

	

	

	

	

	

	

	

Hands	on	Docker

	

	

	

	

	

	

Dedicated	to	the	people	I	love	and	the	God	I	trust.

—	Navin	Sabharwal

	

Dedicated	to	people	who	made	my	life	worth	living	and	carved	me	into	an
individual	I	am	today	and	to	God	who	shades	every	step	of	my	life.

—	Bibin	W

Contents	at	a	Glance
	

1:	Linux	Container

2:	Docker

3:	Docker	Installation

4:	Working	With	Images	and	Container

5:	Docker	Container	Linking	and	Data	Management

6:	Building	images	and	containers	from	scratch	using	Dockerfile

7:	Testing	and	building	container’s	using	Jenkins

8:	Docker	Provisioning	using	Chef	and	Vagrant

9:	Deployment,	Service	Discovery	and	Orchestration	tools	for	Docker

10:	Networking,	Security	and	Docker	API’s

11:	Cloud	Based	Container	Services

	

	

																												Contents
	

Linux	Containers
Namespaces:
Cgroups
Copy	on	write	file	system:

Docker
Introduction
Why	to	use	Docker

Docker	Architecture:
Docker	internal	components:

Working	of	Docker:
Underlying	Technology:
Immutable	infrastructure	with	Docker

Installation
Supported	platforms:
Installing	Docker	on	windows:
Installing	Docker	on	Ubuntu:
Launching	Docker	containers:
Creating	a	daemonized	container:

Connecting	remote	docker	host	using	docker	client
Docker	server	access	over	https

Working	with	containers
Docker	Images
Container	linking

Linking	containers	together:

Data	management	in	containers
Docker	data	volumes:

Building	and	testing	containers	from	scratch
Dockerfile
Dockerfile	Best	Practices

A	static	website	using	Apache

Creating	MySQL	image	and	containers
Creating	a	WordPress	container
Running	multiple	websites	on	a	single	host	using	Docker:
Building	and	testing	containers	using	Jenkins

Docker	Provisioners
Docker	vagrant	provisioner
Managing	Docker	using	chef

Docker	Deployment	Tools
Fig
Shipyard
Panamax

Docker	Service	Discovery	and	Orchestration
Service	discovery	with	consul
Consul	Architecture
Docker	cluster	management	using	Mesos
Mesosphere

Docker	cluster	management	using	Kubernetes
Kubernetes	components
Minion	server

Work	Units
Installation

Docker	orchestration	using	CoreOS	and	fleet
CoreOS	Architecture

Networking,	security	and	API’s
Docker	networking
Docker	security
Docker	Remote	API:	(version	v1.15)

Cloud	container	services
Google	container	engine
Amazon	container	service	(ECS)

About	the	Authors

Navin	Sabharwal	 is	an	 innovator,	 thought	 leader,	author,	and	consultant	 in	 the	areas	of
virtualization,	cloud	computing,	big	data	and	analytics.

Navin	 has	 created	 niche	 award-winning	 products	 and	 solutions	 and	 has	 filed	 numerous
patents	 in	 diverse	 fields	 such	 as	 IT	 services,	 virtual	machine	 placement,	 cloud	 capacity
analysis,	 assessment	 engines,	 ranking	 algorithms,	 capacity	 planning	 engines,	 and
knowledge	management.

Navin	holds	a	Masters	in	Information	Technology	and	is	a	Certified	Project	Management
Professional.

Navin	 has	 authored	 the	 following	 books:	 Cloud	 Computing	 First	 Steps	 (Publisher:
CreateSpace,	ISBN#:	978-1478130086),	Apache	Cloudstack	Cloud	Computing	(Publisher:
Packt	 Publishing,	 ISBN#:	 978-1782160106),	 Cloud	 Capacity	 Management	 (Publisher
Apress,	ISBN	#:	978-1430249238)

	
Bibin	W	 has	 been	 working	 with	 virtualization	 and	 cloud	 technologies,	 he	 is	 a	 subject
matter	 expert	 in	 VMware,	 Linux	 Container,	 Docker,	 Amazon	Web	 Services,	 Chef	 and
Azure.

Bibin	holds	a	Masters	in	Computer	Science	from	SRM	University,	Chennai.
	

The	authors	can	be	reached	at	architectbigdata@gmail.com.

mailto:architectbigdata@gmail.com

Acknowledgments
	

Special	 thanks	 go	 out	 to	 the	 people	who	 have	 helped	 in	 creation	 of	 this	 book	Dheeraj
Raghav	for	his	creative	inputs	 in	the	design	of	 this	book,	Piyush	Pandey	for	his	reviews
and	insights	into	the	content.

The	 authors	will	 like	 to	 acknowledge	 the	 creators	of	virtualization	 technologies	 and	 the
open	 source	 community	 for	 providing	 such	 powerful	 tools	 and	 technologies	 and	 enable
products	and	solutions	which	solve	real	business	problems	easily	and	quickly.

	
Preface

Docker	is	making	waves	in	the	technology	circles	and	is	rapidly	gaining	mindshare	from
developers,	startups,	technology	companies	and	architects.

We	 all	 know	 how	 virtualization	 has	 changed	 the	 datacenter	 and	 cloud	 forever,
virtualization	 has	 allowed	 enterprises	 and	 cloud	 providers	 to	make	 the	 datacenter	more
agile,	 manageable,	 cloud	 friendly	 and	 application	 friendly.	 However	 virtualization	 has
overheads	of	 the	guest	operating	system	and	costly	 licensing	 for	virtualization	software,
thus	limiting	the	utilization	of	the	host.

The	Containerization	 technology	 is	 seeing	 resurgence	with	Docker,	 containerization	 has
been	around	since	many	years,	and	however	it	is	now	that	Docker	has	revived	the	interest
of	the	technology	community	in	containers.

Fundamental	support	for	containerization	was	actually	included	in	the	Linux	2.6.24	kernel
to	provide	operating	system-level	virtualization	and	allow	a	single	host	to	operate	multiple
isolated	Linux	instances,	called	Linux	Containers	(LXC).	LXC	is	based	on	Linux	control
groups	 (cgroups)	 where	 every	 control	 group	 can	 offer	 applications	 complete	 resource
isolation	 (including	 processor,	 memory	 and	 I/O	 access).	 Linux	 Containers	 also	 offer
complete	 isolation	 for	 the	 container’s	 namespace,	 so	 supporting	 functions	 like	 file
systems,	 user	 IDs,	 network	 IDs	 and	 other	 elements	 usually	 associated	 with	 operating
systems	are	unique	for	each	container.

Docker	 uses	 the	 container	 technology	 but	 creates	 a	 layer	 above	 the	 LXC	 layer	 for
packaging,	deployment	and	migration	of	workloads	to	different	hosts.

Docker	container	 technology	has	 taken	 the	cloud	and	application	development	world	by
storm	since	 it	was	open-sourced	a	 little	over	a	year	ago,	offering	a	way	 to	package	and
deploy	applications	across	a	variety	of	Linux	instances.

Enterprises	stand	to	gain	by	further	reducing	the	datacenter	footprint	and	using	the	host’s
resources	to	their	maximum	using	the	Docker	and	LXC	technology.	Coupled	with	the	ease
of	migration	and	fast	scale	out	of	containers	it	is	turning	out	to	be	a	technology	which	is
well	suited	for	the	cloud	use	case.

Docker	is	also	going	to	have	an	impact	on	the	devops	lifecycle,	by	providing	capabilities
to	support	 immutable	 infrastructure	model,	 technologies	 like	Docker	may	fundamentally
change	 the	 way	 the	 operations	 world	 works,	 rather	 than	 updating	 the	 current	 running
instances	 of	 operating	 systems,	 organizations	 may	 move	 to	 a	 model	 where	 the	 server
container	itself	is	replaced	with	a	newer	version	and	the	old	ones	are	taken	out.

This	 book	 will	 help	 our	 readers	 to	 appreciate	 the	 Docker	 technology,	 the	 benefits	 and
features	 provided	 by	 Docker	 and	 get	 a	 deep	 dive	 technical	 perspective	 on	 architecting
solutions	using	Docker.

The	 book	 will	 enable	 a	 reader	 to	 appreciate,	 install,	 configure,	 administer	 and	 deploy
applications	on	the	Docker	platform.

We	sincerely	hope	our	readers	will	enjoy	reading	the	book	as	much	as	we	have	enjoyed
writing	it.

About	this	book

This	book

Introduces	Docker	to	readers,	the	core	concepts	and	technology	behind	Docker.
Provides	hands	on	examples	for	installing	and	configuring	Docker
Provides	insight	into	packaging	applications	using	Docker	and	deploying	them.
Provides	step	by	step	guidelines	to	have	your	Docker	setup	ready
Detailed	coverage	of	Mesosphere	for	Docker	deployment	and	management
Detailed	coverage	of	Kubernetes	clusters	and	Fleet.
Hands	on	coverage	of	deployment	tools	including	Fig,	Shipyard	and	Panamax
Step	by	Step	guidelines	to	help	you	package	your	application	on	Docker
Introduction	to	Google	Container	Engine	for	Docker

	

What	you	need	for	this	book
Docker	supports	the	most	popular	Linux	and	UNIX	platforms.

Download	the	latest	stable	production	release	of	Docker	from	the	following	URL:

https://docs.Docker.com/installation/	

In	this	book	we	have	focused	on	using	Docker	on	a	64-bit	Ubuntu	14.04	platform	and	at
places	 have	 cited	 references	 on	 how	 to	work	with	Docker	 running	 on	 other	 Linux	 and
windows	platforms.	

At	the	time	of	writing,	the	latest	stable	Docker	production	release	is	1.3.1

We	will	be	using	64-bit	Ubuntu	14.04	for	examples	of	the	installation	process.

https://docs.docker.com/installation/

Conventions	Used	In	the	Book

Italic	indicates	important	points,	commands.
This	is	used	to	denote	the	Code	Commands

This	is	the	Output	of	the	command…………

This	is	used	for	Example	commands

This	icon	indicates	statistics	figures

This	icon	indicates	examples

	This	icon	indicates	points	to	be	noted.

	This	icon	indicates	further	reading	links	or	references.

	
Who	this	book	is	for

This	 book	 would	 be	 of	 interest	 to	 Virtualization	 Professionals,	 Cloud	 Architects,
technology	enthusiasts,	Application	Developers.

The	 book	 covers	 aspects	 on	 Docker	 and	 provides	 advanced	 guidance	 on	 planning	 and
deploying	the	Docker	technology	for	creating	Infrastructure	as	a	Service	Clouds	to	using
the	technology	to	package	and	deploy	your	applications.

1
Linux	Containers

	

In	this	chapter	we	will	cover	the	basics	of	Linux	containers.

Virtualization	 refers	 to	 the	 creation	 of	 virtual	 machines	 which	 have	 an	 independent
Operating	 Systems	 but	 the	 execution	 of	 software	 running	 on	 the	 virtual	 machine	 is
separated	from	the	underlying	hardware	resources.	Also	it	is	possible	that	multiple	virtual
machines	can	share	the	same	underlying	hardware.

The	 actual	machine	 that	 runs	 the	 virtualization	 software	 is	 called	 host	machine	 and	 the
virtual	machine	running	on	top	of	the	virtualization	software	is	called	the	guest	machine.
The	software	that	provides	virtualization	capabilities	and	abstracts	the	hardware	is	called	a
“Virtual	 Machine	 Manager”	 or	 a	 “Hypervisor”.	 Popular	 hypervisor	 platforms	 are
VMware,	HyperV,	Xen	and	KVM.

Docker	works	on	a	technology	called	Linux	containers.	Linux	containers	have	a	different
approach	than	virtualization;	you	may	call	 it	an	OS	level	virtualization,	which	means	all
the	containers	run	on	top	of	one	Linux	operating	system.

You	 can	 run	 the	 host	 OS	 directly	 on	 the	 hardware	 or	 it	 can	 be	 running	 on	 a	 virtual
machine.	Each	container	run’s	as	a	fully	isolated	operating	system.

Linux	 containers	 are	 light	 weight	 virtualization	 system	 running	 on	 top	 of	 an	 operating
system.	 It	 provides	 an	 isolated	 environment	 almost	 similar	 to	 a	 standard	 Linux
distribution.

Docker	 works	 with	 LXC	 Container-based	 virtualization.	 It	 is	 also	 called	 operating
system														virtualization	One	of	the	first	container	technologies	on	x86	was	actually
on	FreeBSD,	in	the	form	of	FreeBSD	Jails.

In	 container	 virtualization	 rather	 than	 having	 an	 entire	 Operating	 System	 guest	 OS,
containers	isolate	the	guest	but	do	not	virtualize	the	hardware.	For	running	containers	one
needs	a	patched	kernel	and	user	tools,	the	kernel	provides	process	isolation	and	performs
resource	management.	Thus	all	containers	are	running	under	the	same	kernel	but	they	still
have	their	own	file	system,	processes,	memory	etc.

Unlike	virtual	machines	all	containers	 running	on	a	host	use	 the	same	kernel.	Moreover
starting	 and	 stopping	 a	 container	 is	 much	 faster	 than	 a	 virtual	 machine.	 It	 delivers	 an
environment	 as	 close	 as	 possible	 to	 a	 standard	 Linux	 distribution.	 Containers	 from	 the
inside	are	like	a	VM	and	from	outside	like	a	bunch	of	Linux	processes.

With	 container-based	 virtualization,	 installing	 a	 guest	 OS	 is	 done	 using	 a	 container
template.

In	container	approach	one	is	usually	limited	to	a	single	operating	system,	thus	you	cannot
run	Linux	and	windows	together.

There	are	various	advantages	of	using	containers	as	compared	to	virtualization	in	terms	of
performance	and	 scalability.	A	container	based	 solution	works	well	 if	you	 intend	 to	 run
many	 hundreds	 of	 guests	 with	 a	 particular	 operating	 system,	 because	 they	 carry	 lesser
overhead.	The	number	of	virtual	machines	available	with	container	approach	can	be	much
higher	 as	 compared	 to	 virtualization	 as	 resources	 are	 available	 to	 the	 application	 rather
than	being	consumed	by	multiple	Guest	OS	instances	running	on	a	host.

One	area	where	containers	are	weaker	than	VMs	is	isolation.	VMs	can	take	advantage	of
ring	-1	hardware	 isolation	such	as	 that	provided	by	 Intel’s	VT-d	and	VT-x	 technologies.
Such	 isolation	 prevents	 VMs	 from	 ‘breaking	 out’	 and	 interfering	 with	 each	 other.
Containers	don’t	yet	have	any	form	of	hardware	isolation,	which	makes	them	susceptible
to	exploits.

Docker	 works	 well	 within	 a	 VM,	 which	 allows	 it	 to	 be	 used	 on	 existing	 virtual
infrastructure,	private	clouds	and	public	clouds.	Thus	Virtualization	and	Containerization
will	co-exist	and	in	future	there	may	be	a	hybrid	approach	which	provides	a	unified	way	to
leverage	and	manage	Virtualization	and	Containerization.

Fig	1-1:	Linux	Containers

	

Containers	work	on	the	concept	of	process	level	virtualization.	Process	level	virtualization
has	 been	 used	 by	 technologies	 like	 Solaris	 zones	 and	 BSD	 jails	 for	 years.	 But	 the
drawback	of	these	system	is	that	they	need	custom	kernels	and	cannot	run	on	mainstream
kernels.	As	opposed	 to	Solaris	zones	and	BSD	rails,	LXC	containers	have	been	gaining
popularity	 in	 recent	 years	 because	 they	 can	 run	 on	 any	Linux	 platform.	This	 led	 to	 the
adoption	of	containerization	by	various	cloud	based	hosting	services.

If	you	look	into	Linux	based	containers	there	are	two	main	concepts	involved,

1.	 Namespaces	and
2.	 Cgroups	(Control	groups.)

https://en.wikipedia.org/wiki/X86_virtualization#Hardware-assisted_virtualization

Fig	1-2:	Namespaces	and	Cgroups

Namespaces:
In	 Linux	 there	 are	 six	 kinds	 of	 namespaces	which	 can	 offer	 process	 level	 isolation	 for
Linux	 resources.	Namespaces	 ensure	 that	 each	 container	 sees	only	 its	 own	environment
and	doesn’t	affect	or	get	access	to	processes	running	inside	other	containers.	In	addition,
namespaces	 provide	 restricted	 access	 to	 file	 systems	 like	 chroot,	 by	 having	 a	 directory
structure	for	a	container.

The	 container	 can	 see	 only	 that	 directory	 structure	 and	 doesn’t	 have	 any	 access	 to	 any
level	above	it.	Namespaces	also	allow	containers	to	have	its	own	network	devices,	so	that
each	 container	 can	 have	 its	 own	 IP	 address	 and	 hostname.	This	 lets	 each	 container	 run
independently	of	each	other.	Let’s	have	a	look	at	each	namespace	in	detail.

Pid	Namespace
This	namespace	is	considered	as	most	important	isolation	factor	in	containers.	Every	pid
namespace	forms	its	own	hierarchy	and	it	will	be	tracked	by	the	kernel.	Another	important
feature	is	that	the	parent	pid’s	can	control	the	children	pid’s	but	the	children	pid’s	cannot
signal	or	control	the	parent	pid.

Let’s	say	we	have	ten	child	pid’s	with	various	system	calls	and	these	pid’s	are	meaningful
only	inside	the	parent	namespace.	It	does	not	have	control	outside	its	parent	namespace.
So	 each	 isolated	 pid	 namespace	 will	 be	 running	 a	 container	 and	 when	 a	 container	 is
migrated	to	another	host	the	child	pid’s	will	remain	the	same.

Net	namespace
This	 namespace	 is	 used	 for	 controlling	 the	 networks.	 Each	 net	 namespace	 can	 have	 its
own	network	 interface.	Let’s	say	we	have	 two	containers	running	with	 two	different	pid
namespace	 and	 we	 want	 two	 different	 instances	 of	 Nginx	 server	 running	 on	 those
containers.	This	can	be	achieved	by	net	namespaces	because	each	net	namespace	would
contain	its	own	network	interface	connected	to	an	Ethernet	bridge	for	connection	between

containers	and	the	host.

Ipc	namespace
This	namespace	isolates	the	inter-process	communication.

Mnt	namespace
This	namespace	isolates	the	file	system	mount	points	for	a	set	of	processes.	It	works	more
like	 an	 advanced	 and	 secure	 chroot	 option.	 A	 file	 system	 mounted	 to	 a	 specific	 mnt
namespace	and	can	only	be	accessed	by	the	process	associated	with	it.

Uts	namespace
This	namespace	provides	isolation	for	hostname	and	NIS	domain	name.	This	can	be	useful
for	 scripts	 to	 initialize	 and	 configure	 actions	 based	 on	 these	 names.	When	 hostname	 is
changed	in	a	container,	it	changes	the	hostname	only	for	the	process	associated	with	that
namespace.

User	namespace
This	namespace	isolates	the	user	and	group	ID	namespaces.	User	namespace	allows	per-
namespace	mappings	of	user	and	group	IDs.	This	means	that	a	process’s	user	and	group
IDs	inside	a	user	namespace	will	be	different	from	its	IDs	outside	of	the	namespace.

Moreover,	a	process	can	have	a	nonzero	user	ID	outside	a	namespace	while	at	 the	same
time	 having	 a	 user	 ID	 of	 zero	 inside	 the	 namespace;	 in	 other	 words,	 outside	 its	 user
namespace	all	the	processes	will	have	unprivileged	access	for	operations.

Cgroups
Cgroups	(control	groups)	is	a	feature	of	Linux	kernel	for	accounting,	limiting	and	isolation
of	resources.	It	provides	means	to	restrict	resources	that	a	process	can	use.	For	example,
you	can	restrict	an	apache	web	server	or	a	MySQL	database	to	use	only	a	certain	amount
of	disk	IO’s.

So,	Linux	container	is	basically	a	process	or	a	set	of	processes	than	can	run	in	an	isolated
environment	on	the	host	system.

Before	getting	into	Docker	let’s	understand	another	important	aspect	of	containers	“copy
on	write	file	system”.

Copy	on	write	file	system:
In	normal	file	system	like	ext4,	all	the	new	data	will	be	overwritten	on	top	of	existing	data
and	creates	a	new	copy.	Unlike	other	Linux	file	systems	copy	on	write	file	system	never
overwrites	the	live	data,	instead	it	does	all	the	updating	using	the	existing	unused	blocks	in
the	disk	using	copy	on	write	functionality	(COW).	The	new	data	will	be	live	only	when	all
the	data	has	been	updated	to	the	disk.

For	 example,	 consider	 how	data	 is	 stored	 in	 file	 system.	 File	 systems	 are	 divided	 in	 to
number	of	blocks,	let’s	say	16	blocks.	So	each	innode	will	have	16	pointers	to	blocks.	If	a

file	 stored	 is	 less	 than	16	blocks,	 the	 innode	will	 point	 to	 the	block	directly.	 If	 the	data
exceeds	16	blocks,	the	16	block	will	become	a	pointer	to	more	blocks	creating	an	indirect
pointer.

Fig	1-3:	copy	on	write

When	you	modify	an	existing	data,	it	will	be	written	on	unused	blocks	in	the	file	system
leaving	the	original	data	unmodified.	All	the	indirect	block	pointers	have	to	be	modified	in
order	 to	 point	 to	 the	 new	 blocks	 of	 data.	 But	 the	 file	 system	will	 copy	 all	 the	 existing
pointers	to	modify	the	copy.	File	system	will	then	update	the	innode	again	by	modifying
the	copy	to	refer	to	the	new	blocks	of	indirect	pointers.	Once	the	modification	is	complete,
the	 pointers	 to	 original	 data	 remain	 unmodified	 and	 there	 will	 be	 new	 set	 of	 pointers,
blocks	and	innode	for	the	updated	data.

Fig	1-4:	copy	on	write	mechanism

One	of	the	file	systems	used	by	Docker	is	BTRFS.	Resources	are	handles	using	Copy	on
Write	(COW)	when	same	data	is	utilized	by	multiple	tasks.	When	an	application	requests
data	 from	a	 file,	 the	data	 is	 sent	 to	memory	or	 cache.	 Individual	 applications	 then	have
their	own	memory	 space.	 In	 the	 case	when	multiple	 applications	 request	 the	 same	data,
only	one	memory	space	is	allowed	by	COW	and	that	single	memory	space	is	pointed	to	by
all	applications.	An	application,	which	 is	changing	data,	 is	given	 its	own	memory	space

with	the	new	updated	information.	The	other	applications	continue	using	the	older	pointers
with	original	data.

BTRFS	also	uses	the	file	system	level	snapshotting	to	implement	layers.	A	snapshot	is	a
read-only,	point-in-time	copy	of	the	file	system	state.	A	storage	snapshot	is	created	using
pre-designated	 space	 allocated	 to	 it.	 Whenever	 a	 snapshot	 is	 created,	 the	 metadata
associated	with	the	original	data	is	stored	as	a	copy.	Meta	data	is	the	data	which	gives	full
information	 about	 the	 data	 stored	 in	 the	 disk.	Also	 snapshot	 does	 not	 create	 a	 physical
copy	and	creation	of	a	snapshot	is	nearly	immediate.	The	future	writes	to	the	original	data
will	be	logged	and	the	snapshot	cautiously	keeps	tracks	of	the	changing	blocks.	The	duty
of	the	copy-on-write	is	to	transfer	the	original	data	block	to	the	snapshot	storage,	prior	to
the	write	onto	the	block.	This	in	turn	makes	the	data	remain	consistent	in	the	time	based
snapshot.

Any	“read-requests”	to	snapshots	of	unchanged	data	are	reflected	to	the	original	volume.
Requests	 are	 directed	 to	 the	 “copied”	 block	 only	 in	 the	 scenario	when	 the	 requests	 are
related	to	the	changed	data.	Snapshots	maintain	meta-data,	containing	reports	pertaining	to
the	data	blocks,	which	have	been	updated	since	the	last	snapshot	was	performed.	Attention
must	be	given	to	the	fact	that	the	data	blocks	are	copied	only	at	once,	into	the	snapshot,	on
first	write	instance	basis

Fig	1-5:	COW	image	snapshot

One	of	the	main	advantages	of	copy-on-write	technique	is	its	space	efficiency.	This	is	due
to	 the	 fact	 that	 space	 required	 to	create	a	 snapshot	 is	minimal,	 as	 it	holds	only	 the	data
which	 is	 being	 updated,	 also,	 the	 data	 is	 considered	 to	 be	 valid	 only	when	 the	 original
copy	 is	 available.	 The	 performance	 of	 original	 data	 volume	 is	 somewhat	 impacted	 by
copy-on-write	technique	of	snapshot,	because	the	write	requests	to	data	blocks	can	only	be
performed	 when	 original	 data	 is	 being	 “copied”	 to	 the	 snapshot.	 Read	 requests	 are
diverted	to	the	original	volume	when	the	data	remains	unchanged.

2
Docker

Introduction
The	best	way	to	describe	Docker	is	to	use	the	phrase	from	the	Docker	web	site—Docker	is
“an	open	source	project	to	pack,	ship	and	run	any	application	as	a	lightweight	container.”
Thus	 the	 idea	 of	 Docker	 is	 to	 have	 an	 abstraction	 layer	 that	 allows	 the	 application
developers	 to	 package	 any	 application	 and	 then	 let	 the	 containerization	 technology	 take
care	of	the	deployment	aspects	to	any	infrastructure.

Docker	is	analogous	to	shipping	containers	where	you	can	load	the	goods	in	standardized
containers	and	ship	to	different	locations	without	much	hassle.	The	advent	of	standardized
containers	made	shipping	fast	and	agile.	Docker	does	the	same	with	applications.

Docker	platform	can	be	used	by	developers	and	system	administrators	for	developing	and
shipping	 applications	 to	 different	 environments.	 The	 decoupled	 parts	 of	 the	 application
can	be	integrated	and	shipped	to	production	environments	really	fast.

For	 example,	 a	 developer	 can	 install	 and	 configure	 an	 application	 in	Docker	 container,
pass	 it	 on	 to	 an	ops	person	 and	he	 can	deploy	 it	 on	 to	 any	 server	 running	Docker.	The
application	will	run	exactly	like	it	ran	on	the	developer’s	laptop.

This	 amazing	 feature	 of	Docker	 results	 in	 huge	 savings	 in	 the	 time	 and	 effort	 spent	 on
deploying	applications,	ensuring	 that	 the	dependencies	are	available	and	 troubleshooting
the	deployment	because	of	issues	related	to	dependencies	and	conflicts.

Docker	 technology	 is	 well	 suited	 for	 applications	 deployed	 on	 cloud	 as	 it	 makes	 their
migration	simpler	and	faster.

Docker	 leverages	 LXC	 (Linux	 Containers),	 which	 encompasses	 Linux	 features	 like
cgroups	and	namespaces	for	strong	process	isolation	and	resource	control.	However	it	is	to
be	noted	that	Docker	is	not	limited	to	LXC	but	can	use	any	other	container	technology	in
future	and	with	the	new	release	they	now	support	libcontainer.

Docker	 leverages	 a	 copy-on-write	 file	 system	 and	 this	 allows	 Docker	 to	 instantiate
containers	 quickly	 because	 it	 leverages	 the	 pointers	 to	 the	 existing	 files.	Copy-on-write
file	system	also	provides	layering	of	containers,	thus	you	can	create	a	base	container	and
then	have	another	container	which	is	based	on	the	base	container.

Docker	uses	a	“plain	text”	configuration	language	to	define	and	control	the	configuration
of	the	application	container.	This	configuration	file	is	called	a	DockerFile.

Docker	makes	use	of	Linux	kernel	facilities	such	as	cGroups,	namespaces	and	SElinux	to
provide	 isolation	 between	 containers.	 At	 first	 Docker	 was	 a	 front	 end	 for	 the	 LXC
container	 management	 subsystem,	 but	 release	 0.9	 introduced	 libcontainer,	 which	 is	 a
native	Go	language	library	that	provides	the	interface	between	user	space	and	the	kernel.

Containers	sit	on	top	of	a	union	file	system,	such	as	AUFS,	which	allows	for	the	sharing

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://selinuxproject.org/page/Main_Page
https://linuxcontainers.org/
http://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
http://aufs.sourceforge.net/aufs.html

of	 components	 such	 as	 operating	 system	 images	 and	 installed	 libraries	 across	 multiple
containers.

A	 container	 is	 started	 from	 an	 image,	which	may	 be	 locally	 created,	 cached	 locally,	 or
downloaded	from	a	registry.	Docker	Inc	operates	 the	Docker	Hub	public	 registry,	which
hosts	official	repositories	for	a	variety	of	operating	systems,	middleware	and	databases.

Most	 linux	 applications	 can	 run	 inside	 a	 Docker	 container,	 containers	 are	 started	 from
images	and	running	containers	can	be	converted	into	images.	There	are	two	ways	to	create
application	packages	for	containers	Manual	and	Dockerfile.

Manual	builds

A	 manual	 build	 starts	 by	 launching	 a	 container	 with	 a	 base	 operating	 system	 image.
Normal	process	for	installation	of	an	application	on	the	operating	system	is	performed	and
once	the	application	is	installed	the	container	can	be	exported	to	a	tar	file	or	can	be	pushed
to	a	registry	like	Docker	Hub.

Dockerfile

This	method	is	more	scripted	and	automated	for	construction	of	a	Docker	Container.	The
Dockerfile	 specifies	 the	 base	 image	 to	 start	 and	 then	 the	 other	 installation	 on	 top	 are
defined	as	a	series	of	commands	that	are	run	or	files	that	are	added	to	the	container.

The	Dockerfile	also	can	specify	other	aspects	of	configuration	of	a	container	such	as	ports,
default	commands	to	be	run	on	startup	etc.	Similar	to	the	manual	approach	Dockerfile	can
be	exported	and	the	Docker	Hub	can	use	an	automated	build	system	to	build	images	from
a	Dockerfile.

Why	to	use	Docker
Let’s	 look	 at	 a	 few	 features	 which	 make	 Docker	 useful	 and	 attractive	 to	 application
developers	and	infrastructure	administrators	alike:

Portable	Deployments:
As	containers	are	portable,	the	applications	can	be	bundled	in	to	a	single	unit	and	can	be
deployed	to	various	environments	without	making	any	changes	to	the	container.

Fast	application	delivery:
The	workflow	of	Docker	containers	make	 it	 easy	 for	developers,	 system	administrators,
QA	 and	 release	 teams	 to	 collaborate	 and	 deploy	 the	 applications	 to	 production
environments	really	fast.

Because	 of	 the	 standard	 container	 format,	 developers	 only	 have	 to	 worry	 about	 the
applications	 running	 inside	 the	 container	 and	 system	 administrators	 only	 have	 to	worry
about	deploying	the	container	on	to	the	servers.	This	well	segregated	Docker	management
leads	to	faster	application	delivery.

https://registry.hub.docker.com/

Fig	2-1:	Docker	application	delivery	and	deployment

Moreover,	building	new	containers	is	fast	because	containers	are	very	light	weight	and	it
takes	 seconds	 to	 build	 a	 new	 container.	 This	 in	 turn	 reduces	 the	 time	 for	 testing,
development	and	deployment.	Also,	a	container	can	be	built	in	iterations,	thus	providing	a
good	visibility	on	how	the	final	application	has	been	built.

Docker	is	great	for	development	lifecycle.	Docker	containers	can	be	built	and	packaged	in
developers	laptop	and	can	be	integrated	with	continuous	integration	and	deployment	tools.

For	example,	when	an	application	is	packaged	in	a	container	by	the	developer,	 it	can	be
shared	among	other	team	members.	After	that	it	can	be	pushed	to	the	test	environment	for
various	tests.	From	the	test	environment	you	can	then	push	all	the	tested	containers	to	the
production	environment.

Scale	and	deploy	with	ease:
Docker	containers	can	virtually	run	on	any	Linux	system.	Containers	can	be	deployed	on
cloud	environments,	desktops,	on	premise	datacenters,	physical	servers	and	so	on.	You	can
move	 containers	 from	 your	 desktop	 environment	 to	 cloud	 and	 back	 to	 physical	 servers
easily	and	quickly.

Another	interesting	factor	about	container	is	scalability.	Scaling	up	and	down	containers	is
blazingly	fast.	You	can	scale	up	containers	from	one	to	hundred’s	and	scale	it	down	when
not	 needed.	 Thus	 Docker	 containers	 are	 ideally	 suited	 for	 scale	 out	 applications
architected	and	built	for	the	public	cloud	platforms.

Higher	workloads	with	greater	density:
Fig	2-2:	Virtual	machine	Vs.	Docker	containers

More	 container	 applications	 can	 be	 deployed	 on	 a	 host	 when	 compared	 to	 virtual
machines.	Since	there	is	no	need	for	Docker	to	use	a	hypervisor,	the	server	resources	can
be	 well	 utilized	 and	 cost	 of	 extra	 server	 resources	 can	 be	 reduced.	 Because	 Docker
containers	 do	 not	 use	 a	 full	 operating	 system,	 the	 resource	 requirements	 are	 lesser	 as
compared	to	virtual	machines.

Few	use	cases

1.	Applications	can	be	deployed	easily	on	server	with	build	pipeline.

2.	Can	be	used	in	production	environments	with	Mesos	or	Kunbernetes	for	application	HA
and	better	resource	utilization.

3.	Easy	to	clone	the	production	environment	in	developer’s	workstation.

4.	To	perform	load/scale	testing	by	launching	containers.

Docker	Architecture:
Docker	has	client	 server	 architecture.	 It	has	a	Docker	client	 and	a	Docker	daemon.	The
Docker	 client	 instructs	 the	 Docker	 daemon	 for	 all	 the	 container	 specific	 tasks.	 The
communication	 between	 the	 Docker	 client	 and	 Docker	 daemon	 is	 carried	 out	 through
sockets	 or	 through	 REST	 API’s.	 Docker	 daemon	 creates	 runs	 and	 distributes	 the
containers	 based	 on	 the	 instructions	 from	 the	 Docker	 client.	 Docker	 client	 and	 Docker
daemon	can	be	on	the	same	host	or	different	hosts.

Fig	2-3:	Docker	Architecture

Docker	Daemon:
Docker	daemon	is	responsible	for	all	the	container	operations.	It	runs	on	the	host	machine
as	 shown	 in	 Fig	 2-3.	 User	 cannot	 interact	 with	 the	 daemon	 directly	 instead	 all	 the
instructions	have	to	be	sent	through	the	Docker	client.

Docker	client:
Docker	client	can	either	be	installed	on	the	same	host	as	Docker	daemon	or	in	a	different
host.	 It	 is	 the	main	 interface	 to	 the	Docker	daemon.	 It	accepts	commands	 from	 the	user
and	sends	it	to	the	Docker	daemon	for	execution	and	provides	the	output	to	the	user.

Docker	internal	components:
To	understand	Docker,	you	need	to	know	about	its	three	internal	components.	They	are,

1.	 Docker	image
2.	 Docker	registry
3.	 Docker	container.

Fig	2-4:	Docker	components

Docker	image:
A	Docker	image	is	like	a	golden	template.	An	image	consists	of	OS	(Ubuntu,	centos	etc.,)
and	 applications	 installed	 on	 it.	 These	 images	 are	 called	 base	 images.	 A	 Docker	 base
image	is	the	building	block	of	a	Docker	container	from	where	a	container	can	be	created.
An	image	can	be	built	from	scratch	using	Docker	inbuilt	tools.	You	can	also	use	Docker
images	created	by	other	users	from	Docker	public	registry	(Docker	hub)	as	a	base	image
for	your	containers.

Docker	registry:
Docker	registry	is	a	repository	for	Docker	images.	It	can	be	public	or	private.	The	public
Docker	 registry	 maintained	 by	 Docker	 is	 called	 Docker	 hub.	 Users	 can	 upload	 and
download	 images	 from	 the	 Docker	 registry.	 The	 public	 Docker	 registry	 has	 a	 vast
collection	of	official	and	user	created	images.	To	create	a	container,	you	can	either	use	the
public	images	created	by	another	user	or	you	can	use	your	own	images	by	uploading	it	to
the	public	or	private	registry.

Docker	container:
A	 container	 is	more	 of	 a	 directory	 and	 an	 execution	 environment	 for	 applications.	 It	 is
created	on	top	of	a	Docker	image	and	it	is	completely	isolated.	Each	container	has	its	own
user	space,	networking	and	security	settings	associated	with	 it.	A	container	holds	all	 the
necessary	files	and	configurations	for	running	an	application.	A	container	can	be	created,
run,	started,	moved	and	deleted.

Working	of	Docker:
So	far	we	have	learnt	about	Docker	architecture	and	its	components.	Now	let’s	look	in	to
how	all	the	components	come	together	to	make	Docker	work.

Working	of	Docker	image:
We	have	 learnt	 the	basic	 concept	 of	 a	Docker	 image.	 In	 this	 section	we	will	 learn	how
exactly	a	Docker	image	works.

Each	Docker	image	is	an	association	of	various	layers.	This	layered	approach	provides	a
great	way	of	abstraction	 for	 creating	Docker	 images.	These	 layers	are	combined	 in	 to	a
single	 unit	 using	 Uniform	 file	 system	 (AUFS).	 AUFS	 stores	 every	 layer	 as	 a	 normal
directory,	 files	 with	 AUFS	metadata.	 This	 ensures	 that	 all	 the	 files	 and	 directories	 are
unique	 to	 the	 particular	 layer.	AUFS	 creates	 a	mount	 point	 by	 combining	 all	 the	 layers
associated	with	the	image.	Any	changes	to	the	image	will	be	written	on	the	topmost	layer.

This	is	the	reason	why	the	Docker	containers	are	very	light	weight.

For	example,	when	you	make	an	update	to	an	existing	application,	Docker	either	creates	a
layer	on	 the	 existing	 image	or	updates	 the	 existing	 layer.	The	newly	 created	 layers	will
refer	its	previous	layer.	Docker	does	not	rebuild	the	whole	image	again	for	the	application
like	virtual	machines.	When	you	push	 the	new	updated	 image	 to	 the	 registry	 it	will	not
redistribute	the	whole	image,	instead	it	updates	just	 the	layer	on	top	of	the	existing	base

image.	This	makes	Docker	fast	in	creating	new	applications	from	the	existing	images.

Fig	2-5:	Docker	Images

Points	to	remember

Every	Docker	image	has	a	base	image	(eg:	ubuntu	,centos,	fedora,		debian	etc.,)

You	can	use	you	own	images	as	a	base	image	for	your	applications.	Lets	say	you	have	a
ubuntu	 image	with	mySQL	 installed	on	 it.	You	can	use	 this	as	a	base	 image	 for	all	 you
database	containers.

A	 configuration	 file	 called	 Dockerfile	 holds	 the	 instructions	 in	 descriptive	 form	 for
building	a	new	image.	Dockerfile	will	have	instructions	for	running	commands,	creating
directories,	 adding	 files	 from	 host	 etc.,	We	will	 learn	 about	Docker	 file	 in	 detail	 in	 the
subsequent	chapters.

When	 you	 build	 a	 new	 image	 from	 scratch,	 the	 base	 image	 (specified	 by	 user)	 will	 be
downloaded	 from	 the	 Docker	 hub	 and	 the	 applications	 specified	 in	 the	 instructions
(Dockerfile)	will	 be	 created	 as	 layers	 on	 top	 of	 the	 base	 image.	 Then	 you	 can	 use	 this
image	as	a	base	image	for	your	applications.

Working	of	Docker	registry
Docker	registry	is	used	for	storing	Docker	images.	Images	can	be	pushed	and	pulled	from
Docker	registry	for	launching	containers.	There	are	two	types	of	Docker	registries.

1.	 Public	registry	(Docker	hub):	 It	 contains	official	Docker	 images	and	user	created
images.

2.	 Private	registry:	A	registry	created	by	a	user	 for	storing	private	Docker	 images	 in
your	datacenter.	You	can	also	create	a	private	registry	in	Docker	hub.

All	 the	 images	 in	 the	 registry	 can	 be	 searched	 using	Docker	 client.	 The	 images	 can	 be
pulled	down	to	the	Docker	host	for	creating	containers	and	new	images.

Fig	2-6:	Docker	Registry

Points	to	remember
1.	 Public	 images	 can	 be	 searched	 and	 pulled	 by	 any	 one	 registered	 to	 Docker	 hub.
Images	can	be	searched	from	Docker	client	and	Docker	hub	web	ui.

2.	 Private	images	are	only	accessible	by	the	registry	owner	and	it	does	not	appear	on
public	registry	search	results.

3.	 You	can	create	private	registries	 in	Docker	hub.You	can	create	one	private	registry
for	 free	 and	 you	 need	 paid	 subscription	 for	 Docker	 hub	 to	 create	 more	 than	 one
private	registry.

How	container	works:
As	we	learnt	earlier,	a	container	is	an	execution	environment	for	applications.	It	contains
all	the	operating	system	files,	files	added	by	users	and	metadata.	Basically	a	container	is
launched	 from	 an	 image,	 so	 the	 applications	 which	 are	 installed	 and	 configured	 on	 an
image	will	run	on	the	container	created	from	it.	As	the	images	are	in	ready	only	format,
when	a	container	is	launched,	a	read/write	layer	will	be	added	on	top	of	the	image	for	the
container	for	the	applications	to	run	and	make	changes	to	it.

The	Docker	client	receives	the	command	from	the	Docker	binary	or	REST	API	to	run	a
container.	The	basic	Docker	command	to	run	a	container	is	shown	below.
sudo	docker	run	-i	-t	ubuntu	/bin/bash

When	you	run	the	above	command	from	Docker	binary,	here	is	what	happens,

	
1.	 Docker	client	will	be	launched	with	“Docker	run”	command.
2.	 It	 tells	 the	 daemon,	 from	 which	 image	 the	 container	 should	 be	 created.	 In	 our
example,	it	is	a	Ubuntu	image.

3.	 “-i”	tells	the	Docker	daemon	to	run	the	container	in	interactive	mode.
4.	 “-t”	represents	tty	mode	for	interactive	session.
5.	 “/bin/bash”	 tells	 the	Docker	daemon	 to	 start	 	 the	bash	shell	when	 the	container	 is
launched.

On	 successful	 execution	 of	 the	 Docker	 run	 command,	 Docker	 will	 do	 the	 following
actions	at	the	backend.

1.	 Docker	checks	 if	 the	specified	Docker	 image	 in	 the	command	 is	present	 locally	on
the	host.	If	it	is	present	locally,	Docker	will	use	that	image	for	creating	a	container.	If
not,	 it	 will	 download	 the	 image	 from	 the	 public	 or	 private	 registry	 (based	 on	 the
Docker	host	configuration)	on	the	host.

2.	 The	local	or	pulled	image	will	be	used	for	creating	a	new	container.

Fig	2-7:	working	of	a	container.

3.	 Once	the	image	is	set,	Docker	will	create	a	read/write	file	system	over	the	image.
4.	 Then	Docker	 creates	 the	 necessary	 network	 interfaces	 for	 the	 container	 to	 interact

with	the	host	machine.
5.	 Docker	 checks	 for	 available	 IP	 address	 from	 the	 pool	 and	 allocates	 one	 to	 the

container.
6.	 Then	it	executes	the	command	specified	in	the	command	e.g.	/bin/bash	shell
7.	 Finally	it	logs	all	the	input/output	and	errors	for	the	user	to	find	out	the	status	of	the

container.

There	are	various	other	actions	associated	with	the	“Docker	run”	command.	We	will	look
in	to	it	in	the	subsequent	chapters.

Underlying	Technology:
In	 this	 section	we	will	 see	 the	 underlying	 technology	 like	 namespace,	 cgroups	 and	 file
systems	of	Docker.

Containers	 work	 on	 the	 concept	 of	 namespaces.	 Docker	 uses	 the	 same	 technology	 for
isolating	container	execution	environments.	When	you	create	a	Docker	container,	Docker
creates	 namespaces	 for	 it.	 These	 namespaces	 are	 the	 main	 isolation	 factor	 for	 the
container.

Every	element	of	a	container	has	its	own	namespace	and	all	the	access	remains	inside	that
namespace.	Thus	the	container	elements	do	not	have	any	access	outside	its	namespace.

Fig	2-8:	Docker	namespaces	and	cgroups.

Namespaces:
The	namespaces	used	by	Docker	are	as	follows,

1.	 PID	namespace:	this	namespace	isolates	all	the	processes	inside	the	container.
2.	 Net	 namespace:	 All	 the	 network	 isolation	 factors	 are	 taken	 care	 by	 the	 net

namespace.
3.	 Ipc	 namespace:	 the	 inter-process	 communication	 in	 a	 container	 is	managed	 by	 ipc

namespace.
4.	 Mnt	 namespace:	 All	 the	 mount	 points	 for	 a	 container	 are	 managed	 by	 mnt

namespace.
5.	 Uts	 namespace:	 All	 the	 kernel	 and	 versions	 are	 isolated	 and	 managed	 by	 the	 uts

namespace.

Control	groups	(cgroups):
One	of	the	interesting	things	about	Docker	is	that,	it	can	control	the	amount	of	resources
used	by	a	container.	This	functionality	is	achieved	by	Docker	using	Linux	control	groups
(cgroups).	Along	with	isolation,	cgroups	can	allow	and	limit	the	available	resources	used
by	a	container.

For	 example,	 you	 can	 limit	 the	 amount	 of	memory	 used	 by	 a	webserver	 container	 and
provide	more	resources	for	the	database	container.

File	systems:
In	this	section	we	will	see	the	various	file	systems	supported	by	Docker.

What	makes	Docker	elegant	 is	 the	well-organized	use	of	 layered	 images.	Docker	makes
use	of	various	features	in	kernel	file	system.	Selecting	a	file	system	depends	on	your	host
deployment.

Let’s	have	a	look	at	each	backend	file	system	that	can	be	used	by	Docker.

Storage:
Docker	 has	 an	 efficient	 way	 of	 abstracting	 the	 backend	 storage.	 The	 storage	 backend
stores	 a	 set	 of	 related	 image	 layers	 identified	 by	 a	 unique	 name.	 Following	 are	 the
concepts	involved	in	storage	backend.

1.	 Every	 layer	 in	an	 image	 is	considered	as	a	 file	 system	 tree,	which	can	be	mounted
and	modified.

2.	 A	layer	can	be	created	from	scratch	or	it	can	be	created	on	top	of	a	parent	layer.
3.	 The	 layer	 creation	 is	 driven	 by	 the	 concept	 of	 copy-on-write	 to	 make	 the	 layer

creation	very	fast.
4.	 Every	 image	 in	Docker	 is	 stored	 as	 a	 layer.	When	modifying	 an	 existing	 image,	 a

layer	will	be	added	on	top	of	that.
5.	 Container	is	the	top	most	writable	layer	of	an	image.	Each	container	has	an	init	layer

based	on	image	and	a	child	layer	of	init	where	all	the	container	contents	reside.
6.	 When	 creating	 a	 new	 image	 by	 committing	 a	 container,	 all	 the	 layers	 in	 the

containers	are	bundled	to	form	a	new	image.

When	you	install	Docker,	it	will	use	any	one	of	the	file	system	backends	mentioned	below.

1.	 aufs
2.	 btrfs
3.	 devicemapper
4.	 vfs
5.	 overlayfs

Different	OS	distributions	have	different	file	system	support.	Docker	is	designed	to	choose
a	file	system	backed	supported	by	the	platform	based	on	priority.	Let’s	have	a	look	at	the
main	file	systems	mentioned	above.

Btrfs
Btrfs	 backend	 is	 a	 perfect	 fit	 for	 Docker	 because	 it	 supports	 the	 copy	 on	 write
optimization.

As	we	learnt	in	earlier	chapters,	btrfs	has	rich	features	like	file	system	layer	snapshotting.

Btrfs	is	very	fast	when	compared	to	other	file	systems	used	by	Docker.

The	 disadvantage	 of	 btrfs	 is	 that	 it	 does	 not	 allow	 page	 cache	 sharing	 and	 it	 is	 not
supported	by	SELinux.

AUFS
Aufs	union	file	system	is	used	originally	by	Docker	and	does	not	have	support	for	many
kernel	and	distributions.	It	can	be	used	on	Ubuntu	based	systems.	We	have	learnt	how	aufs
works	in	“working	of	images”	section.

Devicemapper

The	 devicemapper	 backend	 uses	 the	 device-mapper	 thin	 provisioning	 module	 for
implementing	layers.	Device-mapper	is	a	block-level	copy-on-write	system.

Immutable	infrastructure	with	Docker
Configuration	management	tools	like	chef	and	puppet	allow	you	to	configure	a	server	to	a
desired	 state.	 These	 servers	 run	 for	 a	 long	 period	 of	 time	 by	 repeatedly	 applying
configuration	 changes	 to	 the	 system	 to	 make	 in	 consistent	 and	 up	 to	 date.	 	 While
immutable	 infrastructure	 is	 a	 model	 where	 a	 there	 is	 no	 need	 for	 application	 update,
patches	or	configuration	changes.	It	basically	follows	the	concept	of	build	once,	run	one	or
many	instances	and	never	change	it	again.

So,	if	you	want	to	make	configuration	changes	to	an	existing	environment,	a	new	image	or
container	will	be	deployed	with	the	necessary	configuration.

Immutable	infrastructure	comprises	of	 immutable	components	and	for	every	deployment
the	components	will	be	replaced	with	the	updated	component	rather	than	being	updated.

Docker	 container	 falls	 in	 the	 immutable	 infrastructure	 category.	 Docker	 is	 capable	 of
building	 an	 immutable	 infrastructure	 because	 of	 its	 layered	 image	 concept	 and	 the	 fast
booting	of	containers.

But	 there	 are	 few	components	 in	 the	 later	versions	of	Docker	 that	 are	mutable.	Now	 in
Docker	containers	you	can	edit	/etc/hosts,	/etc/hostname	and	/etc/resolv.conf	files.	This	is
helpful	in	place	where	other	services	want	to	override	the	default	settings	of	these	files.

The	downside	of	 this	 is	 that,	 these	changes	cannot	be	written	 to	 images.	So	you	need	a
good	orchestration	tool	to	make	these	changes	in	containers	while	deployment.

Features	of	Immutable	Infrastructure:

State	isolation
The	state	in	an	immutable	infrastructure	is	siloed.	The	borders	among	layers	storing	state
and	 the	 layers	 that	are	 temporary	are	clearly	drawn	and	no	 leakage	can	possibly	happen
between	those	layers.

Atomic	deployments
Updating	an	existing	server	might	break	the	system	and	tools	like	chef	and	puppet	can	be
used	to	bring	the	desired	stated	of	the	server	back	to	the	desired	state.

But	this	deployment	model	is	not	atomic	and	the	state	transitions	can	go	wrong	resulting
in	an	unknown	state.

Deploying	immutable	servers	or	containers	result	in	atomic	deployments.	Layered	images
in	Docker	help	in	achieving	atomic	deployments.

Easy	roll	back	from	preserved	history
Every	 deployment	 in	 an	 immutable	 infrastructure	 is	 based	 on	 images.	 If	 anything	 goes

wrong	 in	 the	 new	 deployment,	 the	 state	 can	 be	 rolled	 back	 easily	 from	 the	 preserved
history.	For	example,	 in	Docker,	every	update	 for	an	 image	 is	preserved	as	a	 layer.	You
can	easily	roll	back	to	the	previous	layer	if	there	is	any	issue	in	the	new	deployment.

Best	practice
Achieving	pure	immutability	is	not	practical.	You	can	separate	the	mutable	and	immutable
layers	in	your	infrastructure	for	better	application	deployment.

Following	are	the	two	things	to	consider	while	planning	for	Immutable	Infrastructure:

1.	 Separate	 Persistence	 layers	 from	 Immutable	 Infrastructure	 application	 deployment
layers

2.	 Manage	Persistence	layers	with	convergence	tools	like	chef,	puppet,	saltstack	etc.

3
Installation

In	chapter	1	and	2	we	learnt	 the	basics	of	Docker,	 its	architecture,	working	and	the	core
components.	In	this	chapter	we	will	learn	the	following.

1.	 Installing	Docker		on	Linux	platform
2.	 Installing	Docker	on	Windows	using	boot2Docker
3.	 Test	the	installation	by	downloading	a	Docker	image	from	Docker	public	registry.
4.	 Docker	hub

Supported	platforms:
Docker	 can	be	 installed	on	 all	Linux	 and	UNIX	based	operating	 systems.	For	windows
and	MAC,	 special	 wrappers	 such	 as	 boo2Docker	 and	 vagrant	 can	 be	 used	 for	 Docker
deployments.	Following	are	the	main	supported	platforms	for	Docker.

1.	 Mac	OS
2.	 Debian
3.	 RHEL
4.	 SUSE
5.	 Microsoft	Azure
6.	 Gentoo
7.	 Amazon	EC2
8.	 Google	Cloud	Platform
9.	 Arch	Linux
10.	 Rackspace
11.	 IBM	Softlayer

12.	 Digital	ocean

Installing	Docker	on	windows:
Windows	cannot	support	Docker	native	installation.	But	in	order	to	make	Docker	work	on
windows,	there	is	a	light	weight	Linux	distribution	called	boot2Docker.	Boot2Docker	uses
virtual	 box	 from	 oracle	 as	 the	 backend	 to	 work	 with	 Docker	 containers.	 Boot2Docker
comes	bundled	as	a	ready	to	install	exe	package.

To	install	boot2Docker	on	a	windows	machine:

1.	 Download	 the	 latest	 boot2Docker	 application	 from	 here
https://github.com/boot2Docker/windows-installer/releases

In	case	the	location	has	changed,	please	search	for	the	latest	version	and	location.

2.	 Double	click	the	downloaded	application,	start	the	installer	and	click	next.

3.	 Select	the	installation	folder	and	click	next

https://github.com/boot2docker/windows-installer/releases

4.	 Select	the	components	you	want	to	install.	If	virtual	box	is	already	installed	on	your
workstation,	 deselect	 it	 and	 install	 the	 other	 two	 components,	 else	 install	 all
components.

5.	 Select	additional	tasks	listed	below	for	creating	desktop	shortcut	and	PATH	variable.
Click	next	to	continue.

6.	 Click	the	install	option.

7.	 It	will	take	a	while.	Wait	for	the	installation	to	be	complete.

8.	 Once	the	installation	is	complete,	click	finish.

9.	 Click	and	run	the	boot2Docker	script	from	the	shortcut	created	in	the	desktop.	It	will
open	the	Docker	terminal	which	connects	to	the	boo2Docker	VM	in	virtual	box.

10.	 Once	 the	 terminal	 connects	 to	 the	 boot2Docker	 VM	 run	 the	 following	 Docker
command	to	test	the	installation	by	creating	a	busybox	container.

docker	run	-i	-t	busybox	/bin/sh

The	above	command	will	download	the	busybox	image	and	start	a	container	with	sh	shell.

11.	 Now	if	you	run	docker	ps	command	you	can	view	the	created	containers.

docker	ps	–a

Installing	Docker	on	Ubuntu:

We	will	be	installing	Docker	on	Ubuntu	14.04	(LTS)	(64	bit)	server.	Follow	the	steps	give
below	to	install	and	configure	Docker	on	Ubuntu	server.

Note:	throughout	this	book	Ubuntu	server	is	used	for	most	of	the	Docker	demonstration.
So	we	recommend	you	to	use	Ubuntu	workstation	to	try	out	all	the	examples.

1.	 To	 install	 the	 latest	Ubuntu	package	(may	not	be	 the	 latest	Docker	 release)	execute
the	following	commands.

sudo	apt-get	install	-y	docker.io

sudo	ln	-sf	/usr/bin/docker.io	/usr/local/bin/docker

sudo	sed	-i	‘$acomplete	-F	_docker	docker’	\

/etc/bash_completion.d/docker.io

	
2.	 To	verify	that	everything	has	worked	as	expected,	run	the	following	command,	which

should	download	the	Ubuntu	image,	and	then	start	bash	in	a	container.

sudo	docker	run	-i	-t	ubuntu	/bin/bash

As	 you	 can	 see	 in	 the	 above	 screenshot,	 Docker	 downloaded	 Ubuntu	 image	 from	 the
Docker	public	registry	(Docker	hub)	and	started	bash	in	to	the	container	1a2ff1406d35

3.	 Type	exit	to	exit	from	the	container.

exit

4.	 You	can	check	the	version	of	Docker	components	using	the	following	command.

sudo	docker	version

The	 repository	 installation	will	 not	 have	 the	 latest	 release	 of	 docker.	 To	 have	 the	 latest
version	of	docker,	you	need	to	install	it	from	the	source.	If	you	want	to	try	out	the	latest
version,	execute	the	following	curl	command.	It	will	download	and	run	the	script	to	install
the	latest	version	of	docker	from	its	source.
curl	-sSL	https://get.docker.com/ubuntu/	|	sudo	sh

RedHat	Linux	7
For	installing	Docker	on	RedHat	7	follow	the	steps	given	below.

1.	 Enable	the	extra	channel	using	the	following	command.

sudo	subscription-manager	repos	—enable=rhel-7-server-extras-rpms

	
2.	 Install	Docker	using	the	following	command.

sudo	yum	install	docker

RedHat	6
You	 can	 install	 Docker	 on	 RedHat	 6	 from	 the	 EPEL	 repository.	 Enable	 the	 EPEL
repository	on	your	server	and	follow	the	instructions	below	to	install	Docker.

1.	 Install	the	package	using	yum

sudo	yum	install	docker

	
2.	 If	 you	 have	 a	 version	 of	 Docker	 already	 installed	 on	 your	 system,	 execute	 the

following	command	to	update	Docker	to	its	latest	version.

sudo	yum	install	docker

centOS	7
Docker	 can	 be	 installed	 on	 centos7	 without	 adding	 an	 extra	 repository.	 Execute	 the
following	command	to	install	Docker.
sudo	yum	install	docker

CentOS	6
Centos	6	needs	EPEL	repository	to	be	enabled	for	installed	Docker.	Execute	the	following
command	after	enabling	EPEL	repository	on	your	system.
sudo	yum	install	docker

Note:	Even	though	all	the	tutorials	in	this	book	are	based	on	Ubuntu	Docker	host,	it	will
also	work	on	other	Linux	distros	with	Docker	installed.

Now	 we	 have	 a	 working	 Docker	 application	 in	 our	 server.	 Before	 getting	 in	 to	 more
Docker	operations,	let’s	have	a	look	at	Docker	hub.

Docker	Hub
In	 this	 section	we	will	 learn	 the	 basics	 of	Docker	 hub	 so	 that	we	 can	 start	working	 on
creating	containers.

Docker	hub	is	a	repository	for	uploading	and	downloading	Docker	images.	Using	Docker
hub	you	can	collaborate	with	other	developers	by	sharing	the	Docker	images.

At	Docker	hub	you	can	search	and	use	images	created	by	other	users.	The	images	created
by	you	can	be	pushed	to	the	Docker	hub	if	you	are	registered	user.	Creating	a	Docker	hub
account	is	free.

You	 can	 create	 a	 Docker	 hub	 account	 in	 two	 ways.	 Using	 the	 website	 and	 through	 a
command	line.

Follow	 the	 steps	 given	 below	 to	 create	 an	 account	 and	 authenticate	 your	 Docker	 host
against	the	Docker	hub.

1.	 To	create	an	account	using	the	website,	use	the	following	link	and	signup	with	your
credentials.	An	email	will	be	sent	 to	your	email	account	 for	activating	 the	account.
The	location	of	below	link	may	change	so	you	may	have	to	search	for	this.

https://hub.Docker.com/account/signup/					
2.	 To	create	an	account	from	the	command	line,	execute	the	following	command	from

the	server	where	we	have	installed	Docker.

sudo	docker	login

	

	
3.	 Activate	your	account	using	the	confirmation	email	sent	to	your	email	account.

So	far	we	have	set	up	the	Docker	host	and	created	a	Docker	hub	account.

Next	we	will	learn	how	to	create	Docker	containers.

Launching	Docker	containers:
In	this	section	we	will	learn	how	to	launch	new	containers	using	Docker.

We	 tested	 the	Docker	 installation	by	 launching	a	container	without	any	application.	The
main	objective	of	Docker	is	to	run	applications	inside	a	container.	The	command	used	to
run	a	container	is	“Docker	run”.	It	takes	various	parameters	like	image,	commands	etc.

Let’s	 try	 to	 create	 a	 container	 which	 echoes	 out	 “hello	 world”.	 Execute	 the	 following
command	to	create	a	hello	world	container.
sudo	docker	run	ubuntu:14.04	/bin/echo	‘Hello	world’

Let’s	look	at	each	step	the	above	Docker	command	has	executed:

1.	 Docker	run:	Docker	binary	along	with	run	command	tells	the	Docker	daemon	to	run
a	container.

2.	 Ubuntu:	14.04:	This	is	the	image	name	from	which	the	container	should	be	created.
Docker	will	 try	to	find	this	image	locally.	If	 it	 is	not	present	locally,	 it	will	pull	 the
image	from	the	Docker	hub.

3.	 /bin/echo	 ‘hello	 world’:	 This	 is	 the	 command	 we	 specified	 to	 run	 inside	 the
container.	 This	 command	 got	 executed	 once	 the	 container	 is	 created.	 The	 result	 is
shown	in	the	screenshot	above.

After	 /bin/echo	 command,	 the	 container	 had	 no	 commands	 to	 be	 executed	 on	 it.	 So	 it
stopped.	If	you	want	to	install	or	configure	anything	on	a	container,	it	should	be	created	in
an	 interactive	 mode.	 In	 the	 next	 section	 we	 will	 learn	 how	 to	 create	 an	 interactive
container.

https://hub.docker.com/account/signup/

Creating	an	interactive	container:
To	create	an	interactive	container	an	“-i”	flag	has	to	be	used	with	the	Docker
run	command.

Execute	the	following	command	to	create	a	container	in	interactive	mode.
sudo	docker	run	-t	-i	ubuntu:14.04	/bin/bash

The	 above	 command	will	 create	 a	 container	 in	 interactive	mode	 as	 you	 can	 see	 in	 the
image	above.	You	can	run	all	Ubuntu	specific	command	in	the	container	now.

Let’s	understand	each	option	in	the	above	command.

1.	 “-t”	flag	assigns	a	terminal	session	for	the	container
2.	 “-i”	 assigns	 an	 interactive	 session	 for	 the	 container	 by	 getting	 the	 STDIN	 of	 the

container.
3.	 Ubuntu:	14.04	is	the	image	name.
4.	 /bin/bash	 is	 the	 command	 to	be	 executed	once	 the	 container	 starts.	 It	 opens	 a	bash

shell	for	the	interactive	session.

Now,	try	to	execute	the	following	basic	Linux	commands	on	our	interactive	container	to
list	the	current	working	directory	and	the	contents	inside	the	directory.
pwd

ls

As	you	can	see	in	the	image	above,	it	shows	the	present	working	directory	as	root	and	lists
all	 the	 directories	 inside	 root.	 You	 can	 install	 applications	 and	 create	 directories	 in	 the
container	as	you	can	do	with	any	normal	Ubuntu	machine.

To	exit	out	of	the	container,	you	can	use	the	exit	command.	This	will	stop	the	execution	of
/bin/bash	command	inside	the	container	and	stops	the	container.
exit

The	interactive	container	stops	when	you	exit	the	container.	This	is	not	helpful	for	running
applications,	as	you	want	that	the	machine	should	keep	running.

To	have	a	container	in	running	mode,	we	have	to	demonize	it.	In	the	next	section	we	will
look	upon	how	to	demonize	a	container.

Creating	a	daemonized	container:
A	daemonized	container	can	be	created	using	a	“-d”	flag.	This	is	how	we	will	create	most
of	our	Docker	applications.	The	following	command	will	create	a	container	in	daemonized
mode.

sudo	docker	run	-d	ubuntu:14.04	/bin/sh	–c	“while	true;	do	echo	hello	world”

This	time	we	did	not	use	“-t”	and	“-i”	flags	because	we	used	the	“-d”	flag	which	will	run
the	 container	 in	 the	 background.	 Also,	 we	 added	 the	 following	 command	 with	 a	 shell
script	to	the	Docker	command.
bin/sh	-c	“while	true;	do	echo	hello	world;	sleep	1;	done”

In	the	daemonized	container,	“hello	world”	will	be	echoed	out	by	the	infinite	loop	in	the
shell	script.	You	can	see	everything	happening	inside	the	container	using	the	container	id.
The	long	id	returned	right	after	executing	the	Docker	command	is	the	container	id.
a109c69e1d88b73448e473b2eae1b3959db5066de7fd6662254fa1536e79b705

The	long	string	above	denotes	the	unique	container	id.	This	id	can	be	used	to	see	what’s
happening	in	the	container.	To	make	sure	the	container	is	running,	execute	the	following
Docker	command.
docker	ps

The	 “Docker	 ps”	 command	 will	 request	 the	 Docker	 daemon	 to	 return	 all	 the	 running
containers.	As	you	can	see	in	the	output,	it	shows	the	short	container	id,	command	running
inside	the	container	and	other	information	associated	with	the	container.

As	we	did	not	assign	any	name	to	the	container,	the	Docker	daemon	automatically	assigns
a	random	name	to	the	container.	In	our	case	it	 is	hungry_goodall.	The	name	might	be
different	when	you	run	the	same	command.

Note:	You	can	explicitely	specify	the	name	of	the	contianer.	We	will	look	in	to	it
in	the	subsequent	chapters.

We	added	an	echo	command	in	infinite	loop	to	run	inside	the	container.	You	can	see	the
output	of	the	command	running	inside	the	container	by	checking	the	container	logs	using
its	unique	id	or	name.

Execute	the	following	command	to	see	what	is	happening	inside	the	container.
sudo	docker	logs	hungry_goodall

As	 you	 can	 see	 the	 from	 the	 log	 output,	 the	 container	 is	 executing	 the	 “hello	 world”
command	 in	an	 infinite	 loop.	The	“logs”	command	will	ask	 the	Docker	daemon	 to	 look
inside	the	container	and	get	the	standard	output	of	the	container.

Now	we	 have	 a	 container	 with	 specified	 command	 running	 on	 it.	 To	 stop	 the	 running
container,	execute	the	following	command.
sudo	docker	stop	hungry_goodall

	

	

The	Docker	 stop	 command	 along	with	 the	 container	 name	will	 gently	 stop	 the	 running
container	and	it	returns	the	name	of	the	container	it	stopped.	Now	if	you	run	the	Docker	ps
command	you	will	see	no	running	container.
sudo	docker	ps

We	have	successfully	stopped	our	hungry_goodall	container.

Connecting	remote	docker	host	using	docker
client
By	default	docker	installation	will	set	up	the	docker	server	within	the	host	using	the	UNIX
socket	 unix:///var/run/docker.sock.	 You	 can	 also	 set	 up	 a	 docker	 server	 to	 accept
connections	 from	 a	 remote	 client.	 Docker	 remote	 client	 uses	 REST	 API’s	 to	 execute
commands	and	to	retrieve	information	about	containers.	In	this	section	we	will	learn	how
to	set	up	the	docker	client	to	run	commands	on	a	remote	docker	server.

Follow	the	instructions	given	below	to	configure	a	Docker	client	for	docker	server	remote
execution.

Note:	The	client	machine	should	have	docker	installed	to	run	in	client	mode

On	Docker	Server:

1.	 Stop	the	docker	service	using	the	following	command.

sudo	service	docker.io	stop

	
2.	 Start	the	docker	service	on	port	5000	and	on	Unix	socker	docker.sock	by	executing

the	following	command.

docker	-H	tcp://0.0.0.0:5000	-H	unix:///var/run/docker.sock	-d	&

The	above	command	will	accept	connections	from	remote	docker	clients	on	port	5000	as
well	as	the	client	inside	the	host	using	docker.sock	Unix	socket.

Note:	The	port	mentioned	in	the	above	command	can	be	any	tcp	port.	“0.0.0.0”	means,	the
docker	server	accepts	connections	from	all	incoming	docker	client	connections.	It’s	not	a
good	practice	 to	open	all	 connections.	You	can	mention	a	 specific	 ip	 address	 instead	of
“0.0.0.0.”,	so	that	docker	server	only	accepts	connections	from	that	particular	ip	address.

From	Docker	client:

3.	 Now	from	the	host	which	runs	the	acts	as	the	client,	execute	the	following	command
to	 get	 the	 list	 of	 running	 containers	 from	 the	 remote	 docker	 server.	Replace	 the	 ip
(10.0.0.4)	with	the	ip	of	the	host	running	docker	server.

sudo	docker	-H	10.0.0.4:5000	ps

You	can	 run	all	docker	commands	on	 the	 remote	server	 in	 the	same	ways	you	executed
“ps”	command.

4.	 Now	let’s	try	creating	an	interactive	container	named	test-container	from	the	remote
client.	 Execute	 the	 following	 docker	 run	 command	 to	 create	 a	 container	 on	 the
remote	docker	server.

docker	-H	<host-ip>:5000	run	-it	—name	test-container	ubuntu

The	equivalent	REST	requests	and	actions	are	shown	below.

Docker	server	access	over	https
We	have	 learned	 how	 to	 communicate	 the	 docker	 daemon	 remotely	 over	 http.	You	 can
also	communicate	to	docker	daemon	securely	over	https	by	TLS	using	tlsverify	flag	and
tlscscert	flag	pointing	to	a	trusted	CA	certificate.

Note:	 If	 you	 enable	 TLS,	 in	 daemon	 mode	 docker	 will	 allow	 connections	 only
authenticated	by	CA.

To	set	up	a	secure	access,	follow	the	steps	given	below.

1.	 Initialize	the	CA	serial	file

echo	01	>	ca.srl

	
2.	 Generate	a	ca	public	and	private	key	files.

openssl	genrsa	-des3	-out	ca-key.pem	2048

openssl	req	-new	-x509	-days	365	-key	ca-key.pem	-out	ca.pem

	
3.	 Now,	create	a	server	key	and	certificate	signing	request	(CSR).

openssl	genrsa	-des3	-out	server-key.pem	2048

openssl	req	-subj	‘/CN=<hostname	here>’	-new	-key	server-key.pem	-out	server.csr

	
4.	 Sign	the	key	with	CA	key.

openssl	x509	-req	-days	365	-in	server.csr	-CA	ca.pem	-CAkey	ca-key.pem	-out	server-cert.pem

	

	
5.	 For	client	to	authenticate	the	server,	create	relevant	client	key	and	signing	requests.

openssl	genrsa	-des3	-out	key.pem	2048

openssl	req	-subj	‘/CN=<hostname	here>’	-new	-key	key.pem	-out	client.csr

	
6.	 Now,	 create	 an	 extension	 config	 file	 to	 make	 the	 key	 suitable	 for	 client

authentication.

echo	extendedKeyUsage	=	clientAuth	>	extfile.cnf

	
7.	 Sign	the	key

openssl	x509	-req	-days	365	-in	client.csr	-CA	ca.pem	-CAkey	ca-key.pem	-out	cert.pem	-extfile	extfile.cnf

	
8.	 From	 the	 server	 and	 client	 keys,	 remove	 the	 passphrase	 using	 the	 following

commands.

openssl	rsa	-in	server-key.pem	-out	server-key.pem

openssl	rsa	-in	key.pem	-out	key.pem

	
9.	 Now	we	have	 all	 the	 server,	 client	 certificate	 and	 the	 keys	 for	TLS	 authentication.

Stop	 the	 docker	 service	 and	 start	 it	 using	 the	 following	 command	 with	 all	 the
necessary	keys.

sudo	service	docker.io	stop

docker	-d	—tlsverify	—tlscacert=ca.pem	—tlscert=server-cert.pem	—tlskey=server-key.pem			-H=0.0.0.0:2376

Note:	If	you	running	docker	on	TLS,	it	should	run	only	on	port	2376

	
10.	 Now,	 from	 client,	 execute	 the	 following	 “docker	 version”	 command	 with	 docker

server’s	ip	or	DNS	name.

Note:	make	sure	you	copy	the	relevant	client	key	files	to	authenticate	against	the	docker
server.
docker	—tlsverify	—tlscacert=ca.pem	—tlscert=cert.pem	—tlskey=key.pem	-H=172.31.1.21:2376	version

Same	way,	you	 can	 run	 all	 the	docker	 commands	by	 connecting	 the	docker	 server	over
https.

So	far	we	have	learnt,

1.	 How	to	create	a	container	in	interactive	and	daemonized	mode.
2.	 To	list	the	running	containers
3.	 To	check	the	actions	running	inside	a	container	using	logs
4.	 To	stop	the	running	container	gracefully.
5.	 To	access	docker	server	from	a	remote	client
6.	 To	access	docker	server	securely	over	https.

In	the	next	chapter	we	will	look	at	more	advanced	container	operations.

	
4

Working	with	containers

In	this	chapter	we	will	look	at	some	advanced	container	operations.

In	last	chapter	we	have	learnt	about	the	following	Docker	commands,

1.	 Docker	ps	–	for	listing	all	the	running	containers
2.	 Docker	logs	–	return	the	STDOUT	of	a	running	container
3.	 Docker	stop	–	stops	the	running	container.

The	Docker	command	is	associated	with	several	arguments	and	flags.	The	standard	use	of
a	Docker	command	is	shown	below.
Usage:		[sudo]	docker	[flags]	[command]	[arguments]

For	example,
sudo	docker	run	-i	–t	centos	/bin/sh

Let’s	start	by	finding	the	version	of	Docker	using	the	following	Docker	command.
sudo	docker	version

The	 above	 command	 will	 give	 you	 all	 the	 information	 about	 Docker	 including	 API
version,	go	version	etc.

Docker	commands:
There	are	many	commands	associated	with	Docker	client.	To	 list	all	 the	commands,	 run
the	following	command	on	the	terminal.
sudo	docker

It	will	list	all	the	commands	which	can	be	used	with	Docker	for	manipulating	containers.

Command	usage:

Each	Docker	 command	has	 its	 own	 set	 of	 flags	 and	 arguments.	To	view	 the	usage	of	 a
particular	Docker	command,	run	Docker	with	specific	command.

Syntax:	Docker	[command	name]

For	example,
sudo	docker	run

It	will	 return	 the	usage	of	 run	command	and	 its	 associated	 flags	as	 shown	 in	 the	 image
below.

So	far	 in	 this	chapter	we	have	learnt	how	to	use	Docker	commands	and	getting	help	for
each	command.	In	next	section,	we	will	learn	how	to	run	a	basic	python	application	inside
a	container.

Python	web	application	container:
The	containers	we	created	before	just	ran	a	shell	script	in	it.	In	this	section	we	will	learn
how	to	run	a	python	flask	application	inside	a	container.

We	will	use	a	preconfigured	image	(training/webapp)	from	Docker	hub	with	python	flask
application	configured	in	it.	Let’s	start	with	the	Docker	run	command.
sudo	docker	run	-d	-P	training/webapp	python	app.py

	

So	what	happened	when	we	ran	the	above	command?	Let’s	break	it	down

1.	 Docker	run	:	command	for	creating	a	container
2.	 “–d”:	we	have	already	seen	the	usage	of	this	flag.	It	demonizes	the	container.
3.	 –P:	This	flag	is	used	for	mapping	the	host	port	to	the	container	port	for	accessing	the

container	application.	As	we	did	not	specify	any	port	numbers,	Docker	will	map	the
host	and	container	with	random	ports.

4.	 training/webapp:	This	is	the	image	name	which	contains	the	python	flask	application.
Docker	downloads	this	image	from	Docker	hub.

5.	 Python	app.py:	this	is	the	command	which	will	be	executed	inside	the	container	once
it	is	created.	It	starts	the	python	application	inside	the	container.

Now	let’s	see	if	our	python	container	is	running	using	the	following	command.
sudo	docker	ps	-l

We	have	seen	the	use	of	Docker	ps	command	before.	The	“-l”	flag	will	list	the	last	created
and	running	container.

The	output	 from	 the	 above	 image	 shows	 that	 the	host	 port	 49153	 is	mapped	on	 to	 port
5000	in	the	container.
PORTS

0.0.0.0:49155->5000/tcp

The	port	mapping	was	done	 randomly.	When	 the	port	 is	not	explicitly	mentioned	 in	 the
command,	Docker	assigns	the	host	port	within	49000	and	49900.
Let’s	try	accessing	the	python	application	on	port	49153	from	the	browser.

Note:	The	host	port	may	be	different	for	your	application.	So	get	the	IP	Address	from	the
“Docker	ps”	output	and	try	it	on	the	browser.

Example:	http://<Docker-host-ip-here>:49154

You	will	see	a	sample	hello	world	application	in	the	browser.

The	 port	 mapping	 can	 also	 be	 configured	 manually.	 Let’s	 create	 the	 same	 python
application	 container	 with	 manually	 configured	 ports.	 Run	 the	 following	 command	 to
launch	a	container	to	map	host	port	5000	to	container	port	5000.
sudo	docker	run	-d	-p	5000:5000	training/webapp	python	app.py

Now	if	you	access	 the	python	application	on	port	5000	from	your	browser,	you	will	see
the	 same	 application.	 This	 is	 the	 advantage	 of	 not	 having	 one	 to	 one	 port	mapping	 for
Docker.

Thus	you	can	have	multiple	instances	of	your	application	running	on	different	ports.

The	“Docker	ps”	output	 is	 little	cluttered,	 so	 if	you	want	 to	know	which	host	port	your
container	is	mapped	to	,	you	can	use	the	“Docker	port”	command	along	with	the	container
name	or	id	to	view	the	port	information.

For	example,
sudo	docker	port		tender_kowalevski	5000

Now	that	we	have	a	working	python	application,	we	can	perform	the	following	operations
to	get	more	information	about	the	container.

1.	 Docker	logs	–	to	view	the	logs	of	running	container.
2.	 Docker	top	–	to	view	all	the	processes	running	inside	the	container
3.	 Docker	inspect	–	to	view	complete	information	like	networking,	name,	id	etc.

Python	container	logs:
Run	the	following	command	to	view	the	logs	of	your	running	python	container.
sudo	docker	logs	-f	tender_kowalevski

It	will	list	all	the	logs	of	actions	happening	inside	the	container.

Python	container	processes:
Run	the	following	command	to	view	all	the	processes	running	inside	the	python	container.
sudo	docker	top	tender_kowalevski

It	will	list	all	the	processes	running	inside	our	python	container.

We	have	only	python.py	command	process	running	inside	our	container.

Inspecting	python	container:
By	 inspecting	 a	 container,	 you	 can	 view	 the	 entire	 network	 and	 other	 configuration
information	 about	 the	 container.	 Execute	 the	 following	 command	 to	 inspect	 the	 python
container.
sudo	docker	inspect	tender_kowalevski

This	 command	will	 return	 all	 the	 information	 about	 the	 container	 in	 JSON	 format.	The
sample	output	is	shown	below.

For	more	granular	output,	you	can	request	for	specific	information	about	the	container.	For
example,
sudo	docker	inspect	-f	‘{{	.NetworkSettings.IPAddress	}}’	tender_kowalevski

The	above	command	will	output	the	ip	address	of	your	container.

Stopping	python	container:
You	can	stop	the	python	container	using	“docker	stop”	command.
Syntax:	docker	stop	[container	name]

Execute	the	following	command	with	your	container	name	to	stop	the	container.
sudo	docker	stop	tender_kowalevski

To	check	if	the	container	has	stopped,	run	the	“docker	ps”	command.

Restarting	the	python	container:
You	can	restart	the	container	using	“docker	restart”	command.
Syntax:	docker	restart	[container	name]

Execute	the	following	command	to	restart	the	container.
sudo	docker	start	tender_kowalevski

Now	if	you	execute	“docker	ps	-l”	command	you	can	see	the	started	container	or	you	can
view	the	application	in	the	browser.

Removing	python	container:
You	can	remove	the	python	container	using	“docker	rm”	command.	You	need	to	stop	the
container	 before	 executing	 the	 remove	 command.	 Let’s	 see	what	 happens	 if	 you	 try	 to
remove	the	container	without	stopping	it.
sudo	docker	rm	tender_kowalevski

As	 you	 can	 see,	 it	 shows	 an	 error	 message	 for	 stopping	 the	 container.	 This	 is	 useful
because	it	avoids	accidental	deletion	of	containers.

Now	we	will	stop	the	container	and	try	to	remove	it	using	the	following	commands.
sudo	docker	stop	tender_kowalevski

sudo	docker	rm	tender_kowalevski

The	python	container	is	removed	now.	Once	the	container	is	removed,	you	cannot	restart

it.	You	can	only	recreate	a	container	from	the	image.

If	you	want	 to	remove	a	container	without	stopping	the	container,	you	can	use	 the	force
flag	 “-f”	 with	 the	 “Docker	 rm”	 command.	 It	 is	 not	 advisable	 to	 force	 remove	 the
containers.
docker	rm	-f	tender_kowalevski

If	you	want	 to	 stop	and	 remove	all	 the	containers	 in	your	Docker	host,	you	can	use	 the
following	in	Linux	systems.
docker	stop	$(Docker	ps	-a	-q)

docker	rm	$(Docker	ps	-a	-q)

In	this	chapter	we	have	learnt	the	following,

1.	 How	to	create	a	container	in	interactive	mode	and	daemonized	mode.
2.	 How	to	create	a	python	flask	application	container.
3.	 How	 to	 get	 information’s	 like	 logs,	 networking	 settings	 etc.	 About	 the	 python

container.
4.	 How	to	stop,	start	and	remove	a	container.

	

5
Docker	Images

In	the	last	chapter	we	showed	how	to	use	containers	and	deployed	a	python	application	on
a	container.	In	this	chapter	we	will	learn	to	work	with	images.

As	 you	 know,	Docker	 images	 are	 the	 basic	 building	 blocks	 of	 a	 container.	 In	 previous
chapter	we	used	preconfigured	images	from	Docker	hub	for	creating	containers	(Ubuntu
and	training/webapp).

So	far	we	learnt	the	following	about	images,

1.	 Images	are	created	and	stored	in	layered	fashion.
2.	 All	the	images	downloaded	from	the	Docker	hub	reside	in	the	Docker	host.
3.	 If	an	image	specified	in	the	Docker	run	command	is	not	present	in	the	Docker	host,

by	 default,	 the	 Docker	 daemon	 will	 download	 the	 image	 from	 the	 Docker	 public
registry	(Docker	hub).

4.	 Container	is	a	writable	layer	on	top	on	an	image.

There	are	more	things	you	can	do	with	the	images.	In	this	section	we	will	look	in	to	the
following.

1.	 How	to	manage	and	work	with	images	locally	on	the	Docker	host.
2.	 How	to	create	a	basic	Docker	image.
3.	 How	to	upload	a	modified	image	to	the	Docker	registry	(Docker	hub).

Listing	Docker	images:
You	can	list	all	the	available	images	on	your	Docker	host.	Run	the	following	command	to
list	all	the	images	on	your	Docker	host.
sudo	docker	images

Docker	 host	 will	 not	 have	 any	 images	 by	 default.	 All	 the	 images	 shown	 in	 the	 image
above	were	downloaded	from	Docker	hub	when	we	created	the	sample	containers.

Let’s	have	a	look	at	the	important	information’s	about	the	container.

1.	 REPOSITORY:	 This	 denotes,	 from	 which	 Docker	 hub	 repository	 the	 image	 has
been	downloaded.	A	repository	will	have	different	versions	of	an	image.

2.	 TAG:	The	 different	 versions	 of	 an	 image	 are	 identified	 by	 a	 tag.	 In	 the	 example
shown	 above,	 we	 have	 an	 Ubuntu	 repository	 with	 two	 different	 tags.	 Latest	 and
14.04.

3.	 IMAGE	ID:	This	denotes	the	unique	id	of	the	image.
4.	 CREATED:	This	provides	information	on	the	date,	when	the	image	has	been	created

by	the	user	in	the	Docker	hub	repository.
5.	 VIRTUAL	SIZE:	This	refers	to	the	virtual	size	of	the	image	on	the	Docker	host.	As

we	 learnt	 before,	 Docker	 image	works	 on	 copy	 on	write	mechanism,	 so	 the	 same
images	are	never	duplicated,	 it	will	only	be	referenced	by	the	updated	layers.	So,	a
repository	might	have	variants	of	images	e.g.	Ubuntu	12.04,	13.10.	14.04	etc.

Specifying	 the	 image	 variant	 as	 a	 tag	 is	 good	 practice	 while	 working	 with	 containers
because	you	will	know	which	version	of	the	image	you	are	using	for	launching	containers.

If	you	want	to	run	a	container	with	Ubuntu	14.04	version,	the	Docker	run	command	will
look	like	the	following.
sudo	docker	run	-t	-i	ubuntu:14.04	/bin/bash

Instead,	 if	you	mention	only	the	 image	name	without	 the	 tag,	Docker	will	download	the
latest	version	of	the	image	available	in	the	Docker	hub.

While	working	with	images	you	need	to	keep	the	following	in	mind,

1.	 Always	use	image	tags	to	know	exactly	which	version	of	the	image	you	are	using.
2.	 Always	 download	 and	 use	 official	 and	 trusted	 images	 from	 Docker	 hub	 because

Docker	hub	is	a	public	registry	where	anyone	can	upload	images	which	may	not	be
as	per	your	organizations	policies	and	needs.

Downloading	an	image:
When	 creating	 a	 container,	 if	 the	 image	 is	 not	 available	 in	 the	 Docker	 host,	 Docker
downloads	it	from	the	Docker	hub.	It	is	a	little	time	consuming	process.	To	avoid	this	you
can	download	the	images	from	Docker	hub	to	the	host	and	use	it	for	creating	a	container.

So	 if	 you	 want	 to	 launch	 containers	 based	 on	 centos	 container,	 you	 can	 download	 the
centos	 image	first.	Execute	 the	following	command	 to	pull	a	centos	 image	from	Docker
hub.
sudo	docker	pull	centos

The	above	image	shows	Docker	downloading	a	centos	image	consisting	of	various	layers.

Once	the	image	is	downloaded	you	can	create	a	container	in	seconds.	Now	let’s	launch	an
interactive	container	from	the	downloaded	centos	 image	using	 the	following	Docker	run
command.
sudo	docker	run	-t	-i	centos	/bin/bash

Searching	images:
Docker	hub	has	 images	created	by	many	users	 for	various	purposes.	You	can	search	for
images	with	a	keyword,	for	example,	rails.	Docker	hub	will	return	all	the	images	named	or
tagged	with	rails.	You	and	do	 the	search	from	Docker	client	and	Docker	hub	web	UI	as
well.

Searching	images	from	Docker	hub	UI:
Visit	Docker	public	registry	UI	using	this	link	https://registry.hub.Docker.com/	and	search
for	an	image.	For	example	if	you	search	for	MySQL,	It	will	list	all	the	images	named	and
tagged	with	MySQL.	You	 can	 get	 the	 name	 of	 image	 from	UI	 and	 use	 it	 with	Docker
client	for	creating	a	container	from	that	image.

https://registry.hub.docker.com/

Searching	images	from	Docker	command	line:
Images	 from	Docker	 hub	 can	be	 searched	 from	Docker	 command	 line.	Suppose,	 if	 you
want	 to	 search	 an	 image	 with	 Sinatra	 configured,	 you	 can	 use	 the	 “Docker	 search”
command.
Search	Syntax:	Docker	search	[image	name]

Execute	the	following	command	to	search	all	the	sinatra	images.

sudo	docker	search	sinatra

The	search	command	has	returned	the	images	tagged	with	Sinatra.	All	the	images	have	a
description	mentioned	by	the	user	the	user	created	it.	The	stars	represent	the	popularity	of
the	image.	More	Stars	means	that	the	image	is	trusted	by	more	users.

All	the	official	images	on	the	Docker	hub	are	maintained	by	stackbery	project.

For	 examples	 we	 created	 in	 this	 book	 we	 used	 containers	 from	 Ubuntu	 and
training/webapp	 images.	 The	 Ubuntu	 image	 is	 the	 base	 image	 maintained	 by	 official
Docker	Inc.	These	images	are	validated	and	tested.	Normally,	 the	base	images	will	have
single	names	e.g.	Ubuntu,	centos,	fedora	etc.

Training/webapp	image	is	created	by	a	user	in	Docker	hub.	The	images	created	by	users
will	have	the	usernames	in	the	image.	In	training/webapp,	training	is	the	username.

For	our	next	example	we	will	use	the	training/sinatra	image	which	appeared	at	the	top	of
the	search.	This	 image	has	Sinatra	configured	in	 it.	Let’s	 try	pulling	down	that	 image	to
our	Docker	 host.	 Run	 the	 following	 command	 to	 pull	 the	 Sinatra	 image	 to	 our	Docker

host.
sudo	docker	pull	training/sinatra

Now	we	have	 the	sinatra	 image	 in	our	host.	Let’s	create	an	 interactive	Sinatra	container
from	the	image	using	the	Docker	run	command.
sudo	docker	run	-t	-i		training/sinatra	/bin/bash

We	 learnt	 how	 to	 search	 for	 an	 image,	 pull	 it	 down	 to	 the	 Docker	 host	 and	 launch	 a
container	from	that	image.	You	can	download	any	other	image	from	the	Docker	hub	and
try	creating	containers	from	it.

Our	own	images:
Till	now	we	have	used	images	created	by	other	users.	Even	though	we	found	these	images
useful,	 it	 might	 not	 have	 all	 the	 features	 we	 want	 for	 our	 Sinatra	 application.	 In	 this
section	we	will	learn	how	to	modify	and	create	our	own	images.

There	are	two	ways	by	which	we	can	have	our	own	images,

1.	 By	committing	changes	to	a	container	created	from	a	preconfigured	image
2.	 Using	a	Dockerfile	to	create	an	image	from	scratch	using	instructions	specified	in	the

Dockerfile.

Let’s	have	a	look	at	the	two	approaches.

From	preconfigured	image:
In	 this	 section	we	will	 learn	 how	 to	modify	 and	 update	 a	 container	 for	 creating	 a	 new
image.	For	updating	an	image,	we	need	to	have	a	container	running	in	interactive	mode.

Execute	 the	 following	 command	 to	 create	 an	 interactive	 container	 from	 training/Sinatra
image.
sudo	docker	run	-t	-i	training/sinatra	/bin/bash

As	 you	 can	 see,	 it	 has	 created	 a	 unique	 id	 (c054ad6ec080)	 for	 the	 container.	 For

committing	the	changes,	we	need	the	unique	id	or	name	of	the	container.	Note	down	the	id
created	for	your	container	.You	can	also	get	the	container	details	by	running	“sudo	Docker
ps	-l”	command.

We	 need	 to	 make	 some	 changes	 to	 container	 for	 creating	 a	 new	 image.	 Let’s	 install	 a
JSON	image	in	our	newly	launched	container	using	the	following	gem	command.
gem	install	JSON

Once	installed,	exit	the	container	by	running	exit	command.

Now	 we	 have	 container	 with	 JSON	 gem	 installed,	 which	 was	 not	 available	 in	 the
downloaded	image.

For	committing	changes	to	a	container,	Docker	has	a	command	called	“Docker	commit”.
Syntax:	sudo	docker	commit	 -m=”<your	commit	message	here”	-a=”<maintainer	name	here”	 \	<container	 id>	 	<docker	hub	username>/<image
name>:<tag>

Execute	the	following	command	to	commit	the	changes	to	our	sinatra	container.

Note:	Replace	 the	argument	 inside	“-a”	 tag	with	 your	name,	 replace	“hcldevops”	with
your	Docker	hub	username	and	“c054ad6ec080”	with	your	container	id.
sudo	docker	commit	-m=“Added	JSON	gem”	-a=“bibin	wilson”	\

c054ad6ec080	hcldevops/sinatra:v2

“-m”	 flag	 represents	 the	 commit	 message	 like	 we	 use	 it	 in	 our	 version	 control
systems	like	git.
“-a”	represents	the	maintainer.
“c054ad6ec080”	represents	the	id	of	the	container	to	be	committed.
“hcldevops/Sinatra”	is	the	username/imagename
“v2”	is	the	tag	for	the	image.

We	 can	 view	 the	 newly	 created	 hcldevops/Sinatra	 image	 using	 the	 “docker	 images”
command.	Execute	the	following	command	to	view	your	newly	created	image.
sudo	docker	images

Docker	shows	our	newly	created	image	at	the	top	with	all	the	image	information.

Now	let’s	try	to	launch	a	container	from	out	new	image.
Syntax:	sudo	docker	run	-t	-i	username/imagename:tag	/bin/bash

Execute	the	following	command	for	creating	a	container	from	hcldevops/sinatra	image.

Note:	replace	“hcldevops”	with	your	Docker	hub	username.
sudo	docker	run	-t	-i	ouruser/sinatra:v2	/bin/bash

We	 have	 successfully	 created	 a	 container	 from	 our	 newly	 created	 image.	 You	 can	 try
creating	a	new	image	by	modifying	a	container	running	in	interactive	mode	by	following
the	steps	explained	above.

Building	an	image	from	scratch:
In	the	last	section	we	learnt	how	to	create	an	image	by	modifying	a	container.	If	we	think
of	creating	a	customized	image	for	development	team,	committing	a	preconfigured	image
is	cumbersome	and	not	recommended.	In	this	section	we	will	learn	how	to	build	Docker
images	from	scratch	using	Dockerfile	for	specific	development	tasks.

Dockerfile:
Dockerfile	 is	 a	 normal	 text	 file	with	 instructions	 for	 configuring	 an	 image.	 Instructions
include	tasks	such	as	creating	a	directory,	copying	file	from	host	to	container	etc.

Let’s	create	a	sinatra	image	using	a	Dockerfile.	Create	a	directory	and	Dockerfile	inside	it
using	the	following	commands.
mkdir	sinatra

cd	sinatra

touch	Dockerfile

Every	 line	 in	 a	 Dockerfile	 starts	 with	 an	 instruction	 followed	 by	 a	 statement.	 Every
instruction	creates	a	layer	on	the	image	when	the	image	gets	built	from	the	Dockerfile.
Syntax:	INSTRUCTION	statement

Let’s	have	a	look	at	the	Dockerfile	for	sinatra.	Copy	the	following	code	snippet	on	to	the

Docker	file	we	created.
FROM	ubuntu:14.04

MAINTAINER	bibin	wilson	<bibin.w@hcl.com>

RUN	apt-get	update	&&	apt-get	install	-y	ruby	ruby-dev

RUN	gem	install	sinatra

Let’s	breakdown	the	Dockerfile	and	see	what	it	does.

FROM:	 It	 tells	 the	 Docker	 daemon	 from	which	 base	 image	 the	 new	 image	 should	 be
built.	In	our	example,	it	is	Ubuntu:	14.04.

MAINTAINER:	This	indicates	the	user	maintaining	the	image.

RUN:	This	instruction	handles	all	the	application	installation	and	other	scripts	that	have	to
be	 executed	on	 the	 image.	 In	our	 case,	we	have	 commands	 to	 install	 ruby	development
environment	and	Sinatra	application.

Let’s	try	to	build	the	image	using	the	Docker	file	we	created.	An	image	can	be	built	from
Docker	file	using	the	“Docker	build”	command.	It	has	the	following	syntax.
sudo	Docker	build	–t=“username/imagename:tag”	.

“-t”	flag	is	used	for	identifying	the	image	that	belongs	the	user.

“.”	Flag	represents	 that	 the	Docker	file	 is	present	 in	the	current	directory.	You	can	also
mention	the	path	to	the	Docker	file	if	it	is	not	present	in	the	current	directory.

Execute	the	following	command	to	build	the	sinatra	image	from	the	Docker	file.

Note:	replace	“hcldevops”	with	your	username.	Also	use	different	tag	if	you	already	have
one	image	with	the	same	tag.
sudo	docker	build	-t=“hcldevops/sinatra:v2”	.

As	you	can	see	in	the	output,	Docker	client	sends	a	build	context	to	the	Docker	daemon
and	 in	 each	 step	 it	 creates	 an	 intermediate	 container	 while	 executing	 commands	 and
creates	a	layer	on	top	of	the	image.

At	 final	 step	 it	created	an	 image	with	 id	b7065749275a	and	deleted	all	 the	 intermediate
containers.	Now	we	have	an	image	built	with	id	b7065749275a.

Let’s	launch	a	container	from	the	new	image.

Note:	A	Docker	image	can	have	a	maximum	of	147	layers.

Execute	the	following	command	to	create	a	new	Sinatra	container.
sudo	docker	run	-t	-i	hcldevops/sinatra:v2	/bin/bash

	

Image	tagging:
We	can	tag	our	new	image	with	a	different	name.	This	can	be	done	using	the	Docker	tag
command.	Let’s	tag	our	new	image	using	the	following	command.

Note:	replace	the	image	id	and	name	with	your	container	id	and	names.
sudo	docker	tag	b7065749275a	hcldevops/sinatra:devel

Now	that	we	have	tagged	our	new	image,	let’s	view	it	using	the	Docker	images	command.

Execute	the	following	command	to	view	the	image	named	hcldevops/Sinatra
sudo	docker	images	hcldevops/sinatra

Uploading	the	image	to	Docker	Hub:
So	we	have	built	a	Docker	image	from	scratch	and	successfully	launched	a	container	from
it.	In	order	for	all	developers	in	your	team	to	get	access	to	the	configured	image,	you	need
to	upload	it	to	the	Docker	hub	(public	or	private).	In	this	example	we	will	upload	it	to	the
public	 registry.	 You	 can	 push	 an	 image	 to	 the	 Docker	 hub	 using	 the	 Docker	 push
command.
Sysntax:	docker	push	<username>/<imagename>

Execute	the	following	command	with	your	username/imagename	to	push	the	image	to	the
Docker	hub.

You	must	be	logged	in	to	Docker	hub	from	command	line	before	pushing	the	image.
sudo	docker	push	bibinwilson/sinatra

We	 have	 successfully	 pushed	 our	 image	 to	 the	 Docker	 hub	 and	 it	 is	 not	 publicly
accessible.	 Now	 you	 or	 your	 team	 can	 access	 the	 image	 from	 any	 Docker	 host	 by
specifying	the	image	name.	For	example:
sudo	docker	pull	bibinwilson/sinatra

Removing	images	from	Docker	host:
We	have	 learnt	how	to	create	an	 image	and	push	 it	 to	 the	Docker	hub.	 If	you	 think	you
don’t	want	a	particular	image	in	your	Docker	host,	you	can	remove	same	like	you	remove
a	 container.	You	 can	use	 the	 “Docker	 rmi”	 command	 to	 remove	 the	 image.	Let’s	 try	 to
remove	our	training/Sinatra	image	from	our	host	using	the	following	command.

Note:	 before	 removing	 an	 image,	make	 sure	 all	 the	 containers	 based	 on	 that	 particular
image	have	been	stopped	or	removed.
sudo	docker	rmi	training/sinatra

If	you	want	 to	 remove	all	 the	 images	 from	 the	Docker	host,	you	can	use	a	one	 liner	on
Linux	systems.	Execute	the	following	command	to	remove	all	the	images	from	the	host.
docker	rmi	$(docker	images	-q)

In	this	chapter	we	have	learnt	the	following,

1.	 How	to	search	for	Docker	images	from	Docker	hub.
2.	 How	to	pull	a	Docker	images	to	Docker	host.
3.	 How	to	build	an	image	from	existing	image	and	from	Docker	file.
4.	 How	to	push	a	Docker	image	to	the	Docker	host	and
5.	 How	to	tag	Docker	images	and	how	to	delete	an	image	from	the	Docker	host.

	

	

6
Container	linking

	

In	previous	chapters	we	learnt	how	to	connect	a	service	inside	the	container	using	host	to
container	 mapping.	 In	 this	 chapter	 we	 will	 learn	 more	 advanced	 options	 for	 linking
containers	together.

Container	port	mapping:
Applications	inside	a	container	can	be	accessed	by	mapping	the	host	port	to	the	container
port.	Let’s	consider	the	following	Docker	command.
sudo	docker	run	-d	-P	training/webapp	python	app.py

In	the	above	command,	a	random	host	port	will	be	mapped	to	the	containers	exposed	port
5000	using	–P	flag.	Every	container	is	associated	with	its	own	network	configuration	and
IP	Addresses.

Let’s	consider	another	Docker	command.
sudo	docker	run	-d	-p	5000:5000	training/webapp	python	app.py

In	 the	 above	 command	 the	 host	 port	 5000	 is	mapped	 to	 container	 port	 5000.	 This	 is	 a
manual	assignation	using	flap	–p.

Note:	For	 random	port	assignation,	 the	 flap	 is	“–P”	capital	 letter	and	 for	manual	port
assignation	it	is	“-p”	small	p.

Let’s	consider	another	example,
sudo	docker	run	-d	-p	127.0.0.1:5000:5000	training/webapp	python	app.py

In	the	above	example,	the	“-p”	flag	maps	port	5000	on	the	host	to	the	localhost	interface.
If	you	don’t	apply	any	interface	explicitly,	by	default,	Docker	assigns	the	port	specified	in
“–p”	flat	to	all	the	interfaces	in	the	host.

Let’s	say,	you	want	to	bind	a	dynamic	port	from	the	local	host	interface	to	the	container
port,	then	the	Docker	command	will	have	the	following	form.
sudo	docker	run	-d	-p	127.0.0.1::5000	training/webapp	python	app.py

Binding	UDP	ports:
You	 can	 also	 bind	 UDP	 ports	 to	 your	 container.	 Let’s	 see	 an	 example	 for	 binding	 the
localhost	interface	with	UDP	port	5000.
sudo	docker	run	-d	-p	127.0.0.1:5000:5000/udp	training/webapp	python	app.py

The	above	command	will	bind	the	localhost	interface	UDP	port	5000	with	container	port
5000.

Tip:	for	configuring	multiple	ports	for	a	container,	you	can	use	the	“-p”	flag	multiple	time
in	the	Docker	command.

Linking	containers	together:
For	 containers	 to	 talk	 to	 each	 other,	 port	mapping	 is	 not	 the	 only	way.	 Docker	 has	 an
interesting	 linking	 feature	 which	 allows	 containers	 to	 be	 linked	 together	 and	 pass
information	between	each	other.	While	linking,	certain	source	container	information	will
be	 sent	 to	 the	 destination	 container.	 This	 way	 the	 destination	 container	 can	 access	 the
required	information	from	the	source	container.

Naming	containers:
Docker	 needs	 the	 names	 of	 the	 container	 for	 linking	 it	 together.	 When	 a	 container	 is
launched,	a	random	name	is	assigned	to	it.	Docker	has	an	option	to	name	the	containers
while	launching	it.	Naming	containers	while	launching	is	recommended	because	it	has	two
uses

1.	 You	 can	 remember	 the	 name	 of	 the	 container	 and	 use	 it	 for	 all	 the	 container
operations	like	start,	stop,	inspect	etc.

2.	 Names	are	used	as	a	reference	for	linking	container	together.	For	example,	linking	a
webserver	and	a	database	container.

A	container	can	be	named	using	the	“—name”	flag.	Let’s	create	a	python	container	with
name	“web”.

Execute	the	following	command	for	creating	a	python	container	named	web.
sudo	docker	run	-d	-P	—name	web	training/webapp	python	app.py

The	above	command	launched	a	container	with	name	“web”.	Run	the	following	command
to	view	the	web	container.
sudo	docker	ps	–l

Another	way	to	get	the	name	of	the	container	is	by	using	“Docker	inspect”	command.

Execute	the	following	command	to	get	the	name	of	the	container	using	the	container	id.
sudo	docker	inspect	-f	“{{	.Name	}}”	ae6bcece4532

All	the	container	names	should	be	unique.	No	two	containers	can	have	the	same	name.	If
you	 want	 to	 create	 a	 container	 with	 the	 same	 name,	 you	 should	 delete	 the	 container
running	with	that	name	and	create	a	new	one.

Let’s	take	a	scenario	where	you	want	to	have	a	web	container	and	a	database	container	in

the	Docker	host.	By	Docker	port	mapping	you	can	make	the	web	container	to	talk	to	the
database	container.	But	the	efficient	way	to	do	this	is	by	using	Docker	linking	feature.

Links	are	more	secure	for	passing	data	from	the	source	to	the	destination.		We	will	look	at
an	example	where	we	will	link	a	web	container	with	a	database	container.

To	link	containers	together	Docker	uses	the	“–link”	flag.	Execute	the	following	command
to	create	a	named	database	container.
sudo	docker	run	-d	—name	db	training/postgres

Now	we	 have	 a	 running	 database	 container	 named	 “db”.	 The	 container	 is	 created	 from
training/postgres	 image	downloaded	from	Docker	hub.	Now	let’s	create	a	web	container
with	name	“web”.

Execute	 the	 following	 command	 for	 creating	 the	 web	 container	 from	 training/webapp
image	and	link	it	to	the	db	container	using	the	“—link”	flag.
sudo	docker	run	-d	-P	—name	web	—link	db:db	training/webapp	python	app.py

The	link	flag	has	the	following	syntax,
Syntax:	—link	name:alias

Name	is	the	name	of	the	container	to	be	linked	and	“alias”	is	the	alias	for	the	link	name.

Now	 let’s	 have	 a	 look	 at	 the	 launched	 web	 and	 db	 containers	 using	 the	 docker	 ps
command.
sudo	docker	ps

From	 the	 output	 you	 can	 see	 that	 the	 containers	 are	 named	 “web”	 and	 “db”.	 For	 db
container	you	can	see	“web/db”	parameter,	which	means	the	web	container	is	linked	to	the
db	container.	Now	the	web	container	can	communicate	with	the	db	container	and	access
information	from	it.

We	 learned	 that,	 by	 linking	 containers	 together,	 the	 source	 container	 will	 pass	 on	 its
information	 to	 the	 destination	 container.	 So	 the	 web	 application	 we	 created	 can	 now
access	 the	 information	 from	 the	 database	 container.	 In	 the	 backed,	 a	 secure	 tunnel	 has
been	 created	 between	 the	web	 and	 db	 containers.	 If	 you	 noticed,	when	 creating	 the	 db
container	we	 did	 not	 use	 any	 “-p”	 flag	 for	 port	mapping.	 So	 the	 db	 container	 does	 not
expose	any	port	for	the	external	world	to	connect	to	it.	Only	the	web	container	which	has
been	linked	to	the	db	container	can	access	its	data.

How	linking	works:
When	you	 run	 the	Docker	 command	with	 the	 “—link”	 flag,	Docker	would	 pass	 on	 the
required	credentials	to	the	recipient	container	in	the	following	two	ways,

1.	 Using	environment	variables
2.	 /etc/hosts	file	update.

Now,	let’s	launch	a	web	container	with	links	to	the	db	container	to	view	the	environment
variables	set	by	Docker.

Execute	 the	 following	 command	 to	 launch	 a	 web2	 container	 with	 db	 links	 and	 “env”
command	to	view	the	list	of	environment	variables	set	by	Docker.
sudo	docker	run	—rm	—name	web2	—link	db:db	training/webapp	env

Note:	the	“-rm”	flag	will	remove	the	container	once	it	stops	running	the	command	inside
the	container.

The	above	output	lists	all	the	environment	variables	set	by	Docker	on	web2	container.

These	variables	are	used	to	form	a	secure	tunnel	between	the	web	and	db	container.	All	the
variables	 are	 prefixed	with	DB.	This	 is	 the	 alias	 name	we	mentioned	while	 linking	 the
container	 with	 db.	 If	 you	 have	 given	 the	 alias	 name	 as	 “database”,	 the	 environment
variables	would	have	a	prefix	“database”.

Now	let’s	launch	another	container	to	have	a	look	at	/etc/hosts	file.	Execute	the	following
command	to	start	an	interactive	session	for	the	web	container	with	db	links.
sudo	docker	run	-t	-i	—rm	—link	db:db	training/webapp	/bin/bash

Run	the	following	command	in	the	container	to	view	the	contents	of	/etc/hosts	file.
cat	/etc/hosts

As	 you	 can	 see	 from	 the	 output,	 the	 hostname	 is	 the	 id	 of	 the	 container.	 The	 ip
(172.17.0.10)	entry	for	the	db	container	is	mapped	to	the	alias	name	“db”	in	the	hostname
entry.

Now	let’s	try	to	ping	the	db	container	using	its	hostname	“db”.	Container	does	not	come
with	a	ping	tool,	so	we	have	to	install	it	on	the	container.	Execute	the	following	command
to	install	ping	in	our	web	container.
apt-get	install	-yqq	inetutils-ping

Run	the	following	command	to	ping	the	db	container.
ping	db

When	we	 issued	 the	 ping	 command	 the	 “db”	 hostname	 got	 resolved	 to	 the	 IP	Address
(172.17.0.10)	 of	 the	 db	 container.	 You	 can	 use	 this	 hostname	 in	 your	 application	 to
connect	to	the	database.

Tip:	you	can	link	multiple	containers	to	the	one	container.	Let’s	consider	a	scenario	where
you	need	more	than	one	web	container	which	needs	access	to	a	common	database.	In	this
case,	you	can	link	all	the	web	containers	to	one	db	container.

7
Data	management	in	containers

In	this	chapter,	we	will	learn	how	to	manage	data	in	containers.

The	data	present	inside	a	container	is	stateless.	Once	the	container	is	removed,	all	the	data
inside	 the	 container	 will	 be	 lost.	 Docker	 provides	 an	 efficient	 mechanism	 called
“volumes”	to	persist	the	data	used	by	containers.	Using	container	volumes,	all	the	data	and
logs	of	the	container	can	be	persisted.

For	application	development,	using	Docker	volume	 is	 recommended	because	 rapid	code
changes	in	the	application	will	get	reflected	on	the	running	container.	Otherwise	you	need
to	launch	a	new	container	every	time	there	is	a	change	in	application	code.

The	following	figure	illustrates	the	working	of	Docker	volumes	in	a	container.

Fig	7-1:	Data	volumes	in	containers.

There	are	two	ways	by	which	you	can	manage	data	in	containers

1.	 Using	data	volumes	and
2.	 Data	volume	containers.

Docker	data	volumes:
Data	 volumes	 are	 special	 directories	 created	 inside	 a	 container	 which	 circumvents	 the
uniform	 file	 system	 for	 persisting	data	 inside	 the	volumes.	Docker	data	volume	has	 the
following	features.

	
1.	 Data	volumes	are	sharable	and	reusable.
2.	 Direct	changes	can	be	made	to	data	volumes.
3.	 During	the	image	update,	the	changes	made	in	data	volume	won’t	be	reflected	on	the

image.

Adding	data	volumes	to	containers:
In	this	section	we	will	learn	how	to	add	a	data	volume	to	a	container.	A	data	volume	can
be	 added	 to	 container	 using	 the	 –v	 flag.	Execute	 the	 following	 command	 to	 add	 a	 data
volume	to	python	flask	application.
sudo	docker	run	-d	-P	—name	web	-v	/webapp	training/webapp	python	app.py

The	above	command	creates	a	/webapp	volume	inside	the	web	container.

Tip:	 You	 can	 also	 add	 volumes	 to	 containers	 using	 the	 Dockerfile.	 The	 VOLUME
instruction	in	a	Docker	file	creates	volumes	with	the	specified	name.

Data	volumes	from	host	directories:

The	host	directories	can	be	mounted	as	a	volume	in	container	as	shown	in	Fig:	7-1.	Same
–v	flag	is	used	for	creating	host	mounted	data	volumes	with	change	in	syntax.	It	takes	the
following	form
-v	/source-directory:/opt/directory

Execute	the	following	command	to	create	a	host	mounted	volume	for	a	web1	container.
sudo	docker	run	-d	-P	—name	web1	-v	/src/webapp:/opt/webapp	training/webapp	python	app.py

The	 above	 command	 will	 mount	 the	 host	 directory	 /src/webapp	 on	 to	 the	 containers
/opt/webapp	 directory.	 Mounting	 host	 directory	 is	 very	 useful	 in	 rapid	 application
development.	All	 the	 application	 code	 can	 be	 copied	 to	 the	 host	 directory	 and	 you	 can
view	 the	application	changes	 from	 the	 running	container.	 If	 the	 specified	directory	does
not	exist	in	the	host,	Docker	will	automatically	create	it.

Creating	read	only	data	volume:
When	you	create	a	data	volume,	by	default,	Docker	creates	it	with	read/write	mode.	You
can	also	create	 read	only	data	volumes	by	specifying	a	“ro”	parameter	 in	 the	command.
Execute	the	following	command	for	creating	a	read	only	data	volume	in	web2	container.
sudo	docker	run	-d	-P	—name	web2	-v	/src/webapp:/opt/webapp:ro	training/webapp	python	app.py

The	only	difference	in	creating	read	only	volume	is	the	additional	“ro”	parameter	added	to
the	“/opt/webapp”.

Data	volume	from	host	file:
Files	 in	 the	host	can	also	be	mounted	on	 to	containers	 instead	of	directories.	Same	“-v”
flag	 is	 used	 for	 mounting	 host	 files	 as	 volumes	 in	 containers.	 Execute	 the	 following
command	to	create	a	data	volume	from	the	host	file	“bash_history”.
sudo	docker	run	—rm	-it	-v	~/.bash_history:/.bash_history	ubuntu	/bin/bash

The	above	command	launched	a	container	with	bash	shell.	Run	the	following	command	in
the	container	to	check	if	the	file	has	been	mounted.
ls	.bash_history

The	bash_history	file	has	the	bash	history	of	the	host	system.	Once	you	exit	the	container,
the	bash_history	file	in	the	host	will	have	the	bash	history	of	the	container.

Containers	as	data	volumes:
Non	persistent	containers	can	be	used	as	data	volumes.	This	 is	useful	when	you	want	 to
share	 persistent	 data	 among	many	 containers.	 These	 containers	 are	 called	 data	 volume
containers.	Let’s	try	creating	a	data	volume	container.

Execute	the	following	command	to	create	a	data	volume	container.
sudo	docker	run	-d	-v	/dbdata	—name	dbdata	training/postgres	echo	data-only	container	for	postgres

The	 above	 command	 creates	 a	 data	 volume	 container	 named	 dbdata	 with	 /dbdata	 as	 a
volume.

Now,	 let’s	 try	 mounting	 this	 data	 volume	 container	 to	 another	 container.	 “—volumes-
from”	flag	is	used	for	mounting	a	volume	from	a	data	volume	container.

Execute	 the	 following	 command	 for	 creating	 a	 container	with	 a	 volume	mounted	 from
dbdata	container.
sudo	docker	run	-d	—volumes-from	dbdata	—name	db1	training/postgres

You	can	mount	the	dbdata	from	db3	container	to	some	other	container.	Let’s	try	creating	a
container	db2	by	mounting	the	volume	dbdata	from	db1	container.
sudo	docker	run	-d	—name	db3	—volumes-from	db1	training/postgres

This	 is	 how	 you	 can	 link	 the	 data	 volume	 with	 many	 containers.	 The	 advantage	 of
container	data	volumes	is	that,	if	you	delete	any	container,	mounting	a	volume	and	linked
to	another	container,	the	volume	will	not	get	deleted.

This	enables	migration	of	the	data	volume	to	another	container.	If	you	want	to	delete	the
volume,	you	need	to	run	the	“docker	rm	–v”	command	with	the	volume	name.

Execute	the	following	command	to	remove	the	data	volume	dbdata.
sudo	docker	rm	-v	dbdata

Backing	up	data	volumes:
Volumes	can	be	backed	up,	restored	and	migrated.	For	all	these	actions	“—volumes-from”
flag	is	used.	Let’s	try	backing	up	the	dbdata	volume	by	launching	a	container.

Execute	the	following	command	to	launch	a	container	to	back	up	the	dbdata	volume.
sudo	docker	run	—volumes-from	dbdata	-v	$(pwd):/backup	ubuntu	tar	cvf	/backup/backup.tar	/dbdata

The	 above	 command	 created	 a	 container	 with	 dbdata	 volume	 mounted	 on	 it.	 Also	 it
created	a	volume	by	mounting	the	host	directory.	Finally	it	created	a	tar	archive	of	dbdata
in	the	host	mounted	volume.	Once	the	container	finished	executing	all	 the	commands,	 it

stops	by	leaving	a	backup	data	in	the	host	directory.

You	can	restore	the	data	by	creating	a	new	container	by	mounting	the	host	directory	and
extracting	the	files	from	backup.tar	archive.

All	 the	 above	 backup	mechanisms	 can	 be	 used	 for	migration,	 backup	 automation	 using
various	tools.

Working	with	Docker	hub:
We	have	 learnt	 the	basics	of	Docker	hub	and	 its	use.	 In	 this	 section	we	will	 learn	more
about	Docker	hub.

Docker	 hub	 is	 a	 public	 image	 repository	 for	Docker	 created	 by	Docker	 Inc.	 It	 contains
thousands	 of	 images	 created	 by	Docker	 hub	 users.	 Apart	 from	 just	 images,	 it	 provides
various	other	features	like	authentication,	build	triggers,	automatic	builds	and	webhooks.

webhooks
When	 a	 repository	 is	 pushed	 successfully,	 webhooks	 will	 automatically	 trigger	 REST
based	 actions	 to	 other	 applications.	When	 a	webhook	 is	 called	 it	will	 generate	 a	HTTP
POST	method	with	a	JSON	payload.

The	generated	JSON	will	look	like	the	following.
{

			“push_data”:{

						“pushed_at”:12385123110,

						“images”:[

									“image1”,

									“image2”,

									“image3”

],

						“pusher”:”<username>”

			},

			“repository”:{

						“status”:“Active”,

						“description”:“descritpion	of	Docker	repository”,

						“is_automated”:false,

						“full_description”:“full	description	of	repo”,

						“repo_url”:“https://registry.hub.Docker.com/u/user-name/repo-name/”,

						“owner”:”<username>”,

						“is_official”:false,

						“is_private”:false,

						“name”:”<reponame>”,

						“namespace”:”<username>”,

						“star_count”:2,

						“comment_count”:3,

						“date_created”:1370344400,

						“Dockerfile”:“Docker	file	contents”,

						“repo_name”:”<username>/<reponame>”

			}

}

Docker	 hub	 is	 an	 essential	 element	 in	 Docker	 ecosystem	 for	 simplifying	 Docker
workflows.	Also	users	can	create	private	registries	 to	have	private	 images	which	are	not
searchable	and	accessed	by	other	users.

Docker	hub	commands:

Docker	has	the	following	commands	to	work	with	Docker	hub.

1.	 Docker	login
2.	 Docker	search
3.	 Docker	pull
4.	 Docker	push

Let’s	have	a	look	at	each	of	the	commands.

Docker	login:
Docker	 login	 command	 can	 be	 used	 to	 sign	 up	 and	 sign	 in	 to	 the	 Docker	 hub	 from
command	 line.	 If	 you	 are	 using	 “Docker	 login”	 command	 in	 the	 command	 line,	 it	will
prompt	for	the	user	name	and	password.	

Once	you	are	authenticated	against	Docker	hub	a	configuration	file	(.Dockercfg)	will	be
created	with	Docker	hub	authentication	tokens	and	placed	in	your	host’s	home	directory.
This	file	is	used	for	further	logins.

Note:	 The	 username	 for	 Docker	 hub	 will	 be	 used	 as	 a	 namespace	 for	 all	 the	 images
created	by	you	from	the	authenticated	Docker	host.

For	example,	bibinwilson/Jekyll:v1

Docker	search:
Docker	 search	 command	 is	 the	 great	way	 for	 finding	 the	 images	with	 a	 keyword	 or	 an
image	name.	You	can	also	use	 the	Docker	hub	search	 interface	 to	 find	 images.	You	can
grab	the	image	name	from	there	and	use	it	with	Docker	pull	command	to	pull	it	down	to
your	Docker	host.

Let’s	search	for	a	centos	image	using	the	“Docker	search”	command.
docker	search	centos

The	above	command	will	list	all	the	centos	images	in	the	Docker	hub.

Docker	pull:

Docker	pull	command	is	used	for	pulling	the	images	from	Docker	hub.	This	command	has
the	following	syntax.

Syntax:	Docker	pull	<image	name>

Let’s	pull	a	RHEL	image	using	the	following	command.
sudo	docker	pull	rhel

This	command	will	pull	the	“rhel”	image	from	Docker	hub.

Docker	push:
Docker	push	command	is	used	to	push	a	repository	to	Docker	hub.	If	you	have	created	an
image	from	Docker	file	or	committed	an	image	from	a	container,	then	you	can	push	that
image	to	the	Docker	hub.

Let’s	try	to	push	an	image	to	Docker	hub	by	committing	a	RHEL	container.

Execute	the	following	command	to	create	an	interactive	rhel	container.
sudo	docker	run	-i	-t	—name	rhel	rhel	/bin/bash

Exit	the	container	using	the	exit	command.
exit

Commit	the	rhel	container	using	the	following	command.	Replace	bibinwilson	with	your
Docker	hub	username.
docker	commit	rhel	bibinwilson/rhel:v1

Here	v1	is	the	tag	for	the	image.

Now	 we	 have	 a	 committed	 image	 in	 the	 name	 “bibinwilson/rhel:v1”.	 Execute	 the
following	command	to	push	the	image	to	Docker	hub.
docker	push	bibinwilson/rhel:v1

We	have	successfully	pushed	the	rhel	image	to	the	Docker	hub.

8
Building	and	testing	containers	from	scratch

In	 this	 chapter	we	will	 learn	 how	 to	Dockerize	 applications	 from	 scratch.	You	 can	 use
images	from	the	Docker	public	registry	for	your	application,	but	for	an	in-depth	idea	for
dockerizing	applications,	we	will	build	our	images	from	scratch.

In	this	section	we	create	the	following

1.	 A	static	web	application	running	on	apache
2.	 A	MySQL	image
3.	 WordPress	application	with	MySQL	database
4.	 Hosting	multiple	websites	on	a	Docker	host
5.	 Building	and	testing	containers	using	Jenkins	CI

Building	docker	 images	manually	by	executing	commands	is	a	 tedious	process.	There	 is
no	need	for	creating	images	manually	when	it	can	be	automated	using	dockerfile.	In	this
section,	we	will	discuss	what	a	Dockerfile	is,	what	it	is	capable	of	doing,	and	we	will	build
a	basic	image	using	dockerfile.

Dockerfile
Dockerfile	is	a	plain	text	file	composed	of	various	instructions	(commands)	and	arguments
listed	sequentially	to	automate	the	process	of	image	building.	By	executing	“docker	build”
command	with	the	path	to	the	dockerfile,	a	docker	image	will	be	created	by	executing	the
set	of	 instructions	successively	 from	the	dockerfile.	Before	start	building	 images	 from	a
dockerfile,	you	should	understand	all	the	instructions	than	can	be	used	in	a	dockerfile.

Every	instruction	in	the	dockerfile	will	have	the	following	syntax.
INSTRUCTION	argument

Dockerfile	supports	the	following	instructions.

FROM
MAINTAINER
RUN
ENV
CMD
ADD
EXPOSE
ENTRYPOINT
USER

VOLUME
WORKDIR

Let’s	have	look	at	the	functionality	of	each	instruction.

FROM
Every	dockerfile	should	begin	with	the	FROM	instruction.	It	denotes	the	base	image	(base
Ubuntu,	 centos	RHEL	etc.)	 from	which	 the	new	 image	will	be	created.	The	base	 image
can	be	any	 image,	 including	 the	 image	you	have	created	and	committed	 in	your	docker
host.	 If	 the	 image	specified	 in	 the	FROM	instruction	 is	not	available	 in	 the	host,	docker
will	pull	it	from	the	docker	hub.

Syntax
#	Usage:	FROM	[image	name]

FROM	centos

MAINTAINER
This	instruction	sets	the	author	for	the	image.	It	can	be	placed	anywhere	in	the	dockerfile
as	this	does	not	perform	any	action	on	the	image	building	process.

Syntax
#	Usage:	MAINTAINER	[author	name]

MAINTAINER	Bibin	Wilson

RUN
RUN	executes	a	shell	command.	This	instruction	takes	a	Linux	command	as	an	argument.
It	adds	a	 layer	on	 top	of	 the	 image	and	 the	committed	changes	will	be	available	 for	 the
next	instruction	in	the	dockerfile.

Syntax
#	Usage:	MAINTAINER	[author	name]

MAINTAINER	Bibin	Wilson

ENV
ENV	 sets	 the	 environment	 variables	 and	 it	 takes	 a	 key	 value	 pair	 as	 an	 argument	 .The
variables	set	by	the	ENV	instruction	can	be	used	by	scripts	and	applications	running	inside
the	 container.	 This	 functionality	 in	 docker	 file	 provides	 better	 flexibility	 in	 running
programs	inside	a	docker	container.

Syntax
#	Usage:	ENV	Key	Value

ENV		ACCESS_KEY	45dcdfrY

CMD
CMD,	 like	RUN	it	can	be	used	 to	execute	a	specific	command.	However,	 it	will	not	be
executed	during	the	image	building	process	but	when	a	container	is	created	from	the	build

image.	For	example,	if	you	want	to	start	apache	every	time	you	create	a	container	from	an
image	with	 apache	 installed,	 you	 can	 specify	 the	 command	 to	 start	 apache	 in	 the	CMD
instruction.	Also,	in	a	dockerfile,	you	can	specify	the	CMD	instruction	only	one	time.	If
specified	multiple	times,	all	the	instruction	except	the	last	one	will	be	nullified.

Syntax

Syntax:CMD	[“executable”,“param1”,“param2”]

CMD	[“param1”,“param2”]

CMD	command	param1	param2

CMD	“echo”	“Hello	World”

ADD
ADD	instruction	takes	two	arguments:	a	source	and	a	destination.	This	instruction	copies	a
file	from	the	source	to	the	containers	file	system.	If	the	source	is	a	url,	then	the	file	from
the	url	will	be	downloaded	to	the	destination.	You	can	also	specify	wildcard	entries	in	the
source	path	to	copy	all	the	files	matching	the	entry.

Syntax
#	Usage:	ADD	ADD	[source	directory	or	URL]	[destination	directory]

ADD		/source_folder	/destination_folder

ADD	*file*	/destination_folder

COPY
This	instruction	is	also	used	for	copying	files	and	folders	from	a	source	to	the	destination
file	system	of	a	container.	However,	COPY	instruction	does	not	support	url	as	a	source.
Multiple	sources	can	be	specified	and	copied	 to	a	 folder	 in	 the	destination	using	COPY.
COPY	has	the	same	syntax	as	ADD.

EXPOSE
This	 instruction	 associates	 the	 specified	 port	 for	 enabling	 networking	 between	 a	 docker
container	and	 the	outside	world.	The	default	container	ports	 that	are	accessible	from	the
host	 cannot	 be	 defined	 using	 EXPOSE.	 Host	 to	 container	 mappings	 can	 only	 be	 done
using	the	“-p”	flag	with	the	docker	run	command.

Syntax
#	Usage:	EXPOSE	[port]

EXPOSE	443

EXPOSE	[443,	80,	8080]

ENTRYPOINT
Using	 this	 instruction	 a	 specific	 application	 can	be	 set	 as	default	 and	 start	 every	 time	a
container	is	created	using	the	image.
Syntax:	Comes	in	two	flavours

ENTRYPOINT	[‘executable’,	‘param1’,’param2’]

ENTRYPOINT	command	param1	param2

ENTRYPOINT	can	be	used	with	CMD	 to	 remove	 the	“application”	 from	CMD	 leaving
only	the	arguments	which	will	be	passed	to	ENTERYPOINT.
CMD	“	This	is	an	argument	for	entrypoint”

ENTRYPOINT	echo

USER
It	sets	the	UID	(username)	which	has	to	be	used	to	run	the	container	from	the	image.

Syntax
#	Usage:	USER	[uid]

USER	543

VOLUME
This	 instruction	 is	 used	 to	mount	 a	 specific	 file	 or	 a	 directory	 to	 a	 container.	 The	 host
directory	 or	 file	 mentioned	 in	 the	 instruction	 will	 be	 mounted	 to	 the	 container	 when
created.

Syntax
#	Usage:	VOLUME	[“/dir1”,	“/dir2”	..]

VOLUME	[“var/log”]

WORKDIR
WORKDIR	 sets	 the	 Working	 directory	 for	 the	 RUN,	 CMD	 and	 ENTRYPOINT
instructions.	All	the	commands	will	be	executed	in	the	directory	specified	in	WORDDIR
instruction.

Syntax
#	Usage:	WORKDIR	/path

WORKDIR		/root

.dockerignorefile

.dockerignore	file	is	like	.gitignore	file.	All	files	and	directories	which	has	to	be	excluded
should	present	in	the	.dockerignore	file.	It	is	interpreted	by	new-line	separated	list	of	files

and	directories.

Example	dockerfile
A	typical	dockerfile	will	look	like	the	following.	It	is	dockerfile	for	creating	a	MongoDB
image.
FROM	ubuntu

MAINTAINER	Bibin	Wilson

RUN	apt-key	adv	—keyserver	keyserver.ubuntu.com	—recv	7F0CEB10

RUN	echo	“deb	http://downloads-distro.mongodb.org/repo/ubuntu-upstart	dist	10gen”	|	tee	-a	/etc/apt/sources.list.d/10gen.list

RUN	apt-get	update

RUN	apt-get	-y	install	apt-utils

RUN	apt-get	-y	install	mongodb-10gen

CMD	[“/usr/bin/mongod”,	“—config”,	“/etc/mongodb.conf”]

Now	we	will	 create	 a	 normal	MongoDB	 image	 using	 the	 above	 dockerfile.	 Follow	 the
steps	given	below	to	build	an	image	from	dockerfile.

1.	 Create	 a	 directory	 name	 MongoDB,	 cd	 into	 that	 directory,	 create	 a	 file	 named
Dockerfile	and	copy	the	above	dockerfile	contents	onto	the	file.

mkdir	mongodb	&&	cd	mongodb

touch	Dockerfile

nano	Dockerfile

	
2.	 “docker	build”	command	is	used	to	build	an	image.	To	list	all	the	options	associated

with	docker	build	command,	execute	the	following	command.

docker	build	—help

	
3.	 Let’s	build	our	MongoDB	image	using	the	following	command.

docker	build	-t	mongodb	.

Note:	“docker	build”	command	is	associated	with	few	options.	You	can	view	the	options
using	“docker	build	—help”	command.	In	the	above	build	command	we	use	“-t”	to	name

the	image	“mongodb”	and	“.”	Represents	the	location	of	docker	file	as	current	directory.	If
the	 dockerfile	 is	 present	 in	 different	 location,	 you	 need	 to	 give	 the	 absolute	 path	 of
dockerfile	instead	of	“.”

Till	now	we	have	learned	about	docker	file	and	its	options.	Also	we	have	learned	how	to
build	an	image	from	dockerfile.	In	next	section	we	will	look	in	to	some	best	practices	for
writing	a	docker	file.

Dockerfile	Best	Practices
Follow	the	best	practices	given	below	while	working	with	dockerfiles.

Always	make	a	dockerfile	with	minimum	configuration	as	possible.
Use	 .dockerignore	 file	 to	 exclude	 all	 the	 files	 and	 directories	 which	 will	 not	 be
included	in	the	build	process.	For	example	.git	folder.	You	can	exclude	.git	folder	by
including	it	in	the	.dockerignore	file.
Avoid	all	unnecessary	package	installations	to	keep	the	image	size	minimal.
Run	just	one	process	per	container.	It	is	a	good	practice	to	decouple	your	application
for	 better	 horizontal	 scaling	 and	 container	 reuse.	 For	 example,	 run	 the	 web
application	and	database	in	different	containers	and	link	them	together	using	“-	-link”
flag.
Many	 base	 images	 in	 docker	 hub	 are	 bloated.	 Use	 small	 base	 images	 for	 your
dockerfile	and	make	sure	you	use	the	official	and	trusted	base	images	with	minimum
size.
Use	 specific	 image	 tags	 while	 building	 image	 and	 while	 using	 it	 in	 FROM
instruction.
Group	all	 the	common	operations.	For	example,	use	“apt-get	update”	with	“apt-get
install”	using	“\”	to	span	multiple	lines	on	your	installs.

For	example,
RUN	apt-get	update	&&	apt-get	install	-y	\

				git	\

				libxml2-dev	\

				python	\

				build-essential	\

				make	\

				gcc	\

				python-dev	\

				locales	\

				python-pip

	
Use	 build	 cache	while	 building	 images.	Docker	will	 look	 for	 existing	 image	while
building	an	 image	 to	 reuse	 it	 rather	 than	building	 a	duplicate	 image.	 If	 you	do	not
want	to	use	the	build	cache,	you	can	explicitly	specify	the	“—no-cache=true”	flag	for
not	using	the	cache.

A	static	website	using	Apache
In	this	section,	we	will	create	a	Docker	image	and	create	containers	from	the	image	which
runs	 the	 static	website.	We	need	 the	 following	 to	 run	 the	apache	container	with	a	 static
website.

1.	 Dockerfile	with	all	the	specifications	to	run	apache.
2.	 Static	website	files
3.	 An	apache-config	file	to	configure	apache	to	run	the	static	website.

Follow	the	steps	given	below	to	get	the	apache	container	up	and	running.

Note:	 You	 can	 get	 the	 Docker	 file	 and	 associated	 files	 in	 the	 demo	 from	 my	 github
repository.	Here	is	the	repository	link.		https://github.com/Dockerdemo/apache

1.	 Create	a	folder	named	apache	and	cd	in	to	the	apache	directory.

mkdir	apache	&&	cd	apache

	
2.	 Create	a	Docker	file	

touch	Dockerfile

	
3.	 Create	 a	 file	 named	 apache-config.conf	 and	 copy	 the	 following	 contents	 on	 to	 the

file.

<VirtualHost	*:80>

ServerAdmin	admin@yourdomain.com

DocumentRoot	/var/www/website

https://github.com/dockerdemo/apache

<Directory	/var/www/website/>

Options	Indexes	FollowSymLinks	MultiViews

AllowOverride	All

Order	deny,allow

Allow	from	all

</Directory>

ErrorLog	${APACHE_LOG_DIR}/error.log

CustomLog	${APACHE_LOG_DIR}/access.log	combined

</VirtualHost>

	
4.	 Download	the	static	website	files	to	the	apache	folder	from	the	github	link.
5.	 Copy	the	following	snippet	on	to	the	Docker	file.

FROM	ubuntu:latest

MAINTAINER	Bibin	Wilson	<bibin.w@hcl.com>

RUN	apt-get	update

RUN	apt-get	-y	upgrade

RUN	apt-get	-y	install	apache2

ENV	APACHE_RUN_USER	www-data

ENV	APACHE_RUN_GROUP	www-data

ENV	APACHE_LOG_DIR	/var/log/apache2

ENV	APACHE_LOCK_DIR	/var/lock/apache2

ENV	APACHE_PID_FILE	/var/run/apache2.pid

EXPOSE	80

ADD	website	/var/www/website

ADD	apache-config.conf	/etc/apache2/sites-enabled/000-default.conf

CMD	/usr/sbin/apache2ctl	-D	FOREGROUND

Here	is	what	the	above	Dockerfile	does.

Pulls	 the	base	 image	Ubuntu	 from	public	 repository	 if	 it	 is	 not	 available	 locally	 in
your	server
Updates	the	image	and	installs	apache2	using	RUN
Set	 few	 apache	 specific	 environment	 variables	 which	 will	 be	 used	 by	 the	 custom
apache	config	file	that	we	will	use.
Exposes	port	80
Adds	the	website	folder	from	the	host	on	to	/var/www	location	in	the	container.
Adds	the	custom	apache	config	file	we	created	to	the	container.
Finally	it	starts	the	apache2	service.

6.	 Our	project	will	contain	the	following	files	as	shown	in	the	following	tree	structure.

7.	 Now	we	have	the	Docker	file,	website	files	and	apache	config	file	in	place.	Next	step
is	 to	 build	 an	 image	 from	 the	Docker	 file.	 Run	 the	Docker	 build	 command	 given
below	to	build	the	apache	image	from	our	Dockerfile.

docker	build	–t	apachedemo	.

	
8.	 Now	we	have	our	apache	image	ready	and	we	can	create	containers	from	it.	Run	the

following	Docker	command	to	create	a	new	apache	container

docker	run	-d	-p	80:80		—name	staticwebsite	apachedemo

	
9.	 We	have	a	running	apache	container	with	our	static	website	with	port	mapped	to	80.

You	can	access	the	website	from	the	browser	on	port	80	using	the	host	IP	of	DNS

http://hostip:80

http://hostip:80

The	image	shows	the	static	website	we	had	in	the	website	folder.

10.	 Run	the	Docker	ps	command	to	see	more	information	about	the	container.

If	you	do	not	want	to	recreate	containers	every	time	you	update	your	static	website	files,
you	can	mount	a	folder	from	the	host	containing	the	website	files	on	to	containers	instead
of	copying	the	files	to	container.	So	that	every	time	you	make	a	change	to	the	file	will	be
reflected	on	the	running	container.

Now	let’s	create	a	container	by	mounting	the	website	folder	to	the	container.

-v	flag	is	used	for	mounting	a	volume	to	the	container.	Execute	the	following	command	to
creating	a	new	container	with	website	folder	in	the	host	as	a	mount	point	for	the	container
docker	run	-p	8080:80	-d	apachedemo	-v	\	/root/apache/website:/var/www/website

Creating	MySQL	image	and	containers
In	this	section	we	will	create	a	MySQL	Docker	image	from	a	base	Ubuntu	image.	We	will
do	the	following	to	create	our	MySQL	container.

1.	 Create	a	Dockerfile	with	commands	to	install	and	configure	MySQL	server
2.	 Create	a	shell	script	for	creating	a	user,	database	and	staring	the	server.
3.	 Build	an	image	named	mysql	from	the	created	files.
4.	 Create	a	container	from	the	mysql	image.

Note:	 You	 can	 get	 the	 Docker	 file	 and	 associated	 files	 in	 the	 demo	 from	 my	 github
repository.	Here	is	the	repository	link.		https://github.com/Dockerdemo/mysql

Let’s	start	creating	our	mysql	image.

1.	 Create	a	directory	name	mysql	and	cd	in	to	the	same

mkdir	mysql	&&	cd	mysql

	
2.	 Create	a	 file	named	start.sh	and	copy	 the	 following	 shell	 script	on	 to	 the	 file.	This

script	creates	users,	databases	by	getting	 the	values	from	the	environment	variables
specified	in	the	Dockerfile	and	restarts	the	mysql	server.

#!/bin/bash

/usr/sbin/mysqld	&

sleep	5

echo	“Creating	user”

echo	“CREATE	USER	‘$user’	IDENTIFIED	BY	‘$password’”	|	mysql	—default-character-set=utf8

echo	“REVOKE	ALL	PRIVILEGES	ON	*.*	FROM	‘$user’@’%’;	FLUSH	PRIVILEGES”	|	mysql	—default-character-set=utf8

echo	“GRANT	SELECT	ON	*.*	TO	‘$user’@’%’;	FLUSH	PRIVILEGES”	|	mysql	—default-character-set=utf8

echo	“finished”

if	[“$access”	=	“WRITE”];	then

echo	“GRANT	ALL	PRIVILEGES	ON	*.*	TO	‘$user’@’%’	WITH	GRANT	OPTION;	FLUSH	PRIVILEGES”	|	mysql	—default-character-set=utf8

fi

mysqladmin	shutdown

/usr/sbin/mysqld

The	above	script	creates	a	user	with	the	password	specified	as	the	environment	variable	in
the	Dockerfile.	You	can	specify	the	access	right	for	the	user	in	if	block.	In	the	above	file
we	have	WRITE	access	which	grants	all	 the	privileges	 to	 the	user.	At	 last	 it	 restarts	 the
MySQL	server.

3.	 Create	a	Dockerfile	and	copy	the	following	snippet	on	to	the	file.

https://github.com/dockerdemo/mysql

FROM	ubuntu:latest

MAINTAINER	Bibin	Wilson

RUN	apt-get	update

RUN	apt-get	upgrade	-y

RUN	apt-get	-y	install	mysql-client	mysql-server	curl

RUN	sed	-i	-e”s/^bind-address\s*=\s*127.0.0.1/bind-address	=	0.0.0.0/”	/etc/mysql/my.cnf

ENV	user	Docker

ENV	password	root

ENV	access	WRITE

ADD	./start.sh	/usr/local/bin/start.sh

RUN	chmod	+x	/usr/local/bin/start.sh

EXPOSE	3306

Here	is	what	the	Docker	file	does.

1.								Updates	the	image.
2.							Installs	MySQL	server	and	client
3.							Changes	the	bind	address	to	0.0.0.0	on	my.cnf	file		to	get	remote	access
4.							Sets	few	environment	variables	to	be	used	by	the	start.sh	script.
5.							Adds	the	start.sh	file	to	the	image
6.							Runs	the	start.sh	script
7.							Exposed	port	3306	on	the	container.

4.	 Now	we	have	the	Dockerfile	and	the	start	script	in	place.	Run	the	following	Docker
build	command	to	build	our	mysql	image.

docker	build	–t	mysql	.

	
5.	 Our	mysql	image	has	be	successfully	built.	You	can	start	a	mysql	container	using	the

following	Docker	command.

docker	run	-d	-p	3306:3306	—name	db	mysql

	
6.	 Now	 if	you	 run	 the	Docker	ps	command,	you	can	see	 the	 running	mysql	container

name	db.

docker	ps

	
7.	 You	can	now	access	the	database	using	the	containers	IP.	You	can	get	the	full	details

of	the	container	using	“Docker	inspect”	command.	You	can	get	the	db	containers	IP
using	the	following	command.

docker	inspect	—format	‘{{	.NetworkSettings.IPAddress	}}’	db

Here	db	is	the	container’s	name.

8.	 To	access	the	mysql	server	running	on	the	db	container	you	should	have	mysql	client
installed	 on	 the	 Docker	 host.	 Run	 the	 following	 mysql	 command	 to	 access	 the
database.	 Make	 sure	 you	 use	 the	 correct	 username	 and	 password	 used	 in	 the
Dockerfile.

You	can	use	this	container	for	backend	database	for	you	applications	using	the	container
IP	and	database	credentials.

As	explained	earlier	another	way	of	linking	containers	is	using	Docker	links,	we	will	be
using	this	approach	in	another	example	in	the	following	section.

Creating	a	WordPress	container

In	this	demo,	we	will	see	how	to	create	a	WordPress	image	to	run	a	WordPress	container.

You	 can	 run	 the	 backend	 database	 in	 the	 same	 container	 or	 you	 can	 use	 a	 different
container	for	the	database.	We	will	use	a	standalone	MySQL	container	we	created	to	run
our	WordPress	application.

We	will	do	the	following	to	get	our	WordPress	container	ready.

1.	 Create	 a	 Docker	 file	 with	 specifications	 to	 install	 all	 the	 necessary	 components
needed	to	run	a	WordPress	CMS

2.	 Build	the	wordpress	image.
3.	 Run	the	wordpress	container.

Note:	 You	 can	 get	 the	 Docker	 file	 and	 associated	 files	 in	 the	 demo	 from	 my	 github
repository.	Here	is	the	repository	link.		https://github.com/Dockerdemo/wordpress

A	typical	WordPress	installation	should	have	the	following	requirements.

1.	 	 	 	 	 	 	 	A	web	 server	 –	 we	will	 use	 apache	web	 server	 to	 run	 our	WordPress
application
2.							PhP	run	time	environment
3.							Backend	SQL	database	–	we	will	use	the	mysql	container	we	created	as	the
backend	database	for	WordPress.

Let’s	get	started	with	building	the	WordPress	image.

1.	 Create	 a	 directory	named	wordpress	 and	 cd	 in	 to	 the	directory	using	 the	 following
command.

mkdir	wordpress	&&	cd	wordpress

2.	 Create	a	Dockerfile	and	copy	the	following	snippet	on	to	the	file.

FROM	ubuntu:latest

MAINTAINER	Bibin	Wilson	<bibin.w@hcl.com>

RUN	apt-get	update

RUN	apt-get	-y	upgrade

RUN	apt-get	-y	install	apache2	libapache2-mod-php5	pwgen	python-setuptools	vim-tiny	php5-mysql	php5-ldap

RUN	RUN	apt-get	-y	install	php5-curl	php5-gd	php5-intl	php-pear	php5-imagick	php5-imap	php5-mcrypt	php5-memcache	php5-ming	php5-ps	php5-
pspell	php5-recode	php5-sqlite	php5-tidy	php5-xmlrpc	php5-xsl

ENV	APACHE_RUN_USER	www-data

ENV	APACHE_RUN_GROUP	www-data

ENV	APACHE_LOG_DIR	/var/log/apache2

ENV	APACHE_LOCK_DIR	/var/lock/apache2

ENV	APACHE_PID_FILE	/var/run/apache2.pid

EXPOSE	80

https://github.com/dockerdemo/wordpress

ADD	http://wordpress.org/latest.tar.gz	/wordpress.tar.gz

RUN	tar	xvzf	/wordpress.tar.gz

RUN	rm	-rf	/var/www/

RUN	mv	/wordpress	/var/www/

ADD	apache-config.conf	/etc/apache2/sites-enabled/000-default.conf

CMD	/usr/sbin/apache2ctl	-D	FOREGROUND

The	above	Dockerfile	does	the	following.

Updates	the	images
Installs	required	apache2	and	php	elements	required	for	wordpress
Sets	 few	environment	variables	 for	 apache,	which	will	be	used	by	 the	apache	conf
file	associated	with	the	Docker	file.
Exposes	port	80	on	container
Downloads	the	latest	wordpress	setup	files	and	copies	it	to	the	desired	folder.
Adds	the	apache	config	file	from	the	host	to	container.
Starts	apache	server.

3.	 Create	an	apache-config.conf	file	and	copy	the	following	snippet	on	to	the	file.

<VirtualHost	*:80>

ServerAdmin	admin@yourdomain.com

DocumentRoot	/var/www/wordpress

<Directory	/var/www/wordpress/>

Options	Indexes	FollowSymLinks	MultiViews

AllowOverride	All

Order	deny,allow

Allow	from	all

</Directory>

ErrorLog	${APACHE_LOG_DIR}/error.log

CustomLog	${APACHE_LOG_DIR}/access.log	combined

</VirtualHost>

The	above	config	file	is	same	as	the	one	we	created	in	the	first	apache	demo

4.	 Build	the	wordpress	image	from	the	Docker	file	using	the	following	command.

docker	build	-t	wordpress	.

Now	we	 have	 a	 wordpress	 image.	 In	 order	 to	 install	 and	 setup	 wordpress,	 you	 need	 a
backend	SQL	database.	In	our	wordpress	containers	we	haven’t	configured	any	database.

We	will	use	the	mysql	container	as	the	backend	database	for	our	wordpress	application.

There	 are	 two	 ways	 by	 which	 you	 can	 link	 the	 MySQL	 container	 to	 the	 WordPress
container.

1.	 Run	the	mysql	container	with	ports	mapped	to	the	host	and	use	the	IP	address	of	the
container	for	linking	wordpress	to	the	database.	In	this	case	you	can	link	a	WordPress
container	in	another	host	to	the	host	running	mysql	container.

2.	 Run	the	mysql	container	without	mapping	it	to	the	host	port	and	link	the	wordpress
container	using	the	Docker	–link	flag	specifying	the	mysql	container	name.

Running	a	two	container	WordPress	application
In	this	section	we	will	learn	how	to	set	up	a	two	container	wordpress	application	using	a
wordpress	container	and	a	mysql	container.	You	can	set	up	wordpress	and	mysql	on	 the
same	 container	 but	 it	 is	 advisable	 to	 have	 distinct	 components	 for	 the	 database	 and
application.	Let’s	look	an	example	configurations	for	this	application.

In	 this	 example,	 we	 will	 run	 a	WordPress	 application	 using	MySQL	 container	 for	 the
database.

1.	 Create	a	container	from	our	MySQL	image	by	mapping	host	port	3306	to	container
port	3306	using	the	following	command.

docker	run	-d	-p	3306:3306	—name	db	mysql

	
2.	 Create	a	wordpress	container	linking	the	db	container	we	created	using	the	–link	flag

from	the	following	command.

docker	run	-d	-p	80:80	—name	web	—link	db:db	wordpres

	
3.	 If	you	run	the	Docker	ps	command,	you	can	see	our	web	container	linked	with	the	db

container.

docker	ps

Now	you	can	access	the	WordPress	setup	page	using	the	host	IP	address.	Access	the	setup
page	 and	 fill	 in	 the	 database	 name,	 password	 and	 hostname	 (db	 container	 name)	 and
continue	for	WordPress	installation.

4.	 Once	the	installation	is	complete,	you	will	have	a	running	two	container	WordPress
application	running	on	your	Docker	host.

5.	 If	 you	 want	 more	 instances	 of	 the	 configured	 WordPress,	 you	 can	 commit	 the
container	 and	 start	 new	 containers	 from	 the	 committed	 image.	 Run	 the	 following
command	 to	 commit	 the	 web	 container	 and	 create	 a	 new	 configured	 WordPress
image	named	WordPress-configured.

docker	commit	web	wordpress-configured

	
6.	 Now,	 if	 you	 list	 the	 images	 in	 your	 Docker	 host,	 you	 can	 see	 the	 newly	 created

wordpress-configured	 image.	 Run	 the	 following	 command	 to	 list	 the	 wordpress
image.

docker	images	wordpress-configured

	
7.	 Now	you	can	create	a	configured	WordPress	directly	from	the	WordPress-configured

image.	 In	 order	 to	 test	 this,	 stop	 and	 remove	 the	 web	 container	 and	 create	 a	 new
WordPress	container	from	the	committed	image,	link	it	to	db	container	and	see	if	you
get	the	configured	WordPress	application.

docker	rm	-f	web

docker	run	-d	-p	80:80	—name	web	–link	db:db	wordpress-configured

	

Now	 you	 can	 access	 the	 WordPress	 application	 from	 the	 browser	 without	 the	 initial
configuration.

Running	 multiple	 websites	 on	 a	 single	 host

using	Docker:
In	this	section	we	will	learn	how	to	run	multiple	websites	on	a	single	host	using	a	reverse
proxy	HAproxy.	The	following	image	illustrates	how	the	architecture	will	look	like.

Fig	8-1:	Docker	multiple	website	hosting

Note:	For	this	demonstration	we	will	be	using	domain	name	internal	to	the	host	using	the
hosts	file.	You	can	also	test	this	by	mapping	different	domain	names	to	the	Docker	host.

We	 already	 have	 a	 working	 wordpress-configured	 and	 mysql	 image.	 For	 this
demonstration	we	will	create	a	HAproxy	container	from	the	public	HAproxy	image	named
Dockerfile/haproxy	 and	 a	 basic	 hello	 world	 php	 application	 using	 tutum/hello-world
image.	

Follow	the	steps	give	below	to	setup	a	multi	website	Docker	host.

1.	 Create	a	mysql	container	from	mysql	image	using	the	following	command.

docker	run	-d	—name	db	mysql

	
2.	 Create	 a	 wordpress	 container	 named	 wordpress1	 from	 the	 wordpress-configured

image	linked	to	db	container	using	the	following	command.

docker	run	-d	—name	wordpress1	—link	db:db	wordpress-configured

	

3.	 Create	a	hello-world	php	application	container	using	tutum/hello-world	public	image
using	the	following	command.

docker	run	-d	—name	hello-world	tutum/hello-world

	
4.	 Create	 two	 internal	 DNS	 entries,	 test1.domain.com	 and	 test2.domain.com	 in

/etc/hosts	 file	 with	 Docker	 host	 IP	 for	 routing	 traffic	 from	HAproxy	 to	 respective
backend	applications.

5.	 Create	a	haproxy-config	directory	and	create	a	haproxy.cfg	file	in	that	directory.	The
haproxy.cgf	file	is	given	below.	In	this	file	we	will	update	the	IP’s	of	wordpress1	and
hello-world	applications.

6.	 HAproxy	 container	 will	 listen	 to	 port	 80	 of	 Docker	 host.	 	 Test1.domain.com	 is
mapped	to	wordpress1	and	test2.domain.com	is	mapped	to	hello-world	container	 in
the	file	given	below.

global							

log	127.0.0.1			local0

log	127.0.0.1			local1	notice

user	haproxy

group	haproxy

defaults

log					global

mode				http

option		httplog

option		dontlognull

option	forwardfor

option	http-server-close

contimeout	5000

clitimeout	50000

srvtimeout	50000

errorfile	400	/etc/haproxy/errors/400.http

errorfile	403	/etc/haproxy/errors/403.http

errorfile	408	/etc/haproxy/errors/408.http

errorfile	500	/etc/haproxy/errors/500.http

errorfile	502	/etc/haproxy/errors/502.http

errorfile	503	/etc/haproxy/errors/503.http

errorfile	504	/etc/haproxy/errors/504.http

stats	enable

stats	auth	username:password

stats	uri	/haproxyStats

frontend	http-in

bind	*:80

#	Define	hosts	based	on	domain	names

acl	host_test1	hdr(host)	-i	test1.domain.com

acl	host_test2	hdr(host)	-i	test2.domain.com

use_backend	test1	if	host_test1

use_backend	test2	if	host_test2

backend	test1	#	test1.domain.com	wordpress1	contianer

balance	roundrobin

option	httpclose

option	forwardfor

server	s2	172.17.0.33:80	#ip	of	wordpress1	contianer

backend	test2	#	test2.domain.com	hello-world	container

balance	roundrobin

option	httpclose

option	forwardfor

server	s1	172.17.0.19:80	#ip	pf	hello-world	container

In	the	above	config	file,	you	need	to	replace	the	IP	addresses	under	backend	section	with
the	IP	address	of	the	application	containers.	The	default	configuration	of	HAproxy	will	be
overridden	by	our	haproxy.cfg	file.

7.	 Now	we	 have	 all	 the	 configurations	 ready.	 Start	 the	 HAproxy	 container	 using	 the
following	command.

docker	run	-d	-p	80:80	—name	lb	-v	~/haproxy-config:/haproxy-override	Dockerfile/haproxy

	
8.	 If	 you	 do	 a	 Docker	 ps,	 you	 can	 view	 the	 running	 containers	 (haproxy,	 wordpress

,hello-world	and	MySQL)

docker	ps

Now	 let’s	 test	 our	 applications	 using	 curl.	You	 can	 test	 your	 application	 by	 giving	 curl
request	 to	 test1.domain.com	 and	 test2.domian.com.	 If	 you	 can	map	 the	 custom	 domain
names	to	the	Docker	host,	then	you	can	access	the	application	publicly	from	the	browser.
Since	we	have	internal	DNS	entries,	we	will	only	test	this	internally	using	curl.

9.	 Run	the	following	command	to	test	test1.domain.com

curl	test1.domain.com

As	 you	 can	 see,	 for	 test1.domain.com,	 HAproxy	 directed	 the	 request	 to	 hello-world
application	 container.	 Same	 way,	 test2.doamin.com	 will	 be	 directed	 to	 wordpress1
application.

Building	and	testing	containers	using	Jenkins
In	 this	 section	we	will	 learn	how	 to	use	 Jenkins	CI	 for	Dockerfile	builds.	You	need	 the
following	setups	to	automate	Docker	builds	using	Jenkins.

1.	 A	Jenkins	server
2.	 Github	account	configured	with	your	laptop	for	pushing	and	updating	the	Dockerfile

for	builds.

Fig	8-2:	Building	and	testing	containers	using	Jenkins

Setting	up	a	Jenkins	server
You	can	set	up	a	Jenkins	server	manually	or	you	can	use	chef	community	cookbook	for
automatic	installation.	In	this	section	you	will	learn	how	to	install	Jenkins	manually	on	a
RHEL	server.	Follow	the	steps	given	below	to	set	a	Jenkins	server

1.	 Login	to	the	server	and	update	the	server	repositories

sudo	yum	update

	
2.	 Jenkins	needs	java	to	be	installed	on	the	server.	So	if	you	are	using	an	existing	server

with	java	skip	to	step	3	or	else	install	java	using	the	following	command

sudo	yum	install	java-1.6.0-openjdk

	
3.	 Once	java	is	installed,	verify	the	java	version	the	proceed	to	the	next	step
4.	 Add	the	Jenkins	repository	to	the	server	using	the	following	commands.

wget	-O	/etc/yum.repos.d/jenkins.repo	http://pkg.jenkins-ci.org/redhat/jenkins.repo

Note:	If	RHEL	server	does	not	have	wget	utility	install	it	using	the	following	command.
yum	install	wget

	
5.	 Add	the	repository	key

rpm	—import	http://pkg.jenkins-ci.org/redhat/jenkins-ci.org.key

	
6.	 Install	Jenkins

sudo	yum	install	Jenkins

http://pkg.jenkins-ci.org/redhat/jenkins.repo
http://pkg.jenkins-ci.org/redhat/jenkins-ci.org.key

	
7.	 Once	installed,	add	Jenkins	to	the	startup	so	that	it	starts	every	time	when	you	restart

the	server.

sudo	chkconfig	Jenkins	on

	
8.	 Start	the	Jenkins	service

sudo	service	start	Jenkins

	
9.	 Jenkins	UI	accepts	connection	on	port	8080	by	default.	You	can	access	 the	Jenkins

web	ui	using	the	public	ip	followed	by	the	8080	port	number	:	eg	:	54.34.45.56:8080

Github	setup
You	need	to	have	a	version	control	system	configured	for	configuring	Jenkins	builds	for
Docker.	In	this	demonstration	we	will	use	github	as	a	version	control	system.	We	will	use
the	Dockerfile	and	files	for	apache	static	website	we	tested	earlier.

You	need	to	have	the	following	setup	as	the	initial	configuration	our	demonstration.

1.	 A	git	hub	account	with	ssh	keys	configured	with	your	development	environment.
2.	 An	 apache	 repository	 on	 github	 with	 Docker	 file	 and	 files	 pushed	 from	 your

development	environment.

Configuring	Dockerfile	build	Jenkins
Install	git	plugin	on	Jenkins	server	for	configuring	automatic	Docker	builds	whenever	the
updated	code	and	Dockerfile	is	pushed	to	github.	You	can	install	this	plugin	from	“manage
Jenkins”	option	in	the	Jenkins	dashboard.	Follow	the	steps	given	below	to	create	a	build
job	for	apache	container.

1.	 From	the	Jenkins	dashboard,	click	“create	new	jobs”	option	and	select	 the	freestyle
project	and	name	it	as	apache.

2.	 Under	 source	 code	 management	 option,	 select	 git	 and	 copy	 the	 repository	 url	 for
apache	from	github.

3.	 Under	 build	 triggers	 section,	 select	 “poll	 SCM”	 option.	Here	 you	 can	mention	 the
interval	for	polling	your	github	repository	to	check	for	code	changes.	If	you	provide
all	the	values	as	stars,	Jenkins	will	poll	every	one	minute	for	checking	the	status	of
the	github	repository.

4.	 Under	build	 section,	 select	 the	 “execute	 shell”	option	 and	copy	 the	 following	 shell
script	on	to	the	text	box.

echo	‘>>>	Getting	the	old	containers	id’

CID=$(sudo	Docker	ps	|	grep	“apache-website”	|	awk	‘{print	$1}’)

echo	$CID

	

echo	‘>>>	Building	new	image	from	Dockerfile’

sudo	Docker	build	-t=“apache”	.	|	tee	/tmp/Docker_build_result.log

RESULT=$(cat	/tmp/Docker_build_result.log	|	tail	-n	1)

if	[[“$RESULT”	!=	*Successfully*]];

then

		exit	-1

fi

	

echo	‘>>>	Stopping	old	container’

if	[“$CID”	!=	””];

then

		sudo	Docker	stop	$CID

fi

	

echo	‘>>>	Restarting	Docker’

sudo	service	Docker.io	restart

sleep	5

	

echo	‘>>>	Starting	new	container’

sudo	Docker	run	-p	80:80	-d	apache

	

echo	‘>>>	Cleaning	up	images’

sudo	Docker	images	|	grep	“^<none>”	|	head	-n	1	|	awk	‘BEGIN	{	FS	=	“[\t]+”	}	{	print	$3	}’		|	while	read	-r	id	;	do

sudo	Docker	rmi	$id

done

Here	is	what	the	above	shell	script	does,

1.	 Gets	the	old	container	id	if	any.
2.	 Builds	an	apache	image	from	the	Docker	file.
3.	 Stops	the	old	apache-website	container	if	running.
4.	 Restarts	the	Docker	service
5.	 Creates	a	new	apache-website	container	with	port	80	mapped	on	to	the	host.
6.	 Deletes	all	the	intermediate	images.

7.	 Click	 save	 and	 start	 the	 build	 process	 by	 clicking	 the	 “build	 now”	 option	 at	 the
sidebar.	Jenkins	will	then	copy	the	Dockerfile	and	other	contents	from	the	github	url

you	provided	to	its	workspace.	Once	the	build	process	starts,	you	can	see	the	status
from	the	build	history	option	from	the	sidebar.

8.	 Once	the	build	is	complete,	you	can	use	the	status	option	to	check	the	status	of	your
job.	Blue	button	indicates	a	successful	build	and	red	indicated	a	failure	as	shown	in
the	image	below.

9.	 You	can	also	check	the	console	output	using	the	“console	output”	option	to	see	what
the	shell	script	has	done	at	the	backend.	This	option	is	useful	for	debugging	the	build
process	by	knowing	what	have	gone	wrong	while	executing	the	script.

As	shown	in	the	image	above,	our	first	build	was	success	and	you	can	view	the	application
on	port	80	using	the	web	browser.	You	can	test	the	build	setup	by	updating	the	Dockerfile

or	website	files	and	pushing	it	to	github.

Jenkins	will	fetch	the	updated	code	to	its	workspace	and	builds	a	new	image	and	creates	a
new	 container	 from	 it.	 You	 can	 see	 all	 the	 changes	 by	 viewing	 the	 application	 in	 the
browser.

For	continuous	deployment,	you	can	create	a	new	job	and	trigger	it	based	on	the	status	of
apache	job.	There	are	many	ways	for	deployments.

For	example,

1.	 You	 can	 use	 Chef	 Jenkins	 plugin	 to	 provision	 and	 configure	 a	 new	 instance	 with
Docker	host	and	deploy	the	successfully	build	Dockerfile.

2.	 You	 can	 push	 successfully	 built	 new	 image	 to	 docker	 hub	 and	 trigger	 docker	 pull
from	the	deployment	server.

9
Docker	Provisioners

In	this	chapter	we	will	learn	how	to	provision	Docker	containers	using	tools	like	vagrant
and	chef.

Docker	vagrant	provisioner
Vagrant	 is	an	open	source	 tool	 for	creating	 repeatable	development	environment’s	using
various	operating	systems.	It	uses	providers	to	launch	virtual	machines.	By	default	vagrant
uses	virtual	box	as	its	provider.	Like	boot2Docker,	vagrant	can	run	Docker	on	non-linux
platforms.

Fig	9-1	:vagrant	,	Docker	architecture

Vagrant	has	several	advantages	over	tools	like	boot2Docker.	They	are	as	follows.

1.	 	 	 	 	 	 	 	Configure	once	and	run	anywhere:	vagrant	is	a	Docker	wrapper	which	can
run	on	any	machine	which	supports	Docker	and	in	non-supported	platforms	,	it
will	spin	up	a	VM	to	deploy	containers	leaving	users	not	to	worry	about	if	their
system	supports	Docker	or	not.
2.							In	vagrant,	the	Docker	host	is	not	limited	to	a	single	distro	like	boot2Docker,
it	rather	supports	debian,	centos,	coreOS	etc.
3.							Vagrant	can	be	used	for	Docker	orchestration.

The	Docker	provisioner	is	used	for	automatically	installing	Docker,	pull	Docker	images,
and	configure	containers	to	run	on	boot.

Vagrant	Docker	 provisioner	 is	 a	 best	 fit	 for	 teams	 using	Docker	 in	 development	 and	 to
build	 distributed	 application	 on	 it.	Also	 if	 you	 are	 getting	 started	with	Docker,	 vagrant
provides	an	efficient	way	to	automate	the	container	build	and	deployment	process	for	your
development	environment.

Along	 with	 other	 vagrant	 provisioners,	 you	 can	 use	 Docker	 provisioner	 for	 your
application	testing	by	creating	a	better	development	workflow.

For	example,	you	can	use	chef	provisioner	 to	 install	and	configure	your	application	and
use	Docker	for	the	application	runtime.	You	can	use	chef	along	with	Docker	provisioner.

Vagrantfile:
The	main	configuration	for	any	Vagrant	environment	is	a	file	called	Vagrantfile	which	you
need	 to	 place	 in	 your	 project’s	 folder.	 Vagrantfile	 is	 a	 text	 file	 which	 holds	 all	 the
provisioning	 configuration	 required	 for	 a	 project.	 Each	 project	 should	 have	 only	 one
vagrant	file	for	all	configurations.	Vagrantfile	is	portable	and	can	be	used	with	any	system
which	 supports	vagrant.	The	configurations	 inside	 a	vagrantfile	 follows	 ruby	 syntax	but
ruby	knowledge	 is	not	 required	 to	create	or	modify	a	vagrantfile.	 It’s	a	good	practice	 to
version	the	vagrantfile	using	a	source	control	system.

Vagrant	options:
Docker	vagrant	provisioner	has	various	options.	These	options	can	be	used	 to	build	and
configure	 containers.	 If	 you	 do	 not	 use	 any	 option,	 vagrant	 will	 just	 install	 and	 set	 up
Docker	on	your	workstation.	Let’s	look	at	the	two	main	options	provided	by	vagrant

1.	 Images:	this	option	takes	input	in	an	array.	You	can	provide	a	list	of	images	you	want
it	pull	it	down	to	your	vagrant	VM.

2.	 Version:	 you	 can	 specify	 the	 version	 of	 Docker	 you	 want	 install.	 By	 default	 it
downloads	and	installs	the	latest	version	of	Docker.

Apart	from	the	above	two	options	mentioned	above,	there	are	other	options	available	for
working	with	Docker.

Following	are	the	options	used	for	building,	pulling	and	running	Docker	containers.

1.	 build_image:	This	option	is	used	for	building	an	image	from	the	Docker	file.
2.	 pull_images:	This	option	is	used	for	pulling	images	from	the	Docker	hub.
3.	 Run:	This	option	is	used	to	run	the	container.

Let’s	have	a	look	at	those	options	in	detail.

Building	Images:
Images	 can	be	built	 automatically	using	 the	provisioner.	 Images	have	 to	be	built	 before
running	a	container.	The	syntax	for	building	an	image	is	shown	below.
Vagrant.configure(“2”)	do	|config|

		config.vm.provision	“Docker”	do	|d|

				d.build_image	“/vagrant/app”

		end

end

build_image	has	an	argument	“/vagran/app”	which	is	the	path	for	the	Docker	build.	This
folder	must	exist	in	the	guest	machine.

Pulling	images
Vagrant	can	automatically	pull	images	to	your	Docker	host.	You	can	pull	several	images	at

a	 time.	 There	 are	 two	 ways	 to	 do	 that	 using	 arrays	 and	 the	 pull_image	 function.	 The
syntax	for	using	arrays	is	given	below.
Vagrant.configure(“2”)	do	|config|

		config.vm.provision	“Docker”,

				images:	[“centos”]

end

Syntax	for	pulling	multiple	images	used	pull_image	function	is	given	below.
Vagrant.configure(“2”)	do	|config|

		config.vm.provision	“Docker”	do	|d|

				d.pull_images	“fedora”

				d.pull_images	“centos”

		end

end

Launching	containers
After	pulling	images,	vagrant	can	automatically	provision	containers	from	that	image.	The
syntax	for	launching	containers	is	shown	below.
Vagrant.configure(“2”)	do	|config|

		config.vm.provision	“Docker”	do	|d|

				d.run	“redis”

		end

end

We	have	 learnt	 the	basic	concepts	and	vagrant	 file	 functions	 for	building	and	 launching
containers.	Now	let’s	look	in	to	the	practical	way	of	building	containers	using	vagrant.

Installing	vagrant	on	Ubuntu:
Follow	the	steps	give	below	to	install	vagrant	on	an	Ubuntu	machine.

1.	 Head	over	to	http://www.vagrantup.com/downloads

2.	 Get	the	download	link	for	Ubuntu	64	bit	and	download	the	vagrant	installation	file

3.	 Install	the	downloaded	package.

dpkg	-i		vagrant_1.6.5_x86_64.deb

Note:	the	latest	version	of	Docker	comes	bundled	with	Docker	provider,	so	you	don’t	have
to	 install	 the	provider	 specifically.	Also	 if	 you	are	 running	vagrant	Docker	 in	non-linux
platforms	 like	MAC,	vagrant	has	 the	ability	 to	 find	 it	 automatically	and	 it	will	 create	a
virtual	 environment	 to	 run	 Docker	 containers.	 This	 will	 happen	 only	 once	 and	 for	 the
subsequent	vagrant	runs	it	will	make	use	of	already	created	virtual	environment.

Now	let’s	create	a	vagrant	file	to	work	with	Docker	images	and	containers.

Creating	a	vagrant	file
The	configuration	for	building	images	and	containers	are	mentioned	in	the	vagrant	file.

Follow	the	steps	mentioned	below	to	create	a	vagrant	file.

1.	 Create	a	directory,	say	Docker
2.	 CD	in	to	the	directory	and	create	and	file	called	Vagrantfile	or	use	can	use	“vagrant

init”	command	for	creating	a	vagrant	file

vagrant	init

Vagrant	file	configuration	for	Docker
In	 this	 demo	we	will	 provision	 a	web	 and	 db	Docker	 containers	 using	 the	 vagrant	 file.
Web	container	will	be	built	using	the	Docker	file	we	created	in	the	above	section	and	the
db	container	will	be	built	using	the	public	image	from	Docker	registry.

Open	the	Vagrantfile,	delete	all	the	contents	inside	that	file	because	we	won’t	be	using	any
other	provisioners	or	virtual	machines	except	Docker.

Copy	the	configurations	mentioned	below	to	the	vagrantfile.

Vagrant.configure(“2”)	do	|config|

		config.vm.define	“web”	do	|app|

				app.vm.provider	“Docker”	do	|d|

						d.image	=	“olibuijr/ubuntu_apache2”

						d.link	“db:db”

				end

		end

config.vm.define	“db”	do	|app|

				app.vm.provider	“Docker”	do	|d|

						d.image	=	“paintedfox/postgresql”

						d.name	=	“db”

				end

		end

end

	

Note	that	the	above	two	vagrant	configurations	are	for	a	web	and	db	container	which	will
be	linked	together.

Building	db	image	using	vagrant
Now	we	have	our	vagrant	file	ready	to	build	two	images.	Let’s	build	the	db	image	first	so
that	the	web	image	can	be	linked	to	db.

1.	 Run	the	following	vagrant	command	to	provision	the	db	image.

vagrant	up	db

	
2.	 Now	run	the	following	command	to	provision	the	web	image

vagrant	up	web

Now	 we	 have	 two	 container’s	 running,	 created	 from	 two	 different	 images,	 one	 web
container	with	apache	and	another	db	container	with	postgres	and	linked	it	together	for	db
connection.

3.	 Run	Docker	ps	to	view	the	running	containers	we	launched	using	vagrant.

Vagrant	commands
There	are	three	vagrant	specific	commands	for	Docker	to	interact	with	the	containers.

1.	 Vagrant	 Docker-logs:	 Using	 this	 command	 you	 can	 view	 the	 logs	 of	 a	 running
containers.

vagrant	docker-logs

	
2.	 Vagrant	Docker-run:	This	commad	is	used	to	run	commands	on	a	container.	Syntax	to

run	this	command	is	shown	below.

vagrant	docker	run	db	–	echo	“	This	is	a	test”

Managing	Docker	using	chef
Chef	along	with	Docker	can	be	used	for	the	following,

1.	 Creating	Docker	images	and	deploying	containers.
2.	 To	configure	Docker	containers	during	boot.
3.	 Setting	up	a	Docker	host

Fig	9-2	:Chef	,	Docker	architecture

There	are	two	main	components	of	chef	for	managing	Docker	containers.

1.								Chef-container
2.							Knife-container

Chef-container:
Chef-container	is	a	version	of	chef	client	which	can	run	inside	a	Docker	container.	Chef-
container	 uses	 runit	 and	 chef-init	 as	 the	 init	 system	 and	 container	 entry	 point.	 Chef
container	can	configure	a	container	as	we	configure	any	other	piece	of	software.

Knife	container:
Knife	container	is	a	knife	plugin	for	building	and	managing	Docker	containers	using	chef.
To	manage	Docker	with	chef,	you	need	to	have	the	latest	version	of	chef	client	and	chefdk
installed	on	your	host.

Follow	the	steps	given	below	to	manage	Docker	containers	using	chef.

1.	 Install	knife-container	using	the	following	command.

chef	gem	install	knife-container

	
2.	 You	have	to	create	a	Docker	context	to	initialize	all	the	necessary	configurations	for	a

Docker	 image.	 In	 this	 demo	we	will	 create	 a	 context	 for	 demo/apache2	 image	 and
which	will	use	the	default	Ubuntu:latest	image	from	the	Docker	index.

3.	 If	 you	 want	 another	 image,	 you	 need	 to	 override	 the	 default	 configuration	 in	 the
knife.rb	file	using	the	knife[:berksfile_source]	parameter.	Create	the	Docker	context
for	out	demo/apache2	image	using	the	following	command.

knife	container	docker	init	demo/apache2	-r	‘recipe[apache2]’	-z	–b

	
4.	 Open	 the	 first-boot.JSON	 file	 from	 /var/chef/demo/apache2/chef	 and	 add	 the

following	to	the	JSON	file.

“container_service”:	{

“apache2”:	{

“command”:	“/usr/sbin/apache2	-k	start”

}

}

The	final	first-book.JSON	file	should	look	like	the	following.

{

“run_list”:	[

“recipe[apache2]”

],

“container_service”:	{

“apache2”:	{

“command”:	“/usr/sbin/apache2	-k	start”

}

}

}

	
5.	 Now	we	have	the	configuration	file	ready	for	building	the	demo/apache2	image.	The

cookbook	 apache2	 will	 be	 downloaded	 from	 the	 chef	 marketplace	 with	 all	 the
dependencies	solved	using	berkshelf.

6.	 You	 can	 also	 have	 your	 own	 cookbook	 configured	 in	 the	 chef-repo	 cookbooks
directory.	 Run	 the	 following	 command	 to	 build	 the	 image	 with	 chef-container
configured.

knife	container	docker	build	demo/apache2

	

	

7.	 Now	 we	 have	 our	 image	 built	 and	 you	 can	 view	 the	 image	 using	 the	 following
Docker	command.

docker	images	demo/apache2

	
8.	 Create	 an	 apache2	 container	 from	 demo/apahce2	 image	 using	 the	 following

command.

docker	run	-d	—name	apache2	demo/apache2

	
9.	 If	you	run	a	Docker	ps	command	you	can	view	the	running	apache2	container.

docker	ps

	
10.	 You	can	check	 the	process	 running	 inside	 the	apache	container	using	 the	 following

command.

docker	top	apache2

10
Docker	Deployment	Tools

In	 this	 chapter	 we	 will	 learn	 about	 Docker	 deployment	 tools	 like	 fig,	 shipyard	 and
panamax.

Fig
Fig	 is	 tool	 for	 running	development	environments	using	Docker	specifically	 for	projects
which	 includes	multiple	containers	with	connections	and	can	also	be	used	 in	production
environments.	Using	 fig	 you	 can	 have	 fast	 isolated	Docker	 environments	which	 can	 be
reproduced	anywhere.

Fig	10-1	:Fig	,	Docker	architecture

For	example,	if	you	want	to	build	your	images	with	code,	all	you	need	to	do	is,	create	a
fig.yml	with	 all	 the	 container	 links	 and	 run	 it	 on	 a	Docker	 host.	 Fig	will	 automatically
deploy	 all	 containers	with	 links	 specified	 in	 the	 fig.yml	 file.	Also,	 all	 the	 fig	managed
applications	have	their	own	lifecycle.	Eg:	build,	run,	stop	and	scale.

Let’s	get	started	with	installing	fig	on	a	Docker	host.

Installing	fig:
Fig	works	with	Docker	1.0	or	later.	In	this	section,	we	will	install	fig	on	Ubuntu	14.04	64
bit	server.

Note:	Make	sure	that	you	have	Docker	1.0	or	later	installed	and	configured	on	the	server.

Follow	the	steps	give	below	to	install	and	configure	fig.

1.	 We	will	 install	 fig	 using	 the	 binary	 from	 github	 using	 curl.	 Execute	 the	 following
command	to	download	and	install	fig	from	github	source.

curl	-L	https://github.com/docker/fig/releases/download/0.5.2/linux	>	/usr/local/bin/fig

The	above	command	installed	fig	on	/usr/local/bin/fig	directory.

2.	 Change	 the	 read	 write	 permissions	 for	 that	 installation	 folder	 using	 the	 following
command.

chmod	+x	/usr/local/bin/fig

	
3.	 To	ensure	 that	 fig	 installed	 as	 expected,	 run	 the	 following	command	 to	 check	 fig’s

version.

fig	—version

Fig.yml
All	the	services	that	have	to	be	deployed	using	a	container	are	declared	as	YAML	hashes
in	the	Fig.yml	file.

Each	 service	 should	have	 an	 image	or	build	 specification	 associated	with	 it.	Parameters
inside	each	service	are	optional	and	they	are	analogous	to	Docker	run	commands.

Fig.yml	reference
Fig.yml	has	various	options.	We	will	look	in	to	each	option	associated	with	fig.yml	file.

Image
This	option	is	mandatory	for	every	service	specified	in	the	yml	file.	Image	can	be	private
or	public.	If	the	image	is	not	present	locally,	fig	will	pull	the	image	automatically	from	the
public	repository.	Image	can	be	defined	in	the	following	formats.
image:	centos

image:	bibinwilson/squid

image:	a5fj7d8

build
This	option	is	used	when	you	build	images	from	a	Docker	file.	You	need	to	provide	the
path	to	the	Docker	file	in	this	option	as	shown	below.
build:	/path/to/build/dir

Command
This	option	is	to	run	commands	on	the	image.	It	has	the	following	syntax.
command:	<	command	to	be	run	>

links
This	option	is	used	to	link	containers	to	another	service.	E.g.:	linking	a	web	container	to	a
database	container.	This	option	has	the	following	syntax.
links:

-	db

-	db:database

-	postgres

Ports
This	option	 exposes	 the	port	 on	 a	 container.	You	can	 specify	which	host	 port	 has	 to	be
associated	with	the	container	port	or	you	can	leave	the	host	port	empty	and	a	random	port
will	be	chosen	for	host	to	container	mapping.	This	option	has	the	following	forms.
ports:

-	“8080”

-	“80:8080”

-	“3458:21”

-	“127.0.0.1:80:8080”

Expose
The	ports	specified	in	this	option	are	internal	to	a	container	and	can	only	be	accessed	by
linked	services.	The	exposed	ports	are	not	associated	with	 the	host.	 It	has	 the	 following
syntax
expose:

-	“3000”

-	“8000”

Volumes
This	option	is	used	to	mount	host	folders	as	volumes	on	a	container.	This	option	has	the
following	syntax.
volumes:

-	/var/www/myapp

-	myapp/:/var/www/myapp

volumes_from
This	 option	 is	 used	 to	 mount	 volumes	 from	 containers	 in	 other	 services.	 It	 has	 the
following	syntax.
volumes_from:

-	service_name

-	container_name

Environment
This	option	is	used	to	set	environment	variables	for	a	container.	You	can	specify	this	either
using	an	array	or	dictionary.	It	has	the	following	syntax.
environment:

		FB_USER:usernname

		PASSWORD_SECRET:	S3CR3T

environment:

		-	FB_USER	=	usernname

		-	PASSWORD_SECRET	=	S3CR3T

Deploying	rails	application	using	Fig:
In	this	section	we	will	look	in	to	rails	application	deployment	using	Fig.

For	rails	application	setup,	you	need	a	Docker	image	configured	with	rails	environment	to
create	our	web	container.	For	this	you	need	a	Docker	file	with	image	configurations.	So,
let	us	create	a	Docker	file	to	build	an	image	for	our	rails	application.

1.	 Create	a	directory,	say	railsapp.

mkdir	railsapp

	
2.	 CD	in	to	the	directory	and	create	a	Docker	file.

touch	Dockerfile

	
3.	 Open	the	Docker	file	and	copy	the	following	contents

FROM	ruby

RUN	apt-get	update	-qq	&&	apt-get	install	-y	build-essential	libpq-dev

RUN	mkdir	/myapp

WORKDIR	/myapp

ADD	Gemfile	/myapp/Gemfile

RUN	bundle	install

ADD	.	/myapp

The	above	Dockerfile	installs	the	development	environment	for	rails	on	a	ruby	image	from
Docker	hub.	We	don’t	have	 to	 install	 ruby	because	 the	 ruby	 image	comes	bundled	with
ruby	environment	for	rails	application.	Also	we	are	creating	a	myapp	folder	to	put	out	rails
code.

4.	 We	need	a	gem	file	for	the	initial	configuration	and	it	will	be	later	overwritten	by	the
app.	Create	a	gemfile	in	the	railsapp	directory	and	copy	the	following	contents	to	it.

source	‘https://rubygems.org’

gem	‘rails’,	‘4.0.2’

	
5.	 Let’s	create	a	fig.yml	file	for	our	rails	application.

touch	fig.yml

	
6.	 Open	the	file	and	copy	the	following	fig	configurations	for	the	rails	application.

db:

image:	postgres

ports:

“5432”

web:

build:	.

command:	bundle	exec	rackup	-p	3000

volumes:

.:/myapp

ports:

“3000:3000”

links:

db

If	you	look	at	the	above	file,	we	have	two	services	one	web	service	and	one	db	service.

These	services	are	declared	in	YAML	hashes.

Db	service:

db:

image:	postgres

ports:

“5432”

Db	service	uses	the	postgres	public	Docker	image	and	exposes	port	5432.

Web	service:
web:

build:	.

command:	bundle	exec	rackup	-p	3000

volumes:

.:/myapp

ports:

“3000:3000”

links:

db

Web	 service	 builds	 the	 web	 Docker	 image	 from	 the	 Docker	 file	 we	 created	 in	 step	 1.
(build:	.	looks	for	Docker	file	in	current	directory).	Also	it	creates	a	myapp	folder	in	the
containers	which	will	 be	mounted	 to	 the	 current	 directory	where	we	will	 have	 the	 rails
code.

	
7.	 Now	 we	 have	 to	 pull	 postgres	 and	 ruby	 images	 to	 configure	 out	 app	 using	 fig.

Execute	 the	 following	 command	 to	 pull	 the	 images	 specified	 in	 the	 fig	 file	 and	 to
create	a	new	rails	application	on	the	web	container.

fig	run	web	rails	new	.	—force	—database=postgresql	—skip-bundle

Note:	We	will	look	in	to	all	fig	commands	later	in	this	section.

8.	 Once	 the	 above	 command	 executed	 successfully,	 you	 can	 view	 the	 new	 rails	 app
created	 in	 the	 railsapp	 folder.	 This	 will	 be	 mounted	 to	 myapp	 folder	 of	 the	 web
container.

9.	 Now	we	have	to	uncomment	the	rubytracer	gem	in	the	gemfile	to	get	the	javascript
runtime	and	rebuild	the	image	using	the	following	fig	command.

fig	build

	
10.	 The	 new	 rails	 app	 has	 to	 be	 connected	 to	 the	 postgres	 database,	 so	 edit	 the

database.yml	file	to	change	the	host	to	db	container	db_1.	Replace	all	the	entries	with
the	following	configuration.

development:	&default

adapter:	postgresql

encoding:	unicode

database:	postgres

pool:	5

username:	postgres

password:

host:	db_1

test:

<<:	*default

database:	myapp_test

	

	
11.	 Now	we	have	everything	in	place	and	we	can	boot	up	the	rails	application	using	the

following	fig	command.

fig	up

	
12.	 Open	a	new	terminal	and	create	the	db	using	following	command.

fig	run	web	rake	db:create

	
13.	 Now	you	have	a	rails	application	up	and	running.	You	can	access	the	application	on

port	3000	from	your	host	ip.

We	have	built	a	two	container	rails	application	using	Rails	and	Postgresql.

Now	we	will	see	how	to	set	up	a	four	container	complex	auto	load	balancing	application
using	HAproxy,	Serf	,	Apache	and	MySQL.

What	is	Serf?
Serf	 is	 a	 cluster	 membership	 tool	 which	 is	 decentralized,	 highly	 available	 and	 fault
tolerant.	 Serf	works	 on	 gossip	 protocol.	 For	 example,	 serf	 can	 be	 used	 for	 scaling	web
servers	under	 a	 load	balancer	 to	maintain	 the	 list	 of	web	 servers	 under	 a	 load	balancer.
Serf	 attains	 this	 by	 maintaining	 a	 cluster	 membership	 list	 and	 wherever	 membership
changes	it	runs	handler	scripts	to	register	or	deregister	a	webserver	from	the	load	balancer.

We	will	be	using	serf	in	our	auto	load	balancing	fig	application	to	register	and	deregister
the	web	server	containers	under	HAproxy.

Deploying	four	container	Auto	load	balancing	application	using	Fig
In	this	section	we	will	deploy	a	four	container	application	using	fig.	Our	application	will
run	wordpress	with	mysql	database	with	HAproxy	as	a	load	balancer.

Note:	We	 will	 be	 using	 preconfigured	 images	 from	 the	 Docker	 registry	 which	 contains
prebuilt	serf	configurations.	You	can	also	build	your	own	images	with	serf	configurations.

Create	 a	 fig.yml	 file	 and	 copy	 the	 following	 contents	 for	 launching	 our	 auto	 load
balancing	application.
serf:

		image:	ctlc/serf

		ports:

				-	7373

				-	7946

lb:

		image:	ctlc/haproxy-serf

		ports:

				-	80:80

		links:

				-	serf

		environment:

				HAPROXY_PASSWORD:	qa1N76pWAri9

web:

		image:	ctlc/wordpress-serf

		ports:

				-	80

		environment:

				DB_PASSWORD:	qa1N76pWAri9

		links:

				-	serf

				-	db

		volumes:

				-	/root/wordpress:/app

db:

		image:	ctlc/mysql

		ports:

				-	3306

		volumes:

				-	/mysql:/var/lib/mysql

		environment:

				MYSQL_DATABASE:	wordpress

				MYSQL_ROOT_PASSWORD:	qa1N76pWAri9

	

The	above	yml	file	has	service	description	for	serf,	HAproxy	(lb),	wordpress	(web),	mysql
(db).

For	wordpress	to	be	available	for	installation,	you	need	to	have	the	wordpress	set	up	file	in
your	 fig	 host.	 	 Then	 we	 will	 mount	 that	 wordpress	 folder	 to	 the	 /app	 folder	 of	 web
container.	In	the	yml	file,	we	have	mentioned	it	as	follows.
volumes:

				-	/root/wordpress:/app

We	have	put	the	wordpress	files	in	root	folder.	It	can	be	anywhere	inside	your	Docker	host
containing	fig.	Follow	the	steps	give	below	to	set	up	the	application

1.	 Once	 you	 have	 the	 fig.yml	 file	 ready,	 you	 can	 launch	 the	 containers	 using	 the
following	command.

fig	up	–d

Note:	Make	sure	you	are	running	the	above	command	from	the	directory	where	you	have
the	fig.yml	file.

2.	 After	 launching	 the	 containers,	 you	 can	 view	 the	 wordpress	 configuration	 in	 your
browser	using	the	IP	of	your	Docker	host.

	
3.	 Continue	with	the	normal	wordpress	installation	with	the	credentials	we	have	in	the

fig.yml	 file.	 In	 the	 host	 entry	 use	 db_1.	 Once	 installed	 you	 will	 have	 a	 running
wordpress	application.

4.	 Now	you	can	 scale	up	and	 scale	down	 the	web	containers	 and	 the	newly	 launched
containers	will	be	automatically	be	registered	to	HAproxy	using	serf.	To	scale	up	the
web	containers,	run	the	following	fig	command.

fig	scale	web=3

	
5.	 You	can	stop	all	 the	running	containers	of	auto	load	balancing	application	using	fig

kill	command.

fig	kill

	

	
6.	 Once	stopped,	you	can	remove	all	the	containers	using	fig	rm	command.

fig	rm

	

Shipyard
Shipyard	is	a	simple	Docker	UI	build	on	Docker	cluster	manager	citadel.	Using	shipyard,
you	can	deploy	Docker	containers	from	a	web	interface.	Also	shipyard	can	be	used	with
Jenkins	 for	managing	 containers	 during	 the	 build	 process.	 This	 is	 useful	 because	 failed
containers	may	eat	up	you	disk	space.	Shipyard	is	a	very	light	weight	application	without
any	 dependencies.	 You	 can	 host	 it	 on	 any	 server	 as	 a	 Docker	 client	 UI	 for	 managing
containers	locally	and	remotely.

Setting	up	shipyard
Shipyard	has	two	components.

1.	 RethinkDb	and
2.	 API

Both	components	are	available	in	form	of	containers	from	Docker	hub.

RethinkDB
1.	 Run	the	following	command	to	set	up	rethinkDB	container	on	your	Docker	Host.

docker	run	-it	-P	-d	—name	rethinkdb	shipyard/rethinkdb

	
2.	 API	container	on	the	Docker	host	gets	links	to	rethinkDB.	In	this	demo	we	are	using

single	host	setup,	so	we	have	to	bind	the	API	container	with	the	Docker	socket.
3.	 Run	 the	 following	 command	 on	 your	Docker	 host	 to	 create	 the	API	 container	 and

bind	it	with	the	Docker	socket.

docker	run	-it	-p	8080:8080	-d	\

-v	/var/run/Docker.sock:/Docker.sock	\

—name	shipyard	—link	shipyard-rethinkdb:rethinkdb	\

shipyard/shipyard

	
4.	 Now	you	will	be	able	to	access	the	shipyard	dashboard	on	port	8080	of	your	Docker

host.

Note:	By	default	shipyard	creates	user	“admin”	and	password	“shipyard”	to	login	to	the
application.

5.	 Once	you	are	logged	in,	you	will	be	able	to	view	all	the	containers	on	your	Docker
host.

Deploying	a	container
You	 can	 launch	 a	 container	 form	 shipyard	 dashboard	 using	 the	 deploy	 option	 under
containers.

Click	 the	 deploy	 option	 and	 fill	 in	 the	 parameters	 for	 your	 new	 container.	 Parameters
involved	in	container	deployment	are	explained	below.

You	have	the	following	options	in	shipyard	while	deploying	the	container.

Name
Name	of	the	image	from	which	the	container	should	be	deployed

CPUs
CPU	resource	required	for	the	container.

Memory
Memory	required	for	the	container.

Type

There	are	three	types	of	containers	in	shipyard,

1.	 service,
2.	 unique
3.	 Host.

Service	containers	use	the	labels	used	by	engines	in	the	container	host.	Unique	containers
will	be	launched	only	if	 there	are	no	instances	of	containers	available	on	that	host.	Host
will	deploy	a	container	on	the	specified	host.

Hostname
Hostname	sets	the	hostname	for	the	container.

Domain
The	Domain	option	sets	the	domain	name	for	the	container.

Env
This	parameter	is	used	to	set	environment	variables	for	the	container.

Arg
This	option	is	used	to	pass	arguments	for	the	container.

Label
Named	labels	are	used	for	container	scheduling

Port
Port	determines	the	ports	which	have	to	be	exposed	on	a	container.

Pull
This	option	is	used	where	you	have	to	pull	the	latest	container	image	from	the	container
hub.

Count
This	determines	the	number	of	containers	to	be	launched	on	a	deploy	process.

Enter	the	necessary	parameters	as	shown	in	the	image	above	and	click	the	deploy	option	to
deploy	the	container.

Deploying	containers	with	shipyard	CLI
Containers	can	be	deployed	using	the	shipyard	cli.	In	order	to	use	cli,	you	have	to	launch
an	instance	of	shipyard	cli	container.

1.	 Launch	a	shipyard	cli	instance	using	the	following	command.

docker	run	-it	shipyard/shipyard-cli

2.	 You	can	view	the	list	of	available	shipyard	command	using	the	following	command.

shipyard	help

Working	with	cli
1.	 Login	to	shipyard	using	the	following	command.

shipyard	login

	
2.	 View	the	containers	in	your	Docker	host	using	the	following	command

shipyard	containers													

	
3.	 You	can	 inspect	a	container	using	 the	following	command	along	with	 the	container

id.

shipyard	inspect	d465329a39ea

	
4.	 Use	the	following	command	and	parameters	to	deploy	a	container.

shipyard	run	—name	ubuntu:14.04	\

		—cpus	0.1	\

—memory	32	\

—type	service	\

—hostname	demo-test	\

—domain	local	\

	
5.	 To	destroy	a	container,	execute	the	following	command	with	container	id.

shipyard	destroy	a5636a5c222d

	
6.	 You	can	view	shipyard	events	as	you	see	in	the	UI	using	the	following	command.

shipyard	events

7.	 To	view	all	the	information	about	shipyard,	use	the	following	command.

shipyard	info

Panamax
Panamax	is	an	open	source	application,	created	by	centurylink	labs	for	deploying	complex
Docker	applications.

Using	panamax,	you	can	create	templates	for	your	Docker	applications	and	deploy	them
on	the	Docker	host	using	an	easy	to	use	interface.

Panamax	has	its	own	template	repository	on	github	and	it	is	integrated	with	the	panamax

UI.	The	UI	has	rich	features	for	searching	the	panamax	default	templates	and	Docker	hub
images.

Panamax	 works	 with	 coreOS.	 You	 can	 run	 panamax	 in	 any	 platform	 which	 supports
coreOS.	Few	containers	will	be	created	during	the	initial	configuration	to	set	up	the	UI	for
searching	Docker	images	and	templates	from	the	Docker	hub	and	panama	repository.

Installation
Panamax	can	be	installed	on	a	local	workstation	running	virtual	box	or	you	can	set	up	a
workstation	on	any	cloud	 service	which	 supports	 coreOS.	 In	 this	 section	we	will	 install
and	set	up	panamax	on	Google	compute	engine.

Follow	the	steps	given	below	to	install	and	configure	panamax.

1.	 Create	a	coreOS	VM	from	compute	engine	management	console	or	using	the	gcloud
cli.

2.	 Connect	to	the	server	using	the	gcloud	shell	or	SSH	agent	such	as	putty.
3.	 Download	the	panamax	installation	files	using	curl,	create	a	folder	named	Panamax

inside	 /var	folder	and	extract	 the	 installation	files	 to	 that	 folder	using	 the	following
command.

curl	-O	http://download.panamax.io/installer/panamax-latest.tar.gz	&&	mkdir	-p	/var/panamax	&&	tar	-C	/var/panamax	-zxvf	panamax-latest.tar.gz

	

	
4.	 CD	in	to	the	panamax	directory	and	install	panama	using	the	following	command.

mkdir	-p	/var/panama

./coreos	install	–stable

http://download.panamax.io/installer/panamax-latest.tar.gz%20&&%20mkdir%20-p%20/var/panamax%20&&%20tar%20-C%20/var/panamax%20-zxvf%20panamax-latest.tar.gz

	
5.	 Once	 installed,	 run	 the	 following	Docker	command	 to	check	 if	 three	containers	 for

panamax	have	been	launched.

docker	ps

Accessing	panamax	Web	UI
Panamax-ui	container	runs	the	application	for	panamax	UI.	You	can	access	the	panamax
web	UI	on	port	3000.
Eg:	http://<server	ip>:3000

Deploying	a	sample	rails	application
Panamax	provides	search	functionality	for	searching	panamax	templates	and	images	from
Docker	hub.

In	 this	 demonstration	we	will	 deploy	 a	 rails	 application	using	 the	 default	 template	with
rails	and	postgres	images.

Follow	the	steps	given	below	to	launch	a	rails	application	using	a	panama	template.

1.	 Type	rails	in	the	panamax	search	box	and	hit	search	button.	You	will	see	a	template
section	 and	 the	 image	 section.	 The	 template	 is	 the	 default	 template	 from	panamax
repository	and	images	are	searched	from	the	official	Docker	hub.

2.	 Click	run	template	and	select	the	“Run	locally”	option.	This	will	deploy	the	rails	and
postgres	container	on	the	local	Docker	host	on	which	panamax	is	running.	You	can
also	deploy	the	template	to	a	target	Docker	host.

3.	 Once	 the	 application	 is	 created,	 you	 can	 see	 the	 containers	 being	 launched	 on	 the
host.

4.	 You	can	view	the	full	logs	from	the	“Activity	log”.

	
5.	 To	 view	 and	 edit	 the	 container	 ports	 and	 other	 preferences,	 click	 on	 the	 specific

container.	Let’s	view	the	ports	and	links	associated	with	the	rails	container.	Click	the
rails	container	from	the	dashboard.

6.	 In	the	dashboard	you	can	view	and	edit	the	information	for	a	particular	container.	Our
rails	container	is	linked	to	postgre	SQL	container.	If	you	click	on	the	ports	tab,	you
can	 see	 on	which	 host	 post	 the	 rails	 container	 has	 been	 linked.	 Host	 port	 8080	 is
mapped	on	port	3000	of	the	rails	container

	
7.	 Now	if	you	access	the	host	IP	on	port	8080,	you	can	view	the	sample	rails	application

running	on	the	rails	container.

11
Docker	Service	Discovery	and	Orchestration

One	of	the	challenges	in	using	Docker	containers	is	the	communication	between	hosts.

One	of	the	solutions	for	Docker	host	to	host	communication	is	service	discovery.	In	this
section	we	will	demonstrate	the	use	of	consul	service	discovery	tool	with	Docker.

Service	discovery	with	consul
Service	discovery	is	a	key	component	in	an	architecture	which	is	based	on	micro	services.
Service	 discovery	 is	 the	 process	 of	 knowing	when	 a	 process	 is	 listening	 to	 applications
processes	 running	 specific	 TCP	 or	 UDP	 port	 and	 connecting	 to	 those	 processes	 using
names.

In	 modern	 cloud	 infrastructure,	 every	 application	 should	 be	 designed	 for	 failure.	 So,
multiple	 instances	of	web	servers,	databases	and	application	servers	will	be	running	and
they	 interact	with	each	other	using	API’s,	message	queues	etc.	Any	of	 the	services	may
fail	at	a	given	point	of	time	and	scale	horizontally.	When	these	new	instances	of	services
come	 up,	 it	 should	 be	 able	 to	 advertise	 itself	 to	 the	 other	 components	 in	 your
infrastructure.	Here	is	where	consul	comes	in.

Consul	is	a	service	discovery	tool	for	configuring	services	in	an	infrastructure.	It	helps	in
achieving	the	two	main	principles	of	service	oriented	architecture	such	as	loose	coupling
and	service	discovery.	Consul	has	the	following	features.

Service	discovery
The	nodes	which	are	running	consul	client	can	advertise	its	service	and	the	nodes	which
want	to	consume	a	particular	service	can	use	a	consul	client	to	discover	the	service.

Health	checking
Consul	 is	 capable	 of	 doing	 health	 checks	 based	 on	 various	 parameters	 like	 http	 status
codes,	memory	 utilization	 etc.	 The	 health	 check	 information	 obtained	 by	 consul	 clients
can	be	used	for	routing	traffic	to	healthy	hosts	in	a	cluster.

Key/value	store
Consul	has	its	own	key/value	store.	Applications	can	use	its	key/value	store	for	operations
such	 as	 leader	 election,	 coordination	 and	 flagging.	All	 the	 operations	 can	 be	 performed
using	API	calls.

Multi	Datacentre
You	can	have	consul	configured	with	multiple	datacenters.	So,	if	your	application	spawns
to	multiple	regions,	you	don’t	need	to	create	another	layer	of	abstraction	for	multi	region
support.

Consul	Architecture
Consult	agent	runs	on	every	node	(client)	which	provides	a	service.	There	is	no	need	for
consul	agent	on	nodes	which	consumes	a	service.	Consult	agent	will	do	the	health	check
for	the	services	running	in	the	node	and	also	it	does	the	health	check	for	node	itself.	Every
consul	agent	will	talk	to	consul	servers	where	all	the	data	about	the	services	are	stored	and
replicated	among	other	servers.

A	 consul	 server	 is	 elected	 automatically	 during	 the	 cluster	 configuration.	A	 cluster	 can
have	one	 to	many	servers	but,	more	 than	one	with	a	consul	cluster	 is	 recommended	 for
deployments.

When	a	service	or	a	node	wants	to	discover	a	service	from	consul	cluster,	it	can	query	the
consul	server	for	information.	A	request	can	be	made	using	DNS	or	http	request.	You	can
also	query	other	consul	agents	for	service	information.	When	a	request	is	made	to	consul
agent	for	service	enquiry,	the	consul	agent	will	forward	the	request	to	the	consul	server.

Fig	11-1:	consul	Architecture

Gossip
Consul	is	built	on	top	of	serf.	Serf	is	a	decentralized	solution	for	cluster	membership.	Serf
provides	 the	gossip	protocol	 for	operations	 like	membership,	 failure	detection	and	event
broadcast	 mechanism.	 Gossip	 protocol	 uses	 UDP	 for	 random	 node	 to	 node
communication.	All	the	servers	in	the	consul	cluster	participate	using	the	gossip	pool.	The
gossip	pool	in	a	cluster	contains	all	the	nodes.

In	this	section	we	will	do	the	following,

1.								Build	a	Docker	consul	image	from	scratch
2.							Set	up	a	three	node	consul	cluster
3.							Set	up	registrator	for	auto	registering	and	deregistering		containers	in	consul
registry
4.							Deploy	containers	on	consul	cluster.

Building	a	consul	image	from	scratch

To	build	a	consul	image	from	scratch	we	need	the	following:

1.								A	Docker	file	with	all	the	image	specifications	and	commands.
2.							Config.JSON	file	for	consul	agent
3.							Launch.sh	this	file	is	required	for	launching	the	consul	agent.

Follow	 the	 steps	 given	 below	 create	 necessary	 configuration	 files	 for	 building	 a	 consul
image;

1.	 Create	a	folder	name	consul	in	your	Docker	host.
2.	 CD	in	to	consul	folder	and	create	another	folder	name	config
3.	 CD	 in	 to	config	 folder	and	create	a	 file	name	config.JSON	and	copy	 the	 following

contents	on	to	that	file.

{

“data_dir”:	“/data”,

“ui_dir”:	“/ui”,

“client_addr”:	“0.0.0.0”,

“ports”:	{

“dns”:	53

},

“recursor”:	“8.8.8.8”

}

	
4.	 Inside	consul	folder	create	a	file	name	launch.sh	and	copy	the	following	contents	on

to	the	file.

#!/bin/bash

set	-eo	pipefail

echo	“Starting	consul	agent”

consul	agent	-config-dir=/config	“$@”

	
5.	 Inside	consul	folder	create	a	file	name	Dockerfile	and	copy	the	following	contents	on

to	the	file.

FROM	centos

RUN	yum	-y	update

RUN	yum	-y	install	which

RUN	yum	-y	install	git

RUN	yum	-y	install	unzip

#	Add	consul	binary

ADD	https://dl.bintray.com/mitchellh/consul/0.3.1_linux_amd64.zip	/tmp/consul.zip
RUN	cd	/bin	&&	unzip	/tmp/consul.zip	&&	chmod	+x	/bin/consul	&&	rm	/tmp/consul.zip

#	Add	consul	UI

ADD	https://dl.bintray.com/mitchellh/consul/0.3.1_web_ui.zip	/tmp/webui.zip

RUN	cd	/tmp	&&	unzip	/tmp/webui.zip	&&	mv	dist	/ui	&&	rm	/tmp/webui.zip

#	Add	consul	config

ADD	./config	/config/

#	ONBUILD	will	make	sure	that	any	additional	service	configuration	file	is	added	to	Docker	conatiner	as	well.

ONBUILD	ADD	./config	/config/

#	Add	startup	file

ADD	./launch.sh	/bin/launch.sh

RUN	chmod	+x	/bin/launch.sh

#	Expose	consul	ports

EXPOSE	8300	8301	8301/udp	8302	8302/udp	8400	8500	53/udp

#Create	a	mount	point

VOLUME	[“/data”]

#	Entry	point	of	container

ENTRYPOINT	[“/bin/launch.sh”]

The	above	Dockerfile	will	create	an	image	from	centos	and	configures	consul	agent	using
the	config	and	launch	file.

6.	 Now	you	should	have	the	folder	and	file	structure	as	shown	below.

Building	the	consul	image
Now	we	 have	 the	 Dockerfile	 and	 consul	 configuration	 files	 in	 place.	 From	 the	 consul
directory	run	the	following	Docker	build	command	to	build	the	consul	image.
docker	build	-t	consul-image	.

Creating	a	single	instance	of	consul
Once	you	have	successfully	built	the	consul	image,	run	the	following	command	to	create	a
single	instance	of	consul	on	the	Docker	host	to	check	if	everything	is	working	correctly.
docker	run	-p	8400:8400	-p	8500:8500	-p	8600:53/udp	-h	node1	consul-image	\				-server	–bootstrap

The	 above	 command	 will	 use	 the	 local	 consul-image	 and	 creates	 a	 container	 with
hostname	node1.	We	 expose	 8400	 (RPC),	 8500	 (HTTP),	 and	8600	 (DNS)	 to	 try	 all	 the
interfaces.

Once	the	container	is	created,	you	can	access	the	consul	UI	from	the	browser	using	your
server	IP	followed	by	port	8500
http://<	public	or	private	ip>:8500

	

Setting	up	consul	cluster
You	can	set	up	a	consul	cluster	on	a	single	node	and	multi	node	as	well.	In	this	section	we
will	look	in	to	single	host	and	multi	host	consul	cluster	set	up.

Single	host	consul	cluster
In	this	set	up	we	will	launch	three	consul	nodes	on	the	same	host	for	experimentation.	We
will	start	our	first	node	with	-bootstrap-expect	3,	which	will	wait	for	the	other	two	nodes
to	join	to	form	a	cluster.	We	will	be	using	the	consul-image	created	from	the	Docker	file
for	this	single	node	cluster	setup.

Follow	the	steps	given	below	to	create	a	single	node	consul	cluster.

1.	 Start	the	first	node	with	-bootstrap-expect	3	parameter	to	wait	for	other	two	nodes	to
join	the	cluster.	Run	the	following	command	to	start	the	first	node

docker	run	-d	—name	node1	-h	node1	consul-image	-server	-bootstrap-expect	3

	
2.	 We	will	join	the	next	two	nodes	to	node1	using	the	hosts	internal	IP.	So,	get	the	host’s

internal	IP	in	JOIN_IP	variable	using	the	following	command.

JOIN_IP=”$(docker	inspect	-f	‘{{	.NetworkSettings.IPAddress	}}’	node1)”

	
3.	 Start	 the	 second	 node	 with	 join	 parameter	 and	 JOIN_IP	 using	 the	 following

command.

docker	run	-d	—name	node2	-h	node2	consul-image	-server	-join	$JOIN_IP

	
4.	 Start	the	third	node	with	join	parameter	and	JOIN_IP	using	the	following	command

docker	run	-d	—name	node3	-h	node3	consul-image	-server	-join	$JOIN_IP

5.	 Now	if	you	check	the	Docker	logs	for	the	third	container,	you	will	see	the	message
“leader	elected”.	We	have	a	working	consul	cluster	now.

docker	logs	<container-id>

Now	we	have	a	working	three	node	single	host	cluster,	but	we	won’t	be	able	to	access	the
cluster	UI	because	we	did	not	do	any	port	mapping	for	the	created	nodes.	We	can	access
consul	UI	by	launching	another	consul	agent	node	in	client	mode.	It	means	that,	it	will	not
participate	in	the	consensus	quorum	instead	we	can	use	this	to	access	the	consul	UI.	

6.	 So	let’s	create	another	container	without	 the	server	parameter	 to	run	in	client	mode
for	accessing	the	consul	UI.	Run	the	following	command	to	create	the	fourth	consul
client	node.

docker	run	-d	-p	8400:8400	-p	8500:8500	-p	8600:53/udp	-h	node4		\					consul-image		-join	$JOIN_IP

7.	 We	can	now	access	the	consul	UI	using	the	hosts	IP	followed	by	port	8500.

http://hostip:8500

http://hostip:8500

Multi	host	consul	cluster
In	this	section,	we	will	create	a	multi	host	consul	cluster	with	3	nodes.

Note:	In	this	demo,	we	will	be	using	three	amazon	ec2	instances	with	private	networking
enabled.	All	three	instances	will	be	able	to	contact	each	other	using	its	private	IPs.

We	have	 three	Docker	 hosts	 (node1,	Node2	 and	node3)	 in	which	we	will	 install	 consul
agent	 servers	 to	 form	 a	 cluster.	All	 the	 three	Docker	 hosts	 can	 communicate	with	 each
other	using	the	private	IPs.

The	 Docker	 image	 used	 in	 this	 demo	 is	 a	 public	 image	 from	 Docker	 registry
(progrium/consul)	 which	 has	 a	 preconfigured	 consul	 agent.	 You	 need	 to	 commit	 and
publish	the	image	to	your	Docker	repository	if	you	want	 to	use	the	image	we	created	in
single	host	set	up.

Following	are	the	requirement	to	launch	a	multi	host	cluster.

Each	 host	 should	 have	 a	 private	 IP	 and	 it	 should	 be	 able	 to	 communicate	 to	 other
hosts	using	its	private	IP.
All	the	necessary	ports	should	be	opened	on	every	host.
An	image	configured	with	consul	agent.

Following	are	the	flags	used	in	commands	for	cluster	setup

-bootstrap-expect	 3	 	 :-	 This	 flag	 will	 make	 the	 host	 wait	 until	 three	 hosts	 are
connected	together	to	become	a	cluster.	This	parameter	will	be	used	only	on	the	first
node.
-advertise	:-	This	flag	will	pass	the	private	IP	to	consul.
-join:-	This	flag	will	be	used	by	second	and	third	nodes	to	join	the	cluster.

Now	let’s	get	started	with	the	setup.	Follow	the	steps	given	below	to	set	up	the	multi	host
cluster.

1.	 On	node1	 run	 the	 following	 command	on	node1	 (replace	172.0.0.87	with	node1’s
private	IP	and	172.17.42.1	with	Docker	bridge’s	IP)

docker	run	-d	-h	node1	-v	/mnt:/data	\

				-p	172.0.0.87:8300:8300	\

				-p	172.0.0.87:8301:8301	\

				-p	172.0.0.87:8301:8301/udp	\

				-p	172.0.0.87:8302:8302	\

				-p	172.0.0.87:8302:8302/udp	\

				-p	172.0.0.87:8400:8400	\

				-p	172.0.0.87:8500:8500	\

				-p	172.17.42.1:53:53/udp	\

				progrium/consul	-server	-advertise	172.0.0.87	-bootstrap-expect

	
2.	 On	node2	run	the	command	give	below	with	its	private	IP.	The	IP	mentioned	in	the	–

join	flag	is	node1’s	IP.

docker	run	-d	-h	node2	-v	/mnt:/data		\

				-p	172.0.0.145	:8300:8300	\

				-p	172.0.0.145	:8301:8301	\

				-p	172.0.0.145	:8301:8301/udp	\

				-p	172.0.0.145	:8302:8302	\

				-p	172.0.0.145	:8302:8302/udp	\

				-p	172.0.0.145	:8400:8400	\

				-p	172.0.0.145	:8500:8500	\

				-p	172.17.42.1:53:53/udp	\

				progrium/consul	-server	-advertise	172.0.0.145		-join	172.0.0.87

	
3.	 On	node3	run	the	following	command	with	respective	private	IP	addresses.

4.	 Now	you	can	access	the	consul	UI	using	any	Host	IP	followed	by	port	8500

http://hostip:8500

	

	
5.	 You	can	check	the	logs	of	the	cluster	using	the	following	Docker	command.

docker	logs	<container	id>

You	can	check	the	logs	by	stopping	one	node	or	stopping	the	Docker	service.	If	a	service
is	failing	you	can	view	it	in	the	logs	and	the	web	UI	as	shown	in	the	images	below.
docker	logs		1020570f03e0

http://hostip:8500

Note:	If	the	leader	node	fails,	another	node	will	elect	itself	as	the	leader	based	on	consul’s
algorithm.

So	 far	 we	 have	 set	 up	 clusters	 on	 single	 and	 multi-host.	 Next	 we	 will	 look	 to	 auto
registration	 of	 containers	 to	 consul	 using	 registrator	 tool.	 This	 tool	 listens	 to	 Docker
events	 on	 the	 hosts	 and	 registers	 and	 deregisters	 when	 the	 containers	 is	 launched	 or
terminated.

Registering	services	using	Registrator
If	 you	 are	 using	 consul,	 each	 and	 every	 container	 that	 is	 being	 launched	 should	 be
registered	to	the	consul	registry	service.	You	can	run	a	consul	agent	on	each	container	or
you	can	use	registrator	tool	to	register	container	services	automatically.

Registrator	is	a	service	registry	bridge	for	Docker	to	automatically	register	new	containers
to	the	consul	registry.	Registrator	makes	it	really	easy	by	running	a	registrator	container	on
the	Docker	host	for	registering	new	services	without	having	to	run	consul	agent	on	each
container.

Registrator	 is	modeled	 in	 to	a	container.	We	 just	have	 to	 run	 the	container	on	a	Docker
host	in	the	consul	cluster.	We	can	run	the	registrator	container	on	multi	host	consul	cluster
as	well.	We	will	use	the	public	registrator	Docker	image	(progrium/registrator)	for	the	set
up.

Follow	the	steps	given	below	to	set	up	registrator	on	consul	cluster.

1.	 On	node1	run	the	following	command:

docker	run	-d	\

				-v	/var/run/docker.sock:/tmp/docker.sock	\

				-h	$HOSTNAME	progrium/registrator	consul://172.0.0.87:8500

Run	the	registrator	container	on	other	two	nodes	with	respective	consul	IPs.

2.	 Now	you	can	check	the	Docker	logs	using	the	container	id	to	check	if	registrator	is
working	as	expected.

docker	logs	\	1e6022e5db3483e1029a7178c9d9b53d78926ab790d4bcafc2b4255a8ad3ba72

	

The	 last	 line	 of	 log	 says	 that	 registrator	 is	 listening	 for	 Docker	 events.	 It	 means	 our
registrator	 container	 is	 working	 without	 any	 errors.	 Once	 it	 starts	 running,	 you	 can
basically	start	any	Docker	container	and	you	don’t	have	to	do	anything	extra	to	register	it
to	the	consul	registry.	Registrator	will	take	care	of	registration	process	by	listening	to	the
Docker	events.

3.	 Now,	lets’	run	a	redis	container	using	the	public	image	(Dockerfile/redis)	to	check	if
it	 is	 automatically	 registering	 to	 the	 consul	 registry.	 The	 redis	 image	 does	 not	 do
anything	 special	 for	 service	 discovery	 it	 is	 just	 a	 normal	 redis	 image.	 Run	 the
following	command	to	deploy	a	redis	container.

docker	run	-d	-P	Dockerfile/redis

	
4.	 Now	 if	 you	 check	 the	 consul	 UI,	 you	 can	 see	 that	 redis	 service	 has	 been

automatically	registered	to	our	consul	cluster	without	any	extra	work.

5.	 Now	run	the	same	redis	container	on	node	2	to	check	if	it	is	registering	with	the	same
service	name	on	the	other	nodes.	Once	the	redis	containers	are	deployed	on	node	2
check	 the	 consul	 UI	 and	 click	 redis	 service.	 You	 will	 see	 two	 instances	 of	 redis
running	on	two	hosts	with	service	name	redis	as	shown	in	image	below.

6.	 By	default	registrator	used	the	image	name	as	the	service	name	used	by	the	author.
You	can	override	this	by	specifying	the	service	name,	service	tags	as	an	environment
variable	while	 deploying	 a	 container.	 Let’s	 deploy	 the	 same	 redis	 container	with	 a
different	service	name	using	the	following.

docker	run	-d	-P	-e	“SERVICE_NAME=db”	dockerfile/redis

Once	the	container	is	launched,	you	can	check	the	consul	UI	for	the	newly	registered	redis
container	with	service	name	db.

7.	 Now	let’s	run	db	service	on	node	1	with	a	service	tag	primary	and	service	name	db

docker	run	-d	-P	-e	“SERVICE_NAME=db”	-e	“SERVICE_TAGS=primary”	\	dockerfile/redis

Now	 if	you	 look	at	 the	db	 service	 in	 consul	UI,	you	will	 find	a	primary	 tag	 for	 a	 redis
instance.	Tagging	 can	 be	 useful	 in	 services	 like	 databases	 using	 primary	 and	 secondary
services.

Now	we	have	a	cluster	with	auto	registering	containers	services.	Next	we	will	look	in	to

how	to	discover	the	registered	service	to	be	used	by	other	application	containers.	Services
in	consul	can	be	discovered	using	DNS	or	HTTP	API.

Example	http	request:
Using	http	request	you	can	get	the	service	details	and	use	it	on	your	application.	Run	the
following	command	to	get	the	details	of	db	service	we	deployed	earlier.
curl	-s	http://54.169.114.179:8500/v1/catalog/service/db

Example	DNS	request
Same	as	http,	using	consul’s	DNS	service	you	can	get	 the	details	of	a	particular	service
registered	on	consul.	Run	 the	 following	command	on	any	node	on	 the	cluster	 to	get	 the
service	details	using	DNS
dig	@$BRIDGE_IP	-t	SRV	db.service.consul

You	 can	 also	 look	 in	 to	 services	 by	 specifying	 tags.	 You	 can	 also	 look	 in	 to	 services
specifying	tags.	We	created	a	db	service	with	primary	tag	earlier	in	this	section.

Run	the	following	command	for	looking	up	db	service	with	tag	primary.

http://54.169.114.179:8500/v1/catalog/service/db

Docker	cluster	management	using	Mesos
Apache	Mesos	is	an	open	source	centralized	fault-tolerant	cluster	manager.	It’s	designed
for	 distributed	 computing	 environments	 to	 provide	 resource	 isolation	 and	 management
across	a	cluster	of	slave	nodes.	It	schedules	CPU	and	memory	resources	across	the	cluster
in	 much	 the	 same	 way	 the	 Linux	 Kernel	 schedules	 local	 resources.	 Following	 are	 the
features	offered	by	Mesos.

1.	 It	can	scale	to	more		than	10000	nodes
2.	 Leverages	Linux	containers	for	resource	isolation.
3.	 Schedules	CPU	and	memory	efficiently.
4.	 Provides	a	highly	available	master	architecture	using	Apache	Zookeeper.
5.	 Provides	a	web	interface	for	monitoring	the	cluster	state.

Key	differences	between	Mesos	and	Virtualization:

Virtualization	splits	a	single	physical	resource	into	multiple	virtual	resources
Mesos	joins	multiple	physical	resources	into	a	single	virtual	resource

It	 schedules	 CPU	 and	memory	 resources	 across	 the	 cluster	 in	much	 the	 same	way	 the
Linux	Kernel	 schedules	 local	 resources.	Let’s	have	a	 look	at	Mesos	components	and	 its
relevant	terms.

A	Mesos	cluster	is	made	up	of	four	major	components:

1.	 ZooKeeper
2.	 Mesos	masters
3.	 Mesos	slaves
4.	 Frameworks

ZooKeeper
Apache	 ZooKeeper	 is	 a	 centralized	 configuration	 manager,	 used	 by	 distributed
applications	such	as	Mesos	to	coordinate	activity	across	a	cluster.	Mesos	uses	ZooKeeper
to	elect	a	leading	master	and	for	slaves	to	join	the	cluster.

Mesos	master
A	Mesos	master	is	a	Mesos	instance	in	control	of	the	cluster.	A	cluster	will	typically	have
multiple	Mesos	masters	to	provide	fault-tolerance,	with	one	instance	being	elected	as	the
leading	master.	The	master	manages	the	slave	daemons

Mesos	slave
A	Mesos	 slave	 is	 a	Mesos	 instance	which	 offers	 resources	 to	 the	 cluster.	 They	 are	 the
‘worker’	instances	–	tasks	are	allocated	to	the	slaves	by	the	Mesos	master.

Frameworks
On	 its	 own,	Mesos	 only	 provides	 the	 basic	 “kernel”	 layer	 of	 your	 cluster.	 It	 lets	 other
applications	request	resources	in	the	cluster	to	perform	tasks,	but	does	nothing	itself.

Frameworks	 bridge	 the	 gap	 between	 the	 Mesos	 layer	 and	 your	 applications.	 They	 are
higher	level	abstractions	which	simplify	the	process	of	launching	tasks	on	the	cluster.

Chronos
Chronos	 is	 a	 cron-like	 fault-tolerant	 scheduler	 for	 a	 Mesos	 cluster.	 You	 can	 use	 it	 to
schedule	 jobs,	 receive	 failure	 and	 completion	 notifications,	 and	 trigger	 other	 dependent
jobs.

Marathon
Marathon	is	the	equivalent	of	the	Linux	upstart	or	init	daemons,	designed	for	long-running
applications.	You	can	use	it	to	start,	stop	and	scale	applications	across	the	cluster.

Others
There	are	a	few	other	frameworks,

1.	 Aurora	–	service	scheduler
2.	 Hadoop	–	data	processing
3.	 Jenkins	–	Jenkins	slave	manager
4.	 Spark	–	data	processing
5.	 Torque	–	resource	manager

You	can	also	write	your	own	framework,	using	Java,	Python	or	C++.

Mesos	Architecture

Fig	11-2	:	Mesos	architecture

The	 above	 figure	 shows	 the	 main	 components	 of	 Mesos.	 Mesos	 consists	 of	 a	 master
daemon	that	manages	slave	daemons	running	on	each	cluster	node,	and	mesos	applications
(also	called	frameworks)	that	run	tasks	on	these	slaves.

The	master	enables	fine-grained	sharing	of	resources	(CPU,	RAM)	across	applications	by
making	them	resource	offers.	Each	resource	offer	contains	a	list	of	resources	from	a	single
slave.	The	master	decides	how	many	resources	to	offer	to	each	framework	according	to	a
given	organizational	policy,	such	as	fair	sharing,	or	strict	priority.	To	support	a	diverse	set
of	 policies,	 the	 master	 employs	 a	 modular	 architecture	 that	 makes	 it	 easy	 to	 add	 new
allocation	modules	via	a	plugin	mechanism.

A	 framework	 running	 on	 top	 of	 Mesos	 consists	 of	 two	 components:	 a	 scheduler	 that
registers	with	the	master	to	be	offered	resources,	and	an	executor	process	that	is	launched
on	slave	nodes	to	run	the	frameworks.	While	the	master	determines	how	many	resources
are	 offered	 to	 each	 framework,	 the	 frameworks’	 schedulers	 select	 which	 of	 the	 offered
resources	 to	 use.	 When	 a	 framework	 accepts	 offered	 resources,	 it	 passes	 to	 Mesos	 a
description	of	the	tasks	it	wants	to	run	on	them.	In	turn,	Mesos	launches	the	tasks	on	the
corresponding	slaves.

High	availability
High	availability	 for	a	Mesos	cluster	 is	achieved	by	Apache	zookeeper.	The	masters	are
replicated	by	zookeeper	to	form	a	quorum.	Cluster	leader	is	selected	by	zookeeper	and	it
helps	in	detecting	the	leader	for	other	cluster	components	like	slaves	and	frameworks.

For	 a	high	availability	Mesos	 cluster	 architecture,	 at	 least	 three	master	nodes	 should	be
configured	to	maintain	the	quorum	even	if	one	master	node	fails.	For	a	resilient	production
setup,	at	least	five	master	nodes	should	be	configured	by	maintaining	the	quorum	with	two
offline	masters.

Mesosphere
Mesosphere	 is	 a	 software	 solution	 which	 works	 on	 top	 of	 Apache	 Mesos.	 Using
mesosphere	you	can	use	all	the	capabilities	of	Apache	Mesos	with	additional	components
to	 manage	 an	 infrastructure.	 For	 scaling	 applications,	 you	 can	 use	 frameworks	 like
marathon	and	chromos	with	mesosphere	by	eliminating	a	lot	of	challenges	associate	with
application	scaling.	Following	are	the	main	features	provided	by	mesosphere

1.	 Application	scheduling
2.	 Application	scaling
3.	 Fault-tolerance
4.	 Self-healing
5.	 Service	discovery

Till	now	we	have	discussed	the	basics	of	Apache	Mesos.

In	the	next	section	we	will	learn	the	following.

1.	 Mesos	cluster	setup	on	google	compute	engine	using	mesosphere
2.	 Deploying	Docker	containers	on	to	the	cluster	using	marathon	framework.
3.	 Scaling	up	and	scaling	down	Docker	container	on	the	cluster.

Cluster	setup	using	mesosphere
We	 will	 launch	 our	 Mesos	 cluster	 on	 google	 compute	 engine.	 Follow	 the	 steps	 given
below	to	setup	the	Mesos	cluster.

1.	 Got	to	https://google.mesosphere.io/

2.	 Click	 the	get	started	option.	 It	will	ask	you	to	authenticate	 to	your	google	compute
account.	Once	authenticated,	click	start	development	button.

https://google.mesosphere.io/

3.	 You	will	be	asked	to	enter	the	ssh	public	key.	If	you	have	one,	you	can	continue	with
the	next	step,	if	not	,	create	a	ssh	public	key	using	the	following	command,

ssh-keygen

	
4.	 Copy	the	contents	of	id_rsa.pub	file	and	paste	in	the	ssh-public	key	text	box.

5.	 Click	the	create	option	and	enter	your	compute	engine	project	id	in	the	next	page	and
click	 next.	You	 can	 follow	 the	 instruction	 in	 the	 page	 to	 get	 your	 compute	 engine
project	id.

6.	 Now	you	will	see	all	the	instance	specifications	and	cost	for	your	mesos	development
cluster.	 Your	 cluster	 will	 have	 4	 instances,	 8vCPU’s	 and	 30	 GB	 memory	 .Click
“launch	cluster”	to	launch	your	mesos	cluster.

7.	 Now	you	will	see	the	status	of	you	launching	cluster.

	

	
8.	 Once	your	cluster	is	ready,	you	will	get	a	message	as	shown	in	the	image	below.

	

	
9.	 Click	refresh	details	option	to	see	the	instructions	to	connect	to	mesos	console.

You	need	to	configure	OpenVPN	to	access	mesos	and	marathon	consoles.

Setting	up	OpenVPN
1.	 If	 you	 scroll	 down	 the	mesosphere	 console,	 you	will	 see	 instructions	 to	 download

OpenVPN	 client	 and	 the	 openVPN	 config	 file	 generated	my	mesosphere	 to	 access
marathon	and	mesos	consoles.

2.	 Once	openVPN	is	installed	on	your	system,	right	click	the	config	file	and	click

“start	 openVPN	 on	 this	 config	 file”.	 It	 will	 connect	 your	machine	 to	Google
compute	using	the	VPN	gateway	created	by	mesosphere.

	
3.	 Once	connected,	click	marathon	button	to	view	marathons	console.

4.	 You	can	see	view	mesos	console	by	clicking	the	mesos	button.

5.	 Also,	if	you	go	to	your	compute	engine	dashboard,	under	VM	instances	option,	you
can	view	all	four	launched	instances	for	your	mesos	cluster.

Deploying	Docker	containers	using	marathon
Note:	 Docker	 has	 to	 be	 installed	 on	 all	 the	 mesos	 slaves.	 Compute	 engine	 instance
deployed	with	mesosphere	comes	bundled	with	Docker.

Docker	containers	can	be	deployed	to	mesos	cluster	using	marathon	REST	API’s.	Follow
the	steps	given	below	to	deploy	container	on	the	mesos	cluster.

1.	 Create	a	JSON	file	named	Docker.JSON	and	save	the	file	with	following	contents.

{

		“container”:	{

				“type”:	“DOCKER”,

				“Docker”:	{

						“image”:	“training/postgres”

				}

		},

		“id”:	“database”,

		“instances”:	“1”,

		“cpus”:	“0.5”,

		“mem”:	“512”,

		“uris”:	[],

		“cmd”:	“while	sleep	10;	do	date	-u	+%T;	done”

}

	
2.	 Now,	you	need	 to	post	a	 task	 to	marathon	using	 the	JSON	file,	which	can	be	done

using	curl.	If	curl	 is	not	installed	on	your	system,	install	curl	and	run	the	following
command.

curl	-X	POST	-H	“Content-Type:	application/JSON”	\	http://<master>:8080/v2/apps	-d@Docker.JSON

In	 the	 above	 command,	 replace	 master	 with	 your	 mesos	 master	 IP	 which	 is	 running
marathon.

After	 successful	 execution	 of	 the	 above	 command,	 you	 can	 see	 the	 deploying	 app	 in
marathon	console.

Scaling	up	Docker	containers:
Docker	 instances	 can	 be	 scaled	 up	 very	 easily	 using	 marathon.	 Click	 the	 deployed
application	and	select	the	scale	option.	Give	it	a	number,	e.g.:	3	and	click	ok.

Marathon	will	scale	the	Docker	containers	to	3.

mailto:-d@Docker.json

Scaling	down	Docker	containers
Docker	containers	can	be	scaled	down	in	the	same	way	we	scaled	up	the	containers.	Click
the	scale	option	and	give	a	number	of	containers	you	want	to	scale	down.

After	successful	execution,	you	can	see	that	the	containers	have	been	scaled	down	to	2.

You	can	use	the	mesos	console	to	view	container	deployment	status.

Also	you	can	see	in	which	host	a	particular	image	has	been	deployed.

Tearing	down	the	cluster
Once	you	are	done	working	with	the	development	cluster,	you	can	tear	down	the	cluster
from	mesosphere	console.	Just	click	the	“destroy	cluster	option”	in	your	project	window.

Once	you	click	ok,	your	cluster	will	start	shutting	down.

Docker	 cluster	 management	 using
Kubernetes
Kubernetes	is	a	cluster	management	tool	developed	by	Google	for	managing	containerized
applications.	You	can	make	a	bunch	of	nodes	appear	as	a	one	big	computer	and	deploy
container	 applications	 to	 your	 public	 cloud	 and	 private	 cloud.	 It	 abstracts	 away	 the
discrete	nodes	and	optimizes	compute	resources.

Kubernetes	 uses	 a	 declarative	 approach	 to	 get	 the	 desired	 state	 for	 the	 applications
mentioned	 by	 the	 user.	 When	 an	 application	 is	 deployed	 on	 a	 kubernetes	 cluster,	 the
kubernetes	 master	 node	 decides	 in	 which	 underlying	 host	 the	 application	 has	 to	 be
deployed.	 Kubernetes	 scheduler	 does	 the	 job	 of	 application	 deployment.	 Moreover,
kubernetes	self-healing,	auto	restarting,	replication	and	rescheduling	mechanisms	make	it
more	robust	and	suitable	for	container	based	applications.

Kubernetes	components

Kubernetes	consists	of	two	main	components,	a	master	server	and	a	minion	server.	Let’s
have	a	look	at	the	two	components	and	services	associated	with	each	component.

Master	server
Master	 server	 is	 the	 controlling	 unit	 of	 kubernetes.	 It	 acts	 as	 the	 main	 management
component	 for	 users	 to	 deploy	 applications	 on	 the	 cluster.	 Master	 server	 comprises	 of
various	components	for	operations	like	scheduling,	communication	etc.

Following	are	the	services	associated	with	kubernetes	master	server.

1.	 etcd
2.	 API	server
3.	 Controller	manager
4.	 Scheduler

Etcd
Etcd	is	a	project	developed	by	CoreOS	team.	It	is	a	distributed	key/value	store	that	can	be
made	available	on	multiple	nodes	 in	 the	cluster.	Etcd	 is	used	by	kubernetes	 to	 store	 the
configuration	data	 that	can	be	used	by	 the	nodes	 in	 the	cluster.	All	 the	master	states	are
stored	in	an	etcd	instance	residing	on	the	kubernetes	master.	It	stores	all	the	configuration
data.	The	watch	functionality	of	etcd	notifies	components	for	all	the	changes	in	the	cluster.
Etcd	can	be	queried	using	HTTP	API’s	for	retrieving	values	for	a	node.

Fig	11-3	:	Mesos	architecture

API	server
API	server	is	an	important	service	run	buy	the	master	server.	It	acts	as	the	central	hub	for
the	 user	 to	 interact	with	 the	master	 server.	All	 the	 communication	 to	 the	API	 server	 is
carried	out	through	Restful	API’s	so	that,	you	can	integrate	other	tools	and	libraries	to	talk
to	the	kubernetes	cluster.

A	lightweight	client	tool	called	kubecfg	comes	bundled	with	the	server	tools	and	you	can
use	kubecfg	from	a	remote	machine	to	talk	to	the	master	server.

Controller	manager
The	 controller	manager	 is	 the	 acting	 component	 for	 container	 replication.	When	 a	 user
submits	 a	 request	 for	 replication,	 the	 details	 of	 the	 operation	 are	 written	 to	 etcd.	 The
controller	 manager	 always	 watches	 etcd	 for	 configuration	 changes.	 When	 it	 sees	 a
replication	 request	 in	 etcd,	 it	 starts	 replicating	 the	 containers	 as	 per	 specifications
mentioned	in	the	request.

The	 request	 can	 be	 made	 for	 scaling	 up	 and	 scaling	 down	 the	 containers.	 During
replication,	 if	 the	 specified	 container	 number	 is	 less	 than	 the	 running	 containers,	 then
kubernetes	will	destroy	 the	excess	running	containers	 to	meet	 the	condition	specified	by
the	replication	manager.

Scheduler
Scheduler	 is	 responsible	 for	 assigning	 the	 workloads	 to	 specific	 hosts	 in	 the	 cluster.	 It
reads	 the	operating	requirements	 for	a	container	and	analyzes	 the	cluster	 for	placing	 the
container	on	to	an	acceptable	host.	The	scheduler	keeps	track	on	the	cluster	resources,	it
knows	 the	 resources	 available	 in	 a	 specific	 node	 in	 the	 cluster	 and	 keeps	 track	 of	 the
resources	used	by	individual	containers.

Minion	server
The	worker	nodes	in	the	kubernetes	cluster	are	called	minions.	Each	minion	server	should
have	 few	 services	 running	 for	 networking,	 communication	 with	 the	 master	 and	 for
deploying	the	workloads	assigned	to	it.	Let’s	have	a	look	at	each	service	associated	with
the	minion	server.

Docker
Each	minion	server	should	run	an	instance	of	Docker	daemon	in	it.	Docker	daemon	will
be	configured	with	a	dedicated	subnet	on	the	host.

Kubelet	service
Minions	connect	 to	kubernetes	master	server	using	kubelet.	It	 is	responsible	for	relaying
messages	to	and	from	the	kubernetes	master	server	and	it	interacts	with	etcd	to	store	and
retrieve	 configurations.	Kublet	 communicates	with	 the	maser	 server	 to	 get	 the	 required
commands	and	deployment	tasks.

All	deployment	tasks	will	be	received	by	minions	in	the	form	of	manifests.	The	manifest
will	contain	the	rules	and	desired	stated	for	a	container	deployment.	Once	the	manifest	is
received,	kubelet	will	maintain	the	state	of	container	as	specified	in	the	manifest	file.

Kubernetes	proxy
All	the	services	running	in	a	host	should	be	available	for	services	running	in	other	hosts.
In	order	to	deal	with	the	subnets	and	communication	across	the	hosts,	kubernetes	runs	a
proxy	server	on	all	the	minions.	The	main	responsibility	of	the	proxy	server	is	to	isolate
the	 networking	 environment	 and	 make	 the	 containers	 accessible	 to	 other	 services.	 The

proxy	server	directs	the	traffic	to	the	respective	container	in	the	same	host	or	a	different
host	in	the	cluster.

Work	Units
There	are	various	types	of	work	units	associated	with	container	deployment	on	kubernetes
cluster.	Let’s	have	a	look	at	each	type	of	work	units.

Pods
A	pod	is	a	group	of	related	containers	which	are	deployed	on	the	same	host.	One	or	more
containers	in	a	pod	are	treated	as	a	single	application.	For	example,	a	fleet	of	web	server
can	 be	 grouped	 in	 to	 a	 pod.	 Pods	 share	 the	 same	 environments	 and	 treated	 as	 a	 unit.
Applications	grouped	in	to	pods	can	share	volumes,	IP	space	and	can	be	scaled	as	a	single
unit.

Services
Services	offer	discover-ability	to	applications	running	in	the	kubernetes	cluster.	Service	is
more	of	a	named	load	balancer	and	acts	as	an	interface	to	a	group	of	containers.	You	can
create	service	unit	which	is	aware	of	all	the	backed	services.	It	acts	as	a	single	access	point
for	 applications.	 For	 example,	 all	 the	 web	 server	 containers	 can	 access	 the	 application
containers	using	the	single	access	point.	By	this	mechanism,	you	can	scale	up	and	down
the	application	containers	and	the	access	point	remains	the	same.

Replication	controllers
All	the	pods	which	have	to	be	horizontally	scaled	are	defined	by	the	replication	controller.
Pods	 are	 defined	 in	 a	 template.	 This	 template	 has	 all	 the	 definition	 for	 the	 replication
process.	Let’s	say,	a	pod	has	a	replication	entry	for	four	containers	and	it	is	deployed	on	a
host.	 If	 one	 container	 fails	 out	 of	 four,	 the	 replication	 controller	 will	 create	 another
container	to	meet	the	specification.	If	the	failed	container	comes	up	again,	the	replication
controller	will	kill	the	newly	created	container.

Labels
Labels	are	the	identification	factor	for	the	pods.	Labels	are	basically	tags	for	pods	and	it	is
stored	as	a	key	value	in	etcd.	Label	selectors	are	used	for	services	(named	load	balancers)
and	replications.	To	find	a	group	of	backend	servers,	you	can	use	the	pods	label.

Till	now	we	have	learnt	about	the	concepts	involved	in	kubernetes.

In	the	next	section	we	will	learn	how	to	launch	a	kubernetes	cluster.

Installation
In	this	section	we	will	learn	how	to	launch	a	kubernetes	cluster	on	google	compute	engine.
You	need	to	have	a	google	compute	engine	account	to	try	on	the	steps	given	below.

Configuring	workstation
You	can	configure	the	workstation	in	your	laptop	.Workstation	should	have	the	following

1.	 Configured	google	cloud	sdk	to	launch	instances.
2.	 Access	to	all	compute	engine	resource	API’s
3.	 Go	>	1.2	installed
4.	 Kubernetes	launch	script.

Configuring	google	cloud	sdk	on	workstation
Connect	 the	 instance	using	 an	SSH	client	 like	putty	 using	 the	key	generated	during	 the
first	instance	launch	and	follow	the	steps	given	below.

1.	 Install	Google	Cloud	SDK	on	the	workstation	instance	using	the	following	command.

curl	https://sdk.cloud.google.com	|	bash

	

2.	 Authenticate	to	google	cloud	services	using	the	following	command.

gcloud	auth	login

	
3.	 Check	the	SDK	authentication	by	list	the	instances	using	cli.

gcutil	listinstances

	
4.	 Install	latest	go	using	gvm	using	the	following	commands.	You	need	go	version	1.3

to	work	with	kubernetes	cli.

sudo	apt-get	install	curl	git	mercurial	make	binutils	bison	gcc	build-essential

bash	<	<(curl	-s	-S	-L	https://raw.githubusercontent.com/moovweb/gvm/master/binscripts/gvm-installer)

gvm	install	go1.3

Note:	before	launching	the	kubernetes	cluster,	launch	an	instance	in	google	compute	from
your	 workstation	 or	 the	 web	 interface	 and	 generate	 a	 private	 key	 using	 “gcutil	 ssh
<servername>”	 command.	 Because	 the	 launch	 script	 needs	 the	 ssh	 key	 in	 your
workstation	to	create	instances	in	compute	engine.

Launching	kubernetes	cluster	from	the	workstation
Kunbernetes	 cluster	 can	 be	 launched	 using	 the	 launch	 script	 file	 from	 the	 kubernetes
source.	 The	 default	 script	 launches	 a	 kubernetes	 master	 and	 four	 minions	 of	 small
instances	using	the	private	key	present	inside	the	workstation.	These	configurations	can	be
changed	in	the	launch	configuration	file.

Follow	the	steps	given	below	to	launch	the	kubernetes	cluster.

1.	 Clone	the	kubernetes	source	files	from	github	using	the	following	url

git	clone	https://github.com/GoogleCloudPlatform/kubernetes.git

	

	
2.	 The	configurations	for	cluster	instances	are	present	inside	/kubernetes/cluster/config-

default.sh	file.

https://github.com/GoogleCloudPlatform/kubernetes.git

3.	 Execute	the	following	command	to	launch	the	kubernetes	cluster.

hack/dev-build-and-up.sh

The	above	command	will	launch	a	kubernetes	cluster	with	one	master	and	four	minions.
dev-build-and-up.sh	script	configures	 the	kubernetes	cluster	with	Docker	and	kubernetes
agents.

In	the	compute	engine	console	you	can	see	the	launched	instances.

Deploying	a	multi-tier	application	on	kubernetes	cluster	with	Docker
In	this	example,	a	multi-tier	guestbook	application	(frontend,	redis	slave	and	master)	will
be	deployed	using	preconfigured	Docker	containers.

The	 pod	 description	 files	 (JSON	 files)	 for	 deploying	 this	 application	 are	 present	 inside
kubernetes	source	file	under	/kubernetes/examples/guestbook	directory.

Note:	 all	 the	 commands	 executed	 in	 this	 example	 are	 executed	 in	 the	 kubernetes	 root
folder.

Before	 deploying	 the	 pods,	 you	 have	 to	 set	 up	 the	 go	 workspace	 by	 executing	 the
following	command.
hack/build-go.sh

Pod	configuration	file
The	 pod	 configuration	 file	 can	 be	 formatted	 as	 a	 Json	 template.	 The	 configuration	 file
supports	the	following	fields.
{

		“id”:	string,

		“kind”:	“Pod”,

		“apiVersion”:	“v1beta1”,

		“desiredState”:	{

				“manifest”:	{

						manifest	object

				}

		},

		“labels”:	{	string:	string	}}

Where,

Id:	indicates	the	name	of	the	pod

Kind:	It	is	always	Pod.

apiVersion:	At	the	time	of	writing	it	is	v1beta1.

desiredState:	It	is	an	object	with	a	child	manifest	object.

Manifest:	manifest	contains	the	fields	mentioned	in	the	following	table.

	

	Field	Name

	

	Type

	

	Description

	

	Version

	

	string

	

	The	version	of	the	manifest.	Must	bev1beta1.

	

	containers[]

	

	List

	

	The	list	of	containers	to	launch.

	

	containers[].name

	

	string

	

	User	defined	name	for	the	container

	

	containers[].image

	

	string

	

	The	image	to	run	the	container

	

	containers[].command[]

	

	list

	

	Command	to	run	when	a	container	is	launched

	

	containers[].volumeMounts[]

	

	List

	

	Data	volumes	that	has	be	exposed

	

	containers[].ports[]

	

	List

	

	List	of	container	ports	that	has	to	be	exposed

	

	containers[].env[]

	

	List

	

	Sets	the	environment	variables	for	the	container

	

	containers[].env[].name

	

	string

	

	Name	of	environment	variable

	

	containers[].env[].value

	

	string

	

	Value	for	the	environment	variable

	 	 	

	containers[].ports[].hostPort 	Int 	Host	to	container	mapping	port	number

Getting	started
Kubernetes	scheduler	will	decide	in	which	host	the	pod	has	to	be	deployed.

Follow	the	steps	given	below	to	deploy	containers	on	the	kubernetes	cluster.

1.	 The	following	JSON	file	will	create	a	redis	master	pod	on	the	kubernetes	cluster.	The
attributes	used	in	the	JSON	file	are	self-explanatory.	It	uses	Dockerfile/redis	Docker
preconfigure	 image	 from	 Docker	 public	 repository	 to	 deploy	 the	 redis	 master	 on
kubernetes	cluster.

{

		“id”:	“redis-master-2”,

		“desiredState”:	{

				“manifest”:	{

						“version”:	“v1beta1”,

						“id”:	“redis-master-2”,

						“containers”:	[{

								“name”:	“master”,

								“image”:	“Dockerfile/redis”,

								“ports”:	[{

										“containerPort”:	6379,

										“hostPort”:	6379

								}]

						}]

				}

		},

		“labels”:	{

				“name”:	“redis-master”

		}

}

	
2.	 Execute	the	following	command	to	deploy	the	master	pod	in	cluster.

cluster/kubecfg.sh	-c	examples/guestbook/redis-master.JSON	create	pods

	
3.	 You	can	list	the	pods	and	see	in	which	host	the	pod	has	been	deployed	by	running	the

following	command	using	kubecfg	CLI.

cluster/kubecfg.sh	list	/pods

As	you	can	see,	the	master	pod	has	been	deployed	in	the	minion-1.

4.	 Once	 the	master	 pod	 is	 up,	 you	 have	 to	 create	 a	 service	 (named	 loadbalancer)	 for
master,	so	that	the	slave	nodes	will	route	the	traffic	to	the	master.

The	service	description	for	the	master	looks	like	the	following	JSON	file:
{

		“id”:	“redismaster”,

		“port”:	10000,

		“selector”:	{

				“name”:	“redis-master”

		}

}

	
5.	 Execute	the	following	command	to	create	a	service	for	the	master.

cluster/kubecfg.sh	-c	examples/guestbook/redis-master-service.JSON	create	services

	
6.	 Create	2	redis	slaves	using	the	following	pod	description.

{

				“id”:	“redisSlaveController”,

				“desiredState”:	{

						“replicas”:	2,

						“replicaSelector”:	{“name”:	“redis-slave”},

						“podTemplate”:	{

								“desiredState”:	{

											“manifest”:	{

													“version”:	“v1beta1”,

													“id”:	“redisSlaveController”,

													“containers”:	[{

															“image”:	“brendanburns/redis-slave”,

															“ports”:	[{“containerPort”:	6379,	“hostPort”:	6380}]

													}]

											}

									},

									“labels”:	{“name”:	“redis-slave”}

								}},

				“labels”:	{“name”:	“redis-slave”}	}

	
7.	 Execute	the	following	command	to	deploy	2	slave	pods	on	the	cluster.

cluster/kubecfg.sh	-c	examples/guestbook/redis-slave-controller.JSON	create	replicationControllers

The	 above	 command	 used	 brendanburns/redis-slave	 Docker	 image	 to	 deploy	 the	 slave
pods.

8.	 The	redis	slaves	need	a	service	(named	load	balancer)	so	that	it	can	talk	to	frontend
pods.	This	can	be	created	using	the	following	service	description.

{

		“id”:	“redisslave”,

		“port”:	10001,

		“labels”:	{

				“name”:	“redis-slave”

		},

		“selector”:	{

				“name”:	“redis-slave”

		}

}

	
9.	 Execute	the	following	command	to	create	the	slave	service.

cluster/kubecfg.sh	-c	examples/guestbook/redis-slave-service.JSON	create	services

	

	
10.	 Frontend	 redis	 description	 file	 creates	 3	 frontend	 replicas.	 The	 pod	 description	 for

redis	frontend	looks	like	the	following.

{

		“id”:	“frontendController”,

		“desiredState”:	{

				“replicas”:	3,

				“replicaSelector”:	{“name”:	“frontend”},

				“podTemplate”:	{

						“desiredState”:	{

									“manifest”:	{

											“version”:	“v1beta1”,

											“id”:	“frontendController”,

											“containers”:	[{

													“image”:	“brendanburns/php-redis”,

													“ports”:	[{“containerPort”:	80,	“hostPort”:	8000}]

											}]

									}

							},

							“labels”:	{“name”:	“frontend”}

						}},

		“labels”:	{“name”:	“frontend”}

}

	
11.	 Frontend	 pod	 uses	 brendanburns/php-redis	 Docker	 image	 to	 deploy	 redis	 frontend

replicas.	 Execute	 the	 following	 command	 to	 deploy	 the	 frontend	 pods	 using	 the
frontend	pod	description	file.

cluster/kubecfg.sh	-c	examples/guestbook/frontend-controller.JSON	create	replicationControllers

12.	 If	you	 list	 the	pods	 in	kubernetes	cluster	you	can	see	 in	which	minion	 the	frontend
pods	have	been	deployed

cluster/kubecfg.sh	list	/pods

The	above	image	shows	that	front	end	pods	have	been	deployed	in	minions	1,	3	and	4.

You	can	view	the	deployed	guestbook	application	in	the	browser	by	grabbing	any	one	of
the	public	IP’s	of	the	minion	in	which	the	frontend	has	been	deployed.	You	will	be	able	to
access	the	frontend	from	all	the	three	minions	in	which	the	front	end	has	been	deployed.

The	following	image	shows	the	final	deployed	redis	three	tiered	application.

	

Deleting	the	cluster
By	deleting	the	cluster,	you	will	delete	all	the	computing	engine	configurations	associated
with	the	cluster.	All	the	networks,	instances,	and	route	will	be	deleted	from	the	project.

The	cluster	can	be	brought	down	using	the	following	command.
cluster/kube-down.sh

Docker	orchestration	using	CoreOS	and	fleet
CoreOS	 website	 defines	 coreOS	 as	 “Linux	 for	 Massive	 Server	 Deployments.	 CoreOS
enables	warehouse-scale	computing	on	top	of	a	minimal,	modern	operating	system”.

CoreOS	 is	a	Linux	distribution	based	system	designed	 to	 run	 services	as	containers	and
aimed	 at	 running	 high	 availability	 clusters.	 The	 overall	 design	 of	 coreOS	 aims	 at
clustering	and	containerization.

CoreOS	has	the	following	features

1.	 CoreOS	has	an	update	system	like	in	chromeOS	which	downloads	the	latest	patches
and	updates	automatically	and	configures	itself	every	time	you	reboot	your	machine.
So	there	is	never	a	point	of	time	where	your	system	is	in	an	unstable	state.

2.	 It	 has	 a	 distributed	 key	 value	 store	 etcd	 which	 helps	 in	 coordinating	 a	 group	 of
servers	to	share	configurations	and	service	discovery.

3.	 Isolates	services	using	Docker	containers.	It	does	not	have	a	package	manager	instead
you	have	to	use	Docker	containers	for	running	your	applications.

4.	 Fleet	cluster	management		tool	to	manage	the	cluster	and	services
5.	 Easy	cluster	configuration	using	the	cloud-config	file	given	by	user	,	which	coreOS

reads	during	boot

CoreOS	Architecture
In	this	section	we	will	learn	about	the	components	in	coreOS	architecture.

Etcd
Etcd	 is	 a	distributed	configuration	 store	 like	 consul	 and	zookeeper.	Etcd	 runs	on	all	 the
hosts	 in	 the	 cluster.	When	 a	 cluster	 is	 launched,	 one	 of	 the	 etcd	 instances	 becomes	 the
master	and	shares	the	logs	with	other	hosts	and	if	the	master	goes	down,	another	working
etcd	instance	will	become	the	master.	All	 the	applications	running	in	coreOS	cluster	can
write	 to	 etcd.	 This	 enables	 applications	 to	 discover	 services	 it	 needs	 in	 a	 distributed

environment.	 The	 information	 about	 the	 services	 is	 distributed	 globally	 by	 etcd,	 so
applications	can	connect	to	etcd	interface	and	query	for	the	service	it	needs.	Etcd	is	also
used	 by	 cluster	 management	 tool	 like	 kubernetes	 for	 service	 discovery	 and	 cluster
coordination.

Systemd
Systemd	is	the	system	management	daemon.	It	is	not	just	used	for	managing	services	but
it	can	be	used	to	run	scheduled	jobs.	Following	are	the	features	of	system

1.	 It	boots	up	the	system	really	fast
2.	 Its	logging	system	called	journal	had	good	features	like	JSON	export	and	indexing.

Fleet
Fleet	works	on	top	of	systemd	and	it	schedules	jobs	for	the	cluster.	Let’s	say	you	want	to
run	three	instances	of	web	containers	on	the	cluster,	fleet	will	launch	those	instances	in	the
cluster	without	much	configuration.

You	 can	 say	 fleet	 as	 a	 cluster	 management	 tool	 for	 CoreOS.	 You	 can	 also	 define
conditions	 like	 no	 host	 should	 have	 the	 same	 instance	 of	web	 containers	 and	 instead	 it
should	be	distributed	to	different	host	machines.

Another	important	feature	of	fleet	is	that	when	a	machine	running	a	service	fails,	fleet	will
automatically	reschedule	the	service	to	another	machine	in	the	cluster.

Units
A	unit	is	a	systemd	file	and	referenced	unit	files.	Once	these	unit	files	are	pushed	to	the
cluster,	 it	will	be	immutable.	For	any	modifications	in	the	unit	file	 that	has	been	pushed
can	only	be	made	by	deleting	and	resubmitting	the	unit	file	to	the	cluster.

Fleetd
A	fleetd	daemon	will	 run	on	every	 fleet	cluster.	Every	daemon	has	an	engine	and	agent
role	 associated	with	 it.	 Engine	 is	 responsible	 for	 scheduling	 units	 in	 the	 cluster.	 Least-
loaded	scheduling	algorithm	is	used	by	the	engine	to	decide	on	which	host	the	unit	has	to
be	deployed.	Agent	is	responsible	for	executing	the	units	in	the	host.	It	reports	the	state	of
the	unit	to	etcd.

Unit	files
Before	 launching	container	 in	our	cluster,	we	should	know	about	unit	 files.	Unit	 file	are
the	 basic	 unit	 of	 fleet.	 It	 is	 used	 to	 describe	 the	 service	 and	 commands	 to	manage	 the
service.	A	typical	unit	file	is	shown	below.
[Unit]

Description=Hello	World

After=Docker.service

Requires=Docker.service

[Service]

EnvironmentFile=/etc/environment

ExecStartPre=/usr/bin/etcdctl	set	/test/%m	${COREOS_PUBLIC_IPV4}

ExecStart=/usr/bin/Docker	run	—name	test	—rm	busybox	/bin/sh	-c	“while	true;	do	echo	Hello	World;	sleep	1;	done”

ExecStop=/usr/bin/etcdctl	rm	/test/%m

ExecStop=/usr/bin/Docker	kill	test

	

Let’s	breakdown	the	unit	file	and	see	what	each	section	really	mean.

Unit
[Unit]

Description=Hello	World

After=Docker.service

Requires=Docker.service

	

	
1.	 The	unit	header	holds	the	common	information	about	the	unit	and	its	dependencies.
2.	 Description	can	be	any	user	defined	description
3.	 “After=Docker.service”	Conveys	systemd	to	begin	the	unit	after	Docker.service
4.	 “Requires=Docker.service”	convers	system	that	Docker.service	is	required	for	normal

operation.

Service
[Service]

EnvironmentFile=/etc/environment

ExecStartPre=/usr/bin/etcdctl	set	/test/%m	${COREOS_PUBLIC_IPV4}

ExecStart=/usr/bin/Docker	run	—name	test	—rm	busybox	/bin/sh	-c	“while	true;	do	echo	Hello	World;	sleep	1;	done”

ExecStop=/usr/bin/etcdctl	rm	/test/%m

ExecStop=/usr/bin/Docker	kill	test

The	 service	header	 is	 associated	with	 start	 and	 stop	commands.	The	parameters	used	 in
service	header	are	explained	below.

“EnvironmentFile=/etc/environment”	–	used	 for	exposing	environment	variables	 for	unit
file.

“ExecStartPre”	–	this	runs	before	the	service	for	creating	a	key	in	etcd.

“ExecStart”	 –this	 starts	 the	 real	 service.	 In	 our	 case	 we	 will	 start	 a	 busybox	 container
running	echo	in	infinite	loop.

“ExecStop”	–	this	stops	the	action	mention	in	it.

Till	now	we	have	learned	about	the	features	and	components	of	coreOS.

In	next	section,	you	will	learn	how	to	deploy	Docker	containers	on	a	coreOS	cluster.

Launching	a	coreOS	cluster
In	 this	 demo	 we	 will	 be	 using	 Google	 compute	 engine	 to	 launch	 our	 CoreOS	 cluster.
Following	are	the	requirements	for	this	set	up.

1.	 Google	compute	engine	account
2.	 Google	cloud	SDK	configured	and	authenticated	to	compute	engine	account	on	your

local	workstation.

Note:	in	this	demo,	a	windows	workstation	is	used.	Follow	the	steps	given	below	to	launch
a	three	node	coreOS	cluster.

1.	 In	 order	 to	 start	 fleet	 and	 etcd	 services	 on	 startup,	we	will	 use	 a	 yaml	 config	 file
called	cloud-config.yaml.	In	this	file	we	will	mention	a	discovery	token	for	machines
to	find	each	other	in	the	cluster	using	etcd.	You	can	create	your	own	discovery	token
by	visiting	the	following	link.

https://discovery.etcd.io/new

	
2.	 Open	 gcloud	 SDK	 directory	 and	 create	 a	 cloud-config.yaml	 file	 and	 copy	 the

following	contents	on	to	the	file.

Note:	 create	a	new	 token	 form	 the	 link	given	on	 step	1	and	 replace	 that	 token	with	 the
token	mentioned	in	the	following	snippet.
#cloud-config

coreos:

		etcd:

					discovery:	https://discovery.etcd.io/<token>

				#	multi-region	and	multi-cloud	deployments	need	to	use	$public_ipv4

				addr:	$private_ipv4:4001

				peer-addr:	$private_ipv4:7001

		units:

				-	name:	etcd.service

						command:	start

				-	name:	fleet.service

						command:	start

	
3.	 Open	gcloud	SDK	shell	and	run	the	gcloud	CLI	command	given	below	to	launch	the

cluster	with	nodes	 core1,	 core2	 and	 core3.	 	Make	 sure	 that	 the	 cloud-config	 file	 is
present	in	the	same	directory	as	you	are	running	the	command.

Note:		n1-standard-1	instance	type	is	being	used	in	the	following	snippet.	You	can	modify
it	to	a	small	or	micro	instance	type	based	on	your	requirement.

https://discovery.etcd.io/new

gcloud	compute	instances	create	core1	core2	core3	—image	\

https://www.googleapis.com/compute/v1/projects/coreos-cloud/global/images/coreos-stable-410-2-0-v20141002	\

—zone	us-central1-a	—machine-type	n1-standard-1	\

—metadata-from-file	user-data=cloud-config.yaml

On	successful	execution	of	above	commands,	you	will	have	a	working	three	node	cluster
with	fleet	and	etcd	configured.

4.	 We	can	control	the	cluster	with	fleet	using	fleetctl	command.	SSH	in	to	any	one	host
in	our	cluster,	let’s	say	core1	and	execute	the	following	command	to	list	the	available
fleetctl	commands.

fleetctl

	

	
5.	 To	make	 sure	 everything	worked	 as	 expected	 run	 the	 following	 fleet	 command	 on

core1	to	list	the	servers	in	the	cluster.

fleetctl	list-machines

Launching	containers	on	cluster	using	fleet
In	this	section	we	will	look	in	to	how	to	launch	a	container	on	the	cluster	using	fleet	unit
file.	Fleet	decides	on	which	host	the	container	should	be	deployed.	Follow	the	steps	below
to	launch	a	container	in	our	cluster	using	a	unit	file.

1.	 	 	 	 	 	 	 	Create	a	unit	file	named	hello-world.service	on	core1	and	copy	the	snippet	we
have	under	unit	files	section.
2.							Once	created	submit	the	unit	file	to	fleet	using	fleetctl	to	schedule	it	on	the	cluster
using	the	following	command.

Note:	make	sure	you	run	the	fleetctl	command	from	where	you	have	the	service	file	or	you
should	 give	 the	 full	 path	 of	 the	 file	 if	 you	 are	 running	 the	 command	 from	 some	 other
location.
fleetctl	submit	hello-world.service

Now	we	have	a	unit	file	submitted	to	fleet	for	scheduling	it	to	some	host	in	the	cluster.

Run	the	following	fleetctl	command	to	start	the	service.
fleetctl	start	hello-world.service

We	 have	 now	 successfully	 started	 a	 service	 on	 the	 cluster.	 You	 can	 list	 the	 running
services	 using	 the	 following	 fleetctl	 command.	 It	 shows	 all	 the	 information	 about	 the
service	and	in	which	host	it	has	been	launched
fleetctl	list-units

Our	hello-world	service	echo’s	out	hello	world	in	an	infinite	loop.	To	check	the	output	of
the	hello	world	service,	run	the	following	fleetctl	command	on	core1.
fleetctl	journal	hello-world.service

Scaling	fleet	units
You	can	scale	your	fleet	units	for	high	availability	service.	To	do	that,	create	multiple	unit
files	 of	 the	 same	 service	 with	 X-fleet	 header.	 In	 x-fleet	 header	 we	 will	 define	 the
relationships	between	the	units.

Let’s	say	we	want	three	Nginx	services	running	in	different	hosts.	For	this	we	will	mention
a	parameter	X-Conflicts=nginx*.service	in	the	X-Fleet	header,	which	will	make	sure	that
three	instances	never	run	on	the	same	host	in	the	cluster.

Let’s	look	at	a	demo	for	running	nginx	containers	in	high	availability	mode.

Nginx	unit	file

We	will	be	running	nginx	server	using	Dockerfile/nginx	public	image	from	the	unit	file.	
In	this	unit	file	we	will	add	X-fleet	header	which	was	not	there	in	the	hello-world	service
we	deployed	earlier.	X-Fleet	ensures	that	all	nginx	services	will	be	distributed	across	the
cluster.

Follow	the	steps	given	below	to	launch	a	highly	available	Nginx	service.

1.	 Create	three	unit	files	named	nginx.1.service,	nginx.2.service	and	nginx.3.service	and
copy	the	contents	of	the	following	snippet	on	to	all	three	unit	files.

[Unit]

Description=Hello	World

After=Docker.service

Requires=Docker.service

[Service]

EnvironmentFile=/etc/environment

ExecStartPre=/usr/bin/etcdctl	set	/test/%m	${COREOS_PUBLIC_IPV4}

ExecStart=/usr/bin/Docker	run	-P	—name	nginx	—rm	Dockerfile/nginx

ExecStop=/usr/bin/etcdctl	rm	/test/%m

ExecStop=/usr/bin/Docker	kill	test

[X-Fleet]

X-Conflicts=nginx*.service

	
2.	 We	should	have	three	unit	files	as	shown	below

3.	 In	order	to	start	all	the	three	services	will	use	wildcard	to	start	service	with	unit	name
starting	with	name	nginx.	Run	the	following	command	to	start	all	the	three	services.

fleetctl	start		nginx*

	
4.	 You	can	view	the	logs	of	a	service	using	fleetctl	journal	command	as	shown	below.

fleetctl	journal	nginx.1.service

	
5.	 To	destroy	all	the	nginx	services	use	the	destroy	command	as	shown	below.

fleetctl	destroy	nginx*

	
11

Networking,	security	and	API’s

In	this	chapter,	we	will	learn	about	Docker	advanced	networking,	security	and	API’s.

Docker	networking
When	you	create	a	container,	Docker	will	create	virtual	interface	called	Docker0.	Docker
will	 look	 for	 an	 IP	 address	 from	 the	 pool	 which	 has	 not	 been	 assigned	 to	 any	 other
containers	and	assigns	it	to	Docker0.	The	CIDR	block	assigned	by	Docker	for	containers
is	172.17.43.1/16.

Docker0	interface:
Docker0	 is	 considered	 as	 a	 virtual	 Ethernet	 bridge	 which	 is	 capable	 of	 sending	 and
receiving	packets	to	any	network	interface	attached	to	it.	This	is	how	a	Docker	container	is
able	to	interact	with	the	host	machine	and	other	containers.

When	a	container	 is	created,	a	pair	of	“peers”	 interfaces	are	created	by	Docker	and	 it	 is
like	two	sides	of	a	pipe.	If	you	send	a	packet	at	one	side,	it	will	reach	the	other	side	of	the
interface.	 So	 when	 the	 “peer”	 interfaces	 are	 created,	 one	 will	 act	 as	 the	 eth0	 of	 the
container	 and	other	will	 be	 exposed	 to	 the	 namespace	 having	 a	 unique	 name	 that	 starts
with	veth.	This	veth	interface	connects	to	Docker0	Bridge,	thus	forming	a	virtual	subnet
for	containers	to	talk	to	each	other.

Networking	options:

There	 are	 many	 options	 available	 for	 configuring	 networking	 in	 Docker.	 Most	 of	 the
commands	will	work	only	when	the	Docker	server	starts	and	will	not	work	when	Docker
service	is	in	running	state.

Following	are	the	options	used	to	modify	the	networking	settings	in	Docker.

1.	 	 	 	 	 	 	 	 -b	BRIDGE:	 	This	 option	 is	 used	 for	 specifying	 the	Docker	bridge
explicitly.
2.							—bip=CIDR:	This	option	changes	the	default	CIDR	assigned	to	Docker
3.	 	 	 	 	 	 	—fixed-cidr=CIDR:	 used	 for	 restricting	 IP	 addresses	 from	Docker0
subnet.
4.							-H	SOCKET:	using	this	option	you	can	specify	from	which	channel	the
Docker	daemon	should	receive	commands.	For	example,	a	host	IP	address
or	through	tcp	socket.
5.							—ip=IP_ADDRESS:	Used	for	setting	the	Docker	bind	address.

DNS	configuration
There	are	four	options	to	modify	the	DNS	configuration	of	a	container.

1.	 	 	 	 	 	 	 	 -h	 HOSTNAME:	 	 This	 option	 is	 used	 for	 setting	 the	 hostname.	 The
hostname	will	be	written	to	/etc/hostname	file	of	the	container.	It	is	not	possible
to	view	the	hostname	outside	the	container.
2.	 	 	 	 	 	 	 —link=CONTAINER_NAME:ALIAS:	 This	 option	 allows	 us	 to	 create
another	name	 for	 the	container	which	can	be	used	 for	 linking.	This	name	will
point	to	the	IP	address	of	the	container.
3.	 	 	 	 	 	 	 —dns=IP_ADDRESS	 :	 This	 option	 will	 create	 a	 server	 entry	 inside
/etc.resolv.conf	file.
4.	 	 	 	 	 	 	—dns-search=DOMAIN	:	This	option	 is	used	for	setting	 the	DNS	search
domain

Container	communication	with	wider	world
There	 is	 one	 factor	 which	 determines	 whether	 the	 container	 should	 talk	 to	 the	 outside
world.	 It	 is	 the	 ip_forward	parameter.	This	 parameter	 should	be	 set	 to	 1	 for	 forwarding
packets	 between	 containers.	By	 default,	Docker	 sets	 the	—ip-forward	 parameter	 to	 true
and	Docker	will	set	ip_forward	parameter	to	1.

Execute	the	following	command	on	the	Docker	host	to	check	the	value	of	the	ip_forward
parameter.
cat	/proc/sys/net/ipv4/ip_forward

From	the	output	you	can	see	that	the	ip_forward	value	is	set	to	1.

Communication	between	containers
All	 the	 containers	 are	 attached	 to	 Docker0	 bridge	 by	 default	 and	 this	 allows	 all	 the

containers	to	send	and	receive	packets	among	them.

This	is	achieved	by	Docker	by	adding	a	ACCEPT	policy	to	iptables	FORWARD	chain.	If
you	 set	 the	 value	—	icc=false	when	 the	Docker	 daemon	 starts,	Docker	will	 add	DROP
policy	to	the	FORWARD	chain.

If	 you	 set	—icc=false	 Docker	 containers	 won’t	 be	 able	 to	 talk	 to	 each	 other.	 You	 can
overcome	this	issue	by	using	—link=contianer-name:alias	for	linking	containers	together.

Execute	 the	 following	 command	 in	 your	Docker	 host	 to	 check	 the	 iptables	FORWARD
policy.
sudo	iptables	-L	–n

The	output	above	shows	the	default	ACCEPT	policy.

Building	your	own	bridge
By	default,	Docker	uses	Docker0	bridge.	You	can	use	a	custom	bridge	for	Docker	using		

-b	BRIDGE	parameter.

Let’s	see	how	to	assign	a	custom	bridge	to	Docker.

If	 your	 Docker	 host	 is	 in	 running	 mode,	 execute	 the	 following	 commands	 to	 stop	 the
Docker	server	and	to	bring	down	the	Docker0	bridge.

Note:	if	bridge	utils	is	not	installed	on	your	Docker	host,	install	it	using	the	“sudo	apt	apt-
get	install	bridge-utils”	command	before	executing	the	following	commands.
sudo	service	docker.io	stop

sudo	ip	link	set	dev	docker0	down

sudo	brctl	delbr	docker0

Execute	the	following	commands	for	creating	a	new	bridge	and	CIDR	block	associations.
sudo	brctl	addbr	bridge0

sudo	ip	addr	add	192.168.5.1/24	dev	bridge0

sudo	ip	link	set	dev	bridge0	up

Execute	the	following	command	to	check	if	our	new	bridge	is	configured	and	running.
ip	addr	show	bridge0

	

From	the	output,	you	can	see	that	our	new	bridge	is	configured	and	running.

Now	 let’s	 add	 the	 new	 bridge	 configuration	 to	 Docker	 defaults	 using	 the	 following
command	and	start	the	Docker	service.
echo	‘DOCKER_OPTS=”-b=bridge0”’	>>	/etc/default/docker

sudo	service	docker.io	start

Docker	security
In	this	section	we	will	discuss	the	major	areas	of	security	that	Docker	focuses	on	and	why
they	are	 important.	Since	Docker	uses	Linux	Containers,	we	will	discuss	 security	 in	 the
context	of	linux	containers	also.

In	previous	chapters	of	this	book,	we	learned	that	a	Docker	run	command	is	executed	to
launch	and	start	a	container.	However,	here’s	what	really	happens:

1.	 A	Docker	run	command	gets	initiated.
2.	 Docker	uses	lxc-start	to	execute	the	run	command.
3.	 Lxc-start	creates	a	set	of	namespaces	and	control	groups	for	the	container.

Let’s	recap	what	namespace	means.	Namespace	is	 the	first	 level	of	 isolation	whereas	no
two	containers	can	see	or	modify	the	processes	running	inside.	Each	container	is	assigned
a	separate	network	stack,	and,	hence,	one	container	does	not	get	access	to	the	sockets	of
another	container.

To	 allow	 IP	 traffic	 between	 the	 containers,	 you	 must	 specify	 public	 IP	 ports	 for	 the
container.

Control	Groups,	the	key	component,	has	the	following	functionalities:

1.								Is	responsible	for	resource	accounting	and	limiting.
2.							Provides	metrics	pertaining	to	the	CPU,	memory,	I/O	and	network.

3.							Tries	to	avoid	certain	DoS	attacks.
4.							Enables	features	for	multi-tenant	platforms.

Docker	Daemon’s	Attack	Surface
Docker	daemon	runs	with	root	privileges,	which	implies	there	are	some	aspects	that	need
extra	care.	Some	of	the	points	for	security	are	listed	here:

1.	 	 	 	 	 	 	 	Control	 of	Docker	 daemon	 should	 only	 be	 given	 to	 authorized	 users	 as
Docker	allows	directory	sharing	with	a	guest	container	without	 limiting	access
rights.
2.	 	 	 	 	 	 	The	REST	API	endpoint	now	supports	UNIX	sockets,	 thereby	preventing
cross-site-scripting	attacks.
3.	 	 	 	 	 	 	REST	API	can	be	exposed	over	HTTP	using	appropriate	trusted	networks
and	VPNs.
4.							Run	Docker	exclusively	on	a	server	(when	done),	isolating	all	other	services.
5.	 	 	 	 	 	 	Processes,	when	run	as	non-privileged	users	 in	 the	containers,	maintain	a
good	level	of	security.
6.	 	 	 	 	 	 	Apparmor,	SELinux,	GRSEC	solutions	can	be	used	 for	an	extra	 layer	of
security.
7.	 	 	 	 	 	 	There’s	a	capability	to	inherit	security	features	from	other	containerization
systems.

An	important	aspect	in	Docker	to	be	considered	is	the	fact	that	everything	is	not	a	name
spaced	in	Linux.	If	you	want	to	reach	the	kernel	of	 the	host	running	a	VM,	you	have	to
break	through	the	VM,	then	Hypervisor	and	then	kernel.	But	in	containers	you	are	directly
talking	to	the	kernel.

Containers	as	a	regular	service
Containers	should	be	treated	just	like	running	regular	services.	If	you	run	an	apache	web
server	 in	your	system,	you	will	be	following	some	security	practices	 to	securely	run	 the
service.	If	you	are	running	the	same	service	in	a	container,	you	need	to	follow	the	same
security	measure	to	secure	your	application.	It	is	not	secure	just	because	of	the	fact	that	it
is	 running	 inside	 a	 container.	 While	 running	 applications	 in	 containers	 consider	 the
following	things:

1.								Drop	privileges	as	soon	as	possible.
2.							All	the	services	should	run	as	a	non-root	user	whenever	possible.
3.							Treat	root	inside	a	container	same	as	the	root	running	outside	the	container.
4.	 	 	 	 	 	 	Do	not	 run	 random	containers	 in	your	 system	from	 the	public	 registry.	 It
might	 break	 your	 system.	 Always	 used	 official	 and	 trusted	 images.	 It	 is
recommended	to	start	building	your	own	images	for	container	deployments.

What	makes	Docker	secure
Following	are	the	features	which	make	Docker	secure:

1.	 Read	only	mount	points:	files	such	as	/sys,	/	proc/sys,	proc/irq	etc.	are	mounted	in

containers	with	read	only	mode
2.	 CAPABILITIES:	certain	Linux	kernel	CAPABILITIES	in	containers	are	removed	to

make	 sure	 it	 does	 not	 modify	 anything	 in	 the	 system	 kernel.	 For	 example,
CAP_NET_ADMIN	CAPABILITY	is	remove	make	sure	that	no	modifications	to	the
network	setting	or	IPtables	can	be	done	from	inside	a	container.

Security	issues	of	Docker
All	 the	Docker	containers	are	 launched	with	 root	privileges,	and	allow	 the	containers	 to
share	 the	 filesystem	 with	 the	 host.	 Following	 are	 the	 things	 to	 be	 considered	 to	 make
Docker	more	secure.

1.	 Mapping	root	user	of	the	container	to	a	non-root	user	of	the	host,	to	mitigate	the	issue
of	container	to	host	privileges.

2.	 Allowing	Docker	daemon	to	run	without	root	privileges.

The	 recent	 improvements	 in	Linux	 namespaces	 allows	Linux	 containers	 to	 be	 launched
without	 root	privileges,	but	 it	has	not	been	 implemented	yet	 in	Docker	 (as	of	writing	of
this	book)

Docker	Remote	API:	(version	v1.15)
Docker	 remote	 API	 replaces	 the	 remote	 command	 line	 interface	 (rcli).	 To	 demonstrate
how	API	works,	we	will	use	curl	utility	to	work	with	GET	and	POST	methods.	Let’s	look
at	each	API	operations.

Listing	containers
REST	syntax:	GET	/containers/JSON

To	list	all	the	containers	in	a	Docker	host,	run	the	following	command.
curl		http://localhost:5000/containers/JSON?all=1

Creating	containers
To	create	a	container,	run	the	following	command.
curl	-X	POST	-H	“Content-Type:	application/JSON”	-d	\

‘{“Hostname”:””,“Domainname”:	””,“User”:””,“Memory”:0,\

http://localhost:5000/containers/json?all=1

“MemorySwap”:0,“CpuShares”:	512,“Cpuset”:	“0,1”,“AttachStdin”:false,\

“AttachStdout”:true,“AttachStderr”:true,“PortSpecs”:null,“Tty”:false,\

“OpenStdin”:false,“StdinOnce”:false,“Env”:null,“Cmd”:[“date”],\

“Image”:“Dockerfile/redis”,“Volumes”:{“/tmp”:	{}},“WorkingDir”:””,\

“NetworkDisabled”:	false,“ExposedPorts”:{“22/tcp”:	{}},“RestartPolicy”:	\

{	“Name”:	“always”	}}’	http://localhost:5000/containers/create

Inspecting	a	container
Syntax:	GET	/containers/<container-id>/JSON

You	can	inspect	a	container	using	the	following	API	request.
curl		http://localhost:5000/containers/d643811d3707/JSON

Listing	container	processes
Syntax:	GET	/containers/<container-id>/top

You	can	list	the	processes	running	inside	a	container	using	the	following	API	request.
curl		http://localhost:5000/containers/cc3c1f577ae1/top

http://localhost:5000/containers/create
http://localhost:5000/containers/d643811d3707/json
http://localhost:5000/containers/cc3c1f577ae1/top

Getting	container	logs
Syntax:	GET	/containers/<container-id>/logs

Curl		http://localhost:5000/containers/cc3c1f577ae1/logs?stderr=1&stdout=1×tamps=1&follow=1

Exporting	a	container
Syntax:	POST	/containers/<container-id>/export

You	can	export	the	contents	of	a	container	using	the	following	API	request.
curl	-o	rediscontainer-export.tar.gz	http://localhost:5000/containers/cache/export

	

Starting	a	container
Syntax:	POST	/containers/<container-id>/start

You	can	start	a	container	using	the	following	API	request.
curl	-v	-X	POST		http://localhost:5000/containers/cache/start

Stopping	a	container

http://localhost:5000/containers/cc3c1f577ae1/logs?stderr=1&stdout=1×tamps=1&follow=1
http://localhost:5000/containers/cache/export
http://localhost:5000/containers/cache/start

Syntax:	POST	/containers/<container-id>/stop

You	can	stop	a	container	using	the	following	API	request.
curl	-v	-X	POST		http://localhost:5000/containers/cache/stop

	

Restarting	a	container
Syntax:	POST	/containers/<container-id>/restart

You	can	restart	a	container	using	the	following	API	request.
curl	-v	-X	POST		http://localhost:5000/containers/cache/restart

Killing	a	container
Syntax:	POST	/containers/<container-id>/kill

You	can	kill	a	container	using	the	following	API	request.
curl	-v	-X	POST		http://localhost:5000/containers/cache/kill

http://localhost:5000/containers/cache/stop
http://localhost:5000/containers/cache/restart
http://localhost:5000/containers/cache/kill

Creating	an	Image:
Syntax	:	POST	/images/create

You	can	create	an	image	using	the	following	API	request.
curl	-v	-X	POST	http://localhost:5000/images/create?fromImage=base&tag=latest

	

Inspecting	an	image
Syntax:	GET	/images/<image-name>/JSON

You	can	inspect	an	image	using	the	following	API	request.
http://localhost:5000/images/Dockerfile/redis/JSON

	

http://localhost:5000/images/create?fromImage=base&tag=latest
http://localhost:5000/images/dockerfile/redis/json

Getting	the	history	of	an	Image
Syntax:	GET	/images/<image-name>/history

You	can	get	the	history	of	an	image	using	the	following	API	request.
curl		http://localhost:5000/images/Dockerfile/redis/history

Listing	all	images
Syntax:	GET	/images/<image-name>/history

You	can	list	all	the	images	in	your	Docker	host	using	the	following	API	request.
curl		http://localhost:5000/images/JSON

http://localhost:5000/images/dockerfile/redis/history
http://localhost:5000/images/json

Deleting	an	image
Syntax:	DELETE	/images/<image-name>

You	can	delete	an	image	using	the	following	API	request.
curl	-v	-X	DELETE		http://localhost:5000/images/base

http://localhost:5000/images/base

Searching	an	Image
Syntax	:	GET	/images/search

You	can	search	an	image	using	the	following	API	request.
curl		http://localhost:5000/images/search?term=mongodb

	

http://localhost:5000/images/search?term=mongodb

12
Cloud	container	services

In	this	chapter	we	will	look	into	the	following	container	service	based	on	cloud,

1.	 Google	container	engine
2.	 Amazon	container	service	(ECS)

Google	container	engine
Google	 has	 been	 operating	 on	 containers	 for	 years.	 The	 container	 engine	 project	 was
inspired	by	Google’s	 experience	 in	 operating	 container	 based	 applications	 in	 distributed
environments.	 It	 is	 in	 alpha	 stage	 at	 the	 time	 of	 writing	 of	 this	 book	 and	 it	 is	 not
recommended	for	production	use	yet.

At	 the	 backend	 container	 engine	 uses	 kubernetes	 cluster	 for	 scheduling	 and	 managing
containers.	We	 have	 learnt	 to	 work	 with	 kubernetes	 in	 the	 previous	 chapter.	 Container
engine	 is	 a	 wrapper	 on	 top	 of	 kubernetes	 cluster	 by	 which	 you	 can	 create	 kubernetes
cluster	from	a	web	interface	and	google	cloud	CLI’s.

In	 this	 section	 we	 will	 learn	 how	 to	 create	 a	 cluster	 and	 deploy	 a	 sample	 wordpress
application	on	to	a	container	engine.

Note:	 to	 work	 with	 container	 engine,	 you	 should	 have	 a	 compute	 engine	 account	 and
workstation	authenticated.	If	you	do	not	have	a	workstation	configured,	you	can	refer	the
kubernetes	section	in	the	previous	chapters.

Creating	a	cluster
In	 this	 section	 we	 will	 learn	 how	 to	 create	 a	 container	 engine	 cluster	 from	 the	 web
interface	and	using	gcloud	cli.

Using	web	interface
Creating	a	cluster	from	web	interface	is	very	easy	and	can	be	done	with	few	clicks.	Follow
the	steps	given	below	to	set	up	a	cluster	using	the	web	interface.

1.	 Login	to	compute	engine	and	under	compute	tab	you	can	find	the	“container	engine”
option.	Click	that	and	you	will	see	a	“create	cluster”	option.	Click	on	“create	cluster”
option.

2.	 In	 the	 next	 window,	 enter	 the	 necessary	 credentials	 for	 cluster	 configuration.	 For
example,	 cluster	 size	 and	 machine	 type.	 Click	 the	 create	 option	 once	 you	 have
entered	all	the	necessary	information.

3.	 A	cluster	will	be	created	with	the	given	credentials	and	it	takes	few	minutes	for	the
cluster	to	set	up.

Using	gcloud	cli
Another	way	for	creating	a	container	engine	cluster	is	through	gcloud	cli.	Follow	the	steps
given	below	to	create	a	cluster	from	command	line.

1.	 When	you	install	google	cloud	sdk,	the	preview	components	will	not	be	included	in
that.	So	you	need	to	update	preview	components	using	the	following	command.

sudo	gclolud	components	update	preview

	
2.	 We	 already	 have	 a	 cluster	 created	 from	 the	 web	 interface.	 Let’s	 try	 getting	 the

information	about	that	cluster	from	the	cli	using	the	following	command.

Note:	replace	“Docker”	with	your	created	cluster	name	and	“asia-east1-a”	with	the	zone
name	 where	 you	 created	 the	 cluster.	 This	 information	 can	 be	 obtained	 from	 the	 web
interface.
sudo	gclolud		preview	container	clusters	describe	docker	—zone	asia-east1-a

	

	
3.	 Set	 two	 environment	 variables	 $CLUSTER_NAME	 and	 $ZONE	 for	 creating	 a

cluster	from	cli	using	the	following	command.

gcloud	preview	container	clusters	create	$CLUSTER_NAME	—num-nodes	1	\

—machine-type	g1-small	—zone	$ZONE

Install	kubecfg	client
The	workstation	need	to	have	kubecgf	client	installed	on	it	to	deploy	kubernetes	pods	on
the	cluster.

Download	the	kubecfg	linux	client	using	the	following	command.
wget	http://storage.googleapis.com/k8s/linux/kubecfg

	

Change	the	permissions	of	the	kubecfg	folder	and	move	it	to	/usr/local/bin	folder	using	the
following	commands.
chmod	-x	kubecfg

mv	kubecfg	/usr/local/bin

Now	 we	 have	 every	 configuration	 set	 to	 deploy	 containers	 from	 the	 cli.	 Execute	 the

http://storage.googleapis.com/k8s/linux/kubecfg

following	gcloud	command	to	deploy	a	wordpress	container	from	tutum/wordpress	image.
gcloud	preview	container	pods	—cluster-name	$CLUSTER_NAME	create	wordpress	\

—image=tutum/wordpress		—port=80	—zone	$ZONE

To	get	the	information	about	the	container	we	just	created,	execute	the	following	gcloud
describe	command.
sudo	gclolud		preview	container	pods		—cluster-name	\	$CLUSTER_NAME	describe	wordpress

From	the	output,	you	can	view	the	container	IP,	status	and	other	information.	The	status
shows	it	is	running.

Let’s	try	accessing	the	wordpress	application	from	the	browser.

Note:	Open	port	 80	 in	 the	 network	 settings	 of	 the	 instance	 from	 the	 cluster	 to	 view	 the
application	in	the	browser.

Now	we	have	a	running	WordPress	application	on	container	engine.

Amazon	container	service	(ECS)
Amazon	web	services	has	a	container	service	called	ec2	container	service.	At	the	time	of
writing	this	book,	it	is	in	preview	mode.	In	this	section	we	will	discuss	the	ec2	container
service	and	its	features.

EC2	container	 service	 is	 a	highly	 scalable	container	management	 service.	ECS	supports
Docker	 and	 it	 can	 manage	 containers	 to	 any	 scale.	 This	 service	 makes	 it	 easy	 for
deploying	 containers	 in	 a	 cluster	 to	 run	 distributed	 applications.	ECS	has	 the	 following
features.

1.								Manages	your	containers	(metadata,	instance	type	etc.,)

2.							Schedules	containers	on	to	your	cluster.
3.							Scaling	containers	from	few	to	hundreds
4.							High	performance,	the	cluster	runs	inside	VPC.
5.	 	 	 	 	 	 	Manages	cluster	state.	Using	simple	API	calls	,	you	can	start	and	terminate
containers
6.	 	 	 	 	 	 	You	 can	 get	 the	 state	 of	 the	 container	 by	 querying	 the	 cluster	 from	 a
centralized	service.
7.	 	 	 	 	 	 	Along	with	containers,	you	can	 leverage	 the	other	AWS	features	 such	as
security	groups,	ECS	volumes,	policies	etc.	for	enhanced	security.
8.							You	can	distribute	the	containers	in	a	cluster	among	availability	zones
9.							Eliminates	the	need	for	third	party	container	cluster	management	tools.
10.	 	 	 	 ECS	 is	 a	 free	 service	 you	 will	 have	 to	 pay	 only	 for	 the	 backend	 ec2
resources	you	use.

Docker	compatibility
Docker	 platform	 is	 supported	 by	 ec2	 container	 service.	 You	 can	 run	 and	manage	 your
Docker	container	in	ECS	cluster.	All	the	ec2	machines	in	the	ECS	cluster	come	bundled
with	Docker	daemon.	So	 there	 is	no	additional	need	 to	configure	 the	server	 to	setup	 the
Docker	 daemon.	 You	 can	 seamlessly	 deploy	 containers	 from	 the	 development
environment	to	the	ECS	cluster.

Managed	Clusters
A	 challenging	 part	 in	 Docker	 container	 deployments	 is	 the	 cluster	 management	 and
monitoring.	 ECS	 make	 your	 life	 so	 easy	 by	 handling	 all	 the	 complex	 cluster
configurations.	 You	 can	 focus	 on	 container	 deployments	 and	 its	 tasks,	 leaving	 all	 the
complex	cluster	configurations	to	ECS.

Programmatic	Control
You	 can	 integrate	 ECS	 with	 any	 application	 using	 its	 rich	 API	 features.	 Cluster
management	and	container	operations	can	be	managed	programmatically	using	ECS	API.

Scheduler
ECS	has	an	efficient	scheduler	which	schedules	containers	on	to	the	cluster.	The	scheduler
decides	in	which	host	the	container	should	be	deployed.	Another	interesting	ECS	feature
is	 that	 you	 can	 develop	 your	 own	 scheduler	 or	 you	 can	 use	 some	 other	 third	 party
scheduler.

Docker	Repository
You	can	use	Docker	public	registry,	your	own	private	registry	and	third	party	registries	for
image	management	 and	 container	 deployments.	The	 registry	you	want	 to	 use	with	ECS
should	be	specified	in	the	task	file	used	for	container	deployments.

Now	let’s	look	at	the	core	components	of	ECS.

Ec2	container	service	has	four	main	components,

1.	 Tasks
2.	 Containers
3.	 Clusters
4.	 Container	instances

Tasks
Task	is	a	declarative	JSON	template	for	scheduling	the	containers.	A	task	is	a	grouping	of
related	 containers.	 A	 task	 could	 range	 from	 one	 to	 many	 containers	 with	 links,	 shared
volumes	etc.	An	example	task	definition	is	given	below.
{																

“family”	:	“Docker-website”,

“version”	:	“1.0”

“contianers”	:	[

<container	definitions>

]}

Container	definition
A	container	definition	has	the	following

1.								Container	name
2.							Images
3.							Runtime	attributes	(ports	,	env	variables	,etc)

An	example	container	definition	is	given	below
{

“name”	:	“dbserver”	,

			“image”	:	“Ubuntu:latest”,

			“portmappings”	:	[{	“contianerport”	“	3306	,	“hostport”	:	3308

}

Clusters
Clusters	provide	a	pool	of	resources	for	your	tasks.	It	groups	all	the	container	instances.

Container	instance
A	container	 instance	 is	an	EC2	instance	on	which	 the	ECS	agent	 is	 installed	or	an	AMI
with	ECS	agent	installed.	Each	container	instance	will	register	itself	to	the	cluster	during
launch.
	

	

Table	of	Contents
Linux	Containers

Namespaces:
Cgroups
Copy	on	write	file	system:

Docker

Introduction
Why	to	use	Docker

Docker	Architecture:
Docker	internal	components:

Working	of	Docker:
Underlying	Technology:
Immutable	infrastructure	with	Docker

Installation

Supported	platforms:
Installing	Docker	on	windows:
Installing	Docker	on	Ubuntu:
Launching	Docker	containers:

Creating	a	daemonized	container:
Connecting	remote	docker	host	using	docker	client
Docker	server	access	over	https

Working	with	containers

Docker	Images

Container	linking

Linking	containers	together:

Data	management	in	containers

Docker	data	volumes:

Building	and	testing	containers	from	scratch

Dockerfile
Dockerfile	Best	Practices
A	static	website	using	Apache
Creating	MySQL	image	and	containers
Creating	a	WordPress	container
Running	multiple	websites	on	a	single	host	using	Docker:
Building	and	testing	containers	using	Jenkins

Docker	Provisioners

Docker	vagrant	provisioner
Managing	Docker	using	chef

Docker	Deployment	Tools

Fig
Shipyard
Panamax

Docker	Service	Discovery	and	Orchestration

Service	discovery	with	consul
Consul	Architecture
Docker	cluster	management	using	Mesos

Mesosphere
Docker	cluster	management	using	Kubernetes

Kubernetes	components
Minion	server

Work	Units
Installation

Docker	orchestration	using	CoreOS	and	fleet
CoreOS	Architecture

Networking,	security	and	API’s

Docker	networking
Docker	security
Docker	Remote	API:	(version	v1.15)

Cloud	container	services

Google	container	engine
Amazon	container	service	(ECS)

	Linux Containers
	Namespaces:
	Cgroups
	Copy on write file system:

	Docker
	Introduction
	Why to use Docker

	Docker Architecture:
	Docker internal components:

	Working of Docker:
	Underlying Technology:
	Immutable infrastructure with Docker

	Installation
	Supported platforms:
	Installing Docker on windows:
	Installing Docker on Ubuntu:
	Launching Docker containers:
	Creating a daemonized container:

	Connecting remote docker host using docker client
	Docker server access over https

	Working with containers
	Docker Images
	Container linking
	Linking containers together:

	Data management in containers
	Docker data volumes:

	Building and testing containers from scratch
	Dockerfile
	Dockerfile Best Practices
	A static website using Apache
	Creating MySQL image and containers
	Creating a WordPress container
	Running multiple websites on a single host using Docker:
	Building and testing containers using Jenkins

	Docker Provisioners
	Docker vagrant provisioner
	Managing Docker using chef

	Docker Deployment Tools
	Fig
	Shipyard
	Panamax

	Docker Service Discovery and Orchestration
	Service discovery with consul
	Consul Architecture
	Docker cluster management using Mesos
	Mesosphere

	Docker cluster management using Kubernetes
	Kubernetes components
	Minion server

	Work Units
	Installation

	Docker orchestration using CoreOS and fleet
	CoreOS Architecture

	Networking, security and API’s
	Docker networking
	Docker security
	Docker Remote API: (version v1.15)

	Cloud container services
	Google container engine
	Amazon container service (ECS)

