. -
Gy
i N
il

Navin Sabharwal

Bibin W

Hands on Docker

Dedicated to the people I love and the God I trust.

— Navin Sabharwal

Dedicated to people who made my life worth living and carved me into an
individual I am today and to God who shades every step of my life.

— Bibin W

Contents at a Glance

: Linux Container

: Docker

: Docker Installation

: Working With Images and Container

: Docker Container Linking and Data Management

: Building images and containers from scratch using Dockerfile
: Testing and building container’s using Jenkins

: Docker Provisioning using Chef and Vagrant

© 00 N O Ul A W N =

: Deployment, Service Discovery and Orchestration tools for Docker
10: Networking, Security and Docker API’s

11: Cloud Based Container Services

Contents

Linux Containers

Namespaces:
Cgroups
Copy on write file system:

Docker

Introduction
Why to use Docker

Docker Architecture:
Docker internal components:

Working of Docker:

Underlying Technology:
Immutable infrastructure with Docker

Installation

Supported platforms:
Installing Docker on windows:
Installing Docker on Ubuntu:

Launching Docker containers:

Creating a daemonized container:

Connecting remote docker host using docker client

Docker server access over https

Working with containers
Docker Images
Container linking

Linking containers together:

Data management in containers

Docker data volumes:

Building and testing containers from scratch

Dockerfile
Dockerfile Best Practices

A static website using Apache

Creating MySQL image and containers

Creating a WordPress container

Running multiple websites on a single host using Docker:
Building and testing containers using Jenkins

Docker Provisioners

Docker vagrant provisioner
Managing Docker using chef

Docker Deployment Tools
Fig

Shipyard
Panamax

Docker Service Discovery and Orchestration

Service discovery with consul

Consul Architecture

Docker cluster management using Mesos
Mesosphere

Docker cluster management using Kubernetes

Kubernetes components
Minion server

Work Units

Installation

Docker orchestration using CoreOS and fleet

CoreOS Architecture

Networking, security and API’s

Docker networking

Docker security
Docker Remote API: (version v1.15)

Cloud container services

Google container engine

Amazon container service (ECS)

A

P otz JiTe s ||

¥ AT |91 955
AT 1T FAEEA

e 3 T | |

Om Asato ma sadgamaya
Tamaso ma jyotirgamaya

Mrityorma amritam gamaya
98 YOE IuANE 1.3.28

From untruth, lead me to the truth;
From darkness, lead me to the light;
From death, lead me to immortality.

About the Authors

Navin Sabharwal is an innovator, thought leader, author, and consultant in the areas of
virtualization, cloud computing, big data and analytics.

Navin has created niche award-winning products and solutions and has filed numerous
patents in diverse fields such as IT services, virtual machine placement, cloud capacity
analysis, assessment engines, ranking algorithms, capacity planning engines, and
knowledge management.

Navin holds a Masters in Information Technology and is a Certified Project Management
Professional.

Navin has authored the following books: Cloud Computing First Steps (Publisher:
CreateSpace, ISBN#: 978-1478130086), Apache Cloudstack Cloud Computing (Publisher:
Packt Publishing, ISBN#: 978-1782160106), Cloud Capacity Management (Publisher
Apress, ISBN #: 978-1430249238)

Bibin W has been working with virtualization and cloud technologies, he is a subject
matter expert in VMware, Linux Container, Docker, Amazon Web Services, Chef and
Azure.

Bibin holds a Masters in Computer Science from SRM University, Chennai.

The authors can be reached at architectbigdata@gmail.com.

mailto:architectbigdata@gmail.com

Acknowledgments

Special thanks go out to the people who have helped in creation of this book Dheeraj
Raghav for his creative inputs in the design of this book, Piyush Pandey for his reviews
and insights into the content.

The authors will like to acknowledge the creators of virtualization technologies and the
open source community for providing such powerful tools and technologies and enable
products and solutions which solve real business problems easily and quickly.

Preface

Docker is making waves in the technology circles and is rapidly gaining mindshare from
developers, startups, technology companies and architects.

We all know how virtualization has changed the datacenter and cloud forever,
virtualization has allowed enterprises and cloud providers to make the datacenter more
agile, manageable, cloud friendly and application friendly. However virtualization has
overheads of the guest operating system and costly licensing for virtualization software,
thus limiting the utilization of the host.

The Containerization technology is seeing resurgence with Docker, containerization has
been around since many years, and however it is now that Docker has revived the interest
of the technology community in containers.

Fundamental support for containerization was actually included in the Linux 2.6.24 kernel
to provide operating system-level virtualization and allow a single host to operate multiple
isolated Linux instances, called Linux Containers (LXC). LXC is based on Linux control
groups (cgroups) where every control group can offer applications complete resource
isolation (including processor, memory and I/O access). Linux Containers also offer
complete isolation for the container’s namespace, so supporting functions like file
systems, user IDs, network IDs and other elements usually associated with operating
systems are unique for each container.

Docker uses the container technology but creates a layer above the LXC layer for
packaging, deployment and migration of workloads to different hosts.

Docker container technology has taken the cloud and application development world by
storm since it was open-sourced a little over a year ago, offering a way to package and
deploy applications across a variety of Linux instances.

Enterprises stand to gain by further reducing the datacenter footprint and using the host’s
resources to their maximum using the Docker and LXC technology. Coupled with the ease
of migration and fast scale out of containers it is turning out to be a technology which is
well suited for the cloud use case.

Docker is also going to have an impact on the devops lifecycle, by providing capabilities
to support immutable infrastructure model, technologies like Docker may fundamentally
change the way the operations world works, rather than updating the current running
instances of operating systems, organizations may move to a model where the server
container itself is replaced with a newer version and the old ones are taken out.

This book will help our readers to appreciate the Docker technology, the benefits and
features provided by Docker and get a deep dive technical perspective on architecting
solutions using Docker.

The book will enable a reader to appreciate, install, configure, administer and deploy
applications on the Docker platform.

We sincerely hope our readers will enjoy reading the book as much as we have enjoyed
writing it.

About this book

This book

¢ Introduces Docker to readers, the core concepts and technology behind Docker.
¢ Provides hands on examples for installing and configuring Docker

e Provides insight into packaging applications using Docker and deploying them.
e Provides step by step guidelines to have your Docker setup ready

e Detailed coverage of Mesosphere for Docker deployment and management

e Detailed coverage of Kubernetes clusters and Fleet.

¢ Hands on coverage of deployment tools including Fig, Shipyard and Panamax
e Step by Step guidelines to help you package your application on Docker

¢ Introduction to Google Container Engine for Docker

What you need for this book

Docker supports the most popular Linux and UNIX platforms.
Download the latest stable production release of Docker from the following URL:

https://docs.Docker.com/installation/

In this book we have focused on using Docker on a 64-bit Ubuntu 14.04 platform and at
places have cited references on how to work with Docker running on other Linux and
windows platforms.

At the time of writing, the latest stable Docker production release is 1.3.1

We will be using 64-bit Ubuntu 14.04 for examples of the installation process.

https://docs.docker.com/installation/

Conventions Used In the Book

Italic indicates important points, commands.

This is used to denote the Code Commands
This is the Output of the command.............

This is used for Example commands

¥ This icon indicates statistics figures

&y

% This icon indicates examples

2

¥ This icon indicates points to be noted.

[]
43 This icon indicates further reading links or references.

Who this book is for

This book would be of interest to Virtualization Professionals, Cloud Architects,
technology enthusiasts, Application Developers.

The book covers aspects on Docker and provides advanced guidance on planning and
deploying the Docker technology for creating Infrastructure as a Service Clouds to using
the technology to package and deploy your applications.

1

Linux Containers

In this chapter we will cover the basics of Linux containers.

Virtualization refers to the creation of virtual machines which have an independent
Operating Systems but the execution of software running on the virtual machine is
separated from the underlying hardware resources. Also it is possible that multiple virtual
machines can share the same underlying hardware.

The actual machine that runs the virtualization software is called host machine and the
virtual machine running on top of the virtualization software is called the guest machine.
The software that provides virtualization capabilities and abstracts the hardware is called a
“Virtual Machine Manager” or a “Hypervisor”. Popular hypervisor platforms are
VMware, HyperV, Xen and KVM.

Docker works on a technology called Linux containers. Linux containers have a different
approach than virtualization; you may call it an OS level virtualization, which means all
the containers run on top of one Linux operating system.

You can run the host OS directly on the hardware or it can be running on a virtual
machine. Each container run’s as a fully isolated operating system.

Linux containers are light weight virtualization system running on top of an operating
system. It provides an isolated environment almost similar to a standard Linux
distribution.

Docker works with LXC Container-based virtualization. It is also called operating
system virtualization One of the first container technologies on x86 was actually
on FreeBSD, in the form of FreeBSD Jails.

In container virtualization rather than having an entire Operating System guest OS,
containers isolate the guest but do not virtualize the hardware. For running containers one
needs a patched kernel and user tools, the kernel provides process isolation and performs
resource management. Thus all containers are running under the same kernel but they still
have their own file system, processes, memory etc.

Unlike virtual machines all containers running on a host use the same kernel. Moreover
starting and stopping a container is much faster than a virtual machine. It delivers an
environment as close as possible to a standard Linux distribution. Containers from the
inside are like a VM and from outside like a bunch of Linux processes.

With container-based virtualization, installing a guest OS is done using a container
template.

In container approach one is usually limited to a single operating system, thus you cannot
run Linux and windows together.

There are various advantages of using containers as compared to virtualization in terms of
performance and scalability. A container based solution works well if you intend to run
many hundreds of guests with a particular operating system, because they carry lesser
overhead. The number of virtual machines available with container approach can be much
higher as compared to virtualization as resources are available to the application rather
than being consumed by multiple Guest OS instances running on a host.

One area where containers are weaker than VMs is isolation. VMs can take advantage of
ring -1 hardware isolation such as that provided by Intel’s VI-d and VT-x technologies.
Such isolation prevents VMs from ‘breaking out’ and interfering with each other.
Containers don’t yet have any form of hardware isolation, which makes them susceptible
to exploits.

Docker works well within a VM, which allows it to be used on existing virtual
infrastructure, private clouds and public clouds. Thus Virtualization and Containerization
will co-exist and in future there may be a hybrid approach which provides a unified way to
leverage and manage Virtualization and Containerization.

Hypenrhnf

Fig 1-1: Linux Containers

Containers work on the concept of process level virtualization. Process level virtualization
has been used by technologies like Solaris zones and BSD jails for years. But the
drawback of these system is that they need custom kernels and cannot run on mainstream
kernels. As opposed to Solaris zones and BSD rails, LXC containers have been gaining
popularity in recent years because they can run on any Linux platform. This led to the
adoption of containerization by various cloud based hosting services.

If you look into Linux based containers there are two main concepts involved,

1. Namespaces and
2. Cgroups (Control groups.)

https://en.wikipedia.org/wiki/X86_virtualization#Hardware-assisted_virtualization

DRIVERS
CINE AL
i

Fig 1-2: Namespaces and Cgroups

Namespaces:

In Linux there are six kinds of namespaces which can offer process level isolation for
Linux resources. Namespaces ensure that each container sees only its own environment
and doesn’t affect or get access to processes running inside other containers. In addition,
namespaces provide restricted access to file systems like chroot, by having a directory
structure for a container.

The container can see only that directory structure and doesn’t have any access to any
level above it. Namespaces also allow containers to have its own network devices, so that
each container can have its own IP address and hostname. This lets each container run
independently of each other. Let’s have a look at each namespace in detail.

Pid Namespace

This namespace is considered as most important isolation factor in containers. Every pid
namespace forms its own hierarchy and it will be tracked by the kernel. Another important
feature is that the parent pid’s can control the children pid’s but the children pid’s cannot
signal or control the parent pid.

Let’s say we have ten child pid’s with various system calls and these pid’s are meaningful
only inside the parent namespace. It does not have control outside its parent namespace.
So each isolated pid namespace will be running a container and when a container is
migrated to another host the child pid’s will remain the same.

Net namespace

This namespace is used for controlling the networks. Each net namespace can have its
own network interface. Let’s say we have two containers running with two different pid
namespace and we want two different instances of Nginx server running on those
containers. This can be achieved by net namespaces because each net namespace would
contain its own network interface connected to an Ethernet bridge for connection between

containers and the host.

Ipc namespace

This namespace isolates the inter-process communication.

Mnt namespace

This namespace isolates the file system mount points for a set of processes. It works more
like an advanced and secure chroot option. A file system mounted to a specific mnt
namespace and can only be accessed by the process associated with it.

Uts namespace

This namespace provides isolation for hostname and NIS domain name. This can be useful
for scripts to initialize and configure actions based on these names. When hostname is
changed in a container, it changes the hostname only for the process associated with that
namespace.

User namespace

This namespace isolates the user and group ID namespaces. User namespace allows per-
namespace mappings of user and group IDs. This means that a process’s user and group
IDs inside a user namespace will be different from its IDs outside of the namespace.

Moreover, a process can have a nonzero user ID outside a namespace while at the same
time having a user ID of zero inside the namespace; in other words, outside its user
namespace all the processes will have unprivileged access for operations.

Cgroups

Cgroups (control groups) is a feature of Linux kernel for accounting, limiting and isolation
of resources. It provides means to restrict resources that a process can use. For example,
you can restrict an apache web server or a MySQL database to use only a certain amount
of disk IO’s.

So, Linux container is basically a process or a set of processes than can run in an isolated
environment on the host system.

Before getting into Docker let’s understand another important aspect of containers “copy
on write file system”™.

Copy on write file system:

In normal file system like ext4, all the new data will be overwritten on top of existing data
and creates a new copy. Unlike other Linux file systems copy on write file system never
overwrites the live data, instead it does all the updating using the existing unused blocks in
the disk using copy on write functionality (COW). The new data will be live only when all
the data has been updated to the disk.

For example, consider how data is stored in file system. File systems are divided in to
number of blocks, let’s say 16 blocks. So each innode will have 16 pointers to blocks. If a

file stored is less than 16 blocks, the innode will point to the block directly. If the data
exceeds 16 blocks, the 16 block will become a pointer to more blocks creating an indirect
pointer.

Innode .F—..
|
Indirect Block E I Tl E.\-Il
B

Pointers

User Data

Fig 1-3: copy on write

When you modify an existing data, it will be written on unused blocks in the file system
leaving the original data unmodified. All the indirect block pointers have to be modified in
order to point to the new blocks of data. But the file system will copy all the existing
pointers to modify the copy. File system will then update the innode again by modifying
the copy to refer to the new blocks of indirect pointers. Once the modification is complete,
the pointers to original data remain unmodified and there will be new set of pointers,
blocks and innode for the updated data.

Innode

Indirect Block r
Pointers || [——

User Data I-

Fig 1-4: copy on write mechanism

One of the file systems used by Docker is BTRFS. Resources are handles using Copy on
Write (COW) when same data is utilized by multiple tasks. When an application requests
data from a file, the data is sent to memory or cache. Individual applications then have
their own memory space. In the case when multiple applications request the same data,
only one memory space is allowed by COW and that single memory space is pointed to by
all applications. An application, which is changing data, is given its own memory space

with the new updated information. The other applications continue using the older pointers
with original data.

BTRFS also uses the file system level snapshotting to implement layers. A snapshot is a
read-only, point-in-time copy of the file system state. A storage snapshot is created using
pre-designated space allocated to it. Whenever a snapshot is created, the metadata
associated with the original data is stored as a copy. Meta data is the data which gives full
information about the data stored in the disk. Also snapshot does not create a physical
copy and creation of a snapshot is nearly immediate. The future writes to the original data
will be logged and the snapshot cautiously keeps tracks of the changing blocks. The duty
of the copy-on-write is to transfer the original data block to the snapshot storage, prior to
the write onto the block. This in turn makes the data remain consistent in the time based
snapshot.

Any “read-requests” to snapshots of unchanged data are reflected to the original volume.
Requests are directed to the “copied” block only in the scenario when the requests are
related to the changed data. Snapshots maintain meta-data, containing reports pertaining to
the data blocks, which have been updated since the last snapshot was performed. Attention
must be given to the fact that the data blocks are copied only at once, into the snapshot, on
first write instance basis

Refers to parent

r 3

Parent Child

Fig 1-5: COW image snapshot

One of the main advantages of copy-on-write technique is its space efficiency. This is due
to the fact that space required to create a snapshot is minimal, as it holds only the data
which is being updated, also, the data is considered to be valid only when the original
copy is available. The performance of original data volume is somewhat impacted by
copy-on-write technique of snapshot, because the write requests to data blocks can only be
performed when original data is being “copied” to the snapshot. Read requests are
diverted to the original volume when the data remains unchanged.

2
Docker

Introduction

The best way to describe Docker is to use the phrase from the Docker web site—Docker is
“an open source project to pack, ship and run any application as a lightweight container.”
Thus the idea of Docker is to have an abstraction layer that allows the application
developers to package any application and then let the containerization technology take
care of the deployment aspects to any infrastructure.

Docker is analogous to shipping containers where you can load the goods in standardized
containers and ship to different locations without much hassle. The advent of standardized
containers made shipping fast and agile. Docker does the same with applications.

Docker platform can be used by developers and system administrators for developing and
shipping applications to different environments. The decoupled parts of the application
can be integrated and shipped to production environments really fast.

For example, a developer can install and configure an application in Docker container,
pass it on to an ops person and he can deploy it on to any server running Docker. The
application will run exactly like it ran on the developer’s laptop.

This amazing feature of Docker results in huge savings in the time and effort spent on
deploying applications, ensuring that the dependencies are available and troubleshooting
the deployment because of issues related to dependencies and conflicts.

Docker technology is well suited for applications deployed on cloud as it makes their
migration simpler and faster.

Docker leverages LXC (Linux Containers), which encompasses Linux features like
cgroups and namespaces for strong process isolation and resource control. However it is to
be noted that Docker is not limited to LXC but can use any other container technology in
future and with the new release they now support libcontainer.

Docker leverages a copy-on-write file system and this allows Docker to instantiate
containers quickly because it leverages the pointers to the existing files. Copy-on-write
file system also provides layering of containers, thus you can create a base container and
then have another container which is based on the base container.

Docker uses a “plain text” configuration language to define and control the configuration
of the application container. This configuration file is called a DockerFile.

Docker makes use of Linux kernel facilities such as cGroups, namespaces and SElinux to
provide isolation between containers. At first Docker was a front end for the LXC
container management subsystem, but release 0.9 introduced libcontainer, which is a
native Go language library that provides the interface between user space and the kernel.

Containers sit on top of a union file system, such as AUFS, which allows for the sharing

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://selinuxproject.org/page/Main_Page
https://linuxcontainers.org/
http://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
http://aufs.sourceforge.net/aufs.html

of components such as operating system images and installed libraries across multiple
containers.

A container is started from an image, which may be locally created, cached locally, or
downloaded from a registry. Docker Inc operates the Docker Hub public registry, which
hosts official repositories for a variety of operating systems, middleware and databases.

Most linux applications can run inside a Docker container, containers are started from
images and running containers can be converted into images. There are two ways to create
application packages for containers Manual and Dockerfile.

Manual builds

A manual build starts by launching a container with a base operating system image.
Normal process for installation of an application on the operating system is performed and
once the application is installed the container can be exported to a tar file or can be pushed
to a registry like Docker Hub.

Dockerfile

This method is more scripted and automated for construction of a Docker Container. The
Dockerfile specifies the base image to start and then the other installation on top are
defined as a series of commands that are run or files that are added to the container.

The Dockerfile also can specify other aspects of configuration of a container such as ports,
default commands to be run on startup etc. Similar to the manual approach Dockerfile can
be exported and the Docker Hub can use an automated build system to build images from
a Dockerfile.

Why to use Docker

Let’s look at a few features which make Docker useful and attractive to application
developers and infrastructure administrators alike:

Portable Deployments:

As containers are portable, the applications can be bundled in to a single unit and can be
deployed to various environments without making any changes to the container.

Fast application delivery:

The workflow of Docker containers make it easy for developers, system administrators,
QA and release teams to collaborate and deploy the applications to production
environments really fast.

Because of the standard container format, developers only have to worry about the
applications running inside the container and system administrators only have to worry
about deploying the container on to the servers. This well segregated Docker management
leads to faster application delivery.

https://registry.hub.docker.com/

G A - " {(0) P ~— Cloud

b A4 ——

':‘__ﬁ_"_'_'

) o Automation 3 Hl
Tester Containers
Moreover, building new containers is fast because containers are very light weight and it
takes seconds to build a new container. This in turn reduces the time for testing,
development and deployment. Also, a container can be built in iterations, thus providing a
good visibility on how the final application has been built.

Docker is great for development lifecycle. Docker containers can be built and packaged in
developers laptop and can be integrated with continuous integration and deployment tools.

For example, when an application is packaged in a container by the developer, it can be
shared among other team members. After that it can be pushed to the test environment for
various tests. From the test environment you can then push all the tested containers to the
production environment.

Scale and deploy with ease:

Docker containers can virtually run on any Linux system. Containers can be deployed on
cloud environments, desktops, on premise datacenters, physical servers and so on. You can
move containers from your desktop environment to cloud and back to physical servers
easily and quickly.

Another interesting factor about container is scalability. Scaling up and down containers is
blazingly fast. You can scale up containers from one to hundred’s and scale it down when
not needed. Thus Docker containers are ideally suited for scale out applications
architected and built for the public cloud platforms.

Higher workloads with greater density:

Fig 2-2: Virtual machine Vs. Docker containers

More container applications can be deployed on a host when compared to virtual
machines. Since there is no need for Docker to use a hypervisor, the server resources can
be well utilized and cost of extra server resources can be reduced. Because Docker
containers do not use a full operating system, the resource requirements are lesser as
compared to virtual machines.

%\F ew use cases
1. Applications can be deployed easily on server with build pipeline.

2. Can be used in production environments with Mesos or Kunbernetes for application HA
and better resource utilization.

3. Easy to clone the production environment in developer s workstation.

4. To perform load/scale testing by launching containers.

Docker Architecture:

Docker has client server architecture. It has a Docker client and a Docker daemon. The
Docker client instructs the Docker daemon for all the container specific tasks. The
communication between the Docker client and Docker daemon is carried out through
sockets or through REST API’'s. Docker daemon creates runs and distributes the
containers based on the instructions from the Docker client. Docker client and Docker
daemon can be on the same host or different hosts.

commands

Fig 2-3: Docker Architecture

Docker Daemon:

Docker daemon is responsible for all the container operations. It runs on the host machine
as shown in Fig 2-3. User cannot interact with the daemon directly instead all the
instructions have to be sent through the Docker client.

Docker client:

Docker client can either be installed on the same host as Docker daemon or in a different
host. It is the main interface to the Docker daemon. It accepts commands from the user
and sends it to the Docker daemon for execution and provides the output to the user.

Docker internal components:

To understand Docker, you need to know about its three internal components. They are,

1. Docker image
2. Docker registry
3. Docker container.

Fig 2-4: Docker components
Docker image:

A Docker image is like a golden template. An image consists of OS (Ubuntu, centos etc.,)
and applications installed on it. These images are called base images. A Docker base
image is the building block of a Docker container from where a container can be created.
An image can be built from scratch using Docker inbuilt tools. You can also use Docker
images created by other users from Docker public registry (Docker hub) as a base image
for your containers.

Docker registry:

Docker registry is a repository for Docker images. It can be public or private. The public
Docker registry maintained by Docker is called Docker hub. Users can upload and
download images from the Docker registry. The public Docker registry has a wvast
collection of official and user created images. To create a container, you can either use the
public images created by another user or you can use your own images by uploading it to
the public or private registry.

Docker container:

A container is more of a directory and an execution environment for applications. It is
created on top of a Docker image and it is completely isolated. Each container has its own
user space, networking and security settings associated with it. A container holds all the
necessary files and configurations for running an application. A container can be created,
run, started, moved and deleted.

Working of Docker:

So far we have learnt about Docker architecture and its components. Now let’s look in to
how all the components come together to make Docker work.

Working of Docker image:

We have learnt the basic concept of a Docker image. In this section we will learn how
exactly a Docker image works.

Each Docker image is an association of various layers. This layered approach provides a
great way of abstraction for creating Docker images. These layers are combined in to a
single unit using Uniform file system (AUFS). AUFS stores every layer as a normal
directory, files with AUFS metadata. This ensures that all the files and directories are
unique to the particular layer. AUFS creates a mount point by combining all the layers
associated with the image. Any changes to the image will be written on the topmost layer.

This is the reason why the Docker containers are very light weight.

For example, when you make an update to an existing application, Docker either creates a
layer on the existing image or updates the existing layer. The newly created layers will
refer its previous layer. Docker does not rebuild the whole image again for the application
like virtual machines. When you push the new updated image to the registry it will not
redistribute the whole image, instead it updates just the layer on top of the existing base

image. This makes Docker fast in creating new applications from the existing images.

Reference
Image

Fig 2-5: Docker Images

Points to remember
Every Docker image has a base image (eg: ubuntu ,centos, fedora, debian etc.,)

You can use you own images as a base image for your applications. Lets say you have a
ubuntu image with mySQL installed on it. You can use this as a base image for all you
database containers.

A configuration file called Dockerfile holds the instructions in descriptive form for
building a new image. Dockerfile will have instructions for running commands, creating
directories, adding files from host etc., We will learn about Docker file in detail in the
subsequent chapters.

When you build a new image from scratch, the base image (specified by user) will be
downloaded from the Docker hub and the applications specified in the instructions
(Dockerfile) will be created as layers on top of the base image. Then you can use this
image as a base image for your applications.

Working of Docker registry

Docker registry is used for storing Docker images. Images can be pushed and pulled from
Docker registry for launching containers. There are two types of Docker registries.

1. Public registry (Docker hub): It contains official Docker images and user created
images.

2. Private registry: A registry created by a user for storing private Docker images in
your datacenter. You can also create a private registry in Docker hub.

All the images in the registry can be searched using Docker client. The images can be
pulled down to the Docker host for creating containers and new images.

Pull to deploy

Fig 2-6: Docker Registry
Points to remember

1. Public images can be searched and pulled by any one registered to Docker hub.
Images can be searched from Docker client and Docker hub web ui.

2. Private images are only accessible by the registry owner and it does not appear on
public registry search results.

3. You can create private registries in Docker hub.You can create one private registry
for free and you need paid subscription for Docker hub to create more than one
private registry.

How container works:

As we learnt earlier, a container is an execution environment for applications. It contains
all the operating system files, files added by users and metadata. Basically a container is
launched from an image, so the applications which are installed and configured on an
image will run on the container created from it. As the images are in ready only format,
when a container is launched, a read/write layer will be added on top of the image for the
container for the applications to run and make changes to it.

The Docker client receives the command from the Docker binary or REST API to run a
container. The basic Docker command to run a container is shown below.

sudo docker run -i -t ubuntu /bin/bash

g@};

L "'z-,] When you run the above command from Docker binary, here is what happens,
1. Docker client will be launched with “Docker run” command.

2. It tells the daemon, from which image the container should be created. In our
example, it is a Ubuntu image.

3. “-i” tells the Docker daemon to run the container in interactive mode.
4. “-t” represents tty mode for interactive session.

5. “/bin/bash” tells the Docker daemon to start the bash shell when the container is
launched.

On successful execution of the Docker run command, Docker will do the following
actions at the backend.

1. Docker checks if the specified Docker image in the command is present locally on
the host. If it is present locally, Docker will use that image for creating a container. If
not, it will download the image from the public or private registry (based on the
Docker host configuration) on the host.

2. The local or pulled image will be used for creating a new container.

Binary/APl
request

mon Pulls Image

Creates container
from the image

A%l

Container(r/w
layer)

Fig 2-7: working of a container.

3. Once the image is set, Docker will create a read/write file system over the image.

4. Then Docker creates the necessary network interfaces for the container to interact
with the host machine.

5. Docker checks for available IP address from the pool and allocates one to the
container.

6. Then it executes the command specified in the command e.g. /bin/bash shell

7. Finally it logs all the input/output and errors for the user to find out the status of the
container.

There are various other actions associated with the “Docker run” command. We will look
in to it in the subsequent chapters.

Underlying Technology:

In this section we will see the underlying technology like namespace, cgroups and file
systems of Docker.

Containers work on the concept of namespaces. Docker uses the same technology for
isolating container execution environments. When you create a Docker container, Docker
creates namespaces for it. These namespaces are the main isolation factor for the
container.

Every element of a container has its own namespace and all the access remains inside that
namespace. Thus the container elements do not have any access outside its namespace.

Fig 2-8: Docker namespaces and cgroups.

Namespaces:
The namespaces used by Docker are as follows,

1. PID namespace: this namespace isolates all the processes inside the container.

2. Net namespace: All the network isolation factors are taken care by the net
namespace.

3. Ipc namespace: the inter-process communication in a container is managed by ipc
namespace.

4. Mnt namespace: All the mount points for a container are managed by mnt
namespace.

5. Uts namespace: All the kernel and versions are isolated and managed by the uts
namespace.

Control groups (cgroups):

One of the interesting things about Docker is that, it can control the amount of resources
used by a container. This functionality is achieved by Docker using Linux control groups
(cgroups). Along with isolation, cgroups can allow and limit the available resources used
by a container.

For example, you can limit the amount of memory used by a webserver container and
provide more resources for the database container.

File systems:
In this section we will see the various file systems supported by Docker.

What makes Docker elegant is the well-organized use of layered images. Docker makes
use of various features in kernel file system. Selecting a file system depends on your host
deployment.

Let’s have a look at each backend file system that can be used by Docker.

Storage:

Docker has an efficient way of abstracting the backend storage. The storage backend
stores a set of related image layers identified by a unique name. Following are the
concepts involved in storage backend.

1. Every layer in an image is considered as a file system tree, which can be mounted
and modified.
2. Alayer can be created from scratch or it can be created on top of a parent layer.

3. The layer creation is driven by the concept of copy-on-write to make the layer
creation very fast.

4. Every image in Docker is stored as a layer. When modifying an existing image, a
layer will be added on top of that.

5. Container is the top most writable layer of an image. Each container has an init layer
based on image and a child layer of init where all the container contents reside.

6. When creating a new image by committing a container, all the layers in the
containers are bundled to form a new image.

When you install Docker, it will use any one of the file system backends mentioned below.

aufs
btrfs
devicemapper

vfs

ok e

overlayfs

Different OS distributions have different file system support. Docker is designed to choose
a file system backed supported by the platform based on priority. Let’s have a look at the
main file systems mentioned above.

Btrfs

Btrfs backend is a perfect fit for Docker because it supports the copy on write
optimization.

As we learnt in earlier chapters, btrfs has rich features like file system layer snapshotting.
Btrfs is very fast when compared to other file systems used by Docker.

The disadvantage of btrfs is that it does not allow page cache sharing and it is not
supported by SELinux.

AUFS

Aufs union file system is used originally by Docker and does not have support for many
kernel and distributions. It can be used on Ubuntu based systems. We have learnt how aufs
works in “working of images” section.

Devicemapper

The devicemapper backend uses the device-mapper thin provisioning module for
implementing layers. Device-mapper is a block-level copy-on-write system.

Immutable infrastructure with Docker

Configuration management tools like chef and puppet allow you to configure a server to a
desired state. These servers run for a long period of time by repeatedly applying
configuration changes to the system to make in consistent and up to date. While
immutable infrastructure is a model where a there is no need for application update,
patches or configuration changes. It basically follows the concept of build once, run one or
many instances and never change it again.

So, if you want to make configuration changes to an existing environment, a new image or
container will be deployed with the necessary configuration.

Immutable infrastructure comprises of immutable components and for every deployment
the components will be replaced with the updated component rather than being updated.

Docker container falls in the immutable infrastructure category. Docker is capable of
building an immutable infrastructure because of its layered image concept and the fast
booting of containers.

But there are few components in the later versions of Docker that are mutable. Now in
Docker containers you can edit /etc/hosts, /etc/hostname and /etc/resolv.conf files. This is
helpful in place where other services want to override the default settings of these files.

The downside of this is that, these changes cannot be written to images. So you need a
good orchestration tool to make these changes in containers while deployment.

Features of Immutable Infrastructure;

State isolation

The state in an immutable infrastructure is siloed. The borders among layers storing state
and the layers that are temporary are clearly drawn and no leakage can possibly happen
between those layers.

Atomic deployments

Updating an existing server might break the system and tools like chef and puppet can be
used to bring the desired stated of the server back to the desired state.

But this deployment model is not atomic and the state transitions can go wrong resulting
in an unknown state.

Deploying immutable servers or containers result in atomic deployments. Layered images
in Docker help in achieving atomic deployments.

Easy roll back from preserved history

Every deployment in an immutable infrastructure is based on images. If anything goes

wrong in the new deployment, the state can be rolled back easily from the preserved
history. For example, in Docker, every update for an image is preserved as a layer. You
can easily roll back to the previous layer if there is any issue in the new deployment.

Best practice

Achieving pure immutability is not practical. You can separate the mutable and immutable
layers in your infrastructure for better application deployment.

Following are the two things to consider while planning for Immutable Infrastructure:

1. Separate Persistence layers from Immutable Infrastructure application deployment
layers

2. Manage Persistence layers with convergence tools like chef, puppet, saltstack etc.

3

Installation

In chapter 1 and 2 we learnt the basics of Docker, its architecture, working and the core
components. In this chapter we will learn the following.

Installing Docker on Linux platform

Installing Docker on Windows using boot2Docker

Test the installation by downloading a Docker image from Docker public registry.
Docker hub

e

Supported platforms:

Docker can be installed on all Linux and UNIX based operating systems. For windows
and MAC, special wrappers such as boo2Docker and vagrant can be used for Docker
deployments. Following are the main supported platforms for Docker.
1. Mac OS
Debian
RHEL
SUSE
Microsoft Azure
Gentoo
Amazon EC2
Google Cloud Platform
Arch Linux
Rackspace
. IBM Softlayer

L e Nk WD

_
— O

12. Digital ocean

Installing Docker on windows:

Windows cannot support Docker native installation. But in order to make Docker work on
windows, there is a light weight Linux distribution called boot2Docker. Boot2Docker uses
virtual box from oracle as the backend to work with Docker containers. Boot2Docker
comes bundled as a ready to install exe package.

To install boot2Docker on a windows machine:
1. Download the latest boot2Docker application from here
https://github.com/boot2Docker/windows-installer/releases
In case the location has changed, please search for the latest version and location.

2. Double click the downloaded application, start the installer and click next.

& Setup - Boot2Docker for Windows SEI

Welcome to the Boot2Docker for
Windows Setup Wizard

This will install Boot2Docker for Windows version 1.3, 1 on your
computer,

It is recommended that you dose all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

Boot2Docker for Windows installation documentation e s

3. Select the installation folder and click next

https://github.com/boot2docker/windows-installer/releases

Where should Boot2Docker for Windows be installed?

L Setup will install Boot2Dacker for Windows into the following folder.
Al

To continue, dick Next. If you would like to select a different folder, dick Browse.

| C:Program Fles\Boot2Dodaer for Windows ‘ | Browse. ..

At least 1.4 MB of free disk space is required.

<Back | Next> | | cancel |

4. Select the components you want to install. If virtual box is already installed on your
workstation, deselect it and install the other two components, else install all
components.

Select Components
Which components should be installed?
docker

Select the components you want to install; dear the components you do not want to
install, Click Mext when you are ready to continue,
| Full installation

|+#] BootzDodker management tool and ISO
[+ virnualBox
[+#] MSYS-git UNIX tools

Current selection requires at least 130. 1 MB of disk space.

<Back || mMext= | | cancel

5. Select additional tasks listed below for creating desktop shortcut and PATH variable.
Click next to continue.

Select Additional Tasks
Which additional tasks should be performed?
docker

Select the additional tasks you would like Setup to perform while installing Boot2Docker
for Windows, then dick Next.

[#] Create a desktop icon
[w] Add boot2docker.exe to PATH
["] reboot Windows at the end of installation

6. Click the install option.

Ready to Install
Setup is now ready to begin installing Boot2Docker for Windows on your
computer.

Click Install to continue with the installation, or dick Back if you want to review or
change any settings.

Destination location:
C:\Program Files\Boot2Docker for Windows

Setup type:

7. It will take a while. Wait for the installation to be complete.

~ Setup - Boot2Docker for Windows (== S|
Installing =
Please wait while Setup installs BootZDocker for Windows on your computer. =
docker
Extracting files. ..
installing MSYS Git
BootIDocker for Windows installation documentation e
8. Once the installation is complete, click finish.
~ Setup - Boot2Docker for Windows =[] x

Completing the Boot2Docker for
Windows Setup Wizard

Boot2Docker for Windows installaton completed.

Run using the "“Boot2Docker Start”™ icon on your desktop or in
[Frogram Files] - then start a test container with:
“docker run hello-world "

You can upgrade your existing Boot2Docker VM without data

loss by runming:
"boot2docker upgrade”

For further information, please see the BootZDocker for
Windows installation documentaton link.

L ker fior Windows in |2 iy L e tion Finish [

9. Click and run the boot2Docker script from the shortcut created in the desktop. It will
open the Docker terminal which connects to the boo2Docker VM in virtual box.

10.

Boot2Docker Start

F1:88:7h:6

dministrator

7 Administ

Once the terminal connects to the boot2Docker VM run the following Docker

command to test the installation by creating a busybox container.

docker run -i -t busybox /bin/sh

The above command will download the busybox image and start a container with sh shell.

dockeri@gboot2docker:~$ docker run -1 -t busybox /bin/sh

Unable to find image 'busybox' locally

latest: Pulling from busybox

511136ea3c5a: Pull complete

df7546fofeee: Pull complete

ed433a6c5b276: Downloading 925.3 kB/2.646 ME 29s
e72ac664f4f0: Download complete

e433a6c5b276: Pull complete

e72acee4fafe: Pull complete

Status: Downloaded newer image for busybox:latest
[/ # ls
bin
devy

/ #

lib
libe4

linuxre mnt
media opt

etc
homea

proc
root

11. Now if you run docker ps command you can view the created containers.

docker ps —a

docker@boot2docker:~% docker ps -a
CONTAINER ID IMAGE

STATUS
936af4565f49
Up 52 seconds
fc598d3547cl busybox:latest
Exited (8) About a minute ago
f84588ceesdd busybox:latest *fbin/bash"

COMMAND
PORTS
busybox:latest "fbin/sh"

"/bin/sh"

3cefa9giefdee "fbin/bash"

busybox:latest

docker@boot2docker:~$

CREATED
MNAMES

52 seconds ago
grave_bell

4 minutes
stupefied wilson

6 minutes
trusting_pare

7 minutes
loving_ptolemy

ago
ago

ago

Installing Docker on Ubuntu:

We will be installing Docker on Ubuntu 14.04 (LTS) (64 bit) server. Follow the steps give
below to install and configure Docker on Ubuntu server.

Note: throughout this book Ubuntu server is used for most of the Docker demonstration.
So we recommend you to use Ubuntu workstation to try out all the examples.

1. To install the latest Ubuntu package (may not be the latest Docker release) execute
the following commands.

sudo apt-get install -y docker.io

root@dockerdemo: -# apt-get install -y docker.io

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

aufs-tools cgroup-lite git git-man liberror-perl

Suggested packages:

btrfs-tools debootstrap lxc rinse git-daemon-run git-daemon-sysvinit git-doc
git-el git-email git-gui gitk gitweb git-arch git-bzr git-cvs git-mediawiki
git-svn

The following MEW packages will be installed:

aufs-tools cgroup-lite docker.lio git git-man liberror-perl

Setting up docker.io (1.6.l~dfsgl-@ubuntul~ubuntu®.14.64.1)

Adding group “docker®' (GID 111}

ker.io start/running, proce
Setting up liberror-perl 17
Setting up git-man (1:1.9.1-1)
Setting up git (1:1.9.1-1)
Setting up cgroup-lite (1.9)
cgroup-lite start/running
Processing triggers for libc-bin (2

EE
Proce ng triggers for ureadahead (©.168.8-16)

5

sudo In -sf /usr/bin/docker.io /usr/local/bin/docker

root@dockerdemo: -# sudo ln -sf /usr/bin/docker.io /usr/local/bin/docke

sudo sed -i ‘$acomplete -F _docker docker’\

/etc/bash_completion.d/docker.io

root@dockerdemo: -# sudo sed -i ‘Sacomplete -F _docker docker' fetc/bash_completion.d/docker.io

2. To verify that everything has worked as expected, run the following command, which
should download the Ubuntu image, and then start bash in a container.

sudo docker run -i -t ubuntu /bin/bash

root@dockerdemo:-# sudo docker run -1 -t ubuntu /bin/bash
Unable to find image ‘'ubuntu' locally

Pulling repository ubuntu

826544226fdc: Download compl

511136ea3c5a: Download compl

b3553b91f79f: Download complet
cab3a3899a99: Download complete
ff@1d67c2471: Download complete
7428bdee8763: Download comp
c7c7108e0ad8: Download comple
root@la2ffl14e6d35:/#

As you can see in the above screenshot, Docker downloaded Ubuntu image from the
Docker public registry (Docker hub) and started bash in to the container 1a2ff1406d35

3. Type exit to exit from the container.
exit

root@c83cd43eb85f: /# exit
exit
root@dockerdemo: - #

4. You can check the version of Docker components using the following command.

sudo docker version

root@dockerdemo: -# docker version
Client version: 1.8.1

Client API version: 1.12

Go version (client): gol.2.1

Git commit (client): 99@821a

Server version: 1.0.1

Server API version: 1.12

Go version (server): gol.2.1
Git commit (server): 99€821a

The repository installation will not have the latest release of docker. To have the latest
version of docker, you need to install it from the source. If you want to try out the latest
version, execute the following curl command. It will download and run the script to install
the latest version of docker from its source.

curl -sSL https://get.docker.com/ubuntu/ | sudo sh

RedHat Linux 7
For installing Docker on RedHat 7 follow the steps given below.

1. Enable the extra channel using the following command.

sudo subscription-manager repos —enable=rhel-7-server-extras-rpms

2. Install Docker using the following command.

sudo yum install docker

RedHat 6

You can install Docker on RedHat 6 from the EPEL repository. Enable the EPEL
repository on your server and follow the instructions below to install Docker.

1. Install the package using yum

sudo yum install docker

2. If you have a version of Docker already installed on your system, execute the
following command to update Docker to its latest version.

sudo yum install docker

centOS 7

Docker can be installed on centos7 without adding an extra repository. Execute the
following command to install Docker.

sudo yum install docker

CentOS 6

Centos 6 needs EPEL repository to be enabled for installed Docker. Execute the following
command after enabling EPEL repository on your system.

sudo yum install docker

Note: Even though all the tutorials in this book are based on Ubuntu Docker host, it will
also work on other Linux distros with Docker installed.

Now we have a working Docker application in our server. Before getting in to more
Docker operations, let’s have a look at Docker hub.

Docker Hub

In this section we will learn the basics of Docker hub so that we can start working on
creating containers.

Docker hub is a repository for uploading and downloading Docker images. Using Docker
hub you can collaborate with other developers by sharing the Docker images.

At Docker hub you can search and use images created by other users. The images created
by you can be pushed to the Docker hub if you are registered user. Creating a Docker hub
account is free.

You can create a Docker hub account in two ways. Using the website and through a
command line.

Follow the steps given below to create an account and authenticate your Docker host
against the Docker hub.

1. To create an account using the website, use the following link and signup with your
credentials. An email will be sent to your email account for activating the account.
The location of below link may change so you may have to search for this.

https://hub.Docker.com/account/signup/

2. To create an account from the command line, execute the following command from
the server where we have installed Docker.

sudo docker login

rootfldockerdemo: # sudo docker login
Username (bibinwilson): hcldevops
Password:

Email (bibin.w@hcl.com): bibin.wilson@yahoo.com
Account created. Please use the confirmation link we sent to your
e-mail to activate it.

3. Activate your account using the confirmation email sent to your email account.

So far we have set up the Docker host and created a Docker hub account.

Next we will learn how to create Docker containers.

Launching Docker containers:

In this section we will learn how to launch new containers using Docker.

We tested the Docker installation by launching a container without any application. The
main objective of Docker is to run applications inside a container. The command used to
run a container is “Docker run”. It takes various parameters like image, commands etc.

Let’s try to create a container which echoes out “hello world”. Execute the following
command to create a hello world container.

sudo docker run ubuntu:14.04 /bin/echo ‘Hello world’

root@dockerdemo: # sudo docker run ubuntu:14.84 /bin/echo "Hello

world' Hello world

Let’s look at each step the above Docker command has executed:

1. Docker run: Docker binary along with run command tells the Docker daemon to run
a container.

2. Ubuntu: 14.04: This is the image name from which the container should be created.
Docker will try to find this image locally. If it is not present locally, it will pull the
image from the Docker hub.

3. /bin/echo ‘hello world’: This is the command we specified to run inside the
container. This command got executed once the container is created. The result is
shown in the screenshot above.

After /bin/echo command, the container had no commands to be executed on it. So it
stopped. If you want to install or configure anything on a container, it should be created in
an interactive mode. In the next section we will learn how to create an interactive
container.

https://hub.docker.com/account/signup/

Creating an interactive container:

To create an interactive container an “-i” flag has to be used with the Docker
run command.

Execute the following command to create a container in interactive mode.

sudo docker run -t -i ubuntu:14.04 /bin/bash

root@dockerdemo: -# sudo docker run -t -i ubuntu:14.84 /bin/bash

root@éfe8efdbeddf: /#

The above command will create a container in interactive mode as you can see in the
image above. You can run all Ubuntu specific command in the container now.

Let’s understand each option in the above command.

1. “-t” flag assigns a terminal session for the container

2. “-i” assigns an interactive session for the container by getting the STDIN of the
container.

3. Ubuntu: 14.04 is the image name.

4. /bin/bash is the command to be executed once the container starts. It opens a bash
shell for the interactive session.

Now, try to execute the following basic Linux commands on our interactive container to
list the current working directory and the contents inside the directory.

pwd

Is

root@@feBefdbeBdf: /# pwd

'
!

root@@fe8efdbe8df: /# 1s

bin dev home 1lib64 mnt proc run srv tmp var
boot etc 1lib media opt root sbin sys usr
root@efesefdbeBdf: /#

As you can see in the image above, it shows the present working directory as root and lists
all the directories inside root. You can install applications and create directories in the
container as you can do with any normal Ubuntu machine.

To exit out of the container, you can use the exit command. This will stop the execution of
/bin/bash command inside the container and stops the container.

exit

root@éfe8efdbe8df: /# exit
exit

root@dockerdemo: - #

The interactive container stops when you exit the container. This is not helpful for running
applications, as you want that the machine should keep running.

To have a container in running mode, we have to demonize it. In the next section we will
look upon how to demonize a container.

Creating a daemonized container:

A daemonized container can be created using a “-d” flag. This is how we will create most
of our Docker applications. The following command will create a container in daemonized
mode.

sudo docker run -d ubuntu:14.04 /bin/sh —c “while true; do echo hello world”

root@ddockerdemo: # sudo docker run -d ubuntu:14.84 /bin/sh -c¢ "while
true; do echo hello world;

al189c69eldB88b73448e473b2eaelb3952db5866de7Td6662254Tal536e796705
root@dockerdemo: #

This time we did not use “-t” and “-i” flags because we used the “-d” flag which will run
the container in the background. Also, we added the following command with a shell
script to the Docker command.

bin/sh -c “while true; do echo hello world; sleep 1; done”

In the daemonized container, “hello world” will be echoed out by the infinite loop in the
shell script. You can see everything happening inside the container using the container id.
The long id returned right after executing the Docker command is the container id.

al09c69e1d88b73448e473b2eael1b3959db5066de7{d6662254fal536e79b705

The long string above denotes the unique container id. This id can be used to see what’s
happening in the container. To make sure the container is running, execute the following
Docker command.

docker ps

'while tr 4 ®

The “Docker ps” command will request the Docker daemon to return all the running
containers. As you can see in the output, it shows the short container id, command running
inside the container and other information associated with the container.

As we did not assign any name to the container, the Docker daemon automatically assigns

a random name to the container. In our case it is hungry_goodall. The name might be
different when you run the same command.

Note: You can explicitely specify the name of the contianer. We will look in to it
in the subsequent chapters.

We added an echo command in infinite loop to run inside the container. You can see the
output of the command running inside the container by checking the container logs using
its unique id or name.

Execute the following command to see what is happening inside the container.

sudo docker logs hungry_goodall

root@dockerdemo: -# sudo docker logs hungry goodall
hello world
hello world
hello world
hello world
hello world

hello world
hello world
helle world
hello world
hello world
hello world

As you can see the from the log output, the container is executing the “hello world”
command in an infinite loop. The “logs” command will ask the Docker daemon to look
inside the container and get the standard output of the container.

Now we have a container with specified command running on it. To stop the running
container, execute the following command.

sudo docker stop hungry_goodall

root@dockerdemo: -# sudo docker stop hungry goodall
hungry goodall

root@dockerdemo: - #

The Docker stop command along with the container name will gently stop the running
container and it returns the name of the container it stopped. Now if you run the Docker ps
command you will see no running container.

sudo docker ps

rootjgdockerdemo: -# docker ps
CONTAIMER ID IMAGE COMMAND CREATED STATUS PORTS |NﬂMES

rootigdockerdemo: -#

We have successfully stopped our hungry_goodall container.

Connecting remote docker host using docker
client

By default docker installation will set up the docker server within the host using the UNIX
socket unix:///var/run/docker.sock. You can also set up a docker server to accept
connections from a remote client. Docker remote client uses REST API’s to execute
commands and to retrieve information about containers. In this section we will learn how
to set up the docker client to run commands on a remote docker server.

Follow the instructions given below to configure a Docker client for docker server remote
execution.

Note: The client machine should have docker installed to run in client mode

On Docker Server:

1. Stop the docker service using the following command.

sudo service docker.io stop

2. Start the docker service on port 5000 and on Unix socker docker.sock by executing
the following command.

docker -H tcp://0.0.0.0:5000 -H unix:///var/run/docker.sock -d &

rootgip-18-138-43-2:~# docker -H tcp:

38-43-2:~# INFO[2B28] +job ;erleaplrer
stening for HTTP on tcp (©.E 888)
“ DOMN'T BIND ON ANOTHER IP ADDRESS THAN 127.8.8.1 IF YOU DOM'T KNOW WHAT Y
stening for HTTP on unl» {(/var/run/docker.sock)
+job init_networkdriwv)
] -job init_networkdriv) oK (&)
] WARNING: Your kernel dae- not support cgroup swap limit.
] Loading containers: start...
| Loading containers: done.
docker daemon: 4.1 5bc2ff8; execdriver: native-£.2; graphdriver: devicemap
+job acceptconnections()
| -job acceptconnections() = 0K (&)

The above command will accept connections from remote docker clients on port 5000 as
well as the client inside the host using docker.sock Unix socket.

Note: The port mentioned in the above command can be any tcp port. “0.0.0.0” means, the
docker server accepts connections from all incoming docker client connections. It’s not a
good practice to open all connections. You can mention a specific ip address instead of
“0.0.0.0.”, so that docker server only accepts connections from that particular ip address.

From Docker client:

3. Now from the host which runs the acts as the client, execute the following command
to get the list of running containers from the remote docker server. Replace the ip
(10.0.0.4) with the ip of the host running docker server.

sudo docker -H 10.0.0.4:5000 ps
root@dockerclient:~# docker -H 18.8.8.4;56

CONTAINER ID IMAGE COMMARND CREATED
STATUS FORTS NAMES

leGadfisbeef ubuntu:latest "/bin/bash” 2 minutes ago
Up 2 minutes remote-container
sC

root@devopscube:~# nano fetc/hostname

You can run all docker commands on the remote server in the same ways you executed
“ps” command.

4. Now let’s try creating an interactive container named test-container from the remote
client. Execute the following docker run command to create a container on the
remote docker server.

docker -H <host-ip>:5000 run -it —name test-container ubuntu

jopscube:~# docker -H 54.151.211.143:5888 run -it --name test-container ubuntu
root Bded35ad:/# 1s
bin v home 1lib&4 mnt proc | srv tmp var
boot

atc 1ib media opt root
root@leb58ded3sas: /#

The equivalent REST requests and actions are shown below.

INFO[3041

INFO[
INFO[
INFO[
INFO[
INFO[

INFO[3841

INFO[
INFO[
INFO[
INFO[
INFO[
INFO[
INFO[
INFO[
INFO[
INFO[
INFO[

INFO[384

Sfvil.l6/containers/createfname=test-container
create(test-container)

(create, 16b58ded35al2cfidi87b4bl54]
leog(create, 16b58ded3Sae:
create(test-container) =
/ 6/containers/16b58de4:
container_inspect(l&b58ded3
container_inspect(1&b
attach({16b58ded35ae
/ 16/ contain
start(l6b58ded 3=
allocate_interfa
allocate_interfa

Docker server access over https

We have learned how to communicate the docker daemon remotely over http. You can
also communicate to docker daemon securely over https by TLS using tlsverify flag and
tlscscert flag pointing to a trusted CA certificate.

6EbSFThbC

bSf37bc

Note: If you enable TLS, in daemon mode docker will allow connections only

authenticated by CA.

To set up a secure access, follow the steps given below.

1. Initialize the CA serial file

echo 01 > ca.srl

2. Generate a ca public and private key files.

openssl genrsa -des3 -out ca-key.pem 2048

root@dockerdemo:~/https# openssl genrsa -d
Generating RSA private key, 2048 bit long

openssl req -new -x509 -days 365 -key ca-key.pem -out ca.pem

-neWw -x -days 385 -k ca-key.pem -out ca.pem

~ information that will be incorporated

Distinguished Name or a DN.
yme blank

[Some-State]:

[Internet W

£ B

3. Now, create a server key and certificate signing request (CSR).

openssl genrsa -des3 -out server-key.pem 2048

server-key.pem 2848

-subj ' fCN-dockerdemo'’

4. Sign the key with CA key.

openssl x509 -req -days 365 -in server.csr -CA ca.pem -CAkey ca-key.pem -out server-cert.pem

gdockerdemo:~/https# op

ject=/CN=dockerdemo
Getting CA Private Key
Enter pats phraze
rooti@gdockerdemo

5. For client to authenticate the server, create relevant client key and signing requests.

openssl genrsa -des3 -out key.pem 2048

root@dockerdemo:~/https# openssl genrsa -des3 -out key.pem 2848
Generating RSA private key, 2848 bit long modulus

openssl req -subj ‘/CN=<hostname here>’-new -key key.pem -out client.csr

rootidockerdemo:~/https# openssl reg -subj ‘/CN=dockerdemo' -new -key key.p
Enter pass phrase for key.pem:

rootigdockerdamo: ~/https#

6. Now, create an extension config file to make the key suitable for Cclient
authentication.

echo extendedKeyUsage = clientAuth > extfile.cnf

root@gdockerdemo: ~/https# echo extendedkKeyUsag ientAuth > extfile.¢

root@dockerdemo:~/httpsH

7. Sign the key

openssl x509 -req -days 365 -in client.csr -CA ca.pem -CAkey ca-key.pem -out cert.pem -extfile extfile.cnf
ient.csr -CA ca.pem -ChAkey
Getting CA Private Key

Enter pass phrase ca-key.pem
rooti@gdockerdemo: .-"I-.r_r_'lr_':--_-':a{

8. From the server and client keys, remove the passphrase using the following
commands.

openssl rsa -in server-key.pem -out server-key.pem

rooti@dockerdemo: ~/https# op rsa -in server-key.pem -out server-key.pem

Enter pass phrase for serve ¥ . pem:

rootidevopscube:~/ s# openssl rsa -in key.pem -out key.pem
Enter pass phrase :

writing RSA key

roocti@devopscube:~/

9. Now we have all the server, client certificate and the keys for TLS authentication.
Stop the docker service and start it using the following command with all the
necessary keys.

sudo service docker.io stop

docker -d —tlsverify —tlscacert=ca.pem —tlscert=server-cert.pem —tlskey=server-key.pem -H=0.0.0.0:2376

Note: If you running docker on TLS, it should run only on port 2376

port cgroup swap limit.

r: native-8.2; graphdriver: devicemar

10. Now, from client, execute the following “docker version” command with docker
server’s ip or DNS name.

Note: make sure you copy the relevant client key files to authenticate against the docker
server.
docker —tlsverify —tlscacert=ca.pem —tlscert=cert.pem —tlskey=key.pem -H=172.31.1.21:2376 version

r?at@deu s ‘https# docker --tlsverify --tlscacert=sca.pem --tlscert=cert.pem --tl=

ient w

mmit

ps/arch (elient):

Server version

Server APIL 1 5

Go version (server): gol.3.Z3
Git commit (server): Sbc2ffB

Same way, you can run all the docker commands by connecting the docker server over
https.

So far we have learnt,

1. How to create a container in interactive and daemonized mode.
To list the running containers

To check the actions running inside a container using logs

To stop the running container gracefully.

To access docker server from a remote client

S e

To access docker server securely over https.

In the next chapter we will look at more advanced container operations.

4
Working with containers

In this chapter we will look at some advanced container operations.

In last chapter we have learnt about the following Docker commands,

1. Docker ps — for listing all the running containers
2. Docker logs — return the STDOUT of a running container
3. Docker stop — stops the running container.

The Docker command is associated with several arguments and flags. The standard use of
a Docker command is shown below.

Usage: [sudo] docker [flags] [command] [arguments]

For example,

sudo docker run -i —t centos /bin/sh

Let’s start by finding the version of Docker using the following Docker command.

sudo docker version

The above command will give you all the information about Docker including API
version, go version etc.

root@dockerdemo: -# docker version
Client version: 1.8.1

Client API version: 1.12

Go version (client): gol.2.1

Git commit (client): 99@821a

Server version: 1.0.1

Server API version: 1.12

Go version (server): gol.2.1
Git commit (server): 99€821a

Docker commands:

There are many commands associated with Docker client. To list all the commands, run
the following command on the terminal.

sudo docker

It will list all the commands which can be used with Docker for manipulating containers.
ubuntu@node?:~% sudo docker

Attach to a running container
build Build an image from a Dockerfile
commit Create a new image from a container's changes
cp Copy fil olders from the containers filesystem to the host path
diff Inspect < ges on a container's filesystem
events Get real time events from the server
export Stream the con ts of & container as a tar archive
history Show the history of an image
images List images
import Create a new filesystem image from the contents of a tarball
info Display stem-wide information
inspect Return low-level information on a container
kill Kill a running container
Load an image from a tar archive
Register or Login to the docker registry server
Fetch the logs of a container
Lookup the public-facing port which is NAT-ed to PRIVATE_PORT
Pause all processes within a container
List containers
Pull an image or a repository from the docker registry server
Push an image or a repository to the docker registry server
restart Rastart a r"i.-ll'lF'I]-.r'lg container
rm Remove one or more contaliners

Command usage:

Each Docker command has its own set of flags and arguments. To view the usage of a
particular Docker command, run Docker with specific command.

Syntax: Docker [command name]

For example,

sudo docker run

It will return the usage of run command and its associated flags as shown in the

below.

ubuntugnode:~% sudo docker run
Usage: docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
Run a command in a new container

-a, ==-attach=
~C, =-Cpu-s

-d, =--detach=false
container id
"-dl"lS:[]
-=dns=search=[]
-8, =-envs=][]
--gntrypoint=

» ==hostname="
=i, =-interactive=false
--link=[]

-=1xc-conf=[]
cg

-m, --memor
k, m or g)

Attach to stdin, stdout or stderr.

CPU shares (relative weight)

Write the contaimer ID to the file

CPUs in which to allow execution (8-3, @,1)

Detached mode: Run container in the background, print new

Set custom dns servers
om dns search domains
set environment wariables
Overwrite the default entrypoint of the image
Read in a line delimited file of ENV variables

Expose a port from the container without publishing it to your

Container host name
Keep stdin open even if not attached
Add link to another container (name:alias)

(1xc exec-driver only) Add custom lxc options --lxc-conf="lxc.

Memory limit (format: <number><optional unit>, where unit = b,

image

So far in this chapter we have learnt how to use Docker commands and getting help for
each command. In next section, we will learn how to run a basic python application inside

a container.

Python web application container:

The containers we created before just ran a shell script in it. In this section we will learn
how to run a python flask application inside a container.

We will use a preconfigured image (training/webapp) from Docker hub with python flask

application configured in it. Let’s start with the Docker run command.

sudo docker run -d -P training/webapp python app.py

root@dockerdemo: -
Unable to find image 'training/webapp' locally
WARNING: The Auth config file is empty
Fulllnﬂ repn:1fnry training webapp
F a: Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
8: Download complete
?e4b58?+1?1:4+49=b4dﬂ1e$99d355?1uBchdebcﬁaE 24f@6451fa28623b6d

So what happened when we ran the above command? Let’s break it down

1. Docker run : command for creating a container
2. “—d”: we have already seen the usage of this flag. It demonizes the container.

3. —P: This flag is used for mapping the host port to the container port for accessing the
container application. As we did not specify any port numbers, Docker will map the
host and container with random ports.

4. training/webapp: This is the image name which contains the python flask application.
Docker downloads this image from Docker hub.

5. Python app.py: this is the command which will be executed inside the container once
it is created. It starts the python application inside the container.

Now let’s see if our python container is running using the following command.

sudo docker ps -1

We have seen the use of Docker ps command before. The “-1” flag will list the last created
and running container.

roctigdockerdemo: ~
CONTAINER ID IMAGE COMMAND CREATED
STATUS FORT= NAMES

7e4b587f1213 training /webapp:latest python app.py 3 minutes ago
Up 2 minutes §.0.9.08:49153--5000,/tcp tender_kowalevski

The output from the above image shows that the host port 49153 is mapped on to port
5000 in the container.

PORTS

0.0.0.0:49155->5000/tcp

The port mapping was done randomly. When the port is not explicitly mentioned in the
command, Docker assigns the host port within 49000 and 49900.

Let’s try accessing the python application on port 49153 from the browser.

Note: The host port may be different for your application. So get the IP Address from the
“Docker ps” output and try it on the browser.

Example: http://<Docker-host-ip-here>:49154

é_ . —

Hello world!

You will see a sample hello world application in the browser.

The port mapping can also be configured manually. Let’s create the same python
application container with manually configured ports. Run the following command to
launch a container to map host port 5000 to container port 5000.

sudo docker run -d -p 5000:5000 training/webapp python app.py

root@dockerdemo:~# sudo docker run -d -p 5880:588@ training/webapp python app.py

bdda@lfeb9cfl753e25102cedlacbdec2ad961e714Ff4be59713d09d984513cf5
rootigdockerdemo: ~#

Now if you access the python application on port 5000 from your browser, you will see
the same application. This is the advantage of not having one to one port mapping for
Docker.

Thus you can have multiple instances of your application running on different ports.

The “Docker ps” output is little cluttered, so if you want to know which host port your
container is mapped to , you can use the “Docker port” command along with the container
name or id to view the port information.

For example,
sudo docker port tender_kowalevski 5000

root@dockerdemo:~# sudo docker port kickass_fermat 56ee
9.0.9.9:49153

root@dockerdemo: ~#

Now that we have a working python application, we can perform the following operations
to get more information about the container.

1. Docker logs — to view the logs of running container.
2. Docker top — to view all the processes running inside the container
3. Docker inspect — to view complete information like networking, name, id etc.

Python container logs:

Run the following command to view the logs of your running python container.

sudo docker logs -f tender_kowalevski

It will list all the logs of actions happening inside the container.

i3] "GET / WTTP/1.1" 208

3] "GET / ico HTTP/1.1" 44
4] "GET [/ ricon.ico HTTP/1.1" 484
:'.:] ”EIET : P e l.. - oo |

Python container processes:

Run the following command to view all the processes running inside the python container.

sudo docker top tender_kowalevski

It will list all the processes running inside our python container.

root@dockerdemo: -
uIib
root

We have only python.py command process running inside our container.
Inspecting python container:

By inspecting a container, you can view the entire network and other configuration
information about the container. Execute the following command to inspect the python
container.

sudo docker inspect tender_kowalevski

This command will return all the information about the container in JSON format. The
sample output is shown below.

rootigdockerdemo : ~
i
(1

ST

Args [

"app.py"

}
"Volume
"VolumesRiW" :
1-
4
]Jroot@dockerdemo: ~

For more granular output, you can request for specific information about the container. For
example,

sudo docker inspect -f ‘{{ .NetworkSettings.IPAddress }}’ tender_kowalevski

The above command will output the ip address of your container.

root@dockerdemo

Stopping python container:

You can stop the python container using “docker stop” command.

Syntax: docker stop [container name]
Execute the following command with your container name to stop the container.
sudo docker stop tender_kowalevski

root@dockerdemo: ~

tender_kowalevski
root@dockerdemo: ~

To check if the container has stopped, run the “docker ps” command.

Restarting the python container:

You can restart the container using “docker restart” command.

Syntax: docker restart [container name]

Execute the following command to restart the container.

sudo docker start tender_kowalevski

root@dockerdemo: ~
tender_kowalevski

root@dockerdemo:

Now if you execute “docker ps -1” command you can see the started container or you can
view the application in the browser.

Removing python container:

You can remove the python container using “docker rm” command. You need to stop the
container before executing the remove command. Let’s see what happens if you try to
remove the container without stopping it.

sudo docker rm tender_kowalevski

ossible to remove a running container, please stop it first

281] o 2 Error: failed to remove one more containers
rectigdockerdemo : -

As you can see, it shows an error message for stopping the container. This is useful
because it avoids accidental deletion of containers.

Now we will stop the container and try to remove it using the following commands.

sudo docker stop tender_kowalevski

sudo docker rm tender_kowalevski

root@dockerdemo: ~
tender_kowalevski

root@dockerdemo: ~
tender kowalevski
rootf@dockerdemo: ~

The python container is removed now. Once the container is removed, you cannot restart

it. You can only recreate a container from the image.

If you want to remove a container without stopping the container, you can use the force
flag “-f” with the “Docker rm” command. It is not advisable to force remove the
containers.

docker rm -f tender_kowalevski

root@dockerdemo: ~# docker rm -f tender_kowalevski
tender_kowalevski

rootiidockerdemo: ~#

If you want to stop and remove all the containers in your Docker host, you can use the
following in Linux systems.

docker stop $(Docker ps -a -q)

docker rm $(Docker ps -a -q)

rooti@dockerdemo:~# docker stop $(docker ps -a -q)
bdda@1f8b3cf

©c2d9c1fBc55

8dacd254b757

root@dockerdemo:~# docker rm -f $(docker ps -a -q)

bdda@l1f8bScf
@c2d9clf8c55
8dacd254b757
root@dockerdemo: ~#

In this chapter we have learnt the following,

1. How to create a container in interactive mode and daemonized mode.
How to create a python flask application container.

How to get information’s like logs, networking settings etc. About the python
container.

4. How to stop, start and remove a container.

5

Docker Images

In the last chapter we showed how to use containers and deployed a python application on
a container. In this chapter we will learn to work with images.

As you know, Docker images are the basic building blocks of a container. In previous
chapter we used preconfigured images from Docker hub for creating containers (Ubuntu
and training/webapp).

So far we learnt the following about images,

1.
2.
3.

Images are created and stored in layered fashion.
All the images downloaded from the Docker hub reside in the Docker host.

If an image specified in the Docker run command is not present in the Docker host,
by default, the Docker daemon will download the image from the Docker public
registry (Docker hub).

Container is a writable layer on top on an image.

There are more things you can do with the images. In this section we will look in to the
following.

1. How to manage and work with images locally on the Docker host.

2. How to create a basic Docker image.

3. How to upload a modified image to the Docker registry (Docker hub).

Listing Docker images:

You can list all the available images on your Docker host. Run the following command to
list all the images on your Docker host.
sudo docker images

raotidockerdeno : -

REPOSITORY AG IMAGE ID CREATED VIRTUAL S5IZE
ubuntu 14.84 B26544226Fdc 12 days ago 194.2 MB

ubuntu lates B26544226Fdc 12 days ago 194,2 MB
training webapp lates 31fadldbalsa 3 months ago 278.6 MB
roctigdockerdemo: ~

Docker host will not have any images by default. All the images shown in the image
above were downloaded from Docker hub when we created the sample containers.

Let’s have a look at the important information’s about the container.
1. REPOSITORY: This denotes, from which Docker hub repository the image has
been downloaded. A repository will have different versions of an image.

2. TAG: The different versions of an image are identified by a tag. In the example
shown above, we have an Ubuntu repository with two different tags. Latest and
14.04.

3. IMAGE ID: This denotes the unique id of the image.

4. CREATED: This provides information on the date, when the image has been created
by the user in the Docker hub repository.

5. VIRTUAL SIZE: This refers to the virtual size of the image on the Docker host. As
we learnt before, Docker image works on copy on write mechanism, so the same
images are never duplicated, it will only be referenced by the updated layers. So, a
repository might have variants of images e.g. Ubuntu 12.04, 13.10. 14.04 etc.

Specifying the image variant as a tag is good practice while working with containers
because you will know which version of the image you are using for launching containers.

If you want to run a container with Ubuntu 14.04 version, the Docker run command will
look like the following.

sudo docker run -t -i ubuntu:14.04 /bin/bash

Instead, if you mention only the image name without the tag, Docker will download the
latest version of the image available in the Docker hub.

While working with images you need to keep the following in mind,

1. Always use image tags to know exactly which version of the image you are using.
2. Always download and use official and trusted images from Docker hub because

Docker hub is a public registry where anyone can upload images which may not be
as per your organizations policies and needs.

Downloading an image:

When creating a container, if the image is not available in the Docker host, Docker
downloads it from the Docker hub. It is a little time consuming process. To avoid this you
can download the images from Docker hub to the host and use it for creating a container.

So if you want to launch containers based on centos container, you can download the
centos image first. Execute the following command to pull a centos image from Docker
hub.

sudo docker pull centos

onfig file is empty
y centos
: Pulling image (centos6&) from centos, endpoint: hittps:/fregistry-l.docker.ic/vl

Pulling image (centos5) from centos, endpoint: https://registry-168=b857ffb51: Do
. Download complete
Download complete
2. Download complete
3a: Download complete

The above image shows Docker downloading a centos image consisting of various layers.

Once the image is downloaded you can create a container in seconds. Now let’s launch an
interactive container from the downloaded centos image using the following Docker run
command.

sudo docker run -t -i centos /bin/bash

root@dockerdemo: ~
bash-4.2

bin etc 1lib lost+found mnt proc run selinux sys usr
dev home 1ib64 media opt root sbin srv tmp var
bash-4.2

Searching images:

Docker hub has images created by many users for various purposes. You can search for
images with a keyword, for example, rails. Docker hub will return all the images named or
tagged with rails. You and do the search from Docker client and Docker hub web UI as
well.

Searching images from Docker hub UI:

Visit Docker public registry Ul using this link https://registry.hub.Docker.com/ and search
for an image. For example if you search for MySQL, It will list all the images named and
tagged with MySQL. You can get the name of image from UI and use it with Docker
client for creating a container from that image.

https://registry.hub.docker.com/

#d{] Cker vwmatisDocker? Usecases Ty Browse Install & Docs [Log in ; - '_:-1 T

Reposilones (G65) mysql E

show: A =1 Sortby: Relevance j

Cirganizations (75] -

& dockerfile/mysqgl
docar T =

Isted atomated MySQL (nitp ey mysgl.com) Buld sss

e kerfie Project, filp ddockerlie ganut o ses

Searching images from Docker command line:

Images from Docker hub can be searched from Docker command line. Suppose, if you
want to search an image with Sinatra configured, you can use the “Docker search”
command.

Search Syntax: Docker search [image name]
Execute the following command to search all the sinatra images.

sudo docker search sinatra

DESCRIPTION
training sinatra Sinatra training image
marceldegraaf sinatra Sinatra test app
mattwarren docker-sinatra-demo

luisbebop docker-sinatra-hello-world

bmorearty ‘handson-sinatra handson - ruby Sinatra Hands on with D...
subwiz sinatra

bmorearty 'sinatra

The search command has returned the images tagged with Sinatra. All the images have a
description mentioned by the user the user created it. The stars represent the popularity of
the image. More Stars means that the image is trusted by more users.

All the official images on the Docker hub are maintained by stackbery project.

For examples we created in this book we wused containers from Ubuntu and
training/webapp images. The Ubuntu image is the base image maintained by official
Docker Inc. These images are validated and tested. Normally, the base images will have
single names e.g. Ubuntu, centos, fedora etc.

Training/webapp image is created by a user in Docker hub. The images created by users
will have the usernames in the image. In training/webapp, training is the username.

For our next example we will use the training/sinatra image which appeared at the top of
the search. This image has Sinatra configured in it. Let’s try pulling down that image to
our Docker host. Run the following command to pull the Sinatra image to our Docker

host.
sudo docker pull training/sinatra

ubuntu@dockerdemo: ~$ sudo docker pull training sinatra
epository training sinatrd
dla: Pulling image (v2) from training/sinatra, endpoint: https://f istry-1.docke
Download complete
Download complete
; Download complete
Download complete
3: Downlead complete
: Download complete
: Downleoad complete
Download complete
: Download complete
Download complete
c: Download complete
; Download complete
Download complete
5: Download complete
8: Download complete
5: Download complete
ckerdemo: ~%

Now we have the sinatra image in our host. Let’s create an interactive Sinatra container
from the image using the Docker run command.

sudo docker run -t -i training/sinatra /bin/bash

ubuntu@dockerdemo:~$% sudo docker run -t -i training /sinatra /bin/bash

rooti@cB54adeeceBe:

We learnt how to search for an image, pull it down to the Docker host and launch a
container from that image. You can download any other image from the Docker hub and
try creating containers from it.

Our own images:

Till now we have used images created by other users. Even though we found these images
useful, it might not have all the features we want for our Sinatra application. In this
section we will learn how to modify and create our own images.

There are two ways by which we can have our own images,

1. By committing changes to a container created from a preconfigured image

2. Using a Dockerfile to create an image from scratch using instructions specified in the
Dockerfile.

Let’s have a look at the two approaches.

From preconfigured image:

In this section we will learn how to modify and update a container for creating a new
image. For updating an image, we need to have a container running in interactive mode.

Execute the following command to create an interactive container from training/Sinatra
image.

sudo docker run -t -i training/sinatra /bin/bash

ubuntu@dockerdemo:~$% sudo docker run -t -i training /sinatra /bin/bash

rooti@cB54adeeceBe:

As you can see, it has created a unique id (c054ad6ec080) for the container. For

committing the changes, we need the unique id or name of the container. Note down the id
created for your container .You can also get the container details by running “sudo Docker
ps -1” command.

We need to make some changes to container for creating a new image. Let’s install a
JSON image in our newly launched container using the following gem command.

gem install JSON

root@c@54ad6ecoB80: /

Fetching: json-1 2%)

o -
Building native extensions. This could take a while...

Successfully installed json-1.8.1

1 gem installed

Installing ri documentation for json-1.8.1...
Installing RDoc documentation for json-1.8.1...

Once installed, exit the container by running exit command.

Now we have container with JSON gem installed, which was not available in the
downloaded image.

For committing changes to a container, Docker has a command called “Docker commit”.
Syntax: sudo docker commit -m="<your commit message here” -a="<maintainer name here” \ <container id> <docker hub username>/<image
name>:<tag>

Execute the following command to commit the changes to our sinatra container.

(13

Note: Replace the argument inside “-a” tag with your name, replace “hcldevops” with
your Docker hub username and “c054ad6ec080” with your container id.

sudo docker commit -m=“Added JSON gem” -a=“bibin wilson” \

c054ad6ec080 hcldevops/sinatra:v2

ubuntu@dockerdemo:~$% sudo docker commit -m-="Added json gem" -a="bibin wilson" %
c@54adeecBB8 hcldevops /sinatra:v2

Ba2adeB96423d78374b84fde75ecfca@Babd2aaca37fd7def295bd88a7dod11f
ubuntugdackerdamo: -3

(13

-m” flag represents the commit message like we use it in our version control
systems like git.

e “-a” represents the maintainer.

e “c054ad6ec080” represents the id of the container to be committed.
e “hcldevops/Sinatra” is the username/imagename

e “v2”is the tag for the image.

We can view the newly created hcldevops/Sinatra image using the “docker images”
command. Execute the following command to view your newly created image.

sudo docker images

ubuntugdockerdemo: ~% sudo docker images

REPOSITO! TAG IMA CREATED
heldevops/sinatra w2 a2: 3 About a minute ago
centos centoss f 5 days ago

centos centos? 12

centos latest

centos centoss
ubuntu latest
training sinatra latest
training webapp latest
training sinatra V2 3c59e@2dddla

Docker shows our newly created image at the top with all the image information.

Now let’s try to launch a container from out new image.

Syntax: sudo docker run -t -i username/imagename:tag /bin/bash

Execute the following command for creating a container from hcldevops/sinatra image.

Note: replace “hcldevops” with your Docker hub username.

sudo docker run -t -i ouruser/sinatra:v2 /bin/bash

ubuntu@dockerdemo:~% sudo docker run -t -i hcldevops/sinatra:v2 /bin/bash

We have successfully created a container from our newly created image. You can try
creating a new image by modifying a container running in interactive mode by following
the steps explained above.

Building an image from scratch:

In the last section we learnt how to create an image by modifying a container. If we think
of creating a customized image for development team, committing a preconfigured image
is cumbersome and not recommended. In this section we will learn how to build Docker
images from scratch using Dockerfile for specific development tasks.

Dockerfile:

Dockerfile is a normal text file with instructions for configuring an image. Instructions
include tasks such as creating a directory, copying file from host to container etc.

Let’s create a sinatra image using a Dockerfile. Create a directory and Dockerfile inside it
using the following commands.

mkdir sinatra
cd sinatra

touch Dockerfile

ubuntu@dockerdemo:~$ mkdir sinatra
ubuntu@dockerdemo:~$ cd sinatra

ubuntu@dockerdemo:~/sinatra$ touch Dockerfile

Every line in a Dockerfile starts with an instruction followed by a statement. Every
instruction creates a layer on the image when the image gets built from the Dockerfile.

Syntax: INSTRUCTION statement

Let’s have a look at the Dockerfile for sinatra. Copy the following code snippet on to the

Docker file we created.

FROM ubuntu:14.04
MAINTAINER bibin wilson <bibin.w@hcl.com>
RUN apt-get update && apt-get install -y ruby ruby-dev

RUN gem install sinatra

Let’s breakdown the Dockerfile and see what it does.

FROM: It tells the Docker daemon from which base image the new image should be
built. In our example, it is Ubuntu: 14.04.

MAINTAINER: This indicates the user maintaining the image.

RUN: This instruction handles all the application installation and other scripts that have to
be executed on the image. In our case, we have commands to install ruby development
environment and Sinatra application.

Let’s try to build the image using the Docker file we created. An image can be built from
Docker file using the “Docker build” command. It has the following syntax.

sudo Docker build —t=“username/imagename:tag” .

113 »
-t

flag is used for identifying the image that belongs the user.

“.” Flag represents that the Docker file is present in the current directory. You can also
mention the path to the Docker file if it is not present in the current directory.

Execute the following command to build the sinatra image from the Docker file.

Note: replace “hcldevops” with your username. Also use different tag if you already have
one image with the same tag.

sudo docker build -t=“hcldevops/sinatra:v2” .

sudo docker build -t="hcldevops/sinatra:
Sending build context to Docker daemon 2.E
Jendlng build context to Docker daemon
Step @ : FROM ubuntu:l4.84
eS4caSefaled
Step 1 : MAINTAINER Kate Smith <ksmith@example.com
Using cache
EElhaFSSE-Zb
Step 2 : RUN apt-get update apt-get install -y ruby ruby-dev
Running 3a2558904e9b
Selecting previously unselected package libasan®:amded.
(Reading database ... 11518 files directories currently installed.)
Preparing to unpac? o libatana 4.8.2-1%9ubuntul_amd64.deb ...
Unpacking lib: I:amd64 (4 1 -19ubuntul)
Selecting preu1nuslh unsplected package 1i
Preparing to unpahk .--/libatomicl 4.8.2 19ubuntu1_amd64.deb C
Unpacking libat ;amdéd (4.8.2-1%ubuntul)
Selecting preu1ou51; unsplpcted pachage libgmpl®: amd64.
Preparing to unpack ... /libgmple_2%3a5.1.3+dfsg-lubuntul_amd64.deb .

Installing RDoc documentation sinatra-1.4.°
b78657492753a

Removing intermediate container 92116988@aad

Successfully built b7865749275a

As you can see in the output, Docker client sends a build context to the Docker daemon
and in each step it creates an intermediate container while executing commands and
creates a layer on top of the image.

At final step it created an image with id b7065749275a and deleted all the intermediate
containers. Now we have an image built with id b7065749275a.

Let’s launch a container from the new image.
Note: A Docker image can have a maximum of 147 layers.

Execute the following command to create a new Sinatra container.

sudo docker run -t -i hcldevops/sinatra:v2 /bin/bash

ubuntu@dockerdemo: ~% sudo docker run -t -i hcldevops sinatra:vi

root@ed428a356885e:

Image tagging:

We can tag our new image with a different name. This can be done using the Docker tag
command. Let’s tag our new image using the following command.

Note: replace the image id and name with your container id and names.

sudo docker tag b7065749275a hcldevops/sinatra:devel

Now that we have tagged our new image, let’s view it using the Docker images command.

Execute the following command to view the image named hcldevops/Sinatra

sudo docker images hcldevops/sinatra

CREATED VIRTUAL 5IZE
v TEE5T49275 11 minutes ago 21.3 MB

ps sinatra - devel 7865749 11 minutes ago 321.3 Md
ubuntugdockerdemo: ~%

Uploading the image to Docker Hub:

So we have built a Docker image from scratch and successfully launched a container from
it. In order for all developers in your team to get access to the configured image, you need
to upload it to the Docker hub (public or private). In this example we will upload it to the
public registry. You can push an image to the Docker hub using the Docker push
command.

Sysntax: docker push <username>/<imagename>

Execute the following command with your username/imagename to push the image to the
Docker hub.

You must be logged in to Docker hub from command line before pushing the image.

sudo docker push bibinwilson/sinatra

ubuntwadockerdemo: ~% sudo ; i n/sinatra
The push refers 3 [iatral (le
Sending image list

Pushing repository bibinwilson sinatra (1 tags)

511136843 ge al y pushed, skipping

sfully pushed
ully pushed
¢ [b7865749275a] on {https://cdn-registry-1.docker.io/vl/ repositories bibinwi

We have successfully pushed our image to the Docker hub and it is not publicly
accessible. Now you or your team can access the image from any Docker host by
specifying the image name. For example:

sudo docker pull bibinwilson/sinatra

Removing images from Docker host:

We have learnt how to create an image and push it to the Docker hub. If you think you
don’t want a particular image in your Docker host, you can remove same like you remove
a container. You can use the “Docker rmi” command to remove the image. Let’s try to
remove our training/Sinatra image from our host using the following command.

Note: before removing an image, make sure all the containers based on that particular
image have been stopped or removed.

sudo docker rmi training/sinatra

Untagged: training sir

ubuntu@dockerdemo: ~%

If you want to remove all the images from the Docker host, you can use a one liner on
Linux systems. Execute the following command to remove all the images from the host.

docker rmi $(docker images -q)

In this chapter we have learnt the following,

How to search for Docker images from Docker hub.

How to pull a Docker images to Docker host.

How to build an image from existing image and from Docker file.
How to push a Docker image to the Docker host and

ok e

How to tag Docker images and how to delete an image from the Docker host.

6

Container linking

In previous chapters we learnt how to connect a service inside the container using host to
container mapping. In this chapter we will learn more advanced options for linking
containers together.

Container port mapping:

Applications inside a container can be accessed by mapping the host port to the container
port. Let’s consider the following Docker command.

sudo docker run -d -P training/webapp python app.py

In the above command, a random host port will be mapped to the containers exposed port
5000 using —P flag. Every container is associated with its own network configuration and
IP Addresses.

Let’s consider another Docker command.

sudo docker run -d -p 5000:5000 training/webapp python app.py

In the above command the host port 5000 is mapped to container port 5000. This is a
manual assignation using flap —p.

Note: For random port assignation, the flap is “—P” capital letter and for manual port
assignation it is “-p” small p.

Let’s consider another example,

sudo docker run -d -p 127.0.0.1:5000:5000 training/webapp python app.py

In the above example, the “-p” flag maps port 5000 on the host to the localhost interface.
If you don’t apply any interface explicitly, by default, Docker assigns the port specified in
“—p” flat to all the interfaces in the host.

Let’s say, you want to bind a dynamic port from the local host interface to the container
port, then the Docker command will have the following form.

sudo docker run -d -p 127.0.0.1::5000 training/webapp python app.py
Binding UDP ports:

You can also bind UDP ports to your container. Let’s see an example for binding the
localhost interface with UDP port 5000.

sudo docker run -d -p 127.0.0.1:5000:5000/udp training/webapp python app.py

The above command will bind the localhost interface UDP port 5000 with container port
5000.

Tip: for configuring multiple ports for a container, you can use the “-p” flag multiple time
in the Docker command.

Linking containers together:

For containers to talk to each other, port mapping is not the only way. Docker has an
interesting linking feature which allows containers to be linked together and pass
information between each other. While linking, certain source container information will
be sent to the destination container. This way the destination container can access the
required information from the source container.

Naming containers:

Docker needs the names of the container for linking it together. When a container is
launched, a random name is assigned to it. Docker has an option to name the containers
while launching it. Naming containers while launching is recommended because it has two
uses

1. You can remember the name of the container and use it for all the container
operations like start, stop, inspect etc.

2. Names are used as a reference for linking container together. For example, linking a
webserver and a database container.

A container can be named using the “—name” flag. Let’s create a python container with
name “web”.

Execute the following command for creating a python container named web.

sudo docker run -d -P —name web training/webapp python app.py

ubuntu@dockerdemo:~% sudo docker run -d -P --name web training/webapp python \
2pp-py

ae6bceced532aed93d23832a2a48921aa3F5b79F2d3dB8492cBc9dcchb2dcclida

The above command launched a container with name “web”. Run the following command
to view the web container.

sudo docker ps I

ubuntu@dockerdemo: ~% sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

aebbceced532 training we python app.py 2 minutes ago
Up 2 minutes 9.0.0.0:49] web

ubuntugdockerdemo: ~%

Another way to get the name of the container is by using “Docker inspect” command.

Execute the following command to get the name of the container using the container id.

sudo docker inspect -f “{{ .Name }}” ae6bcece4532

ubuntu@dockerdemo:~% sudo docker inspect -f "{{ .Name }}" ae6bceced4532

Sfweb
ubuntugdockerdemo: -

All the container names should be unique. No two containers can have the same name. If
you want to create a container with the same name, you should delete the container
running with that name and create a new one.

Let’s take a scenario where you want to have a web container and a database container in

the Docker host. By Docker port mapping you can make the web container to talk to the
database container. But the efficient way to do this is by using Docker linking feature.

Links are more secure for passing data from the source to the destination. We will look at
an example where we will link a web container with a database container.

To link containers together Docker uses the “~link” flag. Execute the following command
to create a named database container.

sudo docker run -d —name db training/postgres

ubuntugdockerdemo: ~% sudo docker run -d --name db training postgres
Unable to find image 'training 25" locally

Pulling repository training postgr

258185bea1@d: Pulling image (latest) from training postgres
Download complete

Download

(5]

Download

-~ b

Download
Download
Download
Download
Download
Do j

T o oh Oh D O D]
UL LR

.

BcBf28d39547441F67aeb3 }ad9fEbeleab25b5a63b41dE40a6ddd281462421

Now we have a running database container named “db”. The container is created from
training/postgres image downloaded from Docker hub. Now let’s create a web container
with name “web”.

Execute the following command for creating the web container from training/webapp
image and link it to the db container using the “—Ilink” flag.

sudo docker run -d -P —name web —link db:db training/webapp python app.py

ubuntugdockerdemo:~% sudo docker rum -d -P name web link db:db training webapp python app.p
eledf16edb7268d14c4843decTedd3clcabefat 17268760 ae5F522762093b00
ubuntudockerdemo: ~3%

The link flag has the following syntax,

Syntax: —link name:alias
Name is the name of the container to be linked and “alias” is the alias for the link name.

Now let’s have a look at the launched web and db containers using the docker ps
command.

sudo docker ps

ubuntu@dockerdemo:-~% sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
eledfleedh72 training /webapp: s python app.py About & minute ago
B A.5 648 web
su postgres -c 'fusr

db,web/db

Up About a minute

From the output you can see that the containers are named “web” and “db”. For db
container you can see “web/db” parameter, which means the web container is linked to the
db container. Now the web container can communicate with the db container and access
information from it.

We learned that, by linking containers together, the source container will pass on its
information to the destination container. So the web application we created can now
access the information from the database container. In the backed, a secure tunnel has
been created between the web and db containers. If you noticed, when creating the db
container we did not use any “-p” flag for port mapping. So the db container does not
expose any port for the external world to connect to it. Only the web container which has
been linked to the db container can access its data.

How linking works:

When you run the Docker command with the “—Ilink” flag, Docker would pass on the
required credentials to the recipient container in the following two ways,

1. Using environment variables

2. /etc/hosts file update.

Now, let’s launch a web container with links to the db container to view the environment
variables set by Docker.

Execute the following command to launch a web2 container with db links and “env”
command to view the list of environment variables set by Docker.

sudo docker run —rm —name web2 —link db:db training/webapp env

Note: the “-rm” flag will remove the container once it stops running the command inside
the container.

ubuntug@dockerdemo:~% sudo docker run rm name web2 link db:db training webapp env

fusr/local /shin;:/ bin: fusr/fsbin: fusr/bin: fsbin:/bin
HOSTNAME-ced&15d7
DB_PORT tep:/fr1i2
DB_PORT 5432 TCP-tcp

DB_PORT_5432_TCP_ADDR-172.
DB_PORT_5432_TCP_PORT-5432
DE_PORT_5432_TCP_PROTO-tcp
DB_NAME fweb?/db
DE_ENV_PG_VERSION=9.3

The above output lists all the environment variables set by Docker on web2 container.

These variables are used to form a secure tunnel between the web and db container. All the
variables are prefixed with DB. This is the alias name we mentioned while linking the
container with db. If you have given the alias name as “database”, the environment
variables would have a prefix “database”.

Now let’s launch another container to have a look at /etc/hosts file. Execute the following
command to start an interactive session for the web container with db links.

sudo docker run -t -i —rm —link db:db training/webapp /bin/bash

Run the following command in the container to view the contents of /etc/hosts file.

cat /etc/hosts

sudo docker run -t -1 i ink :db training ‘webapp /bin/bash
fopt/webapp

lnrdlhn t ipé ;ﬁtﬂlhu"t ipé-loopback

@ ipé-localnet
1@ ip6-mcastprefix
::1 ip6-allnodes
2 ip6-allrouters
1€ db
12: fopt/webapp

As you can see from the output, the hostname is the id of the container. The ip
(172.17.0.10) entry for the db container is mapped to the alias name “db” in the hostname
entry.

Now let’s try to ping the db container using its hostname “db”. Container does not come
with a ping tool, so we have to install it on the container. Execute the following command
to install ping in our web container.

apt-get install -yqq inetutils-ping

Run the following command to ping the db container.
ping db

root@eds3es8b375212: /opt/webapp
debconf: delaying package configuration, since apt-utils is installed
Selecting previously unselected package netbase.
(Reading database ... 8961 files directories currently installed.)
Unpacking netbase (from ... netbase_4.47ubuntul_all.deb)
Selecting previously unselected package inetutils-ping.
Unpacking inetutils-ping (from ... inetutils-ping 2%3al.& 6_amd64.deb)
Setting up netbase (4.47ubuntul)
Setting up 1netut11; ping (2:1.8-86)
root@edsesh ’Dpt 'webapp
PING db LLT_._". 48 data bytes
56 bytes from 172 : icmp_seq-2 ttl-64 time=2.
56 bytes from 172.1 :F icmp_seq 1 ttl=64 time
56 bytes from 172.17.8.18: icmp_seq=2 tt1-64 time=8
db ping statlgtlcs
3 pac?etg tranamltted 3 pac?eta FEr91vnd £ packet loss

When we issued the ping command the “db” hostname got resolved to the IP Address
(172.17.0.10) of the db container. You can use this hostname in your application to
connect to the database.

Tip: you can link multiple containers to the one container. Let’s consider a scenario where
you need more than one web container which needs access to a common database. In this
case, you can link all the web containers to one db container.

7

Data management in containers

In this chapter, we will learn how to manage data in containers.

The data present inside a container is stateless. Once the container is removed, all the data
inside the container will be lost. Docker provides an efficient mechanism called
“volumes” to persist the data used by containers. Using container volumes, all the data and
logs of the container can be persisted.

For application development, using Docker volume is recommended because rapid code
changes in the application will get reflected on the running container. Otherwise you need
to launch a new container every time there is a change in application code.

The following figure illustrates the working of Docker volumes in a container.

Fig 7-1: Data volumes in containers.

There are two ways by which you can manage data in containers

1. Using data volumes and
2. Data volume containers.

Docker data volumes:

Data volumes are special directories created inside a container which circumvents the
uniform file system for persisting data inside the volumes. Docker data volume has the
following features.

1. Data volumes are sharable and reusable.
2. Direct changes can be made to data volumes.

3. During the image update, the changes made in data volume won’t be reflected on the
image.

Adding data volumes to containers:

In this section we will learn how to add a data volume to a container. A data volume can
be added to container using the —v flag. Execute the following command to add a data
volume to python flask application.

sudo docker run -d -P —name web -v /webapp training/webapp python app.py

LBLAELaL

&7 Fffb

ubuntugde

The above command creates a /webapp volume inside the web container.

Tip: You can also add volumes to containers using the Dockerfile. The VOLUME
instruction in a Docker file creates volumes with the specified name.

Data volumes from host directories:

The host directories can be mounted as a volume in container as shown in Fig: 7-1. Same
—v flag is used for creating host mounted data volumes with change in syntax. It takes the
following form

-v /source-directory:/opt/directory

Execute the following command to create a host mounted volume for a web1 container.
sudo docker run -d -P —name web1 -v /src/webapp:/opt/webapp training/webapp python app.py

kerdemo:~% sudo d o name webl -v /src/webapp:/fopt/webapp training weba
45 6244eld ichea2c7@d1528c3311632d

vbuntugdockerd

The above command will mount the host directory /src/webapp on to the containers
/opt/webapp directory. Mounting host directory is very useful in rapid application
development. All the application code can be copied to the host directory and you can
view the application changes from the running container. If the specified directory does
not exist in the host, Docker will automatically create it.

Creating read only data volume:

When you create a data volume, by default, Docker creates it with read/write mode. You
can also create read only data volumes by specifying a “ro” parameter in the command.
Execute the following command for creating a read only data volume in web2 container.

sudo docker run -d -P —name web2 -v /src/webapp:/opt/webapp:ro training/webapp python app.py

pire training/w

The only difference in creating read only volume is the additional “ro” parameter added to
the “/opt/webapp”.

Data volume from host file:

Files in the host can also be mounted on to containers instead of directories. Same “-v”
flag is used for mounting host files as volumes in containers. Execute the following
command to create a data volume from the host file “bash_history”.

sudo docker run —rm -it -v ~/.bash_history:/.bash_history ubuntu /bin/bash

The above command launched a container with bash shell. Run the following command in
the container to check if the file has been mounted.

Is .bash_history

ubuntu@dockerdemo:~% sudo docker run --rm -it -w -/.bash_history:/.bash_history ubuntu /bin bas
fhood

524bdfhagd

The bash_history file has the bash history of the host system. Once you exit the container,
the bash_history file in the host will have the bash history of the container.

Containers as data volumes:

Non persistent containers can be used as data volumes. This is useful when you want to
share persistent data among many containers. These containers are called data volume
containers. Let’s try creating a data volume container.

Execute the following command to create a data volume container.

sudo docker run -d -v /dbdata —name dbdata training/postgres echo data-only container for postgres

The above command creates a data volume container named dbdata with /dbdata as a
volume.

ubuntugdockerdemo:~% s [1 : d -v 'dbdata --name dbdata training postgres echo Data-o
Sbcf5785d579dcBa4911F37bad @ 95148518dbBef67485ccfBcal

ubuntugdockerdemo: ~5

(13

Now, let’s try mounting this data volume container to another container. “—volumes-

from” flag is used for mounting a volume from a data volume container.

Execute the following command for creating a container with a volume mounted from
dbdata container.

sudo docker run -d —volumes-from dbdata —name db1 training/postgres

ubuntu@dockerdemo:~% sudo docker run -d --volumes-from dbdata --name dbl training postgres
céadedcfcdaf3bfiladl5Ff514cacdscTFo2fT36FF3f41d9a95bad387ccb2521e

ubuntugdockerdemo: %

You can mount the dbdata from db3 container to some other container. Let’s try creating a
container db2 by mounting the volume dbdata from db1 container.

sudo docker run -d —name db3 —volumes-from db1 training/postgres

d e db3 - volumes-from dbl training postgres
B3af6lla7712ce7c2942F1edfB3876C

ubuntugdockerdemo: ~

This is how you can link the data volume with many containers. The advantage of
container data volumes is that, if you delete any container, mounting a volume and linked
to another container, the volume will not get deleted.

This enables migration of the data volume to another container. If you want to delete the
volume, you need to run the “docker rm —v” command with the volume name.

Execute the following command to remove the data volume dbdata.

sudo docker rm -v dbdata

rooti@dockerdemo:~# sudo docker rm -v dbdata

dbdata
root@dockerdemo: ~#

Backing up data volumes:

Volumes can be backed up, restored and migrated. For all these actions “—volumes-from”
flag is used. Let’s try backing up the dbdata volume by launching a container.

Execute the following command to launch a container to back up the dbdata volume.

sudo docker run —volumes-from dbdata -v $(pwd):/backup ubuntu tar cvf /backup/backup.tar /dbdata

ubuntugdockerdemo:-~% sude docker run --volumes-from dbdata -v $(pwd):/backup ubuntu tar cvf ‘bj
ing leading */' from member names

ubuntugdockerdemo:~%

The above command created a container with dbdata volume mounted on it. Also it
created a volume by mounting the host directory. Finally it created a tar archive of dbdata
in the host mounted volume. Once the container finished executing all the commands, it

stops by leaving a backup data in the host directory.
You can restore the data by creating a new container by mounting the host directory and
extracting the files from backup.tar archive.

ubuntugdockerdemo:~5 sudo cer run --volumes-from dbdata2 -v 5{pwd):/backup busybox tar xvf
locally

Download complete

Download complete
Download complete
Download complete

All the above backup mechanisms can be used for migration, backup automation using
various tools.

Working with Docker hub:

We have learnt the basics of Docker hub and its use. In this section we will learn more
about Docker hub.

Docker hub is a public image repository for Docker created by Docker Inc. It contains
thousands of images created by Docker hub users. Apart from just images, it provides
various other features like authentication, build triggers, automatic builds and webhooks.

webhooks

When a repository is pushed successfully, webhooks will automatically trigger REST
based actions to other applications. When a webhook is called it will generate a HTTP
POST method with a JSON payload.
The generated JSON will look like the following.
{
“push_data”:{
“pushed_at”:12385123110,
“images”:[
“imagel”,
“image2”,
“image3”
I,
“pusher”:” <username>”
3
“repository”:{
“status”: “Active”,
“description”: “descritpion of Docker repository”,
“is_automated”:false,
“full_description”: “full description of repo”,
“repo_url”: “https://registry.hub.Docker.com/u/user-name/repo-name/”,
“owner”:” <username>",
“is_official”:false,
“is_private”:false,
“name”:” <reponame> ",
“namespace”:” <username>”,
“star_count”:2,
“comment_count”:3,
“date_created”:1370344400,
“Dockerfile”: “Docker file contents”,

“repo_name”:” <username>/<reponame>"

}

Docker hub is an essential element in Docker ecosystem for simplifying Docker
workflows. Also users can create private registries to have private images which are not
searchable and accessed by other users.

Docker hub commands:

Docker has the following commands to work with Docker hub.

1. Docker login
2. Docker search
3. Docker pull
4. Docker push

Let’s have a look at each of the commands.

Docker login:

Docker login command can be used to sign up and sign in to the Docker hub from
command line. If you are using “Docker login” command in the command line, it will

prompt for the user name and password.
root@dockerdemo:~:~# |docker login

Username: bibinwilson
Password:

Email: bibin.w@hcl.com
Login Succeedsd
root@dockerdemo: ~: ~#

Once you are authenticated against Docker hub a configuration file (.Dockercfg) will be
created with Docker hub authentication tokens and placed in your host’s home directory.
This file is used for further logins.

Note: The username for Docker hub will be used as a namespace for all the images
created by you from the authenticated Docker host.

For example, bibinwilson/Jekyll:v1

Docker search:

Docker search command is the great way for finding the images with a keyword or an
image name. You can also use the Docker hub search interface to find images. You can
grab the image name from there and use it with Docker pull command to pull it down to
your Docker host.

Let’s search for a centos image using the “Docker search” command.

docker search centos

The above command will list all the centos images in the Docker hub.

ckerdemo :~:~# sudo docker search centos
base-centos The CentDS image i'm currently using to
vas B [OK]
fzulu-openjdk-centos Zulu is a fully tested, compatibility
veri... @ [OK]
shift/coreos-centos-confd Part of my Core0S base setup. At this
poi... @ [OK]

caligin/centos-puppetready centos 6.5 with puppet ready for
provisioning @

internavenue/centos-nginx A Cent05-based Docker image that will run
S [OK]

richardgill/centos-kdb 32bit KDB, installed inside centos. To

i e [OK]
dekpient/centos-tar 5 with tar installed

Docker pull:

Docker pull command is used for pulling the images from Docker hub. This command has
the following syntax.

Syntax: Docker pull <image name>

Let’s pull a RHEL image using the following command.

sudo docker pull rhel

This command will pull the “rhel” image from Docker hub.

rooti@ddockerdemo:~# sudo docker pull rhel
Pulling repository rhel
bef54b8f8a2f: Download complete

elf5733f@5eb: Download complete
rootiddockerdemo: ~#

Docker push:

Docker push command is used to push a repository to Docker hub. If you have created an
image from Docker file or committed an image from a container, then you can push that
image to the Docker hub.

Let’s try to push an image to Docker hub by committing a RHEL container.
Execute the following command to create an interactive rhel container.
sudo docker run -i -t —name rhel rhel /bin/bash

rootignode?:~# docker run -1 -t --name rhel rhel /bin/bash

bash-4.2# ls
bin dev home 1ib64 mnt proc rum srv tmp var

boot etc 1lib media opt root sbin sys usr
bash-4.2#

Exit the container using the exit command.

exit

Commit the rhel container using the following command. Replace bibinwilson with your
Docker hub username.

docker commit rhel bibinwilson/rhel:v1

Here v1 is the tag for the image.

rooti@node2:~# docker commit rhel bibinwilson/rhel:vl
6297fced1b765b96565ef486b848899e55bdbB8Ieeadab654b0f0684cebBB6CCE

root@node : ~#

Now we have a committed image in the name “bibinwilson/rhel:v1”. Execute the
following command to push the image to Docker hub.

docker push bibinwilson/rhel:v1

root@node?:~# docker push bibinwilson/rhel:vl

The push refers to a repository [bibinwilson/rhel] (len: 1)
Sending image |

Pushing repository bibinwilson/rhel (1 tags)

befSab8fEalf: Image a pushed, skipping

6297Fcedlb7e: Image su fully pushed

Pushing tag fo 37fced1lb76] on {https://cdn-registry-1.docker.io/vi/repos itories/
bibinwilson/rhel/tags/v

root@node?:~#

We have successfully pushed the rhel image to the Docker hub.

8

Building and testing containers from scratch

In this chapter we will learn how to Dockerize applications from scratch. You can use
images from the Docker public registry for your application, but for an in-depth idea for
dockerizing applications, we will build our images from scratch.

In this section we create the following

A static web application running on apache
A MySQL image

WordPress application with MySQL database
Hosting multiple websites on a Docker host

ok W

Building and testing containers using Jenkins CI

Building docker images manually by executing commands is a tedious process. There is
no need for creating images manually when it can be automated using dockerfile. In this
section, we will discuss what a Dockerfile is, what it is capable of doing, and we will build
a basic image using dockerfile.

Dockerfile

Dockerfile is a plain text file composed of various instructions (commands) and arguments
listed sequentially to automate the process of image building. By executing “docker build”
command with the path to the dockerfile, a docker image will be created by executing the
set of instructions successively from the dockerfile. Before start building images from a
dockerfile, you should understand all the instructions than can be used in a dockerfile.

Every instruction in the dockerfile will have the following syntax.

INSTRUCTION argument

Dockerfile supports the following instructions.

e FROM

e MAINTAINER
e RUN

e ENV

e CMD

e ADD

e EXPOSE

e ENTRYPOINT
e USER

e VOLUME
¢ WORKDIR

Let’s have look at the functionality of each instruction.

FROM

Every dockerfile should begin with the FROM instruction. It denotes the base image (base
Ubuntu, centos RHEL etc.) from which the new image will be created. The base image
can be any image, including the image you have created and committed in your docker
host. If the image specified in the FROM instruction is not available in the host, docker
will pull it from the docker hub.

Syntax

Usage: FROM [image name]

FROM centos

MAINTAINER

This instruction sets the author for the image. It can be placed anywhere in the dockerfile
as this does not perform any action on the image building process.

Syntax

Usage: MAINTAINER [author name]

MAINTAINER Bibin Wilson

RUN

RUN executes a shell command. This instruction takes a Linux command as an argument.
It adds a layer on top of the image and the committed changes will be available for the
next instruction in the dockerfile.

Syntax

Usage: MAINTAINER [author name]

MAINTAINER Bibin Wilson

ENV

ENYV sets the environment variables and it takes a key value pair as an argument .The
variables set by the ENV instruction can be used by scripts and applications running inside
the container. This functionality in docker file provides better flexibility in running
programs inside a docker container.

Syntax

Usage: ENV Key Value

ENV ACCESS_KEY 45dcdfrY

CMD

CMD, like RUN it can be used to execute a specific command. However, it will not be
executed during the image building process but when a container is created from the build

image. For example, if you want to start apache every time you create a container from an
image with apache installed, you can specify the command to start apache in the CMD
instruction. Also, in a dockerfile, you can specify the CMD instruction only one time. If
specified multiple times, all the instruction except the last one will be nullified.

Syntax

Syntax:CMD [“executable”,“param1”,“param?2”]
CMD [“param1”,“param2”]

CMD command param1 param?2

CMD “echo” “Hello World”

ADD

ADD instruction takes two arguments: a source and a destination. This instruction copies a
file from the source to the containers file system. If the source is a url, then the file from
the url will be downloaded to the destination. You can also specify wildcard entries in the
source path to copy all the files matching the entry.

Syntax
Usage: ADD ADD [source directory or URL] [destination directory]
ADD /source_folder /destination_folder

ADD *file* /destination_folder

COPY

This instruction is also used for copying files and folders from a source to the destination
file system of a container. However, COPY instruction does not support url as a source.
Multiple sources can be specified and copied to a folder in the destination using COPY.
COPY has the same syntax as ADD.

EXPOSE

This instruction associates the specified port for enabling networking between a docker
container and the outside world. The default container ports that are accessible from the
host cannot be defined using EXPOSE. Host to container mappings can only be done
using the “-p” flag with the docker run command.

Syntax
Usage: EXPOSE [port]
EXPOSE 443

EXPOSE [443, 80, 8080]

ENTRYPOINT

Using this instruction a specific application can be set as default and start every time a
container is created using the image.

Syntax: Comes in two flavours
ENTRYPOINT [‘executable’, ‘param1’,’param2’]
ENTRYPOINT command paraml param2

ENTRYPOINT can be used with CMD to remove the “application” from CMD leaving
only the arguments which will be passed to ENTERYPOINT.

CMD “ This is an argument for entrypoint”

ENTRYPOINT echo

USER

It sets the UID (username) which has to be used to run the container from the image.

Syntax
Usage: USER [uid]

USER 543

VOLUME

This instruction is used to mount a specific file or a directory to a container. The host
directory or file mentioned in the instruction will be mounted to the container when
created.

Syntax
Usage: VOLUME [“/dir1”, “/dir2” ..]

VOLUME [*“var/log”]

WORKDIR

WORKDIR sets the Working directory for the RUN, CMD and ENTRYPOINT
instructions. All the commands will be executed in the directory specified in WORDDIR
instruction.

Syntax
Usage: WORKDIR /path

WORKDIR /root

.dockerignorefile

.dockerignore file is like .gitignore file. All files and directories which has to be excluded
should present in the .dockerignore file. It is interpreted by new-line separated list of files

and directories.

Example dockerfile

A typical dockerfile will look like the following. It is dockerfile for creating a MongoDB
image.

FROM ubuntu

MAINTAINER Bibin Wilson

RUN apt-key adv —keyserver keyserver.ubuntu.com —recv 7FOCEB10

RUN echo “deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen” | tee -a /etc/apt/sources.list.d/10gen.list
RUN apt-get update

RUN apt-get -y install apt-utils

RUN apt-get -y install mongodb-10gen

CMD [“/usr/bin/mongod”, “—config”, “/etc/mongodb.conf”]

Now we will create a normal MongoDB image using the above dockerfile. Follow the
steps given below to build an image from dockerfile.

1. Create a directory name MongoDB, cd into that directory, create a file named
Dockerfile and copy the above dockerfile contents onto the file.
mkdir mongodb && cd mongodb
touch Dockerfile

nano Dockerfile

root@dockerdemo:~# mkdir mongodb && cd mongodb
root@dockerdemo:~/mongodb# touch Dockerfile

root@dockerdemo:~/mongodb# nano Dockerfile

2. “docker build” command is used to build an image. To list all the options associated
with docker build command, execute the following command.

docker build —help

rooti@gdockerdemo: ~/mongodb# docker build --help

-q, --guiet=false
==rm=true
-t

. =-tag=""

3. Let’s build our MongoDB image using the following command.
docker build -t mongodb .

Note: “docker build” command is associated with few options. You can view the options
using “docker build —help” command. In the above build command we use “-t” to name

the image “mongodb” and “.” Represents the location of docker file as current directory. If
the dockerfile is present in different location, you need to give the absolute path of
dockerfile instead of “.”

roct@dockerdemo: ~/mongodb# docker build -t mongodb .
Sending build context to Docker daemon 2.842 kB
Sending build context to Docker daemomn
Step @ : FROM ubuntu
ubuntu:latest: The image wou are pulling has been verified
Pull complete
: Pull complete
Pull complete
- 25ads : Pull complete
24c5d2b7b2e5: Pull complete
Status: Downloaded newer image for ubuntu:latest
===> B4c5d3b7bAES
Step 1 : MAINTAIMER bibin wilson
===> Running in cdb@besecsbE
- acddasdte
Removing intermediate container cdbSbe8ecsbs
S5tep 2 : RUN apt-key adv --keyserver keyserver.ubuntu.com --recv 7FeCEBl18
-=-=» Running in 37b7eb22aaz22
st 7 1 CMD fusr/bin/mongod --config /fetc/mongodb.conf
= > Running in 18143cbec2F3
= > Saece2bdcsl
Removing intermediate container 818143cbec2fs
Successfully built SaecébdcS1E7

Till now we have learned about docker file and its options. Also we have learned how to
build an image from dockerfile. In next section we will look in to some best practices for
writing a docker file.

Dockerfile Best Practices

Follow the best practices given below while working with dockerfiles.

e Always make a dockerfile with minimum configuration as possible.

e Use .dockerignore file to exclude all the files and directories which will not be
included in the build process. For example .git folder. You can exclude .git folder by
including it in the .dockerignore file.

¢ Avoid all unnecessary package installations to keep the image size minimal.

e Run just one process per container. It is a good practice to decouple your application
for better horizontal scaling and container reuse. For example, run the web
application and database in different containers and link them together using “- -link”
flag.

e Many base images in docker hub are bloated. Use small base images for your
dockerfile and make sure you use the official and trusted base images with minimum
size.

e Use specific image tags while building image and while using it in FROM
instruction.

e Group all the common operations. For example, use “apt-get update” with “apt-get
install” using “\” to span multiple lines on your installs.

For example,

RUN apt-get update && apt-get install -y |

git\

libxml2-dev \
python \
build-essential \
make \

gcee \
python-dev \

locales \

python-pip

e Use build cache while building images. Docker will look for existing image while
building an image to reuse it rather than building a duplicate image. If you do not
want to use the build cache, you can explicitly specify the “—no-cache=true” flag for
not using the cache.

A static website using Apache

In this section, we will create a Docker image and create containers from the image which
runs the static website. We need the following to run the apache container with a static
website.

1. Dockerfile with all the specifications to run apache.

2. Static website files

3. An apache-config file to configure apache to run the static website.

Follow the steps given below to get the apache container up and running.

Note: You can get the Docker file and associated files in the demo from my github
repository. Here is the repository link. https://github.com/Dockerdemo/apache

1. Create a folder named apache and cd in to the apache directory.

mkdir apache && cd apache

root@nodel:~# mkdir apache &8& cd apache

rooti@nodel: ~/apache#

2. Create a Docker file

touch Dockerfile

3. Create a file named apache-config.conf and copy the following contents on to the
file.
<VirtualHost *:80>
ServerAdmin admin@yourdomain.com

DocumentRoot /var/www/website

https://github.com/dockerdemo/apache

<Directory /var/www/website/>

Options Indexes FollowSymLinks MultiViews

AllowOverride All

Order deny,allow

Allow from all

</Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

4.
5.

Download the static website files to the apache folder from the github link.
Copy the following snippet on to the Docker file.

FROM ubuntu:latest

MAINTAINER Bibin Wilson <bibin.w@hcl.com>

RUN apt-get update

RUN apt-get -y upgrade

RUN apt-get -y install apache2

ENV APACHE_RUN_USER www-data

ENV APACHE_RUN_GROUP www-data

ENV APACHE_LOG_DIR /var/log/apache2

ENV APACHE_LOCK_DIR /var/lock/apache2

ENV APACHE_PID_FILE /var/run/apache2.pid

EXPOSE 80

ADD website /var/www/website

ADD apache-config.conf /etc/apache2/sites-enabled/000-default.conf

CMD /usr/sbin/apache2ctl -D FOREGROUND

Here is what the above Dockerfile does.

Pulls the base image Ubuntu from public repository if it is not available locally in
your server

Updates the image and installs apache2 using RUN

Set few apache specific environment variables which will be used by the custom
apache config file that we will use.

Exposes port 80

Adds the website folder from the host on to /var/www location in the container.
Adds the custom apache config file we created to the container.

Finally it starts the apache2 service.

Our project will contain the following files as shown in the following tree structure.

apache
--Dockerfile
--website

--Files
--apache-config.conf

7. Now we have the Docker file, website files and apache config file in place. Next step
is to build an image from the Docker file. Run the Docker build command given
below to build the apache image from our Dockerfile.

docker build —t apachedemo .

rooti@node: - /apache# docker build -t apachedemo .
Step @ : FROM ubuntu:latest
---» 1357Ff421be38
Step 1 : MAINTAINER Bibin Wilson <bibin.wghcl.com
---» Using cache

82919d5612Fd

: RUN apt-get update

Using cache

fa@bg97128a52

RUN apt-get -y upgrade
Using cache
7elcd4agblsab

Removing intermediate container 2757el1d9a574
Step 13 : CMD /usr/sbin/apache2ctl -D FOREGROUND
-~ Running eaB8eaBBaB732

--- 28922b45e634f

Removing intermediate container eaBeaBBag8732
Successtully built 2922b4S8684f

8. Now we have our apache image ready and we can create containers from it. Run the
following Docker command to create a new apache container

docker run -d -p 80:80 —name staticwebsite apachedemo

fapache# docker run -d -p B8:88 --name staticwebsite apachedemo
ibl84b%aBb439aefcbc@l5fdBaldf32278ed7adc67b77cB98

9. We have a running apache container with our static website with port mapped to 80.
You can access the website from the browser on port 80 using the host IP of DNS

http://hostip:80

http://hostip:80

E & nmeaar 2] . Floaga & & B & = - H

Dt D mis Ty EREin wilson

Docker Apache Demo

1ust a Stathc Website Rupmning On Apache

Learn Mare

The image shows the static website we had in the website folder.

10. Run the Docker ps command to see more information about the container.

CREATED

=

7 minutes ago

rootinode?: -~ /apache#

If you do not want to recreate containers every time you update your static website files,
you can mount a folder from the host containing the website files on to containers instead
of copying the files to container. So that every time you make a change to the file will be
reflected on the running container.

Now let’s create a container by mounting the website folder to the container.

-v flag is used for mounting a volume to the container. Execute the following command to
creating a new container with website folder in the host as a mount point for the container

docker run -p 8080:80 -d apachedemo -v \ /root/apache/website:/var/www/website

Creating MySQL image and containers

In this section we will create a MySQL Docker image from a base Ubuntu image. We will
do the following to create our MySQL container.

1. Create a Dockerfile with commands to install and configure MySQL server

2. Create a shell script for creating a user, database and staring the server.

3. Build an image named mysql from the created files.

4. Create a container from the mysql image.

Note: You can get the Docker file and associated files in the demo from my github
repository. Here is the repository link. https://github.com/Dockerdemo/mysql

Let’s start creating our mysql image.
1. Create a directory name mysql and cd in to the same
mkdir mysql && cd mysql

root@node: ~# mkdir mysqgl cd mysql

root@node2: - /mysql#

2. Create a file named start.sh and copy the following shell script on to the file. This
script creates users, databases by getting the values from the environment variables
specified in the Dockerfile and restarts the mysql server.

#!/bin/bash

Jusr/sbin/mysqld &

sleep 5

echo “Creating user”

echo “CREATE USER ‘$user’ IDENTIFIED BY ‘$password’” | mysql —default-character-set=utf8

echo “REVOKE ALL PRIVILEGES ON *.* FROM ‘$user’@°%’; FLUSH PRIVILEGES” | mysql —default-character-set=utf8

echo “GRANT SELECT ON *.* TO ‘$user’@’%’; FLUSH PRIVILEGES” | mysql —default-character-set=utf8

echo “finished”

if [“$access” = “WRITE”]; then

echo “GRANT ALL PRIVILEGES ON *.* TO ‘$user’@’%’ WITH GRANT OPTION; FLUSH PRIVILEGES” | mysql —default-character-set=utf8

fi

mysqladmin shutdown

/usr/sbin/mysqld

The above script creates a user with the password specified as the environment variable in
the Dockerfile. You can specify the access right for the user in if block. In the above file

we have WRITE access which grants all the privileges to the user. At last it restarts the
MySQL server.

3. Create a Dockerfile and copy the following snippet on to the file.

https://github.com/dockerdemo/mysql

FROM ubuntu:latest

MAINTAINER Bibin Wilson

RUN apt-get update

RUN apt-get upgrade -y

RUN apt-get -y install mysql-client mysql-server curl
RUN sed -i -e”s/Nbind-address\s*=\s*127.0.0.1/bind-address = 0.0.0.0/” /etc/mysql/my.cnf
ENV user Docker

ENV password root

ENV access WRITE

ADD ./start.sh /usr/local/bin/start.sh

RUN chmod +x /usr/local/bin/start.sh

EXPOSE 3306

Here is what the Docker file does.

1. Updates the image.

Installs MySQL server and client

Changes the bind address to 0.0.0.0 on my.cnf file to get remote access
Sets few environment variables to be used by the start.sh script.

Adds the start.sh file to the image

Runs the start.sh script

ok WN

7. Exposed port 3306 on the container.

4. Now we have the Dockerfile and the start script in place. Run the following Docker
build command to build our mysql image.

docker build —t mysql .

rooti@node2: ~/myvsql# docker build -t mysqgl
Sending build context to Docker daemon 4.898 kB
Sending build context to Docker dasmon
Step : FROM ubuntu:latest

i 5586dezbsed3b
Step 1 : MAINTAINER Bibin Wilson

=== Running 8do4fl4a8e382

i eaZze327fe5ae
Removing intermediate container 8d94f148e382
Step 2 : RUN apt-get update

ADD ./start.sh fusr/local/bin/start.
c51493cS5cdel
Removing intermediate container bad4l21+85fbl
Step 18 : RUN chmod +x fusr/local/bin/start.sh
~==> Running fe3l8889b62b
~==> 6671c44Bf53b
Removing intermediate container fe3leee9b&2b
Step 11 : EXPOSE 3306
=== Running bd49aa2b5462
---> cbbb29fdc7ea
Removing intermediate container bd4%9aa2b5462
Successfully built cbbb&8gfdc7ea

5. Our mysql image has be successfully built. You can start a mysql container using the

following Docker command.

docker run -d -p 3306:3306 —name db mysql

root@node:~/mysgqll# docker run -d -p 3386:3306 --name db mysqgl

b3766c847efcboddald6la2b3a3114294b221Fd494ald5a21d88ad363bal3gs7

6. Now if you run the Docker ps command, you can see the running mysql container
name db.

docker ps
root@node:~/mysql# docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS MAMES

b3766c847efc mysql:latest fusrflocal/bin/start
3 seconds ago Up 2 seconds 9.8.8.8:3306~- 3386/tcp
roct@node: -~ /mysql#

|db

7. You can now access the database using the containers IP. You can get the full details
of the container using “Docker inspect” command. You can get the db containers IP
using the following command.

docker inspect —format ‘{{ .NetworkSettings.IPAddress }}’ db

Here db is the container’s name.

rootignode?: - /mysql# docker inspect --format '{{
172.17.8.73

rooti@gnode: - /mysqgl#

8. To access the mysql server running on the db container you should have mysql client
installed on the Docker host. Run the following mysql command to access the
database. Make sure you use the correct username and password used in the
Dockerfile.

root@node;: -~/ /mysql# mysql -h 172.17.8.73 -u dockerdemo
Enter password:

Welcome to the MySQL monitor. Commands end with or
Your MySQL connection id is 2

Server version: 5.5.48-8ubuntug.l4.84.1 (Ubuntu)

Copyright (c) 2888, 2814, Oracle and/or its affiliates. All rights reserved.

Oracle iz a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type ‘help;' or "‘\h' help. Type '‘c¢' to clear the current input statement.

You can use this container for backend database for you applications using the container
IP and database credentials.

As explained earlier another way of linking containers is using Docker links, we will be
using this approach in another example in the following section.

Creating a WordPress container

In this demo, we will see how to create a WordPress image to run a WordPress container.

You can run the backend database in the same container or you can use a different
container for the database. We will use a standalone MySQL container we created to run
our WordPress application.

We will do the following to get our WordPress container ready.

1. Create a Docker file with specifications to install all the necessary components
needed to run a WordPress CMS

2. Build the wordpress image.
3. Run the wordpress container.

Note: You can get the Docker file and associated files in the demo from my github
repository. Here is the repository link. https://github.com/Dockerdemo/wordpress

A typical WordPress installation should have the following requirements.

1. A web server — we will use apache web server to run our WordPress
application
2. PhP run time environment
3. Backend SQL database — we will use the mysql container we created as the
backend database for WordPress.

Let’s get started with building the WordPress image.

1. Create a directory named wordpress and cd in to the directory using the following
command.

mkdir wordpress && cd wordpress

root@node2: -# mkdir wordpress cd wordpress

roct@node: - /wordpress#
2. Create a Dockerfile and copy the following snippet on to the file.

FROM ubuntu:latest

MAINTAINER Bibin Wilson <bibin.w@hcl.com>

RUN apt-get update

RUN apt-get -y upgrade

RUN apt-get -y install apache2 libapache2-mod-php5 pwgen python-setuptools vim-tiny php5-mysql php5-ldap

RUN RUN apt-get -y install php5-curl php5-gd php5-intl php-pear php5-imagick php5-imap php5-mcrypt php5-memcache php5-ming php5-ps php5-
pspell php5-recode php5-sqlite php5-tidy php5-xmlrpc php5-xsl

ENV APACHE_RUN_USER www-data

ENV APACHE_RUN_GROUP www-data

ENV APACHE_LOG_DIR /var/log/apache?2
ENV APACHE_LOCK_DIR /var/lock/apache2
ENV APACHE_PID_FILE /var/run/apache2.pid

EXPOSE 80

https://github.com/dockerdemo/wordpress

ADD http://wordpress.org/latest.tar.gz /wordpress.tar.gz

RUN tar xvzf /wordpress.tar.gz

RUN rm -rf var/www/

RUN mv /wordpress /var/www/

ADD apache-config.conf /etc/apache2/sites-enabled/000-default.conf

CMD /usr/sbin/apache2ctl -D FOREGROUND

The above Dockerfile does the following.

e Updates the images
e Installs required apache2 and php elements required for wordpress

e Sets few environment variables for apache, which will be used by the apache conf
file associated with the Docker file.

e Exposes port 80 on container

e Downloads the latest wordpress setup files and copies it to the desired folder.
¢ Adds the apache config file from the host to container.

e Starts apache server.

3. Create an apache-config.conf file and copy the following snippet on to the file.

<VirtualHost *:80>

ServerAdmin admin@yourdomain.com
DocumentRoot /var/www/wordpress
<Directory /var/www/wordpress/>

Options Indexes FollowSymLinks MultiViews
AllowOverride All

Order deny,allow

Allow from all

</Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

The above config file is same as the one we created in the first apache demo

4. Build the wordpress image from the Docker file using the following command.

docker build -t wordpress .

root@node?: ~/wordpress# docker build -t wordpress .
Sending build context to Docker daemon 7.68 kB
Sending build context to Docker daemon
Step @ : FROM ubuntu:latest

---> 5506de2bs43b

Step 1 : MAINTAINER Bibin Wilson <bibin.w@hcl.com
-=-=-> Running 75c56adbe7ee
---: B771afBEce7d

Removing intermediate container 75c56adbe7ee

Step 2 : RUN apt-get update
-==> Running e57bse7ddede

Removing intermediate container 4e98b625763b

Step 17 : ADD apache-config.conf fetc/apachel2/sites-enabled/@88-default.conf
---> T7b4f7bc2de3c

Removing intermediate container 81ff92542825

Step 18 : CMD /usr/sbin/apache2ctl -D FOREGROUND
===3 Running bbasdf7e74ce
---> eadeslslced3

Removing intermediate container bbaSdf7674cé

Successfully built eadeslSlced3

rocti@gnode: - /wordpress#

Now we have a wordpress image. In order to install and setup wordpress, you need a
backend SQL database. In our wordpress containers we haven’t configured any database.

We will use the mysql container as the backend database for our wordpress application.

There are two ways by which you can link the MySQL container to the WordPress
container.

1. Run the mysql container with ports mapped to the host and use the IP address of the
container for linking wordpress to the database. In this case you can link a WordPress
container in another host to the host running mysql container.

2. Run the mysql container without mapping it to the host port and link the wordpress
container using the Docker —link flag specifying the mysql container name.

Running a two container WordPress application

In this section we will learn how to set up a two container wordpress application using a
wordpress container and a mysqgl container. You can set up wordpress and mysql on the
same container but it is advisable to have distinct components for the database and
application. Let’s look an example configurations for this application.

In this example, we will run a WordPress application using MySQL container for the
database.

1. Create a container from our MySQL image by mapping host port 3306 to container
port 3306 using the following command.
docker run -d -p 3306:3306 —name db mysql

root@node?: -# docker run -d -p + -name db mysqgl
9edd6all2@e6cd7747a7ad1144da7bf f17f84435d8ddf4bdcddd3

root@node: -#

2. Create a wordpress container linking the db container we created using the —link flag
from the following command.

docker run -d -p 80:80 —name web —link db:db wordpres

root@node2: -# docker run -d -p 88:88 --name web --link db:db wordpres
ac7eblbaese54bB4607eff5do9d3de2a74fofflelblfcedeB3a51552a1858F3a3e

root@node: -#

3. If you run the Docker ps command, you can see our web container linked with the db
container.

docker ps

root@node?: -# docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS

ac7eblbaees4 wordpress: lat

p 2 seconds

Seddeall2

Now you can access the WordPress setup page using the host IP address. Access the setup
page and fill in the database name, password and hostname (db container name) and
continue for WordPress installation.

oo

= —— f [4] ; B
Befow you should enter wour database connection detaits, 1Fyou'ne not sure about these. contact wour hiost
Database Name myscyl The name of the database you want to run
WP in

User Narme dockerdema Your MySOL Username

Passward seerEt and your MySOL pastward

Database Host diz ¥iou shodd be able to get this info from
your wel Nast. f Tacalhost does not
wiark

Table Prefix dockerwn T yol want 1o run multiple WoedPrass
installations n & single database, change
this

4. Once the installation is complete, you will have a running two container WordPress
application running on your Docker host.

o — il | Flado A B S

DOCKER DEMO

HELLO WORLD!

ROCIWT POAETS

WahHcome to WerdPriss This is your first post. EcBt o delete it, then

starl blogging

BECEWT COMMIEMTS

Fr Wior P o Heelka world

5. If you want more instances of the configured WordPress, you can commit the
container and start new containers from the committed image. Run the following
command to commit the web container and create a new configured WordPress
image named WordPress-configured.

docker commit web wordpress-configured

6. Now, if you list the images in your Docker host, you can see the newly created
wordpress-configured image. Run the following command to list the wordpress
image.

docker images wordpress-configured

rootignode : -# docker images wordpress-configured

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

wordpress-configured latest 2185d55a1fds 3 minutes ago

55.3 MB
root@node : -#

7. Now you can create a configured WordPress directly from the WordPress-configured
image. In order to test this, stop and remove the web container and create a new
WordPress container from the committed image, link it to db container and see if you
get the configured WordPress application.

docker rm -f web

docker run -d -p 80:80 —name web —link db:db wordpress-configured

rootignode?: -# docker rm -f web
web
rootignode?:-# docker run -d -p EB8:88 --name web --link db:db wordpress-configured

56743e499a2b793dac2a516be5b984abs708c694chbbsobaf2fefeb878535c3d1a
recti@node: # docker start web
web

Now you can access the WordPress application from the browser without the initial
configuration.

Running multiple websites on a single host

using Docker:

In this section we will learn how to run multiple websites on a single host using a reverse
proxy HAproxy. The following image illustrates how the architecture will look like.

wwwowordprass1.com W wardpress2 com waw hellowoarld.com

1

Hapraxy

W wordpress1 D{}I'I'I—J L www helloworld.com

-
Docker Host

wordpress wordpress2 Php App
i MySQL MySaL
\ J

Fig 8-1: Docker multiple website hosting

Note: For this demonstration we will be using domain name internal to the host using the
hosts file. You can also test this by mapping different domain names to the Docker host.

We already have a working wordpress-configured and mysql image. For this
demonstration we will create a HAproxy container from the public HAproxy image named
Dockerfile/haproxy and a basic hello world php application using tutum/hello-world
image.

Follow the steps give below to setup a multi website Docker host.
1. Create a mysql container from mysql image using the following command.

docker run -d —name db mysql

root@node:~# docker run -d --name db mysqgl
efb32foSeeladlicecdidielddf5287e257f57e73093aB86f605e5a2F55870880b

root@nodel: ~#

2. Create a wordpress container named wordpressl from the wordpress-configured
image linked to db container using the following command.

docker run -d —name wordpress1 —link db:db wordpress-configured
root@node :~# docker run -d -

ba33ataalsSBa3a43215c5741a7%e9a
root@node? ; ~#

ame wordpressl --link db:db wordpress-final

-]
c5afcbhb95161493a2997bdb3a2ateas2’

n
&

3. Create a hello-world php application container using tutum/hello-world public image
using the following command.

docker run -d —name hello-world tutum/hello-world

rootj@node?:~# docker run -d --name hello-world tutum/hello-world
11bef58d2c75¢c24ca4481fel28bc96e366aect56adfefabdadbbibBb5da33ete

root@node : ~#

4. Create two internal DNS entries, testl.domain.com and test2.domain.com in
/etc/hosts file with Docker host IP for routing traffic from HAproxy to respective
backend applications.

5. Create a haproxy-config directory and create a haproxy.cfg file in that directory. The
haproxy.cgf file is given below. In this file we will update the IP’s of wordpress1 and
hello-world applications.

6. HAproxy container will listen to port 80 of Docker host. Testl.domain.com is
mapped to wordpress1 and test2.domain.com is mapped to hello-world container in
the file given below.

global

log 127.0.0.1 localO

log 127.0.0.1 locall notice

user haproxy

group haproxy

defaults

log global

mode http

option httplog

option dontlognull

option forwardfor

option http-server-close

contimeout 5000

clitimeout 50000

srvtimeout 50000

errorfile 400 /etc/haproxy/errors/400.http
errorfile 403 /etc/haproxy/errors/403.http
errorfile 408 /etc/haproxy/errors/408.http
errorfile 500 /etc/haproxy/errors/500.http
errorfile 502 /etc/haproxy/errors/502.http
errorfile 503 /etc/haproxy/errors/503.http
errorfile 504 /etc/haproxy/errors/504.http

stats enable

stats auth username:password

stats uri /haproxyStats

frontend http-in

bind *:80

Define hosts based on domain names

acl host_test1 hdr(host) -i test1.domain.com

acl host_test2 hdr(host) -i test2.domain.com
use_backend test1 if host_test1

use_backend test2 if host_test2

backend test1 # testl.domain.com wordpress1 contianer
balance roundrobin

option httpclose

option forwardfor

server s2 172.17.0.33:80 #ip of wordpress1 contianer
backend test2 # test2.domain.com hello-world container
balance roundrobin

option httpclose

option forwardfor

server s1 172.17.0.19:80 #ip pf hello-world container
In the above config file, you need to replace the IP addresses under backend section with

the IP address of the application containers. The default configuration of HAproxy will be
overridden by our haproxy.cfg file.

7. Now we have all the configurations ready. Start the HAproxy container using the
following command.

docker run -d -p 80:80 —name Ib -v ~/haproxy-config:/haproxy-override Dockerfile/haproxy

root@node? :~# docker run -d -p BB:88 -v ~/haproxy-config:/haproxy-override
dockerfile/haproxy

Unable to find image 'dockerfile/haproxy’ locally

Pulling repesitory dockerfile/haproxy

74cBd9587be7: Downleocad complete

7b29882615cl: Download complete
87eB8966aBeddcd71fd5FfO722d7689487¥923a8c483aa59999582cf46431eada?
rootinode ; ~#

8. If you do a Docker ps, you can view the running containers (haproxy, wordpress
,hello-world and MySQL)

docker ps

rootignode : ~# docker ps

CONTAIMER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES
B7eBo66aBeld dockerfile/haproxy:latest bash fhaproxy-start About a
minute ago Up About a minute 443 /tcp, e:88->80/tcp dreamy_kowalevski
11baf59d2c75 tutum/hello-world: latest Srun.sh 58 minutes

ago Up 49 minutes B8/ /tep hello-world
ba33ataalSEa wordpress-final:latest /binf/sh -¢ "Jfusr/sbi About an
hour ago Up About an hour g8/ /tcp wordpressl
efb3z2fe5661a mysgl:latest fusrflecal/bin/start About an
hour ago Up About an hour 33ee/tcp db,wordpressl/db

Now let’s test our applications using curl. You can test your application by giving curl
request to testl.domain.com and test2.domian.com. If you can map the custom domain
names to the Docker host, then you can access the application publicly from the browser.
Since we have internal DNS entries, we will only test this internally using curl.

9. Run the following command to test testl.domain.com

curl testl.domain.com
root@nodel :~# curl testl.domain.com
<title*Hello world!l</title>
href="http:

</head>
<body>

<img id="logo"
<hl»Hello

As you can see, for testl.domain.com, HAproxy directed the request to hello-world
application container. Same way, test2.doamin.com will be directed to wordpressl
application.

Building and testing containers using Jenkins
In this section we will learn how to use Jenkins CI for Dockerfile builds. You need the

following setups to automate Docker builds using Jenkins.

1. A Jenkins server

2. Github account configured with your laptop for pushing and updating the Dockerfile
for builds.

Build Containers
h current Images

- 4

Pull Base Image

Fush New Image

SCM Poll trigger Build

Push New Code o

Fig 8-2: Building and testing containers using Jenkins

Setting up a Jenkins server

You can set up a Jenkins server manually or you can use chef community cookbook for
automatic installation. In this section you will learn how to install Jenkins manually on a
RHEL server. Follow the steps given below to set a Jenkins server

1. Login to the server and update the server repositories

sudo yum update

2. Jenkins needs java to be installed on the server. So if you are using an existing server
with java skip to step 3 or else install java using the following command

sudo yum install java-1.6.0-openjdk

3. Once java is installed, verify the java version the proceed to the next step
4. Add the Jenkins repository to the server using the following commands.

wget -O /etc/yum.repos.d/jenkins.repo http://pkg.jenkins-ci.org/redhat/jenkins.repo

Note: If RHEL server does not have wget utility install it using the following command.

yum install wget

5. Add the repository key

rpm —import http://pkg.jenkins-ci.org/redhat/jenkins-ci.org.key

6. Install Jenkins

sudo yum install Jenkins

http://pkg.jenkins-ci.org/redhat/jenkins.repo
http://pkg.jenkins-ci.org/redhat/jenkins-ci.org.key

7. Once installed, add Jenkins to the startup so that it starts every time when you restart
the server.

sudo chkconfig Jenkins on

8. Start the Jenkins service

sudo service start Jenkins

9. Jenkins UI accepts connection on port 8080 by default. You can access the Jenkins
web ui using the public ip followed by the 8080 port number : eg : 54.34.45.56:8080

& roone Welcoame to Jenkins!
& Piegne Similn naw ol is go siated
2

Github setup

You need to have a version control system configured for configuring Jenkins builds for
Docker. In this demonstration we will use github as a version control system. We will use
the Dockerfile and files for apache static website we tested earlier.

You need to have the following setup as the initial configuration our demonstration.

1. A git hub account with ssh keys configured with your development environment.

2. An apache repository on github with Docker file and files pushed from your
development environment.

Configuring Dockerfile build Jenkins

Install git plugin on Jenkins server for configuring automatic Docker builds whenever the
updated code and Dockerfile is pushed to github. You can install this plugin from “manage
Jenkins” option in the Jenkins dashboard. Follow the steps given below to create a build
job for apache container.

1. From the Jenkins dashboard, click “create new jobs” option and select the freestyle
project and name it as apache.

-

i‘ Peopis

= Buid Hislory

[

& Manage denking

Bam

ame
e apache

Freestyle project

This 15 the central feature of Jenkins. Jenkins vl build your project, combsning any SCM w
ollver than Soflware build

T Maven project

& Credentals

Build a maven project Jenking iakes advaniage of your POM fes and drastically reduces

N
L0 External Job

Build Gueue =

Mo bulds in the quaue

This type of job allows you 1o record the execubon af 3 process run o

a8 a dashboard of your &xsting avtomateon system. Ses the docerms

L T T configuration project

2. Under source code
apache from github.

Sowrce Code Management

r Mone
~.cvs
o ogs Frojactsal
e

Repositones Repasiony URL

Cradantials
rong

= A

Buanches 1o build Branch Specilber (Mank for "any’)

“imasies

management option, select git and copy the repository url for

hitps:iigithub, comddockeedemo/apachse. git

Advanted...

Add Repasilony Dbt Rpposiiony

¥l

3. Under build triggers section, select “poll SCM” option. Here you can mention the
interval for polling your github repository to check for code changes. If you provide
all the values as stars, Jenkins will poll every one minute for checking the status of

the github repository.

Baitd Triggars

" Buid aker othes projecis ane buik
[Buid penodically

F Pol 5CM

Schedule LLa..

ignare post-commil hooks [

[7]
[1]
.|:;|_.

1]

¥

4. Under build section, select the “execute shell” option and copy the following shell

script on to the text box.

echo “>>> Getting the old containers id’

CID=$(sudo Docker ps | grep “apache-website” | awk “{print $1}’)

echo $CID

echo “>>> Building new image from Dockerfile’

sudo Docker build -t=“apache” . | tee /tmp/Docker_build_result.log

RESULT=$(cat /tmp/Docker_build_result.log | tail -n 1)

if [[“$RESULT” != *Successfully*]];
then
exit -1

fi

echo “>>> Stopping old container’

if [“$CID” 1= "> ;
then

sudo Docker stop $CID
fi

echo ‘>>> Restarting Docker’
sudo service Docker.io restart

sleep 5

echo >>> Starting new container’

sudo Docker run -p 80:80 -d apache

echo “>>> Cleaning up images’

sudo Docker images | grep “A<none>” | head -n 1 | awk ‘BEGIN { FS = “[\t]+” }{ print $3 }’ | while read -r id ; do

sudo Docker rmi $id

done

Here is what the above shell script does,

1.

SR

7.

Gets the old container id if any.

Builds an apache image from the Docker file.

Stops the old apache-website container if running.

Restarts the Docker service

Creates a new apache-website container with port 80 mapped on to the host.
Deletes all the intermediate images.

Build
Exncuta shall L1
Command : 5 3
scha '>»> Get old container id H
CID=% (auda dacker pa | 9oep “Rpeche-webaice® | awk *(print S1)')
echa §CID
echa '»»> Bullding new 1mage* |
fpda docker build -c="pgache” . | tee /tmp/docker build resuls.log
S ftn Ui o weniiatie SrepeITEnT eenEcie)

Click save and start the build process by clicking the “build now” option at the
sidebar. Jenkins will then copy the Dockerfile and other contents from the github url

you provided to its workspace. Once the build process starts, you can see the status
from the build history option from the sidebar.

Project apache

Sdatus

Permalinks

8. Once the build is complete, you can use the status option to check the status of your
job. Blue button indicates a successful build and red indicated a failure as shown in
the image below.

adaiiotic) Build #1 (Dec 7, 2014 6:17:16 PM)

Status

F

Jikd Drata N
Ravision: S&5ad

neolk

4 git

9. You can also check the console output using the “console output” option to see what
the shell script has done at the backend. This option is useful for debugging the build
process by knowing what have gone wrong while executing the script.

§ Back o Project

J Console Output

B tonesie Suipui
t Bl Ingormalicn

Buikd Data

E_| & ;?= \

As shown in the image above, our first build was success and you can view the application
on port 80 using the web browser. You can test the build setup by updating the Dockerfile

or website files and pushing it to github.

Jenkins will fetch the updated code to its workspace and builds a new image and creates a
new container from it. You can see all the changes by viewing the application in the
browser.

For continuous deployment, you can create a new job and trigger it based on the status of
apache job. There are many ways for deployments.

For example,

1. You can use Chef Jenkins plugin to provision and configure a new instance with
Docker host and deploy the successfully build Dockerfile.

2. You can push successfully built new image to docker hub and trigger docker pull
from the deployment server.

9

Docker Provisioners

In this chapter we will learn how to provision Docker containers using tools like vagrant
and chef.

Docker vagrant provisioner

Vagrant is an open source tool for creating repeatable development environment’s using
various operating systems. It uses providers to launch virtual machines. By default vagrant
uses virtual box as its provider. Like boot2Docker, vagrant can run Docker on non-linux
platforms.

Windows/Mac Worstation
Linux Workstation
Docker Containers Docker Host VM

Fig 9-1 :vagrant , Docker architecture

Vagrant has several advantages over tools like boot2Docker. They are as follows.

1. Configure once and run anywhere: vagrant is a Docker wrapper which can
run on any machine which supports Docker and in non-supported platforms , it
will spin up a VM to deploy containers leaving users not to worry about if their
system supports Docker or not.

2. In vagrant, the Docker host is not limited to a single distro like boot2Docker,
it rather supports debian, centos, coreOS etc.

3. Vagrant can be used for Docker orchestration.

The Docker provisioner is used for automatically installing Docker, pull Docker images,
and configure containers to run on boot.

Vagrant Docker provisioner is a best fit for teams using Docker in development and to
build distributed application on it. Also if you are getting started with Docker, vagrant
provides an efficient way to automate the container build and deployment process for your
development environment.

Along with other vagrant provisioners, you can use Docker provisioner for your
application testing by creating a better development workflow.

For example, you can use chef provisioner to install and configure your application and
use Docker for the application runtime. You can use chef along with Docker provisioner.

Vagrantfile:

The main configuration for any Vagrant environment is a file called Vagrantfile which you
need to place in your project’s folder. Vagrantfile is a text file which holds all the
provisioning configuration required for a project. Each project should have only one
vagrant file for all configurations. Vagrantfile is portable and can be used with any system
which supports vagrant. The configurations inside a vagrantfile follows ruby syntax but
ruby knowledge is not required to create or modify a vagrantfile. It’s a good practice to
version the vagrantfile using a source control system.

Vagrant options:

Docker vagrant provisioner has various options. These options can be used to build and
configure containers. If you do not use any option, vagrant will just install and set up
Docker on your workstation. Let’s look at the two main options provided by vagrant

1. Images: this option takes input in an array. You can provide a list of images you want
it pull it down to your vagrant VM.

2. Version: you can specify the version of Docker you want install. By default it
downloads and installs the latest version of Docker.

Apart from the above two options mentioned above, there are other options available for
working with Docker.

Following are the options used for building, pulling and running Docker containers.

1. build_image: This option is used for building an image from the Docker file.
2. pull_images: This option is used for pulling images from the Docker hub.
3. Run: This option is used to run the container.

Let’s have a look at those options in detail.
Building Images:

Images can be built automatically using the provisioner. Images have to be built before
running a container. The syntax for building an image is shown below.

Vagrant.configure(“2”) do |config|
config.vm.provision “Docker” do |d|
d.build_image “/vagrant/app”
end
end

build_image has an argument “/vagran/app” which is the path for the Docker build. This
folder must exist in the guest machine.

Pulling images

Vagrant can automatically pull images to your Docker host. You can pull several images at

a time. There are two ways to do that using arrays and the pull_image function. The
syntax for using arrays is given below.

Vagrant.configure(“2”) do |config|
config.vm.provision “Docker”,
images: [“centos”]

end

Syntax for pulling multiple images used pull_image function is given below.
Vagrant.configure(“2”) do |config|
config.vm.provision “Docker” do |d|
d.pull_images “fedora”
d.pull_images “centos”
end

end

Launching containers

After pulling images, vagrant can automatically provision containers from that image. The
syntax for launching containers is shown below.

Vagrant.configure(“2”) do |config|
config.vm.provision “Docker” do |d|
d.run “redis”
end
end

We have learnt the basic concepts and vagrant file functions for building and launching
containers. Now let’s look in to the practical way of building containers using vagrant.

Installing vagrant on Ubuntu:
Follow the steps give below to install vagrant on an Ubuntu machine.

1. Head over to http://www.vagrantup.com/downloads

-+ R L KD B P

_ﬁ VAGRANT

MAC OS X

':'; wc' \dl |/‘ an J '11 Inl_:_

e =
._.' WINDOWS

Universal (32 and 64-bit)

Cd Versions

-
of_3 LINUX (DEB)

32-bit | G4-bit

<%, | INUX (RPM)

.
32-bit | B4-bit

2. Get the download link for Ubuntu 64 bit and download the vagrant installation file

run*ﬁhuckerdemu

3635 ‘fdl.bintray.com/mitc hellh vagrant /vagrant_1l.6.5_x86_64.deb
Hﬂaﬂlklﬂg dl b;ntray com dl blntra, com)

Connecting to dl. hlntraJ.czw (dl.bintra m) |5.153.24.114|:443,. .. connected.
HTTP request sent, awaiting response... 382

3. Install the downloaded package.

dpkg -i vagrant_1.6.5_x86_64.deb

PﬂotﬂducPEPdemﬂ

vagrant_1.6.5_x86_64.deb

roct@ducknrdemo

Selecting previously unselected package vagrant.

(Reading database ... 51327 Files directories currently installed.)
Preparing to unpack ° grant 1.6.5 %x86_64.deb ...
Unpacking vagrant (.6.5)

Setting up vagrant (

Note: the latest version of Docker comes bundled with Docker provider, so you don’t have
to install the provider specifically. Also if you are running vagrant Docker in non-linux
platforms like MAC, vagrant has the ability to find it automatically and it will create a
virtual environment to run Docker containers. This will happen only once and for the
subsequent vagrant runs it will make use of already created virtual environment.

Now let’s create a vagrant file to work with Docker images and containers.

Creating a vagrant file

The configuration for building images and containers are mentioned in the vagrant file.
Follow the steps mentioned below to create a vagrant file.

1. Create a directory, say Docker

2. CD in to the directory and create and file called Vagrantfile or use can use “vagrant
init” command for creating a vagrant file

vagrant init

root@dockerdemo: ~

root@dockerdemo: -

root@dockerdemo: ~/docker# vagrant init

A "Vagrantfile has been placed in this directory. You are now

ready to “vagrant up® your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
“vagrantup.com for more information on using Vagrant.
root@dockerdemo:~/docker

Vagrant file configuration for Docker

In this demo we will provision a web and db Docker containers using the vagrant file.
Web container will be built using the Docker file we created in the above section and the
db container will be built using the public image from Docker registry.

Open the Vagrantfile, delete all the contents inside that file because we won’t be using any
other provisioners or virtual machines except Docker.

Copy the configurations mentioned below to the vagrantfile.

Vagrant.configure(“2”) do |config|
config.vm.define “web” do |app|
app.vm.provider “Docker” do |d|
d.image = “olibuijr/ubuntu_apache2”
d.link “db:db”
end
end
config.vm.define “db” do |app|
app.vm.provider “Docker” do |d|
d.image = “paintedfox/postgresql”
d.name = “db”
end
end

end

Note that the above two vagrant configurations are for a web and db container which will
be linked together.

Building db image using vagrant

Now we have our vagrant file ready to build two images. Let’s build the db image first so
that the web image can be linked to db.

1. Run the following vagrant command to provision the db image.

vagrant up db

cker# vagrant up db --provider=docker
up with ‘docker® provider...
: Creating the container...
Mame: db
Image: palntedfox/postgresqgl
Volume: /root/docke vagrant

ontainer...
rs will not be run since container doesn't support SSH.
/docker

2. Now run the following command to provision the web image

vagrant up web

rooti@gdockerdemo

~fdocker# vagrant up web

Bringing machine 'web' up with 'docker' provider..
> web:
web :

wWeb:

Name: web
Image:
: Volume:
Link:

E ‘oot/docker
web: db:db
web:
web:
> web: ! ng
> web:

Container created:
container. ..

Creating the container...
libuijr/ubuntu_apache2
fvagrant
1a%baz2f4e8876elf

Provisioners will not be run since container doesn't support SSH.

Now we have two container’s running, created from two different images, one web
container with apache and another db container with postgres and linked it together for db

connection.

3. Run Docker ps to view the running containers we launched using vagrant.

root@dockerdemo: ~/docker# docker ps

CONTAINER ID TMAGE
CREATED STATUS
la%ba2f4c8e?
18 minutes ago Up 18
37727d31edlb
|54 minutes ago

Vagrant commands

olibuijr/ubu
minutes

paintedfox/postg:
Up 54 minutes 5432

COMMAND
NAMES
usr/sbin apache2 -D
web
sbin/my_init
db,web /db

=sql:latest
tcp

There are three vagrant specific commands for Docker to interact with the containers.

1. Vagrant Docker-logs: Using this command you can view the logs of a running

containers.

vagrant docker-logs

POSTGRES_PASS-md4SHdUjo2I8laas

POSTGRES_DATA_DIR
b: Initializing Post
Starting Postgr

ib: Creating the superuse
4 Booting runit daemon...
Runit started as PID 13
89 - 15 5:42 UTC LOG:
12 UTC LOG:

NOTICE: rol super” does

UTC LOG:

& the server's fully gualified domain name,

database system was shut down at 2814-8¢ 16:
database system is ready to accept connections
autovacuum launcher started

st, skipping

2. Vagrant Docker-run: This commad is used to run commands on a container. Syntax to

run this command is shown below.

vagrant docker run db — echo “ This is a test”

o " this is a test "

starting. Output will strea

ik this is a
roo kerdemo:~/docker

Managing Docker using chef

Chef along with Docker can be used for the following,

1. Creating Docker images and deploying containers.
2. To configure Docker containers during boot.
3. Setting up a Docker host

Machine

Fig 9-2 :Chef , Docker architecture
There are two main components of chef for managing Docker containers.

1. Chef-container
2. Knife-container

Chef-container:

Chef-container is a version of chef client which can run inside a Docker container. Chef-
container uses runit and chef-init as the init system and container entry point. Chef
container can configure a container as we configure any other piece of software.

Knife container:

Knife container is a knife plugin for building and managing Docker containers using chef.
To manage Docker with chef, you need to have the latest version of chef client and chefdk
installed on your host.

Follow the steps given below to manage Docker containers using chef.

1. Install knife-container using the following command.

chef gem install knife-container

roct@node2:-# chef gem install knife-container
Fetching: knife-container-8.2.4.gem (188%)
Successfully installed knife-container-2.2.4
Parsing documentation knife-container-8.2.4

Installing ri documentation knife-container-8.2.4

Done installing documentation knife-container after @ seconds
1 gem installed

rooti@node: -#

2. You have to create a Docker context to initialize all the necessary configurations for a
Docker image. In this demo we will create a context for demo/apache2 image and
which will use the default Ubuntu:latest image from the Docker index.

3. If you want another image, you need to override the default configuration in the
knife.rb file using the knife[:berksfile_source] parameter. Create the Docker context
for out demo/apache2 image using the following command.

knife container docker init demo/apache2 -r ‘recipe[apache2]’-z —b

Recipe: kni :docker_init
directory[/var/chef/demo/apache2] action create
- create new dir fvar/chef/demo/apache2
template[/var/ch fapache?/Dockerfile] action create
- create new file /var/chef/demo/apache?/Dockerfile
- update content file fwvar/chef/demo/apache2/Dockerfile from none to 4c78a7
(diff output suppressed by config)

run (skipped due to nat_ifﬂ

Downloading base image: chef/ubuntu-12.84:latest. This proce y take awhile...

Tagging base image chef/ubuntu-12.84 as mo/apache2
Context Created: /var/chef/demo/apach

4. Open the first-boot.JSON file from /var/chef/demo/apache2/chef and add the
following to the JSON file.

“container_service”: {

“apache2”: {

“command”: “/usr/sbin/apache2 -k start”
}

}

The final first-book.JSON file should look like the following.

{
“run_list”: [
“recipe[apache2]”

1,

“container_service”: {
“apache2”: {

“command”: “/usr/sbin/apache2 -k start”

5. Now we have the configuration file ready for building the demo/apache2 image. The
cookbook apache2 will be downloaded from the chef marketplace with all the
dependencies solved using berkshelf.

6. You can also have your own cookbook configured in the chef-repo cookbooks
directory. Run the following command to build the image with chef-container
configured.

knife container docker build demo/apache2

reot@nodel ;- chef-repo/.chef# knife container docker bul'd demo/apache
[2814-12-29T712:42:52+808:80] INFO: Storing updated cbook cman/ README . md the
[2014-12-29T12:42:52+88:88] INFO: Storing updated acman/metadata.json
14-18-29T12:4 :52+EB:EEZ INFO: 5 ing updated cook £ cman,/Gemt1i thn cac
[2814-10-29T12:42:52+808:008] INFO: S g updated ¢ 5/ I Jrecip
[2814-18-29T12:42:52+88:88] INFO: Processing packa ache2] action lnutall Iaparhu;
[2814-18-29T12:43:14+88:8@] INFO: Deleting client key...
===3 F4cd4992d2cfc
Removing intermediate container Ga3fd4276aé6f
Step 3 RUMN rm -rf fetc/chef/secure/
===3 Running aSadd3ilfales
Step 5 cMD ["~-- is
-==> Running
al8ds589289e
ving intermediate container c853@33F2272
ssfully built al3de585289e

7. Now we have our image built and you can view the image using the following
Docker command.

docker images demo/apache?2

root@nodel: - /chef-repo/.chef# docker images demo/apachel
IMAGE ID CREATED

al8des892859e 2 minutes ag

8. Create an apache2 container from demo/apahce?2 image using the following
command.

docker run -d —name apache2 demo/apache2

root@node2: - /chef-repo/.chef# docker rum -d --name apache2 demo/apache2
Eb37aebBbec366304bladc477097c56c4efallisdal7d5a3276a0@18e38cch54F
rocti@nodel: ~/chef-repo/.chef#

9. If you run a Docker ps command you can view the running apache2 container.

docker ps

root@node?: ~/chef-repo/.chef# docker ps
CONTAINER ID IMAGE COMMAND CREATED
Bb37aebébec3 demo/apache2:latest chef-init --onboot About a minute ago

root@node:~/chef-repo/.chef#

10. You can check the process running inside the apache container using the following
command.

docker top apache2

root@node?:-# docker top apache2

uID PID PPID
STIME TTY TIME
root 25279 825
12:47 ee:ee:e8

/opt/chef/embedded/bin/ruby /usr/bin/chef-init --onboot
root 253097 25279
12:47 eg:e8:88

|fopt/chef/embedded/bin/runsv

10
Docker Deployment Tools

In this chapter we will learn about Docker deployment tools like fig, shipyard and
panamax.

[
Fig
Fig is tool for running development environments using Docker specifically for projects
which includes multiple containers with connections and can also be used in production

environments. Using fig you can have fast isolated Docker environments which can be
reproduced anywhere.

Docker Build

o
#
Fig {
|
Describe " Docker run
Services '“"-a_\
%
\“I
II
Docker rm-—_

Fig 10-1 :Fig , Docker architecture

For example, if you want to build your images with code, all you need to do is, create a
fig.yml with all the container links and run it on a Docker host. Fig will automatically
deploy all containers with links specified in the fig.yml file. Also, all the fig managed
applications have their own lifecycle. Eg: build, run, stop and scale.

Let’s get started with installing fig on a Docker host.
Installing fig:

Fig works with Docker 1.0 or later. In this section, we will install fig on Ubuntu 14.04 64
bit server.

Note: Make sure that you have Docker 1.0 or later installed and configured on the server.
Follow the steps give below to install and configure fig.

1. We will install fig using the binary from github using curl. Execute the following
command to download and install fig from github source.

curl -L https://github.com/docker/fig/releases/download/0.5.2/linux > /usr/local/bin/fig

url -L https://gi
ved % Xferd e 5 Time
Total Spent
i== B8Rl --i=-=i--

e:88:87

The above command installed fig on /usr/local/bin/fig directory.

2. Change the read write permissions for that installation folder using the following
command.

chmod +x /usr/local/bin/fig

root@dockerdemo:-# chmod +x /usr/local/bin/fig

root@dockerdemo: - #

3. To ensure that fig installed as expected, run the following command to check fig’s
version.

fig —version

root@dockerdemo: -# fig --version

fig ©.5.2
root@dockerdemo: -#

Fig.yml

All the services that have to be deployed using a container are declared as YAML hashes
in the Fig.yml file.

Each service should have an image or build specification associated with it. Parameters
inside each service are optional and they are analogous to Docker run commands.

Fig.yml reference

Fig.yml has various options. We will look in to each option associated with fig.yml file.
Image

This option is mandatory for every service specified in the yml file. Image can be private
or public. If the image is not present locally, fig will pull the image automatically from the
public repository. Image can be defined in the following formats.

image: centos
image: bibinwilson/squid

image: a5fj7d8

build

This option is used when you build images from a Docker file. You need to provide the
path to the Docker file in this option as shown below.

build: /path/to/build/dir

Command

This option is to run commands on the image. It has the following syntax.

command: < command to be run >

links

This option is used to link containers to another service. E.g.: linking a web container to a
database container. This option has the following syntax.

links:

-db

- db:database

- postgres

Ports

This option exposes the port on a container. You can specify which host port has to be
associated with the container port or you can leave the host port empty and a random port
will be chosen for host to container mapping. This option has the following forms.

ports:

- “8080”

- “80:8080”
- “3458:21”

- “127.0.0.1:80:8080”

Expose

The ports specified in this option are internal to a container and can only be accessed by
linked services. The exposed ports are not associated with the host. It has the following
syntax

expose:
- “3000”

- «8000”

Volumes

This option is used to mount host folders as volumes on a container. This option has the
following syntax.

volumes:
- /var/www/myapp

- myapp/:/var/www/myapp

volumes_from

This option is used to mount volumes from containers in other services. It has the
following syntax.

volumes_from:
- service_name

- container_name

Environment

This option is used to set environment variables for a container. You can specify this either
using an array or dictionary. It has the following syntax.

environment:
FB_USER:usernname
PASSWORD_SECRET: S3CR3T

environment:

- FB_USER = usernname

- PASSWORD_SECRET = S3CR3T
Deploying rails application using Fig:
In this section we will look in to rails application deployment using Fig.

For rails application setup, you need a Docker image configured with rails environment to
create our web container. For this you need a Docker file with image configurations. So,
let us create a Docker file to build an image for our rails application.

1. Create a directory, say railsapp.

mkdir railsapp

2. CD in to the directory and create a Docker file.

touch Dockerfile

root@dockerdemo: -# mkdir railsapp

root@dockerdemo: -# touch Dockerfile

3. Open the Docker file and copy the following contents

FROM ruby

RUN apt-get update -qq && apt-get install -y build-essential libpg-dev

RUN mkdir /myapp

WORKDIR /myapp

ADD Gemfile /myapp/Gemfile

RUN bundle install

ADD . /myapp

The above Dockerfile installs the development environment for rails on a ruby image from
Docker hub. We don’t have to install ruby because the ruby image comes bundled with

ruby environment for rails application. Also we are creating a myapp folder to put out rails
code.

4. We need a gem file for the initial configuration and it will be later overwritten by the
app. Create a gemfile in the railsapp directory and copy the following contents to it.

source ‘https://rubygems.org’

gem ‘rails’, ‘4.0.2°

5. Let’s create a fig.yml file for our rails application.

touch fig.yml

6. Open the file and copy the following fig configurations for the rails application.

db:

image: postgres
ports:

“5432”
web:

build: .
command: bundle exec rackup -p 3000
volumes:
.:/myapp
ports:
“3000:3000”
links:

db
If you look at the above file, we have two services one web service and one db service.

These services are declared in YAML hashes.

Db service:

db:
image: postgres
ports:

“5432”

Db service uses the postgres public Docker image and exposes port 5432.

Web service:

web:

build: .

command: bundle exec rackup -p 3000
volumes:

.:/myapp

ports:

“3000:3000”

links:

db

Web service builds the web Docker image from the Docker file we created in step 1.
(build: . looks for Docker file in current directory). Also it creates a myapp folder in the
containers which will be mounted to the current directory where we will have the rails
code.

7. Now we have to pull postgres and ruby images to configure out app using fig.
Execute the following command to pull the images specified in the fig file and to
create a new rails application on the web container.

fig run web rails new . —force —database=postgresql —skip-bundle

Note: We will look in to all fig commands later in this section.

Creating railsapp db 1...
Pulling image postgres...
build-essential is already the newest wersion,
libpg-dev is already the newest version.
Use 'apt-get autoremove' to remove it.
@ upgraded, 8 newly installed, © to remove and 76 not upgraded.
---> A4chf5722deBb
Removing intermediate container ff315547b2éc
Step 2 : RUN mkdir /myapp
=== Running 16cab894a165
---> Tbeft58483d76
Removing intermediate container 16cab894alg5
Step 3 : WORKDIR /myapp
-==> Running Bd92c14c266e
-=-=-> 282cbdfee3ifb
Removing intermediate container 8d92cl4c266e
Step 4 : ADD Gemfile /myapp/Gemfile
Removing intermediate container 84314ecadefb
Step 5 : RUN bundle install
-==-> Running 362ebddeS73d

8. Once the above command executed successfully, you can view the new rails app
created in the railsapp folder. This will be mounted to myapp folder of the web
container.

root@dockerdemo: - /railsapp# ls
app config db fig.yml 1lib public README.rdoc tmp
est vendor

bin config.ru Dockerfile Gemfile 1log Rakefile =
root@dockerdemo: - /railsapp#

9. Now we have to uncomment the rubytracer gem in the gemfile to get the javascript
runtime and rebuild the image using the following fig command.

fig build

root@dockerdemo: - /railsapp# fig build
db uses an image, skipping
Building web...
=== 5cd733bb7b@3
Step 1 : RUN apt-get update -qq apt-get install -y build-essential libpg-dev
---> Using cache
===> 4¢c5F5722de86
Step 2 : RUN mkdir /myapp
---: Using cache
---> 7b&f5B8483d76
Step 3 : WORKDIR /myapp
---> Using cache
---. 2B2chdfee3fb
Step 4 : ADD Gemfile /myapp/Gemfile
===. f5b7b8dbf19c
Removing intermediate container 17abaddfSedf
Step 5 : RUN bundle install
-=--> Running aled3iddde2de
Removing intermediate container aléd3dddelde
Step 6 : ADD . /myapp
---> G5bBb1B54fF7

Successfully built 65b8blBsatf7

10. The new rails app has to be connected to the postgres database, so edit the
database.yml file to change the host to db container db_1. Replace all the entries with
the following configuration.

development: &default
adapter: postgresql
encoding: unicode
database: postgres
pool: 5

username: postgres
password:

host: db_1

test:

<<: *default

database: myapp_test

11. Now we have everything in place and we can boot up the rails application using the
following fig command.

fig up

root@dockerdemo: - /railsapp# fig up
Recreating railsapp_db_1...

Recreating railsapp_web_1...

Attaching to railsapp db 1, railsapp_web_ 1

web_1 [2814-89-38 12:52:24] INFO WEBrick 1.3.1

web_1 | [2014-89-38 12:52:24] INFO ruby 2.1.3 (2014-89-19) [x86_64-linux]
web_1 2014-989-38 12:52:24] INFO WEBrick::HTTPServer#start: pid=1 port=3888
web_1 | 14,98.245.32 - - [30/Sep/2014 12:52:31] "GET / HTTP/1.1" 20@ - ©.1673

12. Open a new terminal and create the db using following command.

fig run web rake db:create

13. Now you have a rails application up and running. You can access the application on
port 3000 from your host ip.

L3 4, L, TL 24T (5]

documentation

ﬂ Welcome aboard Browse the

ALOAT Yo agpBCaticn’s civironment

Getting started
Herd's Mowy ge i

1. Use rails gensrate bo creaabe ywour
models and controllers

. Sab up & root route to replace this page

Configure yvour database

We have built a two container rails application using Rails and Postgresql.

Now we will see how to set up a four container complex auto load balancing application
using HAproxy, Serf , Apache and MySQL.

What is Serf?

Serf is a cluster membership tool which is decentralized, highly available and fault
tolerant. Serf works on gossip protocol. For example, serf can be used for scaling web
servers under a load balancer to maintain the list of web servers under a load balancer.
Serf attains this by maintaining a cluster membership list and wherever membership
changes it runs handler scripts to register or deregister a webserver from the load balancer.

We will be using serf in our auto load balancing fig application to register and deregister
the web server containers under HAproxy.

Deploying four container Auto load balancing application using Fig

In this section we will deploy a four container application using fig. Our application will
run wordpress with mysql database with HAproxy as a load balancer.

Note: We will be using preconfigured images from the Docker registry which contains
prebuilt serf configurations. You can also build your own images with serf configurations.

Create a fig.yml file and copy the following contents for launching our auto load
balancing application.

serf:

image: ctlc/serf

ports:
- 7373
- 7946
Ib:
image: ctlc/haproxy-serf
ports:
- 80:80
links:
- serf
environment:
HAPROXY_PASSWORD: qalN76pWAri9
web:
image: ctlc/wordpress-serf
ports:
-80
environment:
DB_PASSWORD: qalN76pWAri9
links:
- serf
-db
volumes:
- /root/wordpress:/app
db:
image: ctlc/mysql
ports:
- 3306
volumes:
- /mysql:/var/lib/mysql
environment:
MYSQL_DATABASE: wordpress

MYSQL_ROOT_PASSWORD: qalN76pWAri9

The above yml file has service description for serf, HAproxy (Ib), wordpress (web), mysql
(db).

For wordpress to be available for installation, you need to have the wordpress set up file in
your fig host. Then we will mount that wordpress folder to the /app folder of web
container. In the yml file, we have mentioned it as follows.

volumes:

- /root/wordpress:/app

We have put the wordpress files in root folder. It can be anywhere inside your Docker host
containing fig. Follow the steps give below to set up the application

1. Once you have the fig.yml file ready, you can launch the containers using the
following command.
fig up —d

Note: Make sure you are running the above command from the directory where you have
the fig.yml file.

root@dockerdemo: - /wordpressl# fig up -d
Creating wordpressl_serf_1...
Creating wordpressl db 1...

Creating wordpressl_web_1...
Creating wordpressl 1b 1...
root@dockerdemo: - /wordpressl#

2. After launching the containers, you can view the wordpress configuration in your
browser using the IP of your Docker host.

e — il | F

g started, we need sormes information on the databass. You wl nesd

& than one WordPress in a single database

[0 (reale a wp-canfig, php file iF for any redason this suloemala b

y. Al This daes ks [l in the databass information te a confguration
fie. You may also simply open nfiy- wample. php i a text editor, Tl In your information, and save

il A% wp-config . php. M e

3. Continue with the normal wordpress installation with the credentials we have in the
fig.yml file. In the host entry use db_1. Once installed you will have a running
wordpress application.

& — B PdgBa & &« B

DOCKER DEMO

HELLO WORLD!

‘Welcome to WiordPress: This Is your frst pass. BEdit or delete It then

start bhogaing!

4. Now you can scale up and scale down the web containers and the newly launched
containers will be automatically be registered to HAproxy using serf. To scale up the
web containers, run the following fig command.

fig scale web=3

rootigdockerdemo: - /wordpress1# fig scale web=3
Starting wordpressl web_2...

Starting wordpressl web 3...

rootigdockerdemo: - /wordpressl#

5. You can stop all the running containers of auto load balancing application using fig
kill command.

fig kill

root@dockerdemo: - /wordpressl# fig kill
Killing wordpressl_l1b_1...

Killing wordpressl_web_3...

Killing wordpressl web 2...

Killing wordpressl web_1...
Killing wordpressl_db_1...
Killing wordpressl_serf_1...|

6. Once stopped, you can remove all the containers using fig rm command.

fig rm

rect@dockerdemo: - /wordpressl# fig rm

Going to remove wordpressl serf 1, wordpressl db_ 1, wordpressl web 3, wordpressl web
Are you sure’ [yN] y

Removing wordpressl_s

Removing wordpressl
Removing

Removing 5

Removing wordpressl_web_
Removing wordpressl 1b 1...

Shipyard

Shipyard is a simple Docker UI build on Docker cluster manager citadel. Using shipyard,
you can deploy Docker containers from a web interface. Also shipyard can be used with
Jenkins for managing containers during the build process. This is useful because failed
containers may eat up you disk space. Shipyard is a very light weight application without
any dependencies. You can host it on any server as a Docker client UI for managing
containers locally and remotely.

Setting up shipyard
Shipyard has two components.

1. RethinkDb and
2. API

Both components are available in form of containers from Docker hub.

RethinkDB

1. Run the following command to set up rethinkDB container on your Docker Host.

docker run -it -P -d —name rethinkdb shipyard/rethinkdb

root@dockerdemo: -

Unable to find i f

Pulling reposito 1inkdb

8718825 (latest) from shipwyard/rethinkdb, endpoint: https://e71862615a56
lete

2. API container on the Docker host gets links to rethinkDB. In this demo we are using
single host setup, so we have to bind the API container with the Docker socket.
3. Run the following command on your Docker host to create the API container and

bind it with the Docker socket.
docker run -it -p 8080:8080 -d \
-v /var/run/Docker.sock:/Docker.sock \
—name shipyard —link shipyard-rethinkdb:rethinkdb \
shipyard/shipyard
rootj@dockerdemo: -# docker run -it -p 8e8e:8e88 -d)\

-v /var/run/docker.sock: /docker.sock \
--name shipyard --link shipyard-rethinkdb:rethinkdb \

shipyard/shipyard
e3bd4ef5b045d2f77126bdel7bc3412484229b48fcdalc63539¢ce212d2F21783
root@dockerdemo: #

4. Now you will be able to access the shipyard dashboard on port 8080 of your Docker
host.

B — B

shipyard

Note: By default shipyard creates user “admin” and password “shipyard” to login to the
application.

5. Once you are logged in, you will be able to view all the containers on your Docker
host.

i} Name CPUs Memory State

edddcIezhan?

BaERTESC5E

Deploying a container

You can launch a container form shipyard dashboard using the deploy option under
containers.

Click the deploy option and fill in the parameters for your new container. Parameters
involved in container deployment are explained below.

You have the following options in shipyard while deploying the container.

Name

Name of the image from which the container should be deployed

CPUs

CPU resource required for the container.
Memory

Memory required for the container.

Type

There are three types of containers in shipyard,

1. service,
2. unique
3. Host.

Service containers use the labels used by engines in the container host. Unique containers
will be launched only if there are no instances of containers available on that host. Host
will deploy a container on the specified host.

Hostname

Hostname sets the hostname for the container.

Domain

The Domain option sets the domain name for the container.

Env

This parameter is used to set environment variables for the container.
Arg
This option is used to pass arguments for the container.

Label

Named labels are used for container scheduling

Port

Port determines the ports which have to be exposed on a container.

Pull

This option is used where you have to pull the latest container image from the container
hub.

Count

This determines the number of containers to be launched on a deploy process.

shipyard

@ Dashboard Ef Containers & Engines = Events
Image Hostname Domain
*
ubuntu:14.04 dockerdema example.com
Environment

key=value (space separated)

Arguments

{space separated)

CPUs Memory (MB) Count
* * *
0.1 256 1
Type
service -
Labels

Enter the necessary parameters as shown in the image above and click the deploy option to
deploy the container.

Deploying containers with shipyard CLI

Containers can be deployed using the shipyard cli. In order to use cli, you have to launch
an instance of shipyard cli container.

1. Launch a shipyard cli instance using the following command.

docker run -it shipyard/shipyard-cli

root@dockerdemo: -# docker run
Unable to find image g
WARNING: The Auth config file is ﬂmp_

hlpfard shipyard-cli
(latest) frem shipyard/shipyard-cli, endpoint: httpscfsb2

Pulling repository

cf8b2e9e59b8: Pulling 1mage

511136ea3c5a: Download
a7efbesd7ete: Download
431dac4e3917: Download

4da9lc9bfdce: Download

e98dd781ea3l: Download
a7l137987178b: Download

17b234489fb2: Download co

483377352bf@: Download

3: Download

,hlphdrd cli

/shipyard-cli

2. You can view the list of available shipyard command using the following command.

shipyard help

shipyard cli
COMMANDS :
login
change-password
accounts
add-account
delete-account
containers
inspect
run
stop
restart
destroy
engines
add-engine
remove-engine
inspect-engine
service-keys
add-service-key

remove-service- key

exten 5
add-extension
remove-extension
info

aevents

help, h

Working with cli

shipyard help

login to a shipvard cluster
update your password
show accounts

add account

delete account

list containers
inspect container

run a container

stop a contaimer
restart a container
destroy a container
list engines

add shipyard engine
remowves an engine
inspect an engine
list service keys
adds a service key
remo a serwvice key
show i

add ex

remove an extension
show cluster info
show cluster events
Shows a list of commands or help

1. Login to shipyard using the following command.

shipyard login

shipyard cli

shipyard login

URL: http://54.58.271.26:8088

Username: admin
Password:
shipyard cli

one command

2. View the containers in your Docker host using the following command

shipyard containers

shipyard cli- shipyard containers

ID Image Name Host
d465329a3%ea distracted_babbage dockerdemo
8f43a62e6b94 high_ardinghelli deckerdemo
e3bd4efsba4s shipyard dockerdemo
520b9f5@1753 shipyard-rethinkdb dockerdemo
edddec3elsad? chipyard-rethinkdb-data dockerdema
92d827c58c51 training/webapp:latest evil_lalande dockerdemo
be726c758377 centos:centos? jolly_euclid dockerdemo
al@%ce9eldes ubuntu:latest hungry_goodall dockerdemo

ubuntu:l4.84
shipyard/shipyard:latest
shipyard/rethinkdb:latest

efeBefdbesdf
c87b36Ebobo8
ebSb48ffob2a
51B3%beS5dbc?
296a2fadslas
cB3cd43ebB5f
lazffi4eed3s

ubuntu:latest
ubuntu:latest
ubuntu:latest
ubuntu:latest
ubuntu:latest
ubuntu:latest
ubuntu:latest

mad_newton
drunk_fermat
ubuntul

romantic_heisenberg
furious_einstein
trusting_archimedes

dockerdemo
dockerdemo
dockerdamo
dockerdemo
dockerdemo
dockerdemo
dockerdemo

boring _kirch

3. You can inspect a container using the following command along with the container
id.

shipyard inspect d465329a39ea

shipyard cli: shipyard inspect d46532%a3%ea

4f828dcfac8ldvebbl”,

a": "running”

¥
5

hipyard cli

4. Use the following command and parameters to deploy a container.

shipyard run —name ubuntu:14.04 \
—cpus 0.1\

—memory 32\

—type service \

—hostname demo-test \

—domain local \

shipyard cli- shipyard run --name ubuntu:14.84 \
--cpus 8.1 \
--memory 32 \

--type service \

--hostname demo-test \

--domain \
started a5636a5c222d on dockerdemo

5. To destroy a container, execute the following command with container id.

shipyard destroy a5636a5c222d

shipyard cli: shipyard destroy a5636a5c222d
destroyed a5636a5c222d
shipyard cli

6. You can view shipyard events as you see in the Ul using the following command.

shipyard events

shipyard cli- shipyard events

Time Message Engine Type Tags
ked y 24 148 +8888 2814 container:aS636: 222 dockerdemo die docker
Wed 5 24 12:48: +8808 2014 container: 2 dockerdemo start docker

Wed ! 24 12: 83 +88e@ 2814 container: 363 d dockerdemo create docker
Wed Sep 24 3 +888@ 2814 container:a5é dockerdemo create docker
Wed y 24 12:48; +8888 2814 container:a 12d dockerdemo die docker
Wed = 24 12:48:83 +00888 2014 container:ase 22 dockerdemo start docker

7. To view all the information about shipyard, use the following command.

shipyard info

Panamax

Panamax is an open source application, created by centurylink labs for deploying complex
Docker applications.

Using panamax, you can create templates for your Docker applications and deploy them
on the Docker host using an easy to use interface.

Panamax has its own template repository on github and it is integrated with the panamax

UL The UI has rich features for searching the panamax default templates and Docker hub
images.

Panamax works with coreOS. You can run panamax in any platform which supports
coreOS. Few containers will be created during the initial configuration to set up the UI for
searching Docker images and templates from the Docker hub and panama repository.

Installation

Panamax can be installed on a local workstation running virtual box or you can set up a
workstation on any cloud service which supports coreOS. In this section we will install
and set up panamax on Google compute engine.

Follow the steps given below to install and configure panamax.

1. Create a coreOS VM from compute engine management console or using the gcloud
cli.
2. Connect to the server using the gcloud shell or SSH agent such as putty.

Download the panamax installation files using curl, create a folder named Panamax
inside /var folder and extract the installation files to that folder using the following
command.

curl -O http://download.panamax.io/installer/panamax-latest.tar.gz && mkdir -p /var/panamax && tar -C /var/panamax -zxvf panamax-latest.tar.gz

panamax bibin.w
% Total % Received X Xferd Average Speed Time Time T
Dload Upload Total Spent L
168 14151 166 14151 =] 8 11&84%9 8 9:908:81 H8:808:81 --:
g
./Makefile
.feonfigure
.fereate-docker-mount
.fLICENSE
./desktop
./panamax
./ .coreaseny
. /README . md
. /CHANGELOG . md
.fubuntu. sh
.fVagrantfile
./ version
. fcoreos
SCONTRIBUTING.md
panamax bibin.w

me Current
ft Speed
-1=-=- 189385

i
]

4. CD in to the panamax directory and install panama using the following command.

mkdir -p /var/panama

./coreos install —stable

http://download.panamax.io/installer/panamax-latest.tar.gz%20&&%20mkdir%20-p%20/var/panamax%20&&%20tar%20-C%20/var/panamax%20-zxvf%20panamax-latest.tar.gz

Installing Panamax. ..
Failed to stop update-engine-reboot-manager.service: Unit update-engine-reboot-anage
Created symlink from / : feystem/upd e anager. d_ fdev
Created symlink from /

anamax-metrics.ser

Moy 12 : m ocker[1392] I
Mov 12 B7:45:87 panaman .internal docker[821]: [22d5b51%] -job dels
Panamax install

5. Once installed, run the following Docker command to check if three containers for
panamax have been launched.

docker ps

panamax panamax
CONTAINER ID MA COMMAND CREATED

anamax-ui:latest 'y -¢ 'bundle &
18.4.1 " bin/cadvis
centurylink/panamax-api:latest “fbin/sh -c

panamax panamax #

Accessing panamax Web Ul

Panamax-ui container runs the application for panamax UI. You can access the panamax
web UI on port 3000.

Eg: http://<server ip>:3000

130.711,29,137 = ||H- Plere # & B @~ = -

]

— ‘-".1 CenturyLink

Search Panamax Templates & Docker Repositories

Or, browse these available templates: Sorl Searches by Mame
public (17} moegl [} posigresgl [ghlab [sginx (3 cpensab @ deuped [redin @ i@ wordpress 7} = {1)

Wi medinwiki (V] sed (1] wemy 1) hbproey 1] slescssaich (1] fixdh (1] gealana {15 opensisck (1) phadk (1)

mnalyGica (1] eila (1] sinckedit (1) postgres (1) markdown (1) pogededn (1] githeb (W git () Buildpeck (1) baiok (1)

Deploying a sample rails application

Panamax provides search functionality for searching panamax templates and images from
Docker hub.

In this demonstration we will deploy a rails application using the default template with
rails and postgres images.

Follow the steps given below to launch a rails application using a panama template.

1. Type rails in the panamax search box and hit search button. You will see a template
section and the image section. The template is the default template from panamax
repository and images are searched from the official Docker hub.

Or, browse these available templates: Son Searches by Name

pubdic (7] mysqi (8] postgresql (4] gitfab (3} ngina (X openssh (8 drupal @) mdis(®) el wordpress (3 me(1)
wiki (1) | mediowidi 1) eted (1) welty (1] haproxy (1] elesticsearch (1) inlasdb {1} | gratna (1) openstack (1) piwik (1)
snmlytics (1) rodls (1) stackodit (T} | postgses (] markdown (1] pagedown (1) ghhub (1) | ghil} bulldpack {1} horoki (1)

Show ab keywords

Templates

Rails with PostgreSalL
Rals with PostgreS0L More Details 2 m

Did you know you can creste yoor own custom iemplales 10 use within Panamax?

Images

rails * &7 TH Jales v"

Fals = an open-sourcs wel appication Mamework witlen i Ruby
Run Image k

Click run template and select the “Run locally” option. This will deploy the rails and
postgres container on the local Docker host on which panamax is running. You can
also deploy the template to a target Docker host.

Templates

Rails with PostgreSQL
2 Run Template +

. Once the application is created, you can see the containers being launched on the
host.

The application was successfully created.
Cilek here 10 read ihe adotienal instructions proviead by e aulhor of B femplate bsed bo creaie ths aoplaton

Manage /| Dashboard / Applications

Rails with PostgreSQL

Eiepicyen ta; CormQR et Save as Templade | @ Rebuid Apg

ALCRTT YO apphcaton

Application Services =

DE Tier Web Tier Add a Category

4. You can view the full logs from the “Activity log”.

Core05 Journal - Application Activity Log Hide Full Activity Log

5. To view and edit the container ports and other preferences, click on the specific
container. Let’s view the ports and links associated with the rails container. Click the
rails container from the dashboard.

Application Services ot

DB Tier - Web Tier Add a Category

Dalabase b

+ Add a Service + Add a Senvice

6. In the dashboard you can view and edit the information for a particular container. Our
rails container is linked to postgre SQL container. If you click on the ports tab, you
can see on which host post the rails container has been linked. Host port 8080 is
mapped on port 3000 of the rails container

Base image: dharmamike/pmx-rails - Tag: lafest | View on Docker Hub

[t ail JCEaT NG LG
Do umenation
: o b lehm RIJ"
G0 Serace Lnks Mapped Endpoints dshmicieatin L Sy
faae: 990 dharmanike/pmx-rafls
m Ervarpnement varias
I 2080 : 3000 | TCP I I e R I
0
+ Binda Pon

E v Exposad Ports
} Dincker Fan Commiand

437 TCP

&0/ TCP

+ Expose a Port

7. Now if you access the host IP on port 8080, you can view the sample rails application
running on the rails container.

€ & T e ||[H- ok PeE ¥+ n B G- = -

You're riding Ruby on Rails]

e Browse the
Welcome aboard s iaiation
RRAILS

About your application’s environment Fails Guidas
Eails AP]
Ry sore
Getting started R

Here's how o get rolling:

1. Use rails generate to create your
models and controllers

To 2as all availabls apons, run it sithiul padameaters

e]

. Set up a root route to replace this page

You're seendg this pags because you're running in
devalopmant moda and you haven't set a root routs yek,

Reastes are 58t up in config/rmbes, rb.

3. Configure your database

If yoirre not wseg SOLite (e defaull), edt
configfdatabase. i with your usermname and password.

11

Docker Service Discovery and Orchestration

One of the challenges in using Docker containers is the communication between hosts.

One of the solutions for Docker host to host communication is service discovery. In this
section we will demonstrate the use of consul service discovery tool with Docker.

Service discovery with consul

Service discovery is a key component in an architecture which is based on micro services.
Service discovery is the process of knowing when a process is listening to applications
processes running specific TCP or UDP port and connecting to those processes using
names.

In modern cloud infrastructure, every application should be designed for failure. So,
multiple instances of web servers, databases and application servers will be running and
they interact with each other using API’s, message queues etc. Any of the services may
fail at a given point of time and scale horizontally. When these new instances of services
come up, it should be able to advertise itself to the other components in your
infrastructure. Here is where consul comes in.

Consul is a service discovery tool for configuring services in an infrastructure. It helps in
achieving the two main principles of service oriented architecture such as loose coupling
and service discovery. Consul has the following features.

Service discovery

The nodes which are running consul client can advertise its service and the nodes which
want to consume a particular service can use a consul client to discover the service.

Health checking

Consul is capable of doing health checks based on various parameters like http status
codes, memory utilization etc. The health check information obtained by consul clients
can be used for routing traffic to healthy hosts in a cluster.

Key/value store

Consul has its own key/value store. Applications can use its key/value store for operations
such as leader election, coordination and flagging. All the operations can be performed
using API calls.

Multi Datacentre

You can have consul configured with multiple datacenters. So, if your application spawns
to multiple regions, you don’t need to create another layer of abstraction for multi region
support.

Consul Architecture

Consult agent runs on every node (client) which provides a service. There is no need for
consul agent on nodes which consumes a service. Consult agent will do the health check
for the services running in the node and also it does the health check for node itself. Every
consul agent will talk to consul servers where all the data about the services are stored and
replicated among other servers.

A consul server is elected automatically during the cluster configuration. A cluster can
have one to many servers but, more than one with a consul cluster is recommended for
deployments.

When a service or a node wants to discover a service from consul cluster, it can query the
consul server for information. A request can be made using DNS or http request. You can
also query other consul agents for service information. When a request is made to consul
agent for service enquiry, the consul agent will forward the request to the consul server.

Ap—p
RPC LAN A -

Server
(Leader)

Server Server

Fig 11-1: consul Architecture

Gossip

Consul is built on top of serf. Serf is a decentralized solution for cluster membership. Serf
provides the gossip protocol for operations like membership, failure detection and event
broadcast mechanism. Gossip protocol uses UDP for random node to node
communication. All the servers in the consul cluster participate using the gossip pool. The
gossip pool in a cluster contains all the nodes.

In this section we will do the following,

1. Build a Docker consul image from scratch

2. Setup a three node consul cluster

3. Set up registrator for auto registering and deregistering containers in consul
registry

4. Deploy containers on consul cluster.

Building a consul image from scratch

To build a consul image from scratch we need the following:

1. A Docker file with all the image specifications and commands.
2. Config.JSON file for consul agent
3. Launch.sh this file is required for launching the consul agent.
Follow the steps given below create necessary configuration files for building a consul
image;
1. Create a folder name consul in your Docker host.
2. CD in to consul folder and create another folder name config

3. CD in to config folder and create a file name config.JSON and copy the following
contents on to that file.

“data_dir”: “/data”,
“ui_dir”: “/ui”,
“client_addr”: “0.0.0.0”,
“ports”: {

“dns”: 53

h

“recursor”: “8.8.8.8”

}

4. Inside consul folder create a file name launch.sh and copy the following contents on
to the file.

#1/bin/bash
set -eo pipefail
echo “Starting consul agent”

consul agent -config-dir=/config “$@”

5. Inside consul folder create a file name Dockerfile and copy the following contents on
to the file.

FROM centos

RUN yum -y update

RUN yum -y install which
RUN yum -y install git
RUN yum -y install unzip
Add consul binary

ADD https://dl.bintray.com/mitchellh/consul/0.3.1_linux_amd64.zip /tmp/consul.zip
RUN cd /bin && unzip /tmp/consul.zip && chmod +x /bin/consul && rm /tmp/consul.zip

Add consul UI

ADD https://dl.bintray.com/mitchellh/consul/0.3.1_web_ui.zip /tmp/webui.zip
RUN cd /tmp && unzip /tmp/webui.zip && mv dist /ui && rm /tmp/webui.zip
Add consul config

ADD ./config /config/

ONBUILD will make sure that any additional service configuration file is added to Docker conatiner as well.
ONBUILD ADD ./config /config/

Add startup file

ADD ./launch.sh /bin/launch.sh

RUN chmod +x /bin/launch.sh

Expose consul ports

EXPOSE 8300 8301 8301/udp 8302 8302/udp 8400 8500 53/udp

#Create a mount point

VOLUME [*“/data”]

Entry point of container

ENTRYPOINT [“/bin/launch.sh”]

The above Dockerfile will create an image from centos and configures consul agent using
the config and launch file.

6. Now you should have the folder and file structure as shown below.

consul
--config
--config.json

--Dockerfile
--Launch.sH

Building the consul image

Now we have the Dockerfile and consul configuration files in place. From the consul
directory run the following Docker build command to build the consul image.

docker build -t consul-image .

root@dockerdemo: ~/consul# docker build -t consul-image .
Sending build context to Docker daemon 5.632 kB

Sending build context to Docker daemon

Step @ : FROM centos

Pulling repository centos

Removing intermediate container 87ba882201a8
Step 12 : RUN chmod +x /bin/launch.sh
---> Running 8cB8ba7c4565e
3déebaldébf3
Removing intermediate container Bc8ba7c4565e
Step 13 : EXPOSE 8388 8381 8381/udp 8382 8382/ /udp 8480 8588 53/ /udp
---> Running 6878514158da
39557388b8de
Removing intermediate contalner 687851415@da
Step 14 : VOLUME ["/data"]
---> Running 7d28ddd24727
7453f02b%ad?
Removing intermediate container 7d28ddd24727
Step 15 : ENTRYPOINT ["/bin/launch.sh"]
---> Running bad8e@c318bf
fB8dee48ba7sc
Removing intermediate container badB8e@c31@bf
Successfully built fadee4sba78c

Creating a single instance of consul

Once you have successfully built the consul image, run the following command to create a
single instance of consul on the Docker host to check if everything is working correctly.

docker run -p 8400:8400 -p 8500:8500 -p 8600:53/udp -h nodel consul-image \ -server —bootstrap

The above command will use the local consul-image and creates a container with
hostname nodel. We expose 8400 (RPC), 8500 (HTTP), and 8600 (DNS) to try all the
interfaces.

root@dockerdemo: -# docker run -p 8480:848@ -p BSOD:8508 -p 8608:53/udp -h nodel consu
Starting consul agent
WARNING: Bootstrap mode enabled! Do not e le unless necessary
WARNING: It is highly recommended to set AXPROCS higher than 1
Starting Consul agent...
Starting Consul agent RPC...
Consul agent running
Node name: 'nodel’
Datacenter: ' \
server: true (bootstrap: true)
Client Addr: ©.8.8.@ (HTTP: 8588, DNS: 53, RPC: 8488)
Cluster Addr: 17.8.15@ (LAN: 3301, WAN: EB382)
Gossip encrypt: », RPC-TLS: false, TLS-Incoming: false
2014/18/87 18:33:29 [INFO] raft: Election won. Tally: 1
f :29 [INFO] raft: Node at 172.17.8.158:838@ [Leader] entering Lead

[INFO] consul: cluster leadership acquired
9 [IMFO] consul: New leader elected: nodel
[INFO] consul: member ‘"nodel’ joined, marking health alive

Once the container is created, you can access the consul Ul from the browser using your
server IP followed by port 8500

http://< public or private ip>:8500

4, AL TL MY il - | Al e & & B O

consul

node 1

Sarl Haaith Status

Setting up consul cluster

You can set up a consul cluster on a single node and multi node as well. In this section we
will look in to single host and multi host consul cluster set up.

Single host consul cluster

In this set up we will launch three consul nodes on the same host for experimentation. We
will start our first node with -bootstrap-expect 3, which will wait for the other two nodes
to join to form a cluster. We will be using the consul-image created from the Docker file
for this single node cluster setup.

Follow the steps given below to create a single node consul cluster.

1. Start the first node with -bootstrap-expect 3 parameter to wait for other two nodes to
join the cluster. Run the following command to start the first node

docker run -d —name nodel -h nodel consul-image -server -bootstrap-expect 3

root@dockerdemo: -# docker run -d --name nodel -h nodel consul-image -server -bootstra

3219d14ad7a4638e50efE2ce24Ffd508adfaaclbllddB282541774dekh2cbBbEs

2. We will join the next two nodes to nodel using the hosts internal IP. So, get the host’s
internal IP in JOIN_IP variable using the following command.

JOIN_IP="$(docker inspect -f ‘{{ .NetworkSettings.IPAddress }}’nodel)”

3. Start the second node with join parameter and JOIN_IP using the following
command.

docker run -d —name node2 -h node2 consul-image -server -join $JOIN_IP

root@dockerdemo: -# docker run -d --name node2 -h node2 consul-image -server -join $3C
82b338cd30eBedebalccad9lc3T163817573b954ab79aa95ef67celéb31768e7

root@dockerdemo: #

4. Start the third node with join parameter and JOIN_IP using the following command

docker run -d —name node3 -h node3 consul-image -server -join $JOIN_IP

root@dockerdemo: -# docker run -d --name node3 -h node? consul-image -server -join
£ JOIN_IP

e@7ebacif@alcBeBfeb7dlfl85eceTbdBE69aEelebe28F4feB95196d11a8b1b78
root@dockerdemo: -#

5. Now if you check the Docker logs for the third container, you will see the message
“leader elected”. We have a working consul cluster now.

docker logs <container-id>

rooti@dockerdemo: -# docker logs 82b338cd3BeBedebalcc 1c3f163817573b954ab79a
Starting consul agent
Starting Consul agent...
Starting Consul agent RPC...
Joining cluster...
Join completed. Synced with 1 initial agents
Consul agent running
Node name: ‘nodel’
Datacenter:]
server: true (bootstrap: false)
Client Addr: . e.0.0 (HTTP: 85@@, DNS: 53, RPC: 8480)
28l4/1a/ 11:. 3 [INFO] serf: EventMemberJoin: node3 172.17.8.154
2014/18/87 11: [INFO] serf: EventMemberloin: node3.dcl 172.17.8.154
2el4a/1e/@7 11: [INFO] raft: Node at 172.17.8.154:8388 [Fullnu:r] entering Fo
28l14/1a/ 11: [INFO] consul: adding server node3 (Addr: 172.17.8.154:83ee)
@7 11: [INFO] consul: adding server node3.decl (Addr: 172.17.08.154:83
a7 11: [INFO] agent: (LAN) joining: [1?2.1?.6.15‘]
11: [INFO] serf: EventMemberJoin: node2 172.17.8.15:
a7 11: [INFO] serf: EventMemberloin: nodel 172.17.8.152
i I I [INFO] agent: (LAM) joined: 1 Err: <nil
11: [ERR] agent: failed to sync remote state: No cluster leader
a7 11: [INFCO] consul: adding server node2 (Addr: 172.17.8.153:8388)
11: [INFO] consul: adding server nodel (Addr: 172.17.8.152:83e@)
11: 4 [INFO] consul: New leader elected: nodel

N Wl oenoan ownoun
W b W b W L Lo b
W W W L b W W o g L

LAY

PR B R BRI R B B BB B R

A &

I|| W w

Now we have a working three node single host cluster, but we won’t be able to access the
cluster UI because we did not do any port mapping for the created nodes. We can access
consul UI by launching another consul agent node in client mode. It means that, it will not
participate in the consensus quorum instead we can use this to access the consul UI.

6. So let’s create another container without the server parameter to run in client mode
for accessing the consul UI. Run the following command to create the fourth consul
client node.

docker run -d -p 8400:8400 -p 8500:8500 -p 8600:53/udp -h node4 \ consul-image -join $JOIN_IP

root@dockerdemo: -# docker run -d -p B499:B8488 -p B580:B580 -p BeBB:53/udp -h
noded consul-image -join $J0IN_IP

deefed29a8liedaccldeScds2fcBed986caadias0eiviTecbBatlaeldeideddbes
root@dockerdemo: -#

7. We can now access the consul Ul using the hosts IP followed by port 8500.

http://hostip:8500

http://hostip:8500

B — E Pl L o B OO

consul

Serf Health Stadus

noded

Serf Health S2atus

Multi host consul cluster

In this section, we will create a multi host consul cluster with 3 nodes.

Note: In this demo, we will be using three amazon ec2 instances with private networking
enabled. All three instances will be able to contact each other using its private IPs.

We have three Docker hosts (nodel, Node2 and node3) in which we will install consul
agent servers to form a cluster. All the three Docker hosts can communicate with each
other using the private IPs.

The Docker image used in this demo is a public image from Docker registry
(progrium/consul) which has a preconfigured consul agent. You need to commit and
publish the image to your Docker repository if you want to use the image we created in
single host set up.

Following are the requirement to launch a multi host cluster.

e Each host should have a private IP and it should be able to communicate to other
hosts using its private IP.

e All the necessary ports should be opened on every host.
e An image configured with consul agent.

Following are the flags used in commands for cluster setup

e -bootstrap-expect 3 :- This flag will make the host wait until three hosts are
connected together to become a cluster. This parameter will be used only on the first
node.

e -advertise :- This flag will pass the private IP to consul.
e -join:- This flag will be used by second and third nodes to join the cluster.

Now let’s get started with the setup. Follow the steps given below to set up the multi host
cluster.

1. On nodel run the following command on nodel (replace 172.0.0.87 with nodel’s
private IP and 172.17.42.1 with Docker bridge’s IP)

docker run -d -h nodel -v /mnt:/data \
-p 172.0.0.87:8300:8300 \
-p 172.0.0.87:8301:8301 \
-p 172.0.0.87:8301:8301/udp \
-p 172.0.0.87:8302:8302 \
-p 172.0.0.87:8302:8302/udp \
-p 172.0.0.87:8400:8400 \
-p 172.0.0.87:8500:8500 \
-p 172.17.42.1:53:53/udp \

progrium/consul -server -advertise 172.0.0.87 -bootstrap-expect

rooti@gnodel: -# docker run -d -h nodel -v /mnt:/data \
-p 172.2.0.87:8300:8300)\
-p 172.0.9.87:8301:8301 \
-p 172.0.0.87:8301:8301/udp \
-p 172.0.08.87:8302:8302 \
-p 172.0.0.87:8302:8302/udp \

-p 172.9.0.87:84806:8480

-p 172.0.8.87:8500:8580)

-p 172.17.42.1:53:53/udp \

progrium/consul -server -advertise 172.8.8.87 -bootstrap-expect 3
182e8572f03e092cbae3b93a9e0d968a40c4157 3548d5c1bB2dbe37ef38d2f15b

2. On node2 run the command give below with its private IP. The IP mentioned in the —
join flag is node1’s IP.

docker run -d -h node2 -v /mnt:/data \

-p 172.0.0.145 :8300:8300 \

-p 172.0.0.145 :8301:8301 \

-p 172.0.0.145 :8301:8301/udp \

-p 172.0.0.145 :8302:8302 \

-p 172.0.0.145 :8302:8302/udp \

-p 172.0.0.145 :8400:8400 \

-p 172.0.0.145 :8500:8500 \

-p 172.17.42.1:53:53/udp \

progrium/consul -server -advertise 172.0.0.145 -join 172.0.0.87

root@node?: -# docker run -d -h node2 -v /mnt:/data
-p 172
1 B 5
=p 172.
-p 172,
-p 172.

.145:83808: 8388 "
.145:8381: 8381
.145:8301:8301/udp \
.145:8302:8382 \
.145:8382:8302/udp \
-p 172. .145:8480: 8488
-p 172.8.8.145:8580:8588 \
=p 172.17.42.1:53:53/udp \
progrium/consul -server -advertise 172.0.0.145 -join 172.0.8.87
14933fd7741ec22cd318971628d16393ba2add1f57b07e4951b4ae8635bF9c9

D000 0D

=

3. On node3 run the following command with respective private IP addresses.

root@node3: -# docker run -d -h node3 -v fmnt:/data
-p 172. .54:8300:8300
-p 172.8.06.54:8301:8381
o - .54:8301:8301/udp
-p 172. .54:8382:8382
:54:8302: 8382 /udp \

.54:8460:8486

DOD OO OO

.54:8560:8588

42.1:53:53/udp

onsul -server -advertise 172.8.8.54 -join 172.8.8.87
4f1b610a22b1f955827c99651337dca9eb3cafld3fhade7d6e32e3627aidEbfa

4. Now you can access the consul UI using any Host IP followed by port 8500

http://hostip:8500

54, 10T 127 | H- g A L& & B -

SERVACE WL WEVAALY 0]

j " consul
n f—

moded

S Haath Statuss e

nodel

Seaf Heatth Stahes

reode

S Hoahh Statu ot

5. You can check the logs of the cluster using the following Docker command.
docker logs <container id>

You can check the logs by stopping one node or stopping the Docker service. If a service
is failing you can view it in the logs and the web UI as shown in the images below.

docker logs 1020570f03e0

http://hostip:8500

2el14/18/a7 S [INFO] consul: member 'node3' joined, marking health alive

2814/18/87 13:37:45 [INFO] memberlist: Suspect node3 has failed, no acks received
2814/18/87 13: [INFO] memberlist: Suspect node3 has failed, no acks received
2914/1e/@7 13: [INFO] memberlist: Suspect node3 has failed, no acks received
2el14/1e/@7 13:37: [INFO] memberlist: Suspect node3 has failed, no acks received
2814/1e/87 [INFO] memberlist: Suspect node3 has failed, no acks received
2814/18/a7 Hi- 7 5. [INFO] memberlist: Suspect node3 has failed, no acks received
B4, 350,56, 477]] AlaB & B $-
Jr— 0
consul
@u =
Al
Smrf Heatth Status
e

Serf Health Status

nadel

Secf Health Status

Note: If the leader node fails, another node will elect itself as the leader based on consul’s
algorithm.

So far we have set up clusters on single and multi-host. Next we will look to auto
registration of containers to consul using registrator tool. This tool listens to Docker
events on the hosts and registers and deregisters when the containers is launched or
terminated.

Registering services using Registrator

If you are using consul, each and every container that is being launched should be
registered to the consul registry service. You can run a consul agent on each container or
you can use registrator tool to register container services automatically.

Registrator is a service registry bridge for Docker to automatically register new containers
to the consul registry. Registrator makes it really easy by running a registrator container on
the Docker host for registering new services without having to run consul agent on each
container.

Registrator is modeled in to a container. We just have to run the container on a Docker
host in the consul cluster. We can run the registrator container on multi host consul cluster
as well. We will use the public registrator Docker image (progrium/registrator) for the set

up.

Follow the steps given below to set up registrator on consul cluster.
1. On nodel run the following command:

docker run -d \

-v /var/run/docker.sock:/tmp/docker.sock \

-h $HOSTNAME progrium/registrator consul://172.0.0.87:8500

root@nodel:-# docker run -d
-v fvar/run/docker.sock: /tmp/docker.sock \
-h $HOSTMNAME progrium/registrator consul://172.8.8.87:8588
Unable to find image 'progrium/registrator’' locally
Pulling repository progrium/registrator
32192888218c: Download e
511136ea3c5a: Download 1
9531dé7e34ea: Download

885dde9415bd: Download

algg932dte87: Download
a3eB4ebScfef: Download

7ae3381c7eb5: Download

eB3852d128f4: Download
66ebfiefe36c: Download ¢
Bfblc276a833: Download
fl16+49db23c7: Download 1

28bcf563dclc: Download comp
1#59*2eth“453#1@*93?1?Ec9d9hq3d 8926ab798d4bcatc2bd4255aBad3iba72

Run the registrator container on other two nodes with respective consul IPs.

2. Now you can check the Docker logs using the container id to check if registrator is
working as expected.

docker logs \ 1e6022e5db3483e1029a7178c9d9b53d78926ab790d4bcafc2b4255a8ad3ba72

root@nodel: -# docker logs 1le6822e5db3483el1829a7178c9d9b53d78926ab798ddbecafc2ba2s5
2814/18/88 P6:11:23 registrator: Using consul registry backend at consul://172.8.
2914/18/88 :11:23 registrator: ignored: 1e6822eS5db34 no published ports
2814/18/88 e6:11 registrator: added: 89dB648122c8 nodel:loving_archimedes:
“ﬁidala /@8 86:11:23 registrator: added: 89d8648122c¢8 nodel:loving_archimedes:
f registrator: added: 89d8648122¢8 nodel:loving archimedes:

o3 wi
§ oL

o o

registrator: added: B89d8648122c8 nodel:loving_archimedes:
registrator: added: 89dB648122¢8 nodel:loving_archimedes:
2814/ 15 @8 86:11:23 registrator: added: 89d8648122c8 nodel:loving archimedes:
2014/18/08 86:11:23 registrator: added: B89dB648122¢8 nodel:loving archimedes:
2814/18/88 B6: 23 registrator: added: B89d8648122c8 nodel:loving_archimedes:
2014,/168/08 06:11:23 registrator: Listening Docker events...
root@nodel :

03 00 OO 00

U L L L L
o o

b =

o o
o D bk

0o ©o

The last line of log says that registrator is listening for Docker events. It means our
registrator container is working without any errors. Once it starts running, you can
basically start any Docker container and you don’t have to do anything extra to register it
to the consul registry. Registrator will take care of registration process by listening to the
Docker events.

3. Now, lets’ run a redis container using the public image (Dockerfile/redis) to check if
it is automatically registering to the consul registry. The redis image does not do
anything special for service discovery it is just a normal redis image. Run the
following command to deploy a redis container.

docker run -d -P Dockerfile/redis

rooti@gnodel: -# docker run -d -P

Unable to find image 'dockerfile/redis=" locally
Pulling repository dockerfile/ red1"
fb2ecB8afee3e: Download c

511136ea3c5a: Download

bl8deaze76al: Download

¥dd7cd44551b: Download

28dce@lecd4es: Download e
117c46d9f4Eu4h938b4c?ﬁfadca"4fd¢4a§639dfﬁlf SecB471c3ibc3ibdb7a84
rooti@nodel : -#

4. Now if you check the consul Ul, you can see that redis service has been
automatically registered to our consul cluster without any extra work.

B & e @ - fagBE ik B O-
i e — ’ G
0
— j comsul
A Ho kags
oonsul-43
eonsul-3308 node?

eonaul-3301 Serf Health Swatus

consul-8302
cansul 3400 node]

conaul-35600 Serf Health Status

regis

noded

Sart Health Status

5. Now run the same redis container on node 2 to check if it is registering with the same
service name on the other nodes. Once the redis containers are deployed on node 2
check the consul UI and click redis service. You will see two instances of redis
running on two hosts with service name redis as shown in image below.

L3 4, 300 L 145 a- e
Eor SCMACES ¥ . a]
redis
comELl T
Mo i
CerL-a]
e] e
i Sl Health Saius
eorriiul-Bl3
cormu-Bdi0 noded
coeLd-BE00 Serf Meakh Stxtus
o
-

6. By default registrator used the image name as the service name used by the author.
You can override this by specifying the service name, service tags as an environment
variable while deploying a container. Let’s deploy the same redis container with a
different service name using the following.

docker run -d -P -e “SERVICE_NAME=db” dockerfile/redis

root@node?: -# docker run -d -P -e "SE _NAME=db" dockerfile/redis
bcab74fad48d328e26c5d6a36dc@88942blb833c7484f4ddB275cEfe7881938aa

rooti@inode: -#

Once the container is launched, you can check the consul Ul for the newly registered redis
container with service name db.

54106 134 170 @ [l o= AladgBa & o B B

db

consul
Holags

[—
cormul-B300 node?

eoriul-B301 Sarf Healh Statas
egrriul-B30
earriul-Bald
eoril-B 5D

rindis

7. Now let’s run db service on node 1 with a service tag primary and service name db

docker run -d -P -e “SERVICE_NAME=db” -e “SERVICE_TAGS=primary” \ dockerfile/redis

root@nodel:-# docker run -d -P -e "SERVICE_NAME=db" -e "SERVICE_TAGS=primary” docker
bl4bbb5S2ca3dseees22fccBl56B88e7d7dbec2fca79becfard89202484873a6b87

rootignodel : - #

Now if you look at the db service in consul Ul, you will find a primary tag for a redis

instance. Tagging can be useful in services like databases using primary and secondary
services.

[LR RILRE] g | Flaa & v B G-

cofmal

copguh-Ad

consul-B300

nesded
— o rt Health Status
coraul-B3E
conmul-G40y noded
cormul-B500 Serf Health Status o

i

regss

Now we have a cluster with auto registering containers services. Next we will look in to

how to discover the registered service to be used by other application containers. Services
in consul can be discovered using DNS or HTTP API.

Example http request:

Using http request you can get the service details and use it on your application. Run the
following command to get the details of db service we deployed earlier.

curl -s http://54.169.114.179:8500/v1/catalog/service/db

root@nodel:-# curl -s http://54.169.114.179:8508/v1/catalog/service/db

-
- |

y_heisenberg:6379",

Example DNS request

Same as http, using consul’s DNS service you can get the details of a particular service
registered on consul. Run the following command on any node on the cluster to get the
service details using DNS

dig @$BRIDGE_IP -t SRV db.service.consul

root@node2: -# dig @$BRIDGE_IP -t SRV db.service.consul
DiG 9.9.5-3-Ubuntu @172.17.42.1 -t SRV db.service.consul
(1 server found)
global options: +cmd
Got answer:
-:HEADER: <- opcode: QUERY, status: NOERROR, id: 39439
lags: gqr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @,
QUESTION SECTION:
db.service.consul. IN SRV

ADDITIONAL: 1

ANSWER SECTION:

db.service.consul,] IN SRV 1 1 49155 node2.node.dcl.consul.|
ADDITIOMAL SECTION:
nodel.node.dcl.consul. @ IN A 172.08.8.145
Quary : 1 msac
SERVER: 172.17.42.1#53(172.17.42.1)
WHEN: Wed Oct 88 12:44:32 UTC 2014
M5G SIZE rcvd: 138
rootignode?: #

You can also look in to services by specifying tags. You can also look in to services
specifying tags. We created a db service with primary tag earlier in this section.

Run the following command for looking up db service with tag primary.

http://54.169.114.179:8500/v1/catalog/service/db

root@gnode?: -# dig @PBRIDGE_IP -t SRV primary.db.consul.service
DiG 9.9.5-3-Ubuntu @172.17.42.1 -t SRV primary.db.consul.service
(1 server found)
global options: +cmd
Got answer:
->:HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 63497
flags: qr rd ra ad; QUERY: 1, ANSWER: @, AUTHORITY: 1, ADDITIONAL: 1
OPT PSEUDDSECTION:
EDNS: version: @, flags:; udp: 512
QUESTION SECTION:
primary.db.consul.service. IN SRY
AUTHORITY SECTION:
1799 IN S04 a.root-servers.net. nstld.verisign-grs.com. 20141888868 186
Query + 119 msec
SERVER: 172.17.42.1#53(172.17.42.1)
WHEN: Wed Oct @8 13:85:32 UTC 2014
MsG SIZE rcvd: 129
root@node?: #

Docker cluster management using Mesos

Apache Mesos is an open source centralized fault-tolerant cluster manager. It’s designed
for distributed computing environments to provide resource isolation and management
across a cluster of slave nodes. It schedules CPU and memory resources across the cluster
in much the same way the Linux Kernel schedules local resources. Following are the
features offered by Mesos.

1. It can scale to more than 10000 nodes
Leverages Linux containers for resource isolation.
Schedules CPU and memory efficiently.
Provides a highly available master architecture using Apache Zookeeper.

AR

Provides a web interface for monitoring the cluster state.

Key differences between Mesos and Virtualization:

e Virtualization splits a single physical resource into multiple virtual resources
e Mesos joins multiple physical resources into a single virtual resource

It schedules CPU and memory resources across the cluster in much the same way the
Linux Kernel schedules local resources. Let’s have a look at Mesos components and its
relevant terms.

A Mesos cluster is made up of four major components:

ZooKeeper
Mesos masters
Mesos slaves

e

Frameworks

ZooKeeper

Apache ZooKeeper is a centralized configuration manager, used by distributed
applications such as Mesos to coordinate activity across a cluster. Mesos uses ZooKeeper
to elect a leading master and for slaves to join the cluster.

Mesos master

A Mesos master is a Mesos instance in control of the cluster. A cluster will typically have
multiple Mesos masters to provide fault-tolerance, with one instance being elected as the
leading master. The master manages the slave daemons

Mesos slave

A Mesos slave is a Mesos instance which offers resources to the cluster. They are the
‘worker’ instances — tasks are allocated to the slaves by the Mesos master.

Frameworks

On its own, Mesos only provides the basic “kernel” layer of your cluster. It lets other
applications request resources in the cluster to perform tasks, but does nothing itself.

Frameworks bridge the gap between the Mesos layer and your applications. They are
higher level abstractions which simplify the process of launching tasks on the cluster.

Chronos

Chronos is a cron-like fault-tolerant scheduler for a Mesos cluster. You can use it to
schedule jobs, receive failure and completion notifications, and trigger other dependent
jobs.

Marathon

Marathon is the equivalent of the Linux upstart or init daemons, designed for long-running
applications. You can use it to start, stop and scale applications across the cluster.

Others

There are a few other frameworks,

1. Aurora — service scheduler
Hadoop — data processing
Jenkins — Jenkins slave manager
Spark — data processing

ok W

Torque —resource manager

You can also write your own framework, using Java, Python or C++.

Mesos Architecture

Hadoop MPI ZooKeeper

scheduler scheduler quorum

fo=e” — i S b S

Mesos i Standby |

I

/HEIS“_EKM""'“-* --nm_a.‘?tﬁr___'

Mesos slave| | Mesos slave Mesos slave
Hadoop MPI Hadoop|| MPI

executor executor executorf|executor

task task task task

Fig 11-2 : Mesos architecture

The above figure shows the main components of Mesos. Mesos consists of a master
daemon that manages slave daemons running on each cluster node, and mesos applications
(also called frameworks) that run tasks on these slaves.

The master enables fine-grained sharing of resources (CPU, RAM) across applications by
making them resource offers. Each resource offer contains a list of resources from a single
slave. The master decides how many resources to offer to each framework according to a
given organizational policy, such as fair sharing, or strict priority. To support a diverse set
of policies, the master employs a modular architecture that makes it easy to add new
allocation modules via a plugin mechanism.

A framework running on top of Mesos consists of two components: a scheduler that
registers with the master to be offered resources, and an executor process that is launched
on slave nodes to run the frameworks. While the master determines how many resources
are offered to each framework, the frameworks’ schedulers select which of the offered
resources to use. When a framework accepts offered resources, it passes to Mesos a
description of the tasks it wants to run on them. In turn, Mesos launches the tasks on the
corresponding slaves.

High availability

High availability for a Mesos cluster is achieved by Apache zookeeper. The masters are
replicated by zookeeper to form a quorum. Cluster leader is selected by zookeeper and it
helps in detecting the leader for other cluster components like slaves and frameworks.

For a high availability Mesos cluster architecture, at least three master nodes should be
configured to maintain the quorum even if one master node fails. For a resilient production
setup, at least five master nodes should be configured by maintaining the quorum with two
offline masters.

Mesosphere

Mesosphere is a software solution which works on top of Apache Mesos. Using
mesosphere you can use all the capabilities of Apache Mesos with additional components
to manage an infrastructure. For scaling applications, you can use frameworks like
marathon and chromos with mesosphere by eliminating a lot of challenges associate with
application scaling. Following are the main features provided by mesosphere

1. Application scheduling
Application scaling
Fault-tolerance
Self-healing
Service discovery

AR

Till now we have discussed the basics of Apache Mesos.
In the next section we will learn the following.

1. Mesos cluster setup on google compute engine using mesosphere
2. Deploying Docker containers on to the cluster using marathon framework.
3. Scaling up and scaling down Docker container on the cluster.

Cluster setup using mesosphere

We will launch our Mesos cluster on google compute engine. Follow the steps given
below to setup the Mesos cluster.

1. Got to https://google.mesosphere.io/

s mesosphere

Introducing Mesosphere for

Google Cloud Platform.

i easily stan app affers Fault i

8dy and run

i o Google Cloud Plakioem account

2. Click the get started option. It will ask you to authenticate to your google compute
account. Once authenticated, click start development button.

https://google.mesosphere.io/

Choose a configuration for your Mesosphere cluster .:’j}

o

Development Cluster Highly-Available Cluster
A starter configuration parfect for frying Mesosphers A highty-availabla chistar configuration
Recommended fof protatypeng and testing Recommended for kad besting and production Lise

p—

3. You will be asked to enter the ssh public key. If you have one, you can continue with
the next step, if not , create a ssh public key using the following command,

ssh-keygen

dockerdemo@LP- 3C970EE1ABLS

$ ssh-keygen

Generating rsa key pair.

Enter file which to save the key (/c/Users /dockerdemo .ssh/id_rsa):
Enter passphrase (empty no passphrase):

Enter same passphrase agal

Your identification has been saved c/Users dockerdemo. .ssh/id_rsa.
Your key has been saved c/Users /dockerdemo’ .ssh/id_rsa.pub.
The key fingerprint is
) 515957232 21:28:3¢:9 Je:cB:1d:1c:e7:a9 dockerdemo@lP-3C97REELABLS
dockerdemo@LP - 3C970EE1AB1S |

4. Copy the contents of id_rsa.pub file and paste in the ssh-public key text box.

+" Chooae Cluster ' Ender your 53H key « Enber your Google project iD «" Launch your clustsr

Enter your public SSH ke
y P y Why do you need my public S5H key?

SEH public key HECIWID B <) Your public S5H key will ba placed on all the

meachines in your Mesosphere chester so that they

AW 2EAASARIOAAADEANDe S KGaa IV C: BaaisaAC r T BRy LmDghy can B configuned and you can iog into them ke
S U CEVE V2 HIMEZR ARy hY S wm SV IS pl+ deEAHe GyR bab' W pasnVWIC T 1y

2V DTN DT

ERHAITK] T SV HAILZCHN o e Sg adlinr)

S gk kerdemnofEL P :_J

5. Click the create option and enter your compute engine project id in the next page and
click next. You can follow the instruction in the page to get your compute engine
project id.

mesosphere

Launchpad Sethings

+ Choose Clusisr « Enteryour 33H key ' Enter your Google project ID. & Launch your cluster

Enter your Google Developers Console project ID

Google Project ID

dockardemo-143

Help me create a project 1D
1. 50 to your Gopgls Devaloper Conaoie

6. Now you will see all the instance specifications and cost for your mesos development
cluster. Your cluster will have 4 instances, 8vCPU’s and 30 GB memory .Click

2 Click the "Create Project” button

3. Give your propact a name and dick “Create’

4 Enabia billing

5. Nawigate o [Your Project Name] + Compule » Compuie
Engina + VM Instances

B. Copry @nd paste your progect 10

“launch cluster” to launch your mesos cluster.

o Chooss Cluster ' Enter your S5Hhey + Enter your Google project ID

¥ Launch your clusier

It's time to launch your cluster!

4 g 20

instances. wCPUs

Launch Cluster

$0.96

GB memory ped hour”

Summary

Axailability: Development {onty 1 master)
Region: i=-cenirail-a

Machine type: n1-standard.2

Imasge: backpons.debian: Twheery v 20140718

Public 35H key
ssh-rsa AASARINTa. . RwkyeH50== hibn willLP-
JCETOEE1ABS

Google profect (D
boomming-coast-625

7. Now you will see the status of you launching cluster.

Your Mesosphere cluster is launching!

Whiher you are wailing, parsonaire your clustor details

Personalize Clustar

& Requesied

& Frowsoning
Starting Fslances
Configuning
vierifyng
Running

8. Once your cluster is ready, you will get a message as shown in the image below.

mesosphere Launchpad Semlings

£ Good news, your Mesosphere cluster is ready to gol

23 Refresh for details

9. Click refresh details option to see the instructions to connect to mesos console.

You need to configure OpenVPN to access mesos and marathon consoles.

mesosphere Launchpad Sottings

2 Cood news, your Mesosphere cluster is ready to go!

[] M 1o access the Marathon and Mesos consoles or S5H o ona of the axiemal IPs with
user [EERER and the key you provided during configuration

What's next? See our onals fo min your apphoa on Mesosphera

Setting up OpenVPN

1. If you scroll down the mesosphere console, you will see instructions to download
OpenVPN client and the openVPN config file generated my mesosphere to access
marathon and mesos consoles.

Cansoles

Fodliny the instnuctions Delow onlfigine yvour VPN and get sepure aocess T your ciusler’s consokes
Ak

=4
i T
! BT 1
£

Marathan [T
Cluster VPN

Downloas OpenVFH config

2. Once openVPN is installed on your system, right click the config file and click

“start openVPN on this config file”. It will connect your machine to Google
compute using the VPN gateway created by mesosphere.

3. Once connected, click marathon button to view marathons console.

4. You can see view mesos console by clicking the mesos button.

4 1307, 122 - flga &b w B

Active Tasks L)

[=] Mt LLFEY Sl ¥ Hadl
G AChwe rees

Completed Tasks ¥

1] Marme Statm Staried ¥ Stopped Host

o compisied tatke

5. Also, if you go to your compute engine dashboard, under VM instances option, you
can view all four launched instances for your mesos cluster.

1

Deploying Docker containers using marathon

Note: Docker has to be installed on all the mesos slaves. Compute engine instance
deployed with mesosphere comes bundled with Docker.

Docker containers can be deployed to mesos cluster using marathon REST API’s. Follow
the steps given below to deploy container on the mesos cluster.

1. Create a JSON file named Docker.JSON and save the file with following contents.

{

“container”: {
“type”: “DOCKER”,
“Docker”: {

“image”: “training/postgres”

}

4

“id”: “database”,

“instances”: “1”,

“Cpus”.' :(0.5”’
“mem?”: :(512’:’
“uris”: []’

“cmd”: “while sleep 10; do date -u +%T; done”

2. Now, you need to post a task to marathon using the JSON file, which can be done
using curl. If curl is not installed on your system, install curl and run the following
command.

curl -X POST -H “Content-Type: application/JTSON” \ http://<master>:8080/v2/apps -d@Docker.JSON

In the above command, replace master with your mesos master IP which is running
marathon.

After successful execution of the above command, you can see the deploying app in
marathon console.

Scaling up Docker containers:

Docker instances can be scaled up very easily using marathon. Click the deployed
application and select the scale option. Give it a number, e.g.: 3 and click ok.

[4

Marathon will scale the Docker containers to 3.

mailto:-d@Docker.json

fubuntu ¢

Tasks Configuration

WE2044, 35044 PM
QME2014, 3:50:35 PM HHE2014, 3-50:30 PM

QMEZ04, 34403 FM 8182014, 3:58:32 PM

Scaling down Docker containers

Docker containers can be scaled down in the same way we scaled up the containers. Click
the scale option and give a number of containers you want to scale down.

Hmia 19 Feret ARy BEIERCEYT
El

oM | cama

After successful execution, you can see that the containers have been scaled down to 2.

Tasks Conliguration

& Fakash

Staried TR0, 35535 M AR, 40407 PR

STLZ014, 3,44 09 P N0, 400 G2 PRk

You can use the mesos console to view container deployment status.

Also you can see in which host a particular image has been deployed.

G dRWHpmene-512 Active Tasks ¥
07,160 12250
i - Stale Bared T Host

{- dalyhece DEBOMG-IED-T1ed-B05A- RUNNNG 2 mindtes 10233183158
A2 O talT ago

RUNRBNG 30 micides 1010415052
agn

WG dd minuies 10 10k, 150 83
ago

Hame State Staried ¥ Stopped Host
ubuntu bieh3d0k. KILLED 28 minules 26 minutes
Wt TR B0 20 HDaC B0 TS B g
bt SCaEAa0-Ir 1 KILLED 36 micules 35 minites
194 -Ee0Ea-d 201 0ac Al Ta

Tearing down the cluster

Once you are done working with the development cluster, you can tear down the cluster
from mesosphere console. Just click the “destroy cluster option” in your project window.

oee details are mvailable o the Google Devalopars Consoie for
Marme External IP Internal P

developimeant- 5124

Hame External IP

us-ceniral 1-a

Once you click ok, your cluster will start shutting down.

Docker cluster management using
Kubernetes

Kubernetes is a cluster management tool developed by Google for managing containerized
applications. You can make a bunch of nodes appear as a one big computer and deploy
container applications to your public cloud and private cloud. It abstracts away the
discrete nodes and optimizes compute resources.

Kubernetes uses a declarative approach to get the desired state for the applications
mentioned by the user. When an application is deployed on a kubernetes cluster, the
kubernetes master node decides in which underlying host the application has to be
deployed. Kubernetes scheduler does the job of application deployment. Moreover,
kubernetes self-healing, auto restarting, replication and rescheduling mechanisms make it
more robust and suitable for container based applications.

Kubernetes components

Kubernetes consists of two main components, a master server and a minion server. Let’s
have a look at the two components and services associated with each component.

Master server

Master server is the controlling unit of kubernetes. It acts as the main management
component for users to deploy applications on the cluster. Master server comprises of
various components for operations like scheduling, communication etc.

Following are the services associated with kubernetes master server.

1. etcd
API server

2.
3. Controller manager
4. Scheduler

Etcd

Etcd is a project developed by CoreOS team. It is a distributed key/value store that can be
made available on multiple nodes in the cluster. Etcd is used by kubernetes to store the
configuration data that can be used by the nodes in the cluster. All the master states are
stored in an etcd instance residing on the kubernetes master. It stores all the configuration
data. The watch functionality of etcd notifies components for all the changes in the cluster.
Etcd can be queried using HTTP API’s for retrieving values for a node.

Kubernetes Public Facing API's

Fig 11-3 : Mesos architecture

API server

API server is an important service run buy the master server. It acts as the central hub for
the user to interact with the master server. All the communication to the API server is
carried out through Restful API’s so that, you can integrate other tools and libraries to talk
to the kubernetes cluster.

A lightweight client tool called kubecfg comes bundled with the server tools and you can
use kubecfg from a remote machine to talk to the master server.

Controller manager

The controller manager is the acting component for container replication. When a user
submits a request for replication, the details of the operation are written to etcd. The
controller manager always watches etcd for configuration changes. When it sees a
replication request in etcd, it starts replicating the containers as per specifications
mentioned in the request.

The request can be made for scaling up and scaling down the containers. During
replication, if the specified container number is less than the running containers, then
kubernetes will destroy the excess running containers to meet the condition specified by
the replication manager.

Scheduler

Scheduler is responsible for assigning the workloads to specific hosts in the cluster. It
reads the operating requirements for a container and analyzes the cluster for placing the
container on to an acceptable host. The scheduler keeps track on the cluster resources, it
knows the resources available in a specific node in the cluster and keeps track of the
resources used by individual containers.

Minion server

The worker nodes in the kubernetes cluster are called minions. Each minion server should
have few services running for networking, communication with the master and for
deploying the workloads assigned to it. Let’s have a look at each service associated with
the minion server.

Docker

Each minion server should run an instance of Docker daemon in it. Docker daemon will
be configured with a dedicated subnet on the host.

Kubelet service

Minions connect to kubernetes master server using kubelet. It is responsible for relaying
messages to and from the kubernetes master server and it interacts with etcd to store and
retrieve configurations. Kublet communicates with the maser server to get the required
commands and deployment tasks.

All deployment tasks will be received by minions in the form of manifests. The manifest
will contain the rules and desired stated for a container deployment. Once the manifest is
received, kubelet will maintain the state of container as specified in the manifest file.

Kubernetes proxy

All the services running in a host should be available for services running in other hosts.
In order to deal with the subnets and communication across the hosts, kubernetes runs a
proxy server on all the minions. The main responsibility of the proxy server is to isolate
the networking environment and make the containers accessible to other services. The

proxy server directs the traffic to the respective container in the same host or a different
host in the cluster.

Work Units

There are various types of work units associated with container deployment on kubernetes
cluster. Let’s have a look at each type of work units.

Pods

A pod is a group of related containers which are deployed on the same host. One or more
containers in a pod are treated as a single application. For example, a fleet of web server
can be grouped in to a pod. Pods share the same environments and treated as a unit.
Applications grouped in to pods can share volumes, IP space and can be scaled as a single
unit.

Services

Services offer discover-ability to applications running in the kubernetes cluster. Service is
more of a named load balancer and acts as an interface to a group of containers. You can
create service unit which is aware of all the backed services. It acts as a single access point
for applications. For example, all the web server containers can access the application
containers using the single access point. By this mechanism, you can scale up and down
the application containers and the access point remains the same.

Replication controllers

All the pods which have to be horizontally scaled are defined by the replication controller.
Pods are defined in a template. This template has all the definition for the replication
process. Let’s say, a pod has a replication entry for four containers and it is deployed on a
host. If one container fails out of four, the replication controller will create another
container to meet the specification. If the failed container comes up again, the replication
controller will kill the newly created container.

Labels

Labels are the identification factor for the pods. Labels are basically tags for pods and it is
stored as a key value in etcd. Label selectors are used for services (named load balancers)
and replications. To find a group of backend servers, you can use the pods label.

Till now we have learnt about the concepts involved in kubernetes.

In the next section we will learn how to launch a kubernetes cluster.

Installation

In this section we will learn how to launch a kubernetes cluster on google compute engine.
You need to have a google compute engine account to try on the steps given below.

Configuring workstation

You can configure the workstation in your laptop .Workstation should have the following

Configured google cloud sdk to launch instances.
Access to all compute engine resource API’s

Go > 1.2 installed

Kubernetes launch script.

e

Configuring google cloud sdk on workstation

Connect the instance using an SSH client like putty using the key generated during the
first instance launch and follow the steps given below.

1. Install Google Cloud SDK on the workstation instance using the following command.

curl https://sdk.cloud.google.com | bash

bibin.w@workstation:~% curl https://sdk.cloud.google.com | bash
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
le@ 425 8 425 L) 8 2472 B ~=i==fle= mmiemies ami-eia- 3171
Downloading Google Cloud SDK install script: https://dl.google.com/dl/cloudsdk/r

elease/install_google_ cloud_sdk.bash
pEfppigpdpodprdgedanpigpiddidgpnopbdoddpdgpiepbaprdgdgpigpidpiddnggped [03, 200
Running install script from: /tmp/tmp.ijP86LevcD/install_google cloud_sdk.bash
curl -# -f https://dl.google.com/dl/cloudsdk/release/google-cloud-sdk.tar.gz
e e e e e e e R Lo B

2. Authenticate to google cloud services using the following command.

gcloud auth login

bibin.w@workstation:~% gcloud auth login
Go to the following link in your browser:

https://accounts.google.com/o/oauth2/auth?redirect_uri=ur Aietfi3Awgk3Aoau
thi¥3A2.0%3Acobi&prompt=select_accountfresponse_type=codelfclient_id=32555948559.ap
ps.googleusercontent.comiscope=httpsk3A% 2Fwini . poogleapis. comb2Fauth%2Fappengi
ne.admint+httpsX3A%2F%2Fwin . googleapis. com¥2Fauth¥2Fbigquery+https: Fi2Fenviw . gO
ogleapis.com¥2Fauth¥2Fcompute+httpsE3AN2FX2Fwinw . googleapis. com¥2Fauth devstora
ge.full control+https®3AX2FX2Fwwe . googleapis.comb2Fauth¥2Fuserinfo.email+httpsk3
2F%2Fwevi . googleapis. com¥2Fauth%2Fndev. cloudman+https¥3AX2FE2Fuww . googleapis. co
tZFcloud-platformthttpsik3 2 Fwav . googleapis. com¥2Fauth®%2Fsqlservice.a
IANZFE2Fwaww . googleapis. comd2Fauth¥2Fprediction+httpss3A%2FA2 Fvwe . goog
leapis.com¥2Fauth¥2FprojecthostingBaccess_type=offline

3. Check the SDK authentication by list the instances using cli.

gcutil listinstances

bibin.wgworkstation:~% gecutil listinstances

4. Install latest go using gvm using the following commands. You need go version 1.3
to work with kubernetes cli.

sudo apt-get install curl git mercurial make binutils bison gcc build-essential
bash < <(curl -s -S -L https://raw.githubusercontent.com/moovweb/gvm/master/binscripts/gvm-installer)

gvm install go1.3

bibin.w@workstation:~$% gvm install gol.3
Downloading Go source...
Installing gol.3...

* Compiling...

bibin.w@workstation:~$ gvm use gol.3 [--default]
Now using version gol.3

bibin.w@workstation:~% go version

go version gol.3 linux/amd64

Note: before launching the kubernetes cluster, launch an instance in google compute from
your workstation or the web interface and generate a private key using “gcutil ssh
<servername>” command. Because the launch script needs the ssh key in your
workstation to create instances in compute engine.

Launching kubernetes cluster from the workstation

Kunbernetes cluster can be launched using the launch script file from the kubernetes
source. The default script launches a kubernetes master and four minions of small
instances using the private key present inside the workstation. These configurations can be
changed in the launch configuration file.

Follow the steps given below to launch the kubernetes cluster.

1. Clone the kubernetes source files from github using the following url

git clone https://github.com/GoogleCloudPlatform/kubernetes.git

bibin.w@workstation:~/.ssh$% cd ~

<clone https://github.com/GoogleCloudPlatform/kubernetes.git
Cloning into "kubernetes’...

remote: Reusing existing pack: 7831, done.

remote: Counting objects: 79, done

remote: Compressing objects: 18e% /75), done.

remote: Total 7110 (delta 36), reused 5 (delta @)

Receiving objects: 1 (711@/7118), 6.48 MiB | 965 KiB/s, done.
Resolving deltas: l1leex (4825/4825), done.

2. The configurations for cluster instances are present inside /kubernetes/cluster/config-
default.sh file.

https://github.com/GoogleCloudPlatform/kubernetes.git

- Copyright 2814 Geoogle Inc. All rights reserved.

- Licensed under the Apache License, Version 2.8 (the "License");
vou may not use this file except in compliance with the License. -
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.8

- Unless required by applicable law or agreed to in writing,
software - distributed under the License is distributed on an "AS
IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. - See the License for the specific language
governing permissions and - limitations under the License.

- TODO(jbeda): Provide a way to override project
FONE=us-centrall-b

MASTER_SIZE=gl-small

MINION SIZE=fl-micro

NUM_MINIONS=4 - gcloud/gcutil will expand this to the latest
supported image.

IMAGE=backports-debian-7-wheezy

3. Execute the following command to launch the kubernetes cluster.

hack/dev-build-and-up.sh

The above command will launch a kubernetes cluster with one master and four minions.
dev-build-and-up.sh script configures the kubernetes cluster with Docker and kubernetes

agents.

bibin.w@workstation:~/kubernetes$ hack/dev-build-and-up.sh
Building release tree ~/kubernetes ~kubernetes
~/kubernetes
Packaging release
Building launch script
Uploading to Google Storage
Release pushed (devel/bibin.w/r2e|4e723-@93855).
| status | dinsert-time | operation-type |

Kubernetes cluster created. Warning: Permanently added '23.25].|4
kubelet is running.

Kubernetes cluster is running.

Access the master at: https://admin:Wvm7eKlIALTjgXC 187.178.2208.76
Security note: The server above uses a self signed certificate. This is
subject to "Man in the middle" type attacks.
bibin.wiworkstation:~/kubernetes$

In the compute engine console you can see the launched instances.

Go ."':i"'

Deploying a multi-tier application on kubernetes cluster with Docker

In this example, a multi-tier guestbook application (frontend, redis slave and master) will
be deployed using preconfigured Docker containers.

The pod description files (JSON files) for deploying this application are present inside
kubernetes source file under /kubernetes/examples/guestbook directory.

Note: all the commands executed in this example are executed in the kubernetes root
folder.

Before deploying the pods, you have to set up the go workspace by executing the
following command.

hack/build-go.sh

bibin.w@workstation:~/kubernetes$
bibin.w@workstation:~/kubernetes$ hack/build-go.sh
Building proxy
Building integration

+ Building apiserver

+ Building controller-manager
+ Building kubelet

+ Building kubecfg

Pod configuration file
The pod configuration file can be formatted as a Json template. The configuration file
supports the following fields.
{
“id”: string,
“kind”: “Pod”,
“apiVersion”: “vlbetal”,
“desiredState”: {
“manifest”: {
manifest object
}
3

“labels”: { string: string }}

Where,

Id: indicates the name of the pod

Kind: It is always Pod.

apiVersion: At the time of writing it is vlbetal.
desiredState: It is an object with a child manifest object.

Manifest: manifest contains the fields mentioned in the following table.

Field Name Type || Description
Version string|| The version of the manifest. Must bevibetat.

containers[].name string|| User defined name for the container

containers[].image string|| The image to run the container

containers[].command]]

containers[] “ List || The list of containers to launch.

list Command to run when a container is launched

containers[].volumeMounts[][| List || Data volumes that has be exposed

containers[].ports[]

List || List of container ports that has to be exposed

containers[].env]]

List || Sets the environment variables for the container

containers[].env[].value string|| Value for the environment variable

containers[].env[].name “ string|| Name of environment variable

containers[].ports[].hostPort

Int " Host to container mapping port number "

Getting started
Kubernetes scheduler will decide in which host the pod has to be deployed.
Follow the steps given below to deploy containers on the kubernetes cluster.

1. The following JSON file will create a redis master pod on the kubernetes cluster. The
attributes used in the JSON file are self-explanatory. It uses Dockerfile/redis Docker
preconfigure image from Docker public repository to deploy the redis master on
kubernetes cluster.

“id”: “redis-master-2”,
“desiredState”: {
“manifest”: {
“version”: “vlbetal”,
“id”: “redis-master-2”,
“containers”: [{
“name”: “master”,
“image”: “Dockerfile/redis”,
“ports”: [{
“containerPort”: 6379,
“hostPort”: 6379
H
H
}
5
“labels”: {

“name”: “redis-master”

2. Execute the following command to deploy the master pod in cluster.

cluster/kubecfg.sh -c examples/guestbook/redis-master.JSON create pods

bibin.wiworkstation:~/kubernetesd clus redis-master.json create

1

for
8 request.go for
request.go: 24 for

for
for

redis-master-2 dockerfile/redis namé=zredis-master

3. You can list the pods and see in which host the pod has been deployed by running the
following command using kubecfg CLI.

cluster/kubecfg.sh list /pods

|:-.1.|‘J':.l1.n'.\E'.lu'l'Jl'k'E"‘.ET.J.l‘.‘l"l:-_."F.IJ!JE'I'"r'I'_‘tEbE- cluster/kubecfg.sh lizt /pods

Name Image(s) Host

dockerfile/redis kubernetes -minion-1.c.booming-coast-625.internal/ name=red

As you can see, the master pod has been deployed in the minion-1.

4. Once the master pod is up, you have to create a service (named loadbalancer) for
master, so that the slave nodes will route the traffic to the master.

The service description for the master looks like the following JSON file:
{

“id”: “redismaster”,

“port”: 10000,

“selector”: {

“name”: “redis-master”

5. Execute the following command to create a service for the master.

cluster/kubecfg.sh -c examples/guestbook/redis-master-service.JSON create services

bibin.w@workstation: -. /kubernetes$ cluster/kubecfg.sh -c examples/guestbook/
redis-master-service.json create services

18723 1@:39:34.998114 16262 request.go:249] Waiting for completion of /
operations/2

redismaster name=redis-master leaeq

6. Create 2 redis slaves using the following pod description.

“id”: “redisSlaveController”,
“desiredState”: {
“replicas™: 2,
“replicaSelector”: { “name”: “redis-slave”},
“podTemplate”: {
“desiredState”: {
“manifest”: {
“version”: “vlbetal”,
“id”: “redisSlaveController”,
“containers”: [{
“image”: “brendanburns/redis-slave”,
“ports”: [{ “containerPort”: 6379, “hostPort”: 6380}]
H
}
5
“labels”: { “name”: “redis-slave”}
M,

». o«

“labels”: { “name”: “redis-slave”} }

7. Execute the following command to deploy 2 slave pods on the cluster.
cluster/kubecfg.sh -c examples/qguestbook/redis-slave-controller.JSON create replicationControllers

The above command used brendanburns/redis-slave Docker image to deploy the slave
pods.

bibin.w@workstation:-. /kubernetes$ cluster/kubecfg.sh -c examples/guestbook/
create replicationControllers
& reguest.go:249] Waiting for completion of /

operations/3
18723 18:47:18.755887 16326 request.go:249] Waiting for completion of /

operations/3

18723 19:47:38.92194 6326 reguest.go:249] Waiting for completion of /
operations/3

Name Image(s)

redisSlaveController brendanburns/redis-slave n

8. The redis slaves need a service (named load balancer) so that it can talk to frontend
pods. This can be created using the following service description.

“id”: “redisslave”,
“port”: 10001,
“labels”: {

“name”: “redis-slave”
1
“selector”: {

“name”: “redis-slave”

9. Execute the following command to create the slave service.

cluster/kubecfg.sh -c examples/guestbook/redis-slave-service.JSON create services

bibin.w@workstation:-. /kubernetes$ cluster/kubecfg.sh -c examples/guestbook/
redis-slave-service.json create services

18723 18 13.413178 16379 request.go:249) Waiting for completion of /
operations

redisslave name=redisslave name=redisslave

10. Frontend redis description file creates 3 frontend replicas. The pod description for
redis frontend looks like the following.

“id”: “frontendController”,
“desiredState”: {
“replicas”: 3,
“replicaSelector”: { “name”: “frontend”},
“podTemplate”: {

“desiredState”: {

“manifest”: {
“version”: “vlbetal”,

“id”: “frontendController”,

“containers”: [{

“image”: “brendanburns/php-redis”

“ports”: [{ “containerPort”: 80, “hostPort”: 8000}]

H
}
b

“labels”: { “name”: “frontend”}

H,

“labels”: { “name”: “frontend” }

11. Frontend pod uses brendanburns/php-redis Docker image to deploy redis frontend
replicas. Execute the following command to deploy the frontend pods using the
frontend pod description file.

cluster/kubecfg.sh -c examples/qguestbook/frontend-controller.JSON create replicationControllers

bibin.wiworkstation:-. /kubernetes$ cluster/kubecfg.sh -c examples/guestbook/

frontend-controller. jso
18723 10:57:14. 16429
operations/7

18723 19:57:34.728
operations/7
18723 1e:5
operations

16429

7 16429

16429

operations/

18723 1@:58:35.238191
operations,

16723 1©:58:55.487921
operations/7

18723 1e:
operations/7

16429
16429
5.577644

16429

Image(s)

request.go:249]
request.go:249]
request.
request.go: 2:
request.go::

request.go:

request.go:.

Waiting
Waiting
Waiting
Waiting
Waiting
Waiting

Waiting

n create replicationControllers

for

frontendController brendanburns/php-redis name=frontend

12. If you list the pods in kubernetes cluster you can see
pods have been deployed

cluster/kubecfg.sh list /pods

completion of /

completion of /
completion
completion
completion
completion

completion

Replicas

in which minion the frontend

bibin.wgworkstation:—/kubernetes$ cluster/kubecfg.sh list /pods
Image(s)

redis-master-2 ockerfile/redis kubernetes-minion-1.c.booming-
coast-625,.internal/

e77a43al-1256-11ed4-h7e2-42810aT087f2 brendanburns/redis-slave kubernetes-
minion-1.c.booming-coast-625.1internal/

roller=redisSlaveController

94a9b121-1258-11e4-b7e2-42010af087f2 brendanburns/php-redis kubernetes-minion-1.

c.booming-coast-625.internal/

ller=frontendController abdesff5-1256-11ed4-b7e2-42818afee7f2 brendanburns/redis-
slave kubernetes-minion-3.c.booming-coast-625.internal/
roller=redisslaveController &64f9d6b5-1258-11ed-b7e2-42810atee7f2 brendanburns/
php-redis kubernetes-minion-3.c.booming-coast-625.1internal/
ller=frontendController 1d721ba5-1258-11e4-b7e2-42818afee7f2 brendanburns/php-
redis kubernetes-minion-4.c.booming-coast-625.internal/

ller=frontendController

The above image shows that front end pods have been deployed in minions 1, 3 and 4.

You can view the deployed guestbook application in the browser by grabbing any one of
the public IP’s of the minion in which the frontend has been deployed. You will be able to
access the frontend from all the three minions in which the front end has been deployed.

The following image shows the final deployed redis three tiered application.

€« C A | [123.251.146.220:8000

Guestbook

[5w |

ni
this is an example for kubernetes appilication deployment
Deployed by . BIBIN WILSON

Department . DEVOPS

testing minion 3

Deleting the cluster

By deleting the cluster, you will delete all the computing engine configurations associated
with the cluster. All the networks, instances, and route will be deleted from the project.

The cluster can be brought down using the following command.

cluster/kube-down.sh

down . 5h

config)

mast | KubeErnetes-m
cubernetes -master-ht ps.

-:_||'_|-i_-r'.-_:-|_j_|_|r' I_:,'[_:l_- |
s

+
| operation-1486172829466-4fedc The2c990-b49284d2 -e92e3cf2 | DOME | 2814-87-23T06:49:30.299-67: 04

delete

Docker orchestration using CoreOS and fleet

CoreOS website defines coreOS as “Linux for Massive Server Deployments. CoreOS
enables warehouse-scale computing on top of a minimal, modern operating system”.

CoreOS is a Linux distribution based system designed to run services as containers and
aimed at running high availability clusters. The overall design of coreOS aims at
clustering and containerization.

CoreOS has the following features

1. CoreOS has an update system like in chromeOS which downloads the latest patches
and updates automatically and configures itself every time you reboot your machine.
So there is never a point of time where your system is in an unstable state.

2. It has a distributed key value store etcd which helps in coordinating a group of
servers to share configurations and service discovery.

3. Isolates services using Docker containers. It does not have a package manager instead
you have to use Docker containers for running your applications.

4. Fleet cluster management tool to manage the cluster and services

5. Easy cluster configuration using the cloud-config file given by user , which coreOS
reads during boot

CoreOS Architecture

In this section we will learn about the components in coreOS architecture.

Etcd

Etcd is a distributed configuration store like consul and zookeeper. Etcd runs on all the
hosts in the cluster. When a cluster is launched, one of the etcd instances becomes the
master and shares the logs with other hosts and if the master goes down, another working
etcd instance will become the master. All the applications running in coreOS cluster can
write to etcd. This enables applications to discover services it needs in a distributed

environment. The information about the services is distributed globally by etcd, so
applications can connect to etcd interface and query for the service it needs. Etcd is also
used by cluster management tool like kubernetes for service discovery and cluster
coordination.

Systemd

Systemd is the system management daemon. It is not just used for managing services but
it can be used to run scheduled jobs. Following are the features of system

1. It boots up the system really fast

2. Its logging system called journal had good features like JSON export and indexing.

Fleet

Fleet works on top of systemd and it schedules jobs for the cluster. Let’s say you want to
run three instances of web containers on the cluster, fleet will launch those instances in the
cluster without much configuration.

You can say fleet as a cluster management tool for CoreOS. You can also define
conditions like no host should have the same instance of web containers and instead it
should be distributed to different host machines.

Another important feature of fleet is that when a machine running a service fails, fleet will
automatically reschedule the service to another machine in the cluster.

Units

A unit is a systemd file and referenced unit files. Once these unit files are pushed to the
cluster, it will be immutable. For any modifications in the unit file that has been pushed
can only be made by deleting and resubmitting the unit file to the cluster.

Fleetd

A fleetd daemon will run on every fleet cluster. Every daemon has an engine and agent
role associated with it. Engine is responsible for scheduling units in the cluster. Least-
loaded scheduling algorithm is used by the engine to decide on which host the unit has to
be deployed. Agent is responsible for executing the units in the host. It reports the state of
the unit to etcd.

Unit files

Before launching container in our cluster, we should know about unit files. Unit file are
the basic unit of fleet. It is used to describe the service and commands to manage the
service. A typical unit file is shown below.

[Unit]
Description=Hello World
After=Docker.service

Requires=Docker.service

[Service]

EnvironmentFile=/etc/environment

ExecStartPre=/usr/bin/etcdctl set /test/%m ${ COREOS_PUBLIC_IPV4}

ExecStart=/usr/bin/Docker run —name test —rm busybox /bin/sh -c “while true; do echo Hello World; sleep 1; done”
ExecStop=/usr/bin/etcdctl rm /test/%m

ExecStop=/usr/bin/Docker kill test

Let’s breakdown the unit file and see what each section really mean.
Unit

[Unit]

Description=Hello World

After=Docker.service

Requires=Docker.service

The unit header holds the common information about the unit and its dependencies.
Description can be any user defined description
“After=Docker.service” Conveys systemd to begin the unit after Docker.service

e

“Requires=Docker.service” convers system that Docker.service is required for normal
operation.

Service

[Service]

EnvironmentFile=/etc/environment

ExecStartPre=/usr/bin/etcdctl set /test/%m ${ COREOS_PUBLIC_IPV4}

ExecStart=/usr/bin/Docker run —name test —rm busybox /bin/sh -c “while true; do echo Hello World; sleep 1; done”
ExecStop=/usr/bin/etcdctl rm /test/%m

ExecStop=/usr/bin/Docker kill test

The service header is associated with start and stop commands. The parameters used in
service header are explained below.

“EnvironmentFile=/etc/environment” — used for exposing environment variables for unit
file.

“ExecStartPre” — this runs before the service for creating a key in etcd.

“ExecStart” —this starts the real service. In our case we will start a busybox container
running echo in infinite loop.

“ExecStop” — this stops the action mention in it.

Till now we have learned about the features and components of coreOS.

In next section, you will learn how to deploy Docker containers on a coreOS cluster.

Launching a coreOS cluster

In this demo we will be using Google compute engine to launch our CoreOS cluster.
Following are the requirements for this set up.

1. Google compute engine account

2. Google cloud SDK configured and authenticated to compute engine account on your
local workstation.

Note: in this demo, a windows workstation is used. Follow the steps given below to launch
a three node coreOS cluster.

1. In order to start fleet and etcd services on startup, we will use a yaml config file
called cloud-config.yaml. In this file we will mention a discovery token for machines
to find each other in the cluster using etcd. You can create your own discovery token
by visiting the following link.

https://discovery.etcd.io/new

2. Open gcloud SDK directory and create a cloud-config.yaml file and copy the
following contents on to the file.

Note: create a new token form the link given on step 1 and replace that token with the
token mentioned in the following snippet.

#cloud-config
coreos:
etcd:
discovery: https://discovery.etcd.io/<token>
multi-region and multi-cloud deployments need to use $public_ipv4
addr: $private_ipv4:4001
peer-addr: $private_ipv4:7001
units:
- name: etcd.service
command: start
- name: fleet.service

command: start

3. Open gcloud SDK shell and run the gcloud CLI command given below to launch the
cluster with nodes corel, core2 and core3. Make sure that the cloud-config file is
present in the same directory as you are running the command.

Note: nl-standard-1 instance type is being used in the following snippet. You can modify
it to a small or micro instance type based on your requirement.

https://discovery.etcd.io/new

gcloud compute instances create corel core2 core3 —image \

https://www.googleapis.com/compute/v1/projects/coreos-cloud/global/images/coreos-stable-410-2-0-v20141002 \

—zone us-centrall-a —machine-type n1-standard-1 \

—metadata-from-file user-data=cloud-config.yaml

C:'Program Files\G
ompute/vl/projects

SDK geloud compute instances create corel core2 core3 -
global/images/coreos-stable-418-2-8-v28141882 --zone

ndard-1 --metadata-from-file user-data=cloud-config.yaml

Created [https://www.googleapis.com/comput ‘projects/cloud-reposito
Created [https W.googleapis.com/comput fprojects/cloud-reposito
Created [https://www.googleapis.com/compute/vl/projects/cloud-reposito

NAME ZONE MACHINE TYPE INTERNAL_IP EXTERMAL_IP STATI
corel us-centrall-a nl-standard-1 18.248.24.9 Ehmvarre el RUNNING
core? us-centrall-a nl-standard-1 18.248.9.1280 oo nc oo 27 RUNNING
core3 us-centrall-a nl-standard-1 18.248.56.247 RUNNING
C:\Program Files'Google'\Cloud SDK

On successful execution of above commands, you will have a working three node cluster
with fleet and etcd configured.

4. We can control the cluster with fleet using fleetctl command. SSH in to any one host
in our cluster, let’s say corel and execute the following command to list the available

fleetctl commands.

fleetctl

bibin.wg@corel ~ $ fleetctl

MAME :

fleetctl - fleetctl is a command-line interface to fleet, the cluster-wide Co

fleetctl [global options] <command: [« i options] [arguments...]

VERSION:
B.6.2
lcoMMANDS :
cat
destroy
help
journal
list-machines
list-unit-files
list-units
load
ssh
start
status
stop
submit
unload
verify
version

Output the contents of a submitted unit

Destroy one or more units the cluster

Show a list of commands or help one ¢ d

Print the journal of a unit the cluster to stdout
Enumerate the current hosts the cluster

List the units that exist the cluster.

List the current state of units the cluster

Schedule one or more units the cluster, first submitting t
Open interactive shell on a machine the cluster

Instruct systemd to start one or more units the cluster, f
Output the status of one or more units the cluster
Instruct systemd to stop one or more units the clustaer.
Upload one or more units to the cluster without starting them
Unschedule one or more units the cluster.

DEPRECATED - Verify unit file signatures using SSH iden
Print the version and exit

5. To make sure everything worked as expected run the following fleet command on
corel to list the servers in the cluster.

fleetctl list-machines

bibin.w@corel -~ $ fleetctl list-machines

MACHINE IP

Baa2a6fl... 18.

77ee9831... 18.

d8898912. .. 18.
bibin.wj@corel ~ $

METADATA
248.9.128 -
240.24.9 -
248.56.247 =

Launching containers on cluster using fleet

In this section we will look in to how to launch a container on the cluster using fleet unit
file. Fleet decides on which host the container should be deployed. Follow the steps below
to launch a container in our cluster using a unit file.

1. Create a unit file named hello-world.service on corel and copy the snippet we
have under unit files section.

2. Once created submit the unit file to fleet using fleetctl to schedule it on the cluster
using the following command.

Note: make sure you run the fleetctl command from where you have the service file or you
should give the full path of the file if you are running the command from some other
location.

fleetctl submit hello-world.service

.wi@corel -/demo % 1s
-world. service

.wigcorel -~/demo § fleetctl submit hello-world.service
.w@corel -/demo %

Now we have a unit file submitted to fleet for scheduling it to some host in the cluster.

Run the following fleetctl command to start the service.

fleetctl start hello-world.service

bibin.wécorel -/demo $ fleetctl start helleo-world.service
Job hello-world.service launched on Paa2a&fl.../18.248.9.128

bibin.w@corel -/demo §

We have now successfully started a service on the cluster. You can list the running
services using the following fleetctl command. It shows all the information about the
service and in which host it has been launched

fleetctl list-units

Our hello-world service echo’s out hello world in an infinite loop. To check the output of
the hello world service, run the following fleetctl command on corel.

fleetctl journal hello-world.service

Scaling fleet units

You can scale your fleet units for high availability service. To do that, create multiple unit
files of the same service with X-fleet header. In x-fleet header we will define the
relationships between the units.

Let’s say we want three Nginx services running in different hosts. For this we will mention
a parameter X-Conflicts=nginx*.service in the X-Fleet header, which will make sure that
three instances never run on the same host in the cluster.

Let’s look at a demo for running nginx containers in high availability mode.

Nginx unit file

We will be running nginx server using Dockerfile/nginx public image from the unit file.
In this unit file we will add X-fleet header which was not there in the hello-world service
we deployed earlier. X-Fleet ensures that all nginx services will be distributed across the
cluster.

Follow the steps given below to launch a highly available Nginx service.

1. Create three unit files named nginx.1.service, nginx.2.service and nginx.3.service and
copy the contents of the following snippet on to all three unit files.

[Unit]

Description=Hello World

After=Docker.service

Requires=Docker.service

[Service]

EnvironmentFile=/etc/environment

ExecStartPre=/usr/bin/etcdctl set /test/%m ${ COREOS_PUBLIC_IPV4}
ExecStart=/usr/bin/Docker run -P —name nginx —rm Dockerfile/nginx
ExecStop=/usr/bin/etcdctl rm /test/%m

ExecStop=/usr/bin/Docker kill test

[X-Fleet]

X-Conflicts=nginx*.service

2. We should have three unit files as shown below

corel demo
nginx.l.service nginx.Z.service mnginx.3.service

corel demo

3. In order to start all the three services will use wildcard to start service with unit name
starting with name nginx. Run the following command to start all the three services.

fleetctl start nginx*

bibin.w@corel -/demo $ fleetctl start nginx |
Job nginx.l.service launched on 77ee9831.../10.240.24.9
Job nginx.2.service launched on @aa2aéfl.../10.240.9.120

Job nginx.3.service launched on d8898912.../10.240.56.247
bibin.w@corel ~/demo %

4. You can view the logs of a service using fleetctl journal command as shown below.

fleetctl journal nginx.1.service

corel demo |
: UTC, end at Fri 2014-10-18 11:31:58 UTC. --
18 88:12:23 corel. itory.internal
18 8&: 5 corel.c.cloud-repos .internal L Stopping Hello wWorld...
18 e8:56: corel loud-repository.internal : Error response from c
ie :56: o .c.cloud-repositor ternal 287]: 2014/18/10 B8:56:86

18 88:55: cloud-repesitor ternal sy : nginx.l.service: ¢
1e 187 corel.c.cloud-repository.interna

18 ©8:56:87 corel.c.cloud-repository.internal

18 88:56:33 corel.c.cloud-repository.internal

18 88:56:33 corel.c.cloud-repository.internal ctl[]]: 1456.148.45,212

ie H--F orel.c.cloud-repository.internal systemd[1]: 5tarted Hello World.

5. To destroy all the nginx services use the destroy command as shown below.

fleetctl destroy nginx*

corel demo
Destroyed nginx.l.service

Destroyed nginx.2.service
Destroyed nginx.3.service
corel demo

11
Networking, security and API’s

In this chapter, we will learn about Docker advanced networking, security and API’s.

Docker networking

When you create a container, Docker will create virtual interface called Docker0. Docker
will look for an IP address from the pool which has not been assigned to any other
containers and assigns it to Docker0. The CIDR block assigned by Docker for containers
is 172.17.43.1/16.

Docker0 interface:

Docker0O is considered as a virtual Ethernet bridge which is capable of sending and
receiving packets to any network interface attached to it. This is how a Docker container is
able to interact with the host machine and other containers.

When a container is created, a pair of “peers” interfaces are created by Docker and it is
like two sides of a pipe. If you send a packet at one side, it will reach the other side of the
interface. So when the “peer” interfaces are created, one will act as the ethO of the
container and other will be exposed to the namespace having a unique name that starts
with veth. This veth interface connects to Docker0 Bridge, thus forming a virtual subnet
for containers to talk to each other.

Networking options:

There are many options available for configuring networking in Docker. Most of the
commands will work only when the Docker server starts and will not work when Docker
service is in running state.

Following are the options used to modify the networking settings in Docker.
1. -b BRIDGE: This option is used for specifying the Docker bridge
explicitly.
2. —bip=CIDR: This option changes the default CIDR assigned to Docker
3. —fixed-cidr=CIDR: used for restricting IP addresses from DockerQ
subnet.

4. -H SOCKET: using this option you can specify from which channel the
Docker daemon should receive commands. For example, a host IP address
or through tcp socket.

5. —ip=IP_ADDRESS: Used for setting the Docker bind address.
DNS configuration

There are four options to modify the DNS configuration of a container.

1. -h HOSTNAME: This option is used for setting the hostname. The
hostname will be written to /etc/hostname file of the container. It is not possible
to view the hostname outside the container.

2. —Ilink=CONTAINER_NAME:ALIAS: This option allows us to create
another name for the container which can be used for linking. This name will
point to the IP address of the container.

3. —dns=IP_ADDRESS : This option will create a server entry inside
/etc.resolv.conf file.

4. —dns-search=DOMAIN : This option is used for setting the DNS search
domain

Container communication with wider world

There is one factor which determines whether the container should talk to the outside
world. It is the ip_forward parameter. This parameter should be set to 1 for forwarding
packets between containers. By default, Docker sets the —ip-forward parameter to true
and Docker will set ip_forward parameter to 1.

Execute the following command on the Docker host to check the value of the ip_forward
parameter.

cat /proc/sys/net/ipv4/ip_forward

root@node? :~# cat /proc/sys/net/ipv4/ip_forward

a |

rooti@nodel : ~#

From the output you can see that the ip_forward value is set to 1.

Communication between containers

All the containers are attached to DockerO bridge by default and this allows all the

containers to send and receive packets among them.

This is achieved by Docker by adding a ACCEPT policy to iptables FORWARD chain. If
you set the value — icc=false when the Docker daemon starts, Docker will add DROP
policy to the FORWARD chain.

If you set —icc=false Docker containers won’t be able to talk to each other. You can
overcome this issue by using —link=contianer-name:alias for linking containers together.

Execute the following command in your Docker host to check the iptables FORWARD
policy.
sudo iptables -L —n

root@node2:~# sudo iptables -L -n

Chain INPUT (policy ACC
target prot opt source destination

Chain FORWARD (policy A]

target prot opt sour destination

ACCEPT tep -- 0.0.8.8/ 172.17.8.3 tep dpt:g@
ACCEPT tep -- @.8.8.9/ 172.17.8.198 tcp dpt:8@

ACCEPT all -- e.e.8.8/f ctstate RELATED,ESTABLISHED
ACCEPT all -- : e.e.g.0/e

ACCEPT all -- .8.8.0, 8.8.8.8/

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
root@node? : -

The output above shows the default ACCEPT policy.

Building your own bridge

By default, Docker uses Docker(bridge. You can use a custom bridge for Docker using
-b BRIDGE parameter.

Let’s see how to assign a custom bridge to Docker.

If your Docker host is in running mode, execute the following commands to stop the
Docker server and to bring down the Docker0 bridge.

Note: if bridge utils is not installed on your Docker host, install it using the “sudo apt apt-
get install bridge-utils” command before executing the following commands.
sudo service docker.io stop
sudo ip link set dev docker0 down
sudo brctl delbr docker0
root@node?:~# sudo service docker.io stop

docker.io stop/waiting
root@node2:~# sudo ip link set dev docker@ down

root@node2:~# sudo brctl delbr dockere
rootiinode? : ~#

Execute the following commands for creating a new bridge and CIDR block associations.
sudo brctl addbr bridge0
sudo ip addr add 192.168.5.1/24 dev bridge0

sudo ip link set dev bridge0 up

rootj@node?2 : sudo brctl addbr bridge®
rootj@node2 : sudo ip addr add 192.168.5.1/24 dev bridgeé

root@node2: sudo ip link set dev bridge® up
root@nodel :

Execute the following command to check if our new bridge is configured and running.

ip addr show bridge0

root@node?:~# ip addr show bridge®
49@: bridge®: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 158@ gdisc nogueue state UMKNOWM group
default
link/ether &e
inet 192.168
valid 1ft
ineté feB@::6ci: p
valid _1ft forever preferred_lft forever
root@node : ~

From the output, you can see that our new bridge is configured and running.

Now let’s add the new bridge configuration to Docker defaults using the following
command and start the Docker service.

echo ‘DOCKER_OPTS="-b=bridge0”’ >> /etc/default/docker
sudo service docker.io start

root@inode2:~# echo 'DOCKER_OPTS="-b=bridgee"' »» /etc/default/docker
root@gnode2:~# sudo service docker.io start

docker.io start/running, process 2182
root@nodel : ~#

Docker security

In this section we will discuss the major areas of security that Docker focuses on and why
they are important. Since Docker uses Linux Containers, we will discuss security in the
context of linux containers also.

In previous chapters of this book, we learned that a Docker run command is executed to
launch and start a container. However, here’s what really happens:

1. A Docker run command gets initiated.

2. Docker uses Ixc-start to execute the run command.

3. Lxc-start creates a set of namespaces and control groups for the container.

Let’s recap what namespace means. Namespace is the first level of isolation whereas no
two containers can see or modify the processes running inside. Each container is assigned
a separate network stack, and, hence, one container does not get access to the sockets of
another container.

To allow IP traffic between the containers, you must specify public IP ports for the
container.

Control Groups, the key component, has the following functionalities:

1. Is responsible for resource accounting and limiting.
2. Provides metrics pertaining to the CPU, memory, I/O and network.

3. Tries to avoid certain DoS attacks.
4. Enables features for multi-tenant platforms.

Docker Daemon’s Attack Surface

Docker daemon runs with root privileges, which implies there are some aspects that need
extra care. Some of the points for security are listed here:

1. Control of Docker daemon should only be given to authorized users as
Docker allows directory sharing with a guest container without limiting access
rights.

2. The REST API endpoint now supports UNIX sockets, thereby preventing
cross-site-scripting attacks.

3. REST API can be exposed over HTTP using appropriate trusted networks
and VPNs.

4. Run Docker exclusively on a server (when done), isolating all other services.

5. Processes, when run as non-privileged users in the containers, maintain a
good level of security.

6. Apparmor, SELinux, GRSEC solutions can be used for an extra layer of
security.

7. There’s a capability to inherit security features from other containerization
systems.

An important aspect in Docker to be considered is the fact that everything is not a name
spaced in Linux. If you want to reach the kernel of the host running a VM, you have to
break through the VM, then Hypervisor and then kernel. But in containers you are directly
talking to the kernel.

Containers as a regular service

Containers should be treated just like running regular services. If you run an apache web
server in your system, you will be following some security practices to securely run the
service. If you are running the same service in a container, you need to follow the same
security measure to secure your application. It is not secure just because of the fact that it
is running inside a container. While running applications in containers consider the
following things:

1. Drop privileges as soon as possible.

2. All the services should run as a non-root user whenever possible.

3. Treat root inside a container same as the root running outside the container.

4. Do not run random containers in your system from the public registry. It
might break your system. Always used official and trusted images. It is
recommended to start building your own images for container deployments.

What makes Docker secure
Following are the features which make Docker secure:

1. Read only mount points: files such as /sys, / proc/sys, proc/irq etc. are mounted in

containers with read only mode

2. CAPABILITIES: certain Linux kernel CAPABILITIES in containers are removed to
make sure it does not modify anything in the system kernel. For example,
CAP_NET ADMIN CAPABILITY is remove make sure that no modifications to the
network setting or [Ptables can be done from inside a container.

Security issues of Docker

All the Docker containers are launched with root privileges, and allow the containers to
share the filesystem with the host. Following are the things to be considered to make
Docker more secure.

1. Mapping root user of the container to a non-root user of the host, to mitigate the issue
of container to host privileges.

2. Allowing Docker daemon to run without root privileges.

The recent improvements in Linux namespaces allows Linux containers to be launched
without root privileges, but it has not been implemented yet in Docker (as of writing of
this book)

Docker Remote API: (version v1.15)

Docker remote API replaces the remote command line interface (rcli). To demonstrate
how API works, we will use curl utility to work with GET and POST methods. Let’s look
at each API operations.

Listing containers
REST syntax: GET /containers/JSON

To list all the containers in a Docker host, run the following command.

curl http://localhost:5000/containers/JSON?all=1

root@noded:-# curl http://localhost:S5808/containers/json-all=1
2e14/18/3@ B7:31:49 GET ntainers/json‘all=1

[d59b14f8] +job containers

[d59b14F8] -job i

[{"Command":"

seconds"}
1414654287,

"y e
Jhy =2

Creating containers

To create a container, run the following command.
curl -X POST -H “Content-Type: application/JSON” -d \

{“Hostname”:””,“Domainname”: »”,“User”:”” ,“Memory”:0,\

http://localhost:5000/containers/json?all=1

“MemorySwap”:0,“CpuShares”: 512,“Cpuset”: “0,1”,“AttachStdin”:false,\
“AttachStdout”:true, “AttachStderr”:true, “PortSpecs ” :null,“Tty”:false,\
“OpenStdin”:false,“StdinOnce”:false, “Env”:null,“Cmd”: [“date™],\
“Image”: “Dockerfile/redis”, “Volumes”:{ “/tmp”: { }},“WorkingDir”:””)\
“NetworkDisabled”: false,“ExposedPorts”:{ “22/tcp”: { }},“RestartPolicy”: \

{ “Name”: “always” }}’ http://localhost:5000/containers/create

Inspecting a container
Syntax: GET /containers/<container-id>/JSON

You can inspect a container using the following API request.

curl http://localhost:5000/containers/d643811d3707/JSON

ecDriver®:"
null, "DnsSearch
nde“-““ "PnrtB;ndln tnull, "Pr
'PubllahPllPur 3 umetFrum
container 5

", "Image
"MountLab T s Nama” 1 "y
"IPAddr IPPreF1aLen"
Label™:

Listing container processes

Syntax: GET /containers/<container-id>/top

You can list the processes running inside a container using the following API request.

curl http://localhost:5000/containers/cc3c1f577ael/top

curl http:
128 GET fcontainers

= R BT

http://localhost:5000/containers/create
http://localhost:5000/containers/d643811d3707/json
http://localhost:5000/containers/cc3c1f577ae1/top

Getting container logs

Syntax: GET /containers/<container-id>/logs

Curl http://localhost:5000/containers/cc3c1f577ael/logs ?stderr=1&stdout=1×tamps=1&follow=1

containers/cc3clf577ael/logs stderr=1%stdol

fcontainers/
11'5'-"':'!1-1]

-jﬁh logsic JLlFRﬂ"anl] = DK

curl http localhost: 5888/ /containers/cc3clfs577ael/ 1o
stdout=1
timestamps=1

Exporting a container

Syntax: POST /containers/<container-id>/export

You can export the contents of a container using the following API request.

curl -o rediscontainer-export.tar.gz http://localhost:5000/containers/cache/export

.Bz http://localhost:5888/containers;
Time Y ime Current
Upload Total Sper Speed
B mmimmime mmie=t HEED ez2el4/1¢

B ==p=c== BrgET12
8 == == B:88:13

Starting a container

Syntax: POST /containers/<container-id>/start

You can start a container using the following API request.

curl -v -X POST http://localhost:5000/containers/cache/start

rootignode3: -# curl -v -X POST http://localhost:5888/containers/cache/start
Hostname was NOT found DNS cache
Trying 127.
Connected to
2814/18/38 89:
POST /containe
Us Agent: curl/7
Host: localhost:Seea
Accept:

[errer] common.go:45 Error parsing media type: r: mime: no media t
+job start(cache)
+job allocate interface
[-job allucdte_lnterfaceL:L_chE.
[dEhHabcR] -job start(cache) = 0K (@)
HTTP/1.1 284 No Content
Date: Thu, 38 Oct 2814 89:41:34 GMT
Content-Length: @
Content-Type: text/plain; charset=utf-8

Connection
rootignode3: -#

Stopping a container

http://localhost:5000/containers/cc3c1f577ae1/logs?stderr=1&stdout=1×tamps=1&follow=1
http://localhost:5000/containers/cache/export
http://localhost:5000/containers/cache/start

Syntax: POST /containers/<container-id>/stop

You can stop a container using the following API request.

curl -v -X POST http://localhost:5000/containers/cache/stop

curl -v =X PO http://localhost: 50888/ containers/cache/stop
Hostname was NOT found DMNS cache
Trying 127.8.8.1...
nart 5888 (#8)

ache/stop

| +job stop(cache)
89:44:81 Container cc

[d6693bc5] -job stop{cache)
HTTP/1.1 284 No Content
Date: Thu, 38 Oct 2814 83:44:81 GMT
Content-Length: @
Content-Type: text/plain; charset=utf-g

Connection

Restarting a container

Syntax: POST /containers/<container-id>/restart

You can restart a container using the following API request.
curl -v -X POST http://localhost:5000/containers/cache/restart

root@nodes: # curl -v -X POST http://localhost:5888/containaer
Hos NOT found DNS cache
i - 1o
calhost (127.8.8.1) port See8 (#e)
/3B a9 4 POST fcontainers/cache/restart
container ache/restart HTTP/1.1

+job restart(cache)

+job allocate interfac

-jab

-job restart{cache)
/1.1 284 No Content

Date: Thu, 3@ Oct 2814 @9:46:14 GMT
Content-Length: 8
Content-Type: text/plain; charset=utf-8

Killing a container

Syntax: POST /containers/<container-id>/kill

You can kill a container using the following API request.

curl -v -X POST http://localhost:5000/containers/cache/kill

http://localhost:5000/containers/cache/stop
http://localhost:5000/containers/cache/restart
http://localhost:5000/containers/cache/kill

root@noded:-# curl -v -X POST http://localhost:5888/containers/cache/kill
Hostname was NOT found DNS cache

27.8.8.1) port See8 (#8)
fcontainers/cache/kill
s/cache/kill HTTP/1.1
User-Agent: cur
Host: localhost:t
Accept:

15778148927 223270585758
1f577aeld 3e785685750e2

c
{cc3c

Date: Thu, 38 Oct 2814 @9:48:42 GMT
Content-Length: &
tent-Type: text/plain; charset=utf-§

Connection
root@node3: -# docker

Creating an Image:

Syntax : POST /images/create

You can create an image using the following API request.
curl -v -X POST http://localhost:5000/images/create ?fromImage=base&tag=latest

root@node3:-# curl -v -X POST http://localhost:5888/images/create’ fromImage

g3 -# Hostname was NOT found DNS cache
ying 127.8.8.1..
Connected to localhost (127.9.8.1)
POST /flimages/create fromImage=sbase
User-Agent: curl/7.35.8
ee

HTTP/1.1 288 OK

Content-Type: applica ‘

Date: Thu, 38 Oct 2814 18:25:14 GMT
Transfer-Encoding: chunked

'status”:"Pulling fs layer","progressDe

Inspecting an image

Syntax: GET /images/<image-name>/JSON

You can inspect an image using the following API request.

http://localhost:5000/images/Dockerfile/redis/JSON

http://localhost:5000/images/create?fromImage=base&tag=latest
http://localhost:5000/images/dockerfile/redis/json

curl http:/f

e "amde4"

dinOnce
"}, "Created

Getting the history of an Image

Syntax: GET /images/<image-name>/history

You can get the history of an image using the following API request.

curl http://localhost:5000/images/Dockerfile/redis/history

15888/ image

=

v Oh 3

J R B B E
o On

o 0
Wi A e
3 B0 A 3 A BB

#* & R A

1141219610

£y
-

‘1141219 3

1412
“:1412196082,
':1141219687
':13711574

Listing all images

Syntax: GET /images/<image-name>/history

You can list all the images in your Docker host using the following API request.

curl http://localhost:5000/images/JSON

http://localhost:5000/images/dockerfile/redis/history
http://localhost:5000/images/json

Deleting an image

Syntax: DELETE /images/<image-name>

You can delete an image using the following API request.

curl -v -X DELETE http://localhost:5000/images/base

root@node3:-# curl -v -X DELETE http://localhost:5080/images/base

Hostname was NOT found DNS cache

Trying 127.8.6.1...

Connected to localhost (127.8.8.1) port 5888 (#@)

DELETE /limages/base HTTP/1.1

User-Agent: curl/7.35.8

Host: localhost:5888

Accept: /
HTTP/1.1 28@ OK
Content-Type: application/json
Date: Thu, 3@ Oct 2814 18:55:13 GMT
Content-Length: 29

[{"Untagged": "bas
Connection
]root@nodes: -#

http://localhost:5000/images/base

Searching an Image

Syntax : GET /images/search

You can search an image using the following API request.

curl http://localhost:5000/images/search?term=mongodb

term=mongodb
"name":"aade

1
1

1
1
Tx
i
1
1
4

http://localhost:5000/images/search?term=mongodb

12

Cloud container services

In this chapter we will look into the following container service based on cloud,

1. Google container engine
2. Amazon container service (ECS)

Google container engine

Google has been operating on containers for years. The container engine project was
inspired by Google’s experience in operating container based applications in distributed
environments. It is in alpha stage at the time of writing of this book and it is not
recommended for production use yet.

At the backend container engine uses kubernetes cluster for scheduling and managing
containers. We have learnt to work with kubernetes in the previous chapter. Container
engine is a wrapper on top of kubernetes cluster by which you can create kubernetes
cluster from a web interface and google cloud CLI’s.

In this section we will learn how to create a cluster and deploy a sample wordpress
application on to a container engine.

Note: to work with container engine, you should have a compute engine account and
workstation authenticated. If you do not have a workstation configured, you can refer the
kubernetes section in the previous chapters.

Creating a cluster

In this section we will learn how to create a container engine cluster from the web
interface and using gcloud cli.

Using web interface

Creating a cluster from web interface is very easy and can be done with few clicks. Follow
the steps given below to set up a cluster using the web interface.

1. Login to compute engine and under compute tab you can find the “container engine”
option. Click that and you will see a “create cluster” option. Click on “create cluster”
option.

ool

Containers
cloud4epository Comaines Engine i in sttive develapment TLE0
CIvarvie
FemibsRicns

Billing & setlings

APte & auth

AP

Credentials

Conzent screen

Menitaring

Source Code

Compate
App Engiee
Campute Enging

Ciick to Deploy

2. In the next window, enter the necessary credentials for cluster configuration. For
example, cluster size and machine type. Click the create option once you have
entered all the necessary information.

zo0gle
004l

Projecis

CLUSTER SIZE

Mot includking the Containeér Engine masier which will be depioyed in its

cloud-repository oW VM
Overdiew 2 =
Permissions
Billing & settings MACHINE TYPE
APls & auth g1-small (1 vCPU, 1.7 GB rmemaory) i
APls
Credenhals TOTAL CORES
Caonsent scraan
Push 2 VCPUS
Monitoring TOTAL MEMORY
Source Code
3.4 0G8
Compute
App Engine
Compute Engine ‘l"'l:'llrll T;-'illl::l:erlbslled for the 3 VM3 (1 master and 2) nodes) in your cluster,
Container Engine
Gl Create Cancel
Storage

3. A cluster will be created with the given credentials and it takes few minutes for the
cluster to set up.

cloudepositony Clusters &
= Py

ueriew

1 dnkadil - 3 PR TH 408
APis & auth
AP
Crederinis
Conmast coreen

Using gcloud cli

Another way for creating a container engine cluster is through gcloud cli. Follow the steps
given below to create a cluster from command line.

1. When you install google cloud sdk, the preview components will not be included in
that. So you need to update preview components using the following command.

sudo gclolud components update preview

bibin.w@aworkstation:-$ sudo gcloud components update preview

The following components will be installed:

Developer Preview gcloud Commands 2814.11.86 1 MB
Mative extensions preview commands (Linux, x86 64) 2.4 MB

Do you want to (Y/n)? ¥y

Creating update staging area...

Installing: Developer Preview gcloud Commands ... Done

Installing: Native extensions preview commands (Linux, x86 64) ...
Creating backup and activating new installation..

Done

bibin.w@workstation:-§

2. We already have a cluster created from the web interface. Let’s try getting the
information about that cluster from the cli using the following command.

Note: replace “Docker” with your created cluster name and “asia-eastl-a” with the zone
name where you created the cluster. This information can be obtained from the web
interface.

sudo gclolud preview container clusters describe docker —zone asia-east1-a

gcloud preview container clusters describe docker --zone asia-eastl-a

creationTimestamp:
description: docke
endpoint: 184.155.2
masteriuth:
password: hZa8QIDeFIjuceYr
user: admin
name ;
n-:nie(.‘-.:-n‘

cts/debian-cloud/global/images /bac

Ipv4L1ﬂ#
:orunning
: asia-eastl-a
in.wiworkstation:-§

3. Set two environment variables $CLUSTER_NAME and $ZONE for creating a
cluster from cli using the following command.

gcloud preview container clusters create §CLUSTER_NAME —num-nodes 1 \
—machine-type g1-small —zone $ZONE

bibin.wa@workstation:-% gcloud preview container clusters create SCLUSTER_NAME --
num-nodes 1 --machine-type gl-small --zone 3$Z0NE

Waiting cluster creation... .

bibin.weworkstation:

Install kubecfg client

The workstation need to have kubecgf client installed on it to deploy kubernetes pods on
the cluster.

Download the kubecfg linux client using the following command.

wget http://storage.googleapis.com/k8s/linux/kubecfq

root@workstation: -# wpﬂt http://f 3 .,ﬂ gleapis.com/ 1i kubecfg
i kubecfg
o .31.132, 2484:6880:4008:c
(< .an n"fnrasu ﬂrD";Paﬂls com) “4 125.31.132 :88... connected
HTTP request : . 288 0K
Length: 94) [hlﬂdF_ u:tet-;tream]
Saving to: ki ,

-17 @8:57:59 (19.4 MB/s) - "kubecfg'

Change the permissions of the kubecfg folder and move it to /usr/local/bin folder using the
following commands.

chmod -x kubecfg

mv kubecfg /usr/local/bin

rootigworkstation: -# chmod +x kubecfg
root@workstation:-# mv kubecfg fusr/local/bin/

Iroot@workstation: #

Now we have every configuration set to deploy containers from the cli. Execute the

http://storage.googleapis.com/k8s/linux/kubecfg

following gcloud command to deploy a wordpress container from tutum/wordpress image.

gcloud preview container pods —cluster-name $SCLUSTER_NAME create wordpress \

—image=tutum/wordpress —port=80 —zone $ZONE

root@gworkstation:-# gcloud preview container pods --cluster-name FCLUSTER_MNAME create wordp
Image(s)

wordpress tutum/wordpress unassigned name=wordpress Waiting

To get the information about the container we just created, execute the following gcloud
describe command.

sudo gclolud preview container pods —cluster-name \ $CLUSTER_NAME describe wordpress

root@workstation:-# gcloud preview container pods --cluster-name $CLUSTER _MAME describe wor:
ID | Hast

kBs-docker-node-1.c.cloud-repository.internal
name=wordpress Running
IR

From the output, you can view the container IP, status and other information. The status
shows it is running.

Let’s try accessing the wordpress application from the browser.

Note: Open port 80 in the network settings of the instance from the cluster to view the
application in the browser.

L 1074, 159, T, 187 - " E

English (Linited Statas) =
Agrorbeycan dil
BrL.rrapos

Bosanski

Catals

Cyrrreseg

Dansk

Diesutschy

English (Canadal
E LR

1 (ALSTTalia)

e P
Espanol de Chila

Now we have a running WordPress application on container engine.

Amazon container service (ECS)

Amazon web services has a container service called ec2 container service. At the time of
writing this book, it is in preview mode. In this section we will discuss the ec2 container
service and its features.

EC2 container service is a highly scalable container management service. ECS supports
Docker and it can manage containers to any scale. This service makes it easy for
deploying containers in a cluster to run distributed applications. ECS has the following
features.

1. Manages your containers (metadata, instance type etc.,)

2. Schedules containers on to your cluster.
3. Scaling containers from few to hundreds
4. High performance, the cluster runs inside VPC.

5. Manages cluster state. Using simple API calls , you can start and terminate
containers

6. You can get the state of the container by querying the cluster from a
centralized service.

7. Along with containers, you can leverage the other AWS features such as
security groups, ECS volumes, policies etc. for enhanced security.

8. You can distribute the containers in a cluster among availability zones
9. Eliminates the need for third party container cluster management tools.

10. ECS is a free service you will have to pay only for the backend ec2
resources you use.

Docker compatibility

Docker platform is supported by ec2 container service. You can run and manage your
Docker container in ECS cluster. All the ec2 machines in the ECS cluster come bundled
with Docker daemon. So there is no additional need to configure the server to setup the
Docker daemon. You can seamlessly deploy containers from the development
environment to the ECS cluster.

Managed Clusters

A challenging part in Docker container deployments is the cluster management and
monitoring. ECS make your life so easy by handling all the complex cluster
configurations. You can focus on container deployments and its tasks, leaving all the
complex cluster configurations to ECS.

Programmatic Control

You can integrate ECS with any application using its rich API features. Cluster
management and container operations can be managed programmatically using ECS API.

Scheduler

ECS has an efficient scheduler which schedules containers on to the cluster. The scheduler
decides in which host the container should be deployed. Another interesting ECS feature
is that you can develop your own scheduler or you can use some other third party
scheduler.

Docker Repository

You can use Docker public registry, your own private registry and third party registries for
image management and container deployments. The registry you want to use with ECS
should be specified in the task file used for container deployments.

Now let’s look at the core components of ECS.

Ec2 container service has four main components,

Tasks
Containers

Clusters

e

Container instances

Tasks

Task is a declarative JSON template for scheduling the containers. A task is a grouping of
related containers. A task could range from one to many containers with links, shared
volumes etc. An example task definition is given below.

“family” : “Docker-website”,
“version” : “1.0”
“contianers” : [

<container definitions>

1}

Container definition
A container definition has the following
1. Container name
2. Images
3. Runtime attributes (ports , env variables ,etc)
An example container definition is given below
{
“name” : “dbserver”,
“image” : “Ubuntu:latest”,

“portmappings” : [{ “contianerport” “ 3306 , “hostport” : 3308

}
Clusters

Clusters provide a pool of resources for your tasks. It groups all the container instances.
Container instance

A container instance is an EC2 instance on which the ECS agent is installed or an AMI
with ECS agent installed. Each container instance will register itself to the cluster during
launch.

Table of Contents

Linux Containers

Namespaces:

Cgroups
Copy on write file system:

Docker

Introduction
Why to use Docker
Docker Architecture:

Docker internal components:
Working of Docker:

Underlying Technology:
Immutable infrastructure with Docker

Installation

Supported platforms:
Installing Docker on windows:
Installing Docker on Ubuntu:
Launching Docker containers:

Creating a daemonized container:
Connecting remote docker host using docker client
Docker server access over https

Working with containers
Docker Images

Container linking
Linking containers together:

Data management in containers

Docker data volumes:

Building and testing containers from scratch

Dockerfile

Dockerfile Best Practices

A static website using Apache

Creating MySQL image and containers

Creating a WordPress container

Running multiple websites on a single host using Docker:
Building and testing containers using Jenkins

Docker Provisioners

Docker vagrant provisioner
Managing Docker using chef

Docker Deployment Tools

Fig
Shipyard
Panamax

Docker Service Discovery and Orchestration

Service discovery with consul
Consul Architecture

Docker cluster management using Mesos
Mesosphere
Docker cluster management using Kubernetes

Kubernetes components
Minion server

Work Units
Installation

Docker orchestration using CoreOS and fleet
CoreOS Architecture

Networking, security and API’s

Docker networking

Docker security
Docker Remote API: (version v1.15)

Cloud container services

Google container engine
Amazon container service (ECS)

	Linux Containers
	Namespaces:
	Cgroups
	Copy on write file system:

	Docker
	Introduction
	Why to use Docker

	Docker Architecture:
	Docker internal components:

	Working of Docker:
	Underlying Technology:
	Immutable infrastructure with Docker

	Installation
	Supported platforms:
	Installing Docker on windows:
	Installing Docker on Ubuntu:
	Launching Docker containers:
	Creating a daemonized container:

	Connecting remote docker host using docker client
	Docker server access over https

	Working with containers
	Docker Images
	Container linking
	Linking containers together:

	Data management in containers
	Docker data volumes:

	Building and testing containers from scratch
	Dockerfile
	Dockerfile Best Practices
	A static website using Apache
	Creating MySQL image and containers
	Creating a WordPress container
	Running multiple websites on a single host using Docker:
	Building and testing containers using Jenkins

	Docker Provisioners
	Docker vagrant provisioner
	Managing Docker using chef

	Docker Deployment Tools
	Fig
	Shipyard
	Panamax

	Docker Service Discovery and Orchestration
	Service discovery with consul
	Consul Architecture
	Docker cluster management using Mesos
	Mesosphere

	Docker cluster management using Kubernetes
	Kubernetes components
	Minion server

	Work Units
	Installation

	Docker orchestration using CoreOS and fleet
	CoreOS Architecture

	Networking, security and API’s
	Docker networking
	Docker security
	Docker Remote API: (version v1.15)

	Cloud container services
	Google container engine
	Amazon container service (ECS)

