Docker
For Sysadmins

Linux Windows VMware

Hand-crafted for Infrastructure Ops

Docker for Sysadmins: Linux Windows
VMware

Getting started with Docker from the perspective
of sysadmins and VM admins

Nigel Poulton
This book is for sale at http://leanpub.com/dockerforsysadmins

This version was published on 2016-09-23

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2016 Nigel Poulton

http://leanpub.com/dockerforsysadmins
http://leanpub.com/
http://leanpub.com/manifesto

Huge thanks to my wife and kids for putting up with a geek in the house who
genuinely thinks he’s a bunch of software running inside of a container on top of
midrange biological hardware. It can’t be easy living with me!

Massive thanks as well to everyone who watches my Pluralsight videos. I love
connecting with you and really appreciate all the feedback I've gotten over the years.
This was one of the major reasons I decided to write this book! I hope it’ll be an
amazing tool to help you drive your careers even further forward.

Contents

0: About thebook

Why should I read this book or care about Docker?

Isn’t Docker just for developers?

How the book is organized . . .
Other stuff about the book . . .

VMwarts
Hello Containers!
Linux containers
Hello Docker!
Windows containers

Windows containers vs Linux containers

Chapter Summary

2:Docker
Docker - The TLDR
Docker,Inc..

The Docker runtime and orchestration engine

The Docker open-source project

() W NN DN R 1 -

O O O &0 00 3 NN

[N
o O

11
11
13
14

CONTENTS

The container ecosystem 14
The Open Container Initiative 15
3:Installing Docker 18
Docker for Windows L 18
DockerforMac 24
Installing Docker on Linux 28
Chapter Summary 31
4: The big picture 32
Enginecheck Lo 32
Images e 33
Containers 35
Attaching to running containers L. 37

Part 2: The technical stuff 39

5:Images 40
Docker images - The TLDR 40
Docker images - Thedeepdive 41
Images - Thecommands 58
Chapter summary 58

6:Containers 60
Docker containers - The TLDR 60
Docker containers - Thedeepdive 61
Containers - The commands 80
Chapter summary 81

7:Swarmmode 82
Swarm mode-The TLDR 82
Swarm mode - Thedeepdive 82
Swarm mode - The commands 105
Chapter summary it 106

8:Whatnext, 107

CONTENTS

Feedback

0: About the book

This is a book about Docker, hand-crafted for system administrators. No prior
knowledge required!

But what about developers and DevOps?

If you’re a developer with no interest in operations then this book is not for you. If
you’re into DevOps then I think you’ll get a lot form the book.

To keep things short... the book is not about showing you how to develop microser-
vice apps with Docker. The book is about how the core Docker plumbing works.
You’ll learn the how and the why - the commands and the deep-dives. I really want
to set you on your way to being as good at Docker as you already are at Linux,
Windows or VMware.

Why should | read this book or care about
Docker?

Docker is coming and there’s no hiding from it. Developers are all over it. In IT Ops,
we need to get ready to support Dockerized apps in our business critical production
environments.

Isn't Docker just for developers?

Hell no!!!

All of those Dockerized apps that developers are creating need a solid Docker
infrastructure to run on. And that’s where IT Ops comes into the picture... IT
Ops will be asked to build and run high performance and highly available Docker
infrastructures to support business applications. If we’re not skilled-up on Docker,
we’re going to struggle.

0: About the book 2

Why this Docker book and not another one?

At the time I decided to write the first edition of this book, so many of the Docker
books already out there were terrible! They were a shocking mix of badly written,
full of technical inaccuracies, or massively out of date. And sometimes they were all
three! It’s honestly not my intention to offend people, but go and read some of the
reviews on Amazon. Some of the Docker books out there are a shameful waste of
trees and paper!

So I decided to write something that was well written, technically accurate, and kept
up to date. I want you to love this book.

If you buy the book and think it’s bad, call me out on Twitter’, give the book bad
reviews, do whatever you feel necessary. And I'll try and fix it. But I'm confident
you won'’t need to do any of that.

Should | buy the book if I've already watched
your video courses?

If you like my video courses® you’ll probably like the book. If you don’t like my video
courses you probably won’t like the book.

How the book is organized

I've divided the book into two sections:

+ The general info stuff
+ The technical stuff

The general info stuff covers things like - Who is Docker, Inc. What is the Docker
project. What is the OCL. Why do we even have containers... Not the coolest part of

"https://twitter.com/nigelpoulton
*https://app.pluralsight.com/library/search?q=nigel+poulton

https://twitter.com/nigelpoulton
https://app.pluralsight.com/library/search?q=nigel+poulton
https://twitter.com/nigelpoulton
https://app.pluralsight.com/library/search?q=nigel+poulton

0: About the book 3

the book, but the kind of stuff that’s important if you want a good rounded knowledge
of Docker and containers. It’s only a short section and you probably should read it.

The technical stuff is what the book is all about! This is where you’ll find everything
you need to start working with Docker. It gets into the detail of images, containers
and the increasingly important topic of orchestration. You’ll get the theory so that
you know how it all fits together, and you’ll get commands and examples to show
you how it all works in practice.

Every chapter in the technical stuff section is divided into three parts:

« The TLDR
+ The deep dive
o The commands

The TLDR will give you two or three paragraphs that you could use to explain the
topic at the coffee machine.

TLDR or TL;DR, is a modern acronym meaning “too long; didn’t read”.
It’s normally used to indicate something that was too long to bother
reading. I'm using it here in the book to indicate a short section that you
can read if you're in a hurry and haven’t got time to read the longer deep
dive that immediately follows it.

The deep dive is where we’ll explain how everything works and go through the
examples.

The Commands lists out all of the commands you’ve learned in an easy to read list
with brief reminders of what each one does.

I think you’ll love that format.

Other stuff about the book

Here are just a few other things I want you to know about the book.

0: About the book 4

Text wrapping

Ive tried really hard to get the commands and outputs to fit on a single line without
wrapping! So instead of getting this...

$ docker service ps uber-service

ID NAME IMAGE NOD\
E DESIRED STATE CURRENT STATE ERROR
Tzi85yp jTtbk jdkevreswknys uber-service.1 nigelpoulton/tu-demo:v2 ip-\
172-31-12-203 Running Running about an hour ago
Ov5a9Txatho@dd4x5fwth87e5 _ uber-service.1 nigelpoulton/tu-demo:v1l ip-\
172-31-12-207 Shutdown Shutdown about an hour ago

31xx0df6 jeB8agmk jgn8w1q9cf uber-service.2 nigelpoulton/tu-demo:v2 ip-\
172-31-12-203 Running Running about an hour ago

... you should get this.

$ docker service ps web-fe

ID NAME IMAGE NODE DESIRED CURRENT

817f...f6z web-fe.1 nigelpoulton/... mgr2 Running Running 5 mins
aldh...mzn web-fe.2 nigelpoulton/... wrkl1 Running Running 5 mins
cc@j...ar®@ web-fe.3 nigelpoulton/... wrk2 Running Running 5 mins

For best results you might want to flip your reading device onto its side.

In doing this I've had to trim some of the output from some commands, but I don’t
think you’re missing anything important. However, despite all of this, if you're
reading on a small enough device, you're still going to get some wrapping :-(

But you didn’t include something | really hoped you
would...

I know the book doesn’t cover everything about Docker. But it’s not supposed to! I've
written the book to get you up to speed as quickly as possible while still spending

0: About the book 5

the time to learn how it all fits together. If the book was 1,000 printed pages it would
not help you get up to speed quickly!

However, I will add sections to the book if I think they’re important and fundamental
enough. Please use the book’s feedback pages and hit me up on Twitter® with ideas
of what you think should be included in the next version of the book.

,@nigelpoulton

Right, that’s enough waffling. Let’s crack on!

*https://twitter.com/nigelpoulton

https://twitter.com/nigelpoulton
https://twitter.com/nigelpoulton

Part 1: The general info stuff

1: Containers from 30,000 feet

Containers are a new thing for a lot of people.

In this chapter we’ll give some background and scratch the surface of topics like; why
do we have containers, what do they do for us, and where can we use them.

The bad old days

Applications run businesses. If applications break, businesses suffer and sometimes
die. These statements get truer every day!

For the most part, applications run on servers. And in the past we could only run a
single application per server. The open-systems world of Windows and Linux just
didn’t have the technologies to safely and securely run multiple applications on the
same server.

So the story usually went something like this... Every time the business needed a new
application, IT would go out and buy a new server. And most of the time nobody
knew the performance requirements of the new application! This meant IT had to
make guesses when choosing the model and size of servers to buy.

As a result, IT did the only reasonable thing - it bought big fast servers with lots
of resiliency. After all, the last thing anyone wanted - including the business -
was under-powered servers. Under-powered servers might be unable to execute
transactions, which might result in lost customers and lost revenue. So IT usually
bought bigger servers than were actually needed. This resulted in huge numbers
of servers operating as low as 5-10% of their potential capacity. A tragic waste of
company capital and resources!

Hello VMware!

Amid all of this, VMware, Inc. gave the world the virtual machine (VM). And almost
overnight the world changed into a much better place! Finally we had a technology

1: Containers from 30,000 feet 8

that would let us run multiple business applications on a single server safely and
securely.

This was a game changer! IT no longer needed to procure a brand new oversized
server every time the business asked for a new application. More often than not they
could run new apps on existing servers that were sitting around with spare capacity.

All of a sudden we could squeeze massive amounts of value out of existing corporate
assets, such as servers, resulting in a lot more bang for the company’s buck.

VMwarts

But... and there’s always a but! As great as VMs are, they’re not perfect!

The fact that every VM requires its own dedicated OS is a major flaw. Every OS
consumes CPU, RAM and storage that could otherwise be used to power more
applications. Every OS needs patching and monitoring. And in some cases every
OS requires a license. All of this is a waste of op-ex and cap-ex.

The VM model has other challenges too. VMs are slow to boot and portability
isn’t great - migrating and moving VM workloads between hypervisors and cloud
platforms is harder than it could be.

Hello Containers!

For a long time, the big web-scale players like Google have been using container
technologies to address these shortcomings of the VM model.

In the container model the container is roughly analogous to the VM. The major
difference through, is that every container does not require a full-blown OS. In fact
all containers on a single system share a single OS. This frees up huge amounts of
system resources such as CPU, RAM, and storage. It also reduces potential licensing
costs and reduces the overhead of OS patching and other maintenance. This results
in savings on the cap-ex and op-ex fronts.

Containers are also fast to start and ultra portable. Moving container workloads from
your laptop, to the cloud, and then to VMs or bare metal in your data center is a
breeze.

1: Containers from 30,000 feet 9

Linux containers

Modern containers started in the Linux world* and are the product of an immense
amount of work from a wide variety of people over a long period of time. Just as
one example, Google Inc. has contributed many container-related technologies to
the Linux kernel. Without these, and other contributions, we wouldn’t have modern
containers today.

Some of the major technologies that enabled the massive growth of containers in
recent years include kernel namespaces, control groups, and of course Docker.
To re-emphasize what was said earlier - the modern container ecosystem is deeply
indebted to the many individuals and organizations that laid the strong foundations
that we now build on!

Despite all of this, containers remained outside of the reach of most organizations. It
wasn’t until Docker came along that containers were effectively democratized and
accessible to the masses.

* There are many operating system virtualization technologies similar to
containers that pre-date Docker and modern containers. Some even date
back to System/360 on the Mainframe. BSD Jails and Solaris Zones are
some other well known examples of Unix-type container technologies.
However, in this section we are restricting our conversation and com-
ments to modern containers that have been made popular by Docker.

Hello Docker!

We'll talk about Docker in a bit more detail in the next chapter. But for now it’s
enough to say that Docker was the magic that made Linux containers usable for
mere mortals. Put another way, Docker, Inc. gave a the world a set of technologies
and tools that made creating and working with containers simple!

Windows containers

Although containers came to the masses via Linux, Microsoft Corp. has worked
extremely hard to bring Docker and container technologies to the Windows platform.

1: Containers from 30,000 feet 10

At the time of writing, Windows containers are available on the Windows Server
2016 platform. In achieving this, Microsoft has worked closely with Docker, Inc.

The core Windows technologies required to implement containers are collectively
referred to as Windows Containers. The user-space tooling to work with Windows
Containers is Docker. This makes the Docker experience on Windows almost exactly
the same as Docker on Linux. This way developers and sysadmins familiar with
the Docker toolset form the Linux platform will feel right at home using Windows
containers.

Windows containers vs Linux containers

It’s vital to understand from the start that Windows containers will only run on
Windows servers, and Linux containers will only run on Linux servers.

This is because all containers running on a system access the kernel of the OS running
on that system. Therefore, containers running natively on a Windows system have
to access the Windows kernel. Linux containers (which run Linux applications inside
of them) obviously cannot use the Windows kernel, and vice versa.

Chapter Summary

We used to live in a world where every time the business wanted a new application
we had to but a brand new server for it. Then VMware came along and enabled
IT departments to drive more value out of new and existing company IT assets.
But as good as VMware and the VM model is, it’s not perfect. Following the
success of VMware and hypervisors came a newer more efficient and lightweight
virtualization technology called containers. But containers were initially hard to
implement and were only found in the data centers of web giants that had Linux
kernel engineers on staff. Then along came Docker Inc. and suddenly container
virtualization technologies were available to the masses.

Speaking of Docker... let’s go find who, what, and why Docker is!

2: Docker

No book or conversation about containers is complete without talking about Docker.
But when somebody says “Docker” they can be referring to any of at least three

things:

1. Docker, Inc. the company
2. Docker the container runtime and orchestration technology
3. Docker the open source project

If you’re going to make it in the container world, you’ll need to know a bit about all
three.

Docker - The TLDR

We're about to get into a bit of detail on each, but before we do that here’s the
TLDR: Docker is software that runs on Linux and Windows. It creates, manages and
orchestrates containers. The software is developed in the open as part of the Docker
open-source project on GitHub. Docker, Inc. is a company based out of San Francisco
and is the overall maintainer of the open-source project.

Ok that’s the quick version. Now we’ll explore each in a bit more detail. We’ll also talk

a bit about the container ecosystem, and we’ll mention the Open Container Initiative
(OCI).

Docker, Inc.

Docker, Inc. is the San Francisco based technology startup founded by French-born
American developer and entrepreneur Solomon Hykes.

2: Docker 12

il

[
(I

O

dc ker

Figure 2.1 Docker, Inc. logo.

Interestingly, Docker, Inc. started its life as a platform as a service (PaaS) provider
called dotCloud. Behind the scenes, the dotCloud platform leveraged Linux contain-
ers. To help them create and manage these containers they built an internal tool that
they nick-named “Docker”. And that’s how Docker was born!

In 2013 the dotCloud PaaS business was struggling and the company was in need of
a new lease of life. To help with this they hired Ben Golub as new CEO, rebranded
the company as “Docker, Inc”, got rid of the dotCloud PaaS$ platform, and started a
new journey with a mission to bring to Docker and containers to the world.

Today Docker, Inc. is widely recognized as an innovative technology company with a
market valuation said to be in the region of $1BN. At the time of writing, it has raised
over $180M via 6 rounds of funding from some of the biggest names in Silicon Valley
venture capital. Almost all of this funding was raised after the company pivoted to
become Docker, Inc.

Since becoming Docker, Inc. they’ve made several small acquisitions, for undisclosed
fees, to help grow their portfolio of products and services.

At the time of writing, Docker, Inc. has somewhere in the region of 200-300 employees
and holds an annual conference called Dockercon. The goal of Dockercon is to bring
together the growing container ecosystem and drive the adoption of Docker and
container technologies.

Throughout this book we’ll use the term “Docker, Inc.” when referring to Docker the
company. All other uses of the term “Docker” will refer to the technology or the
open-source project.

Note: The word “Docker” comes from a British colloquialism meaning

2: Docker 13

dock worker - somebody who loads and unloads ships.

The Docker runtime and orchestration engine

When most technologists talk about Docker, they’re referring to the Docker Engine.

The Docker Engine is the infrastructure plumbing software that runs and orchestrates
containers. If you’re a VMware admin, you can think of it as being similar to ESXi. In
the same way that ESXi is the core hypervisor technology that runs virtual machines,
the Docker Engine is the core container runtime that runs containers.

All other Docker, Inc. and 3rd party products plug into the Docker Engine and build
around it. Figure 2.2 shows the Docker Engine at the center. All of the other products
in the diagram build on top of the Engine and leverage it’s core capabilities.

Docker
Engine

Figure 2.2

The Docker Engine can be downloaded from the Docker website or built from source
from GitHub. It’s available on Linux and Windows, with open-source and commer-
cially supported offerings. At the time of writing there’s a new major release of the
Docker Engine approximately every three months (https://github.com/docker/docker/wiki).

2: Docker 14

The Docker open-source project

The term “Docker” can also refer to the open-source Docker project.

The Docker project is hosted on GitHub and you can see a list of the sub-projects
and tools included in the Docker repository at https://github.com/docker. The core
Docker Engine project is located at https://github.com/docker/docker.

As an open-source project, the source code is publically available and you are free to
download it, contribute to it, tweak it, and use it, as long as you adhere to the terms
of the Apache License 2.0*

If you take the time to look at the project’s commit history you’ll see the who'’s-
who of infrastructure technology including; RedHat, Microsoft, IBM, Cisco, and HPE.
You’ll also see the names of individuals not associated with large corporations.

Most of the project and its tools are written in Go - the relatively new system-level
programming language from Google also known as Golang. If you code in Go you’re
in a great position to contribute to the project!

A nice side effect of Docker being an open-source project is the fact that so much
of it is developed and designed in the open. This does away with a lot of the old
ways where code was proprietary and locked behind closed doors. It also means that
release cycles are published and worked on in the open. No more uncertain release
cycles that are kept a secret and then pre-announced months-in-advance to ridiculous
pomp and ceremony. The Docker project doesn’t work like that. Most things are done
in the open for all to see and all to contribute to.

The Docker project is huge and gaining momentum. It has thousands of GitHub pull
requests, tens of thousands of Dockerized projects, not to mention the billions of
image pulls form Docker Hub. The project literally is taking the industry by storm!

Be under no illusions, Docker is being used!

The container ecosystem

One of the philosophies at Docker, Inc. is often referred to as Batteries included but
removable.

“https://github.com/docker/docker/blob/master/LICENSE

https://github.com/docker/docker/blob/master/LICENSE
https://github.com/docker/docker/blob/master/LICENSE

2: Docker 15

This is a way of saying you can swap out a lot of the native Docker stuff and
replace it with stuff from 3rd party ecosystem partners. A good example of this
is the networking stack. The core Docker product ships with built-in networking.
But the networking stack is pluggable meaning you can rip out the native Docker
networking stack and replace it with something else form a 3rd party.

In the early days it was common for 3rd party plugins to be better than the native
offerings that shipped with Docker. However, this presented some business model
challenges for Docker, Inc. After all, Docker, Inc. has to turn a profit at some point to
be a viable long-term business. As a result, the batteries that are included are getting
better and better. This is something that is causing ripples across the wider ecosystem,
which it seems may have expected Docker, Inc. to produce mediocre products and
leave the door wide open for them to swoop in and plunder the spoils.

If that was once true, it’s not any more. To cut a long story short, the native Docker
batteries are still removable, there’s just less and less reason to want to remove them.

Despite this, the container ecosystem is flourishing with a healthy balance of co-
operation and competition. You’ll often hear people use terms like co-opetition
(a balance of co-operation and competition) and frenemy (a mix of a friend and
an enemy) when talking about the container ecosystem. This is great! Healthy
competition is the mother of innovation!

The Open Container Initiative

No discussion of Docker and the container ecosystem is complete without mention-
ing the Open Container Initiative - OCI’.

The OCI is a relatively new governance council responsible for standardizing the
most fundamental components of container infrastructure such as image format and
container runtime (don’t worry if these terms are new to you, we’ll cover them in

the book).

It’s also true that no discussion of the OCI is complete without mentioning a bit of
history. And as with all accounts of history, the version you get depends on who’s
doing the talking. So this is the version of history according to Nigel :-D

Shttps://Www.opencontainers.org

https://www.opencontainers.org/
https://www.opencontainers.org/

2: Docker 16

From day one, use of Docker has grown like crazy. More and more people used it in
more and more ways for more and more things. So it was inevitable that somebody
was going to get frustrated. This is normal and healthy.

The TLDR of this history according to Nigel is that a company called CoreOS® didn’t
like the way Docker did certain things. So they did something about it! They created a
new open standard called appc’ that defined things like image format and container
runtime. They also created an implementation of the spec called rkt (pronounced
“rocket”).

This put the container ecosystem in an awkward position with two competing
standards. For want of better terms, the Docker stuff was the de facto standard and
runtime, whereas the stuff from CoreOS was more like the de jure standard.

Getting back to the story though, this all threatened to fracture the ecosystem and
present users and customers with a dilemma. While competition is usually a good
thing, competing standards is not. They cause confusion and slowdown adoption.
Not good for anybody.

With this in mind, everybody did their best to act like adults and came together to
form the OCI - a lightweight agile council to govern container standards.

At the time of writing, the OCI has published two specifications (standards) -

+ An image spec®
+ A runtime spec’

An analogy that’s often used when referring to these two standards is rail tracks.
These two standards are like agreeing on standard sizes and properties of rail
tracks. Leaving everyone else free to build better trains, better carriages, better
signaling systems, better stations... all safe in the knowledge that they’ll work on
the standardized tracks. Nobody wants two competing standards for rail track sizes!

It’s fair to say that the two OCI specifications have had a major impact on the
architecture and design of the core Docker Engine. As of Docker 1.11, the Docker
Engine architecture conforms to the OCI runtime spec.

®https://coreos.com
"https://github.com/appc/spec/
®https://github.com/opencontainers/image-spec
*https://github.com/opencontainers/runtime-spec

https://coreos.com/
https://github.com/appc/spec/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://coreos.com/
https://github.com/appc/spec/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec

2: Docker 17

So far, the OCI has achieved good things and gone some way to bringing the
ecosystem together. However, standards always slow innovation! Especially with
new technologies that are developing at close to warp speed. This has resulted in
some raging-arguments passionate discussions in the container community. In the
opinion of your author, this is a good thing! The container industry is changing
the world and it’s normal for the people at the vanguard to be passionate and
opinionated. Expect more passionate discussions about standards and innovation!

The OCI is organized under the auspices of the Linux Foundation and both Docker,
Inc. and CoreOS, Inc. are major contributors.

3: Installing Docker

There are loads of ways and places to install Docker. There’s Windows, there’s Mac,
and there’s obviously Linux. But there’s also in the cloud, on premises, on your laptop.
Not to mention manual installs, scripted installs, wizard-based installs. There literally
are loads of ways and places to install Docker!

But don’t let that scare you! They’re all pretty easy.

In this chapter we’ll cover some of the most important installs:

« Desktop installs
— Docker for Windows
— Docker for Mac

« Server installs
— Linux

We’ll add a Windows Server 2016 installation method after Windows Server 2016
has gone G.A. At the time of writing, the installation method for Windows Server
2016 TP5 is in a state of flux and not stable enough to be included here.

Docker for Windows

The first thing to note is that Docker for Windows is a packaged product from Docker,
Inc. It spins up a single-engine Docker environment on a 64-bit Windows 10 desktop
or laptop.

This means we’re not about to show you how to manually hack an installation of
Docker onto a Windows desktop or laptop. No! In this section we’ll look at how to
install the product from Docker, Inc. called “Docker for Windows”. And it’s insanely
simple!

3: Installing Docker 19

But a word of caution! Docker for Windows is only intended for test and dev work.
You don’t want to run your production estate on it! Remember, it’s only going to
install a single engine. That’s another way of saying it’s only going to install one
copy of Docker. You might also find that some of the latest Docker features aren’t
always available straight away in Docker for Windows. This is because Docker, Inc.
are taking a stability first, features second approach with the product. All of this adds
up to a quick and easy setup, but one that is not for production workloads.

Enough waffle. Let’s see how to install Docker for Windows.

First up, pre-requisites. Docker for Windows requires:

« Windows 10 Pro | Enterprise | Education
Must be 64-bit
The Hyper-V and Containers features must be enabled in Windows

« Hardware virtualization support must be enabled in your system’s BIOS

Enabling hardware virtualization support in your BIOS varies between machine
types. Most modern machines have the settings enabled by default, so we won'’t go
into detail here. But the process is usually something like this: reboot your machine
> hold down the special BIOS key (this is usually something like Del,F12, or Insert)
> locate the hardware virtualization support settings in your BIOS (Intel VT-x or
AMD-V) > enable the settings > Save & Exit.

WARNING: Take great care when modifying settings in your BIOS.
Making the wrong change can prevent your machine from booting.

The first thing to do in Windows 10 is make sure the Hyper-V and Containers
features are installed and enabled.

1. Right-click the Windows Start button and choose Programs and Features.
2. Click Turn Windows features on or off.
3. Check the Hyper-V and Containers checkboxes and click OK.

3: Installing Docker 20

This will install and enable the Hyper-V and Containers features. Your system may
require a restart.

[Tir:r——;— Features — [
4 @l > Control Panel > Programs > Programs and Features v U Search Programs and Features R
14l Windows Features — m} X
Control Panel Home .
Unin
o Turn Windows features on or off (]
View installed updates To un
G Turn Windows features on or To turn a feature on, select its checkbox. To turn a feature off, clear its

off checkbox. A filled box means that only part of the feature is turned on.

Organise = 0
] .NET Framework 3.5 (includes .NET 2.0 and 3.0) ~
Name [+ [®] © .NET Framework 4.6 Advanced Services Installed On~ ~
B Adob [Active Directory Lightweight Directory Services 04/08/2016
B Adob 04/08/2016
M Adob| | [Data Center Bridging 22/08/2016
ERAdob | #] Device Lockdown 30/08/2016
B Adob| |+ Hyper-V 22/08/2016
8 Adob) Internet Explorer 11 22/08/2016
B Adob| | [Internet Information Services 22/08/2016
R Adob) [Internet Information Services Hostable Web Core 22/08/2016
I@Applé = [Legacy Components 18/04/2016
(®)Appid £ Media Features 18/05/2016
@Atom = M?crosoft M?ssage Queue (MSMQ) Server 08/03/2016
EAuda M Microsoft Print to PDF M 18/02/2016
&= Awes| OK Cancel 05/08/2016
BEliBlue 31/05/2016
< >

“~._. Currently installed programs Total size: 14.1 GB
[q,l 66 programs installed

Figure 3.1

The Containers feature is only available if you are running the summer 2016
Windows 10 Anniversary Update (build 14393).

Once you've installed the Hyper-V and Containers features and restarted you
machine, it’s time to install Docker for Windows.

1. Head over to www.docker.com and click Get Docker from the top of the
homepage.
Click the Learn More button under the WINDOWS section.

Click Download Docker for Windows to download the InstallDocker.msi
package to your default downloads directory.

4. Locate and launch the InstallDocker.msi package that you just downloaded.

Step through the installation wizard and provide local administrator credentials to

3: Installing Docker 21

complete the installation. Docker will automatically start as a system service and a
Moby Dock whale icon will appear in the Windows notifications tray.

Congratulations! You have installed Docker for Windows.

Now that Docker for Windows is installed you can open a command prompt or
PowerShell window and run some Docker commands. Try the following commands:

C:\Users\nigelpoulton> docker version

Client:

Version: 1.12.1

API version: 1.24

Go version: gol1.6.3

Git commit: 23cf638

Built: Thu Aug 18 17:32:24 2016
0S/Arch: windows/amd64
Experimental: true

Server:

Version: 1.12.1

API version: 1.24

Go version: gol1.6.3

Git commit: 23cf638

Built: Thu Aug 18 17:32:24 2016
0S/Arch: linux/amd64
Experimental: true

Notice that the 0S/Arch: for the Server component is showing as linux/amdé4 in
the output above. This is because the default installation currently installs the Docker
daemon inside of a lightweight Linux Hyper-V VM. In this default scenario you will
only be able to run Linux containers on your Docker for Windows install.

If you want to run native Windows containers you can right click the Docker whale
icon in the Windows notifications tray and select the option to Switch to Windows
containers. ... You may get the following alert if you have not enabled the Windows
Containers feature.

3: Installing Docker

Containers feature is not enabled.

22

Do you want to enable it for Docker to be able to work properly?

Your computer will restart automatically.

Figure 3.2

Yes No

If you already have the Windows Containers feature enabled it will only take a few
seconds to make the switch. Once the switch has been made the output to the docker
version command will look like this.

C:\Users\nigelpoulton> docker version

Client:
Version:

API version:
Go version:
Git commit:
Built:
0S/Arch:

Experimental:

Server:
Version:

API version:
Go version:
Git commit:
Built:
0S/Arch:

1.12.1

1.24

gol.6.3

23cf638

Thu Aug 18 17:32:24 2016
windows/amd64

true

1.13.0-dev

1.25

gol.7.1

c2decbe

Tue Sep 13 15:12:54 2016
windows/amd64

Notice that the Server version is now also showing as windows/amd64. This means
the daemon is now running natively on the Windows kernel and will therefore only
run Windows containers.

3: Installing Docker 23

Also note that the system above is running the experimental version of Docker
(Experimental: true). Docker for Windows has stable and an experimental channel.
You can switch between the two, but you should check the Docker website for
restrictions and implications before doing so.

As shown below, other regular Docker commands work as normal.

C:\Users\nigelpoulton>docker info
Containers: 0

Running: @

Paused: 0@

Stopped: 0

Images: 0

Images: ©

Server Version: 1.13.0-dev
Storage Driver: windowsfilter
Windows:
Logging Driver: json-file
Plugins:

Volume: local

Network: nat null overlay

<Snip>
Registry: https://index.docker.io/v1/
Experimental: true

Insecure Registries:

127.0.0.0/8

Docker for Windows includes the Docker Engine (client and daemon), Docker
Compose, and Docker Machine. Use the following commands to verify that each
was successfully installed and which versions of each you have:

C:\Users\nigelpoulton> docker --version
Docker version 1.12.1, build 23cf638, experimental

3: Installing Docker 24

C:\Users\nigelpoulton> docker-compose --version
docker -compose version 1.8.0, build d988ab55

C:\Users\nigelpoulton> docker-machine --version
docker-machine version 0.8.1, build 41b3b25

Docker for Mac

The first thing to note about Docker for Mac is that it’s a packaged product from
Docker, Inc. So relax, you don’t need to be a kernel engineer, and we’re not about
to walk through a complex hack for getting Docker onto your Mac. We’ll walk you
through the process of installing Docker for Mac on your Mac desktop or laptop, and
it’s ridiculously easy.

So what is Docker for Mac?

Docker for Mac is packaged product that allows you to easily get a small single-
engine Docker environment up and running locally on your Mac. If you’ve heard
of boot2docker then Docker for Mac is what you always wished boot2docker was -
it’s smooth, simple and stable. But Docker for Mac is only intended for test and dev
work. You shouldn’t think of it as a production platform to run your business from.
No! Docker for Mac is all about getting a small working installation of Docker up and
running on your Mac in the simplest way possible so that you can test and develop
containerized applications on your Mac.

It’s also worth noting that Docker for Mac will not give you the Docker Engine
running natively on the Mac OS Darwin kernel. Behind the scenes it runs the Docker
Engine inside of a lightweight Linux VM. It then seamlessly exposes that Docker
Engine and API to your Mac environment. But it does it all in a way that the mystery
and magic that pulls it all together is hidden away behind the scenes. All you need
to know is that you can open a terminal on your Mac and use the regular Docker
commands to hit the Docker API.

Although this seamlessly works on your Mac.... Its obviously Docker on Linux under
the hood, so it’s only going work with Linux-based Docker containers. This is good
though, as this is where most of the container action is.

3: Installing Docker 25

Figure 3.3 shows a high level representation of the Docker for Mac architecture.

Figure 3.3

Note: For the curious reader, Docker for Mac leverages HyperKit™ to
implement a super lightweight hypervisor. HyperKit in turn is based
off the xhive hypervisor''. Docker for Mac also leverages features from
DataKit'? and runs a highly tuned Linux distro called Moby that is based
off of Alpine Linux*’.

Let’s get Docker for Mac installed.

1. Point your browser to www.docker.com

2. Click the Get Docker link near the top of the Docker homepage.

3. Click the Learn More button under the MAC section and then click Download
Docker for Mac. This will download the Docker.dmg installation package to
your default downloads directory.

4. Launch the Docker . dmg file that you downloaded in the previous step. You will
be asked to drag and drop the Moby Dock whale image into the Applications
folder.

"®https://github.com/docker/hyperkit
"https://github.com/mist64/xhyve

https://github.com/docker/datakit
https://alpinelinux.org/andhttps://github.com/alpinelinux

https://github.com/docker/hyperkit
https://github.com/mist64/xhyve
https://github.com/docker/datakit
https://alpinelinux.org/%20and%20https://github.com/alpinelinux
https://github.com/docker/hyperkit
https://github.com/mist64/xhyve
https://github.com/docker/datakit
https://alpinelinux.org/%20and%20https://github.com/alpinelinux

3: Installing Docker

26

5. Open your Applications folder (it may open automatically) and double-click
the Docker application icon to Start it. You may be asked to confirm the action

because the application was downloaded form the internet.

6. Enter your password so that the installer can create components, such as

networking, that require elevated privileges.
7. The Docker daemon will now start.

An animated whale icon will appear in the status bar at the top of your screen,
and the animation will stop when the daemon has successfully started. Once
the daemon has started you can click the whale icon and perform basic actions

such as restarting the daemon, checking for updates, and opening the UI.

Now that Docker for Mac is installed you can open a terminal window and run some

regular Docker commands. Try the commands listed below.

$ docker version

Client:
Version:

API version:
Go version:
Git commit:
Built:
0S/Arch:

Experimental:

Server:
Version:

API version:
Go version:
Git commit:
Built:
0S/Arch:

Experimental:

1.12.0-rc3
1.24
gol.6.2
91e29e8

Sat Jul 2 00:09:24 2016

darwin/amd64
true

1.12.0-rc3
1.24
gol.6.2
876£3aT

Tue Jul 5 02:20:13 2016

linux/amd64
true

Notice in the output above that the 0S/Arch: for the Server component is showing
as linux/amd64. This is because the server portion of the Docker Engine (a.k.a. the
“daemon”) is running inside of the Linux VM we mentioned earlier. The Client

3: Installing Docker 27

component is a native Mac application and runs directly on the Mac OS Darwin
kernel (0S/Arch: darwin/amd64).

Also note that the system is running the experimental version (Experimental: true)
of Docker. Docker for Mac has stable and experimental channels. You can switch
between channels, but you should check the Docker website for restrictions and
implications before doing so.

Run some more Docker commands.

$ docker info
Containers: 0

Running: ©

Paused: 0

Stopped: 0

Images: 0
Server Version: 1.12.0-rc3
<Snip>
Registry: https://index.docker.io/v1/
Experimental: true
Insecure Registries:
127.0.0.0/8

Docker for Mac installs the Docker Engine (client and daemon), Docker Compose,
and Docker machine. The following three commands show you how to verify that
all of these components installed successfully and find out which versions you have.

$ docker --version

Docker version 1.12.0-rc3, build 876f3a7, experimental

$ docker-compose --version
docker -compose version 1.8.0, build d988ab55

3: Installing Docker 28

$ docker-machine --version
docker-machine version ©.8.1, build 41b3b25

Installing Docker on Linux

Let’s look at how to install Docker on Linux.

This is the most common installation in production environments and is surprisingly
easy. The most common difficulty is the slight variations between Linux distros such
as Ubuntu vs CentOS. The example we’ll use in this section is based on Ubuntu Linux,
but should work on upstream and downstream forks. It should also work on CentOS
and it’s upstream and downstream forks. It makes absolutely no difference if your
Linux machine is a physical server in your own data center, on the other side of the
planet in a public cloud, or a VM on your laptop. The only requirements are that the
machine be running Linux and has access to https://get.docker.com.

The first thing you need to decide before you install Docker on Linux is which
channel you wish to install. Docker currently has three channels:

» Stable (https://get.docker.com/)
+ Experimental (https://experimental.docker.com/)
« Test (https://test.docker.com/)

In the examples below we’ll use the wget command to call the script that in-
stalls the stable channel. If you want to install a different channel just replace
https://get.docker.com with the relevant channel from the list above.

1. Open a new shell on your Linux machine.

2. Use wget to retrieve the Docker install script from https://get.docker.com
and pipe it through your shell.

3: Installing Docker 29

$ wget -qO0- https://get.docker.com/ | sh

modprobe: FATAL: Module aufs not found in directory /lib/modules/4.4.0-36-ge\
neric

+ sh -c 'sleep 3; yum -y -q install docker-engine'’

<Snip>

If you would like to use Docker as a non-root user, you should now consider
adding your user to the "docker" group with something like:

sudo usermod -aG docker your-user

Remember that you will have to log out and back in for this to take effect!

3. It’s a good best practice to only use non-root users when working with the
Docker Engine. To do this you need to add your non-root users to the local
docker Unix group on your Linux machine. The commands below show how
to add the npoulton user to the docker group and verify that the operation
succeeded.

$ sudo usermod -aG docker npoulton
$

$ cat /etc/group | grep docker
docker :x:999:npoulton

If you are already logged in as the user that you just added to the docker
group, you will need to log out and log back in for the group membership to
take effect.

Congratulations! Docker is now installed on your Linux machine. Run the following
commands to verify your installation.

3: Installing Docker 30

$ docker --version

Docker version 1.12.1, build 23cf638
$

$ docker info

Containers: 0

Running: @

Paused: 0

Stopped: 0

Images: 0

<Snip>

Kernel Version: 4.4.0-36-generic
Operating System: Ubuntu 16.04.1 LTS
OSType: linux
Architecture: x86_64
CPUs: 1
Total Memory: 990.7 MiB

Name: ip-172-31-41-77

ID: QHFV:6HKT7:VNLZ:RIKE:JWL6:BTIX:GC3V:RAVR:6A05:RAMT :EJCI : PUAT
Docker Root Dir: /var/lib/docker
Debug Mode (client): false

Debug Mode (server): false

Registry: https://index.docker.io/v1/
WARNING: No swap limit support
Insecure Registries:

127.0.0.0/8

If the process described above doesn’t work for your Linux distro, you can go to the
Docker Docs'* website and click on the link relating to your distro. This will take you
to the official Docker installation instructions which are usually kept up to date. Be
warned though, the instructions on the Docker website tend use the package manager
and require a lot more steps than the procedure we used above. In fact, if you open
a web browser to https://get.docker.com you will see that it’s a shell script that does
all of the hard work of installation for you.

Warning: If you install Docker from a source other than the official
Docker repositories, you may end up with a forked version of Docker.

"https://docs.docker.com/engine/installation/linux/

https://docs.docker.com/engine/installation/linux/
https://docs.docker.com/engine/installation/linux/

3: Installing Docker 31

This is because some vendors and distros choose to fork the Docker
project and develop their own slightly customized versions. You need to
be aware of things like this if you are installing from custom repositories
as you could unwittingly end up in a situation where you are running
a fork that has diverged from the official Docker project. This isn’t a
problem as long as this is what you intend to do. If it is not what you
intend, it can lead to situations where modifications and fixes your
vendor makes do not make it back upstream in to the official Docker
project. In these situations you will not be able to get commercial support
for your installation from Docker, Inc. or it’s authorized service partners.

Chapter Summary

In this chapter you saw how to install docker on Windows 10, Mac OS X, and Linux.
Now that you know how to install Docker you are ready to start working with images
and containers.

4: The big picture

In the next few chapters we’re going to get into the details of things like images,
containers, and orchestration. But before we do that, I think it’s a good idea to show
you the big picture first.

In this chapter we’ll download an image, start a new container, log in to the new
container, run a command inside of it, and then destroy it. This will give you a good
idea of what Docker is all about and how some of the major components fit together.

But don’t worry if some of the stuff we do here is totally new to you. We’re not trying
to make you experts by the end of this chapter. All we’re doing here is giving you a
feel of things - setting you up so that when we get into the details in later chapters,
you have an idea of how the pieces fit together.

All you need to follow along with the exercises in this chapter is a single Docker
host. This can be any of the options we just installed in the previous chapter, though
if you are using Docker for Windows you should be running it in “Linux Container”
mode. It doesn’t matter if this Docker host is a VM on your laptop, an instance in the
public cloud, or bare metal server in your data center. All it needs, is to be running
Docker with a connection to the internet.

Engine check

When you install Docker you get two major components:

« the Docker client
« the Docker daemon (sometimes called server)

The daemon implements the Docker Remote API". In a default Linux installation
the client talks to the daemon via a local IPC/Unix socket at /var/run/docker . sock.
You can test that the client and daemon are operating and can talk to each other with
the docker version command.

"https://docs.docker.com/engine/reference/api/docker_remote_api/

https://docs.docker.com/engine/reference/api/docker_remote_api/
https://docs.docker.com/engine/reference/api/docker_remote_api/

4: The big picture 33

$ docker version

Client:

Version: 1.12.1

API version: 1.24

Go version: gol.6.3

Git commit: 23cf638

Built: Thu Aug 18 ©05:33:38 2016
0S/Arch: linux/amd64
Server:

Version: 1.12.1

API version: 1.24

Go version: gol.6.3

Git commit: 23cf638

Built: Thu Aug 18 ©5:33:38 2016
0S/Arch: linux/amd64

As long as you get a response back from the Client and Server components you
should be good to go. If you get an error response form the Server component, try
the command again with sudo in front of it: sudo docker version. If it works with
sudo you will need to prefix the remainder of the commands in this chapter with
sudo.

Images

Now let’s look at images.

Right now, the best way to think of a Docker image is as an object that contains
an operating system and an application. It’s not massively different from a virtual
machine template. A virtual machine template is essentially a stopped virtual
machine. In the Docker world, an image is effectively a stopped container.

Run the docker images command on your Docker host.

4: The big picture 34

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

If you are working from a freshly installed Docker host it will have no images and
will look like the output above.

Getting images onto your Docker host is called “pulling”. Pull the ubuntu: latest
image to your Docker host with the command below.

$ docker pull ubuntu:latest
latest: Pulling from library/ubuntu

952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118cab682d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:£f4691c96eb6bbaad99d. . .a2128ae95a60369c506dd6e6 f6ab
Status: Downloaded newer image for ubuntu:latest

Run the docker images command again to see the ubuntu:latest image you just
pulled.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest bd3d4369aebc 11 days ago 126.6 MB

We'll get into the details of where the image is stored and what’s inside of it in
the next chapter. For now it’s enough to understand that it contains enough of
an operating system (OS), as well as all the code to run whatever application it’s
designed for. The ubuntu image that we’ve pulled has a stripped down version of the
Ubuntu Linux OS including a few of the common Ubuntu utilities.

It’s worth noting as well that each image gets it’s own unique ID. When working
with the image, as we will do in the next step, you can refer to it using either its ID
Oor name.

4: The big picture 35

Containers

Now that we have an image pulled locally on our Docker host, we can use the docker
run command to launch a container from it.

$ docker run -it :latest /bin/bash
root@6 A

Look closely at the output form the command above. You should notice that your
shell prompt has changed. This is because your shell is now attached to the shell of
the new container - you are literally inside of the new container!

Let’s examine that docker run command. docker run tells the Docker daemon to
start a new container. The - it flags tell the daemon to make the container interactive
and to attach our current shell to the shell of the container (we’ll get more specific
about this in the chapter on containers). Next, the command tells Docker that we
want the container to be based on the ubuntu: latest image, and we tell it to run the
/bin/bash process inside the container.

Run the following ps command from inside of the container to list all running
processes.

root@6 /¥ ps -elf

F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD

4 S root 1 0 © - 4560 wait 13:38 ? 00:00:00 /bin/bash
® R root 9 1 0 - 8606 - 13:38 ? 00:00:00 ps -elf

As you can see from the output of the ps command, there are only two processes
running inside of the container:

« PID 1. This is the /bin/bash process that we told the container to run with the
docker run command.

« PID 9. This is the ps -elf process that we ran to list the running processes.

4: The big picture 36

The presence of the ps -elf process in the output above could be a bit misleading
as it is a short-lived process that dies as soon as the ps command exits. This means
that the only long-running process inside of the container is the /bin/bash process.

PressCtr1-PQ to exit the container. This will land you back in the shell of your Docker
host. You can verity this by looking at your shell prompt.

Now that you are back at the shell prompt of you Docker host, run the ps -elf
command again.

$ ps -elf

F S UID PID PPID NI ADDR SZ WCHAN TIME CMD

4 S root 1 %] 0 - 9407 - 00:00:03 /sbin/init

1 S root 2 %] 0 - 0 - 00:00:00 [kthreadd]

1 S root 3 2 0 - 0 - 00:00:00 [ksoftirqd/Q]
1 S root 5 2 -20 - 0 - 00:00:00 |[kworker/Q:0QH]
1 S root 7 2 Q - Q - 00:00:00 [rcu_sched]
<Snip>

© R ubuntu 22783 22475 0 - 9021 - 00:00:00 ps -elf

Notice how many more processes are running on your Docker host compared to the
single long-running process inside of the container.

In a previous step you pressed Ctrl-PQ to exit your shell from the container. Doing
this from inside of a container will exit you form the container without killing it. You
can see all of the running containers on your system using the docker ps command.

$ docker ps
CNTNR ID IMAGE COMMAND CREATED STATUS NAMES
@b3...41 ubuntu:latest /bin/bash 7 mins ago Up 7 mins tiny_poincare

The output above shows a single running container. This is the container that you
created earlier. The presence of your container in this output proves that it’s still
running. You can also see that it was created 7 minutes ago and has been running
for 7 minutes.

4: The big picture 37

Attaching to running containers

You can attach your shell to running containers with the docker exec command. As
the container from the previous steps is still running let’s connect back to it.

Note: The example below references a container called “tiny_poincare”.
The name of your container will be different, so remember to substitute
“tiny_poincare” with the name or ID of the container running on your
Docker host.

$ docker exec -it tiny_poincare bash
root@6 VA

Notice that your shell prompt has changed again. You are back inside the container.

The format of the docker exec command is: docker exec -options <container-
name or container-id> <command>. In our example we used the -it options to
attach our shell to the container’s shell. We referenced the container by name and
told it to run the bash shell.

Exit the container again by pressing Ctr1-PQ.
Your shell prompt should be back to your Docker host.

Run the docker ps command again to verify that your container is still running.

$ docker ps
CNTNR ID IMAGE COMMAND CREATED STATUS NAMES
@b3...41 ubuntu:latest /bin/bash 9 mins ago Up 9 mins tiny_poincare

Stop the container and kill it using the docker stop and docker rm commands.

4: The big picture 38

$ docker stop tiny_poincare
tiny_poincare

$

$ docker rm tiny_poincare
tiny_poincare

Verify that the container was successfully deleted by running another docker ps
command.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Congratulations! You’ve downloaded a Docker image, launched a container from
that image, executed a command inside of the container (ps -elf) and then stopped
and deleted the container. This big picture view should help you with the up-coming
chapters where we will dig deeper into images and containers.

Part 2: The technical stuff

5: Images

In this chapter we’ll dive a bit deeper into Docker images. The aim of the game here
is to give you a solid working understanding of what Docker images are and how to
work with them.

As this is our first chapter in the Technical section of the book, we’re going to employ
the three-tiered approach where we split the chapter into three sections:

« The TLDR: Two or three quick paragraphs that you can read while standing
in line for a coffee)

+ The deep dive: The really long bit where we get into the detail

« The commands: A quick list of the commands we learned

Docker images - The TLDR

Docker images are a lot like VM templates. A VM template is like a stopped VM,
whereas a Docker image is like a stopped container.

You start out by pulling images from an image registry such as Docker Hub'®. The
pull operation downloads the image to your local Docker host where you can use it
to start one or more Docker containers.

Images are made up of multiple layers that get stacked on top of each other and
represented as a single object. Within the image is a cut-down operating system (OS)
and all of the files required to run an application or service. Because containers are
intended to be fast and lightweight, images tend to be quite small.

The most common commands used to work with Docker images are docker pull to
pull images onto your local Docker host, docker images to view a list of the images
already pulled to your Docker host, and docker rmi to delete images when you no
longer need them.

https://hub.docker.com

https://hub.docker.com/
https://hub.docker.com/

5: Images 41

Congrats! You’ve now got half a clue what a Docker image is :-D Now it’s time to
dig a bit deeper.

Docker images - The deep dive

We’ve mentioned a couple of times already that container images are like stopped
containers. In fact you can stop a container and create a new image from it. With
this in mind, images are considered build-time constructs whereas containers are
run-time constructs.

Container

v

Image

(Build time) (Runtime)

Figure 5.1

Images and containers

Figure 5.1 shows high level view of the relationship between images and containers.
We use the docker run command to start one or more containers from a single image.
However, once you’ve started a container form an image, the two constructs become
dependent on each other and you cannot delete the image until the last container
using it has been stopped and destroyed. Attempting to delete an image without
stopping and destroying all containers using it will result in the following error:

$ docker rmi <image-name>

Error response from daemon: conflict: unable to remove repository reference \
"<image-name>" (must force) - container <container-id> is using its referenc\
ed image <image-id>

The whole purpose of a container is to run an application or service. This means
that the image a container is created from must contain any OS and application

5: Images 42

files required to run the container. However, containers are all about being fast and
lightweight. This means that the images they’re built from are usually small and
stripped of all non-essential parts.

For example, Docker images tend not to ship with 6 different shells for you to choose
from - they’ll usually ship with a single minimalist shell. They also don’t contain a
kernel - all containers running on a Docker host share access to the Docker host’s
kernel. For these reasons we sometimes say images contain just enough operating
system.

An extreme example of how small Docker images can be, might be the official Alpine
Linux Docker image which is currently down at around 5MB. That’s not a typo! It
really is about 5 megabytes! However, a more typical example might be something
like the official Ubuntu Docker image which is currently about 120-130MB.

Pulling images

A cleanly installed Docker host has no images in its local cache (/var/lib/dock-
er/<storage-driver> on Linux hosts). You can verify this with the docker images
command.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

The act of getting images onto a Docker host is called pulling. So if you want the
latest Ubuntu image on your Docker host, you’d have to pull it. Use the commands
below to pull the Alpine and Ubuntu images and then check their sizes.

If you haven’t added your user account to the local docker Unix group,
you may need to add sudo to the beginning of all of the following
commands.

5: Images 43

$ docker pull alpine:latest

latest: Pulling from library/alpine

e110a4a17941: Pull complete

Digest: sha256:3dcdb92d743. . .3626d99b889d0626de158f73a
Status: Downloaded newer image for alpine:latest

$

$ docker pull ubuntu:latest

latest: Pulling from library/ubuntu

952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118cab682d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:£f4691c96ebb. . .28ae95a60369c506dd6e6f6ab
Status: Downloaded newer image for ubuntu:latest

$

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest bd3d4369aebc 12 days ago 126.6 MB
alpine latest 4e38e38c8ced 10 weeks ago 4.799 MB

As you can see, both images are now present on your Docker host.
Let’s look a bit closer at what we’ve just done.

We used the docker pull command to pull the images. As part of each command we
had to specify which image to pull. So let’s take a minute to look at image naming.
To do that we need a bit of background on how we store images.

Image registries

Docker images are stored in image registries. The most common image registry
is Docker Hub. Other registries exist including 3rd party registries and secure on-
premises registries, but Docker Hub is the default, and it’s the one we’ll use in this

book.

Image registries contain multiple image repositories. Image repositories contain
images. That might be a bit confusing, so Figure 5.2 shows a picture of an image
registry containing 3 repositories, and each repository contains a few images.

44

Registry
Repo 1 Repo 2 Repo 3
= e 3 e 3
Image v1 Image v1 Image v1
= e 3 e 3
Image v2 Image v2 Image v2
= 2
Image v3 Image v3
Figure 5.2

Docker Hub also has the concept of official repositories and unofficial repositories.

As the name suggests, official repositories contain images that have been vetted by
Docker, Inc. This means they should contain up-to-date high quality secure code that
is well documented and follows best practices.

Unofficial repositories are like the wild-west - they’re controlled by none of the things
on the previous list. That’s not saying everything in unofficial repositories is bad!
It’s not! There’s some great stuff in unofficial repositories. You just need to be very
careful before trusting code from them. To be honest, you should always be careful
when getting software from the internet - even images from official repositories.

Most of the popular operating systems and applications have their own official
repositories on Docker Hub. They’re easy to spot because they live at the top level of
the Docker Hub namespace. The list below contains a few of the official repositories
and shows their URLs that exist at the top level of the Docker Hub namespace:

« nginx - https://hub.docker.com/_/nginx/

5: Images 45

+ busybox - https://hub.docker.com/_/busybox/
« redis - https://hub.docker.com/_/redis/
« mongo - https://hub.docker.com/_/mongo/

On the other hand, my own personal images live in the wild west of unofficial
repositories and should not be trusted! Below are some examples of images in my
repositories:

« nigelpoulton/tu-demo - https://hub.docker.com/r/nigelpoulton/tu-demo/

+ nigelpoulton/pluralsight-docker-ci - https://hub.docker.com/r/nigelpoulton/pluralsight-
docker-ci/

Not only are images in my repositories not vetted, not kept up-to-date, not secure,
and not well documented... you should also notice that they don’t live at the top
level of the Docker Hub namespace. My repositories all live within a second level
namespace called nigelpoulton.

After all of that, we can finally look at how we address images on the Docker
command line.

Image naming and tagging

Addressing images on the command line from official repositories is as simple as

giving the repository name and tag separated by a colon “:”. The format for docker

pull when working with an image from an official repository is:
docker pull <repository>:<tag>

In our example form earlier we pulled an Alpine and an Ubuntu image with the
following two commands:

docker pull alpine:latest and docker pull ubuntu:latest

These two commands pull the images tagged as “latest” from the “alpine” and
“ubuntu” repositories.

The following examples show how to pull various different images from official
repositories:

5: Images 46

$ docker pull mongo:3.3.11
//This will pull the image tagged as °3.3.11° form the official “mongo™ repo\
sitory.

$ docker pull redis:latest
//This will pull the image tagged as “latest”™ from the official ‘redis repo\
sitory.

$ docker pull alpine
//This will pull the image tagged as “latest”™ from the official “alpine” rep\
ository.

A couple of points to note about the commands above. Firstly, if you do not specity
an image tag after the repository name, Docker will assume you are referring to the
image tagged as latest. Secondly, the 1atest tag doesn’t have any mystical powers!
Just because an image is tagged as latest does not mean it is the most recent image
in a repository! Moral of the story - take care when using the latest tag!

Pulling images from an unofficial repository is essentially the same - you just need to
prepend the repository name with the Docker Hub username or organization name.
The example below shows how to pull the v2 image from the tu-demo repository
owned by a scary person whose Docker Hub account name is nigelpoulton.

$ docker pull nigelpoulton/tu-demo:v2
//This will pull the image tagged as "v2° from the “tu-demo” repository with\
in the namespace of my personal Docker Hub account.

If you want to pull images from 3rd party registries, you need to prepend the repos-
itory name with the DNS name of the registry. For example, if the image in the ex-
ample above was in the Google Container Registry (GCR) you’d need to add ger . io
before the repository name as follows - docker pull gcr.io/nigelpoulton/tu-
demo:v2.

You may need to have an account on 3rd party registries and be logged in before you
can pull images from them.

5: Images 47

Images with multiple tags

One final word about image tags... a single image can have as many tags as you want.
This is because tags are arbitrary alpha-numeric values that are stored as metadata
alongside the image. Let’s look at an example.

Pull all of the images in the repository below using the docker pull command with
the -a flag. Then run docker images to look at the images pulled.

$ docker pull -a nigelpoulton/tu-demo

latest: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Pull complete

a3ed95caeb@2: Pull complete

<Snip>

Digest: sha256:42e34e546ceebladbl. . .3a0@c5b53£324a9%e1claaed51e9
vl: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Already exists

a3ed95caeb@2: Already exists

<Snip>

Digest: sha256:9cccOcb6T7ebcbeaaedb. . .624c1d5¢c80£2¢9623cbccOb59a
v2: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Already exists

a38ed95caeb@2: Already exists

<Snip>

Digest: sha256:d3c@d8c9d5719d31b7...9fef58a7e038c flef2babeb74c
Status: Downloaded newer image for nigelpoulton/tu-demo

$

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
nigelpoulton/tu-demo V2 6ac2...ad 4 months ago 211.6 MB
nigelpoulton/tu-demo latest 9b91...29 4 months ago 211.6 MB
nigelpoulton/tu-demo v1 9b91...29 4 months ago 211.6 MB

A few things to notice about what just happened

First. The command pulled three tagged images from the repository: latest, v1, and
V2.

5: Images 48

Second. Look closely at the IMAGE ID column in the output of the docker images
command. You’'ll see that there are only two unique image IDs. This means that
even though three tags were pulled, only two images were actually downloaded.
This is because two of the tags refer to the same image. Or put another way, one of
the images has two tags. If you look closely you’ll see that the v1 and latest tags
have the same IMAGE ID. This means they’re two tags of the same image.

This is a perfect example of the warning we issued earlier about the latest tag. As
we can see, the latest tag in this example refers to the same image as the v1 tag, not
the v2 tag. This means it’s pointing to the older of the two images - not the newest.
latest is an arbitrary tag and is not guaranteed to point to the newest image in a
repository.

Images and layers

All Docker images are made up of one or more read-only layers as shown below.

Layer 5 —
Layer 4 ———
Layer 3 —

Layer 2 —

Layer 1 ————

Figure 5.3

There are a few ways to see and inspect the layers that make up an image, and we’ve
already seen one of them. Let’s take a second look at the output of the docker pull
ubuntu: latest command from earlier:

5: Images 49

$ docker pull ubuntu:latest

latest: Pulling from library/ubuntu

952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118cab82d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:f4691c96e6bbaad99d. . . 28ae95a60369c506dd6e6 f6ab

Status: Downloaded newer image for ubuntu:latest

Each line in the output above that ends with “Pull complete” represents a layer in
the image that was pulled. As we can see, this image has 5 layers. Figure 5.4 below
shows this as a picture.

Layer 5 — s
Layer 4 ————
Layer 3 ——

Layer 2 —0 o2 —

Layer 1 =—

Figure 5.4

Another way to see the layers that make up an image is to inspect the image with
the docker inspect command. The example below inspects the same ubuntu: lates
image.

5: Images 50

$ docker inspect ubuntu:latest

[

"Id": "sha256:bd3d4369aebc4945be269859df0e15b1d32fefa2645£5699037d7d\
8c6b415a10",
"RepoTags": [
"ubuntu:latest"

<Snip>

"RootFS": {

"Type": "layers",

"Layers": [
"sha256:c8a75145fc. . .894129005e461a43875a094b93412",
"sha256:c6£2b330b6. . . 7214ed6aac305dd03£f70b95cdc610",
"sha256:055757a193. . .3a9565d78962¢c7£368d5ac5984998",
"sha256:4837348061 . . .126951548406ea77feb5074e195e3",
"sha256:0cad5e07ba. . .4bae4cfc66b376265e16c32a0aae9"

The trimmed output shows 5 layers again. Only this time they’re shown using their
SHA256 hashes. The point being, both commands show that the image has 5 layers.

Note: The docker history command shows the build history of an
image and is not a list of layers in the image. For example, some
commands that appear in an image’s build history do not result in image
layers being created. Some of these commands (Dockerfile instructions)
include “MAINTAINER”, “ENV”, “EXPOSE” and “CMD”. Instead of
these commands creating new image layers, their values are stored as
part of the image’s metadata.

Every layer in a Docker image gets it’s own unique ID. This is a cryptographic hash
of the layer’s content. This means that the value of the crypto hash is determined by
the contents of the image - changing the contents of the image changes its hash.

5: Images 51

Using cryptographic content hashes improves security, avoids ID collisions that could
occur if they were randomly generated, and gives us a way to guarantee data integrity
after operations such as docker pull.

All Docker images start with a base layer, and as changes are made and new content is
added, new layers are added on top. As an over-simplified example, you might create
a brand new image based off of Ubuntu Linux 16.04. This would be your image’s first
layer. If you later add the Python package, this would be added as a second layer at
the top of your image. If you then added a security patch, this would be added as a
third layer at the top. Your image would now have three layers as shown in Figure
5.5 below.

Layer 3 —

Laver 2 ————

Layer 1 =—

Figure 5.5

It’s important to understand that as additional layers are added, the image becomes
the combination of all of the layers. Take a simple example of two layers as shown
in Figure 5.6. Each layer has 3 files, but the overall image has 6 files as it is the
combination of both layers.

5: Images 52

Figure 5.6

I’'ve shown the image layers in Figure 5.6 in a slightly different way to
previous figures. This is just to make showing files easier.

In the slightly more complex example of the three layered image in Figure 5.7, the
overall image only ends up with 6 files. This is because file 7 in the top layer is an
updated version of file 5 directly below. In this situation, the file in the higher layer
obscures the file directly below it. This allows updated versions of files to be added
as new layers to the image.

5: Images 53

Layer 3 s

Layer 2 ——

Layer 1 —

Figure 5.7

Sharing image layers

Multiple images can share layers. This leads to efficiencies in space and performance.
Let’s take a second look at the docker pull command with the -a flag that we ran a
minute or two ago to pull all tagged images in the nigelpoulton/tu-demo repository.

$ docker pull -a nigelpoulton/tu-demo

latest: Pulling from nigelpoulton/tu-demo

287d5fcd25cf: Pull complete

a3ed95caeb@2: Pull complete

<Snip>

Digest: sha256:42e34e546ceet61adb1@0. . .a0c5b53£324a9e1claaed51e9

v1l: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Already exists

al8ed95caeb@2: Already exists

<Snip>

Digest: sha256:9ccc@c67ebScSeaaedbeb. . . 24c1d5¢c80£2c9623cbccOb59a

5: Images 54

v2: Pulling from nigelpoulton/tu-demo

237d5fcd25cf: Already exists

a3ed95caeb@2: Already exists

<Snip>

eab5aaact5de: Pull complete

Digest: sha256:d3c@d8c9d5719d31b79c. . . fef58aT7ed38c flef2babeb74c

Status: Downloaded newer image for nigelpoulton/tu-demo

$

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
nigelpoulton/tu-demo v2 b6ac. . .ead 4 months ago 211.6 MB
nigelpoulton/tu-demo latest 9b9...e29 4 months ago 211.6 MB
nigelpoulton/tu-demo vl 9b9...e29 4 months ago 211.6 MB

Notice the lines ending in Already exists. This is because Docker is smart enough
recognize when it’s being asked to pull an image layer that it already has a copy of
locally. In this example Docker pulled the image tagged as latest first. Then when
it went to pull the v1 and v2 images it noticed that it already had some of the layers
that make up those images. This happens because the three images in this repository
are almost identical except for the top layer.

Docker on Linux supports many different filesystems and storage drivers. Each is
free to implement image layering, copy-on-write behavior, and image layer sharing
in its own way. However, the overall result and user experience is essentially the
same.

Pulling images by digest

So far we’ve shown you how to pull images by tag, and this is by far the most common
way. But it has a problem - tags are mutable! This means it’s possible to accidentally
tag an image with an incorrect tag. Sometimes it’s even possible to tag an image with
the same tag as an existing image. This is not good!

As an example, imagine that you’ve got an image called gol ftrack:1.5 and it has a
known bug. You pull the image, apply a fix and push the updated image back to your
repository with the same tag. Take a second to understand what just happened there.
You have an image called gol ftrack:1.5 that has a bug. That image is being used

5: Images 55

in your production environment. You pull the image and apply a fix. But then comes
the mistake, you push the fixed image back to its repository with the same tag as the
vulnerable image! How are you going to know which of your production systems
are running the vulnerable image and which are running the patched image? They
both have the same tag!

This is where image digests come to the rescue.

Docker 1.10 introduced a new content addressable storage model. As part of this
new model all images now get cryptographic content hash. For the purposes of this
discussion we’ll refer to this hash as the digest. Because the digest is a hash of the
contents of the image, it is not possible to change the contents of the image without
the digest also changing. Put another way - digests are immutable. Clearly this avoids
the problem we just talked about.

Every time you pull an image, the docker pull command will include the image’s
digest as part of the return code. You can also view the digests of images in your
Docker host’s local cache by adding the --digests flag to the docker images
command. These are both shown in the following example.

$ docker pull alpine

Using default tag: latest

latest: Pulling from library/alpine

e110a4a17941: Pull complete

Digest: sha256:3dcdb92d7432d56604d. . .6d99b889d0626de158f73a
Status: Downloaded newer image for alpine:latest

$

$ docker images --digests alpine

REPOSITORY TAG DIGEST IMAGE ID CREATED SIZE
alpine latest sha256:3dcd...f73a 4e38e38c8ced® 10 weeks ago 4.8 MB

The output above shows the digest for the alpine image as sha256: 3dcdb92d7432. . . 889d0626de:

Now that we know the digest of the image, we can use it when pulling the image
again. This will ensure that we get exactly the image we expect!

At the moment there is no native docker command or sub-command that will retrieve
the digest of an image from a remote registry such as Docker Hub. This means the

5: Images 56

only way to determine the digest of an image is to pull it by tag and then make a
note of it’s digest. This may change in the future.

The example below deletes the alpine:latest image from your Docker host and then
shows how to pull it again using its digest instead of its tag.

$ docker rmi alpine:latest

Untagged: alpine:latest

Untagged: alpine@sha256:3dcdb92d7432. . .313626d99b889d0626de158f73a
Deleted: sha256:4e38e38c8cedb8d9. . .3bobfe8cfa2321aec4bba

Deleted: sha256:4fe15f8d0ae69e16. . .b265cd2e328e15c6a869f

$

$ docker pull alpine@sha256:3dcdb92. . .b313626d99b889d0626de15873a
sha256:3dcdb92d7432d. . .e158f73a: Pulling from library/alpine
e110a4a17941: Pull complete

Digest: sha256:3dcdb92d7432d56604 . . .47b313626d99b889d0626de158f73a
Status: Downloaded newer image for alpine@sha256:3dcd...b889d0626de158f73a

Deleting Images

When you no longer need an image you can delete it form your Docker host with
the docker rmi command. rmi is short for remove image.

Delete the Alpine image pulled in the previous step with the docker rmi command.
The example below addresses the image by its ID, this might be different on your
system.

$ docker rmi 4e38e38c8ced

Untagged: alpine:latest

Untagged: alpine@sha256:3dcdb92d7432d56. .d99b889d0626de158f73a
Deleted: sha256:4e38e38c8ce®b8d90. . .3bdbfe8cfa2321aec4bba
Deleted: sha256:4fel15f8d0ae69e169. . .b265cd2e328e15c6a869f

If the image you are trying to delete is in use by a running container you will not be
able to delete it. Stop and delete any containers before trying the remove operation
again.

A handy shortcut for cleaning up a system and deleting all images on a Docker host
is to run the docker rmi command and pass it a list of all image IDs on the system
by calling docker images with the -q flag as shown below.

5: Images 57
$ docker rmi $(docker images -q) -f

To understand how this works, download a couple of images and then run docker
images -q.

$ docker pull alpine

Using default tag: latest

latest: Pulling from library/alpine
e110a4a17941: Pull complete

Digest: sha256:3dcdb92d7432d5. . . 3626d99b889d0626de158f73a
Status: Downloaded newer image for alpine:latest
$

$ docker pull ubuntu

Using default tag: latest

latest: Pulling from library/ubuntu
952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118ca682d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:£f4691c96e6bbba. . .128ae95a60369c506dd6e6f6ab
Status: Downloaded newer image for ubuntu:latest
$

$ docker images -q

bd3d4369aebc

4e38e38c8ced

See how docker images -q returns a list containing just the image IDs of all images
pulled locally on the system. Returning this list to docker rmi will therefore delete
all images on the system as shown below.

5: Images 58

$ docker rmi $(docker images -q) -f

Untagged: ubuntu:latest

Untagged: ubuntu@sha256:£4691c9. . .2128ae95a60369c506dd6e6f6ab
Deleted: sha256:bd3d4369aebc494. .. fa2645f5699037d7d8c6b415a10
Deleted: sha256:cd10a3b73e247dd. . .c3a71fcf5b6c2bb28d4£2e5360b
Deleted: sha256:4d4de39110cd250. . .28bfe816393d0f2e0dae82c363a
Deleted: sha256:6a89826eba8d895. . .cbod7dbale 62409 f037c6e608b
Deleted: sha256:33efada9158c32d. . .195aa12859239d35e7 9566056
Deleted: sha256:c8a75145fccdela. . .4129005e461a43875a094b93412
Untagged: alpine:latest

Untagged: alpine@sha256:3dcdb92. . .313626d99b889d0626de158f73a
Deleted: sha256:4e38e38c8cedb8d. . .6225e13b0bfe8cfa2321aec4bba
Deleted: sha256:4fel15f8d0ae69el . . .eeceeebb265cd2e328e15c6a869f
$

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

Let’s remind ourselves of the major commands we use to work with Docker images.

Images - The commands

+ docker pull is the command to download images. We pull images from
repositories inside of remote registries. By default images will be pulled from
repositories on Docker Hub. This command will pull the image tagged as 1at-
est from the alpine repository on Docker Hub docker pull alpine:latest.

+ docker images lists all of the images stored in your Docker host’s local cache.
To see the SHA256 digests of images add the --digests flag.

« docker rmi is the command to delete images. This command shows how
to delete the apline:latest image docker rmi alpine:latest. You cannot
delete an image that is associated with a container in the running (UP) or
stopped (Exited) states.

Chapter summary

In this chapter we learned about Docker images. We learned that images are made up
one or more read-only layers that when stacked together make up the overall image.

5: Images 59

We used the docker pull command to pull them into our Docker host’s local cache
and we covered image naming conventions. Then we learned about image layers and
how they can be shared among multiple images. We then covered the most common
commands used for working with images.

In the next chapter we’ll take a similar tour of containers - the runtime cousin of
images.

6: Containers

Now that we know a bit about images, the next logical step is get into containers. As
this is a book about Docker, we’ll be talking specifically about Docker containers.
However, the Docker project has recently been hard at work implementing the
image and container specs published by the Open Container Initiative (OCI) at
https://www.opencontainers.org. This means some of what you learn here will apply
to other container runtimes that are OCI compliant.

Let’s go and learn about containers!

Docker containers - The TLDR

A container is the runtime instance of an image. In the same way that we can
start a virtual machine (VM) from virtual machine template, we start one or more
containers from a single image. The big difference between a VM and a container is
that containers are faster and more lightweight - instead of running a full-blown OS
like a VM, containers run no kernel and just enough OS to get the essentials done.

Figure 6.1 shows a single Docker image being used to start multiple Docker contain-
ers.

6: Containers 61

I
= ado<Muj

B v

Containers

Figure 6.1

The most basic way to start a container is with the docker run command. The
command can take a lot of arguments, but in it’s most basic form you tell it an image
to use and a command to run: docker run <image> <command>. This next command
will start an Ubuntu Linux container running the Bash shell: docker run ubuntu
/bin/bash.

Containers run until the command they are executing exits. You can manually stop
a container with the docker stop command, and then restart it with docker start.
To get rid of a container forever you have to explicitly delete it using docker rm.

That’s the elevator pitch! Now let’s get into the detail...

Docker containers - The deep dive

The first things we’ll cover here are the fundamental differences between a container
and a VM. It’s mainly theory at this stage, but important stuff. Along the way We’ll
point out where the container model has potential advantages over the VM model.

Heads-up: As the author I'm going to say this before we go any further.
A lot of us get passionate about the things we do and the skills we
have. I remember big Unix people resisting the rise of Linux. You might
remember the same. You might also remember people attempting to
resist VMware and the VM juggernaut. In both cases “resistance was
futile”. In this section I'm going to highlight what I consider some of

6: Containers 62

the advantages the container model has over the VM model. But I'm
guessing a lot of you will be VM experts with a lot invested in the VM
ecosystem. And I'm guessing that one or two of you might want to fight
me over some of the things I say. So let me be clear... I'm a big guy
and I'd beat you down in hand-to-hand combat :-D Just kidding. What I
meant to say was that 'm not trying to destroy your empire or call your
baby ugly! ’'m trying to help. The whole reason for me writing this book
is to help you get started with Docker and containers!

Anyway, here we go.

Containers vs VMs

Containers and VMs both need a host to run on. This can be anything from your
laptop, a bare metal server in your data center, all the way up to an instance the
public cloud. In this example we’ll assume a single physical server that we need to
run 4 business applications on.

In the VM model, the physical server is powered on and the hypervisor boots (we’re
skipping the BIOS and bootloader code etc.). Once the hypervisor boots it lays claim
to all physical resources on the system such as CPU, RAM, storage, and NICs. The
hypervisor then carves these hardware resources into virtual versions that look smell
and feel exactly like the real thing. It then packages them into a software construct
called a virtual machine (VM). We then take those VMs and install an operating
system and application on each one. We said we had a single physical server and
needed to run 4 applications, so we’d create 4 VMs, install 4 operating systems, and
then install the 4 applications. When it’s all done it looks a bit like Figure 6.2.

6: Containers 63

Physical Server

Figure 6.2

Things are a bit different in the container model.

When the server is powered on, your chosen OS boots. In the Docker world this can
be Linux, or any version of Windows that has support for the container primitives
in its kernel. As per the VM model, the OS claims all hardware resources. On top
of the OS we install a container engine such as Docker. The container engine then
takes OS resources such as the process tree, the filesystem, and the network stack,
and carves them up into secure isolated constructs called containers. Each container
looks smells and feels just like a real OS. Inside of each container we can run an
application. Like before, we’re assuming a single physical server with 4 applications.
Therefore we’d carve out 4 containers and run a single application inside of each as
shown in Figure 6.3.

6: Containers 64

Operating System

Figure 6.3

At a high level we can say that hypervisors perform hardware virtualization -
they carve up physical hardware resources into virtual versions. Whereas containers
perform OS virtualization - they carve up OS resources into virtual versions.

The VM tax

Let’s build on what we just covered and drill into one of the main problems with the
hypervisor model.

We started out with the same physical server and requirement to run 4 business
applications. In both models we installed either an OS or a hypervisor (obviously a
hypervisor is a type of OS that is highly tuned for VMs). So far the models are almost
identical. But this is where the similarities stop.

The VM model then carves low-level hardware resources into VMs. Each VM is a
software construct containing virtual CPU, virtual RAM, virtual disk etc. As such,
every VM needs it’s own OS to claim, initialize and manage all of those virtual
resources. And sadly, every OS comes with it’s own set of baggage and overheads.
For example, every OS consumes a slice of CPU, a slice of RAM, a slice of storage
etc. Most need their own licenses as well as people and infrastructure to patch and
upgrade them. Each OS also presents a sizable attack surface. We often refer to all of
this as the OS tax, or VM tax - every OS you install consumes resources!

The container model only has a single kernel down at the host OS layer. It’s possible
to run tens or hundreds of containers on a single host with every container sharing

6: Containers 65

that single OS kernel. That means a single OS that consumes CPU, RAM, and storage.
A single OS that needs licensing. A single OS that needs upgrading and patching. And
a single OS kernel presenting an attack surface. All in all, a single OS tax bill!

That might not seem a lot in our example of a single server needing to run 4 business
applications. But when we’re talking about hundreds or thousands of apps (VM or
containers) this can be game changing.

Another thing to consider is that because a container isn’t a full-blown OS, it starts
much faster than a VM. Remember, there’s no kernel inside of a container that
needs locating, decompressing, and initializing - not to mention all of the hardware
enumerating and initializing associated with a normal kernel bootstrap. None of that
is needed when starting a container! The single shared kernel down at the OS level is
already started! Net result, containers can start in less than a second. The only thing
that has an impact on container start time is the time it takes to start the application
it’s running.

This all amounts to the container model being leaner and more efficient than the VM
model. We can pack more applications onto less resources, start them faster, and pay
less in licensing and admin costs, as well as present less of an attack surface to the
dark side. All of which is better for the business!

With that theory out of the way, let’s have a play around with some containers.
Running containers
To follow along with these examples you’ll need a working Docker host. For most of

the commands it won’t make a difference if it’s Linux or Windows. However, when
writing the book I used a Docker host running Ubuntu 16.04 for all examples.

Checking the Docker daemon

The first thing I always do when I log on to a Docker host is check that Docker is
running.

6: Containers 66

$ docker version

Client:

Version: 1.12.1

API version: 1.24

Go version: gol.6.3

Git commit: 23cf638

Built: Thu Aug 18 ©05:33:38 2016
0S/Arch: linux/amd64
Server:

Version: 1.12.1

API version: 1.24

Go version: gol.6.3

Git commit: 23cf638

Built: Thu Aug 18 ©5:33:38 2016
0S/Arch: linux/amd64

As long as you get a response back in the Client and Server sections you should
be good to go. If you get an error code in the Server section there’s a good chance
that the docker daemon (server) isn’t running, or that your user account doesn’t have
permission to access it.

If your user account doesn’t have permission to access the daemon, you need to
make sure it’s a member of the local docker Unix group. If it isn’t, you can add it
with usermod -aG docker <user> and then you’ll have to logout and log back in to
your shell for the changes to take effect.

If your user account is already a member of the local docker group then the problem
might be that the Docker daemon isn’t running. To check the status of the Docker
daemon run one of the following commands depending on your Docker host’s
operating system.

6: Containers 67

//Run this command on Linux systems not using Systemd
$ service docker status
docker start/running, process 29393

//Run this command on Linux systems that are using Systemd
$ systemctl is-active docker
active

//Run this command on Windows Server 2016 systems from a PowerShell window
> Get-Service docker

Status Name DisplayName

Running docker Docker Engine

Assuming the Docker daemon is running you’re fine to continue.

Starting a simple container

The simplest way to start a container is with the docker run command.

The command below starts a simple container that will run a containerized version
of Ubuntu Linux.

$ docker run -it ubuntu:latest /bin/bash

Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118cab82d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:f4691c96e6bbaa99d9. . .e95a60369c506dd6ebfH6ab
Status: Downloaded newer image for ubuntu:latest
root@3027eb644874: /#

The format of the command is essentially docker run -<options> <image>:<tag>
<command>.

6: Containers 68

Let’s break the command down a bit.

We started with docker run, this is the standard command to start a new container.
We then used the -it flags to make the container interactive and attach it to our
terminal. Next we told it to use the ubuntu:latest image. Finally we told it to run
the Bash shell as its application.

When we hit <Return> the Docker client made the appropriate API calls to the Docker
daemon. The Docker daemon accepted the command and searched the Docker host’s
local cache to see if it already had a copy of the image. In this example it didn’t, so it
went to Docker Hub to see if it could find it there. I could, so it pulled it locally and
stored it in its cache.

Note: In a standard out-of-the-box installation, the Docker daemon
implements the Docker Remote API on a local IPC/Unix socket at
/var /run/docker .sock.

Once the image was pulled, the daemon created the container and executed the Bash
shell inside of it.

If you look closely you’ll see that your shell prompt has changed and you’re now
inside of the container. In the example above the shell prompt has changed to
root@3027eb644874: /#. The long number after the @ is the first 12 characters of the
containers unique ID.

Try executing some basic Linux commands from inside of the container. You might
notice that some commands do not work. This is because the ubuntu:latest image,
like almost all container images, is highly optimized for containers. This means it
doesn’t have all of the normal commands and packages installed. The example below
shows a couple of commands - one succeeds and the other one fails.

6: Containers

root@3027eb644874: /% 1s -1

total 64

drwxr-xr-x 2 root root 4096
drwxr-xr-x 2 root root 4096
drwxr-xr-x 5 root root 380
drwxr-xr-x 45 root root 4096
drwxr-xr-x 2 root root 4096
drwxr-xr-x 8 root root 4096
drwxr-xr-x 2 root root 4096
drwxr-xr-x 2 root root 4096
drwxr-xr-x 2 root root 4096
drwxr-xr-x 2 root root 4096
dr-xr-xr-x 129 root root Q
drwx------ 2 root root 4096
drwxr-xr-x 6 root root 4096
drwxr-xr-x 2 root root 4096
drwxr-xr-x 2 root root 4096
dr-xr-xr-x 18 root root 0
drwxrwxrwt 2 root root 4096
drwxr-xr-x 11 root root 4096
drwxr-xr-x 13 root root 4096

Aug
Apr
Sep
Sep
Apr
Sep
Aug
Aug
Aug
Aug
Sep
Aug
Aug
Aug
Aug
Sep
Aug
Aug
Aug

19
12
13
13
12
13
19
19
19
19
13
19
26
26
19
13
19
26
26

root@3027eb644874 ; /#
root@3027eb644874: /#

root@3027ebb644874: /% ping www.

bash: ping: command not found
root@3027eb644874 : /#

Container processes

docker.

00:50
20:14
00: 47
00:47
20:14
2015
00:50
00:50
00:50
00:50
00:47
00:50
18:50
18:50
00:50
00:47
00:50
18:50
18:50

com

69

bin
boot
dev
etc
home
1ib
1ib64
media
mnt
opt
proc
root
run
sbin
srv
sys
tmp
usr

var

When we started the container in the previous section we told it to run the Bash shell
(/bin/bash). This makes the Bash shell the one and only process running inside
of the container. You can see this by running ps -elf from inside the container.

6: Containers 70

root@3027 :/#% ps -elf

F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD

4 S root 1 4] © - 4558 wait 00:47 ? 00:00:00 /bin/bash
© R root 11 1 © - 8604 - 00:52 ? 00:00:00 ps -elf

Although it might look like there are two processes running in the output above,
there re not. The first process in the list, with PID 1, is the Bash shell we told the
container to run. The second process in the list is the ps -elf command we ran to
produce the list. This is a short-lived process that has already exited by the time the
output is displayed on the terminal. Long story short, this container is running a
single process - /bin/bash.

Note: Windows containers are slightly different and tend to run quite a
few processes.

This means that if you type exit to exit the Bash shell, the container will terminate.
The reason for this is that a container cannot exist without a running process - killing
the Bash shell would kill the container’s only process, resulting in the container also

being killed.

Press Ctr1-PQ to exit the container without terminating it. Doing this will place
you back in the shell of your Docker host and leave the container running in
the background. You can use the docker ps command to view the list of running
containers on your system.

$ docker ps
CNTNR ID IMAGE COMMAND CREATED STATUS NAMES
302...74 ubuntu:latest /bin/bash 6 mins Up 6mins sick_montalcini

It’s important to understand that this container is still running and you can re-attach
your terminal to it with the docker exec command.

$ docker exec -it 3027eb644874 bash
root@3027 D/

Note: You can address a container by its name or ID

6: Containers 71

As you can see, the shell prompt has changed back to the container. If you run the
ps -elf command again you will now see two Bash processes. This is because the
docker exec command created a new Bash process and attached to that. This means
that typing exit from this Bash prompt will not terminate the container because the
original Bash process with PID 1 will continue running.

Type exit to leave the container and verify it’s still running with a docker ps.

If you are following along with the examples on your own Docker host you should
stop and delete the container with the following two commands (you will need to
substitute the ID of your container).

$ docker stop 3027eb64487
3027eb64487

$ docker rm 3027eb64487
3027eb64487

Container lifecycle

It’s a common myth that containers can’t persist data. They can!

A big part of the reason people think containers aren’t good for persistent workloads
or persisting data is because they’re so freaking good at non-persistent stuff. But
being good at one thing doesn’t mean you can’t do other things. A lot of VM admins
out there will remember companies like Microsoft and Oracle telling you that you
couldn’t run their applications inside of VMs - or at least they wouldn’t support you
if you did. I personally wonder if there’s a little bit of something similar with the
move to containerization - are there people out there trying to protect their empires
of persistent data and workloads from what they perceive as the threat of containers?

Anyway, in this section we’ll look at the lifecycle of a container - from birth, through
work and vacations, to eventual death.

We've already seen how to start containers with the docker run command. Let’s
start another one so we can walk it through its entire lifecycle.

6: Containers 72

$ docker run --name percy -it ubuntu:latest /bin/bash
root@9chb2d2£d1des: /#

That’s our container created and we named it “percy” for persistent :-S
Now let’s put it to work by writing some data to it.

From within the shell of your new container follow the procedure below to write
some data to a new file in the tmp directory and verify that the write operation
succeeded.

root@9chb2d2£d1d6e5: /# cd tmp
root@9chb2d2fd1d65: /tmp#
root@9chb2d2£d1d65: /tmp# 1s -1

total ©

root@9chb2d2fd1dos: /tmp#
root@9cb2d2fd1d65: /tmp¥ echo "sysadmins FTW" > newfile
root@9chb2d2fd1dos: /tmp#
root@9chb2d2fd1de5: /tmp¥# 1s -1

total 4

-rw-r--r-- 1 root root 14 Sep 13 04:22 newfile
root@9cb2d2£d1do5: /tmp#*
root@9chb2d2fd1d6e5: /tmp# cat newfile

sysadmins FTW

Press Ctr1-PQ to exit the container without killing it.

Now use the docker stop command to stop the container and put in on vacation.

$ docker stop percy
percy

You can use the container’s name or ID with the docker stop command. The format
is docker stop <container-id or container-name>.

Now run a docker ps.

6: Containers 73

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The container is not listed in the output above because it’s in the stopped state.
Run the same command again, only this time add the -a flag to show all containers
including those that are stopped.

$ docker ps -a
CNTNR ID IMAGE COMMAND CREATED STATUS NAMES
9¢cb...65 ubuntu:latest /bin/bash 4 mins Exited (@) percy

Now we can see the container showing as Exited (@). Stopping a container is
like stopping a virtual machine. Although it’s not currently running, its entire
configuration and contents still exist on the filesystem of the Docker host and it
can be restarted at any time.

Let’s use the docker start command to bring it back from vacation.

$ docker start percy

percy

$

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

9cb2d2fd1d65 wubuntu:latest "/bin/bash" 4 mins Up 3 secs percy

The stopped container is now restarted. Time to verify that the file we created earlier
still exists. Connect to the restarted container with the docker exec command.

$ docker exec -it percy bash
root@9 VA

Your shell prompt will change to show that you are now operating within the
namespace of the container.

Verify that the file you created earlier is still there and contains the data you wrote
to it.

6: Containers 74

root@9 :/#¥ cd tmp

root@9 /% 1s -1

-rw-r--r-- 1 root root 14 Sep 13 04:22 newfile
root@9 D/E

root@9 /% cat newfile

sysadmins FTW

As if by magic the file you created is still there and the data it contains is exactly
how you left it! This proves that stopping a container does not destroy the container
or the data inside of it.

Now I should point out that there are better and more recommended ways to store
data in containers. But at this stage of our journey I think this is an effective example
of the persistent nature of containers.

So far I think you’d be hard pressed to draw a major difference in the behavior of a
container vs a VM.

Now let’s kill the container and delete it from our system.

It is possible to delete a running container with a single command by passing the
-f flag to docker rm. However, it’s considered a best practice to take the two-
step approach of stopping the container first and then deleting it. This gives the
application/process that the container is running a fighting chance of stopping
cleanly. More on this in a second.

The example below will stop the percy container, delete it, and verify the operation.
If your terminal is still attached to the percy container you will need to get back to
your Docker host’s terminal by pressing Ctr1-PQ.

6: Containers 75

$ docker stop percy
percy

$

$ docker rm percy
percy

$

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The container is now deleted - literally wiped off the face of the planet. If it was
a good container, it becomes a VM in the afterlife. If it was a naughty container it
becomes a dumb terminal :-D

To summarize the lifecycle of a container. You can stop, start, pause, and restart
a container as many times as you want. And it’ll all happen really fast. But the
container and it’s data will always be safe. It’s not until you explicitly kill a container
that you run any chance of losing its data. And even then, if you’re storing data in a
volume, that data’s going to persist even after the container has gone.

Let’s quickly mention why we recommended a two-stage approach of stopping the
container before deleting it.

Stopping containers gracefully

Most containers will run a single process. In our previous example that process was
/bin/bash. When you kill a running container with docker rm <container> -f the
container will be killed without warning. The procedure is quite violent - a bit like
sneaking up behind the container it and shooting it in the back of the head. You're
literally giving the container and the process it’s running no chance to straighten it’s
affairs before being killed.

However, the docker stop command is far more polite. It gives the process inside
of the container a heads-up that it’s about to be stopped, giving it a chance to get
things in order before the end comes. Once the docker stop command returns, you
can then delete the container with docker rm.

The magic behind the scenes here has to do with signals. docker stop sends a
SIGTERM signal to process with PID 1 inside of the container. As we just said, this

6: Containers 76

gives the process a chance to clean things up and gracefully shut itself down. If it
doesn’t exit within 10 seconds it will receive a SIGKILL. This is effectively the bullet
to the head. But hey, it got 10 seconds to sort itself out first.

docker rm <container> -f doesn’t bother asking nicely with a SIGTERM, it just
goes straight to the SIGKILL. Like we said a second ago, this is like creeping up from
behind and smashing it over the head. I'm not a violent person by then way!

Web server example

So far we’ve seen how to start a simple container and interact with it. We've also
seen how to stop, restart and destroy containers. Now let’s take a look at a web
server example.

In this example we’ll start a new container from an image I use in a few of my
Pluralsight video courses'’. The image runs an insanely simple web server on port
8080.

Use the docker stop and docker rm commands to clean up any existing containers
on your system. Then run the following docker run command.

$ docker run -d --name webserver -p 80:8080 \
nigelpoulton/pluralsight-docker-ci

Unable to find image 'nigelpoulton/pluralsight-docker-ci:latest' locally
latest: Pulling from nigelpoulton/pluralsight-docker-ci

a3ed95caeb@2: Pull complete

3b231edb5aa2f: Pull complete

Te4f9cd54d46: Pull complete

929432235e51: Pull complete

6899e£f41c594: Pull complete

©b38fccd@dab: Pull complete

Digest: sha256:7a6b0125fe7893e70dc63b2. . .9b12a28e2¢38bd8d3d

Status: Downloaded newer image for nigelpoulton/plur...docker-ci:latest
6e£fa1838cd51b92a4817e0e7483d103bf72aTbaT £ fb5855080128d85043fe £21

https://app.pluralsight.com/library/search?q=nigel+poulton

https://app.pluralsight.com/library/search?q=nigel+poulton
https://app.pluralsight.com/library/search?q=nigel+poulton

6: Containers 77

Notice that your shell prompt hasn’t changed. This is because we started this
container in the background with the -d flag. Starting a container in the background
does not attach it to your terminal.

This example threw a few more arguments at the docker run command, so let’s take
a quick look at them.

We know docker run starts a new container. But this time we give it the -d flag
instead of -it. -d tells the container to run in the background rather than attaching
to your terminal in the foreground. The “d” stands for daemon mode, and -d and
-it are mutually exclusive. This means you can’t use both on the same container
- for obvious reasons you cannot start a container in the background and in the
foreground at the same time.

After that, we name the container and then give it -p 80:8080. The -p flag maps
ports on the Docker host to ports in the container. This time we’re mapping port 80
on the Docker host to port 8080 inside the container. This means that traffic hitting
the Docker host on port 80 will be directed to port 8080 inside of the container. It just
so happens that the image we’re using for this container defines a web service that
listens on port 8080. This means our container will come up running a web server
listening on port 8080.

Finally we tell it which image to use.

Running a docker ps command will show the container as running and show the
ports that are mapped. It’s important to know that port mappings are expressed as
host-port:container-port.

$ docker ps
CONTAINER ID COMMAND STATUS PORTS NAMES
6efa1838cd51 /bin/sh -c... Up 2 mins 0.0.0.0:80->8080/tcp webserver

We’ve removed some of the columns form the output above to help with
readability.

Now that the container is running and ports are mapped, we can connect to the
container by pointing a web browser at the IP address or DNS name of the Docker
host on port 80. Figure 6.4 shows the web page that is being served up by the
container.

6: Containers 78

Pluralsight Rocks

| Docker host's IP

Yo Pluralsighters!!!

Click the button below to head over to my podcast...

Figure 6.4

The same docker stop,docker pause,docker start,anddocker rmcommands can
be used on the container, and the same rules of persistence apply - stopping or pausing
the container does not destroy the container or any data stored in it.

Inspecting containers

In the previous example you might have noticed that we didn’t specify a command
for the container when we issued the docker run. Yet the container ran a simple web
service. How did this happen?

When building a Docker image it’s possible to embed a default command or
process you want containers using the image to run. If we run a docker inspect
command against the image we used to run our container, we’ll be able to see the
command/process that the container will run when it starts.

6: Containers 79

$ docker inspect nigelpoulton/pluralsight-docker-ci

{
"Id": "sha256:07e574331ce3768f30305519. . .49214bf3020ee69bbal ",
"RepoTags": [
"nigelpoulton/pluralsight-docker-ci:latest”
<Snip>
1,
"Cmd": [
"/bin/sh",
g,
"#(nop) CMD [\"/bin/sh\" \"-c\" \"cd /src \u@026\u@d26 node \
-/app.js\"]"
1,
<Snip>

We’ve snipped out the output to make is easier to find the information we're
interested in.

The entries after “Cmd” show the command(s) that the container will run unless you
override the with a different command as part of docker run. If you remove all of
the shell escapes in the example above, you get the following command /bin/sh -c
"cd /src \u@B26\u@@26 node ./app.js".

It’s common to build images with default commands like this as it makes starting
containers easier, forces a default behavior, and is a form of self documentation for
the image.

That’s us done for the examples in this chapter. Let’s see a quick way to tidy our
system up.

Tidying up

Here we’re going to show you the simplest and quickest way to get rid if every
running container on your Docker host. Be warned though, the procedure will

6: Containers 80

forcible destroy all containers without giving them a chance to clean up. This should
never be performed on production systems or systems running important
containers.

Run the following command from the shell of your Docker host to delete all
containers.

$ docker rm $(docker ps -aq) -f
6efa1838cd51

In this example we only had a single container running, so only one was deleted
(6efa1838cd51). However, the command works the same way as the docker rmi
$(docker images -q) command we used in the previous chapter to delete all
images on a single Docker host. We already know the docker rm command deletes
containers. Passing it $(docker ps -aq) as an argument effectively passes it the ID
of every container on the system. The - f flag forces the operation so that running
containers will also be destroyed. Net result... all containers, running or stopped, will
be destroyed and removed from the system.

Containers - The commands

« docker run is the command used to start new containers. In its simplest form
it accepts an image and a command as arguments. The image is used to create
the container and the command is the process or application you want the
container to run. This example will start an Ubuntu container in the foreground
and running the Bash shell: docker run -it ubuntu /bin/bash.

« Ctr1-PQ will detach your shell from the terminal of a container and leave the
container running (UP) in the background.

+ docker ps lists all containers in the running (UP) state. If you add the -a flag
you will also see containers in the stopped (Exited) state.

+ docker exec lets you run a new process inside of a running container. It’s
useful for attaching the shell of your Docker host to a terminal inside of
a running container. This command will start a new Bash shell inside of a
running container and connect to it: docker exec -it <container-name or
container-id> bash.

6: Containers 81

« docker stop will stop a running container and put it in the (Exited (@))
state. It does this by issuing a SIGTERM to the process with PID 1 inside of the
container. If the process has not cleaned up and stopped within 10 seconds,
a SIGKILL will be issued to forcibly stop the container. docker stop accepts
container IDs and container names as arguments.

+ docker start will restart a stopped (Exited) container. You can give docker
start the name or ID of a container.

+ docker rm will delete a stopped container. You can specify containers by name
or ID. It is recommended that you stop a container with the docker stop
command before deleting it with docker rm.

+ docker inspect will show you detailed configuration and runtime informa-
tion about a container. It accepts container names and container IDs as its main
argument. You can also use docker inspect with Docker images.

Chapter summary

In this chapter we compared and contrasted the container and VM models. We looked
at the OS tax problem of the VM model and saw how the container model can bring
huge efficiencies in much the same way as the VM model brought huge advantages
over the physical model.

We saw how to use the docker run command to start a couple of simple containers,
and we saw the difference between interactive containers in the foreground versus
containers running in the background.

We know that killing the process with PID 1 inside of a container will kill the
container. And we’ve seen how to start, stop, and delete containers.

We finished the chapter using the docker inspect command to view detailed
configuration metadata.

So far so good!

In the next chapter we’ll see how to orchestrate containerized applications across
multiple Docker hosts with some game changing technologies introduced in Docker
1.12.

7: Swarm mode

Now that we know how to install Docker, pull images, and work with containers, the
next thing we need is a way to work with it all at scale. That’s where orchestration
and swarm mode comes into the picture.

As usual, we’ll take a three-stage approach with a high level explanation at the top,
followed by a longer section with all the detail and some examples, and we’ll finish
things up with a list of the main commands we learned.

Swarm mode - The TLDR

It’s one thing to follow along with the simple examples in this book, but it’s an
entirely different thing running thousands of containers on tens or hundreds of
Docker hosts! This is where orchestration comes to the rescue!

At a high level, orchestration is all about automating and simplifying the manage-
ment of containerized applications at scale. Things like automatically rescheduling
containers when nodes break, scaling things up when demand increases, and
smoothly pushing updates and fixes into live production environments.

For the longest time orchestration like this was hard. Tools like Docker Swarm and
Kubernetes were available, but they were complicated. Then along came Docker 1.12
and the new native swarm mode - and overnight things changed. Swarm mode made
all this orchestration stuff a whole lot easier.

That’s the quick explanation. Now let’s get into the detail.

Swarm mode - The deep dive

First up, as the title of the chapter suggests, we're going to be focusing on swarm
mode - the native clustering and orchestration technologies that first shipped as part
Docker 1.12. Other orchestration solutions exist, but we’re not covering those here.

7: Swarm mode 83

Concepts and terminology

Swarm mode brought a load of changes and improvements to the way we manage
containers at scale. At the heart of those changes is native clustering that’s deeply
integrated into the Docker Engine. We’re not talking about something like Kuber-
netes that’s a separate tool requiring a highly skilled specialist to configure it on top
of existing Docker infrastructures. No! The clustering we’re talking about here is a
true first-class citizen in the Docker technology stack. And it’s simple!

But the folks at Docker, Inc. don’t really like using the term cluster. They’re calling a
cluster of orchestrated Docker engines a swarm, and the Docker engines participating
in a swarm are said to operate in swarm mode. We’ll try to be consistent and use these
terms throughout the remainder of the book. We’ll also start using the term single-
engine mode to refer to Docker engines that are not running in swarm mode.

Figure 7.1 shows a 4-node swarm with nodes running in swarm mode, as well as two
nodes not in the swarm operating in single-engine mode.

A Y

! \
I 1
I 1
I 1
I 1
I 1
I 1
" H H
AI.IIIII ' |
—~A./ : J 1
Node : Node :
Single-engine mode | Swarm mode Swarm mode H
I 1

u 1] | | 1

(T 1 (11 mEE 1

EEEEE : EEEEE ENEEE '

I 1

I 1

I 1

- ! - |

L 1 A 1
M ! oL !
Node | Node Node i
Single-engine mode ‘\ Swarm mode Swarm mode ,'
\\ ,I

Figure 7.1

7: Swarm mode 84

Backward compatibility

Introducing swarm mode was massively important for Docker, Inc. But so is
maintaining backward compatibility! This led them to make swarm mode entirely
optional in Docker 1.12. A standard installation of the Docker Engine would default
to running in single engine mode, ensuring 100% backward compatibility with
previous versions of Docker.

This is great news if you’re a user or developer of 3rd party clustering tools and the
likes. As long as you keep Docker 1.12 and later in single-engine mode, all of your
existing tools and apps will work as normal! However, as soon as you take the plunge
and put your Docker Engine into swarm mode you risk breaking those 3rd party tools
and apps.

In short, putting a Docker Engine into swarm mode gives you all of the latest
orchestration goodness, it just comes at the price of backward compatibility.

Swarm mode primer

Let’s take a minute or two to explain the major components and constructs in a
swarm.

A swarm consists of one or more nodes. These can be physical servers, VMs, or cloud
instances. The only requirement is that all nodes in a swarm can communicate with
each other over reliable networks.

Nodes are then configured as managers or workers. Managers look after the state of
the cluster and are in charge of dispatching tasks to workers. Workers accept tasks
from managers and execute them.

When talking about fasks in the context of a swarm, we mean containers. So when
we say “managers dispatch tasks to workers”, we’re saying they dispatch container
workloads. You might also hear them referred to as replicas. This might be confusing
at this point, so try and remember that tasks and replicas are words that mean
containers.

The next thing we need to know about is services. Services are the main construct we
run on a swarm. And all a service is, is a declarative way of setting a desired state
for a set of tasks (containers). But it’s hugely powerful. The ability to set a desired
state for things like the following is game changing:

7: Swarm mode 85

« Set the number of tasks that make up a service
« Set the image the containers in the service will use
« Set the procedure for updating to newer versions of the image

The configuration and state of the swarm is held in a distributed etcd database located
on all managers in the swarm. It’s kept extremely up-to-date and is hosted in-memory
on all manager nodes to make it fast. But the best thing about it is the fact that it
requires zero configuration - it just takes care of itself.

Something else that’s game changing about swarm mode is its approach to security.
TLS is so tightly integrated that it’s not possible to build a swarm without it. In
today’s security conscious world, things like this deserve all the props they get!
Anyway, swarm mode uses TLS to encrypt communications, authenticate nodes, and
authorize roles. Automatic key rotation is also thrown in as the icing on the cake! And
it all happens so smoothly that you wouldn’t even know it was there!

That’s enough of a primer. Let’s get our hands dirty with some examples.

Lab setup

For the remainder of this chapter we’ll build the lab shown in Figure 7.2 with 6-nodes
configured as 3 managers and 3 workers. Each node is running Linux with Docker
1.12 or higher. All nodes in the lab can communicate over the network.

7: Swarm mode 86

o e

,

Figure 7.2

The names and IP addresses are not important and can be different in your lab. If
you are following along with the examples, just remember to substitute them with
your own.

Enabling swarm mode

Running docker swarm init on a Docker host operating in single-engine mode will
switch that node into swarm mode and create a new swarm. It will also make the
node a manager.

Additional nodes can then be joined to the swarm as workers and managers using
the docker swarm join command. This also puts those nodes into swarm mode as
part of the operation.

The following steps will put mgr1 into swarm mode and initialize a new swarm. It
will then join wrk1, wrk2, and wrk3 as worker nodes - automatically putting them
into swarm mode. Finally, it will add mgr2 and mgr3 as additional managers and
switch them into swarm mode. At the end of the procedure all 6 nodes will be part
of the same swarm and will all be operating in swarm mode.

7: Swarm mode 87

1. Log on to mgr1 and initialize a new swarm.

$ docker swarm init \
--advertise-addr 10.0.0.1:2377 \
--listen-addr 10.0.0.1:2377

Swarm initialized: current node (d21lyzn@v5qgvgdyfzecT79qzkx) is now a manager.

The command can be broken down as follows:

+ docker swarm init tells Docker to start a new cluster and make this node
the first manager. It also enables swarm mode on the node.

+ --advertise-addr is the IP and port that other nodes should use to
connect to this manager. The flag is optional, but it gives you control
over which IP gets used on nodes with multiple IPs. It also gives you the
chance to specify an IP address that does not exist on the node, such as
a load balancer IP address.

+ --listen-addr lets you specify which IP and port you want to listen on
for swarm traffic. This will usually match the --advertise-addr, but is
useful in situations where you want to restrict swarm to a particular IP
on a system with multiple IPs. It’s also required in situations where the
--advertise-addr refers to a remote IP address like a load balancer.

I recommend you always use both flags.

The default port that swarm mode operates on is 2377. This is entirely
customizable, but Docker, Inc. are looking to register this with IANA as the
official Docker swarm port.

2. List the nodes in the swarm

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
d21...qzkx * mgri Ready Active Leader

Notice that mgr1 is currently the only node in the swarm and is listed as the
Leader. We'll come back to this in a second.

3. From magrl run the docker swarm join-token command to extract the
commands and tokens required to add new workers and managers to the
swarm.

7: Swarm mode 88

$ docker swarm join-token worker

To add a manager to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-Quahebax. ..c87tu8dx2c \
10.0.0.1:2377

$ docker swarm join-token manager

To add a manager to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-Quahebax. . .ue4hvbps3p \
10.0.0.1:2377

Notice that the commands to join a worker and a manager are identical apart
from the join tokens (SWMTKN). This means that whether a node joins as a
worker or a manager depends entirely on which token you use when joining
it.

4. Log on to wrkl and join it to the swarm using the docker swarm join
command with the token used for joining workers.

$ docker swarm join \
--token SWMTKN-1-Quahebax. ..c87tu8dx2c \
10.0.0.1:2377 \
--advertise-addr 10.0.0.4:2377 \
--listen-addr 10.0.0.4:2377

This node joined a swarm as a worker.

I’'ve manually added the --advertise-addr, and --listen-addr flags as I
consider it best practice to be as specific as possible when it comes to network
configuration.

5. Repeat the previous step on wrk2 and wrk3 to join them to the swarm as
workers. Make sure you use wrk2 and wrk3’s own IP addresses for the --
advertise-addr and --listen-addr flags

6. Log on to mgr2 and join it to the swarm as a manager using the docker swarm
join command with the token used for joining managers.

7: Swarm mode 89

$ docker swarm join \
--token SWMTKN-1-Quahebax. . .uedhvbps3p \
10.0.0.1:2377 \
--advertise-addr 10.0.0.2:2377 \
--listen-addr 10.0.0.1:2377

This node joined a swarm as a manager.

7. Repeat the previous step on mgr3 remembering to use mgr3’s IP address for
the advertise-addr and --1listen-addr flags.

8. List the nodes in the swarm by running docker node 1s from any of the
manager nodes in the swarm.

$ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
Qg4rl...babl8 * mgr2 Ready Active Reachable
2x1ti...10nyp mgr3 Ready Active Reachable
8yvl@b. ..wmro7 wrk1 Ready Active

Omzwf. . .e4mén wrk3 Ready Active

d211ly...9qgzkx mgr1i Ready Active Leader
eb2gf...15wtb6 wrk?2 Ready Active

Congratulations! You've just created a 6-node swarm with 3 managers and 3 workers.
As part of the process you put the Docker Engine on each node into swarm mode. As
an added bonus, the swarm is automatically secured with TLS.

If you look in the MANAGER STATUS column in the previous output you’ll see that
the three manager nodes are showing as either “Reachable” or “Leader”. We’ll learn
more about leaders shortly. Nodes with nothing in the MANAGER STATUS column are
workers. Also note the asterisk (*) after the ID on the line showing mgr2. This shows
us which node we ran the docker node 1s command from. In this instance the
command was issued from mgr2.

Note: It’s a pain to specify the --advertise-addr and --listen-addr
flags every time you join a node to the swarm. However, it can be even
more of a pain if you get the network configuration of your swarm
wrong. Manually adding nodes to a swarm is unlikely to be a daily task

7: Swarm mode 90

so I think it’s worth the extra up-front effort to use the flags. It’s your
choice though. In lab environments or nodes with only a single IP you
do not need to use the flags.

Now that we have a swarm up and running, let’s take a look at manager high
availability.

Swarm manager high availability (HA)

So far we’ve added three manager nodes to a swarm. Why did we add three and how
do they work together? We’ll answer all of this, plus more in this section.

Swarm managers have native support for high availability (HA). This means that
one or more can fail and the survivors will keep the swarm running.

Technically speaking, swarm mode implements a form of active-passive multi-
manager HA. This means that although you might - and should - have multiple
managers, only one of them is ever considered active. We call this active manager the
leader. And the leader’s the only one that will ever issue live commands against the
swarm such as changing the configuration of the swarm or issuing tasks to workers.
If a non-active manager receives commands for the swarm it’ll proxy them across to
the leader.

This process is shown in Figure 7.3 where step 1 is the command coming in to a
manager from a remote Docker client. Step 2 is the non-leader manager proxying the
command to the leader. Step 3 is the leader pushing that command to the relevant
node in the swarm.

7: Swarm mode 91

Docker @

client Incoming
e 9 command

i,
Diem @
Manager p= .zt
CO/h ’\'J/ v

Man, o ‘ﬂ‘ %

Figure 7.3

Swarm uses an implementation of the Raft consensus algorithm'® to power manager
HA, and the following two best practices apply:

1. Deploy an odd number of managers.
2. Don’t deploy too many managers

Having an odd number of managers increases the chance of reaching quorum
and avoiding a split-brain. For example, if you had 4 managers and the network
partitioned, you could be left with two managers on each side of the partition. This
is known as a split brain - each side knows there used to be 4 but can now only see 2.
Neither side has a way of knowing if the two it can no longer see are still alive and
which side holds the majority share (quorum). However, if you had 3 or 5 managers
and the same network partition occurred, it would be impossible to have the same
number of managers on both sides of the split. This means that one side would have
a far better chance of knowing if it had more or less than the other side and achieving
quorum.

®https://raft.github.io/

https://raft.github.io/
https://raft.github.io/

7: Swarm mode

92

Split brain Quorum
| |
| |
| |
u2zi 1 e e 1 uzi
I & & I @
\ A | VN W N | N
W 1 el el 1 Sl
Manager 1 Manager Manager 1 Manager
| |
Il= I Il= Il= I Il=
Manager : Manager Manager : Manager
| |
i o222, |
I @
i \ AR i
= |
Manager I
|
i
1

Figure 7.4

As with all consensus algorithms - more participants means more time required to
achieve consensus. It’s like deciding where to eat - it’s always quicker and easier for 3
people to decide than it is for 33! With this in mind, it’s a best practice to have either 3
or 5 managers for HA. 7 might work, but it’s generally accepted that 3 or 5 is optimal.
You definitely don’t want more than 7 as the time taken to achieve consensus will be
longer.

A final word of caution regarding manager HA. While it’s obviously a good practice
to spread your managers across availability zones within your network, you need to
make sure that the networks connecting them are reliable! Network partitions can
be a royal pain in the backside! This means, at the time of writing, the nirvana of
hosting your active production applications and infrastructure across multiple cloud
providers such as AWS and Azure is a bit of a daydream. Take time to make sure
your managers are connected via high speed reliable networks!

Now that we’ve got our swarm built and understand the concepts of leaders and
manager HA, let’s move on to services.

7: Swarm mode 93

Services

Like we said in the Swarm primer... services are a new construct introduced with
Docker 1.12 that only exist in swarm mode.

They let us declare the desired state for a group of containers (tasks) and feed that to
Docker. For example, assume you’ve got an app that has a web front-end. You have
an image for the web server, and testing has shown that you will need 5 instances of
the web service to handle normal daily traffic. You would translate this requirement
into a service declaring the image the containers should use, and that the service
should always have 5 running tasks.

We’ll see some of the other things that can be declared as part of a service in a minute,
but before we do that, let’s see how to create the one we just described.

We create a service with the docker service create command.

$ docker service create --name web-fe \
-p 8080:8080 \
--replicas 5 \
nigelpoulton/pluralsight-docker-ci

2k ffzpzT721nr jikmxgh j474qg

Let’s review that command and output.

We used docker service create to tell Docker we are declaring a new service, and
we used the --name flag to name the service web-fe. We told Docker to map port
8080 on every node in the swarm to 8080 inside of each task or container in the
service. Next we used the --replicas flag to tell Docker that there should always be
5 tasks/containers in the service. Finally we told Docker which image to use for all
tasks and containers - it’s important to understand that all tasks in a service use the
same image and config!

After we hit <Return>, the manager acting as leader instantiated 5 tasks across the
swarm - remember that managers also act as workers. Each worker or manager then
pulled the image and started a container from it running on port 8080. The swarm
leader also ensured a copy the service’s desired state was replicated to every manager
in the swarm.

7: Swarm mode 94

But this isn’t the end. All services are constantly monitored by the swarm - the swarm
runs a reconciliation loop that constantly compares the actual state of the service to
the desired state. If the two states match, the world is a happy place and no further
actions need taking. If they don’t match, the swarm takes actions so that they do. Put
another way, the swarm is constantly making sure that actual state matches desired
state.

As an example, if one of the workers hosting one of the 5 web-fe container tasks
fails, the actual state for the web-fe service will drop from 5 running tasks to 4. This
will no longer match the desired state of 5, and Docker will start a new web-fe task
to bring actual state back in line with desired state. This behavior is very powerful
and allows the service to self-heal in the event of node failures and the likes.

Viewing and inspecting services

You can use the docker service ls command to see a list of all services running on
a swarm.

$ docker service ls
ID NAME REPLICAS IMAGE COMMAND
2k ffzpz721inr web-fe 5/5 nigelpoulton/plur...cker-ci

The output above shows a single running service as well as some basic information
about state. Among other things, we can see the name of the service and that 5 out
of the 5 desired tasks/replicas are in the running state. If you run this command soon
after deploying the service it might not show all tasks/replicas as running. This is
probably because of the time it takes to pull the image on each node.

You can use the docker service ps command to see a list of tasks in a service and
their state.

7: Swarm mode 95

$ docker service ps web-fe
iD NAME IMAGE NODE DESIRED CURRENT

817...f6z web-fe.1 nigelpoulton/... mgr2 Running Running 2 mins
ald...mzn web-fe.2 nigelpoulton/... wrkl1 Running Running 2 mins
cc@...ar®@ web-fe.3 nigelpoulton/... wrk2 Running Running 2 mins
6f0...azu web-fe.4 nigelpoulton/... mgr3 Running Running 2 mins
dyl...p3e web-fe.5 nigelpoulton/... mgrl Running Running 2 mins

The format of the command is docker service ps <service-name or service-
id>. The output displays each task on its own line, shows which node in the swarm
it’s executing on, and shows desired state and actual state.

For detailed information about a service, use the docker service inspect com-
mand.

$ docker service inspect --pretty web-fe

ID: 2k ffzpzT21nr jikmxgh j474qg
Name: web-fe
Mode: Replicated

Replicas: 5
Placement:
UpdateConfig:

Parallelism: 1

On failure: pause
ContainerSpec:

Image: nigelpoulton/pluralsight-docker-ci
Resources:
Ports:

Protocol = tcp
TargetPort = 8080
PublishedPort = 8080

The example above uses the - -pretty flag to limit the output to the most interesting
items printed in an easy-to-read format. Leaving off the --pretty flag will give a
more verbose output.

We’ll come back to some of these outputs later.

Let’s go and see how to scale a service.

7: Swarm mode 96

Scaling a service

Another powerful feature of services is the ability to easily scale them up and down.

Let’s assume business is booming and we’re seeing double the amount of anticipated
traffic hitting the web front-end. Fortunately scaling the web-fe service is as simple
as running the docker service scale command.

$ docker service scale web-fe=10
web-fe scaled to 10

The above command will scale the number of tasks/replicas from 5 to 10. In the
background it’s updating the service’s desired state from 5 to 10. Run another docker
service ls command to verify the operation was successful.

$ docker service ls
2kffzpzT72inr web-fe 10/10 nigelpoulton/pluralsight-docker-ci

Running a docker service ps command will show that the tasks in the service are
balanced across all nodes in the swarm as evenly as possible.

$ docker service ps web-fe
ID NAME IMAGE NODE DESIRED CURRENT

817...f6z web-fe.1 nigelpoulton/... mgr2 Running Running 5 mins
ald...mzn web-fe.2 nigelpoulton/... wrkl Running Running 5 mins
cc@...ar® web-fe.3 nigelpoulton/... wrk2 Running Running 5 mins
6f0...azu web-fe.4 nigelpoulton/... mgr3 Running Running 5 mins
dyl...p3e web-fe.5 nigelpoulton/... mgri1 Running Running 5 mins
912...vtb web-fe.6 nigelpoulton/... mgrl Running Running 1 min
3wu...oT7y web-fe.7 nigelpoulton/... wrk3 Running Running 1 min
aso...6hh web-fe.8 nigelpoulton/... wrk3 Running Running 1 min
OTu...4bn web-fe.9 nigelpoulton/... wrkl1 Running Running 1 min
alu...4jj web-fe.10 nigelpoulton/... mgr2 Running Running 1 min

Behind the scenes, swarm-mode runs a scheduling algorithm that defaults to trying
to balance tasks as evenly as possible across the nodes in the swarm. At the time of

7: Swarm mode 97

writing, this amounts to running an equal number of tasks on each node without
taking into consideration things like CPU load etc.

Run another docker service scale command to bring the number back down from
10 to 5.

$ docker service scale web-fe=5
web-fe scaled to 5

Now that we know how to scale a service, let’s see how we remove one.

Removing a service

Removing a service is simple - may be too simple.

The following docker service rm command will delete the service we deployed
earlier.

$ docker service rm web-fe
web-fe

Confirm the service is gone with the docker service 1s command.

$ docker service ls
ID NAME REPLICAS IMAGE COMMAND

Be careful using the docker service rm command as it deletes all tasks in a service
without asking for confirmation.

Now that the service is deleted from the system, let’s go and look at how to push
rolling updates to a service.

7: Swarm mode 98

Rolling updates

Pushing updates to deployed applications is a fact of life. And for the longest time
it’s been really painful. I've lost more than enough weekends to major application
updates, and I've no intention of going there again if I can help it.

Well... thanks to Docker services, pushing updates to well designed apps just got a
whole lot easier!

To see this, we're going to deploy a new service. But before we do that we’re going
to create a new overlay network for the service. This isn’t necessary, but I wanted
you to see how it was done and how the service uses it.

$ docker network create -d overlay uber-net
43w fpbpzead7@et4dS5TudnOws

This creates a new overlay network called “uber-net” that we’ll be able to leverage
with the service we’re about to create. An overlay network essentially creates a new
layer 2 network that we can place containers on, and all containers on it will be able to
communicate with each other. This works even if the Docker hosts they’re running
on are on different underlying networks. Basically the overlay network creates a
new layer 2 container network on top of potentially multiple different underlying
networks.

Figure 7.5 shows two underlay networks connected by a layer 3 router. There is then
a single overlay network across both of them. Docker hosts are connected to the two
underlay networks and containers are connected to the overlay. All containers on
the overlay can communicate with each other even if they are running on Docker
hosts plumbed into different underlay networks.

7: Swarm mode 99

| ' Overlay network (10.0.0.0/24) ' |

&; 172.31.4.0/24 i\t‘ ﬂ- 172.30.12.0/24 i‘

Node Node Node Node

Figure 7.5

Run a docker network 1s to verify that the network created properly and is visible
on the Docker host.

$ docker network ls

NETWORK ID NAME DRIVER SCOPE
490e2496e06b bridge bridge local
a0559ddTbbo8 docker_gwbridge bridge local
a856a8ad9930 host host local
1ailucbrgenr ingress overlay swarm
be581cd6de9b none null local
43wfpbpzeadT uber-net overlay swarm

The uber -net network was successfully created with the swarm scope and is currently
only visible on manager nodes in the swarm.

Let’s go and create a new service.

$ docker service create --name uber-svc \
--network uber-net \
-p 80:80 --replicas 12 \
nigelpoulton/tu-demo:v1

dhbtgvqrg2g4sg@7tt fuhg8nz

7: Swarm mode 100

Let’s see what we just declared with that docker service create command.

The first thing we did was name the service and then use the - -network flag to tell it
to place all containers on the new uber -net network. We then exposed port 80 across
the entire swarm and mapped it to port 80 inside of each of the 12 replicas or tasks
we asked it to run. Finally we told it to base all tasks on the nigelpoulton/tu-demo:v1
image.

Run a docker service 1s and adocker service ps command to verify the state of
the new service.

$ docker service 1s

1D NAME REPLICAS IMAGE

dnbtgvgrg2g4 uber-svc 12/12 nigelpoulton/tu-demo:vi

$

$ docker service ps uber-svc

1D NAME IMAGE NODE DESIRED CURRENT STATE

Qv...7e5 uber-svc. nigelpoulton/...:v1l wrk3 Running Running min

bh...wa@ uber-svc. nigelpoulton/...:vl wrk2 Running Running min

23...u97 uber-svc. nigelpoulton/...:v1l wrk2 Running Running 1 min

82...5y1 uber-svc. nigelpoulton/...:vl mgr2 Running Running min
min
eb6...3u@ uber-svc.
min

78...r7z uber-svc. nigelpoulton/...:v1l wrkl Running Running

2m. ..kdz uber-svc. min

1
2
3
4
c3...gny uber-svc.5 nigelpoulton/...:v1l wrk3 Running Running
6
7
8 nigelpoulton/...:vl mgr3 Running Running
9

b9...k7w uber-svc. nigelpoulton/...:vl mgr3 Running Running min

ag...vl6 uber-svc.10 nigelpoulton/...:v1l mgr2 Running Running min

min

1
1
1
1
1

nigelpoulton/...:v1l wrkl Running Running 1 min
1
1
1
1
e6...dfk uber-svc.11 nigelpoulton/...:vl mgrl Running Running 1
1

e2...k1j uber-svc.12 nigelpoulton/...:v1l mgrl1 Running Running min
Passing the service the -p 80:80 flag will ensure that a swarm-wide mapping is

created that maps traffic coming in to any node in the swarm on port 80 through to
port 80 inside of any container in the service.

Open a web browser and point it to the IP address of any of the nodes in the swarm
on port 80 to see the app running in the service.

7: Swarm mode 101

Football VS Soccer!

- (¢l | IP or DNS of any node in the swarm

Football VS Soccer!

FOOTBALL

Vote processed by débbfaba40bb

Figure 7.6

As you can see, the application is a simple voting application that will register votes
for either “football” or “soccer”. Feel free to point you web browser to other nodes
in the swarm. You will be able to reach the web server from any node in the swam
because the -p 80:80 creates a mapping on every host. This is true even on nodes
that might be running a task for the service - every node gets a mapping and can
therefore redirect your request to a node that runs the service.

Now let’s assume that this particular vote has come to an end and your company
is now running a new poll. A new image has been created for the new poll and has
been added to the same Docker Hub repository, but this one is tagged as v2 instead
of v1.

Let’s also assume that you've been tasked with pushing the updated image to the
swam in a staged manner - 2 containers at a time with a 20 second delay in between
each batch of 2. We can use the following docker service update command to
accomplish this.

7: Swarm mode 102

$ docker service update \
--image nigelpoulton/tu-demo:v2 \
--update-parallelism 2 \
--update-delay 20s uber-svc

uber -svc

Let’s review the command. docker service update lets us make updates to running
services by updating the service’s desired state. This time we gave it a new image tag
v2 instead of v1. And we used the --update-parallelism and the --upate-dealy
flags to make sure that the new image was pushed to 2 tasks at a time with a 20
second cool-off period in between each pair. Finally we told Docker to make these
changes to the uber-svc service.

If we run a docker service ps against the service we’ll see that some of the tasks
in the service are at v2 while some are at v1. If we give the operation enough time
to complete (4 minutes) all tasks will eventually reach the new desired state of using
the v2 image.

$ docker service ps uber-svc

1D NAME IMAGE NODE DESIRED CURRENT STATE
Tz...nys uber-svc.1 nigel...v2 mgr2 Running Running 13 secs
Qv...7e5 _uber-svc.1 nigel...v1 wrk3 Shutdown Shutdown 13 secs
bh...wa@ uber-svc.2 nigel...vl wrk2 Running Running 1 min
e3...gr2 uber-svc.3 nigel...v2 wrk2 Running Running 13 secs
23...u97 _uber-svc.3 nigel...vl wrk2 Shutdown Shutdown 13 secs

82...5y1 uber-svc.4 nigel...v1 mgr2 Running Running 1 min
c3...gny uber-svc.5 nigel...v1 wrk3 Running Running 1 min
e€6...3u@ uber-svc.6 nigel...vl wrk1l Running Running 1 min
78...r7z uber-svc.7 nigel...vl wrk1l Running Running 1 min
2m...kdz uber-svc.8 nigel...vl mgr3 Running Running 1 min
b9...kTw uber-svc.9 nigel...v1 mgr3 Running Running 1 min
ag...v1l6 uber-svc.10 nigel...vl mgr2 Running Running 1 min
e6...dfk uber-svc.11 nigel...v1 mgrl Running Running 1 min
e2...k1j uber-svc.12 nigel...vl mgrl Running Running 1 min

You can witness the update happening in real-time by opening a web browser to
any node in the swarm and hitting refresh several times. Some of the requests will

7: Swarm mode 103

be serviced by containers running the old version and some will be serviced by
containers running the new version. After enough time all requests will be service
by containers running the updated copy of the service.

Congratulations. You've just pushed a rolling update to a live containerized applica-
tion.

If you run a docker inspect --pretty command against the service you'll see the
update parallelism and update delay settings you just used are now part of the service
definition. This means future updates that you push will automatically use these
settings unless you override them as part of the docker service update command.

$ docker service inspect --pretty uber-svc

ID: dhbtgvqrg2q4sg@7tt fuhg8nz
Name: uber-svc
Mode: Replicated

Replicas: 12
Update status:

State: completed

Started: 11 minutes ago
Completed: 8 minutes ago

Message: update completed
Placement:
UpdateConfig:

Parallelism: 2

Delay: 20s

On failure: pause
ContainerSpec:

Image: nigelpoulton/tu-demo:v2
Resources:
Networks: 43wfpbpzead7@et4d57udnOws
Ports:

Protocol = tcp
TargetPort = 80
PublishedPort = 8@

You should also note a couple of things about the service’s network config. All nodes
in the swarm that are running a task for the service will have the uber-net overlay

7: Swarm mode 104

network that we created earlier. We can verify this by running docker network 1s
on any node running a task.

You should also note the Networks portion of the docker inspect output above. This
shows the 43wfp6pzeadT0et4d5Tudn9ws uber-net network as well as the swarm-
wide 80:80 port mapping.

The future of services

Services are still relatively new to Docker, but they’re massively strategic! This means
we should expect to see significant development around them.

A couple of those developments will more than likely be; the ability to define a service
in a manifest file, and to run more than just container workloads as part of services.

On the topic of manifest files. In this chapter we've shown you how to declare a
service using the docker service create command and passing it a lot of flags and
options. In the future we should expect to be able to pass the command a JSON
or YAML file that holds the entire service declaration. This will allow us to keep a
repository of service definition files, version control them, and easily pass them to
Docker to instantiate new services. Expect this very soon.

In the more distant future we may even see non-container workloads running
under the auspices of services. We said earlier in the chapter that service tasks
= containers. However, the executor component of the swarm architecture, which
currently executes container workloads, is pluggable. This means you might be able
to swap it out in the future for executors that can run things like unikernel workloads.
However, this is very forward thinking and probably more of a long-term vision than
a short-term goal.

A quick word on the maturity of swarm mode

Swarm mode is based on the battle-hardened and production-tested code from the
Docker Swarm project. At a high level, all of the good stuff from Docker Swarm
was extracted and dumped into a re-usable toolkit called SwarmKit. This was then
implemented natively into the Docker Engine, and swarm mode was born.

But the point to note is that although swarm mode was new in Docker 1.12, it’s not
like the project recklessly dropped in thousands of lines of brand new code that had

7: Swarm mode 105

never seen the light of day. The underlying code has been around for a while and
was being actively deployed in production environments.

That all said, you should still perform your normal testing before deciding to run
your business critical apps on it!

Clean-up

Let’s clean-up our service.

$ docker service rm uber-svc
uber -svc

Verify the uber-svc is no longer running with the docker service 1s command.

$ docker service ls
ID NAME REPLICAS IMAGE COMMAND

Swarm mode - The commands

+ docker swarm init is the command to create a new swarm. The node that
you run the command on becomes the first manager in the new swarm and is
switched to run in swarm mode.

« docker swarm join-token reveals the commands and tokens required to join
workers and managers to existing swarms. To expose the command to join a
new manager use the docker swarm join-token manager command, and to
get the command to join a worker use the docker swarm join-token worker
command.

+ docker node s lists all nodes in the swarm and lists which are managers and
which is the leader.

 docker service create is the command to declaratively create a new service.

+ docker service ls lists running services in the swarm and gives basic info
on the state of the service and any tasks it’s running.

7: Swarm mode 106

+ docker service ps gives more detailed information about individual tasks
running in a service.

+ docker service inspect gives very detailed information on a service. It
accepts the --pretty flag to limit the information returned to the most
important information.

 docker service scale lets you scale the number of tasks in a service up and
down.

+ docker service update lets you update many of the properties of a running
service.

+ docker service rm isthe command to delete a service from the swarm. Use it
with caution as it deletes all tasks in a service without asking for confirmation.

Chapter summary

In this chapter we learned about swarm mode and how to build a swarm.

We used the docker swarm init command to create a new swarm and make the
node we ran the command on the first manager of that swarm. We then joined
managers and workers. We learned that managers operate in an HA formation and
the recommended number of managers is either 3 or 5.

We learned how to declare services and run them on a swarm. We saw how network
ports are exposed across the entire swarm allowing us to hit any node in the swarm
and reach the service endpoint - even if the node we hit wasn’t running a task for
the service.

We wrapped the chapter up by scaling a service up then down, and pushing an update
to a live service using a rolling update.

8: What next

Hopefully you’re now comfortable talking about Docker and working with it.

Taking your journey to the next step is simple in today’s world. It’s insanely easy
to spin up infrastructure and workloads in the cloud where you can build and test
Docker until you’re a world authority!

You can also head over to my video training courses at Pluralsight®. If you’re not
a member of Pluralsight then become one! Yes it costs money, but its definitely a
service where you get value for your money! And if you’re unsure... they always
have a free trail period where you can get access to my courses for free for a limited
period.

I’d also recommend you hit events like Dockercon® and your local Docker meetups®'.

Feedback

A massive thanks for reading my book. I really hope it was useful for you!

On that point, I'd love your feedback - good and bad. If you think the book was
amazing I'd love you to tell me and others! But I also want to know what you didn’t
like about it and how I can make the next version better!!! Please leave comments on
the book’s feedback pages and feel free to hit me on Twitter** with your thoughts!

,@nigelpoulton

Thanks again for reading my book and good luck driving your career forward!!

http://app.pluralsight.com/author/nigel-poulton
**https://www.dockercon.com
*Thitps://www.docker.com/community/meetup-groups
*https://twitter.com/nigelpoulton

http://app.pluralsight.com/author/nigel-poulton
https://www.dockercon.com/
https://www.docker.com/community/meetup-groups
https://twitter.com/nigelpoulton
http://app.pluralsight.com/author/nigel-poulton
https://www.dockercon.com/
https://www.docker.com/community/meetup-groups
https://twitter.com/nigelpoulton

	Table of Contents
	0: About the book
	Why should I read this book or care about Docker?
	Isn't Docker just for developers?
	Why this Docker book and not another one?
	Should I buy the book if I've already watched your video courses?
	How the book is organized
	Other stuff about the book

	Part 1: The general info stuff
	1: Containers from 30,000 feet
	The bad old days
	Hello VMware!
	VMwarts
	Hello Containers!
	Linux containers
	Hello Docker!
	Windows containers
	Windows containers vs Linux containers
	Chapter Summary

	2: Docker
	Docker - The TLDR
	Docker, Inc.
	The Docker runtime and orchestration engine
	The Docker open-source project
	The container ecosystem
	The Open Container Initiative

	3: Installing Docker
	Docker for Windows
	Docker for Mac
	Installing Docker on Linux
	Chapter Summary

	4: The big picture
	Engine check
	Images
	Containers
	Attaching to running containers

	Part 2: The technical stuff
	5: Images
	Docker images - The TLDR
	Docker images - The deep dive
	Images - The commands
	Chapter summary

	6: Containers
	Docker containers - The TLDR
	Docker containers - The deep dive
	Containers - The commands
	Chapter summary

	7: Swarm mode
	Swarm mode - The TLDR
	Swarm mode - The deep dive
	Swarm mode - The commands
	Chapter summary

	8: What next
	Feedback

