

Docker:	Up	and	Running
Karl	Matthias	and	Sean	P.	Kane

Docker:	Up	and	Running

by	Karl	Matthias	and	Sean	P.	Kane

Copyright	©	2015	Karl	Matthias,	Sean	P.	Kane.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Brian	Anderson

Production	Editor:	Melanie	Yarbrough

Copyeditor:	Gillian	McGarvey

Proofreader:	Sonia	Saruba

Indexer:	Wendy	Catalano

Interior	Designer:	David	Futato

Cover	Designer:	Ellie	Volkhausen

Illustrator:	Rebecca	Demarest

June	2015:	First	Edition

http://safaribooksonline.com

Revision	History	for	the	First	Edition
2015-06-09:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491917572	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Docker:	Up	and
Running,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	authors	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
authors	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-91757-2

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491917572

Dedication

For	my	wife	and	children,	who	make	everything	worth	it.	And	my	parents,	who	pointed
me	towards	the	beautiful	intersection	between	logic	and	passion.

—	Sean	P.	Kane

For	my	Mom,	who	got	me	to	read,	and	my	Dad,	who	read	to	me.	And	for	my	wife	and
daughters,	who	are	my	bedrock.

—	Karl	Matthias

Foreword

“Everything	old	is	new	again”	is	a	commonly	heard	phrase	that	has	described	everything
from	fashion,	to	politics,	to	technology.	It	is	also	an	apt	statement	when	it	comes	to	Linux
containers,	and	I	would	expand	upon	it	to	say,	“Everything	old	is	new	again	—	and
nonetheless	exciting.”

Containers	have	been	available	for	many	years	in	Linux	distributions	but	they’ve	seldom
been	used	because	of	the	complexity	required	to	build	something	that	worked.	Thus
historically,	Linux	container	implementations	have	been	purpose-built	with	a	single
objective	in	mind,	which	made	additional	requirements	like	scaling	and	portability
challenging	—	if	not	impossible	—	to	implement.

Enter	Docker,	which	has	created	phenomenal	momentum	in	unlocking	the	value	of	Linux
containers	by	combining	a	standardized	packaging	format	with	ease	of	use,	to	turn
processes	that	were	once	esoteric	and	incomprehensible	into	consumable	capabilities	for
developers	and	operations	teams.	Docker,	in	a	sense,	has	created	a	Renaissance	for	Linux
containers,	driving	an	ever-growing	wave	of	interest	and	possibility,	leading	to	rapid
adoption	of	the	technology.	It’s	helping	technology	teams	everywhere	realize	the	benefits
of	application	portability,	simplified	integration,	and	streamlined	development	as	promised
by	Linux	containers	for	some	time	but	historically	trapped	behind	layers	of	complexity.

Through	Docker,	Linux	containers	have	catapulted	into	an	elite	club	of	truly	disruptive
technologies	with	the	power	to	transform	the	IT	landscape,	related	ecosystems,	and
markets.	In	the	wake	of	this	emergence	rises	a	wave	of	innovation	that	demonstrates	Linux
containers’	potential	to	dramatically	change	application	delivery	across	a	variety	of
computing	environments	and	platforms	while	leveraging	a	spectrum	of	tehcnical	skill	sets.

Innovation	doesn’t	necessarily	mean	the	introduction	of	a	completely	new,	world-altering
technology.	Like	many	of	its	predecessors,	Docker’s	success	stands	on	the	shoulder	of
giants.	It	builds	on	years	of	technological	innovation	and	Linux	evolution	that	now
provides	the	core	capabilities	which	Docker	makes	easy	to	use.	The	maturity	of	the	Linux
capabilities	exploited	by	Docker	can	now	be	replicated	in	other	operating	systems,
allowing	Docker	to	function	beyond	its	Linux	roots.

Docker	is	facilitating	a	disruptive	change	in	the	minds	of	technology	professionals.	It	has
reshaped	views	on	which	aspects	of	application	development	and	delivery,	as	well	as
infrastructure	management	should	be	considered	“table	stakes”	versus	complexity	that
requires	technology	or	process	solutions.	As	is	typical	for	the	early	adoption	phase	of	any
disruptive	technology,	these	perspective	changes	aim	at	what’s	right	in	front	of	us,	often
oversimplifying	and	ignoring	relevant	aspects	–	but	the	potential	for	Docker	and	Linux
containers	goes	much	deeper	than	simply	redefining	development.	It	is	redifing	the	very
nature	of	the	application	itself.

The	obvious	impact	of	Docker	and	the	ease	of	use	it	brings	to	Linux	containers	is	the
possibility	to	redefine	the	organizational	divide	between	business,	application
development,	and	IT	infrastructure	teams.	In	a	sense,	Docker	provides	a	tangible

technology	for	implementing	DevOps,	which	is	the	merger	(or	at	least	an	armistice)
between	the	often	competing	teams	of	development	and	operations.	Containerization
modernizes	IT	environments	and,	at	an	organizational	level,	allows	for	“proper”
ownership	of	the	technology	stack	and	processes,	reducing	handovers	and	the	costly
change	coordination	that	comes	with	them.

Docker’s	role	as	both	a	packaging	format	for	the	application	and	a	unifying	interface	and
methodology	enables	the	application	team	to	own	the	Docker-formatted	container	image,
including	all	dependencies,	while	allowing	operations	to	retain	infrastructure	ownership.
With	a	standardized	container	infrastructure	in	place,	the	IT	organization	can	then	focus	on
building	and	managing	deployments,	meeting	their	security	standards,	automation	needs,
skill	levels	and	ultimately	cost	profile,	all	without	losing	the	ability	to	hold	the	application
team	accountable	for	the	security	and	cost	impact	of	their	code	that	is	deployed	inside	the
container.

Docker	also	brings	with	it	greater	efficiencies	of	scale	and	performance	—	by	shrinking
application	footprints	through	Docker-formatted	containers,	system-level	dependencies	are
reduced	to	a	bare	minimum,	often	dozens-to-hundreds	of	megabytes	in	size.	Compare	this
to	traditional	virtual	machine	images,	which	typically	consume	gigabytes	of	storage…but
when	you	factor	in	performance,	it	goes	beyond	simply	being	innovative	and	becomes
truly	disruptive.

Starting	a	container	takes	milliseconds	—	quite	a	difference	compared	to	the	minutes	most
users	experience	with	virtual	machines.	Deploying	container	images	is	faster	if	less	data
needs	to	travel	over	networks	and	storage	fabrics,	so	modern,	elastic	applications	with
frequent	state	changes	and	dynamic	allocation	of	resources	can	be	built	far	more
efficiently	if	the	rollout	of	changes	can	happen	extremely	quickly	and	resource	needs	can
be	fulfilled	in	real	time.

But	perhaps	the	greatest	innovation	and	most	significant	impact	delivered	by	Docker	and
Linux	containers	is	the	fundamental	change	to	application	consumption.	The	monolithic
application	stack	as	we	know	it	can	be	broken	into	dozens	or	even	hundreds	of	tiny,
single-minded	applications	that,	when	woven	together,	perform	the	same	function	as	the
traditional	application.	The	benefit,	however,	is	that	these	pieces	can	be	rewritten,	reused,
and	managed	far	more	efficiently	than	monolithic	applications,	delivering	a	truly
composite	application	built	entirely	of	microservices.

Containers	represent	the	way	forward	for	the	application	development	world,	but	it’s
critical	that	we	do	not	lose	sight	of	the	old	as	we	bring	in	the	new.	Docker	and	Linux
containers	are	not	without	challenges.	Management,	security,	and	certification	are	three	of
the	most	glaring	challenges	to	enterprise	adoption,	and	these	concerns	are	not	so	dissimilar
from	more	traditional	applications.	Obviously,	containers	must	be	deployed	on	a	secure
host,	but,	more	importantly,	container	security	will	be	defined	by	what	is	in	a	given
container	—	is	it	free	of	vulnerabilities,	malware,	and	known	exploits?	Having	the
appropriate	signature	on	a	given	containerized	application,	from	a	trusted,	certified	source

goes	a	long	way	towards	effectively	answering	these	questions.

Additionally,	management	is	paramount	when	it	comes	to	the	new	world	of	containerized
applications	and	Docker.	The	potential	for	sheer	sprawl	with	containers	is	exponentially
greater	than	that	of	virtual	machines.	Managing	all	of	the	containers	is	one	challenge,	but
just	as	important,	much	like	security,	will	be	managing	the	content	inside	these	containers.
How	are	updates	and	rollbacks	handled?	What	of	orchestration?	What	will	define
“sprawl”?	When	do	containers	need	to	be	retired	or	archived,	else	spend	a	life	of	limbo	on
a	aging	server?	These	too	are	questions	that	the	enterprise	must	see	addressed	before
mission	critical	can	be	applied	to	containerized	applications.

These	challenges	aside,	Linux	containers	do	represent	a	fundamental	shift	in	how	the
enterprise	world	creates,	consumes,	and	manages	applications.	While	the	traditional
monolithic	application	is	likely	to	remain	(lots	of	old	technology	survives	as	a	legacy	still
today),	containers	have	huge	potential	to	modernize	the	operational	model	for	these
traditional	applications	and,	alongside	new,	container-based	applications,	allow	for
incredible	flexibility,	portability,	and	efficiency	across	the	datacenter	and	hybrid	clouds.

Sean	and	Karl	have	worked	with	Linux	containers	(and	Docker)	for	years,	and	have,	in
this	book,	captured	what	the	IT	world	needs	to	know	about	Docker	and	the	container
Renaissance.	Leveraging	their	insights,	the	authors	provide	a	solid	overview	of	how
Docker	actually	works	in	the	real	world	and	how	developers	and	other	IT	professionals
can	best	utilize	Docker	and	Linux	containers	in	a	way	that	makes	sense	for	them	and	their
organization.

Lars	Herrmann,	General	Manager	for	Enterprise	Linux,	Enterprise	Virtualization	and
Container	Strategy,	Red	Hat

Preface

This	book	will	get	you	to	the	point	where	you	have	a	running	Docker	environment	and
steer	you	towards	good	choices	for	a	production	environment.	Along	the	way	we’ll
explore	building	applications	for	Docker,	testing,	deploying,	and	debugging	a	running
system.	We’ll	stop	by	to	see	a	few	of	the	orchestration	tools	and	platforms	in	the	Docker
ecosystem.	And	we’ll	round	out	with	guidance	on	security	and	best	practices	for	your
container	environment.

Who	Should	Read	This	Book
This	book	is	intended	for	anyone	who	is	looking	to	solve	the	complex	workflow	problems
involved	in	developing	and	deploying	software	to	production	at	scale.	If	you’re	interested
in	Docker,	Linux	containers,	DevOps,	and	large,	scalable,	software	infrastructures,	then
this	book	is	for	you.

Why	Read	This	Book?
Today	there	are	many	conversations,	projects,	and	articles	on	the	Internet	about	Docker.
So	why	should	you	devote	precious	hours	to	reading	this	book?

Even	though	there	is	a	lot	of	information	out	there,	Docker	is	a	new	technology	and	it	is
evolving	very	quickly.	Even	during	the	time	that	that	it	took	us	to	write	this	book,	Docker,
Inc.,	released	four	versions	of	Docker	plus	a	few	major	tools	into	their	ecosystem.	Getting
your	arms	around	the	scope	of	what	Docker	provides,	understanding	how	it	fits	into	your
workflow,	and	getting	integration	right	are	not	trivial	tasks.	Few	companies	or	engineering
teams	have	been	running	it	in	production	for	more	than	a	year.

We	have	worked	for	over	a	year	and	a	half	building	and	operating	a	production	Docker
platform	within	the	Site	Engineering	team	at	New	Relic.	We	implemented	Docker	in
production	only	months	after	its	release	and	can	share	with	you	some	of	the	experience	we
gained	from	evolving	our	production	platform	over	the	last	year	and	a	half.	The	goal	is	for
you	to	enjoy	the	wins	while	avoiding	many	of	the	bumps	in	the	road	that	we	experienced.
Even	though	the	online	documentation	for	the	Docker	project	is	useful,	we	attempt	to	give
you	a	bigger	picture	and	expose	you	to	many	of	the	best	practices	that	we	have	learned
along	the	way.

When	you	finish	this	book,	you	should	have	enough	information	to	understand	what
Docker	is,	why	it’s	important,	how	to	get	it	running,	how	to	deploy	your	applications	with
it,	and	be	armed	with	a	clear	view	of	what	you	can	do	to	get	to	production.	It	will
hopefully	be	a	quick	trip	through	an	interesting	technology	with	some	very	practical
applications.

Navigating	This	Book
This	book	is	organized	as	follows:

Chapters	1	and	2	provide	an	introduction	to	Docker,	and	explain	what	it	is	and	how	you
can	use	it.

Chapter	3	takes	you	through	the	steps	required	to	install	Docker.

Chapters	4	through	6	dive	into	the	Docker	client,	images,	and	containers,	exploring
what	they	are	and	how	you	can	work	with	them.

Chapters	7	and	8	discuss	the	flow	for	getting	your	containers	into	production	and
debugging	them.

Chapter	9	delves	into	deploying	containers	at	scale	in	public	and	private	clouds.

Chapter	10	dives	into	advanced	topics	that	require	some	familiarity	with	Docker	and
can	be	important	as	you	start	to	use	Docker	in	your	production	environment.

Chapter	11	explores	some	of	the	core	concepts	that	have	started	to	solidify	in	the
industry	about	how	to	design	the	next	generation	of	Internet-scale	production	software.

Chapter	12	wraps	everything	up	and	ties	it	with	a	bow.	It	includes	a	summary	of	what
you	have	and	how	it	should	help	you	improve	the	way	you	deliver	and	scale	software
services.

We	realize	that	many	people	don’t	read	technical	books	front	to	back	and	that	something
like	the	preface	is	incredibly	easy	to	skip,	but	if	you’re	still	with	us,	here	is	a	quick	guide
to	some	different	approaches	to	reading	this	book:

If	you	are	new	to	Linux	containers,	start	at	the	beginning.	The	first	two	chapters	are
intended	to	get	your	head	around	the	basics	of	Docker	and	Linux	containers,	including
what	they	are,	how	they	work,	and	why	you	should	care.

If	you	want	to	jump	right	in	and	install	and	run	Docker	on	your	workstation,	then	dive
right	into	Chapters	3	and	4,	which	show	you	how	to	install	Docker,	create	and
download	images,	run	containers,	and	much	more.

If	you	are	already	using	Docker	for	development	but	need	some	help	getting	it	into
production,	consider	starting	with	Chapters	7	through	10,	which	delve	into	deploying
and	debugging	containers,	and	many	other	advanced	topics.

If	you	are	a	software	or	platform	architect,	you	might	find	Chapter	11	an	interesting
place	to	investigate,	as	we	dive	into	some	of	the	current	thinking	about	designing
containerized	applications	and	horizontally	scalable	services.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/docker-up-and-running.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/docker-up-and-running
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
We’d	like	to	send	a	heartfelt	thanks	to	the	many	people	who	helped	make	this	book
possible:

Nic	Benders,	Bjorn	Freeman-Benson,	and	Dana	Lawson	at	New	Relic,	who	went	far
above	and	beyond	in	supporting	this	effort,	and	who	ensured	that	we	had	time	to	pursue
it.

Laurel	Ruma	at	O’Reilly	who	initially	reached	out	to	us	about	writing	a	Docker	book,
and	Mike	Loukides	who	helped	get	everything	on	track.

Gillian	McGarvey	and	Melanie	Yarbrough,	for	their	efforts	copyediting	the	manuscript,
and	helping	it	appear	like	we	were	actually	paying	attention	in	our	high	school	English
classes.	464	commas	added	and	counting…

Wendy	Catalano,	who	helped	us	ensure	that	the	Index	was	useful	to	all	of	our	readers.

A	special	thanks	to	our	editor,	Brian	Anderson,	who	ensured	that	we	knew	what	we
were	getting	into,	and	guided	us	along	every	step	of	the	way.

All	of	our	peers	at	New	Relic,	who	have	been	along	for	the	whole	Docker	ride	and
provided	us	with	much	of	the	experience	that’s	reflected	here.

World	Cup	Coffee,	McMenamins	Ringlers	Pub,	and	Old	Town	Pizza	in	Portland,	OR,
who	kindly	let	us	use	their	tables	and	power	long	after	our	dishes	were	empty.

Our	draft	reviewers,	who	helped	ensure	that	we	were	on	the	right	track	at	various
points	throughout	the	writing	process:	Ksenia	Burlachenko,	who	gave	us	our	very	first
review	as	well	as	a	full	tech	review,	Andrew	T.	Baker,	Sébastien	Goasguen,	and	Henri
Gomez.

A	special	callout	is	due	to	Alice	Goldfuss	and	Tom	Offermann	who	gave	us	detailed
and	consistently	useful	feedback.

Our	families,	for	being	supportive	and	giving	us	the	required	quiet	time	when	we
needed	it.

And	finally	to	everyone	else	who	encouraged	us,	gave	us	advice,	or	supported	us	in	any
way	throughout	this	process.

Chapter	1.	Introduction

The	Birth	of	Docker
Docker	was	first	introduced	to	the	world	—	with	no	pre-announcement	and	little	fanfare
—	by	Solomon	Hykes,	founder	and	CEO	of	dotCloud,	in	a	five-minute	lightning	talk	at
the	Python	Developers	Conference	in	Santa	Clara,	California,	on	March	15,	2013.	At	the
time	of	this	announcement,	only	about	40	people	outside	dotCloud	been	given	the
opportunity	to	play	with	Docker.

Within	a	few	weeks	of	this	announcement,	there	was	a	surprising	amount	of	press.	The
project	was	quickly	open-sourced	and	made	publicly	available	on	GitHub,	where	anyone
could	download	and	contribute	to	the	project.	Over	the	next	few	months,	more	and	more
people	in	the	industry	started	hearing	about	Docker	and	how	it	was	going	to	revolutionize
the	way	software	was	built,	delivered,	and	run.	And	within	a	year,	almost	no	one	in	the
industry	was	unaware	of	Docker,	but	many	were	still	unsure	what	it	was	exactly,	and	why
people	were	so	excited	about.

Docker	is	a	tool	that	promises	to	easily	encapsulate	the	process	of	creating	a	distributable
artifact	for	any	application,	deploying	it	at	scale	into	any	environment,	and	streamlining
the	workflow	and	responsiveness	of	agile	software	organizations.

http://youtu.be/wW9CAH9nSLs
https://github.com/docker/docker

The	Promise	of	Docker
While	ostensibly	viewed	as	a	virtualization	platform,	Docker	is	far	more	than	that.
Docker’s	domain	spans	a	few	crowded	segments	of	the	industry	that	include	technologies
like	KVM,	Xen,	OpenStack,	Mesos,	Capistrano,	Fabric,	Ansible,	Chef,	Puppet,	SaltStack,
and	so	on.	There	is	something	very	telling	about	the	list	of	products	that	Docker	competes
with,	and	maybe	you’ve	spotted	it	already.	For	example,	most	engineers	would	not	say
that	virtualization	products	compete	with	configuration	management	tools,	yet	both
technologies	are	being	disrupted	by	Docker.	The	technologies	in	that	list	are	also	generally
acclaimed	for	their	ability	to	improve	productivity	and	that’s	what	is	causing	a	great	deal
of	the	buzz.	Docker	sits	right	in	the	middle	of	some	of	the	most	enabling	technologies	of
the	last	decade.

If	you	were	to	do	a	feature-by-feature	comparison	of	Docker	and	the	reigning	champion	in
any	of	these	areas,	Docker	would	very	likely	look	like	a	middling	competitor.	It’s	stronger
in	some	areas	than	others,	but	what	Docker	brings	to	the	table	is	a	feature	set	that	crosses	a
broad	range	of	workflow	challenges.	By	combining	the	ease	of	application	deployment
tools	like	Capistrano	and	Fabric,	with	the	ease	of	administrating	virtualization	systems,
and	then	providing	hooks	that	make	workflow	automation	and	orchestration	easy	to
implement,	Docker	provides	a	very	enabling	feature	set.

Lots	of	new	technologies	come	and	go,	and	a	dose	of	skepticism	about	the	newest	rage	is
always	healthy.	Without	digging	deeper,	it	would	be	easy	to	dismiss	Docker	as	just	another
technology	that	solves	a	few	very	specific	problems	for	developers	or	operations	teams.	If
you	look	at	Docker	as	a	virtualization	or	deployment	technology	alone,	it	might	not	seem
very	compelling.	But	Docker	is	much	more	than	it	seems	on	the	surface.

It	is	hard	and	often	expensive	to	get	communication	and	processes	right	between	teams	of
people,	even	in	smaller	organizations.	Yet	we	live	in	a	world	where	the	communication	of
detailed	information	between	teams	is	increasingly	required	to	be	successful.	A	tool	that
reduces	the	complexity	of	that	communication	while	aiding	in	the	production	of	more
robust	software	would	be	a	big	win.	And	that’s	exactly	why	Docker	merits	a	deeper	look.
It’s	no	panacea,	and	implementing	Docker	well	requires	some	thought,	but	Docker	is	a
good	approach	to	solving	some	real-world	organizational	problems	and	helping	enable
companies	to	ship	better	software	faster.	Delivering	a	well-designed	Docker	workflow	can
lead	to	happier	technical	teams	and	real	money	for	the	organization’s	bottom	line.

So	where	are	companies	feeling	the	most	pain?	Shipping	software	at	the	speed	expected	in
today’s	world	is	hard	to	do	well,	and	as	companies	grow	from	one	or	two	developers	to
many	teams	of	developers,	the	burden	of	communication	around	shipping	new	releases
becomes	much	heavier	and	harder	to	manage.	Developers	have	to	understand	a	lot	of
complexity	about	the	environment	they	will	be	shipping	software	into,	and	production
operations	teams	need	to	increasingly	understand	the	internals	of	the	software	they	ship.
These	are	all	generally	good	skills	to	work	on	because	they	lead	to	a	better	understanding
of	the	environment	as	a	whole	and	therefore	encourage	the	designing	of	robust	software,

but	these	same	skills	are	very	difficult	to	scale	effectively	as	an	organization’s	growth
accelerates.

The	details	of	each	company’s	environment	often	require	a	lot	of	communication	that
doesn’t	directly	build	value	in	the	teams	involved.	For	example,	requiring	developers	to
ask	an	operations	team	for	release	1.2.1	of	a	particular	library	slows	them	down	and
provides	no	direct	business	value	to	the	company.	If	developers	could	simply	upgrade	the
version	of	the	library	they	use,	write	their	code,	test	with	the	new	version,	and	ship	it,	the
delivery	time	would	be	measurably	shortened.	If	operations	people	could	upgrade
software	on	the	host	system	without	having	to	coordinate	with	multiple	teams	of
application	developers,	they	could	move	faster.	Docker	helps	to	build	a	layer	of	isolation
in	software	that	reduces	the	burden	of	communication	in	the	world	of	humans.

Beyond	helping	with	communication	issues,	Docker	is	opinionated	about	software
architecture	in	a	way	that	encourages	more	robustly	crafted	applications.	Its	architectural
philosophy	centers	around	atomic	or	throwaway	containers.	During	deployment,	the
whole	running	environment	of	the	old	application	is	thrown	away	with	it.	Nothing	in	the
environment	of	the	application	will	live	longer	than	the	application	itself	and	that’s	a
simple	idea	with	big	repercussions.	It	means	that	applications	are	not	likely	to	accidentally
rely	on	artifacts	left	by	a	previous	release.	It	means	that	ephemeral	debugging	changes	are
less	likely	to	live	on	in	future	releases	that	picked	them	up	from	the	local	filesystem.	And
it	means	that	applications	are	highly	portable	between	servers	because	all	state	has	to	be
included	directly	into	the	deployment	artifact	and	be	immutable,	or	sent	to	an	external
dependency	like	a	database,	cache,	or	file	server.

This	leads	to	applications	that	are	not	only	more	scalable,	but	more	reliable.	Instances	of
the	application	container	can	come	and	go	with	little	repercussion	on	the	uptime	of	the
frontend	site.	These	are	proven	architectural	choices	that	have	been	successful	for	non-
Docker	applications,	but	the	design	choices	included	in	Docker’s	own	design	mean	that
Dockerized	applications	will	follow	these	best	practices	by	requirement	and	that’s	a	good
thing.

Benefits	of	the	Docker	Workflow
It’s	hard	to	cohesively	group	into	categories	all	of	the	things	Docker	brings	to	the	table.
When	implemented	well,	it	benefits	organizations,	teams,	developers,	and	operations
engineers	in	a	multitude	of	ways.	It	makes	architectural	decisions	simpler	because	all
applications	essentially	look	the	same	on	the	outside	from	the	hosting	system’s
perspective.	It	makes	tooling	easier	to	write	and	share	between	applications.	Nothing	in
this	world	comes	with	benefits	and	no	challenges,	but	Docker	is	surprisingly	skewed
toward	the	benefits.	Here	are	some	more	of	the	things	you	get	with	Docker:

Packaging	software	in	a	way	that	leverages	the	skills	developers	already	have.

Many	companies	have	had	to	create	positions	for	release	and	build	engineers	in	order
to	manage	all	the	knowledge	and	tooling	required	to	create	software	packages	for
their	supported	platforms.	Tools	like	rpm,	mock,	dpkg,	and	pbuilder	can	be
complicated	to	use,	and	each	one	must	be	learned	independently.	Docker	wraps	up	all
your	requirements	together	into	one	package	that	is	defined	in	a	single	file.

Bundling	application	software	and	required	OS	filesystems	together	in	a	single
standardized	image	format.

In	the	past,	you	typically	needed	to	package	not	only	your	application,	but	many	of
the	dependencies	that	it	relied	on,	including	libraries	and	daemons.	However,	you
couldn’t	ever	ensure	that	100	percent	of	the	execution	environment	was	identical.	All
of	this	made	packaging	difficult	to	master,	and	hard	for	many	companies	to
accomplish	reliably.	Often	someone	running	Scientific	Linux	would	resort	to	trying
to	deploy	a	community	package	tested	on	Red	Hat	Linux,	hoping	that	the	package
was	close	enough	to	what	they	needed.	With	Docker	you	deploy	your	application
along	with	every	single	file	required	to	run	it.	Docker’s	layered	images	make	this	an
efficient	process	that	ensures	that	your	application	is	running	in	the	expected
environment.

Using	packaged	artifacts	to	test	and	deliver	the	exact	same	artifact	to	all	systems	in	all
environments.

When	developers	commit	changes	to	a	version	control	system,	a	new	Docker	image
can	be	built,	which	can	go	through	the	whole	testing	process	and	be	deployed	to
production	without	any	need	to	recompile	or	repackage	at	any	step	in	the	process.

Abstracting	software	applications	from	the	hardware	without	sacrificing	resources.

Traditional	enterprise	virtualization	solutions	like	VMware	are	typically	used	when
people	need	to	create	an	abstraction	layer	between	the	physical	hardware	and	the
software	applications	that	run	on	it,	at	the	cost	of	resources.	The	hypervisors	that
manage	the	VMs	and	each	VM	running	kernel	use	a	percentage	of	the	hardware
system’s	resources,	which	are	then	no	longer	available	to	the	hosted	applications.	A
container,	on	the	other	hand,	is	just	another	process	that	talks	directly	to	the	Linux
kernel	and	therefore	can	utilize	more	resources,	up	until	the	system	or	quota-based
limits	are	reached.

When	Docker	was	first	released,	Linux	containers	had	been	around	for	quite	a	few	years,
and	many	of	the	other	technologies	that	it	is	built	on	are	not	entirely	new.	However,
Docker’s	unique	mix	of	strong	architectural	and	workflow	choices	combine	together	into	a
whole	that	is	much	more	powerful	than	the	sum	of	its	parts.	Docker	finally	makes	Linux
containers,	which	have	been	around	for	more	than	a	decade,	approachable	to	the	average
technologist.	It	fits	containers	relatively	easily	into	the	existing	workflow	and	processes	of
real	companies.	And	the	problems	discussed	above	have	been	felt	by	so	many	people	that
interest	in	the	Docker	project	has	been	accelerating	faster	than	anyone	could	have
reasonably	expected.

In	the	first	year,	newcomers	to	the	project	were	surprised	to	find	out	that	Docker	wasn’t
already	production-ready,	but	a	steady	stream	of	commits	from	the	open	source	Docker
community	has	moved	the	project	forward	at	a	very	brisk	pace.	That	pace	seems	to	only
pick	up	steam	as	time	goes	on.	As	Docker	has	now	moved	well	into	the	1.x	release	cycle,
stability	is	good,	production	adoption	is	here,	and	many	companies	are	looking	to	Docker
as	a	solution	to	some	of	the	serious	complexity	issues	that	they	face	in	their	application
delivery	processes.

What	Docker	Isn’t
Docker	can	be	used	to	solve	a	wide	breadth	of	challenges	that	other	categories	of	tools
have	traditionally	been	enlisted	to	fix;	however,	Docker’s	breadth	of	features	often	means
that	it	lacks	depth	in	specific	functionality.	For	example,	some	organizations	will	find	that
they	can	completely	remove	their	configuration	management	tool	when	they	migrate	to
Docker,	but	the	real	power	of	Docker	is	that	although	it	can	replace	some	aspects	of	more
traditional	tools,	it	is	usually	compatible	with	them	or	even	augmented	by	combining	with
them,	as	well.	In	the	following	list,	we	explore	some	of	the	tool	categories	that	Docker
doesn’t	directly	replace	but	that	can	often	be	used	in	conjunction	to	achieve	great	results:

Enterprise	Virtualization	Platform	(VMware,	KVM,	etc.)

A	container	is	not	a	virtual	machine	in	the	traditional	sense.	Virtual	machines	contain
a	complete	operating	system,	running	on	top	of	the	host	operating	system.	The
biggest	advantage	is	that	it	is	easy	to	run	many	virtual	machines	with	radically
different	operating	systems	on	a	single	host.	With	containers,	both	the	host	and	the
containers	share	the	same	kernel.	This	means	that	containers	utilize	fewer	system
resources,	but	must	be	based	on	the	same	underlying	operating	system	(i.e.,	Linux).

Cloud	Platform	(Openstack,	CloudStack,	etc.)

Like	Enterprise	virtualization,	the	container	workflow	shares	a	lot	of	similarities	on
the	surface	with	cloud	platforms.	Both	are	traditionally	leveraged	to	allow
applications	to	be	horizontally	scaled	in	response	to	changing	demand.	Docker,
however,	is	not	a	cloud	platform.	It	only	handles	deploying,	running,	and	managing
containers	on	pre-existing	Docker	hosts.	It	doesn’t	allow	you	to	create	new	host
systems	(instances),	object	stores,	block	storage,	and	the	many	other	resources	that
are	typically	associated	with	a	cloud	platform.

Configuration	Management	(Puppet,	Chef,	etc.)

Although	Docker	can	significantly	improve	an	organization’s	ability	to	manage
applications	and	their	dependencies,	it	does	not	directly	replace	more	traditional
configuration	management.	Dockerfiles	are	used	to	define	how	a	container	should
look	at	build	time,	but	they	do	not	manage	the	container’s	ongoing	state,	and	cannot
be	used	to	manage	the	Docker	host	system.

Deployment	Framework	(Capistrano,	Fabric,	etc.)

Docker	eases	many	aspects	of	deployment	by	creating	self-contained	container
images	that	encapsulate	all	the	dependencies	of	an	application	and	can	be	deployed,
in	all	environments,	without	changes.	However,	Docker	can’t	be	used	to	automate	a
complex	deployment	process	by	itself.	Other	tools	are	usually	still	needed	to	stitch
together	the	larger	workflow	automation.

Workload	Management	Tool	(Mesos,	Fleet,	etc.)

The	Docker	server	does	not	have	any	internal	concept	of	a	cluster.	Additional
orchestration	tools	(including	Docker’s	own	Swarm	tool)	must	be	used	to	coordinate
work	intelligently	across	a	pool	of	Docker	hosts,	and	track	the	current	state	of	all	the
hosts	and	their	resources,	and	keep	an	inventory	of	running	containers.

Development	Environment	(Vagrant,	etc.)

Vagrant	is	a	virtual	machine	management	tool	for	developers	that	is	often	used	to
simulate	server	stacks	that	closely	resemble	the	production	environment	in	which	an
application	is	destined	to	be	deployed.	Among	other	things,	Vagrant	makes	it	easy	to
run	Linux	software	on	Mac	OS	X	and	Windows-based	workstations.	Since	the
Docker	server	only	runs	on	Linux,	Docker	provides	boot2docker	and	Docker
Machine	to	allow	developers	to	quickly	launch	Linux-based	Docker	machines	on
various	platforms.	Boot2docker	and	Docker	Machine	are	sufficient	for	many	standard
Docker	workflows,	but	they	don’t	provide	the	breadth	of	features	found	in	Vagrant.

Wrapping	your	head	around	Docker	can	be	challenging	when	you	are	coming	at	it	without
a	strong	frame	of	reference.	In	the	next	chapter	we	will	lay	down	a	broad	overview	of
Docker,	what	it	is,	how	it	is	intended	to	be	used,	and	what	advantages	it	brings	to	the	table
when	implemented	with	all	of	this	in	mind.

Chapter	2.	Docker	at	a	Glance

Before	you	dive	into	configuring	and	installing	Docker,	a	quick	survey	is	in	order	to
explain	what	Docker	is	and	what	it	can	bring	to	the	table.	It	is	a	powerful	technology,	but
not	a	tremendously	complicated	one.	In	this	chapter,	we’ll	cover	the	generalities	of	how
Docker	works,	what	makes	it	powerful,	and	some	of	the	reasons	you	might	use	it.	If
you’re	reading	this,	you	probably	have	your	own	reasons	to	use	Docker,	but	it	never	hurts
to	augment	your	understanding	before	you	dive	in.

Don’t	worry	—	this	shouldn’t	hold	you	up	for	too	long.	In	the	next	chapter,	we’ll	dive
right	into	getting	Docker	installed	and	running	on	your	system.

Process	Simplification
Docker	can	simplify	both	workflows	and	communication,	and	that	usually	starts	with	the
deployment	story.	Traditionally,	the	cycle	of	getting	an	application	to	production	often
looks	something	like	the	following	(illustrated	in	Figure	2-1):

1.	 Application	developers	request	resources	from	operations	engineers.

2.	 Resources	are	provisioned	and	handed	over	to	developers.

3.	 Developers	script	and	tool	their	deployment.

4.	 Operations	engineers	and	developers	tweak	the	deployment	repeatedly.

5.	 Additional	application	dependencies	are	discovered	by	developers.

6.	 Operations	engineers	work	to	install	the	additional	requirements.

7.	 Loop	over	steps	5	and	6	N	more	times.

8.	 The	application	is	deployed.

Figure	2-1.	A	traditional	deployment	workflow	(without	Docker)

Our	experience	has	shown	that	deploying	a	brand	new	application	into	production	can	take
the	better	part	of	a	week	for	a	complex	new	system.	That’s	not	very	productive,	and	even

though	DevOps	practices	work	to	alleviate	some	of	the	barriers,	it	often	requires	a	lot	of
effort	and	communication	between	teams	of	people.	This	process	can	often	be	both
technically	challenging	and	expensive,	but	even	worse,	it	can	limit	the	kinds	of	innovation
that	development	teams	will	undertake	in	the	future.	If	deploying	software	is	hard,	time-
consuming,	and	requires	resources	from	another	team,	then	developers	will	often	build
everything	into	the	existing	application	in	order	to	avoid	suffering	the	new	deployment
penalty.

Push-to-deploy	systems	like	Heroku	have	shown	developers	what	the	world	can	look	like
if	you	are	in	control	of	most	of	your	dependencies	as	well	as	your	application.	Talking
with	developers	about	deployment	will	often	turn	up	discussions	of	how	easy	that	world
is.	If	you’re	an	operations	engineer,	you’ve	probably	heard	complaints	about	how	much
slower	your	internal	systems	are	compared	with	deploying	on	Heroku.

Docker	doesn’t	try	to	be	Heroku,	but	it	provides	a	clean	separation	of	responsibilities	and
encapsulation	of	dependencies,	which	results	in	a	similar	boost	in	productivity.	It	also
allows	even	more	fine-grained	control	than	Heroku	by	putting	developers	in	control	of
everything,	down	to	the	OS	distribution	on	which	they	ship	their	application.

As	a	company,	Docker	preaches	an	approach	of	“batteries	included	but	removable.”
Which	means	that	they	want	their	tools	to	come	with	everything	most	people	need	to	get
the	job	done,	while	still	being	built	from	interchangeable	parts	that	can	easily	be	swapped
in	and	out	to	support	custom	solutions.

By	using	an	image	repository	as	the	hand-off	point,	Docker	allows	the	responsibility	of
building	the	application	image	to	be	separated	from	the	deployment	and	operation	of	the
container.

What	this	means	in	practice	is	that	development	teams	can	build	their	application	with	all
of	its	dependencies,	run	it	in	development	and	test	environments,	and	then	just	ship	the
exact	same	bundle	of	application	and	dependencies	to	production.	Because	those	bundles
all	look	the	same	from	the	outside,	operations	engineers	can	then	build	or	install	standard
tooling	to	deploy	and	run	the	applications.	The	cycle	described	in	Figure	2-1	then	looks
somewhat	like	this	(illustrated	in	Figure	2-2):

1.	 Developers	build	the	Docker	image	and	ship	it	to	the	registry.

2.	 Operations	engineers	provide	configuration	details	to	the	container	and	provision
resources.

3.	 Developers	trigger	deployment.

https://www.heroku.com

Figure	2-2.	A	Docker	deployment	workflow

This	is	possible	because	Docker	allows	all	of	the	dependency	issues	to	be	discovered
during	the	development	and	test	cycles.	By	the	time	the	application	is	ready	for	first
deployment,	that	work	is	done.	And	it	usually	doesn’t	require	as	many	handovers	between
the	development	and	operations	teams.	That’s	a	lot	simpler	and	saves	a	lot	of	time.	Better
yet,	it	leads	to	more	robust	software	through	testing	of	the	deployment	environment	before
release.

Broad	Support	and	Adoption
Docker	is	increasingly	well	supported,	with	the	majority	of	the	large	public	clouds
announcing	at	least	some	direct	support	for	it.	For	example,	Docker	runs	on	AWS	Elastic
Beanstalk,	Google	AppEngine,	IBM	Cloud,	Microsoft	Azure,	Rackspace	Cloud,	and	many
more.	At	DockerCon	2014,	Google’s	Eric	Brewer	announced	that	Google	would	be
supporting	Docker	as	its	primary	internal	container	format.	Rather	than	just	being	good
PR	for	these	companies,	what	this	means	for	the	Docker	community	is	that	a	lot	of	money
is	starting	to	back	the	stability	and	success	of	the	Docker	platform.

Further	building	its	influence,	Docker’s	containers	are	becoming	the	common	format
among	cloud	providers,	offering	the	potential	for	“write	once,	run	anywhere”	cloud
applications.	When	Docker	released	their	libswarm	development	library	at	DockerCon
2014,	an	engineer	from	Orchard	demonstrated	deploying	a	Docker	container	to	a
heterogeneous	mix	of	cloud	providers	at	the	same	time.	This	kind	of	orchestration	has	not
been	easy	before,	and	it	seems	likely	that	as	these	major	companies	continue	to	invest	in
the	platform,	the	support	and	tooling	will	improve	correspondingly.

So	that	covers	Docker	containers	and	tooling,	but	what	about	OS	vendor	support	and
adoption?	The	Docker	client	runs	directly	on	most	major	operating	systems,	but	because
the	Docker	server	uses	Linux	containers,	it	does	not	run	on	non-Linux	systems.	Docker
has	traditionally	been	developed	on	the	Ubuntu	Linux	distribution,	but	most	Linux
distributions	and	other	major	operating	systems	are	now	supported	where	possible.

Docker	is	barely	two	years	old,	but	with	such	broad	support	across	many	platforms,	there
is	a	lot	of	hope	for	its	continued	growth	into	the	future.

Architecture
Docker	is	a	powerful	technology,	and	that	often	means	something	that	comes	with	a	high
level	of	complexity.	But	the	fundamental	architecture	of	Docker	is	a	simple	client/server
model,	with	only	one	executable	that	acts	as	both	components,	depending	on	how	you
invoke	the	docker	command.	Underneath	this	simple	exterior,	Docker	heavily	leverages
kernel	mechanisms	such	as	iptables,	virtual	bridging,	cgroups,	namespaces,	and	various
filesystem	drivers.	We’ll	talk	about	some	of	these	in	Chapter	10.	For	now,	we’ll	go	over
how	the	client	and	server	work	and	give	a	brief	introduction	to	the	network	layer	that	sits
underneath	a	Docker	container.

Client/Server	Model
Docker	consists	of	at	least	two	parts:	the	client	and	the	server/daemon	(see	Figure	2-3).
Optionally	there	is	a	third	component	called	the	registry,	which	stores	Docker	images	and
metadata	about	those	images.	The	server	does	the	ongoing	work	of	running	and	managing
your	containers,	and	you	use	the	client	to	tell	the	server	what	to	do.	The	Docker	daemon
can	run	on	any	number	of	servers	in	the	infrastructure,	and	a	single	client	can	address	any
number	of	servers.	Clients	drive	all	of	the	communication,	but	Docker	servers	can	talk
directly	to	image	registries	when	told	to	do	so	by	the	client.	Clients	are	responsible	for
directing	servers	what	to	do,	and	servers	focus	on	hosting	containerized	applications.

Figure	2-3.	Docker	client/server	model

Docker	is	a	little	different	in	structure	from	some	other	client/server	software.	Instead	of
having	separate	client	and	server	executables,	it	uses	the	same	binary	for	both
components.	When	you	install	Docker,	you	get	both	components,	but	the	server	will	only
launch	on	a	supported	Linux	host.	Launching	the	Docker	server/daemon	is	as	simple	as
running	docker	with	the	-d	command-line	argument,	which	tells	it	to	act	like	a	daemon
and	listen	for	incoming	connections.	Each	Docker	host	will	normally	have	one	Docker
daemon	running	that	can	manage	a	number	of	containers.	You	can	then	use	the	docker
command-line	tool	client	to	talk	to	the	server.

http://bit.ly/1Bttd5s

Network	Ports	and	Unix	Sockets
The	docker	command-line	tool	and	docker	-d	daemon	talk	to	each	other	over	network
sockets.	You	can	choose	to	have	the	Docker	daemon	listen	on	one	or	more	TCP	or	Unix
sockets.	It’s	possible,	for	example,	to	have	Docker	listen	on	both	a	local	Unix	socket	and
two	different	TCP	ports	(encrypted	and	nonencrypted).	On	many	Linux	distributions,	that
is	actually	the	default.	If	you	want	to	only	be	able	to	access	Docker	from	the	local	system,
listening	only	on	the	Unix	socket	would	be	the	most	secure	option.	However,	most	people
want	to	talk	to	the	docker	daemon	remotely,	so	it	usually	listens	on	at	least	one	TCP	port.

The	original	TCP	port	that	docker	was	configured	to	use	was	4243,	but	that	port	was
never	registered	and	in	fact	was	already	used	by	other	tools	such	as	the	Mac	OS	X	backup
client	CrashPlan.	As	a	result,	Docker	registered	its	own	TCP	port	with	IANA	and	it’s	now
generally	configured	to	use	TCP	port	2375	when	running	un-encrypted,	or	2376	when
handling	encrypted	traffic.	In	Docker	1.3	and	later,	the	default	is	to	use	the	encrypted	port
on	2376,	but	this	is	easily	configurable.	The	Unix	socket	is	located	in	different	paths	on
different	operating	systems,	so	you	should	check	where	yours	is	located.	If	you	have
strong	preferences,	you	can	usually	specify	this	at	install	time.	If	you	don’t,	then	the
defaults	will	probably	work	for	you.

Robust	Tooling
Among	the	many	things	that	have	led	to	Docker’s	growing	adoption	is	its	simple	and
powerful	tooling.	This	has	been	expanding	ever	wider	since	its	initial	release	by	Docker,
and	by	the	Docker	community	at	large.	The	tooling	that	Docker	ships	with	supports	both
building	Docker	images	and	basic	deployment	to	individual	Docker	daemons,	as	well	as
all	the	functionality	needed	to	actually	manage	a	remote	Docker	server.	Community
efforts	have	focused	on	managing	whole	fleets	(or	clusters)	of	Docker	servers	and	the
scheduling	and	orchestrating	of	container	deployments.	Docker	has	also	launched	its	own
orchestration	toolset,	including	Compose	(previously	known	as	Fig),	Machine,	and
Swarm,	which	promises	to	eventually	create	a	cohesive	deployment	story	across
environments.

Because	Docker	provides	both	a	command-line	tool	and	a	remote	web	API,	it	is	easy	to
add	additional	tooling	in	any	language.	The	command-line	tool	lends	itself	well	to
scripting,	and	a	lot	of	power	can	easily	be	leveraged	with	simple	shell	script	wrappers
around	the	command-line	tool.

https://github.com/docker/compose
https://github.com/docker/machine
https://github.com/docker/swarm/

Docker	Command-Line	Tool
The	command-line	tool	docker	is	the	main	interface	that	most	people	will	have	with
Docker.	This	is	a	Go	program	that	compiles	and	runs	on	all	common	architectures	and
operating	systems.	The	command-line	tool	is	available	as	part	of	the	main	Docker
distribution	on	various	platforms	and	also	compiles	directly	from	the	Go	source.	Some	of
the	things	you	can	do	with	the	Docker	command-line	tool	include,	but	are	not	limited	to:

Build	a	container	image.

Pull	images	from	a	registry	to	a	Docker	daemon	or	push	them	up	to	a	registry	from	the
Docker	daemon.

Start	a	container	on	a	Docker	server	either	in	the	foreground	or	background.

Retrieve	the	Docker	logs	from	a	remote	server.

Start	a	command-line	shell	inside	a	running	container	on	a	remote	server.

You	can	probably	see	how	these	can	be	composed	into	a	workflow	for	building	and
deploying.	But	the	Docker	command-line	tool	is	not	the	only	way	to	interact	with	Docker,
and	it’s	not	necessarily	the	most	powerful.

https://golang.org

Application	Programming	Interface	(API)
Like	many	other	pieces	of	modern	software,	the	Docker	daemon	has	a	remote	API.	This	is
in	fact	what	the	Docker	command-line	tool	uses	to	communicate	with	the	daemon.	But
because	the	API	is	documented	and	public,	it’s	quite	common	for	external	tooling	to	use
the	API	directly.	This	enables	all	manners	of	tooling,	from	mapping	deployed	Docker
containers	to	servers,	to	automated	deployments,	to	distributed	schedulers.	While	it’s	very
likely	that	beginners	will	not	initially	want	to	talk	directly	to	the	Docker	API,	it’s	a	great
tool	to	have	available.	As	your	organization	embraces	Docker	over	time,	it’s	likely	that
you	will	increasingly	find	the	API	to	be	a	good	integration	point	for	this	tooling.

Extensive	documentation	for	the	API	is	on	the	Docker	site.	As	the	ecosystem	has	matured,
robust	implementations	of	Docker	API	libraries	have	begun	to	appear	for	many	popular
languages.	We’ve	used	the	Go	and	Ruby	libraries,	for	example,	and	have	found	them	to	be
both	robust	and	rapidly	updated	as	new	versions	of	Docker	are	released.

Most	of	the	things	you	can	do	with	the	Docker	command-line	tooling	is	supported
relatively	easily	via	the	API.	Two	notable	exceptions	are	the	endpoints	that	require
streaming	or	terminal	access:	running	remote	shells	or	executing	the	container	in
interactive	mode.	In	these	cases,	it’s	often	easier	to	use	the	command-line	tool.

https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/remote_api_client_libraries/

Container	Networking
Even	though	Docker	containers	are	largely	made	up	of	processes	running	on	the	host
system	itself,	they	behave	quite	differently	from	other	processes	at	the	network	layer.	If
you	think	of	each	of	your	Docker	containers	as	behaving	on	the	network	like	a	host	on	a
private	network,	you’ll	be	on	the	right	path.	The	Docker	server	acts	as	a	virtual	bridge	and
the	containers	are	clients	behind	it.	A	bridge	is	just	a	network	device	that	repeats	traffic
from	one	side	to	another.	So	you	can	think	of	it	like	a	mini	virtual	network	with	hosts
attached.

The	implementation	is	that	each	container	has	its	own	virtual	Ethernet	interface	connected
to	the	Docker	bridge	and	its	own	IP	address	allocated	to	the	virtual	interface.	Docker	lets
you	bind	ports	on	the	host	to	the	container	so	that	the	outside	world	can	reach	your
container.	That	traffic	passes	over	a	proxy	that	is	also	part	of	the	Docker	daemon	before
getting	to	the	container.	See	Chapter	10	for	more	detailed	information.

Docker	allocates	the	private	subnet	from	an	unused	RFC	1918	private	subnet	block.	It
detects	which	network	blocks	are	unused	on	startup	and	allocates	one	to	the	virtual
network.	That	is	bridged	to	the	host’s	local	network	through	an	interface	on	the	server
called	docker0.	This	means	that	all	of	the	containers	are	on	a	network	together	and	can
talk	to	each	other	directly.	But	to	get	to	the	host	or	the	outside	world,	they	go	over	the
docker0	virtual	bridge	interface.	As	we	mentioned,	inbound	traffic	goes	over	the	proxy.
This	proxy	is	fairly	high	performance	but	can	be	limiting	if	you	run	high	throughput
applications	in	containers.	We	talk	more	about	this	as	well	as	other	networking	topics	in
Chapter	10,	and	offer	some	solutions.

There	is	a	dizzying	array	of	ways	in	which	you	can	configure	Docker’s	network	layer,
from	allocating	your	own	network	blocks	to	configuring	your	own	custom	bridge
interface.	People	often	run	with	the	default	mechanisms,	but	there	are	times	when
something	more	complex	or	specific	to	your	application	is	required.	You	can	find	much
more	detail	about	Docker	networking	in	its	documentation,	and	we	will	cover	more	details
about	networking	in	the	Advanced	Topics	chapter.

NOTE
When	developing	your	Docker	workflow,	you	should	definitely	get	started	with	the	default	networking
approach.	You	might	later	find	that	you	don’t	want	or	need	this	default	virtual	network.	You	can	disable	all
of	this	with	a	single	switch	at	docker	daemon	startup	time.	It’s	not	configurable	per	container,	but	you	can
turn	it	off	for	all	containers	using	the	--net	host	switch	to	docker	-d.	When	running	in	that	mode,	Docker
containers	just	use	the	host’s	own	network	devices	and	address.

https://tools.ietf.org/html/rfc1918
https://docs.docker.com/articles/networking/

Getting	the	Most	from	Docker
Like	most	tools,	Docker	has	a	number	of	great	use	cases,	and	others	that	aren’t	so	good.
You	can,	for	example,	open	a	glass	jar	with	a	hammer.	But	that	has	its	downsides.
Understanding	how	to	best	use	the	tool,	or	even	simply	determining	if	it’s	the	right	tool,
can	get	you	on	the	correct	path	much	more	quickly.

To	begin	with,	Docker’s	architecture	aims	it	squarely	at	applications	that	are	either
stateless	or	where	the	state	is	externalized	into	data	stores	like	databases	or	caches.	It
enforces	some	good	development	principles	for	this	class	of	application	and	we’ll	talk
later	about	how	that’s	powerful.	But	this	means	that	doing	things	like	putting	a	database
engine	inside	Docker	is	basically	like	trying	to	swim	against	the	current.	It’s	not	that	you
can’t	do	it,	or	even	that	you	shouldn’t	do	it;	it’s	just	that	this	is	not	the	most	obvious	use
case	for	Docker	and	if	it’s	the	one	you	start	with,	you	may	find	yourself	disappointed	early
on.	Some	good	applications	for	Docker	include	web	frontends,	backend	APIs,	and	short-
running	tasks,	like	maintenance	scripts	that	might	normally	be	handled	by	cron.

NOTE
Most	traditional	applications	are	stateful,	which	means	that	they	keep	track	of	important	data	in	memory,
files,	or	a	database.	If	you	restart	a	stateful	service,	you	may	lose	any	of	the	information	that	isn’t	written
out	of	memory.	Stateless	applications,	on	the	other	hand,	are	normally	designed	to	immediately	answer	a
single	self-contained	request,	and	have	no	need	to	track	information	between	requests	from	one	or	more
clients.

If	you	focus	first	on	building	an	understanding	of	running	stateless	or	externalized-state
applications	inside	containers,	you	will	have	a	foundation	on	which	to	start	considering
other	use	cases.	We	strongly	recommend	starting	with	stateless	applications	and	learning
from	that	experience	before	tackling	other	use	cases.	It	should	be	noted	that	the
community	is	working	hard	on	how	to	better	support	stateful	applications	in	Docker,	and
there	are	likely	to	be	many	developments	in	this	area	over	the	next	year	or	more.

Containers	Are	Not	Virtual	Machines
A	good	way	to	start	shaping	your	understanding	of	how	to	leverage	Docker	is	to	think	of
containers	not	as	virtual	machines,	but	as	very	lightweight	wrappers	around	a	single	Unix
process.	During	actual	implementation,	that	process	might	spawn	others,	but	on	the	other
hand,	one	statically	compiled	binary	could	be	all	that’s	inside	your	container	(see	“Outside
Dependencies”	for	more	information).	Containers	are	also	ephemeral:	they	may	come	and
go	much	more	readily	than	a	virtual	machine.

Virtual	machines	are	by	design	a	stand-in	for	real	hardware	that	you	might	throw	in	a	rack
and	leave	there	for	a	few	years.	Because	a	real	server	is	what	they’re	abstracting,	virtual
machines	are	often	long-lived	in	nature.	Even	in	the	cloud	where	companies	often	spin
virtual	machines	up	and	down	on	demand,	they	usually	have	a	running	lifespan	of	days	or
more.	On	the	other	hand,	a	particular	container	might	exist	for	months,	or	it	may	be
created,	run	a	task	for	a	minute,	and	then	be	destroyed.	All	of	that	is	OK,	but	it’s	a
fundamentally	different	approach	than	virtual	machines	are	typically	used	for.

Containers	Are	Lightweight
We’ll	get	more	into	the	details	of	how	this	works	later,	but	creating	a	container	takes	very
little	space.	A	quick	test	on	Docker	1.4.1	reveals	that	a	newly	created	container	from	an
existing	image	takes	a	whopping	12	kilobytes	of	disk	space.	That’s	pretty	lightweight.	One
the	other	hand,	a	new	virtual	machine	created	from	a	golden	image	might	require	hundreds
or	thousands	of	megabytes.	The	new	container	is	so	small	because	it	is	just	a	reference	to	a
layered	filesystem	image	and	some	metadata	about	the	configuration.

The	lightness	of	containers	means	that	you	can	use	them	for	things	where	creating	another
virtual	machine	would	be	too	heavyweight,	or	in	situations	where	you	need	something	to
be	truly	ephemeral.	You	probably	wouldn’t,	for	instance,	spin	up	an	entire	virtual	machine
to	run	a	curl	command	to	a	website	from	a	remote	location,	but	you	might	spin	up	a	new
container	for	this	purpose.

Towards	an	Immutable	Infrastructure
By	deploying	most	of	your	applications	within	containers,	it	is	possible	to	start
simplifying	your	configuration	management	story	by	moving	towards	an	immutable
infrastructure.	The	idea	of	an	immutable	infrastructure	has	recently	gained	popularity	in
response	to	how	difficult	it	is,	in	reality,	to	maintain	a	truly	idempotent	configuration
management	code	base.	As	your	configuration	management	code	base	grows,	it	can
become	as	unwieldy	and	unmaintainable	as	large,	monolithic	legacy	applications.	With
Docker	it	is	possible	to	deploy	a	very	lightweight	Docker	server	that	needs	almost	no
configuration	management,	or	in	many	cases,	none	at	all.	All	of	your	application
management	is	simply	handled	by	deploying	and	redeploying	containers	to	the	server.
When	the	server	needs	an	important	update	to	something	like	the	Docker	daemon	or	the
Linux	kernel,	you	can	simply	bring	up	a	new	server	with	the	changes,	deploy	your
containers	there,	and	then	decommission	or	reinstall	the	old	server.

Limited	Isolation
Containers	are	isolated	from	each	other,	but	it’s	probably	more	limited	than	you	might
expect.	While	you	can	put	limits	on	their	resources,	the	default	container	configuration
just	has	them	all	sharing	CPU	and	memory	on	the	host	system,	much	as	you	would	expect
from	colocated	Unix	processes.	This	means	that	unless	you	constrain	them,	containers	can
compete	for	resources	on	your	production	machines.	That	is	sometimes	what	you	want,
but	it	impacts	your	design	decisions.	Limits	on	CPU	and	memory	use	are	possible	through
Docker	but,	in	most	cases,	they	are	not	the	default	like	they	would	be	from	a	virtual
machine.

It’s	often	the	case	that	many	containers	share	one	or	more	common	filesystem	layers.
That’s	one	of	the	more	powerful	design	decisions	in	Docker,	but	it	also	means	that	if	you
update	a	shared	image,	you’ll	need	to	re-create	a	number	of	containers.

Containerized	processes	are	also	just	processes	on	the	Docker	server	itself.	They	are
running	on	the	same	exact	instance	of	the	Linux	kernel	as	the	host	operating	system.	They
even	show	up	in	the	ps	output	on	the	Docker	server.	That	is	utterly	different	from	a
hypervisor	where	the	depth	of	process	isolation	usually	includes	running	an	entirely
separate	instance	of	the	operating	system	for	each	virtual	machine.

This	light	default	containment	can	lead	to	the	tempting	option	of	exposing	more	resources
from	the	host,	such	as	shared	filesystems	to	allow	the	storage	of	state.	But	you	should
think	hard	before	further	exposing	resources	from	the	host	into	the	container	unless	they
are	used	exclusively	by	the	container.	We’ll	talk	about	security	of	containers	later,	but
generally	you	might	consider	helping	to	enforce	isolation	further	through	the	application
of	SELinux	or	AppArmor	policies	rather	than	compromising	the	existing	barriers.

WARNING
By	default,	many	containers	use	UID	0	to	launch	processes.	Because	the	container	is	contained,	this	seems
safe,	but	in	reality	it	isn’t.	Because	everything	is	running	on	the	same	kernel,	many	types	of	security
vulnerabilities	or	simple	misconfiguration	can	give	the	container’s	root	user	unauthorized	access	to	the
host’s	system	resources,	files,	and	processes.

Stateless	Applications
A	good	example	of	the	kind	of	application	that	containerizes	well	is	a	web	application	that
keeps	its	state	in	a	database.	You	might	also	run	something	like	ephemeral	memcache
instances	in	containers.	If	you	think	about	your	web	application,	though,	it	probably	has
local	state	that	you	rely	on,	like	configuration	files.	That	might	not	seem	like	a	lot	of	state,
but	it	means	that	you’ve	limited	the	reusability	of	your	container,	and	made	it	more
challenging	to	deploy	into	different	environments,	without	maintaining	configuration	data
in	your	codebase.

In	many	cases,	the	process	of	containerizing	your	application	means	that	you	move
configuration	state	into	environment	variables	that	can	be	passed	to	your	application	from
the	container.	This	allows	you	to	easily	do	things	like	use	the	same	container	to	run	in
either	production	or	staging	environments.	In	most	companies,	those	environments	would
require	many	different	configuration	settings,	from	the	names	of	databases	to	the
hostnames	of	other	service	dependencies.

With	containers,	you	might	also	find	that	you	are	always	decreasing	the	size	of	your
containerized	application	as	you	optimize	it	down	to	the	bare	essentials	required	to	run.
We	have	found	that	thinking	of	anything	that	you	need	to	run	in	a	distributed	way	as	a
container	can	lead	to	some	interesting	design	decisions.	If,	for	example,	you	have	a	service
that	collects	some	data,	processes	it,	and	returns	the	result,	you	might	configure	containers
on	many	servers	to	run	the	job	and	then	aggregate	the	response	on	another	container.

Externalizing	State
If	Docker	works	best	for	stateless	applications,	how	do	you	best	store	state	when	you	need
to?	Configuration	is	best	passed	by	environment	variables,	for	example.	Docker	supports
environment	variables	natively,	and	they	are	stored	in	the	metadata	that	makes	up	a
container	configuration.	This	means	that	restarting	the	container	will	ensure	that	the	same
configuration	is	passed	to	your	application	each	time.

Databases	are	often	where	scaled	applications	store	state,	and	nothing	in	Docker	interferes
with	doing	that	for	containerized	applications.	Applications	that	need	to	store	files,
however,	face	some	challenges.	Storing	things	to	the	container’s	filesystem	will	not
perform	well,	will	be	extremely	limited	by	space,	and	will	not	preserve	state	across	a
container	lifecycle.	Applications	that	need	to	store	filesystem	state	should	be	considered
carefully	before	putting	them	into	Docker.	If	you	decide	that	you	can	benefit	from	Docker
in	these	cases,	it’s	best	to	design	a	solution	where	the	state	can	be	stored	in	a	centralized
location	that	could	be	accessed	regardless	of	which	host	a	container	runs	on.	In	certain
cases,	this	might	mean	a	service	like	Amazon	S3,	RiakCS,	OpenStack	Swift,	a	local	block
store,	or	even	mounting	iSCSI	disks	inside	the	container.

TIP
Although	it	is	possible	to	externalize	state	on	an	attached	filesystem,	it	is	not	generally	encouraged	by	the
community,	and	should	be	considered	an	advanced	use	case.	It	is	strongly	recommended	that	you	start	with
applications	that	don’t	need	persistent	state.	There	are	multiple	reasons	why	this	is	generally	discouraged,
but	in	almost	all	cases	it	is	because	it	introduces	dependencies	between	the	container	and	the	host	that
interfere	with	using	Docker	as	a	truly	dynamic,	horizontally	scalable	application	delivery	service.	If	your
container	relies	on	an	attached	filesystem,	it	can	only	be	deployed	to	the	system	that	contains	this
filesystem.

The	Docker	Workflow
Like	many	tools,	Docker	strongly	encourages	a	particular	workflow.	It’s	a	very	enabling
workflow	that	maps	well	to	how	many	companies	are	organized,	but	it’s	probably	a	little
different	than	what	you	or	your	team	are	doing	now.	Having	adapted	our	own
organization’s	workflow	to	the	Docker	approach,	we	can	confidently	say	that	this	change
is	a	benefit	that	touches	many	teams	in	the	organization.	If	the	workflow	is	implemented
well,	it	can	really	help	realize	the	promise	of	reduced	communication	overhead	between
teams.

Revision	Control
The	first	thing	that	Docker	gives	you	out	of	the	box	is	two	forms	of	revision	control.	One
is	used	to	track	the	filesystem	layers	that	images	are	made	up	of,	and	the	other	is	a	tagging
systems	for	built	containers.

Filesystem	layers

Docker	containers	are	made	up	of	stacked	filesystem	layers,	each	identified	by	a	unique
hash,	where	each	new	set	of	changes	made	during	the	build	process	is	laid	on	top	of	the
previous	changes.	That’s	great	because	it	means	that	when	you	do	a	new	build,	you	only
have	to	rebuild	the	layers	that	include	and	build	upon	the	change	you’re	deploying.	This
saves	time	and	bandwidth	because	containers	are	shipped	around	as	layers	and	you	don’t
have	to	ship	layers	that	a	server	already	has	stored.	If	you’ve	done	deployments	with	many
classic	deployment	tools,	you	know	that	you	can	end	up	shipping	hundreds	of	megabytes
of	the	same	data	to	a	server	over	and	over	at	each	deployment.	That’s	slow,	and	worse,
you	can’t	really	be	sure	exactly	what	changed	between	deployments.	Because	of	the
layering	effect,	and	because	Docker	containers	include	all	of	the	application	dependencies,
you	can	be	quite	sure	where	the	changes	happened.

To	simplify	this	a	bit,	remember	that	a	Docker	image	contains	everything	required	to	run
your	application.	If	you	change	one	line	of	code,	you	certainly	don’t	want	to	waste	time
rebuilding	every	dependency	your	code	requires	into	a	new	image.	Instead,	Docker	will
use	as	many	base	layers	as	it	can	so	that	only	the	layers	affected	by	the	code	change	are
rebuilt.

Image	tags

The	second	kind	of	revision	control	offered	by	Docker	is	one	that	makes	it	easy	to	answer
an	important	question:	what	was	the	previous	version	of	the	application	that	was
deployed?	That’s	not	always	easy	to	answer.	There	are	a	lot	of	solutions	for	non-
Dockerized	applications,	from	git	tags	for	each	release,	to	deployment	logs,	to	tagged
builds	for	deployment,	and	many	more.	If	you’re	coordinating	your	deployment	with
Capistrano,	for	example,	it	will	handle	this	for	you	by	keeping	a	set	number	of	previous
releases	on	the	server	and	then	using	symlinks	to	make	one	of	them	the	current	release.

But	what	you	find	in	any	scaled	production	environment	is	that	each	application	has	a
unique	way	of	handling	deployment	revisions.	Or	many	do	the	same	thing	and	one	is
different.	Worse,	in	heterogeneous	language	environments,	the	deployment	tools	are	often
entirely	different	between	applications	and	very	little	is	shared.	So	the	question	of	“What
was	the	previous	version?”	can	have	many	answers	depending	on	whom	you	ask	and
about	which	application.	Docker	has	a	built-in	mechanism	for	handling	this:	it	provides
image	tagging	at	deployment	time.	You	can	leave	multiple	revisions	of	your	application	on
the	server	and	just	tag	them	at	release.	This	is	not	rocket	science,	and	it’s	not	functionality
that	is	hard	to	find	in	other	deployment	tooling,	as	we	mention.	But	it	can	easily	be	made
standard	across	all	of	your	applications,	and	everyone	can	have	the	same	expectations

about	how	things	will	be	tagged	for	all	applications.

WARNING
In	many	examples	on	the	Internet	and	in	this	book,	you	will	see	people	use	the	latest	tag.	This	is	useful
when	getting	started	and	when	writing	examples,	as	it	will	always	grab	the	most	recent	version	of	a	image.
But	since	this	is	a	floating	tag,	it	is	a	bad	idea	to	use	latest	in	most	workflows,	as	your	dependencies	can
get	updated	out	from	under	you,	and	it	is	impossible	to	roll	back	to	latest	because	the	old	version	is	no
longer	the	one	tagged	latest.

Building
Building	applications	is	a	black	art	in	many	organizations,	where	a	few	people	know	all
the	levers	to	pull	and	knobs	to	turn	in	order	to	spit	out	a	well-formed,	shippable	artifact.
Part	of	the	heavy	cost	of	getting	a	new	application	deployed	is	getting	the	build	right.
Docker	doesn’t	solve	all	the	problems,	but	it	does	provide	a	standardized	tool
configuration	and	tool	set	for	builds.	That	makes	it	a	lot	easier	for	people	to	learn	to	build
your	applications,	and	to	get	new	builds	up	and	running.

The	Docker	command-line	tool	contains	a	build	flag	that	will	consume	a	Dockerfile	and
produce	a	Docker	image.	Each	command	in	a	Dockerfile	generates	a	new	layer	in	the
image,	so	it’s	easy	to	reason	about	what	the	build	is	going	to	do	by	looking	at	the
Dockerfile	itself.	The	great	part	of	all	of	this	standardization	is	that	any	engineer	who	has
worked	with	a	Dockerfile	can	dive	right	in	and	modify	the	build	of	any	other	application.
Because	the	Docker	image	is	a	standardized	artifact,	all	of	the	tooling	behind	the	build
will	be	the	same	regardless	of	the	language	being	used,	the	OS	distribution	it’s	based	on,
or	the	number	of	layers	needed.

Most	Docker	builds	are	a	single	invocation	of	the	docker	build	command	and	generate	a
single	artifact,	the	container	image.	Because	it’s	usually	the	case	that	most	of	the	logic
about	the	build	is	wholly	contained	in	the	Dockerfile,	it’s	easy	to	create	standard	build
jobs	for	any	team	to	use	in	build	systems	like	Jenkins.	As	a	further	standardization	of	the
build	process,	a	few	companies,	including	eBay,	actually	have	standardized	Docker
containers	to	do	the	image	builds	from	a	Dockerfile.

http://jenkins-ci.org

Testing
While	Docker	itself	does	not	include	a	built-in	framework	for	testing,	the	way	containers
are	built	lends	some	advantages	to	testing	with	Docker	containers.

Testing	a	production	application	can	take	many	forms,	from	unit	testing	to	full	integration
testing	in	a	semi-live	environment.	Docker	facilitates	better	testing	by	guaranteeing	that
the	artifact	that	passed	testing	will	be	the	one	that	ships	to	production.	This	can	be
guaranteed	because	we	can	either	use	the	Docker	SHA	for	the	container,	or	a	custom	tag	to
make	sure	we’re	consistently	shipping	the	same	version	of	the	application.

The	second	part	of	the	testing	story	is	that	all	testing	that	is	run	against	the	container	will
automatically	include	testing	the	application	with	all	of	the	dependencies	that	it	will	ship
with.	If	a	unit	test	framework	says	tests	were	successful	against	a	container	image,	you	can
be	sure	that	you	will	not	experience	a	problem	with	the	versioning	of	an	underlying	library
at	deployment	time,	for	example.	That’s	not	easy	with	most	other	technologies,	and	even
Java	WAR	files,	for	example,	don’t	include	testing	of	the	application	server	itself.	That
same	Java	application	deployed	in	a	Docker	container	will	generally	also	include	the
application	server,	and	the	whole	stack	can	be	smoke	tested	before	shipping	to	production.

A	secondary	benefit	of	shipping	applications	in	Docker	containers	is	that	in	places	where
there	are	multiple	applications	that	talk	to	each	other	remotely	via	something	like	an	API,
developers	of	one	application	can	easily	develop	against	a	version	of	the	other	service	that
is	currently	tagged	for	the	environment	they	require,	like	production	or	staging.
Developers	on	each	team	don’t	have	to	be	experts	in	how	the	other	service	works	or	is
deployed,	just	to	do	development	on	their	own	application.	If	you	expand	this	to	a	service-
oriented	architecture	with	innumerable	microservices,	Docker	containers	can	be	a	real
lifeline	to	developers	or	QA	engineers	who	need	to	wade	into	the	swamp	of	inter-
microservice	API	calls.

Packaging
Docker	produces	what	for	all	intents	and	purposes	is	a	single	artifact	from	each	build.	No
matter	which	language	your	application	is	written	in,	or	which	distribution	of	Linux	you
run	it	on,	you	get	a	multilayered	Docker	image	as	the	result	of	your	build.	And	it	is	all
built	and	handled	by	the	Docker	tooling.	That’s	the	shipping	container	metaphor	that
Docker	is	named	for:	a	single,	transportable	unit	that	universal	tooling	can	handle,
regardless	of	what	it	contains.	Like	the	container	port,	or	multimodal	shipping	hub,	your
Docker	tooling	will	only	ever	have	to	deal	with	one	kind	of	package:	the	Docker	image.
That’s	powerful	because	it’s	a	huge	facilitator	of	tooling	reuse	between	applications,	and	it
means	that	someone	else’s	off-the-shelf	tools	will	work	with	your	build	images.
Applications	that	traditionally	take	a	lot	of	custom	configuration	to	deploy	onto	a	new	host
or	development	system	become	incredibly	portable	with	Docker.	Once	a	container	is	built,
it	can	easily	be	deployed	on	any	system	with	a	running	Docker	server.

Deploying
Deployments	are	handled	by	so	many	kinds	of	tools	in	different	shops	that	it	would	be
impossible	to	list	them	here.	Some	of	these	tools	include	shell	scripting,	Capistrano,
Fabric,	Ansible,	or	in-house	custom	tooling.	In	our	experience	with	multi-team
organizations,	there	are	usually	one	or	two	people	on	each	team	who	know	the	magic
incantation	to	get	deployments	to	work.	When	something	goes	wrong,	the	team	is
dependent	on	them	to	get	it	running	again.	As	you	probably	expect	by	now,	Docker	makes
most	of	that	a	nonissue.	The	built-in	tooling	supports	a	simple,	one-line	deployment
strategy	to	get	a	build	onto	a	host	and	up	and	running.	The	standard	Docker	client	only
handles	deploying	to	a	single	host	at	a	time,	but	there	are	other	tools	available	that	make	it
easy	to	deploy	into	a	cluster	of	Docker	hosts.	Because	of	the	standardization	provided	by
Docker,	your	build	can	be	deployed	into	any	of	these	systems,	with	low	complexity	on	the
part	of	the	development	teams.

The	Docker	Ecosystem
There	is	a	wide	community	forming	around	Docker,	driven	by	both	developers	and	system
administrators.	Like	the	DevOps	movement,	this	has	facilitated	better	tools	by	applying
code	to	operations	problems.	Where	there	are	gaps	in	the	tooling	provided	by	Docker,
other	companies	and	individuals	have	stepped	up	to	the	plate.	Many	of	these	tools	are	also
open	source.	That	means	they	are	expandable	and	can	be	modified	by	any	other	company
to	fit	their	needs.

Orchestration

The	first	important	category	of	tools	that	adds	functionality	to	the	core	Docker	distribution
contains	orchestration	and	mass	deployment	tools	like	Docker’s	Swarm,	New	Relic’s
Centurion	and	Spotify’s	Helios.	All	of	these	take	a	generally	simple	approach	to
orchestration.	For	more	complex	environments,	Google’s	Kubernetes	and	Apache	Mesos
are	more	powerful	options.	There	are	new	tools	shipping	constantly	as	new	adopters
discover	gaps	and	publish	improvements.

Atomic	hosts

One	additional	idea	that	can	be	leveraged	to	enhance	your	Docker	experience	is	atomic
hosts.	Traditionally,	servers	and	virtual	machines	are	systems	that	an	organization	will
carefully	assemble,	configure,	and	maintain	to	provide	a	wide	variety	of	functionality	that
supports	a	broad	range	of	usage	patterns.	Updates	must	often	be	applied	via	nonatomic
operations,	and	there	are	many	ways	in	which	host	configurations	can	diverge	and
introduce	unexpected	behavior	into	the	system.	Most	running	systems	are	patched	and
updated	in	place	in	today’s	world.	Conversely,	in	the	world	of	software	deployments,	most
people	deploy	an	entire	copy	of	their	application,	rather	than	trying	to	apply	patches	to	a
running	system.	One	of	the	appeals	of	containers	is	that	they	help	make	applications	even
more	atomic	than	traditional	deployment	models.

What	if	you	could	extend	that	core	container	pattern	all	the	way	down	into	the	operating
system?	Instead	of	relying	on	configuration	management	to	try	to	update,	patch,	and
coalesce	changes	to	your	OS	components,	what	if	you	could	simply	pull	down	a	new,	thin
OS	image	and	reboot	the	server?	And	then	if	something	breaks,	easily	roll	back	to	the
exact	image	you	were	previously	using?

This	is	one	of	the	core	ideas	behind	Linux-based	atomic	host	distributions,	like	CoreOS
and	Project	Atomic.	Not	only	should	you	be	able	to	easily	tear	down	and	redeploy	your
applications,	but	the	same	philosophy	should	apply	for	the	whole	software	stack.	This
pattern	helps	provide	incredible	levels	of	consistency	and	resilience	to	the	whole	stack.

Some	of	the	typical	characteristics	of	an	atomic	host	are	a	minimal	footprint,	a	focused
design	towards	supporting	Linux	containers	and	Docker,	and	providing	atomic	OS	updates
and	rollbacks	that	can	easily	be	controlled	via	multihost	orchestration	tools	on	both	bare-
metal	and	common	virtualization	platforms.

https://github.com/docker/swarm/
https://github.com/newrelic/centurion/
https://github.com/spotify/helios
https://github.com/GoogleCloudPlatform/kubernetes
http://mesos.apache.org
https://coreos.com
http://www.projectatomic.io
https://gist.github.com/jzb/0f336c6f23a0ba145b0a

In	Chapter	3,	we	will	discuss	how	you	can	easily	use	atomic	hosts	in	your	development
process.	If	you	are	also	using	atomic	hosts	as	deployment	targets,	this	process	creates	a
previously	unheard	of	amount	of	software	stack	symmetry	between	your	development	and
production	environments.

Additional	tools

Additional	categories	include	auditing,	logging,	network,	mapping,	and	many	other	tools,
the	majority	of	which	leverage	the	Docker	API	directly.	Some	of	these	tools	and	Docker-
related	features	include	CoreOS’s	flannel	for	Kubernetes;	Weave,	a	virtual	network	for
spanning	containers	across	multiple	Docker	hosts;	and	direct	support	for	Docker	logs	in
Mozilla’s	Heka	log	router.

The	results	of	the	broad	community	that	is	rapidly	evolving	around	Docker	is	anyone’s
guess,	but	it	is	likely	that	this	support	will	only	accelerate	Docker’s	adoption	and	the
development	of	robust	tools	that	solve	many	of	the	problems	that	the	community	struggles
with.

https://github.com/mozilla-services/heka

Wrap-Up
There	you	have	it,	a	quick	tour	through	Docker.	We’ll	return	to	this	discussion	later	on
with	a	slightly	deeper	dive	into	the	architecture	of	Docker,	more	examples	of	how	to	use
the	community	tooling,	and	a	deeper	dive	into	some	of	the	thinking	behind	designing
robust	container	platforms.	But	you’re	probably	itching	to	try	it	all	out,	so	in	the	next
chapter	we’ll	get	Docker	installed	and	running.

Chapter	3.	Installing	Docker

The	steps	required	to	install	Docker	vary	depending	on	the	primary	platform	you	use	for
development	and	the	Linux	distribution	that	you	use	to	host	your	applications	in
production.	Since	Docker	is	a	technology	built	around	Linux	containers,	people
developing	on	non-Linux	platforms	will	need	to	use	some	form	of	virtual	machine	or
remote	server	for	many	parts	of	the	process.

In	this	chapter,	we	discuss	the	steps	required	to	get	a	fully	working	Docker	development
environment	set	up	on	most	modern	desktop	operating	systems.	First	we’ll	install	the
Docker	client	on	your	native	development	platform,	then	we’ll	get	a	Docker	server
running	on	Linux.	Finally	we’ll	test	out	the	installation	to	make	sure	it	works	as	expected.

Although	the	Docker	client	can	run	on	Windows	and	Mac	OS	X	to	control	a	Docker
Server,	Docker	containers	can	only	be	built	and	launched	on	Linux.	Therefore,	non-Linux
systems	will	require	a	virtual	machine	or	remote	server	to	host	the	Linux-based	Docker
server.

Important	Terminology
Below	are	a	few	terms	that	we	will	continue	to	use	throughout	the	book	and	whose
meanings	you	should	become	familiar	with.

Docker	client

The	docker	command	used	to	control	most	of	the	Docker	workflow	and	talk	to
remote	Docker	servers.

Docker	server

The	docker	command	run	in	daemon	mode.	This	turns	a	Linux	system	into	a	Docker
server	that	can	have	containers	deployed,	launched,	and	torn	down	via	a	remote
client.

Docker	images

Docker	images	consist	of	one	or	more	filesystem	layers	and	some	important	metadata
that	represent	all	the	files	required	to	run	a	Dockerized	application.	A	single	Docker
image	can	be	copied	to	numerous	hosts.	A	container	will	typically	have	both	a	name
and	a	tag.	The	tag	is	generally	used	to	identify	a	particular	release	of	an	image.

Docker	container

A	Docker	container	is	a	Linux	container	that	has	been	instantiated	from	a	Docker
image.	A	specific	container	can	only	exist	once;	however,	you	can	easily	create
multiple	containers	from	the	same	image.

Atomic	host

An	atomic	host	is	a	small,	finely	tuned	operating	system	image,	like	CoreOS	and
Project	Atomic,	that	supports	container	hosting	and	atomic	OS	upgrades.

Docker	Client
The	Docker	client	natively	supports	64-bit	versions	of	Linux	and	Mac	OS	X	due	to	the
Unix	underpinnings	of	both	operating	systems.	There	have	been	reports	of	people	getting
Docker	to	run	on	32-bit	systems,	but	it	is	not	currently	supported.

The	majority	of	popular	Linux	distributions	can	trace	their	origins	to	either	Debian	or	Red
Hat.	Debian	systems	utilize	the	deb	package	format	and	Advanced	Package	Tool	(apt)	to
install	most	prepackaged	software.	On	the	other	hand,	Red	Hat	systems	rely	on	rpm	(Red
Hat	Package	Manager)	files	and	Yellowdog	Updater,	Modified	(yum)	to	install	similar
software	packages.

On	Mac	OS	X	and	Microsoft	Windows,	native	GUI	installers	provide	the	easiest	method
to	install	and	maintain	prepackaged	software.	On	Mac	OS	X,	Homebrew	is	also	a	very
popular	option	among	technical	users.

NOTE
To	develop	with	Docker	on	non-Linux	platforms,	you	will	need	to	leverage	virtual	machines	or	remote
Linux	hosts	to	provide	a	Docker	server.	Boot2Docker	and	,	which	are	discussed	later	in	this	chapter,
provide	one	approach	to	solving	this	issue.

http://bit.ly/1Btzr5o
http://red.ht/1AAMUZW
http://brew.sh

Linux
It	is	strongly	recommended	that	you	run	Docker	on	a	modern	release	of	your	prefered
Linux	distribution.	It	is	possible	to	run	Docker	on	some	older	releases,	but	stability	may	be
an	significant	issue.	Generally	a	3.8	or	later	kernel	is	required,	and	we	advise	you	to	use
the	newest	stable	version	of	your	chosen	distribution.	The	directions	below	assume	you
are	using	a	recent,	stable	release.

Ubuntu	Linux	14.04	(64-bit)

To	install	Docker	on	a	current	installation,	run	the	following	commands:

$	sudo	apt-get	update

$	sudo	apt-get	install	docker.io

$	sudo	ln	-sf	/usr/bin/docker.io	/usr/local/bin/docker

and	then,	if	you	are	a	bash	user,	you	can	set	up	completion	for	your	convenience:

$	sudo	sed	-i	'$acomplete	-F	_docker	docker'	/etc/bash_completion.d/docker.io

$	source	/etc/bash_completion.d/docker.io

Fedora	Linux	21	(64-bit)

To	install	the	correct	Docker	packages	on	your	system,	run	the	following	command:

$	sudo	yum	-y	install	docker-io

TIP
If	you	get	a	Cannot	start	container	error,	try	running	sudo	yum	upgrade	selinux-policy	and	then	reboot
your	system.

WARNING
Older	Fedora	releases	have	a	pre-existing	package	called	docker,	which	is	a	KDE	and	GNOME2	system
tray	replacement	docking	application	for	WidowMaker.	In	newer	versions	of	Fedora,	this	package	has	been
renamed	to	wmdocker.

Mac	OS	X	10.10
To	install	Boot2Docker	on	Mac	OS	X,	you	can	use	any	one	of	the	following	methods,
depending	on	your	preferences	and	needs:

GUI	Installer

Homebrew

New	users	may	want	to	stick	with	the	GUI	installer	for	simplicity.

GUI	installer

Download	the	latest	Boot2Docker	installer	and	then	double-click	on	the	downloaded
program	icon.	Follow	all	of	the	installer	prompts	until	the	installation	is	finished.

The	installer	will	also	install	VirtualBox,	which	Mac	OS	X	requires	to	launch	Linux
virtual	machines	that	can	build	Docker	images	and	run	containers.

Homebrew	installation

To	install	using	the	popular	Homebrew	package	management	system	for	Mac	OS	X,	you
must	first	install	Homebrew.	The	Homebrew	project	suggests	installing	the	software	with
the	following	command:

$	ruby	-e	\

"$(curl	-fsSL	\

https://raw.githubusercontent.com/Homebrew/install/master/install)"

Caution

Running	random	scripts	from	the	Internet	on	your	system	is	not	considered	wise.	It	is
unlikely	that	this	script	has	been	altered	in	a	malicous	manner,	but	a	wise	soul	would	read
through	the	script	first,	or	consider	an	alternative	installation	option.

If	you	already	have	Homebrew	installed	on	your	system,	you	should	update	it	and	all	the
installed	formulas	by	running:

$	brew	update

To	install	VirtualBox	via	Homebrew,	you	need	to	add	support	for	an	additional	Homebrew
repository	that	contains	many	GUI	and	large	binary	applications	for	Mac	OS	X.	This	can
be	done	with	one	simple	command:

$	brew	install	caskroom/cask/brew-cask

NOTE
You	can	find	more	information	about	Homebrew	Casks	at	caskroom.io.

Now	that	you	have	Homebrew	and	Cask	installed	and	the	newest	software	formulas	have

http://bit.ly/18WVjiH
http://bit.ly/1LoavHJ
http://bit.ly/1evu0PP
http://caskroom.io

been	downloaded,	you	can	install	VirtualBox	with	the	following	command:

$	brew	cask	install	virtualbox

And	then	installing	Docker	is	as	simple	as	running:

$	brew	install	docker

$	brew	install	boot2docker

Microsoft	Windows	8
Download	the	latest	Boot2Docker	installer	and	then	double-click	on	the	downloaded
program	icon.	Follow	all	of	the	installer	prompts	until	the	installation	is	finished.

The	installer	will	also	install	VirtualBox,	which	Microsoft	Windows	requires	to	launch
Linux	virtual	machines	that	can	build	Docker	images	and	run	containers.

NOTE
Installation	directions	for	additional	operating	systems	can	be	found	at	docs.docker.com.

http://bit.ly/19vTA5d
https://docs.docker.com/installation/

Docker	Server
The	Docker	server	is	integrated	into	the	same	binary	that	you	use	as	the	client.	It’s	not
obvious	that	it’s	the	same	when	you	install	it	because	all	of	the	Linux	init	systems	shield
you	from	the	command	that	is	actually	invoked	to	run	the	daemon.	So	it’s	useful	to	see
that	running	the	Docker	daemon	manually	on	a	Linux	system	is	a	simple	as	typing
something	like	this:

$	sudo	docker	-d	-H	unix:///var/run/docker.sock	-H	tcp://0.0.0.0:2375

This	command	tells	Docker	to	start	in	daemon	mode	(-d),	create	and	listen	to	a	Unix
domain	socket	(-H	unix:///var/run/docker.sock),	and	bind	to	all	system	IP	addresses
using	the	default	unencrypted	traffic	port	for	docker	(-H	tcp://0.0.0.0:2375).

NOTE
If	you	already	have	Docker	running,	manually	executing	the	daemon	again,	will	fail	because	it	can’t	use	the
same	ports	twice.

Of	course,	you’re	not	likely	to	have	to	do	this	yourself.	But	that’s	what	going	on	behind
the	scene.	On	non-Linux	systems,	you	will	need	to	set	up	a	Linux-based	virtual	machine	to
host	the	Docker	server.

Systemd-Based	Linux
Current	Fedora	releases	utilize	systemd	to	manage	processes	on	the	system.	Because	you
have	already	installed	Docker,	you	can	ensure	that	the	server	starts	every	time	you	boot
the	system	by	typing:

$	sudo	systemctl	enable	docker

This	tells	systemd	to	enable	the	docker	service	and	start	it	when	the	system	boots	or
switches	into	the	default	runlevel.

To	start	the	docker	server,	type	the	following:

$	sudo	systemctl	start	docker

http://bit.ly/1Gj3KQT

Upstart-Based	Linux
Ubuntu	uses	the	upstart	init	daemon,	although	future	versions	are	very	likely	going	to	be
converting	to	systemd.	Upstart	replaces	the	traditional	Unix	init	system	with	an	event-
driven	model	and	supports	vastly	simplified	init	scripts,	sometimes	only	a	few	lines	long.

To	enable	the	docker	server	to	start	when	the	system	boots,	type:

$	sudo	update-rc.d	docker.io	defaults

To	start	the	service	immediately,	you	can	use:

$	service	docker.io	start

http://upstart.ubuntu.com

init.d-Based	Linux
Many	Linux	distributions	used	on	production	servers	are	still	using	a	more	traditional
init.d	system.	If	you	are	running	something	based	on	the	Red	Hat	6	ecosystem,	among
others,	then	you	can	likely	use	commands	similar	to	the	following	to	control	when	the
docker	server	runs.

Enable	the	Docker	service	at	boot	with:

$	chkconfig	docker	on

Start	the	Docker	service	immediately:

$	service	docker	start

or:

$	/etc/init.d/docker	start

http://en.wikipedia.org/wiki/Init

Non-Linux	VM-Based	Server
If	you	are	using	Microsoft	Windows	or	Mac	OS	X	in	your	Docker	workflow,	the	default
installation	provides	VirtualBox	and	Boot2Docker,	so	that	you	can	set	up	a	Docker	server
for	testing.	These	tools	allow	you	to	boot	an	Ubuntu-based	Linux	virtual	machine	on	your
local	system.	We’ll	focus	on	Boot2Docker	because	it’s	more	universal	than	other	tools	and
is	entirely	targeted	at	getting	you	up	and	running	quickly.

In	addition	to	Boot2Docker,	it	is	also	possible	to	use	other	tools	to	set	up	the	Docker
server,	depending	on	your	preferences	and	needs.

Docker	Machine

Vagrant

Manually	maintained	virtual	machines

Kitematic

New	users	may	want	to	stick	with	Boot2Docker	for	the	simplest	experience.	If	even	that
seems	too	complicated,	there	is	Kitematic,	a	GUI-based	installer	specific	to	Mac	OS	X.
This	was	recently	acquired	by	Docker,	Inc.,	and	brought	in-house.

Boot2Docker

To	initialize	Boot2Docker	and	download	the	required	boot	image,	run	the	following
command	the	first	time	you	use	Boot2Docker.	You	should	see	output	similar	to	what	is
displayed	below.

$	boot2docker	init

Latest	release	for	boot2docker/boot2docker	is	v1.3.1

Downloading	boot2docker	ISO	image…

Success:	downloaded	https://github.com/.../boot2docker.iso

		to	/Users/me/.boot2docker/boot2docker.iso

Generating	public/private	rsa	key	pair.

Your	identification	has	been	saved	in	/Users/me/.ssh/id_boot2docker.

Your	public	key	has	been	saved	in	/Users/me/.ssh/id_boot2docker.pub.

The	key	fingerprint	is:

ce:dc:61:42:fe:e1:7b:af:2d:d6:00:57:bc:ff:66:5d	me@my-mbair.local

The	key's	randomart	image	is:

+--[RSA	2048]----+

|																	|

|																E|

|										.				o.|

|									.	B				.|

|								o	++oo.o+|

|									S+=+=..o|

|									.=.+..+o|

|													.o		|

|												o.			|

+-----------------+

Now	you	can	start	up	a	virtual	machine	with	a	running	Docker	daemon.	By	default,
Boot2Docker	will	map	port	2376	on	your	local	host	to	the	secure	Docker	port	2376	on	the
virtual	machine	to	make	it	easier	to	interact	with	the	Docker	server	from	your	local
system.

https://kitematic.com/

$	boot2docker	up

Waiting	for	VM	and	Docker	daemon	to	start…

...........ooo

Started.

Writing	/Users/me/.boot2docker/certs/boot2docker-vm/ca.pem

Writing	/Users/me/.boot2docker/certs/boot2docker-vm/cert.pem

Writing	/Users/me/.boot2docker/certs/boot2docker-vm/key.pem

To	connect	the	Docker	client	to	the	Docker	daemon,	please	set:

				export	DOCKER_TLS_VERIFY=1

				export	DOCKER_HOST=tcp://172.17.42.10:2376

				export	DOCKER_CERT_PATH=/Users/skane/.boot2docker/certs/boot2docker-vm

To	set	up	your	shell	environment	so	that	you	can	easily	use	your	local	Docker	client	to	talk
to	the	Docker	daemon	on	your	virtual	machine,	you	can	run:

$	$(boot2docker	shellinit)

If	everything	is	running	properly,	you	should	now	be	able	to	run	the	following	to	connect
to	the	Docker	daemon:

$	docker	info

Containers:	0

Images:	0

Storage	Driver:	aufs

	Root	Dir:	/mnt/sda1/var/lib/docker/aufs

	Dirs:	0

Execution	Driver:	native-0.2

Kernel	Version:	3.16.4-tinycore64

Operating	System:	Boot2Docker	1.3.1	(TCL	5.4);	...

Debug	mode	(server):	true

Debug	mode	(client):	false

Fds:	10

Goroutines:	11

EventsListeners:	0

Init	Path:	/usr/local/bin/docker

To	connect	to	a	shell	on	your	Boot2Docker-based	virtual	machine,	you	can	use	the
following	command:

$	boot2docker	ssh

Warning:	Permanently	added	'[localhost]:2022'	(RSA)	to	the	list	of	known	hosts.

																								##								.

																		##	##	##							==

															##	##	##	##						===

											/""""""""""""""""___/	===

						~~~	{~~	~~~~	~~~	~~~~	~~	~	/		===-	~~~

											\______	o										__/

													\				\								__/

														\____\______/

	_																	_			____					_												_

|	|__			___			___	|	|_|___	\	__|	|	___			___|	|	_____	_	__

|	'_	\	/	_	\	/	_	\|	__|	__)	/	_`	|/	_	\	/	__|	|/	/	_	\	'__|

|	|_)	|	(_)	|	(_)	|	|_	/	__/	(_|	|	(_)	|	(__|			<		__/	|

|_.__/	\___/	\___/	\__|_____\__,_|\___/	\___|_|\_\___|_|

Boot2Docker	version	1.3.1,	build	master	:	9a31a68	-	Fri	Oct	31	03:14:34	UTC	2014

Docker	version	1.3.1,	build	4e9bbfa

docker@boot2docker:~$

Docker	Machine

In	early	2015,	Docker	announced	the	beta	release	of	Docker	Machine,	a	tool	that	makes	it
much	easier	to	set	up	Docker	hosts	on	bare-metal,	cloud,	and	virtual	machine	platforms.

https://github.com/docker/machine


The	easiest	way	to	install	Docker	Machine	is	to	visit	the	GitHub	releases	page	and
download	the	correct	binary	for	your	operating	system	and	architecture.	Currently,	there
are	versions	for	32-	and	64-bit	versions	of	Linux,	Windows,	and	Mac	OS	X.

For	these	demonstrations,	you	will	also	need	to	have	a	recent	release	of	a	hypervisor,	like
VirtualBox,	installed	on	your	system.

For	this	section,	you	will	use	a	Unix-based	system	with	VirtualBox	for	the	examples.

First	you	need	to	download	and	install	the	docker-machine	executable:

$	curl	-L	-o	docker-machine	\

https://github.com/docker/machine/releases/download\

/v0.1.0/docker-machine_darwin-amd64

$	mkdir	~/bin

$	cp	docker-machine	~/bin

$	export	PATH=${PATH}:~/bin

$	chmod	u+rx	~/bin/docker-machine

TIP
We’ve	had	to	line	wrap	the	URL	to	fit	the	format	of	this	book.	If	you	have	trouble	running	that	in	your	shell
as-is,	try	removing	the	backslashes	and	joining	it	into	one	line	without	any	spaces	in	the	URL.

Once	you	have	the	docker-machine	executable	in	your	path,	you	can	start	to	use	it	to	set
up	Docker	hosts.	Here	we’ve	just	put	it	temporarily	into	your	path.	If	you	want	to	keep
running	it	in	the	future,	you’ll	want	to	add	it	to	your	.profile	or	.bash_profile	file.
Now	that	we	can	run	the	tool,	the	next	thing	that	you	need	to	do	is	create	a	named	Docker
machine.	You	can	do	this	using	the	docker-machine	create	command:

$	docker-machine	create	--driver	virtualbox	local

INFO[0000]	Creating	CA:	/Users/skane/.docker/machine/certs/ca.pem

INFO[0001]	Creating	client	certificate:	/.../.docker/machine/certs/cert.pem

INFO[0000]	Downloading	boot2docker.iso	to	/.../machine/cache/boot2docker.iso…

INFO[0001]	Creating	SSH	key…

INFO[0001]	Creating	VirtualBox	VM…

INFO[0013]	Starting	VirtualBox	VM…

INFO[0014]	Waiting	for	VM	to	start…

INFO[0061]	"local"	has	been	created	and	is	now	the	active	machine.

INFO[0061]	To	point	your	Docker	client	at	it,	run	this	in	your	shell:

		$(docker-machine	env	local)

This	downloads	a	Boot2Docker	image	and	then	creates	a	VirtualBox	virtual	machine	that
you	can	use	as	a	Docker	host.	If	you	look	at	the	output	from	the	create	command,	you
will	see	that	it	instructs	you	to	run	the	following	command:

$	$(docker-machine	env	local)

This	command	has	no	output,	so	what	does	it	do	exactly?	If	you	run	it	without	the
surrounding	$(),	you	will	see	that	it	sets	a	couple	of	environment	variables	in	our	current
shell	that	tell	the	Docker	client	where	to	find	the	Docker	server:

$	docker-machine	env	local

export	DOCKER_TLS_VERIFY=yes

export	DOCKER_CERT_PATH=/Users/me/.docker/machine/machines/local

https://github.com/docker/machine/releases
https://www.virtualbox.org/wiki/Downloads


export	DOCKER_HOST=tcp://172.17.42.10:2376

And	now	if	you	want	to	confirm	what	machines	you	have	running,	you	can	use	the
following	command:

$	docker-machine	ls

NAME				ACTIVE			DRIVER							STATE					URL																									SWARM

local			*								virtualbox			Running			tcp://172.17.42.10:2376

This	tells	you	that	you	have	one	machine,	named	local,	that	is	active	and	running.

Now	you	can	pass	commands	to	the	new	Docker	machine	by	leveraging	the	regular
docker	command,	since	you	have	set	the	proper	environment	variables.	If	you	did	not
want	to	set	these	environment	variables,	you	could	also	use	the	docker	and	docker-
machine	commands	in	conjunction	with	one	another,	like	so:

$	docker	$(docker-machine	config	local)	ps

CONTAINER	ID		IMAGE		COMMAND		CREATED		STATUS		PORTS		NAMES

This	command	embeds	the	output	from	docker-machine	into	the	middle	of	the	docker
command.	If	you	run	the	docker-machine	on	its	own,	you	can	see	what	it	is	adding	to	the
docker	command:

$	docker-machine	config	local

		--tls	--tlscacert=/Users/me/.docker/machine/machines/local/ca.pem	\

		--tlscert=/Users/me/.docker/machine/machines/local/cert.pem	\

		--tlskey=/Users/me/.docker/machine/machines/local/key.pem	\

		-H="tcp://172.17.42.10:2376"

Although	you	can	see	the	Docker	host’s	IP	address	in	the	output,	you	can	ask	for	it
explicitly	with	the	following	command:

$	docker-machine	ip

172.17.42.10

If	you	want	to	log	in	to	the	system,	you	can	easily	do	this	by	running:

$	docker-machine	ssh	local

																								##								.

																		##	##	##							==

															##	##	##	##						===

											/""""""""""""""""\___/	===

						~~~	{~~	~~~~	~~~	~~~~	~~	~	/		===-	~~~

											______	o										__/

													\				\								__/

														__________/

	_																	_			____					_												_

|	|__			___			___	|	|_|___	\	__|	|	___			___|	|	_____	_	__

|	'_	\	/	_	\	/	_	\|	__|	__)	/	_`	|/	_	\	/	__|	|/	/	_	\	'__|

|	|_)	|	(_)	|	(_)	|	|_	/	__/	(_|	|	(_)	|	(__|			<		__/	|

|_.__/	___/	___/	__|_______,_|___/	___|_|____|_|

Boot2Docker	version	1.5.0,	build	master	:	a66bce5	-	Tue	Feb	10…	UTC	2015

Docker	version	1.5.0,	build	a8a31ef

docker@local:~$	exit

To	stop	your	Docker	machine,	you	can	run:

$	docker-machine	stop	local

And	then	you	can	run	this	to	restart	it	(you	need	it	to	be	running):

$	docker-machine	start	local

INFO[0000]	Waiting	for	VM	to	start…

WARNING
Some	of	the	documentation	states	that	if	you	run	docker-machine	stop	without	specifying	a	machine
name,	the	command	will	execute	on	the	active	machine	as	identified	in	the	output	of	docker-machine	ls.
This	does	not	seem	to	actually	be	the	case	in	the	current	release.

If	you	want	to	explore	the	other	options	that	docker-machine	provides,	you	can	simply
run	docker-machine	without	any	other	options	to	see	the	command	help.

Vagrant

If	you	need	more	flexibility	with	the	way	your	Docker	development	environment	is	set	up
you	might	want	to	consider	using	Vagrant	instead	of	Boot2Docker.	Vagrant	provides	some
advantages,	including	support	for	multiple	hypervisors,	a	huge	array	of	virtual	machine
images,	and	much	more.

A	common	use	case	for	leveraging	Vagrant	during	Docker	development	is	to	support
testing	on	images	that	match	your	production	enviroment.	Vagrant	supports	everything
from	broad	distributions	like	CentOS	7	and	Ubuntu	14.04,	to	finely	focused	atomic	host
distributions	like	CoreOS	and	Project	Atomic.

Vagrant	can	be	easily	installed	on	most	platforms	by	downloading	a	self-contained
package	from	vagrantup.com.	You	will	also	need	to	have	a	hypervisor,	like	VirtualBox,
installed	on	your	system.

In	the	following	example,	you	will	create	a	CoreOS-based	Docker	host	running	the
Docker	daemon	on	the	unencrypted	port	2375.	You	could	use	your	favorite	distribution
here	instead.	But	CoreOS	ships	with	working	Docker	out	of	the	box	and	the	image	is	quite
small.

NOTE
In	production,	Docker	should	always	be	set	up	to	only	use	encrypted	remote	connections.	Althought
Boot2Docker	now	uses	encrypted	communications	by	default,	setting	up	Vagrant	to	do	this	in	CoreOS	is
currently	a	bit	too	complicated	for	this	installation	example.

After	Vagrant	is	installed,	create	a	host	directory	with	a	name	similar	to	docker-host	and
then	move	into	that	directory:

$	mkdir	docker-host

$	cd	docker-host

To	install	the	coreos-vagrant	files,	you	need	the	version	control	tool	named	git.	If	you
don’t	already	have	git,	you	can	download	and	install	it	from	git-scm.com.	When	git	is

https://coreos.com
http://www.projectatomic.io
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
http://git-scm.com/download

installed,	you	can	grab	the	coreos-vagrant	files	and	then	change	into	the	new	directory
with	the	following	commands:

$	git	clone	https://github.com/coreos/coreos-vagrant.git

$	cd	coreos-vagrant

Inside	the	coreos-vagrant	directory,	we	need	to	create	a	new	file	called	config.rb	(that	tells
it	to	expose	the	Docker	TCP	port	so	we	can	connect):

echo	"\$expose_docker_tcp=2375"	>	config.rb

Next	you’ll	need	to	leverage	the	built-in	cloud-init	tool	to	add	some	systemd	unit	files
that	will	enable	the	Docker	daemon	on	TCP	port	2375.	You	can	do	this	by	creating	a	file
called	user-data	that	contains	all	of	the	following,	including	#cloud-config	at	the
beginning:

#cloud-config

coreos:

		units:

				-	name:	docker-tcp.socket

						command:	start

						enable:	yes

						content:	|

								[Unit]

								Description=Docker	Socket	for	the	API

								[Socket]

								ListenStream=2375

								BindIPv6Only=both

								Service=docker.service

								[Install]

								WantedBy=sockets.target

				-	name:	enable-docker-tcp.service

						command:	start

						content:	|

								[Unit]

								Description=Enable	the	Docker	Socket	for	the	API

								[Service]

								Type=oneshot

								ExecStart=/usr/bin/systemctl	enable	docker-tcp.socket

When	you	have	saved	both	of	these	files,	you	can	start	up	the	Vagrant-based	virtual
machine	by	running:

$	vagrant	up

Bringing	machine	'core-01'	up	with	'virtualbox'	provider…

==>	core-01:	Box	'coreos-alpha'	could	not	be	found.	Attempting	to	find	and	install…

				core-01:	Box	Provider:	virtualbox

				core-01:	Box	Version:	>=	308.0.1

==>	core-01:	Loading	metadata…	'http://.../coreos_production_vagrant.json'

				core-01:	URL:	http://.../coreos_production_vagrant.json

==>	core-01:	Adding	box	'coreos-alpha'	(v472.0.0)	for	provider:	virtualbox

				core-01:	Downloading:	http://.../coreos_production_vagrant.box

				core-01:	Calculating	and	comparing	box	checksum…

==>	core-01:	Successfully	added	box	'coreos-alpha'	(v472.0.0)	for	'virtualbox'!

==>	core-01:	Importing	base	box	'coreos-alpha'...

==>	core-01:	Matching	MAC	address	for	NAT	networking…

==>	core-01:	Checking	if	box	'coreos-alpha'	is	up	to	date…

==>	core-01:	Setting	the	name	of	the	VM:	coreos-vagrant_core-01

==>	core-01:	Clearing	any	previously	set	network	interfaces…

==>	core-01:	Preparing	network	interfaces	based	on	configuration…

				core-01:	Adapter	1:	nat

				core-01:	Adapter	2:	hostonly

==>	core-01:	Forwarding	ports…

				core-01:	2375	=>	2375	(adapter	1)

				core-01:	22	=>	2222	(adapter	1)

==>	core-01:	Running	'pre-boot'	VM	customizations…

==>	core-01:	Booting	VM…

==>	core-01:	Waiting	for	machine	to	boot.	This	may	take	a	few	minutes…

				core-01:	SSH	address:	127.0.0.1:2222

				core-01:	SSH	username:	core

				core-01:	SSH	auth	method:	private	key

				core-01:	Warning:	Connection	timeout.	Retrying…

==>	core-01:	Machine	booted	and	ready!

==>	core-01:	Setting	hostname…

==>	core-01:	Configuring	network	adapters	within	the	VM…

==>	core-01:	Running	provisioner:	file…

==>	core-01:	Running	provisioner:	shell…

				core-01:	Running:	inline	script

To	set	up	your	shell	environment	so	that	you	can	easily	use	your	local	Docker	client	to	talk
to	the	Docker	daemon	on	your	virtual	machine,	you	can	set	the	following	variables:

$	unset	DOCKER_TLS_VERIFY

$	unset	DOCKER_CERT_PATH

$	export	DOCKER_HOST=tcp://127.0.0.1:2375

If	everything	is	running	properly,	you	should	now	be	able	to	run	the	following	to	connect
to	the	Docker	daemon:

$	docker	info

Containers:	0

Images:	0

Storage	Driver:	btrfs

Execution	Driver:	native-0.2

Kernel	Version:	3.16.2+

Operating	System:	CoreOS	472.0.0

To	connect	to	a	shell	on	the	Vagrant-based	virtual	machine,	you	can	run:

$	vagrant	ssh

CoreOS	(alpha)

core@core-01	~	$

Test	the	Setup
You	are	now	ready	to	test	that	everything	is	working.	You	should	be	able	to	run	any	one	of
the	following	commands	on	your	local	system	to	tell	the	Docker	daemon	to	download	the
latest	official	container	for	that	distribution	and	then	launch	it	running	an	instance	of	bash.

This	step	is	important	to	ensure	that	all	the	peices	are	properly	installed	and
communicating	with	each	other	as	expected.	It	also	shows	off	one	of	the	features	of
Docker:	we	can	run	containers	based	on	any	distribution	we	like.	In	the	next	few	steps
we’ll	run	Docker	containers	based	on	Ubuntu,	Fedora,	and	CentOS.	You	don’t	need	to	run
them	all	to	prove	that	this	works;	running	one	of	them	will	suffice.

NOTE
If	you	want	to	run	these	commands	on	the	server,	be	sure	that	you	prepend	each	docker	command	with
sudo.	Alternatively	you	could	add	your	user	to	the	docker	group	directly.

Ubuntu

$	docker	run	--rm	-ti	ubuntu:latest	/bin/bash

Fedora

$	docker	run	--rm	-ti	fedora:latest	/bin/bash

CentOS

$	docker	run	--rm	-ti	centos:latest	/bin/bash

NOTE
ubuntu:latest,	fedora:latest,	and	centos:latest	all	represent	a	Docker	image	name	followed	by	an
image	tag.

Wrap-Up
Now	that	you	have	a	running	Docker	setup,	you	can	start	to	look	at	more	than	the	basic
mechanics	of	getting	it	installed.	In	the	next	chapter,	you’ll	explore	some	of	the	basic
functionality	of	Docker	with	some	hands-on	work.

In	the	rest	of	the	book,	when	you	see	docker	on	the	command	line,	assume	you	will	need
to	have	the	correct	configuration	in	place	either	as	environment	variables	or	via	the	-H
command-line	flag	to	tell	the	docker	client	how	to	connect	to	your	docker	daemon.

Chapter	4.	Working	with	Docker	Images

Every	Docker	container	is	based	on	an	image,	which	provides	the	basis	for	everything	that
you	will	ever	deploy	and	run	with	Docker.	To	launch	a	container,	you	must	either
download	a	public	image	or	create	your	own.	Every	Docker	image	consists	of	one	or	more
filesystem	layers	that	generally	have	a	direct	one-to-one	mapping	to	each	individual	build
step	used	to	create	that	image.

For	image	management,	Docker	relies	heavily	on	its	storage	backend,	which
communicates	with	the	underlying	Linux	filesystem	to	build	and	manage	the	multiple
layers	that	combine	into	a	single	usable	image.	The	primary	storage	backends	that	are
supported	include:	AUFS,	BTRFS,	Device-mapper,	and	overlayfs.	Each	storage	backend
provides	a	fast	copy-on-write	(CoW)	system	for	image	management.

http://bit.ly/1evu9D3
http://bit.ly/1PCwkQw
http://bit.ly/1evughM
http://bit.ly/1zFjGhH

Anatomy	of	a	Dockerfile
To	create	a	custom	Docker	image	with	the	default	tools,	you	will	need	to	become	familiar
with	the	Dockerfile.	This	file	describes	all	the	steps	that	are	required	to	create	one	image
and	would	usually	be	contained	within	the	root	directory	of	the	source	code	repository	for
your	application.

A	typical	Dockerfile	might	look	something	like	the	one	shown	here,	which	will	create	a
container	for	a	Node.js-based	application:

FROM	node:0.10

MAINTAINER	Anna	Doe	<anna@example.com>

LABEL	"rating"="Five	Stars"	"class"="First	Class"

USER	root

ENV	AP	/data/app

ENV	SCPATH	/etc/supervisor/conf.d

RUN	apt-get	-y	update

#	The	daemons

RUN	apt-get	-y	install	supervisor

RUN	mkdir	-p	/var/log/supervisor

#	Supervisor	Configuration

ADD	./supervisord/conf.d/*	$SCPATH/

#	Application	Code

ADD	*.js*	$AP/

WORKDIR	$AP

RUN	npm	install

CMD	["supervisord",	"-n"]

Dissecting	this	Dockerfile	will	provide	some	initial	exposure	to	a	number	of	the	possible
instructions	that	you	can	use	to	control	how	an	image	is	assembled.	Each	line	in	a
Dockerfile	creates	a	new	image	layer	that	is	stored	by	Docker.	This	means	that	when	you
build	new	images,	Docker	will	only	need	to	build	layers	that	deviate	from	previous	builds.

Although	you	could	build	a	Node	instance	from	a	plain,	base	Linux	image,	you	can	also
explore	the	Docker	Registry	for	official	images	for	Node.	Node.js	maintains	a	series	of
Docker	images	and	tags	that	allows	you	to	quickly	determine	that	you	should	tell	the
image	to	inherit	from	node:0.10,	which	will	pull	the	most	recent	Node.js	version	0.10
container.	If	you	want	to	lock	the	image	to	a	specific	version	of	Node,	you	could	instead
point	it	at	node:0.10.33.	The	base	image	that	follows	will	provide	you	with	an	Ubuntu
Linux	image	running	Node	0.10.x:

FROM	node:0.10

The	MAINTAINER	field	provides	contact	information	for	the	Dockerfile’s	author,	which
populates	the	Author	field	in	all	resulting	images’	metadata:

http://bit.ly/1evujdF
http://bit.ly/1evumGb

MAINTAINER	Anna	Doe	<anna@example.com>

The	ability	to	apply	labels	to	images	and	containers	was	added	to	Docker	in	version	1.6.
This	means	that	you	can	now	add	metadata	via	key-value	pairs	that	can	later	be	used	to
search	for	and	identify	Docker	images	and	containers.	You	can	see	the	labels	applied	to
any	image	using	the	docker	inspect	command:

LABEL	"rating"="Five	Stars"	"class"="First	Class"

By	default,	Docker	runs	all	processes	as	root	within	the	container,	but	you	can	use	the
USER	instruction	to	change	this:

USER	root

Caution

Even	though	containers	provide	some	isolation	from	the	underlying	operating	system,	they
still	run	on	the	host	kernel.	Due	to	potential	security	risks,	production	containers	should
almost	always	be	run	under	the	context	of	a	non-privileged	user.

The	ENV	instruction	allows	you	to	set	shell	variables	that	can	be	used	during	the	build
process	to	simplify	the	Dockerfile	and	help	keep	it	DRYer:1

ENV	AP	/data/app

ENV	SCPATH	/etc/supervisor/conf.d

In	the	following	code,	you’ll	use	a	collection	of	RUN	instructions	to	start	and	create	the
required	file	structure	that	you	need,	and	install	some	required	software	dependencies.
You’ll	also	start	to	use	the	build	the	variables	you	defined	in	the	previous	section	to	save
you	a	bit	of	work	and	help	protect	you	from	typos:

RUN	apt-get	-y	update

#	The	daemons

RUN	apt-get	-y	install	supervisor

RUN	mkdir	-p	/var/log/supervisor

WARNING
It	is	generally	considered	a	bad	idea	to	run	commands	like	apt-get	-y	update	or	yum	-y	update	in	your
application	Dockerfiles	because	it	can	significantly	increase	the	time	it	takes	for	all	of	your	builds	to	finish.
Instead,	consider	basing	your	application	image	on	another	image	that	already	has	these	updates	applied	to
it.

NOTE
Remember	that	every	instruction	creates	a	new	Docker	image	layer,	so	it	often	makes	sense	to	combine	a
few	logically	grouped	commands	onto	a	single	line.	It	is	even	possible	to	use	the	ADD	instruction	in
combination	with	the	RUN	instruction	to	copy	a	complex	script	to	your	image	and	then	execute	that	script
with	only	two	commands	in	the	Dockerfile.

The	ADD	instruction	is	used	to	copy	files	from	the	local	filesystem	into	your	image.	Most
often	this	will	include	your	application	code	and	any	required	support	files:

#	Supervisor	Configuration

ADD	./supervisord/conf.d/*	$SCPATH/

#	Application	Code

ADD	*.js*	$AP/

NOTE
ADD	allows	you	to	include	files	from	the	local	filesystem	into	the	image.	However,	once	the	image	is	built,
you	can	use	the	image	without	having	access	to	the	original	files	because	they	have	been	copied	into	the
image.

With	the	WORKDIR	instruction,	you	change	the	working	directory	in	the	image	for	the
remaining	build	instructions:

WORKDIR	$AP

RUN	npm	install

Caution

The	order	of	commands	in	a	Dockerfile	can	have	a	very	significant	impact	on	ongoing
build	times.	You	should	try	to	order	commands	so	that	things	that	change	between	every
single	build	are	closer	to	the	bottom.	This	means	that	adding	your	code	and	similar	steps
should	be	held	off	until	the	end.	When	you	rebuild	an	image,	every	single	layer	after	the
first	introduced	change	will	need	to	be	rebuilt.

And	finally	you	end	with	the	CMD	instruction,	which	defines	the	command	that	launches
the	process	that	you	want	to	run	within	the	container:

CMD	["supervisord",	"-n"]

NOTE
It	is	generally	considered	best	practice	to	only	run	a	single	process	within	a	container,	although	there	is
debate	about	this	within	the	community.	The	idea	is	that	a	container	should	provide	a	single	function,	so
that	it	remains	easy	to	horizontally	scale	individual	functions	within	your	architecture.	In	the	example,	you
are	using	supervisord	to	manage	the	node	application	and	ensure	that	it	stays	running	within	the	container.

Building	an	Image
To	build	your	first	image,	let’s	go	ahead	and	clone	a	git	repo	that	contains	an	example
application	called	docker-node-hello,	as	shown	here:2

$	git	clone	https://github.com/spkane/docker-node-hello.git

Cloning	into	'docker-node-hello'...

remote:	Counting	objects:	20,	done.

remote:	Compressing	objects:	100%	(14/14),	done.

remote:	Total	20	(delta	6),	reused	20	(delta	6)

Unpacking	objects:	100%	(20/20),	done.

Checking	connectivity…	done.

$	cd	docker-node-hello

NOTE
Git	is	frequently	installed	on	Linux	and	Mac	OS	X	systems,	but	if	you	do	not	already	have	git	available,
you	can	download	a	simple	installer	from	git-scm.com.

This	will	download	a	working	Dockerfile	and	related	source	code	files	into	a	directory
called	docker-node-hello.	If	you	look	at	the	contents	while	ignoring	the	git	repo	directory,
you	should	see	the	following:

$	tree	-a	-I	.git

.

├──	.dockerignore

├──	.gitignore

├──	Dockerfile

├──	Makefile

├──	README.md

├──	Vagrantfile

├──	index.js

├──	package.json

└──	supervisord

				└──	conf.d

								├──	node.conf

								└──	supervisord.conf

Let’s	review	the	most	relevant	files	in	the	repo.

The	Dockerfile	should	be	exactly	the	same	as	the	one	you	just	reviewed.

The	.dockerignore	file	allows	you	to	define	files	and	directories	that	you	do	not	want
uploaded	to	the	Docker	host	when	you	are	building	the	image.	In	this	instance,	the
.dockerignore	file	contains	the	following	line:

.git

This	instructs	docker	build	to	exclude	the	.git	directory,	which	contains	the	whole	source
code	repository.	You	do	not	need	this	directory	to	build	the	Docker	image,	and	since	it	can
grow	quite	large	over	time,	you	don’t	want	to	waste	time	copying	it	every	time	you	do	a
build.

http://git-scm.com/downloads

NOTE
The	.git	directory	contains	git	configuration	data	and	every	single	change	that	you	have	ever	made	to	your
code.	The	rest	of	the	files	reflect	the	current	state	of	your	source	code.	This	is	why	we	can	safely	tell
Docker	to	ignore	the	.git	directory.

package.js	defines	the	Node.js	application	and	lists	any	dependencies	that	it	relies	on.

index.js	is	the	main	source	code	for	the	application.

The	supervisord	directory	contains	the	configuration	files	for	supervisord	that	you	will
need	to	start	and	monitor	the	application.

NOTE
Using	supervisord	in	this	example	to	monitor	the	application	is	overkill,	but	it	is	intended	to	provide	a	bit
of	insight	into	some	of	the	techniques	you	can	use	in	a	container	to	provide	more	control	over	your
application	and	its	running	state.

As	we	discussed	in	Chapter	3,	you	will	need	to	have	your	Docker	server	running	and	your
client	properly	set	up	to	communicate	with	it	before	you	can	build	a	Docker	image.
Assuming	that	this	is	all	working,	you	should	be	able	to	initiate	a	new	build	by	running	the
command	below,	which	will	build	and	tag	an	image	based	on	the	files	in	the	current
directory.

NOTE
The	first	build	that	you	run	will	take	a	few	minutes	because	you	have	to	download	the	base	node	image.
Subsequent	builds	should	be	much	faster	unless	a	newer	node	0.10	base	image	has	been	released.

Each	step	identified	in	the	following	output	maps	directly	to	a	line	in	the	Dockerfile,	and
each	step	creates	a	new	image	layer	based	on	the	previous	step:

$	docker	build	-t	example/docker-node-hello:latest	.

Sending	build	context	to	Docker	daemon	16.38	kB

Sending	build	context	to	Docker	daemon

Step	0	:	FROM	node:0.10

node:0.10:	The	image	you	are	pulling	has	been	verified

511136ea3c5a:	Pull	complete

36fd425d7d8a:	Pull	complete

aaabd2b41e22:	Pull	complete

3c20e07c38ce:	Pull	complete

b6ef456c239c:	Pull	complete

b045b0cd49ad:	Pull	complete

210d9bc26f2f:	Pull	complete

27ecce8bd36c:	Pull	complete

fcac83abd52d:	Pull	complete

edc7d098628f:	Pull	complete

b5ac041b53f9:	Pull	complete

387247331d9c:	Pull	complete

Status:	Downloaded	newer	image	for	node:0.10

	--->	387247331d9c

Step	1	:	MAINTAINER	Anna	Doe	<anna@example.com>

	--->	Running	in	fd83efd2ecbd

	--->	a479befa0788

Removing	intermediate	container	fd83efd2ecbd

Step	2	:	LABEL	"rating"="Five	Stars"	"class"="First	Class"

	--->	Running	in	30acbe0f1379

	--->	3cbea27e857c

Removing	intermediate	container	30acbe0f1379

Step	3	:	USER	root

http://supervisord.org

	--->	Running	in	32dfbc0f0855

	--->	9fada51b938d

Removing	intermediate	container	32dfbc0f0855

Step	4	:	ENV	AP	/data/app

	--->	Running	in	0e04f129d7f5

	--->	818dafcc487a

Removing	intermediate	container	0e04f129d7f5

Step	5	:	ENV	SCPATH	/etc/supervisor/conf.d

	--->	Running	in	f828cccc5038

	--->	b5f3a2dbc1a2

Removing	intermediate	container	f828cccc5038

Step	6	:	RUN	apt-get	-y	update

	--->	Running	in	51e0d361adfe

Get:1	http://security.debian.org	jessie/updates	InRelease	[84.1	kB]

Get:2	http://http.debian.net	jessie	InRelease	[191	kB]

Get:3	http://security.debian.org	jessie/updates/main	amd64	Packages	[20	B]

Get:4	http://http.debian.net	jessie-updates	InRelease	[117	kB]

Get:5	http://http.debian.net	jessie/main	amd64	Packages	[9103	kB]

Get:6	http://http.debian.net	jessie-updates/main	amd64	Packages	[20	B]

Fetched	9496	kB	in	7s	(1232	kB/s)

Reading	package	lists…

W:	Size	of	file	/var/lib/...	is	not	what	the	server	reported	9102955	9117278

	--->	16c8639b44c9

Removing	intermediate	container	51e0d361adfe

Step	7	:	RUN	apt-get	-y	install	supervisor

	--->	Running	in	fa79bc727362

Reading	package	lists…

Building	dependency	tree…

Reading	state	information…

The	following	extra	packages	will	be	installed:

		python-meld3

The	following	NEW	packages	will	be	installed:

		python-meld3	supervisor

0	upgraded,	2	newly	installed,	0	to	remove	and	96	not	upgraded.

Need	to	get	304	kB	of	archives.

After	this	operation,	1483	kB	of	additional	disk	space	will	be	used.

Get:1	http://.../debian/	jessie/main	python-meld3	amd64	1.0.0-1	[37.0	kB]

Get:2	http://.../debian/	jessie/main	supervisor	all	3.0r1-1	[267	kB]

debconf:	delaying	package	configuration,	since	apt-utils	is	not	installed

Fetched	304	kB	in	1s	(232	kB/s)

Selecting	previously	unselected	package	python-meld3.

(Reading	database…	29248	files	and	directories	currently	installed.)

Preparing	to	unpack…/python-meld3_1.0.0-1_amd64.deb…

Unpacking	python-meld3	(1.0.0-1)	...

Selecting	previously	unselected	package	supervisor.

Preparing	to	unpack…/supervisor_3.0r1-1_all.deb…

Unpacking	supervisor	(3.0r1-1)	...

Setting	up	python-meld3	(1.0.0-1)	...

Setting	up	supervisor	(3.0r1-1)	...

invoke-rc.d:	policy-rc.d	denied	execution	of	start.

	--->	eabf485da230

Removing	intermediate	container	fa79bc727362

Step	8	:	RUN	mkdir	-p	/var/log/supervisor

	--->	Running	in	0bf6264625dd

	--->	4bcba91d84e1

Removing	intermediate	container	0bf6264625dd

Step	9	:	ADD	./supervisord/conf.d/*	$SCPATH/

	--->	df0d938b53a3

Removing	intermediate	container	dcfa16d0fec2

Step	10	:	ADD	*.js*	$AP/

	--->	b21779fe3194

Removing	intermediate	container	00d2f6d10444

Step	11	:	WORKDIR	$AP

	--->	Running	in	f412220027b5

	--->	0f84bc7ac153

Removing	intermediate	container	f412220027b5

Step	12	:	RUN	npm	install

	--->	Running	in	7340a9041404

npm	WARN	engine	formidable@1.0.13:	wanted:

				{"node":"<0.9.0"}	(current:	{"node":"0.10.33","npm":"2.1.8"})

express@3.2.4	node_modules/express

├──	methods@0.0.1

├──	fresh@0.1.0

├──	range-parser@0.0.4

├──	cookie-signature@1.0.1

├──	buffer-crc32@0.2.1

├──	cookie@0.0.5

├──	commander@0.6.1

├──	mkdirp@0.3.4

├──	debug@2.1.0	(ms@0.6.2)

├──	send@0.1.0	(mime@1.2.6)

└──	connect@2.7.9	(pause@0.0.1,	qs@0.6.4,	bytes@0.2.0,	formidable@1.0.13)

	--->	84f3a4bc2336

Removing	intermediate	container	7340a9041404

Step	13	:	CMD	supervisord	-n

	--->	Running	in	23671c2f57b7

	--->	96eab440b7c8

Removing	intermediate	container	23671c2f57b7

Successfully	built	96eab440b7c8

WARNING
To	improve	the	speed	of	builds,	Docker	will	use	a	local	cache	when	it	thinks	it	is	safe.	This	can	sometimes
lead	to	unexpected	issues.	In	the	output	above	you	will	notice	lines	like	--->	Running	in	23671c2f57b7.
If	instead	you	see	--->	Using	cache,	you	know	that	Docker	decided	to	use	the	cache.	You	can	disable	the
cache	for	a	build	by	using	the	--no-cache	argument	to	the	docker	build	command.

Running	Your	Image
Once	you	have	successfully	built	the	image,	you	can	run	it	on	your	Docker	host	with	the
following	command:

$	docker	run	-d	-p	8080:8080	example/docker-node-hello:latest

The	above	command	tells	Docker	to	create	a	running	container	in	the	background	from	the
image	with	the	example/docker-node-hello:latest	tag,	and	then	map	port	8080	in	the
container	to	port	8080	on	the	Docker	host.

If	everything	goes	as	expected,	the	new	Node.js	application	should	be	running	in	a
container	on	the	host.	You	can	verify	this	by	running	docker	ps.

To	see	the	running	application	in	action,	you	will	need	to	open	up	a	web	browser	and	point
it	at	port	8080	on	the	Docker	host.

You	can	usually	determine	the	Docker	host	IP	address	by	simply	printing	out	the	value	of
the	DOCKER_HOST	environment	variable	unless	you	are	only	running	Docker	locally,	in
which	case	127.0.0.1	should	work.	Boot2Docker	or	Docker	Machine	users	can	also	simply
use	boot2docker	ip	or	docker-machine	ip,	respectively:

$	echo	$DOCKER_HOST

tcp://172.17.42.10:2376

Get	the	IP	address	and	enter	something	like	http://172.17.42.10:8080/	into	your	web
browser	address	bar.

You	should	see	the	following	text:

Hello	World.	Wish	you	were	here.

http://172.17.42.10:8080/

Environment	Variables
If	you	read	the	index.js	file,	you	will	notice	that	part	of	the	file	refers	to	the	variable
$WHO,	which	the	application	uses	to	determine	who	it	is	going	to	say	Hello	to:

var	DEFAULT_WHO	=	"World";

var	WHO	=	process.env.WHO	||	DEFAULT_WHO;

app.get('/',	function	(req,	res)	{

		res.send('Hello	'	+	WHO	+	'.	Wish	you	were	here.\n');

});

Let’s	quickly	learn	how	you	can	configure	this	application	by	passing	in	environment
variables	when	you	start	it.

First	you	need	to	stop	the	existing	container	using	two	commands.	The	first	command	will
provide	you	with	the	container	ID,	which	you	will	need	to	use	in	the	second	command:

$	docker	ps

CONTAINER	ID		IMAGE																													STATUS							...

b7145e06083f		example/centos-node-hello:latest		Up	4	minutes…

And	then,	using	the	container	ID	from	the	previous	output,	you	can	stop	the	running
container	by	typing:

$	docker	stop	b7145e06083f

b7145e06083f

You	can	then	restart	the	container	by	adding	one	argument	to	the	previous	docker	run
command:

$	docker	run	-d	-p	8080:8080	-e	WHO="Sean	and	Karl"	\

example/docker-node-hello:latest

If	you	reload	your	web	browser,	you	should	see	that	the	text	on	the	web	page	now	reads:

Hello	Sean	and	Karl.	Wish	you	were	here.

Custom	Base	Images
Base	images	are	the	lowest-level	images	that	other	Docker	images	will	build	upon.	Most
often,	these	are	based	on	minimal	installs	of	Linux	distributions	like	Ubuntu,	Fedora,	or
CentOS,	but	they	can	also	be	much	smaller,	containing	a	single	statically	compiled	binary.
For	most	people,	using	the	official	base	images	for	their	favorite	distribution	or	tool	is	a
great	option.

However,	there	are	times	when	it	is	more	preferable	to	build	your	own	base	images	that
are	not	based	on	an	image	created	by	someone	else.	One	reason	to	do	this	would	be	to
maintain	a	consistent	OS	image	across	all	your	deployment	methods	for	hardware,	VMs,
and	containers.	Another	would	be	to	get	the	image	size	down	substantially.	There	is	no
need	to	ship	around	an	entire	Ubuntu	distribution,	for	example,	if	your	application	is	a
statically	built	C	or	Go	application.	You	might	find	that	you	only	need	the	tools	you
regularly	use	for	debugging	and	some	other	shell	commands	and	binaries.	Making	the
effort	to	build	such	an	image	could	pay	off	in	better	deployment	times	and	easier
application	distribution.

In	the	official	Docker	documentation,	there	is	some	good	information	about	how	you	can
build	base	images	on	the	various	Linux	distributions.

https://docs.docker.com/articles/baseimages/

Storing	Images
Now	that	you	have	created	a	Docker	image	that	you’re	happy	with,	you’ll	want	to	store	it
somewhere	so	that	it	can	be	easily	accessed	by	any	Docker	host	that	you	want	to	deploy	it
to.	This	is	also	the	clear	hand-off	point	between	building	images	and	putting	them
somewhere	to	run.	You	don’t	normally	build	the	images	on	the	server	and	then	run	them.
Ordinarily,	deployment	is	the	process	of	pulling	an	image	from	a	repository	and	running	it
on	one	or	more	Docker	servers.	There	are	a	few	ways	you	can	go	about	storing	your
images	into	a	central	repository	for	easy	retrieval.

Public	Registries
Docker	provides	an	image	registry	for	public	images	that	the	community	wants	to	share.
These	include	official	images	for	Linux	distibutions,	ready-to-go	WordPress	containers,
and	much	more.

If	you	have	images	that	can	be	published	to	the	Internet,	the	best	place	for	them	is	a	public
registry,	like	Docker	Hub.	However,	there	are	other	options.	When	the	core	Docker	tools
were	first	gaining	popularity,	Docker	Hub	did	not	exist.	To	fill	this	obvious	void	in	the
community,	Quay.io	was	created.	Since	then,	Quay.io	has	been	purchased	by	CoreOS	and
has	been	used	to	create	the	CoreOS	Enterprise	Registry	product,	which	we	will	discuss	in
a	moment.

Both	Docker	Hub	and	Quay.io	provide	centralized	Docker	image	registries	that	can	be
accessed	from	anywhere	on	the	Internet,	and	provide	a	method	to	store	private	images	in
addition	to	public	ones.	Both	have	nice	user	interfaces	and	the	ability	to	separate	team
access	permissions	and	manage	users.	Both	also	offer	reasonable	commercial	options	for
private	SaaS	hosting	of	your	images,	much	in	the	same	way	that	GitHub	sells	private
registries	on	their	systems.	This	is	probably	the	right	first	step	if	you’re	getting	serious
about	Docker	but	are	not	yet	shipping	enough	code	to	need	an	internally	hosted	solution.

For	companies	that	use	Docker	heavily,	the	biggest	downside	to	these	registries	is	that
they	are	not	local	to	the	network	on	which	the	application	is	being	deployed.	This	means
that	every	layer	of	every	deployment	might	need	to	be	dragged	across	the	Internet	in	order
to	deploy	an	application.	Internet	latencies	have	a	very	real	impact	on	software
deployments,	and	outages	that	affect	these	registries	could	have	a	very	detrimental	impact
on	a	company’s	ability	to	deploy	smoothly	and	on	schedule.	This	is	mitigated	by	good
image	design	where	you	make	thin	layers	that	are	easy	to	move	around	the	Internet.

https://registry.hub.docker.com
https://hub.docker.com/
http://quay.io/

Private	Registries
The	other	option	that	many	companies	consider	is	to	host	some	type	of	Docker	image
registry	internally.	Before	the	public	registry	existed	for	Docker,	the	Docker	developers
released	the	docker-registry	project	on	GitHub.	The	docker-registry	is	a	GUI-less	Python
daemon	that	can	interact	with	the	Docker	client	to	support	pushing,	pulling,	and	searching
images.	Originally	it	did	not	support	any	form	of	authentication,	but	this	has	been	fixed,
and	in	addition	to	local	file	storage,	the	open	source	docker-registry	now	supports	S3,
Azure,	and	a	few	other	storage	backends.

Another	strong	contender	in	the	private	registry	space	is	the	CoreOS	Enterprise	Registry.
When	CoreOS	bought	Quay.io,	it	quickly	took	the	codebase	and	made	it	avaliable	as	an
easily	deployable	Docker	container.	This	product	basically	offers	all	the	same	features	at
Quay.io,	but	can	be	deployed	internally.	It	ships	as	a	virtual	machine	that	you	run	as	an
appliance,	and	supports	the	same	UI	and	interfaces	as	the	public	Quay.io.

In	December	of	2014,	Docker	announced	that	it	was	working	to	develop	Docker	Hub
Enterprise	(DHE),	which	will	allow	organizations	to	have	a	Docker-supported	on-premise
image	registry	in	their	data	center	or	cloud	environment.

http://bit.ly/1evuzJy
http://bit.ly/1evuyFm

Authenticating	to	a	Registry
Communicating	with	a	registry	that	stores	container	images	is	part	of	daily	life	with
Docker.	For	many	registries,	this	means	you’ll	need	to	authenticate	to	gain	access	to
images.	But	Docker	also	tries	to	make	it	easy	to	automate	things	so	it	can	store	your	login
information	and	use	it	on	your	behalf	when	you	request	things	like	pulling	down	a	private
image.	By	default,	Docker	assumes	the	registry	will	be	Docker	Hub,	the	public	repository
hosted	by	Docker,	Inc.

Creating	a	Docker	Hub	account

For	these	examples,	we	will	create	an	account	on	Docker	Hub.	You	don’t	need	an	account
to	use	publicly	shared	images,	but	you	will	need	one	to	upload	your	own	public	or	private
containers.

To	create	your	account,	use	your	web	browser	of	choice	to	navigate	to	Docker	Hub.

From	there,	you	can	either	log	in	via	an	existing	GitHub	account	or	create	a	new	login
based	on	your	email	address.	When	you	first	log	in	to	your	new	account,	you	will	land	on
the	Docker	welcome	page,	which	is	where	you	can	configure	details	about	your	account.

When	you	create	your	account,	Docker	Hub	sends	a	verification	email	to	the	address	that
you	provided	during	signup.	You	should	immediately	log	in	to	your	email	account	and
click	the	verification	link	inside	the	email	to	finish	the	validation	process.

At	this	point,	you	have	created	a	public	registry	to	which	you	can	upload	new	images.	The
“Global	settings”	option	in	your	account	sidebar	will	allow	you	to	change	your	registry
into	a	private	one	if	that	is	what	you	need.

Logging	in	to	a	registry

Now	let’s	log	in	to	the	Docker	Hub	registry	using	our	account:

$	docker	login

Username:	someuser

Password:	<not	shown>

Email:	someone@example.com

Login	Succeeded

When	we	get	“Login	Succeeded”	back	from	the	server,	we	know	we’re	ready	to	pull
images	from	the	registry.	But	what	happened	under	the	covers?	It	turns	out	that	Docker
has	written	a	dotfile	for	us	in	our	home	directory	to	cache	this	information.	The
permissions	are	set	to	0600	as	a	security	precaution	against	other	users	reading	your
credentials.	You	can	inspect	the	file	with	something	like:

$	ls	-la	~/.dockercfg

-rw-------	1	someuser	someuser	95	Mar		6	15:07	/home/someuser/.dockercfg

$	cat	~/.dockercfg

{"https://index.docker.io/v1/":{"auth":"cmVsaEXamPL3hElRmFCOUE=",

"email":"someone@example.com"}}

https://hub.docker.com/account/signup/
https://hub.docker.com/account/welcome/

Here	we	can	see	the	.dockercfg	file,	owned	by	someuser,	and	the	stored	credentials	in
JSON	format.	Note	that	this	can	support	multiple	registries	at	once.	In	this	case,	we	just
have	one	entry,	for	Docker	Hub,	but	we	could	have	more	if	we	need	it.	From	now	on,
when	the	registry	needs	authentication,	Docker	will	look	in	.dockercfg	to	see	if	we	have
credentials	stored	for	this	hostname.	If	so,	it	will	supply	them.	You	will	notice	that	one
value	is	completely	lacking	here:	a	timestamp.	These	credentials	are	cached	forever	or
when	we	tell	Docker	to	remove	them,	whichever	comes	first.

Just	like	logging	in,	we	can	also	log	out	of	a	registry	if	we	no	longer	want	to	cache	the
credentials:

$	docker	logout

Remove	login	credentials	for	https://index.docker.io/v1/

$	ls	-la	~/.dockercfg

ls:	cannot	access	/home/someuser/.dockercfg:	No	such	file	or	directory

Here	we	removed	our	cached	credentials	and	they	are	no	longer	stored.	But	something	else
happened:	the	file	is	gone.	That’s	because	it	was	the	only	set	of	credentials	that	were
cached,	so	Docker	has	simply	removed	the	file.

If	we	were	trying	to	log	in	to	something	other	than	the	Docker	Hub	registry,	we	could
supply	the	hostname	on	the	command	line:

$	docker	login	someregistry.example.com

This	would	then	end	up	as	just	another	line	in	our	.dockercfg	file.

Mirroring	a	Registry
It	is	possible	to	set	up	a	local	registry	in	your	network	that	will	mirror	images	from	the
upstream	public	registry	so	that	you	don’t	need	to	pull	commonly	used	images	all	the	way
across	the	Internet	every	time	you	need	them	on	a	new	host.	This	can	even	be	useful	on
your	development	workstation	so	that	you	can	keep	a	local	stash	of	frequently	used
images	that	you	might	need	to	access	offline.

Configuring	the	Docker	daemon

To	do	this,	the	first	thing	that	you	need	to	do	is	relaunch	your	Docker	daemon	with	the	--
registry-mirror	command-line	argument,	replacing	${YOUR_REGISTRY-MIRROR-HOST}
with	your	Docker	server’s	IP	address	and	port	number	(e.g.,	172.17.42.10:5000).

NOTE
If	you	plan	to	run	the	docker-registry	container	on	your	only	Docker	server,	you	can	set	${YOUR_REGISTRY-
MIRROR-HOST}	to	localhost:5000.

If	you	already	have	Docker	running,	you	need	to	stop	it	first.	This	is	distribution-specific.
You	should	use	the	commands	you	normally	use	on	your	distribution,	like	initctl,
service,	or	systemctl,	to	stop	the	daemon.	Then	we	can	invoke	it	manually	with	this
registry	mirroring	option:

$	docker	-d	--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}

If	you	would	like	to	ensure	that	your	Docker	daemon	always	starts	with	this	setup,	you
will	need	to	edit	the	appropriate	configuration	file	for	your	Linux	distibution.

Boot2Docker

Create	/var/lib/boot2docker/profile	if	it	doesn’t	already	exist:

$	sudo	touch	/var/lib/boot2docker/profile

Then	edit	/var/lib/boot2docker/profile	and	append	the	argument	to	your	EXTRA_ARGS:

EXTRA_ARGS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And	then	restart	the	docker	daemon:

sudo	/etc/init.d/docker	restart

Ubuntu

Edit	/etc/default/docker	and	append	the	argument	to	your	DOCKER_OPTS:

DOCKER_OPTS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And	then	restart	the	docker	daemon:

sudo	service	docker.io	restart

Fedora

Edit	/etc/sysconfig/docker	and	append	the	argument	to	your	OPTIONS:

OPTIONS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And	then	restart	the	docker	daemon:

sudo	systemctl	daemon-reload

sudo	systemctl	restart	docker

CoreOS

First	copy	the	systemd	unit	file	for	Docker	to	a	writeable	filesystem:

$	sudo	cp	/usr/lib/systemd/system/docker.service	/etc/systemd/system/

Then,	as	root,	edit	/etc/systemd/system/docker.service	and	append	the	argument	to	the	end
of	the	ExecStart	line:

ExecStart=/usr/lib/coreos/dockerd	--daemon	--host=fd://	\

$DOCKER_OPTS	$DOCKER_OPT_BIP	$DOCKER_OPT_MTU	$DOCKER_OPT_IPMASQ	\

--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}

And	then	restart	the	docker	daemon:

sudo	systemctl	daemon-reload

sudo	systemctl	restart	docker

Launching	the	local	registry	mirror	service

You	will	now	need	to	launch	a	container	on	your	Docker	host	that	will	run	the	registry
mirror	service	and	provide	you	with	a	local	cache	of	Docker	images.	You	can	accomplish
this	by	running	the	registry	image	as	a	container	with	a	few	important	environment
variables	defined	and	a	storage	volume	mounted.

NOTE
While	this	book	was	being	written,	the	docker-registry	was	the	official	reference	implementation.	Along
with	the	release	of	Docker	1.6,	Docker	officially	announced	the	release	of	Docker	Registry	2.0,	which	does
not	support	mirroring.	The	current	plans	are	to	add	mirroring	to	the	new	registry	with	the	release	of	Docker
1.7	and	Registry	2.1.

If	you	are	considering	setting	up	your	own	registry,	you	should	investigate	the	Docker	Distribution	Github
page	and	the	official	documentation	for	Docker	Registry	2.0.

On	your	Docker	server,	ensure	that	you	have	a	directory	for	storing	the	images:

$	mkdir	-p	/var/lib/registry

http://bit.ly/1evuzJy
http://bit.ly/1evuJAx
http://bit.ly/1evuKo9

Then	you	can	launch	the	container,	with	the	following	options	defined:

$	docker	run	-d	-p	5000:5000	\

				-v	/var/lib/registry:/tmp/registry	\

				-e	SETTINGS_FLAVOR=dev	\

				-e	STANDALONE=false	\

				-e	MIRROR_SOURCE=https://registry-1.docker.io	\

				-e	MIRROR_SOURCE_INDEX=https://index.docker.io	\

				registry

NOTE
The	registry	supports	a	lot	of	different	storage	backends,	including	S3,	Swift,	Glance,	Azure	Blob	Storage,
Google	Cloud	Storage,	and	more.

Testing	the	local	registry	mirror	service

Now	that	the	registry	is	running	as	a	mirror,	we	can	test	it.	On	a	Unix-based	system,	you
can	time	how	long	it	takes	to	download	the	newest	CentOS	image,	using	the	following
command:

$	time	docker	pull	centos:latest

Pulling	repository	centos

88f9454e60dd:	Download	complete

511136ea3c5a:	Download	complete

5b12ef8fd570:	Download	complete

Status:	Downloaded	newer	image	for	centos:latest

real	 1m25.406s

user	 0m0.019s

sys	 0m0.014s

In	this	case,	it	took	1	minute	and	25	seconds	to	pull	the	whole	image.	If	we	then	go	ahead
and	delete	the	image	from	the	Docker	host	and	then	re-time	fetching	the	image	again,	we
will	see	a	significant	difference:

$	docker	rmi	centos:latest

Untagged:	centos:latest

$	time	docker	pull	centos:latest

Pulling	repository	centos

88f9454e60dd:	Download	complete

511136ea3c5a:	Download	complete

5b12ef8fd570:	Download	complete

Status:	Image	is	up	to	date	for	centos:latest

real	 0m2.042s

user	 0m0.004s

sys	 0m0.005s

Both	times	that	you	pulled	the	centos:latest	image,	the	Docker	server	connected	to	the
local	registry	mirror	service	and	asked	for	the	image.	In	the	first	case,	the	mirror	service
did	not	have	the	image	so	it	had	to	pull	it	from	the	official	docker-registry	first,	add	it	to	its
own	storage,	and	then	deliver	it	to	the	Docker	server.	After	you	delete	the	image	from	the
Docker	server	and	then	request	it	again,	you’ll	see	that	the	time	to	pull	the	image	will	drop
to	be	very	low.	In	the	previous	code,	it	took	only	two	seconds	for	the	Docker	server	to
receive	the	image.	This	is	because	the	local	registry	mirror	service	had	a	copy	of	the	image
and	could	provide	it	directly	to	the	server	without	pulling	anything	from	the	upstream

public	docker-registry.

Other	Approaches	to	Image	Delivery
Over	the	last	two	years,	the	community	has	explored	many	other	approaches	to	managing
Docker	images	and	providing	simple	but	reliable	access	to	images	when	needed.	Some	of
these	projects,	like	dogestry,	leverage	the	docker	save	and	docker	load	commands	to
create	and	load	images	from	cloud	storage	like	Amazon	S3.	Other	people	are	exploring	the
possibilities	of	using	torrents	to	distribute	Docker	images,	with	projects	like	torrent-
docker.	Torrents	seem	like	a	natural	fit	because	deployment	is	usually	done	to	a	group	of
servers	on	the	same	network	all	at	the	same	time.	Solomon	Hykes	recently	committed	that
the	Docker	Distribution	project	will	soon	ship	a	command-line	tool	for	importing	and
exporting	image	layers	even	without	a	Docker	daemon.	This	will	facilitate	even	more
diverse	methods	of	image	distribution.	As	more	and	more	companies	and	projects	begin	to
use	Docker	seriously,	even	more	robust	solutions	are	likely	to	begin	to	appear	to	meet	the
needs	of	anyone’s	unique	workflow	and	requirements.

If	you	have	a	scenario	in	which	you	can’t	use	the	off-the-shelf	mechanisms,	such	as	an
isolated	network	for	security	concerns,	you	can	leverage	Docker’s	built-in	importing	and
exporting	features	to	dump	and	load	new	images.	Unless	you	have	a	specific	reason	to	do
otherwise,	you	should	use	one	of	the	off-the-shelf	solutions	and	only	considering	changing
your	approach	when	needed.	The	available	options	will	work	for	almost	everyone.
1	Don’t	Repeat	Yourself.
2	This	code	was	forked	from	GitHub.

https://github.com/dogestry/dogestry
http://aws.amazon.com/s3
http://bit.ly/1evuRQw
http://bit.ly/1evuJAx
https://github.com/enokd/docker-node-hello

Chapter	5.	Working	with	Docker
Containers

In	the	previous	chapter,	we	learned	how	to	build	a	Docker	image	and	the	very	basic	steps
required	for	running	the	resulting	image	within	a	container.	In	this	chapter,	we’ll	first	take
a	look	at	where	containers	came	from	and	then	dive	deeper	into	containers	and	the	Docker
commands	that	control	the	overall	configuration,	resources,	and	privileges	that	your
container	receives.

What	Are	Containers?
You	might	be	familiar	with	virtualization	systems	like	VMware	or	Xen	that	allow	you	to
run	a	complete	Linux	kernel	and	operating	system	on	top	of	a	virtualized	layer,	commonly
called	a	hypervisor.	This	approach	provides	very	strong	isolation	between	virtual
machines	because	each	hosted	kernel	sits	in	separate	memory	space	and	has	defined	entry
points	into	the	actual	hardware,	either	through	another	kernel	or	something	that	looks	like
hardware.

Containers	are	a	fundamentally	different	approach	where	all	containers	share	a	single
kernel	and	isolation	is	implemented	entirely	within	that	single	kernel.	This	is	called
operating	system	virtualization.	The	libcontainer	project	gives	a	good,	short	definition
of	a	container:	“A	container	is	a	self-contained	execution	environment	that	shares	the
kernel	of	the	host	system	and	which	is	(optionally)	isolated	from	other	containers	in	the
system.”	The	major	advantages	are	around	efficiency	of	resources	because	you	don’t	need
a	whole	operating	system	for	each	isolated	function.	Since	you	are	sharing	a	kernel,	there
is	one	less	layer	of	indirection	between	the	isolated	task	and	the	real	hardware	underneath.
When	a	process	is	running	inside	a	container,	there	is	only	a	very	little	shim	that	sits	inside
the	kernel	rather	than	potentially	calling	up	into	a	whole	second	kernel	while	bouncing	in
and	out	of	privileged	mode	on	the	processor.

But	the	container	approach	means	that	you	can	only	run	processes	that	are	compatible
with	the	underlying	kernel.	Unlike	hardware	virtualization	like	that	provided	by	VMware,
for	example,	Windows	applications	cannot	run	inside	a	Linux	container.	So	containers	are
best	thought	of	as	a	Linux	technology	where,	at	least	for	now,	you	can	run	any	of	your
favorite	Linux	applications	or	servers.	When	thinking	of	containers,	you	should	try	very
hard	to	throw	out	what	you	might	already	know	about	virtual	machines	and	instead
conceptualize	a	container	as	a	wrapper	around	a	process	that	actually	runs	on	the	server.

https://github.com/docker/libcontainer

History	of	Containers
It	is	often	the	case	that	a	revolutionary	technology	is	an	older	technology	that	has	finally
arrived	in	the	spotlight.	Technology	goes	in	waves,	and	some	of	the	ideas	from	the	1960s
are	back	in	vogue.	Similarly,	Docker	is	a	new	technology	and	it	has	an	ease	of	use	that	has
made	it	an	instant	hit,	but	it	doesn’t	exist	in	a	vacuum.	Much	of	what	underpins	Docker
comes	from	work	done	over	the	last	30	years	in	a	few	different	arenas:	from	a	system	call
added	to	the	Unix	kernel	in	the	late	1970s,	to	tooling	built	on	modern	Linux.	It’s	worth	a
quick	tour	through	how	we	got	to	Docker	because	understanding	that	helps	you	place	it
within	the	context	of	other	things	you	might	be	familiar	with.

Containers	are	not	a	new	idea.	They	are	a	way	to	isolate	and	encapsulate	a	part	of	the
running	system.	The	oldest	technology	in	that	area	were	the	first	batch	processing	systems.
You’d	run	a	program	for	a	while,	then	switch	to	run	another	program.	There	was	isolation:
you	could	make	sure	your	program	didn’t	step	on	anyone	else’s	program.	That’s	all	pretty
crude	now,	but	it’s	the	very	first	step	on	the	road	to	Linux	containers	and	Docker.

Most	people	would	argue	that	the	seeds	for	today’s	containers	were	planted	in	1979	with
the	addition	of	the	chroot	system	call	to	Version	7	Unix.	chroot	restricts	a	process’s	view
of	the	underlying	filesystem.	The	chroot	system	call	is	commonly	used	to	protect	the
operating	system	from	untrusted	server	processes	like	FTP,	BIND,	and	Sendmail,	which
are	publicly	exposed	and	susceptible	to	compromise.

In	the	1980s	and	1990s,	various	Unix	variants	were	created	with	mandatory	access
controls	for	security	reasons.1	This	meant	you	had	tightly	controlled	domains	running	on
the	same	Unix	kernel.	Processes	in	each	domain	had	an	extremely	limited	view	of	the
system	that	precluded	them	from	interacting	across	domains.	A	popular	commercial
version	of	Unix	that	implemented	this	idea	was	the	Sidewinder	firewall	built	on	top	of
BSDI	Unix.	But	this	was	not	possible	in	most	mainstream	Unix	implementations.

That	changed	in	2000	when	FreeBSD	4.0	was	released	with	a	new	command,	called	jail,
which	was	designed	to	allow	shared-environment	hosting	providers	to	easily	and	securely
create	a	separation	between	their	processes	and	those	of	their	individual	customers.
FreeBSD	jail	expanded	chroot’s	capabilities,	but	restricted	everything	a	process	could	do
with	the	underlying	system	and	processes	in	other	jails.

In	2004,	Sun	released	an	early	build	of	Solaris	10,	which	included	Solaris	Containers,	and
later	evolved	into	Solaris	Zones.	This	was	the	first	major	commercial	implementation	of
container	technology	and	is	still	used	today	to	support	many	commercial	container
implementations.	In	2007,	HP	released	Secure	Resource	Partitions	for	HP-UX,	later
renamed	to	HP-UX	Containers;	and	finally,	in	2008,	Linux	Containers	(LXC)	were
released	in	version	2.6.24	of	the	Linux	kernel.	The	phenomenal	growth	of	Linux
Containers	across	the	community	did	not	really	start	to	grow	until	2013	with	the	inclusion
of	user	namespaces	in	version	3.8	of	the	Linux	Kernel	and	the	release	of	Docker	one
month	later.

Companies	that	had	to	deal	with	scaling	applications	to	the	size	of	the	Internet,	with
Google	being	a	very	early	example,	started	pushing	container	technology	in	the	early
2000s	in	order	to	facilitate	distributing	their	applications	across	data	centers	full	of
computers.	A	few	companies	maintained	their	own	patched	kernels	with	container	support
for	internal	use.	Google	contributed	some	of	its	work	to	support	containers	into	the
mainline	Linux	kernel,	as	understanding	about	the	broader	need	for	these	features	began	to
increase	in	the	Linux	community.

In	late	2013,	months	after	the	Docker	announcement,	Google	released	lmctfy,	the	open
source	version	of	the	internal	container	engine	it	had	been	running	for	some	years.	By	this
time,	Docker	was	already	widely	discussed	in	the	press.	It	was	the	right	combination	of
ease	of	use	and	enabling	technology	just	at	the	right	time.	Other	promising	container
engines,	like	CoreOS	Rocket,	have	been	released	since,	but	Docker	seems	to	have	built	up
a	head	of	steam	that	is	currently	powering	it	to	the	forefront.

NOTE
If	you	haven’t	heard	about	CoreOS	Rocket,	you	might	be	wondering	what	it	is.	Rocket	is	an	open	source
container	runtime	that	CoreOS	is	designing	to	address	what	they	see	as	serious	deficiencies	with	the	Docker
approach	to	containerization	and	the	supporting	tool	set.	It	is	left	as	an	exercise	for	the	reader	to	determine
whether	the	CoreOS	approach	and	solution	fits	your	needs.

Now	let’s	turn	back	to	Docker	and	take	a	closer	look	at	modern	containers.

https://github.com/google/lmctfy
https://github.com/coreos/rkt

Creating	a	Container
So	far	we’ve	started	containers	using	the	handy	docker	run	command.	But	docker	run	is
really	a	convenience	command	that	wraps	two	separate	steps	into	one.	The	first	thing	it
does	is	create	a	container	from	the	underlying	image.	This	is	accomplished	separately
using	the	docker	create	command.	The	second	thing	docker	run	does	is	execute	the
container,	which	we	can	also	do	separately	with	the	docker	start	command.

The	docker	create	and	docker	run	commands	both	contain	all	the	options	that	pertain	to
how	a	container	is	initially	set	up.	In	Chapter	4,	we	demonstrated	that	with	the	docker
run	command	you	could	map	network	ports	in	the	underlying	container	to	the	host	using
the	-p	argument,	and	that	-e	could	be	used	to	pass	environment	variables	into	the
container.

This	only	just	begins	to	touch	on	the	array	of	things	that	you	can	configure	when	you	first
create	a	container.	So	let’s	take	a	pass	over	some	of	the	options	that	docker	supports.

Basic	Configuration
Now	let’s	take	a	look	at	some	of	the	ways	we	can	tell	Docker	to	configure	our	container
when	we	create	it.

Container	name

When	you	create	a	container,	it	is	built	from	the	underlying	image,	but	various	command-
line	arguments	can	affect	the	final	settings.	Settings	specified	in	the	Dockerfile	are	always
used	as	defaults,	but	you	can	override	many	of	them	at	creation	time.

By	default,	Docker	randomly	names	your	container	by	combining	an	adjective	with	the
name	of	a	famous	person.	This	results	in	names	like	ecstatic-babbage	and	serene-
albattani.	If	you	want	to	give	your	container	a	specific	name,	you	can	do	so	using	the	--
name	argument.

$	docker	create	--name="awesome-service"	ubuntu:latest

WARNING
You	can	only	have	one	container	with	any	given	name	on	a	Docker	host.	If	you	run	the	above	command
twice	in	a	row,	you	will	get	an	error.	You	must	either	delete	the	previous	container	using	docker	rm	or
change	the	name	of	the	new	container.

Labels

As	mentioned	in	Chapter	4,	labels	are	key-value	pairs	that	can	be	applied	to	Docker
images	and	containers	as	metadata.	When	new	Docker	containers	are	created,	they
automatically	inherit	all	the	labels	from	their	parent	image.

It	is	also	possible	to	add	new	labels	to	the	containers	so	that	you	can	apply	metadata	that
might	be	specific	to	that	single	container.

docker	run	-d	--name	labels	-l	deployer=Ahmed	-l	tester=Asako	\

		ubuntu:latest	sleep	1000

You	can	then	search	for	and	filter	containers	based	on	this	metadata,	using	commands	like
docker	ps.

$	docker	ps	-a	-f	label=deployer=Ahmed

CONTAINER	ID		IMAGE									COMMAND							...	NAMES

845731631ba4		ubuntu:latest	"sleep	1000"		...	labels

You	can	use	the	docker	inspect	command	on	the	container	to	see	all	the	labels	that	a
container	has.

$	docker	inspect	845731631ba4…

								"Labels":	{

												"deployer":	"Ahmed",

												"tester":	"Asako"

								},

...

http://bit.ly/1DUe0vi

Hostname

By	default,	when	you	start	a	container,	Docker	will	copy	certain	system	files	on	the	host,
including	/etc/hostname,	into	the	container’s	configuration	directory	on	the	host,2	and	then
use	a	bind	mount	to	link	that	copy	of	the	file	into	the	container.	We	can	launch	a	default
container	with	no	special	configuration	like	this:

$	docker	run	--rm	-ti	ubuntu:latest	/bin/bash

This	command	uses	the	docker	run	command,	which	runs	docker	create	and	docker
start	in	the	background.	Since	we	want	to	be	able	to	interact	with	the	container	that	we
are	going	to	create	for	demonstration	purposes,	we	pass	in	a	few	useful	arguments.	The	--
rm	argument	tells	Docker	to	delete	the	container	when	it	exits,	the	-t	argument	tells
Docker	to	allocate	a	psuedo-TTY,	and	the	-i	argument	tells	Docker	that	this	is	going	to	be
an	interactive	session,	and	we	want	to	keep	STDIN	open.	The	final	argument	in	the
command	is	the	exectuable	that	we	want	to	run	within	the	container,	which	in	this	case	is
the	ever	useful	/bin/bash.

If	we	now	run	the	mount	command	from	within	the	resulting	container,	we	will	see
something	similar	to	this:

root@ebc8cf2d8523:/#	mount

overlay	on	/	type	overlay	(rw,relatime,lowerdir=...,upperdir=...,workdir…)

proc	on	/proc	type	proc	(rw,nosuid,nodev,noexec,relatime)

tmpfs	on	/dev	type	tmpfs	(rw,nosuid,mode=755)

shm	on	/dev/shm	type	tmpfs	(rw,nosuid,nodev,noexec,relatime,size=65536k)

mqueue	on	/dev/mqueue	type	mqueue	(rw,nosuid,nodev,noexec,relatime)

devpts	on	/dev/pts	type	devpts	(rw,nosuid,noexec,relatime,...,ptmxmode=666)

sysfs	on	/sys	type	sysfs	(ro,nosuid,nodev,noexec,relatime)

/dev/sda9	on	/etc/resolv.conf	type	ext4	(rw,relatime,data=ordered)

/dev/sda9	on	/etc/hostname	type	ext4	(rw,relatime,data=ordered)

/dev/sda9	on	/etc/hosts	type	ext4	(rw,relatime,data=ordered)

devpts	on	/dev/console	type	devpts	(rw,nosuid,noexec,relatime,...,ptmxmode=000)

proc	on	/proc/sys	type	proc	(ro,nosuid,nodev,noexec,relatime)

proc	on	/proc/sysrq-trigger	type	proc	(ro,nosuid,nodev,noexec,relatime)

proc	on	/proc/irq	type	proc	(ro,nosuid,nodev,noexec,relatime)

proc	on	/proc/bus	type	proc	(ro,nosuid,nodev,noexec,relatime)

tmpfs	on	/proc/kcore	type	tmpfs	(rw,nosuid,mode=755)

root@ebc8cf2d8523:/#

NOTE
When	you	see	any	examples	with	a	prompt	that	looks	something	like	root@hostname,	it	means	that	you	are
running	a	command	within	the	container	instead	of	on	the	Docker	host.

There	are	quite	a	few	bind	mounts	in	a	container,	but	in	this	case	we	are	interested	in	this
one:

/dev/sda9	on	/etc/hostname	type	ext4	(rw,relatime,data=ordered)

While	the	device	number	will	be	different	for	each	container,	the	part	we	care	about	is	that
the	mount	point	is	/etc/hostname.	This	links	the	container’s	/etc/hostname	to	the	hostname
file	that	Docker	has	prepared	for	the	container,	which	by	default	contains	the	container’s

ID	and	is	not	fully	qualified	with	a	domain	name.

We	can	check	this	in	the	container	by	running	the	following:

root@ebc8cf2d8523:/#	hostname	-f

ebc8cf2d8523

root@ebc8cf2d8523:/#	exit

NOTE
Don’t	forget	to	exit	the	container	shell	so	that	we	return	to	the	Docker	host	when	finished.

To	set	the	hostname	specifically,	we	can	use	the	--hostname	argument	to	pass	in	a	more
specific	value.

$	docker	run	--rm	-ti	--hostname="mycontainer.example.com"	ubuntu:latest	/bin/bash

Then,	from	within	the	container,	we	will	see	that	the	fully-qualified	hostname	is	defined	as
requested.

root@mycontainer:/#	hostname	-f

mycontainer.example.com

root@mycontainer:/#	exit

Domain	Name	Service	(DNS)

Just	like	/etc/hostname,	the	resolv.conf	file	is	managed	via	a	bind	mount	between	the	host
and	container.

/dev/sda9	on	/etc/resolv.conf	type	ext4	(rw,relatime,data=ordered)

By	default,	this	is	an	exact	copy	of	the	Docker	host’s	resolv.conf	file.	If	we	didn’t	want
this,	we	could	use	a	combination	of	the	--dns	and	--dns-search	arguments	to	override
this	behavior	in	the	container:

$	docker	run	--rm	-ti	--dns=8.8.8.8	--dns=8.8.4.4	--dns-search=example1.com	\

		--dns-search=example2.com	ubuntu:latest	/bin/bash

NOTE
If	you	want	to	leave	the	search	domain	completely	unset,	then	use	--dns-search=.

Within	the	container,	we	would	still	see	a	bind	mount,	but	the	file	contents	would	no
longer	reflect	the	host’s	resolv.conf;	instead,	it	now	looks	like	this:

root@0f887071000a:/#	more	/etc/resolv.conf

nameserver	8.8.8.8

nameserver	8.8.4.4

search	example1.com	example2.com

root@0f887071000a:/#	exit

Media	Access	Control	(MAC)	address

Another	important	piece	of	information	that	you	can	configure	is	the	MAC	address	for	the
container.

Without	any	configuration,	a	container	will	receive	a	calculated	MAC	address	that	starts
with	the	02:42:ac:11	prefix.

If	you	need	to	specifically	set	this	to	a	value,	you	can	do	this	by	running	something	similar
to	this:

$	docker	run	--rm	-ti	--mac-address="a2:11:aa:22:bb:33"	ubuntu:latest	/bin/bash

Normally	you	will	not	need	to	do	that.	But	sometimes	you	want	to	reserve	a	particular	set
of	MAC	addresses	for	your	containers	in	order	to	avoid	other	virtualization	layers	that	use
the	same	private	block	as	Docker.

WARNING
Be	very	careful	when	customizing	the	MAC	address	settings.	It	is	possible	to	cause	ARP	contention	on	your
network	if	two	systems	advertise	the	same	MAC	address.	If	you	have	a	strong	need	to	do	this,	try	to	keep
your	locally	administered	address	ranges	within	some	of	the	official	ranges,	like	x2-xx-xx-xx-xx-xx,	x6-xx-
xx-xx-xx-xx,	xA-xx-xx-xx-xx-xx,	and	xE-xx-xx-xx-xx-xx	(with	x	being	any	valid	hexidecimal	character).

Storage	Volumes
There	are	times	when	the	default	disk	space	allocated	to	a	container	or	its	ephemeral
nature	is	not	appropriate	for	the	job	at	hand	and	it	is	necessary	to	have	storage	that	can
persist	between	container	deployments.

WARNING
Mounting	storage	from	the	Docker	host	is	not	a	generally	advisable	pattern	because	it	ties	your	container	to
a	particular	Docker	host	for	its	persistent	state.	But	for	cases	like	temporary	cache	files	or	other	semi-
ephemeral	states,	it	can	make	sense.

For	the	times	when	we	need	to	do	this,	we	can	leverage	the	-v	command	to	mount
filesystems	from	the	host	server	into	the	container.	In	the	following	example,	we	are
mounting	/mnt/session_data	to	/data	within	the	container:

$	docker	run	--rm	-ti	-v	/mnt/session_data:/data	ubuntu:latest	/bin/bash

root@0f887071000a:/#	mount	|	grep	data

/dev/sda9	on	/data	type	ext4	(rw,relatime,data=ordered)

root@0f887071000a:/#	exit

In	the	mount	options,	we	can	see	that	the	filesystem	was	mounted	read-write	on	/data	as
we	expected.

NOTE
The	mount	point	in	the	container	does	not	need	to	pre-exist	for	this	command	to	work	properly.

If	the	container	application	is	designed	to	write	into	/data,	then	this	data	will	be	visible	on
the	host	filesystem	in	/mnt/session_data	and	would	remain	available	when	this	container
was	stopped	and	a	new	container	started	with	the	same	volume	mounted.

In	Docker	1.5,	a	new	command	was	added	that	allows	the	root	volume	of	your	container
to	be	mounted	read-only	so	that	processes	within	the	container	cannot	write	anything	to
the	root	filesystem.	This	prevents	things	like	logfiles,	which	a	developer	was	unaware	of,
from	filling	up	the	container’s	allocated	disk	in	production.	When	used	in	conjunction
with	a	mounted	volume,	you	can	ensure	that	data	is	only	written	into	expected	locations.

In	our	previous	example,	we	could	accomplish	this	by	simply	adding	--read-only=true
to	the	command.

$	docker	run	--rm	-ti	--read-only=true	-v	/mnt/session_data:/data	\

		ubuntu:latest	/bin/bash

root@df542767bc17:/#	mount	|	grep	"	/	"

overlay	on	/	type	overlay	(ro,relatime,lowerdir=...,upperdir=...,workdir=...)

root@df542767bc17:/#	mount	|	grep	session

/dev/sda9	on	/session_data	type	ext4	(rw,relatime,data=ordered)

root@df542767bc17:/#	exit

If	we	look	closely	at	the	mount	options	for	the	root	directory,	we	will	notice	that	they	are
mounted	with	the	ro	option,	which	makes	it	read-only.	However,	the	/session_data	mount
is	still	mounted	with	the	rw	option	so	that	our	application	can	successfully	write	to	the	one
volume	to	which	we	have	designed	it	to	write.

WARNING
Containers	should	be	designed	to	be	stateless	whenever	possible.	Managing	storage	creates	undesirable
dependencies	and	can	easily	make	deployment	scenarios	much	more	complicated.

Resource	Quotas
When	people	discuss	the	types	of	problems	that	you	must	often	cope	with	when	working
in	the	cloud,	the	concept	of	the	“noisy	neighbor”	is	often	near	the	top	of	the	list.	The	basic
problem	this	term	refers	to	is	that	other	applications,	running	on	the	same	physical	system
as	yours,	can	have	a	noticeable	impact	on	your	performance	and	resource	availability.

Traditional	virtual	machines	have	the	advantage	that	you	can	easily	and	very	tightly
control	how	much	memory	and	CPU,	among	other	resources,	are	allocated	to	the	virtual
machine.	When	using	Docker,	you	must	instead	leverage	the	cgroup	functionality	in	the
Linux	kernel	to	control	the	resources	that	are	available	to	a	Docker	container.	The	docker
create	command	directly	supports	configuring	CPU	and	memory	restrictions	when	you
create	a	container.

NOTE
Constraints	are	applied	at	the	time	of	container	creation.	Constraints	that	you	apply	at	creation	time	will
exist	for	the	life	of	the	container.	In	most	cases,	if	you	need	to	change	them,	then	you	need	to	create	a	new
container	from	the	same	image	and	change	the	constraints,	unless	you	manipulate	the	kernel	cgroups
directly	under	the	/sys	filesystem.

There	is	an	important	caveat	here.	While	Docker	supports	CPU	and	memory	limits,	as
well	as	swap	limits,	you	must	have	these	capabilities	enabled	in	your	kernel	in	order	for
Docker	to	take	advantage	of	them.	You	might	need	to	add	these	as	command-line
parameters	to	your	kernel	on	startup.	To	figure	out	if	your	kernel	supports	these	limits,	run
docker	info.	If	you	are	missing	any	support,	you	will	get	warning	messages	at	the
bottom,	like:

WARNING:	No	swap	limit	support

NOTE
The	details	regarding	getting	cgroup	support	configured	for	your	kernel	are	distribution-specific,	so	you
should	consult	the	Docker	documentation	if	you	need	help	configuring	things.

CPU	shares

Docker	thinks	of	CPU	in	terms	of	“cpu	shares.”	The	computing	power	of	all	the	CPU
cores	in	a	system	is	considered	to	be	the	full	pool	of	shares.	1024	is	the	number	that
Docker	assigns	to	represent	the	full	pool.	By	configuring	a	container’s	CPU	shares,	you
can	dictate	how	much	time	the	container	gets	to	use	the	CPU	for.	If	you	want	the	container
to	be	able	to	use	at	most	half	of	the	computing	power	of	the	system,	then	you	would
allocate	it	512	shares.	Note	that	these	are	not	exclusive	shares,	meaning	that	assigning	all
1024	shares	to	a	container	does	not	prevent	all	other	containers	from	running.	Rather	it’s	a
hint	to	the	scheduler	about	how	long	each	container	should	be	able	to	run	each	time	it’s
scheduled.	If	we	have	one	container	that	is	allocated	1024	shares	(the	default)	and	two	that
are	allocated	512,	they	will	all	get	scheduled	the	same	number	of	times.	But	if	the	normal
amount	of	CPU	time	for	each	process	is	100	microseconds,	the	containers	with	512	shares

http://bit.ly/1DUrXth

will	run	for	50	microseconds	each	time,	whereas	the	container	with	1024	shares	will	run
for	100	microseconds.

Let’s	explore	a	little	bit	how	this	works	in	practice.	For	the	following	examples,	we	are
going	to	use	a	new	Docker	image	that	contains	the	stress	command	for	pushing	a	system
to	its	limits.

When	we	run	stress	without	any	cgroup	constraints,	it	will	use	as	many	resources	as	we
tell	it	to.	The	following	command	creates	a	load	average	of	around	5	by	creating	two
CPU-bound	processes,	one	I/O-bound	process,	and	two	memory	allocation	processes:

$	docker	run	--rm	-ti	progrium/stress	\

		--cpu	2	--io	1	--vm	2	--vm-bytes	128M	--timeout	120s

WARNING
This	should	be	a	reasonable	command	to	run	on	any	modern	computer	system,	but	be	aware	that	it	is	going
to	stress	the	host	system,	so	don’t	do	this	in	a	location	that	can’t	take	the	additional	load,	or	even	a	possible
failure,	due	to	resource	starvation.

If	you	run	the	top	command	on	the	Docker	host,	near	the	end	of	the	two-minute	run,	you
can	see	how	the	system	is	affected	by	the	load	created	by	the	stress	program.

NOTE
In	the	following	code,	we	are	running	on	a	system	with	two	CPUs.

$	top	-bn1	|	head	-n	15

top	-	20:56:36	up	3	min,		2	users,		load	average:	5.03,	2.02,	0.75

Tasks:		88	total,			5	running,		83	sleeping,			0	stopped,			0	zombie

%Cpu(s):	29.8	us,	35.2	sy,		0.0	ni,	32.0	id,		0.8	wa,		1.6	hi,		0.6	si,		0.0	st

KiB	Mem:			1021856	total,			270148	used,			751708	free,				42716	buffers

KiB	Swap:								0	total,								0	used,								0	free.				83764	cached	Mem

		PID	USER						PR		NI				VIRT				RES				SHR	S		%CPU	%MEM					TIME+	COMMAND

		810	root						20			0				7316					96						0	R		44.3		0.0			0:49.63	stress

		813	root						20			0				7316					96						0	R		44.3		0.0			0:49.18	stress

		812	root						20			0		138392		46936				996	R		31.7		4.6			0:46.42	stress

		814	root						20			0		138392		22360				996	R		31.7		2.2			0:46.89	stress

		811	root						20			0				7316					96						0	D		25.3		0.0			0:21.34	stress

				1	root						20			0		110024			4916			3632	S			0.0		0.5			0:07.32	systemd

				2	root						20			0							0						0						0	S			0.0		0.0			0:00.04	kthreadd

				3	root						20			0							0						0						0	S			0.0		0.0			0:00.11	ksoftirqd/0

If	you	want	run	the	exact	same	stress	command	again,	with	only	half	the	amount	of
available	CPU	time,	you	can	run	it	like	this:

$	docker	run	--rm	-ti	-c	512	progrium/stress	\

		--cpu	2	--io	1	--vm	2	--vm-bytes	128M	--timeout	120s

The	-c	512	is	the	flag	that	does	the	magic,	allocating	512	CPU	shares	to	this	container.
Note	that	the	effect	might	not	be	noticeable	on	a	system	that	is	not	very	busy.	That’s
because	the	container	will	continue	to	be	scheduled	for	the	same	time-slice	length
whenever	it	has	work	to	do,	unless	the	system	is	constrained	for	resources.	So	in	our	case,
the	results	of	a	top	command	on	the	host	system	will	likely	look	exactly	the	same,	unless

http://bit.ly/1evv1HK

you	run	a	few	more	containers	to	give	the	CPU	something	else	to	do.

WARNING
Unlike	virtual	machines,	Docker’s	cgroup-based	constraints	on	CPU	shares	can	have	unexpected
consequences.	They	are	not	hard	limits;	they	are	a	relative	limit,	similar	to	the	nice	command.	An	example
is	a	container	that	is	constrained	to	half	the	CPU	shares,	but	is	on	a	system	that	is	not	very	busy.	Because
the	CPU	is	not	busy,	the	limit	on	the	CPU	shares	would	have	only	a	limited	effect	because	there	is	no
competition	in	the	scheduler	pool.	When	a	second	container	that	uses	a	lot	of	CPU	is	deployed	to	the	same
system,	suddenly	the	effect	of	the	constraint	on	the	first	container	will	be	noticeable.	Consider	this	carefully
when	constraining	containers	and	allocating	resources.

CPU	pinning

It	is	also	possible	to	pin	a	container	to	one	or	more	CPU	cores.	This	means	that	work	for
this	container	will	only	be	scheduled	on	the	cores	that	have	been	assigned	to	this
container.

In	the	following	example,	we	are	running	our	stress	container	pinned	to	the	first	of	two
CPUs,	with	512	CPU	shares.	Note	that	everything	following	the	container	image	here	are
parameters	to	the	stress	command,	not	docker.

$	docker	run	--rm	-ti	-c	512	--cpuset=0	progrium/stress	\

		--cpu	2	--io	1	--vm	2	--vm-bytes	128M	--timeout	120s

WARNING
The	--cpuset	argument	is	zero-indexed,	so	your	first	CPU	core	is	0.	If	you	tell	Docker	to	use	a	CPU	core
that	does	not	exist	on	the	host	system,	you	will	get	a	Cannot	start	container	error.	On	our	two-CPU
example	host,	you	could	test	this	by	using	--cpuset=0,1,2.

If	we	run	top	again,	we	should	notice	that	the	percentage	of	CPU	time	spent	in	user	space
(us)	is	lower	than	it	previously	was,	since	we	have	restricted	two	CPU-bound	processes	to
a	single	CPU.

%Cpu(s):	18.5	us,	22.0	sy,		0.0	ni,	57.6	id,		0.5	wa,		1.0	hi,		0.3	si,		0.0	st

NOTE
When	you	use	CPU	pinning,	additional	CPU	sharing	restrictions	on	the	container	only	take	into	account
other	containers	running	on	the	same	set	of	cores.

Memory

We	can	control	how	much	memory	a	container	can	access	in	a	manner	similar	to
constraining	the	CPU.	There	is,	however,	one	fundamental	difference:	while	constraining
the	CPU	only	impacts	the	application’s	priority	for	CPU	time,	the	memory	limit	is	a	hard
limit.	Even	on	an	unconstrained	system	with	96	GB	of	free	memory,	if	we	tell	a	container
that	it	may	only	have	access	to	24	GB,	then	it	will	only	ever	get	to	use	24	GB	regardless	of
the	free	memory	on	the	system.	Because	of	the	way	the	virtual	memory	system	works	on
Linux,	it’s	possible	to	allocate	more	memory	to	a	container	than	the	system	has	actual

RAM.	In	this	case,	the	container	will	resort	to	using	swap	in	the	event	that	actual	memory
is	not	available,	just	like	a	normal	Linux	process.

Let’s	start	a	container	with	a	memory	constraint	by	passing	the	-m	option	to	the	docker
run	command:

$	docker	run	--rm	-ti	-m	512m	progrium/stress	\

		--cpu	2	--io	1	--vm	2	--vm-bytes	128M	--timeout	120s

When	you	use	the	-m	option	alone,	you	are	setting	both	the	amount	of	RAM	and	the
amount	of	swap	that	the	container	will	have	access	to.	So	here	we’ve	constrained	the
container	to	512	MB	of	RAM	and	512	MB	of	additional	swap	space.	Docker	supports	b,	k,
m,	or	g,	representing	bytes,	kilobytes,	megabytes,	or	gigabytes,	respectively.	If	your	system
somehow	runs	Linux	and	Docker	and	has	mulitple	terabytes	of	memory,	then
unfortunately	you’re	going	to	have	to	specify	it	in	gigabytes.

If	you	would	like	to	set	the	swap	separately	or	disable	it	altogether,	then	you	need	to	also
use	the	--memory-swap	option.	The	--memory-swap	option	defines	the	total	amount	of
memory	and	swap	available	to	the	container.	If	we	rerun	our	previous	command,	like	so:

$	docker	run	--rm	-ti	-m	512m	--memory-swap=768m	progrium/stress	\

		--cpu	2	--io	1	--vm	2	--vm-bytes	128M	--timeout	120s

Then	we	are	telling	the	kernel	that	this	container	can	have	access	to	512	MB	of	memory
and	256	MB	of	additional	swap	space.	Setting	the	--memory-swap	option	to	-1	will	disable
the	swap	completely	within	the	container.

WARNING
Unlike	CPU	shares,	memory	is	a	hard	limit!	This	is	good	because	the	constraint	doesn’t	suddenly	make	a
noticeable	effect	on	the	container	when	another	container	is	deployed	to	the	system.	But	it	does	mean	that
you	need	to	be	careful	that	the	limit	closely	matches	your	container’s	needs	because	there	is	no	wiggle
room.

So,	what	happens	if	a	container	reaches	its	memory	limit?	Well,	let’s	give	it	a	try	by
modifying	one	of	our	previous	commands	and	lowering	the	memory	significantly:

$	docker	run	--rm	-ti	-m	200m	--memory-swap=300m	progrium/stress	\

		--cpu	2	--io	1	--vm	2	--vm-bytes	128M	--timeout	120s

Where	all	our	other	runs	of	the	stress	container	ended	with	the	line:

stress:	info:	[1]	successful	run	completed	in	120s

We	see	that	this	run	quickly	fails	with	the	line:

stress:	FAIL:	[1]	(452)	failed	run	completed	in	0s

This	is	because	the	container	tries	to	allocate	more	memory	than	it	is	allowed,	and	the

Linux	Out	of	Memory	(OOM)	killer	is	invoked	and	starts	killing	processes	within	the
cgroup	to	reclaim	memory.	Since	our	container	has	only	one	running	process,	this	kills	the
container.

ulimits

Another	common	way	to	limit	resources	avaliable	to	a	process	in	Unix	is	through	the
application	of	user	limits.	The	following	code	is	a	list	of	the	types	of	things	that	can
usually	be	configured	by	setting	soft	and	hard	limits	via	the	ulimit	command:

$	ulimit	-a

core	file	size	(blocks,	-c)	0

data	seg	size	(kbytes,	-d)	unlimited

scheduling	priority	(-e)	0

file	size	(blocks,	-f)	unlimited

pending	signals	(-i)	5835

max	locked	memory	(kbytes,	-l)	64

max	memory	size	(kbytes,	-m)	unlimited

open	files	(-n)	1024

pipe	size	(512	bytes,	-p)	8

POSIX	message	queues	(bytes,	-q)	819200

real-time	priority	(-r)	0

stack	size	(kbytes,	-s)	10240

cpu	time	(seconds,	-t)	unlimited

max	user	processes	(-u)	1024

virtual	memory	(kbytes,	-v)	unlimited

file	locks	(-x)	unlimited

Before	the	release	of	Docker	1.6,	all	containers	inherited	the	ulimits	of	the	Docker
daemon.	This	is	usually	not	appropriate	because	the	Docker	server	requires	more
resources	to	perform	its	job	than	any	individual	container.

It	is	now	possible	to	configure	the	Docker	daemon	with	the	default	user	limits	that	you
want	to	apply	to	every	container.	The	following	command	would	tell	the	Docker	daemon
to	start	all	containers	with	a	hard	limit	of	150	open	files	and	20	processes:

$	sudo	docker	-d	--default-ulimit	nofile=50:150	--default-ulimit	nproc=10:20

You	can	then	override	these	ulimits	on	a	specific	container	by	passing	in	values	using	the
--ulimit	argument.

$	docker	run	-d	--ulimit	nproc=100:200	nginx

There	are	some	additional	advanced	commands	that	can	be	used	when	creating	containers,
but	this	covers	many	of	the	more	common	use	cases.	The	Docker	client	documentation
lists	all	the	available	options	and	is	kept	current	with	each	Docker	release.

http://bit.ly/1F8Pwnk

Starting	a	Container
Earlier	in	the	chapter	we	used	the	docker	create	command	to	create	our	container.	When
we	are	ready	to	start	the	container,	we	can	use	the	docker	start	command.

Let’s	say	that	we	needed	to	run	a	copy	of	Redis,	a	common	key-value	store.	We	won’t
really	do	anything	with	this	Redis	container,	but	it’s	a	long-lived	process	and	serves	as	an
example	of	something	we	might	do	in	a	real	environment.	We	could	first	create	the
container	using	a	command	like	the	one	shown	here:

$	docker	create	-p	6379:6379	redis:2.8

Unable	to	find	image	'redis:2.8'	locally

30d39e59ffe2:	Pull	complete…

868be653dea3:	Pull	complete

511136ea3c5a:	Already	exists

redis:2.8:	The	image	you	are	pulling	has	been	verified.	Important:	...

Status:	Downloaded	newer	image	for	redis:2.8

6b785f78b75ec2652f81d92721c416ae854bae085eba378e46e8ab54d7ff81d1

The	command	ends	with	the	full	hash	that	was	generated	for	the	container.	However,	if	we
didn’t	know	the	full	or	short	hash	for	the	container,	we	could	list	all	the	containers	on	the
system,	whether	they	are	running	or	not,	using:

$	docker	ps	-a

CONTAINER	ID		IMAGE																			COMMAND															...

6b785f78b75e		redis:2.8															"/entrypoint.sh	redi		...

92b797f12af1		progrium/stress:latest		"/usr/bin/stress	--v		...

We	can	then	start	the	container	with	the	following	command:

$	docker	start	6b785f78b75e

NOTE
Most	Docker	commands	will	work	with	the	full	hash	or	a	short	hash.	In	the	previous	example,	the	full	hash
for	the	container	is	6b785f78b75ec2652f81d92…bae085eba378e46e8ab54d7ff81d1,	but	the	short	hash	that
is	shown	in	most	command	output	is	6b785f78b75e.	This	short	hash	consists	of	the	first	12	characters	of	the
full	hash.

To	verify	that	it’s	running,	we	can	run:

$	docker	ps

CONTAINER	ID		IMAGE						COMMAND															...		STATUS							...

6b785f78b75e		redis:2.8		"/entrypoint.sh	redi		...		Up	2	minutes…

Auto-Restarting	a	Container
In	many	cases,	we	want	our	containers	to	restart	if	they	exit.	Some	containers	are	just	very
short-lived	and	come	and	go	quickly.	But	for	production	applications,	for	instance,	you
expect	them	to	be	up	after	you’ve	told	them	to	run.	We	can	tell	Docker	to	do	that	on	our
behalf.

The	way	we	tell	Docker	to	do	that	is	by	passing	the	--restart	argument	to	the	docker
run	command.	It	takes	three	values:	no,	always,	or	on-failure:#.	If	restart	is	set	to	no,
the	container	will	never	restart	if	it	exits.	If	it	is	set	to	always,	then	the	container	will
restart	whenever	the	container	exits	with	no	regard	to	the	exit	code.	If	restart	is	set	to	on-
failure:3,	then	whenever	the	container	exits	with	a	nonzero	exit	code,	Docker	will	try	to
restart	the	container	three	times	before	giving	up.

We	can	see	this	in	action	by	rerunning	our	last	memory-constrained	stress	container
without	the	--rm	argument,	but	with	the	--restart	argument.

$	docker	run	-ti	--restart=on-failure:3	-m	200m	--memory-swap=300m	\

		progrium/stress	--cpu	2	--io	1	--vm	2	--vm-bytes	128M	--timeout	120s

In	this	example,	we	will	see	the	output	from	the	first	run	appear	on	the	console	before	it
dies.	If	we	run	a	docker	ps	immediately	after	the	container	dies,	we	will	see	that	Docker
is	attempting	to	restart	the	container.

$	docker	ps…		IMAGE																			...		STATUS																																...

...		progrium/stress:latest		...		Restarting	(1)	Less	than	a	second	ago…

It	will	continue	to	fail	because	we	have	not	given	it	enough	memory	to	function	properly.
After	five	attempts,	Docker	will	give	up	and	we	will	see	the	container	disappear	from	the
the	output	of	docker	ps.

Stopping	a	Container
Containers	can	be	stopped	and	started	at	will.	You	might	think	that	starting	and	stopping
are	analogous	to	pausing	and	resuming	a	normal	process.	It’s	not	quite	the	same,	though.
When	stopped,	the	process	is	not	paused;	it	actually	exits.	And	when	a	container	is
stopped,	it	no	longer	shows	up	in	the	normal	docker	ps	output.	On	reboot,	docker	will
attempt	to	start	all	of	the	containers	that	were	running	at	shutdown.	It	uses	this	same
mechanism,	and	it’s	also	useful	when	testing	or	for	restarting	a	failed	container.	We	can
simply	pause	a	Docker	container	with	docker	pause	and	unpause,	discussed	later.	But
let’s	stop	our	container	now:

$	docker	stop	6b785f78b75e

$	docker	ps

CONTAINER	ID	IMAGE	COMMAND	CREATED	STATUS	PORTS	NAMES

Now	that	we	have	stopped	the	container,	nothing	is	in	the	ps	list!	We	can	start	it	back	up
with	the	container	ID,	but	it	would	be	really	inconvenient	to	have	to	remember	that.	So
docker	ps	has	an	additional	option	(-a)	to	show	all	containers,	not	just	the	running	ones.

$	docker	ps	-a

CONTAINER	ID		IMAGE																		STATUS																			...

6b785f78b75e		progrium/stress:latest	Exited	(0)	2	minutes	ago…

That	STATUS	field	now	shows	that	our	container	exited	with	a	status	code	of	0	(no
errors).	We	can	start	it	back	up	with	all	of	the	same	configuration	it	had	before:

docker	start	6b785f78b75e

6b785f78b75e

$	docker	ps	-a

CONTAINER	ID	IMAGE																			...	STATUS				...

6b785f78b75e	progrium/stress:latest		Up	15	seconds…

Voila,	our	container	is	back	up	and	running.

NOTE
Remember	that	containers	exist	even	when	they	are	not	started,	which	means	that	you	can	always	restart	a
container	without	needing	to	recreate	it.	Although	memory	contents	will	have	been	lost,	all	of	the
container’s	filesystem	contents	and	metadata,	including	environment	variables	and	port	bindings,	are	saved
and	will	still	be	in	place	when	you	restart	the	container.

We	keep	talking	about	the	idea	that	containers	are	just	a	tree	of	processes	that	interact	with
the	system	in	essentially	the	same	was	as	any	other	process	on	the	server.	That	means	that
we	can	send	them	Unix	signals,	which	they	can	respond	to.	In	the	previous	docker	stop
example,	we’re	sending	the	container	a	SIGTERM	signal	and	waiting	for	the	container	to
exit	gracefully.	Containers	follow	the	same	process	group	signal	propagation	that	any
other	process	group	would	receive	on	Linux.

A	normal	docker	stop	sends	a	normal	SIGTERM	signal	to	the	process.	If	you	want	to	force
a	container	to	be	killed	if	it	hasn’t	stopped	after	a	certain	amount	of	time,	you	can	use	the

-t	argument,	like	this:

$	docker	stop	-t	25	6b785f78b75e

This	tells	Docker	to	initially	send	a	SIGTERM	signal	as	before,	but	then	if	the	container	has
not	stopped	within	25	seconds,	to	send	a	SIGKILL	signal	to	forcefully	kill	it.

Although	stop	is	the	best	way	to	shut	down	your	containers,	there	are	times	when	it
doesn’t	work	and	we	need	to	forcefully	kill	a	container.

Killing	a	Container
We	saw	what	it	looks	like	to	use	docker	stop	to	stop	a	container,	but	often	if	a	process	is
misbehaving,	you	just	want	it	to	exit	immediately.

We	have	docker	kill	for	that.	It	looks	pretty	much	like	docker	stop:

$	docker	kill	6b785f78b75e

6b785f78b75e

A	docker	ps	nows	shows	that	the	container	is	no	longer	running,	as	expected:

$	docker	ps

CONTAINER	ID	IMAGE	COMMAND	CREATED	STATUS	PORTS	NAMES

Just	because	it	was	killed	rather	than	stopped	does	not	mean	you	can’t	start	it	again,
though.	You	can	just	issue	a	docker	start	like	you	would	for	a	nicely	stopped	container.
Sometimes	you	might	want	to	send	another	signal	to	a	container,	one	that	is	not	stop	or
kill.	Like	the	Linux	kill	command,	docker	kill	supports	sending	any	Unix	signal.
Let’s	say	we	wanted	to	send	a	USR1	signal	to	our	container	to	tell	it	to	do	something	like
reconnect	a	remote	logging	session.	We	could	do	the	following:

$	docker	kill	--signal=USR1	6b785f78b75e

6b785f78b75e

If	our	container	actually	did	something	with	the	USR1	signal,	it	would	now	do	it.	Since
we’re	just	running	a	bash	shell,	though,	it	just	continues	on	as	if	nothing	happened.	Try
sending	a	HUP	signal,	though,	and	see	what	happens.	Remember	that	a	HUP	is	the	signal
that	is	sent	when	the	terminal	closes	on	a	foreground	process.

Pausing	and	Unpausing	a	Container
Sometimes	we	really	just	want	to	stop	our	container	as	described	above.	But	there	are	a
number	of	times	when	we	just	don’t	want	our	container	to	do	anything	for	a	while.	That
could	be	because	we’re	taking	a	snapshot	of	its	filesystem	to	create	a	new	image,	or	just
because	we	need	some	CPU	on	the	host	for	a	while.	If	you’re	used	to	normal	Unix	process
handling,	you	might	wonder	how	this	actually	works	since	containerized	processes	are	just
processes.

Pausing	leverages	the	cgroups	freezer,	which	essentially	just	prevents	your	process	from
being	scheduled	until	you	unfreeze	it.	This	will	prevent	the	container	from	doing	anything
while	maintaining	its	overall	state,	including	memory	contents.	Unlike	stopping	a
container,	where	the	processes	are	made	aware	that	they	are	stopping	via	the	SIGSTOP
signal,	pausing	a	container	doesn’t	send	any	information	to	the	container	about	its	state
change.	That’s	an	important	distinction.	Several	Docker	commands	use	pausing	and
unpausing	internally	as	well.	Here’s	how	we	pause	a	container:

$	docker	pause	6b785f78b75e

If	we	look	at	the	list	of	running	containers,	we	will	now	see	that	the	Redis	container	status
is	listed	as	(Paused).

#	docker	ps

CONTAINER	ID		IMAGE																			...		STATUS																		...

6b785f78b75e		progrium/stress:latest		...		Up	36	minutes	(Paused)		...

Attempting	to	use	the	container	in	this	paused	state	would	fail.	It’s	present,	but	nothing	is
running.	We	can	now	resume	the	container	using	the	docker	unpause	command.

$	docker	unpause	6b785f78b75e

6b785f78b75e

$	docker	ps

CONTAINER	ID		IMAGE																			...	STATUS…

6b785f78b75e		progrium/stress:latest		...	Up	1	second…

It’s	back	to	running,	and	docker	ps	correctly	reflects	the	new	state.	Note	that	it	shows
“Up	1	second”	now,	which	is	when	we	unpaused	it,	not	when	it	was	last	run.

http://bit.ly/1F8QRuv

Cleaning	Up	Containers	and	Images
After	running	all	these	commands	to	build	images,	create	containers,	and	run	them,	we
have	accumulated	a	lot	of	image	layers	and	container	folders	on	our	system.

We	can	list	all	the	containers	on	our	system	using	the	docker	ps	-a	command	and	then
delete	any	of	the	containers	in	the	list,	as	follows:

$	docker	ps	-a

CONTAINER	ID		IMAGE																			...

92b797f12af1		progrium/stress:latest		...

...

$	docker	rm	92b797f12af1

We	can	then	list	all	the	images	on	our	system	using:

$	docker	images

REPOSITORY							TAG					IMAGE	ID						CREATED							VIRTUAL	SIZE

ubuntu											latest		5ba9dab47459		3	weeks	ago			188.3	MB

redis												2.8					868be653dea3		3	weeks	ago			110.7	MB

progrium/stress		latest		873c28292d23		7	months	ago		281.8	MB

We	can	then	delete	an	image	and	all	associated	filesystem	layers	by	running:

$	docker	rmi	873c28292d23

WARNING
If	you	try	to	delete	an	image	that	is	in	use	by	a	container,	you	will	get	a	Conflict,	cannot	delete	error.	You
should	stop	and	delete	the	container(s)	first.

There	are	times,	especially	during	development	cycles,	when	it	makes	sense	to	completely
clean	off	all	the	images	or	containers	from	your	system.	There	is	no	built-in	command	for
doing	this,	but	with	a	little	creativity	it	can	be	accomplished	reasonably	easily.

To	delete	all	of	the	containers	on	your	Docker	hosts,	you	can	use	the	following	command:

$	docker	rm	$(docker	ps	-a	-q)

And	to	delete	all	the	images	on	your	Docker	host,	this	command	will	get	the	job	done:

$	docker	rmi	$(docker	images	-q	-)

Newer	versions	of	the	docker	ps	and	docker	images	commands	both	support	a	filter
argument	that	can	make	it	easy	to	fine-tune	your	delete	commands	for	certain
circumstances.

To	remove	all	containers	that	exited	with	a	nonzero	state,	you	can	use	this	filter:

$	docker	rm	$(docker	ps	-a	-q	--filter	'exited!=0')

And	to	remove	all	untagged	images,	you	can	type:

$	docker	rmi	$(docker	images	-q	-f	"dangling=true")

NOTE
You	can	read	the	official	Docker	documentation	to	explore	the	filtering	options.	At	the	moment	there	are
very	few	filters	to	choose	from,	but	more	will	likely	be	added	over	time,	and	if	you	are	really	interested,
Docker	is	an	open	source	project,	so	they	are	always	open	to	public	code	contributions.

It	is	also	possible	to	make	your	own	very	creative	filters	by	stringing	together	commands	using	pipes	(|)	and
other	similar	techniques.

Next	Steps
In	the	next	chapter,	we’ll	do	more	exploration	of	what	Docker	brings	to	the	table.	For	now
it’s	probably	worth	doing	a	little	experimentation	on	your	own.	We	suggest	exercising
some	of	the	container	control	commands	we	covered	here	so	that	you’re	familiar	with	the
command-line	options	and	the	overall	syntax.	Try	interacting	with	stoppped	or	paused
containers	to	see	what	you	can	see.	Then	when	you’re	feeling	confident,	head	on	into
Chapter	6!
1	SELinux	is	one	current	implementation.
2	Typically	under	/var/lib/docker/containers.

Chapter	6.	Exploring	Dockert

Now	that	we	have	some	experience	working	with	Docker	containers	and	images,	we	can
explore	some	of	its	other	capabilities.	In	this	chapter,	we’ll	continue	to	use	the	docker
command-line	tool	to	talk	to	the	running	docker	daemon	that	you’ve	configured,	while
visiting	some	of	the	other	fundamental	commands.

Docker	provides	commands	to	do	a	number	of	additional	things	easily:

Printing	the	Docker	version

Viewing	the	server	information

Downloading	image	updates

Inspecting	containers

Entering	a	running	container

Returning	a	result

Viewing	logs

Monitoring	statistics

Let’s	take	a	look	at	some	of	those	and	some	community	tooling	that	augments	Docker’s
native	capabilities.

Printing	the	Docker	Version
If	you	completed	the	last	chapter,	you	have	a	working	Docker	daemon	on	a	Linux	server
or	virtual	machine,	and	you’ve	started	a	base	container	to	make	sure	it’s	all	working.	If
you	haven’t	set	that	up	already	and	you	want	to	try	out	the	steps	in	the	rest	of	the	book,
you’ll	want	to	follow	the	installation	steps	in	Chapter	3	before	you	move	on	with	this
section.

The	absolute	simplest	thing	you	can	do	with	Docker	is	print	the	versions	of	the	various
components.	It	might	not	sound	like	much,	but	this	is	a	useful	tool	to	have	in	your	belt
because	the	server	and	API	are	often	not	backwards	compatible	with	older	clients.
Knowing	how	to	show	the	version	will	help	you	troubleshoot	certain	types	of	connection
issues.	Note	that	this	command	actually	talks	to	the	remote	Docker	server.	If	you	can’t
connect	to	the	server	for	any	reason,	the	client	will	complain.	If	you	find	that	you	have	a
connectivity	problem,	you	should	probably	revisit	the	steps	in	the	last	chapter.

NOTE
You	can	always	directly	log	in	to	the	Docker	server	and	run	docker	commands	from	a	shell	on	the	server	if
you	are	troubleshooting	issues	or	simply	do	not	want	to	use	the	docker	client	to	connect	to	a	remote	system.

Since	we	just	installed	all	of	the	Docker	components	at	the	same	time,	when	we	run
docker	version,	we	should	see	that	all	of	our	versions	match:

$	docker	version

Client	version:	1.3.1

Client	API	version:	1.15

Go	version	(client):	go1.3.3

Git	commit	(client):	4e9bbfa

OS/Arch	(client):	linux/amd64

Server	version:	1.3.1

Server	API	version:	1.15

Go	version	(server):	go1.3.3

Git	commit	(server):	4e9bbfa

Notice	how	we	have	different	lines	representing	the	client,	server,	and	API	versions.	It’s
important	to	note	that	different	versions	of	the	command-line	tools	might	use	the	same
Docker	API	version.	Even	when	they	do,	sometimes	Docker	won’t	let	you	talk	to	a	remote
server	that	doesn’t	exactly	match.	Now	you	know	how	to	verify	this	information.

Server	Information
We	can	also	find	out	a	little	bit	about	the	Docker	server	itself	via	the	Docker	client.	Later
we’ll	talk	more	about	what	all	of	this	means,	but	you	can	find	out	which	filesystem
backend	the	Docker	server	is	running,	which	kernel	version	it	is	on,	which	operating
system	it	is	running	on,	and	how	many	containers	and	images	are	currently	stored	there.	If
you	run	docker	info,	you	will	see	something	similar	to	this:

$	docker	info

Containers:	22

Images:	180

Storage	Driver:	aufs

	Root	Dir:	/var/lib/docker/aufs

	Dirs:	224

Execution	Driver:	native-0.2

Kernel	Version:	3.8.0-29-generic

Operating	System:	Ubuntu	precise	(12.04.3	LTS)

Depending	on	how	your	Docker	daemon	is	set	up,	this	might	look	somewhat	different.
Don’t	be	concerned	about	that;	this	is	just	to	give	you	an	example.	Here	we	can	see	that
our	server	is	an	Ubuntu	12.04.3	LTS	release	running	the	3.8.0	Linux	kernel	and	backed
with	the	AUFS	filesystem	driver.	We	also	have	a	lot	of	images!	With	a	fresh	install,	this
number	should	be	zero.

In	most	installations,	/var/lib/docker	will	be	the	default	root	directory	used	to	store	images
and	containers.	If	you	need	to	change	this,	you	can	edit	your	Docker	startup	scripts	to
launch	the	daemon,	with	the	--graph	argument	pointing	to	a	new	storage	location.	To	test
this	by	hand,	you	could	run	something	like	this:

$	sudo	docker	-d

-H	unix:///var/run/docker.sock	\

-H	tcp://0.0.0.0:2375	--graph="/data/docker"

Downloading	Image	Updates
We’re	are	going	to	use	an	Ubuntu	base	image	for	the	following	examples.	Even	if	you
have	already	grabbed	the	Ubuntu	base	image	once,	you	can	pull	it	again	and	it	will
automatically	pick	up	any	updates	that	have	been	published	since	you	last	ran	it.	That’s
because	latest	is	a	tag	that,	by	convention,	is	always	moved	to	the	most	recent	version	of
the	image	that	has	been	published	to	the	image	registry.	Invoking	the	pull	will	look	like
this:

$	docker	pull	ubuntu:latest

Pulling	repository	ubuntu

5506de2b643b:	Download	complete

511136ea3c5a:	Download	complete

d497ad3926c8:	Download	complete

ccb62158e970:	Download	complete

e791be0477f2:	Download	complete

3680052c0f5c:	Download	complete

22093c35d77b:	Download	complete

That	command	pulled	down	only	the	layers	that	have	changed	since	we	last	ran	the
command.	You	might	see	a	longer	or	shorter	list,	or	even	an	empty	list,	depending	on
when	you	ran	it	and	what	changes	have	been	pushed	to	the	registry	since	then.

NOTE
It’s	good	to	remember	that	even	though	you	pulled	latest,	docker	won’t	automatically	keep	the	local
image	up-to-date	for	you.	You’ll	be	responsible	for	doing	that	yourself.	However,	if	you	deploy	an	image
based	on	a	newer	copy	of	ubuntu:latest,	Docker	will	download	the	missing	layers	during	the	deployment
just	like	you	would	expect.

As	of	Docker	1.6,	it	is	now	possible	to	pull	a	specific	version	of	an	image	from	Docker
Hub	or	any	registry	based	on	Docker’s	Registry	2.0	codebase	by	using	the	digest	attached
to	the	desired	image.	This	is	useful	when	you	want	to	ensure	that	you	are	pulling	a	very
specific	image	build	and	don’t	want	to	rely	on	a	tag,	which	can	potentially	be	moved.

docker	pull	ubuntu@sha256:2f9a…82cf

Inspecting	a	Container
Once	you	have	a	container	created,	running	or	not,	you	can	now	use	docker	to	see	how	it
was	configured.	This	is	is	often	useful	in	debugging,	and	also	has	some	other	information
that	can	be	useful	when	identifying	a	container.

For	this	example,	let’s	go	ahead	and	start	up	a	container.

$	docker	run	-d	-t	ubuntu	/bin/bash

3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b

We	can	list	all	our	running	containers	with	docker	ps	to	ensure	everything	is	running	as
expected,	and	to	copy	the	container	ID.

$	docker	ps

CONTAINER	ID		IMAGE									COMMAND					...	STATUS								...		NAMES

3c4f916619a5		ubuntu:latest	"/bin/bash"	...	Up	31	seconds…		angry_mestorf

In	this	case,	our	ID	is	3c4f916619a5.	We	could	also	use	angry_mestorf,	which	is	the
dynamic	named	assigned	to	our	container.	Underlying	tools	all	need	the	unique	container
ID,	though,	so	it’s	useful	to	get	into	the	habit	of	looking	at	that	first.	As	is	the	case	in	many
revision	control	systems,	this	hash	is	actually	just	the	prefix	of	a	much	longer	hash.
Internally,	the	kernel	uses	a	64-byte	hash	to	identify	the	container.	But	that’s	painful	for
humans	to	use,	so	Docker	supports	the	shortened	hash.

The	output	to	docker	inspect	is	pretty	verbose,	so	we’ll	cut	it	down	in	the	following
code	block	to	a	few	values	worth	pointing	out.	You	should	look	at	the	full	output	to	see
what	else	you	think	is	interesting:

$	docker	inspect	3c4f916619a5

[{

				"Args":	[],

				"Config":	{

								"Cmd":	[

												"/bin/bash"

],

								"Env":	[

												"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

],

								"Hostname":	"3c4f916619a5",

								"Image":	"ubuntu",

				},

				"Created":	"2014-11-07T22:06:32.229471304Z",

				"Id":	"3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b",

				"Image":	"5506de2b643be1e6febbf3b8a240760c6843244c41e12aa2f60ccbb7153d17f5"

}

Note	that	long	"Id"	string.	That’s	the	full	unique	identifier	of	this	container.	Luckily	we
can	use	the	short	name,	even	if	that’s	still	not	especially	convenient.	We	can	also	see	the
exact	time	when	the	container	was	created	in	a	much	more	precise	way	than	docker	ps
gives	us.

Some	other	interesting	things	are	shown	here	as	well:	the	top-level	command	in	the
container,	the	environment	that	was	passed	to	it	at	creation	time,	the	image	on	which	it’s

based,	and	the	hostname	inside	the	container.	All	of	these	are	configurable	at	container
creation	time	if	you	need	to	do	so.	The	usual	method	for	passing	configuration	to
containers,	for	example,	is	via	environment	variables,	so	being	able	to	see	how	a	container
was	configured	via	docker	inspect	can	reveal	a	lot	when	debugging.

Getting	Inside	a	Running	Container
You	can	pretty	easily	get	a	shell	running	in	a	new	container	as	we	demonstrated	above
with	docker	run.	But	it’s	not	the	same	as	getting	a	new	shell	inside	an	existing	container
that	is	actively	running	your	application.	Every	time	you	use	docker	run,	you	get	a	new
container.	But	if	you	have	an	existing	container	that	is	running	an	application	and	you
need	to	debug	it	from	inside	the	container,	you	need	something	else.

Because	Docker	originally	used	the	LXC	backend	by	default,	the	Linux	lxc-attach
command	was	the	easiest	way	to	enter	a	running	container.	But	once	Docker	shifted	to
using	libcontainer	by	default,	this	is	no	longer	useful	for	most	people.	Since	Docker
containers	are	Linux	namespaces,	however,	tools	like	the	docker	exec	command	and
nsenter	support	this	functionality	more	broadly.

https://linuxcontainers.org

docker	exec
First	let’s	look	at	the	newest	and	best	way	to	get	inside	a	running	container.	From	Docker
1.3	and	up,	the	docker	daemon	and	docker	command-line	tool	support	remotely	executing
a	shell	into	a	running	container	via	docker	exec.	So	let’s	start	up	a	container	in
background	mode,	and	then	enter	it	using	docker	exec.

We’ll	need	our	container’s	ID,	like	we	did	above	when	we	inspected	it.	I	just	did	that,	and
my	container’s	ID	is	589f2ad30138.	We	can	now	use	that	to	get	inside	the	container.	The
command	line	to	docker	exec,	unsurprisingly,	looks	a	lot	like	the	command	line	to
docker	run.	We	request	a	pseudo-tty	and	an	interactive	command:

$	docker	exec	-t	-i	589f2ad30138	/bin/bash

root@589f2ad30138:/#

Note	that	we	got	a	command	line	back	that	tells	us	the	ID	of	the	container	we’re	running
inside.	That’s	pretty	useful	for	keeping	track	of	where	we	are.	We	can	now	run	a	ps	to	see
what	else	is	running	inside	our	container.	We	should	see	our	other	bash	process	that	we
backgrounded	earlier.

root@589f2ad30138:/#	ps	-ef

UID								PID		PPID		C	STIME	TTY										TIME	CMD

root									1					0		0	23:13	?								00:00:00	/bin/bash

root									9					0		1	23:14	?								00:00:00	/bin/bash

root								17					9		0	23:14	?								00:00:00	ps	-ef

WARNING
You	can	also	run	additional	processes	in	the	background	via	docker	exec.	You	use	the	-d	option	just	like
with	docker	run.	But	you	should	think	hard	about	doing	that	for	anything	but	debugging	because	you	lose
the	repeatability	of	the	image	deployment	if	you	depend	on	this	mechanism.	Other	people	would	then	have
to	know	what	to	pass	to	docker	exec	to	get	the	desired	functionality.	If	you’re	tempted	to	do	this,	you
would	probably	reap	bigger	gains	from	rebuilding	your	container	image	to	launch	both	processes	in	a
repeatable	way.

nsenter
Part	of	the	core	util-linux	package	from	kernel.org	is	nsenter,	short	for	“Namespace
Enter,”	which	allows	you	to	enter	any	Linux	namespace.	In	Chapter	10,	we’ll	go	into	more
detail	on	namespaces.	But	they	are	the	core	of	what	makes	a	container	a	container.	Using
nsenter,	therefore,	we	can	get	into	a	Docker	container	from	the	server	itself,	even	in
situations	where	the	Docker	daemon	is	not	responding	and	we	can’t	use	docker	exec.
nsenter	can	also	be	used	to	manipulate	things	in	a	container	as	root	on	the	server	that
would	otherwise	be	prevented	by	docker	exec,	for	example.	This	can	be	really	useful
when	debugging.	Most	of	the	time,	docker	exec	is	all	you	need.	But	you	should	have
nsenter	in	your	tool	belt.

Most	Linux	distributions	ship	with	the	linux-utils	package	that	contains	nsenter.	But
few	ship	one	that	is	new	enough	to	have	nsenter	itself	installed,	because	it’s	a	recent
addition	to	the	package.	So	the	easiest	way	to	get	ahold	of	nsenter	is	to	install	it	via	a
third-party	Docker	container.	This	works	by	pulling	a	Docker	image	from	the	Docker	Hub
registry	and	then	running	a	specially	crafted	Docker	container	that	will	install	the	nsenter
command-line	tool	into	/usr/local/bin.	This	might	seem	strange	at	first,	but	it’s	a	clever
way	to	allow	you	to	install	nsenter	to	any	Docker	server	remotely	using	nothing	more
than	the	docker	command.

The	following	code	shows	how	we	install	nsenter	to	/usr/local/bin	on	your	Docker
server:

$	docker	run	--rm	-v	/usr/local/bin:/target	jpetazzo/nsenter

Unable	to	find	image	'jpetazzo/nsenter'	locally

Pulling	repository	jpetazzo/nsenter

9e4ef84f476a:	Download	complete

511136ea3c5a:	Download	complete

71d9d77ae89e:	Download	complete

Status:	Downloaded	newer	image	for	jpetazzo/nsenter:latest

Installing	nsenter	to	/target

Installing	docker-enter	to	/target

WARNING
You	should	be	very	careful	about	doing	this!	It’s	always	a	good	idea	to	check	out	what	you	are	running,	and
particularly	what	you	are	exposing	part	of	your	filesystem	to,	before	you	run	a	third-party	container	on	your
system.	With	-v,	we’re	telling	Docker	to	expose	the	host’s	/usr/local/bin	directory	into	the	running
container	as	/target.	When	the	container	starts,	it	is	then	copying	an	executable	into	that	directory	on	our
host’s	filesystem.	In	Chapter	10,	we	will	discuss	some	security	frameworks	and	commands	that	can	be
leveraged	to	prevent	potentially	nefarious	container	activities.

Unlike	docker	exec,	which	can	be	run	remotely,	nsenter	requires	that	you	run	it	on	the
server	itself.	The	README	in	the	GitHub	repo	explains	how	to	set	this	up	to	work	over	SSH
automatically	if	you	want	to	do	that.	For	our	purposes,	we’ll	log	in	to	our	Docker	server
via	SSH	and	then	invoke	the	command	from	the	server.	In	any	case,	like	with	docker
exec,	we	need	to	have	a	container	running.	You	should	still	have	one	running	from	above.
If	not,	go	back	and	start	one,	and	then	ssh	into	your	server.

http://bit.ly/1GpecsE
https://github.com/jpetazzo/nsenter

docker	exec	is	pretty	simple,	but	nsenter	is	a	little	inconvenient	to	use.	It	needs	to	have
the	PID	of	the	actual	top-level	process	in	your	container.	That’s	less	than	obvious	to	find
and	requires	a	few	steps.	Luckily	there’s	a	convenience	wrapper	installed	by	that	Docker
container	we	just	ran,	called	docker-enter,	which	takes	away	the	pain.	But	before	we
jump	to	the	convenience	wrapper,	let’s	run	nsenter	by	hand	so	you	can	see	what’s	going
on.

First	we	need	to	find	out	the	ID	of	the	running	container,	because	nsenter	needs	to	know
that	to	access	it.	This	is	the	same	as	previously	shown	for	docker	inspect	and	docker
exec:

$	docker	ps

CONTAINER	ID		IMAGE										COMMAND						...		NAMES

3c4f916619a5		ubuntu:latest		"/bin/bash"		...		grave_goldstine

The	ID	we	want	is	that	first	field,	3c4f916619a5.	Armed	with	that,	we	can	now	find	the
PID	we	need.	We	do	that	like	this:

$	PID=$(docker	inspect	--format	\	3c4f916619a5)

This	will	store	the	PID	we	care	about	into	the	PID	environment	variable.	We	need	to	have
root	privilege	to	do	what	we’re	going	to	do.	So	you	should	either	su	to	root	or	use	sudo	on
the	command	line.	Now	we	invoke	nsenter:

$	sudo	nsenter	--target	$PID	--mount	--uts	--ipc	--net	--pid

root@3c4f916619a5:/#

If	the	end	result	looks	a	lot	like	docker	exec,	that’s	because	it	does	almost	exactly	the
same	thing	under	the	hood!

There	are	a	lot	of	command-line	options	there,	and	what	they’re	doing	is	telling	nsenter
which	parts	of	the	container	we	need	access	to.	Generally	you	want	all	of	them,	so	you
might	expect	that	to	be	the	default,	but	it’s	not,	so	we	specify	them	all.

WARNING
Neither	nsenter	or	docker	exec	work	well	for	exploring	a	container	that	does	not	contain	a	Unix	shell.	In
this	case	you	usually	need	to	explore	the	container	from	the	Docker	server	by	navigating	directly	to	where
the	container	filesystem	resides	on	storage.	This	will	typically	look	something	like	this
/var/lib/docker/aufs/mnt/365c…87a3,,	but	will	vary	based	on	the	Docker	setup,	storage	backend,	and
container	hash.	You	can	determine	your	Docker	root	directory	by	running	docker	info.

Back	at	the	beginning	of	this	section	we	mentioned	that	there	is	a	convenience	wrapper
called	docker-enter	that	gets	installed	by	running	the	installation	Docker	container.
Having	now	seen	the	mechanism	involved	with	running	nsenter,	you	can	now	appreciate
that	if	you	actually	just	want	to	enter	all	the	namespaces	for	the	container	and	skip	several
steps,	you	can	do	this:

$	sudo	docker-enter	3c4f916619a5	/bin/bash

root@3c4f916619a5:/#

That’s	it!	Once	we’ve	explained	namespaces	more	in	Chapter	10,	you’ll	get	a	better
understanding	of	why	we	showed	you	how	it	works	in	more	detail	than	that.

Exploring	the	Shell
One	way	or	another,	either	by	launching	a	container	with	a	foreground	shell	or	via	one	of
the	other	mechanisms	above,	we’ve	got	a	shell	running	inside	a	container.	So,	let’s	look
around	a	little	bit.	What	processes	are	running?

$	ps	-ef

UID								PID		PPID		C	STIME	TTY										TIME	CMD

root									1					0		0	22:12	?								00:00:00	/bin/bash

root								12					1		0	22:16	?								00:00:00	ps	-ef

Wow,	that’s	not	much,	is	it?	It	turns	out	that	when	we	told	docker	to	start	bash,	we	didn’t
get	anything	but	that.	We’re	inside	a	whole	Linux	distribution	image,	but	no	other
processes	started	for	us	automatically.	We	only	got	what	we	asked	for.	It’s	good	to	keep
that	in	mind	going	forward.

WARNING
Docker	containers	don’t,	by	default,	start	anything	in	the	background	like	a	full	virtual	machine	would.
They’re	a	lot	lighter	weight	than	that	and	therefore	don’t	start	an	init	system.	You	can,	of	course,	run	a
whole	init	system	if	you	need	to,	but	you	have	to	ask	for	it.	We’ll	talk	about	that	in	a	later	chapter.

That’s	how	we	get	a	shell	running	in	a	container.	You	should	feel	free	to	poke	around	and
see	what	else	looks	interesting	inside	the	container.	Note	that	you	might	have	a	pretty
limited	set	of	commands	available.	You’re	in	an	Ubuntu	distribution,	though,	so	you	can
fix	that	by	using	apt-get	to	install	more	packages.	Note	that	these	are	only	going	to	be
around	for	the	life	of	this	container.	You’re	modifying	the	top	layer	of	the	container,	not
the	base	image!

Returning	a	Result
Most	people	would	not	think	of	spinning	up	a	virtual	machine	to	run	a	single	process	and
then	return	the	result	because	doing	so	would	be	very	time	consuming	and	require	booting
a	whole	operating	system	to	simply	execute	one	command.	But	Docker	doesn’t	work	the
same	way	as	virtual	machines:	containers	are	very	lightweight	and	don’t	have	to	boot	up
like	an	operating	system.	Running	something	like	a	quick	background	job	and	waiting	for
the	exit	code	is	a	normal	use	case	for	a	Docker	container.	You	can	think	of	it	as	a	way	to
get	remote	access	to	a	containerized	system	and	have	access	to	any	of	the	individual
commands	inside	that	container	with	the	ability	to	pipe	data	to	and	from	them	and	return
exit	codes.

This	can	be	useful	in	lots	of	scenarios:	you	might,	for	instance,	have	system	health	checks
run	this	way	remotely,	or	have	a	series	of	machines	with	processes	that	you	spin	up	via
Docker	to	process	a	workload	and	then	return.	The	docker	command-line	tools	proxy	the
results	to	the	local	machine.	If	you	run	the	remote	command	in	foreground	mode	and	don’t
specify	doing	otherwise,	docker	will	redirect	its	stdin	to	the	remote	process,	and	the
remote	process’s	stdout	and	stderr	to	your	terminal.	The	only	things	we	have	to	do	to
get	this	functionality	are	to	run	the	command	in	the	foreground	and	not	allocate	a	TTY	on
the	remote.	This	is	actually	the	default	configuration!	No	command-line	options	are
required.	We	do	need	to	have	a	container	configured	and	ready	to	run.

The	following	code	shows	what	you	can	do:

$	docker	run	8d12decc75fe	/bin/false

$	echo	$?

1

$	docker	run	8d12decc75fe	/bin/true

$	echo	$?

0

$	docker	run	8d12decc75fe	/bin/cat	/etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

nobody:x:99:99:Nobody:/:/sbin/nologin

$	docker	run	8d12decc75fe	/bin/cat	/etc/passwd	|	wc	-l

8

Here	we	executed	/bin/false	on	the	remote	server,	which	will	always	exit	with	a	status
of	1.	Notice	how	docker	proxied	that	result	to	us	in	the	local	terminal.	Just	to	prove	that	it
returns	other	results,	we	also	run	/bin/true,	which	will	always	return	a	0.	And	there	it	is.

Then	we	actually	ask	docker	to	run	cat	/etc/passwd	on	the	remote	container.	What	we
get	is	the	result	of	that	container’s	version	of	the	/etc/passwd	file.	Because	that’s	just
regular	output	on	stdout,	we	can	pipe	it	into	local	commands	just	like	we	would	anything
else.

WARNING
The	previous	code	pipes	the	output	into	the	local	wc	command,	not	a	wc	command	in	the	container.	The	pipe
itself	is	not	passed	to	the	container.	If	you	want	to	pass	the	whole	command,	including	the	pipes,	to	the
server,	you	need	to	invoke	a	complete	shell	on	the	remote	side	and	pass	a	quoted	command,	like	bash	-c	"
<your	command>	|	<something	else>".	In	the	previous	code,	that	would	be:	docker	run	8d12decc75fe
/bin/bash	-c	"/bin/cat	/etc/passwd	|	wc	-l".

Docker	Logs
Logging	is	a	critical	part	of	any	production	application.	There	are	common	ways	we
expect	to	interact	with	application	logs	on	Linux	systems.	If	you’re	running	a	process	on	a
box,	you	might	expect	the	output	to	go	to	a	local	logfile	that	you	could	read	through.	Or
perhaps	you	might	expect	the	output	to	simply	be	logged	to	the	kernel	buffer	where	it	can
be	read	from	dmesg.	Because	of	the	container’s	restrictions,	neither	of	these	will	work
without	some	gyrations	to	do	so.	But	that’s	OK,	because	simple	logging	is	first	class	in
Docker.	There	are	limitations	to	this	mechanism,	which	we’ll	explain	in	a	minute,	but	for
the	simple	case	it	works	well.	The	mechanism	is	docker	logs.

The	way	this	works	is	that	anything	sent	to	stdout	or	stderr	in	the	container	is	captured
by	the	Docker	daemon	and	streamed	into	a	configurable	backend,	which	is	by	default	a
JSON	file	for	each	container.	We’ll	cover	that	first,	then	talk	about	other	options.	The
default	logging	mechanism	lets	us	retrieve	logs	for	any	container	at	any	time	like	this,
showing	some	logs	from	a	container	running	nginx:

$	docker	logs	3c4f916619a5

nginx	stderr	|	2014/11/20	00:34:56	[notice]	12#0:	using	the	"epoll"	...

nginx	stderr	|	2014/11/20	00:34:56	[notice]	12#0:	nginx/1.0.15

nginx	stderr	|	2014/11/20	00:34:56	[notice]	12#0:	built	by	gcc	4.4.7…

nginx	stderr	|	2014/11/20	00:34:56	[notice]	12#0:	OS:	Linux	3.8.0-35-generic

This	is	nice	because	Docker	allows	you	to	get	the	logs	remotely,	right	from	the	command
line,	on	demand.	That’s	really	useful	for	low-volume	logging.

The	actual	files	backing	this	logging	are	on	the	Docker	server	itself,	by	default	in
/var/lib/docker/containers/<container_id>/	where	the	<container_id>	is	replaced	by	the
actual	container	ID.	If	you	take	a	look	at	one	of	those	files,	you’ll	see	it’s	a	file	with	each
line	representing	a	JSON	object.	It	will	look	something	like	this:

{"log":"2015-01-02	23:58:51,003	INFO	success:	running.\r\n",

"stream":"stdout",

"time":"2015-01-02T23:58:51.004036238Z"}

That	log	field	is	exactly	what	was	sent	to	stdout	on	the	process	in	question;	the	stream
field	tells	us	that	this	was	stdout	and	not	stderr;	and	the	precise	time	that	the	Docker
daemon	received	it	is	provided	in	the	time	field.	It’s	an	uncommon	format	for	logging,	but
it’s	structured	rather	than	just	a	raw	stream,	which	is	beneficial	if	you	want	to	do	anything
with	the	logs	later.

Like	a	logfile,	you	can	also	tail	the	Docker	logs	live	with	docker	logs	-f:

$	docker	logs	-f	3c4f916619a5

nginx	stderr	|	2014/11/20	00:34:56	[notice]	12#0:	using	the	"epoll"	...

nginx	stderr	|	2014/11/20	00:34:56	[notice]	12#0:	nginx/1.0.15

nginx	stderr	|	2014/11/20	00:34:56	[notice]	12#0:	built	by	gcc	4.4.7…

nginx	stderr	|	2014/11/20	00:34:56	[notice]	12#0:	OS:	Linux	3.8.0-35-generic

This	looks	identical	to	the	usual	docker	logs,	but	the	client	then	blocks,	waiting	on	and
displaying	any	new	logs	to	appear,	much	like	the	Linux	command	line	tail	-f.

WARNING
While	Docker	automatically	captures	logs	for	you,	it	does	not	also	rotate	them.	In	fact,	currently	none	of	the
provided	packages	set	up	any	log	rotation.	You’ll	need	to	do	that	yourself	in	most	cases.	Rather
frustratingly,	Docker	also	does	not	respond	to	a	signal	to	tell	it	to	reopen	logs.	If	you	send	it	the	standard
HUP	signal,	it	will	instead	restart	all	the	containers,	which	is	not	what	you	want.	The	current	best	practice	for
rotation	of	Docker	logs	is	to	have	logrotate	use	the	copytruncate	method	to	copy	the	logfile	and	then
truncate	it	in	place.	There	are	open	bugs	against	docker	asking	for	a	better	solution.

For	low-volume	logging,	this	mechanism	is	pretty	good.	Its	shortcomings	are	around	log
rotation,	access	to	the	logs	remotely	once	they’ve	been	rotated,	and	disk	space	usage	for
high-volume	logging.	For	when	this	isn’t	enough	—	and	in	production	it’s	probably	not	—
Docker	also	supports	configurable	logging	backends.	This	is	a	newer	feature,	so	the
number	of	available	backends	is	likely	to	grow	quickly.	The	supported	option	that
currently	works	best	for	running	Docker	at	scale	is	the	option	to	send	your	container	logs
to	syslog	directly	from	Docker.	You	can	specify	this	on	the	Docker	command	line	with	the
--log-driver=syslog	option.

WARNING
If	you	change	the	log	driver	to	anything	other	than	the	default	(json-file),	then	you	will	no	longer	be	able
to	use	the	docker	logs	command.	It	is	assumed	that	you	will	have	another	means	of	accessing	your	logs	in
that	case.

Secondly,	the	Docker	daemon	itself	will	now	be	writing	to	/dev/log.	This	is	usually	read	by	the	syslog
daemon.	If	that	blocks,	the	logging	will	buffer	into	memory	in	the	Docker	process.	At	the	time	of	this
writing,	further	work	is	being	done	on	this	feature	to	mitigate	that	effect.	As	a	result	of	this	deficiency,	we
can’t	currently	recommend	this	solution	at	scale.

It	was	a	long	time	from	the	beginning	of	the	Docker	project	to	when	logging	by	other	than
the	json-file	method	was	supported.	So	there	are	community	contributions	with	many
alternate	ways	of	getting	you	logging	at	scale.	It	should	be	noted	that	many	of	these
mechanisms	are	also	incompatible	with	docker	logs.	The	most	common	solution	is	to	use
a	method	to	send	your	logs	directly	to	syslog.	There	are	several	mechanisms	in	use:

Log	directly	from	your	application.

Have	a	process	manager	in	your	container	relay	the	logs	(e.g.,	systemd,	upstart,
supervisor,	or	runit).

Run	a	logging	relay	in	the	container	that	wraps	stdout/stderr	from	the	container.

Relay	the	Docker	JSON	logs	themselves	to	syslog	from	the	server.

Logging	directly	from	your	application	to	syslog	might	make	sense,	but	if	you’re	running
any	third-party	applications,	that	probably	won’t	work.

Although	controversial	in	the	Docker	community,	running	a	process	manager	in	the

https://github.com/docker/docker/issues/7333

container	is	a	reasonably	easy	way	to	capture	output	and	direct	it	to	a	central	logging
service.	New	Relic	released	a	logging	plug-in	for	supervisor	that	does	exactly	that.	This
mechanism	is	nice	because	there	is	no	additional	machinery	in	the	container	other	than
what	you’d	already	include.	You	do	need	Python	installed,	though.

Spotify	has	released	a	simple,	statically	linked	Go	relay	to	handle	logging	your	stderr
and	stdout	to	syslog	for	one	process	inside	the	container.	Generally	you	run	this	from	the
CMD	line	in	the	Dockerfile.	Because	it’s	statically	compiled,	it	has	no	dependencies,	which
makes	it	very	flexible.

If	you	want	to	have	one	system	to	support	all	your	containers,	a	popular	option	is
Logspout,	which	runs	in	a	separate	container,	talks	to	docker,	and	logs	all	the	containers
logs	to	syslog	(UDP	only).	The	advantage	of	this	approach	is	that	it	does	not	preclude
docker	logs	but	does	require	that	you	set	up	log	rotation.	We’ve	also	seen	the	Docker
daemon	get	overwhelmed	by	applications	with	massive	logging	needs,	and	this	doesn’t
overcome	that.	We	currently	recommend	running	a	logging	mechanism	inside	each
container	either	as	the	process	manager	or	as	a	logging	wrapper.	It	has	the	least
drawbacks.

Finally,	while	you	really	should	be	capturing	your	logs	somewhere,	there	are	rare
situations	in	which	you	simply	don’t	want	any	logging.	You	can	use	the	--log-
driver=none	switch	to	turn	them	off	completely.

http://github.com/newrelic/supervisor-remote-logging
https://github.com/spotify/syslog-redirector
https://github.com/progrium/logspout

Monitoring	Docker
Running	something	in	production	is	not	a	good	idea	unless	you	can	tell	what’s	going	on.
In	the	modern	world,	we	monitor	everyting	and	report	as	many	statistics	as	we	can.
Docker	supports	some	nice,	basic	reporting	capabilities	via	docker	stats	and	docker
events.	We’ll	show	you	those	and	then	look	at	a	community	offering	from	Google	that
does	some	nice	graphing	output	as	well.

Container	Stats
In	version	1.5.0,	Docker	added	an	endpoint	for	viewing	stats	of	running	containers.	The
command-line	tool	can	stream	from	this	endpoint	and	every	few	seconds	report	back	on
one	or	more	listed	containers,	giving	basic	statistics	information	about	what’s	happening.
docker	stats,	like	the	Linux	top	command,	takes	over	the	current	terminal	and	updates
the	same	lines	on	the	screen	with	the	current	information.	It’s	hard	to	show	that	in	print,	so
we’ll	just	give	an	example,	but	this	updates	every	few	seconds	by	default.

$	docker	stats	e64a279663aa

CONTAINER					CPU	%				MEM	USAGE/LIMIT							MEM	%				NET	I/O

e64a279663aa		0.00%				7.227	MiB/987.9	MiB			0.73%				936	B/468	B

Here	we	can	see	the	container	ID	(but	not	the	name),	the	amount	of	CPU	it’s	currently
consuming,	the	amout	of	memory	it	has	in	use,	and	the	limit	of	what	it’s	allowed	to	use.
The	percentage	of	memory	utilized	is	also	provided	to	make	it	easier	for	the	user	to
quickly	determine	how	much	free	memory	the	container	has	available.	And	stats	are
provided	for	both	in	and	out	network	bytes.

These	are	all	of	basic	interest,	but	what	they	provide	is	not	all	that	exciting.	It	turns	out,
though,	that	the	Docker	API	provides	a	lot	more	information	on	the	stats	endpoint	that	is
shown	in	the	client.	We’ve	steered	away	from	hitting	the	API	in	this	book	so	far,	but	in
this	case	the	data	provided	by	the	API	is	so	much	richer	that	we’ll	use	curl	to	call	it	and
see	what	our	container	is	doing.	It’s	nowhere	near	as	nice	to	read,	but	there	is	a	lot	more
detail.	This	is	a	good	intro	to	calling	the	API	yourself	as	well.

The	/stats/	endpoint	that	we’ll	hit	on	the	API	will	continue	to	stream	stats	to	us	as	long
as	we	keep	the	connection	open.	Since	as	humans	we	can’t	really	parse	usefully,	we’ll	just
ask	for	one	line	and	then	use	Python	to	“pretty	print”	it.	In	order	for	this	command	to
work,	you’ll	need	to	have	Python	installed	(version	2.6	or	later).	If	you	don’t	and	you	still
want	to	see	the	JSON	output,	you	can	skip	the	pipe	to	Python,	but	you’ll	get	plain,	ugly
JSON	back.

Here	we	call	localhost,	but	you’ll	want	to	use	the	hostname	of	your	Docker	server.	Port
2375	is	usually	the	right	port.	Note	that	we	also	pass	the	ID	of	our	container	in	the	URL
we	send	to	curl.

NOTE
You	can	usually	inspect	the	contents	of	the	DOCKER_HOST	environment	variable,	using	something	like	echo
$DOCKER_HOST,	to	discover	the	hostname	or	IP	address	of	the	Docker	server	that	you	are	using.

It	is	easiest	to	run	through	the	following	example	if	you	are	running	Docker	on	a	full
Linux	distribution,	with	the	Docker	server	bound	to	the	default	unencrypted	port	2375.

First,	let’s	go	ahead	and	start	up	a	container	that	you	can	read	stats	from:

$	docker	run	-d	ubuntu:latest	sleep	1000

91c86ec7b33f37da9917d2f67177ebfaa3a95a78796e33139e1b7561dc4f244a

Now	that	the	container	is	running,	we	can	get	an	ongoing	stream	of	statistics	information
about	the	container	in	JSON	format	by	running	something	like	curl	with	your	container’s
hash.

$	curl	-s	http://localhost:2375/v1/containers/91c8…244a/stats

NOTE
This	JSON	stream	of	statistics	will	not	stop	on	its	own.	So	for	now,	we	can	use	the	Ctrl-C	key	combination
to	stop	it.

To	get	a	single	group	of	statistics,	we	can	run	something	similar	to	this:

$	curl	-s	http://localhost:2375/v1/containers/91c8…244a/stats	|	head	-1

And	finally,	if	we	have	Python	or	another	tool	capable	of	“pretty	printing”	JSON,	we	can
make	this	output	human-readable,	as	shown	here:

$	curl	-s	http://localhost:2375/v1/containers/91c8…244a/stats	\

|	head	-1	|	python	-m	json.tool

{

				"blkio_stats":	{

								"io_merged_recursive":	[],

								"io_queue_recursive":	[],

								"io_service_bytes_recursive":	[

												{

																"major":	8,

																"minor":	0,

																"op":	"Read",

																"value":	6098944

												},

...snip…

],

								"io_service_time_recursive":	[],

								"io_serviced_recursive":	[

												{

																"major":	8,

																"minor":	0,

																"op":	"Read",

																"value":	213

												},

...snip…

],

								"io_time_recursive":	[],

								"io_wait_time_recursive":	[],

								"sectors_recursive":	[]

				},

				"cpu_stats":	{

								"cpu_usage":	{

												"percpu_usage":	[

																37320425

],

												"total_usage":	37320425,

												"usage_in_kernelmode":	20000000,

												"usage_in_usermode":	0

								},

								"system_cpu_usage":	1884140000000,

								"throttling_data":	{

												"periods":	0,

												"throttled_periods":	0,

												"throttled_time":	0

								}

				},

				"memory_stats":	{

								"failcnt":	0,

								"limit":	1035853824,

								"max_usage":	7577600,

								"stats":	{

												"active_anon":	1368064,

												"active_file":	221184,

												"cache":	6148096,

												"hierarchical_memory_limit":	9223372036854775807,

												"inactive_anon":	24576,

												"inactive_file":	5890048,

												"mapped_file":	2215936,

												"pgfault":	2601,

												"pgmajfault":	46,

												"pgpgin":	2222,

												"pgpgout":	390,

												"rss":	1355776,

												"total_active_anon":	1368064,

												"total_active_file":	221184,

												"total_cache":	6148096,

												"total_inactive_anon":	24576,

												"total_inactive_file":	5890048,

												"total_mapped_file":	2215936,

												"total_pgfault":	2601,

												"total_pgmajfault":	46,

												"total_pgpgin":	2222,

												"total_pgpgout":	390,

												"total_rss":	1355776,

												"total_unevictable":	0,

												"unevictable":	0

								},

								"usage":	7577600

				},

				"network":	{

								"rx_bytes":	936,

								"rx_dropped":	0,

								"rx_errors":	0,

								"rx_packets":	12,

								"tx_bytes":	468,

								"tx_dropped":	0,

								"tx_errors":	0,

								"tx_packets":	6

				},

				"read":	"2015-02-11T15:20:22.930379289-08:00"

}

There	is	a	lot	of	information	in	there.	We	won’t	spend	much	time	going	into	the	details,
but	you	can	get	quite	detailed	memory	usage	information,	as	well	as	blkio	and	CPU	usage
information.	If	you	are	using	CPU	or	memory	limits	in	your	containers,	this	endpoint	is
very	useful	for	finding	out	when	you	are	hitting	them.

If	you	are	doing	your	own	monitoring,	this	is	a	great	endpoint	to	hit	as	well.	Note	that	one
drawback	is	that	it’s	one	endpoint	per	container,	so	you	can’t	get	the	stats	about	all
containers	from	a	single	call.

Docker	Events
The	docker	daemon	internally	generates	an	events	stream	around	the	container	life	cycle.
This	is	how	various	parts	of	the	system	find	out	what	is	going	on	in	other	parts.	You	can
also	tap	into	this	stream	to	see	what	life	cycle	events	are	happening	for	containers	on	your
Docker	server.	This,	as	you	probably	expect	by	now,	is	implemented	in	the	docker	CLI
tool	as	another	command-line	argument.	When	you	run	this	command,	it	will	block	and
continually	stream	messages	to	you.	Behind	the	scenes,	this	is	a	long-lived	HTTP	request
to	the	Docker	API	that	returns	messages	in	JSON	blobs	as	they	occur.	The	docker	CLI
tool	decodes	them	and	prints	some	data	to	the	terminal.

This	event	stream	is	useful	in	monitoring	scenarios	or	in	triggering	additional	actions,	like
wanting	to	be	alerted	when	a	job	completes.	For	debugging	purposes,	it	allows	you	see
when	a	container	died	even	if	Docker	restarts	it	later.	Down	the	road,	this	is	a	place	where
you	might	also	find	yourself	directly	implementing	some	tooling	against	the	API.	Here’s
how	we	use	it	on	the	command	line:

$	docker	events

2015-02-18T14:00:39-08:00	1b3295bf300f:	(from	0415448f2cc2)	die

2015-02-18T14:00:39-08:00	1b3295bf300f:	(from	0415448f2cc2)	stop

2015-02-18T14:00:42-08:00	1b3295bf300f:	(from	0415448f2cc2)	start

In	this	example,	we	initiated	a	stop	signal	with	docker	stop,	and	the	events	stream	logs
this	as	a	“die”	message.	The	“die”	message	actually	marks	the	beginning	of	the	shutdown
of	the	container.	It	doesn’t	stop	instantaneously.	So,	following	the	“die”	message	is	a
“stop”	message,	which	is	what	Docker	says	when	a	container	has	actually	stopped
execution.	Docker	also	helpfully	tells	us	the	ID	of	the	image	that	the	container	is	running
on.	This	can	be	useful	for	tying	deployments	to	events,	for	example,	because	a	deployment
usually	involves	a	new	image.

Once	the	container	was	completely	down,	we	initiated	a	docker	start	to	tell	it	to	run
again.	Unlike	the	“die/stop”	operations,	this	is	a	single	command	that	marks	the	point	at
which	the	container	is	actually	running.	We	don’t	get	a	message	telling	us	that	someone
explicitly	started	it.	So	what	happens	when	we	try	to	start	a	container	that	fails?

2015-02-18T14:03:31-08:00	e64a279663aa:	(from	e426f6ef897e)	die

Note	that	here	the	container	was	actually	asked	to	start,	but	it	failed.	Rather	than	seeing	a
“start”	and	a	“die,”	all	we	see	is	a	“die.”

If	you	have	a	server	where	containers	are	not	staying	up,	the	docker	events	stream	is
pretty	helpful	in	seeing	what’s	going	on	and	when.	But	if	you’re	not	watching	it	at	the
time,	Docker	very	helpfully	caches	some	of	the	events	and	you	can	still	get	at	them	for
some	time	afterward.	You	can	ask	it	to	display	events	after	a	time	with	the	--since	option,
or	before	with	the	--until	option.	You	can	also	use	both	to	limit	the	window	to	a	narrow

scope	of	time	when	an	issue	you	are	investigating	may	have	occurred.	Both	options	take
ISO	time	formats	like	those	in	the	previous	example	(e.g.,	2015-02-18T14:03:31-08:00).

cAdvisor
docker	stats	and	docker	events	are	useful	but	don’t	yet	get	us	graphs	to	look	at.	And
graphs	are	pretty	helpful	when	trying	to	see	trends.	Of	course,	other	people	have	filled
some	of	this	gap.	When	you	begin	to	explore	the	options	for	monitoring	Docker,	you	will
find	that	many	of	the	major	monitoring	tools	now	provide	some	functionality	to	help	you
improve	the	visibility	into	your	containers’	performance	and	ongoing	state.

In	addition	to	the	commercial	tooling	provided	by	companies	like	DataDog,	GroundWork,
and	New	Relic,	there	are	plenty	of	options	for	open	source	tools	like	Nagios.

One	of	the	best	open	source	options	today	comes	from	Google,	which	released	its	own
internal	container	advisor	as	an	open	source	project	on	GitHub,	called	cAdvisor.	Although
cAdvisor	can	be	run	outside	of	Docker,	the	easiest	implementation	is	to	simply	run	it	as	a
Docker	container.

To	install	cAdvisor	on	an	Ubuntu-based	system,	all	you	need	to	do	is	run	this	code:

$	docker	run	\

		--volume=/:/rootfs:ro	\

		--volume=/var/run:/var/run:rw	\

		--volume=/sys:/sys:ro	\

		--volume=/var/lib/docker/:/var/lib/docker:ro	\

		--publish=8080:8080	\

		--detach=true	\

		--name=cadvisor	\

		google/cadvisor:latest

Unable	to	find	image	'google/cadvisor:latest'	locally

Pulling	repository	google/cadvisor

f0643dafd7f5:	Download	complete…

ba9b663a8908:	Download	complete

Status:	Downloaded	newer	image	for	google/cadvisor:latest

f54e6bc0469f60fd74ddf30770039f1a7aa36a5eda6ef5100cddd9ad5fda350b

NOTE
On	RHEL-	and	CentOS-based	systems,	you	will	need	to	add	the	following	line	to	the	docker	run
command	shown	here:	--volume=/cgroup:/cgroup	\.

One	you	have	done	this,	you	will	be	able	to	navigate	to	your	Docker	host	on	port	8080	to
see	the	cAdvisor	web	interface	(i.e.,	http://172.17.42.10:8080/)	and	the	various	detailed
charts	it	has	for	the	host	and	individual	containers	(see	Figure	6-1).

https://github.com/google/cadvisor
http://172.17.42.10:8080/

Figure	6-1.	cAdvisor	CPU	graphs

cAdvisor	provides	a	REST	API	endpoint,	which	can	easily	be	queried	for	detailed
information	by	your	monitoring	systems:

$	curl	http://172.17.42.10:8080/api/v1.3/containers/

{

		"name":	"/",

		"subcontainers":	[

				{

						"name":	"/docker"

				}

],

		"spec":	{

				"creation_time":	"2015-04-05T00:05:40.249999996Z",

				"has_cpu":	true,

				"cpu":	{

						"limit":	1024,

						"max_limit":	0,

						"mask":	"0-7"

				},

				"has_memory":	true,

				"memory":	{

						"limit":	18446744073709551615,

						"swap_limit":	18446744073709551615

				},

				"has_network":	true,

				"has_filesystem":	true,

				"has_diskio":	true

		},

		"stats":	[

				{

						"timestamp":	"2015-04-05T00:26:50.679218419Z",

						"cpu":	{

								"usage":	{

										"total":	123375166639,

										"per_cpu_usage":	[

												41967365270,

												8589893874,

												11289461032,

												14350545587,

												11866977873,

												13414428349,

												12667210966,

												9229283688

],

										"user":	22990000000,

										"system":	43890000000

								},

								"load_average":	0

						},

						"diskio":	{},

						"memory":	{

								"usage":	394575872,

								"working_set":	227770368,

								"container_data":	{

										"pgfault":	91617,

										"pgmajfault":	0

								},

								"hierarchical_data":	{

										"pgfault":	91617,

										"pgmajfault":	0

								}

						},

						"network":	{

								"rx_bytes":	0,

								"rx_packets":	0,

								"rx_errors":	0,

								"rx_dropped":	0,

								"tx_bytes":	0,

								"tx_packets":	0,

								"tx_errors":	0,

								"tx_dropped":	0

						},

						"filesystem":	[

								{

										"device":	"/dev/sda1",

										"capacity":	19507089408,

										"usage":	2070806528,

										"reads_completed":	1302,

										"reads_merged":	9,

										"sectors_read":	10706,

										"read_time":	1590,

										"writes_completed":	1283,

										"writes_merged":	1115,

										"sectors_written":	509824,

										"write_time":	4150,

										"io_in_progress":	0,

										"io_time":	590,

										"weighted_io_time":	5670

								}

],

						"task_stats":	{

								"nr_sleeping":	0,

								"nr_running":	0,

								"nr_stopped":	0,

								"nr_uninterruptible":	0,

								"nr_io_wait":	0

						}

				},

				...

				}

]

}

As	you	can	see,	the	amount	of	detail	provided	here	should	be	sufficient	for	many	of	your
graphing	and	monitoring	needs.

Exploration
That	gives	you	all	the	basics	you	need	to	start	running	containers.	It’s	probably	worth
downloading	a	container	or	two	from	the	Docker	Hub	registry	and	exploring	a	bit	on	your
own	to	get	used	to	the	commands	we	just	learned.	There	are	many	other	things	you	can	do
with	Docker,	including:

Copying	files	in	and	out	of	the	container	with	docker	cp

Saving	a	container’s	filesystem	to	a	tarball	with	docker	export

Saving	an	image	to	a	tarball	with	docker	save

Loading	an	image	from	a	tarball	with	docker	import

Docker	has	a	huge	feature	set	that	you	will	likely	grow	into	over	time.	Each	new	release
adds	more	functionality	as	well.	We’ll	get	into	a	lot	more	detail	later	on	many	other
commands	and	features,	but	you	should	keep	in	mind	that	Docker’s	whole	feature	set	is
huge.

Chapter	7.	The	Path	to	Production
Containers

In	this	chapter,	we	cover	some	of	the	ideas	around	deploying	and	testing	containers	in
production.	This	chapter	is	intended	to	show	you	how	you	might	take	containers	to
production	based	on	our	experience	doing	so.	There	are	a	myriad	of	ways	in	which	you
will	probably	need	to	tailor	this	to	your	own	application	and	environment.	The	purpose	of
this	chapter	is	really	to	provide	a	starting	point	and	to	help	you	understand	the	Docker
philosophy	in	practical	terms.

Deploying
Deployment,	which	is	often	the	most	mine-ridden	of	the	steps	in	getting	to	production,	is
made	vastly	simpler	by	the	shipping	container	model.	If	you	can	imagine	what	it	was	once
like	to	load	goods	into	a	ship	to	take	across	the	ocean	before	shipping	containers	existed,
you	can	get	a	sense	of	what	most	deployment	systems	look	like.	In	that	old	shipping
model,	random-sized	boxes,	crates,	barrels,	and	all	manner	of	other	packaging	were	all
loaded	by	hand	onto	ships.	They	then	had	to	be	manually	unloaded	by	someone	who	could
tell	which	pieces	needed	to	be	unloaded	first	so	that	the	whole	pile	wouldn’t	collapse	like
a	Jenga	puzzle.

Shipping	containers	changed	all	that:	we	have	a	standardized	box	with	well-known
dimensions.	These	containers	can	be	packed	and	unloaded	in	a	logical	order	and	whole
groups	of	items	arrive	together	when	expected.	This	is	the	Docker	deployment	model.	All
Docker	containers	support	the	same	external	interface,	and	the	tooling	just	drops	them	on
the	servers	they	are	supposed	to	be	on	without	any	concern	for	what’s	inside.

Now	that	we	have	a	running	build	of	our	application,	we	don’t	have	to	write	much	custom
tooling	to	kick	off	deployment.	If	we	only	want	to	ship	it	to	one	server,	the	docker
command-line	tooling	will	handle	most	of	that	for	us.	If	we	want	to	send	it	to	more,	then
we	might	look	to	some	community	tooling.

There	is	a	progression	you	will	follow	while	getting	your	applications	to	production	on
Docker:

1.	 Locally	build	and	test	a	Docker	image	on	your	development	box.

2.	 Build	your	official	image	for	testing	and	deployment.

3.	 Deploy	your	Docker	image	to	your	server.

As	your	workflow	evolves,	you	will	eventually	collapse	all	of	those	steps	into	a	single
fluid	workflow:

1.	 Orchestrate	the	deployment	of	images	and	creation	of	containers	on	production
servers.

We	talked	about	some	of	those	steps	already,	but	it	is	worthwhile	to	look	at	them	again	to
see	where	deployment	fits	into	the	life	cycle	of	getting	Docker	up	and	running.

If	you	don’t	already	have	an	application	to	ship,	you	don’t	need	to	spend	too	much	time	on
deployment.	But	it’s	good	to	know	ahead	of	time	what	you’ll	encounter	when	you	do	get
there,	so	let’s	look	at	how	that	is	done.

Classes	of	Tooling
Deployment	by	hand	is	the	simplest,	but	often	the	least	reliable,	way	to	get	an	application
into	production.	You	can	just	take	your	image	and	docker	pull	and	docker	run	it	on	the
servers	in	question.	That	may	be	good	enough	for	testing	and	development.	But	for
production,	you	will	want	something	more	robust.

At	the	most	basic	level,	a	deployment	story	must	encompass	two	things:

1.	 It	must	be	a	repeatable	process.	Each	time	you	invoke	it,	it	needs	to	do	the	same
thing.

2.	 It	needs	to	handle	container	configuration	for	you.	You	must	be	able	to	define	your
application’s	configuration	in	a	particular	environment	and	then	guarantee	that	it	will
ship	that	configuration	for	each	container	on	each	deployment.

The	Docker	client	itself	can	only	talk	to	one	server,	so	you	need	some	kind	of
orchestration	tool	to	support	deployment	at	any	scale.	Docker’s	Swarm	tool,	which	we	talk
about	in	“Docker	Swarm”,	solves	the	problem	of	talking	to	multiple	servers,	but	you
would	still	need	additional	tools	to	support	items	one	and	two	above.	You	could	script	that
behavior	with	shell	scripting	or	your	favorite	dynamic	language.	As	we	mentioned	earlier,
you	could	also	talk	directly	to	the	Docker	Remote	API,	which	is	the	API	exposed	by	the
docker	daemon.	If	you	have	complicated	needs,	the	Remote	API	might	be	the	right
solution	since	it	exposes	much	of	the	power	of	the	docker	command	line	in	a
programmatically	accessible	way.

But	for	most	people,	there	are	already	a	large	number	of	community	contributions	that	can
address	your	needs.	These	are	already	being	used	in	production	environments	in	many
cases	and	thus	are	far	more	battle-hardened	than	anything	you’ll	cook	up	in-house.	There
are	really	two	classes	of	community	tooling	for	deployment:

1.	 Tools	that	treat	this	as	an	orchestration	or	deployment	problem,	replacing	things	like
Capistrano,	Fabric,	and	shell	scripts.

2.	 Tools	that	treat	your	network	like	a	larger	computer,	implementing	automatic
scheduling	and/or	fleet	management	policies,	typically	replacing	manual	processes.

Orchestration	Tools
We’ll	call	the	first	set	of	tools	“orchestration	tools”	because	they	allow	you	to	coordinate
the	configuration	and	deployment	of	your	application	onto	multiple	Docker	daemons	in	a
more	or	less	synchronous	fashion.	You	tell	them	what	to	do,	then	they	do	it	at	scale	while
you	wait,	much	like	the	deployment	model	of	Capistrano,	for	example.	These	tools
generally	provide	the	simplest	way	to	get	into	production	with	Docker.

In	this	category	are	tools	like:

New	Relic’s	Centurion

Spotify’s	Helios

Ansible’s	Docker	tooling

This	class	of	tools	in	many	cases	requires	the	least	infrastructure	or	modification	to	your
existing	system.	Setup	time	is	pretty	minimal	and	the	standardized	nature	of	the	Docker
interface	means	that	a	lot	of	functionality	is	already	packed	into	the	tooling.	You	can	get
important	processes	like	zero-down-time	deployment	right	out	of	the	box.

The	first	two	concentrate	on	orchestration	of	the	application	and	Docker	alone,	while
Ansible	is	also	a	system-configuration	management	platform	and	so	can	also	configure
and	manage	your	servers	if	you	wish.	Centurion	and	Ansible	require	no	external	resources
other	than	a	docker-registry.	Helios	requires	an	Apache	Zookeeper	cluster.

https://github.com/newrelic/centurion
https://github.com/spotify/helios
https://www.ansible.com/docker
http://zookeeper.apache.org

Distributed	Schedulers
The	second	set	of	tools	looks	at	Docker	as	a	way	to	turn	your	network	into	a	single
computer	by	using	a	distributed	scheduler.	The	idea	here	is	that	you	define	some	policies
about	how	you	want	your	application	to	run	and	you	let	the	system	figure	out	where	to	run
it	and	how	many	instances	of	it	to	run.	If	something	goes	wrong	on	a	server	or	with	the
application,	you	let	the	scheduler	start	it	up	again	on	resources	that	are	healthy.	This	fits
more	into	Solomon’s	original	vision	for	Docker:	a	way	to	run	your	application	anywhere
without	worrying	about	how	it	gets	there.	Generally,	zero	downtime	deployment	in	this
model	is	done	in	the	blue-green	style	where	you	launch	the	new	generation	of	an
application	alongside	the	old	generation,	and	then	slowly	filter	new	work	to	the	new
generation.

Probably	the	first	publicly	available	tool	in	this	arena	is	Fleet	from	CoreOS,	which	works
with	systemd	on	the	hosts	to	act	as	a	distributed	init	system.	It	is	by	far	the	easiest	to	use
on	CoreOS,	CentOS/RHEL	7,	or	any	version	of	Linux	with	systemd.	It	requires	etcd	for
coordination,	and	also	needs	SSH	access	to	all	of	your	Docker	servers.

The	tool	in	this	category	with	the	most	press	right	now	is	Google’s	Kubernetes.	It	makes
fewer	assumptions	about	your	OS	distribution	than	Fleet	and	therefore	runs	on	more	OS
and	provider	options.	It	does,	however,	require	that	your	hosts	be	set	up	in	a	very	specific
way	and	has	a	whole	network	layer	of	its	own.	If	your	data	center	happens	to	have	its
networks	laid	out	like	Google’s,	you	can	skip	the	network	overlay.	If	not,	you	must	run
Flannel,	an	IP-over-UDP	layer	that	sits	on	top	of	your	real	network.	Like	Fleet,	it	requires
etcd.	It	supports	a	number	of	backends,	everything	from	the	Docker	daemon,	to	Google
Compute	Engine,	Rackspace,	and	Azure.	It’s	a	powerful	system	with	a	good	API	and
growing	community	support.

Apache	Mesos,	which	was	originally	written	at	the	University	of	California,	Berkeley,	and
most	publicly	adopted	by	Twitter	and	Airbnb,	is	the	most	mature	option.	At	DockerCon
EU	in	December	2014,	Solomon	described	Mesos	as	the	gold	standard	for	clustered
containers.	Mesos	is	a	framework	abstraction	that	lets	you	run	multiple	frameworks	on	the
same	cluster	of	hosts.	You	can,	for	example,	run	Docker	applications	and	Hadoop	jobs	on
the	same	compute	cluster.	Mesos	uses	Zookeeper	and	has	been	around	for	much	longer
than	most	of	the	other	options	because	it	actually	predates	Docker.	First-class	support	for
Docker	appeared	in	recent	versions	of	Mesos.	Some	of	the	popular	Mesos	frameworks	like
Marathon	and	Aurora	have	good	support	for	Docker.	It’s	arguably	the	most	powerful
Docker	platform	right	now,	but	requires	more	decisions	to	implement	than	Kubernetes.
Work	is	in	progress	to	allow	Kubernetes	to	run	as	a	Mesos	framework	as	well.

A	deep	dive	into	Mesos	is	out	of	the	scope	of	this	book.	But	when	you	are	ready	for
serious	at-scale	deployment,	this	is	where	you	should	look.	It’s	an	impressive	and	very
mature	technology	that	has	been	used	at	scale	by	a	number	of	high-profile	organizations.
Mesosphere’s	Marathon	framework	and	the	Apache	Aurora	project	are	two	frameworks
actively	engaging	with	the	Docker	community.

http://bit.ly/1Gph4FZ
https://github.com/coreos/fleet
https://github.com/coreos/etcd
http://kubernetes.io
http://mesos.apache.org
http://bit.ly/1PC5Lel

In	December	2014,	Docker,	Inc.,	announced	the	beta	release	of	a	Docker	native	clustering
tool	called	Swarm,	which	presents	a	large	collection	of	Docker	hosts	as	a	single	resource
pool.	It’s	a	lightweight	clustering	tool	with	a	narrower	scope	than	Kubernetes	or	Mesos.	It
can,	in	fact,	work	on	top	of	other	tools	as	needed.	But	it’s	reasonably	powerful:	a	single
Docker	Swarm	container	can	be	used	to	create	and	coordinate	the	deployments	of
containers	across	a	large	Docker	cluster.	We	will	take	a	deeper	dive	into	this	tool	in
“Docker	Swarm”.

TIP
If	you	are	interested	in	diving	deeper	into	orchestration	and	distributed	schedulers	for	Docker,	consider
reading	the	Docker	Cookbook	by	Sébastien	Goasguen.

https://github.com/docker/swarm/
http://shop.oreilly.com/product/0636920036791.do

Deployment	Wrap-Up
Many	people	will	start	by	using	simple	Docker	orchestration	tools.	However,	as	the
number	of	containers	and	frequency	with	which	you	deploy	containers	grow,	the	appeal	of
distributed	schedulers	will	quickly	become	apparent.	Tools	like	Mesos	allow	you	to
abstract	individual	servers	and	whole	data	centers	into	large	pools	of	resources	in	which	to
run	container-based	tasks.

There	are	undoubtedly	many	other	worthy	projects	out	there	in	the	deployment	space.	But
these	are	the	most	commonly	cited	and	have	the	most	publicly	available	information	at	the
time	of	this	writing.	It’s	a	fast-evolving	space,	so	it’s	worth	taking	a	look	around	to	see
what	new	tools	are	being	shipped.

In	any	case,	you	should	start	by	getting	a	Docker	infrastructure	up	and	running	and	then
look	at	outside	tooling.	Docker’s	built-in	tooling	might	be	enough	for	you.	We	suggest
using	the	lightest	weight	tool	for	the	job,	but	having	flexibility	is	a	great	place	to	be,	and
Docker	is	increasingly	supported	by	more	and	more	powerful	tooling.

Testing	Containers
One	of	the	key	promises	of	Docker	is	the	ability	to	test	your	application	and	all	of	its
dependencies	in	exactly	the	operating	environment	it	would	have	in	production.	It	can’t
guarantee	that	you	have	properly	tested	external	dependencies	like	databases,	nor	does	it
provide	any	magical	test	framework,	but	it	can	make	sure	that	your	libraries	and	other
code	dependencies	are	all	tested	together.	Changing	underlying	dependencies	is	a	critical
place	where	things	go	wrong,	even	for	organizations	with	strong	testing	discipline.	With
Docker,	you	can	build	your	image,	run	it	in	on	your	development	box,	and	then	test	the
exact	same	image	with	the	same	application	version	and	dependencies	before	shipping	it
to	production	servers.

Testing	your	Dockerized	application	is	not	really	much	more	complicated	than	testing
your	application	itself,	but	you	need	to	make	sure	that	your	test	environment	has	a	Docker
server	you	can	run	things	on	and	that	your	application	will	allow	you	to	use	environment
variables	or	command-line	arguments	to	switch	on	the	correct	testing	behavior.	Here’s	one
example	of	how	you	might	do	this.

Quick	Overview
Let’s	draw	up	an	example	production	environment	for	a	fictional	company.	We’ll	try	to
describe	something	that	is	similar	to	the	environment	at	a	lot	of	companies,	with	Docker
thrown	into	the	mix	for	illustration	purposes.

Our	fictional	company’s	environment	has	a	pool	of	production	servers	that	run	Docker
daemons,	and	an	assortment	of	applications	deployed	there.	There	is	a	build	server	and
test	worker	boxes	that	are	tied	to	the	test	server.	We’ll	ignore	deployment	for	now	and	talk
about	it	once	we	have	our	fictional	application	tested	and	ready	to	ship.

Figure	7-1	shows	what	a	common	workflow	looks	like	for	testing	Dockerized
applications,	including	the	following	steps:

1.	 A	build	is	triggered	by	some	outside	means.

2.	 The	build	server	kicks	off	a	Docker	build.

3.	 The	image	is	created	on	the	local	docker.

4.	 The	image	is	tagged	with	a	build	number	or	commit	hash.

5.	 A	container	is	configured	to	run	the	test	suite	based	on	the	newly	built	image.

6.	 The	test	suite	is	run	against	the	container	and	the	result	is	captured	by	the	build
server.

7.	 The	build	is	marked	as	passing	or	failing.

8.	 Passed	builds	are	shipped	to	an	image	store	(registry,	etc.).

You’ll	notice	that	this	isn’t	too	different	from	common	patterns	for	testing	applications.	At
a	minimum	you	need	to	have	a	job	that	can	kick	off	a	test	suite.	The	steps	we’re	adding
here	are	just	to	create	a	Docker	image	first	and	invoke	the	test	suite	inside	the	container
rather	than	on	the	raw	system	itself.

Figure	7-1.	Docker	testing	workflow	chart

Let’s	look	at	how	this	works	for	the	application	we’re	deploying	at	our	fictional	company.
We	just	updated	our	application	and	pushed	the	latest	code	to	our	git	repository.	We	have	a
post-commit	hook	that	triggers	a	build	on	each	commit,	so	that	job	is	kicked	off	on	the
build	server.	The	job	on	the	test	server	is	set	up	to	talk	to	a	docker	on	a	particular	test
worker	server.	Our	test	server	doesn’t	have	docker	running,	but	it	has	the	docker
command-line	tool	installed.	So	we	run	our	docker	build	against	that	remote	Docker
server	and	it	runs	our	Dockerfile,	generating	a	new	image	on	the	remote	Docker	server.
We	could	run	docker	on	the	test	server	itself	if	we	had	a	smaller	environment.

NOTE
You	should	build	your	container	image	exactly	as	you’ll	ship	it	to	production.	If	you	need	to	make
concessions	for	testing,	they	should	be	externally	provided	switches,	either	via	environment	variables	or
through	command-line	arguments.	The	whole	idea	is	to	test	the	exact	build	that	you’ll	ship,	so	this	is	a
critical	point.

Once	the	image	has	been	built,	our	test	job	will	create	and	run	a	new	container	based	on
our	new	production	image.	Our	image	is	configured	to	run	the	application	in	production,
but	we	need	to	run	a	different	command	for	testing.	That’s	OK!	Docker	lets	us	do	that
simply	by	providing	the	command	at	the	end	of	the	docker	run	command.	In	production,
we’d	start	supervisor	and	it	would	start	up	an	nginx	instance	and	some	Ruby	unicorn
web	server	instances	behind	that.	But	for	testing,	we	don’t	need	that	nginx	and	we	don’t
need	to	run	our	web	application.	Instead,	our	build	job	invokes	the	container	like	this:

$	docker	run	-e	ENVIRONMENT=testing	-e	API_KEY=12345	\

		-i	-t	awesome_app:version1	/opt/awesome_app/test.sh

We	called	docker	run,	but	we	did	a	couple	of	extra	things	here,	too.	We	passed	a	couple
of	environment	variables	into	the	container:	ENVIRONMENT	and	API_KEY.	These	can	either
be	new	or	overrides	for	the	ones	Docker	already	exports	for	us.	We	also	asked	for	a
particular	tag;	in	this	case,	version1.	That	will	make	sure	we	build	on	top	of	the	correct
image	even	if	another	build	is	running	simultaneously.	Then	we	override	the	command
that	our	container	was	configured	to	start	in	the	Dockerfile’s	CMD	line.	Instead,	we	call
our	test	script,	/opt/awesome_app/test.sh.

NOTE
Always	pass	the	exact	Docker	tag	for	your	image	into	the	test	job.	If	you	always	use	latest,	then	you	won’t
be	able	to	guarantee	that	another	job	has	not	moved	that	tag	just	after	your	build	was	kicked	off.	If	you	use
the	exact	tag,	you	can	be	sure	you’re	testing	the	right	version	of	the	application.

A	critical	point	to	make	here	is	that	docker	run	will	not	exit	with	the	exit	status	of	the
command	that	was	invoked	in	the	container.	That	means	we	can’t	just	look	at	the	exit
status	to	see	if	our	tests	were	successful.	One	way	to	handle	this	is	to	capture	all	of	the
output	of	the	test	run	into	a	file	and	then	look	at	the	last	line	of	the	file	to	see	if	it	resulted
in	success.	Our	fictional	build	system	does	just	that.	We	write	out	the	output	from	the	test
suite	and	our	test.sh	echoes	either	“Result:	SUCCESS!”	or	“Result:	FAILURE!”	on	the
last	line	to	signify	if	our	tests	passed.

NOTE
Be	sure	to	look	for	some	output	string	that	won’t	appear	by	happenstance	in	your	normal	test	suite	output.	If
we	need	to	look	for	“success,”	for	example,	we	had	best	limit	it	to	looking	at	the	last	line	of	the	file,	and
maybe	also	anchored	to	the	beginning	of	the	line.

In	this	case,	we	look	at	just	the	last	line	of	the	file	and	find	our	success	string,	so	we	mark
the	build	as	passed.	There	is	one	more	Docker-specific	step.	We	want	to	take	our	passed
build	and	push	that	image	to	our	registry.	The	registry	is	the	interchange	point	between
builds	and	deployments.	It	also	allows	us	to	share	the	image	with	other	builds	that	might
be	stacked	on	top	of	it.	But	for	now,	let’s	just	think	of	it	as	the	place	where	we	put	and	tag
successful	builds.	Our	build	script	will	now	do	a	docker	tag	to	give	the	image	the	right
build	tag(s),	including	latest,	and	then	a	docker	push	to	push	the	build	to	the	registry.

That’s	it!	As	you	can	see,	there	is	not	much	to	this	compared	with	testing	a	normal
application.	We	take	advantage	of	the	client/server	model	of	Docker	to	invoke	the	test	on	a
different	server	from	the	test	master	server,	and	we	have	to	wrap	up	our	test	output	in	a
shell	script	to	generate	our	output	status.	But	other	than	that,	it’s	a	lot	like	a	common	build
system	anywhere.

But,	critically,	our	fictional	company’s	system	makes	sure	they	only	ship	applications
whose	test	suite	has	passed	on	the	same	Linux	distribution,	with	the	same	libraries	and	the
same	exact	build	settings.	That	doesn’t	guarantee	success,	but	it	gets	them	a	lot	closer	to
that	guarantee	than	the	dependency	roulette	often	experienced	by	production	deployment
systems.

NOTE
If	you	use	Jenkins	for	continuous	integration	or	are	looking	for	a	good	way	to	test	scaling	Docker,	there	are
many	plug-ins	for	Docker,	Mesos,	and	Kubernetes	that	are	worth	investigating.

http://bit.ly/1gZvZW1

Outside	Dependencies
But	what	about	those	external	dependencies	we	glossed	over?	Things	like	the	database,	or
Memcache	or	Redis	instances	that	we	need	to	run	our	tests	against	our	container?	If	our
fictional	company’s	application	needs	a	database	to	run,	or	a	Memcache	or	Redis	instance,
we	need	to	solve	that	external	dependency	to	have	a	clean	test	environment.	It	would	be
nice	to	use	the	container	model	to	support	that	dependency.	With	some	work,	you	can	do
this	with	tools	like	Docker	Compose.	Our	build	job	could	express	some	dependencies
between	containers,	and	then	Compose	will	use	Docker’s	link	mechanism	to	connect	them
together.	Linking	is	a	mechanism	where	Docker	exposes	environment	variables	into	a
container	to	let	you	connect	containers	when	you	have	more	than	one	deployed	to	the
same	host.	It	can	also	add	information	to	the	/etc/hosts	file	inside	the	container,	enabling
visibility	between	them.

Because	Docker’s	link	mechanism	is	limited	to	working	on	a	single	host,	Compose	is	best
for	things	like	development	and	testing	rather	than	production.	But	it	has	an	expressive
config	syntax	that’s	easy	to	understand	and	is	great	for	this	kind	of	testing.	If	you	are
interested	in	linking,	Compose	is	your	best	option.

Even	though	containers	are	normally	designed	to	be	disposable,	you	may	still	find	that
standard	testing	is	not	always	sufficient	to	avoid	all	problems	and	that	you	will	want	some
tools	for	debuging	running	containers.	In	the	next	chapter,	we	will	discuss	some	of	the
techniques	that	you	can	use	to	get	information	from	your	containers	that	will	help
diagnose	problems	that	might	crop	up	in	production.

https://github.com/docker/compose

Chapter	8.	Debugging	Containers

Once	you’ve	shipped	an	application	to	production,	there	will	come	a	day	when	it’s	not
working	as	expected.	It’s	always	nice	to	know	ahead	of	time	what	to	expect	when	that	day
comes.	Debugging	a	containerized	application	is	not	all	that	different	from	debugging	a
normal	process	on	a	system.

First,	we’ll	cover	one	of	the	easiest	ways	to	see	what’s	going	on	inside	your	containers.	By
using	the	docker	top	command,	you	can	see	the	process	list	as	your	container
understands	it.	It	is	also	critical	to	understand	that	your	application	is	not	running	in	a
separate	system	from	the	other	Docker	processes.	They	share	a	kernel,	likely	a	filesystem,
and	depending	on	your	container	configuration,	they	may	share	network	interfaces.	That
means	you	can	get	a	lot	of	information	about	what	your	container	is	doing.

If	you’re	used	to	debugging	applications	in	a	virtual	machine	environment,	you	might
think	you	would	need	to	enter	the	container	to	inspect	in	detail	an	application’s	memory	or
CPU	use,	or	debug	system	calls.	Not	so!	Despite	feeling	in	many	ways	like	a	virtualization
layer,	processes	in	containers	are	just	processes	on	the	Docker	host	itself.	If	you	want	to
see	a	process	list	across	all	of	the	Docker	containers	on	a	machine,	you	can	just	run	ps
with	your	favorite	command-line	options	right	on	the	server,	for	example.	Let’s	look	at
some	things	you	can	do	when	debugging	a	containerized	application.

Process	Output
Docker	has	a	built-in	command	for	showing	what’s	running	inside	a	container:	docker
top	<containerID>.	This	is	nice	because	it	works	even	from	remote	hosts	as	it’s	exposed
over	the	Docker	Remote	API.	This	isn’t	the	only	way	to	see	what’s	going	on	inside	a
container,	but	it’s	the	easiest	to	use.	Let’s	take	a	look	at	how	that	works	here:

$	docker	ps

CONTAINER	ID			IMAGE								COMMAND				...		NAMES

106ead0d55af			test:latest		/bin/bash		...		clever_hypatia

$	docker	top	106ead0d55af

UID								PID				PPID				C		STIME		TTY	TIME					CMD

root							4548			1033				0		13:29		?			00:00:00	/bin/sh	-c	nginx

root							4592			4548				0		13:29		?			00:00:00	nginx:	master	process	nginx

www-data			4593			4592				0		13:29		?			00:00:00	nginx:	worker	process

www-data			4594			4592				0		13:29		?			00:00:00	nginx:	worker	process

www-data			4595			4592				0		13:29		?			00:00:00	nginx:	worker	process

www-data			4596			4592				0		13:29		?			00:00:00	nginx:	worker	process

We	need	to	know	the	ID	of	our	container,	which	we	get	from	docker	ps.	We	then	pass
that	to	docker	top	and	get	a	nice	listing	of	what’s	running	in	our	container,	ordered	by
PID	just	as	we’d	expect	from	Linux	ps	output.

Some	oddities	exist	here,	though.	The	primary	one	of	these	is	namespacing	of	user	IDs
and	filesystems.

For	example,	a	user	might	exist	in	a	container’s	/etc/passwd	that	does	not	exist	on	the	host
machine.	In	the	case	where	that	user	is	running	a	process	in	a	container,	the	ps	output	on
the	host	machine	will	show	a	numeric	ID	rather	than	a	user	name.	In	some	cases,	two
containers	might	have	users	squatting	on	the	same	numeric	ID,	or	mapping	to	an	ID	that	is
a	completely	different	user	on	the	host	system.

For	example,	if	you	had	a	production	Docker	server	using	CentOS	7	and	ran	the	following
commands,	you	would	see	that	UID	7	is	named	halt:

$	id	7

uid=7(halt)	gid=0(root)	groups=0(root)

NOTE
Don’t	read	too	much	into	the	UID	number	we	are	using	here.	It	was	chosen	simply	because	it	is	used	by
default	on	both	platforms	but	represents	a	different	username.

If	we	then	enter	the	standard	Ubuntu	container	on	that	Docker	host,	you	will	see	that	UID
7	is	set	to	lp	in	/etc/passwd.	By	running	the	following	commands,	you	can	see	that	the
container	has	a	completely	different	perspective	of	who	UID	7	is:

$	docker	run	-ti	ubuntu:latest	/bin/bash

root@f86f8e528b92:/#	grep	x:7:	/etc/passwd

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

root@f86f8e528b92:/#	id	lp

uid=7(lp)	gid=7(lp)	groups=7(lp)

root@409c2a8216b1:/#	exit

If	we	then	run	ps	au	on	the	Docker	host	while	that	container	is	running	as	UID	7	(-u	7),
we	would	see	that	the	Docker	host	would	show	the	container	process	as	being	run	by	halt
instead	of	lp:

$	docker	run	-d	-u	7	ubuntu:latest	sleep	1000

5525…06c6

$	ps	ua	|	grep	sleep

	1185	halt					sleep	1000

	1192	root					grep	sleep

This	could	be	particulary	confusing	if	a	well-known	user	like	nagios	or	postgres	were
configured	on	the	host	system	but	not	in	the	container,	yet	the	container	ran	its	process
with	the	same	ID.	This	namespacing	can	make	the	ps	output	look	quite	strange.	It	might,
for	example,	look	like	the	nagios	user	on	your	Docker	host	is	running	the	postgresql
daemon	that	was	launched	inside	a	container,	if	you	don’t	pay	close	attention.

TIP
One	solution	to	this	is	to	dedicate	a	nonzero	UID	to	your	containers.	On	your	Docker	hosts,	you	can	create
a	container	user	as	UID	5000	and	then	create	the	same	user	in	your	base	container	images.	If	you	then	run
all	your	containers	as	UID	5000	(-u	5000),	you	will	not	only	improve	the	security	of	your	system	by	not
running	container	processes	as	UID	0,	but	you	will	also	make	the	ps	output	on	the	Docker	host	easier	to
decipher	by	displaying	the	container	user	for	all	of	your	running	container	processes.

Likewise,	because	the	process	has	a	different	view	of	the	filesystem,	paths	that	are	shown
in	the	ps	output	are	relative	to	the	container	and	not	the	host.	In	these	cases,	knowing	it	is
in	a	container	is	a	big	win.

So	that’s	how	you	use	the	Docker	tooling	to	look	at	what’s	running	in	a	container.	But
that’s	not	the	only	way,	and	in	a	debugging	situation,	it	might	not	be	the	best	way.	If	you
hop	onto	a	Docker	server	and	run	a	normal	Linux	ps	to	look	at	what’s	running,	you	get	a
full	list	of	everything	containerized	and	not	containerized	just	as	if	they	were	all
equivalent	processes.	There	are	some	ways	to	look	at	the	process	output	to	make	things	a
lot	clearer.	Debugging	can	be	facilitated	by	looking	at	the	Linux	ps	output	in	tree	form	so
that	you	can	see	all	of	the	processes	descended	from	Docker.	Here’s	what	that	can	look
like	using	the	BSD	command-line	flags.	We’ll	chop	the	output	to	just	the	part	we	care
about:

$	ps	axlfww

	...	/usr/bin/docker	-d

	...		_	docker-proxy	-proto	tcp	-host-ip	0.0.0.0	-host-port	6379…

	...		_	redis-server	*:6379

	...		_	docker-proxy	-proto	tcp	-host-ip	0.0.0.0	-host-port	27017…

	...		_	mongod

NOTE
Many	of	the	ps	commands	in	the	preceding	example	work	only	on	true	Linux	distributions.	Boot2Docker	is
based	on	busybox,	which	provides	a	stripped-down	ps	command.

Here	you	can	see	that	we’re	running	one	Docker	daemon	and	two	instances	of	the	docker-

proxy,	which	we	will	discuss	in	more	detail	in	“Network	Inspection”.	Everything	else
under	those	processes	represents	Docker	containers.	In	this	example,	we	have	two
containers.	They	show	up	as	top-level	processes	under	docker.	In	this	case,	we	are
running	one	Redis	server	in	a	container,	and	one	MongoDB	server	in	another	container.
Each	container	has	a	related	docker-proxy	process	that	is	used	to	map	the	required
network	ports	between	the	container	and	the	host	Docker	server.	It’s	pretty	clear	how	they
are	related	to	each	other,	and	we	know	they’re	running	in	a	container	because	they	are	in
docker’s	process	tree.	If	you’re	a	bigger	fan	of	Unix	SysV	command-line	flags,	you	can
get	a	similar,	but	not	as	nice	looking,	tree	output	with	ps	-ejH:

$	ps	-ejH

40643…			docker

43689…					docker

43697…					docker

43702…					start

43716…							java

46970…					docker

46976…					supervisord

46990…							supervisor_remo

46991…							supervisor_stdo

46992…							nginx

47030…									nginx

47031…									nginx

47032…									nginx

47033…									nginx

46993…							ruby

47041…									ruby

47044…									ruby

You	can	get	a	more	concise	view	of	the	docker	process	tree	by	using	the	pstree
command.	Here,	we’ll	use	pidof	to	scope	it	to	the	tree	belonging	to	docker:

$	pstree	`pidof	docker`

docker─┬─2*[docker───6*[{docker}]]

							├─mongod───10*[{mongod}]

							├─redis-server───2*[{redis-server}]

							└─18*[{docker}]

This	doesn’t	show	us	PIDs	and	therefore	is	only	useful	for	getting	a	sense	of	how	things
hang	together	in	our	containers.	But	this	is	pretty	nice	output	when	there	are	a	lot	of
containers	running	on	a	host.	It’s	far	more	concise	and	provides	a	nice	high-level	map	of
how	things	connect.	Here	we	can	see	the	same	containers	that	were	shown	in	the	ps	output
above,	but	the	tree	is	collapsed	so	we	get	multipliers	like	10*	when	there	are	10	duplicate
processes.

We	can	actually	get	a	full	tree	with	PIDs	if	we	run	pstree,	as	shown	here:

$	pstree	-p	`pidof	docker`

docker(4086)─┬─docker(6529)─┬─{docker}(6530)

													│														├─...

													│														└─{docker}(6535)

													├─...

													├─mongod(6675)─┬─{mongod}(6737)

													│														├─...

													│														└─{mongod}(6756)

													├─redis-server(6537)─┬─{redis-server}(6576)

													│																				└─{redis-server}(6577)

													├─{docker}(4089)

													├─...

													└─{docker}(6738)

This	output	provides	us	with	a	very	good	look	at	all	the	processes	attached	to	Docker	and
what	they	are	running.	It	is,	however,	difficult	to	see	the	docker-proxy	in	this	output,
since	it	is	really	just	another	forked	docker	process.

Process	Inspection
If	you’re	logged	in	to	the	Docker	server,	you	can	inspect	running	processes	in	many	of	the
same	ways	that	you	would	on	the	host.	Common	debugging	tools	like	strace	work	as
expected.	In	the	following	code,	we’ll	inspect	a	unicor	process	running	inside	a	Ruby
webapp	container:

$	strace	-p	31292

Process	31292	attached	-	interrupt	to	quit

select(11,	[10],	NULL,	[7	8],	{30,	103848})	=	1	(in	[10],	left	{29,	176592})

fcntl(10,	F_GETFL)																						=	0x802	(flags	O_RDWR|O_NONBLOCK)

accept4(10,	0x7fff25c17b40,	[128],	SOCK_CLOEXEC)	=	-1	EAGAIN	(...)

getppid()																															=	17

select(11,	[10],	NULL,	[7	8],	{45,	0})		=	1	(in	[10],	left	{44,	762499})

fcntl(10,	F_GETFL)																						=	0x802	(flags	O_RDWR|O_NONBLOCK)

accept4(10,	0x7fff25c17b40,	[128],	SOCK_CLOEXEC)	=	-1	EAGAIN	(...)

getppid()																															=	17

You	can	see	that	we	get	the	same	output	that	we	would	from	noncontainerized	processes
on	the	host.	Likewise,	an	lsof	shows	us	that	the	files	and	sockets	that	a	process	has	open
work	as	expected:

$	lsof	-p	31292

COMMAND…		NAME

ruby				...		/data/app

ruby				...		/

ruby				...		/usr/local/rbenv/versions/2.1.1/bin/ruby

ruby				...		/usr/.../iso_8859_1.so	(stat:	No	such	file	or	directory)

ruby				...		/usr/.../fiber.so	(stat:	No	such	file	or	directory)

ruby				...		/usr/.../cparse.so	(stat:	No	such	file	or	directory)

ruby				...		/usr/.../libsasl2.so.2.0.23	(path	dev=253,0,	inode=1443531)

ruby				...		/lib64/libnspr4.so	(path	dev=253,0,	inode=655717)

ruby				...		/lib64/libplc4.so	(path	dev=253,0,	inode=655718)

ruby				...		/lib64/libplds4.so	(path	dev=253,0,	inode=655719)

ruby				...		/usr/lib64/libnssutil3.so	(path	dev=253,0,	inode=1443529)

ruby				...		/usr/lib64/libnss3.so	(path	dev=253,0,	inode=1444999)

ruby				...		/usr/lib64/libsmime3.so	(path	dev=253,0,	inode=1445001)

ruby				...		/usr/lib64/libssl3.so	(path	dev=253,0,	inode=1445002)

ruby				...		/lib64/liblber-2.4.so.2.5.6	(path	dev=253,0,	inode=655816)

ruby				...		/lib64/libldap_r-2.4.so.2.5.6	(path	dev=253,0,	inode=655820)

Note	that	the	paths	to	the	files	are	all	relative	to	the	container’s	view	of	the	backing
filesystem,	which	is	not	the	same	as	the	host	view.	Therefore,	inspecting	the	version	of	the
file	on	the	host	will	not	match	the	one	the	container	sees.	In	this	case,	it’s	probably	best	to
enter	the	container	to	look	at	the	files	with	the	same	view	that	the	processes	inside	it	have.

It’s	possible	to	run	the	GNU	debugger	(gdb)	and	other	process	inspection	tools	in	the	same
manner	as	long	as	you’re	root	and	have	proper	permissions	to	do	so.

Controlling	Processes
When	you	have	a	shell	directly	on	the	Docker	server,	you	can	treat	containerized
processes	just	like	any	other	process	running	on	the	system.	If	you’re	remote,	you	might
send	signals	with	docker	kill	because	it’s	expedient.	But	if	you’re	already	logged	in	to	a
Docker	server	for	a	debugging	session	or	because	the	Docker	daemon	is	not	responding,
you	can	just	kill	away	like	you	would	normally.	Note	that	unless	you	kill	the	top-level
process	in	the	container,	however,	this	will	not	terminate	the	container	itself.	That	might
be	desirable	if	you	were	killing	a	runaway	process,	but	might	leave	the	container	in	an
unexpected	state	if	developers	on	remote	systems	expect	that	all	the	processes	are	running
if	they	can	see	their	container	in	docker	ps.

These	are	just	normal	processes	in	many	respects,	and	can	be	passed	the	whole	array	of
Unix	signals	listed	in	the	man	page	for	the	Linux	kill	command.	Many	Unix	programs
will	perform	special	actions	when	they	receive	certain	predefined	signals.	For	example,
nginx	will	reopen	its	logs	when	receiving	a	SIGUSR1	signal.	Using	the	Linux	kill
command,	it	is	possible	to	send	any	Unix	signal	to	a	container	process	on	the	local	Docker
server.

NOTE
We	consider	it	to	be	a	best	practice	to	run	some	kind	of	process	control	in	your	production	containers.
Whether	it	be	systemd,	upstart,	runit,	supervisor,	or	your	own	homegrown	tools,	this	allows	you	to
treat	containers	atomically	even	when	they	contain	more	than	one	process.	You	want	docker	ps	to	reflect
the	presence	of	the	whole	container	and	don’t	want	to	worry	if	one	of	the	processes	inside	it	has	died.	If	you
can	assume	that	the	presence	of	a	container	and	absence	of	error	logs	means	that	things	are	working,	it
allows	you	to	treat	docker	ps	output	as	the	truth	about	what’s	happening	on	your	Docker	systems.	Because
containers	ship	as	a	single	artifact,	this	tends	to	be	how	people	think	of	them.	But	you	should	only	run
things	that	are	logically	the	same	application	in	a	single	container.

Network	Inspection
Unlike	process	inspection,	debugging	containerized	applications	at	the	network	level	can
be	more	complicated.	Unless	you	are	running	Docker	containers	with	the	host	networking
option,	which	we	will	discuss	in	“Networking”,	your	containers	will	have	their	own	IP
addresses	and	therefore	won’t	show	up	in	all	netstat	output.	Running	netstat	-an	on
the	Docker	server,	for	example,	works	as	expected,	as	shown	here:

$	sudo	netstat	-an

Active	Internet	connections	(servers	and	established)

Proto	Recv-Q	Send-Q	Local	Address											Foreign	Address									State

tcp								0						0	10.0.3.1:53													0.0.0.0:*															LISTEN

tcp								0						0	0.0.0.0:22														0.0.0.0:*															LISTEN

tcp6							0						0	:::23235																:::*																				LISTEN

tcp6							0						0	:::2375																	:::*																				LISTEN

tcp6							0						0	:::4243																	:::*																				LISTEN

tcp6							0						0	fe80::389a:46ff:fe92:53	:::*																				LISTEN

tcp6							0						0	:::22																			:::*																				LISTEN

udp								0						0	10.0.3.1:53													0.0.0.0:*

udp								0						0	0.0.0.0:67														0.0.0.0:*

udp								0						0	0.0.0.0:68														0.0.0.0:*

udp6							0						0	fe80::389a:46ff:fe92:53	:::*

Here	we	can	see	all	of	the	interfaces	that	we’re	listening	on.	Our	container	is	bound	to	port
23235	on	IP	address	0.0.0.0.	That	shows	up.	But	what	happens	when	we	ask	netstat	to
show	us	the	process	name	that’s	bound	to	the	port?

$	netstat	-anp

Active	Internet	connections	(servers	and	established)

Proto…	Local	Address											Foreign	Address	State		PID/Program	name

tcp			...	10.0.3.1:53													0.0.0.0:*							LISTEN	23861/dnsmasq

tcp			...	0.0.0.0:22														0.0.0.0:*							LISTEN	902/sshd

tcp6		...	:::23235																:::*												LISTEN	24053/docker-proxy

tcp6		...	:::2375																	:::*												LISTEN	954/docker

tcp6		...	:::4243																	:::*												LISTEN	954/docker

tcp6		...	fe80::389a:46ff:fe92:53	:::*												LISTEN	23861/dnsmasq

tcp6		...	:::22																			:::*												LISTEN	902/sshd

udp			...	10.0.3.1:53													0.0.0.0:*														23861/dnsmasq

udp			...	0.0.0.0:67														0.0.0.0:*														23861/dnsmasq

udp			...	0.0.0.0:68														0.0.0.0:*														880/dhclient3

udp6		...	fe80::389a:46ff:fe92:53	:::*																			23861/dnsmasq

We	see	the	same	output,	but	notice	what	is	bound	to	the	port:	docker-proxy.	That’s
because	Docker	actually	has	a	proxy	written	in	Go	that	sits	between	all	of	the	containers
and	the	outside	world.	That	means	that	when	we	look	at	output,	we	see	only	docker-
proxy	and	that	masks	which	container	this	is	bound	to.	Luckily,	docker	ps	shows	us
which	containers	are	bound	to	which	ports,	so	this	isn’t	a	big	deal.	But	it’s	not	necessarily
expected,	and	you	probably	want	to	be	aware	of	it	before	you’re	debugging	a	production
failure.

If	you’re	using	host	networking	in	your	container,	then	this	layer	is	skipped.	There	is	no
docker-proxy,	and	the	process	in	the	container	can	bind	to	the	port	directly.

Other	network	inspection	commands	work	as	expected,	including	tcpdump,	but	it’s
important	to	remember	that	docker-proxy	is	there,	in	between	the	host’s	network	interface
and	the	container.

Image	History
When	you’re	building	and	deploying	a	single	container,	it’s	easy	to	keep	track	of	where	it
came	from	and	what	images	it’s	sitting	on	top	of.	But	this	rapidly	becomes	unmanageable
when	you’re	shipping	many	containers	with	images	that	are	built	and	maintained	by
different	teams.	How	can	you	tell	what	images	are	actually	underneath	the	one	your
container	is	running	on?	docker	history	does	just	that.	You	can	see	the	image	IDs	that
are	layered	into	the	image	and	the	sizes	and	commands	that	were	used	to	build	them:

$	docker	history	centurion-test:latest

IMAGE									CREATED								CREATED	BY																														SIZE

ec64a324e9cc		7	months	ago			/bin/sh	-c	#(nop)	CMD	[/bin/sh	-c	ngi			0	B

f38017917da1		7	months	ago			/bin/sh	-c	#(nop)	EXPOSE	map[80/tcp:{			0	B

df0d88d6811a		7	months	ago			/bin/sh	-c	#(nop)	ADD	dir:617ceac0be1			20.52	kB

b00af4e7a358		11	months	ago		/bin/sh	-c	#(nop)	ADD	file:76c644211a			518	B

2d4b732ca5cf		11	months	ago		/bin/sh	-c	#(nop)	ADD	file:7b7ef6cc04			239	B

b6f49406bcf0		11	months	ago		/bin/sh	-c	echo	"HTML	is	working"	>	/			16	B

f384626619d9		11	months	ago		/bin/sh	-c	mkdir	/srv/www															0	B

5c29c073d362		11	months	ago		/bin/sh	-c	apt-get	-y	install	nginx					16.7	MB

d08d285012c8		11	months	ago		/bin/sh	-c	apt-get	-y	install	python-			42.54	MB

340b0525d10f		11	months	ago		/bin/sh	-c	apt-get	update															74.51	MB

8e2b3cf3ca53		12	months	ago		/bin/bash																															1.384	kB

24ba2ee5d982		13	months	ago		/bin/sh	-c	#(nop)	ADD	saucy.tar.xz	in			144.6	MB

cc7385a89304		13	months	ago		/bin/sh	-c	#(nop)	MAINTAINER	Tianon	G			0	B

511136ea3c5a		19	months	ago																																										0	B

This	can	be	useful,	for	example,	when	determining	that	a	container	that	is	having	a
problem	was	actually	built	on	top	of	the	right	base	image.	Perhaps	a	bug	fix	was	a	applied
and	the	particular	container	in	question	didn’t	get	it	because	it	was	still	based	on	the
previous	base	image.	Unfortunately	the	ADD	commands	show	a	hash	rather	than	the	actual
files,	but	they	do	show	whether	it	was	a	directory	or	a	file	that	was	added,	which	can	help
you	determine	which	statement	in	the	Dockerfile	is	being	referred	to.

Inspecting	a	Container
In	Chapter	4,	we	showed	you	how	to	read	the	docker	inspect	output	to	see	how	a
container	is	configured.	But	underneath	that	is	a	directory	on	the	host’s	disk	that	is
dedicated	to	the	container.	Usually	this	is	in	/var/lib/docker/containers.	If	you	look	at	that
directory,	it	contains	very	long	SHA	hashes,	as	shown	here:

$	ls	/var/lib/docker

106ead0d55af55bd803334090664e4bc821c76dadf231e1aab7798d1baa19121

28970c706db0f69716af43527ed926acbd82581e1cef5e4e6ff152fce1b79972

3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b

589f2ad301381b7704c9cade7da6b34046ef69ebe3d6929b9bc24785d7488287

959db1611d632dc27a86efcb66f1c6268d948d6f22e81e2a22a57610b5070b4d

a1e15f197ea0996d31f69c332f2b14e18b727e53735133a230d54657ac6aa5dd

bad35aac3f503121abf0e543e697fcade78f0d30124778915764d85fb10303a7

bc8c72c965ebca7db9a2b816188773a5864aa381b81c3073b9d3e52e977c55ba

daa75fb108a33793a3f8fcef7ba65589e124af66bc52c4a070f645fffbbc498e

e2ac800b58c4c72e240b90068402b7d4734a7dd03402ee2bce3248cc6f44d676

e8085ebc102b5f51c13cc5c257acb2274e7f8d1645af7baad0cb6fe8eef36e24

f8e46faa3303d93fc424e289d09b4ffba1fc7782b9878456e0fe11f1f6814e4b

That’s	a	bit	daunting.	But	those	are	just	the	container	IDs	in	long	form.	If	you	want	to	look
at	the	configuration	for	a	particular	container,	you	just	need	to	use	docker	ps	to	find	its
short	ID,	and	then	find	the	directory	that	matches:

$	docker	ps

CONTAINER	ID								IMAGE																													COMMAND													...

106ead0d55af								kmatthias/centurion-test:latest			"/bin/sh	-c	nginx"		...

You	can	look	at	the	short	ID	from	docker	ps,	then	match	it	to	the	ls	/var/lib/docker
output	to	see	that	you	want	the	directory	beginning	with	106ead0d55af.	If	you	need	exact
matching,	you	can	do	a	docker	inspect	106ead0d55af	and	grab	the	long	ID	from	the
output.	As	we	discussed	in	Chapter	5,	this	directory	contains	some	files	that	are	bind-
mounted	directly	into	your	container,	like	hosts:

$	cd	/var/lib/docker/\

		containers/106ead0d55af55bd803334090664e4bc821c76dadf231e1aab7798d1baa19121

$	ls	-la

total	32

drwx------		2	root	root		4096	Jun	23		2014	.

drwx------	14	root	root	12288	Jan		9	11:33	..

-rw-------		1	root	root					0	Jun	23		2014	106ead0d55a…baa19121-json.log

-rw-r--r--		1	root	root		1642	Jan	23	14:36	config.json

-rw-r--r--		1	root	root			350	Jan	23	14:36	hostconfig.json

-rw-r--r--		1	root	root					8	Jan	23	14:36	hostname

-rw-r--r--		1	root	root			169	Jan	23	14:36	hosts

This	directory	is	also	where	Docker	stores	the	JSON	file	containing	the	log	that	is	shown
with	the	docker	logs	command,	the	JSON	configuration	that	backs	the	docker	inspect
output	(config.json),	and	the	networking	configuration	for	the	container	(hostconfig.json)
are	located.

Even	if	we’re	not	able	to	enter	the	container,	or	if	docker	is	not	responding,	we	can	look	at
how	the	container	was	configured.	It’s	also	pretty	useful	to	understand	what’s	backing	that

mechanism	inside	the	container.	Keep	in	mind	that	it’s	not	a	good	idea	to	modify	these
files.	Docker	expects	them	to	contain	reality,	and	if	you	alter	that	reality,	you’re	asking	for
trouble.	But	it’s	another	avenue	for	information	on	what’s	happening	in	your	container.

Filesystem	Inspection
Docker,	regardless	of	the	backend	actually	in	use,	has	a	layered	filesystem	that	allows	it	to
track	the	changes	in	any	given	container.	This	is	how	the	images	are	actually	assembled
when	you	do	a	build,	but	it	is	also	useful	when	trying	to	figure	out	if	a	Docker	container
has	changed	anything,	and	if	so,	what.	As	with	most	of	the	core	tools,	this	is	built	into	the
docker	command-line	tooling	and	is	also	exposed	via	the	API.	Let’s	take	a	look	at	what
this	shows	us	in	Example	8-1.	We’ll	assume	that	we	already	have	the	ID	of	the	container
we’re	concerned	with.

Example	8-1.	docker	diff
$	sudo	docker	diff	89b8e19707df

C	/var/log/redis

A	/var/log/redis/redis.log

C	/var/run

A	/var/run/cron.reboot

A	/var/run/crond.pid

C	/var/lib/logrotate.status

C	/var/lib/redis

A	/var/lib/redis/dump.rdb

C	/var/spool/cron

A	/var/spool/cron/root

Each	line	begins	with	either	A	or	C,	which	are	just	shorthand	for	added	or	changed.	We
can	see	that	this	container	is	running	redis,	that	the	redis	log	is	being	written	to,	and	that
someone	or	something	has	been	changing	the	crontab	for	root.	Logging	to	the	local
filesystem	is	not	a	good	idea,	especially	for	anything	with	high-volume	logs.	Being	able	to
find	out	what	is	writing	to	your	Docker	filesystem	can	really	help	you	understand	where
things	are	filling	up,	or	give	you	a	preview	of	what	would	be	added	if	you	were	to	build	an
image	from	it.

Further	detailed	inspection	requires	jumping	into	the	container	with	docker	exec	or
nsenter	and	the	like	in	order	to	see	what	is	exactly	in	the	filesystem.	But	docker	diff
gives	you	a	good	place	to	start.

Moving	Along
At	this	point,	you	can	deploy	and	debug	containers	in	your	production	environment,	but
how	do	you	start	to	scale	this	for	large	applications?	In	the	next	chapter,	we	will	expore
some	of	the	tools	that	are	avaliable	to	help	you	scale	Docker	inside	your	data	center	and	in
the	cloud.

Chapter	9.	Docker	at	Scale

One	of	Docker’s	major	strengths	is	its	ability	to	abstract	away	the	underlying	hardware
and	operating	system	so	that	your	application	is	not	constrained	to	any	particular	host	or
environment.	It	facilitates	not	just	horizontally	scaling	a	stateless	application	within	your
data	center,	but	also	across	cloud	providers	without	many	of	the	traditional	barriers	to
similar	efforts.	True	to	the	shipping	container	metaphor,	a	container	on	one	cloud	looks
like	a	container	on	another.

Many	organizations	will	find	cloud	deployments	of	Docker	very	appealing	because	they
can	gain	any	of	the	immediate	benefits	of	a	scalable	container-based	platform	without
needing	to	completely	build	something	in-house.	But	the	barrier	is	low	for	creating	your
own	clusters,	and	we’ll	cover	some	options	for	doing	that	shortly.

It	is	easy	to	install	Docker	on	almost	any	Linux-based	cloud	instance.	However,	Docker
and	almost	every	major	public	cloud	provider	is	actively	developing	tooling	for
intelligently	deploying	and	managing	Docker	containers	across	a	cluster.	At	the	time	of
this	writing,	many	of	these	projects	are	usable,	but	still	in	the	early	stages.

If	you	have	your	own	private	cloud,	you	can	leverage	a	tool	like	Docker	Swarm	to	deploy
containers	easily	across	a	large	pool	of	Docker	hosts,	or	use	the	community	tool	Centurion
or	Helios	to	quickly	facilitate	multi-host	deployments.	If	you	have	already	experimented
with	Docker	at	scale	and	are	looking	to	build	something	more	like	what	the	cloud
providers	themselves	offer,	then	you	should	consider	Kubernetes	or	Mesos,	which	we
addressed	in	the	last	chapter.

The	major	public	cloud	providers	have	all	made	efforts	to	support	containers	natively	on
their	offering.	Some	of	the	biggest	efforts	to	implement	Docker	containers	on	the	public
cloud	include:

Amazon	EC2	Container	Service

Google	Container	Engine

Red	Hat	OpenShift	3

Even	cloud	providers	running	on	non-Linux	operating	systems	like	SmartOS	and
Windows	are	actively	finding	ways	to	support	the	Docker	ecosystem:

Joyent	Triton

Microsoft	Azure

In	this	chapter,	we’ll	cover	some	options	for	running	Docker	at	scale	in	your	own	data
center,	first	with	a	pass	through	Docker	Swarm	and	Centurion,	and	then	take	a	dive	into

http://aws.amazon.com/ecs/
http://bit.ly/1R3wcvZ
https://www.openshift.com
http://bit.ly/1R3weUC
http://bit.ly/1R3winh

the	Amazon	EC2	Container	Service	(Amazon	ECS).	All	of	these	examples	will	hopefully
give	you	a	view	of	how	Docker	can	be	succesfully	leveraged	to	provide	an	incredibly
flexible	platform	for	your	application	workloads.

Docker	Swarm
In	early	2015,	Docker	revamped	its	six-month-old	libswarm	project	and	released	the	first
beta	of	the	new	Swarm	tool	to	the	public.	The	idea	behind	Swarm	is	to	present	a	single
interface	to	the	docker	client	tool	but	have	that	interface	be	backed	by	a	whole	cluster
rather	than	a	single	Docker	daemon.	Swarm	doesn’t	concern	itself	with	application
configuration	or	repeatable	deployments;	it	is	aimed	at	clustering	computing	resources	for
wrangling	by	the	Docker	tools.	As	such,	it	is	a	building	block	of	a	more	complex	solution.

Swarm	is	implemented	as	a	single	Docker	container	that	acts	as	both	the	central
management	hub	for	your	Docker	cluster	and	also	as	the	agent	that	runs	on	each	Docker
host.	By	deploying	it	to	all	of	your	hosts,	you	merge	them	into	a	single,	cohesive	cluster
than	can	be	controlled	with	the	Swarm	and	Docker	tooling.

NOTE
It	is	actually	possible	to	compile	Swarm	as	a	standalone	binary	that	can	be	run	directly	on	a	host	if	you
prefer	not	to	use	the	containerized	version.	But,	as	with	any	containerized	application,	the	container	is
simpler	to	deploy.	Here	we’ll	cover	the	containerized	deployment.

Let’s	get	a	Swarm	cluster	up	and	running.	As	with	any	Docker	deployment,	the	very	first
thing	we	should	do	is	download	the	Swarm	container	onto	our	Docker	host	by	running	a
docker	pull,	as	shown	here:

$	docker	pull	swarm

511136ea3c5a:	Pull	complete

ae115241d78a:	Pull	complete

f49087514537:	Pull	complete

fff73787bd9f:	Pull	complete

97c8f6e912d7:	Pull	complete

33f9d1e808cf:	Pull	complete

62860d7acc87:	Pull	complete

bf8b6923851d:	Pull	complete

swarm:latest:	The	image	you	are	pulling	has	been	verified.	Important:

		image	verification	is	a	tech	preview	feature	and	should	not	be

		relied	on	to	provide	security.

Status:	Downloaded	newer	image	for	swarm:latest

We	now	need	to	create	our	Docker	cluster	by	running	the	Swarm	container	on	our
preferred	Docker	host.

$	docker	run	--rm	swarm	create

e480f01dd24432adc551e72faa37bddd

This	command	returns	a	hash	that	represents	a	unique	identifier	for	your	newly	created
Docker	cluster,	and	is	typically	referred	to	as	the	cluster	ID.

NOTE
Docker	Swarm	needs	to	keep	track	of	information	about	the	cluster	it	will	manage.	When	invoked,	it	needs
to	discover	the	hosts	and	their	containers.	The	default	method	uses	a	token	and	a	simple	discovery	API
located	on	Docker	Hub	at	discovery.hub.docker.com.	But	it	also	supports	other	discovery	methods,
including	etcd	and	Consul.

https://github.com/coreos/etcd
https://www.consul.io

To	register	a	Docker	host	with	our	cluster,	we	need	to	run	the	Swarm	container	with	the
join	argument.	In	the	following	command,	we	need	to	be	sure	and	provide	the	address
and	port	for	our	Docker	host,	and	the	token	that	we	received	when	we	first	created	the
cluster:

$	docker	run	-d	swarm	join	--addr=172.17.42.10:2375	\

		token://e480f01dd24432adc551e72faa37bddd

6c0e36c1479b360ac63ec23827560bafcc44695a8cdd82aec8c44af2f2fe6910

The	swarm	join	command	launches	the	Swarm	agent	on	our	Docker	host	and	then	returns
the	full	hash	to	the	agent	container.	If	we	now	run	docker	ps	against	our	Docker	host	we
will	see	the	Swarm	agent	running,	and	that	its	short	hash	matches	the	first	12	characters	of
the	full	hash	that	we	received	from	the	previous	command:

$	docker	ps

CONTAINER	ID		IMAGE									COMMAND															...		PORTS						NAMES

6c0e36c1479b		swarm:latest		"/swarm	join	--addr=		...		2375/tcp			mad_lalande

NOTE
At	this	point,	we	have	a	single	host	cluster.	Under	normal	circumstances,	we	would	want	to	add	additional
Docker	hosts	to	the	cluster,	and	you	can	do	this	very	easily	by	starting	a	second	Docker	host	using	your
preferred	tool	of	choice,	like	docker-machine,	vagrant,	etc.

We	now	want	to	deploy	the	Swarm	manager	to	any	one	of	the	Docker	hosts	in	our	cluster:

$	docker	run	-d	-p	9999:2375	swarm	manage	\

token://87711cac095fe3440f74161d16b4bd94

4829886f68b6ad9bb5021fde3a32f355fad23b91bc45bf145b3f0f2d70f3002b

NOTE
You	can	expose	the	Swarm	manager	on	any	port.	In	this	case,	we	are	using	9999,	since	2375	and/or	2376
are	already	in	use	on	the	Docker	host	by	the	Docker	server.

If	we	rerun	docker	ps,	we	will	now	see	both	Swarm	containers	running	on	our	Docker
host:

$	docker	ps…	IMAGE									COMMAND															...		PORTS																			...

...	swarm:latest		"/swarm	manage	token		...		0.0.0.0:9999->2375/tcp		...

...	swarm:latest		"/swarm	join	--addr=		...		2375/tcp																...

We	can	list	all	of	the	nodes	in	our	cluster	by	running:

$	docker	run	--rm	swarm	list	token://87711cac095fe3440f74161d16b4bd94

172.17.42.10:2375

The	diagram	in	Figure	9-1	gives	a	good	overview	of	the	components	that	make	up	the
Docker	Swarm	cluster.

Figure	9-1.	Swarm	Manager	controlling	Docker	cluster

At	this	point	we	can	start	using	docker	to	interact	with	our	Docker	cluster,	instead	of	with
an	individual	host.	Since	we	don’t	have	TLS	enabled	for	Swarm,	we	need	to	ensure	that
the	Docker	command	doesn’t	try	to	use	TLS	when	connecting	to	the	Swarm	port.	We	can
do	this	by	running	the	following	commands:

TIP
Before	clearing	the	following	variables,	you	might	want	to	jot	down	their	current	values	so	you	can	reset
them	when	you	are	done	experimenting	with	Swarm.

$	echo	$DOCKER_HOST;	unset	DOCKER_HOST

$	echo	$DOCKER_TLS_VERIFY;	unset	DOCKER_TLS_VERIFY

$	echo	$DOCKER_TLS;	unset	DOCKER_TLS

$	echo	$DOCKER_CERT_PATH;	unset	DOCKER_CERT_PATH

By	setting	the	DOCKER_HOST	environment	variable	to	the	IP	address	and	port	that	our
Swarm	manager	is	running	on,	we	can	now	run	normal	Docker	commands	against	our
Swarm-based	Docker	cluster,	as	shown	here:

$	export	DOCKER_HOST="tcp://172.17.42.10:9999"((("docker",	"info")))

$	docker	info

Containers:	37

Nodes:	1

	core-01:	172.17.42.10:2375

		└	Containers:	37

		└	Reserved	CPUs:	20	/	2

		└	Reserved	Memory:	1.367	GiB	/	997.9	MiB

The	above	output	from	docker	info	shows	some	basic	details	about	all	of	the	nodes	in
our	cluster.

When	we	are	in	clustering	mode,	we	can’t	use	some	Docker	commands,	like	docker
pull,	but	we	can	still	run	a	new	container	within	our	cluster	and	the	agent	will	take	the
required	steps,	including	pulling	the	image	down	from	the	registry.

We	can	test	this	by	running	an	nginx	container	in	our	new	cluster	using	the	following
command:

$	docker	run	-d	nginx

5519a2a379668ceab685a1d73d7692dd0a81ad92a7ef61f0cd54d2c4c95d3f6e

Running	docker	ps	again	will	now	show	that	we	have	a	container	running	within	the
context	of	the	cluster.

$	docker	ps

CONTAINER	ID		IMAGE				COMMAND															...		NAMES

5519a2a37966		nginx:1		"nginx	-g	'daemon	of		...		core-01/berserk_hodgkin

An	interesting	thing	to	note	is	that	the	container	name	(berserk_hodgkin)	is	now	prefixed
by	the	name	of	the	node	(core-01)	that	it	is	running	on.	If	we	look	back	at	the	output	from
docker	info,	we	will	see	the	node	name	listed	there,	like	this:

core-01:	172.17.42.10:2375

If	we	now	run	docker	ps	-a,	we	will	see	an	interesting	behavior.	In	addition	to	containers
that	are	not	running,	we	will	also	see	containers	that	are	running	outside	the	scope	of	the
cluster	(like	the	swarm	containers,	themselves)	and	therefore	are	“unknown”	to	the	cluster,
although	still	actually	running	on	one	of	our	hosts.

$	docker	ps	-a…		IMAGE									COMMAND															PORTS																								...

...		nginx:1							"nginx	-g	'daemon	of		80/tcp,	443/tcp														...

...		swarm:latest		"/swarm	manage	token		172.17.42.10:9999->2375/tcp		...

...		swarm:latest		"/swarm	join	--addr=		2375/tcp																					...

...

WARNING
Although	Swarm	does	not	list	its	own	images	in	standard	docker	ps	output,	it	will	happily	let	you	docker
stop	the	Swarm	management	or	agent	containers,	which	will,	in	turn,	break	things.	Don’t	do	that.

This	covers	the	basics	of	using	Docker	Swarm	and	should	help	get	you	started	building
your	own	Docker	cluster	for	deployment.

NOTE
When	you	are	done	using	Swarm,	you	will	need	to	reset	your	DOCKER_HOST	environment	variable	to	point
directly	at	your	Docker	host.	If	your	host	is	using	TLS,	then	you	will	also	need	to	set	DOCKER_TLS_VERIFY,
DOCKER_TLS,	and	DOCKER_CERT_PATH	back	to	their	previous	values.

http://nginx.org

Centurion
Centurion,	which	we	discussed	in	Chapter	8,	is	one	of	many	tools	that	enables	repeatable
deployment	of	applications	to	a	group	of	hosts.	Unlike	Swarm,	which	treats	the	cluster	as
a	single	machine,	you	tell	Centurion	about	each	host	you	want	it	to	know	about.	Its	focus
is	on	guaranteeing	repeatability	of	container	creation	and	simplifying	zero-down-time
deployment.	It	assumes	that	a	load	balancer	sits	in	front	of	your	application	instances.	It	is
an	easy	first	step	in	moving	from	traditional	deployment	to	a	Docker	workflow.

NOTE
We	could	equally	be	covering	Spotify’s	Helios	here,	or	Ansible’s	Docker	tooling,	but	we	believe	that
Centurion	is	the	simplest	of	these	tools	to	get	up	and	running.	You	are	encouraged	to	see	if	there	are	tools
that	are	a	better	fit	for	your	deployment	needs,	but	this	section	will	hopefully	give	you	a	taste	of	what	you
might	achieve	as	a	first	step.

Let’s	look	at	deploying	a	simple	application	with	Centurion.	Here	we’ll	deploy	the	public
nginx	container	as	our	web	application.	It	won’t	do	much,	but	will	serve	up	a	welcome
page	that	we	can	see	in	a	browser.	You	could	easily	switch	in	your	custom	application.
The	only	requirement	is	that	it	be	deployed	to	a	registry.

Before	we	can	deploy,	we	have	to	satisfy	the	dependencies	for	the	tool	and	get	it	installed.
Centurion	depends	on	having	the	Docker	command-line	tool	present	and	requires	that	you
have	Ruby	1.9	or	higher	so	you’ll	want	to	make	sure	you	have	a	system	with	these
installed.	Centurion	can	run	on	Linux	or	Mac	OS	X.	Windows	support	is	untested.
Packages	are	available	via	yum	or	apt-get	on	all	popular	Linux	distributions.	Generally,
any	distribution	with	a	kernel	new	enough	to	run	Docker	will	ship	with	packages	that	meet
this	requirement.	On	recent	Mac	OS	X	versions,	you	will	already	have	the	right	version	of
Ruby.	If	you	are	on	an	older	release,	you	can	install	a	recent	Ruby	with	Homebrew.	Most
Linux	distributions	that	are	capable	of	running	Docker	also	ship	with	a	modern	enough
Ruby	to	run	Centurion.	You	can	check	if	you	have	Ruby	installed	and	if	you	have	a
version	new	enough	like	this:

$	ruby	-v

ruby	2.2.1p85	(2015-02-26	revision	49769)	[x86_64-darwin12.0]

Here,	we	have	Ruby	2.2.1,	which	is	plenty	new	enough.	Once	you	have	Ruby	running,
install	Centurion	with	the	Ruby	package	manager:

$	gem	install	centurion

Fetching:	logger-colors-1.0.0.gem	(100%)

Successfully	installed	logger-colors-1.0.0

Fetching:	centurion-1.5.1.gem	(100%)

Successfully	installed	centurion-1.5.1

Parsing	documentation	for	logger-colors-1.0.0

Installing	ri	documentation	for	logger-colors-1.0.0

Parsing	documentation	for	centurion-1.5.1

Installing	ri	documentation	for	centurion-1.5.1

Done	installing	documentation	for	logger-colors,	centurion	after	0	seconds

2	gems	installed

https://github.com/newrelic/centurion

You	can	now	invoke	centurion	from	the	command	line	to	make	sure	it’s	available:

$	centurion	--help

Options:

		-p,	--project=<s>										project	(blog,	forums…)

		-e,	--environment=<s>						environment	(production,	staging…)

		-a,	--action=<s>											action	(deploy,	list…)	(default:	list)

		-i,	--image=<s>												image	(yourco/project…)

		-t,	--tag=<s>														tag	(latest…)

		-h,	--hosts=<s>												hosts,	comma	separated

		-d,	--docker-path=<s>						path	to	docker	executable	(default:	docker)

		-n,	--no-pull														Skip	the	pull_image	step

		--registry-user=<s>								user	for	registry	auth

		--registry-password=<s>				password	for	registry	auth

		-o,	--override-env=<s>					override	environment	variables,	comma	separated

		-l,	--help																	Show	this	message

There	are	a	lot	of	options	there,	but	right	now	we’re	just	making	sure	that	it’s	installed	and
working.	If	Centurion	is	not	yet	available	and	you	get	an	error,	we	can	add	it	to	our	path:

$	gempath=`gem	environment	|	grep	"INSTALLATION	DIRECTORY"	|	awk	'{print	$4}'`

$	export	PATH=$gempath/bin:$PATH

You	should	now	be	able	to	invoke	centurion	--help	and	see	the	output	of	the	help.

To	begin	with,	we’ll	just	make	a	directory	in	which	we’ll	store	the	Centurion
configuration.	If	this	were	your	own	application,	this	might	be	the	application’s	directory,
or	it	might	be	a	directory	in	which	you	store	all	the	deployment	configs	for	all	of	your
applications.	We	encourage	that	pattern	for	larger	installations.	Since	we’re	just	going	to
deploy	the	public	nginx	container,	let’s	create	a	directory	to	house	our	configs.	Then	we’ll
change	into	it	and	tell	Centurion	to	scaffold	a	basic	config	for	us	with	the	centurionize
tool:

$	mkdir	nginx

$	cd	nginx

$	centurionize	-p	nginx

Creating	/Users/someuser/apps/nginx/config/centurion

Writing	example	config	to	/Users/someuser/apps/nginx/config/centurion/nginx.rake

Writing	new	Gemfile	to	/Users/someuser/apps/nginx/Gemfile

Adding	Centurion	to	the	Gemfile

Remember	to	run	`bundle	install`	before	running	Centurion

Done!

We	can	ignore	the	Gemfile	stuff	for	now	and	just	open	the	config	it	generated	for	us.	You
might	take	a	look	at	it	to	see	what	it	put	in	place	in	order	to	get	an	idea	of	what	Centurion
can	do.	The	scaffolded	config	contains	examples	of	how	to	use	many	of	the	features	of
Centurion.	We’ll	just	edit	it	down	to	the	basics	we	care	about:

namespace	:environment	do

		desc	'Staging	environment'

		task	:staging	do

				set_current_environment(:staging)

				set	:image,	'nginx'

				env_vars	MY_ENV_VAR:	'something	important'

				host_port	10234,	container_port:	80

				host	'docker1'

				host	'docker2'

		end

end

Centurion	supports	multiple	environments	in	the	same	config.	Here	we’re	just	going	to
deploy	to	staging.	We	could	add	as	many	as	we	like.	The	default	file	also	uses	a	pattern
where	common	configurations	between	environments	are	put	into	a	common	section	that
is	called	by	each	of	the	environments.	For	demonstration	purposes,	we	cut	this	config
down	to	a	bare	minimum.

What	we	now	have	is	a	config	that	will	let	us	deploy	the	nginx	image	from	the	public
registry	to	two	hosts,	docker1	and	docker2,	while	setting	the	environment	variable
MY_ENV_VAR	to	some	text	and	mapping	port	80	inside	the	container	to	the	public	port
10234.	It	supports	any	number	of	environment	variables,	hosts,	ports,	or	volume	mounts.
The	idea	is	to	store	a	repeatable	configuration	for	your	application	that	can	be	stamped	out
onto	as	many	Docker	hosts	as	needed.

Centurion	supports	a	rolling	deployment	model	out	of	the	box	for	web	applications.	It	will
cycle	through	a	set	of	hosts,	taking	one	container	down	at	a	time	to	keep	the	application	up
during	deployment.	It	uses	a	defined	health	check	endpoint	on	a	container	to	enable	rolling
deployments.	By	default,	this	is	“/”	and	that’s	good	enough	for	us	with	our	simple
welcome	page	application.	Nearly	all	of	this	is	configurable,	but	we’ll	keep	it	simple.

We’re	ready,	so	let’s	deploy	this	to	staging.	We’ll	tell	Centurion	to	use	the	nginx	project,
the	staging	environment,	and	to	do	a	web	application	zero-downtime	deployment	with
rolling_deploy.	Centurion	will	initiate	a	docker	pull	on	the	hosts	in	parallel,	then	on
each	host	in	turn	it	will	create	a	new	container,	tear	down	the	old	one,	and	start	up	the	new
one.	We’ll	cut	down	the	very	verbose	output	to	get	a	clearer	idea	of	the	process:

$	centurion	-p	nginx	-e	staging	-a	rolling_deploy…

I,	[2015…	#51882]		INFO—:	Fetching	image	nginx:latest	IN	PARALLEL

I,	[2015…	#51882]		INFO—:	Using	CLI	to	pull

I,	[2015…	#51882]		INFO—:	Using	CLI	to	pull

4f903438061c:	Pulling	fs	layer

1265e16d0c28:	Pulling	fs	layer

0cbe7e43ed7f:	Pulling	fs	layer…

**	Invoke	deploy:verify_image	(first_time)

**	Execute	deploy:verify_image

I,	[2015…	#51882]		INFO—:	-----	Connecting	to	Docker	on	docker1	-----

I,	[2015…	#51882]		INFO—:	Image	224873bd	found	on	docker1…

I,	[2015…	#51882]		INFO—:	-----	Connecting	to	Docker	on	docker2	-----

I,	[2015…	#51882]		INFO—:	Image	224873bd	found	on	docker2…

I,	[2015…	#51882]		INFO—:	-----	Connecting	to	Docker	on	docker1	-----

I,	[2015…	#51882]		INFO—:	Stopping	container(s):

[{"Command"=>"nginx	-g	'daemon	off;'",	"Created"=>1424891086,

"Id"=>"6b77a8dfc18bd6822eb2f9115e0accfd261e99e220f96a6833525e7d6b7ef723",

"Image"=>"2485b0f89951",	"Names"=>["/nginx-63018cc0f9d268"],

"Ports"=>[{"PrivatePort"=>443,	"Type"=>"tcp"},	{"IP"=>"172.16.168.179",

"PrivatePort"=>80,	"PublicPort"=>10234,	"Type"=>"tcp"}],

"Status"=>"Up	5	weeks"}]

I,	[2015…	#51882]		INFO—:	Stopping	old	container	6b77a8df

(/nginx-63018cc0f9d268)

I,	[2015…	#51882]		INFO—:	Creating	new	container	for	224873bd

I,	[2015…	#51882]		INFO—:	Starting	new	container	8e84076e

I,	[2015…	#51882]		INFO—:	Waiting	for	the	port	to	come	up

I,	[2015…	#51882]		INFO—:	Found	container	up	for	1	seconds

W,	[2015…	#51882]		WARN—:	Failed	to	connect	to	http://docker1:10234/,

no	socket	open.

I,	[2015…	#51882]		INFO—:	Waiting	5	seconds	to	test	the	/	endpoint…

I,	[2015…	#51882]		INFO—:	Found	container	up	for	6	seconds

I,	[2015…	#51882]		INFO—:	Container	is	up!

...

**	Execute	deploy:cleanup

I,	[2015…	#51882]		INFO—:	-----	Connecting	to	Docker	on	docker1	-----

I,	[2015…	#51882]		INFO—:	Public	port	10234

I,	[2015…	#51882]		INFO—:	Removing	old	container	e64a2796	(/sad_kirch)

I,	[2015…	#51882]		INFO—:	-----	Connecting	to	Docker	on	docker2	-----

I,	[2015…	#51882]		INFO—:	Public	port	10234

I,	[2015…	#51882]		INFO—:	Removing	old	container	dfc6a240	(/prickly_morse)

What	we	see	happening	here	is	pulling	the	requested	image,	verifying	that	it	pulled
properly,	and	then	connecting	to	the	hosts	to	stop	the	old	container,	create	a	new	one,	start
it,	and	health-check	it	until	it’s	up.	At	the	very	end,	it	cleans	up	the	old	containers	so	they
don’t	hang	around	forever.

Now	we	have	the	container	up	and	running	on	both	docker1	and	docker2.	We	can	connect
with	a	web	browser	by	hitting	http://docker2:10234	or	the	same	URI	on	docker1.	In
real	production,	you’ll	want	a	load	balancer	configured	to	sit	in	front	of	these	hosts	and
point	your	clients	to	either	of	the	instances.	There	is	nothing	dynamic	to	this	setup,	but	it
gets	your	application	deployed	with	all	the	basic	benefits	of	Docker	for	a	minimal
investment	of	time.

That’s	all	there	is	to	it	for	a	basic	setup.	Centurion	supports	a	lot	more	than	this,	but	you
can	start	to	get	the	sense	of	the	kinds	of	things	some	of	the	community	tooling	can
support.

This	class	of	tooling	is	very	easy	to	get	started	with	and	will	get	you	to	a	production
infrastructure	quickly.	But	growing	your	Docker	deployment	to	a	vast	scale	will	likely
involve	a	distributed	scheduler,	or	one	of	the	cloud	providers.	In	that	vein,	let’s	look	at
Amazon’s	new	service.

http://docker2:10234

Amazon	EC2	Container	Service
One	of	the	most	popular	cloud	providers	is	Amazon	via	their	AWS	offering.	Support	for
running	containers	natively	has	existed	in	Elastic	Beanstalk	since	mid-2014.	But	that
service	assigns	only	a	single	container	to	an	Amazon	instance,	which	means	that	it’s	not
ideal	for	short-lived	or	lightweight	containers.	EC2	itself	is	a	great	platform	for	hosting
your	own	Docker	environment,	though,	and	because	Docker	is	powerful,	you	don’t
necessarily	need	much	on	top	of	your	instances	to	make	this	a	productive	environment	to
work	in.	But	Amazon	has	spent	a	lot	of	engineering	time	building	a	service	that	treats
containers	as	first-class	citizens:	the	EC2	Container	Service.

WARNING
We’re	going	to	cover	the	EC2	Container	Service	(ECS)	to	give	you	a	taste	of	where	the	cloud	providers	are
going	so	that	you	can	see	what	a	productionized	cloud	service	could	look	like.	At	the	time	of	this	writing,
the	EC2	Container	Service	is	in	preview	mode.	Anyone	can	request	access	access	to	the	service,	but
Amazon	is	only	slowly	adding	the	service	to	accounts	as	it	ramps	everything	up	and	ensures	a	stable
experience	for	its	customers.

This	section	assumes	that	you	have	access	to	an	AWS	account	and	some	familiarity	with
the	service.	Amazon	provides	detailed	documentation	online	that	covers	everything
required	to	bootstrap	an	EC2	container	install,	including	signing	up	for	AWS,	creating	a
user,	creating	a	Virtual	Private	Cloud	(VPC),	etc.

The	container	service	offering	is	an	orchestration	of	several	parts.	You	first	define	a
cluster,	then	put	one	or	more	EC2	instances	running	Docker	and	Amazon’s	special	agent
into	the	cluster,	and	then	push	containers	into	the	cluster.	The	agent	works	with	the	ECS
service	to	coordinate	your	cluster	and	schedule	containers	to	hosts.

http://amzn.to/1F9dHlG

IAM	Role	Setup
In	AWS,	Identity	and	Access	Management	(IAM)	roles	are	used	to	control	what	actions	a
user	can	take	within	your	cloud	environment.	We	need	to	make	sure	we	can	grant	access
to	the	right	actions	before	moving	on	with	the	EC2	Container	Service.

To	work	with	the	EC2	Container	Service,	you	need	a	role	that	consists	of	a	policy	with	the
privileges:

{

		"Version":	"2012-10-17",

		"Statement":	[

				{

						"Effect":	"Allow",

						"Action":	[

								"ecs:CreateCluster",

								"ecs:RegisterContainerInstance",

								"ecs:DeregisterContainerInstance",

								"ecs:DiscoverPollEndpoint",

								"ecs:Submit*",

								"ecs:Poll"

],

						"Resource":	[

								"*"

]

				}

]

}

NOTE
In	this	example,	we	are	only	giving	out	the	specific	ecs	privileges	that	we	need	for	normal	interaction	with
the	service.	ecs:CreateCluster	is	optional	if	the	cluster	you	will	be	registering	the	EC2	container	agent
with	already	exists.

AWS	CLI	Setup
Amazon	supplies	comand-line	tools	that	make	it	easy	to	work	with	their	API-driven
infrastructure.	You	will	need	to	install	version	1.7	or	higher	of	the	AWS	Command	Line
Interface	(CLI)	tools.	Amazon	has	detailed	documentation	that	covers	installation	of	their
tools,	but	the	basic	steps	are	as	follows.

Installation

Mac	OS	X

In	Chapter	3,	we	discussed	installing	Homebrew.	If	you	previously	did	this,	you	can	install
the	AWS	CLI	using	the	following	commands:

$	brew	update

$	brew	install	awscli

Windows

Amazon	provides	a	standard	MSI	installer	for	Windows,	which	can	be	downloaded	from
Amazon	S3	for	your	architecture:

32-Bit	Windows

64-Bit	Windows

Other

The	Amazon	CLI	tools	are	written	in	Python.	So	on	most	platforms,	you	can	install	the
tools	with	the	Python	pip	package	manager	by	running	the	following	from	a	shell:

$	pip	install	awscli

Some	platforms	won’t	have	pip	installed	by	default.	In	that	case,	you	can	use	the
easy_install	package	manager,	like	this:

$	easy_install	awscli

Configuration

Quickly	verify	that	your	AWS	CLI	version	is	at	least	1.7.0	with	the	following	command:

$	aws	--version

aws-cli/1.7.0	Python/2.7.6	Darwin/14.1.0

To	quickly	configure	the	AWS	CLI	tool,	ensure	that	you	have	access	to	your	AWS	Access
Key	ID	and	AWS	Secret	Access	Key,	and	then	run	the	following.	You	will	be	prompted
for	your	authentication	information	and	some	preferred	defaults:

$	aws	configure

AWS	Access	Key	ID	[None]:	EXAMPLEEXAMPLEEXAMPLE

http://amzn.to/1PCpPNA
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi

AWS	Secret	Access	Key	[None]:	ExaMPleKEy/7EXAMPL3/EXaMPLeEXAMPLEKEY

Default	region	name	[None]:	us-east-1

Default	output	format	[None]:	json

You	can	quickly	test	that	the	CLI	tools	are	working	correctly	by	running	the	following
command	to	list	the	IAM	users	in	your	account:

$	aws	iam	list-users

Assuming	everything	went	according	to	plan	and	you	chose	JSON	as	your	default	output
format,	you	should	get	something	like	the	return	shown	here:

{

				"Users":	[

								{

												"UserName":	"myuser",

												"Path":	"/",

												"CreateDate":	"2015-01-15T18:30:30Z",

												"UserId":	"EXAMPLE123EXAMPLEID",

												"Arn":	"arn:aws:iam::01234567890:user/myuser"

								}

]

}

Container	Instances
The	first	thing	you	need	to	do	after	installing	the	required	tools	is	to	create	at	least	a	single
cluster	that	your	Docker	hosts	will	register	with	when	they	are	brought	online.

NOTE
The	default	cluster	name	is	imaginatively	named	“default.”	If	you	keep	this	name,	you	do	not	need	to
specify	--cluster-name	in	many	of	the	commands	that	follow.

The	first	thing	we	need	to	do	is	start	a	cluster	in	the	container	service.	We’ll	then	push	our
containers	into	the	cluster	once	it’s	up	and	running.	For	these	examples,	we	will	start	by
creating	a	cluster	called	“testing”:

$	aws	ecs	create-cluster	--cluster-name	testing

{

				"cluster":	{

								"clusterName":	"testing",

								"status":	"ACTIVE",

								"clusterArn":	"arn:aws:ecs:us-east-1:0123456789:cluster/testing"

				}

}

You	will	now	need	to	create	an	instance	via	the	Amazon	console.	You	could	use	your	own
AMI	with	the	ECS	agent	and	Docker	installed,	but	Amazon	provides	one	that	we’ll	use
here.	This	is	almost	always	the	way	you’ll	want	to	use	it	since	most	of	your	custom	code
will	ship	in	Docker	containers	anyway,	right?	So	we’ll	deploy	that	AMI	and	configure	it
for	use	in	the	cluster.	Consult	Amazon’s	detailed	documentation	for	this	step.

NOTE
If	you	are	creating	a	new	EC2	instance,	be	sure	and	note	the	IP	address	that	it	is	assigned	so	that	you	can
connect	to	it	later.

As	we	mentioned,	it	is	also	possible	to	take	an	existing	Docker	host	within	your	EC2
environment	and	make	it	compatible	with	the	EC2	Container	Service.	To	do	this,	you	need
to	connect	to	the	EC2	instance	and	ensure	that	you	are	running	Docker	version	1.3.3	or
greater,	and	then	deploy	the	Amazon	ECS	Container	Agent	to	the	local	Docker	host	with
the	proper	environment	variable	configured	for	your	setup,	as	shown	here:

$	sudo	docker	--version

Docker	version	1.4.1,	build	5bc2ff8

$	sudo	docker	run	--name	ecs-agent	-d	\

-v	/var/run/docker.sock:/var/run/docker.sock	\

-v	/var/log/ecs/:/log	-p	127.0.0.1:51678:51678	\

-e	ECS_LOGFILE=/log/ecs-agent.log	\

-e	ECS_LOGLEVEL=info	\

-e	ECS_CLUSTER=testing	\

amazon/amazon-ecs-agent:latest

Once	you	have	at	least	a	single	instance	running	and	registered	into	your	cluster,	you	can
check	it	by	running:

$	aws	ecs	list-container-instances	--cluster	testing

{

http://amzn.to/1PCqQFn
http://amzn.to/1PCqT4a

				"containerInstanceArns":	[

								"arn:aws:ecs:us-east-1:01234567890:

										container-instance/zse12345-12b3-45gf-6789-12ab34cd56ef78"

]

}

Taking	the	UID	from	the	end	of	the	previous	command’s	output,	we	can	request	even
more	details	about	the	container	instance	with	the	command	shown	here:

$	aws	ecs	describe-container-instances	--cluster	testing	\

		--container-instances	zse12345-12b3-45gf-6789-12ab34cd56ef78

{

				"failures":	[],

				"containerInstances":	[

								{

												"status":	"ACTIVE",

												"registeredResources":	[

																{

																				"integerValue":	1024,

																				"longValue":	0,

																				"type":	"INTEGER",

																				"name":	"CPU",

																				"doubleValue":	0.0

																},

																{

																				"integerValue":	3768,

																				"longValue":	0,

																				"type":	"INTEGER",

																				"name":	"MEMORY",

																				"doubleValue":	0.0

																},

																{

																				"name":	"PORTS",

																				"longValue":	0,

																				"doubleValue":	0.0,

																				"stringSetValue":	[

																								"2376",

																								"22",

																								"51678",

																								"2375"

],

																				"type":	"STRINGSET",

																				"integerValue":	0

																}

],

												"ec2InstanceId":	"i-aa123456",

												"agentConnected":	true,

												"containerInstanceArn":	"arn:aws:ecs:us-east-1:

														01234567890:container-instance/

														zse12345-12b3-45gf-6789-12ab34cd56ef78",

												"remainingResources":	[

																{

																				"integerValue":	1024,

																				"longValue":	0,

																				"type":	"INTEGER",

																				"name":	"CPU",

																				"doubleValue":	0.0

																},

																{

																				"integerValue":	3768,

																				"longValue":	0,

																				"type":	"INTEGER",

																				"name":	"MEMORY",

																				"doubleValue":	0.0

																},

																{

																				"name":	"PORTS",

																				"longValue":	0,

																				"doubleValue":	0.0,

																				"stringSetValue":	[

																								"2376",

																								"22",

																								"51678",

																								"2375"

],

																				"type":	"STRINGSET",

																				"integerValue":	0

																}

]

								}

]

}

It	is	interesting	to	note	that	the	output	includes	both	the	container	instance’s	registered
resources,	as	well	as	its	remaining	resources.	When	you	have	multiple	instances,	this
information	helps	the	service	determine	where	to	deploy	containers	within	the	cluster.

Tasks
Now	that	our	container	cluster	is	up	and	running,	we	need	to	start	putting	it	to	work.	To	do
this,	we	need	to	create	at	least	one	task	definition.	The	Amazon	EC2	Container	Service
defines	the	phrase	“task	definition”	as	a	list	of	containers	grouped	together.

To	create	your	first	task	definition,	open	up	your	favorite	editor,	copy	in	the	following
JSON,	and	then	save	it	as	starwars-task.json	in	your	home	directory,	as	shown	here:

[

		{

				"name":	"starwars",

				"image":	"rohan/ascii-telnet-server:latest",

				"essential":	true,

				"cpu":	50,

				"memory":	128,

				"portMappings":	[

						{

								"containerPort":	23,

								"hostPort":	2323

						}

],

				"environment":	[

						{

								"name":	"FAVORITE_CHARACTER",

								"value":	"Boba	Fett"

						},

						{

								"name":	"FAVORITE_EPISODE",

								"value":	"V"

						}

],

				"entryPoint":	[

						"/usr/bin/python",

						"/root/ascii-telnet-server.py"

],

				"command":	[

						"-f",

						"/root/sw1.txt"

]

		}

]

In	this	task	definition,	we	are	saying	that	we	want	to	create	a	task	called	starwars	that	will
be	based	on	the	Docker	image	rohan/ascii-telnet-server:latest.	This	Docker	image	launches
a	Python-based	telnet	server	that	serves	the	Ascii	Art	version	of	the	movie	Star	Wars	to
anyone	who	connects.

In	addition	to	typical	variables	included	in	a	Dockerfile	or	via	the	docker	run	command,
we	define	some	constraints	on	memory	and	CPU	usage	for	the	container,	in	addition	to
telling	Amazon	whether	this	container	is	essential	to	the	task.	The	essential	flag	is	useful
when	you	have	multiple	containers	defined	in	a	task,	and	not	all	of	them	are	required	for
the	task	to	be	successful.	If	essential	is	true	and	the	container	fails	to	start,	then	all	the
containers	defined	in	the	task	will	be	killed	and	the	task	will	be	marked	as	failed.

To	upload	this	task	definition	to	Amazon,	we	run	a	command	similar	to	that	shown	here:

$	aws	ecs	register-task-definition	--family	starwars-telnet	\

		--container-definitions	file://$HOME/starwars-task.json

{

http://bit.ly/1PCrfI2
http://www.asciimation.co.nz

				"taskDefinition":	{

								"taskDefinitionArn":	"arn:aws:ecs:us-east-1:

										01234567890:task-definition/starwars-telnet:1",

								"containerDefinitions":	[

												{

																"environment":	[

																				{

																								"name":	"FAVORITE_EPISODE",

																								"value":	"V"

																				},

																				{

																								"name":	"FAVORITE_CHARACTER",

																								"value":	"Boba	Fett"

																				}

],

																"name":	"starwars",

																"image":	"rohan/ascii-telnet-server:latest",

																"cpu":	50,

																"portMappings":	[

																				{

																								"containerPort":	23,

																								"hostPort":	2323

																				}

],

																"entryPoint":	[

																				"/usr/bin/python",

																				"/root/ascii-telnet-server.py"

],

																"memory":	128,

																"command":	[

																				"-f",

																				"/root/sw1.txt"

],

																"essential":	true

												}

],

								"family":	"starwars-telnet",

								"revision":	1

				}

}

We	can	then	list	all	of	our	task	definitions	by	running	the	following:

$	aws	ecs	list-task-definitions

{

				"taskDefinitionArns":	[

								"arn:aws:ecs:us-east-1:01234567890:task-definition/starwars-telnet:1"

]

}

Now	we	are	ready	to	run	our	first	task	in	our	cluster.	This	is	easily	achieved	with	the
command	here:

$	aws	ecs	run-task	--cluster	testing	--task-definition	starwars-telnet:1	\

		--count	1

{

				"failures":	[],

				"tasks":	[

								{

												"taskArn":	"arn:aws:ecs:us-east-1:

														01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",

												"overrides":	{

																"containerOverrides":	[

																				{

																								"name":	"starwars"

																				}

]

												},

												"lastStatus":	"PENDING",

												"containerInstanceArn":	"arn:aws:ecs:us-east-1:

														01234567890:container-instance/

														zse12345-12b3-45gf-6789-12ab34cd56ef78",

												"desiredStatus":	"RUNNING",

												"taskDefinitionArn":	"arn:aws:ecs:us-east-1:

														01234567890:task-definition/starwars-telnet:1",

												"containers":	[

																{

																				"containerArn":	"arn:aws:ecs:us-east-1:

																						01234567890:container/

																						zse12345-12b3-45gf-6789-12abExamPLE",

																				"taskArn":	"arn:aws:ecs:us-east-1:

																						01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",

																				"lastStatus":	"PENDING",

																				"name":	"starwars"

																}

]

								}

]

}

The	count	argument	allows	us	to	define	how	many	copies	of	this	task	we	want	deployed
into	our	cluster.	For	this	job,	one	is	enough.

NOTE
The	task-definition	value	is	a	name	followed	by	a	number	(starwars-telnet:1).	The	number	is	the
revision.	If	you	edit	your	task	and	re-register	it	with	the	aws	ecs	register-task-definition	command,
you	will	get	a	new	revision,	which	means	that	you	will	want	to	reference	that	new	revision	in	your	aws	ecs
run-task.	If	you	don’t	change	that	number,	you	will	continue	to	launch	containers	using	the	older	JSON.
This	verisioning	makes	it	very	easy	to	roll	back	changes	and	test	new	revisions	without	impacting	all	future
instances.

In	the	output	from	the	previous	command,	it	is	very	likely	that	the	lastStatus	key
displayed	a	value	of	PENDING.

You	can	now	describe	that	task	to	ensure	that	it	has	transitioned	into	a	RUNNING	state	by
locating	the	task	Arn	from	the	previous	output	and	then	executing	the	code	shown	here:

$	aws	ecs	describe-tasks	--cluster	testing	\

		--task	b64b1d23-bad2-872e-b007-88fd6ExaMPle

{

				"failures":	[],

				"tasks":	[

								{

												"taskArn":	"arn:aws:ecs:us-east-1:

														01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",

												"overrides":	{

																"containerOverrides":	[

																				{

																								"name":	"starwars"

																				}

]

												},

												"lastStatus":	"RUNNING",

												"containerInstanceArn":	"arn:aws:ecs:us-east-1:

														017663287629:container-instance/

														zse12345-12b3-45gf-6789-12ab34cd56ef78",

												"desiredStatus":	"RUNNING",

												"taskDefinitionArn":	"arn:aws:ecs:us-east-1:

														01234567890:task-definition/starwars-telnet:1",

												"containers":	[

																{

																				"containerArn":	"arn:aws:ecs:us-east-1:

																						01234567890:container/

																						zse12345-12b3-45gf-6789-12abExamPLE",

																				"taskArn":	"arn:aws:ecs:us-east-1:

																						01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",

																				"lastStatus":	"RUNNING",

																				"name":	"starwars",

																				"networkBindings":	[

																								{

																												"bindIP":	"0.0.0.0",

																												"containerPort":	23,

																												"hostPort":	2323

																								}

]

																}

]

								}

]

}

After	verifying	that	the	lastStatus	key	is	set	to	RUNNING,	we	should	be	able	to	test	our
container.

Testing	the	Task
You	will	need	either	netcat	or	a	telnet	client	installed	on	your	system	to	connect	to	the
container.

Installing	NetCat/Telnet

Mac	OS	X

Mac	OS	X	ships	with	a	copy	of	netcat	in	/usr/bin/nc,	but	you	can	also	install	it	via
Homebrew:

$	brew	install	netcat

In	this	case,	you	will	find	the	binary	is	called	netcat	rather	than	nc.

Debian-based	system

$	sudo	apt-get	install	netcat

RedHat-based	systems

$	sudo	yum	install	nc

Windows

Windows	comes	with	a	supported	telnet	client,	but	it	is	typically	not	installed	by	default.
You	can	launch	an	administrative	command	prompt	and	type	a	single	command	to	install
the	telnet	client.

1.	 Click	Start	and	under	search,	type	CMD.

2.	 Right-click	CMD	and	click	Run	as	administrator.

3.	 If	prompted,	enter	your	Administrator	password.

4.	 In	the	command	prompt	that	launches,	type	the	following	command	to	enable	the
telnet	client:

$	pkgmgr	/iu:"TelnetClient"

Connecting	to	the	container

We	can	now	test	the	containerized	task	using	either	netcat	or	telnet.	Launch	a	command
prompt	and	then	run	the	following	commands.	Be	sure	to	replace	the	IP	address	with	the
address	assigned	to	your	EC2	instance.

When	you	connect	to	the	container,	you	should	see	an	ASCII	version	of	the	Star	Wars
movie	playing	on	your	console.

netcat

http://nc110.sourceforge.net
http://www.asciimation.co.nz

$	clear

$	nc	192.168.0.1	2323

To	exit,	simply	press	Ctrl-C.

telnet

$	clear

$	telnet	192.168.0.1	2323

To	exit,	press	Ctrl-],	and	in	the	telnet	prompt,	type	quit,	then	press	Enter.

Stopping	the	task
We	can	list	all	the	tasks	running	in	our	cluster	using	the	following	command:

$	aws	ecs	list-tasks	--cluster	testing

{

				"taskArns":	[

								"arn:aws:ecs:us-east-1:

										01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle"

]

}

We	can	further	describe	the	task	by	reusing	the	aws	ecs	describe-tasks	command:

$	aws	ecs	describe-tasks	--cluster	testing	\

		--task	b64b1d23-bad2-872e-b007-88fd6ExaMPle

...

Finally,	we	can	stop	the	task	by	running:

$	aws	ecs	stop-task	--cluster	testing	\

		--task	b64b1d23-bad2-872e-b007-88fd6ExaMPle

{

...

								"lastStatus":	"RUNNING",

...

								"desiredStatus":	"STOPPED",

...

}

If	we	describe	the	task	again,	we	should	now	see	that	the	lastStatus	key	is	set	to
STOPPED:

$	aws	ecs	describe-tasks	--cluster	staging_cluster	\

		--task	b64b1d23-bad2-872e-b007-88fd6ExaMPle

{

...

								"lastStatus":	"STOPPED",

...

								"desiredStatus":	"STOPPED",

...

}

And	finally,	listing	all	the	tasks	in	our	cluster	should	return	an	empty	set.

$	aws	ecs	list-tasks	--cluster	testing

{

				"taskArns":	[]

}

At	this	point,	we	can	start	creating	more	complicated	tasks	that	tie	multiple	containers
together	and	rely	on	the	EC2	Container	Service	tooling	to	deploy	the	tasks	to	the	most	idle
hosts	in	our	cluster.

Wrap-Up
After	reading	this	chapter,	you	should	have	a	good	idea	of	the	type	of	tools	you	can	use	to
create	a	truly	dynamic	Docker	cluster	for	your	applications	to	live	in.	With	Docker’s
highly	portable	container	format	and	its	ability	to	abstract	away	so	much	of	the	underlying
Linux	system,	it	is	easy	to	move	your	applications	fluidly	between	your	data	center	and	as
many	cloud	providers	as	you	want.

Chapter	10.	Advanced	Topics

In	this	chapter,	we’ll	do	a	quick	pass	through	some	of	the	more	advanced	topics.	We’re
going	to	assume	that	you	have	a	pretty	good	hold	on	Docker	by	now	and	that	you’ve
already	got	it	in	production	or	at	least	you’re	a	regular	user.	We’ll	talk	some	more	about
deployment	tools,	networking,	orchestration,	security,	and	advanced	configuration.

Some	of	this	chapter	covers	configurable	changes	you	can	make	to	your	Docker
installation.	These	can	be	useful.	But	Docker	has	good	defaults	and	the	defaults	are	much
better	tested	and	usually	more	robust	than	the	alternatives.	Keep	in	mind	that	this	is	early
production	release	software	and	things	are	moving	fast.	The	defaults	have	the	most
eyeballs	on	them	and	therefore	have	had	the	largest	number	of	bug	fixes.	You	should	stick
to	the	defaults	on	your	operating	system	unless	you	have	a	good	reason	to	change	them
and	have	educated	yourself	on	what	those	changes	mean	to	you.

Pluggable	Backends
Docker	has	a	very	clean	external	interface	and,	in	part	because	it’s	largely	a	single	static
Go	binary,	it	looks	pretty	monolithic.	But	there’s	actually	a	lot	going	on	under	the	covers
that	is	configurable,	and	the	two	kinds	of	backends	are	a	good	example.	With	Docker,	you
can	easily	swap	both	how	Docker	interacts	with	the	underlying	filesystem	and	how	it	talks
to	the	kernel	about	containers!	Those	are	powerful	switches	and	you’ll	want	to	know	what
they	do	before	throwing	them.	First	we’ll	talk	about	execution	drivers,	then	the	filesystem
backends.

Execution	Drivers
Docker	is	not	the	mechanism	for	talking	to	the	Linux	kernel	and	managing	the	life	cycle
of	containers.	It	seems	like	it	because	it	knows	how	to	do	the	right	things	out	of	the	box.
But	that’s	because	it	ships	with	a	few	swappable	container	engines	known	as	execution
drivers.	These	are	implemented	to	a	standard	API	and	while	they	have	to	be	built	into
Docker	at	compile	time,	they	are	switchable	at	runtime	with	a	command-line	argument.
By	default,	Docker	ships	with	the	“native”	driver	enabled.	You	can	change	it	to	the	LXC
driver	(which	we’ll	explain	in	a	minute)	with	a	simple	command-line	argument	when	you
start	Docker,	like	this:

$	docker	-d	-e	lxc

Because	it’s	so	easy	to	change,	it	might	seem	like	a	small	thing.	It’s	not.	Changing	your
execution	drivers	drastically	affects	how	Docker	interacts	with	the	kernel	and	may
introduce	additional	runtime	dependencies	to	your	environment.	There	is	every	chance	in
the	world	that	you	will	never	change	this	setting.	But	it’s	worthwhile	understanding	how
this	mechanism	works	and	why	you	might	do	that.

All	distributions	that	we	are	familiar	with	ship	with	“native”	as	the	default	Docker
execution	driver.	This	continues	to	be	where	the	heaviest	development	work	takes	place.
And	from	Docker	1.5.0	and	up,	the	/stats	endpoint	on	the	API,	which	we	talked	about	in
Chapter	8,	is	only	available	on	the	native	execution	driver.	So	let’s	find	out	what	your
system	is	running.	You	can	see	what	your	system	is	running	by	using	docker	info:

$	docker	info

Containers:	18

Images:	286

Storage	Driver:	aufs

	Root	Dir:	/var/lib/docker/aufs

	Backing	Filesystem:	extfs

	Dirs:	323

Execution	Driver:	native-0.2

Kernel	Version:	3.8.0-35-generic

Operating	System:	Ubuntu	precise	(12.04.3	LTS)

CPUs:	1

Total	Memory:	987.9	MiB

Name:	ubuntu

ID:	UNKL:ZFZ5:ELSF:DU7Z:WJBM:NVPO:WDUZ:BO53:UFAD:KARC:NSSH:ZA5Q

We’ve	shown	this	before,	but	hopefully	after	this	chapter	you’ll	have	a	better	idea	of	what
that	means.	This	Ubuntu	server	is	running	the	“native-0.2”	execution	driver.	The	native
driver	is	versioned	so	that	in	theory	you	could	compile	your	Docker	against	different
versions	of	libcontainer	and	have	it	exercise	only	the	functionality	that’s	available	in
that	version	of	the	library.	Unless	you	are	building	Docker	from	source	and	intentionally
changing	things,	these	will	always	be	correctly	matched	for	you	and	are	therefore	nothing
to	worry	about.

native,	lxc,	etc.

Until	around	Docker	0.9,	the	project	leveraged	work	done	by	the	Linux	Containers	Project

https://linuxcontainers.org

(LXC)	to	control	container	life	cycles.	This	was	the	one	and	only	execution	driver.	A
change	was	made	in	Docker	0.9	to	support	a	standardized	API	for	execution	drivers	with
the	intention	of	bringing	many	other	virtualization	layers	into	the	fold,	including	non-
container	engines.	It	was	envisioned	that	things	like	FreeBSD	jails	and	Solaris	Zones
might	appear	as	execution	drivers.	We	haven’t	seen	that	really	play	out	so	far;	one	of	the
main	draws	to	Docker	is	using	it	to	control	Linux	containers.	But	there	are	still	two
container-based	execution	drivers	that	ship	with	Docker:	the	original	LXC	driver	and	the
“native”	driver	we	saw	a	moment	ago.

Because	LXC	was	not	a	part	of	the	Docker	project,	it	was	hard	for	Docker	to	ensure	that
the	LXC	project	didn’t	introduce	changes	that	caused	issues	with	Docker.	It	also	made	it
challenging	for	Docker	to	ensure	that	important	changes	required	in	the	next	LXC	release
were	prioritized.

As	a	result,	in	version	0.9,	the	LXC	execution	driver	was	replaced	with	libcontainer,	a
Docker-native	Go	library	for	working	with	containers,	namespaces,	and	cgroups.	All
modern	Docker	builds	use	libcontainer	as	the	default	backend.	But	LXC	is	still
available,	and	in	certain	cases	it	might	be	a	good	choice	if	you	were,	for	example,
integrating	with	systems	that	were	already	using	LXC	containers	prior	to	Docker’s	release.
LXC	also	provides	some	much	finer-grained	control	via	command-line	tools	on	the	server
itself.	We	showed	you	how	to	change	the	driver	to	LXC,	above.	Let’s	take	a	look	at	doing
that	and	also	some	of	the	gotchas:

$	docker	-d	-H	tcp://0.0.0.0:2375	\

		-H	unix:///var/run/docker.sock	-e	lxc

INFO[0000]	+job	serveapi(tcp://0.0.0.0:2375,	unix:///var/run/docker.sock)

INFO[0000]	Listening	for	HTTP	on	tcp	(0.0.0.0:2375)

INFO[0000]	Listening	for	HTTP	on	unix	(/var/run/docker.sock)

INFO[0000]	+job	init_networkdriver()

INFO[0000]	-job	init_networkdriver()	=	OK	(0)

INFO[0000]	WARNING:	Your	kernel	does	not	support	cgroup	swap	limit.

INFO[0000]	Loading	containers:	start…..................................

INFO[0000]	Loading	containers:	done.

INFO[0000]	...	daemon:	1.5.0	a8a31ef;	execdriver:	lxc-0.7.5;	graphdriver:	aufs

INFO[0000]	+job	acceptconnections()

INFO[0000]	-job	acceptconnections()	=	OK	(0)

This	is	what	the	Docker	daemon	looks	like	when	starting	up	the	LXC	backend	in	the
foreground.	Let’s	leave	that	running	in	the	foreground	and	then	switch	to	another	terminal
to	run	the	Docker	commands.	That	way	we	can	see	what	the	daemon	shows	us.	By
restarting	Docker	to	switch	backends,	we	killed	off	all	of	our	running	containers.	Note	that
even	containers	that	were	supposed	to	start	on	Docker	daemon	startup	don’t	come	back
up.	We’ll	show	you	why	in	a	minute.	But	they	are	still	visible	even	if	created	with	the
“native”	backend:

$	docker	ps	-a

CONTAINER	ID		IMAGE									COMMAND															...	STATUS

e64a279663aa		e426f6ef897e		"nginx	-g	'daemon	of		...	Exited	(0)	1	minutes	ago

So	what	happens	when	we	try	to	start	it	back	up?

http://bit.ly/1PCtdIj
http://bit.ly/1PCtfQs
https://github.com/docker/libcontainer

$	docker	start	e64a279663aa

e64a279663aa

If	we	look	back	at	the	other	window,	we	see	the	code	shown	here	(shortened	to	fit	the
page):

INFO[0170]	POST	/v1.17/containers/e64a279663aa/start

INFO[0170]	+job	start(e64a279663aa)

INFO[0170]	+job	allocate_interface(e64a279663aabb7)

INFO[0170]	-job	allocate_interface(e64a279663aabb7)	=	OK	(0)

INFO[0170]	+job	allocate_port(e64a279663aabb7)

INFO[0170]	-job	allocate_port(e64a279663aabb7)	=	OK	(0)

INFO[0170]	+job	log(start,	e64a279663aabb7)

INFO[0170]	-job	log(start,	e64a279663aabb7)	=	OK	(0)

INFO[0170]	-job	start(e64a279663aa)	=	OK	(0)

INFO[0170]	+job	log(die,	e64a279663aabb7)

That’s	Docker	telling	us	that	it	has	created	interfaces	and	ports	for	a	container.	It	sure
looks	like	it	started.	We	got	a	container	ID	back	on	the	command	line,	and	in	the	log	we
can	see	start(…)	=	OK.	But	the	clue	is	in	that	last	line,	log(die…).	And,	when	we	look	at
docker	ps,	it’s	blank.	With	docker	ps	-a,	we	see:

$	docker	ps	-a

CONTAINER	ID		IMAGE									COMMAND												...	STATUS

e64a279663aa		e426f6ef897e		"nginx	-g	'daemon		...	Exited	(255)	3	minutes	ago

So	what	happened?	docker	logs	tells	us	more	when	we	look	at	the	Docker	daemon	logs:

INFO[0388]	GET	/v1.17/containers/e64a279663aa/json

INFO[0388]	+job	container_inspect(e64a279663aa)

INFO[0388]	-job	container_inspect(e64a279663aa)	=	OK	(0)

INFO[0388]	GET	/v1.17/containers/e64a279663aa/logs?stderr=1&stdout=1&tail=all

INFO[0388]	+job	container_inspect(e64a279663aa)

INFO[0388]	-job	container_inspect(e64a279663aa)	=	OK	(0)

INFO[0388]	+job	logs(e64a279663aa)

INFO[0388]	-job	logs(e64a279663aa)	=	OK	(0)

lxc-start:	unknown	key	lxc.cap.keep

lxc-start:	failed	to	read	configuration	file

There	it	is:	lxc-start:	failed	to	read	configuration	file.	That’s	because	“native”
containers	are	not	compatible	with	LXC.	They	are	looking	for	LXC	container
configuration	files	which	Docker	did	not	write	out	when	we	created	these	containers.	The
reverse	is	true:	had	we	created	the	container	with	LXC	and	swapped	back	to
libcontainer-based	“native,”	we	would	lose	all	of	our	containers.

WARNING
Containers	configured	with	different	execution	drivers	are	not	compatible	with	each	other.	You	will	need	to
re-create	containers	when	swapping	the	execution	driver.

There	are	a	couple	of	other	gotchas	with	running	the	LXC	execution	driver.	One	problem
is	that	you	need	to	be	careful	about	which	version	of	LXC	you	run.	Docker	is	developed
against	a	particular	version	that	might	or	might	not	match	the	one	in	your	distribution.	If
you	need	to	switch	to	the	LXC	driver,	you	should	make	sure	you	can	support	the	version
Docker	that	works	best	with.	Running	something	outside	the	tested	path	is	likely	to

encounter	issues.	The	second	issue	is	that	the	Linux	Containers	Project	has	begun
implementing	a	competitor	to	Docker	called	LXD.	We	expect	that	it	will	get	most	of	the
development	attention,	with	LXC	moving	to	maintenance	mode.

So	why	would	we	change	our	execution	driver	to	LXC?	One	reason,	as	stated	above,	is	for
compatibility	with	other	tooling	or	environments.	The	LXC	backend	also	supports	a	lot	of
configuration	items	that	the	native	driver	doesn’t.	You	can	set	things	like	fine-grained
resource	control,	DHCP	configuration	options,	and	other	host	and	volume	settings	at
creation	time.	Additionally,	LXC	has	some	nice	command-line	tools	for	controlling	things
like	cgroups	more	easily	from	the	server.

https://linuxcontainers.org/lxd/introduction/

Storage
Backing	all	of	the	images	and	all	of	the	containers	on	your	Docker	server	is	a	storage
backend	that	handles	reading	and	writing	all	of	that	data.	Docker	has	some	strenuous
requirements	on	its	storage	backend:	it	has	to	support	layering,	the	mechanism	by	which
Docker	tracks	changes	and	reduces	both	how	much	disk	a	container	occupies	and	how
much	is	shipped	over	the	wire	to	deploy	new	images.	Using	a	copy-on-write	strategy,
Docker	can	start	up	a	new	container	from	an	existing	image	without	having	to	copy	the
whole	image.	The	storage	backend	supports	that.	The	storage	backend	is	what	makes	it
possible	to	export	images	as	groups	of	changes	in	layers,	and	also	lets	you	save	the	state	of
a	running	container.	In	most	cases,	you	need	the	kernel’s	help	in	doing	this	efficiently.
That’s	because	the	filesystem	view	in	your	container	is	generally	a	union	of	all	of	the
layers	below	it,	which	are	not	actually	copied	into	your	container.	Instead,	they	are	made
visible	to	you,	and	only	when	you	make	changes	does	anything	get	written	to	your
container’s	own	filesystem.

Docker	relies	on	an	array	of	possible	kernel	drivers	to	handle	the	layering.	The	Docker
codebase	contains	code	that	can	handle	interaction	with	all	of	these	backends,	and	the
decision	about	which	to	use	can	be	configured	on	daemon	restart.	So	let’s	take	a	look	at
what	is	available	and	some	of	the	pluses	and	minuses	of	each.

AUFS,	Device	Mapper,	BTRFS,	vfs

Various	backends	have	different	limitations	that	may	or	may	not	make	them	your	best
choice.	In	some	cases,	your	choices	of	which	backend	to	use	are	limited	by	what	your
distribution	of	Linux	actually	supports.	Using	drivers	that	are	built	in	to	the	kernel	that
your	distribution	ships	with	will	make	life	ever	so	much	easier.	It’s	generally	best	to	stay
near	the	tested	path	here	as	well.	We’ve	seen	all	manner	of	oddities	from	various	backends
since	Docker’s	release.	And,	as	usual,	the	common	case	is	always	the	best	supported	one.
Different	backends	also	report	different	statistics	up	through	the	Docker	Remote	API
(/info	endpoint).	This	is	potentially	useful	for	monitoring	your	Docker	systems.

AUFS

The	original	backend,	and	at	the	time	of	this	writing	the	officially	recommended	one,
is	AUFS:	a	union	filesystem	driver	with	reasonable	support	on	various	popular	Linux
distributions.	It	was	never	accepted	into	the	mainline	kernel,	however,	and	this	has
limited	its	availability	on	various	distributions.	It	is	not	supported	on	recent	versions
of	RedHat,	Fedora,	or	CentOS,	for	example.	It	is	not	shipped	in	the	standard	Ubuntu
distribution,	but	is	in	the	Ubuntu	linux-image-extra	package.

Its	status	as	a	second-class	citizen	in	the	kernel	has	lead	to	the	development	of	many
of	the	other	backends	now	available.	Older,	but	still	recent,	versions	of	AUFS	had	a
limitation	of	42	layers,	which	might	constrain	how	you	build	base	images	if	you	are
running	on	such	a	version.	If	you	are	shipping	images	for	public	consumption,	you
should	definitely	keep	this	limitation	in	mind	because	even	if	you	don’t	have	it,
someone	else	probably	does.	The	current	limit	in	Docker	for	AUFS	is	127	layers,
which	is	probably	well	more	than	you	should	ever	use	for	performance	reasons.
AUFS	has	been	a	pretty	good	performer	on	recent	kernels	and	is	quite	well-tested
with	Docker.

devicemapper

RedHat’s	various	distributions	have	not	supported	AUFS	recently,	so	RedHat
contributed	a	backend	to	the	Docker	project	based	on	devicemapper,	which	is	a
heavily	tested	layer	of	the	Linux	kernel	that	underpins	things	like	LVM,	disk
encryption,	and	other	software	RAID	implementations.

The	Docker	backend	was	written	quickly	to	just	get	some	support	for	Docker	into
RedHat-based	distributions,	and	at	first	had	some	major	flaws.	Most	of	these	have
been	addressed	now	and	it’s	reasonably	stable.	But	even	in	later	versions	of	Docker,
it	has	been	shown	to	be	only	somewhat	reliable	in	production.	Unlike	AUFS,	which
can	usually	be	unloaded	from	the	kernel	and	then	reloaded,	devicemapper	often	has
other	kernel	modules	that	depend	on	it.	That	means	that	the	worst	failure	modes
currently	require	a	reboot	of	the	whole	server	on	which	Docker	is	running.
Performance	is	reasonable,	but	no	one	would	call	it	speedy	when	using	the	loopback
mode	(the	default).	It	does	support	using	disk	partitions	raw,	which	should	be	faster.
It	does	not	have	much	tolerance	for	having	anything	at	all	written	into	the	container
during	runtime.	It’s	the	default	choice	on	RedHat/CentOS	distributions	before
RedHat/CentOS	7.

BTRFS

http://red.ht/1PCwg34

btrfs	is	fundamentally	a	copy-on-write	filesystem,	which	means	it’s	a	pretty	good	fit
for	the	Docker	image	model.	On	systems	that	don’t	support	AUFS	and	where	the
btrfs	driver	is	present,	it’s	the	default	backend.	This	includes,	for	example,	RHEL
and	CentOS	7.	It	also	works	on	various	Ubuntu	versions.	Like	AUFS	and	unlike
devicemapper,	Docker	is	using	the	backend	in	the	way	it	was	intended.	That	means
it’s	both	pretty	stable	in	production	and	also	a	good	performer.	It	scales	reasonably	to
thousands	of	containers	on	the	same	system.	A	major	drawback	for	Red	Hat–based
systems	is	that	btrfs	does	not	support	SELinux.	If	you	have	btrfs	available,	we
currently	recommend	it	as	the	most	stable	backend	for	production.	The	space	is
changing	rapidly,	however,	and	new	backends	keep	becoming	available.

vfs

The	vfs	driver	is	the	simplest,	and	slowest,	to	start	up	of	the	supported	drivers.	It
doesn’t	really	support	copy-on-write.	Instead,	it	makes	a	new	directory	and	copies
over	all	of	the	existing	data.	It	was	originally	intended	for	use	in	tests	and	for
mounting	host	volumes.	It	is	very	slow	to	create	new	containers,	but	runtime
performance	is	native,	which	is	a	real	benefit.	It	is	very	simple	in	mechanism,	which
means	there	is	less	to	go	wrong.	Docker,	Inc.,	does	not	recommend	it	for	production
use	so	you	should	proceed	with	caution	if	you	think	it’s	the	right	solution	for	your
production	environment.

overlayfs

overlayfs	is	now	the	union	filesystem	driver	that	is	supported	in	the	mainline	Linux
kernel	as	of	version	3.18.	That’s	good	news	for	its	long-term	support.	It	also	means
that	it’s	likely	to	get	a	lot	of	attention	to	performance	and	will	be	available	on	most
Linux	distributions	once	they	catch	up	with	version	3.18	and	higher	kernels.	It	is	a	bit
like	AUFS	but	fundamentally	simpler	underneath,	which	leads	to	very	strong
performance.	The	Docker	backend	is	still	under	active	development,	but	we	expect	it
to	be	a	good	option	going	forward.

WARNING
Storage	backends	can	have	a	big	impact	on	the	performance	of	your	containers.	And	if	you	swap	the
backend	on	your	Docker	server,	all	of	your	existing	images	will	disappear.	They	are	not	gone,	but	they	will
not	be	visible	until	you	switch	the	driver	back.	Caution	is	advised.

You	can	use	docker	info	to	see	which	storage	backend	your	system	is	running.	It	will
also	tell	you	what	the	underlying	filesystem	is	in	cases	where	there	is	one.	In	some	cases,
like	with	devicemapper	on	raw	partitions	or	with	btrfs,	there	won’t	be	a	different
underlying	filesystem.

Like	with	execution	drivers,	storage	backends	can	be	swapped	via	command-line
arguments	to	docker	on	startup.	If	we	wanted	to	switch	our	Ubuntu	system	from	AUFS	to
devicemapper,	we	would	do	that	like	this:

$	docker	-d	--storage-driver=devicemapper

http://bit.ly/1PCwkQw
http://bit.ly/1zFjGhH

That	will	work	on	pretty	much	any	Linux	system	that	can	support	Docker	because
devicemapper	is	almost	always	present.	You	will	need	to	have	the	actual	underlying
dependencies	in	place	for	the	other	drivers.	For	example,	without	AUFS	in	the	kernel	—
usually	via	a	kernel	module	—	Docker	will	not	start	up	with	AUFS	set	as	the	storage
driver.

Getting	the	right	storage	driver	for	your	systems	and	deployment	needs	is	one	of	the	more
important	technical	items	to	get	right	when	taking	Docker	to	production.	Be	conservative;
make	sure	the	path	you	choose	is	well-supported	in	your	kernel	and	distribution.

Containers	in	Detail
While	we	all	talk	about	Linux	containers	as	a	single	entity,	they	are	implemented	through
several	separate	mechanisms	that	all	work	together:	Control	Groups	(cgroups),
namespaces,	and	SELinux/AppArmor.	cgroups	provide	for	resource	limits,	namespaces
allow	for	processes	to	use	identically	named	resources	and	isolate	them	from	each	other’s
view	of	the	system,	and	SELinux/AppArmor	provides	strong	security	isolation.	We’ll	talk
about	SELinux	and	AppArmor	in	a	bit.	But	what	do	cgroups	and	namespaces	do	for	you?

Control	Groups	(cgroups)
Operations	teams	have	often	aimed	for	one	server	per	intensive	task.	So,	for	example,	you
don’t	run	your	applications	on	the	database	server	because	they	have	competing	resource
demands	and	their	resource	usage	could	grow	unbounded	and	come	to	dominate	the
server,	starving	neighbors	of	performance.

On	real	hardware	systems,	this	could	be	quite	expensive	and	so	solutions	like	virtual
servers	are	very	appealing,	in	part	because	you	can	share	expensive	hardware	between
competing	applications,	and	the	virtualization	layer	would	handle	your	resource
partitioning.	While	it	saves	money,	this	is	a	reasonably	expensive	way	to	go	about	it	if	you
don’t	need	all	the	other	separation	provided	by	virtualization,	because	running	multiple
kernels	introduces	a	reasonable	overhead	on	the	applications.	Maintaining	virtual
machines	is	also	not	the	cheapest	solution.	All	the	same,	cloud	computing	has	shown	that
it’s	immensely	powerful	and	with	the	right	tooling,	incredibly	effective.

But	if	the	only	kind	of	isolation	you	needed	was	resource	partitioning,	wouldn’t	it	be	great
if	you	could	do	that	on	the	same	kernel?	For	many	years,	you	could	assign	a	“niceness”
value	to	a	process	and	it	would	give	the	scheduler	hints	about	how	you	wanted	this
process	to	be	treated	in	relation	to	others.	But	it	wasn’t	possible	to	impose	hard	limits	like
those	that	you	get	with	virtual	machines.	And	niceness	is	not	at	all	fine-grained:	I	can’t
give	something	more	I/O	and	less	CPU	than	other	processes.	This	fine-grained	control,	of
course,	is	one	of	the	promises	of	Docker,	and	the	mechanism	that	it	uses	to	do	that	is
cgroups,	which	predate	Docker	and	were	invented	to	solve	just	that	problem.

Control	Groups,	or	cgroups	for	short,	allow	you	to	set	limits	on	resources	for	processes
and	their	children.	This	is	the	mechanism	that	Docker	uses	to	control	limits	on	memory,
swap,	and	CPU	resources.	They	are	built	in	to	the	Linux	kernel	and	originally	shipped
back	in	2007	in	Linux	2.6.24.	The	official	kernel	documentation	defines	them	as	“a
mechanism	for	aggregating/partitioning	sets	of	tasks,	and	all	their	future	children,	into
hierarchical	groups	with	specialized	behaviour.”	It’s	important	to	note	that	this	setting
applies	to	a	process	and	all	of	the	children	that	descend	from	it.	That’s	exactly	how
containers	are	structured.

Every	Docker	container	is	assigned	a	cgroup	that	is	unique	to	that	container.	All	of	the
processes	in	the	container	will	be	in	the	same	group.	This	means	that	it’s	easy	to	control
resources	for	each	container	as	a	whole	without	worrying	about	what	might	be	running.	If
a	container	is	redeployed	with	new	processes	added,	you	can	have	Docker	assign	the	same
policy	and	it	will	apply	to	all	of	them.

We	talked	previously	about	the	cgroups	hooks	exposed	by	Docker	via	the	Remote	API.
This	allows	you	to	control	memory,	swap,	and	disk	usage.	But	there	are	lots	of	other
things	you	can	limit	with	cgroups,	including	the	number	of	I/O	operations	per	second
(iops)	a	container	can	have,	for	example.	You	might	find	that	in	your	environment	you
need	to	use	some	of	these	levers	to	keep	your	containers	under	control,	and	there	are	a	few
ways	you	can	go	about	doing	that.	cgroups	by	their	nature	need	to	do	a	lot	of	accounting

http://bit.ly/1PCxJ9y

of	resources	used	by	each	group.	That	means	that	when	you’re	using	them,	the	kernel	has
a	lot	of	interesting	statistics	about	how	much	CPU,	RAM,	disk	I/O,	and	so	on.	that	your
processes	are	using.	So	Docker	uses	cgroups	not	just	to	limit	resources	but	also	to	report
on	them.	These	are	many	of	the	metrics	you	see,	for	example,	in	the	output	of	docker
stats.

The	LXC	execution	driver

The	first	way	is	via	the	LXC	execution	driver	we	showed	you	earlier.	To	be	able	to	pass
any	of	these	settings	to	a	container,	you	will	need	to	have	switched	your	execution	driver
to	LXC	and	re-created	any	containers	that	you	need	to	run.	You	can	specify,	for	example,	a
cgroups	blkio.throttle.write_iops_device	setting	at	container	creation	time	to	restrict
the	number	of	write	iops	a	container	may	have	on	a	device.	Docker	doesn’t	do	that	with
the	native	driver,	but	the	LXC	driver	allows	very	fine-grained	control	of	cgroups	settings.
If	we	pass	this	setting	to	the	LXC	execution	driver,	it	will	live	for	the	life	of	the	container
regardless	of	how	many	times	we	stop	and	start	it.	To	do	that,	we	specify	an	--lxc-conf
option	to	the	docker	command-line	tool	when	creating	the	container:

$	docker	run	-d	--lxc-conf="lxc.cgroups.blkio.throttle.write_iops	=	500"	\

adejonge/helloworld

This	tells	the	kernel	to	limit	the	number	of	write	I/O	operations	per	second	to	500	for	this
container.	That	means	we	can	guarantee	we’re	leaving	some	spare	I/O	capacity	for	other
containers	even	if	our	process	goes	completely	awry	in	its	own	container.	You	can	see	how
this	level	of	control	makes	it	far	easier	to	share	resources	on	the	same	hardware,	much	like
with	a	full	virtual	machine.

The	LXC	backend	has	a	unique	feature	that	allows	you	to	pass	any	cgroup	configuration
to	the	container	configuration.	This	fine-grained	control	is	not	currently	possible	through
the	native	libcontainer-based	backend.	It’s	reasonable	to	expect	that	this	will	eventually
be	possible,	but	for	now	it	is	not.	You	can	read	a	lot	more	about	which	settings	are
possible	with	cgroups	in	the	kernel	documentation.

WARNING
When	you	use	the	--lxc-conf	argument	to	pass	settings	directly	to	the	LXC	execution	driver,	Docker	does
not	know	that	it	happened.	This	is	usually	OK	if	you	are	just	passing	cgroups	information.	If	you	use	it	to
configure	other	settings,	you	might	run	into	trouble	when	managing	the	container	from	Docker.

The	/sys	filesystem

The	second	way	to	control	cgroups	in	a	fine-grained	manner,	even	if	you	configured	them
with	Docker	or	via	the	LXC	execution	driver,	is	to	manage	them	yourself.	This	is	the	most
powerful	method	because	changes	don’t	just	happen	at	creation	time,	they	can	be	done	on
the	fly.

On	systems	with	systemd,	there	are	command-line	tools	like	systemctl	that	you	can	use

http://bit.ly/1PCxJ9y

to	do	this.	But	since	cgroups	are	built	into	the	kernel,	the	method	that	works	everywhere	is
to	talk	to	the	kernel	directly	via	the	/sys	filesystem.	If	you’re	not	familiar	with	/sys,	it’s	a
filesystem	that	directly	exposes	a	number	of	kernel	settings	and	outputs.	You	can	use	it
with	simple	command-line	tools	to	tell	the	kernel	how	to	behave	in	a	number	of	ways.

It’s	important	to	note	that	this	method	of	configuring	cgroups	controls	for	containers	only
works	directly	on	the	Docker	server	and	is	not	available	remotely	via	any	API.	If	you	use
this	method,	you’ll	need	to	figure	out	how	to	script	this	for	your	own	environment.

WARNING
Changing	cgroups	values	yourself,	outside	of	any	Docker	configuration,	breaks	some	of	the	repeatability	of
Docker	deployment.	Unless	you	tool	changes	into	your	deployment	process,	settings	will	go	away	when
containers	are	replaced.

Let’s	use	an	example	of	changing	the	CPU	cgroups	settings	for	a	container	we	already
have	running.	First	we	need	to	get	the	long	ID	of	the	container,	and	then	we	need	to	find	it
in	the	/sys	filesystem.	Here’s	what	that	looks	like:

$	docker	ps	--no-trunc

CONTAINER	ID	IMAGE								COMMAND							CREATED					STATUS				NAMES

dcbbaa763…	0415448f2cc2	"supervisord"	3	weeks	ago	Up	2	days	romantic_morse

Here	we’ve	had	docker	ps	give	us	the	long	ID	in	the	output,	and	the	ID	we	want	is
“dcbbaa763daff1dc0a91e7675d3c93895cb6a6d83371e25b7f0bd62803ed8e86”.	You	can
see	why	Docker	normally	truncates	this.	In	the	examples	we’re	going	to	truncate	it,	too,	to
make	it	at	least	a	little	readable	and	fit	into	the	constraints	of	a	printed	page.	But	you	need
to	use	the	long	one!

Now	that	we	have	the	ID,	we	can	find	our	container’s	cgroup	in	the	/sys	filesystem.
Cgroups	are	laid	out	so	that	each	kind	of	setting	is	grouped	into	a	module	and	that	module
is	exposed	at	a	different	place	in	the	/sys	filesystem.	So	when	we	look	at	CPU	settings,
we	won’t	see	blkio	settings,	for	example.	You	might	take	a	look	around	in	the	/sys	to	see
what	else	is	there.	But	for	now	we’re	looking	at	the	CPU	controller,	so	let’s	inspect	what
that	gives	us.	You	need	root	access	on	the	system	to	do	this	because	you’re	manipulating
kernel	settings:

$	ls	/sys/fs/cgroup/cpu/docker/dcbbaa763daf

cgroup.clone_children		cpu.cfs_period_us		cpu.rt_runtime_us		notify_on_release

cgroup.event_control			cpu.cfs_quota_us			cpu.shares									tasks

cgroup.procs											cpu.rt_period_us			cpu.stat

NOTE
The	exact	path	above	will	change	a	bit	depending	on	the	Linux	distribution	your	Docker	server	is	running
on	and	what	the	hash	of	your	container	is.	For	example,	on	CoreOS,	the	path	would	look	something	like
this:	/sys/fs/cgroup/cpu/system.slice/docker-8122be2d7a67a52e949582f6d5
cb2771a8469ab20ecf7b6915e9217d92ddde98.scope/

You	can	see	that	under	cgroups,	there	is	a	docker	directory	that	contains	all	of	the	Docker

containers	that	are	running	on	this	host.	You	can’t	set	cgroups	for	things	that	aren’t
running	because	they	apply	to	running	processes.	This	is	an	important	point	that	you
should	consider.	Docker	takes	care	of	reapplying	cgroups	settings	for	you	when	you	start
and	stop	containers.	Without	that	mechanism,	you	are	somewhat	on	your	own.

Back	to	our	task.	Let’s	inspect	the	CPU	shares	for	this	container.	Remember	that	we
earlier	set	these	via	the	Docker	command-line	tool.	But	for	a	normal	container	where	no
settings	were	passed,	this	setting	is	the	default:

$	cat	/sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares

1024

1024	CPU	shares	means	we	are	not	limited	at	all.	Let’s	tell	the	kernel	that	this	container
should	be	limited	to	half	that:

$	echo	512	>	/sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares

$	cat	/sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares

512

There	you	have	it.	We’ve	changed	the	container’s	settings	on	the	fly.	This	method	is	very
powerful	because	it	allows	you	to	set	any	cgroups	setting	at	all	for	the	container.	But	as	we
mentioned	earlier,	it’s	entirely	ephemeral.	When	the	container	is	stopped	and	restarted,	the
setting	is	reset	to	the	default:

$	docker	stop	dcbbaa763daf

dcbbaa763daf

$	cat	/sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares

cat:	/sys/fs/.../cpu.shares:	No	such	file	or	directory

You	can	see	that	the	directory	path	doesn’t	even	exist	any	more	now	that	the	container	is
stopped.	And	when	we	start	it	back	up,	the	directory	comes	back	but	the	setting	is	back	to
1024:

$	docker	start	dcbbaa763daf

dcbbaa763daf

$	cat	/sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares

1024

If	you	were	to	change	these	kinds	of	settings	in	a	production	system	via	the	/sys	fileystem
directly,	you’d	want	to	tool	that	directly.	A	daemon	that	watches	the	docker	events
stream	and	changes	settings	at	container	startup,	for	example,	is	a	possibility.	Currently,
the	community	has	not	contributed	much	rich	tooling	to	this	aspect.	It’s	likely	that	Docker
will	eventually	expand	the	native	driver’s	functionality	to	allow	this	level	of	configuration.

NOTE
As	of	Docker	1.6,	it	is	possible	to	create	custom	cgroups	outside	of	Docker	and	then	attach	a	new	container
to	that	cgroup	using	the	--cgroup-parent	argument	to	docker	create.

Kernel	Namespaces,	User	Namespaces
Inside	each	container,	you	see	a	filesystem,	network	interfaces,	disks,	and	other	resources
that	all	appear	to	be	unique	to	the	container	despite	sharing	the	kernel	with	all	the	other
processes	on	the	system.	The	network	interface	on	the	actual	machine,	for	example,	is	a
single	shared	resource.	But	to	your	container	it	looks	like	it	has	the	run	of	an	entire
network	interface	to	itself.	This	is	a	really	useful	abstraction:	it’s	what	makes	your
container	feel	like	a	machine	all	by	itself.	The	way	this	is	implemented	in	the	kernel	is
with	namespaces.	Namespaces	take	a	single	global	resource	and	make	it	appear	as	a	single
owned	resource	to	the	container.

Rather	than	just	having	a	single	namespace,	however,	containers	have	a	namespace	on
each	of	the	six	types	of	resources	that	are	currently	namespaced	in	the	kernel:	mounts,
UTS,	IPC,	PID,	network,	and	user	namespaces.	We’ll	explain	all	of	those	in	a	minute.	But
essentially	when	you	talk	about	a	container,	you’re	talking	about	a	number	of	different
namespaces	that	Docker	sets	up	on	your	behalf.	So	what	do	they	all	do?

Mount	namespaces

Docker	uses	these	primarily	to	make	your	container	look	like	it	has	its	entire	own
filesystem	namespace.	If	you’ve	ever	used	a	chroot	jail,	this	is	its	tougher	cousin.	It
looks	a	lot	like	a	chroot	jail	but	goes	all	the	way	down	to	the	kernel	so	that	even
mount	and	unmount	system	calls	are	namespaced.	If	you	use	docker	exec	or	nsenter
to	get	into	a	container,	you’ll	see	a	filesystem	rooted	on	“/”.	But	we	know	that	this
isn’t	the	actual	root	partition	of	the	system.	It’s	the	mount	namespaces	that	make	that
possible.

UTS	namespaces

Named	for	the	kernel	structure	they	namespace,	and	ultimately	from	the	“Unix
Timesharing	System,”	UTS	namespaces	give	your	container	its	own	hostname	and
domain	name.	This	is	also	used	by	older	systems	like	NIS	to	identify	which	domain	a
host	belongs	to.	When	you	enter	a	container	and	see	a	hostname	that	is	not	the	same
as	the	machine	on	which	it	runs,	it’s	this	namespace	that	makes	that	happen.

IPC	namespaces

These	isolate	your	container’s	System	V	IPC	and	POSIX	message	queue	systems
from	those	of	the	host.	Some	IPC	mechanisms	use	filesystem	resources	like	named
pipes,	and	those	are	covered	by	the	mount	namespace.	The	IPC	namespace	covers
things	like	shared	memory	and	semaphores	that	aren’t	filesystem	resources	but	which
really	should	not	cross	the	container	wall.

PID	namespaces

We	already	showed	you	that	you	can	see	all	of	the	processes	in	containers	in	the
Linux	ps	output	on	the	host	Docker	server.	But	inside	the	container,	processes	have	a
totally	different	PID.	This	is	the	PID	namespace	in	action.	A	process	has	a	unique
PID	in	each	namespace	to	which	it	belongs.	If	you	look	in	/proc	inside	a	container,
or	run	ps,	you	will	only	see	the	processes	inside	the	container’s	PID	namespace.

Network	namespaces

This	is	what	allows	your	container	to	have	its	own	network	devices,	ports,	etc.	When
you	run	docker	ps	and	see	the	bound	ports	for	your	container,	you	are	seeing	ports
from	both	namespaces.	Inside	the	container	your	nginx	might	be	bound	to	port	80,
but	that’s	on	the	namespaced	network	interface.	This	namespace	makes	it	possible	to
have	what	seems	to	be	a	completely	separate	network	stack	for	your	container.

User	namespaces

These	provide	isolation	between	the	user	and	group	IDs	inside	a	container	and	those
on	the	Docker	host.	Earlier	when	we	looked	at	ps	output	outside	the	container	and
inside	and	saw	different	user	IDs,	this	is	how	that	happened.	A	new	user	inside	a
container	is	not	a	new	user	on	the	Docker	host’s	main	namespace,	and	vice	versa.
There	are	some	subtleties	here,	though.	For	example,	root	in	a	user	namespace	is	not
necessarily	root	on	the	main	system.	Some	of	this	work	is	reasonably	new	to	the
Linux	kernel	and	there	are	concerns	about	security	leakage,	which	we’ll	talk	about	in
a	bit.

So	namespaces	provide	the	visual,	and	in	many	cases	functional,	isolation	that	makes	a
container	look	like	a	virtual	machine	even	though	it’s	on	the	same	kernel.	Let’s	explore
what	some	of	that	namespacing	that	we	just	described	actually	looks	like.

Exploring	Namespaces

One	of	the	easiest	to	demonstrate	is	the	UTS	namespace,	so	let’s	use	docker	exec	to	get	a
shell	in	a	container	and	take	a	look.	From	within	the	docker	server,	run	the	following:

$	hostname

docker2

$	docker	exec	-i	-t	28970c706db0	/bin/bash	-l

#	hostname

28970c706db0

Although	docker	exec	will	work	from	a	remote	system,	here	we	ssh	into	the	Docker
server	itself	in	order	to	demonstrate	that	the	hostname	of	the	server	is	different	from	inside
the	container.

That	docker	exec	command	line	gets	us	an	interactive	process	(-i)	and	allocates	a
pseudo-tty	(-t),	and	then	executes	/bin/bash	while	executing	all	the	normal	login	process
in	the	bash	shell	(-l).	Once	we	have	a	terminal	open	inside	the	container’s	namespace,	we
ask	for	the	hostname	and	get	back	the	container	ID.	That’s	the	default	hostname	for	a
Docker	container	unless	you	tell	Docker	to	name	it	otherwise.	This	is	a	pretty	simple
example,	but	it	should	clearly	show	that	we’re	not	in	the	same	namespace	as	the	host.

Another	example	that’s	easy	to	understand	and	demonstrate	is	with	PID	namespaces.	Let’s
log	in	to	the	Docker	server	again,	take	a	look	at	the	process	list	of	one	of	our	containers,
and	then	get	the	same	list	from	inside	the	container:

$	docker	exec	-i	-t	28970c706db0	/bin/bash	-l

#	ps	-ef

UID								PID		PPID		C	STIME	TTY										TIME	CMD

root									1					0		0	22:20	?								00:00:00	/bin/bash

root								22					0		0	22:53	?								00:00:00	/bin/bash	-l

#	exit

logout

$	ps	axlf…

46049					1		20			0	706552	18228	futex_	Ssl		?							2:16	/usr/bin/docker	-d

46135	46049		20			0		18104		1892	n_tty_	Ss+		pts/0			0:00		_	/bin/bash

What	we	can	see	here	is	that	from	inside	our	container,	the	original	command	run	by
Docker	from	the	CMD	in	our	Dockerfile	is	/bin/bash	and	it	has	been	assigned	the	PID	1
inside	the	container.	You	might	recall	that	this	is	the	PID	normally	used	by	the	init
process	on	Unix	systems.	In	this	case,	the	/bin/bash	we	started	to	create	the	container	in
the	first	place	is	the	first	PID,	so	it	gets	ID	1.	But	in	the	Docker	host’s	main	namespace,
we	do	a	little	work	to	find	our	container’s	processes	and	we	see	the	PID	there	is	not	1,	it’s
46135	and	it’s	a	child	of	the	docker	daemon,	which	is	PID	46049.

The	other	namespaces	work	in	essentially	the	same	manner	and	you	probably	get	the	idea
by	now.	It’s	worth	pointing	out	here	that	when	we	were	working	with	nsenter	back	in
Chapter	4,	we	had	to	pass	a	pretty	arcane	(at	that	point)	set	of	arguments	to	the	command
when	we	ran	it	to	enter	a	container	from	the	Docker	server.	Let’s	look	at	that	command
line	now:

$	sudo	nsenter	--target	$PID	--mount	--uts	--ipc	--net	--pid

root@3c4f916619a5:/#

After	explaining	namespaces	in	detail,	this	probably	makes	a	lot	more	sense	to	you.
You’re	telling	nsenter	exactly	which	of	the	namespaces	you	want	to	enter.	It	can	also	be
educational	to	use	nsenter	to	only	enter	parts	of	the	namespace	of	a	throwaway	container
to	see	what	you	get.	In	the	example	above,	we	enter	all	of	the	namespaces	we	just	talked
about.

When	it	comes	down	to	it,	namespaces	are	the	primary	thing	that	make	a	container	look
like	a	container.	Combine	them	with	cgroups	and	you	have	a	reasonably	robust	isolation
between	processes	on	the	same	kernel.

Security
We’ve	spent	a	good	bit	of	space	now	talking	about	how	Docker	contains	applications,
allows	you	to	constrain	resources,	and	uses	namespaces	to	give	the	container	a	view	of	the
world	that	is	unique	to	the	container.	We	also	briefly	mentioned	the	need	for
SELinux/AppArmor.	One	of	the	wins	for	containers	is	the	ability	to	replace	virtual
machines	in	a	number	of	cases.	So	let’s	take	a	look	at	what	isolation	we	really	get,	and
what	we	don’t.

How	Secure	Is	Your	Container?
You	are	undoubtedly	aware	by	now	that	the	isolation	you	get	from	a	container	is	not	as
strong	as	that	from	a	virtual	machine.	We’ve	been	reinforcing	the	idea	from	the	start	of
this	book	that	containers	are	just	processes	running	on	the	Docker	server.	Despite	the
isolation	provided	by	namespaces,	containers	are	not	as	secure	as	you	might	imagine	if	the
idea	of	a	lightweight	virtual	machine	persists.

One	of	the	big	boosts	in	performance	for	containers,	and	one	of	the	things	that	makes	them
lightweight,	is	that	they	share	the	kernel	of	the	Docker	server.	This	is	also	the	source	of	the
greatest	security	concerns	around	Docker	containers.	The	main	reason	is	that	not
everything	in	the	kernel	is	namespaced.	We	talked	about	all	of	the	namespaces	that	exist
and	how	the	container’s	view	of	the	world	is	constrained	by	the	namespaces	it	runs	in.	But
there	are	still	lots	of	places	in	the	kernel	where	really	no	isolation	exists.	And	namespaces
only	constrain	you	if	you	can’t	tell	the	kernel	to	give	you	access	to	a	different	one.

For	purposes	of	security,	containers	are	more	secure	than	an	application	on	the	host
directly	because	cgroups	(if	you	use	them),	and	namespaces	provide	some	isolation	from
the	host’s	core	resources.	But	you	must	not	think	of	containers	as	a	substitute	for	good
security	practices.	If	you	think	about	how	you	would	run	an	application	on	a	production
system,	that	is	really	how	you	should	run	your	containers.	If	your	application	would	run	as
a	non-privileged	user	in	a	non-container	environment,	then	it	should	be	run	in	the	same
manner	inside	the	container,	for	example.	You	can	tell	Docker	to	run	your	whole	container
as	a	non-privileged	user,	and	in	production	deployments,	this	is	probably	what	you	want	to
do.	You	can’t,	unfortunately,	enforce	that	Docker	start	all	containers	as	non-privileged
users	at	this	time.	But	starting	them	that	way	yourself,	or	at	least	dropping	privileges
inside	the	running	application	as	soon	as	possible,	is	a	good	idea.

Let’s	look	at	some	security	risks	and	controls.

UID	0

The	first	and	most	overarching	security	risk	in	a	container	is	that	the	root	user	in	the
container	is	actually	the	root	user	on	the	system.	There	are	extra	constraints	on	root	in	a
container,	and	namespaces	do	a	good	job	of	isolating	root	in	the	container	from	the	most
dangerous	parts	of	the	/proc	and	/sys	filesystems,	for	example.	But	generally	speaking
you	have	root	access	so	if	you	can	get	access	to	resources	outside	of	your	namespace,	then
the	kernel	will	see	you	as	root.	And	Docker	starts	all	services	in	containers	as	root	by
default	which	means	you	are	then	responsible	for	managing	privilege	in	your	applications
just	like	you	are	on	any	Linux	system.	Let’s	explore	some	of	the	limits	on	root	access	and
look	at	some	obvious	holes.	This	is	not	intended	to	be	an	exhaustive	statement	on
container	security,	but	rather	to	give	you	a	healthy	understanding	of	some	of	the	classes	of
security	risks.

First,	we’ll	fire	up	a	container	and	get	a	bash	shell	using	the	public	Ubuntu	image	shown
in	the	following	code.	Then	we’ll	see	what	kinds	of	access	we	have:

$	sudo	docker	run	-t	-i	ubuntu	/bin/bash

root@808a2b8426d1:/#	lsmod

Module																		Size		Used	by

xt_nat																	12726		2

xt_tcpudp														12603		8

veth																			13244		0

xt_addrtype												12713		2

xt_conntrack											12760		1

iptable_filter									12810		1

acpiphp																24119		0

ipt_MASQUERADE									12759		4

aufs																		191008		14

iptable_nat												12909		1

nf_conntrack_ipv4						14538		2

nf_defrag_ipv4									12729		1	nf_conntrack_ipv4

nf_nat_ipv4												13316		1	iptable_nat

nf_nat																	26158		4	ipt_MASQUERADE,nf_nat_ipv4

nf_conntrack											83996		6	ipt_MASQUERADE,nf_nat

ip_tables														27473		2	iptable_filter,iptable_nat

x_tables															29938		7	ip_tables,xt_tcpudp

bridge																101039		0

floppy																	70206		0…

We’ve	cut	the	output	down	a	bit,	but	what	we’re	looking	at	here	is	a	new	container	that	we
started	and	we’ve	just	asked	the	kernel	to	tell	us	what	modules	are	loaded.	That’s	not	too
surprising:	a	normal	user	can	do	that.	But	it	does	reinforce	that	we’re	talking	to	the	same
Linux	kernel.	If	you	run	this	listing	on	the	Docker	server	itself,	it	will	be	identical.	So	we
can	see	the	kernel	modules;	what	happens	if	we	try	to	unload	the	floppy	module?

root@808a2b8426d1:/#	rmmod	floppy

rmmod:	ERROR:	...	kmod_module_remove_module()	could	not	remove	'floppy':	...

rmmod:	ERROR:	could	not	remove	module	floppy:	Operation	not	permitted

That’s	the	same	error	message	we	would	get	if	we	were	a	nonprivileged	user	telling	the
kernel	what	to	do.	This	should	give	you	a	good	sense	that	the	kernel	is	doing	its	best	to
prevent	us	from	doing	things	we	shouldn’t.	And	because	we’re	in	a	limited	namespace,	we
also	can’t	get	the	kernel	to	give	us	access	to	the	top-level	namespace	either.	We’re	really
relying	on	there	being	no	bugs	in	the	kernel	that	allow	us	to	escalate	that,	however,
because	if	we	do,	we’re	root	and	can	change	things.

We	can	contrive	a	simple	example	of	how	things	can	go	wrong	by	starting	a	bash	shell	in
a	container	that	has	had	the	Docker	server’s	/etc	bind	mounted	into	the	container’s
namespace.	Keep	in	mind	that	anyone	who	can	start	a	container	on	your	Docker	server	can
do	what	we’re	about	to	do	any	time	they	like	because	you	can’t	configure	Docker	to
prevent	it:

$	docker	run	-i	-t	-v	/etc:/host_etc	ubuntu	/bin/bash

root@e674eb96bb74:/#	more	/host_etc/shadow

root:!:16230:0:99999:7:::

daemon:*:16230:0:99999:7:::

bin:*:16230:0:99999:7:::

sys:*:16230:0:99999:7:::

...

irc:*:16230:0:99999:7:::

nobody:*:16230:0:99999:7:::

libuuid:!:16230:0:99999:7:::

syslog:*:16230:0:99999:7:::

messagebus:*:16230:0:99999:7:::

kmatthias:1aTAYQT.j$3xamPL3dHGow4ITBdRh1:16230:0:99999:7:::

sshd:*:16230:0:99999:7:::

lxc-dnsmasq:!:16458:0:99999:7:::

Here	we’ve	used	the	-v	switch	to	Docker	to	tell	it	to	mount	a	host	path	into	the	container.
The	one	we’ve	chosen	is	/etc,	which	is	a	dangerous	thing	to	do.	But	it	serves	to	prove	a
point:	we	are	root	in	the	container	and	root	has	file	permissions	in	this	path.	So	we	can
look	at	the	real	/etc/shadow	file	any	time	we	like.	There	are	plenty	of	other	things	you
could	do	here,	but	the	point	is	that	by	default	you’re	only	partly	constrained.

WARNING
It	is	a	bad	idea	to	run	your	container	processes	with	UID	0.	This	is	because	any	exploit	that	allows	the
process	to	somehow	escape	its	namespaces	will	expose	your	host	system	to	a	fully	privileged	process.	You
should	always	run	your	standard	containers	with	a	non-privileged	UID.

Privileged	containers

There	are	times	when	you	need	your	container	to	have	special	kernel	capabilities	that
would	normally	be	denied	to	the	container.	This	could	include	many	things	like	mounting
a	USB	drive,	modifying	the	network	configuration,	or	creating	a	new	Unix	device.

In	the	following	code,	we	try	to	change	the	MAC	address	of	our	container:

$	docker	run	--rm	-ti	ubuntu	/bin/bash

root@b328e3449da8:/#	ip	link	ls

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state…

				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

9:	eth0:	<BROADCAST,UP,LOWER_UP>	mtu	1500	qdisc	noqueue	state…

				link/ether	02:42:0a:00:00:04	brd	ff:ff:ff:ff:ff:ff

root@b328e3449da8:/#	ip	link	set	eth0	address	02:0a:03:0b:04:0c

RTNETLINK	answers:	Operation	not	permitted

root@b328e3449da8:/#	exit

As	we	can	see,	it	doesn’t	work.	This	is	because	the	underlying	Linux	kernel	blocks	the
nonprivileged	container	from	doing	this,	which	is	exactly	what	we	normally	want.
However,	assuming	that	we	need	this	functionality	for	our	container	to	work	as	intended,
the	easiest	way	to	significantly	expand	a	container’s	privileges	is	by	launching	it	with	the
--privileged=true	argument:

$	docker	run	-ti	--rm	--privileged=true	ubuntu	/bin/bash

root@88d9d17dc13c:/#	ip	link	ls

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state…

				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

9:	eth0:	<BROADCAST,UP,LOWER_UP>	mtu	1500	qdisc	noqueue	state…

				link/ether	02:42:0a:00:00:04	brd	ff:ff:ff:ff:ff:ff

root@88d9d17dc13c:/#	ip	link	set	eth0	address	02:0a:03:0b:04:0c

root@88d9d17dc13c:/#	ip	link	ls

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state…

				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

9:	eth0:	<BROADCAST,UP,LOWER_UP>	mtu	1500	qdisc	noqueue	state…

				link/ether	02:0a:03:0b:04:0c	brd	ff:ff:ff:ff:ff:ff

root@88d9d17dc13c:/#	exit

In	the	preceding	output,	you	will	notice	that	we	no	longer	get	the	error	and	the
link/ether	entry	for	eth0	has	been	changed.

The	problem	with	using	the	--privileged=true	argument	is	that	you	are	giving	your

http://bit.ly/1F9loIz

container	very	broad	privileges,	and	in	most	cases	you	likely	only	need	one	or	two	kernel
capabilities	to	get	the	job	done.

If	we	explore	our	privileged	container	some	more,	we	will	discover	that	we	have
capabilities	that	have	nothing	to	do	with	changing	the	MAC	address.	I	can	even	do	things
that	could	cause	issue	with	both	Docker	and	the	host	system.	In	the	following	code,	we	are
going	to	create	a	memory	swapfile1	and	enable	it:

$	docker	run	-ti	--rm	--privileged=true	ubuntu	/bin/bash

root@0ffcdd8f7535:/#	dd	if=/dev/zero	of=/swapfile1	bs=1024	count=100

100+0	records	in

100+0	records	out

102400	bytes	(102	kB)	copied,	0.00046004	s,	223	MB/s

root@0ffcdd8f7535:/#	mkswap	/swapfile1

Setting	up	swapspace	version	1,	size	=	96	KiB

no	label,	UUID=fc3d6118-83df-436e-867f-87e9fbce7692

root@0ffcdd8f7535:/#	swapon	/swapfile1

root@0ffcdd8f7535:/#	swapoff	/swapfile1

root@0ffcdd8f7535:/#	exit

exit

WARNING
In	the	previous	example,	if	you	do	not	disable	the	swapfile	before	exiting	your	container,	you	will	leave
your	Docker	host	in	a	bad	state	where	Docker	can’t	destroy	the	container	because	your	host	is	accessing	a
swapfile	that	is	inside	the	container’s	filesystem.

In	that	case,	the	error	message	will	look	something	like	this:

FATAL	[0049]	Error	response	from	daemon:

Cannot	destroy	container	0ff…670:

	Driver	overlay	failed	to	remove	root	filesystem	0ff…670:

	remove	/var/lib/docker/overlay/0ff…670/upper/swapfile1:

	operation	not	permitted

You	can	fix	this	from	the	Docker	server	by	running:

$	sudo	swapoff	/var/lib/docker/overlay/0ff…670/upper/swapfile1

So	as	we’ve	seen,	it	is	possible	for	people	to	do	bad	things	in	a	fully	privileged	container.

To	change	the	MAC	address,	the	only	kernel	capability	we	actually	need	is
CAP_NET_ADMIN.	Instead	of	giving	our	container	the	full	set	of	privileges,	we	can	give	it
this	one	privilege	by	launching	our	Docker	container	with	the	--cap-add	argument,	as
shown	here:

$	docker	run	-ti	--rm	--cap-add=NET_ADMIN	ubuntu	/bin/bash

root@852d18f5c38d:/#	ip	link	set	eth0	address	02:0a:03:0b:04:0c

root@852d18f5c38d:/#	ip	link	ls

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state…

				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

9:	eth0:	<BROADCAST,UP,LOWER_UP>	mtu	1500	qdisc	noqueue	state…

				link/ether	02:0a:03:0b:04:0c	brd	ff:ff:ff:ff:ff:ff

root@852d18f5c38d:/#	exit

You	should	also	notice	that	although	we	can	change	the	MAC	address,	we	can	no	longer
use	the	swapon	command	inside	our	container.

$	docker	run	-ti	--rm	--cap-add=NET_ADMIN	ubuntu	/bin/bash

root@848aa7924594:/#	dd	if=/dev/zero	of=/swapfile1	bs=1024	count=100

100+0	records	in

100+0	records	out

102400	bytes	(102	kB)	copied,	0.000575541	s,	178	MB/s

root@848aa7924594:/#	mkswap	/swapfile1

Setting	up	swapspace	version	1,	size	=	96	KiB

no	label,	UUID=3b365d90-8116-46ad-80c5-24341299dc41

root@848aa7924594:/#	swapon	/swapfile1

swapon:	/swapfile1:	swapon	failed:	Operation	not	permitted

root@848aa7924594:/#	exit

By	using	both	the	--cap-add	and	--cap-drop	arguments	to	docker	run,	you	can	finely
control	the	Linux	kernel	capabilities	that	your	container	has.

SElinux,	AppArmor

Earlier	we	talked	about	how	containers	are	a	combination	of	two	or	three	things:	cgroups,
namespaces,	and	SELinux	or	AppArmor.	We’re	going	to	talk	about	the	latter	two	systems
now.	They	allow	you	to	apply	security	controls	that	extend	beyond	those	normally
supported	by	Unix	systems.	SELinux	originally	came	out	of	the	US	National	Security
Agency	and	supports	very	fine-grained	control.	AppArmor	is	an	effort	to	achieve	many	of
the	same	goals	without	the	level	of	complication	involved	in	SELinux.	It	actually	predates
SELinux,	having	first	appeared	in	1998	in	the	Immunix	Linux	distribution.	Novell,	SuSE,
and	Canonical	have	been	some	of	its	recent	champions.

Docker	ships	by	default	with	reasonable	profiles	enabled	on	platforms	that	support	them.
This	means	that	on	Ubuntu	systems,	AppArmor	is	enabled	and	configured,	and	on
CentOS/RHEL/Fedora	systems,	SELinux	is.	You	can	further	configure	these	profiles	to
prevent	things	like	what	we’ve	just	done	in	Chapter	9,	and	if	you’re	running	Docker	in
production,	you	should	do	a	risk	analysis	and	determine	if	this	is	something	you	should
look	at.	Here’s	a	quick	outline	of	the	benefits	we’re	getting	from	these	systems.

They	provide	what	is	known	as	Mandatory	Access	Control.	This	is	a	class	of	security
system	where	a	system-wide	security	policy	grants	users	(or	“initiators”)	access	to	a
resource	(or	“target”).	What	this	allows	you	to	do	is	to	prevent	anyone,	including	root,
from	accessing	a	part	of	the	system	that	they	should	not	have	access	to.	You	can	apply	the
policy	to	a	whole	container	so	that	all	processes	are	constrained.	Many	chapters	would	be
required	to	give	a	very	clear	overview	of	how	to	configure	these	systems	in	detail.	The
default	profiles	are	doing	things	like	blocking	access	to	parts	of	the	/proc	and	/sys
filesystems	that	would	be	dangerous	to	expose	in	the	container,	even	though	they	show	in
the	container’s	namespace.	They	also	provide	more	narrowly	scoped	mount	access	to
prevent	containers	from	getting	ahold	of	mount	points	they	should	not	see.

If	you	are	considering	using	Docker	containers	in	production,	you	should	make	certain
that	the	systems	you	are	running	have	AppArmor	or	SELinux	enabled	and	running.	For
the	most	part,	both	systems	are	reasonably	equivalent.	But	in	the	Docker	context,	one
notable	limitation	of	SELinux	is	that	it	only	works	fully	on	systems	that	support	filesystem
metadata,	which	means	that	it	won’t	work	for	you	on	BTRFS-backed	Docker	daemons,	for
example.	Only	the	devicemapper	backend	currently	fully	supports	SELinux.

Unfortunately,	that	backend	is	also	not	currently	very	stable	for	production.	The
OverlayFS	backend	is	going	to	support	this	shortly.	AppArmor,	on	the	other	hand,	does
not	use	filesystem	metadata	and	so	works	on	all	of	the	Docker	backends.	Which	one	you
use	is	going	to	be	somewhat	distribution-centric,	so	you	may	be	forced	to	choose	a
filesystem	backend	based	on	which	distribution	you	run.

How	Secure	Is	the	Docker	Daemon?
From	a	security	standpoint,	the	Docker	daemon	is	the	only	completely	new	risk	you	are
introducing	to	the	network.	Your	containerized	applications	are	not	less	secure	and	are	at
least	a	little	more	secure	than	they	would	be	if	deployed	outside	of	containers.	But	without
the	containers,	you	would	not	be	running	the	daemon.	You	can	run	Docker	such	that	it
doesn’t	expose	any	ports	on	the	network.	In	this	model,	you’d	need	to	do	something	like
set	up	an	SSH	tunnel	to	each	Docker	server	if	you	wanted	to	control	the	containers.	That’s
not	very	useful,	so	nearly	everyone	will	expose	one	or	more	ports	on	the	local	network.

The	default	configuration	for	Docker	on	all	the	distributions	we’re	familiar	with	leave
Docker	isolated	from	the	network	with	only	a	local	Unix	socket	exposed.	Since	you
cannot	remotely	administer	Docker	when	it	is	set	up	this	way,	many	people	add	the
nonencrypted	port	2375	to	the	configuration.	This	is	great	for	getting	going	with	Docker,
and	depending	on	your	security	analysis	it	might	be	all	right	for	you.	But	it’s	probably	not
what	you	should	do	in	any	environment	where	you	need	a	reasonable	level	of	security.

You	can	do	a	few	things	to	tighten	Docker	down	that	make	sense	in	most	production
environments.	But	no	matter	what	you	do,	you	are	relying	on	the	Docker	daemon	itself	to
be	resilient	against	things	like	buffer	overflows	and	race	conditions,	two	of	the	more
common	classes	of	security	vulnerabilities.	This	is	true	of	any	network	service.	The	risk	is
perhaps	a	little	higher	from	Docker	because	it	has	access	to	control	all	of	your
applications,	and	because	of	the	privileges	required,	it	has	to	run	as	root.

The	basics	of	locking	Docker	down	are	common	with	many	other	network	daemons:
encrypt	your	traffic	and	authenticate	users.	The	first	is	reasonably	easy	to	set	up	on	Docker
and	the	second	is	not	as	easy.	If	you	have	certificates	you	can	use	for	protecting	HTTP
traffic	to	your	hosts,	such	as	a	wildcard	cert	for	your	domain,	you	can	turn	on	TLS	support
to	encrypt	all	of	the	traffic	to	your	Docker	servers.	This	is	a	good	step.	The	Docker
documentation	will	walk	you	through	doing	this.

Authorization	is	more	complicated:	Docker	does	not	provide	any	kind	of	fine-grained
authorization:	you	either	have	access	or	you	don’t.	But	the	authentication	control	it	does
provide	is	reasonably	strong:	signed	certificates.	Unfortunately	this	also	means	that	you
don’t	get	a	cheap	step	from	no	authentication	to	some	authentication	without	also	having
to	set	up	your	own	certificate	authority	in	most	cases.	If	your	organization	already	has	one,
then	you	are	in	luck.	Certificate	management	needs	to	be	implemented	carefully	in	any
organization	both	to	keep	them	secure	and	to	distribute	them	efficiently.	So,	given	that,
here	are	the	basic	steps:

1.	 Set	up	a	method	of	generating	and	signing	certificates.

2.	 Generate	certificates	for	the	server	and	clients.

3.	 Configure	Docker	to	require	certificates	with	--tlsverify.

Detailed	instructions	on	getting	a	server	and	client	set	up,	as	well	as	a	simple	certificate

https://docs.docker.com/articles/https/

authority	are	included	in	the	Docker	documentation.

Because	it’s	a	daemon	that	runs	with	privilege,	and	because	it	has	direct	control	of	your
applications,	it’s	probably	not	a	good	idea	to	expose	Docker	directly	on	the	Internet.	If	you
need	to	talk	to	your	Docker	hosts	from	outside	your	network,	you	should	consider
something	like	a	VPN	or	an	SSH	tunnel	to	a	jump	host.

https://docs.docker.com/articles/https/

Networking
Early	on	we	described	the	layers	of	networking	that	are	in	place	between	a	Docker
container	and	the	real	live	network.	Let’s	take	a	closer	look	at	how	that	works.	Figure	10-1
shows	a	drawing	of	a	typical	Docker	server,	where	there	are	three	containers	running	on
their	private	network,	shown	on	the	right.	One	of	them	has	a	public	port	(TCP	port	10520)
that	is	exposed	on	the	Docker	server.	We’ll	track	how	an	inbound	request	gets	to	the
Docker	container	and	also	how	a	Docker	container	can	make	an	outbound	connection	to
the	external	network.

Figure	10-1.	Swarm	Manager	controlling	Docker	cluster

If	we	have	a	client	somewhere	on	the	network	that	wants	to	talk	to	the	nginx	server
running	on	TCP	port	80	inside	Container	1,	the	request	will	come	into	the	eth0	interface
on	the	Docker	server.	Because	Docker	knows	this	is	a	public	port,	it	has	spun	up	an
instance	of	docker-proxy	to	listen	on	port	10520.	So	our	request	is	passed	to	the	docker-
proxy	process,	which	then	makes	the	request	to	the	correct	container	address	and	port	on
the	private	network.	Return	traffic	from	the	request	flows	through	the	same	route.

Outbound	traffic	from	the	container	follows	a	different	route,	in	which	the	docker-proxy
is	not	involved	at	all.	In	this	case,	Container	3	wants	to	contact	a	server	on	the	public
Internet.	It	has	an	address	on	the	private	network	of	172.16.23.1	and	its	default	route	is	the
docker0	interface	172.16.23.7.	So	it	sends	the	traffic	there.	The	Docker	server	now	sees
that	this	traffic	is	outbound	and	it	has	traffic	forwarding	enabled.	And	since	the	virtual
network	is	private,	it	wants	to	send	the	traffic	from	its	own	public	address	instead.	So	the
request	is	passed	through	the	kernel’s	network	address	translation	layer	(NAT)	and	put
onto	the	external	network	via	the	eth0	interface	on	the	server.	Return	traffic	passes
through	the	same	route.	Note	that	the	NAT	is	one-way,	so	containers	on	the	virtual
network	will	see	real	network	addresses	in	response	packets.

You’ve	probably	noted	that	it’s	not	a	simple	configuration.	It’s	a	fair	amount	of
mechanism,	but	it	makes	Docker	seem	pretty	transparent.	It’s	also	a	contributor	to	the
security	posture	of	the	Docker	stack	because	the	containers	are	namespacd	into	their	own
network	namespace,	are	on	their	own	private	network,	and	don’t	have	access	to	things	like
the	main	system’s	DBus	or	IPTables.

Let’s	take	a	look	at	what	is	happening	at	a	more	detailed	level.	The	interfaces	that	show	up
in	ifconfig	or	ip	addr	show	in	the	Docker	container	are	actually	virtual	Ethernet
interfaces	on	the	Docker	server’s	kernel.	They	are	then	mapped	into	the	network
namespace	of	the	container	and	given	the	names	that	you	see	inside	the	container.	Let’s
take	a	look	at	what	we	see	when	running	ip	addr	show	on	a	Docker	server.	We’ll	shorten
the	output	a	little	for	clarity	and	typesetting	issues,	as	shown	here:

$	ip	addr	show

1:	lo:	<LOOPBACK,UP,LOWER_UP>

				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

				inet	127.0.0.1/8	scope	host	lo

				inet6	::1/128	scope	host

							valid_lft	forever	preferred_lft	forever

2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>

				link/ether	00:0c:29:b2:2a:21	brd	ff:ff:ff:ff:ff:ff

				inet	172.16.168.178/24	brd	172.16.168.255	scope	global	eth0

				inet6	fe80::20c:29ff:feb2:2a21/64	scope	link

							valid_lft	forever	preferred_lft	forever

4:	docker0:	<BROADCAST,MULTICAST,UP,LOWER_UP>

				link/ether	56:84:7a:fe:97:99	brd	ff:ff:ff:ff:ff:ff

				inet	172.17.42.1/16	scope	global	docker0

				inet6	fe80::5484:7aff:fefe:9799/64	scope	link

							valid_lft	forever	preferred_lft	forever

112:	vethf3e8733:	<BROADCAST,UP,LOWER_UP>

				link/ether	b6:3e:7a:ba:5e:1c	brd	ff:ff:ff:ff:ff:ff

				inet6	fe80::b43e:7aff:feba:5e1c/64	scope	link

							valid_lft	forever	preferred_lft	forever

What	that	is	telling	us	is	that	we	have	the	normal	loopback	interface,	our	real	Ethernet
interface	eth0,	and	then	the	Docker	bridge	interface,	docker0,	that	we	described	earlier.
This	is	where	all	the	traffic	from	the	Docker	containers	is	picked	up	to	be	routed	outside
the	virtual	network.	The	surprising	thing	in	this	output	is	that	vethf3e8733	interface.
When	Docker	creates	a	container,	it	creates	two	virtual	interfaces,	one	of	which	sits	on	the
server-side	and	is	attached	to	the	docker0	bridge,	and	one	that	is	exposed	into	the
container’s	namespace.	What	we’re	seeing	here	is	the	server	side	interface.	Notice	how	it
doesn’t	show	up	as	having	an	IP	address	assigned	to	it?	That’s	because	this	interface	is	just
joined	to	the	bridge.	This	interface	will	also	have	a	totally	different	name	in	the
container’s	namespace	as	well.

It	would	be	entirely	possible	to	run	a	container	without	the	whole	networking
configuration	that	Docker	puts	in	place	for	you.	And	the	docker-proxy	can	be	somewhat
throughput	limiting	for	very	high-volume	data	services.	So	what	does	it	look	like	if	we
turn	it	off?	Docker	lets	you	do	this	on	a	per-container	basis	with	the	--net=host
command-line	switch.	There	are	times,	like	when	you	want	to	run	high	throughput
applications,	where	you	might	want	to	do	this.	But	you	lose	some	of	Docker’s	flexibility
when	you	do	it.	Even	if	you	never	need	or	want	to	do	this,	it’s	useful	to	expose	how	the

mechanism	works	underneath.

WARNING
Like	other	things	in	this	chapter,	this	is	not	a	setting	you	should	take	lightly.	It	has	operational	and	security
implications	that	might	be	outside	your	tolerance	level.	It	can	be	the	right	thing	to	do,	but	you	should
consider	the	repercussions.

Let’s	start	a	container	with	--net=host	and	see	what	happens,	as	shown	here:

$	docker	run	-i	-t	--net=host	ubuntu	/bin/bash

$	ip	addr	show

1:	lo:	<LOOPBACK,UP,LOWER_UP>

				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00

				inet	127.0.0.1/8	scope	host	lo

				inet6	::1/128	scope	host

							valid_lft	forever	preferred_lft	forever

2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>

				link/ether	00:0c:29:b2:2a:21	brd	ff:ff:ff:ff:ff:ff

				inet	172.16.168.178/24	brd	172.16.168.255	scope	global	eth0

				inet6	fe80::20c:29ff:feb2:2a21/64	scope	link

							valid_lft	forever	preferred_lft	forever

3:	lxcbr0:	<BROADCAST,MULTICAST,UP,LOWER_UP>

				link/ether	fe:59:0b:11:c2:76	brd	ff:ff:ff:ff:ff:ff

				inet	10.0.3.1/24	brd	10.0.3.255	scope	global	lxcbr0

				inet6	fe80::fc59:bff:fe11:c276/64	scope	link

							valid_lft	forever	preferred_lft	forever

4:	docker0:	<BROADCAST,MULTICAST,UP,LOWER_UP>

				link/ether	56:84:7a:fe:97:99	brd	ff:ff:ff:ff:ff:ff

				inet	172.17.42.1/16	scope	global	docker0

				inet6	fe80::5484:7aff:fefe:9799/64	scope	link

							valid_lft	forever	preferred_lft	forever

112:	vethf3e8733:	<BROADCAST,UP,LOWER_UP>

				link/ether	b6:3e:7a:ba:5e:1c	brd	ff:ff:ff:ff:ff:ff

				inet6	fe80::b43e:7aff:feba:5e1c/64	scope	link

							valid_lft	forever	preferred_lft	forever

That	should	look	pretty	familiar.	That’s	because	when	we	run	a	container	with	the	host
networking	option,	we’re	just	in	the	host’s	network	namespace.	Note	that	we’re	also	in	the
server’s	UTS	namespace.	Our	server’s	hostname	is	“docker2,”	so	let’s	see	what	the
container’s	hostname	is:

$	hostname

docker2

If	we	do	a	mount	to	see	what’s	mounted,	though,	we	see	that	Docker	is	still	maintaining
our	/etc/resolv.conf,	/etc/hosts,	and	/etc/hostname.	Interestingly,	the
/etc/hostname	simply	contains	the	server’s	hostname.	Just	to	prove	that	we	can	see	all
the	normal	networking	on	the	Docker	server,	let’s	look	at	netstat	-an	and	see	if	we	can
see	the	docker	daemon	running:

$netstat	-an	|	grep	2375

tcp6							0						0	:::2375																	:::*																				LISTEN

So	we	are	indeed	in	the	server’s	network	namespace.	What	all	of	this	means	that	if	we
were	to	launch	a	high-throughput	network	service,	we	would	be	able	to	expect	network
performance	from	it	that	is	essentially	native.	But	it	also	means	we	could	bind	to	ports	that

would	collide	with	those	on	the	server,	so	if	you	do	this	you	should	be	careful	about	how
you	allocate	port	assignments.

There	is	a	lot	more	you	can	configure	with	the	Docker	network	layer.	But	the	defaults	and
the	host	networking	are	the	two	you’re	most	likely	to	use	or	encounter	in	the	wild.	But
some	of	the	other	things	you	can	configure,	for	example,	are	the	DNS	servers	that	are
used,	the	DNS	search	domain,	your	own	bridge	interface,	and	more.	The	networking
section	of	the	Docker	documentation	gives	an	overview	of	how	to	do	some	of	these	things.

NOTE
For	advanced	network	configuration	of	Docker,	check	out	Weave	—	a	virtual	network	tool	for	spanning
containers	across	multiple	Docker	hosts.	And	if	you	are	going	to	be	using	Kubernetes,	take	a	look	at
CoreOS’s	flannel,	which	is	an	etcd-backed	network	fabric	for	containers.

1	Swapfiles	are	used	to	virtually	extend	your	system’s	memory	capacity	by	giving	it	access
to	a	large	file	for	additional	storage	space.

https://docs.docker.com/articles/networking/
https://github.com/zettio/weave
https://github.com/coreos/flannel

Chapter	11.	Designing	Your	Production
Container	Platform

When	implementing	any	core	technology	in	production,	the	most	mileage	is	often	gained
by	designing	a	resilient	platform	that	is	forgiving	of	the	unexpected	issues	that	will
eventually	occur.	When	used	as	intended,	with	close	attention	to	detail,	Docker	can	be	an
incredibly	powerful	tool.	As	a	young	technology	that	is	going	through	very	rapid	growth
cycles,	you	are	bound	to	trigger	frustrating	bugs	in	Docker	and	its	interactions	with	the
underlying	kernel.

If,	instead	of	simply	deploying	Docker	into	your	environment,	you	take	the	time	to	build	a
well-designed	container	platform	on	top	of	Docker,	you	can	enjoy	the	many	benefits	of	a
Docker-based	workflow	while	protecting	yourself	from	some	of	the	sharper	exposed	edges
that	typically	exist	in	such	a	high-velocity	project.

Like	all	other	technology,	Docker	doesn’t	magically	solve	all	your	problems.	To	reach	its
true	potential,	organizations	must	make	very	conscious	decisions	about	why	and	how	they
are	going	to	use	it.	For	very	small	projects,	it	is	possible	to	use	Docker	in	a	very	simple
manner;	however,	if	you	plan	to	support	a	large	project	that	can	scale	with	demand,	it
quickly	becomes	important	to	ensure	that	you	are	making	very	deliberate	decisions	about
how	your	applications	and	platform	are	designed.	This	ensures	that	you	can	maximize	the
return	on	your	investment	in	the	technology.	Taking	the	time	to	design	your	platform	with
intention	can	also	make	it	much	easier	to	modify	your	production	workflow	over	time.	A
well-designed	Docker	platform	will	ensure	that	your	software	is	running	on	a	dynamic
foundation	that	can	easily	be	upgraded	as	technology	and	processes	develop	over	time.

Below	we	will	explore	some	of	the	leading	thinking	about	how	container	platforms	should
be	designed	to	improve	the	resiliency	and	supportability	of	the	overall	platform.

The	Twelve-Factor	App
In	November	of	2011,	Adam	Wiggins,	cofounder	of	Heroku,	and	his	colleagues,	released
an	article	called	“The	Twelve-Factor	App.”	This	document	describes	a	series	of	12
distilled	practices	that	come	from	the	experiences	of	Heroku	engineers	on	how	to	design
applications	that	will	thrive	and	grow	in	a	modern	Software-as-a-Service	(SaaS)
environment.

Although	not	required,	applications	built	with	these	12	steps	in	mind	are	ideal	candidates
for	the	Docker	workflow.	Below	we	explore	each	of	these	steps	and	why	they	can,	in
numerous	ways,	help	improve	your	development	cycle.

http://12factor.net

Codebase
A	single	codebase	tracked	in	revision	control.

Many	instances	of	your	application	will	be	running	at	any	given	time,	but	they	should	all
come	from	the	same	code	repository.	Each	and	every	Docker	image	of	an	application
should	be	built	from	a	single	source	code	repository	that	contains	all	the	code	required	to
build	the	Docker	container.	This	ensures	that	the	code	can	easily	be	rebuilt,	and	that	all
third-party	requirements	are	well	defined	within	the	repository,	if	not	actually	directly
included.

What	this	means	is	that	building	your	application	shouldn’t	require	stitching	together	code
from	multiple	source	repositories.	That	is	not	to	say	that	you	can’t	have	a	dependency	on
an	artifact	from	another	repo.	But	it	does	mean	that	there	should	be	a	clear	mechanism	for
determining	which	pieces	of	code	were	shipped	when	you	built	your	application.	Docker’s
ability	to	simplify	dependency	management	is	much	less	useful	if	building	your
application	requires	pulling	down	mutiple	source	code	repositories	and	copying	pieces
together.	And	it’s	not	repeatable	unless	you	know	the	magic	incantation.

Dependencies
Explicitly	declare	and	isolate	dependencies.

Never	rely	on	the	belief	that	a	dependency	will	be	made	available	via	some	other	avenue,
like	the	operating	system	install.	Any	dependencies	that	your	application	requires	should
be	well-defined	in	the	code	base	and	pulled	in	by	the	build	process.	This	will	help	ensure
that	your	application	will	run	when	deployed,	without	relying	on	libraries	being	installed
by	other	processes.	This	is	particularly	important	within	a	container	since	the	container’s
processes	are	isolated	from	the	rest	of	the	host	operating	system	and	will	usually	not	have
access	to	anything	outside	the	container	image’s	filesystem.

The	Dockerfile	and	language-dependent	configuration	files	like	Node’s	package.json	or
Ruby’s	Gemfile	should	define	every	nonexternal	dependency	required	by	your	application.
This	ensures	that	your	image	will	run	correctly	on	any	system	to	which	it	is	deployed.
Gone	will	be	the	days	when	you	deploy	and	run	your	application	only	to	find	out	that
important	libraries	are	missing	or	installed	with	wrong	version.	This	has	huge	reliability
and	repeatability	advantages,	and	very	positive	ramifications	for	system	security.	If	you
update	the	OpenSSL	or	libyaml	libraries	that	your	Dockerized	application	uses	to	fix	a
security	issue,	you	can	be	assured	that	it	will	always	be	running	with	that	version
wherever	you	deploy	that	particular	application.

It	is	also	important	to	note	that	most	Docker	base	images	are	actually	much	larger	than
they	need	to	be.	Remember	that	your	application	process	will	be	running	on	a	shared
kernel,	and	the	only	files	that	you	actually	need	inside	your	base	image	are	ones	that	the
process	will	require	to	run.	It’s	good	that	the	container	makes	this	repeatable.	But	it	can
sometimes	mask	hidden	dependencies.	Although	people	often	start	with	a	minimal	install
of	Ubuntu	or	CentOS,	these	images	still	contain	a	lot	of	operating	system	files	that	your
process	almost	certainly	does	not	need,	or	possibly	some	that	you	rely	on	and	don’t	realize
it.	You	need	to	be	in	charge	of	your	dependencies,	even	when	containerizing	your
application.

A	good	way	to	shed	light	on	the	depth	of	your	application’s	dependency	tree	is	to	compare
it	to	a	container	for	a	statically	linked	program	written	in	a	language	like	Go	or	C.	They
don’t	need	any	libraries	or	command-line	binaries.	To	explore	what	one	of	these	ultra-light
containers	might	look	like,	let’s	run	a	statically	linked	Go	program	in	a	container	by
executing	the	following	command:

$	docker	run	--publish=8085:8080	--detach=true	\

		--name=static-helloworld	adejonge/helloworld:latest

365cc5ddb0c40a50763217c66be26959933028631ef24a60a7da9944971587a3

Keep	a	copy	of	the	long	ID	hash	for	your	container,	because	you	will	need	it	in	a	moment.
If	you	now	point	a	local	web	browser	at	port	8085	on	your	Docker	server	(i.e.,
http://172.17.42.10:8085/)	you	would	see	the	message:

Hello	World	from	Go	in	minimal	Docker	container

http://172.17.42.10:8085/

Contrary	to	everything	we’ve	looked	at	in	this	book	so	far,	this	very	minimal	container
does	not	contain	a	shell	or	SSH.	This	means	we	can’t	use	ssh,	nsenter,	or	docker	exec	to
examine	it.	Instead	we	can	examine	the	container’s	filesystem	by	logging	directly	into	the
Docker	server	via	ssh,	and	then	looking	into	the	container’s	filesystem	itself.	To	do	that,
we	need	to	find	the	filesystem	on	the	server’s	disk.	We	do	this	by	first	running	docker
info	to	determine	the	root	directory	for	the	storage	driver.

$	docker	info…

Storage	Driver:	aufs

	Root	Dir:	/mnt/sda1/var/lib/docker/aufs…

NOTE
The	Docker	Root	Dir	and	the	Root	Dir	are	not	the	same	things.	We	specifically	want	the	Root	Dir	listed
under	Storage	Driver.

By	combining	the	Docker	root	directory	and	the	container	hash	into	a	file	path,	it	is
possible	to	view	the	container’s	filesystem	from	the	Docker	server.	You	might	need	to
poke	around	in	the	storage	driver’s	root	directory	a	bit	to	determine	the	exact	location	of
the	container	filesystems.	In	our	case,	it	is	under	the	additional	directory	called	mnt.

If	we	now	list	the	files	in	that	directory,	we	will	discover	that	the	number	of	files	in	this
container	is	incredibly	small:

$	ls	-R	/mnt/sda1/var/lib/docker/aufs/mnt/36…a3

/mnt/sda1/var/lib/docker/aufs/mnt/36…a3:

dev/								etc/								helloworld		proc/							sys/

/mnt/sda1/var/lib/docker/aufs/mnt/36…a3/dev:

console		pts/					shm/

/mnt/sda1/var/lib/docker/aufs/mnt/36…a3/dev/pts:

/mnt/sda1/var/lib/docker/aufs/mnt/36…a3/dev/shm:

/mnt/sda1/var/lib/docker/aufs/mnt/36…a3/etc:

hostname					hosts								mtab									resolv.conf

/mnt/sda1/var/lib/docker/aufs/mnt/36…a3/proc:

/mnt/sda1/var/lib/docker/aufs/mnt/36…a3/sys:

You	can	see	that	in	addition	to	console	device	and	basic	/etc	files,	the	only	other	file	is
the	helloworld	binary,	which	contains	everything	our	simple	web	application	needs	to	run
on	a	modern	Linux	kernel,	and	hence	from	within	a	container.

In	addition	to	the	filesystem	layers	used	by	Docker,	keeping	your	containers	stripped
down	to	the	bare	necessities	is	another	great	way	to	keep	your	images	slim	and	your
docker	pull	commands	fast.	It’s	much	harder	to	do	with	interpreted	languages	living	in	a
container.	But	the	point	is	that	you	should	try	to	keep	as	minimal	a	base	layer	as	needed	so
that	you	can	reason	about	your	dependencies.	Docker	helps	you	package	them	up,	but	you
still	need	to	be	in	charge	of	them.

Config
Store	configuration	in	environment	variables,	not	in	files	checked	into	the	code	base.

This	makes	it	simple	to	deploy	the	exact	same	code	base	to	different	environments,	like
staging	and	production,	without	maintaining	complicated	configuration	in	code	or
rebuilding	your	container	for	each	environment.	This	keeps	your	code	base	much	cleaner
by	keeping	environment-specific	information	like	database	names	and	passwords	out	of
your	source	code	repository.	More	importantly	though,	it	means	that	you	don’t	bake
deployment	environment	assumptions	into	the	repository,	and	because	of	that	it	is
extremely	easy	to	deploy	your	applications	anywhere	that	it	might	be	useful.	You	also
need	to	be	able	to	test	the	same	image	you	will	ship	to	production.	You	can’t	do	that	if	you
have	to	build	an	image	for	each	environment	with	all	of	its	configuration	baked	in.

As	discussed	in	Chapter	5,	this	can	be	achieved	by	launching	docker	run	commands	that
leverage	the	-e	command-line	argument.	Using	-e	APP_ENV=production	tells	Docker	to
set	the	environment	variable	APP_ENV	to	the	value	“production”	within	the	newly
launched	container.

For	a	real-world	example,	let’s	assume	we	pulled	the	image	for	the	chat	robot	hubot	with
the	HipChat	adapter	installed.	We’d	issue	something	like	the	following	command	to	get	it
running:

docker	run	\

		-e	BIND_ADDRESS="0.0.0.0"

		-e	ENVIRONMENT="development"	\

		-e	SERVICE_NAME="hubot"	\

		-e	SERVICE_ENV="development"	\

		-e	EXPRESS_USER="hubot"	\

		-e	EXPRESS_PASSWORD="Chd273gdExAmPl3wlkjdf"	\

		-e	PORT="8080"	\

		-e	HUBOT_ADAPTER="hipchat"	\

		-e	HUBOT_ALIAS="/"	\

		-e	HUBOT_NAME="hubot"	\

		-e	HUBOT_HIPCHAT_JID="someroom@chat.hipchat.com"	\

		-e	HUBOT_HIPCHAT_PASSWORD='SOMEEXAMPLE'	\

		-e	HUBOT_HIPCHAT_NAME="hubot"	\

		-e	HUBOT_HIPCHAT_ROOMS="anotherroom@conf.hipchat.com"	\

		-e	HUBOT_HIPCHAT_JOIN_ROOMS_ON_INVITE="true"	\

		-e	REDIS_URL="redis://redis:6379"	\

		-d	--restart="always"	--name	hubot	hubot:latest

Here	we	are	passing	a	whole	set	of	environment	variables	into	the	container	when	it	is
created.	When	the	process	is	launched	in	the	container,	it	will	have	access	to	these
environment	variables	so	that	it	can	properly	configure	itself	at	runtime.	These
configuration	items	are	now	an	external	dependency	that	we	can	inject	at	runtime.

In	the	case	of	a	Node.js	application	like	hubot,	you	could	then	write	the	following	code	to
make	decisions	based	on	these	environment	variables:

switch(process.env.ENVIRONMENT){

								case	'development':

												console.log('Running	in	development');

								case	'staging':

												console.log('Running	in	staging');

https://www.hipchat.com/

								case	'production':

												console.log('Running	in	production');

								default:

												console.log('Assuming	that	I	am	running	in	development');

				}

Keeping	specific	configuration	information	out	of	your	source	code	makes	it	very	easy	to
deploy	the	exact	same	container	to	multiple	environments,	with	no	changes	and	no
sensitive	information	committed	into	your	source	code	repository.	Crucially,	it	supports
testing	your	container	images	thoroughly	before	deploying	to	production	by	allowing	the
same	image	to	be	used	in	both	environments.

Backing	Services
Treat	backing	services	as	attached	resources.

Local	databases	are	no	more	reliable	than	third-party	services,	and	should	be	treated	as
such.	Applications	should	handle	the	loss	of	an	attached	resource	gracefully.	By
implementing	graceful	degradation	in	your	application	and	ensuring	that	you	never
assume	that	any	resource,	including	filesystem	space,	is	available,	your	application	will
continue	to	perform	as	many	of	its	functions	as	it	can,	even	when	external	resources	are
unavailable.

This	isn’t	something	that	Docker	helps	you	with	directly,	and	although	it	is	always	a	good
idea	to	write	robust	services,	it	is	even	more	important	when	you	are	using	containers.
High	availability	is	most	often	achieved	through	horizontal	scaling	and	rolling
deployments	when	using	containers,	instead	of	relying	on	the	live	migration	of	long-
running	process,	like	on	traditional	virtual	machines.	This	means	that	specific	instances	of
a	service	will	often	come	and	go	over	time	and	your	service	should	be	able	to	handle	this
gracefully.

Additionally,	because	Docker	containers	have	limited	filesystem	resources,	you	can’t
simply	rely	on	having	some	local	disk	available.	You	need	to	plan	that	into	your
application’s	dependencies	and	handle	it	explicitly.

Build,	Release,	Run
Strictly	separate	build	and	run	stages.

Build	the	code,	release	it	with	the	proper	configuration,	and	then	deploy	it.	This	ensures
that	you	maintain	control	of	the	process	and	can	perform	any	single	step	without
triggering	the	whole	workflow.	By	ensuring	that	each	of	these	steps	are	self-contained	in	a
distinct	process,	it	allows	you	to	tighten	the	feedback	loop	and	react	more	quickly	to	any
problems	within	the	deployment	flow.

As	you	design	your	Docker	workflow,	you	want	to	ensure	that	each	step	in	the	deployment
process	is	clearly	separated.	It	is	perfectly	fine	to	have	a	single	button,	that	builds	a
container,	tests	it,	and	then	deploys	it,	assuming	that	you	trust	your	testing	processes	—
but	you	don’t	want	to	be	forced	to	rebuild	a	container	simply	in	order	to	deploy	it	to
another	environment.

Docker	supports	the	twelve-factor	ideal	well	in	this	area	because	there	is	a	clean	hand-off
point	between	building	an	image	and	shipping	it	to	production:	the	registry.	If	your	build
process	generates	images	and	pushes	them	to	the	registry,	then	deployment	can	simply	be
pulling	the	image	down	to	servers	and	running	it.

Processes
Execute	the	app	as	one	or	more	stateless	processes.

All	shared	data	must	be	accessed	via	a	stateful	backing	store,	so	that	application	instances
can	easily	be	redeployed	without	losing	any	important	session	data.	You	don’t	want	to
keep	critical	state	on	disk	in	your	ephemeral	container,	nor	in	the	memory	of	one	of	its
processes.	Containerized	applications	should	always	be	considered	ephemeral.	A	truly
dynamic	container	environment	requires	the	ability	to	destroy	and	recreate	containers	at	a
moment’s	notice.	This	flexibility	helps	enable	the	rapid	deployment	cycle	and	outage
recovery	demanded	by	modern,	Agile	workflows.

As	much	as	possible,	it	is	preferable	to	write	applications	that	do	not	need	to	keep	state
longer	than	the	time	required	to	process	and	respond	to	a	single	request.	This	ensures	that
the	impact	of	stopping	any	given	container	in	your	application	pool	is	very	minimal.	When
you	must	maintain	state,	the	best	approach	is	to	use	a	remote	datastore	like	Redis,
PostgreSQL,	Memcache,	or	even	Amazon	S3,	depending	on	your	resiliency	needs.

Port	Binding
Export	services	via	port	binding.

Your	application	needs	to	be	addressable	by	a	port	specific	to	itself.	Applications	should
bind	directly	to	a	port	to	expose	the	service	and	should	not	rely	on	an	external	daemon	like
inetd	to	handle	that	for	them.	You	should	be	certain	that	when	you’re	talking	to	that	port,
you’re	talking	to	your	application.	Most	modern	web	platforms	are	quite	capable	of
directly	binding	to	a	port	and	servicing	their	own	requests.

Exposing	a	port	from	your	container,	as	discussed	in	Chapter	4,	can	be	achieved	by
launching	docker	run	commands	that	use	the	-p	command-line	argument.	Using	-p
80:8080	would	tell	Docker	to	proxy	the	container’s	port	80	on	the	host’s	port	8080.

The	statically	linked	Go	hello	world	container	that	we	discussed	in	“Dependencies”	is	a
great	example	of	this	because	the	container	contains	nothing	but	our	application	to	serve
its	content	to	a	web	browser.	We	did	not	need	to	include	any	additional	web	servers,	which
would	require	additional	configuration,	add	additional	complexity,	and	increase	the
number	of	potential	failure	points	in	our	system.

Concurrency
Scale	out	via	the	process	model.

Design	for	concurrency	and	horizontal	scaling	within	your	applications.	Increasing	the
resources	of	an	existing	instance	can	be	difficult	and	hard	to	reverse.	Adding	and
removing	instances	as	scale	fluctuates	is	much	easier	and	helps	maintain	flexibility	in	the
infrastructure.	Launching	another	container	on	a	new	server	is	incredibly	inexpensive
compared	to	the	effort	and	expense	required	to	add	resources	to	an	underlying	virtual	or
physical	system.	Designing	for	horizontal	scaling	allows	the	platform	to	react	much	faster
to	changes	in	resource	requirements.

This	is	where	tools	like	swarm,	mesos,	and	kubernetes	really	begin	to	shine.	Once	you
have	implemented	a	Docker	cluster	with	a	dynamic	scheduler,	it	is	very	easy	to	add	three
more	instances	of	a	container	to	the	cluster	as	load	increases,	and	then	to	later	remove	two
instances	of	your	application	from	the	cluster	as	load	starts	to	decrease	again.

Disposability
Maximize	robustness	with	fast	startup	and	graceful	shutdown.

Services	should	be	designed	to	be	ephemeral.	We	already	talked	a	little	bit	about	this	when
talking	about	external	state.	But	dynamic	horizontal	scaling,	rolling	deploys,	and
responding	to	unexpected	problems	require	applications	that	can	quickly	and	easily	be
started	or	shut	down.	Services	should	respond	gracefully	to	a	SIGTERM	signal	from	the
operating	system	and	even	handle	hard	failures	with	aplomb.	Most	importantly,	we
shouldn’t	need	to	care	if	any	given	container	for	our	application	is	up	and	running.	As
long	as	requests	are	being	served,	the	developer	should	be	freed	from	being	concerned
about	the	health	of	any	given	single	component	within	the	system.	If	an	individual	node	is
behaving	poorly,	turning	it	off	or	redeploying	it	should	be	an	easy	decision	that	doesn’t
entail	long	planning	sessions	and	concerns	about	the	health	of	the	rest	of	the	cluster.

As	discussed	in	Chapter	8,	Docker	sends	standard	Unix	signals	to	containers	when	it	is
stopping	or	killing	them,	therefore	it	is	possible	for	any	containerized	application	to	detect
these	signals	and	take	the	appropriate	steps	to	shut	down	gracefully.

Development/Production	Parity
Keep	development,	staging,	and	production	as	similar	as	possible.

The	same	processes	and	artifacts	should	be	used	to	build,	test,	and	deploy	services	into	all
environments.	The	same	people	should	do	the	work	in	all	environments,	and	the	physical
nature	of	the	environments	should	be	as	similar	as	reasonably	possible.	Repeatability	is
incredibly	important.	Almost	any	issue	discovered	in	production	points	to	a	failure	in	the
process.	Every	area	where	production	diverges	from	staging	is	an	area	where	risk	is	being
introduced	into	the	system.	These	inconsistencies	ensure	that	you	are	blind	to	certain	types
of	issues	that	could	occur	in	your	production	environment	until	it	is	too	late	to	proactively
deal	with	them.

In	many	ways,	this	repeats	the	essence	of	a	few	of	the	early	recommendations.	However,
the	specific	point	here	is	that	any	environment	divergence	introduces	risks,	and	although
these	differences	are	common	in	many	organizations,	they	are	much	less	necessary	in	a
containerized	environment.	Docker	servers	can	normally	be	created	so	that	they	are
identical	in	all	of	your	environments	and	environment-based	configuration	changes,	and
should	typically	only	affect	which	endpoints	your	service	connects	to	without	specifically
changing	the	applications	behavior.

Logs
Treat	logs	as	event	streams.

Services	should	not	concern	themselves	with	routing	or	storing	logs.	Instead,	events
should	be	streamed,	unbuffered,	to	STDOUT	for	handling	by	the	hosting	process.	In
development,	STDOUT	can	be	easily	viewed,	while	in	staging	and	production,	the	stream
can	be	routed	to	anything,	including	a	central	logging	service.	Different	environments
have	different	exceptions	for	log	handling.	This	logic	should	never	be	hard-coded	into	the
application.	By	streaming	everything	to	STDOUT,	it	is	possible	for	the	top-level	process
manager	to	handle	the	logs	via	whichever	method	is	best	for	the	environment,	and	this
allows	the	application	developer	to	focus	on	core	functionality.

In	Chapter	6,	we	discussed	the	docker	logs	command	which	collects	the	output	from
your	container’s	STDOUT	and	records	them	as	logs.	If	you	write	logs	to	random	files	within
the	container’s	filesystem,	you	will	not	have	easy	access	to	them.	It	is	also	possible	to	send
logs	to	a	local	or	remote	logging	system	using	things	like	rsyslog	or	heka.

If	you	use	a	process	manager	or	init	system,	like	upstart,	systemd,	or	supervisord	with
the	remote-logging	plug-in,	it	is	usually	very	easy	to	direct	all	process	output	to	STDOUT
and	then	have	your	process	monitor	capture	it	and	send	it	to	a	remote	logging	host.

Admin	Processes
Run	admin/management	tasks	as	one-off	processes.

One-off	administration	tasks	should	be	run	via	the	exact	same	code	base	and	configuration
that	the	application	uses.	This	helps	avoid	problems	with	synchronization	and
code/schema	drift	problems.	Oftentimes,	management	tools	exist	as	one-off	scripts	or	live
in	a	completely	different	code	base.	It	is	much	safer	to	build	management	tools	within	the
application’s	code	base,	and	utilize	the	same	libraries	and	functions	to	perform	required
work.	This	can	significantly	improve	the	reliability	of	these	tools	by	ensuring	that	they
leverage	the	same	code	paths	that	the	application	relies	on	to	perform	its	core
functionality.

What	this	means	is	that	you	should	never	rely	on	random	cron-like	scripts	to	perform
administrative	and	maintenance	functions.	Instead,	include	all	of	these	scripts	and
functionality	in	your	application	code	base.	Assuming	that	these	don’t	need	to	be	run	on
every	instance	of	your	application,	you	can	launch	a	special	short-lived	container
whenever	you	need	to	run	a	maintenance	job,	which	simply	executes	the	one	job,	reports
its	status	somewhere,	and	then	exits.

Twelve-Factor	Wrap-Up
While	it	wasn’t	written	as	a	Docker-specific	manifesto,	almost	all	of	this	can	be	applied	to
writing	and	deploying	applications	on	a	Docker	platform.	This	is	in	part	because	“The
Twelve-Factor	App”	document	heavily	influenced	the	design	of	Docker,	and	in	part
because	the	manifesto	itself	codified	many	of	the	best	practices	promoted	by	modern
software	architects.

The	Reactive	Manifesto
Riding	alongside	“The	Twelve-Factor	App,”	another	pertinent	document	was	released	in
July	of	2013	by	Jonas	Bonér,	cofounder	and	CTO	of	Typesafe:	“The	Reactive	Manifesto.”
Jonas	originally	worked	with	a	small	group	of	contributors	to	solidify	a	manifesto	that
discusses	how	the	expectations	for	application	resiliency	have	evolved	over	the	last	few
years,	and	how	applications	should	be	engineered	to	react	in	a	predictable	manner	to
various	forms	of	interaction,	including	events,	users,	load,	and	failures.

In	the	Manifesto,	it	states	that	“Reactive	Systems”	are	responsive,	resilient,	elastic,	and
message-driven.

http://bit.ly/1F9pHng
http://www.reactivemanifesto.org
http://bit.ly/1F9pMHJ

Responsive
The	system	responds	in	a	timely	manner	if	at	all	possible.

In	general,	this	means	that	the	application	should	respond	to	requests	very	quickly.	User
simply	don’t	want	to	wait,	and	there	is	almost	never	a	good	reason	to	make	them.	If	you
have	a	containerized	service	that	renders	large	PDF	files,	design	it	so	that	it	immediately
responds	with	a	job	submitted	message	so	that	the	user	can	go	about	his	day,	and	then
provide	a	message	or	banner	that	informs	the	user	when	the	job	is	finished	and	where	he
can	download	the	resulting	PDF.

Resilient
The	system	stays	responsive	in	the	face	of	failure.

When	your	application	fails	for	any	reason,	the	situation	will	always	be	worse	if	the
application	becomes	unresponsive.	It	is	much	better	to	handle	the	failure	gracefully,	and
dynamically	reduce	the	application’s	functionality	or	even	display	a	simple	but	clear
problem	message	to	the	user	while	reporting	the	issue	internally.

Elastic
The	system	stays	responsive	under	varying	workload.

With	Docker,	this	is	achieved	by	dynamically	deploying	and	decommissioning	containers
as	requirements	and	load	fluctuate	so	that	your	application	is	always	able	to	handle	server
requests	quickly,	without	deploying	a	lot	of	underutilized	resources.

Message	Driven
Reactive	systems	rely	on	asynchronous	message-passing	to	establish	a	boundary	between
components.

Although	not	directly	addressed	by	Docker,	the	idea	here	is	that	there	are	times	when	an
application	can	become	busy	or	unavailable.	If	you	utilize	asynchronous	message-passing
between	your	services,	you	can	help	ensure	that	your	service	will	not	lose	requests	and
that	these	will	be	processed	as	soon	as	possible.

In	Summary
All	four	of	these	design	features	require	application	developers	to	design	graceful
degradation	and	a	clear	separation	of	responsibilities	into	their	applications.	By	treating	all
dependencies	as	attached	resources,	properly	designed,	dynamic	container	environments
allow	you	to	easily	maintain	n+2	status	across	your	application	stack,	reliably	scale
individual	services	in	your	environment,	and	quickly	replace	unhealthy	nodes.

The	core	ideas	in	“The	Reactive	Manifesto”	merge	very	nicely	with	“The	Twelve-Factor
App”	and	the	Docker	workflow.	These	documents	successfully	attempt	to	frame	many	of
the	most	important	discussions	about	the	way	you	need	to	think	and	work	if	you	want	to
be	successful	in	meeting	new	expectations	in	the	industry.	The	Docker	workflow	provides
a	practical	way	to	implement	many	of	these	ideas	in	any	organization	in	a	completely
approachable	way.

Chapter	12.	Conclusion

We’ve	had	a	pretty	good	tour	through	what	Docker	is	and	isn’t,	and	how	it	can	benefit	you
and	your	organization.	We	also	mapped	some	of	the	common	pitfalls.	We	have	tried	to
impart	to	you	many	of	the	small	pieces	of	wisdom	that	we	picked	up	from	running	Docker
in	production.	Our	personal	experience	has	shown	that	the	promise	of	Docker	is
realistically	achievable,	and	we’ve	seen	significant	benefits	in	our	organization	as	a	result.
Like	other	powerful	technologies,	Docker	is	not	without	its	downsides,	but	the	net	result
has	been	a	big	positive	for	us,	our	teams,	and	our	organization.	If	you	implement	the
Docker	workflow	and	integrate	it	into	the	processes	you	already	have	in	your	organization,
there	is	every	reason	to	believe	that	you	can	benefit	from	it	as	well.	So	let’s	quickly	review
the	problems	that	Docker	is	designed	to	help	you	solve	and	some	of	the	power	it	brings	to
the	table.

The	Challenges
In	traditional	deployment	workflows,	there	are	all	manner	of	required	steps	that
significantly	contribute	to	the	overall	pain	felt	by	teams.	Every	step	you	add	to	the
deployment	process	for	an	application	increases	the	overall	risk	inherent	in	shipping	it	to
production.	Docker	combines	a	workflow	with	a	simple	tool	set	that	is	targeted	squarely	at
addressing	these	concerns.	Along	the	way,	it	aims	your	development	process	toward	some
industry	best	practices,	and	its	opinionated	approach	leads	to	better	communication	and
more	robustly	crafted	applications.	Some	of	the	specific	problems	that	Docker	can	help
mitigate	include:

Outdated	build	and	release	processes	that	require	multiple	levels	of	handoff	between
development	and	operations	teams.

The	giant	build-deploy	step	required	by	many	frontend	sites	that	require	asset
compilation,	or	dynamic	languages	that	need	dependencies	to	be	assembled	together.

Divergent	dependency	versions	required	by	applications	that	need	to	share	the	same
hardware.

Managing	multiple	Linux	distributions	in	the	same	organization.

Building	one-off	deployment	processes	for	each	application	you	put	into	production.

The	constant	need	to	patch	dependencies	for	security	vulnerabilities	while	running	your
application	in	production.

By	using	the	registry	as	a	handoff	point,	Docker	eases	and	simplifies	communication
between	operations	and	development	teams,	or	between	multiple	development	teams	on
the	same	project.	By	bundling	all	of	the	dependencies	for	an	application	into	one	shipping
artifact,	Docker	eliminates	concerns	about	which	Linux	distrubition	developers	want	to
work	on,	which	versions	of	libraries	they	need	to	use,	and	how	they	compile	their	assets	or
bundle	their	software.	It	isolates	operations	teams	from	the	build	process	and	puts
developers	in	charge	of	their	dependencies.

The	Docker	Workflow
Docker’s	workflow	helps	organizations	tackle	really	hard	problems	—	some	of	the	same
problems	that	DevOps	processes	are	aimed	at	solving.	A	major	problem	in	incorporating
DevOps	successfully	into	a	company’s	processes	is	that	many	people	have	no	idea	where
to	start.	Tools	are	often	incorrectly	presented	as	the	solution	to	what	are	fundamentally
process	problems.	Adding	virtualization,	automated	testing,	deployment	tools,	or
configuration	management	suites	to	the	environment	often	just	changes	the	nature	of	the
problem	without	delivering	a	resolution.

It	would	be	easy	to	dismiss	Docker	as	just	another	tool	making	unfulfillable	promises
about	fixing	your	business	processes,	but	that	would	be	selling	it	short.	Where	Docker’s
power	meets	the	road	is	in	the	way	that	its	natural	workflow	allows	applications	to	travel
through	their	whole	life	cycle,	from	conception	to	retirement,	within	one	ecosystem.	That
workflow	is	often	opinionated,	but	it	follows	a	path	that	simplifies	the	adoption	of	some	of
the	core	principles	of	DevOps.	It	encourages	development	teams	to	understand	the	whole
life	cycle	of	their	application,	and	allows	operations	teams	to	support	a	much	wider	variety
of	applications	on	the	same	runtime	environment.	And	that	delivers	value	across	the
board.

Minimizing	Deployment	Artifacts
Docker	alleviates	the	pain	induced	by	sprawling	deployment	artifacts.	It	does	this	by
defining	the	result	of	a	build	as	a	single	artifact,	the	Docker	image,	which	contains
everything	your	Linux	application	requires	to	run,	and	it	executes	it	within	a	protected
runtime	environment.	Containers	can	then	be	easily	deployed	on	modern	Linux
distributions.	But	because	of	the	clean	split	between	Docker	client	and	server,	developers
can	build	their	applications	on	non-Linux	systems	and	still	participate	in	the	Linux
container	environment	remotely.

Leveraging	Docker	allows	software	developers	to	create	Docker	images	that,	starting	with
the	very	first	proof	of	concept	release,	can	be	run	locally,	tested	with	automated	tools,	and
deployed	into	integration	or	production	environments	without	ever	rebuilding	them.	This
ensures	that	the	application	will	run	in	production	in	the	exact	same	environment	in	which
it	was	built	and	tested.	Nothing	needs	to	be	recompiled	or	repackaged	during	the
deployment	workflow,	which	significantly	lowers	the	normal	risks	inherent	in	most
deployment	processes.	It	also	means	that	a	single	build	step	replaces	a	typically	error-
prone	process	that	involves	compiling	and	packaging	multiple	complex	components	for
distribution.

Docker	images	also	simplify	the	installation	and	configuration	of	an	application	by
ensuring	that	every	single	piece	of	software	that	an	application	requires	to	run	on	a
modern	Linux	kernel	is	contained	in	the	image,	with	nothing	else	that	might	cause
dependency	conflicts	in	many	environments.	This	makes	it	trivial	to	run	multiple
applications	that	rely	on	different	versions	of	core	system	software	on	the	exact	same
server.

Optimizing	Storage	and	Retrieval
Docker	leverages	filesystem	layers	to	allow	containers	to	be	built	from	a	composite	of
multiple	images.	This	shaves	a	vast	amount	of	time	and	effort	off	of	many	deployment
processes	by	shipping	only	significant	changes	across	the	wire.	It	also	saves	considerable
disk	space	by	allowing	multiple	containers	to	be	based	on	the	same	lower-level	OS	image,
and	then	utilizing	a	copy-on-write	process	to	write	new	or	modified	files	into	a	top	layer.
This	also	helps	in	scaling	an	application	by	simply	starting	more	copies	on	the	same
servers	without	the	need	to	push	it	across	the	wire	for	each	new	instance.

To	support	image	retrieval,	Docker	leverages	the	image	registry	for	hosting	images.	While
not	revolutionary	on	the	face	of	it,	the	registry	actually	helps	split	team	responsibilities
clearly	along	the	lines	embraced	by	DevOps	principles.	Developers	can	build	their
application,	test	it,	ship	the	final	image	to	the	registry,	and	deploy	the	image	to	the
production	environment,	while	the	operations	team	can	focus	on	building	excellent
deployment	and	cluster	management	tooling	that	pulls	from	the	registry,	runs	reliably,	and
ensures	environmental	health.	Operations	teams	can	provide	feedback	to	developers	and
see	it	tested	at	build	time	rather	than	waiting	to	find	problems	when	the	application	is
shipped	to	production.	This	enables	both	teams	to	focus	on	what	they	do	best	without	a
multiphased	handoff	process.

The	Payoff
As	teams	become	more	confident	with	Docker	and	its	workflow,	the	realization	often
dawns	that	containers	create	an	incredibly	powerful	abstraction	layer	between	all	of	their
software	components	and	the	underlying	operating	system.	Done	correctly,	organizations
can	begin	to	move	away	from	the	legacy	need	to	create	custom	physical	servers	or	virtual
machines	for	most	applications,	and	instead	deploy	fleets	of	identical	Docker	hosts	that
can	then	be	used	as	a	large	pool	of	resources	to	dynamically	deploy	their	applications	to,
with	an	ease	that	was	never	before	so	smooth.

When	these	process	changes	are	successful,	the	cultural	impact	within	a	software
engineering	organization	can	be	dramatic.	Developers	gain	more	ownership	of	their
complete	application	stack,	including	many	of	the	smallest	details,	which	would	typically
be	handled	by	a	completely	different	group.	Operations	teams	are	simultaneously	freed
from	trying	to	package	and	deploy	complicated	dependency	trees	with	little	or	no	detailed
knowledge	of	the	application.

In	a	well-designed	Docker	workflow,	developers	compile	and	package	the	application,
which	makes	it	much	easier	to	become	more	operationally	focused	and	ensure	that	their
application	is	running	properly	in	all	environments,	without	being	concerned	about
significant	changes	introduced	to	the	application	environment	by	the	operations	teams.	At
the	same	time,	operations	teams	are	freed	from	spending	most	of	their	time	supporting	the
application	and	can	focus	on	creating	a	robust	and	stable	platform	for	the	application	to
run	on.	This	dynamic	creates	a	very	healthy	environment	where	teams	have	clearer
ownership	and	responsibilities	in	the	application	delivery	process,	and	friction	between	the
teams	is	significantly	decreased.

Getting	the	process	right	has	a	huge	benefit	to	both	the	company	and	the	customers.	With
organizational	friction	removed,	software	quality	is	improved,	processes	are	streamlined,
and	code	ships	to	production	faster.	This	all	helps	free	the	organization	to	spend	more	time
providing	a	satisfying	customer	experience	and	delivering	directly	to	the	broader	business
objectives.	A	well-implemented	Docker-based	workflow	can	greatly	help	organizations
achieve	those	goals.

The	Final	Word
You	are	now	armed	with	knowledge	that	we	hope	can	help	you	with	the	process	of	getting
Docker	into	production.	We	encourage	you	to	experiment	with	Docker	on	a	small	scale	on
your	laptop	or	in	a	VM	to	develop	a	strong	understanding	of	how	all	of	the	pieces	fit
together,	and	then	consider	how	you	might	begin	to	implement	it	yourself.	Every
organization	or	individual	developer	will	follow	a	different	path	determined	by	their	own
needs	and	competencies.	If	you’re	looking	for	guidance	on	how	to	start,	we’ve	found
success	in	tackling	the	deployment	problem	first	with	simpler	tools,	and	then	moving	on	to
things	like	service	discovery	and	distributed	scheduling.	Docker	can	be	made	as
complicated	as	you	like,	but	as	with	anything,	starting	simple	usually	pays	off.

We	hope	you	can	now	go	forth	with	the	knowledge	we’ve	imparted	and	make	good	on
some	of	the	promise	for	yourself.

Index

A

admin	management,	Admin	Processes

Amazon	AWS,	Amazon	EC2	Container	Service-Configuration

(see	also	EC2	Container	Service)

Amazon	ECS	(see	EC2	Container	Service)

Ansible,	Orchestration	Tools,	Centurion

Apache	Mesos,	Distributed	Schedulers,	Docker	at	Scale

API	(application	programming	interface),	Application	Programming	Interface
(API),	Container	Stats

AppArmor,	Containers	in	Detail,	SElinux,	AppArmor

architectural	philosophy,	The	Promise	of	Docker

architecture,	Architecture-Container	Networking

API	(application	programming	interface),	Application	Programming	Interface
(API)

client/server	model,	Client/Server	Model

command-line	tool,	Docker	Command-Line	Tool

container	networking,	Container	Networking-Container	Networking,	Networking-
Networking

ports	(see	network	ports)

tooling,	Robust	Tooling

(see	also	tools)

artifacts,	packaged,	Benefits	of	the	Docker	Workflow

atomic	hosts,	Atomic	hosts-Atomic	hosts,	Important	Terminology

AUFS,	AUFS,	Device	Mapper,	BTRFS,	vfs

Azure,	Docker	at	Scale

B

backend	storage,	Storage-AUFS,	Device	Mapper,	BTRFS,	vfs

backing	services,	Backing	Services

base	images,	Custom	Base	Images

bind	mounts,	Hostname

Bonér,	Jonas,	The	Reactive	Manifesto

Boot2Docker,	What	Docker	Isn’t,	Docker	Client,	Non-Linux	VM-Based	Server

daemon	configuration,	Boot2Docker

installation,	Mac	OS	X	10.10-Microsoft	Windows	8

bridge	interface,	Container	Networking

BTRFS,	AUFS,	Device	Mapper,	BTRFS,	vfs

builds,	Building,	Build,	Release,	Run

bundling,	Benefits	of	the	Docker	Workflow

C

cAdvisor,	cAdvisor-cAdvisor

Centurion,	Orchestration	Tools,	Docker	at	Scale,	Centurion-Centurion

cgroups,	Control	Groups	(cgroups)-The	/sys	filesystem

freezer,	Pausing	and	Unpausing	a	Container

and	LXC	execution	drivers,	The	LXC	execution	driver

and	the	/sys	Filesystem,	The	/sys	filesystem-The	/sys	filesystem

client/server	model,	Client/Server	Model

cloud	deployment,	Docker	at	Scale,	Amazon	EC2	Container	Service-Wrap-Up

(see	also	EC2	Container	Service)

cloud	platforms,	What	Docker	Isn’t,	Docker	at	Scale-Docker	at	Scale

cloud-init	tool,	Vagrant

codebase,	Codebase

command-line	tool	(Docker),	Docker	Command-Line	Tool

commands,	order	of,	Anatomy	of	a	Dockerfile

communication	issues,	The	Promise	of	Docker-The	Promise	of	Docker

community	tooling,	The	Docker	Ecosystem-Additional	tools

Compose,	Robust	Tooling

concurrency,	Concurrency

configuration	(Docker),	Config-Config

configuration	management,	The	Promise	of	Docker,	What	Docker	Isn’t,	Towards	an
Immutable	Infrastructure,	Orchestration	Tools

Container	Engine,	Docker	at	Scale

container	instances,	Container	Instances-Container	Instances

containers,	Working	with	Docker	Containers-Cleaning	Up	Containers	and	Images

(see	also	production	containers)

auto-restarting,	Auto-Restarting	a	Container

benefits	of,	Benefits	of	the	Docker	Workflow,	Containers	Are	Not	Virtual
Machines-Externalizing	State

cgroups,	Control	Groups	(cgroups)-The	/sys	filesystem

cleaning	up,	Cleaning	Up	Containers	and	Images-Cleaning	Up	Containers	and

Images

CPU	usage,	Resource	Quotas-CPU	pinning

creating,	Creating	a	Container-ulimits

debugging,	Debugging	Containers-Moving	Along

(see	also	debugging	containers)

defined,	Important	Terminology,	What	Are	Containers?

deleting,	Cleaning	Up	Containers	and	Images-Cleaning	Up	Containers	and	Images

disposability	of,	The	Promise	of	Docker

distinction	from	virtual	machines,	Containers	Are	Not	Virtual	Machines

domain	name	service	(DNS),	Domain	Name	Service	(DNS)

entering	already	running,	Getting	Inside	a	Running	Container-nsenter

exploring	the	shell,	Exploring	the	Shell

externalizing	state,	Externalizing	State

hostname,	Hostname-Hostname

images	(see	images)

inspecting,	Inspecting	a	Container-Inspecting	a	Container,	Inspecting	a	Container-
Inspecting	a	Container

isolation	and,	Limited	Isolation

killing,	Killing	a	Container

labels,	Labels

lightweight,	Containers	Are	Lightweight

Linux,	Benefits	of	the	Docker	Workflow

media	access	control	(MAC)	address,	Media	Access	Control	(MAC)	address

memory	constraints,	Memory-Memory

namespaces,	Kernel	Namespaces,	User	Namespaces-Exploring	Namespaces

naming,	Container	name

networking,	Container	Networking-Container	Networking

overview	and	background,	What	Are	Containers?-History	of	Containers

pausing/unpausing,	Pausing	and	Unpausing	a	Container

resource	quotas,	Resource	Quotas-ulimits

returning	a	result,	Returning	a	Result-Returning	a	Result

shipping	container	metaphor,	Packaging

starting,	Starting	a	Container-Auto-Restarting	a	Container

stateless	aspects	of,	Stateless	Applications

stats	on,	Container	Stats-Container	Stats

stopping,	Stopping	a	Container-Stopping	a	Container

storage	volumes,	Storage	Volumes-Storage	Volumes

support	and	adoption,	Broad	Support	and	Adoption

ulimits,	ulimits

CoreOS,	Vagrant

daemon	configuration,	CoreOS

Enterprise	Registry,	Public	Registries,	Private	Registries

Fleet,	Distributed	Schedulers

Rocket,	History	of	Containers

CPUs

pinning,	CPU	pinning

shares,	CPU	shares-CPU	shares

usage,	Resource	Quotas-CPU	pinning

custom	base	images,	Custom	Base	Images

D

daemon

configuring,	Configuring	the	Docker	daemon-CoreOS

security,	How	Secure	Is	the	Docker	Daemon?-How	Secure	Is	the	Docker	Daemon?

daemon	mode,	Docker	Server

Debian	systems,	Docker	Client

debugging	containers,	Debugging	Containers-Moving	Along

controlling	processes,	Controlling	Processes

filesystem	inspection,	Filesystem	Inspection

image	history,	Image	History

inspecting,	Inspecting	a	Container-Inspecting	a	Container

network	inspection,	Network	Inspection-Network	Inspection

process	inspection,	Process	Inspection-Process	Inspection

process	output,	Process	Output-Process	Output

deleting	containers	and	images,	Cleaning	Up	Containers	and	Images-Cleaning	Up
Containers	and	Images

dependencies,	Dependencies-Dependencies

deployment,	Deploying,	Deploying-Deployment	Wrap-Up

distributed	schedulers,	Distributed	Schedulers

frameworks,	What	Docker	Isn’t

orchestration	tools,	Orchestration	Tools

process	simplification,	Process	Simplification-Process	Simplification

tooling,	Classes	of	Tooling-Classes	of	Tooling

deployment	artifacts,	minimizing,	Minimizing	Deployment	Artifacts

design	(see	platform	design)

devicemapper,	AUFS,	Device	Mapper,	BTRFS,	vfs,	AUFS,	Device	Mapper,	BTRFS,
vfs

disposability,	Disposability

distributed	schedulers,	Distributed	Schedulers

Distribution,	Other	Approaches	to	Image	Delivery

Docker

introduction	of,	The	Birth	of	Docker

limitations	and	compatible	tools,	What	Docker	Isn’t-What	Docker	Isn’t

support	and	adoption,	Broad	Support	and	Adoption

terminology,	Important	Terminology

uses	and	benefits,	The	Challenges-The	Payoff

workflow	benefits,	Benefits	of	the	Docker	Workflow-Benefits	of	the	Docker
Workflow,	The	Docker	Workflow

docker

-d,	Network	Ports	and	Unix	Sockets,	Container	Networking,	Docker	Server,
Configuring	the	Docker	daemon,	ulimits,	Server	Information,	Process	Output,
Execution	Drivers,	native,	lxc,	etc.,	AUFS,	Device	Mapper,	BTRFS,	vfs,	Exploring
Namespaces

build,	Building,	Building	an	Image,	Building	an	Image,	Quick	Overview

create,	Creating	a	Container,	Hostname,	Resource	Quotas,	Starting	a	Container,
The	/sys	filesystem

diff,	Filesystem	Inspection,	Filesystem	Inspection

events,	Monitoring	Docker,	Docker	Events,	Docker	Events,	The	/sys	filesystem

exec,	docker	exec,	docker	exec,	nsenter,	nsenter,	Filesystem	Inspection,	Kernel
Namespaces,	User	Namespaces,	Exploring	Namespaces,	Exploring	Namespaces,
Dependencies

export,	Exploration

history,	Image	History

images,	Cleaning	Up	Containers	and	Images,	Cleaning	Up	Containers	and	Images

import,	Exploration

info,	Boot2Docker,	Vagrant,	Resource	Quotas,	Server	Information,	nsenter,
Docker	Swarm,	Execution	Drivers,	AUFS,	Device	Mapper,	BTRFS,	vfs

inspect,	Anatomy	of	a	Dockerfile,	Labels,	Inspecting	a	Container,	Inspecting	a
Container,	nsenter,	Inspecting	a	Container

kill,	Killing	a	Container,	Controlling	Processes

load,	Other	Approaches	to	Image	Delivery

login,	Logging	in	to	a	registry,	Logging	in	to	a	registry

logout,	Logging	in	to	a	registry

logs,	Docker	Logs,	Docker	Logs,	Docker	Logs,	Inspecting	a	Container,	native,	lxc,
etc.,	Logs

pause,	Stopping	a	Container,	Pausing	and	Unpausing	a	Container

ps,	Running	Your	Image,	Environment	Variables,	Labels,	Starting	a	Container,
Auto-Restarting	a	Container,	Stopping	a	Container,	Killing	a	Container,	Pausing
and	Unpausing	a	Container,	Cleaning	Up	Containers	and	Images,	Inspecting	a
Container,	Inspecting	a	Container,	nsenter,	Process	Output,	Controlling	Processes,
Network	Inspection,	Inspecting	a	Container,	Docker	Swarm,	Docker	Swarm,
Docker	Swarm,	Docker	Swarm,	native,	lxc,	etc.,	The	/sys	filesystem,	Kernel
Namespaces,	User	Namespaces

pull,	Testing	the	local	registry	mirror	service,	Downloading	Image	Updates,
Downloading	Image	Updates,	Classes	of	Tooling,	Docker	Swarm,	Docker	Swarm,
Centurion,	Dependencies

push,	Quick	Overview

restart,	Boot2Docker

rm,	Container	name,	Cleaning	Up	Containers	and	Images,	Cleaning	Up
Containers	and	Images

rmi,	Testing	the	local	registry	mirror	service,	Cleaning	Up	Containers	and	Images,
Cleaning	Up	Containers	and	Images

run,	Ubuntu,	Running	Your	Image,	Environment	Variables,	Launching	the	local
registry	mirror	service,	Creating	a	Container,	Labels,	Hostname,	Storage	Volumes,
CPU	shares,	CPU	shares,	CPU	pinning,	Memory,	ulimits,	Auto-Restarting	a
Container,	Inspecting	a	Container,	Getting	Inside	a	Running	Container,	docker
exec,	Returning	a	Result,	Container	Stats,	cAdvisor,	cAdvisor,	Classes	of	Tooling,
Quick	Overview,	Process	Output,	Docker	Swarm,	Docker	Swarm,	Docker	Swarm,
Container	Instances,	Tasks,	The	LXC	execution	driver,	UID	0,	UID	0,	Privileged
containers,	Privileged	containers,	Privileged	containers,	Networking,
Dependencies,	Config,	Port	Binding

save,	Other	Approaches	to	Image	Delivery

start,	init.d-Based	Linux,	Creating	a	Container,	Hostname,	Starting	a	Container,
Killing	a	Container,	Docker	Events,	The	/sys	filesystem

stats,	Monitoring	Docker,	Container	Stats,	cAdvisor,	Control	Groups	(cgroups)

stop,	Environment	Variables,	Stopping	a	Container,	Stopping	a	Container,	Killing
a	Container,	Docker	Events,	Docker	Swarm,	The	/sys	filesystem

tag,	Quick	Overview

top,	Debugging	Containers,	Process	Output

unpause,	Stopping	a	Container,	Pausing	and	Unpausing	a	Container

version,	Printing	the	Docker	Version

Docker	client	installations,	Docker	Client-Microsoft	Windows	8

Linux,	Linux

Mac	OS	X,	Mac	OS	X	10.10-Homebrew	installation

Microsoft	Windows,	Microsoft	Windows	8

Docker	client,	defined,	Important	Terminology

Docker	Compose,	Robust	Tooling

Docker	container,	Important	Terminology

(see	also	containers)

Docker	Distribution	project,	Other	Approaches	to	Image	Delivery

Docker	ecosystem,	The	Docker	Ecosystem-Additional	tools

Docker	events,	Docker	Events-Docker	Events

Docker	Fig,	Robust	Tooling

Docker	host	IP	address,	Running	Your	Image

Docker	Hub,	Public	Registries,	Creating	a	Docker	Hub	account

Docker	images,	Important	Terminology

(see	also	images)

Docker	logs,	Docker	Logs-Docker	Logs

Docker	Machine,	What	Docker	Isn’t,	Robust	Tooling,	Docker	Machine-Docker
Machine

Docker	Registry,	Anatomy	of	a	Dockerfile,	Launching	the	local	registry	mirror
service

Docker	server	installations,	Docker	Server-Vagrant

Linux-based	installations,	Systemd-Based	Linux

testing,	Test	the	Setup

Docker	server,	defined,	Important	Terminology

Docker	Swarm,	Robust	Tooling,	Classes	of	Tooling,	Distributed	Schedulers,	Docker
at	Scale,	Docker	Swarm-Docker	Swarm

Docker	tooling,	Orchestration	Tools,	Centurion

Docker	version,	printing,	Printing	the	Docker	Version-Printing	the	Docker	Version

docker-registry,	Private	Registries,	Launching	the	local	registry	mirror	service

Dockerfile,	Anatomy	of	a	Dockerfile-Anatomy	of	a	Dockerfile

dogestry,	Other	Approaches	to	Image	Delivery

domain	name	service	(DNS),	Domain	Name	Service	(DNS)

E

EC2	Container	Service,	Amazon	EC2	Container	Service-Stopping	the	task

CLI	(command	line	interface)	setup,	AWS	CLI	Setup

configuration,	Configuration

container	instances,	Container	Instances-Container	Instances

IAM	role	setup,	IAM	Role	Setup

tasks,	Tasks-Stopping	the	task

elasticity,	Elastic

entering	a	running	container,	Getting	Inside	a	Running	Container-nsenter

enterprise	virtualization	platforms,	What	Docker	Isn’t

environment	variables,	Externalizing	State,	Environment	Variables,	Launching	the
local	registry	mirror	service,	Config-Config

execution	drivers,	Execution	Drivers-native,	lxc,	etc.

external	dependencies,	Outside	Dependencies

F

Fedora,	Fedora	Linux	21	(64-bit),	Systemd-Based	Linux,	Fedora

(see	also	Linux)

Fig,	Robust	Tooling

filesystem	inspection,	Filesystem	Inspection

filesystem	layers,	Filesystem	layers

Fleet,	Distributed	Schedulers

G

git,	Vagrant,	Building	an	Image

Google

cAdvisor,	cAdvisor-cAdvisor

Container	Engine,	Docker	at	Scale

Kubernetes,	Distributed	Schedulers,	Docker	at	Scale

GUI	installer,	GUI	installer

H

Helios,	Orchestration	Tools,	Docker	at	Scale,	Centurion

Heroku,	Process	Simplification,	The	Twelve-Factor	App

Homebrew	(MacOS	X),	Docker	Client,	Homebrew	installation,	Centurion

horizontal	scaling,	Concurrency

hostname,	Hostname-Hostname

hypervisors,	Limited	Isolation,	Docker	Machine,	Vagrant,	What	Are	Containers?

(see	also	VirtualBox)

I

I/O	operations	(iops),	Control	Groups	(cgroups)

image	tags,	Image	tags

images,	Working	with	Docker	Images-Other	Approaches	to	Image	Delivery,
Dependencies

authenticating	to	a	registry,	Authenticating	to	a	Registry-Logging	in	to	a	registry

build	speeds,	Building	an	Image,	Building	an	Image

building,	Building	an	Image-Building	an	Image

cleaning	up,	Cleaning	Up	Containers	and	Images-Cleaning	Up	Containers	and
Images

configuring	with	environment	variables,	Environment	Variables

custom	base,	Custom	Base	Images

deleting,	Cleaning	Up	Containers	and	Images-Cleaning	Up	Containers	and	Images

delivery	options,	Other	Approaches	to	Image	Delivery

Docker	host	IP	address,	Running	Your	Image

Docker	Hub,	Public	Registries,	Creating	a	Docker	Hub	account

Docker	Registry,	Anatomy	of	a	Dockerfile

Dockerfile,	Anatomy	of	a	Dockerfile-Anatomy	of	a	Dockerfile

downloading	updates,	Downloading	Image	Updates

history,	Image	History

layered,	Benefits	of	the	Docker	Workflow

mirroring,	Mirroring	a	Registry-Testing	the	local	registry	mirror	service

private	registries	for,	Private	Registries

public	registries	for,	Public	Registries

registries,	Client/Server	Model

(see	also	registries)

running,	Running	Your	Image-Environment	Variables

storing,	Storing	Images-Other	Approaches	to	Image	Delivery,	Optimizing	Storage
and	Retrieval

infrastructure,	immutable,	Towards	an	Immutable	Infrastructure

Init	systems

init.d-based	Linux,	init.d-Based	Linux

systemd-based	Linux,	Systemd-Based	Linux

upstart-based	Linux,	Upstart-Based	Linux

init.d,	init.d-Based	Linux

inspecting	containers,	Inspecting	a	Container-Inspecting	a	Container,	Inspecting	a
Container-Inspecting	a	Container

inspecting	processes,	Process	Inspection-Process	Inspection

installation,	Installing	Docker-Wrap-Up

(see	also	Docker	client	installations,	Docker	server	installations)

IPC	namespaces,	Kernel	Namespaces,	User	Namespaces

J

Joyent

SmartOS,	Docker	at	Scale

Triton,	Docker	at	Scale

K

kernel	capabilities,	Privileged	containers

kernel	namespaces,	Kernel	Namespaces,	User	Namespaces-Exploring	Namespaces

Kitematic,	Non-Linux	VM-Based	Server

Kubernetes,	Distributed	Schedulers,	Docker	at	Scale

L

labels,	Labels

latest	tag,	Image	tags

layered	images,	Benefits	of	the	Docker	Workflow

leveraging	Docker,	Getting	the	Most	from	Docker-Externalizing	State

libcontainer,	native,	lxc,	etc.

Linux

Docker	client	installation,	Linux

init.d-based,	init.d-Based	Linux

requirements	for	Docker,	Installing	Docker

systemd-based,	Systemd-Based	Linux

upstart-based,	Upstart-Based	Linux

Linux	Containers	Project,	native,	lxc,	etc.

log	treatment,	Logs

logging,	Docker	Logs

Logspout,	Docker	Logs

LXC	execution	drivers,	Execution	Drivers-native,	lxc,	etc.,	The	LXC	execution	driver

M

Mac	OS	X,	Docker	Client,	Mac	OS	X	10.10-Homebrew	installation,	Non-Linux	VM-
Based	Server

Machine	(see	Docker	Machine)

Mandatory	Access	Control,	SElinux,	AppArmor

media	access	control	(MAC)	address,	Media	Access	Control	(MAC)	address

memory	constraints,	Memory-Memory

Mesos,	Distributed	Schedulers,	Docker	at	Scale

message-driven	system,	Message	Driven

Microsoft

Azure,	Docker	at	Scale

Windows,	Docker	Client

Microsoft	Windows,	Microsoft	Windows	8,	Non-Linux	VM-Based	Server

mirroring	a	registry,	Mirroring	a	Registry-Testing	the	local	registry	mirror	service

monitoring,	Monitoring	Docker-cAdvisor

cAdvisor,	cAdvisor-cAdvisor

container	stats,	Container	Stats-Container	Stats

Docker	events,	Docker	Events-Docker	Events

mount	namespaces,	Kernel	Namespaces,	User	Namespaces

N

namespaces,	Process	Output,	Containers	in	Detail,	Kernel	Namespaces,	User
Namespaces-Exploring	Namespaces

native	execution	drivers,	Execution	Drivers-native,	lxc,	etc.

network	inspection,	Network	Inspection-Network	Inspection

network	namespaces,	Kernel	Namespaces,	User	Namespaces

network	ports,	Network	Ports	and	Unix	Sockets,	Container	Networking,	Docker
Server,	Boot2Docker,	Vagrant,	Creating	a	Container,	Container	Stats,	cAdvisor,
Process	Output,	Network	Inspection,	Docker	Swarm-Docker	Swarm,	Centurion-
Centurion,	Kernel	Namespaces,	User	Namespaces,	How	Secure	Is	the	Docker
Daemon?,	Networking-Networking,	Networking

networking,	Container	Networking-Container	Networking,	Networking-Networking

bridge	interface,	Container	Networking

default	network	approach,	Container	Networking

New	Relic

Centurion,	Orchestration	Tools,	Docker	at	Scale,	Centurion-Centurion

Dogestry,	Other	Approaches	to	Image	Delivery

supervisor-remote-logging,	Docker	Logs

Node,	Anatomy	of	a	Dockerfile-Anatomy	of	a	Dockerfile

non-Linux	platforms,	Docker	Client

nsenter,	nsenter-nsenter

O

OpenShift,	Docker	at	Scale

operating	system	virtualization,	What	Are	Containers?

orchestration	toolset,	Robust	Tooling,	Orchestration,	Orchestration	Tools

OS	X,	Docker	Client,	Mac	OS	X	10.10-Homebrew	installation,	Non-Linux	VM-Based
Server

outside	dependencies,	Outside	Dependencies

OverlayFS,	AUFS,	Device	Mapper,	BTRFS,	vfs

P

packaged	artifacts,	Benefits	of	the	Docker	Workflow

packaging,	Benefits	of	the	Docker	Workflow,	Packaging

PID	namespaces,	Kernel	Namespaces,	User	Namespaces,	Exploring	Namespaces

platform	design,	Designing	Your	Production	Container	Platform-Twelve-Factor
Wrap-Up

admin	management,	Admin	Processes

backing	services,	Backing	Services

build,	release,	run	separation,	Build,	Release,	Run

codebase,	Codebase

concurrency	and	horizontal	scaling,	Concurrency

configuration	information,	Config-Config

dependencies,	Dependencies-Dependencies

development/production	parity,	Development/Production	Parity

disposability,	Disposability

logs,	Logs

port	binding,	Port	Binding

stateless	processes,	Processes

pluggable	backends,	Pluggable	Backends-AUFS,	Device	Mapper,	BTRFS,	vfs

execution	drivers,	Execution	Drivers-native,	lxc,	etc.

storage,	Storage-AUFS,	Device	Mapper,	BTRFS,	vfs

port	binding,	Port	Binding

portability,	The	Promise	of	Docker

printing	the	Docker	version,	Printing	the	Docker	Version-Printing	the	Docker
Version

private	image	registries,	Private	Registries

privileged	containers,	Privileged	containers-Privileged	containers

process	control,	Controlling	Processes

process	inspection,	Process	Inspection-Process	Inspection

process	output,	Process	Output-Process	Output

processes,	stateless,	Processes

production	containers,	The	Path	to	Production	Containers-Outside	Dependencies

(see	also	containers)

deploying,	Deploying-Deployment	Wrap-Up

(see	also	deployment)

testing,	Testing	Containers-Outside	Dependencies

public	image	registries,	Public	Registries

push-to-deploy	systems,	Process	Simplification

Q

Quay.io,	Public	Registries

R

Reactive	Manifesto,	The	Reactive	Manifesto-In	Summary

Red	Hat	OpenShift,	Docker	at	Scale

Red	Hat	systems,	Docker	Client

registries,	Client/Server	Model,	Public	Registries-Testing	the	local	registry	mirror
service

authenticating	to,	Authenticating	to	a	Registry-Logging	in	to	a	registry

Docker	Hub,	Creating	a	Docker	Hub	account

logging	into,	Logging	in	to	a	registry

mirroring,	Mirroring	a	Registry-Testing	the	local	registry	mirror	service

private,	Private	Registries

public,	Public	Registries

Registry,	Anatomy	of	a	Dockerfile,	Launching	the	local	registry	mirror	service

resilience,	Resilient

resource	quotas,	Resource	Quotas-ulimits

CPU	pinning,	CPU	pinning

CPU	shares,	CPU	shares-CPU	shares

memory,	Memory-Memory

ulimits,	ulimits

responsiveness,	Responsive

returning	a	result,	Returning	a	Result-Returning	a	Result

revision	control,	Revision	Control

root	access	limits,	UID	0-UID	0

Ruby,	Centurion

S

scalability,	Docker	at	Scale-Wrap-Up

Amazon	EC2	Container	Service,	Amazon	EC2	Container	Service-Wrap-Up

(see	also	EC2	Container	Service)

Centurion,	Centurion-Centurion

(see	also	Centurion)

Docker	Swarm,	Docker	Swarm-Docker	Swarm

(see	also	Docker	Swarm)

Kubernetes,	Distributed	Schedulers,	Docker	at	Scale

Mesos,	Distributed	Schedulers,	Docker	at	Scale

security,	Security-How	Secure	Is	the	Docker	Daemon?

and	the	Docker	daemon,	How	Secure	Is	the	Docker	Daemon?-How	Secure	Is	the
Docker	Daemon?

AppArmor,	SElinux,	AppArmor

Mandatory	Access	Control,	SElinux,	AppArmor

privileged	containers,	Privileged	containers-Privileged	containers

root	access	limits,	UID	0-UID	0

SELinux,	SElinux,	AppArmor

SELinux,	Containers	in	Detail,	SElinux,	AppArmor

separating	build,	release,	run	stages,	Build,	Release,	Run

server	information,	Server	Information

shell,	exploring,	Exploring	the	Shell

shipping,	Testing

SmartOS,	Docker	at	Scale

sockets	(see	Unix	sockets)

software	packaging,	Benefits	of	the	Docker	Workflow

software	shipping,	The	Promise	of	Docker

Spotify,	Docker	Logs,	Orchestration	Tools

(see	also	Helios)

state,	externalizing,	Externalizing	State

stateless	applications,	Getting	the	Most	from	Docker,	Stateless	Applications

stateless	versus	stateful	applications,	Getting	the	Most	from	Docker

storage	backends,	Storage-AUFS,	Device	Mapper,	BTRFS,	vfs

storage	volumes,	Storage	Volumes-Storage	Volumes

supervisor-remote-logging,	Docker	Logs

Swarm	(see	Docker	Swarm)

/sys	Filesystem,	The	/sys	filesystem-The	/sys	filesystem

systemd,	Systemd-Based	Linux

T

TCP	ports,	Network	Ports	and	Unix	Sockets

terminology,	Important	Terminology

testing,	Testing,	Testing	Containers-Outside	Dependencies

tooling,	Robust	Tooling

and	Docker	API,	Application	Programming	Interface	(API)

atomic	hosts,	Atomic	hosts-Atomic	hosts

classes	of,	Classes	of	Tooling-Classes	of	Tooling

command-line	tool,	Docker	Command-Line	Tool

distributed	schedulers,	Distributed	Schedulers

orchestration,	Robust	Tooling,	Orchestration,	Orchestration	Tools

reuse	between	applications,	Packaging

support	and	adoption,	Broad	Support	and	Adoption

tools

boot2docker	(see	boot2docker)

cAdvisor,	cAdvisor-cAdvisor

Centurion,	Orchestration	Tools,	Docker	at	Scale,	Centurion-Centurion

Compose,	Robust	Tooling

Docker	Machine,	What	Docker	Isn’t,	Docker	Machine-Docker	Machine

Docker	tooling,	Centurion

fig,	Robust	Tooling

Helios,	Orchestration	Tools,	Docker	at	Scale,	Centurion

Kubernetes,	Distributed	Schedulers,	Docker	at	Scale

Mesos,	Distributed	Schedulers,	Docker	at	Scale

Registry,	Anatomy	of	a	Dockerfile,	Launching	the	local	registry	mirror	service

Swarm	(see	Docker	Swarm)

Vagrant,	What	Docker	Isn’t,	Docker	Client,	Vagrant-Vagrant

torrent-docker,	Other	Approaches	to	Image	Delivery

Triton,	Docker	at	Scale

Twelve-Factor	App,	The	Twelve-Factor	App-Twelve-Factor	Wrap-Up

U

Ubuntu,	Ubuntu	Linux	14.04	(64-bit),	Upstart-Based	Linux,	Ubuntu

(see	also	Linux)

UID	0,	UID	0-UID	0

ulimits,	ulimits

Unix	sockets,	Network	Ports	and	Unix	Sockets,	Docker	Server,	Vagrant,	Process
Inspection,	How	Secure	Is	the	Docker	Daemon?

upstart,	Upstart-Based	Linux

user	namespaces,	Kernel	Namespaces,	User	Namespaces-Exploring	Namespaces

UTS	namespaces,	Kernel	Namespaces,	User	Namespaces,	Exploring	Namespaces

V

Vagrant,	What	Docker	Isn’t,	Docker	Client,	Vagrant-Vagrant

vendor	support	and	adoption,	Broad	Support	and	Adoption

version,	printing,	Printing	the	Docker	Version-Printing	the	Docker	Version

vfs,	AUFS,	Device	Mapper,	BTRFS,	vfs

virtual	machines

as	Docker	hosts,	Non-Linux	VM-Based	Server-Vagrant

distinction	from	containers,	Containers	Are	Not	Virtual	Machines

VirtualBox,	Homebrew	installation,	Microsoft	Windows	8,	Docker	Machine

W

Wiggins,	Adam,	The	Twelve-Factor	App

Windows,	Docker	Client,	Microsoft	Windows	8,	Non-Linux	VM-Based	Server

workflow,	The	Docker	Workflow-Additional	tools

benefits	of,	Benefits	of	the	Docker	Workflow-Benefits	of	the	Docker	Workflow

builds,	Building

community	tooling,	The	Docker	Ecosystem-Additional	tools

deployment,	Deploying

filesystem	layers,	Filesystem	layers

image	tags,	Image	tags

packaging,	Packaging

revision	control,	Revision	Control-Image	tags

testing,	Testing

workload	management	tools,	What	Docker	Isn’t

About	the	Authors

Sean	Kane	is	currently	a	Lead	Site	Reliability	Engineer	at	New	Relic.		He	has	had	a	long
career	in	production	operations,	with	many	diverse	roles,	in	a	broad	range	of	industries.
He	has	spoken	about	subjects	like	alerting	fatigue	and	hardware	automation	at	various
meet-ups	and	technical	conferences,	including	Velocity.
Sean	spent	most	of	his	youth	living	overseas,	and	exploring	what	life	has	to	offer,
including	graduating	from	the	Ringling	Bros.	and	Barnum	&	Bailey	Clown	College,
completing	two	summer	internships	with	the	US	Central	Intelligence	Agency,	and
building	the	very	first	web	site	in	the	state	of	Alaska.	He	gratefully	lives	in	the	US	Pacific
Northwest	with	his	wife	and	children	an	loves	traveling	and	still	photography.

Karl	Matthias	has	worked	as	a	developer,	systems	administrator,	and	network	engineer
for	everything	from	startups	to	Fortune	500	companies.	After	working	for	startups
overseas	for	a	few	years	in	Germany	and	the	UK,	he	has	recently	returned	with	his	family
to	Portland,	Oregon,	to	work	as	Lead	Site	Reliability	Engineer	at	New	Relic.	When	not
devoting	his	time	to	things	digital,	he	can	be	found	herding	his	two	daughters,	shooting
film	with	vintage	cameras,	or	riding	one	of	his	bicycles.

Colophon

The	animal	on	the	cover	of	Docker:	Up	and	Running	is	a	bowhead	whale	(Balaena
mysticetus).	Also	known	as	the	Greenland	right	whale	or	the	Arctic	whale,	this	species
lives	entirely	in	Arctic	or	sub-Arctic	waters,	which	distinguishes	it	from	other	whales	that
migrate	to	low	latitude	waters	to	feed	or	reproduce.

Originally	thought	to	be	identical	to	its	right	whale	cousins	in	the	North	Atlantic,	North
Pacific,	and	Southern	Oceans,	the	bowhead	whale	was	separated	from	the	right	whales	in
1821	by	the	work	of	John	Edward	Gray.	It	is	now	in	a	monotypic	genus,	and	the
Balaenidae	family	remains	the	subject	of	great	taxonometric	debate.

The	bowhead	whale	is	dark-colored,	stocky,	and	without	a	dorsal	fin.	It	can	grow	up	to	66
feet	long	and	weigh	between	74	long	tons	and	98	long	tons,	and	boasts	the	thickest
blubber	of	any	animal,	averaging	17-20	inches	thick.	Its	bony	skull	is	massive	and	is	used
to	break	through	Arctic	ice	for	air.	It	has	been	reported	to	surface	through	24	inches	of	ice.
The	bowhead	whale	has	the	largest	mouth	of	any	animal,	a	strongly	bowed	lower	jaw	and
narrow	upper	jaw.	Its	paired	blowholes	can	spout	a	blow	20	feet	high.

Bowhead	whales	are	slow	swimmers	that	travel	alone	or	in	herds	of	up	to	six.	It	can
remain	submerged	for	up	to	40	minutes	in	a	single	dive.	Its	behavior	is	similar	to	its
cousin,	the	right	whale,	which	includes	curiosity	toward	humans,	breaching,	tail	slapping,
and	spyhopping.	It	is	very	vocal,	using	underwater	sounds	to	communicate	during	travel,
feeding,	and	socialization.	Bowhead	whales	are	social,	nonaggressive	animals;	when
threatened,	it	retreats	below	the	ice.	Previously	a	whaling	target,	the	bowhead	whale’s
population	has	since	recovered	from	a	severe	reduction	thanks	to	a	1966	moratorium.	It	is
now	rated	“Least	Concern.”

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	http://animals.oreilly.com.

The	cover	image	is	from	Braukhaus	Lexicon.	The	cover	fonts	are	URW	Typewriter	and
Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Foreword

Preface
Who	Should	Read	This	Book

Why	Read	This	Book?

Navigating	This	Book

Conventions	Used	in	This	Book

Safari®	Books	Online

How	to	Contact	Us

Acknowledgments

1.	Introduction
The	Birth	of	Docker

The	Promise	of	Docker
Benefits	of	the	Docker	Workflow

What	Docker	Isn’t

2.	Docker	at	a	Glance
Process	Simplification

Broad	Support	and	Adoption

Architecture
Client/Server	Model

Network	Ports	and	Unix	Sockets

Robust	Tooling

Docker	Command-Line	Tool

Application	Programming	Interface	(API)

Container	Networking

Getting	the	Most	from	Docker
Containers	Are	Not	Virtual	Machines

Containers	Are	Lightweight

Towards	an	Immutable	Infrastructure

Limited	Isolation

Stateless	Applications

Externalizing	State

The	Docker	Workflow
Revision	Control

Building

Testing

Packaging

Deploying

The	Docker	Ecosystem

Wrap-Up

3.	Installing	Docker
Important	Terminology

Docker	Client
Linux

Mac	OS	X	10.10

Microsoft	Windows	8

Docker	Server
Systemd-Based	Linux

Upstart-Based	Linux

init.d-Based	Linux

Non-Linux	VM-Based	Server

Test	the	Setup
Ubuntu

Fedora

CentOS

Wrap-Up

4.	Working	with	Docker	Images
Anatomy	of	a	Dockerfile

Building	an	Image

Running	Your	Image
Environment	Variables

Custom	Base	Images

Storing	Images
Public	Registries

Private	Registries

Authenticating	to	a	Registry

Mirroring	a	Registry

Other	Approaches	to	Image	Delivery

5.	Working	with	Docker	Containers
What	Are	Containers?

History	of	Containers

Creating	a	Container
Basic	Configuration

Storage	Volumes

Resource	Quotas

Starting	a	Container

Auto-Restarting	a	Container

Stopping	a	Container

Killing	a	Container

Pausing	and	Unpausing	a	Container

Cleaning	Up	Containers	and	Images

Next	Steps

6.	Exploring	Dockert
Printing	the	Docker	Version

Server	Information

Downloading	Image	Updates

Inspecting	a	Container

Getting	Inside	a	Running	Container
docker	exec

nsenter

Exploring	the	Shell

Returning	a	Result

Docker	Logs

Monitoring	Docker
Container	Stats

Docker	Events

cAdvisor

Exploration

7.	The	Path	to	Production	Containers
Deploying

Classes	of	Tooling

Orchestration	Tools

Distributed	Schedulers

Deployment	Wrap-Up

Testing	Containers
Quick	Overview

Outside	Dependencies

8.	Debugging	Containers
Process	Output

Process	Inspection

Controlling	Processes

Network	Inspection

Image	History

Inspecting	a	Container

Filesystem	Inspection

Moving	Along

9.	Docker	at	Scale
Docker	Swarm

Centurion

Amazon	EC2	Container	Service
IAM	Role	Setup

AWS	CLI	Setup

Container	Instances

Tasks

Testing	the	Task

Stopping	the	task

Wrap-Up

10.	Advanced	Topics
Pluggable	Backends

Execution	Drivers

Storage

Containers	in	Detail
Control	Groups	(cgroups)

Kernel	Namespaces,	User	Namespaces

Security
How	Secure	Is	Your	Container?

How	Secure	Is	the	Docker	Daemon?

Networking

11.	Designing	Your	Production	Container	Platform
The	Twelve-Factor	App

Codebase

Dependencies

Config

Backing	Services

Build,	Release,	Run

Processes

Port	Binding

Concurrency

Disposability

Development/Production	Parity

Logs

Admin	Processes

Twelve-Factor	Wrap-Up

The	Reactive	Manifesto
Responsive

Resilient

Elastic

Message	Driven

In	Summary

12.	Conclusion

The	Challenges

The	Docker	Workflow

Minimizing	Deployment	Artifacts

Optimizing	Storage	and	Retrieval

The	Payoff

The	Final	Word

Index

	Foreword
	Preface
	Who Should Read This Book
	Why Read This Book?
	Navigating This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. Introduction
	The Birth of Docker
	The Promise of Docker
	Benefits of the Docker Workflow

	What Docker Isn’t

	2. Docker at a Glance
	Process Simplification
	Broad Support and Adoption
	Architecture
	Client/Server Model
	Network Ports and Unix Sockets
	Robust Tooling
	Docker Command-Line Tool
	Application Programming Interface (API)
	Container Networking

	Getting the Most from Docker
	Containers Are Not Virtual Machines
	Containers Are Lightweight
	Towards an Immutable Infrastructure
	Limited Isolation
	Stateless Applications
	Externalizing State

	The Docker Workflow
	Revision Control
	Filesystem layers
	Image tags

	Building
	Testing
	Packaging
	Deploying
	The Docker Ecosystem
	Orchestration
	Atomic hosts
	Additional tools

	Wrap-Up

	3. Installing Docker
	Important Terminology
	Docker Client
	Linux
	Ubuntu Linux 14.04 (64-bit)
	Fedora Linux 21 (64-bit)

	Mac OS X 10.10
	GUI installer
	Homebrew installation

	Microsoft Windows 8

	Docker Server
	Systemd-Based Linux
	Upstart-Based Linux
	init.d-Based Linux
	Non-Linux VM-Based Server
	Boot2Docker
	Docker Machine
	Vagrant

	Test the Setup
	Ubuntu
	Fedora
	CentOS

	Wrap-Up

	4. Working with Docker Images
	Anatomy of a Dockerfile
	Building an Image
	Running Your Image
	Environment Variables

	Custom Base Images
	Storing Images
	Public Registries
	Private Registries
	Authenticating to a Registry
	Creating a Docker Hub account
	Logging in to a registry

	Mirroring a Registry
	Configuring the Docker daemon
	Boot2Docker
	Ubuntu
	Fedora
	CoreOS

	Launching the local registry mirror service
	Testing the local registry mirror service

	Other Approaches to Image Delivery

	5. Working with Docker Containers
	What Are Containers?
	History of Containers

	Creating a Container
	Basic Configuration
	Container name
	Labels
	Hostname
	Domain Name Service (DNS)
	Media Access Control (MAC) address

	Storage Volumes
	Resource Quotas
	CPU shares
	CPU pinning
	Memory
	ulimits

	Starting a Container
	Auto-Restarting a Container
	Stopping a Container
	Killing a Container
	Pausing and Unpausing a Container
	Cleaning Up Containers and Images
	Next Steps

	6. Exploring Dockert
	Printing the Docker Version
	Server Information
	Downloading Image Updates
	Inspecting a Container
	Getting Inside a Running Container
	docker exec
	nsenter

	Exploring the Shell
	Returning a Result
	Docker Logs
	Monitoring Docker
	Container Stats
	Docker Events
	cAdvisor

	Exploration

	7. The Path to Production Containers
	Deploying
	Classes of Tooling
	Orchestration Tools
	Distributed Schedulers
	Deployment Wrap-Up

	Testing Containers
	Quick Overview
	Outside Dependencies

	8. Debugging Containers
	Process Output
	Process Inspection
	Controlling Processes
	Network Inspection
	Image History
	Inspecting a Container
	Filesystem Inspection
	Moving Along

	9. Docker at Scale
	Docker Swarm
	Centurion
	Amazon EC2 Container Service
	IAM Role Setup
	AWS CLI Setup
	Installation
	Mac OS X
	Windows
	Other

	Configuration

	Container Instances
	Tasks
	Testing the Task
	Installing NetCat/Telnet
	Mac OS X
	Debian-based system
	RedHat-based systems
	Windows

	Connecting to the container
	netcat
	telnet

	Stopping the task

	Wrap-Up

	10. Advanced Topics
	Pluggable Backends
	Execution Drivers
	native, lxc, etc.

	Storage
	AUFS, Device Mapper, BTRFS, vfs

	Containers in Detail
	Control Groups (cgroups)
	The LXC execution driver
	The /sys filesystem

	Kernel Namespaces, User Namespaces
	Exploring Namespaces

	Security
	How Secure Is Your Container?
	UID 0
	Privileged containers
	SElinux, AppArmor

	How Secure Is the Docker Daemon?

	Networking

	11. Designing Your Production Container Platform
	The Twelve-Factor App
	Codebase
	Dependencies
	Config
	Backing Services
	Build, Release, Run
	Processes
	Port Binding
	Concurrency
	Disposability
	Development/Production Parity
	Logs
	Admin Processes
	Twelve-Factor Wrap-Up

	The Reactive Manifesto
	Responsive
	Resilient
	Elastic
	Message Driven

	In Summary

	12. Conclusion
	The Challenges
	The Docker Workflow
	Minimizing Deployment Artifacts
	Optimizing Storage and Retrieval
	The Payoff
	The Final Word

	Index

