.1 Who needs a build server when you have a Dockerfile?
Building software on your laptop is something you do for local development, but when you’re
working in a team there’s a more rigorous delivery process. There’s a shared source control
system like GitHub where everyone pushes their code changes, and typically a separate server
(or online service) which builds the software when changes get pushed.

That process exists to catch problems early. If a developer forgets to add a file when they
push code, the build fails on the build server and the team gets alerted. It keeps the project
healthy, but the cost is having to maintain a build server. Most programming languages need
a lot of tools to build projects – figure 4.1 shows some examples.

48

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 4.1 Everyone needs the same set of tools to build a software project

There’s a big maintenance overhead here. A new starter on the team will spend the whole of
their first day installing the tools. If a developer updates their local tools so the build server is
running a different version, the build can fail. You have the same issues even if you’re using a
managed build service, and there you may have a limited set of tools you can install.

It would be much cleaner to package the build toolset once and share it – which is exactly
what you can do with Docker. You can write a Dockerfile which scripts the deployment of all
your tools, and build that into an image. Then you can use that image in your application
Dockerfiles to compile the source code, and the final output is your packaged application.

Let’s start with a very simple example, because there are a couple of new things to
understand in this process. Code listing 4.1 shows a Dockerfile with the basic workflow:

Code listing 4.1 A multi-stage Dockerfile

FROM diamol/base AS build-stage
RUN echo 'Building...' > /build.txt

FROM diamol/base AS test-stage
COPY --from=build-stage /build.txt /build.txt
RUN echo 'Testing...' >> /build.txt

FROM diamol/base
COPY --from=test-stage /build.txt /build.txt
CMD cat /build.txt

49

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

This is called a multi-stage Dockerfile, because there are several stages to the build. Each
stage starts with a FROM instruction, and you can optionally give stages a name with the AS
parameter. I have three stages: build-stage, test-stage and the final un-named stage.
There are multiple stages, but the output will be a single Docker image with the contents of
the final stage.

Each stage runs independently, but you can copy files and directories from previous
stages. I’m using the COPY instruction with the --from argument, which tells Docker to copy
files from an earlier stage in the Dockerfile, rather than from the filesystem of the host
computer. In this example I generate a file in the build stage, then copy it into the test stage,
and then copy the file from the test stage into the final stage.

There’s one new instruction here: RUN, which I’m using to write files. The RUN instruction
executes a command inside a container during the build, and any output from that command
gets saved in the image layer. You can execute anything in a RUN instruction, but the
commands you want to run need to exist in the Docker image you’re using in the FROM
instruction. In this example I use diamol/base as the base image, and that contains the echo
command, so I know my RUN instruction will work.

Figure 4.2 shows what’s going to happen when we build this Dockerfile – Docker will run
the stages sequentially:

Figure 4.2 Executing a multi-stage Dockerfile

50

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

It’s important to understand that the individual stages are isolated. You can use different base
images with different sets of tools installed and run whatever commands you like. The output
in the final stage will only contain what you explicitly copy in from earlier stages. If a
command fails in any stage, that fails the whole build.

TRY IT NOW Open a terminal session to the folder where you stored the book’s source code, and build this

multi-stage Dockerfile:

cd ch04/exercises/multi-stage
docker image build -t multi-stage .

You’ll see that the build executes the steps in the order of the Dockerfile, which gives the
sequential build through the stages you see in figure 4.3:

51

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 4.3 Building a multi-stage Dockerfile

This is a simple example, but the pattern is the same to build apps of any complexity with a
single Dockerfile. Figure 4.4 shows what the workflow looks like for a Java application:

52

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 4.4 A multi-stage build for a Java application

In the build stage you use a base image which has your application’s build tools installed. You
copy in the source code from your host machine and run the build command. You can add a
test stage to run unit tests, which uses a base image with the test framework installed, copies
the compiled binaries from the build stage and runs the tests. The final stage starts from a
base image with just the application runtime installed, and it copies the binaries from the build
stage which have been successfully tested in the test stage.

This approach makes your application truly portable. You can run the app in a container
anywhere, but you can also build the app anywhere – Docker is the only pre-requisite. Your
build server just needs Docker installed, new team members get set up in minutes, and the
build tools are all centralized in Docker images, so there’s no chance for getting out of sync.

All the major application frameworks already have public images on Docker Hub with the
build tools installed, and separate images with the application runtime. You can use these
images directly, or wrap them in your own images. You’ll get the benefit of using all the latest
updates with images which are maintained by the project team.

4.2 App walkthrough – Java source code
We’re moving on to a real example now, with a simple Java Spring Boot application that we’ll
build and run using Docker. You don’t need to be a Java developer or have any Java tools
installed on your machine to use this app, everything you need will come in Docker images. If

53

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

you don’t work with Java, you should still read through this section – it describes a pattern
which works for other compiled languages like .NET Core and Erlang.

The source code is in the repository for the book, at the folder path
ch04/exercises/image-of-the-day. The application uses a fairly standard set of tools for
Java: Maven, which is used to define the build process and fetch dependencies, and OpenJDK
which is a freely distributable Java runtime and developer kit. Maven uses an XML format to
describe the build, and the Maven command line is called mvn. That should be enough
information to make sense of the application Dockerfile in code listing 4.2:

Code listing 4.2 Dockerfile for building a Java app with Maven

FROM diamol/maven AS builder

WORKDIR /usr/src/iotd
COPY pom.xml .
RUN mvn -B dependency:go-offline

COPY . .
RUN mvn package

app
FROM diamol/openjdk

WORKDIR /app
COPY --from=builder /usr/src/iotd/target/iotd-service-0.1.0.jar .

EXPOSE 80
ENTRYPOINT ["java", "-jar", "/app/iotd-service-0.1.0.jar"]

All the Dockerfile instructions here are ones you’ve seen before, and the patterns are familiar
from examples that you’ve built. It’s a multi-stage Dockerfile, which you can tell because
there’s more than one FROM instruction, and the steps are laid out to get maximum benefit
from Docker’s image layer cache.

The first stage is called builder. Here’s what happens in the builder stage:

• it uses the diamol/maven image as the base. That image has the OpenJDK Java
development kit installed, as well as the Maven build tool

• the builder stage starts by creating a working directory in the image, and then copying
in the pom.xml file, which is the Maven definition of the Java build

• the first RUN statement executes a Maven command, fetching all the application
dependencies. This is an expensive operation, so it has its own step to make use of
Docker layer caching. If there are new dependencies, the XML file will change and the
step will run. If the dependencies haven’t changed then the layer cache is used.

• now the rest of the source code is copied in – COPY . . means copy all files and
directories from the location where the Docker build is running, into the working
directory in the image

• the last step of the builder is to run mvn package, which compiles and packages the

54

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

application. The input is a set of Java source code files, and the output is a Java
application package called a JAR file.

When this stage completes, the compiled application will exist in the builder stage filesystem.
If there are any problems with the Maven build – if the network is offline and fetching
dependencies fails, or if there is a coding error in the source – then the RUN instruction will fail
and the whole build fails.

If the builder stage completes successfully, Docker goes on to execute the final stage
which produces the application image:

• it starts from diamol/openjdk which is packaged with the Java 11 runtime, but none
of the Maven build tools

• this stage creates a working directory and copies in the compiled JAR file from the
builder stage. Maven packages the application and all its Java dependencies in this
single JAR file, so this is all that’s needed from the builder

• the application is a web server which listens on port 80, so that port is exposed in the
container image

• the ENTRYPOINT instruction is an alternative to the CMD instruction – it tells Docker what
to do when a container is started from the image, in this case running Java with the
path to the application JAR.

TRY IT NOW Browse to the Java application source code and build the image:

cd ch04/exercises/image-of-the-day
docker image build -t image-of-the-day .

There’s a lot of output from this build, because you’ll see all the logs from Maven, fetching
dependencies and running through the Java build. Figure 4.5 shows an abbreviated section of
my build:

55

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 4.5 Output from running a Maven build in Docker

So what have you just built? It’s a simple REST API which wraps access to NASA’s Astronomy
Picture of the Day service. The Java app fetches the details of today’s picture from NASA and
caches it, so you can make repeated calls to this application without repeatedly hitting NASA’s
service.

You’re going to run several containers in this chapter, and they need to communicate with
each other. Containers access each other across a virtual network, using the virtual IP address
that Docker allocates when it creates the container. You can create and manage virtual Docker
networks through the command line.

TRY IT NOW Create a Docker network for containers to communicate with each other:

docker network create nat

If you see an error from that command, it’s just because your setup already has a Docker
network called nat, and you can ignore the message. Now when you run containers you can

56

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://apod.nasa.gov/
https://apod.nasa.gov/

explicitly connect them to that Docker network using the --network flag – and any containers
on that network can reach each other using the container names.

TRY IT NOW Run a container from the image, publishing port 80 to the host computer, and connecting to

the nat network:

docker container run --name iotd -d -p 800:80 --network nat image-of-the-day

Now you can browse to http://localhost:800/image and you’ll see some JSON details about
NASA’s image of the day. On the day I ran the container, the image was from a solar eclipse –
figure 4.6 shows the details from my API:

Figure 4.6 The cached details from NASA in my application container

The actual application in this container isn’t important (but don’t remove it yet, we’ll be using
it later in the chapter). What’s important is that you can build this on any machine with Docker
installed, just by having a copy of the source code with the Dockerfile. You don’t need any
build tools installed, you don’t need a specific version of Java – you just clone the code repo
and you’re a couple of Docker commands away from running the app.

57

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:800/

One other thing to be really clear on here, the build tools are not part of the final
application image. You can run an interactive container from your new image-of-the-day
Docker image and you’ll find there’s no mvn command in there. Only the contents of the final
stage in the Dockerfile get made into the application image, and anything you want from
previous stages needs to be explicitly copied in that final stage.

4.3 App walkthrough – Node.js source code
We’re going to go through another multi-stage Dockerfile, this time for a NodeJS application.
Organizations are increasingly using diverse technology stacks, so it’s good to have an
understanding of how different builds look in Docker. NodeJS is a great option because of its
popularity, and also because it’s an example of a different type of build – this pattern also
works with other scripted languages like Phyton, PHP and Ruby.

Java applications are compiled, so the source code gets copied into the build stage and
that generates a JAR file. The JAR file is the compiled app, and that gets copied into the final
application image – but the source code is not. It’s the same with .NET Core, where the
compiled artifacts are DLLs (Dynamic Link Libraries). NodeJS is different – it uses JavaScript
which is an interpreted language, so there’s no compilation step. Dockerized NodeJS apps
need the NodeJS runtime and the source code in the application image.

There’s still a need for a multi-stage Dockerfile though, which is to optimize dependency
loading. NodeJS use a tool called NPM (the Node Package Manager) to manage dependencies.
Code listing 4.3 shows the full Dockerfile for this chapter’s NodeJS application:

Code listing 4.3 Dockerfile for building a NodeJS app with NPM

FROM diamol/node AS builder

WORKDIR /src
COPY src/package.json .

RUN npm install

app
FROM diamol/node

EXPOSE 80
CMD ["node", "server.js"]

WORKDIR /app
COPY --from=builder /src/node_modules/ /app/node_modules/
COPY src/ .

The goal here is the same as for the Java application – to package and run the app with only
Docker installed, without having to install any other tools. The base image for both stages is
diamol/node which has the NodeJS runtime and NPM installed. The builder stage copies in the
package.json files which describes all the application’s dependencies, and then it runs npm
install to download the dependencies. There’s no compilation, so that’s all it needs to do.

58

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

This application is another REST API. In the final application stage, the steps expose the
HTTP port and specify the node command line as the startup command. The last thing is to
create a working directory and copy in the application artifacts. The downloaded dependencies
are copied from the builder stage, and the source code is copied from the host computer. The
src folder contains the JavaScript files, including server.js which is the entry point started
by the NodeJS process.

We have a different technology stack here, with a different pattern for packaging the
application. The base images, tools and commands for a NodeJS app are all different from a
Java app, but those differences are captured in the Dockerfile. The process to build and run
the app is exactly the same.

TRY IT NOW Browse to the NodeJS application source code and build the image:

cd ch04/exercises/access-log
docker image build -t access-log .

You’ll see a whole lot of output from NPM (which may show some error and warning messages
too, but you can ignore those). Figure 4.7 shows part of the output from my build. The
packages which are downloaded get saved in the Docker image layer cache, so if you work on
the app and just make code changes, the next build you run will be super fast.

59

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 4.7 Building a multi-stage Dockerfile for a NodeJS application

The NodeJS app you’ve just built is not at all interesting, but you should still run it to check
that it’s packaged correctly. It’s a REST API which other services can call to write logs. There’s
an HTTP POST endpoint for recording a new log, and a GET endpoint which shows how many
logs have been recorded.

TRY IT NOW Run a container from the log API image, publishing port 80 to host and connecting it to the

same nat network:

docker container run --name accesslog -d -p 801:80 --network nat access-log

60

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Now browse to http://localhost:801/stats and you’ll see how many logs the service has
recorded – figure 4.8 shows I have zero logs so far:

Figure 4.8 Running the NodeJS API in a container

The log API is running in NodeJS version 10.16, but just like with the Java example you don’t
need any versions of NodeJS or any other tools installed to build and run this app. The
workflow in this Dockerfile downloads dependencies and then copies in the script files to the
final image. You can use the exact same approach with Python, using Pip for dependencies, or
Ruby using Gems.

4.4 App walkthrough – Go source code
We’ve got one last example of a multi-stage Dockerfile – for a web application written in Go.
Go is a modern, cross-platform language which compiles to native binaries. That means you
can compile your apps to run on any platform (Windows, Linux, Intel or Arm), and the
compiled output is the complete application. You don’t need a separate runtime installed like
you do with Java, .NET Core, NodeJS or Python, and that make for extremely small Docker
images.

61

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:801/

There are a few other languages which also compile to native binaries – Rust and Swift are
popular – but Go has the widest platform support, and it’s also the de-facto language for
cloud-native apps (Docker itself is written in Go). Building Go apps in Docker means using a
similar multi-stage Dockerfile approach that you used for the Java app, but there are some
important differences. Code listing 4.4 shows the full Dockerfile:

Code listing 4.4 Dockerfile for building a Go application from source

FROM diamol/golang AS builder

COPY main.go .
RUN go build -o /server

app
FROM diamol/base

ENV IMAGE_API_URL="http://iotd/image" \
 ACCESS_API_URL="http://accesslog/access-log"
CMD ["/web/server"]

WORKDIR web
COPY index.html .
COPY --from=builder /server .
RUN chmod +x server

Go compiles to native binaries, so each stage in the Dockerfile uses a different base image.
The builder stages uses diamol/golang which has all the Go tools installed. Go applications
don’t usually fetch dependencies, so this stage goes straight to building the application (which
is just one code file - main.go). The final application stage uses a minimal image, which just
has the smallest layer of Operating System tools, called diamol/base.

The Dockerfile captures some configuration settings as environment variables and specifies
the startup command as the compiled binary. The application stage ends by copying in the
HTML file the application serves from the host, and the web server binary from the builder
stage. Binaries need to be explicitly marked as executable in Linux, which is what the final
chmod command does (this has no effect on Windows).

TRY IT NOW Browse to the NodeJS application source code and build the image:

cd ch04/exercises/image-gallery
docker image build -t image-gallery .

This time there won’t be a lot of compiler output, because Go is quiet and only writes logs
when there are failures. You can see my abbreviated output in figure 4.9:

62

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 4.9 Building a Go application in a multi-stage Dockerfile

This Go application does do something useful, but before you run it it’s worth taking a look at
the size of the images that go in and come out.

TRY IT NOW Compare the Go application image size with the Go toolset image:

docker image ls -f reference=diamol/golang -f reference=image-gallery

Many Docker commands let you filter the output. This command lists all images, and filters the
output to only include images with a reference of diamol/golang or image-gallery – the
reference is really just the image name. When you run this you’ll see how important it is to
choose the right base images for your Dockerfile stages:

REPOSITORY TAG IMAGE ID CREATED SIZE

63

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

image-gallery latest b41869f5d153 20 minutes ago 25.3MB
diamol/golang latest ad57f5c226fc 2 hours ago 774MB

On Linux, the image with all the Go tools installed comes in at 774MB; the actual Go
application image is only 25MB. Remember that’s the virtual image size, so a lot of those
layers can be shared between different images. The important saving isn’t so much the disk
size, but all the software which isn’t in the final image. The application doesn’t need any of
the Go tools at runtime. By using a minimal base image for the application, we’re saving
nearly 750MB of software – which is a huge reduction in the surface area for potential attacks.

Now you can run the app. This ties together your work in this chapter, because the Go
application actually uses the APIs from the other applications you’ve built. You should make
sure you have those containers running, with the correct names from the earlier try-it-now
exercises. If you run docker container ls, you should see two containers from this chapter
– the NodeJS container called accesslog and the Java container called iotd. When you run
the Go container, it will use the APIs from the other containers.

TRY IT NOW Run the Go application image, publishing the host port and connecting to the nat network:

docker container run -d -p 802:80 --network nat image-gallery

You can browse to http://localhost:802 and you’ll see NASA’s Astronomy Picture of the Day.
Figure 4.10 shows the image when I ran my containers:

64

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:802/

Figure 4.10 The Go web application, showing data fetched from the Java API

Right now you’re running a distributed application across three containers. The Go web
application calls the Java API to get details of the image to show, and then it calls the NodeJS
API to log that the site has been accessed. You didn’t need to install any tools for any of those
languages to build and run all the apps, you just needed the source code and Docker.

Multi-stage Dockerfiles make your project entirely portable. You might use Jenkins to build
your apps right now, but you could try AppVeyor’s managed CI service or Azure DevOps
without having to write any new pipeline code – they all support Docker, so your pipeline is
just docker image build.

65

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

4.5 Understanding multi-stage Dockerfiles
We’ve covered a lot of ground in this chapter, and I’m going to end with some key points so
you’re really clear on how multi-stage Dockerfiles work, and why it’s incredibly useful to build
your apps inside containers.

The first point is about standardization. I know when you run the exercises for this chapter
that your builds will succeed and your apps will work, because you’re using the exact same set
of tools that I’m using. It doesn’t matter what operating system you have or what’s installed
on your machine – all the builds run in Docker containers, and the container images have all
the correct versions of the tools. In your real projects you’ll find that this hugely simplifies on-
boarding for new developers, eliminates the maintenance burden for build servers, and
removes the potential for breakages where users have different versions of tools.

The second is performance. Each stage in a multi-stage build has its own cache. Docker
looks for a match in the image layer cache for each instruction, if it doesn’t find one then the
cache is broken and all the rest of the instructions are executed – but only for that stage. The
next stage starts again from the cache. You’ll be spending time structuring your Dockerfiles
carefully, and when you get the optimization done you’ll find 90% of your build steps use the
cache.

The final point is that multi-stage Dockerfiles let you fine-tune your build so the final
application image is as lean as possible. It’s not just for compilers, any tooling you need can
be isolated in earlier stages, so the tool itself isn’t present in the final image. A good example
is cURL – a popular command-line tool you can use for downloading content from the Internet.
You might need that to download files your app needs, but you can do that in an early stage in
your Dockerfile so cURL itself isn’t installed in your application image. This keeps image size
down which means faster startup times, but it also means you have less software available in
your application image, which means fewer potential exploits for attackers.

4.6 Lab
Lab time! You’re going to put into practice what you’ve learned about multi-stage builds and
optimizing Dockerfiles. In the source code for the book you’ll find a folder at ch04/lab which is
your starting point. It’s a simple Go web server application, which already has a Dockerfile so
you can build and run it in Docker. But the Dockerfile is in dire need of optimizing, and that is
your job.

There are specific goals for this lab:

• Start by building an image using the existing Dockerfile, then optimize the Dockerfile to
produce a new image

• The current image is 800MB on Linux and 5.2GB on Windows. Your optimized image
should be around 15MB on Linux, or 260MB on Windows

• If you change the HTML content with the current Dockerfile, the build executes 7 steps.
• Your optimized Dockerfile should only execute a single step when you change the

HTML.

66

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

As always there’s a sample solution on the book’s GitHub repository. But this is one lab you
should really try and find time to do, because optimizing Dockerfiles is a valuable skill you’ll
use in every project. But if you need it, my solution is here:

https://github.com/sixeyed/diamol/blob/master/ch04/lab/Dockerfile.optimized
No hints this time, although I would say this sample app looks very similar to one you’ve

already built in this chapter…

67

https://github.com/sixeyed/diamol/blob/master/ch04/lab/Dockerfile.optimized
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

5
Sharing Images with Docker Hub

and Other Registries

You’ve spent the last few chapters getting a good understanding of the build and run part of
the Docker workflow – now it’s time for share. Sharing is all about taking the images you’ve
built on your local machine and making them available for other people to use. I really think
this the most important part of the Docker equation. Packaging your software along with all its
dependencies means anyone can use it easily, on any machine – there are no gaps between
environments, so no more days wasted setting up software or tracking down bugs which are
actually deployment problems.

5.1 Working with registries, repositories and image tags
Software distribution is built into the Docker platform. You’ve already seen that you can run a
container from an image, and if you don’t have that image locally then Docker will download
it. The server that stores images centrally is called a Docker registry. Docker Hub is the most
popular image registry, hosting hundreds of thousands of images which are downloaded
billions of times every month. It’s also the default registry for the Docker engine, which means
it’s the first place Docker looks for images that aren’t available locally.

Docker images need a name, and that name contains enough information for Docker to
find the exact image you’re looking for. So far we’ve used very simple names with one or two
parts, like image-gallery or diamol/golang. There are actually four parts to the full image
name (which is properly called the image reference). Figure 5.1 shows all those parts in the
full reference for diamol/golang:

68

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 5.1 Anatomy of a Docker image reference

You’ll be making use of all the parts of an image reference when you start managing your own
application images. On your local machine you can name images anything you like, but when
you want to share them on a registry you need to add some more details, because the image
reference is a unique identifier for one specific image on a registry.

Docker uses a couple of defaults if you don’t provide values for parts of the image
reference. The default registry is Docker Hub, and the default tag is latest. Docker Hub’s
domain is docker.io so my image diamol/golang is a short version of
docker.io/diamol/golang:latest and you can use either of those references. The diamol
account is an organization on Docker Hub, and golang is a repository within that organization.
It’s a public repository so anyone can pull the image, but you need to be a member of the
diamol organization to push images.

Large companies usually have their own Docker registry in their own cloud environment or
their local network. You target your own registry by including the domain name in the first
part of the reference so Docker knows not to use Docker Hub. If I hosted my own registry at
r.sixeyed.com then my image could be stored at r.sixeyed.com/diamol/golang. That’s all
pretty simple, but the most important part of the image reference is the tag.

You haven’t used image tags so far, because it’s simpler to get started without them, but
when you start building your own application images you should always tag them. Tags are
used to identify different versions of the same application. The official Docker OpenJDK image
has hundreds of tags – openjdk:13 is the latest release, openjdk:8u212-jdk is a specific
release of Java 8, and there are more for different Linux distributions and Windows versions. If
you don’t specify a tag when you create an image, then docker uses the default tag latest.
That's a misleading name because the image tagged "latest"” might not actually be the most
recent image version. When you push your own images you should always tag them with
explicit versions.

69

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

5.2 Pushing your own images to Docker Hub
We’ll get started by pushing one of the images you built in Chapter 4 up to Docker Hub. You’ll
need a Docker Hub account for that – if you don’t have one, then browse to
https://hub.docker.com and follow the link to sign up for an account (it’s free and it won’t get
you a ton of spam in your inbox).

You need to do two things to push an image to a registry. First you need to login to the
registry with the Docker command line, so Docker can check that your user account is
authorized to push images. Then you need to give your image a reference which includes the
name of an account where you have permission to push.

Every reader will have their own Docker Hub username, so to make it easier to follow
along with the exercises, let’s start by capturing your own Docker ID in a variable in your
terminal session. After this you’ll be able to copy and paste the rest of this chapter’s
commands.

TRY IT NOW Open a terminal session and save your Docker Hub ID in a variable. Your Docker ID is your

username, not your email address. This is one command which is different on Windows and Linux, so you’ll

need to choose the right option:

using PowerShell on Windows
$dockerId=”<your-docker-id-goes-here>”

using Bash on Linux or Mac
dockerId=”<your-docker-id-goes-here>”

I’m running Windows at the moment, and my Docker Hub username is sixeyed so the
command I run is $dockerId="sixeyed"; on Linux I would run dockerId="sixeyed". On any
system you can run echo $dockerId and you should see your username displayed. From now
you can copy the commands in the exercises and they’ll use your Docker ID.

Start by logging in to Docker Hub. It’s actually the Docker engine which pushes and pulls
images, but you authenticate using the Docker command line – when you run this it will ask
for your password, which is your Docker Hub password.

TRY IT NOW Login to Docker Hub. Hub is the default registry, so you don’t need to specify a domain name:

docker login --username $dockerId

You’ll see output like mine in figure 5.2 – sensibly Docker doesn’t show the password when
you type it in:

70

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 5.2 Logging in to Docker Hub

Now that you’re logged in, you can push images to your own account or to any organizations
you have access to. I don’t know you, but if I wanted your help looking after the images for
this book I could add your account to the diamol organization, and you would be able to push
images that start with diamol/. If you’re not a member of any organizations, then you can
only push images to repositories in your own account.

You built a Docker image called image-gallery in chapter 4. That image reference doesn’t
have an account name, so you can’t push it to any registries. You don’t need to rebuild the
image to give it a new reference though, images can have several references.

TRY IT NOW Create a new reference for your existing image, tagging it as version 1:

docker image tag image-gallery $dockerId/image-gallery:v1

Now you have two references, one with an account and version number, but both references
point to the same image. Images also have a unique ID, and you can see when you list them
if a single image ID has multiple references.

TRY IT NOW List the image-gallery image references:

docker image ls --filter reference=image-gallery --filter reference=*/image-
gallery

You’ll see similar output to mine in figure 5.3 – except your tagged image will show your
Docker Hub username instead of sixeyed:

71

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 5.3 One image with two references

You have an image reference with your Docker ID in the account name, and you’re logged in
to Docker Hub so you’re ready to share your image! The docker image push command is the
counterpart of the pull command, it uploads your local image layers to the registry:

TRY IT NOW List the image-gallery image references:

docker image push $dockerId/image-gallery:v1

Docker registries work at the level of image layers in the same way as the local Docker
engine. You push an image, but Docker actually uploads the image layers. In the output you’ll
see a list of layer IDs and their upload progress – in my (abbreviated) output you can see the
layers being pushed:

The push refers to repository [docker.io/sixeyed/image-gallery]
c8c60e5dbe37: Pushed
2caab880bb11: Pushed
3fcd399f2c98: Pushed
...
v1: digest: sha256:127d0ed6f7a8d1... size: 2296

72

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Registries working on image layers is another reason why you need to spend time optimizing
your Dockerfiles. Layers are only physically uploaded to the registry if there isn’t an existing
match for that layer’s hash. It’s like your local Docker engine cache, but applied across all
images on the registry. So if you optimize to the point where you build and 90% of layers
come from the cache, when you push 90% of those layers will already be in the registry.
Optimized Dockerfiles reduce build time, disk space and network bandwidth.

You can browse to Docker Hub now and check your image. The Docker Hub UI uses the
same repository name format as image references, so you can work out the URL of your
image from your account name.

TRY IT NOW This little script writes out the URL to your image’s page Docker Hub:

echo "https://hub.docker.com/r/$dockerId/image-gallery/tags"

When you browse to that URL you’ll see something like figure 5.4, showing the tags for your
image and the last update time:

73

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 5.3 Image listings on Docker Hub

That’s all there is to pushing images. Docker Hub creates a new repository for an image if it
doesn’t already exist, and by default that repository has public read rights. Now anyone can
find, pull and use your image-gallery application. They’d need to work out themselves how
to use it, but you can put documentation on Docker Hub too.

Docker Hub is the easiest registry to get started with, and it gives you a huge amount of
functionality for zero cost - although you can pay a monthly subscription for extra features,
like private repositories. There are lots of alternative registries too. The registry is an open API
spec and the core registry server is an open-source product from Docker. All the clouds have
their own registry services, you can manage your own registry in the datacenter with

74

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

commercial products like Docker Trusted Registry, or you can run a simple registry in a
container.

5.3 Running and using your own Docker registry
It’s useful to run your own registry on your local network. It cuts down on bandwidth use and
transfer times, and lets you own the data in your environment. Even if you’re not concerned
about that, it’s still good to know that you can spin up a local registry quickly, which you can
use as a backup option if your main registry goes offline.

Docker maintains the core registry server on GitHub in the source code repository
docker/distribution. It gives you the basic functionality to push and pull images, and it
uses the same layer cache system as Docker Hub – but it doesn’t give you the Web UI you get
with Hub. It is a super lightweight server which I've packaged into a diamol image, so you can
run in a container.

TRY IT NOW Run the Docker registry in a container, using my image:

docker container run -d -p 5000:5000 diamol/registry

You now have a registry server on your local machine. The default port for the server is 5000,
which this command publishes. You can tag images with the domain localhost:5000 and
push them to this registry, but that’s not really useful – you can only use the registry on your
local machine. Instead it’s better to give your machine an alias so you can use a proper
domain name for your registry.

This next command creates that alias, it will give your computer the name
registry.local, in addition to any other network names it has. It does this by writing to the
computer’s hosts file, which is a simple text file that links network names to IP addresses.

TRY IT NOW Windows, Linux and Mac machines all use the same hosts file format, but the file paths are

different. This command is also different on Windows, so you’ll need to choose the right one:

using PowerShell on Windows
echo "`n127.0.0.1 registry.local" >> /windows/system32/drivers/etc/hosts

using Bash on Linux or Mac
echo $'\n127.0.0.1 registry.local' >> /etc/hosts

If you get a permissions error from that command, then you need to be logged in with
Administrator privileges in an elevated PowerShell session on Windows, or use sudo on Linux
or Mac. When you’ve run the command successfully you should be able to run ping
registry.local and see a response from your computer’s “home” IP address 127.0.0.1, as in
figure 5.4:

75

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 5.4 Adding a new network alias for your computer

Now you can use the domain name registry.local:5000 in your image references to use
your registry. Adding the domain name to an image is the same process of tagging that you've
already done for Docker Hub. This time you just include the registry domain in the new image
reference.

TRY IT NOW Tag your image-gallery image with your registry domain:

docker image tag image-gallery registry.local:5000/gallery/ui:v1

Your local registry doesn't have any authentication or authorization set up. That's obviously
not production quality, but it might work for a small team and it does let you use your own
image naming schemes. There are three containers that make up the NASA image of the day
app in Chapter 4 - you could tag all the images to group them together using gallery as the
project name:

• registry.local:5000/gallery/ui:v1 - the Go Web UI
• registry.local:5000/gallery/api:v1 - the Java API
• registry.local:5000/gallery/logs:v1 - the NodeJS API

There's one more thing you need to do before you can push this image to your local registry.
The registry container is using plain-text HTTP rather than encrypted HTTPS to push and pull
images. Docker won't communicate with an unencrypted registry by default, because it's not
secure. You need to explicitly add your registry domain to a list of permitted insecure
registries before Docker will let you use it.

Which brings us on to configuring Docker. The Docker engine uses a JSON configuration
file for all sorts of settings, including where Docker stores the image layers on disk, where the
Docker API listens for connections, and which insecure registries are permitted. The file is

76

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

called daemon.json and it usually lives in the folder C:\ProgramData\docker\config on
Windows, and /etc/docker on Linux. You can edit that file directly, but if you're using Docker
Desktop on Mac or Windows it's easier to use the UI, where you can change the main
configuration settings.

TRY IT NOW Right-click the Docker whale icon in your taskbar and select Settings (or Preferences on the

Mac). The open the Daemon tab and enter registry.local:5000 in the insecure registries list - you can see my

settings in figure 5.5:

Figure 5.5 Allowing an insecure registry to be used in Docker Desktop

77

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The Docker engine needs to be restarted to load any new configuration settings, and Docker
Desktop does that for you when you apply changes.

If you're not running Docker Desktop, then you'll do this manually. Start by opening the
daemon.json file in a text editor - or create it if it doesn’t exist - and add the insecure registry
details in JSON format. The configuration settings will look like this - but if you're editing an
existing file, be sure to leave the original settings in there too:

{
 "insecure-registries": [
 "registry.local:5000"
]
}

Then you restart Docker using Restart-Service docker on Windows Server, or service
docker restart on Linux. You can check which insecure registries your Docker Engine allows
along with a stack of other information using the info command.

TRY IT NOW List the information about your Docker Engine and check your registry is there in the insecure

registries list:

docker info

At the end of the output, you'll see the registry configuration which should include your
insecure registry - you can see mine in figure 5.6:

Figure 5.6 Insecure registries allowed for Docker to use

You should be careful about adding insecure registries to your Docker configuration. Your
connection could be compromised and attackers could read layers when you push images, or
worse - could inject their own data when you pull images. All the commercial registry servers
run on HTTPS and you can also configure Docker's open source registry to use HTTPS. For
demonstrating with a local server it's an acceptable risk.

78

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Now you can push your tagged image to your own registry. The registry domain is part of
the image reference so Docker knows to use something other than Docker Hub, and your
HTTP registry running in a container is cleared in the list of insecure registries.

TRY IT NOW Push your tagged image:

docker image push registry.local:5000/gallery/ui:v1

Your registry is completely empty when you run the first push, so you'll see all the layers
being uploaded. If you then repeat the push command, you'll see all the layers already exist
and nothing gets uploaded. That's all the steps you need to run your own Docker registry in a
container. You could share it on your network using your machine's IP or the real domain
name.

5.4 Using image tags effectively
You can put any string into a Docker image tag, and as you've already seen you can have
multiple tags for the same image. You'll use that to version the software in your images and
let users make informed choices for what they want use - and to make your own informed
choices when you use other people's images.

Many software projects use a numeric versioning scheme with decimal points to indicate
how big a change there is between versions, and you can follow that with your image tags.
The basic idea is something like [major].[minor].[patch], which has some implicit
guarantees. A release which only increments the patch number might have bugfixes but
should have the same features as the last version; a release which increments the minor
version might add features but shouldn't remove any; a major release could have completely
different features.

If you use the same approach with your image tags, you can let users choose whether to
stick on a major version or a minor version, or just always have the latest release.

TRY IT NOW Create a few new tags for your Go image to indicate the major, minor and patch release

versions:

docker image tag image-gallery registry.local:5000/gallery/ui:latest
docker image tag image-gallery registry.local:5000/gallery/ui:2
docker image tag image-gallery registry.local:5000/gallery/ui:2.1
docker image tag image-gallery registry.local:5000/gallery/ui:2.1.106

Now imagine that application has monthly releases, which increment the version numbers.
Figure 5.7 shows how the image tags might evolve over releases from July to October:

79

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 5.7 The evolution of image tags during software releases

You can see that some of these image tags are a moving target. gallery/ui:2.1 is an alias of
the 2.1.106 release in July, but in August the same 2.1 tag is an alias of the 2.1.114 release.
gallery/ui:2 is also an alias of 2.1.106 in July, but by September the 2 tag is an alias of the
2.2.11 release. The latest tag has the most movement - in July gallery/ui is an alias of
2.1.106, but in October it's an alias of 3.0.42.

This is a typical versioning scheme you'll see for Docker images. It's one you should adopt
yourself because it lets users of your image choose how current they want to be. They can pin
to a specific patch version in their image pull commands or in the FROM instruction in their
Dockerfiles and be sure that the image they use will always be the same. Tag 2.1.106 in this
example is the same image from July through October. If they want to get patch updates they
can use tag 2.1, if they want to get minor releases they can use tag 2.

Any of those choices is fine, it's just a case of balancing risk - using a specific patch version
means the application will be the same whenever you use it, but you won't get security fixes.
Using a major version means you'll get all the latest fixes, but there might be unexpected
feature changes down the line.

It's especially important to use specific image tags for the base images in your own
Dockerfiles. It's great to use the product team's build tools image to build your apps and their
runtime image to package your apps, but if you don't specify versions in the tags, you're
setting yourself up for trouble in the future. A new release of the build image could break your
Docker build, or worse - a new release of the runtime could break your application.

80

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

5.5 Turning official images into golden images
There's one last thing to understand when you're looking at Docker Hub and other registries:
can you trust the images you find there? Anyone can push an image to Docker Hub and make
it publicly available. For hackers that's a nice way to distribute malware, you just need to give
your image an innocent name and a fake description, and wait for people to start using it.

Docker Hub solves that problem with verified publishers and official images. Verified
publishers are companies like Microsoft, Oracle and IBM who publish images on Docker Hub.
Their images go through an approval process which includes security scanning for
vulnerabilities; they may also be certified which means they have the backing of Docker and
the publisher. If you want to run off-the-shelf software in containers, certified images from
verified publishers are the best bet.

Official images are something different - they're usually open-source projects, maintained
jointly by the project team and Docker. They're security scanned, regularly updated and
conform to Dockerfile best practices. All the content for the official images is open source, so
you can see the Dockerfiles on GitHub. Most people start using official images as the base for
their own images - but at some point find they need more control. Then they introduce their
own preferred base images, called golden images - figure 5.8 shows you how it works:

Figure 5.8 Using a golden image to encapsulate an official image

81

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Golden images use an official image as the base, and then add in whatever custom setup they
need. That could be installing security certificates, or configuring default environment settings.
The golden image lives in the company's repositories on Docker Hub or in their own registry
and all application images are based off the golden image. It gives the benefits of the official
image - with the best-practice setup by the project team - but with the extra config you need.

TRY IT NOW There are two Dockerfiles in the source code for this chapter which can be built as golden

images for .NET Core apps. Browse to each folder and build the image:

cd ch05/exercises/dotnet-sdk
docker image build -t golden/dotnetcore-sdk:3.0 .

cd ../aspnet-runtime
docker image build -t golden/aspnet-core:3.0 .

There's nothing special about golden images. They start with a Dockerfile and that builds an
image with your own reference and naming scheme. If you look at the Dockerfiles you've built
you'll see they add some metadata to the image using the LABEL instruction, and set up some
common configuration. Now you can use those images in a multi-stage Dockerfile for a .NET
Core application, which would look something like code listing 5.1:

Code listing 5.1 A multi-stage Dockerfile using .NET Core golden images

FROM golden/dotnetcore-sdk:3.0 AS builder
COPY . .
RUN dotnet publish -o /out/app app.csproj

FROM golden/aspnet-core:3.0
COPY --from=builder /out /app
CMD ["dotnet", "/app/app.dll"]

The application Dockerfile has the same format as any mutli-stage build, but now you own the
base images. The official images may have a new release every month, but you could choose
to restrict your golden images to quarterly updates. And golden images open up one other
possibility - you can enforce their use with tools in your CI pipeline, so Dockerfiles are scanned
and if someone tries to build an app without using golden images, then that build fails. It's a
good way of locking down the source images teams can use.

5.6 Lab
This lab is going to take some detective work, but it will be worth it in the end. You're going to
need to dig around the Docker Registry v2 API specification, because the REST API is the only
way you can interact with your local Docker registry - you can't search or delete images using
the Docker CLI (yet).

82

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://docs.docker.com/registry/spec/api/

So the goal for this lab is to push all the tags for your gallery/ui image to your local
registry, check they're all there, then delete them all and check they're gone. Here are a few
hints:

• You can use a single image push command to push all these tags
• The URL for your local registry API is http://registry.local:5000/v2
• Start by listing the image tags for the repository
• Then you'll need to get the image manifest
• You can delete images through the API, but you need to use the manifest
• Read the docs - there's a specific request header you need to use in your HEAD

request

The solution is on the book’s GitHub repository - and this is a rare case where it's OK to cheat
a little. The first couple of steps should be straightforward for you to work out, but then it gets
a little awkward so don't feel too bad if you end up heading here:

https://github.com/sixeyed/diamol/tree/master/ch05/lab

Good luck. And remember to read the docs.

83

https://github.com/sixeyed/diamol/tree/master/ch05/lab
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

6
Using Docker Volumes for

Persistent Storage

Containers are a perfect runtime for stateless applications. You can meet increased demand by
running multiple containers on your cluster, knowing that every container will handle requests
in the same way. You can release updates with an automated rolling upgrade which keeps
your app online the whole time. But not all the parts of your app will be stateless, there will be
components which use disk to improve performance or for permanent data storage. And you
can run those components in Docker containers too. Storage does add complications, but you
need to understand how to Dockerize stateful apps. This chapter takes you through Docker
volumes and mounts, and shows you how the container filesystem works.

6.1 Why data in containers is not permanent
A Docker container has a filesystem with a single disk drive. The contents of that drive are
populated with the files from the image. You've seen that already: when you use the COPY
instruction in a Dockerfile, the files and directories you copy into the image are there when
you run a container from the image. And you know Docker images are stored as multiple
layers, so the container's disk is actually a virtual filesystem which Docker builds up by
merging all the image layers together.

Each container has its own filesystem, independent from other containers. You can run
multiple containers from the same Docker image and they will all start with the same disk
contents. The application can alter files in one container, and that won't affect the files in
other containers - or in the image. That's straightforward to see by running a couple of
containers which write data, and looking at their output.

84

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

TRY IT NOW Open a terminal session and run two containers from the same image. The application in the

image writes a random number to a file in the container:

docker container run --name rn1 diamol/ch06-random-number
docker container run --name rn2 diamol/ch06-random-number

That container runs a script when it starts, and the script writes some random data to a text
file and then ends, so those containers are in the Exited state. You have two containers
started from the same image, but they will have different random file contents. You learned in
Chapter 2 that Docker doesn’t delete the container's filesystem when it exits - it's retained so
you can still access files and folders.

The Docker CLI has the docker container cp command to copy files between containers
and the local machine. You specify the name of the container and the file path, and you can
use that to copy out the generated random number files from these containers onto your host
computer, so you can read the contents.

TRY IT NOW Use docker container cp to copy the random number file from each of the containers,

and then check the contents:

docker container cp rn1:/random/number.txt number1.txt
docker container cp rn2:/random/number.txt number2.txt

cat number1.txt
cat number2.txt

Your output will be similar to mine in Figure 6.1. That shows each container has written a file
at the same path /random/number.txt but when the files are copied out onto the local
machine you can see the contents are different. This is a simple way of showing that every
container has an independent filesystem. In this case it's a single file that's changed, but
these could be database containers which start with the same SQL engine running, but store
completely different data.

You'll see something similar to my output in Figure 6.1:

85

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 6.1 - Running containers which write data and checking the data

The filesystem inside a container appears to be a single disk - /dev/sda1 on Linux containers
and C:\ on Windows containers. But that disk is a virtual filesystem which Docker builds from
several sources, and presents to the container as a single unit. The basic sources for that
filesystem are the image layers, which can be shared between containers, and the container's
writeable layer which is unique to each container.

Figure 6.2 shows how that looks for the random number image and the two containers:

86

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 6.2 - The container filesystem is built from image layers and a writeable layer

You should take away two important things from that diagram: image layers are shared so
they have to be read-only; and there is one writeable layer per container which has the same
lifecycle as the container. Image layers have their own lifecycle, any images you pull will stay
in your local cache until you remove them. But the container writeable layer is created by
Docker when the container is started, and deleted by Docker when the container is removed
(stopping a container doesn’t automatically remove it, so a stopped container’s filesystem
does still exist).

Of course the writeable layer isn't just for creating new files, a container can edit existing
files which are there from the image layers. But image layers are read-only, so Docker does
some special magic to make that happen. It uses a copy-on-write process to allow edits to
files which come from read-only layers. When the container tries to edit a file in an image
layer, Docker actually makes a copy of that file into the writable layer and the edits happen
there. It's all seamless for the container and the application but it's the cornerstone of
Docker's super-efficient use of storage.

Let's work through that with one more simple example, before we move on to running
some more useful stateful containers. In this exercise you'll run a container which prints out
the contents of a file from an image layer - and then update the file contents and run the
container again to see what's changed.

87

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

TRY IT NOW Run these commands to start a container which prints out its file contents, then change the

file and start the container again to print out the new file contents:

docker container run --name f1 ch06-file-display

echo "http://eltonstoneman.com" > url.txt

docker container cp url.txt f1:/input.txt

docker container start --attach f1

This time you're using Docker to copy a file from your host computer into the container, and
the target path is the file which the container displays. When you start the container again the
same script runs but now it prints out different contents - you can see my output in figure 6.3:

Figure 6.3 - Modifying a container's state and running it again

Modifying the file in the container affects how that container runs, but it doesn't affect the
image or any other containers from that image. The changed file only lives in the writeable

88

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

layer for that one container - a new container will use the original contents from the image,
and when container f1 is removed, the updated file is gone.

TRY IT NOW Start a new container to check the file in the image is unchanged, then remove the original

container and confirm the data is gone:

docker container run --name f2 ch06-file-display

docker container rm -f f1

docker container cp f1:/input.txt .

You'll see the same output as mine in figure 6.4, that a new container uses the original file
from the image, and that when you remove the original container then its filesystem is
removed and the changed file is gone forever:

Figure 6.4 - Modifying files in a container does not affect the image, and the container's data is transient

The container filesystem has the same lifecycle as the container, so when the container is
removed, the writeable layer is removed and any changed data in the container is lost. And
removing containers is something you will do a lot. In production you upgrade your app by
building a new image, removing the old containers and replacing them with new ones from the
updated image. Any data that was written in your original app containers are lost, and the
replacement containers start with the static data from the image.

89

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

There are some scenarios where that's fine, because your application only writes transient
data - maybe to keep a local cache of data which is expensive to calculate or retrieve - and it's
fine for replacement containers to start with an empty cache. In other cases it would be a
disaster. You can run a database in a container, but you wouldn't expect to lose all your data
when you roll out an updated database version.

Docker has you covered for those scenarios too. The virtual filesystem for the container is
always built from image layers and the writeable layer, but there can be additional sources
too. Those are Docker volumes and mounts. They have a separate lifecycle from containers,
so they can be used to store data which persists between container replacements.

6.2 Running containers with Docker volumes
A Docker volume is a unit of storage - you can think of it as a USB stick for containers.
Volumes exist independently of containers and have their own lifecycle, but they can be
attached to containers. Volumes are how you manage storage for stateful applications where
the data needs to be persistent. You create a volume and attach it to your application
container, where it appears as a directory in the container's filesystem. The container writes
data to the directory, which is actually stored in the volume. When you update your app with a
new version, you attach the same volume to the new container and all the original data is
available.

There are two ways to use volumes with containers - you can manually create volumes and
attach them to container, or you can use a VOLUME instruction in the Dockerfile. That builds an
image which will create a volume when you start a container. The syntax is simply VOLUME
<target-directory>. Code Listing 6.1 shows part of the multi-stage Dockerfile for the image
diamol/ch06-todo-list which is a stateful app that uses a volume:

Code listing 6.1 Part of a multi-stage Dockerfile using a volume

FROM diamol/dotnet-aspnet
WORKDIR /app
ENTRYPOINT ["dotnet", "ToDoList.dll"]

VOLUME /data
COPY --from=builder /out/ .

When you run a container from this image, Docker will automatically create a volume and
attach it to the container. The container will have a directory at /data (C:\data on Windows
containers), which it can read to and write from as normal. But the data is actually being
stored in a volume, which will live on after the container is removed. You can see that if you
run a container from the image and then check the volumes.

TRY IT NOW Run a container for the to-do list app and have a look at the volume Docker created:

docker container run --name todo1 -d -p 8010:80 diamol/ch06-todo-list

90

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker container inspect --format '{{.Mounts}}' todo1

docker volume ls

You'll see output like mine in figure 6.5. Docker creates a volume for this container and
attaches it when the container runs. I've filtered the volume list to show just the volume for
my container:

Figure 6.5 Running a container with a volume declared in the Dockerfile

Docker volumes are completely transparent to the app running in the container. Browse to
http://localhost:8010 and you'll see the to-do app. The app stores data in a file at the /data
directory, so when you add items through the web page, they are being stored in the Docker
volume. Figure 6.6 shows the app in action - it's a special to-do list which works very well for
people with workloads like mine; you can add items but you can't ever remove them:

91

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:8010/

Figure 6.6 The never-ending to-do list, running in a container using a Docker volume

Volumes declared in Docker images are created as a separate volume for each container, but
you can also share volumes between containers. If you start a new container running the to-
do app, it will have its own volume and the to-do list will start off being empty. But you can
run a container with the volumes-from flag, which attaches another container's volumes - so
in this example you could have two to-do app containers sharing the same data.

TRY IT NOW Run a second to-do list container and check the contents of the data directory, then compare

that to another new container which shares the volumes from the first container (the exec commands are

slightly different for Windows and Linux):

this new container will have its own volume
docker container run --name todo2 -d diamol/ch06-todo-list

on Linux:
docker container exec todo2 ls /data

on Windows:
docker container exec todo2 cmd /C "dir C:\data"

this container will share the volume from todo1
docker container run -d --name t3 --volumes-from todo1 diamol/ch06-todo-list

on Linux:
docker container exec t3 ls /data

on Windows:

92

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker container exec t3 cmd /C "dir C:\data"

The output will look like figure 6.7 (I'm running on Linux for this example). The second
container starts with a new volume, so the /data directory is empty. The third container uses
the volumes from the first, so it can see the data from the original application container:

Figure 6.7 Running containers with dedicated and shared volumes

Sharing volumes between containers is straightforward, but it's probably not what you want to
do. Apps which write data typically expect exclusive access to the files, and they may not work
correctly (or at all) if another container is reading and writing to the same file at the same
time. Volumes are better used to preserve state between application upgrades, and then it’s
better to explicitly manage the volumes. You can create a named volume, and attach that to
the different versions of your application container.

TRY IT NOW Create a volume and use it in a container for version 1 of the to-do app. Then add some data

in the UI and upgrade the app to version 2. The filesystem paths need to match the host operating system, so

I'm using variables to make copy and pasting easier:

target='/data' # for Linux
$target='c:\data' # for Windows

93

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker volume create todo-list

docker container run -d -p 8011:80 -v todo-list:$target --name todo-v1
diamol/ch06-todo-list

add some data through the web app at http://localhost:8011

docker container rm -f todo-v1

docker container run -d -p 8011:80 -v todo-list:$target --name todo-v2
diamol/ch06-todo-list:v2

The output in figure 6.8 shows that the volume has its own lifecycle. It exists before any
containers are created, and remains when containers which use it are removed. The
application preserves data between upgrades because the new container uses the same
volume as the old container:

Figure 6.8 Creating a named volume and using it to persist data between container updates

94

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Now when you browse to http://localhost:8011 you'll see version 2 of the to-do application,
which has had a UI makeover from an expensive creative agency. Figure 6.9 shows this is
ready for production now:

Figure 6.9 The all-new to-do app UI

There's one thing to be clear about with Docker volumes before we move on. The VOLUME
instruction in the Dockerfile and the volume (or v) flag for running containers are separate
features. Images built with a VOLUME instruction will always create a volume for a container if
there is no volume specified in the run command. The volume will have a random ID, so you
can use it after the container is gone but only if you can work out which volume has your data.

The volume flag mounts a volume into a container whether the image has a volume
specified or not. If the image does have a volume, then the volume flag can override it for the
container, by using an existing volume for the same target path - so a new volume won't be
created. That's what happened with the to-do list containers.

You can use the exact same syntax and get the same results for containers where there's
no volume specified in the image. As an image author you should use the VOLUME instruction
as a fail-safe option for stateful applications, so containers will always write data to a
persistent volume even if the user doesn't specify the volume flag. But as an image user it's
better not to rely on the defaults and to work with named volumes.

95

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:8011/

6.3 Running containers with filesystem mounts
Volumes are great for separating out the lifecycle of storage and still have Docker manage all
the resources for you. Volumes live on the host so they are decoupled from containers. Docker
also provides a more direct way of sharing storage between containers and hosts using bind
mounts. A bind mount surfaces a directory on the host into a path on a container. The bind
mount is transparent to the container. It's just a directory which is part of the container's
filesystem. But it means you can access host files from a container and vice versa, which
unlocks some interesting patterns.

Bind mounts let you explicitly use the filesystems on your host machine for container data.
That could be a fast solid-state disk or a highly-available array of disks, or even a distributed
storage system which is accessible across your network. If you can access that filesystem on
your host, you can use it for containers. I could have a server with a RAID array and use that
as reliable storage for my to-do list application database.

TRY IT NOW I really do have a server with a RAID array, but you may not - so here we'll just create a local

directory on your host computer and bind mount it into a container. Again the filesystem paths need to match

the host operating system, so I'm declaring variables for the source path on your machine, and the target path

for the container:

$source="$(pwd)\databases".ToLower(); $target="c:\data" # Windows
source="$(pwd)/databases" && target='/data' # Linux

mkdir ./databases

docker container run --mount type=bind,source=$source,target=$target -d -p
8012:80 diamol/ch06-todo-list

curl http://localhost:8012

ls ./databases

This exercise uses the curl command (which is on Linux, Mac and Windows systems) to make
an HTTP request to the to-do app. That causes the app to start up, which creates the database
file. The final command lists the contents of the local databases directory on your host, and
that will show the application's database file is actually there on your host computer - as you
see in figure 6.10:

96

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 6.10 Sharing a directory on the host with a container using a bind mount

The bind mount is bi-directional. You can create files in the container and edit them on the
host, or create files on the host and edit them in the container. There's a security aspect here
because containers should usually run as a least-privilege account, to minimize the risk of an
attacker exploiting your system. But a container needs elevated permissions to read and write
files on the host, so this image is built with the USER instruction in the Dockerfile to give
containers administrative rights - using the built-in root user in Linux and the
ContainerAdministrator user in Windows.

If you don't need to write files you can bind mount the host directory as read-only inside
the container. You can use this as one option for surfacing configuration settings from the host
into the application container. The to-do application image is packaged with a default
configuration file which sets the logging level for the app to a minimum amount. You can run a

97

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

container from the same image but mount a local configuration directory into the container,
and override the app's configuration without changing the image.

TRY IT NOW The to-do application will load an extra configuration file from the path /app/config if it

exists. Run a container which bind-mounts a local directory to that location, and the app will use the host's

configuration file. Start by navigating to your local copy of the DIAMOL source code, and then run:

cd ./ch06/exercises/todo-list

$source="$(pwd)\config".ToLower(); $target="c:\app\config" # Windows
source="$(pwd)/config" && target='/app/config' # Linux

docker container run --name todo-configured -d -p 8013:80 --mount
type=bind,source=$source,target=$target,readonly diamol/ch06-todo-list

curl http://localhost:8013

docker container logs todo-configured

The config file in the directory on the host is set to use much more detailed logging. When the
container starts it maps that directory, and the application sees the config file and loads the
logging configuration. In the final output seen in figure 6.11 there are lots of "debug" log lines,
which the app wouldn’t write with the standard configuration:

98

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 6.11 Using bind mounts to load read-only configuration files into containers

You can bind-mount any source that your host computer has access to. You could use a
shared network drive mounted to /mnt/nfs on a Linux host, or mapped to the X: drive on a
Windows host. Either of those could be the source for a bind mount and be surfaced into a
container in the same way. It's a very useful way to get reliable and even distributed storage
for stateful apps running in containers, but there are some limitations you need to understand.

6.4 Limitations in file system mounts
To use bind mounts and volumes effectively, you need to understand some key scenarios and
limitations - some of which are subtle and will only appear in unusual combinations of
containers and filesystems.

The first scenario is straightforward: what happens when you run a container with a
mount, and the mount target directory already exists and has files from the image layers? You
might think that Docker would merge the source into the target. Inside the container you'd
expect to see the directory has all the existing files from the image, and all the new files from
the mount. But that isn’t the case. When you mount a target which already has data, the

99

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

source directory replaces the target directory - so the original files from the image are not
available.

You can see this with a simple exercise, using an image which lists directory contents when
it runs. The behavior is the same for Linux and Windows containers, but the filesystem paths
in the commands need to match the operating system.

TRY IT NOW Run the container without a mount and it will list the directory contents from the image; run it

again with a mount and it will list the contents of the source directory (there are variables again here to

support Windows and Linux):

cd ./ch06/exercises/bind-mount

$source="$(pwd)\new".ToLower(); $target="c:\init" # Windows
source="$(pwd)/new" && target='/init' # Linux

docker container run diamol/ch06-bind-mount

docker container run --mount type=bind,source=$source,target=$target
diamol/ch06-bind-mount

You'll see that in the first run the container lists two files - abc.txt and def.txt. These are
loaded into the container from the image layers. The second container replaces the target
directory with the source from the mount, so those files are not listed. Only the files 123.txt
and 456.txt are shown, and these are from the source directory on the host. Figure 6.12
shows my output:

100

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 6.12 Bind mount directories shadow the target directory if it exists

The second scenario is a variation on that: what happens if you mount a single file from the
host to a target directory which exists in the container filesystem? This time the directory
contents are merged, so you see the original files from the image and the new file from the
host. Unless you're running Windows containers, where this feature isn't supported at all.

The container filesystem is one of the few areas where Windows containers are not the
same as Linux containers. Some things do work in the same way. You can use standard Linux-
style paths inside Dockerfiles - so /data works for Windows containers and becomes an alias
of C:\data. But that doesn't work for volume mounts and bind mounts, which is why the
exercises in this chapter use variables to give Linux users /data and Windows C:\data.

The limitation on single-file mounts is more explicit. You can try this yourself if you have
Windows and Linux machines available, or if you're running Docker Desktop on Windows -
which supports both Linux and Windows containers.

TRY IT NOW The behavior of single-file mounts is different on Linux and Windows. If you have Linux and

Windows containers available you can see that in action:

cd ./ch06/exercises/bind-mount

on Linux:
docker container run --mount
type=bind,source="$(pwd)/new/123.txt",target=/init/123.txt diamol/ch06-bind-

101

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

mount

on Windows:
docker container run --mount
type=bind,source="$(pwd)/new/123.txt",target=C:\init\123.txt diamol/ch06-bind-
mount

docker container run diamol/ch06-bind-mount

docker container run --mount
type=bind,source="$(pwd/new/123.txt",target=/init/123.txt diamol/ch06-bind-
mount

The Docker image is the same and the commands are the same - apart from the OS-specific
filesystem path for the target. But you'll see when you run this that the Linux example works
as expected but you get an error from Docker on Windows, as in figure 6.13:

Figure 6.13 Bind mounts with a single file as the source work on Linux but not on Windows

The third scenario is less common. It's very difficult to reproduce without setting up a lot of
moving pieces, so there won't be an exercise to cover this - you'll have to take my word for it.

102

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The scenario is: what happens if you bind mount a distributed filesystem into a container, will
the app in the container still work correctly? See, even the question is complicated.

Distributed filesystems let you access data from any machine on the network, and they
usually use different storage mechanisms from your operating system's local filesystem. It
could be a technology like SMB file shares on your local network, Azure Files or AWS S3 in the
cloud. You can mount locations from distributed storage systems like these into a container.
The mount will look like a normal part of the filesystem, but if it doesn't support the same
operations then your app could fail.

There's a concrete example in figure 6.13, trying to run the Postgres database system in a
container on the cloud, using Azure Files for container storage. Azure Files supports normal
filesystem operations like read and write, but it doesn't support some of the more unusual
operations which apps might use. In this case the Postgres container tries to create a file link,
but Azure Files doesn't support that feature so the app crashes:

Figure 6.13 Distributed storage systems may not provide all the usual filesystem features

This scenario is an outlier, but you need to be aware of it because if it happens there's really
no way around it. The source for your bind mount may not support all the filesystem features
which the app in your container expects. And it's something you can't plan for - you won't
know until you try your app with your storage system. If you want to use distributed storage
for containers you should be aware of this risk - and you also need to understand that
distributed storage will have very different performance characteristic from local storage. An

103

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

application which uses a lot of disk may grind to a halt if you run it in a container with
distributed storage, where every file write goes over the network.

6.5 Understanding how the container filesystem is built
We've covered a lot in this chapter. Storage is an important topic because the options for
containers are very different from storage on physical computers or virtual machines. I'm
going to finish up with a consolidated look at everything we've covered, with some best
practice guidelines for using the container filesystem.

Every container has a single disk, which is a virtual disk that Docker pieces together from
several sources. Docker calls this the union filesystem. I'm not going to look at how Docker
implements the union filesystem, because there are different technologies for different
operating systems. When you install Docker it makes the right choice for your OS, so you
don't need to worry about the details.

The union filesystem lets the container see a single disk drive and work with files and
directories in the same way, wherever they may be on the disk. But the locations on the disk
can be physically stored in different storage units, as figure 6.14 shows:

104

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 6.14 The container filesystem is created from the union of multiple sources

Applications inside a container see a single disk, but as the image author or container user,
you choose the sources for that disk. There can be multiple image layers, multiple volume
mounts, and multiple bind mounts in a container, which will always have a single writeable
layer. Here are general guidelines for how you should use the storage options:

• Writeable layer: perfect for short-term storage, like caching data to disk to save on
network calls or computations. Unique to each container but gone forever when the
container is removed.

• Local bind mounts: use to share data between the host and the container. Developers
can use bind mounts to load the source code on their computer into the container, so

105

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

when they make local edits to HTML or JavaScript files, the changes are immediately in
the container without having to build a new image.

• Distributed bind mounts: used to share data between network storage and containers.
Useful but you need to be aware that network storage will not have the same
performance as local disk and may not offer full filesystem features. Can be used as
read-only sources for configuration data or a shared cache, or as read-write to store
data which can be used by any container on any machine on the same network.

• Volume mounts: used to share data between the container and a storage object which
is managed by Docker. Useful for persistent storage, where the application writes data
to the volume. When you upgrade your app with a new container, it will retain the data
written to the volume by the previous version.

• Image layers: these present the initial filesystem for the container. Layers are stacked,
with the latest layer overriding earlier layers - so a file written in a layer at the
beginning of the Dockerfile can be overridden by a subsequent layer which writes to the
same path. Layers are read-only and they can be shared between containers.

6.6 Lab
We’ll put those pieces together in the lab. It’s back to the good-old to-do list app, but this time
with a twist. The app will run in a container and start with a set of tasks already created. Your
job is to run the app using the same image, but with different storage options so that the to-
do list starts off empty, and when you save items they get stored to a Docker volume. The
exercises from this chapter should get you there, but if you need some hints:

• Remember it's docker rm -f $(docker ps -aq) to remove all your existing
containers :)

• Start by running the app from diamol/ch06-lab to check out the tasks
• Then you'll need to run a container from the same image with some mounts
• The app uses a configuration file - there's more in there than settings for the log

My sample solution on the book’s GitHub repository if you need it, but you should try and
work through this one because container storage can trip you up if you haven't had much
experience. There are a few ways to solve this, my solution is here:

https://github.com/sixeyed/diamol/blob/master/ch06/lab/README.md

106

https://github.com/sixeyed/diamol/blob/master/ch06/lab/README.md
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

7
Running multi-container apps with

Docker Compose

Most applications don't run in one single component. Even large old apps are typically built as
front-end and back-end components, which are separate logical layers running in physically
distributed components. Docker is ideally suited to running distributed applications - from n-
tier monoliths to modern microservices. Each component runs in its own lightweight container,
and Docker plugs them together using standard network protocols. You define and manage
multi-container apps like this using Docker Compose. Compose is a file format for describing
distributed Docker apps and a tool for managing them. In this chapter we'll revisit some apps
from earlier in the book and see how Docker Compose makes it easier to use them.

7.1 The anatomy of a Docker Compose file
You've worked with lots of Dockerfiles, and you know that the Dockerfile is a script for
packaging an application. But for distributed apps the Dockerfile is really just for packaging
one part of the application. For an app with a front-end website, a back-end API and a
database you could have three Dockerfiles - one for each component. How would you run that
app in containers?

You could use the Docker CLI to start each container in turn, specifying all the options for
the app to run correctly. That's a manual process which is likely to become a point of failure,
because if you get any of the options wrong the applications might not work correctly, or the
containers might not be able to communicate. Instead you can describe the application's
structure with a Docker Compose file.

The Docker Compose file describes the desired state of your app - what it should look like
when everything's running. It's a simple file format where you capture all the options you
would put in your docker container run commands into the Compose file. Then you use the

107

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Docker Compose tool to run the app. It works out what Docker resources it needs - which
could be containers, networks or volumes - and sends requests to the Docker API to create
them. Code Listing 7.1 shows a full Docker Compose file - you'll find this in the exercises
folder for this chapter in the book's source code:

Code Listing 7.1 A Docker Compose file to run the to-do app from Chapter 6

version: '3.7'

services:

 todo-web:
 image: diamol/ch06-todo-list
 ports:
 - "8020:80"
 networks:
 - app-net

networks:
 app-net:
 external:
 name: nat

This describes a simple application with one Docker container plugging into one Docker
network. Docker Compose uses YAML, which is a human-readable text format that's widely
used because it translates easily to JSON (which is the standard language for APIs). Spaces
are important in YAML which uses indentation to identify objects and the child properties of
objects.

In this example there are three top-level statements:

• version is the version of the Docker Compose format used in this file. The feature set
has evolved over many releases, so the version here identifies which releases this
definition works with.

• services lists all the components that make up the application. Docker Compose uses
the idea of services instead of actual containers, because a service could be run at
scale with several containers from the same image.

• networks lists all the Docker networks which the service containers can plug into.

You could run this app with Compose and it would start a single container to get to the desired
state. Here in figure 7.1 you can see the architecture diagram of the app's resources:

108

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 7.1 The architecture of a simple Compose file with one service and one network

There are a couple of things to look more closely at before we actually do run this app. The
service called todo-web will run a single container from the diamol/ch06-todo-list image. It
will publish port 8020 on the host to port 80 on the container, and it will connect the container
to a Docker network referred to as app-net inside the compose file. The end result will be the
same as running docker container run -p 8020:80 --name todo-web --network nat
diamol/ch06-todo-list.

Under the service name are the properties, which are a fairly close map to the options in
the docker container run command: image is the image to run, ports are the ports to
publish and networks are the networks to connect to. The service name becomes the
container name and the DNS name of the container, which other containers can use to
connect on the Docker network. The network name in the service is app-net, but under the
networks section that network is specified as mapping to an external network called nat. The

109

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

external option means Compose expects the nat network to already exist, and won't try to
create it.

You manage apps with Docker Compose using the docker-compose command line, which is
separate from the Docker CLI. The docker-compose command uses different terminology, so
you start an app with the up command, which tells Docker Compose to inspect the Compose
file and create anything that's needed to bring the app up to the desired state.

TRY IT NOW Open a terminal and create the Docker network. Then browse to the folder with this Compose

file, and then run the app using the docker-compose command line

docker network create nat

cd ./ch07/exercises/todo-list

docker-compose up

You don't always need to create a Docker network for Compose apps - and you may already
have that nat network from running the exercises in Chapter 4, in which case you'll get an
error which you can ignore. If you use Linux containers then Compose can manage networks
for you, but if you use Windows containers then you need to use the default network called
nat which Docker creates when you install it on Windows. I'm using the nat network so the
same Compose file works for you whether you're running Linux or Windows containers.

The Compose command line expects to find a file called docker-compose.yml in the
current directory, so here it loads the to-do list application definition. You won't have any
containers matching the desired state for the todo-web service, so Compose will start one
container. When Compose runs containers it collects all the application logs and shows them
grouped by containers, which is very useful for development and testing.

My output from running the command is in figure 7.2 - when you run it yourself you'll also
see the images being pulled from Docker Hub, but I'd already pulled them before running the
command:

110

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 7.2 Starting an app using Docker Compose, which creates Docker resources

Now you can browse to http://localhost:8020 and see the to-do list application. It works in
exactly the same way as in Chapter 6, but Docker Compose gives you a much more robust
way to start the app. The Docker Compose file will live in source control alongside the code for
the app and the Dockerfiles, and it becomes the single place to describe all the runtime
properties of the app. You don't need to document the image name or the published port in a
README file, because it's all in the Compose file.

The Docker Compose format records all the properties you need to configure your app, and
it can also record other top-level Docker resources like volumes and secrets. This app just has
a single service, but even here it's good to have a Compose file which you use to run the app
and to document its setup. But Compose really makes sense when you're running multi-
container apps.

7.2 Running a multi-container application with Compose
Back in Chapter 4 we built a distributed app which shows an image from NASA's astronomy
picture of the day API. There was a Java front-end website, a REST API written in Go and a log
collector written in Node.js. We ran the app by starting each container in turn, and we had to
plug the containers into the same network and use the correct container names - so the
components could find each other. That's exactly the sort of brittle approach which is full of
problems that Docker Compose fixes for us.

111

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:8020/

In Code Listing 7.2 you can see the services section for a Compose file which describes
the image gallery application. I've removed the network configuration to focus on the service
properties, but the services plug into the nat network in the same way as the to-do app
example:

Code Listing 7.2 The Compose services for the multi-container image gallery app

accesslog:
 image: diamol/ch04-access-log

iotd:
 image: diamol/ch04-image-of-the-day
 ports:
 - "80"

image-gallery:
 image: diamol/ch04-image-gallery
 ports:
 - "8010:80"
 depends_on:
 - accesslog
 - iotd

This is a good example to see how to configure different types of service. The accesslog
service doesn't publish any ports or use any other properties you would capture from the
docker container run command, so the only value recorded is the image name. The iotd
service is the REST API - the Compose file records the image name and also publishes port 80
on the container to a random port on the host. The image-gallery service has the image
name and a specific published port - 8010 on the host maps to port 80 in the container - and
also a depends_on section saying this service has a dependency on the other two services, so
Compose should make sure those are running before it starts this one.

Figure 7.3 shows the architecture of this app. I've generated the diagrams in this chapter
from a tool which reads the Compose file and generates a PNG image of the architecture.
That's a great way to keep your documentation up to date, you can have the diagram
generated from the Compose file every time there's a change - the diagram tool runs in a
Docker container of course :) - you can find it on GitHub at pmsipilot/docker-compose-viz.

112

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
https://github.com/pmsipilot/docker-compose-viz

Figure 7.3 A more complex Compose file which specifies three services connected to the same network

We'll use Docker Compose to run the app, but this time we'll run in detached mode.
Compose will still collect the logs for us, but the containers will be running in the background
so we'll have our terminal session back and can use some more features of Compose.

TRY IT NOW Open a terminal session to the root of your DIAMOL source code, then navigate to the image

gallery folder and run the app:

cd ./ch07/exercises/image-of-the-day

docker-compose up --detach

113

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Your output will be like mine in figure 7.4. You can see that the accesslog and iotd services
are started before the image-gallery service, because of the dependencies recorded in the
Compose file.

Figure 7.4 Starting a multi-container app with dependencies specified using Docker Compose

When the app is running you can browse to http://localhost:8010. It works just like it did in
Chapter 4, but now you have a clear definition in the Docker Compose file of how the
containers need to be configured for them to work together. You can also manage the
application as a whole using the Compose file. The API service is effectively stateless, so you
can scale it up to run on multiple containers. When the web container requests data from the
API, Docker will share those requests across the running API containers.

TRY IT NOW In the same terminal session use Docker Compose to increase the scale of the iotd service,

then refresh the web page a few times and check the logs of the iotd containers:

docker-compose up -d --scale iotd=3

browse to http://localhost:8010 and refresh

docker-compose logs --tail=1 iotd

You'll see in the output that Compose creates two new containers to run the image API
service, so it now has a scale of three. When you refresh the web page showing the
photograph, the web app requests data from the API and that request could be handled by
any of the API containers. The API writes a log entry when it handles requests, which you can
see in the container logs. Docker Compose can show you all log entries for all containers, or
you can use it to filter the output - here you're just fetching the last log entry from each of the
iotd service containers.

114

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:8010/

My output is in figure 7.5 - you can see that containers 1 and 3 have been used by the web
app, but container 2 hasn't handled any requests so far:

Figure 7.5 Scaling up an application component and checking its logs with Docker Compose

Docker Compose is now managing five containers for me. I can control the whole app using
Compose - I can stop all the containers to save compute resources, and start them all again
when I need the app running. But these are normal Docker containers which I can also work
with using the Docker CLI. Compose is a different command-line tool for managing containers,
but it uses the Docker API in the same way that the Docker CLI does. You can use Compose to
manage your app, but still use the standard Docker CLI to work with containers which
Compose created.

TRY IT NOW In the same terminal session, stop and start the app with Docker Compose commands, and

then list all running containers with the Docker CLI:

115

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker-compose stop

docker-compose start

docker container ls

Your output will be like mine in figure 7.6. You'll see Compose lists individual containers when
it stops the app, but it only lists the services when it starts the app again - and the services
are started in the correct dependency order. In the container list you'll see Compose has
restarted the existing containers, rather than creating new ones - all my containers show they
were created over 30 minutes ago, but they've only been up for a few seconds:

Figure 7.6 Stopping and starting multi-container apps with Docker Compose

There are many more features to Compose - run docker-compose without any options to see
the full list of commands, but there's one really important consideration you need to take in

116

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

before you go much further. Docker Compose is a client-side tool. It's a command line which
sends instructions to the Docker API based on the contents of the Compose file. Docker itself
just runs containers, it isn't aware that many containers represent a single application. Only
Compose knows that, and Compose only knows the structure of your application by looking at
the Docker Compose YAML file, so you need to have that file available to manage your app.

It's possible to get your application out of sync with the Compose file, when the Compose
file changes or you update the running app. That can cause unexpected behavior when you
return to manage the app with Compose. We've already done this ourselves - we scaled up
the iotd service to three containers, but that configuration isn't captured in the Compose file.
When you bring the application down and then recreate it, Compose will return it to the
original scale.

TRY IT NOW In the same terminal session - because Compose needs to use the same YAML file - use

Docker Compose to bring the application down and back up again. Then check the scale by listing running

containers:

docker-compose down

docker-compose up -d

docker container ls

The down command removes the application, so Compose stops and removes containers - it
would also remove networks and volumes if they were recorded in the Compose file and not
flagged as external. up starts the application and because there are no running containers,
Compose creates all the services - but it uses the app definition in the Compose file which
doesn't record scale, so the API service starts with one container instead of the three we
previously had running.

You can see that in my output in figure 7.7. The goal here was to restart the app, but
we've accidentally scaled the API service down as well:

117

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 7.7 Removing and recreating an app resets it to the state in the Docker Compose file

Docker Compose is simple to use and powerful, but you need to be mindful that it's a client-
side tool so it's dependent on good management of the app definition YAML files. When you
deploy an app with Compose it creates Docker resources, but the Docker engine doesn't know
those resources are related - they're only an application as long as you have the Compose file
to manage them.

7.3 How Docker plugs containers together
All the components in a distributed application run in Docker containers with Compose - but
how do they communicate with each other? You know that a container is a virtualized

118

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

environment with its own network space. Each container has a virtual IP address assigned by
Docker - and containers plugged into the same Docker network can reach each other using
their IP addresses. But containers get replaced during the application lifecycle and new
containers will have new IP addresses, so Docker also supports service discovery with DNS.

DNS is the Domain Name System which links names to IP addresses. It works on the
public Internet and on private networks. When you point your browser to blog.sixeyed.com
you're using a domain name which gets resolved to an IP address for one of the Docker
servers I have hosting my blog. Your machine actually fetches content using the IP address,
but as the user you work with the domain name which is much friendlier.

Docker has its own DNS service built in. Apps running in containers make domain lookups
when they try to access other components. The DNS service in Docker performs that lookup -
if the domain name is actually a container name, then Docker returns the container's IP
address and the consumer can work directly across the Docker network. If the domain name
isn't a container, then Docker passes the request onto the server where Docker is running - so
it will make a standard DNS lookup to find an IP address on your organization's network or the
public Internet.

You can see that in action using the image-gallery app. The response from Docker's DNS
service will contain a single IP address for services running in a single container, or multiple IP
addresses if the service is running at scale across multiple containers.

TRY IT NOW In the same terminal session again, use Docker Compose to bring the application up with the

API running at a scale of three. Then connect to a session in the web container - choose the Linux or Windows

command to run - and perform a DNS lookup:

docker-compose up -d --scale iotd=3

for Linux containers:
docker container exec -it image-of-the-day_image-gallery_1 sh

for Windows containers:
docker container exec -it image-of-the-day_image-gallery_1 cmd

nslookup accesslog

exit

nslookup is a small utility which is part of the base image for the web application - it performs
a DNS lookup for the name you provide and prints out the IP address. My output is in figure
7.8 - you can see there's an error message from nslookup which you can ignore (that's to do
with the DNS server itself), and then the IP address for the container. My accesslog container
has the IP address 172.24.0.2:

119

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 7.8 Scaling a service with Docker Compose and performing DNS lookups

Containers plugged into the same Docker network will get IP addresses in the same network
range, and they connect over that network. Using DNS means when your containers get
replaced and the IP address changes, your app still works because the DNS service in Docker
will always return the current container's IP address from the domain lookup.

You can verify that by manually removing the accesslog container using the Docker CLI,
and then bringing the application back up again using Docker Compose. Compose will see
there's no accesslog container running, so it will start a new one. That container may have a
new IP address from the Docker network - depending on other containers being created - so
when you run a domain lookup you may see a different response.

TRY IT NOW Still in the same terminal session, use the Docker CLI to remove the accesslog container,

and then Docker Compose to bring the app back to the desired state. Then connect to the web container

again, using sh in Linux or cmd in Windows, and run some more DNS lookups:

120

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker container rm -f image-of-the-day_accesslog_1

docker-compose up -d --scale iotd=3

for Linux containers:
docker container exec -it image-of-the-day_image-gallery_1 sh

for Windows containers:
docker container exec -it image-of-the-day_image-gallery_1 cmd

nslookup accesslog

nslookup iotd

exit

You can see my output in figure 7.9 - in my case there were no other processes creating or
removing containers, so the same IP address 172.24.0.2 got used for the new accesslog
container. In the DNS lookup for the iotd API you can see there are three IP addresses
returned, one for each of the three containers in the service:

121

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 7.9 Services scale with multiple containers - every container's IP address is returned in a lookup

DNS servers can return multiple IP address for a domain name. Docker Compose uses this
mechanism for simple load-balancing, returning all the container IP addresses for a service.
It's up to the caller how it processes multiple responses, but some apps take a simplistic
approach of using the first address in the list. To try and provide load-balancing across all the

122

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

containers, the Docker DNS returns the list in a different order each time. You'll see that if you
repeat the nslookup call for the iotd service - it's a basic way of trying to spread traffic
around all the containers.

Docker Compose takes care of recorded all the startup options for your containers, and it
takes care of communication between containers at runtime - and you can also use it to set up
the configuration settings for your environments.

7.4 Application configuration in Docker Compose
The to-do app from Chapter 6 can be used in different ways. You can run it as a single
container, in which case it stores data in a Sqlite database - which is just a file inside the
container. You saw in Chapter 6 how to use volumes to manage that database file. Sqlite is
fine for small projects but larger apps will use a separate database, and the to-do app can be
configured to use a remote Postgres SQL database instead of local Sqlite.

Postgres is a powerful and popular open-source relational database. It works nicely in
Docker, so you can run a distributed application where the app is running in one container,
and the database is in another container. The Docker image for the to-do app has been built in
line with the guidance in this book, so it packages a default set of configuration for the dev
environment but it can have config settings applied to work with other environments. We can
apply those config settings using Docker Compose.

Take a look at the services for the Compose file in Code Listing 7.3 - these specify a
Postgres database service, and the to-do application service:

Code Listing 7.3 The Compose services for the to-do app with a Postgres database

services:

 todo-db:
 image: diamol/postgres:11.5
 ports:
 - "5433:5432"
 networks:
 - app-net

 todo-web:
 image: diamol/ch06-todo-list
 ports:
 - "8020:80"
 environment:
 - Database:Provider=Postgres
 depends_on:
 - todo-db
 networks:
 - app-net
 secrets:
 - source: postgres-connection
 target: /app/config/secrets.json

123

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The specification for the database is straightforward - it uses the diamol/postgres:11.5
image, publishes the standard Postgres port 5342 in the container to port 5433 on the host,
and it uses the service name todo-db - which will be the DNS name for the service. The web
application has some new sections to set up configuration:

• environment sets up environment variables which are created inside the container.
When this app runs there will be an environment variable called Database:Provider
set inside the container, with the value Postgres

• secrets can be read from the runtime environment and populated as files inside the
container. This app will have a file at /app/config/secrets.json with the contents of
the secret called postgres-connection.

Secrets are usually provided by the container platform in in a clustered environment - that
could be Docker Swarm or Kubernetes. They are stored in the cluster database and can be
encrypted, so they're useful for sensitive configuration data like database connection strings,
certificates or API keys. On a single machine running Docker there is no cluster database for
secrets, so with Docker Compose you can load secrets from files. There's a secrets section at
the end of this Compose file, shown in Code Listing 7.4:

Code Listing 7.4 Loading secrets from local files in Docker Compose

secrets:
 postgres-connection:
 file: postgres-connection.json

This tells Docker Compose to load the secret called postgres-connection from the file on the
host called postgres-connection.json. This scenario is like the bind mounts we covered in
Chapter 6 - in reality the file on the host gets surfaced into the container. But recording it as a
secret gives you the option of migrating to a real, encrypted secret in a clustered
environment.

Plugging app configuration into the Compose file lets you use the same Docker images in
different ways, and be explicit about the settings for each environment. You can have separate
compose files for your development and test environments, publishing different ports and
triggering different features of the app. This Compose file sets up environment variables and
secrets to run the to-do app in Postgres mode, and provide it with the details to connect to the
Postgres database.

When you run the app, you'll see it behaves in the same way - but now the data is stored
in a Postgres database container, which you can manage separately from the app.

TRY IT NOW Open a terminal session at the root of the code for the book, and switch to the directory for

this exercise. In that directory you'll see the Docker Compose file and also the JSON file which contains the

secret to load into the application container. Start the app using docker-compose up in the usual way:

cd ./ch07/exercises/todo-list-postgres

124

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker-compose up -d

docker-compose ps

Figure 7.10 shows my output. There's nothing new in there - except the docker-compose ps
command, which lists all running containers which are part of this Compose application:

Figure 7.10 Running a new application with Docker Compose and listing its containers

You can browse to this version of the to-do app at http://localhost:8030. The functionality is
the same, but now the data is being saved in the Postgres database container. You can check
that with a database client - I use Sqlectron, which is a fast open-source cross-platform UI for
connecting to Postgres, MySQL and SQL Server databases. The address of the server is
localhost:5433, which is the port published by the container; the database is called todo,
username is postgres and there is no password. You can see in figure 7.11 that I've added
some data to the web app, and I can query it in Postgres:

125

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:8030/

Figure 7.11 Running the to-do in containers with a Postgres database and querying the data

Separating the application package from the runtime configuration is a key benefit of Docker.
Your application image will be produced by your build pipeline, and that same image will
progress through the test environments until it is ready for production. Each environment will
apply its own config settings, using environment variables or bind mounts or secrets - and
that's easy to capture in Docker Compose files. In every environment you're working with the

126

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

same Docker images, so you can be confident you're releasing the exact same binaries and
dependencies into production that have passed the tests in all other environments.

7.5 Understanding the problem Docker Compose solves
Docker Compose is a very neat way of describing the setup for complex distributed apps in a
small, clear file format. The Compose YAML file is effectively a deployment guide for your
application, but it's miles ahead of a guide written as a Word document. In the old days those
Word docs described every step of the application release, and they ran to dozens of pages
filled with inaccurate descriptions and out-of-date information. The Compose file is simple and
it's actionable - you use it to run your app, so there's no risk of it going out of date.

Compose is a useful part of your toolkit when you start making more use of Docker
containers. But it's important to understand exactly what Docker Compose is for, and what its
limitations are. Compose lets you define your application and apply the definition to a single
machine running Docker. It compares the live Docker resources on that machine with the
resources described in the Compose file, and it will send requests to the Docker API to replace
resources which have been updated, and create new resources where they are needed.

You get the desired state of your application when you run docker-compose up, but that's
where Docker Compose ends. It is not a full container platform like Docker Swarm or
Kubernetes - it does not continually run to make sure your application keeps its desired state.
If containers fail or if you remove them manually Docker Compose will not restart or replace
them, until you explicitly run docker-compose up again. Figure 7.12 gives you a good idea of
where Compose fits into the application lifecycle:

127

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 7.12 Where you use Docker Compose in the application lifecycle from dev to production

That's not to say Docker Compose isn't suitable for production. If you're just starting with
Docker and you're migrating workloads from individual VMs to containers, then it might be fine
as a starting point. You won't get high availability, load balancing or failover on that Docker
machine - but then you didn't get that on your individual app VMs either. You will get a
consistent set of artifacts for all your applications - everything has Dockerfiles and Docker
Compose files - and consistent tools to deploy and manage your apps. That might be enough
to get you started before you look into running a container cluster.

7.6 Lab
There are some useful features in Docker Compose which do add reliability to running your
app. In this lab I'd like you to create a Compose definition for the to-do web app to run in a
test environment which adds reliability so that:

• The application containers restart if the machine reboots, or the Docker engine restarts
• The database container uses a bind mount to store files, so you can bring the app down

and up again but retain your data
• The web application should listen on standard port 80 for test

128

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Just one hint for this one:

• You can find the Docker Compose file specification in Docker's reference documentation
at https://docs.docker.com/compose/compose-file. That defines all the settings you
can capture in Compose.

My sample solution is on the book's GitHub repository as always. Hopefully this one isn't too
complex, so you won't need it:

https://github.com/sixeyed/diamol/blob/master/ch07/lab/README.md

129

https://docs.docker.com/compose/compose-file/
https://github.com/sixeyed/diamol/blob/master/ch07/lab/README.md
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

8
Supporting reliability with health
checks and dependency checks

We're on a journey towards making software production-ready in containers. You've already
seen how straightforward it is to package apps in Docker images, run them in containers and
define multi-container apps with Docker Compose. In production you'll run your apps in a
container platform like Docker Swarm or Kubernetes, and those platforms have features which
help you deploy self-healing apps. You can package your containers with information the
platform uses to check if the application inside the container is healthy. If the app stops
working correctly, the platform can remove a malfunctioning container and replace it with a
new one. In this chapter you'll learn how to package those checks into your container images
to help the platform keep your app online.

8.1 Building health checks into Docker images
Docker monitors the health of your app at a basic level every time you run a container.
Containers run a specific process when they start - which could be the Java or .NET Core
runtime, a shell script or an application binary. Docker checks that the process is still running,
and if it stops the container goes into the Exited state.

That gives you a basic health check which works across all environments. Developers can
see their app is unhealthy if the process fails and the container exits. In a clustered
environment the container platform can restart an exited container, or create a replacement
container. But it's a very basic check - it ensures the process is running, but not that the app
is actually healthy. A web app in a container could hit maximum capacity and start returning
HTTP 503 "Service Unavailable" responses to every request. As long as the process in the
container is still running, Docker thinks the container is healthy even though the app is stalled.

130

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Docker gives you a neat way to build a real application health check right into the Docker
image, just by adding logic to the Dockerfile. We'll do that with a simple API container, but
first we'll run it without any health checks to be sure we understand the problem.

TRY IT NOW Run a container which hosts a simple REST API that returns a random number. The app has a

bug so after three calls to the API, it becomes unhealthy and every subsequent call fails. Open a terminal, run

the container and use the API - this is a new image so you'll see Docker pull it when you run the container:

start the API container
docker container run -d -p 8080:80 diamol/ch08-numbers-api

repeat this three times - it returns a random number
curl http://localhost:8080/rng
curl http://localhost:8080/rng
curl http://localhost:8080/rng

from the fourth call onwards, the API always fails
curl http://localhost:8080/rng

check the container status
docker container ls

You can see my output in Figure 8.1. The API behaves correctly for the first three calls, and
then it returns an HTTP 500 "Server Error" response. The bug in the code means it will always
return a 500 from now on (actually it's not a bug, the app is written deliberately like that; the
source code is in the repo for Chapter 8 if you want to see how it works). In the container list
the API container has the status Up. The process inside the container is still running, so it
looks good as far as Docker is concerned. The container runtime has no way of knowing what's
happening inside that process, and whether the app is still behaving correctly.

131

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 8.1 Docker checks the app process so the container is up even if the app is in a failed state

Enter the HEALTHCHECK instruction, which you can add to a Dockerfile to tell the runtime
exactly how to check if the app in the container is still healthy. The HEALTHCHECK instruction
specifies a command for Docker to run inside the container, which will return a status code -
the command can be anything you need to check if your app is healthy. Docker will run that
command in the container at a timed interval. If the status code says everything is good, then
the container is healthy. If the status code is a failure several times in a row, then the
container is marked as unhealthy.

Code Listing 8.1 shows the HEALTHCHECK command in a new Dockerfile for the random
number API, which I'll build as version 2 (the full file is in the source for the book at
ch08/exercises/numbers/numbers-api/Dockerfile.v2). This health check uses a cURL

132

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

command like I did on my host, but this time it runs inside the container. The /health URL is
another endpoint in the application which checks if the bug has been triggered, and it will
return a 200 OK status code if the app is working and a 500 Server Error when it's broken:

Code Listing 8.1 The HEALTHCHECK instruction in a Dockerfile

FROM diamol/dotnet-aspnet

ENTRYPOINT ["dotnet", "/app/Numbers.Api.dll"]
HEALTHCHECK CMD curl --fail http://localhost/health

WORKDIR /app
COPY --from=builder /out/ .

The rest of the Dockerfile is pretty straightforward. This is a .NET Core application so the
entrypoint runs the dotnet command - and it's that dotnet process which Docker monitors to
check if the application is still running. The health check makes an HTTP call to the /health
endpoint, which the API provides to test if the app is healthy. Using the --fail parameter
means the cURL command will pass the status code on to Docker - if the request succeeds it
returns the number zero, which Docker reads as a successful check. If it fails it returns a
number other than zero, which means the health check failed.

We'll build a new version of that image so you can see how the build command works with
a different file structure. Usually you have a Dockerfile in your application source folder, and
Docker finds that and runs the build. In this case the Dockerfile has a different name and is in
a separate folder from the source code, so you need to explicitly specify the path in the build
command.

TRY IT NOW Run a terminal and browse to the folder where you have the source code for the book. Then

build the new image with a v2 tag, using the v2 Dockerfile:

browse to the root path, which has folders for source code and Dockerfiles:
cd ./ch08/exercises/numbers

build the image using the -f flag to specify the path to the Dockerfile:
docker image build -t diamol/ch08-numbers-api:v2 -f ./numbers-
api/Dockerfile.v2 .

Once the image is built you're ready to run the app with a health check. You can configure
how often the health check runs and how many failed checks mean the app is unhealthy; the
default is to run every 30 seconds, and for three failures in a row to trigger the unhealthy
status. Version v2 of the API image has the health check built in, so when you repeat the test
you'll find the health of the container gets reported.

TRY IT NOW Run the same test but using the v2 image tag, and leave some time between the commands

to let Docker fire the health checks inside the container.

start the API container, v2

133

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker container run -d -p 8081:80 diamol/ch08-numbers-api:v2

wait 30 seconds or so and list the containers
docker container ls

repeat this four times - it returns three random numbers and then fails
curl http://localhost:8081/rng
curl http://localhost:8081/rng
curl http://localhost:8081/rng
curl http://localhost:8081/rng

now the app is in a failed state - wait 90 seconds and check
docker container ls

My output is in figure 8.2. You can see that the new version of the API container initially shows
a healthy status - if images have a health check built in, then Docker shows the status of the
health check for running containers. Some time after I've triggered the bug, the container
shows as unhealthy:

134

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 8.2 A broken app shows as an unhealthy container, but the container is still up

135

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

That unhealthy status is published as an event from Docker's API, so the platform running the
container is notified and can take action to fix the application. Docker also records the result of
the most recent health checks, which you can see when you inspect the container. You've
already seen the output of docker container inspect, which shows everything Docker
knows about the container - and if there's a health check running, that gets shown too.

TRY IT NOW We have two API containers running and we didn't give a name when we created them, but

we can find the ID of the most recently-created container using container ls with the --last flag. You

can feed that into container inspect to see the status of the latest container:

docker container inspect $(docker container ls --last 1 --format '{{.ID}}')

Pages of JSON data get returned here, and if you scroll to the State field you'll see there's a
Health section. That contains the current status of the health check, the "failing streak" which
is the number of successive failures, and a log of the recent health check calls. In figure 8.3
you can see an extract of my container's state. The health check is in a failing streak of six,
which triggers the container to be in an unhealthy state - and you can see the logs from the
health check commands, which fail when they get an HTTP status result of 500:

136

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 8.3 Containers with a health check show the health status of the app and the health check logs

So the health check is doing what it should, testing the application inside the container and
flagging up to Docker that the app is no longer healthy. But you can also see in figure 8.3 that
my unhealthy container is in the running status, so it's still up even though Docker knows it is
not working correctly. Why hasn't Docker restarted or replaced that container?

137

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The simple answer is that Docker can't safely do that, because the Docker Engine is
running on a single server. Docker could stop and restart that container, but that would mean
downtime for your app while it was being recycled. Or Docker could remove that container and
start a new one from the same setup, but maybe your app writes data inside the container -
so that would mean downtime and a loss of data. Docker can't be sure that taking action to fix
the unhealthy container won't make the situation worse, so it broadcasts that the container is
unhealthy but leaves it running. The health check continues too, so if the failure is temporary
and the next check passes, the container status flips to healthy again.

Health checks become really useful in a cluster with multiple servers running Docker, being
managed by Docker Swarm or Kubernetes. Then the container platform gets notified if the
container is unhealthy and it can take action - because there is additional capacity in the
cluster, a replacement container can be started while the unhealthy one is still running, so
there shouldn’t be any application downtime.

8.2 Starting containers with dependency checks
The health check is an ongoing test which helps the container platform keep your application
running. A cluster with multiple servers can deal with temporary failures by starting new
containers, so there's no loss of service even if some of your containers stop responding. But
running across a cluster brings new challenges for distributed apps, because you can no longer
control the startup order for containers which may have dependencies on each other.

Our random number generator API has a website to go with it. The web app runs in its own
container and uses the API container to generate random numbers. On a single Docker server
you can ensure the API container is created before the web container, so when the web app
starts it has all its dependencies available. You can even capture that explicitly with Docker
Compose. In a clustered container platform, you can't dictate the startup order of the
containers, so the web app might start before the API is available.

What happens then depends on your application. The random number app doesn't handle
it very well.

TRY IT NOW Remove all running containers, so now you have no API container. Then run the web app

container and browse to it. The container is up and the app is available, but you'll find it doesn't actually work.

docker container rm -f $(docker container ls -aq)

docker container run -d -p 8082:80 diamol/ch08-numbers-web

docker container ls

Now you can browse to http://localhost:8082. You'll see a simple web app which looks OK -
but if you click the random number button you'll see the same error in figure 8.4:

138

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:8082/

Figure 8.4 Apps which don't verify that their dependencies are available may look OK but be in a failed state

This is exactly what you don't want to happen. The container looks fine but the app is
unusable, because its key dependency is unavailable. Some apps may have logic built into
them to verify the dependencies they need are there when they start; but most apps don't,
and the random number web app is one of those. It assumes the API will be available when
it's needed so it doesn't do any dependency checking.

You can add that dependency check inside the Docker image. A dependency check is
different from a health check - it runs before the application starts and makes sure everything

139

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

the app needs is available. If everything is there then the dependency check finishes
successfully and the app starts. If the dependencies aren't there then the check fails and the
container exits. Docker doesn't have a built-in feature like the HEALTHCHECK instruction for
dependency checks, but you can put that logic in the startup command.

Code listing 8.2 shows the final application stage of a new Dockerfile for the web
application (the full file is at ch08/exercises/numbers/numbers-web/Dockerfile.v2) - the
CMD instruction verifies the API is available before it starts the app:

Code listing 8.2 A Dockerfile with a dependency check in the startup command

FROM diamol/dotnet-aspnet

ENV RngApi:Url=http://numbers-api/rng

CMD curl --fail http://numbers-api/rng && \
 dotnet Numbers.Web.dll

WORKDIR /app
COPY --from=builder /out/ .

This check uses the cURL tool again, which is part of the base image. The CMD instruction runs
when a container starts, and it makes an HTTP call to the API, which is a simple check to
make sure it's available. The double-ampersand && works the same way in Linux and Windows
command shells - it will run the command on the right if the command on the left succeeds.

If my API is available the cURL command will succeed and the application gets launched.
It's a .NET Core web application so Docker will monitor the dotnet process to verify the app is
still alive (there's no health check in this Dockerfile). If the API is unavailable the cURL
command will fail, the dotnet command doesn’t get run and there's nothing happening in the
container so it exits.

TRY IT NOW Run a container from the v2 tag of the random number web image. There's still no API

container, so when this container starts it will fail and exit:

docker container run -d -p 8084:80 diamol/ch08-numbers-web:v2

docker container ls --all

You can see my output in figure 8.5. The v2 container exited just a few seconds after it
started, because the cURL command failed to find the API. The original web app container is
still running and it's still unusable:

140

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 8.5 A container with dependency checks at startup exits if the checks fail

It's counter-intuitive but in this scenario it’s better to have an exited container than a running
container. This is fail-fast behavior, and it's what you want when you're running at scale.
When a container exits the platform can schedule a new container to come up and replace it.
Maybe the API container takes a long time to start up, so it's not available when the web
container runs; then the web container exits, a replacement is scheduled and by the time it
starts the API is up and running.

So with health and dependency checks we can package an app to be a good citizen in a
container platform. The checks we've used so far have been very basic HTTP tests using cURL.
That proves out what we want to do, but it's a simplistic approach and it's better not to rely on
an external tool for your checks.

8.3 Writing custom utilities for application check logic
cURL is a very useful tool for testing web apps and APIs. It's cross-platform so it works on
Linux and Windows, and it is part of the .NET Core runtime images which I've used as the
base for my golden images - so I know it will be there to run my checks. I don't actually need
cURL in the image for my app to run though, and a security review might ask for it to be
removed.

We covered that in Chapter 4 - your Docker image should have the bare minimum in it for
your application to run. Any extra tools increase the image size, and they also increase the

141

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

frequency you'll have to apply updates, and the security attack surface. So although cURL is a
great tool to get started with container checks, it's really better to write a custom utility for
your checks, using the same language that your application uses - Java for Java apps, Node.js
for Node.js apps.

There are a whole lot of advantages to this:

• You reduce the software requirements in your image - you don't need to install any
extra tools, because everything the check utility needs to run is already there for the
application to run;

• You can use more complex conditional logic in your checks with retries or branches
which are harder to express in shell scripts - especially if you're publishing cross-
platform Docker images for Linux and Windows;

• Your utility can use the same application configuration that your app uses, so you don't
end up specifying settings like URLs in several places, with the risk they get out of
sync;

• You can execute any tests you need, checking database connections or file paths for
the existence of certificates which you're expecting the platform to load into the
container - all using the same libraries your app uses.

Utilities can also be made generic to work in multiple situations. I've written a simple HTTP
check utility in .NET Core which I can use for the health check in the API image, and the
dependency check in the web image. There are multi-stage Dockerfiles for each app where
there's one stage to compile the application, one stage to compile the check utility, and the
final stage to copy in the app and the utility - figure 8.6 shows how that looks:

142

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 8.6 Using multi-stage builds to compile and package utilities alongside the application

The final stage of Dockerfile.v3 for the API is shown in code listing 8.3 - the command for the
health check now uses the check utility, which is a .NET Core app so the check no longer
needs cURL to be installed in the image:

Code listing 8.3 Using a custom utility for a healthcheck to remove the need for cURL

FROM diamol/dotnet-aspnet

ENTRYPOINT ["dotnet", "Numbers.Api.dll"]
HEALTHCHECK CMD ["dotnet", "Utilities.HttpCheck.dll", "-u",

"http://localhost/health"]

WORKDIR /app
COPY --from=http-check-builder /out/ .
COPY --from=builder /out/ .

The behavior of the new health check is pretty much the same; the only difference from the
cURL version is that you won't see as much verbose logging in the output when you inspect
the container, just a single line for each check saying whether it was a success or a failure.
The app should still report as healthy initially, then get flagged as unhealthy after you've made
a few calls to the API.

143

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

TRY IT NOW Remove all your existing containers and run version 3 of the random number API - this time

we'll specify an interval for the health check so it triggers more quickly. Check the container is listed as

healthy, then use the API and check the container flips to unhealthy:

clear down existing containers
docker container rm -f $(docker container ls -aq)

start the API container, v3
docker container run -d -p 8080:80 --health-interval 5s diamol/ch08-numbers-
api:v3

wait five seconds or so and list the containers
docker container ls

repeat this four times - it returns three random numbers and then fails
curl http://localhost:8080/rng
curl http://localhost:8080/rng
curl http://localhost:8080/rng
curl http://localhost:8080/rng

now the app is in a failed state - wait 15 seconds and check again
docker container ls

Figure 8.7 shows my output - the behavior is the same as version 2 with the health check
failing once the bug in the API is triggered, so the HTTP check utility is working correctly:

144

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 8.7 A container health check which uses a utility tool packaged into the Docker image

145

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The HTTP check utility has lots of options that make it flexible for different scenarios. In
Dockerfile.v3 for the web app I use the same utility for the dependency check at startup, to
see if the API is available. Code listing 8.4 shows the final stage of the Dockerfile - in this case
I use the -t flag to set how long the utility should wait for a response, and the -c flag tells the
utility to load the same config files as the application, and get the URL for the API from the
app config:

Code listing 8.4 Using a utility for a dependency check at container startup

FROM diamol/dotnet-aspnet

ENV RngApi:Url=http://numbers-api/rng

CMD dotnet Utilities.HttpCheck.dll -c RngApi:Url -t 900 && \
 dotnet Numbers.Web.dll

WORKDIR /app
COPY --from=http-check-builder /out/ .
COPY --from=builder /out/ .

Again this removes the requirement for cURL in the application image, but the behavior is
much the same with the HTTP utility in the startup command.

TRY IT NOW Run version 3 of the web app, and you'll see the container exits almost immediately, because

the http check utility fails when it makes the API check:

docker container run -d -p 8081:80 diamol/ch08-numbers-web:v3

docker container ls --all

Your output will be like mine in figure 8.8. You'll see the API container is still running, but still
unhealthy. The web container didn't find it because it's looking for the DNS name numbers-
api, and we didn't specify that name when we ran the API container. If we had used that
name for the API container, the web app would have connected and been able to use it -
although it would still show an error because the bug in the API has been triggered and it isn't
responding:

146

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 8.8 Using a utility packaged into the Docker image as the dependency check tool

One other benefit of writing your own checks in a utility is that it makes your image portable.
Different container platforms have different ways of declaring and using health checks and
dependency checks, but if you have all the logic you need in a utility in your image, you can
have it work in the same way on Docker Compose, Docker Swarm and Kubernetes.

8.4 Defining health checks and dependency checks in Docker
Compose

If you're not convinced that it's a good idea for containers to fail and exit when their
dependencies aren't available, you're about to see why it works. Docker Compose can go
some of the way toward repairing unreliable applications. It won't replace unhealthy
containers for the same reasons that Docker Engine won't: you're running on a single server
and the fix might cause an outage. But it can set containers to restart if they exit, and it can
add a health check if there isn't one already in the image.

Code listing 8.5 shows the random number API declared as a service in a Docker Compose
file (the full file is in source in ch08/exercises/numbers/docker-compose.yml). It specifies
the v3 container image which uses the HTTP utility for its health check, and adds settings to
configure how the health check should work:

147

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Code listing 8.5 Specifying health check parameters in a Docker Compose file

 numbers-api:
 image: diamol/ch08-numbers-api:v3
 ports:
 - "8087:80"
 healthcheck:
 interval: 5s
 timeout: 1s
 retries: 2
 start_period: 5s
 networks:
 - app-net

You have fine-grained control over the health check. I'm using the actual health check
command defined in the Docker image but using custom settings for how it runs:

• interval is how long between checks - in this case five seconds;
• timeout is how long the check should be allowed to run before it's considered a failure;
• retries is the number of consecutive failures allowed before the container is flagged

as unhealthy;
• start_period is the amount of time to wait before triggering the health check, which

lets you give your app some startup time before health checks run.

These will probably be different for each app and each environment - there's a balance to get
between finding out quickly that your app has failed, and allowing for temporary faults so you
don't trigger false alarms about unhealthy containers. My setup for the API is quite aggressive,
but remember that it costs CPU and memory to run health checks so in a production
environment you'd likely run with a longer interval.

You can also add a health check in your Compose file for containers which don't have one
declared in the image. Code listing 8.6 shows the service for the web app in the same Docker
Compose file, and here I'm adding a health check for the service. I'm specifying the same set
of options I use for the API service, but there's also the test field which gives Docker the
health check command to run:

Code listing 8.6 Adding a health check in Docker Compose

 numbers-web:
 image: diamol/ch08-numbers-web:v3
 restart: on-failure
 ports:
 - "8088:80"
 healthcheck:
 test: ["CMD", "dotnet", "Utilities.HttpCheck.dll", "-t", "150"]
 interval: 5s
 timeout: 1s
 retries: 2
 start_period: 10s
 networks:
 - app-net

148

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

It's good to add a health check to all containers, but this example comes together with the
dependency check in the image and the restart: on-failure setting, which means if the
container exits unexpectedly then Docker will restart it (and there's one of the answers to the
Chapter 7 lab, if you haven't done it :). There's no depends_on setting so Docker Compose
could start the containers in any order. If the web container starts before the API container is
ready, the dependency check will fail and it will exit. Meanwhile the API container will have
started so when the web app container gets restarted the dependency check will succeed and
the app will be fully functioning.

TRY IT NOW Clear down your running containers and start the random-number app with Docker Compose.

List your containers to see if the web app did start first and then restart:

browse to the Compose file
cd ./ch08/exercises/numbers

clear down existing containers
docker container rm -f $(docker container ls -aq)

start the app
docker-compose up -d

wait five seconds or so and list the containers
docker container ls

and check the web app logs
docker container logs numbers_numbers-web_1

My output is in figure 8.9 and yours should be very similar. Compose creates both containers
at the same time, because no dependencies are specified. While the API container is starting
up - and before the app is ready to handle requests - the web container's dependency check
runs. You can see in my logs that the HTTP check returns a success code, but it takes
3176ms, and the check is set to require a response within 150ms. So the check fails and the
container exits. The web service is configured to restart on failure, so that same container gets
started again - this time the API check gets a success status code in 115ms, so the check
passes and the app is in a working state:

149

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 8.9 Docker Compose adds resilience - the web container gets restarted when its first check fails

Browse to http://localhost:8088 and you can finally get a random number through the web
app. At least you can press the button three times and get a number - on the fourth you'll
trigger the API bug and you'll just get errors after that. Figure 8.10 shows one of the rare
successes:

150

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:8088/

Figure 8.10 The app is finally working correctly, with health and dependency checks in the containers

You might ask, why bother building a dependency check into the container startup when
Docker Compose can do it for you with the depends_on flag? The answer is that Compose can
only manage dependencies on a single machine, and the startup behavior of your app on a
production cluster is far less predictable.

8.5 Understanding how checks power self-healing apps
Building your app as a distributed system with lots of small components increases your
flexibility and agility, but it does make management more complicated. There will be lots of
dependencies between components, and it's tempting to want to declare the order in which
components get started so you can model the dependencies. But it's really not a great idea to
do that.

On a single machine I can tell Docker Compose that my web container depends on my API
container and it will start them in the correct order. In production I could be running
Kubernetes on a dozen servers and I might need 20 API containers and 50 web containers. If I
model the startup order then will the container platform start all 20 API containers first, before
starting any web containers? What if 19 containers start just fine but the twentieth container
has a problem and takes 5 minutes to start? I have no web containers so my app isn't
running, but actually all 50 web containers could be running and it would work fine with one
API container unavailable.

This is where dependency checks and health checks come in. You don't require the
platform to guarantee the startup order - you let it spin up as many containers on as many
servers as quickly as it can. If some of those containers can't reach their dependencies then
they fail quickly and get restarted or replaced with other containers. It might take a few

151

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

minutes of shuffling before a large app is running at 100% service, but during those minutes
the app will have been online and serving users.

Figure 8.11 shows an example of the lifecycle of a container in a production cluster:

Figure 8.11 Self-healing applications in a production cluster - containers can be restarted or replaced

152

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The idea of self-healing apps is that any transient failures can be dealt with by the platform. If
your app has a nasty bug which causes it to run out of memory, the platform will shut down
the container and replace it with a new one which has a fresh allocation of memory. It doesn't
fix the bug, but it keeps the app working correctly.

You do need to be careful with your checks though. Health checks run periodically, so they
shouldn't do too much work, you need to find the balance so checks are testing key parts of
your app are working, without taking too long to run or using too much compute resource.
Dependency checks only run at startup so you don’t need to be too concerned about the
resources they use, but you need to be careful what you check. Some dependencies are out of
your control, and if the platform can't fix things it won't be helpful if your containers fail.

Working out the logic to go in your checks is the hard part. Docker makes it easy to
capture those checks and execute them for you, and if you get them right then your container
platform will keep your app running for you.

8.6 Lab
Some applications use resources consistently, so that the initial dependency check and the
ongoing health check are testing the same thing. That's the case with this lab. It's an app
which simulates a memory hog - it just keeps allocating and holding on to more memory as
long as its running*. It's a Node.js app and it needs some checks:

• At startup it should check there's enough memory for it to work, if not it should exit
• During runtime it should check every 5 seconds to see if it has allocated more memory

than it is allowed - if it has then it needs to flag that its unhealthy
• The test logic is already written in the memory-check.js script, it just needs to be

wired into the Dockerfile
• The scripts and the initial Dockerfile are in the source folder ch08/lab

This one is pretty straightforward, I'll just point out that Node.js apps are not compiled, so you
don't need multiple stages. My sample is in the same directory, called Dockerfile.solution
and you'll find the write-up in the book's GitHub repository:

https://github.com/sixeyed/diamol/blob/master/ch08/lab/README.md

* - the app doesn't really allocate any memory. Memory management in containers is
complicated by different environments - Docker Desktop on Windows behaves differently from
Docker Community Edition on Linux. So for this lab the app just pretends to use memory.

153

https://github.com/sixeyed/diamol/blob/master/ch08/lab/README.md
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

9
Adding observability with
containerized monitoring

Autonomous applications scale themselves up and down to meet incoming traffic, and heal
themselves when there are intermittent faults. It sounds too good to be true - and it probably
is. The container platform can do a lot of the operations work for you if you build your Docker
images with health checks, but you still need ongoing monitoring and alerting so humans can
get involved when things go badly wrong. If you don't have any insight into your containerized
application, that's going to be the number one thing that stops you going to production.

Observability is a critical piece of the software landscape when you're running applications
in containers - it tells you what your applications are doing and how well they're performing,
and it can help you pinpoint the source of problems. In this chapter you'll learn how to use a
well-established approach to monitoring with Docker: exposing metrics from your application
containers, using Prometheus to collect them and Grafana to visualize them in user-friendly
dashboards. The tools are open-source and cross-platform, and they run in containers
alongside your application. That means you get the same insight into your application
performance in every environment from development to production.

9.1 The monitoring stack for containerized applications
Monitoring is different when apps are running in containers. In a traditional environment you
might have a monitoring dashboard showing a list of servers and their current utilization - disk
space, memory, CPU - and alerts to tell you if any become overworked and are likely to stop
responding. Containerized apps are more dynamic, they may run across dozens or hundreds
of containers which are short-lived and get created or removed by the container platform.

You need a monitoring approach which is container-aware, with tools that can plug into the
container platform for discovery and find all the running applications without a static list of

154

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

container IP addresses. Prometheus is an open-source project which does just that. It's a
mature product which is overseen by the Cloud-Native Computing Foundation (the same
foundation behind Kubernetes and the containerd container runtime). Prometheus runs in a
Docker container so you can very easily add a monitoring stack to your applications. Figure
9.1 shows how that stack looks:

Figure 9.1 Running Prometheus in a container to monitor other containers and Docker itself

Prometheus brings one very important aspect to monitoring: consistency. All your applications
export metrics in the same format, which means you only have one query language to learn
and you can apply it for your whole application stack. You can export the same type of metrics
for all your applications, so you have a standard way to monitor them whether they're .NET
apps in Windows containers or Node.js apps in Linux containers.

Another good reason for using Prometheus is that the Docker Engine can also export
metrics in that format, which gives you insight into what's happening in the container platform
too. You need to explicitly enable Prometheus metrics in your Docker Engine configuration -

155

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

we saw how to update the config in Chapter 5. You can either edit the daemon.json file
directly in C:\ProgramData\docker\config on Windows, or /etc/docker on Linux. On Docker
Desktop you can right-click the whale icon, choose Settings and edit the configuration in the
Daemon section.

TRY IT NOW Open your configuration settings and add two new values:

"metrics-addr" : "0.0.0.0:9323",
"experimental": true.

These enable monitoring and publish metrics on port 9323. You can see my full configuration
file in figure 9.2:

Figure 9.2 Configuring the Docker Engine to export metrics in Prometheus format

Docker Engine metrics are currently an experimental feature - which means the details it
provides could change. But it's been an experimental feature for a long time and it's been
stable. It's worth including in your dashboards because it adds another layer of detail to the
overall health of your system. Now you have metrics enabled you can browse to

156

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

http://localhost:9323/metrics and see all the information Docker provides. Figure 9.3 shows
my metrics, which include information about the machine Docker is running on As well as the
containers Docker is managing:

Figure 9.3 Sample metrics captured by Docker and exposed through the HTTP API

This output is in Prometheus format. It's a simple text-based representation where each
metric is shown with its name and value, and the metric is preceded by some help text stating
what the metric is, and the type of data. These basic lines of text are the core of your
container monitoring solution. Each component will expose an endpoint like this providing
current metrics; when Prometheus collects them it adds a timestamp to the data and stores it

157

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

with all the previous collections, so you can query data with aggregations or track changes
over time.

TRY IT NOW You can run Prometheus in a container to read the metrics from your Docker machine, but

first you need to get the machine's IP address. That's because containers don't know the IP address of the

server they're running on, so you need to find it first and pass it as an environment variable to the container:

load your machine's IP address into a variable - on Windows:
$hostIP = $(Get-NetIPConfiguration | Where-Object {$_.IPv4DefaultGateway -ne $null
}).IPv4Address.IPAddress

on Linux:
hostIP=$(ip route get 1 | awk '{print $NF;exit}')

pass your IP address as an environment variable for the container:
docker container run -e DOCKER_HOST=$hostIP -d -p 9090:9090 diamol/prometheus:2.13.1

The configuration in that Prometheus image uses the DOCKER_HOST IP address to talk to your
host machine and collect the metrics you've configured in the Docker Engine. It's rare that you
need to access a service on the host from inside the container, and if you do then you would
usually use your server name and Docker will find the IP address. In a development
environment that might not work, but the IP address approach should be fine.

Prometheus is running now. It does several things - it runs a scheduled job to pull the
metrics from your Docker host, it stores those metric values alongside a timestamp in its own
database, and it has a basic Web UI you can use to navigate the metrics. The Prometheus UI
shows all the information from Docker's /metrics endpoint, and you can filter the metrics and
display them in tables or graphs.

TRY IT NOW Browse to http://localhost:9090 and you'll see the Prometheus web interface.

You can check that Prometheus can access the metrics by browsing to the Status…Targets menu. Your

DOCKER_HOST state should be green, which means Prometheus has found it.

Then switch to the Graph menu and you'll see a dropdown list showing all the available metrics which

Prometheus has collected from Docker. One of those is

engine_daemon_container_actions_seconds_sum - which is a record of how long different container

actions have taken.

Select that metric and click Execute and your output will be similar to mine in figure 9.4, showing the time

taken to create, delete and start containers:

158

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 9.4 Prometheus has a simple Web UI which you can use to find metrics and run queries

The Prometheus UI is a simple way to see what's being collected and run some queries. Look
around the metrics and you'll see that Docker records a lot of information points. Some are
high-level readouts like the number of containers in each state and the number of health
checks that have failed; others give low-level details like the amount of memory the Docker
Engine has allocated; some are static pieces of information, like the number of CPUs Docker
has available. These are infrastructure-level metrics, which could all be useful things to
include in your status dashboard.

159

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Your applications will expose their own metrics which will also record detail at different
levels. The goal is to have a metrics endpoint in each of your containers and have Prometheus
collect metrics from them all on a regular schedule. Prometheus will store enough information
for you to build a dashboard that shows the overall health of the whole system.

9.2 Exposing metrics from your application
We've looked at the metrics the Docker Engine exposes, because that's an easy way to get
started with Prometheus. Exposing a useful set of metrics from each of your application
containers takes more effort, because you need code to capture the metrics and provide the
HTTP endpoint for Prometheus to call. It's not as much work as it sounds because there are
Prometheus client libraries for all the main programming languages which do that for you.

In the code for this chapter I've revisited the NASA image gallery app and added
Prometheus metrics to each of my components. I'm using the official Prometheus clients for
Java and Go, and the community client library for Node.js. Figure 9.5 shows how each
application container is now packaged with a Prometheus client which collects and exposes
metrics:

Figure 9.5 Prometheus client libraries in your apps make the metrics endpoint available in the container

The information points collected from a Prometheus client library are runtime-level metrics.
They provide key information into what your container is doing and how hard it is working, in
terms which are relevant to the application runtime. The metrics for a Go application include
the number of active Goroutines, and the metrics for a Java application include the memory

160

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

used in the JVM. Each runtime has its own important metrics, and the client libraries do a
great job of collecting and exporting those.

TRY IT NOW There's a Docker Compose file in the exercises for this chapter which spins up a new version of

the image gallery app, with metrics in each container. Use the app and then browse to one of the metrics

endpoints:

cd ./ch09/exercises

docker-compose up -d

browse to http://localhost:8010 to use the app

then browse to http://localhost:8010/metrics

My output is in figure 9.6. These are the metrics from the Go front end web application -
there's no custom code to produce this data, I get all this data for free just by adding the Go
client library into my application and setting it up:

Figure 9.6 Prometheus metrics about the Go runtime from the image gallery web container

You'll see similar metrics for the Java REST API if you browse to
http://localhost:8011/actuator/Prometheus. The metrics endpoints are just a sea of text, but

161

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

all the key data points are in there to build a dashboard which will show if the containers are
running "hot" - if they're using a lot of compute resources like CPU time, memory or processor
threads.

Those runtime metrics are the next level of detail you want after the infrastructure metrics
from Docker - but those two levels don't tell you the whole story. The final data points are
application metrics which you explicitly capture to record key information about your
application. Those metrics could be operations-focused, showing the number of events a
component has processed or the average duration to process a response. Or they could be
business-focused, showing the current number of active users or the number of people signing
up to a new service.

Prometheus client libraries let you record these kind of metrics too, but you need to
explicitly write the code to capture the information in your app. It's not difficult to do. Code
Listing 9.1 shows an example using the Node.js library, which is in the code for the access-
log component in the image gallery app. I don't want to throw a whole bunch of code at you,
but as you progress further with containers you're certain to spend more time with
Prometheus and this snippet from the server.js file illustrates a couple of key things:

Code listing 9.1 Declaring and using custom Prometheus metric values in Node.js

//declare custom metrics:
const accessCounter = new prom.Counter({
 name: "access_log_total",
 help: "Access Log - total log requests"
});

const clientIpGauge = new prom.Gauge({
 name: "access_client_ip_current",
 help: "Access Log - current unique IP addresses"
});

//and later, update the metrics values:
accessCounter.inc();
clientIpGauge.set(countOfIpAddresses);

In the source code for the chapter you'll see how I've added metrics in the image-gallery
web application written in Go, and the image-of-the-day REST API written in Java. Each
Prometheus client library works in a different way. In the main.go source file I initialize
counters and gauges in a similar way to the Node.js app, but then use instrumented handlers
from the client library rather than setting metrics explicitly. The Java application is different
again - in ImageController.java I use the @Timed attribute and increment a
registry.counter object in the source. Each client library works in the most logical way for
the language.

There are different types of metric in Prometheus - I use the simplest ones in these
applications: counters and gauges. They're both numeric values. Counters hold a value which
increases or stays the same, and gauges hold values which can increase or decrease. It's

162

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

down to your or your application developers to choose the metric type and to set its value at
the correct time, the rest is taken care of by Prometheus and the client library.

TRY IT NOW You have the image gallery app running from the last exercise so these metrics are already

being collected. Run some load into the app and then browse to the Node.js app's metrics endpoint:

loop to make 5 HTTP GET request - on Windows:
for ($i=1; $i -le 5; $i++) { iwr -useb http://localhost:8010 | Out-Null }

or on Linux:
for i in {1..5}; do curl http://localhost:8010 > /dev/null; done

now browse to http://localhost:8012/metrics

You can see my output is in figure 9.7 - I ran a few more loops to send in traffic. The first two
records show my custom metrics, recording the number of access requests received and the
total number of IP addresses using the service. These are simple data points (and the IP count
is actually fake), but they serve the purpose of collecting and showing metrics. Prometheus
lets you record more complex types of metric, but just with simple counters and gauges you
can capture detailed instrumentation in your apps:

Figure 9.7 A metrics endpoint which includes custom data as well as Node.js runtime data

163

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

What you capture depends on your application but there are some useful guidelines - you can
return to these at the end of the month when you're ready to add detailed monitoring to your
own apps :)

• when you talk to external systems record how long the call took and whether the
response was successful - you'll quickly be able to see if another system is slowing
yours down or breaking it;

• anything worth logging is potentially worth recording in a metric - it's probably cheaper
on memory, disk and CPU to increment a counter than write a log entry, and it's easier
to visualize how often things are happening;

• any details about application or user behaviors that business teams want to report on
should be recorded as metrics - that way you can build real-time dashboards instead of
sending historical reports.

9.3 Running a Prometheus container to collect metrics
Prometheus uses a pull model to collect metrics - rather than have other systems send it data,
it fetches data from those systems. It calls this scraping and when you deploy Prometheus you
configure the endpoints you want to scrape. In a production container platform you can
configure Prometheus so it automatically finds all the containers across the cluster. In Docker
Compose on a single server you use a simple list of service names, so Prometheus finds the
containers through Docker's DNS.

Code listing 9.2 shows the configuration I've used for Prometheus to scrape two of the
components in my image gallery application. There's a global setting which uses a default 10
second interval between scrapes, and then a job for each component. The job has a name and
then it captures the URL path to the metrics endpoint, and a list of targets which Prometheus
will query. I use two types here - static_configs specifies a target hostname, which is fine
for a single container. I also us dns_sd_configs which means Prometheus will use DNS
service discovery, so that will find multiple containers for a service and that supports running
at scale:

Code listing 9.2 Prometheus configuration to scrape application metrics

global:
 scrape_interval: 10s

scrape_configs:
 - job_name: "image-gallery"
 metrics_path: /metrics
 static_configs:
 - targets: ["image-gallery"]

 - job_name: "iotd-api"
 metrics_path: /actuator/prometheus
 static_configs:
 - targets: ["iotd"]

164

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

 - job_name: "access-log"
 metrics_path: /metrics
 dns_sd_configs:
 - names:
 - accesslog
 type: A
 port: 80

This configuration sets Prometheus to poll all the containers every 10 seconds. It will use DNS
to get the container IP addresses, but for the image-gallery it only expects to find a single
container, so you'll get unexpected behavior if you scale that component. Prometheus will just
use the first IP address in the list, so you'll get metrics from different containers when Docker
load-balances the request to the metrics endpoint. The accesslog component is configured to
support multiple IP addresses, so Prometheus will build a list of all the container IP addresses
and poll them all on the same schedule. Figure 9.8 shows how the scraping process runs:

Figure 9.8 Prometheus running in a container, configured to scrape metrics from app containers

165

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

I've built a custom Prometheus Docker image for the image gallery application. It's based on
the official image which the Prometheus team publish on Docker Hub, and it copies in my own
configuration file (you can find the Dockerfile in the source code for this chapter). This
approach gives me a pre-configured Prometheus image that I can run without any extra
configuration, but I can always override the config file in other environments if I need to.

Metrics are more interesting when there are lots of containers running. We can scale up
the Node.js component of the image gallery app to run on multiple containers, and
Prometheus will scrape and collect metrics from all the containers.

TRY IT NOW There's another Docker Compose file in the chapter's exercises folder which publishes a

random port for the access-log service, so that service can be run at scale. Run it with three instances and

send some more load into the website:

docker-compose up -f docker-compose-scale.yml -d --scale accesslog=3

loop to make 10 HTTP GET request - on Windows:
for ($i=1; $i -le 10; $i++) { iwr -useb http://localhost:8010 | Out-Null }

or on Linux:
for i in {1..10}; do curl http://localhost:8010 > /dev/null; done

The website makes a call to the access-log service every time it processes a request - there
are three containers running that service, so the calls should be load-balanced across them all.
How can we check that the load balancing is working effectively? The metrics from that
component include a label which captures the hostname of the machine sending the metrics -
in this case that's the Docker container ID. Open the Prometheus UI and check the access-
log metrics and you should see three sets of data.

TRY IT NOW Browse to http://localhost:9090/graph. In the metrics dropdown select access_log_total

and click Execute.

You'll see something similar to my output in figure 9.8 - there's one metric value for each of
the containers, and the labels contain the hostname. The actual values for each container will
show you how evenly spread the load-balancing is; in an ideal scenario the figures would be
equal - but there are a lot of network factors in play (like DNS caching and HTTP keep-alive
connections) which mean you probably won’t see that if you're running on a single machine:

166

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion
http://localhost:9090/graph

Figure 9.9 Processing metrics can be used to verify that requests are being load balanced

Recording extra information with labels is one of the most powerful features of Prometheus. It
lets you work with a single metric at different levels of granularity. Right now you're seeing
the raw data for the metrics, with one line in the table for each container showing the most

167

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

recent metric value. You can aggregate across all the containers using a sum() query, ignoring
the individual labels and showing a combined total - and you can display that in a graph to see
the increasing usage over time.

TRY IT NOW In the Prometheus UI click the Add Graph button to add a new query, and in the expression

text box paste this query:

sum(access_log_total) without(hostname, instance)

Click Execute and you'll see a line graph with a time series.

I sent in some more HTTP requests to my local app before I added the new graph - you can
see my output in figure 9.10:

Figure 9.10 Aggregating a metric to sum values from all containers and showing a graph of results

168

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The sum() query is written in Prometheus' own query language called PromQL. It's a powerful
language with statistical functions that let you query changes over time and rate of change,
and you can add subqueries to correlate different metrics. But you don't need to go into any of
that complexity to build useful dashboards. The Prometheus format is so well structured that
you can visualize key metrics just with simple queries. You can use labels to filter values, and
sum the results to aggregate, and just those features will give you a useful dashboard.

Figure 9.11 shows a typical query that will feed into a dashboard. This aggregates the
value for all the image_gallery_request metrics, filtering where the response code is 200,
and summing without the instance label so we will add metrics from all the containers. The
result will be the total number of OK responses sent by all the containers running the image
gallery web application:

Figure 9.11 A simple Prometheus query. You don’t need to learn much more PromQL than this.

The Prometheus UI is fine for checking on your configuration, validating that all the scrape
targets are reachable and working out queries. But it is not meant to be a dashboard - that's
where Grafana comes in.

9.4 Running a Grafana container to visualize metrics
We're covering a lot of ground in this chapter because monitoring is a core topic for
containers, but we're going fast because the finer details are all very application dependent.
What metrics you need to capture will depend on your business and operational needs, and
how you capture them will depend on the application runtime you're using and the mechanics
of the Prometheus client library for that runtime.

Once you have your data in Prometheus, things get simpler and it becomes a pretty
standard approach for all apps. You'll use the Prometheus UI to navigate the metrics you're
recording, and work on queries to get the data that you want to see. Then you'll run Grafana
and plug those queries into a dashboard. Each data point shows up as a user-friendly
visualization and the dashboard as a whole shows you what's happening with your app.

We've been working towards the Grafana dashboard for the image gallery app all through
this chapter and figure 9.12 shows you the final outcome. It's a very neat way to show core

169

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

information from all the application components and the Docker runtime. These queries are
also built to support scale, so the same dashboard can be used in a production cluster:

Figure 9.12 The Grafana dashboard for the application. Looks fancy but is actually pretty simple to build.

The Grafana dashboard conveys key information across many different levels of the
application. It looks complicated but each visualization is powered by a single PromQL query,
and none of the queries do anything more complex than filtering and aggregating. The
shrunken view in figure 9.12 doesn’t give you the full picture but I've packaged the dashboard
into a custom Grafana image so you can run it yourself in a container and explore.

TRY IT NOW You'll need to capture your computer's IP address again, this time as an environment variable

which the Compose file looks for and injects into the Prometheus container. Then run the app with Docker

Compose and generate some load:

load your machine's IP address into an environment variable - on Windows:
$env:HOST_IP = $(Get-NetIPConfiguration | Where-Object {$_.IPv4DefaultGateway -ne

170

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

$null }).IPv4Address.IPAddress

on Linux:
export HOST_IP=$(ip route get 1 | awk '{print $NF;exit}')

run the app with a Compose file which includes Grafana:
docker-compose -f ./docker-compose-with-grafana.yml up -d --scale accesslog=3

now send in some load to prime the metrics - on Windows:
for ($i=1; $i -le 20; $i++) { iwr -useb http://localhost:8010 | Out-Null }

or on Linux:
for i in {1..20}; do curl http://localhost:8010 > /dev/null; done

and browse to http://localhost:3000

Grafana uses port 3000 for the web UI. When you first browse you'll need to sign in - the
credentials are username admin, password admin. You'll be asked to change the admin
password on the first login, but I won't judge you if you click Skip instead. When the UI loads
you'll be in your "home" dashboard - click on the Home link in the top-left and you'll see the
dashboard list I have in figure 9.13 - click Image Gallery to load the application dashboard:

Figure 9.13 Navigating dashboards in Grafana - all the available dash

My application dashboard is a reasonable setup for a production system. There are some key
data points you need to make sure you're monitoring the right things - Google discuss this in
the Site Reliability Engineering book. Their focus is on latency, traffic, errors and saturation,

171

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

which they call the "Golden Signals". I'll go through the first set of my visualizations in detail
so you can see that a smart dashboard can be built from basic queries and the right choice of
visualization. Figure 9.14 shows the row of metrics for the Image Gallery web UI - I've
chopped the row up to make it easier to see, but these appear on the same line in the
dashboard:

Figure 9.14 A closer look at the application dashboard and how visualizations relate to the Golden Signals

172

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

There are four metrics here which show how heavily the system is being used, and how hard
the system is working to support that level of use:

• HTTP 200 Responses is a simple count of how many "OK" responses the website has
sent over time. The PromQL query is a sum over the counter metric from the
application: sum(image_gallery_requests_total{code="200"}) without(instance).
I could add a similar graph with a query filtering on code="500" to show the number of
errors;

• In-Flight Requests shows the number of active requests at any given point. It's a
Prometheus gauge so it can go up or down. There's no filter for this and the graph will
show the total across all containers, so the query is another sum:
sum(image_gallery_in_flight_requests) without(instance);

• Memory In Use shows how much system memory the image gallery containers are
using. It's a bar chart which is easier on the eye for this type of data, and it will show a
bar for each container when I scale up the web component. The PromQL query filters
on the job name: go_memstats_stack_inuse_bytes{job="image-gallery"}. I need
the filter because this is a standard Go metric, and the Docker Engine job returns a
metric with the same name.

• Active Goroutines is a rough indicator of how hard the component is working - a
Goroutine is a unit of work in Go, and many can run concurrently. This graph will show
if the web component suddenly has a spike of processing activity. It’s another standard
Go metric, so the PromQL query filters stats form the web job, and sums them:
sum(go_goroutines{job=\"image-gallery\"}) without(instance)

The visualizations in the other rows of the dashboards all use similar queries. There's no need
for complex PromQL - choosing the right metrics to show and right visualization to display
them is all you really need.

In these visualizations the actual values are less useful than the trends. It doesn't really
matter if my web app uses 200Mb of memory on average or 800Mb - what matters is when
there's a sudden spike which deviates from the norm. The set of metrics for a component
should help you quickly see anomalies and find correlations. If the graph of error responses is
on an upward trend and the number of active Goroutines is doubling every few seconds, it's
clear there's something going wrong - the component could be saturated so you need to scale
up with more containers to handle the load.

Grafana is an extremely powerful tool, but it's straightforward to use. It's the most popular
dashboard system for modern applications so it's worth learning - it can query lots of different
data sources, and it can send alerts out to different systems too. Building dashboards is the
same as editing existing dashboards - you can add or edit visualizations (called Panels), resize
and move them around and then save your dashboard to a file.

TRY IT NOW The Google SRE approach says that an HTTP error count is a core metric and that’s missing

from the dashboard, so we'll add it now to the image gallery row. Run the whole image gallery app again if you

173

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

don’t have it running, browse to Grafana at http://locahost:3000 and log in with username admin and

password admin.

Open the Image Gallery dashboard and click the Add Panel icon from the top-right of the screen - it's the bar

chart with a plus sign shown in figure 9.15:

Figure 9.15 The Grafana toolbar for adding panels, choosing the time period and saving the dashboard

Now click Add Query in the new panel window, and you'll see a screen where you can capture all the details of

the visualization. Select Prometheus as the data source for the query and in the metrics field paste this

PromQL expression:

sum(image_gallery_requests_total{code="500"}) without(instance)

Your panel should look like mine in figure 9.16. The image gallery application returns an error
response around 10% of the time, so if you make enough requests you'll see some errors in
your graph:

174

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 9.16 Adding a new panel to the Grafana dashboard to show HTTP errors

Hit the Escape key to go back to the main dashboard. You can resize panels by dragging the
bottom-right corner, and move them by dragging the title. When you have the dashboard
looking how you want you can click the Share Dashboard icon from the tool panel (see figure
9.15 again), where you have the option to export the dashboard as a JSON file.

175

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The final step with Grafana is packaging your own Docker image which is already
configured with Prometheus as a data source and with the application dashboard. I've done
that in this chapter for the diamol/ch09-grafana image. Code listing 9.3 shows the full
Dockerfile:

Code listing 9.3 The Dockerfile to package a custom Grafana image

FROM diamol/grafana:6.4.3

COPY datasource-prometheus.yaml ${GF_PATHS_PROVISIONING}/datasources/
COPY dashboard-provider.yaml ${GF_PATHS_PROVISIONING}/dashboards/
COPY dashboard.json /var/lib/grafana/dashboards/

The image starts from a specific version of Grafana, and then just copies in a set of YAML and
JSON files. Grafana follows the configuration pattern I've promoted already in this book -
there's some default configuration built in, but you can apply your own. When the container
starts Grafana looks for files in specific folders, and it applies any configuration files it finds.
The YAML files set up the Prometheus connection and load any dashboards which are in the
/var/lib/Grafana/dashboards folder. The final line copies my dashboard JSON into that
folder so it gets loaded when the container starts.

You can do much more with Grafana provisioning and you can also use the API to create
users and set their preferences. It's not much more work to build a Grafana image with
multiple dashboards and a read-only user with all those dashboards in a playlist. Then you can
browse to Grafana on a big screen in your office and have it automatically cycle through all
your dashboards.

9.5 Understanding the levels of observability
Observability is a key requirement when you move from simple proof-of-concept containers to
getting ready for production. But there's another very good reason I introduced Prometheus
and Grafana in this chapter: learning Docker is not just about the mechanics of Dockerfiles
and Docker Compose files. Part of the magic of Docker is the huge ecosystem that's grown
around containers, and the patterns which have emerged around that ecosystem.

Monitoring was a real headache when containers were first getting popular. My production
releases back then were as easy to build and deploy as they are today, but I had no insight
into the apps when they were running. I had to rely on external services like Pingdom to check
my APIs were still up, and user reporting to make sure the app was working correctly. Today
the approach to monitoring containers is a tried-and-trusted path. We’ve followed that path in
this chapter, and figure 9.17 summarizes the approach:

176

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 9.17 The architecture of monitoring in a containerized application - Prometheus is at the center

I've walked through a single dashboard for the image gallery application, which is an overall
view of the app. In a production environment you'd have additional dashboards which dig into
extra levels of detail. There would be an infrastructure dashboard showing free disk space,

177

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

available CPU and memory and network saturation for all the servers. Each component might
have its own dashboard showing additional information, like a breakdown of response times
for serving each page of a web app or each API endpoint.

The summary dashboard is the critical one. You should be able to pull together all the most
important data points from your application metrics into a single screen, so you can tell at a
glance if something is wrong and take evasive action before it gets worse.

9.6 Lab
This chapter added monitoring to the image gallery app, and the lab asks you to do the same
to the to-do list app. You don't need to dive into source code - I've already built a new version
of the application image which contains Prometheus metrics. Run a container from
diamol/ch09-todo-list, browse to the app and add some items and you'll see the metrics
available in the /metrics URL. For the lab we want to get that app to the same position we
have for the image gallery:

• A Docker Compose file which you can use to run the app, which also starts a
Prometheus container and a Grafana container

• The Prometheus container should be already configured to scrape metrics from the to-
do list app

• The Grafana container should be configured with a dashboard to show three key
metrics from the app: number of tasks created, total number of HTTP requests
processed, and number of HTTP requests currently being processed.

This sounds like a ton of work, but really it's not - the exercises in this chapter cover all the
details. It's a good lab to work through because it will give you experience working with
metrics for a new application.

As always you'll find my solution on GitHub - together with a graphic of my final
dashboard:

https://github.com/sixeyed/diamol/blob/master/ch09/lab/README.md

178

https://github.com/sixeyed/diamol/blob/master/ch09/lab/README.md
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

10
Running multiple environments

with Docker Compose

We looked at Docker Compose in Chapter 7 and got a good understanding of how to use YAML
to describe a multi-container application, and manage it with the Compose command line.
Since then we've enhanced our Docker applications to get them ready for production with
health checks and monitoring. Now it's time to return to Compose - because we don't need all
those production features in every environment. Portability is one of Docker's major benefits.
When you package your application to run in containers it works the same way wherever you
deploy it, and that's important because it eliminates drift between environments.

Drift is what always happens when there are manual processes to deploy software. Some
updates get missed or some new dependencies get forgotten - so the production environment
is different from the user test environment, which is different again from the system test
environment. When deployments fail it's often because of drift, and it takes a huge amount of
time and effort to track down the missing pieces and put them right. Moving to Docker fixes
that problem because every application is already packaged with its dependencies, but you still
need the flexibility to support different behavior for different environments. Docker Compose
provides that with the more advanced features we'll cover in this chapter.

10.1 Deploying many applications with Docker Compose
Docker Compose is a tool for running multi-container applications on a single Docker engine.
It's great for developers and it's also heavily used for non-production environments.
Organizations often run multiple versions of an app in different environments - maybe version
1.5 is running in production, version 1.5.1 is being tested in a hotfix environment, version 1.6
is finishing up user testing and version 1.7 is in system test. Those non-production

179

environments don't need the scale and performance of production, so it's a great use-case for
Docker Compose to run those environments and get maximum utilization from your hardware.

For that to work there need to be some differences between environments. You can't have
several containers trying to listen for traffic on port 80, or writing data to the same files on the
server. You can design your Docker Compose files to support that, but first you need to
understand how Compose identifies which Docker resources are part of the same application. It
does that with naming conventions and labels, and if you want to run several copies of the
same application you need to work around the defaults.

TRY IT NOW Open a terminal and browse to the exercises for this chapter. Run two of the apps we've

already worked with, and then try running another instance of the to-do list application:

cd ./ch10/exercises

run the random number app from chapter 8:
docker‐compose ‐f ./numbers/docker‐compose.yml up ‐d

run the to‐do list app from chapter 6:
docker‐compose ‐f ./todo‐list/docker‐compose.yml up ‐d

and try another copy of the to‐do list:
docker‐compose ‐f ./todo‐list/docker‐compose.yml up ‐d

Your output will be the same as mine in figure 10.1. You can start multiple applications from
Compose files in different folders, but you can't start a second instance of an application by
running up from the same folder. Docker Compose thinks you're asking it to run an application
which is already running, so it doesn't start any new containers:

180

Figure 10.1 Repeating a Docker Compose command to start an app doesn't run a second copy of the app

Docker Compose uses the concept of a project to identify that a set of resources are part of
the same application, and it uses the name of the directory which contains the Compose file as
the default project name. Compose prefixes the project name when it creates resources, and
for containers it also adds a numeric counter as a suffix. So if your Compose file is in a folder
called app1 and it defines one service called web and one volume called disk, Compose will
actually deploy it by creating a volume called app1_disk and a container called app1_web_1.
The counter at the end of the container name supports scale, so if you scale up that to two
instance of the web service the new container will be called app1_web_2.

Figure 10.2 shows how the container name is built for the to-do list application:

181

Figure 10.2 Docker Compose builds names for the resources it manages which include the project name

You can override the default project name Compose uses - and that's how you can run
many copies of the same application, in different sets of containers on a single Docker Engine.

TRY IT NOW You already have one instance of the to-do app running, you can start another by specifying a

different project name. The website uses random ports, so you'll need to find the assigned port if you want to

actually try the apps:

docker‐compose ‐f ./todo‐list/docker‐compose.yml ‐p todo‐test up ‐d
docker container ls
docker container port todo‐test_todo‐web_1 80

My output is in figure 10.3. Specifying a project name means this is a different application
as far as Compose is concerned, and there are no resources which match this project name so
Compose creates a new container. The naming pattern is predictable, so I know the new
container will be called todo-test_todo-web_1. The Docker CLI has the container port
command to find the published port for a container, and I can use that with the generated
container name to find the application port:

182

Figure 10.3 Specifying a project name lets you run multiple copies of the same app with one Compose file

This approach lets you run many copies of many different applications. I could deploy
another instance of my random number application too, using the same Compose file but
specifying a different project name. That's useful but for most situations you'll want a bit more
control - having to find out which random port to use for each release isn't a great workflow for
operations or test teams. To support different setups in different environments you could
create duplicate Compose files and edit the properties that need to change, but Compose has a
better way of managing that with overrides.

10.2 Using Docker Compose override files
Teams hit the problem of trying to run different app configurations with Docker Compose and
often end up with many Compose files - one for each environment. That works but its not
maintainable, because those Compose files are often 90% duplicated content, which means
they'll get out of sync and you're back to a drift situation. Override files are a much neater
approach. Docker Compose lets you merge multiple files together, with properties from later
files overriding those from earlier in the merge.

183

Figure 10.4 shows how you can use overrides to structure an easily maintainable set of
Compose files. You start with a core docker-compose.yml file which contains the basic
structure of the app, with the services defined and configured with properties that are common
for all environments. Then each environment has its own override file which adds specific
settings - but it doesn't duplicate any of the configuration from the core file:

Figure 10.4 Removing duplication with override files which add environment-specific settings

This approach is maintainable. If you need to make a change which applies to all
environments - like changing an image tag to use the latest version - you do that once in the
core file and it filters through to every environment. If you just need to change one
environment you only change that single file. And the override files you have for each
environment also serve as clear documentation of the difference between environments.

Code Listing 10.1 shows a very simple example where the core compose file specifies most
of the application properties, and the override changes the image tag so this deployment will
use v2 of the to-do app:

Code listing 10.1 A Docker Compose override file which updates a single property

from docker‐compose.yml ‐ the core app specification:
services:
 todo‐web:
 image: diamol/ch06‐todo‐list
 ports:
 ‐ 80
 environment:
 ‐ Database:Provider=Sqlite

184

 networks:
 ‐ app‐net

and from docker‐compose‐v2.yml ‐ the version override file:
services:
 todo‐web:
 image: diamol/ch06‐todo‐list:v2

In the override file you just specify the properties you care about, but you need to preserve
the structure of the main Compose file, so that Docker Compose can link the definitions
together. The override file in this example only changes the value of the image property, but
that needs to be specified in the todo-web block under the services block, so Compose can
match that to the full service definition in the core file. Docker Compose merges files together
when you specify multiple file paths in docker-compose commands. The config command is
very useful here - it validates the contents of the input file(s), and if the input is valid then it
writes out the final output. You can use that to see what will happen when you apply an
override file.

TRY IT NOW In the exercises folder for this chapter, use Docker Compose to merge together the files from

code listing 10.1 and print the output:

docker‐compose ‐f .\todo‐list\docker‐compose.yml ‐f .\todo‐list\docker‐compose‐v2.yml config

The config command doesn't actually deploy the app, it just validates the configuration.
You'll see in the output that the two files have been merged. All the properties come from the
core Docker Compose file, except the image tag where the value has been overridden from the
second file - you see that in figure 10.5:

185

Figure 10.5 Merging a Compose file with an override file and displaying the output

Docker Compose applies overrides in the order that the files are listed in the command, with
files to the right overriding files to the left. That's important, because if you get the order
wrong then you'll get unexpected results - the config command is useful here because it
shows you a dry-run of the complete Compose file. The output sorts everything by alphabetical
order, so you'll see networks, then services, then the Compose version number - which is
unsettling at first, but useful. You could automate that command as part of your deployment
process and commit the merged files to source control - and then the alphabetical order makes
it easy to compare releases.

Using overrides for an image tag is just a quick example. There's a more realistic set of
compose files for the random number application in the numbers folder:

 docker-compose.yml - the core application definition, it specifies the web and API
services without any ports or network definitions;

 docker-compose-dev.yml - for running the app in development. It specifies a Docker
network and for the services it adds the ports to publish and disables the health and

186

dependency checks. This is so developers can be up and running quickly;
 docker-compose-test.yml - for running in a test environment. Specifies a network,

adds health check parameters and publishes a port for the web app, but keeps the API
service internal by not publishing any ports;

 docker-compose-uat.yml - for the User Acceptance Test environment. Specifies a
network, publishes standard port 80 for the website, sets the services to always restart
and specifies more stringent health check parameters.

Code listing 10.2 shows the contents of the dev override file - it's very clear that it isn't a
full app specification because there are no images specified. The values in here will be merged
into the core Compose file - adding new properties or overriding existing properties if there are
matching keys in the core file:

Code listing 10.2

services:
 numbers‐api:
 ports:
 ‐ "8087:80"
 healthcheck:
 disable: true

 numbers‐web:
 entrypoint:
 ‐ dotnet
 ‐ Numbers.Web.dll
 ports:
 ‐ "8088:80"

networks:
 app‐net:
 name: numbers‐dev

The other override files follow the same pattern. Each environment uses different ports for
the web application and the API so you can run them all on a single machine.

TRY IT NOW Start by clearing down all your existing containers, and then run the random number app in

multiple environments - each environment needs a project name and the correct set of Compose files:

clear down any existing containers
docker container rm ‐f $(docker container ls ‐aq)

run the app in dev configuration:
docker‐compose ‐f .\numbers\docker‐compose.yml ‐f .\numbers\docker‐compose‐dev.yml ‐p

numbers‐dev up ‐d

and the test setup:
docker‐compose ‐f .\numbers\docker‐compose.yml ‐f .\numbers\docker‐compose‐test.yml ‐p

numbers‐test up ‐d

and UAT:
docker‐compose ‐f .\numbers\docker‐compose.yml ‐f .\numbers\docker‐compose‐uat.yml ‐p

187

numbers‐uat up ‐d

Now you have three copies of the application running, which are all isolated from each other
because each deployment is using its own Docker network. In an organization these would be
running on one server and teams would use the environment they want by browsing to the
correct port - for example you could use port 80 for UAT, port 8080 for system test and port
8088 for the development team's integration environment. Figure 10.6 shows my output with
networks and containers being created:

188

Figure 10.6 Running multiple isolated application environments in containers on a single machine

Now you have three deployments which function as separate environments -
http://localhost is UAT, http://localhost:8080 is system test and http://localhost:8088 is the
dev environment. Browse to any of those and you'll see the same application, but each web
container can only see the API container in its own network. This keeps the apps separate, so if
you keep fetching random numbers in the dev environment the API will break, but the system
test and UAT environments are still working. The containers in each environment use DNS

189

names to communicate, but Docker restricts traffic within the container network. Figure 10.7
shows how network isolation keeps all your environments separate:

Figure 10.7 Running multiple environments on one Docker Engine, using networks for isolation

It's time to remind you that Docker Compose is a client-side tool, and you need access to all
your Compose files to manage your apps - and you also need to remember the project names
you used. If you want to clear down the test environment, removing containers and the
network you would normally just run docker-compose down, but that won't work for these
environments because Compose needs all the same file and project information you used in the
up command to match the resources.

TRY IT NOW Let's remove that test environment. You can try different variations of the down command, but

the only one which will work is the one which has the same file list and project name as the original up

command:

this would work if we'd used the default docker‐compose.yml file:
docker‐compose down

this would work if we'd used override files without a project name:
docker‐compose ‐f .\numbers\docker‐compose.yml ‐f .\numbers\docker‐compose‐test.yml down

190

but we specified a project name so we need to include that too:
docker‐compose ‐f .\numbers\docker‐compose.yml ‐f .\numbers\docker‐compose‐test.yml ‐p

numbers‐test down

You can see my output in figure 10.8. You might have guessed that Compose can't identify
the running resources for the application unless you provide the matching file and project
name, so in the first command it doesn't remove anything. But in the second command
Compose does try to delete the container network, even though there are application
containers connected to that network:

191

Figure 10.8 You need to use the same files and project name to manage an application with Compose

That happened because the networks were explicitly named in the Compose override files. I
didn't specify a project name in the second down command, so it used the default which is the
folder name numbers. Compose looked for containers called numbers_numbers-web_1 and
numbers_numbers-api_1, but didn’t find them because they were actually created with the

192

project prefix numbers-test. So Compose thought those containers were already gone and it
only needed to clean up the network, which it did find because the explicit network name in the
Compose file is used without a project prefix. Compose tried to remove that network, but
fortunately Docker won't let you remove networks which still have containers attached.

This is a long way of showing you that you need to take care with Docker Compose. It's an
excellent tool for non-production environments, where it gets you maximum value from your
computer resources by deploying tens or hundreds of applications on single machines. Override
files let you re-use application definitions and identify the difference between environments,
but you need to be aware of the management overhead - and you should look at scripting and
automation for your deployments and teardowns.

10.3 Injecting configuration with environment variables and secrets
You can isolate applications using Docker networks and capture the differences between
environments with Compose overrides, but you'll also need to change the application
configuration between environments. Most applications can read configuration settings from
environment variables or files, and Compose has good support for both those approaches. I'm
going to cover all the options in this section, so we'll dig a bit deeper into Compose than we
have so far - but it will help you understand the choices you have for applying configuration
settings, and you'll be able to select what works for you.

It's back to the to-do app for these exercises. The Docker image for the app is built to read
environment variables and files for configuration settings, and there are three items which
need to vary between environments:

 logging - how detailed the logging level should be. This would start off being very
verbose in the dev environment, becoming less so in test and production;

 database provider - whether to use a simple data file inside the application container, or
a separate database (which may or may not be running in a container);

 database connection string - the details to connect to the database, if the app isn't using
a local data file.

I'm using override files to inject configuration for different environments, and I'm using
different approaches for each item, so I can show you the options Docker Compose has. Code
listing 10.3 shows the core Compose file; this just has the basic information for the web
application with a configuration file set up as a secret:

Code listing 10.3 The Compose file specifies the web service with a secret

services:
 todo‐web:
 image: diamol/ch06‐todo‐list
 secrets:
 ‐ source: todo‐db‐connection
 target: /app/config/secrets.json

193

Secrets are a useful way of injecting configuration - they have support in Docker Compose,
Docker Swarm and Kubernetes. In the Compose file you specify the source and target for the
secret. The source is the place where the secret gets loaded from the container runtime, and
the target is the file path where the secret gets surfaced inside the container.

This secret is specified as coming from the source todo-db-connection, which means
there needs to be a secret with that name defined in the Compose file. The contents of the
secret will be loaded into the container at the target path /app/config/secrets.json -
which is one of the locations the application searches for configuration settings.

This Compose file on its own isn't valid because there is no secrets section, and the todo-
db-connection secret is required because it's used in the service definition. Code listing 10.4
shows the override file for development which sets up some more configuration for the service
and specifies the secret:

Code listing 10.4 The development override adds config settings and the secret setup

services:
 todo‐web:
 ports:
 ‐ 8089:80
 environment:
 ‐ Database:Provider=Sqlite
 env_file:
 ‐ ./config/logging.debug.env

secrets:
 todo‐db‐connection:
 file: ./config/empty.json

There are three properties in this override file which inject application configuration and
change the behavior of the app in the container, you can use any combination of them but each
approach has benefits:

 environment adds an environment variable inside the container; this setting
configures the app to use the SQLite database, which is a simple data file. This is the
easiest way to set configuration values, and it's clear from the Compose file what's
being configured;

 env_file contains the path to a text file, and the contents of the text file will be
loaded into the container as environment variables. Each line in the text file is read as
an environment variable, with the name and value separated by the equals sign. The
contents of this file set the logging configuration. Using an environment variable file is a
simple way to share settings between multiple components, because each component
references the file rather than duplicates a list of environment variables;

 secrets is a top-level resource in the Compose YAML file, like services and
networks. It contains the actual source of the todo-db-connection which is a file
on the local file system. In this case there's no separate database for the app to connect
to, so it uses an empty JSON file for the secret - so the app will read the file, but there
are no configuration settings to apply.

194

TRY IT NOW You can run the app in development configuration using the Compose file and the override in

the todo‐list‐configured directory. Send a request into the web app with cUrl and check the container is

logging lots of detail:

docker container rm ‐f $(docker container ls ‐aq)

docker‐compose ‐f .\todo‐list‐configured\docker‐compose.yml ‐f .\todo‐list‐configured\docker‐
compose‐dev.yml ‐p todo‐dev up ‐d

curl http://localhost:8089/list
docker container logs ‐‐tail 4 todo‐dev_todo‐web_1

You can see my output in figure 10.9. Docker Compose always uses a network for each
application, so it creates a default network and connects containers to it - even if there's no
network specified in the Compose files. In my case the latest log lines show the SQL database
command the app uses - yours might show something different, but if you check through the
whole logs then you should see the SQL statements in there. That shows the enhanced logging
configuration is in place:

195

Figure 10.9 Changing application behavior by applying configuration settings in Docker Compose

The developer deployment uses environment variables and secrets for app configuration -
the values specified in the Compose files and the config files get loaded into the container.
There's also a test deployment which uses another approach supported by Compose, using

196

environment variables on the host machine to provide values for the container. This makes the
deployment more portable because you can alter environments without changing the Compose
files themselves - which is useful if you want to spin up a second test environment on a
different server with a different configuration. Code listing 10.5 shows that in the specification
for the todo-web service:

Code listing 10.5

 todo‐web:
 ports:
 ‐ "${TODO_WEB_PORT}:80"
 environment:
 ‐ Database:Provider=Postgres
 env_file:
 ‐ ./config/logging.information.env
 networks:
 ‐ app‐net

The dollar-and-curly-brace setting for the port gets replaced from the environment variable
with that name. So if I have a variable set on the machine where I'm running Docker Compose,
with the name TODO_WEB_PORT and the value 8877, then Compose injects that value and the
port specification actually becomes "8877:80". This service specification is in the file
docker-compose-test.yml which also includes a service for the database, and a secret to
use for the connection to the database container.

You can run the test environment by specifying the Compose files and project name in the
same way as for the development environment, but there's one final configuration feature of
Compose which makes things easier. If Compose finds a file called .env in the current folder
then it will treat it as an environment file and read the contents as a set of environment
variables, populating them before it runs the command.

TRY IT NOW Navigate to the directory for the configured to-do list application, and run it without specifying

any parameters to Docker Compose:

cd ./todo‐list‐configured

docker‐compose up ‐d

Figure 10.10 shows that Compose has created web and database containers, although the
core compose file doesn't specify a database service, and it used the project name todo_ch10
although I didn't specify a name. The .env file sets up the Compose configuration to run the
test environment by default, without you needing to specify the test override file:

197

Figure 10.10 Using an environment file to specify the default for Docker Compose files and project names

That's because the .env file contains a set of environment variables, which can be used in
different ways. The first use is for container configuration settings, like the port for the web
application; the second is for the Compose command itself, listing the files to use and the
project name. Code listing 10.6 shows that .env file in full:

Code listing 10.6 Configuring containers and Compose using an environment file

container configuration ‐ ports to publish:
TODO_WEB_PORT=8877
TODO_DB_PORT=5432

compose configuration ‐ files and project name:
COMPOSE_PATH_SEPARATOR=;
COMPOSE_FILE=docker‐compose.yml;docker‐compose‐test.yml
COMPOSE_PROJECT_NAME=todo_ch10

198

The environment file captures the default Compose settings to run in the app in the test
configuration - you could easily modify it so the development configuration was the default.
Keeping an environment file alongside your compose files helps to document which sets of files
represent which environment, but be aware Docker Compose only looks for a file called .env,
you can't specify a file name so you can't easily switch between environments with multiple
environment files.

Touring the configuration options in Docker Compose has taken us a little while. You'll be
working with a lot of Compose files in your time with Docker so you need to be familiar with all
the options - I'll summarize them all here, but in practice some are more useful than others:

 using the environment property to specify environment variables is the simplest, and
it makes your application configuration easy to read from the Compose file. Those
settings are in plain text though, so you shouldn’t use them for sensitive data like
connection strings or API keys;

 loading configuration files with secret properties is the most flexible, because it's
supported by all the container runtimes and it can be used for sensitive data. The source
of the secret could be a local file when you're using Compose, or it could be an
encrypted secret stored in a Docker Swarm or Kubernetes cluster. Whatever the source,
the contents of the secret get loaded into a file in the container for the application to
read;

 storing settings in a file and loading them into containers with the environment_file
property is useful where you have lots of shared settings between services. Compose
reads the file locally and sets the individual values as environment properties, so you
can use local environment files when you're connected to a remote Docker Engine;

 the Compose environment file .env is useful for capturing the setup for whichever
environment you want to be the default deployment target.

10.4 Reducing duplication with extension fields
At this point you may well be thinking that Docker Compose has enough configuration options
to satisfy any situation. But it's actually quite a simple specification, and there are limitations
you'll come across as you work with it more. One of the most common problems is how to
reduce the bloat of Compose files when you have services which share a lot of the same
settings.

I'll cover one final feature of Docker Compose in this section which fixes that problem -
using extension fields to define blocks of YAML in a single place, which you can reuse
throughout the Compose file. Extension fields are a powerful but underused feature of
Compose. They remove a lot of duplication and potential for errors, and they're straightforward
to use - once you get accustomed to the YAML merge syntax.

In the image-gallery folder for this chapter's exercises there's a docker-compose-
prod.yml file which makes use of extension fields. Code listing 10.7 shows how you define
extension fields, declaring them outside of any top-level blocks (services, networks etc.) and
giving them a name with the ampersand notation:

199

Code listing 10.7 Defining extension fields at the top of a Docker Compose file

x‐labels: &logging
 logging:
 options:
 max‐size: '100m'
 max‐file: '10'

x‐labels: &labels
 app‐name: image‐gallery

The two extension fields are called logging and labels. The logging extension specifies
settings for container logs, and can be used inside a service definition. The labels extension
specifies a key-value pair for a label which can be used inside an existing labels field in a
service definition. You should note the difference between these definitions - the logging field
includes the logging property, which means it can be used directly in the service. The labels
field does not include the labels property, so it needs to be used inside an existing set of labels.
Code listing 10.8 makes that clear, with a service definition that uses both extensions:

Code listing 10.8 Using extensions inside a service definition with YAML merge

services:

 iotd:
 ports:
 ‐ 8080:80
 <<: *logging
 labels:
 <<: *labels
 public: api

Extension fields are used with the YAML merge syntax <<: followed by the field name -
which is prefixed with an asterisk. So <<: *logging will merge in the value of the logging
extension field at that point in the YAML file. When Compose processes this file it will add the
logging section to the service from the logging extension, and it will add an extra label to the
existing labels section, merging in the value from the labels extension field.

TRY IT NOW We don't need to run this app to see how Compose processes the file, just running the config

command will do. That validates all the inputs and prints out the final Compose file, with the extension fields

merged into the service definitions:

browse to the image‐gallery folder under ch10/exercises:
cd ..\image‐gallery

check config for the production override:
docker‐compose ‐f .\docker‐compose.yml ‐f .\docker‐compose‐prod.yml config

My output is in figure 10.11 - I haven't shown the full output, just enough of the service
definitions to show the extension fields being merged in:

200

Figure 10.11 Using the config command to process files with extension fields and check the result

Extension fields are a useful way of ensuring best-practices in your Compose files - using
the same logging settings and container labels is a good example of setting standards for all
services. It's not something you use for every app, but it's good to have in your toolbox for
those times when you're about to copy and paste big chunks of YAML - now you have a better
approach. There is one big limitation though, extension fields don't apply across multiple
Compose files so you can't define an extension in a core Compose file and then use it in an
override. That's a restriction of YAML rather than Compose, but it's something to be aware of.

201

10.5 Understanding the configuration workflow with Docker
It's incredibly valuable to have the entire deployment configuration for a system captured in a
set of artifacts which live in source control. It allows you to deploy any version of your
application just by fetching the source at that version and running the deployment scripts. It
also allows developers to quickly work on fixes by running the production stack locally and
reproducing the bug in their own environment.

There are always variations between environments and Docker Compose lets you capture
the differences between environments while still giving you that set of deployment artifacts
that live in source control. In this chapter we've looked at defining different environments with
Docker Compose and focused three key areas:

 application composition - not every environment will run the whole stack, features like
the monitoring dashboard may not be used by developers, or applications may use
containerized databases in the test environment but plug into a cloud database in
production. Override files let you do this neatly, sharing common services and adding
specific ones in each environment;

 container configuration - properties need to change to match the requirements and
capabilities of the environment. Published ports need to be unique so they don't collide
with other containers, volume paths may use local drives in the test environment but
shared storage in production. Overrides enable this along with isolated Docker networks
for each application, allowing you to run multiple environments on a single server;

 application configuration - the behavior of applications inside containers will change
between environments. This could change the amount of logging the app does, or the
size of the cache it uses to store local data, or whole features could be turned on or off.
You can do this using Compose with any combination of override files, environment files
and secrets.

Figure 10.12 shows that with the to-do list app we ran in section 10.3. The development
and test environments are completely different - in dev the app is configured to use a local
database file, in test Compose also runs a database container and the app is configured to use
that. But each environment uses isolated networks and unique ports, so they can be run on the
same machine, which is perfect if developers need to spin up a local test environment and see
how it compares to their development version:

202

Figure 10.12 Defining very different environments for the same app using Docker Compose

The most important takeaway from this is that the configuration workflow uses the same
Docker image in every environment. The build process will produce a tagged version of your
container images, which have passed all the automated tests. That's a release candidate which
you deploy to the smoke test environment using the configuration in your Compose files. When
it passes smoke test it moves on to the next environment, which uses the same set of images
and applies new configuration from Compose. Ultimately you'll release that version if the tests
all pass, when you'll deploy those same container images to production using your Docker
Swarm or Kubernetes deployment manifests. The software that gets released is exactly the
same software that's passed all the tests, but now it has production behavior supplied from the
container platform.

203

10.6 Lab
In this lab I'd like you to build your own set of environment definitions for the to-do app. You're
going to put together a development environment and a test environment, and make sure they
can both run on the same machine.

The development environment should be the default which you can run with docker-
compose up and the setup should:

 use a local database file
 publish to port 8089
 run v2 of the to-do application

The test environment will need to be run with specific Docker Compose files and a project
name, and its setup should:

 use a separate database container
 use a volume for the database storage
 publish to port 8080
 use the latest to-do application image

There are similarities here to the Compose files in the todo-list-configured exercises
for the chapter. The main difference is the volume - the database container uses an
environment variable called PGDATA to set where the data files should be written. You can use
that along with a volume specification in your Compose files.

As you've seen in this chapter, there are lots of ways you can solve this. My solution on
GitHub here:

https://github.com/sixeyed/diamol/blob/master/ch10/lab/README.md

204

https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

11
Building and testing applications

with Docker and Docker Compose

Automation is at the heart of Docker. You describe the steps to package your component in a
Dockerfile and use the Docker command line to execute them; you describe the architecture of
your app in a Docker Compose file and use the Compose command line to start and stop the
app. Command-line tools fit very neatly with automated processes, like jobs which run on a
daily schedule or whenever developers push code changes. It doesn’t matter which tool you’re
using to run those jobs, they all let you run scripted commands so you can easily integrate the
Docker workflow with your automation server.

In this chapter we’re going to learn how to do Continuous Integration (CI) with Docker. CI
is an automated process which runs regularly to build applications and execute a suite of
tests. When the CI job is healthy it means the latest code for the app is good and has been
packaged and is ready to deploy as a release candidate. Setting up and managing CI servers
and jobs used to be time-consuming and intensive – “build manager” would be a full-time role
for a human in a large project. Docker simplifies every part of the CI process and frees people
up for more interesting work.

11.1 How the CI process works with Docker
The CI process is a pipeline which starts with code, executes a set of steps, and finishes with a
tested deployable artifact. One of the challenges with CI is that pipelines become unique for
each project – different technology stacks do different things in the steps and produce
different types of artifact. The CI server needs to work for all those unique pipelines, so every
combination of programming language and build framework gets installed on the server and it
becomes unmanageable.

205

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Docker brings consistency to the CI process because every project follows the same steps
and produces the same type of artifact. Figure 11.1 shows a typical pipeline with Docker – it
gets triggered by a code change or a timed schedule, and produces a set of Docker images.
Those images contain the latest version of the code - compiled, tested, packaged and pushed
to a registry for distribution:

Figure 11.1 The basic steps of a CI pipeline to build, test and publish apps - all executed with Docker

Each step in the CI pipeline runs with Docker or Docker Compose and all the work happens
inside containers. You use containers to compile applications, so the CI server doesn’t need to
have any programming languages or build SDKs installed. Automated unit tests run as part of
the image build, so if the code is broken the build fails and the CI job stops. You can also run
more sophisticated end-to-end tests by starting the whole application with Docker Compose,
alongside a separate container which runs tests to simulate user workflows.

In a Dockerized CI process all the hard work happens in containers, but you still need
some infrastructure components to hold everything together: a centralized source code
system, a Docker registry to store images and an automation server to run the CI jobs.
There’s a huge choice of managed services you can choose from which all support Docker –
you could mix and match GitHub with Azure DevOps and Docker Hub, or you could use GitLab
which provides an all-in-one solution. Or you can run your own CI infrastructure in Docker
containers.

206

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

11.2 Spinning up build infrastructure with Docker
No-one wants to run their own infrastructure components when you can get reliable managed
services for free, but running the build system in Docker is a very useful alternative to know.
It’s ideal if you want to keep your source code and packaged images entirely within your own
network – for data sovereignty or transfer speed - but even if you use services for everything
it’s great to have a simple backup option for the rare occasions when GitHub or Docker Hub
have an outage, or your Internet connection goes offline.

The three components you need can easily be run in containers using enterprise-grade
open-source software. With a single command you can run your own setup using Gogs for
source control, the open-source Docker registry for distribution, and Jenkins as the
automation server.

TRY IT NOW In the exercises folder for this chapter there’s a Docker Compose file which defines the

build infrastructure. One part of the setup is different for Linux and Windows containers, so you’ll need to

select the right files – and you’ll need to add an entry to your hosts file for the DNS name

registry.local if you didn’t do that from Chapter 5, section 5.3:

cd ch11/exercises/infrastructure

start the app with Linux containers:
docker-compose -f docker-compose.yml -f docker-compose-linux.yml up -d

OR start with Windows containers:
docker-compose -f docker-compose.yml -f docker-compose-windows.yml up -d

add registry domain to local hosts file on Mac or Linux:
echo $'\n127.0.0.1 registry.local' | sudo tee -a /etc/hosts

OR on Windows:
Add-Content -Value "127.0.0.1 registry.local" -Path /windows/system32/drivers/etc/hosts

check containers:
docker container ls

You can see my output in Figure 11.2. The commands are different on Linux and Windows but
the outcome is the same - you’ll have the Gogs Git server published to port 3000, Jenkins
published to port 8080 and the registry published to port 5000:

207

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.2 Running your whole build infrastructure in containers with one command

Those three tools are interesting to work with because they support different levels of
automation. The registry server just runs in a container without any extra setup, so now you
can push and pull images using registry.local:5000 as the domain in your image tags.
Jenkins uses a plugin system to add functionality and you can set that up manually - or you
can bundle a set of scripts in the Dockerfile to automate the setup for you. Gogs doesn’t really
have a good automation story, so although it’s running it needs some manual configuration.

TRY IT NOW Browse to http://localhost:3000 and you’ll see the web UI for Gogs. The first page is

the initial installation which you see in figure 11.3 - this only gets shown on the first use of a new

container. All the values are correctly configured, you just need to scroll down and click Install Gogs:

208

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.3 Running Gogs in a container - an open-source Git server which needs some manual setup

The installation completes very quickly and you’ll come to the sign-on page. There isn’t a
default account, so you’ll need to click Register to create one. Create a user with the
username diamol as in figure 11.4 - you can use any email address or password, but the
Jenkins CI job expects the Gogs user to be called diamol:

209

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.4 Creating a new user in Gogs which you can use to push source code to the server

Click Create New Account and then sign in with the diamol username and your password.
The final step is to create a repository - that's where we’ll push the code which will trigger the
CI job. Browse to http://localhost:3000/repo/create and create a repository called diamol -
the other details can be left empty, as in figure 11.5:

210

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.5 Creating a Git repository in Gogs where you can upload the source code for your apps

It’s pretty frustrating to have to manually configure software when you’re running it in Docker
- and much more frustrating having to copy and paste screenshots into a book - but not every
app lets you fully automate the installation. I could have built a custom image with those
setup steps already done, but it’s actually important for you to see that you can’t always
package things nicely into the docker container run workflow.

211

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Jenkins is a better experience. Jenkins is a Java application and you can package it as a
Docker image with a set of scripts which run when the container starts. Those scripts can do
pretty much anything - installing plugins, registering users and creating pipeline jobs. This
Jenkins container does all that, so you can log straight in and start using it.

TRY IT NOW Browse to http://localhost:8080. You’ll see the screen in figure 11.6 - there’s already a job

configured called diamol which is in the failed state. Click the log in link from the top-right and log in with

username diamol and password diamol:

Figure 11.6 Running Jenkins in a container - it is fully configured with a user and CI job already set up

The Jenkins job failed because it’s configured to fetch code from the Gogs Git server - and
there’s no code in there yet. The source code for this book is already a Git repository which
you originally cloned from GitHub. You can add your local Gogs container as another Git server
for the repo, and push the book’s code to your own infrastructure.

TRY IT NOW You add an extra Git server using git remote add and then push to the remote - which

uploads the code from your local machine to the Gogs server, which just happens to be a container on your

machine too:

git remote add local http://localhost:3000/diamol/diamol.git

212

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

git push local

Gogs will ask you to login -
use the diamol username and password you registered in Gogs

Now you have the source code for the whole book in your local Git server. The Jenkins job is
configured to look for changes to the code every minute, and if there are changes it will
trigger the CI pipeline. But the first job run failed because the code repository didn’t exist, so
Jenkins has put the schedule on hold. You’ll need to manually run the job now to start the
schedule working again.

TRY IT NOW Browse to http://localhost:8080/job/diamol. You’ll see the screen in figure 11.7 and you can

click Build Now from the left-hand menu to run the job. If you don’t see the Build Now option make sure you’ve

logged into Jenkins with the diamol credentials:

Figure 11.7 The Jenkins job page shows the current status of the job and lets you manually start a build

213

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

After a minute or so the build will complete successfully, the web page will refresh and you’ll
see the output in figure 11.8:

Figure 11.8 The job page in Jenkins shows the status of the most recent builds, and the pipeline steps

Every part of this pipeline ran using Docker containers, taking advantage of a neat trick:
containers running in Docker can connect to the Docker API and start new containers on the
same Docker Engine they’re running on. The Jenkins image has the Docker CLI installed, and
the configuration in the Compose file sets up Jenkins so when it runs Docker commands they
get sent to the Docker Engine on your machine. It sounds odd but it’s really just taking
advantage of the fact that the Docker CLI calls into the Docker API - so CLIs from different
places can connect to the same Docker Engine. Figure 11.9 shows how that works:

214

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.9 Running containers with a volume to bind the private channel for the Docker API

The Docker CLI connects to the local Docker API by default, using a communication channel
which is private to your machine - a socket on Linux or a named pipe on Windows. That
communication channel can be used as a bind mount for containers, so when the CLI in the
container runs it’s actually connecting to the socket or named pipe on your machine. That
unlocks some useful scenarios where apps inside containers can query Docker to find other
containers, or start and stop new containers. There is also a security concern here because the
app in the container has full access to all the Docker features on the host, so you need to use
this carefully with Docker images that you trust - you can trust my diamol images :)

Code listing 11.1 shows part of the Docker Compose files you ran to start the
infrastructure containers, focusing on the Jenkins specification. You can see the volumes are

215

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

binding to the Docker socket in the Linux version and the named pipe in the Windows version
- this is the address of the Docker API:

Code listing 11.1 Binding the Docker CLI in Jenkins to the Docker Engine

docker-compose.yml
services:
 jenkins:
 image: diamol/jenkins
 ports:
 - "8080:8080"
 networks:
 - infrastructure

docker-compose-linux.yml

jenkins:
 volumes:
 - type: bind
 source: /var/run/docker.sock
 target: /var/run/docker.sock

docker-compose-windows.yml

jenkins:
 volumes:
 - type: npipe
 source: \\.\pipe\docker_engine
 target: \\.\pipe\docker_engine

That’s all the infrastructure you need. Jenkins connects to the Docker Engine to run Docker
and Docker Compose commands, and it can connect to the Git server and the Docker registry
by DNS because they’re all containers in the same Docker network. The CI process runs a
single command to build the application, and all the complexity of the build is captured in
Dockerfiles and Docker Compose files.

11.3 Capturing build settings with Docker Compose
The job which Jenkins ran has built a new version of the random number application from
Chapter 8. You’ve seen in Chapter 10 how you can break up an application definition across
multiple Compose files, and this app uses that approach to capture the details of the build
settings. Code listing 11.2 is from the base docker-compose.yml file in the
ch11/exercises folder - it contains the web and API service definitions with environment
variables in the image name:

Code listing 11.2 A core Docker Compose file using variables in the image tags

services:
 numbers-api:
 image: ${REGISTRY:-docker.io}/diamol/ch11-numbers-api:v3-build-${BUILD_NUMBER:-local}
 networks:

216

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

 - app-net

 numbers-web:
 image: ${REGISTRY:-docker.io}/diamol/ch11-numbers-web:v3-build-${BUILD_NUMBER:-local}
 environment:
 - RngApi__Url=http://numbers-api/rng
 networks:
 - app-net

The environment variable syntax here includes a default value set with :- so ${REGISTRY:-
docker.io} tells Compose to replace that token at runtime with the value of the
environment variable called REGISTRY. If that environment variable doesn’t exist or is empty,
it will use the default value docker.io - which is the domain for Docker Hub. And I use the
same approach with the image tag, so if the environment variable BUILD_NUMBER is set that
value goes into the tag, otherwise local gets used.

This is a very useful pattern to support a CI process and a local developer build using the
same set of artifacts. When a developer builds the API image they won’t have any
environment variables set so the image will be called docker.io/diamol/ch11-numbers-
api:v3-build-local - but docker.io is Docker Hub which is the default domain, so the
image will just be shown as diamol/ch11-numbers-api:v3-build-local. When the
same build runs in Jenkins the variables will be set to use the local Docker registry and the
actual build number for the job, which Jenkins sets as an incrementing number - so the image
name will be registry.local:5000/ diamol/ch11-numbers-api:v3-build-2.

Setting a flexible image name is an important part of the CI setup, but the key information
is specified in the override file docker-compose-build.yml which tells Compose where to
find the Dockerfiles.

TRY IT NOW You can build the app locally using the same steps as the CI build pipeline. Start from a

terminal session, browse to the directory for the chapter and build the app with Docker Compose:

cd ch11/exercises

build both images:
docker-compose -f docker-compose.yml -f docker-compose-build.yml build

check the labels for the web image:
docker image inspect -f '{{.Config.Labels}}' diamol/ch11-numbers-api:v3-build-local

You can see my output in figure 11.10:

217

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.10 Building images with Docker Compose and checking the image labels

Building the application through Docker Compose effectively runs a docker image build
command for every service which has build settings specified. That could be a dozen images
or a single one - even for one image it’s a good practice to build it with Compose because then
your Compose file specifies the tag you want when you build the image. There are a few more
things in this build which are part of a successful CI pipeline - you see that in the final
command to list the labels for the image.

Docker lets you apply labels to most resources - containers, images, networks and
volumes. They’re simply key-value pairs where you can store additional data about the
resource. Labels are very useful on images because they get baked into the image and they
move with it - when you push or pull the image, the labels go along too. When you build your
app with a CI pipeline it’s important to have an audit trail that lets you track back from the
running container to the build job that created it, and image labels help you do that.

Code listing 11.3 shows part of the Dockerfile for the random number API (you’ll find the
full file in the exercises for this chapter at numbers/numbers-api/Dockerfile.v4). There
are two new Dockerfile instructions here - ARG and LABEL:

Code listing 11.3 Specifying image labels and build arguments in the Dockerfile

app image
FROM diamol/dotnet-aspnet

ARG BUILD_NUMBER=0
ARG BUILD_TAG=local

218

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

LABEL version="3.0"
LABEL build_number=${BUILD_NUMBER}
LABEL build_tag=${BUILD_TAG}

ENTRYPOINT ["dotnet", "Numbers.Api.dll"]

The LABEL instruction just applies the key-value pair from the Dockerfile to the image when it
gets built. You can see version=3.0 specified in the Dockerfile, and that matches the label
output in figure 11.10. The other two LABEL instructions use environment variables to set the
label value, and those environment variables are provided by the ARG instructions.

ARG is very similar to the ENV instruction, except that it works at build-time on the image,
rather than at run-time in the container. They both set the value of an environment variable
but for ARG instructions that setting only exists for the duration of the build, so any containers
you run from the image don’t see that variable. It’s a great way to pass data into the build
process which isn’t relevant for running containers. I’m using it here to provide values that go
into the image labels - in the CI process these record the number of the build and the full build
name. The ARG instruction also sets default values, so when you build the image locally
without passing any variables, you see build_number:0 and build_tag:local in the
image labels.

You can see how the environment settings in the CI pipeline get passed down into the
Docker build command in the Compose override file - code listing 11.4 shows the contents of
the docker-compose-build.yml file with all the build settings:

Code listing 11.4 Specifying build settings and reusable arguments in Docker Compose

x-args: &args
 args:
 BUILD_NUMBER: ${BUILD_NUMBER:-0}
 BUILD_TAG: ${BUILD_TAG:-local}

services:
 numbers-api:
 build:
 context: numbers
 dockerfile: numbers-api/Dockerfile.v4
 <<: *args

 numbers-web:
 build:
 context: numbers
 dockerfile: numbers-web/Dockerfile.v4
 <<: *args

This Compose file shouldn’t be too complicated - unless you skipped Chapter 10, in which case
you should go back and read it, it won’t take you more than a lunchtime :) There are three
parts to the build block in the Compose specification:

• context: this is the path which Docker will use as the working directory for the build.
This is usually the current directory which you pass with a period in the docker

219

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

image build command, but here it’s the numbers directory - the path is relative to
the location of the Compose file;

• dockerfile: the path to the Dockerfile, relative to the context;
• args: any build arguments to pass, which need to match the keys specified as ARG

instructions in the Dockerfile. Both the Dockerfiles for this app use the same
BUILD_NUMBER and BUILD_TAG arguments, so I’m using a Compose extension field to
define those values once, and YAML merge to apply it to both services.

You’ll see there are default values specified in lots of different places, and this is to make sure
that support for the CI process doesn’t break other workflows. You should always aim for a
single Dockerfile which gets built in the same way however the build is run. Default arguments
in the Compose file mean the build succeeds when you run it outside of the CI environment,
and defaults in the Dockerfile mean the image still builds correctly even if you don’t use
Compose.

TRY IT NOW You can build the random number API image with the normal image build command,

bypassing the setup in the Compose files. You can call the image whatever you like - the build succeeds and

the labels get applied because of the defaults in the Dockerfile:

change to the numbers directory
(this is done with the context setting in Compose):
cd ch11/exercises/numbers

build the image, specifying the Dockerfile path and a build argument:
docker image build -f numbers-api/Dockerfile.v4 --build-arg BUILD_TAG=ch11 -t numbers-api .

check the labels:
docker image inspect -f '{{.Config.Labels}}' numbers-api

My output is in figure 11.11 - you can see in the labels that the value build_tag:ch11 was
set from my build command, but the value build_number:0 was set from the default for the
ARG in the Dockerfile:

220

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.11 Including default values for build arguments supports the developer build workflow

There are quite a few levels of detail here just to get labels into an image - but it’s an
important thing to get right. You should be able to run docker image inspect and find
exactly where that image came from, tracking it back to the CI job which produced it, and that
in turn tracks back to the exact version of code that triggered the build. It’s an audit trail from
the running container in any environment back to the source code.

11.4 Writing CI jobs with no dependencies except Docker
You’ve been happily building images for the random number app in this chapter using Docker
and Docker Compose, without needing any other tools installed on your machine. There are
two components to the app and both are written in .NET Core 3.0, but you don’t need the
.NET Core SDK on your machine to build them. They use the multi-stage Dockerfile approach
from Chapter 4 to compile and package the app, so Docker and Compose are all you need.

This is a major benefit of containerized CI - and it’s supported by all the managed build
services like Docker Hub, GitHub Actions and Azure DevOps. It means you no longer need a
build server with lots of tools installed, and for the tools to be kept up to date with all the
developers. And it also means that your build scripts become very simple - developers can use
the exact same build scripts locally and get the same output as the CI pipeline, and it becomes
easy to move between different build services.

We’re using Jenkins for our CI process, and Jenkins jobs can be configured with a simple
text file that lives in source control along with the application code, Dockerfiles and Compose
files. Code listing 11.5 shows part of the pipeline (from the file

221

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

ch11/exercises/Jenkinsfile) along with the batch script which the pipeline step
executes:

Code listing 11.5 The build step from the Jenkinsfile which describes the CI job

the build stage in the Jenkinsfile- it switches directory, then runs two
shell commands - the first sets up a script file so it can be executed
and the second calls the script:

 stage('Build') {
 steps {
 dir('ch11/exercises') {
 sh 'chmod +x ./ci/01-build.bat'
 sh './ci/01-build.bat'
 }
 }
 }

and this is what’s in 01-build.bat script:
docker-compose -f docker-compose.yml -f docker-compose-build.yml build --pull

Well look at that - it’s just the same docker-compose build command you ran locally.
Except it also adds the pull flag, which means Docker will pull the latest version of any
images it needs during the build. That’s a good habit to get into when you do your builds
anyway, because it means you’ll always build your image from the latest base image with all
the recent security fixes. It’s especially important in the CI process because there could be a
change in an image your Dockerfile uses which could break your app, and you want to find
that out as soon as possible.

The build step runs a simple script file - the filename ends with .bat so it runs nicely
under Jenkins in a Windows container, but it also works just fine in a Linux container. This
step runs the build and because it’s a simple command line call, all the output from Docker
Compose - which is also the output from Docker - gets captured and stored in the build logs.

TRY IT NOW You can view the logs in the Jenkins UI. Browse to http://localhost:8080/job/diamol to see

the jobs, and in the pipeline view click on the Build step for job #2 - then click Logs. You can expand the steps

of the build and you’ll see the usual Docker build output; mine is in figure 11.12:

222

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.12 Viewing the output from the pipeline build in Jenkins shows the usual Docker logs

Each step in the build pipeline follows the same pattern, it just calls a batch script which does
the actual work by running Docker Compose commands. This approach makes it easy to
switch between different build services - instead of writing the logic in a proprietary pipeline
syntax, you write it in scripts and just use the pipeline to call the scripts. I could add pipeline
files to run the build in GitLab or GitHub actions and they would call the same batch scripts.

The steps of the build are all powered by containers:

• Verify calls the script 00-verify.bat, which just prints out version information for
Docker and Docker Compose. This is a useful way to start the pipeline, because it
verifies the Docker dependencies are available and it records the versions of the tools
that built the image;

• Build calls 01-build.bat which we’ve already seen; it uses Docker Compose to build
the images. The REGISTRY environment variable is specified in the Jenkinsfile so
images will be tagged for the local registry;

• Test calls 02-test.bat which uses Docker Compose to start the whole application,

223

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

then lists out the containers and brings the application down again. This is just a simple
illustration - but it does prove that the containers run without failing. In a real project
you would bring up the app and then run end-to-end tests in another container;

• Push calls 03-push.bat which uses Docker Compose to push all the built images. The
image tags have the local registry domain, so if the build and test stages are successful
the images get pushed to the registry.

Stages in the CI pipeline are sequential, so if there’s a failure at any point the job ends.
That means the registry only stores images for potential release candidates - any image which
has been pushed to the registry must have successfully passed the build and test stages.

TRY IT NOW You have one successful build from Jenkins - build number 1 failed because there was no

source code and then build number 2 succeeded. You can query your local registry container using the REST

API and you should see just a version 2 tag for each of the random number images:

the catalog endpoint shows all the image repositories:
curl http://registry.local:5000/v2/_catalog

the tags endpoint shows the individual tags for one repository:
curl http://registry.local:5000/v2/diamol/ch11-numbers-api/tags/list
curl http://registry.local:5000/v2/diamol/ch11-numbers-web/tags/list

You can see my output in figure 11.13 - there are repositories for the web and API images,
but each only has a build-2 tag, because the first build failed and didn’t push any images:

224

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.13 Sending web requests to the registry API to query the images stored in the container

This is a fairly simple CI pipeline, but it shows you all the key stages of the build and some
important best practices. The key thing is to let Docker do the hard work and to build the
stages of your pipeline in scripts, then you can use any CI tool and just plug your scripts into
the tool’s pipeline definition.

11.5 Understanding containers in the CI process
Compiling and running applications in containers is just the start of what you can do with
Docker in your CI pipeline. Docker adds a layer of consistency on top of all your application
builds, and you can use that consistency to add many useful features to your pipeline. Figure
11.14 shows a more extensive CI process which includes security scanning container images
for known vulnerabilities, and digitally signing images to assert their provenance:

225

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 11.14 A production-grade CI pipeline which adds stages with security gates

Docker calls this approach the secure software supply chain, and it’s important for all sizes of
organization because it gives you confidence that the software you’re about to deploy is safe.
You can run tooling in your pipeline to check for known security vulnerabilities and fail the
build if there are issues. You can configure your production environment to only run containers
from images which have been digitally signed - a process which happens at the end of a
successful build. When your containers are deployed to production you can be certain that
they’re running from images which came through your build process, and that they contain
software which has passed all your tests and is free from security issues.

The checks and balances you add in your pipeline work on containers and images, so they
apply in the same way across all your application platforms. If you work with multiple
technologies across your projects you’ll be using different base images and different build
steps in the Dockerfiles - but the CI pipelines will all be the same.

11.6 Lab
Lab time! You're going to build your own CI pipeline - but don't run scared. We'll use the ideas
and exercises from this chapter, but the pipeline stages will be much simpler. In the lab folder

226

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

for this chapter you'll find a copy of the source code for the to-do app from Chapter 6. The
build for that app is almost ready to go - the Jenkinsfile is there, the CI scripts are there and
the core Docker Compose file is there. So there are just a couple of things for you to do:

• Write an override file called docker-compose-build.yml with the build settings
• Create a Jenkins job to run the pipeline
• Push your changes to Gogs in the diamol repository

Just two steps but don't be disheartened if your first few builds fail and you need to check the
logs and tweak some things. No-one in history has ever written a Jenkins job which passed on
the first run. So here's a few hints:

• Your Compose override will be similar to the one in the exercises - specifying the
context and a build argument for the build number label

• In the Jenkins UI you click New Item to create a job, and you can copy from the
existing diamol job

• The new job setup will be the same except for the path to the Jenkinsfile - you'll need
to specify the lab folder instead of the exercises folder.

If you're not getting far with this, you'll find more information in the read-me file in the lab
folder, complete with screenshots for the Jenkins steps and sample build configuration for the
Docker Compose file.

227

https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

12
Understanding Orchestration:

Docker Swarm and Kubernetes

We're halfway through our container journey together and by now you should be pretty
comfortable packaging and running applications with Docker and Docker Compose. The next
step is understanding how those applications run in a production environment, where you
have many machines running Docker to give you high availability and the power to handle lots
of incoming traffic.

In that environment your apps still run in containers using the same Docker images you
run locally, but there's a management layer which takes care of co-ordinating all the machines
and running the containers for you. That's called orchestration and the two main container
orchestrators are Docker Swarm and Kubernetes. They share a lot of the same features and
capabilities, but Kubernetes is a complex system which needs a Month of Lunches to itself. In
this chapter you're going to learn about orchestration using Docker Swarm, which is a
powerful production-grade container orchestrator built right into Docker. Even if your ultimate
goal is to learn Kubernetes, it's good to start with Swarm - the Kubernetes learning curve is
steep, but it's much easier when you already know Swarm.

12.1 What is a container orchestrator?
Docker Compose is great for running containers on a single machine, but that doesn't work in
a production environment - if that machine goes offline you lose all your applications.
Production systems need high availability, which is where orchestration comes in. An
orchestrator is basically a lot of machines all grouped together to form a cluster and the
orchestrator manages containers, distributing work among all the machines, load-balancing
network traffic and replacing any containers which become unhealthy.

228

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

You create your cluster by installing Docker on each of the machines, and then you join
them together with the orchestration platform - Swarm or Kubernetes. From then on you
manage the cluster remotely using command-line tools or web UIs. Figure 12.1 shows how
that looks from the infrastructure view:

Figure 12.1 An orchestrator turns many servers into a single cluster, and it manages containers for you

The orchestrator brings a set of extra capabilities which take your containers to the next level.
There's a distributed database in the cluster which stores all the information about the
applications you deploy. Then there's a scheduler which works out where to run containers,
and a system to send heartbeats between all the servers in the cluster. Those are the basic
building blocks for reliability. You deploy applications by sending your YAML file to the cluster;
it stores that information, then schedules containers to run the app - distributing the work to
servers with available capacity. When the app is running the cluster makes sure it keeps

229

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

running. If a server goes offline and you lose a bunch of containers, the cluster will start
replacement containers on other servers.

Orchestrators do all the hard work of managing containers, you just define the desired
state in your YAML files and you don't have to know or care how many servers are in the
cluster, or where your containers are running. The orchestrator also provides features for
networking, configuring applications and storing data. Figure 12.2 shows how network traffic is
routed into and within the cluster, and how containers can read configuration objects and
secrets, and write to shared storage:

Figure 12.2 Orchestrators provide extra features for containers - networking, configuration and storage

There's an important thing missing from the diagram in figure 12.2 - the servers. The
orchestrator hides away the details of the individual machines and networks and storage
devices. You work with the cluster as a single unit, sending commands and running queries
through the API which the command line connects to. The cluster could be 1,000 machines or
a single machine - you work with it in the same way and send the same commands and the

230

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

same YAML files to manage your apps. Users of your application could connect to any server in
the cluster, and the orchestration layer takes care of routing traffic to containers.

12.2 Setting up a Docker Swarm cluster
Let's get started now. It's super easy to deploy a container orchestrator with Docker Swarm,
because the features are built into the Docker Engine. All you need to do is switch to Swarm
mode by initializing the cluster.

TRY IT NOW The Docker CLI has a set of commands to manage cluster operations. The swarm init
command switches to Swarm mode. You can usually run it without any arguments, but if your machine is

connected to more than one network you'll get an error and Docker will ask you which IP address to use for the

Swarm communication:

docker swarm init

You can see my output in figure 12.3, which tells you that the Swarm is initialized and my
machine is a manager. Machines in a cluster can have different roles: they can either be a
manager or a worker. The output from running swarm init shows the command you need to
run on other machines for them to join the Swarm as workers:

Figure 12.3 Switching to Swarm mode creates a cluster with a single node - which is the manager

231

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The difference between managers and workers is that the managers run the show - the cluster
database gets stored on the managers, you send your commands and YAML files to the API
hosted on the managers, and the scheduling and monitoring is all done by the managers.
Workers typically just run containers when the managers schedule them and report back on
their status - although you can have managers running workloads too (insert your own joke
here, comparing that to human managers).

Initializing the Swarm is something you do once, and then you can join any number of
machines - Docker calls machines in the Swarm nodes. To join a node to the Swarm it needs
to be on the same network, and you need the join token from the manager which acts like a
password to secure the Swarm from rogue nodes. If you have access to the manager you can
print out the tokens for nodes to join as workers or additional managers, and you can list out
the nodes in the swarm.

TRY IT NOW Once you're in Swarm mode there are a lot more commands available from the Docker CLI.

Run these to find the join tokens for worker or manager nodes, and to list all the nodes in the Swarm:

print the command to join a new worker node
docker swarm join-token worker

print the command to join a new manager node
docker swarm join-token manager

list all the nodes in the swarm
docker node ls

You can see my output in figure 12.4 - there's only one node in my Swarm, but I can add any
other machines on my network to the Swarm using the manager's IP address in the join
command:

232

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 12.4 In Swarm mode you have extra commands to manage the nodes in the cluster

A single-node Swarm works in exactly the same way as a multi-node Swarm, except that you
don’t get high availability from having spare machines, or the option to scale out containers to
use the capacity of many machines. Figure 12.5 compares the architecture of a single-node
Swarm which you can use for development and test environments, and a multi-node cluster
which you would use in production:

233

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 12.5 Test and production Swarms have different numbers of nodes, but the same feature set

One of the big advantages of Docker Swarm over Kubernetes is the simplicity of setting up
and managing the cluster. You can build a Swarm with dozens of nodes just by installing
Docker on every server, running docker swarm init once and docker swarm join for
all the other nodes. There's no hidden complexity - the process is the same for production and
test environments. Now you have your single-node Swarm you can explore how applications
work when you have an orchestrator managing containers for you.

12.3 Running applications as Docker Swarm services
You don't run containers in Docker Swarm - you deploy services, and the Swarm runs
containers for you. A service is just an abstraction over the idea of individual containers,

234

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Swarm uses the same terminology here as Docker Compose for the same reason: a service
could be deployed as multiple containers.

Services are defined with a lot of the same information you use to run containers. You
specify the image to use, environment variables to set, ports to publish, and a name for the
service which becomes its DNS name on the network. The difference is that a service can have
many replicas - individual containers which all use the same specification from the service,
and can be run on any node in the Swarm.

TRY IT NOW Create a service which runs one container using a simple application image from Docker Hub,

then list out the services to check that it's running correctly:

docker service create --name timecheck --replicas 1 diamol/ch12-timecheck:1.0

docker service ls

Services are first-class objects in Docker Swarm, but you need to be running in Swarm mode -
or connected to a Swarm manager - to work with them. My output is in figure 12.6 where you
can see that the service gets created, and the basic details are shown from the service list
command, which shows there is one replica running:

Figure 12.6 Creating a service is how you ask the Swarm to run containers for you

The containers which make up a service are called replicas, but they're just ordinary Docker
containers. You can connect to the node which is running a replica and work with it using the
usual docker container commands. On a single node Swarm every replica will run on that
machine, so you can work with the service container you just created. It's not something you

235

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

would normally do though, because the containers are being managed by the Swarm so if you
try to manage them yourself what happens may not be what you expect.

TRY IT NOW The service replica is running on your machine, but it's being managed by the Swarm. You can

delete the container, but then Swarm sees the service is running below the desired replica count and it creates

a replacement.

list the replicas for the service:
docker service ps timecheck

check the containers on the machine:
docker container ls

remove the most recent container (which is the service replica):
docker container rm -f $(docker container ls --last 1 -q)

check the replicas again:
docker service ps timecheck

You can see my output in figure 12.7 - I had one container running the replica for my service,
and I manually removed it. But the service still exists in the Swarm and it should have a
replica level of one; when I remove the container the Swarm saw there weren't enough
replicas running and it started a replacement. You see in the final replica list that the original
container is shown as failed, because the Swarm doesn't know why the container stopped. The
running replica is a new container which has only been up for ten seconds:

236

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 12.7 Service replicas are just normal containers, but they're managed by the Swarm - not by you

When you're running in Swarm mode you manage your applications as services, and you let
the Swarm manage individual containers. That has to be the case because it would be
unmanageable to manage containers yourself - you'd have to connect to each of the nodes in
the Swarm, find out if it's running any replicas for your service and work with the containers
directly, if you wanted to check the status or print out logs. Docker supports you by providing
commands which operate on the Swarm resources. You can use docker service commands
to print out the log entries from all the replicas and to inspect the service to read its
specification.

237

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

TRY IT NOW The docker service commands are how you should work with applications in Swarm

mode. You can get information from the replicas, like all the log entries, and information about the service as

a whole:

print the service logs for the last 10 seconds:
docker service logs --since 10s timecheck

get the service details, showing just the image:
docker service inspect timecheck -f '{{.Spec.TaskTemplate.ContainerSpec.Image}}'

My output is in figure 12.8, which shows the most recent log entries from the service replicas
and part of the service specification:

Figure 12.8 You work with the service as a single unit, to print out replica logs or check the specification

The whole specification is saved in the cluster and you can see it by running that same
service inspect command but without the format parameter. There's a lot of information
there, securely stored in the cluster's database which is replicated across all the manager
nodes. This is one of the big differences between Docker Swarm and Docker Compose, which
doesn't have a data store for application definitions. You can only manage applications with

238

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Docker Compose if you have the Compose file(s) available, because that's the source of the
app definition. In Swarm mode the app definition is stored in the cluster, so you can manage
apps without a local YAML file.

You can try that by updating your running service. You can specify a new image version
but you don’t need to repeat any of the other information from the service spec. This is how
you deploy application updates in the cluster. When you update the service definition Swarm
rolls out the change, replacing the replicas by removing the old containers and starting new
ones.

TRY IT NOW Update the timecheck service to use a new image version. It's the same simple app which

writes a timestamp every few seconds, but the update prints a new application version in the logs:

update the service to use a new application image:
docker service update --image diamol/ch12-timecheck:2.0 timecheck

list the service replicas:
docker service ps timecheck

and check the logs:
docker service logs --since 20s timecheck

You'll see when you list the replicas with service ps that there are two instances - the old
replica running from the image tag 1.0, and the replacement running from the image tag 2.0.
Service logs include an ID so you can see which replica produces the log entries. These are
just the application logs being written out to the container, collected by the Swarm and shown
with the replica ID - you can see mine in figure 12.9:

239

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 12.9 Updating a service starts a gradual rollout of a new application version

All container orchestrators use the approach of staged rollouts for application updates, which
keeps your app online during the upgrade. Swarm implements this by replacing replicas one
at a time, so if you have multiple replicas hosting your application then there are always
containers running to service incoming requests. The actual behavior of the rolling upgrade

240

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

can be configured for your individual service, so you may have 10 replicas providing your web
application and when you roll out an upgrade you could have Docker replace two replicas at a
time, checking the new containers are healthy before moving on to replace the next two
replicas until all 10 are replaced.

Figure 12.10 shows how that rolling upgrade looks when it's part way through the
deployment - there are some replicas running the old version of the application image and
some running the new one. During the rollout both versions of your app are live and users
could hit either one - you need to manage the user experience side of the update yourself:

Figure 12.10 Service updates are incremental in Docker Swarm and Kubernetes

Automated rolling updates are a huge improvement on manual application releases, and
they're another feature for supporting self-healing applications. The update process checks
new containers are healthy as it is rolling them out, and if there's a problem with the new
version and the containers are failing the update can be automatically paused to prevent
breaking the whole application. Swarm also stores the previous specification of a service in its
database, so if you need to manually rollback to the previous version you can do that with a
single command.

241

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

TRY IT NOW You normally manage app deployments with YAML files, but if you have a deployment go

wrong it's very useful just to roll back to the previous state. Docker Swarm can do this because it stores the

current and previous state of the service in its database:

rollback the previous update:
docker service update --rollback timecheck

list all the service replicas:
docker service ps timecheck

print the logs from all replicas for the last 25 seconds:
docker service logs --since 25s timecheck

The rollback process works in the same way as the update process, with a staged rollout - but
it uses the service specification from before the most recent update so you don't need to
provide the image tag. That's very useful if an update breaks the application in a way which
Docker doesn't notice, which could happen if you don't have health checks or if your checks
aren't detailed enough. In that case when you discover the app is broken, you just run the
rollback command and you don't need to frantically try and find the details of the previous
service spec. My output is in figure 12.11 where you can see the replicas from all the
deployments, and the service logs from the most recent replicas - the update to 2.0 and the
rollback to 1.0:

242

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 12.11 You can rollback a service update to return to the previous specification with one command

Services are the resources you manage when you're in Swarm mode rather than containers,
and there are some new types of resource you can manage too - but some of the key Docker
resources work in the same way. When containers need to communicate in Swarm mode they
do it over Docker networks, and to let external traffic into your application you publish ports.

243

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

12.4 Managing network traffic in the cluster
It's just standard networking in Swarm mode, as far as the applications inside containers are
concerned. Components look for each other by DNS name, the DNS server in Docker returns
an IP address, and the container sends network traffic to that IP address. Ultimately the traffic
gets received by a container and it responds. In Swarm mode the container sending the
request and the container sending the response could be running on different nodes, but that's
all transparent to the containers and the applications inside.

There's all sorts of clever networking logic happening behind the scenes to make cross-
cluster communication seamless, but you don't need to dig into any of that because it All Just
Works. Swarm mode provides a new type of Docker network called the overlay network. It's a
virtual network which spans all the nodes in the cluster, and when services are attached to an
overlay network they can communicate with each other using the service name as the DNS
name.

Figure 12.12 shows how that works with two overlay networks supporting different
applications, where each application runs across multiple services on many nodes. The overlay
network allows services to communicate when they form part of the same application, but the
networks are isolated so services on different networks can’t access each other:

244

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 12.12 Networks in the Swarm span the whole cluster and still provide isolation between apps

There's one other difference with services on overlay networks, compared to containers on
ordinary Docker networks. You've seen in chapter 7 that you can use Docker Compose to scale
up and run many instances of a container for a single Compose service. A DNS query to
Docker for that Compose service will return the IP addresses for all the containers, and rely on
the consumer to pick one to send the traffic to. That doesn't scale well when you have
hundreds of replicas in a Swarm service, so overlay networks use a different approach and
return a single virtual IP address for the service.

TRY IT NOW Let's remove that simple app and create a network and the API services for the NASA image

of the day application we've used in previous chapters.

remove the original app:
docker service rm timecheck

create an overlay network for the new app:
docker network create --driver overlay iotd-net

create the API service, attaching it to the network:

245

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

docker service create --detach --replicas 3 --network iotd-net --name iotd diamol/ch09-image-of-the-day

and the log API, attached to the same network:
docker service create --detach --replicas 2 --network iotd-net --name accesslog diamol/ch09-access-log

check the services:
docker service ls

Now you have services running the NASA image of the day APIs, and the services are attached
to an overlay network. There are three replicas running the image API service and two running
the access log service, as you can see from my output in figure 12.13. This is still running on
my single-node Swarm using Docker Desktop, but I could run the same set of commands on a
Swarm with 500 nodes and the output would be the same - except that the replicas would be
running on different nodes:

Figure 12.13 Running services in Swarm mode and connecting them to an overlay network

246

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

The easiest way to see the virtual IP address (this is called VIP networking) is to connect to a
terminal session in any of the container replicas. You can run some network commands to
perform DNS queries on the service names and check the IP addresses which get returned.

TRY IT NOW Execute an interactive terminal session in the most recent container and run DNS lookups for

the API services. The first commands are different for Linux and Windows containers, but once you're

connected to the terminal in the container they’re the same:

run a terminal session - Windows containers:
docker container exec -it $(docker container ls --last 1 -q) cmd

OR on Linux containers:
docker container exec -it $(docker container ls --last 1 -q) sh

run DNS lookups:
nslookup iotd
nslookup accesslog

You can see from my output in figure 12.14 that there is a single IP address for each of the
services, even though there are multiple containers running those services. The service IP
address is a virtual IP address which is actually shared across all the replicas:

247

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 12.14 Services use VIP networking so there's a single IP for any number of replicas

This is VIP networking which is supported in Linux and Windows and is a much more efficient
way to load-balance network traffic. There is a single IP address from the DNS lookup, which
stays constant even when the service is scaled up or down. Clients send traffic to that IP
address and the networking layer in the operating system discovers there are actually multiple
destinations for the address, and it decides which one to use.

Docker Swarm uses VIP networking between services to provide reliable and load-balanced
access to services. You only need to know that because it's useful if you're trying to debug
communication issues - otherwise you might run a DNS lookup for a service with many
replicas and be surprised to see a single IP address returned. Applications running as Swarm
services just use DNS names in the usual way, so the complexity of the overly network is
completely hidden. Swarm mode takes that same approach of simplifying complex network
patterns to handle traffic coming into the cluster.

This is a much more complicated problem, if you think about the scale of the cluster and
the scale of your application. You might have a web app running with 10 replicas. If there are
20 nodes in your cluster then some nodes aren't running any of your web containers and the

248

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Swarm needs to direct requests to nodes which are running containers. If there are only five
nodes in your cluster then each node will be running multiple replicas, and the Swarm needs
to load-balance between containers on the node. Swarm uses ingress networking to deal with
this - the diagram in figure 12.15 shows how the ingress works, with every node listening on
the same port externally and Docker directing traffic internally within the cluster:

Figure 12.15 Docker Swarm uses ingress networking to route traffic to containers on nodes

Ingress networking is the default in Swarm mode when you publish ports for a service, so it's
the same as overlay networking - complex technology which is incredibly easy to use. You can
publish ports when you create a service, and that's all you need to do to make use of the
ingress network.

TRY IT NOW The final component of the image gallery app is the website itself. When you run it at as

Swarm service and publish the port it uses the ingress network:

249

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

create the web front end for the app:
docker service create --detach --name image-gallery --network iotd-net --publish 8010:80 --replicas 2 diamol/ch09-
image-gallery

list all services:
docker service ls

Now you have a service with multiple replicas, listening on a single port. You're not able to do
this with Docker Compose because you can't have several containers all listening on the same
port - but you can in Docker Swarm because it's the service which listens on the port using
the ingress network. When a request comes into the cluster the ingress network sends it to
one of the service replicas, which could be running on the node that received the request or a
different node in the cluster. Figure 12.16 shows the service running with two replicas and the
published port:

Figure 12.16 Enlisting a service in the ingress network is as simple as publishing a port

You can browse to the port and you'll see the NASA image app from chapter 4 - unless you're
running Windows containers. I've managed to avoid any big differences for Windows and Linux
readers up till now, other than the odd difference in commands, but there's no getting around
this one. If you're running Linux containers - on a Linux machine or a Mac or with Linux
container mode on Windows 10 - then you can go right ahead and browse to
http://localhost:8010 to see the app. If you're running Windows containers - either on

250

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Windows Server or Windows container mode on Windows 10 - then you can't do that because
Swarm services aren't accessible using localhost.

This is one of the few situations where Windows containers don't work in the same way as
Linux containers, and it's down to limitations in the Windows networking stack. In practice it's
not usually an issue because your Swarm clusters will be remote servers in test or production
environments, and ingress networking does work when you access a remote machine. But on
your local single-node Windows Swarm you can only access services by browsing to them from
a different machine. I know it's not good, but at least we got 12 chapters in before we hit the
"this sucks on Windows" moment, and I don't think there are any more coming.

I've switched to Linux containers for this chapter and in figure 12.17 you can see the
image of the day app. My network request is being routed to one of the two replicas for the
web service, which is in turn fetching data from one of the three replicas for the API service:

Figure 12.17 Published ports in services use the ingress network and Swarm routes requests to replicas

I've said it before in this chapter but it's coming once more to make it clear - the size of the
cluster doesn't matter as far as deploying and managing applications goes. I could run the

251

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

exact same commands on a cluster running with 50 nodes in the cloud and the result would be
the same - two replicas of the web service which I can access from any node, working with
three replicas of the API service which the web containers can access on any node.

12.5 Understanding the choice between Docker Swarm and
Kubernetes

Docker Swarm was designed to be a simple container orchestrator. It took the concepts of
networks and services from Docker Compose, which was already hugely popular, and built
them into an orchestrator which became part of the Docker Engine. There have been other
orchestrators released as commercial or open-source projects, but most of those efforts have
been shelved and now the choice comes down to Docker Swarm and Kubernetes.

Kubernetes is the more popular option because it's offered as a managed service by all the
major public clouds. You can spin up a multi-node Kubernetes cluster in Microsoft Azure,
Amazon Web Services or Google Cloud with just a single command from their CLI or a few
clicks on their web portal. They take care of initializing the cluster - which is nothing like as
simple as with Docker Swarm - and managing the Virtual Machines which are the nodes.
Kubernetes is easily extensible so the cloud providers can integrate it with their other
products, like load balancers and storage, which make it easy to deploy fully-featured
applications.

Docker Swarm doesn't exist as a managed service from the cloud providers, partly because
it has fewer moving parts so its harder to integrate with other services. If you want to run a
Docker Swarm cluster in the cloud you'll need to provision the VMs and initialize the Swarm
yourself. It can all be automated but its not as simple as using a managed service. Figure
12.18 shows the main cloud resources you'd need to provision and manage yourself if you
wanted to run a Docker Swarm cluster in Azure:

252

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

Figure 12.18 Just some of the cloud resources you have to manage for a production-grade Swarrn

You'll deploy clusters less often than you'll deploy applications though, and for ongoing
operations Docker Swarm is far simpler. It doesn't have all the features of Kubernetes but it
has everything most organizations need with a fraction of the complexity of Kubernetes. The
YAML you send to a Swarm cluster is an extension of the Docker Compose syntax, which is
concise and logical. The Kubernetes YAML specification is far more complex and verbose,
partly because of the additional resources Kubernetes supports. Both orchestrators ultimately

253

https://livebook.manning.com/#!/book/learn-docker-in-a-month-of-lunches/discussion

have the job of running Docker containers, and they use the same Docker images - but the
Kubernetes version of the app definition can easily be five to ten times as much YAML.

My advice for teams who are new to orchestration is to start with Docker Swarm and move
on to Kubernetes if they need a feature which Swarm doesn't have. You have to make some
investment in your apps to move them to Docker and that investment isn't wasted if you move
to Kubernetes - you'll be running containers from the same images. It's not always a
straightforward decision though, and there are a couple of factors you'll need to add in:

• infrastructure - if you're deploying to the cloud then Kubernetes is a simpler option, but
if you're in the datacenter then Swarm is far easier to manage. Also if your team's
background is 100% Windows then you can use Swarm without taking on Linux;

• learning curve - moving to Swarm is straightforward because it's an extension of the
Docker and Compose experience that you'll already have. Kubernetes is a whole new
set of things to learn and not everyone on the team is going to make that investment;

• feature set - the complexity of Kubernetes is partly because it's hugely configurable.
You can do things with Kubernetes which you can't easily do in Swarm - like blue/green
deployments, automatic service scaling and role-based access control;

• future investment - Kubernetes has one of the largest open-source communities, and
it's extremely active. Changes and new features are coming all the time, whereas
Swarm has been a stable product without large new features for a while now.

Ultimately your roadmap will probably take you to Kubernetes, but there's no rush to get
there. Swarm is a great product which will introduce you to container orchestration in
production and make it easy to run your workloads, however large they may be - Visa have
talked at Docker's conferences about using their Swarm cluster to power all the payments
through their system, including huge spikes on Black Friday.

12.6 Lab
A pretty simple lab this time, just to increase the experience you have working with
applications running as Docker Swarm services. I'd like you to run the random number app
from chapter 8 in your Swarm cluster. You'll need two services and a network to connect
them, and the services will need to be using these Docker images (which are on Docker Hub
so you don't need to build them yourself):

• diamol/ch08-numbers-api:v3
• diamol/ch08-numbers-web:v3

My solution is on GitHub in the usual place, but it's only a few commands so you shouldn't
really need to look...

https://github.com/sixeyed/diamol/blob/master/ch12/lab/README.md

254

https://github.com/sixeyed/diamol/blob/master/ch12/lab/README.md
https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

13
Deploying distributed applications

as stacks in Docker Swarm

I have a confession - in the last chapter I had you spend a lot of time learning how to create
Docker Swarm services with the command line, but you won't ever do that in a real project. It's
a useful way to get started with orchestration and to help understand the difference between
running containers yourself and having an orchestrator manage them for you. But in a real
system you won't connect to the manager and send it commands to run services. Instead you'll
describe your application in a YAML file which you send to the manager, and it decides what
actions to take to get your app running. It's the same desired state approach that you've seen
with Docker Compose - the YAML file specifies what you want the end state to be, and the
orchestrator looks at what's currently running and figures out what it needs to do to get to that
state.

Docker Swarm and Kubernetes both have the same approach. Swarm uses the Docker
Compose syntax to define all the components of your app, and when you send your YAML to
the manager it creates networks and services and anything else you declare. The Compose
format is very well suited to describing distributed apps for cluster deployment, but there are
some concepts which only make sense in Swarm mode and some which only make sense on a
single server. The specification is flexible enough to support both, and in this chapter we'll build
on our knowledge of Docker Compose and Docker Swarm to run distributed apps in the cluster.

13.1 Using Docker Compose for production deployments
The real power of Docker Swarm comes from Compose - your production deployments use the
same file format that you use in dev and test environments, so there's consistency across your
artifacts and tooling for every environment and every project. The very simplest deployment

255

for a Swarm is identical to a simple Compose file - code listing 13.1 shows a basic deployment
for the to-do app from chapter 6, which just specifies the image name and the port to publish:

Code Listing - a Compose file with a single service that can be deployed to a Swarm

version: "3.7"

services:
 todo‐web:
 image: diamol/ch06‐todo‐list
 ports:
 ‐ 8080:80

You can deploy that on a single server using Docker Compose and you'll get one container
running with a published port to access the app. You can deploy the exact same file on a
Swarm and you'll get a service with a single replica running, using the ingress network for the
published port. You deploy applications in Swarm mode by creating a stack which is just a
resource which groups together lots of other resources - like services, networks and volumes.

TRY IT NOW Deploy that simple Compose file as a stack. You'll need to have initialized your Swarm, and

then switch to the folder for this chapter's exercises. Deploy the stack and then check what's running:

cd ch13/exercises

deploy the stack from the Compose file:
docker stack deploy ‐c ./todo‐list/v1.yml todo

list all the stacks and see the new one:
docker stack ls

list all services and see the service created by the deployment:
docker service ls

You can see from my output in figure 13.1 that the behavior is very much like Docker
Compose, although you use the standard Docker CLI to deploy to a Swarm. I sent the
Compose file to my cluster and the manager created a default network to plug services into,
then created a service for my app. Stacks are a first-class resource in Swarm mode, you can
use the CLI to create, list and remove them. Deploying the stack in this exercise creates a
single service:

256

Figure 13.1 Deploying a stack in Swarm mode - using a standard Docker Compose file

If you're running Linux containers you can browse to http://localhost:8080 and see the app,
but if you're using Windows containers you still have the problem that you can't browse to the
ingress network locally, so you'll need to browse from another machine. It's the same old to-do
app which works in the same way, so we'll skip the screenshot. The thing to take away from
this exercise is that you've used a standard Docker Compose file with no extra config to deploy
to the Swarm. If you had multiple nodes in your Swarm you'd have high availability - the node
running the service replica could go offline and the Swarm would start a replacement on
another node to keep your app available.

Swarm mode has an extra set of features of course, and you can use them in your app by
adding a deploy section to the service in your Compose file. These properties only make sense
when you're running in a cluster, so they get applied when you deploy a stack - but you can
use the same file with Docker Compose on a single server, and the deploy settings will be

257

ignored. Code listing 13.2 shows an updated service definition for the to-do app which includes
deployment properties to run multiple replicas, and to limit the compute resources each replica
can use:

Code listing 13.2 Adding Swarm deployment configuration in your Docker Compose file

services:
 todo‐web:
 image: diamol/ch06‐todo‐list
 ports:
 ‐ 8080:80
 deploy:
 replicas: 2
 resources:
 limits:
 cpus: "0.50"
 memory: 100M

These are the basic properties you'd want to include for a production deployment. Running
multiple replicas means your app can manage more load, and it also means one replica will be
available to serve traffic if the other goes offline, because of a server failure or a service
update. You should also specify compute limits for all your services when they go live, to
protect your cluster from a rogue replica consuming all the processing power and memory.
Working out the limits takes some effort because you need to know the amount of CPU and
memory your app needs when it's working hardest - metrics like those we saw in chapter 9
help with this. This spec limits each replica to a maximum of 50% of one CPU core and 100MB
of memory.

Deploying updates to a Swarm stack is the same as deploying a new app, you send the
updated YAML file to the manager and it makes the changes for you. When you deploy the v2
Compose file the Swarm will create one new replica and replace the existing one.

TRY IT NOW Run a stack deploy command using a new Compose file but the original stack name - this

works like an update to the existing stack. List the service tasks and you'll see how the update happened:

deploy an updated Compose file for the stack
docker stack deploy ‐c ./todo‐list/v2.yml todo

check all the replicas for the web service:
docker service ps todo_todo‐web

My output is in figure 13.2, where you can see the stack updates the service, and the
service has two new replicas. The original replica was replaced because adding resource limits
in the Compose file changes the container definition and that needs to be actioned with a new
container:

258

Figure 13.2 Updating a stack with a new Compose file will update the service if the definition has changed

Docker containers can access all the host machine's CPU and memory if you don't specify a
limit. That's the default and it's fine for non-production environments where you want to cram
as many apps on your servers as possible and let them use the resources they need. In
production you want limits to safeguard against bad code or malicious users trying to max out
your system, but those limits are established when the container starts so if you update them
you get a new container - which is a replica update in Swarm mode.

Swarm stacks are a neat way of grouping applications, which you need because a cluster
will typically run many apps. You can manage applications as a whole using the stack
commands in the Docker CLI, listing out the individual services and the service replicas, and
removing the app altogether.

TRY IT NOW Stacks are the management unit for applications. They give you a simple way to work with an

app which could be running multiple services, each with multiple replicas. Check what's running in the to-do app

stack and then remove it:

list all the services in the stack:
docker stack services todo

259

list all replicas for all services in the stack:
docker stack ps todo

remove the stack:
docker stack rm todo

This app is a very simple example with a Docker network, one service and two replicas.
Larger distributed apps could run dozens of services across hundreds of replicas in the Swarm
and you still deploy them in the same way with the Compose file and manage them with
docker stack commands. Figure 13.3 shows my output, finally removing the whole stack:

Figure 13.3 Working with the stack using the Docker CLI - you can list resources and remove them

You can manage all the resources in a stack without needing the Compose file, because all
the specifications are stored inside the cluster database. That shared database is replicated
between the Swarm managers so it's a safe place to store other resources too - it's how you'll

260

store application configuration files in the Swarm, which you can make available to services in
your Compose file.

13.2 Managing app configuration with config objects
Apps running in containers need to be able to load their configuration settings from the
platform which is running the container. I've covered that with local development and test
environments using Docker Compose with environment variables, and now we can round that
out with production which uses Docker config objects stored in the cluster. Figure 13.4 shows
how that works - and the important thing here is that it's the exact same Docker image in
every environment, it's just the application behavior that changes:

Figure 13.4 Applying configuration from the platform - in Swarm mode using config objects and secrets

Configuration is such a critical part of deployment that all the orchestrators have a first-
class resource which holds application configuration. In Swarm these are Docker config objects
and they're powerful because they let the container load its config from the cluster, but they
also decouple the role of application deployment from configuration management.

Organizations often have a config management team who have access to all the secrets -
API keys, database server passwords, SSL certificates - and they're all stored in a secure
system. That system is often completely separate from the environment where the apps are
running so the team needs a way of applying the config from the central system to the
application platform. Docker Swarm supports that with the creation of config objects, which
you load into the cluster from an existing file.

261

TRY IT NOW The to-do app uses JSON for configuration. The default config in the image uses a local

database file for storage, but that doesn't work if you run many replicas - each container will have its own

database and users will see different lists depending which replica services their request. The first step to fixing

that is deploying a new config file in the cluster:

create the config object from a local JSON file:
docker config create todo‐list‐config ./todo‐list/configs/config.json

check the configs in the cluster:
docker config ls

Config objects are created with a name and the path to the config file contents. This app
uses JSON but config objects can store any type of data - XML, key-value pairs or even binary
files. The Swarm delivers the config object as a file in the container's filesystem, so the
application sees the exact same data you uploaded. Figure 13.5 shows my output - the config
object is created with a long random ID in addition to the name:

Figure 13.5 Loading a local file into the Swarm cluster as a config object

You work with config objects like other Docker resources - there are commands to remove
and inspect them as well as creating them. Inspection is useful because it shows you the
contents of the config file. That's an important point about config objects: they're not meant for
sensitive data. The file content is not encrypted in the Swarm database, nor is it encrypted in
transit as it moves from the managers to the nodes which are running the replicas.

TRY IT NOW You can inspect a config object to read out the complete contents - this shows you what the

replica will see in the container filesystem when it uses the config object:

inspect the config using the pretty flag to show the contents:

262

docker config inspect ‐‐pretty todo‐list‐config

Figure 13.6 shows my output which contains all the metadata about the config object and
the file contents exactly as they were stored, including whitespace:

Figure 13.6 Config objects are not secure - anyone with access to the cluster can see the contents

Managing config objects is a separate workflow from managing the applications which use
those config objects. In a DevOps workflow that could all be done by the same team or by one
automated pipeline, but in larger enterprises you can keep the functions separate if that
matches your existing processes.

Services consume config objects by specifying them in the Compose file. Code listing 13.3
shows part of the updated definition for the to-do list application (the full file is called v3.yml),
which loads configuration from the config object:

Code listing 13.3 Config objects in services get surfaced to the container filesystem

services:
 todo‐web:
 image: diamol/ch06‐todo‐list
 ports:
 ‐ 8080:80

263

 configs:
 ‐ source: todo‐list‐config
 target: /app/config/config.json

#...

configs:
 todo‐list‐config:
 external: true

When a container runs as a replica for this service, it will have the contents of the config
object loaded from the Swarm into the file at /app/config/config.json, which is one of the
paths the app uses as a configuration source. There's a shorter syntax you can use where you
just specify the name of the config object and Docker uses a default target path - but the
actual path is different for different operating systems, so it's better to explicitly state where
you want the file to be surfaced (the forward-slash directory paths work in both Windows and
Linux containers).

The second part of the Compose file in code listing 13.3 shows the config object itself, with
its name and the external flag. External is how you specify that this resource should already
exist on the cluster. The deployment workflow is to deploy the config objects first and then the
apps which use them. You can do that by deploying the v3 Compose file, which also includes a
service for the SQL database, so multiple web containers can share the same database.

TRY IT NOW Update the application by deploying the YAML file - the stack command is the same, and the

Swarm will create a new replica for the database service and new replicas for the web application:

deploy the updated app definition:
docker stack deploy ‐c ./todo‐list/v3.yml todo

list the services in the stack:
docker stack services todo

You removed the old stack in a previous exercise, so this is a new deployment and you'll
see a network and two services being created. I've scaled the web component down to a single
replica so we can follow the updates more easily, so each of the services is now running a
single replica. My output is in figure 13.7:

264

Figure 13.7 Deploying a stack which uses config objects in services

Now the app is configured to use Postgres as the database, which is the setting the config
object loads into the replicas. If you browse to http://localhost:8080 (or to your machine from
another machine if you're on Windows) you'll see the app isn't working. You can check the logs
of the web service to see why, and it will show a lot of errors about connecting to the database.
This deployment configures the web app to use Postgres but the config object doesn't provide
the connection details for the database, so the connection fails.

Sensitive data shouldn't be kept in config objects, because they're not encrypted and they
can be read by anyone who has access to the cluster. That includes database connection
strings which might have user names and passwords, and also URLs for production services
and API keys. You should aim for defense in depth in your production environment, so even if
the chances of someone gaining access to your cluster are slim, you should still encrypt
sensitive data inside the cluster. Docker Swarm provides secrets for storing this class of config.

13.3 Managing confidential settings with secrets
Secrets are a resource in the Swarm which the cluster manages, and they work almost exactly
like config objects. You create them from a local file and that gets stored in the cluster
database. Then you reference the secret in a service specification and the contents of the
secret get loaded into the container filesystem at runtime. They key difference with secrets is
that you can only read them in plain text at one point in the workflow: inside the container
when they get loaded from the Swarm.

Secrets are encrypted throughout their lifetime in the cluster. The data is stored encrypted
in the database shared by the managers, and secrets are only delivered to nodes which are

265

scheduled to run replicas that need the secret. Secrets are encrypted in transit from the
manager node to the worker, and they are only unencrypted inside the container, where they
appear with the original file contents. We'll use a secret to store the database connection string
for the to-do list app.

TRY IT NOW Create the secret from the local file and then inspect it to see what information Docker gives

you about the secret:

create the secret from a local JSON file:
docker secret create todo‐list‐secret ./todo‐list/secrets/secrets.json

inspect the secret with the pretty flag to see the data:
docker secret inspect ‐‐pretty todo‐list‐secret

The user experience for working with secrets is the same as with config objects The only
difference is you can't read the contents of the secret once it's been stored. You can see my
output in figure 13.8 - inspecting the secret only shows the metadata about the resource, not
the actual data, which you would see if this was a config object:

Figure 13.8 Once secrets are stored in the Swarm you can't read the original unencrypted contents

Now the secret is stored in the Swarm we can deploy a new version of the app with a
service specification that uses the secret. The Compose syntax for secrets is very similar to
config objects, you specify the source and the target path of the secret in the service definition
and then the secret itself gets its own definition. Code listing 13.4 shows the key sections of
the new deployment, which is in the v4.yml file:

266

Code listing 13.4 Specifying secrets and configs for app configuration

services:
 todo‐web:
 image: diamol/ch06‐todo‐list
 ports:
 ‐ 8080:80
 configs:
 ‐ source: todo‐list‐config
 target: /app/config/config.json
 secrets:
 ‐ source: todo‐list‐secret
 target: /app/config/secrets.json

#...

secrets:
 todo‐list‐secret:
 external: true

The content of that secret is more JSON, loaded into another path where the app looks for
configuration sources. This sets the app with the connection details to use the Postgres
container for its data store, so when you deploy the app users will get the same list of items
whichever web replica serves them.

TRY IT NOW Deploy the latest version of the app which supplies the missing database connection string

and fixes the web application; this updates the service:

deploy the new version of the app:
docker stack deploy ‐c ./todo‐list/v4.yml todo

check the replicas for the stack:
docker stack ps todo

Only the web service definition has changed in the Compose file, but when you run this
you'll see Docker state that it's updating both services. It doesn’t actually make any updates to
the database service, so this is a slightly misleading output from the CLI - it will list all the
services in the Compose file as "updating" even though they won't all change. You can see that
in my output in figure 13.9:

267

Figure 13.9 Deploying the latest app version will correct the config and fix the app

Now the app is working correctly, which you'll see if you browse to port 8080 from a remote
machine (if you're using Windows containers) or localhost (if you're using Linux containers).
Figure 13.10 shows the infrastructure setup, with the containers connecting on the Docker
network and the secret loaded from the Swarm:

268

Figure 13.10 The to-do app running as a stack uses the key features of Docker Swarm

The important thing that's missing from figure 13.10 is the hardware view, and that's
because this application has the same deployment architecture on Swarms of any size. Secrets
and config objects are stored in the managers' distributed database and are available to every
node; the stack creates an overlay network so containers can connect to each other whichever
nodes they’re running on, and the service uses the ingress network so consumers can send
traffic to any node and have it actioned by one of the web replicas.

One thing you do need to understand about config objects and secrets: they can’t be
updated. When you create them in the cluster the contents will always be the same, and if you
need to update the config for an application you need to replace it, so there will be three steps:

 create a new config object or secret with the updated contents and a different name
from the previous object;

 update the name of the config object or secret that your app uses in the Compose file,
specifying the new name;

 deploy the stack from the updated Compose file.

This process means you need to update your service every time you change configuration,
which means running containers get replaced with new ones. This is one area where
orchestrators take different approaches - Kubernetes does let you update existing configuration

269

and secret objects in the cluster. That brings its own problems though, because some
application platforms watch their config files for changes and others don’t, so changes are
ignored and you need to replace containers anyway. Swarm is consistent that you'll always
need to update your services when you roll out configuration changes.

Updating services shouldn't scare you though. You'll be rolling out container updates every
time you have new features to deploy in your app, or there are security updates in the
dependencies you use or the operating system your images are based on. At the minimum you
should expect to release updates every month - which is the cadence that most operating
system base images are updated on Docker Hub. Which brings us to stateful applications in
Swarm mode. You're going to be replacing containers regularly, so you'll need to use Docker
volumes for persistent storage, and volumes work slightly differently in the Swarm.

13.4 Storing data with volumes in the Swarm
We covered Docker volumes way back in chapter 6 - they're units of storage which have a
separate lifecycle from containers. Any stateful apps you want to containerize can use volumes
for storage, which appear as part of the container's filesystem but are actually stored outside of
the container. Application upgrades replace the container and attach the volume to the new
container, so it starts with all the data the previous container had.

Volumes are conceptually the same in orchestrators too; you add a volume mount
specification for the service in the Compose file, and then replicas see that volume as a local
directory. There's a big difference in how the data gets stored, and that's something you need
to understand to make sure your app works as expected. In a cluster you'll have multiple
nodes which can run containers, and each node has its own disk where it stores local volumes.
The simplest way to maintain state between updates is to use a local volume.

There's a problem with that approach though - an replacement replica may be scheduled to
run on a different node from the original, so it won't have access to the original node's data.
You can pin services to specific nodes, which means updates will always run on the node that
has the data. That works for scenarios where you want application data stored outside of the
container so it survives updates, but you don't need to run multiple replicas and you don't need
to allow for server failure. You apply a label to your node and in your Compose file you restrict
replicas to running on that node.

TRY IT NOW You've got a single node Swarm so every replica will run on this node anyway, but the labelling

process works in the same way for multi-node Swarms. Labels can be any key-value pair; we’ll use this one to

assign a fictitious storage class:

find the ID for your node and update it, adding a label:
docker node update ‐‐label‐add storage=raid $(docker node ls ‐q)

The output of that command is just the node ID, so we'll skip the screenshot. More
interesting is that you now have a way to identify nodes in the cluster, and that can be used to
constrain where service replicas get scheduled. Code listing 13.5 shows the constraint field in

270

the service definition for the to-do database, which also now has a volume specified - this is in
the v5.yml deployment file:

Code listing 13.5 Configuring constraints and volumes for services in the Swarm

services:
 todo‐db:
 image: diamol/postgres:11.5
 volumes:
 ‐ todo‐db‐data:/var/lib/postgresql/data
 deploy:
 placement:
 constraints:
 ‐ node.labels.storage == raid
#...

volumes:
 todo‐db‐data:

I haven't trimmed down the volume specification at the end of the Compose file in that code
listing - the volume name is all there is. This will get created using the default volume driver in
the Swarm, which uses the local disk. When you deploy this to your cluster, it will ensure the
database replica runs on the node which matches the storage label, and that node will create a
local volume called todo-db-data which is where the data files get stored.

TRY IT NOW The constraint in the Compose file matches the label you added to your Swarm node, so the

database container will run there and use the local volume on that node. These commands will explore the

volumes on your node before and after the deployment:

list all the volumes on your node, showing just IDs:
docker volume ls ‐q

update the stack to v5:
docker stack deploy ‐c ./todo‐list/v5.yml todo

check the volumes again:
docker volume ls ‐q

You'll see there are lots of volumes (you'll probably have far more than me, I cleared mine
down with the docker volume prune command before these exercises). Images can specify
volumes in the Dockerfile, and if services use images with volumes then the stack creates a
default volume for the service. That volume has the same lifetime as the stack, so if you
remove the stack then the volumes get removed, and if you update services then they'll get a
new default volume. If you want your data to persist between updates then you need to use a
named volume in your Compose file - you can see my output in figure 13.11; deploying the
stack created a new named volume rather than a default one:

271

Figure 13.11 Deploying stacks creates volumes too, which can be anonymous or named

This deployment provides guarantees for data availability, provided the labelled node itself
is available. If the container fails its health checks and gets replaced, the new replica will run
on the same node as the previous replica and attach to the same named volume. When you
update the database service specification you get the same guarantees. That means the
database files are persisted between containers and your data is safe. You can add items to
your to-do list through the web UI, upgrade the database service and find the old data is still
there in the UI from the new database container.

TRY IT NOW There's been a new release of the Postgres server since I wrote chapter 6, and it's a good idea

to stay current so we'll update the database service. The Compose spec in v6.yml is identical to v5.yml except it

uses the updated version of Postgres:

deploy the updated database
docker stack deploy ‐c ./todo‐list/v6.yml todo

check the tasks in the stack:
docker stack ps todo

and check volumes:
docker volume ls ‐q

272

You can see my output in figure 13.12 - the new database replica is running from an
updated Docker image, but it attaches to the volume from the previous replica so all my data is
preserved:

Figure 13.12 Updating a service which uses a named volume preserves the data for the new container

This is a simple example, and things get more complex when you have different storage
requirements for your applications - because the data in local volumes is not replicated across
all the nodes. Applications which use disk as a data cache will be fine with local volumes, as the
data can be different for each replica. That won't work for apps which need to access shared
state across the cluster. Docker does have a plugin system for volume drivers, so Swarms can
be configured to provide distributed storage using a cloud storage system or a storage device

273

in the datacenter. Configuring those volumes depends on the infrastructure you're using, but
you consume them in the same way, attaching volumes to services.

13.5 Understanding how the cluster manages stacks
Stacks in Docker Swarm are just groups of resources which the cluster manages for you. A
production stack will contain many resources and they all behave slightly differently in terms of
how the orchestrator manages them. Figure 13.13 shows how Swarm manages the typical
types of resource:

Figure 13.13 How Docker Swarm resources are managed by stack deployments

There are a few takeaways from this. You've already worked through some of these
scenarios in the exercises, but we'll finish up the chapter making them clear:

 volumes can be created and removed by the Swarm. Stacks will create a default volume

274

if the service image specifies one - and that volume will be removed when the stack is
removed. If you specify a named volume for the Stack it will be created when you
deploy but it won't be removed when you delete the stack;

 secrets and configs are created when an external file gets uploaded to the cluster;
they're stored in the cluster database and delivered to containers where the service
definition requires them. They are effectively write-once read-many objects and can’t be
updated. The admin process to store app configuration in the Swarm is separate from
the app deployment process;

 networks can be managed independently of applications, with admins explicitly creating
networks for applications to use, or they can be managed by the Swarm which will
create and remove them when necessary. Every stack will be deployed with a network to
attach services to, even if one is not specified in the Compose file;

 services are created or removed when stacks are deployed, and while they're running
the Swarm monitors them constantly to ensure the desired service level is being met.
Replicas which fail health checks get replaced, as do replicas which get lost if nodes go
offline.

The stack is a logical group of components that make up an application, but it doesn’t map
out a dependency graph between services. When you deploy a stack to the cluster, the
managers spin up as many service replicas as quickly as they can across the cluster. You can't
constrain the cluster to start one service completely before starting another, and if you could
that would probably ruin deployment performance. Instead you need to assume that your
components will start in a random order, and capture health and dependency checks in your
images so containers fail fast if the application can't run. That way the cluster can repair the
damage by restarting or replacing containers, and that gets you a self-healing app.

13.6 Lab
Lab! This one will get you some more experience writing Compose files to define apps and
deploying them as stacks on the Swarm. I'd like you to write a production deployment for the
image gallery app from Chapter 9, which should be in a single Compose file that matches these
requirements:

 the access log API uses image diamol/ch09-access-log; it's an internal component
only accessed by the web app and it should run on three replicas;

 the NASA API uses image diamol/ch09-image-of-the-day; that should be publicly
accessible on port 8088 and run on five replicas to support the expected incoming load;

 the web app uses image diamol/ch09-image-gallery; it should be available at
standard HTTP port 80 and run on two replicas;

 all the components should have sensible CPU and memory limits (this may need a few
rounds of deployments to work out safe maximums);

 when you deploy the stack, the app should work :)

275

There are no volumes, configs or secrets to worry about with this app so it should be a
pretty simple Compose file. As always you can find my solution on GitHub for reference:

https://github.com/sixeyed/diamol/blob/master/ch13/lab/README.md

276

https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

14
Automating releases with

upgrades and rollbacks

The job of a container orchestrator is to run your applications in containers and keep them
running. Managers control multiple worker nodes which usually have spare compute capacity,
so if containers become unhealthy or servers fail, the work can be scheduled on other
machines and your apps stay online. You build health checks into Docker images so the cluster
can identify when components fail unexpectedly - but there are also times when you
deliberately take containers offline, to upgrade your applications. The application update
process is fully automated with Docker Swarm, and you've already worked through that with
stack deployments in chapter 13. The update process is highly configurable, and we'll spend
time understanding the configuration options in this chapter.

Tuning update configuration might sound like a topic you can safely skip, but I can tell you
from my own experience that it will cause you pain if you don't understand how rollouts work
and how you can modify the default behavior. This chapter is focused on Docker Swarm but all
the orchestrators have a staged rollout process that works in a similar way. Knowing how
updates and rollbacks work lets you experiment to find the settings that fit for your app so you
can deploy to production as often as you like, confident that the update will either work
successfully or automatically roll back to the previous version.

14.1 The application upgrade process with Docker
Docker images are a deceptively simple packaging format. You build your image and run your
app in a container and it feels like you can let that run until you have a new version of your app
to deploy, but actually there are at least four deployment cadences you need to consider. First
there's your own application and its dependencies, then the SDK that compiles your app, then

277

the application platform it runs on and finally there's the operating system itself. Figure 14.1
shows an example for a .NET Core app built for Linux which actually has six update cadences:

Figure 14.1 Your Docker image has a lot of dependencies when you include the other images you use

You can see that you should really plan to deploy updates on a monthly schedule to cover
OS updates, and you should be comfortable to kick off an ad-hoc deployment at any time, to
cover security fixes from the libraries your app uses. That's why your build pipeline is the heart
of your project. Your pipeline should run every time a change to the source code is pushed, and
that takes care of new application features and manual updates to your app's dependencies. It
should also build every night, which makes sure you always have a potentially-releasable
image built on the latest SDK, application platform and operating system updates.

Releasing every month whether your application has changed or not sounds scary,
especially in organizations where the release ceremony is so expensive on time and resources
that you only do it three times a year. Actually it gets your whole organization into a much
healthier mindset: releasing an update is just something boring that happens all the time,

278

usually without any humans getting involved. When you have regular automated releases then
each update builds confidence in the process and before you know it you're releasing new
features as soon as they're completed, rather than waiting for the next deployment window.

You only get that confidence when releases are successful, and that's where application
health checks become critical. Without them you don't have a self-healing app and that means
you can't have safe updates and rollbacks. We'll follow that through in this chapter using the
random number app from chapter 8, making use of the Docker Compose overrides we learned
about in chapter 10. That will let us keep a single clean Compose file with the core app
definition, a separate Compose file with the production specification, and additional files for the
updates. Docker doesn’t support stack deployment from multiple Compose files though, so first
you need to use Docker Compose to join the override files together.

TRY IT NOW Let's start by deploying the first build of the random number app. We'll run a single web

container and six replicas of the API container, which will help us see how updates get rolled out. You'll need to

be running in Swarm mode, then join together some Compose files and deploy the stack:

cd ch14/exercises

join the core Compose file with the production override:
docker‐compose ‐f ./numbers/docker‐compose.yml ‐f ./numbers/prod.yml config > stack.yml

deploy the joined Compose file:
docker stack deploy ‐c stack.yml numbers

show the services in the stack:
docker stack services numbers

You can see my output in figure 14.2 - the Docker Compose command joined the core
Compose file with the production override. It's useful to use Docker Compose to join the
override files together because it also validates the contents, and that could be part of a
continuous deployment pipeline. The stack deployment created an overlay network and two
services:

279

Figure 14.2 Deploying a stack from multiple Compose files by joining them together first

One thing is new about this stack which you see in figure 14.2 - the API service is running
in the normal replicated mode, but the web service is running in global mode. Global services
run with a single replica on each node of the Swarm, and you can use that configuration to
bypass the ingress network. There are scenarios like reverse proxies where that's a good
deployment option, but I'm using it here so you see how it's different from replicated services
for rollouts. The settings for the web service are in code listing 14.1 (which is an excerpt of the
prod.yml override file):

Code listing 14.1 A global service which uses host networking rather than ingress

 numbers‐web:
 ports:
 ‐ target: 80
 published: 80
 mode: host
 deploy:
 mode: global

280

 mode: global in the deploy section configures the deployment to run one container on
every node in the Swarm. The number of replicas will equal the number of nodes, and if
any nodes join then they will also run a container for the service;

 mode: host in the ports section configures the service to bind directly to port 80 on the
host, and not use the ingress network. This can be a useful pattern if your web apps are
lightweight enough that you only need one replica per node, but network performance is
critical so you don't want the overhead of routing in the ingress network.

This deployment uses the original application images which don't have any health checks,
and this is the app where the API has a bug which means it stops working after a few calls. You
can browse to http://localhost (or from an external machine with Windows containers), and
you can request lots of random numbers because the calls are load-balanced between six API
service replicas. Eventually though they'll all break and then the app stops working and won't
ever repair itself - the cluster doesn't replace containers because it doesn't know they’re
unhealthy. That's not a safe position to be in because if you roll out an updated version without
any health checks, the cluster won’t know if the update has been successful either.

So we'll go on to deploy version 2 of the application images, which have health checks built
in. The v2 Compose override file uses the v2 image tag, and there's also an override which
adds configuration for health checks to set how often they fire and how many failures trigger
corrective action. That's in the normal healthcheck block which works in the same way in
Docker Compose - except Compose doesn't take corrective action for you. When this version of
the app is deployed to Docker Swarm then the cluster will repair the API. When you break the
API containers they'll fail their health checks and get replaced, and then the app will start
working again.

TRY IT NOW You need to join the new v2 Compose override with the health check and production override

files to get your stack deployment YAML. Then you just need to deploy the stack again:

join the healthcheck and v2 overrides to the previous files:
docker‐compose ‐f ./numbers/docker‐compose.yml ‐f ./numbers/prod.yml ‐f ./numbers/prod‐

healthcheck.yml ‐f ./numbers/v2.yml ‐‐log‐level ERROR config > stack.yml

update the stack:
docker stack deploy ‐c stack.yml numbers

check the stack's replicas:
docker stack ps numbers

This deployment updates both the web and API service to version 2 of their images. Service
updates are always done as a staged rollout, and the default is to stop existing containers
before starting new ones. This makes sense for global services which are using host-mode
ports, because the new container can't start until the old one exits and frees up the port. It
might make sense for replicated services too if your application expects a maximum level of
scale, but you need to be aware that during the update the services will be under-capacity

281

while old containers are shut down and replacements are starting up. You can see that
behavior in figure 14.3:

Figure 14.3 Deploying a service update with default configuration - one replica is updated at a time

Docker Swarm uses cautious defaults for the rollout of service updates. It updates one
replica at a time and ensures the container starts correctly before moving on to the next
replica. Services rollout by stopping existing containers before starting replacements, and if the
update fails because new containers don't start correctly then the rollout is paused. That all
seems reasonable when it's presented with an authoritative tone in a book - but actually it's
pretty strange. Why default to removing old containers before starting new ones, when you

282

don't know if the new ones will work? Why pause a failed rollout, which could leave you with a
half-broken system, instead of rolling back automatically? Fortunately the rollout can be
configured with more sensible options.

14.2 Configuring production rollouts with Compose
Version 2 of the random number app is self-repairing because of the health checks. If you
request lots of random numbers through the web UI then the API replicas will all break, but
wait 20 seconds or so and the Swarm will replace them all and the app will start working again.
This is an extreme example, but in a real application with occasional failures you can see how
the cluster monitors containers and keeps the app online based on the health check.

The rollout of version 2 used the default update configuration, but I want rollouts for the
API to be faster and safer. That behavior is set in the deploy section for the service in the
Compose file. Code listing 14.2 shows the update_config section I want to apply for the API
service (this is an excerpt from the file prod-update-config.yml):

Code listing 14.2 Specifying custom configuration for application rollouts

 numbers‐api:
 deploy:
 update_config:
 parallelism: 3
 monitor: 60s
 failure_action: rollback
 order: start‐first

The four properties of the update configuration section change how the rollout works:

 parallelism is the number of replicas that are replaced in parallel. The default is 1 so
updates roll out by one container at a time. This setting will update three containers at a
time. That gives you a faster rollout and a greater chance of finding failures because
there are more of the new replicas running;

 monitor is the time period the Swarm should wait to monitor new replicas before
continuing with the rollout. The default is zero and you definitely want to change that if
your images have health checks, because the Swarm will monitor health checks for this
amount of time. This increases confidence in the rollout;

 failure_action is the action to take if the rollout fails, because containers don't start
or fail health checks within the monitor period. The default is to pause the rollout, I've
set it here to automatically rollback to the previous version;

 order is the order of replacing replicas. stop-first is the default and it ensures there
are never more replicas running than the required number, but if your app can work
with extra replicas then start-first is better because new replicas are created and
checked before the old ones are removed.

This setup is generally a good practice for most apps, but you'll need to tweak it for your
own use-case. Parallelism can be set to around 30% of the full replica count so your update

283

happens fairly quickly but you should have a monitor period long enough to run multiple health
checks, so the next set of tasks only get updated if the previous update worked.

One important thing to understand: when you deploy changes to a stack, the update
configuration gets applied first. Then if your deployment also includes any service updates, the
rollout will happen using the new update configuration.

TRY IT NOW The next deployment sets the update config and updates the services to image tag v3; the

replica rollout will use the new update configuration:

docker‐compose ‐f ./numbers/docker‐compose.yml ‐f ./numbers/prod.yml ‐f ./numbers/prod‐
healthcheck.yml ‐f ./numbers/prod‐update‐config.yml ‐f ./numbers/v3.yml ‐‐log‐level
ERROR config > stack.yml

docker stack deploy ‐c stack.yml numbers

docker stack ps numbers

You'll see the replica list from stack ps gets unmanageably large when you've done a few
updates. It shows all the replicas from every deployment, so the original containers and the v2
containers which have been updated are shown as well as the new v3 replicas. I've trimmed
my output in figure 14.4, but if you scroll down in yours you'll see three replicas of the API
service have been updated and are being monitored before the next set are updated:

284

Figure 14.4 Updating a stack with a new update config - the rollout settings take immediate effect

There's a neater way to report on a Swarm service which tells you the service specification,
the update configuration and the latest update status. That's using the inspect command with
the pretty flag. Services created by a stack use the naming convention {stack-

name}_{service-name} so you can work with stack services directly.

TRY IT NOW Inspect the random number API service to view the update status:

docker service inspect ‐‐pretty numbers_numbers‐api

You can see my output in figure 14.5. I've trimmed it down again to show just the main
pieces of information, but if you scroll in your output you'll also see the health check
configuration, resource limits and update config:

285

Figure 14.5 Inspecting a service shows the current configuration and the most recent update status

One important thing you need to be aware of when you change the default update
configuration settings - you need to include those settings in every subsequent deployment. My
v3 deployment added the custom settings, but if I don't include the same update override file
in the next deployment then Docker will revert the service back to the default update settings.
Swarm makes changes to the update configuration first, so it would set the update config back
to the defaults and then rolled out the next version one replica at a time.

The update config settings for Swarm rollouts have an identical set which apply for
rollbacks, so you can also configure how many replicas at a time and how long to wait between
sets for an automated rollback. These may seem like minor tweaks, but it's really important to
specify the update and rollback process for a production deployment and test it with your app
at scale. You need to be confident that you can roll out an update at any time, and that it will
be applied quickly but with enough checks in the process for it to rollback automatically if
there's a problem. You get that confidence by working through failure scenarios with these
config settings.

14.3 Configuring service rollbacks
There is no docker stack rollback command, only individual services can be rolled back to
their previous state. You shouldn't need to manually start a service rollback, unless
something's gone unexpectedly badly wrong. Rollbacks should happen automatically when the

286

cluster is performing a rollout and identifies that new replicas are failing within the monitor
period. If that happens and you've got your configuration right, you wouldn't realize a rollback
has happened until you wonder why your new features aren't showing up.

Application deployments are the main cause of downtime, because even when everything is
automated there are still humans writing the automation scripts and the application YAML files,
and sometimes things get forgotten. We can experience that with the random number app - a
new version is ready to deploy, but it has a configuration option which must be set. If it isn’t
set then the API fails immediately.

TRY IT NOW Run v5 of the random number app (v4 was the version we used to demonstrate Continuous

Integration in chapter 11, but it used the same code as v3). This deployment will fail because the configuration

setting v5 needs isn't provided in the Compose files:

join lots of Compose files together
docker‐compose ‐f ./numbers/docker‐compose.yml ‐f ./numbers/prod.yml ‐f ./numbers/prod‐

healthcheck.yml ‐f ./numbers/prod‐update‐config.yml ‐f ./numbers/v5‐bad.yml config >
stack.yml

deploy the update:
docker stack deploy ‐c stack.yml numbers

wait for a minute and check the service status:
docker service inspect ‐‐pretty numbers_numbers‐api

This is a typical failed deployment. The new API replicas were created and started
successfully but failed their health checks - the health check configuration is set to run every
two seconds with two retries before flagging the container as unhealthy. If any new replicas
report as unhealthy during the monitor period of the rollout, that triggers the rollback action
which I've set for this service to automatically roll back. If you wait 30 seconds or so after the
deployment before you inspect the service, you'll see output similar to mine in figure 14.6
saying the update has been rolled back and the service is running six replicas of the v3 image:

287

Figure 14.6 When you get your configuration right, a failed update is identified and rolled back

It's no fun when deployments go wrong, but a failed update like this which automatically
rolls back does at least keep your app running. Using the start-first rollout strategy helps with
that. If I used the default stop-first there would be a period of reduced capacity when three v3
replicas get stopped, then three v5 replicas get started and fail. In the time it takes the new
replicas to flag themselves as unhealthy and for the rollback to complete there would only be
three active replicas of the API. Users wouldn't see any errors because Docker Swarm doesn't
send any traffic to replicas which aren't healthy, but the API would be running at 50% capacity.

This deployment uses the default configuration for rollbacks which is the same as the
default configuration for updates: one task at a time with a stop-first strategy, zero monitoring

288

time and the rollback pauses if the replacement replicas fail. I find that too cautious because in
the situation where your app was working fine and then a deployment broke it, you usually
want to roll back to the previous state as quickly as possible. Code listing 14.3 shows my
preferred rollback configuration for this service (from prod-rollback-config.yml):

Code listing 14.3 Rollback configuration which reverts failed updates quickly

 numbers‐api:
 deploy:
 rollback_config:
 parallelism: 6
 monitor: 0s
 failure_action: continue
 order: start‐first

The goal here is to revert back as quickly as possible - the parallelism is six so all the failed
replicas will be replaced in one go, using start-first strategy so replicas of the old version will
be started before the rollback worries about shutting down replicas of the new version. There's
no monitoring period and if the rollback fails - because replicas don't start - it's set to continue
anyway. This is an aggressive rollback policy which assumes that the previous version was
good and will become good again when the replicas start.

TRY IT NOW We'll try the v5 update again, specifying the custom rollback configuration. This rollout will still

fail, but the rollback will happen more quickly, returning the app to full capacity back on the v3 API:

join together even more Compose files:
docker‐compose ‐f ./numbers/docker‐compose.yml ‐f ./numbers/prod.yml ‐f ./numbers/prod‐

healthcheck.yml ‐f ./numbers/prod‐update‐config.yml ‐f ./numbers/prod‐rollback‐
config.yml‐f ./numbers/v5‐bad.yml config > stack.yml

deploy the update again with the new rollback config:
docker stack deploy ‐c stack.yml numbers

wait and you'll see it reverts back again:
docker service inspect ‐‐pretty numbers_numbers‐api

This time you'll see the rollback happens more quickly, but only marginally because there
are only a small number of replicas in the API service, all running on my single node. You can
see how important this would be in a larger deployment which may have 100 replicas running
across 20 nodes - rolling back each replica individually prolongs the amount of time your app
might be running below capacity or in an unstable state. You can see my output in figure 14.7 -
I was quick enough this time to catch the rollback just as it had triggered, so the state shows
the rollback is starting:

289

Figure 14.7 Specifying custom rollback settings means a failed rollout gets fixed faster

When you run this yourself, take a look at the full service configuration when the rollback
has completed - you'll see that the rollback configuration has been reset to the default values.
That's guaranteed confusion right there, because you'll be thinking the rollback config hadn't
been applied. But actually it's because the whole service configuration got rolled back, and that
includes the rollback setup - the replicas were rolled back in line with the new policy, and then
the rollback policy was rolled back :) Next time you deploy you'll need to make sure you keep
adding the update and rollback configs, or they'll be updated back to the default settings.

This is where having multiple override files gets dangerous, because they’re all necessary
and they all need to be specified in the correct order. Normally you wouldn't split out settings
for one environment across multiple files, I've just done that to make our journey through
updates and rollbacks easier to follow. Typically you'd have the core Compose file, an

290

environment override file and possibly a version override file. We'll take that approach for the
final deployment, fixing the v5 issue and getting the app working again.

TRY IT NOW The v5 update failed and rolled back, so we got the team together and realized we'd missed a

crucial config setting. The v5.yml override file adds that in, and the prod-full.yml override file has all the

production settings in one place. Now we can deploy v5 successfully:

this is more like it ‐ all the custom config is in the prod‐full file:
docker‐compose ‐f ./numbers/docker‐compose.yml ‐f ./numbers/prod‐full.yml ‐f ./numbers/v5.yml

‐‐log‐level ERROR config > stack.yml

deploy the working version of v5:
docker stack deploy ‐c stack.yml numbers

wait a while and check the rollour succeeded:
docker service inspect ‐‐pretty numbers_numbers‐api

My output is in figure 14.8 - I waited a couple of minutes between the deployment and the
service list to be sure that the update had worked and there was no rollback:

Figure 14.8 A successful deployment after fixing the app configuration

Now you have v5 running in all its glory - it's actually the same simple demo app as before,
but we can use it to illustrate one final point about rollbacks. The app is working fine now and
the health checks are in place so if you keep using the API and break the replicas, they'll get
replaced and the app will start working again. Failing health checks don't cause a rollback of
the last update, they just trigger replacement replicas - unless the failure happens during the

291

monitor period of the update. If you deploy v5 and during the 60-second monitor period you
break the API containers, that will trigger a rollback.

Figure 14.9 shows what the update and rollback process would look like fore the v3 to v5
update:

Figure 14.9 Looks suspiciously like a flowchart, but it's just a useful way to model the update process

That's it for update and rollback configuration. It's really just a case of setting a few values
in the deployment section of your Compose file, and the work comes in testing out variations to
be sure your updates are fast and safe, and that they rollback quickly if there's a problem. That
help you maximize the uptime for your application, and all that's left is to understand how that
gets impacted when there's downtime of the nodes in the cluster.

14.4 Managing downtime for your cluster
Container orchestrators turn a bunch of machines into a powerful cluster, but ultimately it's the
machines that run the containers and they're prone to downtime. Disk, network and power are
all going to fail at some point - the larger your cluster, the more frequently you'll have an
outage. The cluster will be able to keep your apps running through most outages but some

292

unplanned failures need active intervention, and if you have planned outages then you can
make it easier for the Swarm to work around them.

If you want to follow along with this section then you'll need a multi-node Swarm. You can
set up your own if you're happy building virtual machines and installing Docker on them - or
you can use an online playground. Play with Docker is a great choice for that, you can create a
multi-node Swarm and practice deployments and node management without needing any extra
machines of your own. Browse to https://labs.play-with-docker.com, sign in with your Docker
Hub ID and click Add New Instance to add a virtual Docker server to your online session. I've
added five instances to my session and I'll use them as my Swarm.

TRY IT NOW Start your Play with Docker session and create five instances - you'll see them listed in the left

navigation, and you can click to select them. In the main window you'll see a terminal session which is

connected to the node you have selected.

select node1 and in initialize the Swarm using the node's IP address:
ip=$(hostname ‐i)
docker swarm init ‐‐advertise‐addr $ip

show the command to join a manager to the Swarm:
docker swarm join‐token manager

select node2 and paste the manager join command, then the same on node3

select node5 and paste the worker join command, then the same on node5

back on node1 make sure all the nodes are ready:
docker node ls

This gives you a completely disposable Swarm, you can do as much damage as you like and
then just close your session, and all those nodes disappear (they're actually containers running
Docker-in-Docker with a lot of smarts to manage the sessions and the networking). You can
see my output in figure 14.10 with the Swarm all ready to go:

293

Figure 14.10 Initializing a multi-node Swarm using disposable instance from Play with Docker

Let's take the simplest scenario first - when you need to take a node down for an operating
system update on the server or some other infrastructure task. That node might be running
containers and you want them to be gracefully shut down, replaced on other nodes and for
your machine to go into maintenance mode so Docker doesn't try and schedule any new
containers during any reboot cycles you need to do. Maintenance mode for nodes in the Swarm
is called drain mode, and you can put managers or workers into drain.

TRY IT NOW Switch to the terminal session for your node1 manager and then set two of the other nodes

into drain mode:

set a worker and a manager into drain mode:
docker node update ‐‐availability drain node5
docker node update ‐‐availability drain node3

check nodes:
docker node ls

Drain mode means slightly different things for workers and managers. In both cases all the
replicas running on the node are shut down and no more replicas will be scheduled for the
node. Manager nodes are still part of the management group though, so they still synchronize
the cluster database, provide access to the management API and can be the leader. Figure
14.11 shows my cluster with two drained nodes:

294

Figure 14.11 Entering drain mode removes all containers and lets you run maintenance on the node

What's this about a leader manager? You need multiple managers for high availability, but
it's an active-passive model. Only one manager is actually controlling the cluster and that's the
leader. The others keep a replica of the cluster database, they can action API requests and they
can take over if the leader fails. That happens with an election process between the remaining
managers which requires a majority vote - and for that you always need an odd number of
managers, typically three for smaller clusters and five for large clusters. If you permanently
lose a manager node and find yourself with an even number of managers, you can promote a
worker node to become a manager instead.

TRY IT NOW It's not easy to simulate node failure in Play with Docker, but you can connect to the leader

and manually remove it from the Swarm. Then one of the remaining managers becomes the leader, and you

can promote a worker to keep an odd number of managers:

on node1 ‐ forcibly leave the Swarm:
docker swarm leave ‐‐force

on node 2 ‐ make the worker node available again:
docker node update ‐‐availability active node5

promote the worker to a manager:
docker node promote node5

check the nodes:
docker node ls

There are two ways a node can leave the Swarm - a manager can initiate it with the node
rm command or the node itself can do it with swarm leave. If the node leaves by itself that's a
similar situation to the node going offline - the Swarm managers think it should still be there,

295

but it's not reachable. You can see that in my output in figure 14.12, the original node1 is still
listed as a manager but the status is Down and the manager status is Unreachable:

Now the swarm has three managers again which gives it high availability. If node1 had
gone offline unexpectedly, when it came back online I could return one of the other managers
to the worker pool by running node demote. Those are pretty much the only commands you
need to manage a Docker Swarm cluster. We'll finish up with a couple of less common
scenarios, so you know how the Swarm will behave if you encounter them:

 if all your managers go offline but the worker nodes are still running, then your apps are
still running. The ingress network and all the services replicas on the worker nodes work
in the same way if there are no managers, but now there's nothing to monitor your
services so if a container fails it won't be replaced. You need to fix this and bring
managers online to make the cluster healthy again;

 it's possible to lose control of your cluster if all but one manager node goes offline, and
the remaining manager is not the leader. Managers have to vote for a new leader, and if
there are no other managers this one can't be elected. You can fix this by running swarm
init on the remaining manager with the force-new-cluster argument. That makes
this node the leader but preserves all the cluster data and all the running tasks, then
you can add more managers to restore high availability;

 service replicas don't get automatically redistributed when you add new nodes. If you
increase the capacity of your cluster with new nodes but don't update any services, the
new nodes won't run any replicas. You can rebalance replicas so they're evenly
distributed around the cluster by running service update --force without changing
any other properties.

14.5 Understanding high availability in Swarm clusters
There are multiple layers in your app deployment where you need to think about high
availability. We’ve covered a lot of them in this chapter: health checks tell the cluster if your

296

app is working, and it will replace failed containers to keep the app online; multiple worker
nodes provide extra capacity for containers to be rescheduled if a node goes offline; multiple
managers provides redundancy for scheduling containers and monitoring workers. There's one
final area to consider - the data center where the cluster is running.

I'm just going to cover this very briefly to finish up the chapter, because people often try to
get high availability between regions by building a single cluster which spans several data
centers. In theory you can do this - you could create managers in data center A, with workers
in data centers A, B and C. That certainly simplifies your cluster management but the problem
is network latency. Nodes in a Swarm are very chatty, and if there's a sudden network lag
between A and B then the managers might think all the B nodes have gone offline and
reschedule all their containers on C nodes. And those scenarios just get worse, with the
potential to have split-brain: multiple managers in different regions thinking they're the leader.

If you really need your apps to keep running if there's a whole region outage, the only safe
way is with multiple clusters. It adds to your management overhead and there's the risk of drift
between the clusters and the apps they're running, but those are manageable issues, unlike
network latency. Figure 14.13 shows how that configuration looks:

297

Figure 14.13 To achieve data center redundancy you need multiple clusters in different regions

14.6 Lab
It's back to the image gallery app for this lab and it's your turn to build a stack deployment
which has a sensible rollout and rollback configuration for the API service. There's a twist
though - the API component doesn't have a health check built into the Docker image, so you'll
need to think about how you can add a health check in the service specification. Here are the
requirements:

 write a stack file to deploy the image gallery app, using these container images:
diamol/ch04-access-log, diamol/ch04-image-of-the-day and diamol/ch04-image-
gallery;

 the API component is diamol/ch04-image-of-the-day and that should run with four
replicas, it should have a health check specified and it should use an update config
which is fast but safe, and a rollback config which is just fast;

 when you 've deployed the app, prepare another stack file which updates the services to
these images: diamol/ch09-access-log, diamol/ch09-image-of-the-day and

298

diamol/ch09-image-gallery;
 deploy your stack update and be sure the API component rolls out using your expected

policy and doesn't roll back due to an incorrect health check.

This one should be fun, if you find this sort of thing fun. Either way my solution is up on
GitHub for you to check in the usual place:

https://github.com/sixeyed/diamol/blob/master/ch14/lab/README.md
Happy updating!

299

https://livebook.manning.com/book/learn-docker-in-a-month-of-lunches/discussion

15
Configuring Docker for secure

remote access and CI/CD

The Docker command line presents a seamless way of working with containers and it's easy to
forget that the command line doesn't really do anything itself - it just sends instructions to the
API running on the Docker Engine. Separating the command line from the Engine has two major
benefits - other tools can consume the Docker API, so the command line isn’t the only way to
manage containers; and you can configure your local command line to work with a remote
machine running Docker. It's amazingly powerful that you can switch from running containers
on your laptop to managing a cluster with dozens of nodes, using all the same Docker commands
you're used to, without leaving your desk.

Remote access is how you administer test environments or debug issues in production, and
it's also how you enable the Continuous Deployment part of your CI/CD pipeline. After the
Continuous Integration stages of the pipeline have completed successfully, you'll have a
potentially releasable version of your app stored in a Docker registry. Continuous Deployment
is the next stage of the pipeline - connecting to a remote Docker Engine and deploying the new
version of the app. That stage could be a test environment which goes on to run a suite of
integration tests, and then the final stage could connect to the production cluster and deploy
the app to the live environment. In this chapter you'll learn how to expose the Docker API and
keep it protected, and how to connect to remote Docker Engines from your machine and from
a CI/CD pipeline.

15.1 Endpoint options for the Docker API
When you install Docker you don't need to configure the command line to talk to the API - the
default setup is for the Engine to listen on a local channel, and for the command line to use that
same channel. The local channel uses either Linux sockets or Windows named pipes, and those

300

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

are both network technologies which restrict traffic to the local machine. If you want to enable
remote access to your Docker Engine you need to explicitly set it in the configuration. There are
a few different options to set up the channel for remote access but the simplest is just to allow
plain, unsecured HTTP access.

Enabling unencrypted HTTP access is a horribly bad idea. It sets your Docker API to listen
on a normal HTTP endpoint and anyone with access to your network can connect to your Docker
Engine and manage containers - without any authentication. You might think that isn't too bad
on your dev laptop, but it opens up a nice easy attack vector. A malicious website could craft a
request to http://localhost:2375 where your Docker API is listening and start up a bitcoin mining
container on your machine, and you wouldn't know until you wondered where all your CPU had
gone.

I'll walk you through enabling plain HTTP access, but only if you promise not to do it again
after this exercise. At the end of this section we'll have a good understanding of how remote
access works, so we can disable the HTTP option and move onto more secure choices.

TRY IT NOW Remote access is an engine configuration option. You can set it easily in Docker Desktop on

Windows 10 or Mac by opening Settings from the whale menu and selecting "Expose daemon on

tcp://localhost:2375 without TLS". Figure 15.1 shows that option - once you save the setting, Docker will restart:

301

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.1 Enabling plain HTTP access to the Docker API - you should try and forget you saw this

If you're using Docker Engine on Linux or Windows server you'll need to edit the config file
instead. You'll find it at /etc/docker/daemon.json on Linux or on Windows at
C:\ProgramData\docker\config\daemon.json. The field you need to add is hosts,
which takes a list of endpoints to listen on. Code listing 15.1 shows the settings you need for
unsecured HTTP access, using Docker's conventional port 2375:

Code listing 15.1 Configuring plain HTTP access to the Docker Engine via daemon.json

 {
 "hosts": [
 # enable remote access on port 2375:
 "tcp://0.0.0.0:2375",
 # and keep listening on the local channel - Windows pipe:
 "npipe://"
 # OR Linux socket:
 "fd://"
],
 "insecure-registries": [
 "registry.local:5000"

]

302

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

}

You can check the Engine is configured for remote access by sending HTTP requests to the API,
and by providing a TCP host address in the Docker CLI.

TRY IT NOW The Docker command line can connect to a remote machine using the host argument. The

remote machine could be the localhost, but via TCP rather than the local channel:

connect to the local Engine over TCP:
docker --host tcp://localhost:2375 container ls

and using the REST API over HTTP:
curl http://localhost:2375/containers/json

The Docker and Docker Compose command lines both support a host parameter, which
specifies the address of the Docker Engine where you want to send commands. If the Engine is
configured to listen on the local address without security then the host parameter is all you
need; there's no authentication for users and no encryption of the network traffic. You can see
my output in figure 15.2 - I can list containers using the Docker CLI or the API:

303

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.2 When the Docker Engine is available over HTTP, anyone with the machine address can use it

Now imagine the horror of the ops team if you tell them you want to manage a Docker server
so you need them to enable remote access - and by the way that will let anyone do anything
with Docker on that machine, with no security and no audit trail. Don't underestimate how
dangerous this is. Linux containers use the same user accounts as the host server, so if you run
a container as the Linux admin account root - well, you've pretty much got admin access to
the server. Windows containers work slightly differently so you don't get unlimited server access
from within a container, but you can still do unpleasant things.

When you're working with a remote Docker Engine, any commands you send work in the
context of that machine. So if you run a container and mount a volume from the local disk, it's
the remote machine's disk that the container sees. That can trip you up if you want to run a
container on the test server which mounts the source code on your local machine. Either the
command will fail because the directory you're mounting doesn't exist on the server (which will
confuse you because you know it does exist on your machine), or worse: that path does exist

304

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

on the server and you won't understand why the files inside the container are different from
your disk. It also provides a useful shortcut for someone to browse a remote server's file system
if they don't have access to the server but they do have access to the Docker Engine.

TRY IT NOW Let's see why unsecured access to the Docker Engine is so bad. Run a container which mounts

the Docker machine's disk - and you can browse around the host's filesystem:

using Linux containers:
docker --host tcp://localhost:2375 container run -it -v /:/host-drive
diamol/base

OR Windows containers:
docker --host tcp://localhost:2375 container run -it -v C:\:C:\host-drive
diamol/base

inside the container, browse the filesystem:
ls
ls host-drive

You can see my output in figure 15.3 - the user who runs the container has complete access to
read and write files on the host:

305

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.3 Having access to the Docker Engine means you can get access to the host's file system

In this exercise you're just connecting to your own machine, so you're not really bypassing
security. But if you find out the name or IP address of the server which runs your containerized
payroll system, and that server has unsecured remote access to the Docker Engine - well, you
might be able to make a few changes and roll up to work in that new Tesla sooner than you
expected. This is why you never enable unsecured access to the Docker Engine, except as a
learning exercise.

306

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Before we go on let's get out of the dangerous situation we've created and go back to the
private local channel for the Docker Engine. Either uncheck the localhost box in the settings for
Docker Desktop or revert the config change you made for the Docker daemon, and then we'll
go on to look at the more secure options for remote access.

15.2 Configuring Docker for secure remote access
Docker supports two other channels for the API to listen on, and both are secure. The first uses
Transport Layer Security (TLS) - the same encryption technique based on digital certificates
used by HTTPS websites. The Docker API uses mutual TLS, so the server has a certificate to
identify itself and encrypt traffic, and the client also has a certificate to identify itself. The second
option uses the Secure Shell (SSH) protocol, which is the standard way to connect to Linux
servers but is also supported in Windows. SSH users can authenticate with username and
password or with private keys.

The secure options give you different ways to control who has access to your cluster. Mutual
TLS is the most widely used but comes with a management overhead in generating and rotating
the certificates. SSH requires you to have an SSH client on the machine you're connecting from,
but most modern operating systems do and it gives you an easier way to manage who has
access to your machines. Figure 15.4 shows the different channels the Docker API supports:

307

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.4 There are secure ways of exposing the Docker API, providing encryption and authentication

One important thing here - if you want to configure secure remote access to the Docker Engine,
you need to have access to the machine running Docker. And you don't get that with Docker
Desktop, because Desktop actually runs Docker in a VM on your machine, and you can’t
configure how that VM listens (except with the unsecured HTTP checkbox we've just used).
Don't try to follow the next exercises using Docker Desktop - you'll either get an error
telling you that certain settings can’t be adjusted, or worse it will let you adjust them and then
everything will break and you'll need to reinstall. For the rest of this section the exercises use
the online playground Play with Docker (PWD), but if you have a remote machine running Docker
(here's where your Raspberry Pi earns its keep), there are details in the readme file for this
chapter's source code on how to do the same without PWD.

We'll start by making a remote Docker Engine accessible securely using mutual TLS. For that
you need to generate certificate and key file pairs (the key file acts like a password for the
certificate) - one for the Docker API and one for the client. Larger organizations will have an

308

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

internal Certificate Authority (CA) and a team who own the certs and can generate them for
you. I've already done that, generating certs which work with PWD so you can use those.

TRY IT NOW Sign in to Play with Docker at https://labs.play-with-docker.com and create a new node. In that

session run a container which will deploy the certs and configure the Docker Engine on PWD to use the certs.

Then restart Docker:

create a directory for the certs:
mkdir -p /diamol-certs

run a container which sets up the certs & config:
docker container run -v /diamol-certs:/certs -v /etc/docker:/docker
diamol/pwd-tls:server

kill docker & restart with new config
pkill dockerd
dockerd &>/docker.log &

The container you ran mounted two volumes from the PWD node, and it copied the certs and a
new daemon.json file out from the container image onto the node. If you change the Docker
Engine configuration then you need to restart it, which is what the dockerd commands are
doing. You can see my output in figure 15.5 - at this point the engine is listening on port 2376
(which is the convention for secure TCP access) using TLS:

309

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

e
Figure 15.5 Configuring a Play with Docker session so the engine listens using mutual-TLS

One last step so we can actually send traffic from the local machine into the PWD node. Click
on the Open Port button and open port 2376. A new tab will open showing an error message -
ignore the message and copy the URL of that new tab to the clipboard. This is the unique PWD
domain for your session - it will be something like ip172-18-0-62-
bo9pj8nad2eg008a76e0-2376.direct.labs.play-with-docker.com - and you'll use it
to connect from your local machine to the Docker Engine in PWD. Figure 15.6 shows how you
open the port:

310

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.6 Opening ports in PWD lets you send external traffic into containers and the Docker Engine

Your PWD instance is now available to be remotely managed. The certificates you're using are
ones I generated using the OpenSSH tool (running in a container - the Dockerfile is in the
images/cert-generator folder if you're interested in seeing how it works). Now I'm not
going to go into detail on TLS certificates and OpenSSH because that's a long detour neither of
us would enjoy. But it is important to understand the relationship between the CA, the server
cert and the client cert. Figure 15.7 shows that:

311

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.7 A quick guide to mutual TLS - server certs and client certs identify the holder and share a CA

If you're going to use TLS to secure your Docker Engines, you'll be generating one CA, one
server cert for each Engine you want to secure and one client cert for each user you want to
allow access. Certs are created with a lifespan so you can make short-lived client certs to give
temporary access to a remote Engine. All of that can be automated but there's still overhead in
managing certificates. When you configure the Docker Engine to use TLS, you need to specify
the paths to the CA cert, and the server cert and key pair. Code listing 15.2 shows the TLS setup
which has been deployed on your PWD node:

Code listing 15.2 The Docker daemon configuration to enable TLS access

{
 "hosts": ["unix:///var/run/docker.sock", "tcp://0.0.0.0:2376"],
 "tls": true,
 "tlscacert": "/diamol-certs/ca.pem",
 "tlskey": "/diamol-certs/server-key.pem",

312

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

 "tlscert": "/diamol-certs/server-cert.pem"
}

Now that your remote Docker Engine is secured, you can’t use the REST API with cURL or send
commands using the Docker CLI unless you provide the CA certificate, client certificate and
client key. The API won't accept any old client cert either - it needs to have been generated
using the same CA as the server. Attempts to use the API without client TLS are rejected by the
Engine. You can use a variation of the image you ran on PWD to download the client certs on
your local machine, and use those to connect.

TRY IT NOW Make sure you have the URL for port 2376 access to PWD - that's how you'll connect from your

local machine to the PWD session - use the domain for your session which you copied earlier when you opened

port 2376. Try connecting to the PWD engine:

grab your PWD domain from the address bar - something like
ip172-18-0-62-bo9pj8nad2eg008a76e0-6379.direct.labs.play-with-docker.com

store your PWD domain in a variable - on Windows:
$pwdDomain="<your-pwd-domain-from-the-address-bar>"

OR Linux:
pwdDomain="<your-pwd-domain-goes-here>"

try accessing the Docker API directly:
curl "http://$pwdDomain/containers/json"

now try with the command line:
docker --host "tcp://$pwdDomain" container ls

extract the PWD client certs onto your machine:
mkdir -p /pwd-certs
cd ./ch15/exercises
tar -xvf pwd-client-certs -C /pwd-certs

connect with the client certs:
docker --host "tcp://$pwdDomain" --tlsverify --tlscacert /pwd-certs/ca.pem --
tlscert /pwd-certs/client-cert.pem --tlskey /pwd-certs/client-key.pem
container ls

you can use any Docker CLI commands:
docker --host "tcp://$pwdDomain" --tlsverify --tlscacert /pwd-certs/ca.pem --
tlscert /pwd-certs/client-cert.pem --tlskey /pwd-certs/client-key.pem
container run -d -P diamol/apache

It's a little cumbersome to pass the TLS parameters to every Docker command, but you can
also capture them in environment variables. If you don't provide the right client cert then you'll
get an error, and when you do provide the certs then you have complete control over your
Docker Engine running in PWD from your local machine - you can see that in figure 15.8:

313

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.8 You can only work with a TLS-secured Docker Engine if you have the client certs

The other option for secure remote access is SSH, and the advantage here is that the Docker
CLI just uses the standard SSH client and there's no need to make any config changes to the
Docker Engine. There are no certificates to create or manage, as authentication is handled by
the SSH server. On your Docker machine you need to create a system user for everyone you
want to have remote access; then they use those credentials when they run any Docker
commands against the remote machine.

314

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW Back in your PWD session, make a note of the IP address for node1 and then click to create

another node. Run these commands to manage the Docker Engine on node1 from the command line on node2

using SSH:

save the IP address of node1 in a variable:
node1ip="<node1-ip-address-goes-here>"

open an SSH session to verify the connection:
ssh root@$node1ip
exit

list the local containers on node2:
docker container ls

and list the remote containers on node1:
docker -H ssh://root@$node1ip container ls

Play with Docker makes this very simple, because it provisions nodes with all they need to
connect to each other. In a real environment you need to create users, and if you want to avoid
typing passwords you also need to generate keys and distribute the public key to the server and
the private key to the user. You can see from my output in figure 15.9 that this is all done in
the Play with Docker session and it works with no special setup:

315

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.9 Play with Docker configures the SSH client between nodes so you can use it with Docker

Ops people will have mixed feelings about using Docker over SSH. On the one hand it's much
easier than managing certificates and if your organization has a lot of Linux admin experience
then it's nothing new. On the other hand it means giving server access to anyone who needs
Docker access, which might be more privilege than they need. If your organization is primarily
Windows you can install the OpenSSH server on Windows and use the same approach, but it's
very different from how admins typically manage Windows server access. TLS might be a better
option in spite of the certificate overhead because it's all handled within Docker and it doesn't
need an SSH server or client.

Securing access to your Docker Engine with TLS or SSH gives you encryption - the traffic
between the CLI and the API can't be read on the network, and authentication - users have to
prove their identity in order to connect. The security doesn't provide authorization or auditing,
so you can't restrict what a user can do and you don't have any record of what they did do.
That's something you'll need to be aware of when you consider who needs access to which
environments. Users also need to be careful which environments they use - the Docker CLI
makes it super easy to switch to a remote engine, and it's a simple mistake to delete volumes
containing important test data because you thought you were connected to your laptop.

316

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

15.3 Using Docker Contexts to work with remote engines
You can point your local Docker CLI to a remote machine using the host parameter, along with
all the TLS cert paths if you're using a secured channel. It's awkward to do that for every
command you run, and Docker makes it easier to switch between Docker Engines using
Contexts. You create a Docker Context using the CLI, specifying all the connection details for
the Engine. You can create multiple contexts and all the connection details for each context are
stored on your local machine.

TRY IT NOW Create a context to use your remote TLS-enabled Docker Engine running in PWD

create a context using your PWD domain and certs:
docker context create pwd-tls --docker "host=tcp://$pwdDomain,ca=/pwd-
certs/ca.pem,cert=/pwd-certs/client-cert.pem,key=/pwd-certs/client-key.pem"

for SSH it would be:
docker context create local-tls --docker "host=ssh://user@server"

list contexts:
docker context ls

You'll see in your output that there's a default context which points to your local engine using
the private channel. My output in figure 15.10 is from a Windows machine so the default channel
uses named pipes. You also see there's a Kubernetes endpoint option too - you can use Docker
contexts to store the connection details for Kubernetes clusters too:

317

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.10 Adding a new context by specifying the remote host name and the TLS certificate paths

Contexts contain all the information you need to switch between local and remote Docker
Engines. This exercise used a TLS-secured engine, but you can run the same command with an
SSH-secured engine just by replacing the host parameter and cert paths with your SSH
connection string. Contexts can connect your local CLI to other machines on your local network
or on the public Internet. There are two ways to switch contexts - you can do it temporarily for
the duration of one terminal session, or you can do it permanently so it works across all terminal
sessions until you switch again.

TRY IT NOW When you switch contexts your Docker commands are sent to the selected engine – you don’t

need to specify host parameters:. You can switch temporarily with an environment variable or permanently with

the context use command:

switch to a named context with an environment variable - this is the
preferred way to switch contexts, because it only lasts for this session

on Windows:
$env:DOCKER_CONTEXT='pwd-tls'

318

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

OR Linux:
export DOCKER_CONTEXT='pwd-tls'

show the selected context:
docker context ls

list containers on the active context:
docker container ls

switch back to the default contetxt - switching contexts this way is not #
recommended because it's permanent across sessions:
docker context use default

list containers again:
docker container ls

The output is probably not what you expect, and you need to be careful with contexts because
of these different ways to set them. Figure 15.11 shows my output, with the context still set to
the PWD connection even though I've switched back to the default:

319

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.11 There are two ways to switch contexts, and if you mix them you’ll get confused

The context you set with docker context use becomes the system-wide default. Any new
terminal windows you open or any batch process you have running Docker commands will use
that context. You can override that using the DOCKER_CONTEXT environment variable, which
takes precedence over the selected context and only applies to the current terminal session. If
you regularly switch between contexts then I find it a good practice to always use the
environment variable option and leave the default context to be your local Docker engine.

320

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Otherwise it's very easy to start the day by clearing down all your running containers, forgetting
that yesterday you set your context to use the production server...

Of course you shouldn't need to regularly access the production Docker servers. As you get
further along your container journey you'll take more advantage of the easy automation Docker
brings and get to the place where the only users with access to Docker are the uber-admins and
the system account for the CI/CD pipeline.

15.4 Adding Continuous Deployment to your CI pipeline
Now we have a remote Docker machine with secure access configured, we can write a complete
CI/CD pipeline, building on the work we did with Jenkins in chapter 11. That pipeline covered
the Continuous Integration stages - building and testing the app in containers and pushing the
built image to a Docker registry. The Continuous Deployment stages add to that, deploying to
a testing environment for final signoff and then to production.

The difference between the CI stages and the CD stages is that the CI builds all happen
locally using the Docker Engine on the build machine, but the deployment needs to happen with
the remote Docker Engines. The pipeline can use the same approach we've done in the
exercises, using Docker and Docker Compose commands with a host argument pointing to the
remote machine, and providing security credentials. Those credentials need to live somewhere,
and it absolutely must not be in source control - the people who need to work with source code
are not the same people who need to work with production servers, so the credentials for
production shouldn't be widely available. Most automation servers let you store secrets inside
the build server and use them in pipeline jobs, and that separates credential management from
source control.

TRY IT NOW We'll spin up a local build infrastructure similar to chapter 11, with a local Git server, Docker

registry and Jenkins server all running in containers. There are scripts which run when this Jenkins container

starts to create credentials from the PWD certificate files on your local machine, so the CD stages will deploy to

PWD:

switch to the folder with the Compose files:
cd ch15/exercises/infrastructure

start the containers – using Windows containers:
docker-compose -f .\docker-compose.yml -f .\docker-compose-windows.yml up -d

OR with Linux containers:
docker-compose -f .\docker-compose.yml -f .\docker-compose-linux.yml up -d

When the containers are running browse to Jenkins at http://localhost:8080/credentials and log
in with username diamol and password diamol. You'll see the certificates for the Docker CA
and the client connection are already stored in Jenkins - they were loaded from the PWD certs
on your machine, and they’re are available to use in jobs. Figure 15.12 shows the certificates
loaded as Jenkins credentials:

321

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.12 Using Jenkins credentials to provide TLS certs for pipelines to connect to Docker on PWD

This is a fresh build infrastructure running in all-new containers. Jenkins is all configured and
ready to go thanks to the automation scripts it uses, but the Git server needs some manual
setup. You'll need to browse to http://localhost:3000 and complete the installation, create a
user called diamol and then create a repository called diamol. If you need a refresher on that
you can flick back to chapter 11 - figures 11.3, 11.4 and 11.5 show you what to do.

The pipeline we'll be running in this section builds a new version of the timecheck app from
chapter 12, which just prints the local time every 10 seconds. The scripts are all ready to go in
the source code for this chapter, but you need to make a change to the pipeline to add your
own PWD domain name. Then when the build runs it will run the CI stages and then deploy from
your local container to your PWD session - and we'll pretend PWD is both the User Acceptance
Test environment and production.

TRY IT NOW Open up the pipeline definition file in the folder ch15/exercises - use Jenkinsfile if

you're running Linux containers and Jenkinsfile.windows if you're using Windows containers. In the

environment section there are variables for the Docker registry domain and the UAT and production Docker

Engines. Replace pwd-domain with your actual PWD domain- be sure to include the port :80 after the domain

- PWD listens on port 80 externally, and maps that to port 2376 in the session:

 environment {
 REGISTRY = "registry.local:5000"
 UAT_ENGINE = "ip172-18-0-59-bngh3ebjagq000ddjbv0-2376.direct.labs.play-
with-docker.com:80"
 PROD_ENGINE = "ip172-18-0-59-bngh3ebjagq000ddjbv0-
2376.direct.labs.play-with-docker.com:80"

322

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

 }

Now you can push your changes to your local git server:

git remote add ch15 http://localhost:3000/diamol/diamol.git

git commit -a -m 'Added PWD domains'

git push ch15

Gogs will ask you to login -
use the diamol username and password you registered in Gogs

Now browse to Jenkins at http://localhost:8080/job/diamol/ and click Build Now.

This pipeline starts in the same way as the chapter 11 pipeline - fetching the code from Git,
building the app with a multi-stage Dockerfile, running the app to test that it starts and then
pushing the image to the local registry. Then come the new deployment stages - first there's a
deployment to the remote UAT engine and then the pipeline stops, waiting for human approval
to continue. This is a nice way to get started with CD, because every step is automated but
there's still a manual quality gate and that can be reassuring for organizations who aren’t
comfortable with automatic deployments to production. You can see in figure 15.13 that the
build has passed up to the UAT stage and now it's stopped at "Await approval":

323

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.13 The CI/CD pipeline in Jenkins has deployed to UAT and is waiting approval to continue

Your manual approval stage could be a whole day of testing with a dedicated team, or it could
be quick sanity check that the new deployment looks good in a production-like environment.
When you're happy with the deployment you go back to Jenkins and signal your approval, and
that goes on to the final stage - deploying to the production environment.

TRY IT NOW Back in your PWD session check the timecheck container is running and that it's writing out

the correct logs:

docker container ls

docker container logs timecheck-uat_timecheck_1

I'm sure everything will be fine, so back to Jenkins and click the blue box in the Await approval
stage. A window pops up asking for confirmation to deploy - click Do it! and the pipeline will
continue.

It's getting exciting now - we're nearly there with our production deployment. You can see
my output in figure 15.14, with the UAT test in the background and the approval stage in the
foreground:

324

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.14 The UAT deployment has worked correctly and the app is running in PWD. On to production!

The CD stages of the pipeline don't do anything more complex than the CI stages. There's a
script file for each stage which does the work using a single Docker Compose command, joining
together the relevant override files (this could easily be a docker stack deploy command
if the remote environment is a Swarm cluster). The deployment scripts expect the TLS certificate
paths and Docker host domain to be provided in environment variables, and those variables are
set up in the pipeline job.

It's important to keep that separation between the actual work which is done with the Docker
and Docker Compose CLIs, and the organization of the work which is done in the pipeline. That
reduces your dependency on a particular automation server and makes it easy to switch between
them. Code listing 15.3 shows part of the Jenkinsfile and the batch script which deploy to UAT.

Code listing 15.3 Passing Docker TLS certs to the script file using Jenkins credentials

the deployment stage of the Jenkinsfile:

325

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

stage('UAT') {
 steps {
 withCredentials(
 [file(credentialsId: 'docker-ca.pem', variable: 'ca'),
 file(credentialsId: 'docker-cert.pem', variable: 'cert'),
 file(credentialsId: 'docker-key.pem', variable: 'key')]) {
 dir('ch15/exercises') {
 sh 'chmod +x ./ci/04-uat.bat'
 sh './ci/04-uat.bat'
 echo "Deployed to UAT"
 }
 }
 }
}

and the actual script just uses Docker Compose:

docker-compose \
 --host tcp://$UAT_ENGINE --tlsverify \
 --tlscacert $ca --tlscert $cert --tlskey $key \
 -p timecheck-uat -f docker-compose.yml -f docker-compose-uat.yml \
up -d

Jenkins provides the TLS certs for the shell script from its own credentials. You could move this
build to GitHub Actions and you'd just need to mimic the workflow using secrets stored in the
GitHub repo, the build scripts themselves wouldn't need to change. The production deployment
stage is almost identical to UAT, it just uses a different set of Compose files to specify the
environment settings. We're using the same PWD environment for UAT and production, so when
the job completes you'll be able to see both deployments running.

TRY IT NOW Back to the PWD session for one last time, and you can check that your local Jenkins build has

correctly deployed to the UAT and production environments.

docker container ls

docker container logs timecheck-prod_timecheck_1

My output is in figure 15.15 - we have a successful CI/CD pipeline, running from Jenkins in a
local container and deploying to two remote Docker environments (which just happen to be the
same one in this case):

326

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 15.15 The deployment on PWD - to use a real cluster I’d just change the domain name and certs

This is amazingly powerful. It doesn't take any more than a Docker server to run containers for
different environments and a machine running Docker for the CI/CD infrastructure. You can
prove this out with a pipeline for your own app in a day (assuming you've already Dockerized
the components) and the path to production is just to spin up clusters and change the
deployment targets. Before you plan out your production pipeline, there is one other thing to be
aware of when you make your Docker Engine available remotely - even if it is secured - and
that's the access model for Docker resources.

15.5 Understanding the access model for Docker
This doesn't really need a whole section because the access model for Docker resources is very
simple, but it gets its own section to help it stand out. Securing your engine is all about
encrypting the traffic between the CLI and API, and authentication to ensure the user is allowed
access to the API. There’s no authorization - the access model is all or nothing. If you can’t
connect to the API you can't do anything, and if you can connect to the API you can do
everything.

Whether that frightens you or not depends on your background, your infrastructure and the
maturity of your security model. You might be running internal clusters with no public access,
using a separate network for your managers, with restricted IP access to that network, and you

327

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

rotate the Docker CA every day. That gives you defense in depth, but there's still an attack
vector from your own employees to consider (yes I know Stanley and Minerva are great team
players, but are you really sure they aren’t crooks? Especially Stanley).

There are alternatives, but they get complicated quickly. Kubernetes has a role-based access
control model, as does Docker Enterprise - so you can restrict which users can access resources,
and what they can do with those resources. Or there's a GitOps approach which turns the CI/CD
pipeline inside out, using a pull-based model so the cluster is aware when a new build has been
approved and the cluster deploys the update itself. Figure 15.16 shows that - there are no
shared credentials here because nothing needs to connect to the cluster:

Figure 15.16 The brave new world of GitOps - everything is stored in Git and clusters start deployments

GitOps is a very interesting approach, because it makes everything repeatable and versioned -
not just your application source code and the deployment YAML files, but the infrastructure
setup scripts too. It gives you the single source of truth for your whole stack in Git, which you
can easily audit and roll back. If the idea appeals to you but you're starting from scratch - well
it will take you a chunk of time to get there, but you can start with the very simple CI/CD
pipelines we've covered in this chapter and gradually evolve your processes and tools as you
gain confidence.

328

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

15.6 Lab
If you followed along with the CD exercise in section 15.4, you may have wondered how the
deployment worked at all, because the CI stage pushed the image to your local registry and
PWD can’t access that registry, so how did it pull the image to run the container? Well, it didn’t.
I cheated. The deployment override files use a different image tag, one from Docker Hub which
I built and pushed myself (sorry if you feel let down, but all the images from this book are built
with Jenkins pipelines so it's the same thing really). In this lab you're going to put that right.

The missing part of the build is in stage 3, which just pushes the image to the local registry.
In a typical pipeline there would be a test stage on a local server which could access that image
before pushing to the production registry, but we'll skip that and just add another push to Docker
Hub. This is the goal:

• tag your CI image so it uses your account on Docker Hub and a simple "3.0" tag
• push the image to Docker Hub - keeping your Hub credentials secure
• use your own Docker Hub image to deploy to the UAT and Production environments

There are a few moving pieces here, but go through the existing pipeline carefully and you'll see
what you need to do. Two hints: you can create a username/password credential in Jenkins and
make it available in your Jenkinsfile using the withCredentials block; the open port to a
PWD session sometimes stops listening, so you may need to start new sessions which will need
new PWD domains in the Jenkinsfile.

My solution on GitHub started as a copy of the exercises folder, so if you want to see what I
changed you can compare the files as well as checking the approach:

https://github.com/sixeyed/diamol/blob/master/ch15/lab/README.md

329

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion
https://github.com/sixeyed/diamol/blob/master/ch15/lab/README.md

16
Building Docker images that run
anywhere: Linux, Windows, Intel

and Arm

There are dozens of try-it-now exercises in this book, and if you've used different machines to
follow along you'll have seen that the exercises work in the same way on Mac, Windows, Linux
and Raspberry Pi. That's not an accident - I've built every Docker image in this book as a multi-
architecture image. Multi-arch images are built and pushed to registries with multiple variants,
each targeting a different operating system or CPU architecture, but all using the same image
name. When you use one of these images to run a container or to build another image, Docker
pulls the matching variant for the CPU and OS on your machine. If you use the same image
name on a different architecture, you'll get a different image variant, but it will be the same app
and it will work in the same way. It's a super-easy workflow for the user, but it takes some
effort for the image publisher. In this chapter you'll learn the different ways to produce multi-
arch builds, but if you're thinking of skipping this one because you don't use Windows or Arm,
you should at least read the first section to learn why this is a game-changing option.

16.1 Why multi-architecture images are important
Amazon Web Services provide different classes of compute for VMs which use Intel, AMD or Arm
processors. The Arm options (called A1 instances) are very nearly half the price of the Intel/AMD
options. AWS is the first major cloud to support Arm, but you can be sure that if the others start
to lose workloads to AWS because of the savings from Arm CPUs, then they'll add support too.
If you can take your exact same application and run it at nearly half the price, why wouldn't
you? Well - because it's hard to get apps built for Intel running on Arm.

330

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

On the other end of the scale IoT devices typically run Arm processors because they're
highly-efficient on power consumption (hence the price reduction in the cloud), and it would be
great to ship software to devices as container images too. But Arm CPU instructions are not
compatible with the standard x64 instructions that Intel and AMD use. So to support Arm CPUs
in the cloud or the edge (or in a datacenter full of Raspberry Pis) you need to use an application
platform which can run on Arm, and you need to build your app using an Arm machine. That's
the hard part which Docker solves, both for production build farms and for the developer
workflow. Docker Desktop supports emulation to build Docker images and run containers with
the Arm architecture, even on Intel machines.

TRY IT NOW This one's not for Docker Engine or PWD users I'm afraid, because the engine alone doesn't

have Arm emulation - that only comes with Docker Desktop. You can do this on Mac or Windows (in Linux

container mode). First you need to enable experimental mode from the whale icon settings - see figure 16.1:

Figure 16.1 Enabling experimental mode unlocks features which are still under development

Now open a terminal and build an image using Arm emulation:

switch to the exercises folder:
cd ch16/exercises

build for 64-bit Arm:

331

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

docker build -t diamol/ch16-whoami:linux-arm64 --platform linux/arm64 ./whoami

check the architecture of the image:
docker image inspect diamol/ch16-whoami:linux-arm64 -f
'{{.Os}}/{{.Architecture}}'

and the native architecture of your engine:
docker info -f '{{.OSType}}/{{.Architecture}}'

You'll see that the image you built is targeted for the 64-bit Arm platform, even though your
own machine is running on a 64-bit Intel or AMD machine. This image uses a multi-stage
Dockerfile to compile and package a .NET Core application. The .NET Core platform runs on Arm,
and the base images in the Dockerfile (for the SDK and the runtime) have Arm variants available.
That's all you need to support cross-platform builds. You could push this image to a registry and
run a container from it on a genuine Arm machine (like the Raspberry Pi or an A1 instance in
AWS) and it will work just fine. You can see my output in figure 16.2, where I've built an Arm
image from an Intel machine:

Figure 16.2 Cross-platform support, building Arm images from Intel machines using emulation

Docker knows many things about your machine, including the operating system and the CPU
architecture, and it will use those as a match when you try to pull images. Pulling an image is
more than just downloading the layers - there's optimization there to expand the compressed
layers and get the image ready to run. That optimization only works if the image you want to
use is a match for the architecture you're running on, so if there's no match then you'll get an
error - you can't pull the image to even try and run a container.

332

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW You can use any Docker Engine running Linux containers to verify this - try downloading a

Microsoft Windows image:

pull the Windows Nano Server image:
docker image pull mcr.microsoft.com/windows/nanoserver:1809

You can see my output in figure 16.3 - Docker gets the OS and CPU of the current engine, and
checks to see if there's a matching variant in the registry. There is no match so the image isn't
pulled and I get an error:

Figure 16.3 You can't pull an image from a registry if there's no variant to match your OS and CPU

The manifest list is the set of variants for the image. The Windows Nano Server image isn't truly
multi-architecture, it will only run on Windows containers so there are no Linux variants in the
manifest list. The basic principle is that the architecture for the image has to match the
architecture of the engine but there are a few nuances - Linux images can be pulled for non-
matching CPU architectures, but containers will fail with an obscure user process caused "exec
format error"; some Windows engines have an experimental feature called Linux Containers on
Windows (LCOW), so they can run Linux containers (but complex apps will fail with even more
obscure logs). It's best to stick to the matching architecture for the engine, and multi-arch
images let you tailor the image to each OS and CPU if you need to.

16.2 Building multi-arch images from one or more Dockerfiles
There are two approaches to building multi-arch images. In the first you follow the example of
the whoami app in this chapter's exercises: write a multi-stage Dockerfile which compiles the
app from source and packages it to run in a container. If the images you use for the SDK and
runtime support all the architectures you want to support, then you're good to go. The huge
benefit of this approach is that you have a single Dockerfile and you build it on different machines
to get the architectures you want to support. I use this approach to build my own golden images
for the .NET Core stack; figure 16.4 shows the approach for the SDK:

333

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 16.4 Use a multi-stage Dockerfile based on multi-arch images to build your own multi-arch image

You can't follow this approach if your source image isn't a multi-arch image, or it doesn't support
all the images you want to support. Most of the official images on Docker Hub are multi-arch,
but they don't all support every variation that you might want. In that case you'll need different
Dockerfiles, maybe one for Linux and one for Windows, or maybe additional ones for Arm 32-
bit and 64-bit. This approach takes more management because you have multiple Dockerfiles
to maintain, but it gives you a lot more freedom to adapt behavior for each target architecture.
I use this approach for my golden image for Maven (a tool to build Java apps) - figure 16.5
shows the stack:

334

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 16.5 You can also build multi-arch images using Dockerfiles tailored for each architecture

In the exercises for this chapter there's a folder-list app which is very simple - it just prints
some basic information about the runtime and then lists the contents of a folder. There are four
Dockerfiles, one each for the architectures supported in this book: Windows on Intel, Linux on
Intel, Linux on 32-bit Arm and Linux on 64-bit Arm. You can use Docker Desktop's CPU emulation
with Linux containers to build and test three of those.

TRY IT NOW Build images for different platforms using the Dockerfile for that platform. Each Dockerfile is

slightly different so we can compare the results when we run containers:

build for the native architecture - Intel/AMD:
docker image build -t diamol/ch16-folder-list:linux-amd64 -f
.\Dockerfile.linux-amd64 .

build for Arm 64-bit:
docker image build -t diamol/ch16-folder-list:linux-arm64 -f
.\Dockerfile.linux-arm64 --platform linux/arm64 .

335

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

and for Arm 32bit
docker image build -t diamol/ch16-folder-list:linux-arm -f .\Dockerfile.linux-
arm --platform linux/arm .

run all the containers and verify the output:
docker container run diamol/ch16-folder-list:linux-amd64

docker container run diamol/ch16-folder-list:linux-arm64

docker container run diamol/ch16-folder-list:linux-arm

The containers print some simple text when they run - a hard-coded string stating the OS and
architecture they should be using, followed by the actual OS and CPU reported by the operating
system, and then a folder list containing a single file. You can see my output in figure 16.6 -
running each of the Linux variants, Docker uses emulation where necessary:

Figure 16.6 Images are built for a specific architecture but Docker Desktop supports emulation too

The Dockerfiles for the Linux variants are all very similar, except for the hard-coded string for
the expected architecture. The Windows variant has the same behavior but Windows has
different commands to print the output. This is where multiple Dockerfiles for each architecture
becomes useful, because I can have completely different Dockerfile instructions but still get the

336

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

same desired output. Code listing 16.1 compares the Dockerfile for the 64-bit Arm Linux version
and the 64-bit Intel Windows version:

Code listing 16.1 Dockerfiles for Linux and Windows image variants

linux
FROM diamol/base:linux-arm64

WORKDIR /app
COPY file.txt .

CMD echo "Built as: linux/arm64" && \
 uname -a && \
 ls /app

windows
escape=`
FROM diamol/base:windows-amd64

WORKDIR /app
COPY file.txt .

CMD echo Built as: windows/amd64 && `
 echo %PROCESSOR_ARCHITECTURE% %PROCESSOR_IDENTIFIER% && `
 dir /B C:\app

Each version starts with a different FROM image, which is specific to the target architecture
rather than a multi-arch image. The Windows Dockerfile uses the escape keyword to change
the line-break character changing it to a backtick instead of the default backslash, so I can use
backslashes in directory paths. There's no Windows equivalent of the Linux uname command,
so to print the CPU architecture I echo out some environment variables which Windows sets.
The functionality is broadly the same, but I can take a different path to get there because this
is a Windows-specific Dockerfile.

You typically need multiple Dockerfiles if you want to build a multi-arch version of a third-
party app. The Prometheus and Grafana golden images for this book are good examples. The
project team publishes multi-arch images for all the Linux variants I want to use, but not for
Windows. So I have a Linux Dockerfile which is based on the project image and a Windows
Dockerfile which installs the app from a web download. For your own apps it should be easy to
have a single Dockerfile and avoid the extra maintenance, but you need to be careful that you
only use a subset of OS commands which you know work in all the target architectures. It's
easy to accidentally include a command (like uname) which doesn't work on one architecture
and end up with a broken variant.

TRY IT NOW There's one other Dockerfile for the folder-list app, which is an attempt at a multi-arch Dockerfile.

It uses a multi-arch image as the base but it mixes Linux and Windows commands, so the image it builds will

fail on every architecture.

build the multi-arch app:
docker image build -t diamol/ch16-folder-list .

337

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

and try to run it:
docker container run diamol/ch16-folder-list

You'll find that the build completes successfully, so it looks like you have a good image, but the
container will fail every time you run it. You can see my output in figure 16.7 - I run both Linux
and Windows versions of the image and both containers fail because the CMD instruction contains
invalid commands:

Figure 16.7 It's easy to build a multi-arch image which fails at runtime on some platforms

It's important to bear this in mind, especially if you use complex startup scripts. RUN instructions
will fail at build time if you use an unknown OS command, but CMD instructions aren't verified
so you won't know the image is broken until you try to run a container.

One last thing here before we go on to push multi-arch images, and that's to understand
which architectures Docker supports, and the various strange codenames you'll encounter when
you start using them. Table 16.1 shows the major OS and architecture combinations and aliases
for the CPU:

OS CPU Word Length CPU Name CPU Aliases

Windows Intel/AMD 64-bit amd64 x86_64

Linux Arm 64-bit amd64 x86_64

338

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Linux Arm 64-bit arm64 aarch64, armv8

Linux Arm 32-bit arm arm32v7, armv7, armhf

Docker supports many more architectures, but these are the main ones you'll find. The amd64
CPU type is the same instruction set in Intel and AMD machines which power practically every
desktop, server and laptop computer (Docker also supports 32-bit Intel x86 processors). 32-bit
and 64-bit Arm CPUs are found in phones, IoT devices and single-board computers; the most
famous is the Raspberry Pi which was 32-bit up until the release of the Pi4 which is 64-bit.
Mainframe users aren't left out either - Docker supports IBM CPU architectures for Linux, so if
you have an IBM Z, POWER or PowerPC machine in your basement you can migrate your
mainframe apps to Docker containers too.

16.3 Pushing multi-arch images to registries with manifests
You can build Linux images for different CPU architectures using Docker Desktop, but they don't
become a multi-arch image until you push them to a registry along with a manifest. The manifest
is a piece of metadata which links multiple image variants to the same image tag. Manifests are
generated using the Docker command line and pushed to a registry. The manifest contains a list
of all the image variants and they need to exist on the registry first, so the workflow is to create
and push all the images, then create and push the manifest.

TRY IT NOW Push the image variants of the folder-list app you've built. First you'll need to tag them with your

Docker Hub ID so you can push them to your account - you don't have permission to push to the diamol

organization:

store your Docker ID in a variable - on Windows:
$dockerId = '<your-docker-hub-id>'

or on Linux:
dockerId='<your-docker-hub-id>'

tag the images with your own account name:
docker image tag diamol/ch16-folder-list:linux-amd64 "$dockerId/ch16-folder-
list:linux-amd64"

docker image tag diamol/ch16-folder-list:linux-arm64 "$dockerId/ch16-folder-
list:linux-arm64"

docker image tag diamol/ch16-folder-list:linux-arm "$dockerId/ch16-folder-
list:linux-arm"

and push to Docker Hub (this pushes all the tags for the image):
docker image push "$dockerId/ch16-folder-list"

You'll see all your images get pushed to Docker Hub. Docker registries are architecture-agnostic,
the image specification is the same for all architectures and the registry stores them all in the

339

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

same way. Registries do know the architecture an image was built for, and they provide that to
the Docker Engine as a check before it pulls them. My output is in figure 16.8 - the architecture
for each image is stored in the image metadata, I've included it in the tags too but that's not a
requirement:

Figure 16.8 Pushing all the image variants is the first stage in making a multi-arch image available

Managing Docker manifests is a feature of the command line, but it's a new addition so you
need to enable experimental features. The CLI and the Docker Engine both support experimental
features which you have to explicitly opt-in to use. Your engine may already be using them but

340

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

you need to enable them for the client too. You can do that in the settings on Docker Desktop,
or with a command line for the Docker engine.

TRY IT NOW If you're using Docker Desktop open Settings from the whale menu and navigate to the

Command Line section. Toggle the Enable experimental features flag, as in figure 16.9:

Figure 16.9 Enabling experimental features for the CLI unlocks the docker manifest commands

If you're using Docker Community Engine (or Enterprise Engine) then edit or create the CLI config file from your

home directory: ~/.docker/config.json. You just need one setting:

{ "experimental":"enabled" }

Now that your CLI is in experimental mode, you've unlocked docker manifest commands
which you can use to create manifests locally and push them to a registry, and also inspect
existing manifests on a registry. Inspecting manifests is a great way to see what architectures
an image supports without having to navigate the Docker Hub UI - you don't need to have pulled
any of the images locally, the command reads all the metadata from the registry.

TRY IT NOW Verify your CLI is working for manifest commands by checking the published manifest of the

base image for this book:

docker manifest inspect diamol/base

The manifest inspect command doesn't have a filter argument so you can't limit the output.
It will show you all the image manifests for the image tag - so it works with single images as
well as multi-arch images. In the output you see each image's unique digest, along with the
CPU architecture and operating system. My output is in figure 16.10 - I used the jq command
to filter the output, but that's just to make it easier to read; you don't need to do that yourself:

341

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 16.10 Multi-arch images have several manifests; each contains the architecture of the image

Now you can create the manifest, and just like images it will exist on your local machine first
and then you'll push it up to the registry. Technically what you're creating is a manifest list,
which groups together a set of images under a single image tag. Every image already has its
own manifest which you can inspect from the registry, but if multiple manifests are returned
then you have a multi-architecture image. Figure 16.11 shows the relationship between images,
manifests and manifest lists:

342

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 16.11 Manifests and manifest lists exist on a Docker registry and contain metadata about images

You can think of a manifest list is as a list of image tags, and the name of the manifest list as
the name of the multi-arch image. The images you've built so far all have tags to identify the
OS and CPU; you can create a manifest using the same image name without a tag - and that
will be available as a multi-arch image using the default latest tag. You could also push your
images with a tag that includes a version number in addition to the OS and CPU, and then the
multi-arch tag would just be the version number.

TRY IT NOW Create a manifest to link all the Linux variants and then push it to Docker Hub. The name of the

manifest becomes the image tag of the multi-arch image.

create a manifest with a name, followed by all the tags it lists:
docker manifest create "$dockerId/ch16-folder-list" "$dockerId/ch16-folder-
list:linux-amd64" "$dockerId/ch16-folder-list:linux-arm64" "$dockerId/ch16-
folder-list:linux-arm"

push the manifest to Docker Hub:
docker manifest push "$dockerId/ch16-folder-list"

now browse to your page on Docker Hub and check the image

343

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

You'll find when you browse to the image on Docker Hub there's a latest tag with multiple
variants - the UI shows the OS and CPU architecture, and the digest which uniquely identifies
each image. Anyone with a Linux Docker Engine can run a container from that image and it will
run the amd64 variant on an Intel or AMD machine, the arm64 variant on an AWS A1 machine
or the latest Raspberry Pi, and the arm variant on older Pis. You can see my repo on Docker
Hub in figure 16.12:

Figure 16.12 A mutli-arch image has a single name but many variants. Docker Hub shows all the variants

344

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

These Arm images were built with emulation in Docker Desktop, and that's only really viable for
occasional builds. Emulation is slow and not every instruction works in the same way under
emulation as it does in a real CPU. If you want to support multi-arch images and you want builds
to be fast and 100% accurate for the target CPU, you need a build farm. That's what I have to
build the images in this book - a handful of single-board computers with different CPU
architectures, set up with all the operating systems I want to support. My Jenkins jobs connect
to the Docker Engine on each machine to build an image variant for each architecture and push
it to Docker Hub, and then the job creates and pushes the manifest.

16.4 Building multi-arch images with Docker buildx
There's another way to run a Docker build farm which is more efficient and far easier to use,
and that's with a new feature of Docker called buildx. Buildx is an extended version of the Docker
build commands, and it uses a new build engine which is heavily optimized to improve build
performance. It still uses Dockerfiles as the input and produces images as the output so you
can use it as straight replacement for docker image build. Buildx really shines for cross-
platform builds though, because it integrates with Docker contexts, and it can distribute builds
across multiple servers with a single command.

Buildx doesn't work with Windows containers right now, and it only supports building from a
single Dockerfile so it won't cover every scenario (I can’t use it for building the images for this
book). But if you only need to support CPU variants for Linux it works very nicely. You use buildx
to create and manage the build farm, as well as for building images. We'll walk through a full
end-to-end sample using Play with Docker so you can try out a real distributed build farm. The
first step is to create a Docker context for each node in the build farm.

TRY IT NOW Start by setting up your PWD session. Browse to https://play-with-docker.com, and add two

instances to your session. We'll use node1 for all commands. First store the IP address of node2 and verify the

SSH connection, then create contexts for node1 and node2:

store the IP address of node2:
node2ip=<your-node-2-ip>

verify the ssh connection:
ssh $node2ip

#then exit so you're back in node1
exit

create a context for node1 using the local socket:
docker context create node1 --docker "host=unix:///var/run/docker.sock"

and a context for node2 using SSH:
docker context create node2 --docker "host=ssh://root@$node2ip"

check the contexts are there:
docker context ls

345

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Those contexts are there to make the buildx setup easier. You can see my output in figure
16.13- node1 is the client where I'll run buildx so it uses the local channel, and it's configured
to connect to node2 over SSH:

Figure 16.13 Buildx can use Docker contexts to set up a build farm, so creating contexts is the first step

Setting up your contexts is the first part of the build farm. In a real environment your automation
server would be the buildx client, so you'd create your Docker contexts in Jenkins (or whichever
system you use). You'd have one or more machines for every architecture you want to support
and you'd create a Docker context for each of them. The machines don't need to be clustered
with Swarm or Kubernetes; they can be standalone machines just used for building images.
Next you need to install and configure buildx. Buildx is a Docker CLI plugin - the client is already
installed in Docker Desktop and the latest Docker CE releases (you can check by running docker
buildx). PWD doesn't have buildx so we'll need to manually install it, and then set up a builder
which uses both our nodes.

346

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW Buildx is a Docker CLI plugin - to use it you need to download the binary and add it to your CLI

plugins folder:

download the latest buildx binary:
wget -O ~/.docker/cli-plugins/docker-buildx
https://github.com/docker/buildx/releases/download/v0.3.1/buildx-v0.3.1.linux-
amd64

set the file to be executable:
chmod a+x ~/.docker/cli-plugins/docker-buildx

now the plkugin is there, use it to create a builder using node1:
docker buildx create --use --name ch16 --platform linux/amd64 node1

and add node2 to the builder:
docker buildx create --append --name ch16 --platform linux/386 node2

check the builder setup:
docker buildx ls

Buildx is very flexible. It discovers potential build nodes using Docker context and it connects
to see which platforms they support. You create a builder and add nodes to it - and you can
either let buildx work out which platforms each node can build, or you can be specific and limit
nodes to particular platforms. That's what I've done here so node1 will only build x64 images,
and node2 will only build 386 images - you can see that in figure 16.14:

347

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 16.14 Setting up a build farm is easy with buildx; it uses Docker contexts to connect to engines

Now the build farm is ready. It can build multi-arch images which can run as 32-bit or 64-bit
Intel Linux containers, as long as the Dockerfile it’s building uses images which support those
two architectures. Buildx spins up builds concurrently across the builder nodes, sending them
the Dockerfile and the folder with the Docker build context (which would normally contain your
source code). You can clone the Git repository for this book in your PWD session and then build
and push a multi-arch image for this exercise using a single buildx command.

TRY IT NOW Clone the source code and switch to a folder which contains a multi-arch Dockerfile for the

folder-list app. Build and push multiple variants using buildx:

git clone https://github.com/sixeyed/diamol.git

cd diamol/ch16/exercises/folder-list-2/

store your Docker Hub ID and log in so buildx can push images:
dockerId=<your-docker-id>

348

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

docker login -u $dockerId

use buildx to build and push both variants using node1 and node2:
docker buildx build -t "$dockerId/ch16-folder-list-2" --platform
linux/amd64,linux/386 --push .

The output from a buildx build is impressive, it's a great thing to have running when other people
can see your screen. The client shows log lines from each builder node, and you get lots of fast
output so it looks like you're doing something immensely technical. Actually buildx does all the
work and you'll see from the output that it even pushes the images, creates the manifest and
pushes the manifest for you. Figure 16.15 shows the end of my build and the image tags on
Docker Hub:

Figure 16.15 Buildx distributes the Dockerfile and build context, collects logs and pushes images

349

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Buildx makes these multi-arch builds very simple. You supply the nodes for each architecture
you want to support and buildx can use them all, so your build commands don’t change whether
you're building for two architectures or 10. There's an interesting difference with buildx images
on Docker Hub - there are no individual image tags for the variants, there's just the single multi-
arch tag. Compare that to the previous section where we manually pushed the variants and then
added the manifest - all the variants have their own tags on Docker Hub, and as you build and
deploy more image versions that can get hard for users to navigate. If you don’t need to support
Windows containers, buildx is the best way to build multi-arch images right now.

16.5 Understanding where multi-arch images fit in your roadmap
But maybe you don't need multi-arch images right now. That's fine - thanks for reading through
this chapter anyway. It's definitely worth knowing how multi-arch images work and how you
can build your own, even if you don't plan to do that yet - because they well may come onto
your roadmap. You may take on a project which needs to support IoT devices or you may need
to cut cloud running costs, or maybe your customers are clamoring for Windows support. Figure
16.16 shows how projects can evolve with the need to support multi-arch images, adding more
variants over years when the need arises:

Figure 16.16 Projects launch with Linux Intel support and add variants as they become popular

350

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

You can future-proof yourself and make the switch to multi-arch images easy if you stick to two
simple rules for all your Dockerfiles: always use multi-arch images in your FROM instructions
and don't include any OS-specific commands in RUN or CMD instructions. If you need some
complex deployment or startup logic, you could build that into a simple utility app using the
same language as your application, and compile that in another stage of the build.

All the official images on Docker Hub are multi-arch, so it's a good idea to use those as your
base images (or create your own golden base images using the official images). All the golden
images for this book are multi-arch too, and if you're looking for inspiration you can check the
images folder in source for a large suite of examples. As a rough guide all the modern
application platforms support multi-arch (Go, Node.js, .NET Core, Java) and if you're looking for
a database then Postgres is the best multi-arch option I've found.

There aren't any managed build services out there which support the full range of
architectures - some support Linux and Windows, but if you also want Arm you'll need to set
that up yourself. You could run a fairly cheap build farm on AWS using Linux, Windows and Arm
VMs with Docker installed; if you need Linux and Windows but not Arm you could use a managed
service like Azure DevOps or GitHub Actions. The important thing is not to assume you'll never
need to support other architectures: follow best practices in your Dockerfiles to make multi-arch
support easy, and know what steps you need to take to evolve your build pipeline if you do need
to add multi-arch support.

16.6 Lab
This chapter's lab asks you to fix up a Dockerfile so it can be used to produce multi-arch images.
It's the sort of thing you may come across if you have a Dockerfile which didn't follow my best-
practice suggestions - this Dockerfile is based on an image for a specific architecture and it uses
OS commands which are not portable. I'd like you to fix the Dockerfile in the lab folder for this
chapter so it can build an image targeted for Linux on Intel or Arm, and Windows on Intel. There
are lots of ways to solve this; just a couple of hints for you:

• some Dockerfile instructions are cross-platform while equivalent OS commands in a RUN
instruction may not be

• some Windows commands are the same as Linux, and in the golden base image for the
book there are some aliases to make other Linux commands work in Windows

• You'll find my approach in the Dockerfile.solution file on GitHub for the chapter:
• https://github.com/sixeyed/diamol/blob/master/ch16/lab/README.md

351

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion
https://github.com/sixeyed/diamol/blob/master/ch16/lab/README.md

17
Optimizing your Docker images for

size, speed and security

Once you have your apps containerized and working well in a cluster you may think that
you're good to go to production - but there are some best practices you still need to invest
time in. Optimizing your Docker images is one of the most important, because you need your
builds and deployments to be fast, your application content to be secure and you do not want
to be paged at 2 a.m. when your servers have run out of disk space. The Dockerfile syntax is
small and intuitive, but it hides some complexity which you need to understand to make the
most of your image builds. This chapter will take you through the finer details of the image
format so you know how and why to optimize it - we'll be building on chapter 3 where we
learned that Docker images are actually merged from multiple image layers.

17.1 How you optimize Docker images
The Docker image format is heavily optimized. Layers are shared between images wherever
possible, which reduces build times, network traffic and disk usage. But Docker has a
conservative approach towards data and it doesn't automatically remove images which you've
pulled, that's always something you need to do explicitly. So when you replace containers to
update your application, Docker will download the new image layers but it won't remove any
of the old image layers. It's easy to find your disk gets swallowed up with lots of old image
layers, especially on development or test machines which are regularly updating.

TRY IT NOW You can see how much disk space your images are physically using with the system df

command, which also shows container, volume and build cache disk usage:

docker system df

352

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

If you've never cleared down your Docker Engine you'll probably be surprised at the results.
My output is in figure 17.1 - you can see there are 185 images totaling 7.5GB of storage, even
though I'm not running any containers:

Figure 17.1 It’s easy to see your disk swallowed up by Docker images you’re not even using

This example is a mild one - I've seen unloved servers which have been running Docker for
years wasting hundreds of gigabytes with unused images. It's a good habit to run docker
system prune regularly - it clears down image layers and the build cache without removing
full images. You can run it with a scheduled job to clear down unused layers, but if your
images are optimized it will be less of an issue. Optimizing some part of your technology stack
is often a cyclical process with many small improvements, but with Docker it's actually very
easy to make big improvements by following some simple best practices.

The first is not to include files in your image unless you need them. It sounds obvious but
you'll often write a Dockerfile which copies in a whole folder structure, without realizing that
the folder includes documentation or images or other binaries which aren't needed at runtime.
Being explicit on the files you copy can be the first big saving you make. Compare the
Dockerfiles in code listing 17.1 - the first example copies in a whole folder, the second
example realizes the copy added some extra files and includes a new step to delete them:

Code listing 17.1 Trying to optimize a Dockerfile by removing files

Dockerfile v1 – copies in the whole directory structure:
FROM diamol/base
CMD echo app- && ls app && echo docs- && ls docs
COPY . .

353

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Dockerfile v2 – adds a new step to delete unused files
FROM diamol/base
CMD echo app- && ls app && echo docs- && ls docs
COPY . .
RUN rm -rf docs

In the v2 Dockerfile you'd think the image size would be smaller because it deletes the extra
docs folder, but that's not how image layers work. The image is a merge of all the layers, so
the files still exist from the COPY layer; they just get hidden in the delete layer, and the total
image size doesn’t shrink.

TRY IT NOW Build both examples and compare the sizes

cd ch17/exercises/build-context

docker image build -t diamol/ch17-build-context:v1 .

docker image build -t diamol/ch17-build-context:v2 -f .\Dockerfile.v2 .

docker image ls -f reference= diamol/ch17*

You'll find that the v2 image is exactly the same size as the v1 image, as if the rm command
to delete the folder hadn't been run at all. You can see my output in figure 17.2 - I'm using
Linux containers so the sizes are tiny, but almost half of the size is from unnecessary files in
the docs folder:

Figure 17.2 Surprise! Deleting files doesn’t reduce the image size if the delete is in its own layer

Each instruction in a Dockerfile produces an image layer, and layers are merged together to
form the whole image. If you write files in a layer those files are permanently there; if you
delete them in a subsequent layer, all Docker does is to hide them in the filesystem. This is a
fundamental thing to understand when you come to image optimization - it's no good trying to
remove bloat in later layers, you need to optimize every layer. You can easily see that the

354

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

delete layer just hides the files by running an image from the previous layer, before the delete
happened.

TRY IT NOW You can run a container from any image layer if you have those layers in your cache. Compare

the final image with the previous image layer:

run a container from the finished image:
docker container run diamol/ch17-build-context:v2

check the image history to find the previous layer ID:
docker history diamol/ch17-build-context:v2

run a container from that previous layer:
docker container run <previous-layer-id>

There’s nothing special about the final layer in an image. You can run a container from a layer
part-way through the image stack and you'll see the filesystem merged up to the point of that
layer. My output is in figure 17.3 - you can see that the deleted files are all available when I
run a container from the previous image layer:

355

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 17.3 The merged filesystem hides deleted files – but you can get to them from a previous layer

This is the first point about optimizing - don't copy anything into the image that you don't
need to run the app; even if you try to delete it in later instructions, it will still be there
somewhere in the image stack taking up disk space. It's much better to be precise in your
COPY instructions to only bring the files you want into the image. That makes for smaller
image sizes and also a more clearly documented installation in your Dockerfile. Code listing
17.2 shows the optimized v3 Dockerfile for this simple app - the only change from v1 is to
copy the app subfolder rather than the whole of the directory:

Code listing 17.2 An optimized Dockerfile which only copies necessary files

FROM diamol/base

356

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

CMD echo app- && ls app && echo docs- && ls docs
COPY ./app ./app

When you build this you'll see the image size is smaller, but there's another optimization you
can make here too. Docker compresses the build context (the folder where you run the build)
and sends it to the engine along with the Dockerfile when you run a build. That's how you can
build images on a remote engine from files on your local machine. The build context often has
files you don't need, so you can exclude them from the build context by listing file paths or
wildcards in a file called .dockerignore.

TRY IT NOW Build the optimized Docker image, and then build it again with a .dockerignore file to reduce

the size of the context

build the optimized image; this adds unused files to the context:
docker image build -t diamol/ch17-build-context:v3 -f .\Dockerfile.v3 .

now rename the ready preapred ignore file and check the contents:
mv rename.dockerignore .dockerignore
cat .dockerignore

run the same build command again:
docker image build -t diamol/ch17-build-context:v3 -f .\Dockerfile.v3 .

You'll see that in the first build command Docker sends 2MB of build context to the engine.
That's not compressed so it's the full size of the files in that folder - most of which is a 2MB
picture of a whale. In the second build there's a .dockerignore file in the current directory
which tells Docker to exclude the docs folder and the Dockerfiles, so the build context then is
only 4KB. You can see my output in figure 17.4:

357

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 17.4 Using a .dockerignore file reduces the size of the build context and the time to send it

A .dockerignore file can save you a lot of time when you cut the cost of sending unused
data in the build context, and it can save space – even when you're using explicit paths in
your Dockerfile. It could be you're building the code locally and also using a multi-stage build
to compile in Docker - you can specify the build binaries in your .dockerignore file and be
sure they won't get copied into the image. The file format is the same as Git's .gitignore
file and you can use the template for your app platform from GitHub as a good starting point
(you should include the Git history folder .git if your Dockerfile is at the root of the repo
too).

Now you've seen the importance of managing the files which make it into your Docker
image, we're going to take a step back and look at the image you're using as a base.

17.2 Choosing the right base images
Base image size choice is as much about security as it is disk space and network transfer time.
If your base OS image is large then it probably has all sorts of tools which might be useful on
a real machine but are a security hole in a container. If your OS base image has cURL installed
then an attacker could use that to download malware or upload your data to their servers, if
they manage to break out of your app into the container.

358

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

That's also true of application platform base images. If you're running Java apps then the
OpenJDK official image is a good base - but there are many tags with different configurations
of the Java runtime (the JRE) and the developer SDK (the JDK). Table 17.1 shows the size
difference between the multi-arch images for the SDK versus the runtime and the most
minimal versions:

:11-jdk :11-jre :11-jre-slim :11-jre-nanoserver-1809

Linux 296MB 103MB 69MB

Windows 2.4GB 2.2GB 277MB

Linux users can use a 69MB base image instead of 296MB, and Windows users can use 277MB
instead of 2.4GB - just by checking the variants on Docker Hub and picking the ones with the
smallest OS image and the smallest Java installation. The OpenJDK team are cautious with
their multi-arch images and they select images with the widest compatibility, but it's simple to
try your app with a smaller variant. As a good rule use Alpine or Debian Slim images as the
base OS for Linux containers, and Nano Server for Windows containers (the alternative is
Windows Server Core, which is pretty much the full Windows Server OS - that's where the
gigabytes of disk go). Not every app will work with the smaller variants, but it's super easy to
switch images in your FROM lines and test it out.

Size isn't just about disk space - it's also about what's using the space. The largest
OpenJDK images include the whole Java SDK, so there's a nice attack vector there if someone
manages to compromise your container. They can write some Java source code files into the
container's disk, compile them with the SDK and run an app which does anything they want -
in the security context of your application container.

TRY IT NOW In the exercises for this chapter is a Java app which uses that default JDK image. It runs a very

simple REST API which always returns the value true:

cd ch17/exercises/truth-app

build the image - the base image uses the :11-jdk tag:
docker image build -t diamol/ch17-truth-app .

run the app and try it out:
docker container run -d -p 8010:80 --name truth diamol/ch17-truth-app

curl http://localhost:8010/truth

The container you're running has the Java REST API which is compiled in the image, but it also
has all the tools to compile other Java apps. If an attacker manages to break out of the app
and run arbitrary commands on the container, they could run their own code to do whatever
they liked. In this image there's already a test code file which has been accidentally included,
and a malicious user could find and run that to change the app’s behavior.

359

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW Simulate a container breakout by connecting to a shell in your API container. Then use the JDK

to compile and run the test code and check the app again afterwards:

connect to the API container - for Linux containers:
docker container exec -it truth sh

OR for Windows containers:
docker container exec -it truth cmd

inside the container compile and run the test Java file:
javac FileUpdateTest.java
java FileUpdateTest
exit

back on your machine, try the API again:
curl http://localhost:8010/truth

You'll see that the behavior of the app has changed - the test fixture sets the response to be
false instead of true. My output in figure 17.5 shows the original response and the changed
response after the "hack":

Figure 17.5 Having the SDK in your app image leaves you open to arbitrary code execution attacks

This is a slightly contrived example with the handy test file lying around in the image to make
things easy, but container breakouts are possible and this illustrates an interesting attack
option. The container could be locked down by the platform to prevent network access, and
this attack would still work. The lesson is that your base image should have all you need to

360

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

run your app, but not any extra tooling for building apps (interpreted languages like Node.js
and Python are an exception there because the build tools are necessary for the app to run).

Golden images are one way around this problem. You have a team who choose the right
base images and build their own versions for your organization. I use that approach for this
book – my Java apps are built from diamol/openjdk, which is a multi-arch image that uses
the smallest variant for each OS. I can control how often my golden image gets updated, and I
can trigger application image builds after the golden image builds. Another advantage of
building your own golden image is that you can integrate additional security checks on the
base layer in the build process, using a third-party tool like Anchore.

TRY IT NOW Anchore is an open source project for analyzing Docker images. The analyzer components run

in Docker containers, but unfortunately they don't have multi-arch support. If you're running Linux containers

on Intel (with Docker Desktop or Community Engine) you're supported, otherwise you can spin up a PWD

session and clone the book's GitHub repo for this exercise.

cd ch17/exercises/anchore

start all the Anchore components:
docker-compose up -d

wait for Anchore to download its database - this can take 15 minutes:
docker exec anchore_engine-api_1 anchore-cli system wait

now copy the Dockerfile for my Java golden image into the container:
docker container cp "$(pwd)/../../../images/openjdk/Dockerfile"
anchore_engine-api_1:/Dockerfile

and add the image and the Dockerfile for Anchore to analyze:
docker container exec anchore_engine-api_1 anchore-cli image add
diamol/openjdk --dockerfile /Dockerfile

wait for the analysis to complete:
docker container exec anchore_engine-api_1 anchore-cli image wait
diamol/openjdk

It takes a while for Anchore to fully start up because it downloads a databases of known
security issues on the first run. Typically you'd integrate Anchore into your CI/CD process, so
this hit would only happen when you first deployed it. The wait commands will keep your
session blocked until Anchore is ready - you can see in figure 17.6 that I've added my
OpenJDK image for scanning, but it hasn’t been analyzed yet:

361

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 17.6 Using Anchore to analyze Docker images for known issues

When Anchore completes its analysis, it knows an awful lot about your image - including the
open-source licenses used by all the components in the image, through the operating system
and application platform details, to security issues for any binaries in the image. Those
findings could all be part of the quality gate for accepting an updated base image - if the new
version uses an OSS license your organization prohibits, or includes critical security
vulnerabilities, you might skip that update. Anchore has plugins for CI/CD tools like Jenkins so
you can apply those policies automatically in your pipeline, and you can also query the results
directly using the Anchore API container.

362

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW When the wait command from the previous exercise finishes, the image has been analyzed.

Check what Anchore has discovered about the application platform and the image's security issues:

check what Java components Anchore has found in the image:
docker container exec anchore_engine-api_1 anchore-cli image content
diamol/openjdk java

and check for known security issues:
docker container exec anchore_engine-api_1 anchore-cli image vuln
diamol/openjdk all

These are just samples of the output that Anchore can give you - in this case it has the details
of the Java runtime in the image, and a large list of security vulnerabilities. At the time of
writing those vulnerabilities all had negligible severity - meaning they don't pose a significant
threat and you can probably accept them in your image. The output includes a link to the
details of the vulnerability so you can read more and decide for yourself - figure 17.7 shows
the partial output from my scan results:

363

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 17.7 Anchore check all the binaries in the image against its database of security vulnerabilities

These results are acceptable because I've selected the minimal OpenJDK base image for my
golden image. If you add the official openjdk:11-jdk image to Anchore and check the
results you'll see it has many more vulnerabilities, a lot with "unknown" severity and one "low"
severity for the core SSL security library. That might not be acceptable, so you want to stop
users basing their apps from that image, even though it's an official one maintained by the
OpenJDK team.

Anchore is just one technology in this space - you can get similar features from open
source projects you run yourself (like Clair), or commercial projects which can be integrated
with your Docker registry (like Aqua). Tools like this really help you understand the security of
your images and give you confidence in the set of golden images you build. You can run these
tools on your app images too, and one of the policies you should check is that every app is
building from one of your own golden images - that enforces the use of your curated,
approved images.

364

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

17.3 Minimizing image layer count and layer size
A minimal and secure base image is the pre-requisite for getting your app images optimized.
The next step is really about setting up your image with everything your app needs and
nothing else - which is a much deeper sentence than it sounds :) Many processes to install
software leave residues behind because they cache package lists or deploy extra
recommended packages. You can keep those under control - the details are different for
different operating systems but the general approach is the same.

TRY IT NOW Debian Linux uses APT (Advanced Package Tool) to install software. This exercise uses a

simple example to show how removing unnecessary packages and clearing down the package list makes a big

saving (this exercise won't work with Windows containers - Play with Docker is an option instead):

cd ch17/exercises/socat

the v1 image installs packages using standard apt-get commands:
docker image build -t diamol/ch17-socat:v1 .

v2 installs the same packages but using optimization tweaks:
docker image build -t diamol/ch17-socat:v2 -f Dockerfile.v2 .

check the image sizes:
docker image ls -f diamol/ch17-socat

Both versions of the Dockerfile install the same two tools – cURL and Socat – on top of the
same Debian Slim image, and they're both functionally exactly the same. But you’ll see that
the v2 image is almost 20MB smaller, as in my output in figure 17.8:

365

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 17.8 Optimizing software installs reduces the image size in this exercise by over 20%

There are just a couple of tweaks to the install commands to get that saving. The first makes
use of an APT feature to install only the listed packages and not any recommendations. The
second is to combine the install steps into a single RUN instruction, which ends with a
command to delete the package list cache and free up that disk space. Code listing 17.3 shows
the difference between the Dockerfiles:

Code listing 17.3 Installing software packages - the wrong way and the optimized way

Dockerfile - the naïve install with APT:
FROM debian:stretch-slim
RUN apt-get update
RUN apt-get install -y curl=7.52.1-5+deb9u9
RUN apt-get install -y socat=1.7.3.1-2+deb9u1

Dockerfile.v2 - optimizing the install steps:
FROM debian:stretch-slim
RUN apt-get update \
 && apt-get install -y --no-install-recommends \
 curl=7.52.1-5+deb9u9 \
 socat=1.7.3.1-2+deb9u1 \
&& rm -rf /var/lib/apt/lists/*

Another advantage with combining multiple steps in a single RUN instruction is that it produces
a single image layer. Reducing the number of image layers isn’t really an optimization - there
is a maximum layer count, but it should be plenty big enough, typically 127 depending on the

366

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

OS. But having fewer layers does make it much easier to keep track of your filesystem. It
would be easy to put the final rm command to delete the package lists into its own RUN
instruction - and arguably that makes the Dockerfile easier to read. You know from this
chapter that deleting files from a previous layer simply hides them from the filesystem, so if
you did that there would be no saving on disk space.

One more example of this pattern, which applies across all platforms. Often you need to
download a package from the Internet which is compressed, and then expand it. It's tempting
to put the download step in a separate instruction while you're working on the Dockerfile, so
you can work with the cached download layer and speed up your development time. That's
fine, but when your Dockerfile is working you need to go through and tidy up afterwards, to
combine the download-expand-delete steps into a single instruction.

TRY IT NOW Machine learning datasets are a good example here, because they are large downloads which

expand to even larger folder structures. In the exercises for this chapter there's an example which downloads a

dataset from the University of California at Irvine (UCI) archives and extracts just one file from the dataset.

cd ch17/exercises/ml-dataset

v1 downloads and expands the archive, then delets unecessary files:
docker image build -t diamol/ch17-ml-dataset:v1 .

v2 downloads the archive but only expands the necessary file:
docker image build -t diamol/ch17-ml-dataset:v2 -f Dockerfile.v2 .

compare the sizes:
docker image ls -f reference=diamol/ch17-ml-dataset

You'll see a massive size difference which is purely because of the same optimization
technique - making sure the layers don't have any more files than they need. My results are in
figure 17.9, where both images have the same single file from the data download but one is
nearly 2.5GB and the other is only 24MB:

367

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 17.9 Paying close attention to how you work with files can save huge amounts of disk space

This is not such a contrived example, it's pretty common when you're iterating on a Dockerfile
to keep instructions separate because that makes it easier to debug - you can run a container
from a layer part-way through the build and investigate the filesystem, and you can work on
later instructions but keep the cached download. You can't do that when you've compressed
multiple commands into one RUN instruction, but it's important to make that optimization once
you're happy with your build. Code listing 17.4 shows the optimized Dockerfile which produces
a single layer for the data file:

Code listing 17.4 An optimized method for downloading and extracting files

FROM diamol/base

ARG DATASET_URL=https://archive.ics.uci.edu/.../url_svmlight.tar.gz

WORKDIR /dataset

RUN wget -O dataset.tar.gz ${DATASET_URL} && \
 tar -xf dataset.tar.gz url_svmlight/Day1.svm && \
 rm -f dataset.tar.gz

The biggest saving here is not actually from deleting the archive, it's from extracting just the
single file. The v1 approach expands the whole archive (which is where the 2GB of disk space

368

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

goes) and then deletes all the files except the desired one. Knowing how your tools behave
and which features minimize disk usage helps you keep your layer size under control, and
we've seen that with Tar in this example and APT in the previous one.

There is an alternative approach to this scenario which gives you the best developer
workflow and an optimized final image, and that's using multi-stage Dockerfiles with separate
stages for all the disk-hungry steps.

17.4 Taking your multi-stage builds to the next level
We first saw multi-stage builds in chapter 4 where we used one stage to compile an app from
source code, and a later stage to package the compiled binaries for runtime. Multi-stage
Dockerfiles should be a best practice for all but the simplest images, because they make it far
easier to optimize the final image. We can revisit the dataset downloader and use separate
stages for each of the steps - code listing 17.5 shows we get a much more readable
Dockerfile:

Code listing 17.5 Multi-stage Dockerfiles aid readability and simplify optimization

FROM diamol/base AS download
ARG DATASET_URL=https://archive.ics.uci.edu/.../url_svmlight.tar.gz
RUN wget -O dataset.tar.gz ${DATASET_URL}

FROM diamol/base AS expand
COPY --from=download dataset.tar.gz .
RUN tar xvzf dataset.tar.gz

FROM diamol/base
WORKDIR /dataset/url_svmlight
COPY --from=expand url_svmlight/Day1.svm .

It's clear from each stage what you're doing and you don't need to dive into unusual command
optimizations to save disk space, because the final image will only have the files explicitly
copied in from earlier stages. When you build v3 you'll find it's the same size as the optimized
v2 version, but it has the advantage of being easy to debug. Multi-stage Dockerfiles can be
built up to a specific stage, so if you need to check out the filesystem part-way through the
build you can easily do it without trawling image histories to find layer IDs.

TRY IT NOW The target parameters lets you stop a multi-stage build at a specific stage; try building that

v3 image with different targets:

cd ch17/exercises/ml-dataset

build the full v3 image:
docker image build -t diamol/ch17-ml-dataset:v3 -f Dockerfile.v3 .

build to the 'download' target - same Dockerfile, different tag:
docker image build -t diamol/ch17-ml-dataset:v3-download -f Dockerfile.v3 --
target download .

369

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

and build to the 'expand' tagret:
docker image build -t diamol/ch17-ml-dataset:v3-expand -f Dockerfile.v3 --
target expand .

check the image sizes:
docker image ls -f reference=diamol/ch17-ml-dataset:v3*

Now you'll have three variations of the v3 image - the full build is the same 24MB as the
optimized build, so we haven't lost any optimization moving to a multi-stage Dockerfile. The
other variants stop the build at specific stages, and you can run a container from one of those
images to navigate the filesystem if you need to debug. The stage builds also show where the
disk space is going - you can see in figure 17.10 that the download is around 200MB, and it
expands to over 2GB:

Figure 17.10 Building multi-stage Dockerfiles to specific stages lets you debug contents and check sizes

This really is the best approach - you get an optimized image but you can keep your Dockerfile
instructions simple because you don't need to clean up disk in intermediate stages. And one

370

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

final advantage of multi-stage builds to really bring it home: every stage has its own build
cache. If you need to tweak the expand stage, when you run the build the download stage
will still come from the cache. Maximizing the build cache is the final part of optimization, and
this is all about the speed of building the image.

The basic rule to make the most of the build cache is to order the instructions in your
Dockerfile so the things which change least frequently are at the start, and the things which
change most frequently are towards the end. This can take a few iterations to get right
because you need to understand how often the steps change, but you can typically put static
setup like exposed ports, environment variables and the application entrypoint at the
beginning of the file. Things which change most are your application binaries and config files,
and they can go towards the end. Get this right and you can drastically reduce build times.

TRY IT NOW This exercise builds a minimal Jenkins install - it's incomplete, so don't try to run it - we're just

using it for builds. The Dockerfile downloads the Jenkins Java file and sets up the initial config. The v2

Dockerfile makes good use of the cache, which you'll see when you make a content change:

cd ch17/exercises/jenkins

build the v1 image and the optimized v2 image:
docker image build -t diamol/ch17-jenkins:v1 .
docker image build -t diamol/ch17-jenkins:v2 -f Dockerfile.v2 .

now change the config file both Dockerfiles use:
echo 2.0 > jenkins.install.UpgradeWizard.state

repeat the builds and see how long they run:
docker image build -t diamol/ch17-jenkins:v1 .
docker image build -t diamol/ch17-jenkins:v2 -f Dockerfile.v2 .

The second round of builds is where the cache comes in. The v1 Dockerfile copies the config
file into the image before downloading the Jenkins file (which is a 75MB download), so when
the config file changes that busts the cache and the download happens all over again. The v2
Dockerfile uses a multi-stage build and orders the instructions to put the config file copy last. I
ran my exercise using the Measure-Command function in PowerShell to check the duration of
each build (there's an equivalent called time in Linux). You can see in figure 17.11 that
correctly ordering instructions and using a multi-stage Dockerfile cuts the build time from 10+
seconds to under a second:

371

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 17.11 Ordering your Dockerfile instructions correctly can mean huge savings in build time

Making good use of the cache lets you build and push Docker images from every change to
source control without soaking up time in the CI/CD pipeline. You do need to make sure you
don't over-cache things though, because if you install or download software using RUN
instructions they will be cached until the instruction changes in the Dockerfile (assuming the
cache isn’t busted before that instruction). You should always use explicit versions when you
add packages to your image, so you know exactly what you're running, and you can choose
when to update. The Socat example in code listing 17.3 used explicit version numbers in the

372

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

APT commands, and the Jenkins example used an ARG instruction for the version to download
- both approaches let you use the cache until you change the versions to install.

17.5 Understanding why optimization counts
You've seen in this chapter you can follow some simple best practices and make your
Dockerfiles a joy to work with. Those practices boil down to:

• choose the right base image - ideally curate your own set of golden images;
• use multi-stage Dockerfiles - for all but the simplest apps;
• don't add any unnecessary packages or files - focus on layer size;
• sort your Dockerfile instructions by change frequency - maximize the cache.

Building, pushing and pulling images becomes a core part of your organization's workflow as
you move more apps to containers. Optimizing those images can remove a lot of pain points,
speed up workflows and prevent more serious issues. Figure 17.12 shows the typical lifecycle
of an image, and the areas where optimization counts:

Figure 17.12 Optimizing your Docker images has beneficial impacts across the lifecycle of your projects

17.6 Lab
Now it's time to put your optimization skills to the test. Your goal is to optimize an image
which installs the Docker command line. There are Linux and Windows examples in the lab
folder for this chapter; the Dockerfiles work right now but they produce unnecessarily large
images. Your goals are to:

• optimize the filesystem so the image is under 80MB for Linux containers, or under
330MB for Windows containers

• make use of the image layer cache, so repeat builds of your image take less than a

373

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

second
• produce an image which writes the Docker CLI version correctly from docker

container run <image> docker version (the command will give you an error for the
server because it's not connected to a Docker Engine, but the CLI version should print
correctly).

You shouldn't need any hints, but you'll need to think creatively when you look at the original
Dockerfiles - you might not get there optimizing the existing instructions; it might be better to
work backwards from the goals for the image.

My optimized files are in the same lab folder - you can also check them on GitHub:
https://github.com/sixeyed/diamol/blob/master/ch17/lab/README.md
You have the knowledge, now go optimize!

374

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion
https://github.com/sixeyed/diamol/blob/master/ch17/lab/README.md

18
Application configuration

management in containers

Applications need to load their configuration from the environment they're running in - which is
usually a combination of environment variables and files read from disk. Docker creates that
environment for apps running in containers, and it can set environment variables and construct
the filesystem from many different sources. The pieces are all there to help you build a flexible
configuration approach for your apps, so when you deploy to production you're using the same
image that passed all the test phases. You need to do some work to bring the pieces together,
setting up your app to merge configuration values from multiple places. This chapter will take
you through the recommended approach (and some alternatives) using examples in .NET Core,
Java, Go and Node.js. Some of the work here lives in the developer space, bringing in libraries
to provide config management, and the rest lives in that grey area between dev and ops which
relies on communication so both sides know how the configuration model works.

18.1 A multi-tiered approach to app configuration
Your configuration model should reflect the structure of the data you're storing, which is typically
one of three types: release-level settings, which are the same for every environment for a given
release, environment-level settings which are different for every environment, and feature-level
settings which can be used to change behavior between releases. Some of those are fairly static,
some are dynamic with a known set of variables, others are dynamic with an unknown set of
variables. Figure 18.1 shows some sample config settings and where they can be read from the
environment:

375

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.1 A config hierarchy with settings from the image, filesystem and environment variables

The first example we'll use is Node.js - with a popular config management library called node-
config. The library lets you read config from multiple file locations in a hierarchy, and override
them all with environment variables. The access-log sample app in the exercises for this chapter
uses the library and sets up two directories to read configuration files from:

• config which will be packaged with default settings in the Docker image
• config-override which doesn't exist in the image but can be provisioned in the

container filesystem from a volume, config object or secret

TRY IT NOW Run the sample app with the default configuration from the image, and then the same image

with an override file for the development environment:

cd ch18/exercises/access-log

run a container with the default config in the image:
docker container run -d -p 8080:80 diamol/ch18-access-log

run a container loading a local config file override:
docker container run -d -p 8081:80 -v "$(pwd)/config/dev:/app/config-override"
diamol/ch18-access-log

376

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

check the config APIs in each container:
curl http://localhost:8080/config
curl http://localhost:8081/config

The first container only uses the default config file which is packaged in the image - that specifies
the name of the release cycle (19.12) and sets the Prometheus metrics to be enabled. There's
an unknown setting for the environment name, so you know if you ever see that then the
environment-level config settings haven't been correctly applied. The second container loads a
local config directory as a volume in the expected location for the app to find overrides - it sets
the environment name and flips the metric feature to off. You'll see when you call the config API
that containers from the same image have applied different settings - mine is in figure 18.2:

Figure 18.2 It's straightforward to merge config files using volumes, config objects or secrets

Loading config overrides from a known path in your app code lets you provide them from any
source into the container. I'm using a local bind mount, but the source could be a config object

377

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

or a secret stored in a container cluster (as we saw in chapters 10 and 13), and the behavior
would be the same. There's one nuance to this pattern - your config target can either be a
specific file path, or a directory. A directory target is more flexible (Windows containers don't
support loading volumes from a single file), but the source file names need to match the config
file names the app expects. In this example the bind source is the directory config/dev which
has a single file - the container sees /app/config-override/local.json, which is where
it looks for overrides.

The node-config package can also load settings from environment variables, and they
override any settings loaded from the file hierarchy. This is the configuration approach
recommended in the 12-factor app (https://12factor.net) - a modern style of application
architecture, where environment variables always take precedence over other config sources.
It's a useful approach which helps you get into the mindset that containers are ephemeral,
because changing environment variables to set application config means replacing containers.
Node-config has a slightly unusual implementation: rather than specifying individual settings as
environment variables you need to provide the settings as a JSON-formatted string in the
environment variable.

TRY IT NOW Run a third version of the access log container, in development mode but with metrics enabled.

Use the volume mount to load the dev config, and an environment variable to override the metrics setting:

cd ch18/exercises/access-log

run a container with an override file and an environment variable:
docker container run -d -p 8082:80 -v "$(pwd)/config/dev:/app/config-override"
-e NODE_CONFIG='{\"metrics\": {\"enabled\":\"true\"}}' diamol/ch18-access-log

check the config:
curl http://localhost:8082/config

The third container merges config from the default file in the image, the local config override
file in the volume, and the specific environment variable setting. This is a good example of
building config to keep the developer workflow running smoothly. Devs can run the default
settings without metrics enabled (which will save CPU cycles and memory), but when they need
to turn metrics on for some debugging, they can do it with the same image and an environment
variable switch. Figure 18.3 shows my output:

378

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.3 Merging config from environment variables makes it easy to change specific features

This is the core pattern for configuration which you should look to apply in all your apps. From
this example you can see that the pattern is quite clear, but the details are significant - and
that's the grey area where knowledge can break down between delivery and deployment. The
access-log app lets you override the default config file with a new one - but that target file has
to be in a specific location. You can also override all file settings with environment variables, but
the environment variable needs to be in JSON format. Ultimately that will be documented in the
YAML files you use for deployment, but you need to be aware that the pattern has the potential
for mistakes. An alternative approach removes that risk, at the cost of making config
management less flexible.

18.2 Packaging config for every environment
Many application frameworks support a config management system where you bundle all the
config files for every environment in your deployment, and at runtime you set a single value to
specify the name of the environment you're running in. The app platform loads the config file
with the matching environment name, and your app is fully configured. .NET Core does this with
its default configuration provider setup, where config settings are merged from these sources:

• appsettings.json - the default values for all environments
• appsettings.{Environment}.json - the overrides for the named environment
• environment variables - used to specify the environment name, and for setting overrides

There's a new version of the todo-list app for this chapter, which uses this approach of packaging
all the config files in the Docker image. You use a specific environment variable to provide the
current environment name, and that gets loaded in before the rest of the configuration files.

379

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW Run the to-do list app with the default configuration - which is set with the environment name

Development - and then with the test environment settings:

run the to-do list app with default config:
docker container run -d -p 8083:80 diamol/ch18-todo-list

run the app with the config for the test environment:
docker container run -d -p 8084:80 -e DOTNET_ENVIRONMENT=Test diamol/ch18-
todo-list

The two containers are running from the same image, but loading different configuration files.
Inside the image there are environment files for development, test and production
environments. The first container merges the core appsettings.json with
appsettings.Development.json - Development is set as the default environment in the
Dockerfile - and runs in development mode. The second merges appsettings.json with
appsettings.Test.json. Both the environment config files are already present in the Docker
image so there's no need to mount an external source for the new config. Browse to
http://localhost:8083/diagnostics to see the dev config, and http://localhost:8084/diagnostics
to see the test version. My output is in figure 18.4:

380

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.4 Packaging every environment's config file in the image makes it easy to switch environments

This approach can work nicely if you have separate systems to manage your configuration files
and your source code. The CI/CD pipeline can bring the config files into the Docker image as
part of the build, so you keep config management separate from development. The downside is
that you still can't package every setting, because you need to keep confidential information out
of the Docker image. You need to have a security-in-depth approach, and assume that your

381

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

registry could be compromised - and in that case you don't want someone to find all your
passwords and API keys in nice plain-text files in your images.

If you like this approach then you still need to allow for override files, and final overrides
with environment variables. The todo-list app does that, loading files from a folder called
config-overrides if it exists, and using the standard .NET Core approach of loading
environment variables last. That lets you do useful things like run the production environment
locally if you're trying to replicate an issue, but override the environment settings to use a
database file instead of a remote database server.

TRY IT NOW The to-do list app still supports config overrides, even though all the environment config is

bundled in the app. If you run in production mode the app fails because it's expecting to find a database server

- but you can run in production with an override file to use a database file instead:

cd ch18/exercises/todo-list

docker container run -d -p 8085:80 -e DOTNET_ENVIRONMENT=Production -v
"$(pwd)/config/prod-local:/app/config-override" diamol/ch18-todo-list

You can browse to http://localhost:8085/diagnostics and see the app is running in production
mode, but the config file override changes the database setting so the app still works without
running a Postgres container. My output is in figure 18.5:

382

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.5 Selecting an environment to run in should still support config overrides from additional files

This container merges the default appsettings.json file with the environment file
appsettings.Production.json file and the override file local.json in the prod-local
folder. The setup is similar to the Node.js example, so there's some consistency around folder
and filenames, but .NET Core takes a different approach to setting overrides with environment
variables. In node-config you pass a JSON string as an environment variable to override settings,
but in .NET Core you specify individual settings as environment variables.

TRY IT NOW Run the same local version of production but with a custom release name, by overriding that

setting with an environment variable

run the container with a bind mount and a custom environment variable:
docker container run -d -p 8086:80 -e DOTNET_ENVIRONMENT=Production -e
release=CUSTOM -v "$(pwd)/config/prod-local:/app/config-override" diamol/ch18-
todo-list

Browse to http://localhost:8086/diagnostics and you'll see the custom release name from the
environment variable. My output is in figure 18.6:

383

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.6 The config hierarchy overrides values from any of the config files with environment variables

I have to say I don’t like this way of packaging multiple config files, although it's a common
approach across lots of app platforms. There's a danger that you include some config setting in
your image which you don't think is sensitive - but your security team might disagree. Server
names, URLs, file paths, logging levels, even cache sizes could all be useful information to
anyone trying to hack your system. By the time you move all the confidential settings to override
files which you apply from the runtime, there's probably very little left in those packaged
environment files anyway. I also don’t like the split, where some settings are managed in source
control and others are in a config management system.

The beauty of containers is that you can follow whichever pattern you like, so don't let me
decide for you. Some approaches just work better, depending on your organization and
technology stack. Things get more complicated too if you have multiple stacks to deal with -
we'll see that in the next example using a Go application.

18.3 Loading configuration from the runtime
Go has a popular configuration module called Viper, which offers much of the same functionality
as the .NET Core libraries or node-config. You add the module to your package list, and in your
application code you specify the paths to the config directories and whether you want

384

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

environment variables brought in to override the config files. I've added it to the image gallery
app for this chapter, using a similar hierarchy to the other examples:

• files are loaded from the config directory first, which are copied into the Docker image
• environment-specific files are loaded from the config-override directory, which is

empty in the image and can be the target for a container filesystem mount
• environment variables override the file settings

Viper supports a wider set of languages for configuration files than the other examples. You can
use JSON or YAML, but the popular format in the Go world is TOML (named after its creator,
Tom Preston-Werner). TOML is great for configuration files because it maps easily to dictionaries
in code, and it's easier to read than JSON or YAML - code listing 18.1 shows the TOML
configuration for the image gallery app:

Code listing 18.1 The TOML format makes for easily-managed config files

release = "19.12"
environment = "UNKNOWN"

[metrics]
enabled = true

[apis]

[apis.image]
url = "http://iotd/image"

[apis.access]
url = "http://accesslog/access-log"

You see TOML being used in lots of cloud-native projects because it's so much easier than the
alternatives. If you have a choice of formats, TOML is worth considering because easy to read
also means easy to debug, and easy to see the differences between versions in a merge tool.
Other than the file format this example works in the same way as the Node.js app, with a default
config.toml file packaged into the Docker image.

TRY IT NOW Run the app without any additional config setup to check the defaults

run the container:
docker container run -d -p 8086:80 diamol/ch18-image-gallery

check the config API:
curl http://localhost:8086/config

When you run this exercise you'll see the current app configuration, which all comes from the
default TOML file. My output is in figure 18.7 which shows the release cycle and the default URLs
for the APIs which this app consumes:

385

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.7 You can package your app with default settings which work but aren’t a complete environment

The output is from a config API which returns JSON for the current configuration settings. A
config API is a very useful feature in your app when you have multiple layers of config sources;
it makes debugging configuration issues much easier - but you need to secure that data. There's
no point using secrets for confidential settings if they can be publicly read by anyone who tries
browsing to /config, so if you're going to add a config API you need to be sure of three things:
don't just publish the whole config, be selective and never include secrets; secure the endpoint
so only authorized users can access it; make the config API a feature which can be enabled
through config.

The image gallery app takes a slightly different approach to the hierarchical config model -
default settings are saved in the image, but not for any specific environment. The expectation
is that every environment will specify its own additional config file, which extends or overrides
settings in the default file to set up the full environment.

TRY IT NOW Run the same app again with an override file to build a complete environment

cd ch18/exercises/image-gallery

run the container with a bind mount to the local config directory:
docker container run -d -p 8087:80 -v "$(pwd)/config/dev:/app/config-override"
diamol/ch18-image-gallery

check config again:
curl http://localhost:8087/config

My output in figure 18.8 shows the app is now fully configured for the dev environment, merging
the release-level config file in the image with the environment override file:

386

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.8 The Go Viper module merges config files in the same way as the node-config package

Showing you all these slight variations on the config theme isn't just a cheap way to fill out the
chapter. :) When organizations adopt Docker they tend to find usage accelerates quickly and
they soon have a lot of apps running in containers which each have their own opinions on
configuration. Lots of small variations like this are bound to happen because the app platforms
differ in the features they provide and the conventions they expect. You can apply standards at
a high level: images must come packaged with default config and must support file and
environment variable overrides, but the details of the config file and environment variable
formats will be hard to standardize.

We'll see that in a last example with the Go application. The Viper module supports
environment variables to override settings in config files, but with a convention which is different
again from node-config and from .NET Core.

TRY IT NOW Run the container with an environment variable override - the config model in this app only

uses environment variables prefixed with IG:

cd ch18/exercises/image-gallery

run the container with config override and an environment variable:
docker container run -d -p 8088:80 -v "$(pwd)/config/dev:/app/config-override"
-e IG_METRICS.ENABLED=TRUE diamol/ch18-image-gallery

check the config:
curl http://localhost:8088/config

387

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Viper has the convention that you should prefix environment variable names, so they don’t clash
with other environment variables. In this app the prefix is IG, then there's an underscore
followed by the config setting name in dot notation (so IG_METRICS.ENABLED matches the
enabled value in the metrics group in the TOML file). You can see from my output in figure
18.9 that this setup adds the development environment on top of the default settings, but then
overrides the metrics settings to enable Prometheus metrics:

Figure 18.9 All the example apps support environment variables for config, but with small variations

We've walked through config modelling with three different apps and we have three slightly
different approaches. The differences are manageable and easy to document in the application
manifest files, and they don't actually impact how you build the image or run the container.
We'll look at one last example in this chapter which takes the same configuration model and
applies it to an application which doesn't have a nice new configuration library, so it needs some
extra work to make it behave like a modern app.

18.4 Configuring legacy apps in the same way as new apps
Legacy apps have their own ideas about configuration, which don't usually involve environment
variables or file merges. .NET Framework apps on Windows are a good example - they expect
XML configuration files in specific locations, they don't like looking for files outside the application
root folder, and they don't look at environment variables at all. You can still take the same
configuration approach with those apps, but you need to do some extra work in your Dockerfile.

388

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

The approach here is to package a utility app or set of scripts which transform the
configuration settings in the container environment into the configuration model the application
expects. The exact implementation will depend on your app framework and how it uses config
files, but the logic will be something like this:

• read in the config override settings from a specified source file in the container
• read in the overrides from environment variables
• merge the two sets of overrides, so environment variables take precedence
• write the merged overrides to the specified target file in the container

In the exercises for this chapter there's an updated version of the image of the day API, which
uses this approach. It’s not actually a legacy app, but I've built the image with the legacy
pattern, as though the app can't use the normal container configuration options. There's a utility
app which runs at startup and sets up the configuration, so although the internal configuration
mechanism is different, users can configure containers in the same way as the other examples.

TRY IT NOW Run the "legacy" app with default config settings and with a file override

cd ch18/exercises/image-of-the-day

run a container with default configuration:
docker container run -d -p 8089:80 diamol/ch18-image-of-the-day

run with a config override file in a bind mount:
docker container run -d -p 8090:80 -v "$(pwd)/config/dev:/config-override" -e
CONFIG_SOURCE_PATH="/config-override/application.properties" diamol/ch18-
image-of-the-day

check the config settings:
curl http://localhost:8089/config
curl http://localhost:8090/config

The user experience is very similar to the other apps - mounting a volume with the environment
override file (and the source could be a config object or secret), but you have to additionally
specify the override file location in an environment variable, so the startup utility knows where
to look. You'll see in the output that the default config in the image specifies the release cycle
but not the environment - that gets merged in with the override file in the second container. My
output is in figure 18.10:

389

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.10 This app has a utility to bootstrap the config model, but the user experience is the same

The magic happens here in a simple Java utility app, which gets compiled and packaged in the
same multi-stage build as the rest of the app. Code listing 18.2 shows the key parts of the
Dockerfile which build the utility and set it to run at startup:

Code listing 18.2 Building and using a config load utility in the Dockerfile

FROM diamol/maven AS builder
...
RUN mvn package

config util
FROM diamol/maven as utility-builder
WORKDIR /usr/src/utilities
COPY ./src/utilities/ConfigLoader.java .
RUN javac ConfigLoader.java

app

390

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

FROM diamol/openjdk

ENV CONFIG_SOURCE_PATH="" \
 CONFIG_TARGET_PATH="/app/config/application.properties"

CMD java ConfigLoader && \
 java -jar /app/iotd-service-0.1.0.jar

WORKDIR /app
COPY --from=utility-builder /usr/src/utilities/ConfigLoader.class .
COPY --from=builder /usr/src/iotd/target/iotd-service-0.1.0.jar .

The important takeaway here is that you can extend your Docker image to make old apps
behave in the same way as new apps. You control the startup logic, so you can run any steps
you need before starting the actual application. When you do this you're increasing the amount
of time between the container starting and the app being ready, and you're also increasing the
risk the container might fail (if the startup logic has an error). You should always have health
checks in your image or your application manifests to mitigate that.

My config loader utility app supports the 12-factor approach that environment variables
override other settings. It merges environment variables with the override config file, and writes
the output as a config file in a location the app expects to find. The utility takes the same
approach as Viper, looking for environment variables with a specific prefix which helps keep app
settings separate from other settings in the container.

TRY IT NOW The legacy app doesn't use environment variables, but the config utility sets them up so the

user experience is the same as a modern app

run a container with an override file and an environment variable:
docker run -d -p 8091:80 -v "$(pwd)/config/dev:/config-override" -e
CONFIG_SOURCE_PATH="/config-override/application.properties" -e
IOTD_ENVIRONMENT="custom" diamol/ch18-image-of-the-day

check the config settings:
curl http://localhost:8091/config

The utility lets me work with my old app in the same way as my other apps. It's mostly
transparent to the user: they just set environment variables and load override files into volumes.
It's transparent to the app which just reads the config files it expects to see - there are no
changes to the original app code here. Figure 18.11 shows that this "legacy" app uses the
modern multi-tiered configuration approach:

391

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.11 Environment variables make the config model for this old app behave like new apps

Now every component in the image gallery app uses the same configuration pattern. There's a
level of standardization across all components but there are also small implementation
differences. Every component can be configured with a file override to run in development mode,
and every component can be configured with an environment variable to enable Prometheus
metrics. How you actually do that differs for each app, which is that grey area I mentioned right
at the beginning - it's difficult to enforce a standard to say every component will run a
Prometheus endpoint if the environment variable ENABLE_METRICS=true, because app
platforms work in different ways.

Documentation is how you remove that confusion, and in the Docker world deployment
documentation is best done in the application manifest files. There's a Docker Compose file in
the exercises for this chapter which does exactly what I've laid out in the previous paragraph -
setting every component to development mode, but enabling Prometheus metrics. Code listing
18.3 shows the configuration parts of the compose file:

Code listing 18.3 Documenting config settings in Docker Compose

version: "3.7"

services:
 accesslog:
 image: diamol/ch18-access-log
 environment:
 NODE_CONFIG: '{"metrics": {"enabled":"true"}}'
 secrets:
 - source: access-log-config
 target: /app/config-override/local.json

392

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

 iotd:
 image: diamol/ch18-image-of-the-day
 environment:
 CONFIG_SOURCE_PATH: "/config-override/application.properties"
 IOTD_MANAGEMENT_ENDPOINTS_WEB_EXPOSURE_INCLUDE: "health,prometheus"
 secrets:
 - source: iotd-config
 target: /config-override/application.properties

 image-gallery:
 image: diamol/ch18-image-gallery
 environment:
 IG_METRICS.ENABLED: "TRUE"
 secrets:
 - source: image-gallery-config
 target: /app/config-override/config.toml

secrets:
 access-log-config:
 file: access-log/config/dev/local.json
 iotd-config:
 file: image-of-the-day/config/dev/application.properties
 image-gallery-config:
 file: image-gallery/config/dev/config.toml

It's a bit of a lengthy code listing, but I wanted to add all that in one place so you can see how
the patterns are the same, although the details are different. The Node.js app uses a JSON
string in an environment variable to enable metrics, and loads a JSON file as a config override.
The Java application uses an environment variable which lists the management endpoints to
include; adding Prometheus in there enables metrics collection. Then it loads a config override
from a properties file, which is a series of key-value pairs. The Go application uses a simple
"true" string in an environment variable to enable metrics, and loads the config override as a
TOML file. I'm using the secret support in Docker Compose for the file sources, but the pattern
is the same for volume mounts or config objects in a cluster.

The user experience here is both good and bad. It’s good because you can easily load
different environments by changing the source paths for the config overrides, and you can
change individual settings with environment variables; it’s bad because you need to know the
quirks of the application. The project team will likely evolve various Docker Compose overrides
to cover different configurations, so editing config settings won't be a common activity. Running
the app will be far more common, and that's as easy as starting any app with Compose.

TRY IT NOW Let's run the app as a whole with a fixed set of configuration for all the components. Start by

clearing down all running containers, and then run the app with Docker Compose:

clear all containers:
docker container rm -f $(docker container ls -aq)

cd ch18/exercises

run the app with the config settings:

393

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

docker-compose up -d

check all the config APIs:
curl http://localhost:8030/config
curl http://localhost:8020/config
curl http://localhost:8010/config

You can browse to http://localhost:8010 and use the app in the normal way, and browse to the
Prometheus endpoints to see the component metrics (on http://localhost:8010/metrics,
http://localhost:8030/metrics and http://localhost:8020/actuator/Prometheus). But actually all
the confirmation that the app is configured correctly comes from those config APIs. You can see
my output in figure 18.12 - every component loads the release cycle name from the default
config file in the image, the environment name from the config override file, and the metrics
setting from the environment variable:

Figure 18.12 Docker Compose can document app config settings and start the app with that configuration

394

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

That's all we really need to cover in the patterns for building your applications to fetch
configuration from the container environment. We'll wrap up this chapter with some thoughts
on where that multi-tiered configuration model can take you.

18.5 Understanding why a flexible configuration model pays off
I covered the CI/CD pipeline with Docker in chapters 11 and 15, and the core design of that
pipeline is that you build one image, and your deployment process is about promoting that
image through your environments up to production. Your apps will need to work slightly
differently in each environment, and the way to support that while keeping the single-image
approach is to use a multi-tiered configuration model.

In practice you'll use the release-level settings built into the container image with the
environment-level override file provided by the container platform in almost all cases, but the
ability to set feature-level config with environment variables is a useful addition. It means you
can react quickly to production issues - tuning down the level of logging if that's a performance
issue, or turning off a feature which has a security hole. It also means you can create a
production-like environment on a dev machine to replicate a bug - using the production config
override with secrets removed, and using environment variables instead.

It's that portability to run the exact same image in any environment which is the payback
for investing time in your config model. Figure 18.13 shows the lifecycle of an image from the
CI/CD pipeline onwards:

395

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 18.13 The CI/CD pipeline produces one image, and you use the config model to change behavior

The work you do in producing this flexible configuration model will go a long way to future-
proofing your app. All container runtimes support loading files into the container from config
objects or secrets, and setting environment variables. The Docker images for this chapter's
image gallery app will work in the same way with Docker Compose, Docker Swarm or
Kubernetes. And it's not just container runtimes - standard configuration files and environment
variables are the models used in Platform-as-a-Service products and serverless functions too.

18.6 Lab
It can be tricky to dig into the configuration model for a new app and work out how to set
override files and configure feature overrides. So you're going to get some practice in this lab.
You'll be using the same image gallery app - in the lab folder for this chapter there's a Docker
Compose file with the app components specified but with no configuration. Your job is to set up
every component to:

• use volumes to load configuration override files
• load the configuration overrides for the test environment
• override the release cycle to be "20.01" instead of "19.12"

396

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

This should be fairly straightforward, but it will be useful to spend some time tweaking app
config without making any changes to the apps. When you run the app with docker compose up
you should be able to browse to http://localhost:8010 and the app should work :) And you
should be able to browse to all three config APIs and see the release name is 20.01 and the
environment is TEST.

MY solution is in the same folder in the docker-compose-solution.yml file, or you can
check it on GitHub here:

https://github.com/sixeyed/diamol/blob/master/ch18/lab/README.md

397

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion
https://github.com/sixeyed/diamol/blob/master/ch18/lab/README.md

19
Writing and managing application

logs with Docker

Logging is usually the most boring part of learning a new technology, but not so with Docker.
The basic principle is simple: you need to make sure your application logs are being written to
the standard output stream, because that's where Docker looks for them. There are a couple of
ways to achieve that which we'll cover in this chapter, and then the fun begins. Docker has a
pluggable logging framework - you need to make sure your application logs are coming out from
the container, and then Docker can send them to different places. That lets you build a powerful
logging model, where the application logs from all your containers are sent to a central log store
with a searchable UI on top of it - all using open source components, all running in containers.

19.1 Welcome to stderr and stdout!
A Docker image is the snapshot of a filesystem with all your application binaries and
dependencies, and also some metadata telling Docker which process to start when you run a
container from the image. That process runs in the foreground, so it's like starting a shell session
and then running a command - as long as the command is active it has control of the terminal
input and output. Commands write log entries to the standard output and standard error streams
(called stdout and stderr), so in a terminal session you see the output in your window. In a
container Docker watches stdout and stderr and collects the output from the streams, and that
is the source of the container logs.

TRY IT NOW You can see this easily if you run the timecheck app from chapter 15 in a container - the

application itself runs in the foreground and just writes log entries to stdout:

run the container in the foreground:

398

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

docker container run diamol/ch15-timecheck:3.0

exit the container with Ctrl-C when you're done

You'll see some log lines in your terminal, and you'll find you can't enter any more commands -
the container is running in the foreground, so it's just like running the app itself in your terminal.
Every few seconds the app writes another timestamp to stdout, so you'll see another line in your
session window. My output is in figure 19.1:

Figure 19.1 A container in the foreground takes over the terminal session until it exits

This is the standard operating model for containers, Docker starts a process inside the container
and collects the output streams from that process as logs. All the apps we’ve used in this book
follow this same pattern: the application process runs in the foreground - that could be a Go
binary or the Java runtime - and the application itself is configured to write logs to stdout (or
stderr — Docker treats both streams in the same way). Those application logs are written to the
output stream by the runtime, and Docker collects them. Figure 19.2 shows the interaction
between the application, the output streams and Docker:

399

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.2 Docker watches the application process in the container and collects its output streams

Container logs are stored as JSON files, and so the log entries available for detached containers
which don't have a terminal session, and for containers that have exited so there is no
application process. Docker manages the JSON files for you and they have the same lifecycle as
the container - when the container is removed, the log files are removed too.

TRY IT NOW Run a container from the same image in the background as a detached container and check

the logs and then the path to the log file:

run a detached container
docker container run -d --name timecheck diamol/ch15-timecheck:3.0

check the mosty recent log entry:
docker container logs --tail 1 timecheck

stop the container and check the logs again:
docker container stop timecheck
docker container logs --tail 1 timecheck

check where Docker stores the container log file:
docker container inspect --format='{{.LogPath}}' timecheck

400

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

If you're using Docker Desktop with Linux containers, remember that the Docker Engine is
running inside a VM which Docker manages for you - you can see the path to the log file for the
container, but you don’t have access to the VM so you can't read the file directly. If you're
running Docker CE on Linux or you're using Windows containers then the path to the log file will
be on your local machine and you can open the file to see the raw contents. You can see my
output (using Windows containers) in figure 19.3:

Figure 19.3 Docker stores container logs in a JSON file and manages the lifetime of that file

The log file is really just an implementation detail which you don't usually need to worry about.
The format is very simple: it just contains a JSON object for each log entry with the string
containing the log, the name of the stream where the log came from (stdout or stderr) and a
timestamp. Code listing 19.1 shows a sample of the logs for my timecheck container:

Code listing 19.1 The raw format for container logs is a simple JSON object

{"log":"Environment: DEV; version: 3.0; time check:
09:42.56\r\n","stream":"stdout","time":"2019-12-19T09:42:56.814277Z"}

401

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

{"log":"Environment: DEV; version: 3.0; time check:
09:43.01\r\n","stream":"stdout","time":"2019-12-19T09:43:01.8162961Z"}

The only time you will need to think about the JSON is if you have a container which produces
lots of logs, and you want to keep all the log entries for a period but have them in a manageable
file structure. Docker creates a single JSON log file for each container by default, and will let it
grow to any size (until it fills up your disk). You can configure Docker to use rolling files instead
with a maximum size limit - so when the log file fills up, Docker starts writing to a new file. You
also configure how many log files to use, and when they're all full Docker starts overwriting the
first file. You can set those options at the Docker Engine level so the changes apply to every
container, or you can set them for individual containers. Configuring logging options for a specific
container is a good way to get small, rotated log files for one application but keep all the logs
for other containers.

TRY IT NOW Run the same app again but this time specifying log options to use three rolling log files with a

maximum of 5KB each:

run with log options and an app setting to write lots of logs:
docker container run -d --name timecheck2 --log-opt max-size=5k --log-opt max-
file=3 -e Timer__IntervalSeconds=1 diamol/ch15-timecheck:3.0

wait for a few minutes

check the logs:
docker container inspect --format='{{.LogPath}}' timecheck2

You'll see that the log path for the container is still just a single JSON file, but Docker is actually
rotating log files using that name as the base but with a suffix for the log file number. If you're
running Windows containers or Docker CE on Linux you can list the contents of the directory
where the logs are kept and you'll see those file suffixes - mine are shown in figure 19.4:

402

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.4 Rolling log files let you keep a known amount of log data per container

There's a collection and processing stage for the application logs coming from stdout, which is
where you can configure what Docker does with the logs. In the last exercise we configured the
log processing to control the JSON file structure and there's much more you can do with
container logs. To take full advantage of that you need to make sure every app is pushing logs
out of the container, and in some cases that takes a bit more work.

19.2 Relaying logs from other sinks to stdout
Not every app fits nicely with the standard logging model, and when you containerize some apps
Docker won't see any logs in the output streams. Some applications run in the background as
Windows Services or Linux daemons, so the container startup process isn't actually the

403

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

application process. Other apps might use an existing logging framework which writes to log
files or other locations (called sinks in the logging world), like syslog in Linux or the Windows
Event Log. Either way there are no application logs coming from the container start process, so
Docker doesn't see any logs.

TRY IT NOW There's a new version of the timecheck app for this chapter which writes logs to a file instead

of stdout. When you run this version there are no container logs, although the app logs are being stored in the

container filesystem:

run a container from the new image:
docker container run -d --name timecheck3 diamol/ch19-timecheck:4.0

check - there are no logs coming from stdout:
docker container logs timecheck3

now connect to the running container, for Linux:
docker container exec -it timecheck3 sh

OR windows containers:
docker container exec -it timecheck3 cmd

and read the application log file:
cat /logs/timecheck.log

You'll see that there are no container logs, even though the application itself is writing lots of
log entries. My output is in figure 19.5 - I need to connect to the container and read the log file
from the container filesystem to see the log entries:

404

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.5 If the app doesn't write anything to the output streams you won't see any container logs

This happens because the app is using its own log sink - a file in this exercise - and Docker
doesn't know anything about that sink. Docker will only read logs from stdout; there's no way
to configure it to read from a different log sink inside the container. The pattern for dealing with
apps like this is to run a second process in the container startup command, which reads the log
entries from the sink that the application uses and writes them to stdout. That process could be
a shell script or a simple utility app, and it is the final process in the start sequence so Docker
reads its output stream and the application logs get relayed as container logs. Figure 19.6 shows
how that works:

405

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.6 You need to package a utility in your container image to relay logs from a file

This is not a perfect solution. Your utility process is running in the foreground, so it needs to be
robust because if it fails then your container exits - even if the actual application is still working
in the background. And the reverse is true: if the application fails but the log relay keeps running
then your container stays up even though the app is no longer working. You need health checks
in your image to prevent that happening. And lastly this is not an efficient use of disk, especially
if your app writes a lot of logs - they'll be filling up a file in the container filesystem and filling
up a JSON file on the Docker host machine.

Even so it's a useful pattern to know about. If your app runs in the foreground and you can
tweak your config to write logs to stdout instead, that's a better approach. But if your app runs
in the background then there's no other option, and it's better to accept the inefficiency and
have your app behave like all other containers. There's an update for the timecheck app in this
chapter which adds this pattern, building a small utility app to watch the log file and relay the
lines to stdout. Code listing 19.2 shows the final stages of the multi-stage Dockerfile - there are
different startup commands for Linux and Windows:

406

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Code listing 19.2 Building and packaging a log-relay utility with your app

app image
FROM diamol/dotnet-runtime AS base
…
WORKDIR /app
COPY --from=builder /out/ .
COPY --from=utility /out/ .

windows
FROM base AS windows
CMD start /B dotnet TimeCheck.dll && dotnet Tail.dll /logs timecheck.log

linux
FROM base AS linux
CMD dotnet TimeCheck.dll & dotnet Tail.dll /logs timecheck.log

The two CMD instructions achieve the same thing, using the different approaches for the
operating system. First the .NET application process is started in the background, using the
start command in Windows and suffixing the command with a single ampersand & in Linux.
Then the .NET tail utility is started, configured to read the log file the application writes to. The
tail utility just watches that file and relays each new line as it gets written, so the logs get
surfaced to stdout and become container logs.

TRY IT NOW Run a container from the new image and verify that logs are coming from the container - and

that they still get written in the filesystem:

runa container with the tail utility process:
docker container run -d --name timecheck4 diamol/ch19-timecheck:5.0

check the logs:
docker container logs timecheck4

and connect to the container - on Linux:
docker container exec -it timecheck4 sh

OR with Windows containers:
docker container exec -it timecheck4 cmd

check the log file:
cat /logs/timecheck.log

Now the logs are coming from the container. It's a convoluted approach to get there, with an
extra process running to relay the log file contents to stdout, but once the container is running
that's all transparent. The downside to this approach is the extra processing power used by the
log relay and the extra disk space storing the logs twice - you can see my output in figure 19.7
which shows the log file is still there in the container filesystem:

407

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.7 A log relay utility gets the application logs out to Docker, but using twice as much disk space

I use a custom utility to relay the log entries in this example, because I want the app to work
across platforms. I could use the standard Linux tail command instead but there's no Windows
equivalent. The custom utility approach is also more flexible, because it could read from any
sink and relay to stdout. That should cover any scenario where your application logs are locked
away somewhere in the container which Docker doesn't see.

When you have all your container images set up to write application logs as container logs,
then you can start to make use of Docker's pluggable logging system and consolidate all the
logs coming from all your containers.

19.3 Collecting and forwarding container logs
Way back in chapter 2 I talked about how Docker adds a consistent management layer over all
your apps - it doesn't matter what's happening inside the container; you start, stop and inspect
everything in the same way. That's especially useful with logs when you bring a consolidated
logging system into your architecture, and we'll walk through one of the most popular open
source examples of that: Fluentd.

408

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Fluentd is a unified logging layer; it can ingest logs from lots of different sources, filter or
enrich the log entries and then forward them on to lots of different targets. It's a project
managed by the Cloud Native Computing Foundation (which also manages Kubernetes,
Prometheus and the container runtime from Docker, among other projects), and it's a mature
and hugely flexible system. You can run Fluentd in a container and it will listen for log entries.
Then you can run other containers which use Docker's Fluentd logging driver instead of the
standard JSON file, and those container logs will be sent to Fluentd.

TRY IT NOW Fluentd uses a config file to process logs. Run a container with a simple configuration that will

have Fluentd collect logs and echo them to stdout in the container, then run the timecheck app with that

container sending logs to Fluentd:

cd ch19/exercises/fluentd

run Fluentd publishing the standard port and using a simple config file:
docker container run -d -p 24224:24224 --name fluentd -v
"$(pwd)/conf:/fluentd/etc" -e FLUENTD_CONF=stdout.conf diamol/fluentd

now run a timecheck container set to use Docker's Fluentd log driver:
docker container run -d --log-driver=fluentd --name timecheck5 diamol/ch19-
timecheck:5.0

check the timecheck container logs:
docker container logs timecheck5

and check the Fluentd container logs:
docker container logs --tail 1 fluentd

You'll see that you get an error when you try to check logs from the timecheck container - not
all logging drivers let you see the log entries directly from the container. In this exercise they're
being collected by Fluentd and this configuration writes the output to stdout, so you can see the
timecheck container's logs by looking at the logs from Fluentd. My output is in figure 19.8:

409

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.8 Fluentd collects logs from other containers and it can store them or write to stdout

Fluentd adds its own metadata to each record when it stores logs - including the container ID
and name. This is necessary because Fluentd becomes the central log collector for all your
containers, and you need to be able to identify which log entries came from which application.
Using stdout as a target for Fluentd is just a simple way to see how everything works. Typically
you'd forward logs to a central data store - Elasticsearch is a very popular option: it's a no-SQL
document database which works well for logs. You can run Elasticsearch in a container for log
storage, and the companion app Kibana which is a search UI in another container. Figure 19.9
shows how the logging model looks:

410

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.9 A centralized logging model sends all container logs to Fluentd for processing and storage

It looks like a complicated architecture, but as always with Docker it's very easy to specify all
the parts of your logging setup in a Docker Compose file and spin up the whole stack with one
command. When you have your logging infrastructure running in containers you just need to
use the Fluentd logging driver for any container where you want to opt-in to centralized logging.

TRY IT NOW Clear down any running containers and start the Fluentd-Elasticsearch-Kibana logging

containers, then run a timecheck container using the Fluentd logging driver:

docker container rm -f $(docker container ls -aq)

411

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

cd ch19/exercises

start the
docker-compose -f fluentd/docker-compose.yml up -d

docker container run -d --log-driver=fluentd diamol/ch19-timecheck:5.0

Give Elasticsearch a couple of minutes to be ready then browse to Kibana at http://localhost:5601. Click the

Discover tab and Kibana will ask for the name of the document collection to search against - enter fluentd*

as in figure 19.10:

Figure 19.10 Elasticsearch stores documents in collections called indexes - this finds the Fluentd
indexes

In the next screen you need to set the field which contains the time filter - select @timestamp as in figure

19.11:

412

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.11 Fluentd has already saved data in Elasticsearch so Kibana can see the field names

You can automate the Kibana setup, but I haven't because if you're new to the Elasticsearch
stack it's worth stepping through to see how the pieces fit together. Every log entry Fluentd
collects gets saved as a document in Elasticsearch, in a document collection which is named
fluentd-{date}. Kibana gives you a view over all those documents, and in the default
Discover tab you see a bar chart showing how many documents are being created over time,
and you can drill into the details for each individual document. In this exercise each document
is a log entry from the timecheck app, and you can see the data in Kibana in figure 19.12:

413

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.12 The EFK stack in all its glory - container logs collected and stored for simple searching

Kibana lets you search across all documents for a specific piece of text, or filter documents by
date or another data attribute. It also has dashboard functionality similar to Grafana which we
saw in chapter 9, so you can build charts showing counts of logs per app, or counts of error
logs. Elasticsearch is hugely scalable so it's suitable for large quantities of data in production,
and when you start sending it all your container logs via Fluentd you soon find it's a much more
manageable approach than scrolling through log lines in the console.

TRY IT NOW Run the image gallery app with each component configured to use the Fluentd logging driver

414

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

from the cd ch19/exercises folder

docker-compose -f image-gallery/docker-compose.yml up -d

Browse to http://localhost:8010 to generate some traffic, and the containers will start writing
logs. The Fluentd setup for the image gallery app adds a tag to each component, so log lines
can be identified more easily than the container name or container ID. You can see my output
in figure 19.13 - I'm running the full image gallery application but I'm filtering the logs in Kibana
to only show the access-log component, the API which records when the app is accessed:

415

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.13 Logs are being collected in Elasticsearch for the image gallery and the timecheck container

It's very easy to add a tag for Fluentd which shows up as the log_name field for filtering; it's
just an option for the logging driver. You can use a fixed name or inject some useful identifiers
- in this exercise I use gallery as the application prefix and then add the component name
and the image name for the container generating the logs. That's a nice way to identify the
application, component and the exact version running from each log line. Code listing 19.3
shows the logging options in the Docker Compose file for the image gallery app:

416

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Code listing 19.3 Using a tag to identify the source of log entries for Fluentd

services:
 accesslog:
 image: diamol/ch18-access-log
 logging:
 driver: "fluentd"
 options:
 tag: " gallery.access-log.{{.ImageName}}"

 iotd:
 image: diamol/ch18-image-of-the-day
 logging:
 driver: "fluentd"
 options:
 tag: "gallery.iotd.{{.ImageName}}"

 image-gallery:
 image: diamol/ch18-image-gallery
 logging:
 driver: "fluentd"
 options:
 tag: "gallery.image-gallery.{{.ImageName}}"
…

The model for centralized logging with a searchable data store and a user-friendly UI is one you
should definitely consider when you're getting containers ready for production. You're not limited
to using Fluentd - there are many other logging drivers for Docker so you could use other popular
tools like Graylog, or commercial tools like Splunk. Remember you can set the default logging
driver and options at the engine level in the Docker config, but I think there's value in doing it
in the application manifests instead - it makes it clear which logging system you're using in each
environment.

Fluentd is a good option if you don't already have an established logging system. It's easy
to use and it scales from a single dev machine to a full production cluster - and you use it in the
same way in every environment. You can also configure Fluentd to enrich the log data to make
it easier to work with, and to filter logs and send them to different targets.

19.4 Managing your log output and collection
Logging is a delicate balance between capturing enough information to be useful in diagnosing
problems and not storing huge quantities of data. Docker's logging model gives you some
additional flexibility to help with the balance, because you can produce container logs at a more
verbose level than you expect to use, but filter them out before you store them. Then if you
need to see more verbose logs you can alter the filter configuration rather than your app
configuration - so the Fluentd containers get replaced rather than your app containers.

You can configure this level of filtering in the Fluentd config file. The configuration from the
last exercise sends all logs to Elasticsearch, but the updated configuration in code listing 19.4
filters out logs from the more verbose access-log component. Those logs go to stdout and the
rest of the app logs go to Elasticsearch:

417

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Code listing 19.4 Sending log entries to different targets based on the tag of the record

<match gallery.access-log.**>
 @type copy
 <store>
 @type stdout
 </store>
</match>
<match gallery.**>
 @type copy
 <store>
 @type elasticsearch
…

The match blocks tell Fluentd what to do with log records, and the filter parameter uses the tag
which is set in the logging driver options. When you run this updated configuration, the access-
log entries will match the first match block, because the tag prefix is gallery.access-log.
Those records will stop surfacing in Elasticsearch and will only be available by reading the logs
of the Fluentd container. The updated config file also enriches all log entries, splitting the tag
into separate fields for app name, service name and image name which makes filtering in Kibana
much easier.

TRY IT NOW Update the Fluentd configuration by deploying a Docker Compose override file which specifies

a new config file, and update the image gallery application to generate more verbose logs:

update the Fluentd config:
docker-compose -f fluentd/docker-compose.yml -f fluentd/override-gallery-
filtered.yml up -d

update the application logging config:
docker-compose -f image-gallery/docker-compose.yml -f image-gallery/override-
logging.yml up -d

You can check the contents of those override files and you'll see they just specify config settings
for the applications, all the images are the same. Now when you use the app at
http://localhost:8010 the access-log entries are still generated but they get filtered out by
Fluentd so you won't see any new logs in Kibana. You will see the logs from the other
components, and these are enriched with the new metadata fields - you can see that in my
output in figure 19.14:

418

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.14 Fluentd uses the tag in the log to filter out records and to generate new fields

The access-log entries are still available because they're writing to stdout inside the Fluentd
container, so you can see them as container logs - but from the Fluentd container, not the
access-log container.

TRY IT NOW Check the Fluentd container logs to be sure the records are still available:

419

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

docker container logs --tail 1 fluentd_fluentd_1

You can see my output in figure 19.15 - the access log entry has been sent to a different target,
but it has still been through the same processing to enrich the record with the app, service and
image name:

Figure 19.15 These logs are filtered so they're not stored in Elasticsearch but are echoed to stdout

This is a nice way of separating core application logs from nice-to-have logs. You wouldn't use
stdout in production, but you might have different outputs for different classes of logs -
performance critical components could send log entries to Kafka, user-facing logs could go to
Elasticsearch and the rest could be filed in Amazon S3 cloud storage. Those are all supported
log stores in Fluentd.

One final exercise for this chapter to reset the logging and put access-log entries back into
Elasticsearch. This approximates a situation in production where you find a system problem and
you want to increase the logs to see what's happening. With the logging setup we have, the logs
are already being written by the app and we can surface them just by changing the Fluentd
configuration file.

TRY IT NOW Deploy a new Fluentd configuration which sends access-log records to Elasticsearch

docker-compose -f fluentd/docker-compose.yml -f fluentd/override-gallery.yml
up -d

This deployment uses a configuration file which removes the match block for access-log records,
so all the gallery component logs get stored in Elasticsearch. When you refresh the image gallery
page in your browser, the logs will get collected and stored. You can see my output in figure
19.16 where the most recent logs are shown from both the API and the access-log components:

420

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 19.16 A change to Fluentd config adds logs back into Elasticsearch without any app changes

You do need to be aware that there's the potential for lost log entries with this approach. During
the deployment containers could be sending logs when there's no Fluentd container running to
collect them. Docker continues gracefully in that situation and your app containers keep running,
but the log entries don't get buffered so they'll be lost. It's unlikely to be a problem in a clustered
production environment, but even if it did happen it's preferable to restarting an app container
with increased logging configuration - not least because the new container may not have the
same issue as the old container, so your new logs won't tell you anything interesting.

421

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

19.5 Understanding the container logging model
The logging approach in Docker is super flexible, but only when you make your application logs
visible as container logs. You can do that directly by having your app write logs to stdout, or
indirectly by using a relay utility in your container which copies log entries to stdout. You need
to spend some time making sure all your application components write container logs, because
once you've got that working then you can process the logs however you like.

We used the EFK stack in this chapter - Elasticsearch, Fluent and Kibana - and you've seen
how easy it is to pull all your container logs into a centralized database with a user-friendly
search UI. All those technologies are swappable but Fluentd is one of the most used because it's
so simple and so powerful. That stack runs nicely in single machine environments, and it scales
for production environments too. Figure 19.17 shows how a clustered environment runs a
Fluentd container on each node, which collects logs from the other containers on that node and
sends them to an Elasticsearch cluster also running in containers:

Figure 19.17 The EFK stack works in production with clustered storage and multiple Fluentd instances

422

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

I'll finish with a note of caution before we move onto the lab. Some teams don't like all the
processing layers in the container logging model, and they prefer to write application logs
directly to the final store - so instead of writing to stdout and have Fluentd send data to
Elasticsearch, the application writes directly to Elasticsearch. I really don't like that approach.
You save some processing time and network traffic in exchange for a complete lack of flexibility.
You've hard-coded the logging stack into all your applications and if you want to switch to
Graylog or Splunk then you need to go and rework your apps. I always prefer to keep it simple
and flexible - write your application logs to stdout and make use of the platform to collect,
enrich, filter and store the data.

19.6 Lab
I didn't focus too much on configuring Fluentd in this chapter but it's worth getting some
experience setting that up, so I'm going to ask you to do it in the lab. In the lab folder for this
chapter there's a Docker Compose file for the random number app and a Docker Compose file
for the EFK stack. The app containers aren't configured to use Fluentd, and the Fluentd setup
doesn't do any enrichment so you have three tasks:

• extend the Compose file for the numbers app so all the components use the Fluentd
logging driver and set a tag with the app name, service name and image

• extend the Fluentd configuration file elasticsearch.conf to split the tag into app
name, service name and image name fields for all records from the numbers app

• add a failsafe match block to the Fluentd configuration so any records which aren’t from
the numbers app get forwarded to stdout

No hints because this is really a case of working through the config setup for the image gallery
app and seeing which pieces you need to add for the numbers app. As always my solution is up
on GitHub for you to check:

https://github.com/sixeyed/diamol/blob/master/ch19/lab/README.md

423

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion
https://github.com/sixeyed/diamol/blob/master/ch19/lab/README.md

20
Controlling HTTP traffic to

containers with a reverse proxy

Docker takes care of routing external traffic into your containers but you can only have one
container listening on a network port. It’s fine to use any old ports in your non-production
environments - in some chapters of this book we've used ten different ports to keep applications
separate - but you can't do that when you go live. You'll want lots of applications running on a
single cluster, but you need them all to be accessible on the standard HTTP and HTTPS ports,
80 and 443. That's where a reverse proxy comes in. It's a critical piece in the architecture of a
containerized environment and in this chapter you'll learn all about the features it provides and
the patterns it enables. We'll use two of the most popular technologies in this space - Nginx and
Traefik - running in containers, of course.

20.1 What is a reverse proxy?
A proxy is a network component which handles network traffic on behalf of some other
component. You might have a proxy in your corporate network which intercepts your browser
requests and decides whether you're allowed to access certain sites, logs all your activity and
caches the response so other users of the same site get a faster experience. A reverse proxy
does something similar, but the other way around. You run a reverse proxy as the gateway to
several web applications; all traffic goes to the reverse proxy and it decides which app to get
the content from, it can cache responses and mutate them before sending back to the client.
Figure 20.1 shows how a reverse proxy looks in containers:

424

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.1 A reverse proxy is the gateway to your apps; application containers are not publicly available

A reverse proxy is the only container with published ports - it receives all incoming requests and
fetches the responses from other containers. That means all your application containers become
internal components, which can make it easier to scale, update and secure them. Reverse
proxies are not a new technology, but they've shifted left with the container revolution - they
used to sit in production and be managed by the ops team, without developers even knowing
there was a proxy. Now they run in lightweight containers and you can have the same proxy
configuration in every environment.

TRY IT NOW Nginx has been a popular reverse proxy choice for years - it powers over 30% of the Internet. It's

a very lightweight, fast and powerful HTTP server which can serve its own content as well as proxying other

servers:

create a network for this chapter's apps - for Linux containers:
docker network create ch20

OR for Windows containers:
docker network create --driver=nat ch20

cd ch20/exercises

425

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

run Nginx with a bind mount to a local configuration folder – on Linux:
docker-compose -f nginx/docker-compose.yml -f nginx/override-linux.yml up -d

OR on Windows containers:
docker-compose -f nginx/docker-compose.yml -f nginx/override-windows.yml up -d

browse to http://localhost

Nginx (pronounced "engine x") uses a configuration file for each of the websites it serves. This
container has a bind-mount to the local sites-enabled folder, but there are no config files in
there yet. Nginx has a default site which is just a simple HTML page - you can see my output in
figure 20.2:

Figure 20.2 Nginx is an HTTP server – it can serve static content and run as a reverse proxy

Right now we're not using Nginx as a reverse proxy, but we can set that up by adding a
configuration file for another website. When you host multiple apps on the same port you need
a way to differentiate them, and that's usually with the domain name of the website. When you

426

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

browse to a website like https://blog.sixeyed.com then the browser includes an HTTP header in
the client request: Host=blog.sixeyed.com. Nginx uses that host header to find the
configuration file for the site to serve. On your local machine you can add domains to your hosts
file which is a simple DNS lookup, to serve different apps from your Nginx container.

TRY IT NOW We'll run the simple who-am-I web app in a container without publishing any ports and make it

available through Nginx on the host domain whoami.local:

add the who-am-I domain to local hosts file on Mac or Linux:
echo $'\n127.0.0.1 whoami.local' | sudo tee -a /etc/hosts

OR on Windows:
Add-Content -Value "127.0.0.1 whoami.local" -Path
/windows/system32/drivers/etc/hosts

start the who-am-I container:
docker-compose -f whoami/docker-compose.yml up -d

copy the app config to the Nginx configuration folder:
cp ./nginx/sites-available/whoami.local ./nginx/sites-enabled/

and restart Nginx to load the config:
docker-compose -f nginx/docker-compose.yml restart nginx

browse to http://whoami.local

When you browse to http://whoami.local the entry in your hosts file directs you to your local
machine, and the Nginx container receives the request. It uses the HTTP header
Host=whoami.local to find the right website configuration, and then it loads the content from
the who-am-I container and sends it back. You'll see in figure 20.3 that the response is just the
same as if the response had come directly from the who-am-I application container:

427

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.3 The reverse proxy in action, loading content from an application container behind the scenes

Nginx is a very powerful server with a huge feature set, but the basic configuration file to proxy
a web application is very simple. You need to specify the server’s domain name and the location
of the content – which can be an internal DNS name. The Nginx container will fetch content
from the app container over the Docker network using the container name for DNS. Code listing
20.1 shows the full configuration file for the who-am-I site:

Code Listing 20.1 Nginx proxy configuration for the who-am-I app

server {
 server_name whoami.local; # the domain host name

 location / {
 proxy_pass http://whoami; # source address for content

428

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

 proxy_set_header Host $host; # set the host for the source
 add_header X-Host $hostname; # add proxy name in response
 }
}

Reverse proxies are not just for websites - they're suitable for any HTTP content so REST APIs
are good targets, and there may be support other types of traffic too (plain TCP/IP or gRPC).
This simple configuration makes Nginx work like a passthrough, so for every request it receives
it will call the source container (called the "upstream") and send the response back to the client
(called the "downstream"). If the upstream app fails then Nginx sends the failure response back
to the client.

TRY IT NOW Add another domain to your hosts file and run the API for the random-number app, proxying it

with Nginx. This is the API which fails after a few calls, and you'll see a 500 response from Nginx after you refresh:

add the API domain to local hosts file on Mac or Linux:
echo $'\n127.0.0.1 api.numbers.local' | sudo tee -a /etc/hosts

OR on Windows:
Add-Content -Value "127.0.0.1 api.numbers.local" -Path
/windows/system32/drivers/etc/hosts

run the API:
docker-compose -f numbers/docker-compose.yml up -d

copy the site config file and restart Nginx:
cp ./nginx/sites-available/api.numbers.local ./nginx/sites-enabled/
docker-compose -f nginx/docker-compose.yml restart nginx

browse to http://api.numbers.local/rng & refresh until it breaks

You'll see from this exercise that the user experience for an app is identical whether they're
accessing it directly or through Nginx. You have two apps hosted from Nginx so it is managing
the routing to upstream containers, but it doesn't manipulate the traffic so the response bodies
are exactly as they're sent by the app container. Figure 20.4 shows a failure response from the
API coming back through the reverse proxy:

429

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.4 In a simple proxy configuration, Nginx sends the response from the app – even if it’s a failure

Reverse proxies can do much more than this. All your application traffic comes into the proxy,
so it can be a central place for configuration and you can keep a lot of infrastructure-level
concerns out of your application containers.

20.2 Handling routing and SSL in the reverse proxy
The process we've been following to add new apps to Nginx is to start the app container, then
copy in the config file and then restart Nginx. That order is important because when Nginx starts
it reads all the server configuration and checks it can access all the upstreams - if any are
unavailable it exits. If they are all available, it builds an internal routing list, linking host names
to IP addresses. That's the first infrastructure concern which the proxy can take care of - it will
load-balance requests if there are multiple upstream containers.

430

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW We'll run the image gallery app now, proxying the main web app through Nginx. We can scale

up the web component and Nginx will load-balance requests between the containers:

add the domain to local hosts file on Mac or Linux:
echo $'\n127.0.0.1 image-gallery.local' | sudo tee -a /etc/hosts

OR on Windows:
Add-Content -Value "127.0.0.1 image-gallery.local" -Path
/windows/system32/drivers/etc/hosts

run the app with 3 web containers:
docker-compose -f .\image-gallery\docker-compose.yml up -d --scale image-
gallery=3

add the config file and restart Nginx:
cp ./nginx/sites-available/image-gallery.local ./nginx/sites-enabled/
docker-compose -f .\nginx\docker-compose.yml restart nginx

call the site a few times:
curl -i --head http://image-gallery.local

The Nginx configuration for the image gallery website is just the same proxy setup as code
listing 20.1, using a different host name and upstream DNS name. It also adds an extra response
header X-Upstream which shows the IP address of the container which Nginx fetched the
response from. You see in figure 20.5 that upstream IP address is in the 172.20 range for me,
which is the application container's IP address on the Docker network. If you repeat the cUrl call
a few times you'll see different IP address as Nginx load-balances between the web containers:

431

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.5 Nginx takes care of load-balancing so you can run app containers at scale

Now you can run your app with load-balancing on a single Docker machine, you don't need to
switch to Swarm mode or spin up a Kubernetes cluster to test your app in a production-like
configuration. No code changes or config changes to the app either, it’s all handled by the proxy.
So far we've used Nginx to route between containers using different host names, which is how
you run multiple apps in one environment. You can also configure fine-grained paths for Nginx
routing, so if you want to selectively expose parts of your application you can do that within the
same domain name.

TRY IT NOW The image gallery app uses a REST API, and you can configure Nginx to proxy the API using an

HTTP request path. The API appears to be part of the same application as the web UI, although it's actually

coming from a separate container:

432

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

remove the original image-gallery configuration:
rm ./nginx/sites-enabled/image-gallery.local

copy in the new one which adds the API and restart Nginx:
cp ./nginx/sites-available/image-gallery-2.local ./nginx/sites-enabled/image-
gallery.local

docker-compose -f .\nginx\docker-compose.yml restart nginx

curl -i http://image-gallery.local/api/image

This is a very nice pattern for selectively exposing parts of your application stack, assembling
one app from many components under the same domain name. Figure 20.6 shows my output -
the response is coming from the API container, but the client is making a request on the same
image-gallery.local domain that they use for the web UI:

Figure 20.6 Nginx can route requests to different containers, based on the domain name or request path

433

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Load-balancing and routing let you get close to the production environment on a single
developer or test machine, and one more infrastructure component which the reverse proxy
takes care of is SSL termination. If your apps are published as HTTPS sites (which they should
be), the configuration and certificates need to live somewhere, and it's far better to put that in
your central proxy rather than in every application component. Nginx can be configured with
real certificates which you get from a domain provider or a service like Let's Encrypt, but for
non-production environments you can create your own self-signed certs and use them.

TRY IT NOW Generate an SSL certificate for the image gallery app and proxy it through Nginx, using the

certificates to server it as an HTTPS site:

generate a self-signed certificate for the app - on Linux:
docker container run -v "$(pwd)/nginx/certs:/certs" -e HOST_NAME=image-
gallery.local diamol/cert-generator

OR Windows containers:
docker container run -v "$(pwd)/nginx/certs:C:\certs" -e HOST_NAME=image-
gallery.local diamol/cert-generator

remove the existing image-gallery configuration:
rm ./nginx/sites-enabled/image-gallery.local

copy in the new site configuration with SSL:
cp ./nginx/sites-available/image-gallery-3.local ./nginx/sites-enabled/image-
gallery.local

and restart Nginx:
docker-compose -f nginx/docker-compose.yml restart nginx

#browse http://image-gallery.local

There's quite a bit going on in this exercise. The first container you run uses the OpenSSL tool
to generate self-signed certificates, and it copies them to your local certs directory - which is
also bind-mounted into the Nginx container. Then you replace the image gallery configuration
file with one that uses those certs and restart Nginx. When you browse to the site using HTTP
you get redirected to HTTPS and you'll get a browser warning because the self-signed certificate
isn't trusted. In figure 20.7 you see the waring from Firefox - I could click the Advanced button
to ignore the warning and go on to view the site:

434

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.7 Nginx redirects HTTP requests to HTTPS and serves them with an SSL certificate

Nginx lets you configure all sorts of details for your SSL setup, down to the protocols and ciphers
you support (you can check your site and get a list of best practices to apply from
https://www.ssllabs.com). I won't go into all that detail, but the core part of the HTPS setup is
in code listing 20.2 - you can see the HTTP site listens on port 80 and returns an HTTP 301
response, which redirects the client to the HTTPS site listening on port 443:

Code listing 20.2 Serving a site on HTTPS with an HTTP redirect

server {
 server_name image-gallery.local;
 listen 80;

return 301 https://$server_name$request_uri;
}

435

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

server {
server_name image-gallery.local;
listen 443 ssl;

ssl_certificate /etc/nginx/certs/server-cert.pem;
ssl_certificate_key /etc/nginx/certs/server-key.pem;
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

...

The configuration loads the certificate and key files from the container's filesystem. Each
certificate and key pair is only good for one domain name, so you'll have one set of files for each
application you use (although you can generate a certificate which covers multiple subdomains).
These are confidential files so in production you would use secrets in your cluster to store them.
Keeping HTTPS out of your app containers means less configuration and certificate management
- it's an infrastructure concern which now lives in the proxy - and developers can spin up simple
HTTP versions for testing.

There's one last feature of Nginx we'll cover here, which can be a huge performance boost:
caching responses from upstream components.

20.3 Improving performance and reliability with the proxy
Nginx is a very high performance HTTP server. You can use it to serve static HTML for simple
sites or Single-Page Applications, and one container can comfortably handle thousands of
requests per second. You can use that performance to improve your own applications too - Nginx
can work as a caching proxy, so when it fetches content from the upstream it stores a copy in
its local disk or memory store. Subsequent requests for the same content get served directly
from the proxy and the upstream is not used. Figure 20.8 shows how the cache works:

Figure 20.8 Using Nginx as a caching proxy reduces the workload for application containers

436

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

There are two benefits to this. First you reduce the time taken to serve the request, because
whatever the application platform does to generate the response is bound to take longer than
Nginx takes to read the cached response from memory. Second you reduce the total amount of
traffic to your application, so you should be able to handle more users from the same
infrastructure. You can only cache content which is not user-specific, but that could be as simple
as bypassing the cache if an authentication cookie is present. Generic sites like the image gallery
app can be completely served by the cache.

TRY IT NOW Use Nginx as a caching proxy for the image gallery app. This configuration sets both the web

app and the API to use the Nginx cache:

remove the current site config:
rm ./nginx/sites-enabled/image-gallery.local

copy in the caching config and restart Nginx:
cp ./nginx/sites-available/image-gallery-4.local ./nginx/sites-enabled/image-
gallery.local

docker-compose -f .\nginx\docker-compose.yml restart nginx

make some requests to the site:
curl -i --head --insecure https://image-gallery.local
curl -i --head --insecure https://image-gallery.local

The new proxy configuration sets a custom response header X-Cache, which Nginx populates
with the result of the cache lookup. If there's no match in the cache - which will be the case for
the first call you make to the site - then the response header is X-Cache: MISS, meaning
there was no matching response in the cache, and there's an X-Upstream header with the IP
address of the container where Nginx fetched the content. When you repeat the call, the
response does come from the cache so you'll see X-Cache: HIT and no X-Upstream header
because Nginx didn't use an upstream. My output is in figure 20.9:

437

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.9 If the proxy has the response in its cache, it sends it without using the upstream

Nginx lets you fine-tune how you use the cache. In the latest configuration I've set the API to
use a short-lived cache, so responses are stale after one minute and then Nginx fetches the
latest content from the API container. That's a good setup for content which you need to be
fresh, but where you have a very high load - if your API gets 5,000 requests per second then
even a one minute cache saves 300,000 requests from reaching your API. The web app is set
to use a longer cache, so responses stay fresh for to six hours. Code listing 20.3 shows the
cache configuration:

Code listing 20.3 Nginx as a caching reverse proxy for API and web content

 ...

438

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

 location = /api/image {
 proxy_pass http://iotd/image;
 proxy_set_header Host $host;
 proxy_cache SHORT;
 proxy_cache_valid 200 1m;
 ...
 }

 location / {
 proxy_pass http://image-gallery;
 proxy_set_header Host $host;
 proxy_cache LONG;
 proxy_cache_valid 200 6h;
 proxy_cache_use_stale error timeout invalid_header updating
 http_500 http_502 http_503 http_504;
 ...
 }

The caches named LONG and SHORT are defined in the core Nginx configuration in the
diamol/nginx image - the cache spec sets how much memory and disk to use for responses,
and the eviction time for stale items. I don't want to dig into Nginx configuration too deeply, but
there's one very useful feature you can use to improve app reliability, which is defined for the
web app in the proxy_cache_use_stale setting. That tells Nginx that it can use cached
responses even when they're stale, if the upstream is not available.

Serving content from stale items in the cache means your app stays online (although it may
not be fully functional) even if the application containers are down. This is a very useful backup
to work around transient failures in your app, or application rollouts that need to be rolled back.
You need to think carefully about the paths that can be served successfully from the cache, but
in a nice simple demo app you can serve the whole thing.

TRY IT NOW Make a couple of calls to the image gallery app and API so Nginx saves those responses in its

cache. Then kill the containers and try requesting the content again:

call the site and the API:
curl -s --insecure https://image-gallery.local
curl -s --insecure https://image-gallery.local/api/image

remove all the web containers:
docker container rm -f $(docker container ls -f name=image-gallery_image-
gallery_* -q)

try the web app again:
curl -i --head --insecure https://image-gallery.local

remove te API container:
docker container rm -f image-gallery_iotd_1

try the API again:
curl -i --head --insecure https://image-gallery.local/api/image

439

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

You'll see the different cache configurations in action here. The web cache is set to expire after
six hours so even when there are no web containers available, the content keeps getting served
from Nginx's cache. The API response cache expires after one minute and it's not set to use the
stale cache - so you'll get an HTTP 502 error from Nginx, meaning it was unable to reach the
upstream component. My output is in figure 20.10:

Figure 20.10 Nginx caching can be fine-tuned to keep content fresh or to add reliability to your app

That's as far as we'll go with exercises for Nginx. It's a very capable reverse proxy and there's
plenty more you can do - like enabling GZip compression for HTTP responses and adding client
cache headers - which can improve end-user performance and reduce the load on your app

440

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

containers. It's a technology which existed before containers so it doesn't actually integrate with
the container platform, it just works at the network level looking up IP addresses for DNS names,
which is where Docker provides the container IP address. It works well but you need to maintain
that configuration file for each app and reload Nginx whenever the configuration changes. We'll
finish the chapter looking at a modern alternative which is container-aware and integrates nicely
with Docker.

20.4 Using a Cloud-Native Reverse Proxy
Back in chapter 11 we built a CI pipeline using Jenkins, running in a container. That container
connected to the Docker Engine it was running on, so it could build and push images. Connecting
a container to the Docker Engine also lets applications query the Docker API to learn about other
containers - and that's exactly what powers the cloud-native reverse proxy Traefik
(approximately pronounced "traffic"). There's no static configuration file for each app you want
to make available in the proxy, instead you add labels to your containers and Traefik uses those
labels to build its own configuration and routing maps.

Dynamic configuration is one of the major benefits of a container-aware proxy like Traefik.
You don't need to start your upstream apps before you run Traefik because it watches for new
containers while its running. You don't have to restart Traefik or reload configuration to make a
change to your application setup - that's all part of your application deployment. Traefik has its
own API and web UI which shows the rules, so you can run Traefik without any other containers
and then deploy an application and see how the config gets built.

TRY IT NOW Start by clearing down all the existing containers, then run Traefik and check the UI to get a feel

for how Traefik manages components:

docker container rm -f $(docker container ls -aq)

start Traefik - connecting to a Linux Docker Engine:
docker-compose -f traefik/docker-compose.yml -f traefik/override-linux.yml up
-d

OR using Windows containers:
docker-compose -f traefik/docker-compose.yml -f traefik/override-windows.yml
up -d

browse to http://localhost:8080

There are different override files for Linux and Windows because they use different private
channels for the container to connect to the Docker Engine; other than that the behavior of
Traefik is exactly the same on all platforms. The dashboard is your view over the applications
which Traefik is proxying and how each is configured. You can see the resources Traefik uses to
configure proxies in figure 20.11:

441

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.11 The Traefik dashboard shows you the configuration for all the apps being proxied

Traefik is very widely used and it has a similar operational model to Nginx - there's a free open-
source product which is published as an official image in Docker Hub, and there's also a
commercial variant if you want to run with support. If you're new to reverse proxies, these are
the two implementations I'd recommend and ideally you should compare the two. So we'll dig
a little bit into how Traefik works:

• entrypoints are the ports Traefik listens on for external traffic, so these map to the
published ports for the container. I'm using 80 and 443 for HTTP and HTTPS, and 8080
for the Traefik dashboard;

• routers are the rules for matching an incoming request to a target container. HTTP
routers have rules like host name and path to identify client requests;

• services are the upstream components, the application containers which actually serve
the content to Traefik so it can pass the response back to the client;

• middlewares are components which can modify requests from a router before they get
sent to the service. You can use middleware components to change the request path or
headers, or even to enforce authentication.

442

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

The simplest configuration just needs a router set up with rules to match client requests to the
service which the router is attached to.

TRY IT NOW Deploy the who-am-I app with an updated Compose definition which includes labels to enable

routing through Traefik:

deploy the app with Traefik labels in the override file:
docker-compose -f whoami/docker-compose.yml -f whoami/override-traefik.yml up
-d

browse to the Traefik configuration for the router:
http://localhost:8080/dashboard/#/http/routers/whoami@docker

and check the routing:
curl -i http://whoami.local

This is a very simple configuration - the route just links the entrypoint port to the upstream
service, which is the who-am-I container. You can see in figure 20.12 that Traefik has built the
configuration for the router, linking the host domain whoami.local to the whoami service:

443

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.12 Traefik uses the Docker API to find containers and labels, using them to build configuration

That's all done by applying two labels onto the container, one to enable Traefik for the app and
the other to specify the host name to match on. Code listing 20.4 shows those labels in the
override Compose file:

Code Listing 20.4 Configuring Traefik by adding labels to application containers

services:
 whoami:
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.whoami.rule=Host(`whoami.local`)"

Traefik supports some very sophisticated routing options. You can match by host name and
path, or a path prefix - and then use a middleware component to strip prefixes. That sounds

444

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

complicated but it's just what we need for the image gallery API, so we can expose it as a path
in the main image gallery domain. We can configure Traefik to listen for incoming requests with
the path prefix "api", and then strip the prefix from the request URL before it calls the service -
because the service itself doesn't use that prefix.

TRY IT NOW The image gallery app just needs an override file with labels specified to enable Traefik support.

Deploy the app and Traefik will add the configuration to its routing rules:

start the app with the new Traefik labels:
docker-compose -f image-gallery/docker-compose.yml -f image-gallery/override-
traefik.yml up -d

check the web application:
curl --head http://image-gallery.local

and the API:
curl -i http://image-gallery.local/api/image

You'll see in the output that you get a correct response from the API call - Traefik receives an
external request on http://image-gallery.local/api/image and uses the router and middleware
configuration to make an internal call to the container at http://iotd/image. The configuration
for that is slightly cryptic. You define the router and then the middleware component and then
attach the middleware to the router - it's in the file image-gallery/override-
traefik.yml if you want to check it out. That complexity is all transparent to the consumer,
you can see in figure 20.13 that the response looks like it's coming direct from the API:

445

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.13 Routing rules let you present a multi-container app at a single domain

Reverse proxies don't all support the same feature set. Traefik doesn't have a cache (as of
version 2.1), so if you need a caching proxy then Nginx is the way to go. But when it comes to
SSL Traefik has much better support - it integrates with certificate providers out of the box, so
you can have it automatically connect to Let's Encrypt and update certs for you. Or you can use
the default self-signed certificate provider and add SSL to your sites in non-production
environments without any cert management.

TRY IT NOW Adding SSL support to the image gallery app and API needs a more complex Traefik setup - to

listen on the HTTPS entry point as well as HTTP, but redirect HTTP calls to HTTPS. It's all still done with labels so

the deployment is just an application update:

run the app with Traefik labels for HTTPS:
docker-compose -f image-gallery/docker-compose.yml -f image-gallery/override-
traefik-ssl.yml up -d

check the website using HTTPS:
curl --head --insecure https://image-gallery.local

446

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

and the API:
curl --insecure https://image-gallery.local/api/image

If you browse to the site or the API you'll see the same warning message in the browser that
we had using SSL with Nginx - the certificate isn’t trusted by a known certificate authority. But
this time we didn't need to create our own certificate and carefully manage the certificate and
key files, Traefik did it all. You see my output in figure 20.14; using cUrl with the insecure
flag tells it to carry on even though the cert is untrusted:

Figure 20.14 Using Traefik for HTTPS - it can generate certificates or fetch them from third-party providers

Routing, load-balancing and SSL termination are the main features of a reverse proxy, and
Traefik supports them all with dynamic configuration through container labels. If you're
evaluating it against Nginx then you need to remember that Traefik doesn't give you a cache -
that's a much-requested feature which may come into Traefik in a later release. There's one last
feature we'll try which is easy in Traefik and much harder in Nginx: sticky sessions.

Modern apps are built to have as many stateless components as possible. It's important
when you're running at scale that client requests can be routed to any container so you benefit
from load-balancing and see immediate results when you scale up. Old apps tend not to be built
from stateless components, and you may find when you migrate those apps to run in containers
that you want the user to be routed to the same container each time. That's called a sticky
session, and you can enable that in Traefik with a setting for the service.

447

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW The whoami app is an easy example of sticky sessions. You can scale up the current deployment

and make repeated calls - they'll be load-balanced between the containers by Traefik. Deploy a new version with

sticky sessions and all your requests will be handled by the same container:

run the who-am-I app with multiple containers:
docker-compose -f whoami/docker-compose.yml -f whoami/override-traefik.yml up
-d --scale whoami=3

check that requests are load-balanced between containers:
curl -c c.txt -b c.txt http://whoami.local
curl -c c.txt -b c.txt http://whoami.local

now deploy the same app with sticky session support:
docker-compose -f whoami/docker-compose.yml -f whoami/override-traefik-
sticky.yml up -d --scale whoami=3

and check requests are served by the same container:
curl -c c.txt -b c.txt http://whoami.local
curl -c c.txt -b c.txt http://whoami.local

With sticky sessions enabled, your requests get served by the same container each time because
Traefik sets a cookie identifying which container it should use for that client (you'll see the same
behavior with the browser too). If you're interested you can examine the cookies in your browser
session or in the c.txt file and you'll see Traefik puts the container's IP address in that cookie,
so the next time you make a call it uses the IP address to access the same container. My output
is in figure 20.15:

448

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.15 Enabling sticky sessions in Traefik - it uses cookies to send the client to the same container

Sticky sessions are one of the major asks from teams moving old apps to containers, and Traefik
makes it pretty easy. It's not quite the same as a sticky session for a physical server or VM,
because containers are replaced more frequently, so clients could be stuck to a container which
no longer exists. If the cookie directs Traefik to an unavailable container, it will pick another one
- so the user will see a response, but their session will have ended.

20.5 Understanding the patterns a reverse proxy enables
A reverse proxy is pretty much essential when you start running many containerized apps in
production. We've covered some of the more advanced features in this chapter - SSL, caching
and sticky sessions - but even without those you'll find you need a reverse proxy sooner or later.
There are three major patterns which a reverse proxy enables, and we'll finish up by walking

449

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

through them. The first is hosting several web applications on the standard HTTP and HTTPS
ports, using the host name in the client request to fetch the correct content, as in figure 20.16:

Figure 20.16 Using a reverse proxy to host many applications with different domain names in one cluster

The second is for microservice architectures, where a single application runs across multiple
containers. You can use a reverse proxy to selectively expose individual microservices, routed
by HTTP request path - externally your app has a single domain but different paths are served
by different containers. Figure 20.17 shows this pattern:

450

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.17 Microservices exposed by the reverse proxy are part of the same application domain

The final pattern is very powerful if you have old monolithic applications which you want to
migrate to containers. You can use a reverse proxy to start breaking up the monolithic front-
end of your old app, splitting features out into new containers. Those new features are routed
by the reverse proxy and because they’re in separate containers they can use a different,
modern technology stack - figure 20.18 shows this:

451

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 20.18 The reverse proxy hides the monolithic architecture so it can be broken into smaller services

These patterns are not mutually exclusive - in a single cluster you could have a reverse proxy
powering all three patterns, hosting multiple domains with a mixture of microservices and
monolithic applications running in containers.

20.6 Lab
We've got a whole new app for this lab, one which will clearly show the power of a caching
reverse proxy. It's a simple website which calculates Pi to a specified number of decimal places.
In the lab folder for this chapter you can run the app with Docker Compose and browse to
http://localhost:8031/?dp=50000 to see what Pi looks like to 50,000 decimal places. Refresh
the browser and you'll see it takes just as long to compute the same response. Your job is to
run the app behind a reverse proxy:

• the app should be available at the domain pi.local on the standard HTTP port
• the proxy should cache responses so when users repeat the same request the response

is served from the cache and is much faster than from the app
• the proxy should add resilience, so if you kill the app container any cached responses are

still available from the proxy.

452

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

My solution is up on GitHub and you'll find there are huge time savings from caching proxies
with compute-intensive work like this:

https://github.com/sixeyed/diamol/blob/master/ch20/lab/README.md

453

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion
https://github.com/sixeyed/diamol/blob/master/ch20/lab/README.md

21
Asynchronous communication

with a message queue

This is the final full chapter of the book, and it introduces a new way for the components of a
system to communicate: sending and receiving messages using a queue. Message queues have
been around for a very long time - they're a way of decoupling components so instead of making
a direct connection to communicate with each other, they send messages to the queue. The
queue can deliver messages to one or many recipients, and that adds a lot of flexibility to your
architecture. In this chapter we'll focus on two scenarios which are enabled when you add a
message queue to your application: improving system performance and scalability, and adding
new features with zero downtime. We'll use two modern message queues which run very nicely
in Docker: Redis and NATS.

21.1 What is asynchronous messaging?
Software components usually communicate synchronously - the client makes a connection to
the server, sends a request, waits for the server to send a response and then closes the
connection. That's true for REST APIs, SOAP web services and gRPC which all use HTTP
connections. Synchronous communication is like making a telephone call: it needs both parties
to be available at the same time, so it needs careful management. Servers might be offline or
running at full capacity, so they can't accept connections. Services may take a long time to
process, and client connections might time out waiting for the response. Connections can fail at
the network level, and the client needs to know if they can safely repeat the request. You need
a lot of logic in your application code or libraries to deal with all the failure modes.

Asynchronous communication adds a layer between the client and the server. If the client
needs a server to do something it sends a message to the queue. The server is listening on the
queue, picks up the message and processes it. The server can send a response message to the

454

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

queue, and if the client wants a response it will be listening on the queue and will pick it up.
Asynchronous messaging is like communicating by email - parties can join in when they have
free time. If the server is offline or out of capacity then the message sits in the queue until a
server is available to pick it up. If the message takes a long time to process, that doesn't affect
the client or the queue. If there's a failure when the client sends a message, then the message
isn't in the queue and the client can safely send it again. Figure 21.1 shows communication with
asynchronous messaging:

Figure 21.1 Message queues decouple components so they don't communicate with each other directly

Messaging has always been a favorite option for integration architects, but it used to raise some
difficult issues - the queue technology needs to be super reliable, but enterprise queues are too
expensive to run in test environments, so do we use different queues in different environments,
or skip the queues altogether in dev? Docker fixes that by making it easy to run enterprise-
grade queues in containers, with a dedicated queue for each application and the same
technology in every environment. Redis is a popular option (which you can use as a data store
as well as a queue) and you can easily try it out to get a feel for asynchronous messaging.

TRY IT NOW Run the Redis server in a container, connected to a network where you can run other containers

to send and receive messages:

create the network - on Linux containers:

455

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

docker network create ch21

OR Windows containers:
docker network create -d nat ch21

run the Redis server:
docker container run -d --name redis --network ch21 diamol/redis

check the server is listening:
docker container logs redis --tail 1

Message queues are server components which just run until you stop them. Redis listens for
connections on port 6379, and that same address is used by clients to send messages and by
servers to listen for messages. You'll see from your container logs that Redis is up and running
just a few seconds after you start the container - my output is in figure 21.2:

Figure 21.2 A message queue is just like any other background container, waiting for connections

Clients need to open a connection to the queue to send their message - and if you're wondering
how that's better than just calling a REST API directly, it's all down to speed. Queues usually
have their own custom communication protocol which is highly optimized, so when the client
sends a message it just transmits the bytes of the request and waits for an acknowledgement
that it has been received. Queues don't do any complex processing on the message, so they
should easily handle thousands of messages per second.

456

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

TRY IT NOW We won’t send thousands of requests, but we’ll use the Redis CLI to send a few messages. The

command syntax is a bit involved, but this is going to publish the message "ping" on the channel called

channel21, and it will repeat that message 50 times with a 5 second interval in between:

run the Redis client in the background to publish messages:
docker run -d --name publisher --network ch21 diamol/redis-cli -r 50 -i 5
PUBLISH channel21 ping

check the logs to see message are being sent:
docker logs publisher

This Redis client container will sit in the background and send a message every five seconds.
The log output just shows the response code from each message send, so if everything is
working you'll just see lots of zeros, which is the "OK" response. You can see mine in figure
21.3:

Figure 21.3 The Redis CLI is a simple way to send messages to the queue running in the Redis container

There's some new terminology here because "client" and "server" don't really make sense in
messaging terms - every component is a client of the message queue, they just use it in different
ways. The component sending messages is the publisher, and the component receiving
messages is the subscriber. There could be lots of different systems using the queue so Redis
uses channels to keep messages separate - in this case the publisher is sending messages on
the channel called channel21 so for a component to read those messages it needs to subscribe
to the same channel.

TRY IT NOW Run another container with the Redis CLI, this time subscribing to the channel where the other

container is publishing messages:

run an interactive subscriber and you'll see messages received every five
seconds:

457

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

docker run -it --network ch21 --name subscriber diamol/redis-cli SUBSCRIBE
channel21

We're using the Redis CLI which is a simple client that talks using the Redis messaging protocol
- there are Redis SDKs for all the major application platforms, so you can integrate it with your
own apps too. The CLI prints output across multiple lines, so to start with you'll see the output
from subscribing to the queue. The publishing container is still running in the background, and
every time it publishes a message Redis sends a copy to the subscriber container - and then
you'll see the message detail in the logs. Mine is in figure 21.4:

Figure 21.4 A subscriber to the queue receives a copy of every message published on the channel

You can exit from the container with Ctrl-C, or kill the container with docker container rm
-f subscriber - until then it will keep listening for messages. You can see that this is
asynchronous communication: the publisher was sending messages before there were any
subscribers listening, and the subscriber will keep listening for messages even when there are
no publishers. Each component works with the message queue, and it doesn't know about other
components which are sending or receiving messages. The simple principle of decoupling
senders and receivers with a queue helps you make your apps performant and scalable, and
we'll see that next with a new version of the to-do list app.

21.2 Using a cloud-native message queue
The to-do application has a web front end and a SQL database for storage. In the original
implementation all the communication between components is synchronous - when the web app
sends a query or inserts data it opens a connection to the database and keeps it open until the
request is finished. That architecture doesn't scale well. We could run hundreds of web

458

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

containers to support high user load, but eventually we'll hit a limit where we're using all the
available database connections and the app will start to fail.

This is where a message queue helps with performance and scale. The new version of the
to-do app uses asynchronous messaging for the save workflow - when users add a new to-do
item, the web app publishes a message on a queue. The queue can handle many more
connections than the database and connections have a much shorter lifespan, so it won't get
maxed out even under very high user load. We'll be using a different queue technology for this
exercise: NATS, which is a Cloud Native Computing Foundation (CNCF) project that's mature
and widely used. It stores messages in memory, so it's very fast and perfect for communication
between containers.

TRY IT NOW Run NATS in a container. It has a simple admin API you can use to see how many clients are

connected to the queue:

switch to the exercise folder:
cd ch21/exercises/todo-list

start the message queue:
docker-compose up -d message-queue

check the logs:
docker container logs todo-list_message-queue_1

and check active connections:
curl http://localhost:8222/connz

The connections API call returns JSON details about the number of active connections. There
could be many thousands, so the response is paged - but in this case there's only one page of
data as there are zero connections. You can see my output in figure 21.5:

459

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 21.5 NATS is an alternative message queue, it's very lightweight and has an admin API

There's development work involved when you move to async messaging, and for the to-do app
that meant some changes to the web application. Now when users add a to-do item the web
app publishes a message to NATS, rather than inserting data in the database. The changes are
actually pretty small - even if you're not familiar with .NET Core you can see in code listing 21.1
that there isn't much work to publish a message:

460

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Code listing 21.1 Publishing a message instead of writing data to the database

public void AddToDo(ToDo todo)
 {
 MessageQueue.Publish(new NewItemEvent(todo));
 _NewTasksCounter.Inc();
 }

NATS doesn't use the same channel concept as Redis - instead every message has a subject,
which is a string used to identify the type of the message. You can choose your own naming
scheme for message subjects. The subject for this one is events.todo.newitem, which says
it's a new-item event in the to-do application. Subscribers will be able to listen for messages
with that subject if they're interested in new-item events, but even if there are no subscribers
the app will still publish messages.

TRY IT NOW Run the new version of the to-do web application and the database. You'll see that the app loads

and you can use it without any errors, but it doesn't quite work correctly:

start the web and database containers:
docker-compose up -d todo-web todo-db

browse to the http://localhost:8080 and add some items

You'll find that the app gladly lets you add new items, but when you browse to the list there are
none. That's because the list page fetches data from the database, but the new-item page
doesn’t insert data into the database any more. New-item event messages are being published
to the NATS message queue, but nothing is listening to them. You can see my empty to-do list
(which is not representative of real life at all) in figure 21.6:

461

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 21.6 The to-do app with messaging publishing - without any subscribers there are missing features

There are lots of message queue technologies which have different approaches for dealing with
this situation - where a message is published but there are no subscribers. Some queues move
them to dead-letter queues for admins to manage, others store the messages so they can deliver
them all when a client connects and subscribes. Redis and NATS effectively swallow those
messages - they acknowledge receipt to the client, but there's nowhere to send them so they
get dropped. New subscribers to Redis or NATS queues only receive messages which get
published after they start listening.

TRY IT NOW There's a simple NATS subscriber tool from the project's examples on GitHub. You can use it to

listen for messages with a particular subject, so we can check that the to-do events are actually being published:

run a subscriber listening for "events.todo.newitem" messages
docker container run -d --name todo-sub --network todo-list_app-net
diamol/nats-sub events.todo.newitem

check the subscriber logs:
docker container logs todo-sub

browse to http://localhost:8080 and add some new items

check the new item events are published:
docker container logs todo-sub

462

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

The user experience is exactly the same - the web app still doesn’t work. It publishes messages
and doesn't know what happens to them, but now there is a subscriber which receives a copy
of each message. If you enter some to-do items in the website then you'll see them listed in the
logs for the subscriber - mine are in figure 21.7:

Figure 21.7 A simple subscriber which logs messages is a good to way to check they're being published

You'll have realized by now that the to-do app is lacking a component which acts on the
messages being published. There are three pieces of work you need to do to move to
asynchronous messaging: run a message queue, publish messages when interesting events
happen, and subscribe to those messages so you can do some work when the events happen.
The to-do app is missing the final part, which we'll add next.

21.3 Consuming and handling messages
The component which subscribes to the queue is called a message handler, and typically you
have one handler for each type of message (channels in Redis or subjects in NATS). The to-do
app needs a message handler which listens for new-item events and inserts the data in the
database. Figure 21.8 shows the completed architecture:

463

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 21.8 Asynchronous processing uses a message handler as well as an event publisher

This design does scale because the queue acts like a buffer, smoothing out any peaks from the
incoming user load. You could have hundreds of web containers but only ten message handler
containers - the handlers are in a group, so the queue shares the messages around and each
message is handled by a single container. Containers handle messages one at a time, so that
limits the maximum number of SQL connections used for inserting data to ten, no matter how
many thousands of users there are, wildly clicking buttons. If there's more load coming in than
those ten handlers can deal with then the messages get saved in the queue until the handlers
are ready to process more. The app keeps working, and the data gets saved eventually.

TRY IT NOW The message handler for the to-do app is already built and published to Docker Hub so it's

ready to go. Run it now and see how the app works with async messaging:

start the message handler:
docker-compose up -d save-handler

check the connection from the container logs:
docker logs todo-list_save-handler_1

browse to http://localhost:8080 and add some new items

464

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

check the events have been handled:
docker logs todo-list_save-handler_1

The app is working again! Almost. You'll find that you can add new items and they appear in the
list page, but not immediately. When you save an item the web app redirects to the list page,
which loads while the message is still working its way through the queue and the handler. The
new item hasn't been saved by the time the query runs on the database, so the new data doesn't
get shown. You can see my output in figure 21.9 - at this point my web page showed no items,
even though a new one had been saved:

This is a side-effect of async messaging called eventual consistency - the state of your
application data will be correct when all messages have been processed, but until then you may
get inconsistent results. There are ways to fix this which work towards making the whole UI
async, so the to-do web app would listen for an event stating that the list has changed and then
refresh itself. That push model can be a lot more efficient than polling queries, but it's too much
for this book. We can just hit refresh for now :)

It's a fairly big architectural change to move to asynchronous messaging, but it opens a lot
of opportunities so it's definitely worth knowing how this works. Message handlers are small,
focused components which can be updated or scaled independently of the main application or

465

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

each other. In this exercise we've used the queue to solve a scale-out problem, and now we can
run multiple instances of the save message handler to work through the incoming load, while
effectively rate-limiting the number of SQL connections we use.

TRY IT NOW Message handlers are internal components; they don't listen on any ports so you can run them

at scale with multiple containers on a single machine. NATS supports load-balancing to share messages if there

are several instances of the same handler running:

scale up the handlers:
docker-compose up -d --scale save-handler=3

check one of the new handlers has connected:
docker logs todo-list_save-handler_2

browse to http://localhost:8080 and add some new items

see which handlers have processed the messages:
docker-compose logs --tail=1 save-handler

You'll see that messages are sent to different containers. NATS uses round-robin load balancing
to share the load between connected subscribers, and you'll find that the more load you put
through, the more evenly distributed it will be. My output in figure 21.10 shows that container
1 and 2 have processed messages, but not container 3:

466

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 21.10 Multiple message handlers share the workload so you can scale to meet demand

It's important to realize that I didn't change anything to get three times as much processing
power for my new-item feature - the web site and message handler code is exactly the same,
I'm just running more instances of the same message handler container. If you have another
feature that gets triggered by the same event, you can run a different message handler which
subscribes to the same message subject. That opens up the interesting option of being able to
deploy new features to your app without changing existing code.

21.4 Adding new features with message handlers
We've moved the to-do app towards an event-driven architecture, which is a design where the
application publishes events to say that things have happened, rather than processing them as
soon as they happen. It's a very nice way of building a loosely-coupled application because you
can change what happens in response to events without changing the logic that publishes the
event. We're just using it for a single type of event in this application, but that still brings the
flexibility to add new features without changing the existing app.

467

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

The simplest way to do that is to add a new message handler in a new group, which gets a
copy of every event, but does something different in response. The existing message handler
saves the data in a SQL database; a new message handler could save the data in Elasticsearch
to make it easy for users to query in Kibana, or it could add the item as a reminder in a Google
Calendar. We have a much simpler example for the next exercise - a handler which works like
an audit trail, writing log entries for every new to-do item.

TRY IT NOW The new message handler is in a Compose override file. When you deploy it you'll see that this

is an additive deployment - Compose creates one new container, but none of the other containers change:

run the audit message handler, keeping same scale for the save handler:
docker-compose -f docker-compose.yml -f docker-compose-audit.yml up -d --scale
save-handler=3

check the audit handler is listening:
docker logs todo-list_audit-handler_1

browse to http://localhost:8080 and add some new items

check the audit trail:
docker logs todo-list_audit-handler_1

This is a zero-downtime deployment; the original app containers are unchanged and the new
feature gets implemented in a new container. The audit handler subscribes to the same message
subject as the save handler so it gets a copy of every message, while another copy of the
message gets sent to one of the save handler containers. You can see my output in figure 21.11
where the audit handler writes out the to-do item date and text:

468

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 21.11 Publishing events decouples the components of your app and lets you add new features

Now two processes are triggered in response to the user creating a to-do item, and they both
get actioned in separate components running in separate containers. Those processes could take
any length of time and it wouldn't impact the user experience, because the web UI doesn't wait
for them (or even know about them) - it just publishes the event to the queue, and that behavior
has the same latency no matter how many subscribers are listening for it.

You should get some idea of how powerful this architecture is, even from this simple
example. Once your app is publishing key events as messages to the queue, you can build whole
new features without touching existing components. The new feature can be independently built
and tested, and it can be deployed with no impact to the running application. If there's an issue
with the feature you can just undeploy it by stopping the message handlers.

One last exercise for this chapter to help convince you that async messaging is a pattern
you should consider for your apps. We can have multiple subscribers for a certain type of event,
but we can also have multiple publishers. The new-item event is a fixed structure in code, so

469

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

any component can publish that event, which gives us new options for creating to-do items.
We'll use that to deploy a REST API for the app without changing any existing parts.

TRY IT NOW The todo-list API is already written and ready to deploy. It listens on port 8081 and publishes a

new-item event when users make HTTP POST requests:

start the API container, defined in the override file:
docker-compose -f docker-compose.yml -f docker-compose-audit.yml -f docker-
compose-api.yml up -d todo-api

add a new item through the API:
curl http://localhost:8081/todo -d '{"item":"Record promo video"}' -H
'Content-Type: application/json'

check the audit log:
docker logs todo-list_audit-handler_1

The new API is a simple HTTP server, and the only real logic in there is to publish an event to
the queue - using the same message queue method from code listing 21.1. You'll see that new
items entered through the API get processed by the audit handler and the save handler, so there
are audit entries and when you refresh the web app you'll see the new items are in the database.
My output is in figure 21.12:

470

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 21.12 Events can have many subscribers and many publishers, which makes for loose coupling

This is powerful stuff, and it's all from a single event being published in the app. Async
messaging enables you to build more flexible applications which are easier to scale and update
- and you can add all this goodness to your existing apps too, starting with just a few key events
and building from there. Before you head off to the whiteboard, we'll finish the chapter with a
closer look at messaging patterns so you're aware of what you might be heading into.

471

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

21.5 Understanding async messaging patterns
Asynchronous messaging is an advanced topic but Docker really lowers the entry bar because
it's so easy to run a queue in a container, and you can quickly prototype how your app might
work with event publishing. There are different ways to send and receive messages on a queue
and it's worth understanding a couple of alternatives. The pattern we've used in this chapter is
called publish-subscribe (or "pub-sub"), and it allows zero or more subscribers to receive
published messages, as in figure 21.13:

Figure 21.13 Pub-sub messaging lets many processes act on the same message being published

This pattern doesn't fit every scenario because the message publisher has no knowledge of who
consumes the message, what they do with it or when they've finished. An alternative is request-
response messaging, where the client sends a message to the queue and waits for a response.
The handler processes the request message and then sends a response message which the
queue routes back to the client. This can be used to replace standard synchronous service calls,
with the advantage that handlers won't get overloaded and clients can be doing other work while
they wait for a response. Figure 21.14 shows this pattern:

472

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

Figure 21.14 Request-response messaging is client-service communication without a direct connection

Pretty much all queue technologies support these patterns, and variations like fire-and-forget
(where the client sends a command request in a message rather than publishing an event, but
doesn't care about the response) and scatter-gather (where the client publishes a message
which several subscribers act on, and then collates all the responses). We've looked at Redis
and NATS in this chapter but there's one more technology you should also consider: RabbitMQ.
RabbitMQ is a more advanced queue which supports complex routing and persistent messaging,
so messages are saved to disk and the queue contents survive a container restart. All these
queue technologies are available as official images on Docker Hub.

Message queues are a technology which liberate your application design. You can build in an
event-driven architecture from the start or gradually evolve towards one, or just use messages
for key events. When you start deploying new features with no downtime, or scaling down
handlers to protect a starved database without crashing your app, you'll realize the power of
the patterns and you'll be glad you made it to the end of this chapter.

21.6 Lab
It's the final lab of the book, and this one's a little bit sneaky. The goal is to add another message
handler for the to-do app, one which changes the text for items after they've been saved. That

473

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

handler already exists, so this is mostly about wiring in the new service in the Compose file, but
there are some configuration settings you'll need to dig around for too. Your solution needs to:

• run a new handler using the image diamol/ch21-mutating-handler from Docker
Hub

• the new component listens for events called events.todo.itemsaved but nothing
publishes those events yet... You'll need to search for a config setting you can apply to
one of the existing components to make it publish those events

• the new component has a bad set of default configuration, so it's not using the right
address for the message queue; you'll need to search for the setting and fix that too.

This is not as nasty as it seems; the answers you need are all in the Dockerfiles and you're just
going to set values in your Compose file - no need to change source code or rebuild images. It's
a useful exercise because you'll certainly spend some time trying to figure out config settings
when you use Docker for real, and the final message handler adds a useful feature to the to-do
app.

My solution is up on GitHub as always, with a screenshot to prove it works:
https://github.com/sixeyed/diamol/blob/master/ch21/lab/README.md

474

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion
https://github.com/sixeyed/diamol/blob/master/ch21/lab/README.md

22
Never the end

Docker is a really exciting technology to learn because it has so many uses - everything from
running your own Git server to migrating legacy apps to the cloud to building and running all-
new cloud native apps. I hope the journey we've been on in this book has helped you gain
confidence with containers, and now you know where you can put them to use in your current
or your next project. This final chapter gives you some hints on how you can make that happen
successfully, and ends with an introduction to the Docker community.

22.1 Run your own proof-of-concept
The more you use Docker the more comfortable you become with containers and the more you'll
get out of the technology. Pretty much any app can be containerized, so running a proof-of-
concept (PoC) to migrate one of your own applications to Docker is a great start. It will give you
a chance to bring the practical skills from this book into your own work, and the end result will
be something you can demonstrate to the rest of your team.

There's more to a successful PoC than just docker image build and docker container
run - if you really want to show people the power of containers then I think your PoC should
have a bit more in scope:

• aim to Dockerize more than one component, so you can show the power of Docker
Compose to run different configurations of the app (see chapter 10).

• start with best-practices from the beginning, and show how the move to Docker improves
the whole delivery lifecycle - use multi-stage Dockerfiles and optimize them, including
your own golden images (chapter 17).

• include observability with centralized logging (chapter 19) and metrics (chapter 9); a
meaningful Grafana dashboard and the ability to search logs with Kibana takes your PoC
beyond the basics.

• build a CI/CD pipeline, even if it's just a very simple one using Jenkins in a container

475

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

(chapter 11) to show how everything can be automated with Docker.

The PoC doesn't need to be a huge effort - even with an expanded scope like this I think you
could comfortably limit the exercise to 5 days, if you start with a fairly straightforward app. You
don't need the whole team involved; it can just be a side project at this stage. But if you can’t
get the go-ahead to use Docker at work, that doesn't mean you need to stop - plenty of Docker
power users started at home. You can run some pretty impressive software in containers on a
Raspberry Pi, and that will get you using Docker regularly.

22.2 Make a case for Docker in your organization
Docker is a huge change for most organizations because it impacts pretty much every aspect of
IT, and not every team is ready to embrace a new way of working. There should be enough in
this book to help you show other technology groups the advantage of moving to Docker, but
here are the key topics that I find appeal to different stakeholders:

• developers can run whole application stacks on their machine with the exact same
technology used in production; there's no more wasted time tracking down missing
dependencies or juggling multiple versions of software. The dev team use the same
tooling as the operations team so there's common ownership of components.

• operators and admins get to use standard tools and processes for every application, and
every containerized component has a standard API for logging, metrics and configuration.
Deployments and rollbacks become fully automated, failures should become rare and
releases can happen more frequently.

• database administrators won't want to run database containers in production, but
containers are a great way to give developers and test teams self-service, so they don't
need DBAs to create databases for them. Database schemas can move to source control
and be packaged in Docker images, bringing CI/CD to database development too.

• security teams will be concerned about container compromise at runtime, but Docker lets
you adopt security in depth all through the lifecycle. Golden images, security scanning
and image signing all provide a secure software supply chain which gives you greater
confidence in the software you deploy. Runtime tools like Aqua and Twistlock can
automatically monitor container behavior and shut down attacks.

• business stakeholders and product owners understand the language of releases - they
know historical problems with releases led to more and more quality gates which led to
fewer and fewer releases. Self-healing applications, health dashboards and Continuous
Deployment should all encourage users that the move to containers means better quality
software with less time to wait for new features.

• senior management's interests will align with the business (hopefully), but they'll also
have a close eye on the IT budget. Moving applications from VMs to containers can save
very large sums, consolidating hardware when you run more apps run on fewer servers
in containers, and that also reduces operating system licenses.

• IT management should be aware that the container trend isn't going away. Docker has

476

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

been a successful product since 2014 and all the major clouds offer managed container
platforms. Bringing Docker into your roadmap will make your technology stack current,
and keep the teams happy.

22.3 Plan the path to production
It's important to understand where you're going with Docker, if you want your organization to
come with you. At the start of this book I walked you through five types of project which are
empowered by Docker - from modernizing legacy apps to running serverless functions. Whether
your PoC fits in one of those definitions or you're doing something more exotic, you'll want to
understand the end goal so you can plan your roadmap and track progress.

The major decision you'll need to make is between Docker Swarm and Kubernetes. You've
used Swarm in this book and it's a great way to get started, but if you're looking to the cloud
then Kubernetes is a better option. You can use all your Docker images in Kubernetes but the
application definition format is different from Docker Compose and there's a pretty steep
learning curve you'll need to factor in. If you're planning to run a container platform in the data
center, my advice is to start with Docker Swarm which is operationally easy to manage -
Kubernetes is a complex system which will need a dedicated admin team, and a commercial
offering might be a better option.

22.4 Meet the Docker community
I'll end by making sure you know: you are not alone :) The Docker community is huge, there's
a very active online space and there are in-person meetups worldwide. You're sure to find people
who are happy to share their knowledge and experience, and the Docker community is just
about the friendliest one out there. Here's where to join:

• the Docker Community Slack group - https://dockr.ly/slack
• find an in-person or virtual meetup - https://events.docker.com
• follow the Docker Captains - community members recognized by Docker for their

expertise and sharing - https://www.docker.com/community/captains
• DockerCon, the container conference - https://dockercon.com

I'm part of that community too - you'll find me on the Community Slack @elton-stoneman and
on Twitter @EltonStoneman; feel free to reach out to me anytime. Other places you'll find me
are GitHub (@sixeyed) and my blog https://blog.sixeyed.com. Thanks for reading, I hope you
found the book useful and I hope Docker takes you places.

477

https://livebook.manning.com/#!/book/succeeding-with-ai/discussion

	Learn Docker in a Month of Lunches MEAP V06
	Copyright
	Welcome
	Brief contents
	1: Before You Begin
	1.1 Why containers will take over the world
	1.1.1 Migrating apps to the cloud
	1.1.2 Modernizing legacy apps
	1.1.3 Building New Cloud Native Apps
	1.1.4 Technical Innovation – Serverless And More
	1.1.5 Digital transformation with DevOps

	1.2 Is this book for you?
	1.3 How to use this book
	1.3.1 Your learning journey
	1.3.2 Try-it-nows
	1.3.3 Hands-on labs
	1.3.4 Additional resources

	1.4 Creating your lab environment
	1.4.1 Install Docker
	1.4.2 Verify your Docker setup
	1.4.3 Download the source code for the book

	1.5 Being immediately effective

	2: Understanding Docker and running Hello World
	2.1 Running Hello World in a container
	2.2 So what is a container?
	2.3 Connecting to a container like a remote computer
	2.4 Hosting a website in a container
	2.5 Understanding how Docker runs containers
	2.6 Lab: exploring the container filesystem

	3: Building your own Docker images
	3.1 Using a container image from Docker Hub
	3.2 Writing your first Dockerfile
	3.3 Building your own container image
	3.4 Understanding Docker images and image layers
	3.5 Optimizing Dockerfiles to use the image layer cache
	3.6 Lab

	4: Packaging applications from source code into Docker Images
	4.1 Who needs a build server when you have a Dockerfile?
	4.2 App walkthrough – Java source code
	4.3 App walkthrough – Node.js source code
	4.4 App walkthrough – Go source code
	4.5 Understanding multi-stage Dockerfiles
	4.6 Lab

	5: Sharing Images with Docker Hub and Other Registries
	5.1 Working with registries, repositories and image tags
	5.2 Pushing your own images to Docker Hub
	5.3 Running and using your own Docker registry
	5.4 Using image tags effectively
	5.5 Turning official images into golden images
	5.6 Lab

	6: Using Docker Volumes for Persistent Storage
	6.1 Why data in containers is not permanent
	6.2 Running containers with Docker volumes
	6.3 Running containers with filesystem mounts
	6.4 Limitations in file system mounts
	6.5 Understanding how the container filesystem is built
	6.6 Lab

	7: Running multi-container apps with Docker Compose
	7.1 The anatomy of a Docker Compose file
	7.2 Running a multi-container application with Compose
	7.3 How Docker plugs containers together
	7.4 Application configuration in Docker Compose
	7.5 Understanding the problem Docker Compose solves
	7.6 Lab

	8: Supporting reliability with health checks and dependency checks
	8.1 Building health checks into Docker images
	8.2 Starting containers with dependency checks
	8.3 Writing custom utilities for application check logic
	8.4 Defining health checks and dependency checks in Docker Compose
	8.5 Understanding how checks power self-healing apps
	8.6 Lab

	9: Adding observability with containerized monitoring
	9.1 The monitoring stack for containerized applications
	9.2 Exposing metrics from your application
	9.3 Running a Prometheus container to collect metrics
	9.4 Running a Grafana container to visualize metrics
	9.5 Understanding the levels of observability
	9.6 Lab

	10: Running multiple environments with Docker Compose
	10.1 Deploying many applications with Docker Compose
	10.2 Using Docker Compose override files
	10.3 Injecting configuration with environment variables and secrets
	10.4 Reducing duplication with extension fields
	10.5 Understanding the configuration workflow with Docker
	10.6 Lab

	11: Building and testing applications

with Docker and Docker Compose
	11.1 How the CI process works with Docker
	11.2 Spinning up build infrastructure with Docker
	11.3 Capturing build settings with Docker Compose
	11.4 Writing CI jobs with no dependencies except Docker
	11.5 Understanding containers in the CI process
	11.6 Lab

	12: Understanding Orchestration:

Docker Swarm and Kubernetes
	12.1 What is a container orchestrator?
	12.2 Setting up a Docker Swarm cluster
	12.3 Running applications as Docker Swarm services
	12.4 Managing network traffic in the cluster
	12.5 Understanding the choice between Docker Swarm and Kubernetes
	12.6 Lab

	13: Deploying distributed applicationsas stacks in Docker Swarm
	13.1 Using Docker Compose for production deployments
	13.2 Managing app configuration with config objects
	13.3 Managing confidential settings with secrets
	13.4 Storing data with volumes in the Swarm
	13.5 Understanding how the cluster manages stacks
	13.6 Lab

	14: Automating releases with upgrades and rollbacks
	14.1 The application upgrade process with Docker
	14.2 Configuring production rollouts with Compose
	14.3 Configuring service rollbacks
	14.4 Managing downtime for your cluster
	14.5 Understanding high availability in Swarm clusters
	14.6 Lab

	15: Configuring Docker for secure

remote access and CI/CD
	15.1 Endpoint options for the Docker API
	15.2 Configuring Docker for secure remote access
	15.3 Using Docker Contexts to work with remote engines
	15.4 Adding Continuous Deployment to your CI pipeline
	15.5 Understanding the access model for Docker
	15.6 Lab

	16: Building Docker images that run

anywhere: Linux, Windows, Intel

and Arm
	16.1 Why multi-architecture images are important
	16.2 Building multi-arch images from one or more Dockerfiles
	16.3 Pushing multi-arch images to registries with manifests
	16.4 Building multi-arch images with Docker buildx
	16.5 Understanding where multi-arch images fit in your roadmap
	16.6 Lab

	17: Optimizing your Docker images for size, speed and security
	17.1 How you optimize Docker images
	17.2 Choosing the right base images
	17.3 Minimizing image layer count and layer size
	17.4 Taking your multi-stage builds to the next level
	17.5 Understanding why optimization counts
	17.6 Lab

	18: Application configuration management in containers
	18.1 A multi-tiered approach to app configuration
	18.2 Packaging config for every environment
	18.3 Loading configuration from the runtime
	18.4 Configuring legacy apps in the same way as new apps
	18.5 Understanding why a flexible configuration model pays off
	18.6 Lab

	19: Writing and managing application logs with Docker
	19.1 Welcome to stderr and stdout!
	19.2 Relaying logs from other sinks to stdout
	19.3 Collecting and forwarding container logs
	19.4 Managing your log output and collection
	19.5 Understanding the container logging model
	19.6 Lab

	20: Controlling HTTP traffic to containers with a reverse proxy
	20.1 What is a reverse proxy?
	20.2 Handling routing and SSL in the reverse proxy
	20.3 Improving performance and reliability with the proxy
	20.4 Using a Cloud-Native Reverse Proxy
	20.5 Understanding the patterns a reverse proxy enables
	20.6 Lab

	21: Asynchronous communication with a message queue
	21.1 What is asynchronous messaging?
	21.2 Using a cloud-native message queue
	21.3 Consuming and handling messages
	21.4 Adding new features with message handlers
	21.5 Understanding async messaging patterns
	21.6 Lab

	22: Never the end
	22.1 Run your own proof-of-concept
	22.2 Make a case for Docker in your organization
	22.3 Plan the path to production
	22.4 Meet the Docker community

