OREILLY

Docker
Up & Running

SHIPPING RELIABLE
CONTAINERS IN

PRODUCTION

Karl Matthias & Sean P. Kane

Docker: Up and Running

Karl Matthias and Sean P. Kane

Docker: Up and Running

by Karl Matthias and Sean P. Kane
Copyright © 2015 Karl Matthias, Sean P. Kane. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Brian Anderson

Production Editor: Melanie Yarbrough
Copyeditor: Gillian McGarvey
Proofreader: Sonia Saruba

Indexer: Wendy Catalano

Interior Designer: David Futato

Cover Designer: Ellie Volkhausen
[lustrator: Rebecca Demarest

June 2015: First Edition

http://safaribooksonline.com

Revision History for the First Edition
m 2015-06-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491917572 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Docker: Up and
Running, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-91757-2
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491917572

Dedication

For my wife and children, who make everything worth it. And my parents, who pointed
me towards the beautiful intersection between logic and passion.

— Sean P. Kane

For my Mom, who got me to read, and my Dad, who read to me. And for my wife and
daughters, who are my bedrock.

— Karl Matthias

Foreword

“Everything old is new again” is a commonly heard phrase that has described everything
from fashion, to politics, to technology. It is also an apt statement when it comes to Linux
containers, and I would expand upon it to say, “Everything old is new again — and
nonetheless exciting.”

Containers have been available for many years in Linux distributions but they’ve seldom
been used because of the complexity required to build something that worked. Thus
historically, Linux container implementations have been purpose-built with a single
objective in mind, which made additional requirements like scaling and portability
challenging — if not impossible — to implement.

Enter Docker, which has created phenomenal momentum in unlocking the value of Linux
containers by combining a standardized packaging format with ease of use, to turn
processes that were once esoteric and incomprehensible into consumable capabilities for
developers and operations teams. Docker, in a sense, has created a Renaissance for Linux
containers, driving an ever-growing wave of interest and possibility, leading to rapid
adoption of the technology. It’s helping technology teams everywhere realize the benefits
of application portability, simplified integration, and streamlined development as promised
by Linux containers for some time but historically trapped behind layers of complexity.

Through Docker, Linux containers have catapulted into an elite club of truly disruptive
technologies with the power to transform the IT landscape, related ecosystems, and
markets. In the wake of this emergence rises a wave of innovation that demonstrates Linux
containers’ potential to dramatically change application delivery across a variety of
computing environments and platforms while leveraging a spectrum of tehcnical skill sets.

Innovation doesn’t necessarily mean the introduction of a completely new, world-altering
technology. Like many of its predecessors, Docker’s success stands on the shoulder of
giants. It builds on years of technological innovation and Linux evolution that now
provides the core capabilities which Docker makes easy to use. The maturity of the Linux
capabilities exploited by Docker can now be replicated in other operating systems,
allowing Docker to function beyond its Linux roots.

Docker is facilitating a disruptive change in the minds of technology professionals. It has
reshaped views on which aspects of application development and delivery, as well as
infrastructure management should be considered “table stakes” versus complexity that
requires technology or process solutions. As is typical for the early adoption phase of any
disruptive technology, these perspective changes aim at what’s right in front of us, often
oversimplifying and ignoring relevant aspects — but the potential for Docker and Linux
containers goes much deeper than simply redefining development. It is redifing the very
nature of the application itself.

The obvious impact of Docker and the ease of use it brings to Linux containers is the
possibility to redefine the organizational divide between business, application
development, and IT infrastructure teams. In a sense, Docker provides a tangible

technology for implementing DevOps, which is the merger (or at least an armistice)
between the often competing teams of development and operations. Containerization
modernizes IT environments and, at an organizational level, allows for “proper”
ownership of the technology stack and processes, reducing handovers and the costly
change coordination that comes with them.

Docker’s role as both a packaging format for the application and a unifying interface and
methodology enables the application team to own the Docker-formatted container image,
including all dependencies, while allowing operations to retain infrastructure ownership.
With a standardized container infrastructure in place, the IT organization can then focus on
building and managing deployments, meeting their security standards, automation needs,
skill levels and ultimately cost profile, all without losing the ability to hold the application
team accountable for the security and cost impact of their code that is deployed inside the
container.

Docker also brings with it greater efficiencies of scale and performance — by shrinking
application footprints through Docker-formatted containers, system-level dependencies are
reduced to a bare minimum, often dozens-to-hundreds of megabytes in size. Compare this
to traditional virtual machine images, which typically consume gigabytes of storage...but
when you factor in performance, it goes beyond simply being innovative and becomes
truly disruptive.

Starting a container takes milliseconds — quite a difference compared to the minutes most
users experience with virtual machines. Deploying container images is faster if less data
needs to travel over networks and storage fabrics, so modern, elastic applications with
frequent state changes and dynamic allocation of resources can be built far more
efficiently if the rollout of changes can happen extremely quickly and resource needs can
be fulfilled in real time.

But perhaps the greatest innovation and most significant impact delivered by Docker and
Linux containers is the fundamental change to application consumption. The monolithic
application stack as we know it can be broken into dozens or even hundreds of tiny,
single-minded applications that, when woven together, perform the same function as the
traditional application. The benefit, however, is that these pieces can be rewritten, reused,
and managed far more efficiently than monolithic applications, delivering a truly
composite application built entirely of microservices.

Containers represent the way forward for the application development world, but it’s
critical that we do not lose sight of the old as we bring in the new. Docker and Linux
containers are not without challenges. Management, security, and certification are three of
the most glaring challenges to enterprise adoption, and these concerns are not so dissimilar
from more traditional applications. Obviously, containers must be deployed on a secure
host, but, more importantly, container security will be defined by what is in a given
container — is it free of vulnerabilities, malware, and known exploits? Having the
appropriate signature on a given containerized application, from a trusted, certified source

goes a long way towards effectively answering these questions.

Additionally, management is paramount when it comes to the new world of containerized
applications and Docker. The potential for sheer sprawl with containers is exponentially
greater than that of virtual machines. Managing all of the containers is one challenge, but
just as important, much like security, will be managing the content inside these containers.
How are updates and rollbacks handled? What of orchestration? What will define
“sprawl”? When do containers need to be retired or archived, else spend a life of limbo on
a aging server? These too are questions that the enterprise must see addressed before
mission critical can be applied to containerized applications.

These challenges aside, Linux containers do represent a fundamental shift in how the
enterprise world creates, consumes, and manages applications. While the traditional
monolithic application is likely to remain (lots of old technology survives as a legacy still
today), containers have huge potential to modernize the operational model for these
traditional applications and, alongside new, container-based applications, allow for
incredible flexibility, portability, and efficiency across the datacenter and hybrid clouds.

Sean and Karl have worked with Linux containers (and Docker) for years, and have, in
this book, captured what the I'T world needs to know about Docker and the container
Renaissance. Leveraging their insights, the authors provide a solid overview of how
Docker actually works in the real world and how developers and other IT professionals
can best utilize Docker and Linux containers in a way that makes sense for them and their
organization.

Lars Herrmann, General Manager for Enterprise Linux, Enterprise Virtualization and
Container Strategy, Red Hat

Preface

This book will get you to the point where you have a running Docker environment and
steer you towards good choices for a production environment. Along the way we’ll
explore building applications for Docker, testing, deploying, and debugging a running
system. We’ll stop by to see a few of the orchestration tools and platforms in the Docker
ecosystem. And we’ll round out with guidance on security and best practices for your
container environment.

Who Should Read This Book

This book is intended for anyone who is looking to solve the complex workflow problems
involved in developing and deploying software to production at scale. If you’re interested
in Docker, Linux containers, DevOps, and large, scalable, software infrastructures, then
this book is for you.

Why Read This Book?

Today there are many conversations, projects, and articles on the Internet about Docker.
So why should you devote precious hours to reading this book?

Even though there is a lot of information out there, Docker is a new technology and it is
evolving very quickly. Even during the time that that it took us to write this book, Docker,
Inc., released four versions of Docker plus a few major tools into their ecosystem. Getting
your arms around the scope of what Docker provides, understanding how it fits into your
workflow, and getting integration right are not trivial tasks. Few companies or engineering
teams have been running it in production for more than a year.

We have worked for over a year and a half building and operating a production Docker
platform within the Site Engineering team at New Relic. We implemented Docker in
production only months after its release and can share with you some of the experience we
gained from evolving our production platform over the last year and a half. The goal is for
you to enjoy the wins while avoiding many of the bumps in the road that we experienced.
Even though the online documentation for the Docker project is useful, we attempt to give
you a bigger picture and expose you to many of the best practices that we have learned
along the way.

When you finish this book, you should have enough information to understand what
Docker is, why it’s important, how to get it running, how to deploy your applications with
it, and be armed with a clear view of what you can do to get to production. It will
hopefully be a quick trip through an interesting technology with some very practical
applications.

Navigating This Book

This book is organized as follows:

m Chapters 1 and 2 provide an introduction to Docker, and explain what it is and how you
can use it.

m Chapter 3 takes you through the steps required to install Docker.

m Chapters 4 through 6 dive into the Docker client, images, and containers, exploring
what they are and how you can work with them.

m Chapters 7 and 8 discuss the flow for getting your containers into production and
debugging them.

m Chapter 9 delves into deploying containers at scale in public and private clouds.

m Chapter 10 dives into advanced topics that require some familiarity with Docker and
can be important as you start to use Docker in your production environment.

m Chapter 11 explores some of the core concepts that have started to solidify in the
industry about how to design the next generation of Internet-scale production software.

m Chapter 12 wraps everything up and ties it with a bow. It includes a summary of what
you have and how it should help you improve the way you deliver and scale software
services.

We realize that many people don’t read technical books front to back and that something
like the preface is incredibly easy to skip, but if you’re still with us, here is a quick guide
to some different approaches to reading this book:

» [f you are new to Linux containers, start at the beginning. The first two chapters are
intended to get your head around the basics of Docker and Linux containers, including
what they are, how they work, and why you should care.

m [f you want to jump right in and install and run Docker on your workstation, then dive
right into Chapters 3 and 4, which show you how to install Docker, create and
download images, run containers, and much more.

m [f you are already using Docker for development but need some help getting it into
production, consider starting with Chapters 7 through 10, which delve into deploying
and debugging containers, and many other advanced topics.

m [f you are a software or platform architect, you might find Chapter 11 an interesting
place to investigate, as we dive into some of the current thinking about designing
containerized applications and horizontally scalable services.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLS, email addresses, filenames, and file extensions.
Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values or by values determined

by context.
TIP
This element signifies a tip or suggestion.
NOTE
This element signifies a general note.
WARNING

This element indicates a warning or caution.

Safari® Books Online
NOTE

Safari Books Online is an on-demand digital library that delivers expert content in both
book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

= O’Reilly Media, Inc.

= 1005 Gravenstein Highway North

m Sebastopol, CA 95472

= 800-998-9938 (in the United States or Canada)

m 707-829-0515 (international or local)

= 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at http://bit.ly/docker-up-and-running.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

http://bit.ly/docker-up-and-running
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

We’d like to send a heartfelt thanks to the many people who helped make this book
possible:

Nic Benders, Bjorn Freeman-Benson, and Dana Lawson at New Relic, who went far
above and beyond in supporting this effort, and who ensured that we had time to pursue
it.

Laurel Ruma at O’Reilly who initially reached out to us about writing a Docker book,
and Mike Loukides who helped get everything on track.

Gillian McGarvey and Melanie Yarbrough, for their efforts copyediting the manuscript,
and helping it appear like we were actually paying attention in our high school English
classes. 464 commas added and counting...

Wendy Catalano, who helped us ensure that the Index was useful to all of our readers.

A special thanks to our editor, Brian Anderson, who ensured that we knew what we
were getting into, and guided us along every step of the way.

All of our peers at New Relic, who have been along for the whole Docker ride and
provided us with much of the experience that’s reflected here.

World Cup Coffee, McMenamins Ringlers Pub, and Old Town Pizza in Portland, OR,
who kindly let us use their tables and power long after our dishes were empty.

Our draft reviewers, who helped ensure that we were on the right track at various
points throughout the writing process: Ksenia Burlachenko, who gave us our very first
review as well as a full tech review, Andrew T. Baker, Sébastien Goasguen, and Henri
Gomez.

A special callout is due to Alice Goldfuss and Tom Offermann who gave us detailed
and consistently useful feedback.

Our families, for being supportive and giving us the required quiet time when we
needed it.

And finally to everyone else who encouraged us, gave us advice, or supported us in any
way throughout this process.

Chapter 1. Introduction

The Birth of Docker

Docker was first introduced to the world — with no pre-announcement and little fanfare
— by Solomon Hykes, founder and CEO of dotCloud, in a five-minute lightning talk at
the Python Developers Conference in Santa Clara, California, on March 15, 2013. At the
time of this announcement, only about 40 people outside dotCloud been given the
opportunity to play with Docker.

Within a few weeks of this announcement, there was a surprising amount of press. The
project was quickly open-sourced and made publicly available on GitHub, where anyone
could download and contribute to the project. Over the next few months, more and more
people in the industry started hearing about Docker and how it was going to revolutionize
the way software was built, delivered, and run. And within a year, almost no one in the
industry was unaware of Docker, but many were still unsure what it was exactly, and why
people were so excited about.

Docker is a tool that promises to easily encapsulate the process of creating a distributable
artifact for any application, deploying it at scale into any environment, and streamlining
the workflow and responsiveness of agile software organizations.

http://youtu.be/wW9CAH9nSLs
https://github.com/docker/docker

The Promise of Docker

While ostensibly viewed as a virtualization platform, Docker is far more than that.
Docker’s domain spans a few crowded segments of the industry that include technologies
like KVM, Xen, OpenStack, Mesos, Capistrano, Fabric, Ansible, Chef, Puppet, SaltStack,
and so on. There is something very telling about the list of products that Docker competes
with, and maybe you’ve spotted it already. For example, most engineers would not say
that virtualization products compete with configuration management tools, yet both
technologies are being disrupted by Docker. The technologies in that list are also generally
acclaimed for their ability to improve productivity and that’s what is causing a great deal
of the buzz. Docker sits right in the middle of some of the most enabling technologies of
the last decade.

If you were to do a feature-by-feature comparison of Docker and the reigning champion in
any of these areas, Docker would very likely look like a middling competitor. It’s stronger
in some areas than others, but what Docker brings to the table is a feature set that crosses a
broad range of workflow challenges. By combining the ease of application deployment
tools like Capistrano and Fabric, with the ease of administrating virtualization systems,
and then providing hooks that make workflow automation and orchestration easy to
implement, Docker provides a very enabling feature set.

Lots of new technologies come and go, and a dose of skepticism about the newest rage is
always healthy. Without digging deeper, it would be easy to dismiss Docker as just another
technology that solves a few very specific problems for developers or operations teams. If
you look at Docker as a virtualization or deployment technology alone, it might not seem
very compelling. But Docker is much more than it seems on the surface.

It is hard and often expensive to get communication and processes right between teams of
people, even in smaller organizations. Yet we live in a world where the communication of
detailed information between teams is increasingly required to be successful. A tool that
reduces the complexity of that communication while aiding in the production of more
robust software would be a big win. And that’s exactly why Docker merits a deeper look.
It’s no panacea, and implementing Docker well requires some thought, but Docker is a
good approach to solving some real-world organizational problems and helping enable
companies to ship better software faster. Delivering a well-designed Docker workflow can
lead to happier technical teams and real money for the organization’s bottom line.

So where are companies feeling the most pain? Shipping software at the speed expected in
today’s world is hard to do well, and as companies grow from one or two developers to
many teams of developers, the burden of communication around shipping new releases
becomes much heavier and harder to manage. Developers have to understand a lot of
complexity about the environment they will be shipping software into, and production
operations teams need to increasingly understand the internals of the software they ship.
These are all generally good skills to work on because they lead to a better understanding
of the environment as a whole and therefore encourage the designing of robust software,

but these same skills are very difficult to scale effectively as an organization’s growth
accelerates.

The details of each company’s environment often require a lot of communication that
doesn’t directly build value in the teams involved. For example, requiring developers to
ask an operations team for release 1.2.1 of a particular library slows them down and
provides no direct business value to the company. If developers could simply upgrade the
version of the library they use, write their code, test with the new version, and ship it, the
delivery time would be measurably shortened. If operations people could upgrade
software on the host system without having to coordinate with multiple teams of
application developers, they could move faster. Docker helps to build a layer of isolation
in software that reduces the burden of communication in the world of humans.

Beyond helping with communication issues, Docker is opinionated about software
architecture in a way that encourages more robustly crafted applications. Its architectural
philosophy centers around atomic or throwaway containers. During deployment, the
whole running environment of the old application is thrown away with it. Nothing in the
environment of the application will live longer than the application itself and that’s a
simple idea with big repercussions. It means that applications are not likely to accidentally
rely on artifacts left by a previous release. It means that ephemeral debugging changes are
less likely to live on in future releases that picked them up from the local filesystem. And
it means that applications are highly portable between servers because all state has to be
included directly into the deployment artifact and be immutable, or sent to an external
dependency like a database, cache, or file server.

This leads to applications that are not only more scalable, but more reliable. Instances of
the application container can come and go with little repercussion on the uptime of the
frontend site. These are proven architectural choices that have been successful for non-
Docker applications, but the design choices included in Docker’s own design mean that
Dockerized applications will follow these best practices by requirement and that’s a good
thing.

Benefits of the Docker Workflow

It’s hard to cohesively group into categories all of the things Docker brings to the table.
When implemented well, it benefits organizations, teams, developers, and operations
engineers in a multitude of ways. It makes architectural decisions simpler because all
applications essentially look the same on the outside from the hosting system’s
perspective. It makes tooling easier to write and share between applications. Nothing in
this world comes with benefits and no challenges, but Docker is surprisingly skewed
toward the benefits. Here are some more of the things you get with Docker:

Packaging software in a way that leverages the skills developers already have.

Many companies have had to create positions for release and build engineers in order
to manage all the knowledge and tooling required to create software packages for
their supported platforms. Tools like rpm, mock, dpkg, and pbuilder can be
complicated to use, and each one must be learned independently. Docker wraps up all
your requirements together into one package that is defined in a single file.

Bundling application software and required OS filesystems together in a single
standardized image format.

In the past, you typically needed to package not only your application, but many of
the dependencies that it relied on, including libraries and daemons. However, you
couldn’t ever ensure that 100 percent of the execution environment was identical. All
of this made packaging difficult to master, and hard for many companies to
accomplish reliably. Often someone running Scientific Linux would resort to trying
to deploy a community package tested on Red Hat Linux, hoping that the package
was close enough to what they needed. With Docker you deploy your application
along with every single file required to run it. Docker’s layered images make this an
efficient process that ensures that your application is running in the expected
environment.

Using packaged artifacts to test and deliver the exact same artifact to all systems in all
environments.

When developers commit changes to a version control system, a new Docker image
can be built, which can go through the whole testing process and be deployed to
production without any need to recompile or repackage at any step in the process.

Abstracting software applications from the hardware without sacrificing resources.

Traditional enterprise virtualization solutions like VMware are typically used when
people need to create an abstraction layer between the physical hardware and the
software applications that run on it, at the cost of resources. The hypervisors that
manage the VMs and each VM running kernel use a percentage of the hardware
system’s resources, which are then no longer available to the hosted applications. A
container, on the other hand, is just another process that talks directly to the Linux
kernel and therefore can utilize more resources, up until the system or quota-based
limits are reached.

When Docker was first released, Linux containers had been around for quite a few years,
and many of the other technologies that it is built on are not entirely new. However,
Docker’s unique mix of strong architectural and workflow choices combine together into a
whole that is much more powerful than the sum of its parts. Docker finally makes Linux
containers, which have been around for more than a decade, approachable to the average
technologist. It fits containers relatively easily into the existing workflow and processes of
real companies. And the problems discussed above have been felt by so many people that
interest in the Docker project has been accelerating faster than anyone could have
reasonably expected.

In the first year, newcomers to the project were surprised to find out that Docker wasn’t
already production-ready, but a steady stream of commits from the open source Docker
community has moved the project forward at a very brisk pace. That pace seems to only
pick up steam as time goes on. As Docker has now moved well into the 1.x release cycle,
stability is good, production adoption is here, and many companies are looking to Docker
as a solution to some of the serious complexity issues that they face in their application
delivery processes.

What Docker Isn’t

Docker can be used to solve a wide breadth of challenges that other categories of tools
have traditionally been enlisted to fix; however, Docker’s breadth of features often means
that it lacks depth in specific functionality. For example, some organizations will find that
they can completely remove their configuration management tool when they migrate to
Docker, but the real power of Docker is that although it can replace some aspects of more
traditional tools, it is usually compatible with them or even augmented by combining with
them, as well. In the following list, we explore some of the tool categories that Docker
doesn’t directly replace but that can often be used in conjunction to achieve great results:

Enterprise Virtualization Platform (VMware, KVM, etc.)

A container is not a virtual machine in the traditional sense. Virtual machines contain
a complete operating system, running on top of the host operating system. The
biggest advantage is that it is easy to run many virtual machines with radically
different operating systems on a single host. With containers, both the host and the
containers share the same kernel. This means that containers utilize fewer system
resources, but must be based on the same underlying operating system (i.e., Linux).

Cloud Platform (Openstack, CloudStack, etc.)

Like Enterprise virtualization, the container workflow shares a lot of similarities on
the surface with cloud platforms. Both are traditionally leveraged to allow
applications to be horizontally scaled in response to changing demand. Docker,
however, is not a cloud platform. It only handles deploying, running, and managing
containers on pre-existing Docker hosts. It doesn’t allow you to create new host
systems (instances), object stores, block storage, and the many other resources that
are typically associated with a cloud platform.

Configuration Management (Puppet, Chef, etc.)

Although Docker can significantly improve an organization’s ability to manage
applications and their dependencies, it does not directly replace more traditional
configuration management. Dockerfiles are used to define how a container should
look at build time, but they do not manage the container’s ongoing state, and cannot
be used to manage the Docker host system.

Deployment Framework (Capistrano, Fabric, etc.)

Docker eases many aspects of deployment by creating self-contained container
images that encapsulate all the dependencies of an application and can be deployed,
in all environments, without changes. However, Docker can’t be used to automate a
complex deployment process by itself. Other tools are usually still needed to stitch
together the larger workflow automation.

Workload Management Tool (Mesos, Fleet, etc.)

The Docker server does not have any internal concept of a cluster. Additional
orchestration tools (including Docker’s own Swarm tool) must be used to coordinate
work intelligently across a pool of Docker hosts, and track the current state of all the
hosts and their resources, and keep an inventory of running containers.

Development Environment (Vagrant, etc.)

Vagrant is a virtual machine management tool for developers that is often used to
simulate server stacks that closely resemble the production environment in which an
application is destined to be deployed. Among other things, Vagrant makes it easy to
run Linux software on Mac OS X and Windows-based workstations. Since the
Docker server only runs on Linux, Docker provides boot2docker and Docker
Machine to allow developers to quickly launch Linux-based Docker machines on
various platforms. Boot2docker and Docker Machine are sufficient for many standard
Docker workflows, but they don’t provide the breadth of features found in Vagrant.

Wrapping your head around Docker can be challenging when you are coming at it without
a strong frame of reference. In the next chapter we will lay down a broad overview of
Docker, what it is, how it is intended to be used, and what advantages it brings to the table
when implemented with all of this in mind.

Chapter 2. Docker at a Glance

Before you dive into configuring and installing Docker, a quick survey is in order to
explain what Docker is and what it can bring to the table. It is a powerful technology, but
not a tremendously complicated one. In this chapter, we’ll cover the generalities of how
Docker works, what makes it powerful, and some of the reasons you might use it. If
you’re reading this, you probably have your own reasons to use Docker, but it never hurts
to augment your understanding before you dive in.

Don’t worry — this shouldn’t hold you up for too long. In the next chapter, we’ll dive
right into getting Docker installed and running on your system.

Process Simplification

Docker can simplify both workflows and communication, and that usually starts with the
deployment story. Traditionally, the cycle of getting an application to production often
looks something like the following (illustrated in Figure 2-1):

1. Application developers request resources from operations engineers.

2. Resources are provisioned and handed over to developers.

3. Developers script and tool their deployment.

4. Operations engineers and developers tweak the deployment repeatedly.
5. Additional application dependencies are discovered by developers.

6. Operations engineers work to install the additional requirements.

7. Loop over steps 5 and 6 N more times.

8. The application is deployed.

Development Team Operations Team

>[Resources Provisioned]

|
[Script the Deployment

b[Tweak the Deployment]1—
|

[Tweak the Deployment] { Loop N Times }

[Request Resources

v

"

v
[Discover a Dependency

B

>[Install Dependency

v
[Application Is Deployed]

Figure 2-1. A traditional deployment workflow (without Docker)

Our experience has shown that deploying a brand new application into production can take
the better part of a week for a complex new system. That’s not very productive, and even

though DevOps practices work to alleviate some of the barriers, it often requires a lot of
effort and communication between teams of people. This process can often be both
technically challenging and expensive, but even worse, it can limit the kinds of innovation
that development teams will undertake in the future. If deploying software is hard, time-
consuming, and requires resources from another team, then developers will often build
everything into the existing application in order to avoid suffering the new deployment
penalty.

Push-to-deploy systems like Heroku have shown developers what the world can look like
if you are in control of most of your dependencies as well as your application. Talking
with developers about deployment will often turn up discussions of how easy that world
is. If you’re an operations engineer, you’ve probably heard complaints about how much
slower your internal systems are compared with deploying on Heroku.

Docker doesn’t try to be Heroku, but it provides a clean separation of responsibilities and
encapsulation of dependencies, which results in a similar boost in productivity. It also
allows even more fine-grained control than Heroku by putting developers in control of
everything, down to the OS distribution on which they ship their application.

As a company, Docker preaches an approach of “batteries included but removable.”
Which means that they want their tools to come with everything most people need to get
the job done, while still being built from interchangeable parts that can easily be swapped
in and out to support custom solutions.

By using an image repository as the hand-off point, Docker allows the responsibility of
building the application image to be separated from the deployment and operation of the
container.

What this means in practice is that development teams can build their application with all
of its dependencies, run it in development and test environments, and then just ship the
exact same bundle of application and dependencies to production. Because those bundles
all look the same from the outside, operations engineers can then build or install standard
tooling to deploy and run the applications. The cycle described in Figure 2-1 then looks
somewhat like this (illustrated in Figure 2-2):

1. Developers build the Docker image and ship it to the registry.

2. Operations engineers provide configuration details to the container and provision
resources.

3. Developers trigger deployment.

https://www.heroku.com

Development Team

[Build Image]

I

[Ship Image to Registry

v
[Deploy]

>[Application Is Deployed]

Operations Team

~

>[Provide Configuration Information]
|

Figure 2-2. A Docker deployment workflow

This is possible because Docker allows all of the dependency issues to be discovered
during the development and test cycles. By the time the application is ready for first
deployment, that work is done. And it usually doesn’t require as many handovers between
the development and operations teams. That’s a lot simpler and saves a lot of time. Better
yet, it leads to more robust software through testing of the deployment environment before
release.

Broad Support and Adoption

Docker is increasingly well supported, with the majority of the large public clouds
announcing at least some direct support for it. For example, Docker runs on AWS Elastic
Beanstalk, Google AppEngine, IBM Cloud, Microsoft Azure, Rackspace Cloud, and many
more. At DockerCon 2014, Google’s Eric Brewer announced that Google would be
supporting Docker as its primary internal container format. Rather than just being good
PR for these companies, what this means for the Docker community is that a lot of money
is starting to back the stability and success of the Docker platform.

Further building its influence, Docker’s containers are becoming the common format
among cloud providers, offering the potential for “write once, run anywhere” cloud
applications. When Docker released their 1ibswarm development library at DockerCon
2014, an engineer from Orchard demonstrated deploying a Docker container to a
heterogeneous mix of cloud providers at the same time. This kind of orchestration has not
been easy before, and it seems likely that as these major companies continue to invest in
the platform, the support and tooling will improve correspondingly.

So that covers Docker containers and tooling, but what about OS vendor support and
adoption? The Docker client runs directly on most major operating systems, but because
the Docker server uses Linux containers, it does not run on non-Linux systems. Docker
has traditionally been developed on the Ubuntu Linux distribution, but most Linux
distributions and other major operating systems are now supported where possible.

Docker is barely two years old, but with such broad support across many platforms, there
is a lot of hope for its continued growth into the future.

Architecture

Docker is a powerful technology, and that often means something that comes with a high
level of complexity. But the fundamental architecture of Docker is a simple client/server
model, with only one executable that acts as both components, depending on how you
invoke the docker command. Underneath this simple exterior, Docker heavily leverages
kernel mechanisms such as iptables, virtual bridging, cgroups, namespaces, and various
filesystem drivers. We’ll talk about some of these in Chapter 10. For now, we’ll go over
how the client and server work and give a brief introduction to the network layer that sits
underneath a Docker container.

Client/Server Model

Docker consists of at least two parts: the client and the server/daemon (see Figure 2-3).
Optionally there is a third component called the registry, which stores Docker images and
metadata about those images. The server does the ongoing work of running and managing
your containers, and you use the client to tell the server what to do. The Docker daemon
can run on any number of servers in the infrastructure, and a single client can address any
number of servers. Clients drive all of the communication, but Docker servers can talk
directly to image registries when told to do so by the client. Clients are responsible for
directing servers what to do, and servers focus on hosting containerized applications.

Docker Server
on Linux Host or Virtual Machine l
A
Docker Registry
on Linux host, VM, or Saa$
Docker Client T

on Local Workstation

Figure 2-3. Docker client/server model

Docker is a little different in structure from some other client/server software. Instead of
having separate client and server executables, it uses the same binary for both
components. When you install Docker, you get both components, but the server will only
launch on a supported Linux host. Launching the Docker server/daemon is as simple as
running docker with the -d command-line argument, which tells it to act like a daemon
and listen for incoming connections. Each Docker host will normally have one Docker
daemon running that can manage a number of containers. You can then use the docker
command-line tool client to talk to the server.

http://bit.ly/1Bttd5s

Network Ports and Unix Sockets

The docker command-line tool and docker -d daemon talk to each other over network
sockets. You can choose to have the Docker daemon listen on one or more TCP or Unix
sockets. It’s possible, for example, to have Docker listen on both a local Unix socket and
two different TCP ports (encrypted and nonencrypted). On many Linux distributions, that
is actually the default. If you want to only be able to access Docker from the local system,
listening only on the Unix socket would be the most secure option. However, most people
want to talk to the docker daemon remotely, so it usually listens on at least one TCP port.

The original TCP port that docker was configured to use was 4243, but that port was
never registered and in fact was already used by other tools such as the Mac OS X backup
client CrashPlan. As a result, Docker registered its own TCP port with IANA and it’s now
generally configured to use TCP port 2375 when running un-encrypted, or 2376 when
handling encrypted traffic. In Docker 1.3 and later, the default is to use the encrypted port
on 2376, but this is easily configurable. The Unix socket is located in different paths on
different operating systems, so you should check where yours is located. If you have
strong preferences, you can usually specify this at install time. If you don’t, then the
defaults will probably work for you.

Robust Tooling

Among the many things that have led to Docker’s growing adoption is its simple and
powerful tooling. This has been expanding ever wider since its initial release by Docker,
and by the Docker community at large. The tooling that Docker ships with supports both
building Docker images and basic deployment to individual Docker daemons, as well as
all the functionality needed to actually manage a remote Docker server. Community
efforts have focused on managing whole fleets (or clusters) of Docker servers and the
scheduling and orchestrating of container deployments. Docker has also launched its own
orchestration toolset, including Compose (previously known as Fig), Machine, and
Swarm, which promises to eventually create a cohesive deployment story across
environments.

Because Docker provides both a command-line tool and a remote web API, it is easy to
add additional tooling in any language. The command-line tool lends itself well to
scripting, and a lot of power can easily be leveraged with simple shell script wrappers
around the command-line tool.

https://github.com/docker/compose
https://github.com/docker/machine
https://github.com/docker/swarm/

Docker Command-Line Tool

The command-line tool docker is the main interface that most people will have with

Docker. This is a Go program that compiles and runs on all common architectures and
operating systems. The command-line tool is available as part of the main Docker
distribution on various platforms and also compiles directly from the Go source. Some of
the things you can do with the Docker command-line tool include, but are not limited to:

m Build a container image.

m Pull images from a registry to a Docker daemon or push them up to a registry from the
Docker daemon.

m Start a container on a Docker server either in the foreground or background.
m Retrieve the Docker logs from a remote server.
m Start a command-line shell inside a running container on a remote server.

You can probably see how these can be composed into a workflow for building and
deploying. But the Docker command-line tool is not the only way to interact with Docker,
and it’s not necessarily the most powerful.

https://golang.org

Application Programming Interface (API)

Like many other pieces of modern software, the Docker daemon has a remote API. This is
in fact what the Docker command-line tool uses to communicate with the daemon. But
because the API is documented and public, it’s quite common for external tooling to use
the API directly. This enables all manners of tooling, from mapping deployed Docker
containers to servers, to automated deployments, to distributed schedulers. While it’s very
likely that beginners will not initially want to talk directly to the Docker API, it’s a great
tool to have available. As your organization embraces Docker over time, it’s likely that
you will increasingly find the API to be a good integration point for this tooling.

Extensive documentation for the API is on the Docker site. As the ecosystem has matured,
robust implementations of Docker API libraries have begun to appear for many popular
languages. We’ve used the Go and Ruby libraries, for example, and have found them to be
both robust and rapidly updated as new versions of Docker are released.

Most of the things you can do with the Docker command-line tooling is supported
relatively easily via the API. Two notable exceptions are the endpoints that require
streaming or terminal access: running remote shells or executing the container in
interactive mode. In these cases, it’s often easier to use the command-line tool.

https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/remote_api_client_libraries/

Container Networking

Even though Docker containers are largely made up of processes running on the host
system itself, they behave quite differently from other processes at the network layer. If
you think of each of your Docker containers as behaving on the network like a host on a
private network, you’ll be on the right path. The Docker server acts as a virtual bridge and
the containers are clients behind it. A bridge is just a network device that repeats traffic
from one side to another. So you can think of it like a mini virtual network with hosts
attached.

The implementation is that each container has its own virtual Ethernet interface connected
to the Docker bridge and its own IP address allocated to the virtual interface. Docker lets
you bind ports on the host to the container so that the outside world can reach your
container. That traffic passes over a proxy that is also part of the Docker daemon before
getting to the container. See Chapter 10 for more detailed information.

Docker allocates the private subnet from an unused RFC 1918 private subnet block. It
detects which network blocks are unused on startup and allocates one to the virtual
network. That is bridged to the host’s local network through an interface on the server
called dockero. This means that all of the containers are on a network together and can
talk to each other directly. But to get to the host or the outside world, they go over the
dockero virtual bridge interface. As we mentioned, inbound traffic goes over the proxy.
This proxy is fairly high performance but can be limiting if you run high throughput
applications in containers. We talk more about this as well as other networking topics in
Chapter 10, and offer some solutions.

There is a dizzying array of ways in which you can configure Docker’s network layer,
from allocating your own network blocks to configuring your own custom bridge
interface. People often run with the default mechanisms, but there are times when
something more complex or specific to your application is required. You can find much
more detail about Docker networking in its documentation, and we will cover more details
about networking in the Advanced Topics chapter.

NOTE

When developing your Docker workflow, you should definitely get started with the default networking
approach. You might later find that you don’t want or need this default virtual network. You can disable all
of this with a single switch at docker daemon startup time. It’s not configurable per container, but you can

turn it off for all containers using the - -net host switch to docker -d. When running in that mode, Docker
containers just use the host’s own network devices and address.

https://tools.ietf.org/html/rfc1918
https://docs.docker.com/articles/networking/

Getting the Most from Docker

Like most tools, Docker has a number of great use cases, and others that aren’t so good.
You can, for example, open a glass jar with a hammer. But that has its downsides.
Understanding how to best use the tool, or even simply determining if it’s the right tool,
can get you on the correct path much more quickly.

To begin with, Docker’s architecture aims it squarely at applications that are either
stateless or where the state is externalized into data stores like databases or caches. It
enforces some good development principles for this class of application and we’ll talk
later about how that’s powerful. But this means that doing things like putting a database
engine inside Docker is basically like trying to swim against the current. It’s not that you
can’t do it, or even that you shouldn’t do it; it’s just that this is not the most obvious use
case for Docker and if it’s the one you start with, you may find yourself disappointed early
on. Some good applications for Docker include web frontends, backend APIs, and short-
running tasks, like maintenance scripts that might normally be handled by cron.

NOTE

Most traditional applications are stateful, which means that they keep track of important data in memory,
files, or a database. If you restart a stateful service, you may lose any of the information that isn’t written
out of memory. Stateless applications, on the other hand, are normally designed to immediately answer a
single self-contained request, and have no need to track information between requests from one or more
clients.

If you focus first on building an understanding of running stateless or externalized-state
applications inside containers, you will have a foundation on which to start considering
other use cases. We strongly recommend starting with stateless applications and learning
from that experience before tackling other use cases. It should be noted that the
community is working hard on how to better support stateful applications in Docker, and
there are likely to be many developments in this area over the next year or more.

Containers Are Not Virtual Machines

A good way to start shaping your understanding of how to leverage Docker is to think of
containers not as virtual machines, but as very lightweight wrappers around a single Unix
process. During actual implementation, that process might spawn others, but on the other
hand, one statically compiled binary could be all that’s inside your container (see “Outside
Dependencies” for more information). Containers are also ephemeral: they may come and
go much more readily than a virtual machine.

Virtual machines are by design a stand-in for real hardware that you might throw in a rack
and leave there for a few years. Because a real server is what they’re abstracting, virtual
machines are often long-lived in nature. Even in the cloud where companies often spin
virtual machines up and down on demand, they usually have a running lifespan of days or
more. On the other hand, a particular container might exist for months, or it may be
created, run a task for a minute, and then be destroyed. All of that is OK, but it’s a
fundamentally different approach than virtual machines are typically used for.

Containers Are Lightweight

We’ll get more into the details of how this works later, but creating a container takes very
little space. A quick test on Docker 1.4.1 reveals that a newly created container from an
existing image takes a whopping 12 kilobytes of disk space. That’s pretty lightweight. One
the other hand, a new virtual machine created from a golden image might require hundreds
or thousands of megabytes. The new container is so small because it is just a reference to a
layered filesystem image and some metadata about the configuration.

The lightness of containers means that you can use them for things where creating another
virtual machine would be too heavyweight, or in situations where you need something to
be truly ephemeral. You probably wouldn’t, for instance, spin up an entire virtual machine
to run a curl command to a website from a remote location, but you might spin up a new

container for this purpose.

Towards an Immutable Infrastructure

By deploying most of your applications within containers, it is possible to start
simplifying your configuration management story by moving towards an immutable
infrastructure. The idea of an immutable infrastructure has recently gained popularity in
response to how difficult it is, in reality, to maintain a truly idempotent configuration
management code base. As your configuration management code base grows, it can
become as unwieldy and unmaintainable as large, monolithic legacy applications. With
Docker it is possible to deploy a very lightweight Docker server that needs almost no
configuration management, or in many cases, none at all. All of your application
management is simply handled by deploying and redeploying containers to the server.
When the server needs an important update to something like the Docker daemon or the
Linux kernel, you can simply bring up a new server with the changes, deploy your
containers there, and then decommission or reinstall the old server.

Limited Isolation

Containers are isolated from each other, but it’s probably more limited than you might
expect. While you can put limits on their resources, the default container configuration
just has them all sharing CPU and memory on the host system, much as you would expect
from colocated Unix processes. This means that unless you constrain them, containers can
compete for resources on your production machines. That is sometimes what you want,
but it impacts your design decisions. Limits on CPU and memory use are possible through
Docker but, in most cases, they are not the default like they would be from a virtual
machine.

It’s often the case that many containers share one or more common filesystem layers.
That’s one of the more powerful design decisions in Docker, but it also means that if you
update a shared image, you’ll need to re-create a number of containers.

Containerized processes are also just processes on the Docker server itself. They are
running on the same exact instance of the Linux kernel as the host operating system. They
even show up in the ps output on the Docker server. That is utterly different from a
hypervisor where the depth of process isolation usually includes running an entirely
separate instance of the operating system for each virtual machine.

This light default containment can lead to the tempting option of exposing more resources
from the host, such as shared filesystems to allow the storage of state. But you should
think hard before further exposing resources from the host into the container unless they
are used exclusively by the container. We’ll talk about security of containers later, but
generally you might consider helping to enforce isolation further through the application
of SELinux or AppArmor policies rather than compromising the existing barriers.

By default, many containers use UID 0 to launch processes. Because the container is contained, this seems
safe, but in reality it isn’t. Because everything is running on the same kernel, many types of security
vulnerabilities or simple misconfiguration can give the container’s root user unauthorized access to the
host’s system resources, files, and processes.

Stateless Applications

A good example of the kind of application that containerizes well is a web application that
keeps its state in a database. You might also run something like ephemeral memcache
instances in containers. If you think about your web application, though, it probably has
local state that you rely on, like configuration files. That might not seem like a lot of state,
but it means that you’ve limited the reusability of your container, and made it more
challenging to deploy into different environments, without maintaining configuration data
in your codebase.

In many cases, the process of containerizing your application means that you move
configuration state into environment variables that can be passed to your application from
the container. This allows you to easily do things like use the same container to run in
either production or staging environments. In most companies, those environments would
require many different configuration settings, from the names of databases to the
hostnames of other service dependencies.

With containers, you might also find that you are always decreasing the size of your
containerized application as you optimize it down to the bare essentials required to run.
We have found that thinking of anything that you need to run in a distributed way as a
container can lead to some interesting design decisions. If, for example, you have a service
that collects some data, processes it, and returns the result, you might configure containers
on many servers to run the job and then aggregate the response on another container.

Externalizing State

If Docker works best for stateless applications, how do you best store state when you need
to? Configuration is best passed by environment variables, for example. Docker supports
environment variables natively, and they are stored in the metadata that makes up a
container configuration. This means that restarting the container will ensure that the same
configuration is passed to your application each time.

Databases are often where scaled applications store state, and nothing in Docker interferes
with doing that for containerized applications. Applications that need to store files,
however, face some challenges. Storing things to the container’s filesystem will not
perform well, will be extremely limited by space, and will not preserve state across a
container lifecycle. Applications that need to store filesystem state should be considered
carefully before putting them into Docker. If you decide that you can benefit from Docker
in these cases, it’s best to design a solution where the state can be stored in a centralized
location that could be accessed regardless of which host a container runs on. In certain
cases, this might mean a service like Amazon S3, RiakCS, OpenStack Swift, a local block
store, or even mounting iSCSI disks inside the container.

TIP

Although it is possible to externalize state on an attached filesystem, it is not generally encouraged by the
community, and should be considered an advanced use case. It is strongly recommended that you start with
applications that don’t need persistent state. There are multiple reasons why this is generally discouraged,
but in almost all cases it is because it introduces dependencies between the container and the host that
interfere with using Docker as a truly dynamic, horizontally scalable application delivery service. If your
container relies on an attached filesystem, it can only be deployed to the system that contains this
filesystem.

The Docker Workflow

Like many tools, Docker strongly encourages a particular workflow. It’s a very enabling
workflow that maps well to how many companies are organized, but it’s probably a little
different than what you or your team are doing now. Having adapted our own
organization’s workflow to the Docker approach, we can confidently say that this change
is a benefit that touches many teams in the organization. If the workflow is implemented
well, it can really help realize the promise of reduced communication overhead between
teams.

Revision Control

The first thing that Docker gives you out of the box is two forms of revision control. One
is used to track the filesystem layers that images are made up of, and the other is a tagging
systems for built containers.

Filesystem layers

Docker containers are made up of stacked filesystem layers, each identified by a unique
hash, where each new set of changes made during the build process is laid on top of the
previous changes. That’s great because it means that when you do a new build, you only
have to rebuild the layers that include and build upon the change you’re deploying. This
saves time and bandwidth because containers are shipped around as layers and you don’t
have to ship layers that a server already has stored. If you’ve done deployments with many
classic deployment tools, you know that you can end up shipping hundreds of megabytes
of the same data to a server over and over at each deployment. That’s slow, and worse,
you can’t really be sure exactly what changed between deployments. Because of the
layering effect, and because Docker containers include all of the application dependencies,
you can be quite sure where the changes happened.

To simplify this a bit, remember that a Docker image contains everything required to run
your application. If you change one line of code, you certainly don’t want to waste time
rebuilding every dependency your code requires into a new image. Instead, Docker will
use as many base layers as it can so that only the layers affected by the code change are
rebuilt.

Image tags

The second kind of revision control offered by Docker is one that makes it easy to answer
an important question: what was the previous version of the application that was
deployed? That’s not always easy to answer. There are a lot of solutions for non-
Dockerized applications, from git tags for each release, to deployment logs, to tagged
builds for deployment, and many more. If you’re coordinating your deployment with
Capistrano, for example, it will handle this for you by keeping a set number of previous
releases on the server and then using symlinks to make one of them the current release.

But what you find in any scaled production environment is that each application has a
unique way of handling deployment revisions. Or many do the same thing and one is
different. Worse, in heterogeneous language environments, the deployment tools are often
entirely different between applications and very little is shared. So the question of “What
was the previous version?” can have many answers depending on whom you ask and
about which application. Docker has a built-in mechanism for handling this: it provides
image tagging at deployment time. You can leave multiple revisions of your application on
the server and just tag them at release. This is not rocket science, and it’s not functionality
that is hard to find in other deployment tooling, as we mention. But it can easily be made
standard across all of your applications, and everyone can have the same expectations

about how things will be tagged for all applications.

WARNING

In many examples on the Internet and in this book, you will see people use the latest tag. This is useful
when getting started and when writing examples, as it will always grab the most recent version of a image.
But since this is a floating tag, it is a bad idea to use latest in most workflows, as your dependencies can
get updated out from under you, and it is impossible to roll back to latest because the old version is no
longer the one tagged latest.

Building

Building applications is a black art in many organizations, where a few people know all
the levers to pull and knobs to turn in order to spit out a well-formed, shippable artifact.
Part of the heavy cost of getting a new application deployed is getting the build right.
Docker doesn’t solve all the problems, but it does provide a standardized tool
configuration and tool set for builds. That makes it a lot easier for people to learn to build
your applications, and to get new builds up and running.

The Docker command-line tool contains a build flag that will consume a Dockerfile and
produce a Docker image. Each command in a Dockerfile generates a new layer in the
image, so it’s easy to reason about what the build is going to do by looking at the
Dockerfile itself. The great part of all of this standardization is that any engineer who has
worked with a Dockerfile can dive right in and modify the build of any other application.
Because the Docker image is a standardized artifact, all of the tooling behind the build
will be the same regardless of the language being used, the OS distribution it’s based on,
or the number of layers needed.

Most Docker builds are a single invocation of the docker build command and generate a
single artifact, the container image. Because it’s usually the case that most of the logic
about the build is wholly contained in the Dockerfile, it’s easy to create standard build
jobs for any team to use in build systems like Jenkins. As a further standardization of the
build process, a few companies, including eBay, actually have standardized Docker
containers to do the image builds from a Dockerfile.

http://jenkins-ci.org

Testing

While Docker itself does not include a built-in framework for testing, the way containers
are built lends some advantages to testing with Docker containers.

Testing a production application can take many forms, from unit testing to full integration
testing in a semi-live environment. Docker facilitates better testing by guaranteeing that
the artifact that passed testing will be the one that ships to production. This can be
guaranteed because we can either use the Docker SHA for the container, or a custom tag to
make sure we’re consistently shipping the same version of the application.

The second part of the testing story is that all testing that is run against the container will
automatically include testing the application with all of the dependencies that it will ship
with. If a unit test framework says tests were successful against a container image, you can
be sure that you will not experience a problem with the versioning of an underlying library
at deployment time, for example. That’s not easy with most other technologies, and even
Java WAR files, for example, don’t include testing of the application server itself. That
same Java application deployed in a Docker container will generally also include the
application server, and the whole stack can be smoke tested before shipping to production.

A secondary benefit of shipping applications in Docker containers is that in places where
there are multiple applications that talk to each other remotely via something like an API,
developers of one application can easily develop against a version of the other service that
is currently tagged for the environment they require, like production or staging.
Developers on each team don’t have to be experts in how the other service works or is
deployed, just to do development on their own application. If you expand this to a service-
oriented architecture with innumerable microservices, Docker containers can be a real
lifeline to developers or QA engineers who need to wade into the swamp of inter-
microservice API calls.

Packaging

Docker produces what for all intents and purposes is a single artifact from each build. No
matter which language your application is written in, or which distribution of Linux you
run it on, you get a multilayered Docker image as the result of your build. And it is all
built and handled by the Docker tooling. That’s the shipping container metaphor that
Docker is named for: a single, transportable unit that universal tooling can handle,
regardless of what it contains. Like the container port, or multimodal shipping hub, your
Docker tooling will only ever have to deal with one kind of package: the Docker image.
That’s powerful because it’s a huge facilitator of tooling reuse between applications, and it
means that someone else’s off-the-shelf tools will work with your build images.
Applications that traditionally take a lot of custom configuration to deploy onto a new host
or development system become incredibly portable with Docker. Once a container is built,
it can easily be deployed on any system with a running Docker server.

Deploying

Deployments are handled by so many kinds of tools in different shops that it would be
impossible to list them here. Some of these tools include shell scripting, Capistrano,
Fabric, Ansible, or in-house custom tooling. In our experience with multi-team
organizations, there are usually one or two people on each team who know the magic
incantation to get deployments to work. When something goes wrong, the team is
dependent on them to get it running again. As you probably expect by now, Docker makes
most of that a nonissue. The built-in tooling supports a simple, one-line deployment
strategy to get a build onto a host and up and running. The standard Docker client only
handles deploying to a single host at a time, but there are other tools available that make it
easy to deploy into a cluster of Docker hosts. Because of the standardization provided by
Docker, your build can be deployed into any of these systems, with low complexity on the
part of the development teams.

The Docker Ecosystem

There is a wide community forming around Docker, driven by both developers and system
administrators. Like the DevOps movement, this has facilitated better tools by applying
code to operations problems. Where there are gaps in the tooling provided by Docker,
other companies and individuals have stepped up to the plate. Many of these tools are also
open source. That means they are expandable and can be modified by any other company
to fit their needs.

Orchestration

The first important category of tools that adds functionality to the core Docker distribution
contains orchestration and mass deployment tools like Docker’s Swarm, New Relic’s
Centurion and Spotify’s Helios. All of these take a generally simple approach to
orchestration. For more complex environments, Google’s Kubernetes and Apache Mesos
are more powerful options. There are new tools shipping constantly as new adopters
discover gaps and publish improvements.

Atomic hosts

One additional idea that can be leveraged to enhance your Docker experience is atomic
hosts. Traditionally, servers and virtual machines are systems that an organization will
carefully assemble, configure, and maintain to provide a wide variety of functionality that
supports a broad range of usage patterns. Updates must often be applied via nonatomic
operations, and there are many ways in which host configurations can diverge and
introduce unexpected behavior into the system. Most running systems are patched and
updated in place in today’s world. Conversely, in the world of software deployments, most
people deploy an entire copy of their application, rather than trying to apply patches to a
running system. One of the appeals of containers is that they help make applications even
more atomic than traditional deployment models.

What if you could extend that core container pattern all the way down into the operating
system? Instead of relying on configuration management to try to update, patch, and
coalesce changes to your OS components, what if you could simply pull down a new, thin
OS image and reboot the server? And then if something breaks, easily roll back to the
exact image you were previously using?

This is one of the core ideas behind Linux-based atomic host distributions, like CoreOS
and Project Atomic. Not only should you be able to easily tear down and redeploy your
applications, but the same philosophy should apply for the whole software stack. This

pattern helps provide incredible levels of consistency and resilience to the whole stack.

Some of the typical characteristics of an atomic host are a minimal footprint, a focused
design towards supporting Linux containers and Docker, and providing atomic OS updates
and rollbacks that can easily be controlled via multihost orchestration tools on both bare-
metal and common virtualization platforms.

https://github.com/docker/swarm/
https://github.com/newrelic/centurion/
https://github.com/spotify/helios
https://github.com/GoogleCloudPlatform/kubernetes
http://mesos.apache.org
https://coreos.com
http://www.projectatomic.io
https://gist.github.com/jzb/0f336c6f23a0ba145b0a

In Chapter 3, we will discuss how you can easily use atomic hosts in your development
process. If you are also using atomic hosts as deployment targets, this process creates a
previously unheard of amount of software stack symmetry between your development and
production environments.

Additional tools

Additional categories include auditing, logging, network, mapping, and many other tools,
the majority of which leverage the Docker API directly. Some of these tools and Docker-
related features include CoreOS’s flannel for Kubernetes; Weave, a virtual network for
spanning containers across multiple Docker hosts; and direct support for Docker logs in
Mozilla’s Heka log router.

The results of the broad community that is rapidly evolving around Docker is anyone’s
guess, but it is likely that this support will only accelerate Docker’s adoption and the
development of robust tools that solve many of the problems that the community struggles
with.

https://github.com/mozilla-services/heka

Wrap-Up

There you have it, a quick tour through Docker. We’ll return to this discussion later on
with a slightly deeper dive into the architecture of Docker, more examples of how to use
the community tooling, and a deeper dive into some of the thinking behind designing
robust container platforms. But you’re probably itching to try it all out, so in the next
chapter we’ll get Docker installed and running.

Chapter 3. Installing Docker

The steps required to install Docker vary depending on the primary platform you use for
development and the Linux distribution that you use to host your applications in
production. Since Docker is a technology built around Linux containers, people
developing on non-Linux platforms will need to use some form of virtual machine or
remote server for many parts of the process.

In this chapter, we discuss the steps required to get a fully working Docker development
environment set up on most modern desktop operating systems. First we’ll install the
Docker client on your native development platform, then we’ll get a Docker server
running on Linux. Finally we’ll test out the installation to make sure it works as expected.

Although the Docker client can run on Windows and Mac OS X to control a Docker
Server, Docker containers can only be built and launched on Linux. Therefore, non-Linux
systems will require a virtual machine or remote server to host the Linux-based Docker
server.

Important Terminology

Below are a few terms that we will continue to use throughout the book and whose
meanings you should become familiar with.

Docker client

The docker command used to control most of the Docker workflow and talk to
remote Docker servers.

Docker server

The docker command run in daemon mode. This turns a Linux system into a Docker
server that can have containers deployed, launched, and torn down via a remote
client.

Docker images

Docker images consist of one or more filesystem layers and some important metadata
that represent all the files required to run a Dockerized application. A single Docker
image can be copied to numerous hosts. A container will typically have both a name
and a tag. The tag is generally used to identify a particular release of an image.

Docker container

A Docker container is a Linux container that has been instantiated from a Docker
image. A specific container can only exist once; however, you can easily create
multiple containers from the same image.

Atomic host

An atomic host is a small, finely tuned operating system image, like CoreOS and
Project Atomic, that supports container hosting and atomic OS upgrades.

Docker Client

The Docker client natively supports 64-bit versions of Linux and Mac OS X due to the
Unix underpinnings of both operating systems. There have been reports of people getting
Docker to run on 32-bit systems, but it is not currently supported.

The majority of popular Linux distributions can trace their origins to either Debian or Red
Hat. Debian systems utilize the deb package format and Advanced Package Tool (apt) to
install most prepackaged software. On the other hand, Red Hat systems rely on rpm (Red
Hat Package Manager) files and Yellowdog Updater, Modified (yum) to install similar
software packages.

On Mac OS X and Microsoft Windows, native GUI installers provide the easiest method
to install and maintain prepackaged software. On Mac OS X, Homebrew is also a very
popular option among technical users.

NOTE

To develop with Docker on non-Linux platforms, you will need to leverage virtual machines or remote
Linux hosts to provide a Docker server. Boot2Docker and , which are discussed later in this chapter,
provide one approach to solving this issue.

http://bit.ly/1Btzr5o
http://red.ht/1AAMUZW
http://brew.sh

Linux

It is strongly recommended that you run Docker on a modern release of your prefered
Linux distribution. It is possible to run Docker on some older releases, but stability may be
an significant issue. Generally a 3.8 or later kernel is required, and we advise you to use
the newest stable version of your chosen distribution. The directions below assume you
are using a recent, stable release.

Ubuntu Linux 14.04 (64-bit)

To install Docker on a current installation, run the following commands:

$ sudo apt-get update
$ sudo apt-get install docker.io
$ sudo 1n -sf /usr/bin/docker.io /usr/local/bin/docker

and then, if you are a bash user, you can set up completion for your convenience:

$ sudo sed -i '$acomplete -F _docker docker' /etc/bash_completion.d/docker.io
$ source /etc/bash_completion.d/docker.io

Fedora Linux 21 (64-bit)

To install the correct Docker packages on your system, run the following command:

$ sudo yum -y install docker-io

TIP

If you get a Cannot start container error, try running sudo yum upgrade selinux-policy and then reboot
your system.

Older Fedora releases have a pre-existing package called docker, which is a KDE and GNOME2 system
tray replacement docking application for WidowMaker. In newer versions of Fedora, this package has been
renamed to wmdocker.

Mac OS X 10.10

To install Boot2Docker on Mac OS X, you can use any one of the following methods,
depending on your preferences and needs:

m GUI Installer
» Homebrew
New users may want to stick with the GUI installer for simplicity.

GUI installer

Download the latest Boot2Docker installer and then double-click on the downloaded
program icon. Follow all of the installer prompts until the installation is finished.

The installer will also install VirtualBox, which Mac OS X requires to launch Linux
virtual machines that can build Docker images and run containers.
Homebrew installation

To install using the popular Homebrew package management system for Mac OS X, you
must first install Homebrew. The Homebrew project suggests installing the software with
the following command:

$ ruby -e \
"$(curl -fsSL \
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Caution

Running random scripts from the Internet on your system is not considered wise. It is
unlikely that this script has been altered in a malicous manner, but a wise soul would read
through the script first, or consider an alternative installation option.

If you already have Homebrew installed on your system, you should update it and all the
installed formulas by running;:

$ brew update

To install VirtualBox via Homebrew, you need to add support for an additional Homebrew
repository that contains many GUI and large binary applications for Mac OS X. This can
be done with one simple command:

$ brew install caskroom/cask/brew-cask

NOTE

You can find more information about Homebrew Casks at caskroom.io.

Now that you have Homebrew and Cask installed and the newest software formulas have

http://bit.ly/18WVjiH
http://bit.ly/1LoavHJ
http://bit.ly/1evu0PP
http://caskroom.io

been downloaded, you can install VirtualBox with the following command:

$ brew cask install virtualbox

And then installing Docker is as simple as running:

$ brew install docker
$ brew install boot2docker

Microsoft Windows 8

Download the latest Boot2Docker installer and then double-click on the downloaded
program icon. Follow all of the installer prompts until the installation is finished.

The installer will also install VirtualBox, which Microsoft Windows requires to launch
Linux virtual machines that can build Docker images and run containers.

NOTE

Installation directions for additional operating systems can be found at docs.docker.com.

http://bit.ly/19vTA5d
https://docs.docker.com/installation/

Docker Server

The Docker server is integrated into the same binary that you use as the client. It’s not
obvious that it’s the same when you install it because all of the Linux init systems shield
you from the command that is actually invoked to run the daemon. So it’s useful to see
that running the Docker daemon manually on a Linux system is a simple as typing
something like this:

$ sudo docker -d -H unix:///var/run/docker.sock -H tcp://0.0.0.0:2375

This command tells Docker to start in daemon mode (-d), create and listen to a Unix
domain socket (-H unix:///var/run/docker.sock), and bind to all system IP addresses
using the default unencrypted traffic port for docker (-H tcp://0.0.0.0:2375).

NOTE

If you already have Docker running, manually executing the daemon again, will fail because it can’t use the
same ports twice.

Of course, you’re not likely to have to do this yourself. But that’s what going on behind
the scene. On non-Linux systems, you will need to set up a Linux-based virtual machine to
host the Docker server.

Systemd-Based Linux

Current Fedora releases utilize systemd to manage processes on the system. Because you
have already installed Docker, you can ensure that the server starts every time you boot
the system by typing:

$ sudo systemctl enable docker

This tells systemd to enable the docker service and start it when the system boots or
switches into the default runlevel.

To start the docker server, type the following:

$ sudo systemctl start docker

http://bit.ly/1Gj3KQT

Upstart-Based Linux

Ubuntu uses the upstart init daemon, although future versions are very likely going to be
converting to systemd. Upstart replaces the traditional Unix init system with an event-
driven model and supports vastly simplified init scripts, sometimes only a few lines long.

To enable the docker server to start when the system boots, type:

$ sudo update-rc.d docker.io defaults

To start the service immediately, you can use:

$ service docker.io start

http://upstart.ubuntu.com

init.d-Based Linux

Many Linux distributions used on production servers are still using a more traditional
init.d system. If you are running something based on the Red Hat 6 ecosystem, among

others, then you can likely use commands similar to the following to control when the
docker server runs.

Enable the Docker service at boot with:

$ chkconfig docker on

Start the Docker service immediately:

$ service docker start

or:

$ /etc/init.d/docker start

http://en.wikipedia.org/wiki/Init

Non-Linux VM-Based Server

If you are using Microsoft Windows or Mac OS X in your Docker workflow, the default
installation provides VirtualBox and Boot2Docker, so that you can set up a Docker server
for testing. These tools allow you to boot an Ubuntu-based Linux virtual machine on your
local system. We’ll focus on Boot2Docker because it’s more universal than other tools and
is entirely targeted at getting you up and running quickly.

In addition to Boot2Docker, it is also possible to use other tools to set up the Docker
server, depending on your preferences and needs.

= Docker Machine

m Vagrant

» Manually maintained virtual machines
m Kitematic

New users may want to stick with Boot2Docker for the simplest experience. If even that
seems too complicated, there is Kitematic, a GUI-based installer specific to Mac OS X.
This was recently acquired by Docker, Inc., and brought in-house.

Boot2Docker

To initialize Boot2Docker and download the required boot image, run the following
command the first time you use Boot2Docker. You should see output similar to what is
displayed below.

$ boot2docker init
Latest release for boot2docker/boot2docker is v1.3.1
Downloading boot2docker ISO image..
Success: downloaded https://github.com/.../boot2docker.iso

to /Users/me/.boot2docker/boot2docker.iso
Generating public/private rsa key pair.
Your identification has been saved in /Users/me/.ssh/id_boot2docker.
Your public key has been saved in /Users/me/.ssh/id_boot2docker.pub.
The key fingerprint is:
ce:dc:61:42:fe:el:7b:af:2d:d6:00:57:bc:ff:66:5d me@my-mbair.local
The key's randomart image is:
+--[RSA 2048]----+
I I
I E|
I . o.|
I . B ol
| 0 ++00.0+|
I S+=+=..0]|
| .=+, 10|
|

Now you can start up a virtual machine with a running Docker daemon. By default,
Boot2Docker will map port 2376 on your local host to the secure Docker port 2376 on the
virtual machine to make it easier to interact with the Docker server from your local
system.

https://kitematic.com/

$ boot2docker up
Waiting for VM and Docker daemon to start..

Started.

Writing /Users/me/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/me/.boot2docker/certs/boot2docker-vm/cert.pem
Writing /Users/me/.boot2docker/certs/boot2docker-vm/key.pem

To connect the Docker client to the Docker daemon, please set:
export DOCKER_TLS_VERIFY=1
export DOCKER_HOST=tcp://172.17.42.10:2376
export DOCKER_CERT_PATH=/Users/skane/.boot2docker/certs/boot2docker-vm

To set up your shell environment so that you can easily use your local Docker client to talk
to the Docker daemon on your virtual machine, you can run:

$ $(boot2docker shellinit)

If everything is running properly, you should now be able to run the following to connect
to the Docker daemon:

$ docker info

Containers: 0

Images: 0

Storage Driver: aufs

Root Dir: /mnt/sdal/var/lib/docker/aufs
Dirs: ©

Execution Driver: native-0.2

Kernel Version: 3.16.4-tinycore64
Operating System: Boot2Docker 1.3.1 (TCL 5.4);
Debug mode (server): true

Debug mode (client): false

Fds: 10

Goroutines: 11

EventsListeners: 0

Init Path: /usr/local/bin/docker

To connect to a shell on your Boot2Docker-based virtual machine, you can use the
following command:

$ boot2docker ssh
warning: Permanently added '[localhost]:2022' (RSA) to the list of known hosts.

Hit .
Hit #H# H#H# ==
Hit #i# H#HH# HH ===
VAR R N e
~—— {~~ ~—m—~ o~~~ o~~~ [/ D=z e~~~
\ 0 _/
\ \ _/
\ \ /
- — Pl — N — 1| _
| N/ _NJ N | Y N N
1D T QO T Q=7 7 Q) (=l < /|
./ _/ _/ __| NN N NN

Boot2Docker version 1.3.1, build master : 9a31a68 - Fri Oct 31 03:14:34 UTC 2014
Docker version 1.3.1, build 4e9bbfa
docker@boot2docker :~$

Docker Machine

In early 2015, Docker announced the beta release of Docker Machine, a tool that makes it
much easier to set up Docker hosts on bare-metal, cloud, and virtual machine platforms.

https://github.com/docker/machine

The easiest way to install Docker Machine is to visit the GitHub releases page and
download the correct binary for your operating system and architecture. Currently, there
are versions for 32- and 64-bit versions of Linux, Windows, and Mac OS X.

For these demonstrations, you will also need to have a recent release of a hypervisor, like
VirtualBox, installed on your system.

For this section, you will use a Unix-based system with VirtualBox for the examples.

First you need to download and install the docker-machine executable:

$ curl -L -o docker-machine \
https://github.com/docker/machine/releases/download\
/v0.1.0/docker-machine_darwin-amdé64

mkdir ~/bin

cp docker-machine ~/bin

export PATH=${PATH}:~/bin

chmod u+rx ~/bin/docker-machine

R R R e

TIP

We’ve had to line wrap the URL to fit the format of this book. If you have trouble running that in your shell
as-is, try removing the backslashes and joining it into one line without any spaces in the URL.

Once you have the docker-machine executable in your path, you can start to use it to set
up Docker hosts. Here we’ve just put it temporarily into your path. If you want to keep
running it in the future, you’ll want to add it to your .profile or .bash_profile file.

Now that we can run the tool, the next thing that you need to do is create a named Docker
machine. You can do this using the docker-machine create command:

$ docker-machine create --driver virtualbox local

INFO[0000] Creating CA: /Users/skane/.docker/machine/certs/ca.pem

INFO[0001] Creating client certificate: /.../.docker/machine/certs/cert.pem

INFO[0000] Downloading boot2docker.iso to /.../machine/cache/boot2docker.iso..

INFO[0001] Creating SSH key..

INFO[0001] Creating VirtualBox VM..

INFO[0013] Starting VirtualBox VM..

INFO[0014] waiting for VM to start..

INFO[0061] "local" has been created and is now the active machine.

INFO[0061] To point your Docker client at it, run this in your shell:
$(docker-machine env local)

This downloads a Boot2Docker image and then creates a VirtualBox virtual machine that
you can use as a Docker host. If you look at the output from the create command, you

will see that it instructs you to run the following command:

$ $(docker-machine env local)

This command has no output, so what does it do exactly? If you run it without the
surrounding $(), you will see that it sets a couple of environment variables in our current
shell that tell the Docker client where to find the Docker server:

$ docker-machine env local

export DOCKER_TLS_VERIFY=yes
export DOCKER_CERT_PATH=/Users/me/.docker/machine/machines/local

https://github.com/docker/machine/releases
https://www.virtualbox.org/wiki/Downloads

export DOCKER_HOST=tcp://172.17.42.10:2376

And now if you want to confirm what machines you have running, you can use the
following command:

$ docker-machine 1s
NAME ACTIVE DRIVER STATE URL SWARM
local * virtualbox Running tep://172.17.42.10:2376

This tells you that you have one machine, named local, that is active and running.

Now you can pass commands to the new Docker machine by leveraging the regular
docker command, since you have set the proper environment variables. If you did not

want to set these environment variables, you could also use the docker and docker -
machine commands in conjunction with one another, like so:

$ docker $(docker-machine config local) ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

This command embeds the output from docker-machine into the middle of the docker
command. If you run the docker-machine on its own, you can see what it is adding to the
docker command:

$ docker-machine config local
--tls --tlscacert=/Users/me/.docker/machine/machines/local/ca.pem \
--tlscert=/Users/me/.docker/machine/machines/local/cert.pem \
--tlskey=/Users/me/.docker/machine/machines/local/key.pem \
-H="tcp://172.17.42.10:2376"

Although you can see the Docker host’s IP address in the output, you can ask for it
explicitly with the following command:

$ docker-machine ip
172.17.42.10

If you want to log in to the system, you can easily do this by running;:

$ docker-machine ssh local

#it .
T ==
ST T ===
/Il"||||"||||||"|||l||||"||"\— ==
~—— {~~ ~——— o~~~ e~~~ ~ [==z~
\ o} _/
\ \ _/
\ \ /
- — Pl — N — 1| -
| "N/ _N/ _\| | _ Y/ _ |/ _N7/_| |/ 7 _\N"__|
1D T QO T Q=7 7 Q) (= < /|
|/ N/ N__/ N__ | N, NN I

Boot2Docker version 1.5.0, build master : a66bce5 - Tue Feb 10.. UTC 2015
Docker version 1.5.0, build a8a3ilef
docker@local:~$ exit

To stop your Docker machine, you can run:

$ docker-machine stop local

And then you can run this to restart it (you need it to be running):

$ docker-machine start local
INFO[000O] Waiting for VM to start..

Some of the documentation states that if you run docker-machine stop without specifying a machine
name, the command will execute on the active machine as identified in the output of docker-machine 1s.
This does not seem to actually be the case in the current release.

If you want to explore the other options that docker -machine provides, you can simply
run docker -machine without any other options to see the command help.

Vagrant

If you need more flexibility with the way your Docker development environment is set up
you might want to consider using Vagrant instead of Boot2Docker. Vagrant provides some
advantages, including support for multiple hypervisors, a huge array of virtual machine
images, and much more.

A common use case for leveraging Vagrant during Docker development is to support
testing on images that match your production enviroment. Vagrant supports everything
from broad distributions like CentOS 7 and Ubuntu 14.04, to finely focused atomic host
distributions like CoreOS and Project Atomic.

Vagrant can be easily installed on most platforms by downloading a self-contained
package from vagrantup.com. You will also need to have a hypervisor, like VirtualBox,
installed on your system.

In the following example, you will create a CoreOS-based Docker host running the
Docker daemon on the unencrypted port 2375. You could use your favorite distribution
here instead. But CoreOS ships with working Docker out of the box and the image is quite
small.

NOTE

In production, Docker should always be set up to only use encrypted remote connections. Althought
Boot2Docker now uses encrypted communications by default, setting up Vagrant to do this in CoreOS is
currently a bit too complicated for this installation example.

After Vagrant is installed, create a host directory with a name similar to docker-host and
then move into that directory:

$ mkdir docker-host
$ cd docker-host

To install the coreos-vagrant files, you need the version control tool named git. If you
don’t already have git, you can download and install it from git-scm.com. When git is

https://coreos.com
http://www.projectatomic.io
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
http://git-scm.com/download

installed, you can grab the coreos-vagrant files and then change into the new directory
with the following commands:

$ git clone https://github.com/coreos/coreos-vagrant.git
$ cd coreos-vagrant

Inside the coreos-vagrant directory, we need to create a new file called config.rb (that tells
it to expose the Docker TCP port so we can connect):

echo "\$expose_docker_tcp=2375" > config.rb

Next you’ll need to leverage the built-in cloud-init tool to add some systemd unit files

that will enable the Docker daemon on TCP port 2375. You can do this by creating a file
called user-data that contains all of the following, including #cloud-config at the

beginning;:

#cloud-config

coreos:
units:
- name: docker-tcp.socket

command: start

enable: yes

content: |
[Unit]
Description=Docker Socket for the API

[Socket]
ListenStream=2375
BindIPv60nly=both
Service=docker.service

[Install]
wWantedBy=sockets.target
- name: enable-docker-tcp.service
command: start
content: |
[Unit]
Description=Enable the Docker Socket for the API

[Service]
Type=oneshot
ExecStart=/usr/bin/systemctl enable docker-tcp.socket

When you have saved both of these files, you can start up the Vagrant-based virtual
machine by running:

$ vagrant up

Bringing machine 'core-01' up with 'virtualbox' provider..

==> core-01: Box 'coreos-alpha' could not be found. Attempting to find and install..
core-01: Box Provider: virtualbox
core-01: Box Version: >= 308.0.1

==> core-01: Loading metadata.. '"http://.../coreos_production_vagrant.json'
core-01: URL: http://.../coreos_production_vagrant.json

==> core-01: Adding box 'coreos-alpha' (v472.0.0) for provider: virtualbox
core-01: Downloading: http://.../coreos_production_vagrant.box
core-01: Calculating and comparing box checksum..

==> core-01: Successfully added box 'coreos-alpha' (v472.0.0) for 'virtualbox'!

==> core-01: Importing base box 'coreos-alpha'...

==> core-01: Matching MAC address for NAT networking..

==> core-01: Checking if box 'coreos-alpha' is up to date..

==> core-01: Setting the name of the VM: coreos-vagrant_core-01

==> core-01: Clearing any previously set network interfaces..
==> core-01: Preparing network interfaces based on configuration..
core-01: Adapter 1: nat
core-01: Adapter 2: hostonly
==> core-01: Forwarding ports..
core-01: 2375 => 2375 (adapter 1)
core-01: 22 => 2222 (adapter 1)
==> core-01: Running 'pre-boot' VM customizations..
==> core-01: Booting VM.
==> core-01: Waiting for machine to boot. This may take a few minutes..
core-01: SSH address: 127.0.0.1:2222
core-01: SSH username: core
core-01: SSH auth method: private key
core-01: Warning: Connection timeout. Retrying..
==> core-01: Machine booted and ready!
==> core-01: Setting hostname..
==> core-01: Configuring network adapters within the VM..
==> core-01: Running provisioner: file..
==> core-01: Running provisioner: shell..
core-01: Running: inline script

To set up your shell environment so that you can easily use your local Docker client to talk
to the Docker daemon on your virtual machine, you can set the following variables:

$ unset DOCKER_TLS_VERIFY
$ unset DOCKER_CERT_PATH
$ export DOCKER_HOST=tcp://127.0.0.1:2375

If everything is running properly, you should now be able to run the following to connect
to the Docker daemon:

$ docker info

Containers: 0

Images: ©

Storage Driver: btrfs

Execution Driver: native-0.2
Kernel Version: 3.16.2+
Operating System: CoreQS 472.0.0

To connect to a shell on the Vagrant-based virtual machine, you can run:

$ vagrant ssh
Core0S (alpha)
core@core-01 ~ $

Test the Setup

You are now ready to test that everything is working. You should be able to run any one of
the following commands on your local system to tell the Docker daemon to download the
latest official container for that distribution and then launch it running an instance of bash.

This step is important to ensure that all the peices are properly installed and
communicating with each other as expected. It also shows off one of the features of
Docker: we can run containers based on any distribution we like. In the next few steps
we’ll run Docker containers based on Ubuntu, Fedora, and CentOS. You don’t need to run
them all to prove that this works; running one of them will suffice.

NOTE

If you want to run these commands on the server, be sure that you prepend each docker command with
sudo. Alternatively you could add your user to the docker group directly.

Ubuntu

$ docker run --rm -ti ubuntu:latest /bin/bash

Fedora

$ docker run --rm -ti fedora:latest /bin/bash

CentOS

$ docker run --rm -ti centos:latest /bin/bash

NOTE

ubuntu:latest, fedora:latest, and centos:latest all represent a Docker image name followed by an
image tag.

Wrap-Up

Now that you have a running Docker setup, you can start to look at more than the basic
mechanics of getting it installed. In the next chapter, you’ll explore some of the basic
functionality of Docker with some hands-on work.

In the rest of the book, when you see docker on the command line, assume you will need
to have the correct configuration in place either as environment variables or via the -H
command-line flag to tell the docker client how to connect to your docker daemon.

Chapter 4. Working with Docker Images

Every Docker container is based on an image, which provides the basis for everything that
you will ever deploy and run with Docker. To launch a container, you must either
download a public image or create your own. Every Docker image consists of one or more
filesystem layers that generally have a direct one-to-one mapping to each individual build
step used to create that image.

For image management, Docker relies heavily on its storage backend, which
communicates with the underlying Linux filesystem to build and manage the multiple
layers that combine into a single usable image. The primary storage backends that are
supported include: AUFS, BTRFS, Device-mapper, and overlayfs. Each storage backend
provides a fast copy-on-write (CoW) system for image management.

http://bit.ly/1evu9D3
http://bit.ly/1PCwkQw
http://bit.ly/1evughM
http://bit.ly/1zFjGhH

Anatomy of a Dockerfile

To create a custom Docker image with the default tools, you will need to become familiar
with the Dockerfile. This file describes all the steps that are required to create one image
and would usually be contained within the root directory of the source code repository for
your application.

A typical Dockerfile might look something like the one shown here, which will create a
container for a Node.js-based application:

FROM node:0.10

MAINTAINER Anna Doe <anna@example.com>

LABEL "rating"="Five Stars" "class"="First Class"
USER root

ENV AP /data/app
ENV SCPATH /etc/supervisor/conf.d

RUN apt-get -y update
The daemons
RUN apt-get -y install supervisor

RUN mkdir -p /var/log/supervisor

Supervisor Configuration
ADD ./supervisord/conf.d/* $SCPATH/

Application Code
ADD *.js* $AP/

WORKDIR $AP
RUN npm install

CMD ["supervisord", "-n"]

Dissecting this Dockerfile will provide some initial exposure to a number of the possible
instructions that you can use to control how an image is assembled. Each line in a
Dockerfile creates a new image layer that is stored by Docker. This means that when you
build new images, Docker will only need to build layers that deviate from previous builds.

Although you could build a Node instance from a plain, base Linux image, you can also
explore the Docker Registry for official images for Node. Node.js maintains a series of
Docker images and tags that allows you to quickly determine that you should tell the
image to inherit from node:0.10, which will pull the most recent Node.js version 0.10

container. If you want to lock the image to a specific version of Node, you could instead
point it at node:0.10.33. The base image that follows will provide you with an Ubuntu

Linux image running Node 0.10.x:

FROM node:0.10

The MAINTAINER field provides contact information for the Dockerfile’s author, which
populates the Author field in all resulting images’ metadata:

http://bit.ly/1evujdF
http://bit.ly/1evumGb

MAINTAINER Anna Doe <anna@example.com>

The ability to apply labels to images and containers was added to Docker in version 1.6.
This means that you can now add metadata via key-value pairs that can later be used to

search for and identify Docker images and containers. You can see the labels applied to

any image using the docker inspect command:

LABEL "rating"="Five Stars" "class"="First Class"

By default, Docker runs all processes as root within the container, but you can use the
USER instruction to change this:

USER root

Caution

Even though containers provide some isolation from the underlying operating system, they
still run on the host kernel. Due to potential security risks, production containers should
almost always be run under the context of a non-privileged user.

The ENV instruction allows you to set shell variables that can be used during the build
process to simplify the Dockerfile and help keep it DRYer:!

ENV AP /data/app
ENV SCPATH /etc/supervisor/conf.d

In the following code, you’ll use a collection of RUN instructions to start and create the

required file structure that you need, and install some required software dependencies.
You’ll also start to use the build the variables you defined in the previous section to save
you a bit of work and help protect you from typos:

RUN apt-get -y update

The daemons
RUN apt-get -y install supervisor
RUN mkdir -p /var/log/supervisor

It is generally considered a bad idea to run commands like apt-get -y update or yum -y update in your

application Dockerfiles because it can significantly increase the time it takes for all of your builds to finish.
Instead, consider basing your application image on another image that already has these updates applied to
it.

NOTE

Remember that every instruction creates a new Docker image layer, so it often makes sense to combine a
few logically grouped commands onto a single line. It is even possible to use the ADD instruction in

combination with the RUN instruction to copy a complex script to your image and then execute that script
with only two commands in the Dockerfile.

The ADD instruction is used to copy files from the local filesystem into your image. Most
often this will include your application code and any required support files:

Supervisor Configuration

ADD ./supervisord/conf.d/* $SCPATH/

Application Code
ADD *.js* $AP/

NOTE

ADD allows you to include files from the local filesystem into the image. However, once the image is built,
you can use the image without having access to the original files because they have been copied into the
image.
With the WORKDIR instruction, you change the working directory in the image for the
remaining build instructions:

WORKDIR $AP

RUN npm install

Caution

The order of commands in a Dockerfile can have a very significant impact on ongoing
build times. You should try to order commands so that things that change between every
single build are closer to the bottom. This means that adding your code and similar steps
should be held off until the end. When you rebuild an image, every single layer after the
first introduced change will need to be rebuilt.

And finally you end with the cMD instruction, which defines the command that launches
the process that you want to run within the container:

CMD ["supervisord", "-n"]

NOTE

It is generally considered best practice to only run a single process within a container, although there is
debate about this within the community. The idea is that a container should provide a single function, so
that it remains easy to horizontally scale individual functions within your architecture. In the example, you
are using supervisord to manage the node application and ensure that it stays running within the container.

Building an Image

To build your first image, let’s go ahead and clone a git repo that contains an example
application called docker-node-hello, as shown here:?

$ git clone https://github.com/spkane/docker-node-hello.git
Cloning into 'docker-node-hello'...

remote: Counting objects: 20, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 20 (delta 6), reused 20 (delta 6)

Unpacking objects: 100% (20/20), done.

Checking connectivity.. done.

$ cd docker-node-hello

NOTE

Git is frequently installed on Linux and Mac OS X systems, but if you do not already have git available,
you can download a simple installer from git-scm.com.

This will download a working Dockerfile and related source code files into a directory
called docker-node-hello. If you look at the contents while ignoring the git repo directory,
you should see the following:

$ tree -a -I .git

— .dockerignore

— .gitignore

— Dockerfile

— Makefile

— README.md

— Vagrantfile

— index.js

— package.json

— supervisord

L— conf.d

— node.conf
L— supervisord.conf

Let’s review the most relevant files in the repo.
The Dockerfile should be exactly the same as the one you just reviewed.

The .dockerignore file allows you to define files and directories that you do not want
uploaded to the Docker host when you are building the image. In this instance, the
.dockerignore file contains the following line:

.git

This instructs docker build to exclude the .git directory, which contains the whole source
code repository. You do not need this directory to build the Docker image, and since it can

grow quite large over time, you don’t want to waste time copying it every time you do a
build.

http://git-scm.com/downloads

NOTE

The .git directory contains git configuration data and every single change that you have ever made to your
code. The rest of the files reflect the current state of your source code. This is why we can safely tell
Docker to ignore the .git directory.

m package.js defines the Node.js application and lists any dependencies that it relies on.
m index.js is the main source code for the application.

The supervisord directory contains the configuration files for supervisord that you will
need to start and monitor the application.

NOTE

Using supervisord in this example to monitor the application is overkill, but it is intended to provide a bit
of insight into some of the techniques you can use in a container to provide more control over your
application and its running state.

As we discussed in Chapter 3, you will need to have your Docker server running and your
client properly set up to communicate with it before you can build a Docker image.
Assuming that this is all working, you should be able to initiate a new build by running the
command below, which will build and tag an image based on the files in the current
directory.

NOTE

The first build that you run will take a few minutes because you have to download the base node image.
Subsequent builds should be much faster unless a newer node 0.10 base image has been released.

Each step identified in the following output maps directly to a line in the Dockerfile, and
each step creates a new image layer based on the previous step:

$ docker build -t example/docker-node-hello:latest .
Sending build context to Docker daemon 16.38 kB
Sending build context to Docker daemon
Step © : FROM node:0.10
node:0.10: The image you are pulling has been verified
511136ea3c5a: Pull complete
36fd425d7d8a: Pull complete
aaabd2b41e22: Pull complete
3c20e07c38ce: Pull complete
b6ef456c239c: Pull complete
b045b0cd49ad: Pull complete
210d9bc26f2f: Pull complete
27ecce8bd36c¢c: Pull complete
fcac83abd52d: Pull complete
edc7d098628f: Pull complete
b5ac041b53f9: Pull complete
387247331d9c: Pull complete
Status: Downloaded newer image for node:0.10
---> 387247331d9c
Step 1 : MAINTAINER Anna Doe <anna@example.com>
---> Running in fd83efd2echd
---> a479befa0788
Removing intermediate container fd83efd2echd
Step 2 : LABEL "rating"="Five Stars" '"class"="First Class"
---> Running in 30achbedf1379
---> 3chea27e857c
Removing intermediate container 30achbe0f1379
Step 3 : USER root

http://supervisord.org

---> Running in 32dfbc0f0855
---> 9fada51b938d
Removing intermediate container 32dfbc@f0855
Step 4 : ENV AP /data/app
---> Running in 0e04f129d7f5
---> 818dafcc487a
Removing intermediate container 0e04f129d7f5
Step 5 : ENV SCPATH /etc/supervisor/conf.d
---> Running in f828cccc5038
---> b5f3a2dbcla2
Removing intermediate container f828cccc5038
Step 6 : RUN apt-get -y update
---> Running in 5l1e0d36ladfe
Get:1 http://security.debian.org jessie/updates InRelease [84.1 kB]
Get:2 http://http.debian.net jessie InRelease [191 kB]
Get:3 http://security.debian.org jessie/updates/main amd64 Packages [20 B]
Get:4 http://http.debian.net jessie-updates InRelease [117 kB]
Get:5 http://http.debian.net jessie/main amd64 Packages [9103 kB]
Get:6 http://http.debian.net jessie-updates/main amd64 Packages [20 B]
Fetched 9496 kB in 7s (1232 kB/s)
Reading package lists..
W: Size of file /var/1lib/... is not what the server reported 9102955 9117278
---> 16c8639b44c9
Removing intermediate container 51e@d36ladfe
Step 7 : RUN apt-get -y install supervisor
---> Running in fa79bc727362
Reading package lists..
Building dependency tree..
Reading state information..
The following extra packages will be installed:
python-meld3
The following NEW packages will be installed:
python-meld3 supervisor
0 upgraded, 2 newly installed, © to remove and 96 not upgraded.
Need to get 304 kB of archives.
After this operation, 1483 kB of additional disk space will be used.
Get:1 http://.../debian/ jessie/main python-meld3 amd64 1.0.0-1 [37.0 KkB]
Get:2 http://.../debian/ jessie/main supervisor all 3.0r1-1 [267 KkB]
debconf: delaying package configuration, since apt-utils is not installed
Fetched 304 kB in 1s (232 kB/s)
Selecting previously unselected package python-meld3.
(Reading database.. 29248 files and directories currently installed.)
Preparing to unpack../python-meld3_1.0.0-1_amd64.deb..
Unpacking python-meld3 (1.0.0-1)
Selecting previously unselected package supervisor.
Preparing to unpack../supervisor_3.0r1-1_all.deb..
Unpacking supervisor (3.0r1-1)
Setting up python-meld3 (1.0.0-1)
Setting up supervisor (3.0r1-1)
invoke-rc.d: policy-rc.d denied execution of start.
---> eabf485da230
Removing intermediate container fa79bc727362
Step 8 : RUN mkdir -p /var/log/supervisor
---> Running in 0bf6264625dd
---> 4bcha91d84el
Removing intermediate container 0bf6264625dd
Step 9 : ADD ./supervisord/conf.d/* $SCPATH/
---> dfed938b53a3
Removing intermediate container dcfal6dofec2
Step 10 : ADD *.js* $AP/
---> b21779fe3194
Removing intermediate container 00d2f6d10444
Step 11 : WORKDIR $AP
---> Running in f412220027b5
---> 0f84bc7ac153
Removing intermediate container f412220027b5
Step 12 : RUN npm install
---> Running in 734029041404
npm WARN engine formidable@1.0.13: wanted:
{"node":"<0.9.0"} (current: {"node":"0.10.33","npm":"2.1.8"})
express@3.2.4 node_modules/express
— methods@0.0.1
— fresh@o.1.0
— range-parser@.0.4
— cookie-signature@1.0.1
— buffer-crc32@0.2.1

— cookie@0.0.5

— commander@0.6.1

— mkdirp@e.3.4

— debug@2.1.0 (ms@0.6.2)

— send@0.1.0 (mime@1.2.6)

L— connect@2.7.9 (pause@0.0.1, gs@0.6.4, bytes@0.2.0, formidable@1.0.13)
---> 84f3a4bc2336

Removing intermediate container 7340a9041404
Step 13 : CMD supervisord -n

---> Running in 23671c2f57b7

---> 96eab440b7c8

Removing intermediate container 23671c2f57b7
Successfully built 96eab440b7c8

WARNING

To improve the speed of builds, Docker will use a local cache when it thinks it is safe. This can sometimes
lead to unexpected issues. In the output above you will notice lines like - --> Running in 23671c2f57b7.
If instead you see ---> Using cache, you know that Docker decided to use the cache. You can disable the
cache for a build by using the - -no-cache argument to the docker build command.

Running Your Image

Once you have successfully built the image, you can run it on your Docker host with the
following command:

$ docker run -d -p 8080:8080 example/docker-node-hello:latest

The above command tells Docker to create a running container in the background from the
image with the example/docker-node-hello:latest tag, and then map port 8080 in the
container to port 8080 on the Docker host.

If everything goes as expected, the new Node.js application should be running in a
container on the host. You can verify this by running docker ps.

To see the running application in action, you will need to open up a web browser and point
it at port 8080 on the Docker host.

You can usually determine the Docker host IP address by simply printing out the value of
the DOCKER_HOST environment variable unless you are only running Docker locally, in

which case 127.0.0.1 should work. Boot2Docker or Docker Machine users can also simply
use boot2docker ip or docker-machine ip, respectively:

$ echo $DOCKER_HOST
tep://172.17.42.10:2376

Get the IP address and enter something like http://172.17.42.10:8080/ into your web
browser address bar.

You should see the following text:

Hello World. wWish you were here.

http://172.17.42.10:8080/

Environment Variables

If you read the index.js file, you will notice that part of the file refers to the variable
$WHO, which the application uses to determine who it is going to say Hello to:

var DEFAULT_WHO = "World";
var WHO = process.env.WHO || DEFAULT_WHO;
app.get('/', function (req, res) {
res.send('Hello ' + WHO + '. Wish you were here.\n');

1,

Let’s quickly learn how you can configure this application by passing in environment
variables when you start it.

First you need to stop the existing container using two commands. The first command will
provide you with the container ID, which you will need to use in the second command:

$ docker ps
CONTAINER ID IMAGE STATUS
b7145e06083f example/centos-node-hello:latest Up 4 minutes..

And then, using the container ID from the previous output, you can stop the running
container by typing:

$ docker stop b7145e06083f
b7145e06083f

You can then restart the container by adding one argument to the previous docker run
command:

$ docker run -d -p 8080:8080 -e WHO="Sean and Karl" \
example/docker-node-hello:latest

If you reload your web browser, you should see that the text on the web page now reads:

Hello Sean and Karl. Wish you were here.

Custom Base Images

Base images are the lowest-level images that other Docker images will build upon. Most
often, these are based on minimal installs of Linux distributions like Ubuntu, Fedora, or
CentOS, but they can also be much smaller, containing a single statically compiled binary.
For most people, using the official base images for their favorite distribution or tool is a
great option.

However, there are times when it is more preferable to build your own base images that
are not based on an image created by someone else. One reason to do this would be to
maintain a consistent OS image across all your deployment methods for hardware, VMs,
and containers. Another would be to get the image size down substantially. There is no
need to ship around an entire Ubuntu distribution, for example, if your application is a
statically built C or Go application. You might find that you only need the tools you
regularly use for debugging and some other shell commands and binaries. Making the
effort to build such an image could pay off in better deployment times and easier
application distribution.

In the official Docker documentation, there is some good information about how you can
build base images on the various Linux distributions.

https://docs.docker.com/articles/baseimages/

Storing Images

Now that you have created a Docker image that you’re happy with, you’ll want to store it
somewhere so that it can be easily accessed by any Docker host that you want to deploy it
to. This is also the clear hand-off point between building images and putting them
somewhere to run. You don’t normally build the images on the server and then run them.
Ordinarily, deployment is the process of pulling an image from a repository and running it
on one or more Docker servers. There are a few ways you can go about storing your
images into a central repository for easy retrieval.

Public Registries

Docker provides an image registry for public images that the community wants to share.
These include official images for Linux distibutions, ready-to-go WordPress containers,
and much more.

If you have images that can be published to the Internet, the best place for them is a public
registry, like Docker Hub. However, there are other options. When the core Docker tools
were first gaining popularity, Docker Hub did not exist. To fill this obvious void in the
community, Quay.io was created. Since then, Quay.io has been purchased by CoreOS and
has been used to create the CoreOS Enterprise Registry product, which we will discuss in
a moment.

Both Docker Hub and Quay.io provide centralized Docker image registries that can be
accessed from anywhere on the Internet, and provide a method to store private images in
addition to public ones. Both have nice user interfaces and the ability to separate team
access permissions and manage users. Both also offer reasonable commercial options for
private SaaS hosting of your images, much in the same way that GitHub sells private
registries on their systems. This is probably the right first step if you’re getting serious
about Docker but are not yet shipping enough code to need an internally hosted solution.

For companies that use Docker heavily, the biggest downside to these registries is that
they are not local to the network on which the application is being deployed. This means
that every layer of every deployment might need to be dragged across the Internet in order
to deploy an application. Internet latencies have a very real impact on software
deployments, and outages that affect these registries could have a very detrimental impact
on a company’s ability to deploy smoothly and on schedule. This is mitigated by good
image design where you make thin layers that are easy to move around the Internet.

https://registry.hub.docker.com
https://hub.docker.com/
http://quay.io/

Private Registries

The other option that many companies consider is to host some type of Docker image
registry internally. Before the public registry existed for Docker, the Docker developers
released the docker-registry project on GitHub. The docker-registry is a GUI-less Python
daemon that can interact with the Docker client to support pushing, pulling, and searching
images. Originally it did not support any form of authentication, but this has been fixed,
and in addition to local file storage, the open source docker-registry now supports S3,
Azure, and a few other storage backends.

Another strong contender in the private registry space is the CoreOS Enterprise Registry.
When CoreOS bought Quay.io, it quickly took the codebase and made it avaliable as an
easily deployable Docker container. This product basically offers all the same features at
Quay.io, but can be deployed internally. It ships as a virtual machine that you run as an
appliance, and supports the same UI and interfaces as the public Quay.io.

In December of 2014, Docker announced that it was working to develop Docker Hub
Enterprise (DHE), which will allow organizations to have a Docker-supported on-premise
image registry in their data center or cloud environment.

http://bit.ly/1evuzJy
http://bit.ly/1evuyFm

Authenticating to a Registry

Communicating with a registry that stores container images is part of daily life with
Docker. For many registries, this means you’ll need to authenticate to gain access to
images. But Docker also tries to make it easy to automate things so it can store your login
information and use it on your behalf when you request things like pulling down a private
image. By default, Docker assumes the registry will be Docker Hub, the public repository
hosted by Docker, Inc.

Creating a Docker Hub account

For these examples, we will create an account on Docker Hub. You don’t need an account
to use publicly shared images, but you will need one to upload your own public or private
containers.

To create your account, use your web browser of choice to navigate to Docker Hub.

From there, you can either log in via an existing GitHub account or create a new login
based on your email address. When you first log in to your new account, you will land on
the Docker welcome page, which is where you can configure details about your account.

When you create your account, Docker Hub sends a verification email to the address that
you provided during signup. You should immediately log in to your email account and
click the verification link inside the email to finish the validation process.

At this point, you have created a public registry to which you can upload new images. The
“Global settings” option in your account sidebar will allow you to change your registry
into a private one if that is what you need.

Logging in to a registry

Now let’s log in to the Docker Hub registry using our account:

$ docker login

Username: someuser
Password: <not shown>
Email: someone@example.com
Login Succeeded

When we get “Login Succeeded” back from the server, we know we’re ready to pull
images from the registry. But what happened under the covers? It turns out that Docker
has written a dotfile for us in our home directory to cache this information. The
permissions are set to 0600 as a security precaution against other users reading your
credentials. You can inspect the file with something like:

$ 1s -la ~/.dockercfg

SrW------- 1 someuser someuser 95 Mar 6 15:07 /home/someuser/.dockercfg
$ cat ~/.dockercfg
{"https://index.docker.io/v1/":{"auth":"cmVsaEXamPL3hE1RmFCOUE=",
"email":"someone@example.com"}}

https://hub.docker.com/account/signup/
https://hub.docker.com/account/welcome/

Here we can see the .dockercfg file, owned by someuser, and the stored credentials in
JSON format. Note that this can support multiple registries at once. In this case, we just
have one entry, for Docker Hub, but we could have more if we need it. From now on,
when the registry needs authentication, Docker will look in .dockercfg to see if we have
credentials stored for this hostname. If so, it will supply them. You will notice that one
value is completely lacking here: a timestamp. These credentials are cached forever or
when we tell Docker to remove them, whichever comes first.

Just like logging in, we can also log out of a registry if we no longer want to cache the
credentials:

$ docker logout

Remove login credentials for https://index.docker.io/v1l/

$ 1s -la ~/.dockercfg

1s: cannot access /home/someuser/.dockercfg: No such file or directory

Here we removed our cached credentials and they are no longer stored. But something else
happened: the file is gone. That’s because it was the only set of credentials that were
cached, so Docker has simply removed the file.

If we were trying to log in to something other than the Docker Hub registry, we could
supply the hostname on the command line:

$ docker login someregistry.example.com

This would then end up as just another line in our .dockercfg file.

Mirroring a Registry

It is possible to set up a local registry in your network that will mirror images from the
upstream public registry so that you don’t need to pull commonly used images all the way
across the Internet every time you need them on a new host. This can even be useful on
your development workstation so that you can keep a local stash of frequently used
images that you might need to access offline.

Configuring the Docker daemon

To do this, the first thing that you need to do is relaunch your Docker daemon with the - -
registry-mirror command-line argument, replacing ${YOUR_REGISTRY-MIRROR-HOST}
with your Docker server’s IP address and port number (e.g., 172.17.42.10:5000).

NOTE

If you plan to run the docker-registry container on your only Docker server, you can set ${YOUR_REGISTRY -
MIRROR-HOST} to localhost :5000.

If you already have Docker running, you need to stop it first. This is distribution-specific.
You should use the commands you normally use on your distribution, like initctl,

service, or systemctl, to stop the daemon. Then we can invoke it manually with this
registry mirroring option:

$ docker -d --registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}

If you would like to ensure that your Docker daemon always starts with this setup, you
will need to edit the appropriate configuration file for your Linux distibution.

Boot2Docker

Create /var/lib/boot2docker/profile if it doesn’t already exist:

$ sudo touch /var/lib/boot2docker/profile

Then edit /var/lib/boot2docker/profile and append the argument to your EXTRA_ARGS:

EXTRA_ARGS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And then restart the docker daemon:

sudo /etc/init.d/docker restart

Ubuntu

Edit /etc/default/docker and append the argument to your DOCKER_OPTS:

DOCKER_OPTS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And then restart the docker daemon:

sudo service docker.io restart

Fedora

Edit /etc/sysconfig/docker and append the argument to your OPTIONS:

OPTIONS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And then restart the docker daemon:

sudo systemctl daemon-reload
sudo systemctl restart docker

CoreOS

First copy the systemd unit file for Docker to a writeable filesystem:

$ sudo cp /usr/lib/systemd/system/docker.service /etc/systemd/system/

Then, as root, edit /etc/systemd/system/docker.service and append the argument to the end
of the ExecStart line:

ExecStart=/usr/lib/coreos/dockerd --daemon --host=fd:// \
$DOCKER_OPTS $DOCKER_OPT_BIP $DOCKER_OPT_MTU $DOCKER_OPT_IPMASQ \
--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}

And then restart the docker daemon:

sudo systemctl daemon-reload
sudo systemctl restart docker

Launching the local registry mirror service

You will now need to launch a container on your Docker host that will run the registry
mirror service and provide you with a local cache of Docker images. You can accomplish
this by running the registry image as a container with a few important environment

variables defined and a storage volume mounted.

NOTE

While this book was being written, the docker-registry was the official reference implementation. Along
with the release of Docker 1.6, Docker officially announced the release of Docker Registry 2.0, which does
not support mirroring. The current plans are to add mirroring to the new registry with the release of Docker
1.7 and Registry 2.1.

If you are considering setting up your own registry, you should investigate the Docker Distribution Github
page and the official documentation for Docker Registry 2.0.

On your Docker server, ensure that you have a directory for storing the images:

$ mkdir -p /var/lib/registry

http://bit.ly/1evuzJy
http://bit.ly/1evuJAx
http://bit.ly/1evuKo9

Then you can launch the container, with the following options defined:

$ docker run -d -p 5000:5000 \
-v /var/lib/registry:/tmp/registry \
-e SETTINGS_FLAVOR=dev \
-e STANDALONE=false \
-e MIRROR_SOURCE=https://registry-1.docker.io \
-e MIRROR_SOURCE_INDEX=https://index.docker.io \
registry

NOTE

The registry supports a lot of different storage backends, including S3, Swift, Glance, Azure Blob Storage,
Google Cloud Storage, and more.

Testing the local registry mirror service

Now that the registry is running as a mirror, we can test it. On a Unix-based system, you
can time how long it takes to download the newest CentOS image, using the following
command:

$ time docker pull centos:latest

Pulling repository centos

88f9454e60dd: Download complete

511136ea3c5a: Download complete

5b12ef8fd570: Download complete

Status: Downloaded newer image for centos:latest

real 1m25.406s
user Omo.019s
sys Omo.014s

In this case, it took 1 minute and 25 seconds to pull the whole image. If we then go ahead
and delete the image from the Docker host and then re-time fetching the image again, we
will see a significant difference:

$ docker rmi centos:latest

Untagged: centos:latest

$ time docker pull centos:latest

Pulling repository centos

8819454e60dd: Download complete

511136ea3c5a: Download complete

5b12ef8fd570: Download complete

Status: Image is up to date for centos:latest

real Om2.042s
user OmO.004s
sys Omo.005s

Both times that you pulled the centos:latest image, the Docker server connected to the
local registry mirror service and asked for the image. In the first case, the mirror service
did not have the image so it had to pull it from the official docker-registry first, add it to its
own storage, and then deliver it to the Docker server. After you delete the image from the
Docker server and then request it again, you’ll see that the time to pull the image will drop
to be very low. In the previous code, it took only two seconds for the Docker server to
receive the image. This is because the local registry mirror service had a copy of the image
and could provide it directly to the server without pulling anything from the upstream

public docker-registry.

Other Approaches to Image Delivery

Over the last two years, the community has explored many other approaches to managing
Docker images and providing simple but reliable access to images when needed. Some of
these projects, like dogestry, leverage the docker save and docker load commands to
create and load images from cloud storage like Amazon S3. Other people are exploring the
possibilities of using torrents to distribute Docker images, with projects like torrent-
docker. Torrents seem like a natural fit because deployment is usually done to a group of
servers on the same network all at the same time. Solomon Hykes recently committed that
the Docker Distribution project will soon ship a command-line tool for importing and
exporting image layers even without a Docker daemon. This will facilitate even more
diverse methods of image distribution. As more and more companies and projects begin to
use Docker seriously, even more robust solutions are likely to begin to appear to meet the
needs of anyone’s unique workflow and requirements.

If you have a scenario in which you can’t use the off-the-shelf mechanisms, such as an
isolated network for security concerns, you can leverage Docker’s built-in importing and
exporting features to dump and load new images. Unless you have a specific reason to do
otherwise, you should use one of the off-the-shelf solutions and only considering changing
your approach when needed. The available options will work for almost everyone.

I Don’t Repeat Yourself.

2 This code was forked from GitHub.

https://github.com/dogestry/dogestry
http://aws.amazon.com/s3
http://bit.ly/1evuRQw
http://bit.ly/1evuJAx
https://github.com/enokd/docker-node-hello

Chapter 5. Working with Docker
Containers

In the previous chapter, we learned how to build a Docker image and the very basic steps
required for running the resulting image within a container. In this chapter, we’ll first take
a look at where containers came from and then dive deeper into containers and the Docker
commands that control the overall configuration, resources, and privileges that your
container receives.

What Are Containers?

You might be familiar with virtualization systems like VMware or Xen that allow you to
run a complete Linux kernel and operating system on top of a virtualized layer, commonly
called a hypervisor. This approach provides very strong isolation between virtual
machines because each hosted kernel sits in separate memory space and has defined entry
points into the actual hardware, either through another kernel or something that looks like
hardware.

Containers are a fundamentally different approach where all containers share a single
kernel and isolation is implemented entirely within that single kernel. This is called
operating system virtualization. The 1ibcontainer project gives a good, short definition
of a container: “A container is a self-contained execution environment that shares the
kernel of the host system and which is (optionally) isolated from other containers in the
system.” The major advantages are around efficiency of resources because you don’t need
a whole operating system for each isolated function. Since you are sharing a kernel, there
is one less layer of indirection between the isolated task and the real hardware underneath.
When a process is running inside a container, there is only a very little shim that sits inside
the kernel rather than potentially calling up into a whole second kernel while bouncing in
and out of privileged mode on the processor.

But the container approach means that you can only run processes that are compatible
with the underlying kernel. Unlike hardware virtualization like that provided by VMware,
for example, Windows applications cannot run inside a Linux container. So containers are
best thought of as a Linux technology where, at least for now, you can run any of your
favorite Linux applications or servers. When thinking of containers, you should try very
hard to throw out what you might already know about virtual machines and instead
conceptualize a container as a wrapper around a process that actually runs on the server.

https://github.com/docker/libcontainer

History of Containers

It is often the case that a revolutionary technology is an older technology that has finally
arrived in the spotlight. Technology goes in waves, and some of the ideas from the 1960s
are back in vogue. Similarly, Docker is a new technology and it has an ease of use that has
made it an instant hit, but it doesn’t exist in a vacuum. Much of what underpins Docker
comes from work done over the last 30 years in a few different arenas: from a system call
added to the Unix kernel in the late 1970s, to tooling built on modern Linux. It’s worth a
quick tour through how we got to Docker because understanding that helps you place it
within the context of other things you might be familiar with.

Containers are not a new idea. They are a way to isolate and encapsulate a part of the
running system. The oldest technology in that area were the first batch processing systems.
You’d run a program for a while, then switch to run another program. There was isolation:
you could make sure your program didn’t step on anyone else’s program. That’s all pretty
crude now, but it’s the very first step on the road to Linux containers and Docker.

Most people would argue that the seeds for today’s containers were planted in 1979 with
the addition of the chroot system call to Version 7 Unix. chroot restricts a process’s view
of the underlying filesystem. The chroot system call is commonly used to protect the
operating system from untrusted server processes like FTP, BIND, and Sendmail, which
are publicly exposed and susceptible to compromise.

In the 1980s and 1990s, various Unix variants were created with mandatory access
controls for security reasons.! This meant you had tightly controlled domains running on
the same Unix kernel. Processes in each domain had an extremely limited view of the
system that precluded them from interacting across domains. A popular commercial
version of Unix that implemented this idea was the Sidewinder firewall built on top of
BSDI Unix. But this was not possible in most mainstream Unix implementations.

That changed in 2000 when FreeBSD 4.0 was released with a new command, called jail,
which was designed to allow shared-environment hosting providers to easily and securely
create a separation between their processes and those of their individual customers.
FreeBSD jail expanded chroot’s capabilities, but restricted everything a process could do
with the underlying system and processes in other jails.

In 2004, Sun released an early build of Solaris 10, which included Solaris Containers, and
later evolved into Solaris Zones. This was the first major commercial implementation of
container technology and is still used today to support many commercial container
implementations. In 2007, HP released Secure Resource Partitions for HP-UX, later
renamed to HP-UX Containers; and finally, in 2008, Linux Containers (LXC) were
released in version 2.6.24 of the Linux kernel. The phenomenal growth of Linux
Containers across the community did not really start to grow until 2013 with the inclusion
of user namespaces in version 3.8 of the Linux Kernel and the release of Docker one
month later.

Companies that had to deal with scaling applications to the size of the Internet, with
Google being a very early example, started pushing container technology in the early
2000s in order to facilitate distributing their applications across data centers full of
computers. A few companies maintained their own patched kernels with container support
for internal use. Google contributed some of its work to support containers into the
mainline Linux kernel, as understanding about the broader need for these features began to
increase in the Linux community.

In late 2013, months after the Docker announcement, Google released Imctfy, the open
source version of the internal container engine it had been running for some years. By this
time, Docker was already widely discussed in the press. It was the right combination of
ease of use and enabling technology just at the right time. Other promising container
engines, like CoreOS Rocket, have been released since, but Docker seems to have built up
a head of steam that is currently powering it to the forefront.

NOTE

If you haven’t heard about CoreOS Rocket, you might be wondering what it is. Rocket is an open source
container runtime that CoreOS is designing to address what they see as serious deficiencies with the Docker
approach to containerization and the supporting tool set. It is left as an exercise for the reader to determine
whether the CoreOS approach and solution fits your needs.

Now let’s turn back to Docker and take a closer look at modern containers.

https://github.com/google/lmctfy
https://github.com/coreos/rkt

Creating a Container

So far we’ve started containers using the handy docker run command. But docker run is

really a convenience command that wraps two separate steps into one. The first thing it
does is create a container from the underlying image. This is accomplished separately
using the docker create command. The second thing docker run does is execute the

container, which we can also do separately with the docker start command.

The docker create and docker run commands both contain all the options that pertain to
how a container is initially set up. In Chapter 4, we demonstrated that with the docker

run command you could map network ports in the underlying container to the host using
the -p argument, and that -e could be used to pass environment variables into the
container.

This only just begins to touch on the array of things that you can configure when you first
create a container. So let’s take a pass over some of the options that docker supports.

Basic Configuration

Now let’s take a look at some of the ways we can tell Docker to configure our container
when we create it.

Container name

When you create a container, it is built from the underlying image, but various command-
line arguments can affect the final settings. Settings specified in the Dockerfile are always
used as defaults, but you can override many of them at creation time.

By default, Docker randomly names your container by combining an adjective with the
name of a famous person. This results in names like ecstatic-babbage and serene-
albattani. If you want to give your container a specific name, you can do so using the - -
name argument.

$ docker create --name="awesome-service" ubuntu:latest

You can only have one container with any given name on a Docker host. If you run the above command
twice in a row, you will get an error. You must either delete the previous container using docker rm or
change the name of the new container.

Labels

As mentioned in Chapter 4, labels are key-value pairs that can be applied to Docker
images and containers as metadata. When new Docker containers are created, they
automatically inherit all the labels from their parent image.

It is also possible to add new labels to the containers so that you can apply metadata that
might be specific to that single container.

docker run -d --name labels -1 deployer=Ahmed -1 tester=Asako \
ubuntu:latest sleep 1000

You can then search for and filter containers based on this metadata, using commands like
docker ps.

$ docker ps -a -f label=deployer=Ahmed
CONTAINER ID IMAGE COMMAND ... NAMES
845731631ba4 ubuntu:latest "sleep 1000" ... labels

You can use the docker inspect command on the container to see all the labels that a
container has.

$ docker inspect 845731631ba4..

"Labels": {
"deployer": "Ahmed",
"tester": "Asako"

+

http://bit.ly/1DUe0vi

Hostname

By default, when you start a container, Docker will copy certain system files on the host,
including /etc/hostname, into the container’s configuration directory on the host,? and then
use a bind mount to link that copy of the file into the container. We can launch a default
container with no special configuration like this:

$ docker run --rm -ti ubuntu:latest /bin/bash

This command uses the docker run command, which runs docker create and docker
start in the background. Since we want to be able to interact with the container that we
are going to create for demonstration purposes, we pass in a few useful arguments. The - -
rm argument tells Docker to delete the container when it exits, the -t argument tells
Docker to allocate a psuedo-TTY, and the -i argument tells Docker that this is going to be

an interactive session, and we want to keep STDIN open. The final argument in the
command is the exectuable that we want to run within the container, which in this case is
the ever useful /bin/bash.

If we now run the mount command from within the resulting container, we will see
something similar to this:

root@ebc8cf2d8523:/# mount

overlay on / type overlay (rw,relatime,lowerdir=...,upperdir=...,workdir..)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)

tmpfs on /dev type tmpfs (rw,nosuid, mode=755)

shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime, size=65536k)
mqueue on /dev/mqueue type mqueue (rw,nosuid, nodev, noexec,relatime)

devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime, ..., ptmxmode=666)
sysfs on /sys type sysfs (ro,nosuid, nodev, noexec,relatime)

/dev/sda9 on /etc/resolv.conf type ext4 (rw,relatime,data=ordered)
/dev/sda9 on /etc/hostname type ext4 (rw,relatime,data=ordered)

/dev/sda9 on /etc/hosts type extd4 (rw,relatime,data=ordered)

devpts on /dev/console type devpts (rw,nosuid,noexec,relatime, ...,ptmxmode=000)
proc on /proc/sys type proc (ro,nosuid, nodev,noexec,relatime)

proc on /proc/sysrq-trigger type proc (ro,nosuid,nodev,noexec,relatime)
proc on /proc/irq type proc (ro,nosuid, nodev, noexec,relatime)

proc on /proc/bus type proc (ro,nosuid, nodev,noexec,relatime)

tmpfs on /proc/kcore type tmpfs (rw,nosuid, mode=755)

root@ebc8cf2d8523: /#

NOTE

When you see any examples with a prompt that looks something like root@hostname, it means that you are
running a command within the container instead of on the Docker host.

There are quite a few bind mounts in a container, but in this case we are interested in this
one:

/dev/sda9 on /etc/hostname type ext4 (rw,relatime,data=ordered)

While the device number will be different for each container, the part we care about is that
the mount point is /etc/hostname. This links the container’s /etc/hostname to the hostname
file that Docker has prepared for the container, which by default contains the container’s

ID and is not fully qualified with a domain name.

We can check this in the container by running the following:

root@ebc8cf2d8523:/# hostname -f
ebc8cf2d8523
root@ebc8cf2d8523:/# exit

NOTE

Don’t forget to exit the container shell so that we return to the Docker host when finished.

To set the hostname specifically, we can use the - -hostname argument to pass in a more
specific value.

$ docker run --rm -ti --hostname="mycontainer.example.com" ubuntu:latest /bin/bash

Then, from within the container, we will see that the fully-qualified hostname is defined as
requested.
root@mycontainer:/# hostname -f

mycontainer.example.com
root@mycontainer:/# exit

Domain Name Service (DNS)

Just like /etc/hostname, the resolv.conf file is managed via a bind mount between the host
and container.

/dev/sda9 on /etc/resolv.conf type extd4 (rw,relatime,data=ordered)

By default, this is an exact copy of the Docker host’s resolv.conf file. If we didn’t want
this, we could use a combination of the - -dns and - -dns-search arguments to override

this behavior in the container;

$ docker run --rm -ti --dns=8.8.8.8 --dns=8.8.4.4 --dns-search=examplel.com \
--dns-search=example2.com ubuntu:latest /bin/bash

NOTE

If you want to leave the search domain completely unset, then use - -dns-search=.

Within the container, we would still see a bind mount, but the file contents would no
longer reflect the host’s resolv.conf; instead, it now looks like this:

root@Of887071000a:/# more /etc/resolv.conf
nameserver 8.8.8.8

nameserver 8.8.4.4

search examplel.com example2.com
root@0f887071000a: /# exit

Media Access Control (MAC) address

Another important piece of information that you can configure is the MAC address for the
container.

Without any configuration, a container will receive a calculated MAC address that starts
with the 02:42:ac:11 prefix.

If you need to specifically set this to a value, you can do this by running something similar
to this:

$ docker run --rm -ti --mac-address="a2:11:aa:22:bb:33" ubuntu:latest /bin/bash

Normally you will not need to do that. But sometimes you want to reserve a particular set
of MAC addresses for your containers in order to avoid other virtualization layers that use
the same private block as Docker.

Be very careful when customizing the MAC address settings. It is possible to cause ARP contention on your
network if two systems advertise the same MAC address. If you have a strong need to do this, try to keep
your locally administered address ranges within some of the official ranges, like x2-xx-xx-xx-xx-xx, X6-XX-
XX-XX-XX-XX, XA-XX-XX-XX-XX-XX, and xE-xx-xx-xx-xx-xx (with x being any valid hexidecimal character).

Storage Volumes

There are times when the default disk space allocated to a container or its ephemeral
nature is not appropriate for the job at hand and it is necessary to have storage that can
persist between container deployments.

Mounting storage from the Docker host is not a generally advisable pattern because it ties your container to
a particular Docker host for its persistent state. But for cases like temporary cache files or other semi-
ephemeral states, it can make sense.

For the times when we need to do this, we can leverage the -v command to mount

filesystems from the host server into the container. In the following example, we are
mounting /mnt/session_data to /data within the container:

$ docker run --rm -ti -v /mnt/session_data:/data ubuntu:latest /bin/bash
root@ef887071000a:/# mount | grep data

/dev/sda9 on /data type ext4 (rw,relatime,data=ordered)
root@ef887071000a:/# exit

In the mount options, we can see that the filesystem was mounted read-write on /data as
we expected.

NOTE

The mount point in the container does not need to pre-exist for this command to work properly.

If the container application is designed to write into /data, then this data will be visible on
the host filesystem in /mnt/session_data and would remain available when this container
was stopped and a new container started with the same volume mounted.

In Docker 1.5, a new command was added that allows the root volume of your container
to be mounted read-only so that processes within the container cannot write anything to
the root filesystem. This prevents things like logfiles, which a developer was unaware of,
from filling up the container’s allocated disk in production. When used in conjunction
with a mounted volume, you can ensure that data is only written into expected locations.

In our previous example, we could accomplish this by simply adding - -read-only=true
to the command.

$ docker run --rm -ti --read-only=true -v /mnt/session_data:/data \
ubuntu:latest /bin/bash

root@df542767bc17:/# mount | grep " / "

overlay on / type overlay (ro,relatime,lowerdir=...,upperdir=...,workdir=...)

root@df542767bc17:/# mount | grep session

/dev/sda9 on /session_data type ext4 (rw,relatime,data=ordered)

root@df542767bcl7:/# exit

If we look closely at the mount options for the root directory, we will notice that they are
mounted with the ro option, which makes it read-only. However, the /session_data mount

is still mounted with the rw option so that our application can successfully write to the one
volume to which we have designed it to write.

WARNING

Containers should be designed to be stateless whenever possible. Managing storage creates undesirable
dependencies and can easily make deployment scenarios much more complicated.

Resource Quotas

When people discuss the types of problems that you must often cope with when working
in the cloud, the concept of the “noisy neighbor” is often near the top of the list. The basic
problem this term refers to is that other applications, running on the same physical system
as yours, can have a noticeable impact on your performance and resource availability.

Traditional virtual machines have the advantage that you can easily and very tightly
control how much memory and CPU, among other resources, are allocated to the virtual
machine. When using Docker, you must instead leverage the cgroup functionality in the
Linux kernel to control the resources that are available to a Docker container. The docker
create command directly supports configuring CPU and memory restrictions when you
create a container.

NOTE

Constraints are applied at the time of container creation. Constraints that you apply at creation time will
exist for the life of the container. In most cases, if you need to change them, then you need to create a new
container from the same image and change the constraints, unless you manipulate the kernel cgroups
directly under the /sys filesystem.

There is an important caveat here. While Docker supports CPU and memory limits, as
well as swap limits, you must have these capabilities enabled in your kernel in order for
Docker to take advantage of them. You might need to add these as command-line
parameters to your kernel on startup. To figure out if your kernel supports these limits, run
docker info. If you are missing any support, you will get warning messages at the

bottom, like:

WARNING: No swap limit support

NOTE

The details regarding getting cgroup support configured for your kernel are distribution-specific, so you
should consult the Docker documentation if you need help configuring things.

CPU shares

Docker thinks of CPU in terms of “cpu shares.” The computing power of all the CPU
cores in a system is considered to be the full pool of shares. 1024 is the number that
Docker assigns to represent the full pool. By configuring a container’s CPU shares, you
can dictate how much time the container gets to use the CPU for. If you want the container
to be able to use at most half of the computing power of the system, then you would
allocate it 512 shares. Note that these are not exclusive shares, meaning that assigning all
1024 shares to a container does not prevent all other containers from running. Rather it’s a
hint to the scheduler about how long each container should be able to run each time it’s
scheduled. If we have one container that is allocated 1024 shares (the default) and two that
are allocated 512, they will all get scheduled the same number of times. But if the normal
amount of CPU time for each process is 100 microseconds, the containers with 512 shares

http://bit.ly/1DUrXth

will run for 50 microseconds each time, whereas the container with 1024 shares will run
for 100 microseconds.

Let’s explore a little bit how this works in practice. For the following examples, we are
going to use a new Docker image that contains the stress command for pushing a system
to its limits.

When we run stress without any cgroup constraints, it will use as many resources as we

tell it to. The following command creates a load average of around 5 by creating two
CPU-bound processes, one I/0-bound process, and two memory allocation processes:

$ docker run --rm -ti progrium/stress \
--cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

This should be a reasonable command to run on any modern computer system, but be aware that it is going
to stress the host system, so don’t do this in a location that can’t take the additional load, or even a possible
failure, due to resource starvation.

If you run the top command on the Docker host, near the end of the two-minute run, you
can see how the system is affected by the load created by the stress program.

NOTE

In the following code, we are running on a system with two CPUs.

$ top -bni | head -n 15

top - 20:56:36 up 3 min, 2 users, load average: 5.03, 2.02, 0.75

Tasks: 88 total, 5 running, 83 sleeping, 0 stopped, 0 zombie

%Cpu(s): 29.8 us, 35.2 sy, 0.0 ni, 32.0 id, ©.8 wa, 1.6 hi, 0.6 si, 0.0 st

KiB Mem: 1021856 total, 270148 used, 751708 free, 42716 buffers
KiB Swap: 0 total, 0 used, 0 free. 83764 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
810 root 20 0 7316 96 OR 44.3 0.0 0:49.63 stress
813 root 20 0 7316 96 O R 44.3 0.0 0:49.18 stress
812 root 20 O 138392 46936 996 R 31.7 4.6 0:46.42 stress
814 root 20 O 138392 22360 996 R 31.7 2.2 0:46.89 stress
811 root 20 0] 7316 96 O D 25.3 0.0 0:21.34 stress
1 root 20 0 110024 4916 3632 S 0.0 0.5 0:07.32 systemd
2 root 20 0] ¢} 0 0 S 0.0 0.0 0:00.04 kthreadd
3 root 20 0 0 0 0S 0.0 0.0 0:00.11 ksoftirqd/e

If you want run the exact same stress command again, with only half the amount of
available CPU time, you can run it like this:

$ docker run --rm -ti -c 512 progrium/stress \
--cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

The -c 512 is the flag that does the magic, allocating 512 CPU shares to this container.
Note that the effect might not be noticeable on a system that is not very busy. That’s
because the container will continue to be scheduled for the same time-slice length
whenever it has work to do, unless the system is constrained for resources. So in our case,
the results of a top command on the host system will likely look exactly the same, unless

http://bit.ly/1evv1HK

you run a few more containers to give the CPU something else to do.

Unlike virtual machines, Docker’s cgroup-based constraints on CPU shares can have unexpected
consequences. They are not hard limits; they are a relative limit, similar to the nice command. An example
is a container that is constrained to half the CPU shares, but is on a system that is not very busy. Because
the CPU is not busy, the limit on the CPU shares would have only a limited effect because there is no
competition in the scheduler pool. When a second container that uses a lot of CPU is deployed to the same
system, suddenly the effect of the constraint on the first container will be noticeable. Consider this carefully
when constraining containers and allocating resources.

CPU pinning

It is also possible to pin a container to one or more CPU cores. This means that work for
this container will only be scheduled on the cores that have been assigned to this
container.

In the following example, we are running our stress container pinned to the first of two
CPUs, with 512 CPU shares. Note that everything following the container image here are
parameters to the stress command, not docker.

$ docker run --rm -ti -c 512 --cpuset=0 progrium/stress \
--cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

The - -cpuset argument is zero-indexed, so your first CPU core is 0. If you tell Docker to use a CPU core

that does not exist on the host system, you will get a Cannot start container error. On our two-CPU
example host, you could test this by using - -cpuset=0,1, 2.

If we run top again, we should notice that the percentage of CPU time spent in user space

(us) is lower than it previously was, since we have restricted two CPU-bound processes to
a single CPU.

%Cpu(s): 18.5 us, 22.0 sy, 0.0 ni, 57.6 id, ©.5wa, 1.0 hi, 0.3 si, 0.0 st

NOTE

When you use CPU pinning, additional CPU sharing restrictions on the container only take into account
other containers running on the same set of cores.

Memory

We can control how much memory a container can access in a manner similar to
constraining the CPU. There is, however, one fundamental difference: while constraining
the CPU only impacts the application’s priority for CPU time, the memory limit is a hard
limit. Even on an unconstrained system with 96 GB of free memory, if we tell a container
that it may only have access to 24 GB, then it will only ever get to use 24 GB regardless of
the free memory on the system. Because of the way the virtual memory system works on
Linux, it’s possible to allocate more memory to a container than the system has actual

RAM. In this case, the container will resort to using swap in the event that actual memory
is not available, just like a normal Linux process.

Let’s start a container with a memory constraint by passing the -m option to the docker
run command:

$ docker run --rm -ti -m 512m progrium/stress \
--cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

When you use the -m option alone, you are setting both the amount of RAM and the

amount of swap that the container will have access to. So here we’ve constrained the
container to 512 MB of RAM and 512 MB of additional swap space. Docker supports b, Kk,

m, Or g, representing bytes, kilobytes, megabytes, or gigabytes, respectively. If your system
somehow runs Linux and Docker and has mulitple terabytes of memory, then
unfortunately you’re going to have to specify it in gigabytes.

If you would like to set the swap separately or disable it altogether, then you need to also
use the - -memory-swap option. The - -memory-swap option defines the total amount of
memory and swap available to the container. If we rerun our previous command, like so:

$ docker run --rm -ti -m 512m --memory-swap=768m progrium/stress \
--cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

Then we are telling the kernel that this container can have access to 512 MB of memory
and 256 MB of additional swap space. Setting the - -memory-swap option to -1 will disable
the swap completely within the container.

Unlike CPU shares, memory is a hard limit! This is good because the constraint doesn’t suddenly make a
noticeable effect on the container when another container is deployed to the system. But it does mean that
you need to be careful that the limit closely matches your container’s needs because there is no wiggle
room.

So, what happens if a container reaches its memory limit? Well, let’s give it a try by
modifying one of our previous commands and lowering the memory significantly:

$ docker run --rm -ti -m 200m --memory-swap=300m progrium/stress \
--cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

Where all our other runs of the stress container ended with the line;

stress: info: [1] successful run completed in 120s

We see that this run quickly fails with the line:

stress: FAIL: [1] (452) failed run completed in 0Os

This is because the container tries to allocate more memory than it is allowed, and the

Linux Out of Memory (OOM) killer is invoked and starts killing processes within the
cgroup to reclaim memory. Since our container has only one running process, this kills the
container.

ulimits

Another common way to limit resources avaliable to a process in Unix is through the
application of user limits. The following code is a list of the types of things that can
usually be configured by setting soft and hard limits via the ulimit command:

$ ulimit -a

core file size (blocks, -c) ©0

data seg size (kbytes, -d) unlimited
scheduling priority (-e) ©

file size (blocks, -f) unlimited
pending signals (-1i) 5835

max locked memory (kbytes, -1) 64

max memory size (kbytes, -m) unlimited
open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0

stack size (kbytes, -s) 10240

cpu time (seconds, -t) unlimited

max user processes (-u) 1024

virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

Before the release of Docker 1.6, all containers inherited the ulimits of the Docker
daemon. This is usually not appropriate because the Docker server requires more
resources to perform its job than any individual container.

It is now possible to configure the Docker daemon with the default user limits that you
want to apply to every container. The following command would tell the Docker daemon
to start all containers with a hard limit of 150 open files and 20 processes:

$ sudo docker -d --default-ulimit nofile=50:150 --default-ulimit nproc=10:20

You can then override these ulimits on a specific container by passing in values using the
--ulimit argument.

$ docker run -d --ulimit nproc=100:200 nginx

There are some additional advanced commands that can be used when creating containers,
but this covers many of the more common use cases. The Docker client documentation
lists all the available options and is kept current with each Docker release.

http://bit.ly/1F8Pwnk

Starting a Container

Earlier in the chapter we used the docker create command to create our container. When
we are ready to start the container, we can use the docker start command.

Let’s say that we needed to run a copy of Redis, a common key-value store. We won’t
really do anything with this Redis container, but it’s a long-lived process and serves as an
example of something we might do in a real environment. We could first create the
container using a command like the one shown here:

$ docker create -p 6379:6379 redis:2.8

Unable to find image 'redis:2.8' locally

30d39e59ffe2: Pull complete..

868be653dea3: Pull complete

511136ea3c5a: Already exists

redis:2.8: The image you are pulling has been verified. Important:
Status: Downloaded newer image for redis:2.8
6b785f78b75ec2652f81d92721c416ae854bae0@85ebal378e46e8ab54d7ff81d1

The command ends with the full hash that was generated for the container. However, if we
didn’t know the full or short hash for the container, we could list all the containers on the
system, whether they are running or not, using:

$ docker ps -a

CONTAINER ID IMAGE COMMAND

6b785f78b75e redis:2.8 "/entrypoint.sh redi
92b797f12afl1 progrium/stress:latest "/usr/bin/stress --v

We can then start the container with the following command:

$ docker start 6b785f78b75e

NOTE

Most Docker commands will work with the full hash or a short hash. In the previous example, the full hash

for the container is 6b785f78b75ec2652f81d92...bae085eba378e46e8ab54d7ff81d1, but the short hash that

is shown in most command output is 6b785f78b75e. This short hash consists of the first 12 characters of the
full hash.

To verify that it’s running, we can run:

$ docker ps
CONTAINER ID IMAGE COMMAND ... STATUS
6b785f78b75e redis:2.8 '"/entrypoint.sh redi ... Up 2 minutes..

Auto-Restarting a Container

In many cases, we want our containers to restart if they exit. Some containers are just very
short-lived and come and go quickly. But for production applications, for instance, you
expect them to be up after you’ve told them to run. We can tell Docker to do that on our
behalf.

The way we tell Docker to do that is by passing the - -restart argument to the docker
run command. It takes three values: no, always, or on-failure:#. If restart is set to no,
the container will never restart if it exits. If it is set to always, then the container will
restart whenever the container exits with no regard to the exit code. If restart is set to on-
failure:3, then whenever the container exits with a nonzero exit code, Docker will try to
restart the container three times before giving up.

We can see this in action by rerunning our last memory-constrained stress container
without the - -rm argument, but with the - -restart argument.

$ docker run -ti --restart=on-failure:3 -m 200m --memory-swap=300m \
progrium/stress --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

In this example, we will see the output from the first run appear on the console before it
dies. If we run a docker ps immediately after the container dies, we will see that Docker

is attempting to restart the container.

$ docker ps.. IMAGE ... STATUS
progrium/stress:latest ... Restarting (1) Less than a second ago..

It will continue to fail because we have not given it enough memory to function properly.
After five attempts, Docker will give up and we will see the container disappear from the
the output of docker ps.

Stopping a Container

Containers can be stopped and started at will. You might think that starting and stopping
are analogous to pausing and resuming a normal process. It’s not quite the same, though.
When stopped, the process is not paused; it actually exits. And when a container is
stopped, it no longer shows up in the normal docker ps output. On reboot, docker will
attempt to start all of the containers that were running at shutdown. It uses this same
mechanism, and it’s also useful when testing or for restarting a failed container. We can
simply pause a Docker container with docker pause and unpause, discussed later. But
let’s stop our container now:

$ docker stop 6b785f78b75e
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Now that we have stopped the container, nothing is in the ps list! We can start it back up

with the container ID, but it would be really inconvenient to have to remember that. So
docker ps has an additional option (-a) to show all containers, not just the running ones.

$ docker ps -a
CONTAINER ID IMAGE STATUS e
6b785f78b75e progrium/stress:latest Exited (0) 2 minutes ago..

That STATUS field now shows that our container exited with a status code of 0 (no
errors). We can start it back up with all of the same configuration it had before:

docker start 6b785f78b75e

6b785f78b75e

$ docker ps -a

CONTAINER ID IMAGE ... STATUS
6b785f78b75e progrium/stress:latest Up 15 seconds..

Voila, our container is back up and running.

NOTE

Remember that containers exist even when they are not started, which means that you can always restart a
container without needing to recreate it. Although memory contents will have been lost, all of the
container’s filesystem contents and metadata, including environment variables and port bindings, are saved
and will still be in place when you restart the container.

We keep talking about the idea that containers are just a tree of processes that interact with
the system in essentially the same was as any other process on the server. That means that
we can send them Unix signals, which they can respond to. In the previous docker stop

example, we’re sending the container a SIGTERM signal and waiting for the container to

exit gracefully. Containers follow the same process group signal propagation that any
other process group would receive on Linux.

A normal docker stop sends a normal SIGTERM signal to the process. If you want to force
a container to be Kkilled if it hasn’t stopped after a certain amount of time, you can use the

-t argument, like this:

$ docker stop -t 25 6b785f78b75e
This tells Docker to initially send a SIGTERM signal as before, but then if the container has
not stopped within 25 seconds, to send a SIGKILL signal to forcefully kill it.

Although stop is the best way to shut down your containers, there are times when it
doesn’t work and we need to forcefully kill a container.

Killing a Container

We saw what it looks like to use docker stop to stop a container, but often if a process is
misbehaving, you just want it to exit immediately.

We have docker kill for that. It looks pretty much like docker stop:

$ docker kill 6b785f78b75e
6b785f78b75e

A docker ps nows shows that the container is no longer running, as expected:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Just because it was killed rather than stopped does not mean you can’t start it again,
though. You can just issue a docker start like you would for a nicely stopped container.

Sometimes you might want to send another signal to a container, one that is not stop or
kill. Like the Linux kill command, docker kill supports sending any Unix signal.
Let’s say we wanted to send a USR1 signal to our container to tell it to do something like
reconnect a remote logging session. We could do the following:

$ docker kill --signal=USR1 6h785f78b75e
6b785f78b75e

If our container actually did something with the USR1 signal, it would now do it. Since

we’re just running a bash shell, though, it just continues on as if nothing happened. Try
sending a HUP signal, though, and see what happens. Remember that a HUP is the signal

that is sent when the terminal closes on a foreground process.

Pausing and Unpausing a Container

Sometimes we really just want to stop our container as described above. But there are a
number of times when we just don’t want our container to do anything for a while. That
could be because we’re taking a snapshot of its filesystem to create a new image, or just
because we need some CPU on the host for a while. If you’re used to normal Unix process
handling, you might wonder how this actually works since containerized processes are just
processes.

Pausing leverages the cgroups freezer, which essentially just prevents your process from
being scheduled until you unfreeze it. This will prevent the container from doing anything
while maintaining its overall state, including memory contents. Unlike stopping a
container, where the processes are made aware that they are stopping via the SIGSTOP
signal, pausing a container doesn’t send any information to the container about its state
change. That’s an important distinction. Several Docker commands use pausing and
unpausing internally as well. Here’s how we pause a container:

$ docker pause 6b785f78b75e

If we look at the list of running containers, we will now see that the Redis container status
is listed as (Paused).

docker ps
CONTAINER ID IMAGE ... STATUS
6b785f78b75e progrium/stress:latest ... Up 36 minutes (Paused)

Attempting to use the container in this paused state would fail. It’s present, but nothing is
running. We can now resume the container using the docker unpause command.

$ docker unpause 6b785f78b75e

6b785f78b75e

$ docker ps

CONTAINER ID IMAGE ... STATUS..
6b785f78b75e progrium/stress:latest ... Up 1 second..

It’s back to running, and docker ps correctly reflects the new state. Note that it shows
“Up 1 second” now, which is when we unpaused it, not when it was last run.

http://bit.ly/1F8QRuv

Cleaning Up Containers and Images

After running all these commands to build images, create containers, and run them, we
have accumulated a lot of image layers and container folders on our system.

We can list all the containers on our system using the docker ps -a command and then
delete any of the containers in the list, as follows:

$ docker ps -a
CONTAINER ID IMAGE
92b797f12afl progrium/stress:latest

$ docker rm 92b797f12af1

We can then list all the images on our system using;:

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu latest 5ba9dab47459 3 weeks ago 188.3 MB
redis 2.8 868be653dea3 3 weeks ago 110.7 MB

progrium/stress latest 873c28292d23 7 months ago 281.8 MB

We can then delete an image and all associated filesystem layers by running:

$ docker rmi 873c28292d23

WARNING

If you try to delete an image that is in use by a container, you will get a Conflict, cannot delete error. You
should stop and delete the container(s) first.

There are times, especially during development cycles, when it makes sense to completely
clean off all the images or containers from your system. There is no built-in command for
doing this, but with a little creativity it can be accomplished reasonably easily.

To delete all of the containers on your Docker hosts, you can use the following command:

$ docker rm $(docker ps -a -q)

And to delete all the images on your Docker host, this command will get the job done:

$ docker rmi $(docker images -q -)

Newer versions of the docker ps and docker images commands both support a filter

argument that can make it easy to fine-tune your delete commands for certain
circumstances.

To remove all containers that exited with a nonzero state, you can use this filter:

$ docker rm $(docker ps -a -q --filter 'exited!=0"')

And to remove all untagged images, you can type:

$ docker rmi $(docker images -q -f "dangling=true")

NOTE

You can read the official Docker documentation to explore the filtering options. At the moment there are
very few filters to choose from, but more will likely be added over time, and if you are really interested,
Docker is an open source project, so they are always open to public code contributions.

It is also possible to make your own very creative filters by stringing together commands using pipes (|) and
other similar techniques.

Next Steps

In the next chapter, we’ll do more exploration of what Docker brings to the table. For now
it’s probably worth doing a little experimentation on your own. We suggest exercising
some of the container control commands we covered here so that you’re familiar with the
command-line options and the overall syntax. Try interacting with stoppped or paused
containers to see what you can see. Then when you’re feeling confident, head on into
Chapter 6!

I SELinux is one current implementation.

2 Typically under /var/lib/docker/containers.

Chapter 6. Exploring Dockert

Now that we have some experience working with Docker containers and images, we can
explore some of its other capabilities. In this chapter, we’ll continue to use the docker

command-line tool to talk to the running docker daemon that you’ve configured, while
visiting some of the other fundamental commands.

Docker provides commands to do a number of additional things easily:

= Printing the Docker version

m Viewing the server information
= Downloading image updates

» Inspecting containers

= Entering a running container

m Returning a result

= Viewing logs

» Monitoring statistics

Let’s take a look at some of those and some community tooling that augments Docker’s
native capabilities.

Printing the Docker Version

If you completed the last chapter, you have a working Docker daemon on a Linux server
or virtual machine, and you’ve started a base container to make sure it’s all working. If
you haven’t set that up already and you want to try out the steps in the rest of the book,
you’ll want to follow the installation steps in Chapter 3 before you move on with this
section.

The absolute simplest thing you can do with Docker is print the versions of the various
components. It might not sound like much, but this is a useful tool to have in your belt
because the server and API are often not backwards compatible with older clients.
Knowing how to show the version will help you troubleshoot certain types of connection
issues. Note that this command actually talks to the remote Docker server. If you can’t
connect to the server for any reason, the client will complain. If you find that you have a
connectivity problem, you should probably revisit the steps in the last chapter.

NOTE

You can always directly log in to the Docker server and run docker commands from a shell on the server if
you are troubleshooting issues or simply do not want to use the docker client to connect to a remote system.

Since we just installed all of the Docker components at the same time, when we run
docker version, we should see that all of our versions match:

$ docker version

Client version: 1.3.1

Client API version: 1.15

Go version (client): gol1.3.3
Git commit (client): 4e9bbfa
0S/Arch (client): linux/amdé64
Server version: 1.3.1

Server API version: 1.15

Go version (server): gol.3.3
Git commit (server): 4e9bbfa

Notice how we have different lines representing the client, server, and API versions. It’s
important to note that different versions of the command-line tools might use the same
Docker API version. Even when they do, sometimes Docker won’t let you talk to a remote
server that doesn’t exactly match. Now you know how to verify this information.

Server Information

We can also find out a little bit about the Docker server itself via the Docker client. Later
we’ll talk more about what all of this means, but you can find out which filesystem
backend the Docker server is running, which kernel version it is on, which operating
system it is running on, and how many containers and images are currently stored there. If
you run docker info, you will see something similar to this:

$ docker info
Containers: 22
Images: 180
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Dirs: 224
Execution Driver: native-0.2
Kernel Version: 3.8.0-29-generic
Operating System: Ubuntu precise (12.04.3 LTS)

Depending on how your Docker daemon is set up, this might look somewhat different.
Don’t be concerned about that; this is just to give you an example. Here we can see that
our server is an Ubuntu 12.04.3 LTS release running the 3.8.0 Linux kernel and backed
with the AUFS filesystem driver. We also have a lot of images! With a fresh install, this
number should be zero.

In most installations, /var/lib/docker will be the default root directory used to store images
and containers. If you need to change this, you can edit your Docker startup scripts to
launch the daemon, with the - -graph argument pointing to a new storage location. To test
this by hand, you could run something like this:

$ sudo docker -d
-H unix:///var/run/docker.sock \
-H tcp://0.0.0.0:2375 --graph="/data/docker"

Downloading Image Updates

We’re are going to use an Ubuntu base image for the following examples. Even if you
have already grabbed the Ubuntu base image once, you can pull it again and it will
automatically pick up any updates that have been published since you last ran it. That’s
because latest is a tag that, by convention, is always moved to the most recent version of
the image that has been published to the image registry. Invoking the pull will look like
this:

$ docker pull ubuntu:latest

Pulling repository ubuntu

5506de2b643b: Download complete
511136ea3c5a: Download complete
d497ad3926¢c8: Download complete
ccb62158e970: Download complete
€791be0477f2: Download complete
3680052cOf5¢c: Download complete
22093c35d77b: Download complete

That command pulled down only the layers that have changed since we last ran the
command. You might see a longer or shorter list, or even an empty list, depending on
when you ran it and what changes have been pushed to the registry since then.

NOTE

It’s good to remember that even though you pulled latest, docker won’t automatically keep the local

image up-to-date for you. You’ll be responsible for doing that yourself. However, if you deploy an image
based on a newer copy of ubuntu:latest, Docker will download the missing layers during the deployment

just like you would expect.

As of Docker 1.6, it is now possible to pull a specific version of an image from Docker
Hub or any registry based on Docker’s Registry 2.0 codebase by using the digest attached
to the desired image. This is useful when you want to ensure that you are pulling a very
specific image build and don’t want to rely on a tag, which can potentially be moved.

docker pull ubuntu@sha256:2f9a..82cf

Inspecting a Container

Once you have a container created, running or not, you can now use docker to see how it

was configured. This is is often useful in debugging, and also has some other information
that can be useful when identifying a container.

For this example, let’s go ahead and start up a container.

$ docker run -d -t ubuntu /bin/bash
3c41916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b

We can list all our running containers with docker ps to ensure everything is running as
expected, and to copy the container ID.

$ docker ps
CONTAINER ID IMAGE COMMAND ... STATUS ... NAMES
3c4f916619a5 ubuntu:latest "/bin/bash" ... Up 31 seconds.. angry_mestorf

In this case, our ID is 3c4f916619a5. We could also use angry_mestorf, which is the
dynamic named assigned to our container. Underlying tools all need the unique container
ID, though, so it’s useful to get into the habit of looking at that first. As is the case in many
revision control systems, this hash is actually just the prefix of a much longer hash.
Internally, the kernel uses a 64-byte hash to identify the container. But that’s painful for
humans to use, so Docker supports the shortened hash.

The output to docker inspect is pretty verbose, so we’ll cut it down in the following
code block to a few values worth pointing out. You should look at the full output to see
what else you think is interesting:

$ docker inspect 3c4f916619a5

[{
"Args": [1,
"Config": {
"Cmd": [
"/bin/bash"
1,

"Env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
1,

"Hostname": "3c4f916619a5",
"Image": "ubuntu",

iy
"Created": "2014-11-07T22:06:32.229471304Z",

"Id": "3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b",
"Image": "5506de2b643bele6febbf3b8a240760c6843244c4lel2aa2f60ccbb7153d17f5"

Note that long "1d" string. That’s the full unique identifier of this container. Luckily we

can use the short name, even if that’s still not especially convenient. We can also see the
exact time when the container was created in a much more precise way than docker ps

gives us.

Some other interesting things are shown here as well: the top-level command in the
container, the environment that was passed to it at creation time, the image on which it’s

based, and the hostname inside the container. All of these are configurable at container
creation time if you need to do so. The usual method for passing configuration to
containers, for example, is via environment variables, so being able to see how a container
was configured via docker inspect can reveal a lot when debugging.

Getting Inside a Running Container

You can pretty easily get a shell running in a new container as we demonstrated above
with docker run. But it’s not the same as getting a new shell inside an existing container
that is actively running your application. Every time you use docker run, you get a new

container. But if you have an existing container that is running an application and you
need to debug it from inside the container, you need something else.

Because Docker originally used the LXC backend by default, the Linux 1xc-attach
command was the easiest way to enter a running container. But once Docker shifted to
using libcontainer by default, this is no longer useful for most people. Since Docker
containers are Linux namespaces, however, tools like the docker exec command and
nsenter support this functionality more broadly.

https://linuxcontainers.org

docker exec

First let’s look at the newest and best way to get inside a running container. From Docker
1.3 and up, the docker daemon and docker command-line tool support remotely executing

a shell into a running container via docker exec. So let’s start up a container in
background mode, and then enter it using docker exec.

We’ll need our container’s ID, like we did above when we inspected it. I just did that, and
my container’s ID is 589f2ad30138. We can now use that to get inside the container. The
command line to docker exec, unsurprisingly, looks a lot like the command line to

docker run. We request a pseudo-tty and an interactive command:

$ docker exec -t -i 589f2ad30138 /bin/bash
root@589f2ad30138: /#

Note that we got a command line back that tells us the ID of the container we’re running
inside. That’s pretty useful for keeping track of where we are. We can now run a ps to see

what else is running inside our container. We should see our other bash process that we
backgrounded earlier.

root@s89f2ad30138:/# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 23:13 7 00:00:00 /bin/bash
root 9 0 1 23:14 7 00:00:00 /bin/bash
root 17 9 0 23:14 ? 00:00:00 ps -ef

You can also run additional processes in the background via docker exec. You use the -d option just like
with docker run. But you should think hard about doing that for anything but debugging because you lose
the repeatability of the image deployment if you depend on this mechanism. Other people would then have
to know what to pass to docker exec to get the desired functionality. If you’re tempted to do this, you
would probably reap bigger gains from rebuilding your container image to launch both processes in a
repeatable way.

nsenter

Part of the core util-1linux package from kernel.org is nsenter, short for “Namespace
Enter,” which allows you to enter any Linux namespace. In Chapter 10, we’ll go into more
detail on namespaces. But they are the core of what makes a container a container. Using
nsenter, therefore, we can get into a Docker container from the server itself, even in

situations where the Docker daemon is not responding and we can’t use docker exec.
nsenter can also be used to manipulate things in a container as root on the server that
would otherwise be prevented by docker exec, for example. This can be really useful
when debugging. Most of the time, docker exec is all you need. But you should have
nsenter in your tool belt.

Most Linux distributions ship with the 1inux-utils package that contains nsenter. But
few ship one that is new enough to have nsenter itself installed, because it’s a recent
addition to the package. So the easiest way to get ahold of nsenter is to install it via a
third-party Docker container. This works by pulling a Docker image from the Docker Hub
registry and then running a specially crafted Docker container that will install the nsenter
command-line tool into /usr/local/bin. This might seem strange at first, but it’s a clever
way to allow you to install nsenter to any Docker server remotely using nothing more
than the docker command.

The following code shows how we install nsenter to /usr/local/bin on your Docker
server:

$ docker run --rm -v /usr/local/bin:/target jpetazzo/nsenter
Unable to find image 'jpetazzo/nsenter' locally

Pulling repository jpetazzo/nsenter

9e4ef84f476a: Download complete

511136ea3c5a: Download complete

71d9d77ae89e: Download complete

Status: Downloaded newer image for jpetazzo/nsenter:latest
Installing nsenter to /target

Installing docker-enter to /target

You should be very careful about doing this! It’s always a good idea to check out what you are running, and
particularly what you are exposing part of your filesystem to, before you run a third-party container on your
system. With -v, we’re telling Docker to expose the host’s /usr/local/bin directory into the running

container as /target. When the container starts, it is then copying an executable into that directory on our

host’s filesystem. In Chapter 10, we will discuss some security frameworks and commands that can be
leveraged to prevent potentially nefarious container activities.

Unlike docker exec, which can be run remotely, nsenter requires that you run it on the
server itself. The README in the GitHub repo explains how to set this up to work over SSH

automatically if you want to do that. For our purposes, we’ll log in to our Docker server
via SSH and then invoke the command from the server. In any case, like with docker

exec, we need to have a container running. You should still have one running from above.
If not, go back and start one, and then ssh into your server.

http://bit.ly/1GpecsE
https://github.com/jpetazzo/nsenter

docker exec is pretty simple, but nsenter is a little inconvenient to use. It needs to have
the PID of the actual top-level process in your container. That’s less than obvious to find
and requires a few steps. Luckily there’s a convenience wrapper installed by that Docker
container we just ran, called docker-enter, which takes away the pain. But before we
jump to the convenience wrapper, let’s run nsenter by hand so you can see what’s going
on.

First we need to find out the ID of the running container, because nsenter needs to know
that to access it. This is the same as previously shown for docker inspect and docker

exec:
$ docker ps
CONTAINER ID IMAGE COMMAND ... NAMES
3c4f916619a5 ubuntu:latest "/bin/bash" ... grave_goldstine

The ID we want is that first field, 3c4f916619a5. Armed with that, we can now find the
PID we need. We do that like this:

$ PID=$(docker inspect --format \ 3c4f916619a5)

This will store the PID we care about into the PID environment variable. We need to have
root privilege to do what we’re going to do. So you should either su to root or use sudo on

the command line. Now we invoke nsenter:

$ sudo nsenter --target $PID --mount --uts --ipc --net --pid
root@3c4f916619a5: /#

If the end result looks a lot like docker exec, that’s because it does almost exactly the
same thing under the hood!

There are a lot of command-line options there, and what they’re doing is telling nsenter

which parts of the container we need access to. Generally you want all of them, so you
might expect that to be the default, but it’s not, so we specify them all.

Neither nsenter or docker exec work well for exploring a container that does not contain a Unix shell. In

this case you usually need to explore the container from the Docker server by navigating directly to where
the container filesystem resides on storage. This will typically look something like this
/var/lib/docker/aufs/mnt/365c...87a3,, but will vary based on the Docker setup, storage backend, and
container hash. You can determine your Docker root directory by running docker info.

Back at the beginning of this section we mentioned that there is a convenience wrapper
called docker-enter that gets installed by running the installation Docker container.

Having now seen the mechanism involved with running nsenter, you can now appreciate
that if you actually just want to enter all the namespaces for the container and skip several
steps, you can do this:

$ sudo docker-enter 3c4f916619a5 /bin/bash
root@3c4f916619a5:/#

That’s it! Once we’ve explained namespaces more in Chapter 10, you’ll get a better
understanding of why we showed you how it works in more detail than that.

Exploring the Shell

One way or another, either by launching a container with a foreground shell or via one of
the other mechanisms above, we’ve got a shell running inside a container. So, let’s look
around a little bit. What processes are running?

$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 22:12 ? 00:00:00 /bin/bash
root 12 1 0 22:16 ? 00:00:00 ps -ef

Wow, that’s not much, is it? It turns out that when we told docker to start bash, we didn’t
get anything but that. We’re inside a whole Linux distribution image, but no other
processes started for us automatically. We only got what we asked for. It’s good to keep
that in mind going forward.

Docker containers don’t, by default, start anything in the background like a full virtual machine would.
They’re a lot lighter weight than that and therefore don’t start an init system. You can, of course, run a

whole init system if you need to, but you have to ask for it. We’ll talk about that in a later chapter.

That’s how we get a shell running in a container. You should feel free to poke around and
see what else looks interesting inside the container. Note that you might have a pretty
limited set of commands available. You’re in an Ubuntu distribution, though, so you can
fix that by using apt-get to install more packages. Note that these are only going to be
around for the life of this container. You’re modifying the top layer of the container, not
the base image!

Returning a Result

Most people would not think of spinning up a virtual machine to run a single process and
then return the result because doing so would be very time consuming and require booting
a whole operating system to simply execute one command. But Docker doesn’t work the
same way as virtual machines: containers are very lightweight and don’t have to boot up
like an operating system. Running something like a quick background job and waiting for
the exit code is a normal use case for a Docker container. You can think of it as a way to
get remote access to a containerized system and have access to any of the individual
commands inside that container with the ability to pipe data to and from them and return
exit codes.

This can be useful in lots of scenarios: you might, for instance, have system health checks
run this way remotely, or have a series of machines with processes that you spin up via
Docker to process a workload and then return. The docker command-line tools proxy the
results to the local machine. If you run the remote command in foreground mode and don’t
specify doing otherwise, docker will redirect its stdin to the remote process, and the
remote process’s stdout and stderr to your terminal. The only things we have to do to
get this functionality are to run the command in the foreground and not allocate a TTY on
the remote. This is actually the default configuration! No command-line options are
required. We do need to have a container configured and ready to run.

The following code shows what you can do:
docker run 8di12decc75fe /bin/false
echo $?

docker run 8di12decc75fe /bin/true
echo $?

FOLHR BHH

docker run 8di12decc75fe /bin/cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:1p:/var/spool/1lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
nobody:x:99:99:Nobody:/:/sbin/nologin

$ docker run 8di2decc75fe /bin/cat /etc/passwd | wc -1
8

Here we executed /bin/false on the remote server, which will always exit with a status
of 1. Notice how docker proxied that result to us in the local terminal. Just to prove that it
returns other results, we also run /bin/true, which will always return a 0. And there it is.

Then we actually ask docker to run cat /etc/passwd on the remote container. What we
get is the result of that container’s version of the /etc/passwd file. Because that’s just
regular output on stdout, we can pipe it into local commands just like we would anything
else.

WARNING

The previous code pipes the output into the local we command, not a wc command in the container. The pipe
itself is not passed to the container. If you want to pass the whole command, including the pipes, to the
server, you need to invoke a complete shell on the remote side and pass a quoted command, like bash -c "
<your command> | <something else>". In the previous code, that would be: docker run 8di12decc75fe
/bin/bash -c "/bin/cat /etc/passwd | wc -1".

Docker Logs

Logging is a critical part of any production application. There are common ways we
expect to interact with application logs on Linux systems. If you’re running a process on a
box, you might expect the output to go to a local logfile that you could read through. Or
perhaps you might expect the output to simply be logged to the kernel buffer where it can
be read from dmesg. Because of the container’s restrictions, neither of these will work
without some gyrations to do so. But that’s OK, because simple logging is first class in
Docker. There are limitations to this mechanism, which we’ll explain in a minute, but for
the simple case it works well. The mechanism is docker logs.

The way this works is that anything sent to stdout or stderr in the container is captured
by the Docker daemon and streamed into a configurable backend, which is by default a
JSON file for each container. We’ll cover that first, then talk about other options. The
default logging mechanism lets us retrieve logs for any container at any time like this,
showing some logs from a container running nginx:

$ docker logs 3c4f916619a5

nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: using the "epoll" ...
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: nginx/1.0.15

nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: built by gcc 4.4.7..

nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: 0S: Linux 3.8.0-35-generic

This is nice because Docker allows you to get the logs remotely, right from the command
line, on demand. That’s really useful for low-volume logging.

The actual files backing this logging are on the Docker server itself, by default in
/var/lib/docker/containers/<container_id>/ where the <container_id> is replaced by the
actual container ID. If you take a look at one of those files, you’ll see it’s a file with each
line representing a JSON object. It will look something like this:

{"log":"2015-01-02 23:58:51,003 INFO success: running.\r\n",
"stream":"stdout",
"time":"2015-01-02T723:58:51.0040362382"}

That log field is exactly what was sent to stdout on the process in question; the stream
field tells us that this was stdout and not stderr; and the precise time that the Docker
daemon received it is provided in the time field. It’s an uncommon format for logging, but
it’s structured rather than just a raw stream, which is beneficial if you want to do anything
with the logs later.

Like a logfile, you can also tail the Docker logs live with docker logs -f:

$ docker logs -f 3c4f916619a5

nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: using the "epoll" ...
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: nginx/1.0.15

nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: built by gcc 4.4.7..

nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: 0S: Linux 3.8.0-35-generic

This looks identical to the usual docker logs, but the client then blocks, waiting on and
displaying any new logs to appear, much like the Linux command line tail -f.

While Docker automatically captures logs for you, it does not also rotate them. In fact, currently none of the
provided packages set up any log rotation. You’ll need to do that yourself in most cases. Rather
frustratingly, Docker also does not respond to a signal to tell it to reopen logs. If you send it the standard
HUP signal, it will instead restart all the containers, which is not what you want. The current best practice for

rotation of Docker logs is to have logrotate use the copytruncate method to copy the logfile and then
truncate it in place. There are open bugs against docker asking for a better solution.

For low-volume logging, this mechanism is pretty good. Its shortcomings are around log
rotation, access to the logs remotely once they’ve been rotated, and disk space usage for
high-volume logging. For when this isn’t enough — and in production it’s probably not —
Docker also supports configurable logging backends. This is a newer feature, so the
number of available backends is likely to grow quickly. The supported option that
currently works best for running Docker at scale is the option to send your container logs
to syslog directly from Docker. You can specify this on the Docker command line with the
--log-driver=syslog option.

If you change the log driver to anything other than the default (json-file), then you will no longer be able
to use the docker logs command. It is assumed that you will have another means of accessing your logs in
that case.

Secondly, the Docker daemon itself will now be writing to /dev/log. This is usually read by the syslog
daemon. If that blocks, the logging will buffer into memory in the Docker process. At the time of this
writing, further work is being done on this feature to mitigate that effect. As a result of this deficiency, we
can’t currently recommend this solution at scale.

It was a long time from the beginning of the Docker project to when logging by other than
the json-file method was supported. So there are community contributions with many

alternate ways of getting you logging at scale. It should be noted that many of these
mechanisms are also incompatible with docker logs. The most common solution is to use

a method to send your logs directly to syslog. There are several mechanisms in use:

m Log directly from your application.

m Have a process manager in your container relay the logs (e.g., systemd, upstart,
supervisor, Or runit).

= Run a logging relay in the container that wraps stdout/stderr from the container.
= Relay the Docker JSON logs themselves to syslog from the server.

Logging directly from your application to syslog might make sense, but if you’re running
any third-party applications, that probably won’t work.

Although controversial in the Docker community, running a process manager in the

https://github.com/docker/docker/issues/7333

container is a reasonably easy way to capture output and direct it to a central logging
service. New Relic released a logging plug-in for supervisor that does exactly that. This

mechanism is nice because there is no additional machinery in the container other than
what you’d already include. You do need Python installed, though.

Spotify has released a simple, statically linked Go relay to handle logging your stderr
and stdout to syslog for one process inside the container. Generally you run this from the
cMD line in the Dockerfile. Because it’s statically compiled, it has no dependencies, which
makes it very flexible.

If you want to have one system to support all your containers, a popular option is
Logspout, which runs in a separate container, talks to docker, and logs all the containers
logs to syslog (UDP only). The advantage of this approach is that it does not preclude
docker logs but does require that you set up log rotation. We’ve also seen the Docker
daemon get overwhelmed by applications with massive logging needs, and this doesn’t
overcome that. We currently recommend running a logging mechanism inside each
container either as the process manager or as a logging wrapper. It has the least
drawbacks.

Finally, while you really should be capturing your logs somewhere, there are rare
situations in which you simply don’t want any logging. You can use the --1og-
driver=none switch to turn them off completely.

http://github.com/newrelic/supervisor-remote-logging
https://github.com/spotify/syslog-redirector
https://github.com/progrium/logspout

Monitoring Docker

Running something in production is not a good idea unless you can tell what’s going on.
In the modern world, we monitor everyting and report as many statistics as we can.
Docker supports some nice, basic reporting capabilities via docker stats and docker
events. We’ll show you those and then look at a community offering from Google that
does some nice graphing output as well.

Container Stats

In version 1.5.0, Docker added an endpoint for viewing stats of running containers. The
command-line tool can stream from this endpoint and every few seconds report back on
one or more listed containers, giving basic statistics information about what’s happening.
docker stats, like the Linux top command, takes over the current terminal and updates
the same lines on the screen with the current information. It’s hard to show that in print, so
we’ll just give an example, but this updates every few seconds by default.

$ docker stats e64a279663aa
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/0
e64a279663aa 0.00% 7.227 MiB/987.9 MiB 0.73% 036 B/468 B

Here we can see the container ID (but not the name), the amount of CPU it’s currently
consuming, the amout of memory it has in use, and the limit of what it’s allowed to use.
The percentage of memory utilized is also provided to make it easier for the user to
quickly determine how much free memory the container has available. And stats are
provided for both in and out network bytes.

These are all of basic interest, but what they provide is not all that exciting. It turns out,
though, that the Docker API provides a lot more information on the stats endpoint that is
shown in the client. We’ve steered away from hitting the API in this book so far, but in
this case the data provided by the API is so much richer that we’ll use curl to call it and
see what our container is doing. It’s nowhere near as nice to read, but there is a lot more
detail. This is a good intro to calling the API yourself as well.

The /stats/ endpoint that we’ll hit on the API will continue to stream stats to us as long

as we keep the connection open. Since as humans we can’t really parse usefully, we’ll just
ask for one line and then use Python to “pretty print” it. In order for this command to
work, you’ll need to have Python installed (version 2.6 or later). If you don’t and you still
want to see the JSON output, you can skip the pipe to Python, but you’ll get plain, ugly
JSON back.

Here we call localhost, but you’ll want to use the hostname of your Docker server. Port

2375 is usually the right port. Note that we also pass the ID of our container in the URL
we send to curl.

NOTE

You can usually inspect the contents of the DOCKER_HOST environment variable, using something like echo
$DOCKER_HOST, to discover the hostname or IP address of the Docker server that you are using.

It is easiest to run through the following example if you are running Docker on a full
Linux distribution, with the Docker server bound to the default unencrypted port 2375.

First, let’s go ahead and start up a container that you can read stats from:

$ docker run -d ubuntu:latest sleep 1000
91c86ec7b33f37da9917d2f67177ebfaa3a95a78796e33139e1b7561dc4f244a

Now that the container is running, we can get an ongoing stream of statistics information
about the container in JSON format by running something like curl with your container’s
hash.

$ curl -s http://localhost:2375/vil/containers/91c8..244a/stats

NOTE

This JSON stream of statistics will not stop on its own. So for now, we can use the Ctrl-C key combination
to stop it.

To get a single group of statistics, we can run something similar to this:

$ curl -s http://localhost:2375/vl/containers/91c8..244a/stats | head -1

And finally, if we have Python or another tool capable of “pretty printing” JSON, we can
make this output human-readable, as shown here:

$ curl -s http://localhost:2375/vl/containers/91c8..244a/stats \
| head -1 | python -m json.tool

"blkio_stats": {
"io_merged_recursive": [],
"io_queue_recursive": [],
"io_service_bytes_recursive": [

{
"major": 8,
"minor": 0,
llopll : "Read",
"value": 6098944
+
...snip..
1,
"io_service_time_recursive": [],
"io_serviced_recursive": [
{
"major": 8,
"minor": O,
llopll : "Read",
"value": 213
I
...snip..
1,
"io_time_recursive": [],
"io_wait_time_recursive": [],
"sectors_recursive": []
1

"cpu_stats": {

"cpu_usage": {

"percpu_usage": [
37320425

1,
"total usage": 37320425,
"usage_in_kernelmode": 20000000,
"usage_in_usermode": 0

H

"system_cpu_usage'": 1884140000000,

"throttling_data": {
"periods": 0O,
"throttled_periods": 0,
"throttled_time": ©

}

+

"memory_stats": {
"failcnt": 0O,
"limit": 1035853824,

"max_usage": 7577600,
"stats": {
"active_anon": 1368064,
"active_file": 221184,
"cache": 6148096,
"hierarchical memory_limit": 9223372036854775807,
"inactive_anon": 24576,
"inactive_file": 5890048,
"mapped_file": 2215936,
"pgfault": 2601,
"pgmajfault": 46,
"pgpgin": 2222,
"pgpgout": 390,
"rss": 1355776,
"total_active_anon": 1368064,
"total active_file": 221184,
"total_cache": 6148096,
"total_inactive_anon": 24576,
"total_inactive_file": 5890048,
"total mapped_file": 2215936,
"total pgfault": 2601,
"total pgmajfault": 46,
"total pgpgin": 2222,
"total pgpgout": 390,
"total rss": 1355776,
"total unevictable": 0,
"unevictable": 0
+
"usage": 7577600
s
"network": {
"rx_bytes": 936,
"rx_dropped": 0,
"rx_errors": 0,
"rx_packets": 12,
"tx_bytes": 468,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 6
+
"read": "2015-02-11T15:20:22.930379289-08:00"

There is a lot of information in there. We won’t spend much time going into the details,
but you can get quite detailed memory usage information, as well as blkio and CPU usage
information. If you are using CPU or memory limits in your containers, this endpoint is
very useful for finding out when you are hitting them.

If you are doing your own monitoring, this is a great endpoint to hit as well. Note that one
drawback is that it’s one endpoint per container, so you can’t get the stats about all
containers from a single call.

Docker Events

The docker daemon internally generates an events stream around the container life cycle.
This is how various parts of the system find out what is going on in other parts. You can
also tap into this stream to see what life cycle events are happening for containers on your
Docker server. This, as you probably expect by now, is implemented in the docker CLI
tool as another command-line argument. When you run this command, it will block and
continually stream messages to you. Behind the scenes, this is a long-lived HTTP request
to the Docker API that returns messages in JSON blobs as they occur. The docker CLI
tool decodes them and prints some data to the terminal.

This event stream is useful in monitoring scenarios or in triggering additional actions, like
wanting to be alerted when a job completes. For debugging purposes, it allows you see
when a container died even if Docker restarts it later. Down the road, this is a place where
you might also find yourself directly implementing some tooling against the API. Here’s
how we use it on the command line:

$ docker events
2015-02-18T14:00:39-08:00 1b3295bf300f: (from 0415448f2cc2) die
2015-02-18T14:00:39-08:00 1b3295bf300f: (from 0415448f2cc2) stop

2015-02-18T14:00:42-08:00 1b3295bf300f: (from 0415448f2cc2) start

In this example, we initiated a stop signal with docker stop, and the events stream logs
this as a “die” message. The “die” message actually marks the beginning of the shutdown
of the container. It doesn’t stop instantaneously. So, following the “die” message is a
“stop” message, which is what Docker says when a container has actually stopped
execution. Docker also helpfully tells us the ID of the image that the container is running
on. This can be useful for tying deployments to events, for example, because a deployment
usually involves a new image.

Once the container was completely down, we initiated a docker start to tell it to run

again. Unlike the “die/stop” operations, this is a single command that marks the point at
which the container is actually running. We don’t get a message telling us that someone
explicitly started it. So what happens when we try to start a container that fails?

2015-02-18T14:03:31-08:00 e64a279663aa: (from e426f6ef897e) die

Note that here the container was actually asked to start, but it failed. Rather than seeing a
“start” and a “die,” all we see is a “die.”

If you have a server where containers are not staying up, the docker events stream is

pretty helpful in seeing what’s going on and when. But if you’re not watching it at the
time, Docker very helpfully caches some of the events and you can still get at them for
some time afterward. You can ask it to display events after a time with the - -since option,

or before with the - -until option. You can also use both to limit the window to a narrow

scope of time when an issue you are investigating may have occurred. Both options take
ISO time formats like those in the previous example (e.g., 2015-02-18T14:03:31-08:00).

cAdyvisor

docker stats and docker events are useful but don’t yet get us graphs to look at. And
graphs are pretty helpful when trying to see trends. Of course, other people have filled
some of this gap. When you begin to explore the options for monitoring Docker, you will
find that many of the major monitoring tools now provide some functionality to help you
improve the visibility into your containers’ performance and ongoing state.

In addition to the commercial tooling provided by companies like DataDog, GroundWork,
and New Relic, there are plenty of options for open source tools like Nagios.

One of the best open source options today comes from Google, which released its own
internal container advisor as an open source project on GitHub, called cAdvisor. Although
cAdvisor can be run outside of Docker, the easiest implementation is to simply run it as a
Docker container.

To install cAdvisor on an Ubuntu-based system, all you need to do is run this code:

$ docker run \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:rw \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
--publish=8080:8080 \
--detach=true \
--name=cadvisor \
google/cadvisor:latest

Unable to find image 'google/cadvisor:latest' locally

Pulling repository google/cadvisor

f0643dafd7f5: Download complete..

ba9b663a8908: Download complete

Status: Downloaded newer image for google/cadvisor:latest
f54e6bc0469f60fd74ddf30770039f1la7aa36a5edabef5100cddd9ad5fda350b

NOTE

On RHEL- and CentOS-based systems, you will need to add the following line to the docker run
command shown here: - -volume=/cgroup:/cgroup \

One you have done this, you will be able to navigate to your Docker host on port 8080 to
see the cAdvisor web interface (i.e., http://172.17.42.10:8080/) and the various detailed
charts it has for the host and individual containers (see Figure 6-1).

https://github.com/google/cadvisor
http://172.17.42.10:8080/

Total Usage

0.24

0.18
w
£ 0.12
[&]

0.06

0.00

5:15:30 PM 5:15:40 PM 5:15:50 PM 5:16:00 PM 5:16:10 PM
H Total

Usage per Core

0.16
0.12

0.08

Cores

0.04

0.00 Sk = S :
5:15:30 PM 5:15:40 PM 5:15:50 PM 5:16:00 PM 5:16:10 PM
M Core 0 B Core 1 M Core 2 B Core3 B Core 4 B Core 5 B Core6 BcCore7?

Usage Breakdown

0.20

- A\AW |
0.00

5:15:30 PM 5:15:40 PM 5:15:50 PM 5:16:00 PM 5:16:10 PM
B User B Kernel

Cores
o
5
(=]

Figure 6-1. cAdvisor CPU graphs

cAdvisor provides a REST API endpoint, which can easily be queried for detailed
information by your monitoring systems:

$ curl http://172.17.42.10:8080/api/v1.3/containers/

{
llnamell : II/II,
"subcontainers": [
{
"name": "/docker"
}
1,
"spec": {

"creation_time": "2015-04-05T00:05:40.249999996Z",
"has_cpu": true,
"CpU": {

"limit": 1024,

"max_limit": 0,

|Imaskll: ll0_7ll

+

"has_memory": true,
"memory":
"limit": 18446744073709551615,
"swap_limit": 18446744073709551615
3
"has_network": true,
"has_filesystem": true,
"has_diskio": true

1
"stats": [
"timestamp": "2015-04-05T00:26:50.679218419Z2",
"CpU" : {
"usage":

"total": 123375166639,

"per_cpu_usage": [
41967365270,
8589893874,
11289461032,
14350545587,
11866977873,
13414428349,
12667210966,
9229283688

1,

"user": 22990000000,

"system": 43890000000

+

"load_average": 0

+
"diskio": {3},
"memory": {
"usage": 394575872,
"working_set": 227770368,
"container_data": {
"pgfault": 91617,
"pgmajfault": 0

"hierarchical_data": {
"pgfault": 91617,
"pgmajfault": 0O

I

"network": {
"rx_bytes": 0,
"rx_packets": 0,
"rx_errors": 0,
"rx_dropped": 0,
"tx_bytes": 0,
"tx_packets": 0,
"tx_errors": 0,
"tx_dropped": 0

+

"filesystem": [

"device": "/dev/sdal",
"capacity": 19507089408,
"usage": 2070806528,
"reads_completed": 1302,
"reads_merged": 9,
"sectors_read": 10706,
"read_time": 1590,
"writes_completed": 1283,
"writes_merged": 1115,
"sectors_written": 509824,
"write_time": 4150,
"io_in_progress": O,
"io_time": 590,
"weighted_io_time": 5670
}

1,

"task_stats": {
"nr_sleeping": 0O,
"nr_running": O,
"nr_stopped": O,
"nr_uninterruptible": 0,

"nr_io_wait": ©
}
Iy

]
3

As you can see, the amount of detail provided here should be sufficient for many of your
graphing and monitoring needs.

Exploration

That gives you all the basics you need to start running containers. It’s probably worth
downloading a container or two from the Docker Hub registry and exploring a bit on your
own to get used to the commands we just learned. There are many other things you can do
with Docker, including:

m Copying files in and out of the container with docker cp

m Saving a container’s filesystem to a tarball with docker export
= Saving an image to a tarball with docker save

m [oading an image from a tarball with docker import

Docker has a huge feature set that you will likely grow into over time. Each new release
adds more functionality as well. We’ll get into a lot more detail later on many other
commands and features, but you should keep in mind that Docker’s whole feature set is
huge.

Chapter 7. The Path to Production
Containers

In this chapter, we cover some of the ideas around deploying and testing containers in
production. This chapter is intended to show you how you might take containers to
production based on our experience doing so. There are a myriad of ways in which you
will probably need to tailor this to your own application and environment. The purpose of
this chapter is really to provide a starting point and to help you understand the Docker
philosophy in practical terms.

Deploying

Deployment, which is often the most mine-ridden of the steps in getting to production, is
made vastly simpler by the shipping container model. If you can imagine what it was once
like to load goods into a ship to take across the ocean before shipping containers existed,
you can get a sense of what most deployment systems look like. In that old shipping
model, random-sized boxes, crates, barrels, and all manner of other packaging were all
loaded by hand onto ships. They then had to be manually unloaded by someone who could
tell which pieces needed to be unloaded first so that the whole pile wouldn’t collapse like
a Jenga puzzle.

Shipping containers changed all that: we have a standardized box with well-known
dimensions. These containers can be packed and unloaded in a logical order and whole
groups of items arrive together when expected. This is the Docker deployment model. All
Docker containers support the same external interface, and the tooling just drops them on
the servers they are supposed to be on without any concern for what’s inside.

Now that we have a running build of our application, we don’t have to write much custom
tooling to kick off deployment. If we only want to ship it to one server, the docker

command-line tooling will handle most of that for us. If we want to send it to more, then
we might look to some community tooling.

There is a progression you will follow while getting your applications to production on
Docker:

1. Locally build and test a Docker image on your development box.
2. Build your official image for testing and deployment.
3. Deploy your Docker image to your server.
As your workflow evolves, you will eventually collapse all of those steps into a single

fluid workflow:

1. Orchestrate the deployment of images and creation of containers on production
Servers.

We talked about some of those steps already, but it is worthwhile to look at them again to
see where deployment fits into the life cycle of getting Docker up and running.

If you don’t already have an application to ship, you don’t need to spend too much time on
deployment. But it’s good to know ahead of time what you’ll encounter when you do get
there, so let’s look at how that is done.

Classes of Tooling

Deployment by hand is the simplest, but often the least reliable, way to get an application
into production. You can just take your image and docker pull and docker run it on the
servers in question. That may be good enough for testing and development. But for
production, you will want something more robust.

At the most basic level, a deployment story must encompass two things:

1. It must be a repeatable process. Each time you invoke it, it needs to do the same
thing.

2. It needs to handle container configuration for you. You must be able to define your
application’s configuration in a particular environment and then guarantee that it will
ship that configuration for each container on each deployment.

The Docker client itself can only talk to one server, so you need some kind of
orchestration tool to support deployment at any scale. Docker’s Swarm tool, which we talk
about in “Docker Swarm”, solves the problem of talking to multiple servers, but you
would still need additional tools to support items one and two above. You could script that
behavior with shell scripting or your favorite dynamic language. As we mentioned earlier,
you could also talk directly to the Docker Remote API, which is the API exposed by the
docker daemon. If you have complicated needs, the Remote API might be the right
solution since it exposes much of the power of the docker command line in a

programmatically accessible way.

But for most people, there are already a large number of community contributions that can
address your needs. These are already being used in production environments in many
cases and thus are far more battle-hardened than anything you’ll cook up in-house. There
are really two classes of community tooling for deployment:

1. Tools that treat this as an orchestration or deployment problem, replacing things like
Capistrano, Fabric, and shell scripts.

2. Tools that treat your network like a larger computer, implementing automatic
scheduling and/or fleet management policies, typically replacing manual processes.

Orchestration Tools

We’ll call the first set of tools “orchestration tools” because they allow you to coordinate
the configuration and deployment of your application onto multiple Docker daemons in a
more or less synchronous fashion. You tell them what to do, then they do it at scale while
you wait, much like the deployment model of Capistrano, for example. These tools
generally provide the simplest way to get into production with Docker.

In this category are tools like:

= New Relic’s Centurion
m Spotify’s Helios
m Ansible’s Docker tooling

This class of tools in many cases requires the least infrastructure or modification to your
existing system. Setup time is pretty minimal and the standardized nature of the Docker
interface means that a lot of functionality is already packed into the tooling. You can get
important processes like zero-down-time deployment right out of the box.

The first two concentrate on orchestration of the application and Docker alone, while
Ansible is also a system-configuration management platform and so can also configure
and manage your servers if you wish. Centurion and Ansible require no external resources
other than a docker-registry. Helios requires an Apache Zookeeper cluster.

https://github.com/newrelic/centurion
https://github.com/spotify/helios
https://www.ansible.com/docker
http://zookeeper.apache.org

Distributed Schedulers

The second set of tools looks at Docker as a way to turn your network into a single
computer by using a distributed scheduler. The idea here is that you define some policies
about how you want your application to run and you let the system figure out where to run
it and how many instances of it to run. If something goes wrong on a server or with the
application, you let the scheduler start it up again on resources that are healthy. This fits
more into Solomon’s original vision for Docker: a way to run your application anywhere
without worrying about how it gets there. Generally, zero downtime deployment in this
model is done in the blue-green style where you launch the new generation of an
application alongside the old generation, and then slowly filter new work to the new
generation.

Probably the first publicly available tool in this arena is Fleet from CoreOS, which works
with systemd on the hosts to act as a distributed init system. It is by far the easiest to use
on CoreQOS, CentOS/RHEL 7, or any version of Linux with systemd. It requires etcd for
coordination, and also needs SSH access to all of your Docker servers.

The tool in this category with the most press right now is Google’s Kubernetes. It makes
fewer assumptions about your OS distribution than Fleet and therefore runs on more OS
and provider options. It does, however, require that your hosts be set up in a very specific
way and has a whole network layer of its own. If your data center happens to have its
networks laid out like Google’s, you can skip the network overlay. If not, you must run
Flannel, an IP-over-UDP layer that sits on top of your real network. Like Fleet, it requires
etcd. It supports a number of backends, everything from the Docker daemon, to Google
Compute Engine, Rackspace, and Azure. It’s a powerful system with a good API and
growing community support.

Apache Mesos, which was originally written at the University of California, Berkeley, and
most publicly adopted by Twitter and Airbnb, is the most mature option. At DockerCon
EU in December 2014, Solomon described Mesos as the gold standard for clustered
containers. Mesos is a framework abstraction that lets you run multiple frameworks on the
same cluster of hosts. You can, for example, run Docker applications and Hadoop jobs on
the same compute cluster. Mesos uses Zookeeper and has been around for much longer
than most of the other options because it actually predates Docker. First-class support for
Docker appeared in recent versions of Mesos. Some of the popular Mesos frameworks like
Marathon and Aurora have good support for Docker. It’s arguably the most powerful
Docker platform right now, but requires more decisions to implement than Kubernetes.
Work is in progress to allow Kubernetes to run as a Mesos framework as well.

A deep dive into Mesos is out of the scope of this book. But when you are ready for
serious at-scale deployment, this is where you should look. It’s an impressive and very
mature technology that has been used at scale by a number of high-profile organizations.
Mesosphere’s Marathon framework and the Apache Aurora project are two frameworks
actively engaging with the Docker community.

http://bit.ly/1Gph4FZ
https://github.com/coreos/fleet
https://github.com/coreos/etcd
http://kubernetes.io
http://mesos.apache.org
http://bit.ly/1PC5Lel

In December 2014, Docker, Inc., announced the beta release of a Docker native clustering
tool called Swarm, which presents a large collection of Docker hosts as a single resource
pool. It’s a lightweight clustering tool with a narrower scope than Kubernetes or Mesos. It
can, in fact, work on top of other tools as needed. But it’s reasonably powerful: a single
Docker Swarm container can be used to create and coordinate the deployments of
containers across a large Docker cluster. We will take a deeper dive into this tool in
“Docker Swarm”.

TIP

If you are interested in diving deeper into orchestration and distributed schedulers for Docker, consider
reading the Docker Cookbook by Sébastien Goasguen.

https://github.com/docker/swarm/
http://shop.oreilly.com/product/0636920036791.do

Deployment Wrap-Up

Many people will start by using simple Docker orchestration tools. However, as the
number of containers and frequency with which you deploy containers grow, the appeal of
distributed schedulers will quickly become apparent. Tools like Mesos allow you to
abstract individual servers and whole data centers into large pools of resources in which to
run container-based tasks.

There are undoubtedly many other worthy projects out there in the deployment space. But
these are the most commonly cited and have the most publicly available information at the
time of this writing. It’s a fast-evolving space, so it’s worth taking a look around to see
what new tools are being shipped.

In any case, you should start by getting a Docker infrastructure up and running and then
look at outside tooling. Docker’s built-in tooling might be enough for you. We suggest
using the lightest weight tool for the job, but having flexibility is a great place to be, and
Docker is increasingly supported by more and more powerful tooling.

Testing Containers

One of the key promises of Docker is the ability to test your application and all of its
dependencies in exactly the operating environment it would have in production. It can’t
guarantee that you have properly tested external dependencies like databases, nor does it
provide any magical test framework, but it can make sure that your libraries and other
code dependencies are all tested together. Changing underlying dependencies is a critical
place where things go wrong, even for organizations with strong testing discipline. With
Docker, you can build your image, run it in on your development box, and then test the
exact same image with the same application version and dependencies before shipping it
to production servers.

Testing your Dockerized application is not really much more complicated than testing
your application itself, but you need to make sure that your test environment has a Docker
server you can run things on and that your application will allow you to use environment
variables or command-line arguments to switch on the correct testing behavior. Here’s one
example of how you might do this.

Quick Overview

Let’s draw up an example production environment for a fictional company. We’ll try to
describe something that is similar to the environment at a lot of companies, with Docker
thrown into the mix for illustration purposes.

Our fictional company’s environment has a pool of production servers that run Docker
daemons, and an assortment of applications deployed there. There is a build server and
test worker boxes that are tied to the test server. We’ll ignore deployment for now and talk
about it once we have our fictional application tested and ready to ship.

Figure 7-1 shows what a common workflow looks like for testing Dockerized
applications, including the following steps:

1. A build is triggered by some outside means.

2. The build server kicks off a Docker build.

3. The image is created on the local docker.

4. The image is tagged with a build number or commit hash.

5. A container is configured to run the test suite based on the newly built image.

6. The test suite is run against the container and the result is captured by the build
Server.

7. The build is marked as passing or failing.
8. Passed builds are shipped to an image store (registry, etc.).

You’ll notice that this isn’t too different from common patterns for testing applications. At
a minimum you need to have a job that can kick off a test suite. The steps we’re adding
here are just to create a Docker image first and invoke the test suite inside the container
rather than on the raw system itself.

0

[Build Triggered

I ,

i Local Image Container
[LOE?(L;EZQE Tagged with Configured to
Commit Hash Run Test Site

Contamer Run Test Results
in the Foreground Verified |

Pass Fail

v v

Ship Image to _ _
[Docker Registry] [Notify of Failure]

Figure 7-1. Docker testing workflow chart

Let’s look at how this works for the application we’re deploying at our fictional company.
We just updated our application and pushed the latest code to our git repository. We have a
post-commit hook that triggers a build on each commit, so that job is kicked off on the
build server. The job on the test server is set up to talk to a docker on a particular test
worker server. Our test server doesn’t have docker running, but it has the docker
command-line tool installed. So we run our docker build against that remote Docker
server and it runs our Dockerfile, generating a new image on the remote Docker server.
We could run docker on the test server itself if we had a smaller environment.

NOTE

You should build your container image exactly as you’ll ship it to production. If you need to make
concessions for testing, they should be externally provided switches, either via environment variables or
through command-line arguments. The whole idea is to test the exact build that you’ll ship, so this is a
critical point.

Once the image has been built, our test job will create and run a new container based on
our new production image. Our image is configured to run the application in production,
but we need to run a different command for testing. That’s OK! Docker lets us do that
simply by providing the command at the end of the docker run command. In production,
we’d start supervisor and it would start up an nginx instance and some Ruby unicorn
web server instances behind that. But for testing, we don’t need that nginx and we don’t
need to run our web application. Instead, our build job invokes the container like this:

$ docker run -e ENVIRONMENT=testing -e API_KEY=12345 \
-1 -t awesome_app:versionl /opt/awesome_app/test.sh

We called docker run, but we did a couple of extra things here, too. We passed a couple
of environment variables into the container: ENVIRONMENT and API_KEY. These can either
be new or overrides for the ones Docker already exports for us. We also asked for a
particular tag; in this case, versioni. That will make sure we build on top of the correct
image even if another build is running simultaneously. Then we override the command
that our container was configured to start in the Dockerfile’s CMD line. Instead, we call
our test script, /opt/awesome_app/test.sh.

NOTE

Always pass the exact Docker tag for your image into the test job. If you always use latest, then you won’t
be able to guarantee that another job has not moved that tag just after your build was kicked off. If you use
the exact tag, you can be sure you’re testing the right version of the application.

A critical point to make here is that docker run will not exit with the exit status of the
command that was invoked in the container. That means we can’t just look at the exit
status to see if our tests were successful. One way to handle this is to capture all of the
output of the test run into a file and then look at the last line of the file to see if it resulted
in success. Our fictional build system does just that. We write out the output from the test
suite and our test.sh echoes either “Result: SUCCESS!” or “Result: FAILURE!” on the

last line to signify if our tests passed.

NOTE

Be sure to look for some output string that won’t appear by happenstance in your normal test suite output. If
we need to look for “success,” for example, we had best limit it to looking at the last line of the file, and
maybe also anchored to the beginning of the line.

In this case, we look at just the last line of the file and find our success string, so we mark
the build as passed. There is one more Docker-specific step. We want to take our passed
build and push that image to our registry. The registry is the interchange point between
builds and deployments. It also allows us to share the image with other builds that might
be stacked on top of it. But for now, let’s just think of it as the place where we put and tag
successful builds. Our build script will now do a docker tag to give the image the right

build tag(s), including latest, and then a docker push to push the build to the registry.

That’s it! As you can see, there is not much to this compared with testing a normal
application. We take advantage of the client/server model of Docker to invoke the test on a
different server from the test master server, and we have to wrap up our test output in a
shell script to generate our output status. But other than that, it’s a lot like a common build
system anywhere.

But, critically, our fictional company’s system makes sure they only ship applications
whose test suite has passed on the same Linux distribution, with the same libraries and the
same exact build settings. That doesn’t guarantee success, but it gets them a lot closer to
that guarantee than the dependency roulette often experienced by production deployment
systems.

NOTE

If you use Jenkins for continuous integration or are looking for a good way to test scaling Docker, there are
many plug-ins for Docker, Mesos, and Kubernetes that are worth investigating.

http://bit.ly/1gZvZW1

Outside Dependencies

But what about those external dependencies we glossed over? Things like the database, or
Memcache or Redis instances that we need to run our tests against our container? If our
fictional company’s application needs a database to run, or a Memcache or Redis instance,
we need to solve that external dependency to have a clean test environment. It would be
nice to use the container model to support that dependency. With some work, you can do
this with tools like Docker Compose. Our build job could express some dependencies
between containers, and then Compose will use Docker’s link mechanism to connect them
together. Linking is a mechanism where Docker exposes environment variables into a
container to let you connect containers when you have more than one deployed to the
same host. It can also add information to the /etc/hosts file inside the container, enabling
visibility between them.

Because Docker’s link mechanism is limited to working on a single host, Compose is best
for things like development and testing rather than production. But it has an expressive
config syntax that’s easy to understand and is great for this kind of testing. If you are
interested in linking, Compose is your best option.

Even though containers are normally designed to be disposable, you may still find that
standard testing is not always sufficient to avoid all problems and that you will want some
tools for debuging running containers. In the next chapter, we will discuss some of the
techniques that you can use to get information from your containers that will help
diagnose problems that might crop up in production.

https://github.com/docker/compose

Chapter 8. Debugging Containers

Once you’ve shipped an application to production, there will come a day when it’s not
working as expected. It’s always nice to know ahead of time what to expect when that day
comes. Debugging a containerized application is not all that different from debugging a
normal process on a system.

First, we’ll cover one of the easiest ways to see what’s going on inside your containers. By
using the docker top command, you can see the process list as your container
understands it. It is also critical to understand that your application is not running in a
separate system from the other Docker processes. They share a kernel, likely a filesystem,
and depending on your container configuration, they may share network interfaces. That
means you can get a lot of information about what your container is doing.

If you’re used to debugging applications in a virtual machine environment, you might
think you would need to enter the container to inspect in detail an application’s memory or
CPU use, or debug system calls. Not so! Despite feeling in many ways like a virtualization
layer, processes in containers are just processes on the Docker host itself. If you want to
see a process list across all of the Docker containers on a machine, you can just run ps
with your favorite command-line options right on the server, for example. Let’s look at
some things you can do when debugging a containerized application.

Process OQutput

Docker has a built-in command for showing what’s running inside a container: docker
top <containerID>. This is nice because it works even from remote hosts as it’s exposed
over the Docker Remote API. This isn’t the only way to see what’s going on inside a
container, but it’s the easiest to use. Let’s take a look at how that works here:

$ docker ps

CONTAINER ID IMAGE COMMAND ... NAMES

106eadod55af test:latest /bin/bash ... clever_hypatia

$ docker top 106ead@d55af

UID PID PPID C STIME TTY TIME CMD

root 4548 1033 0 13:29 2 00:00:00 /bin/sh -c nginx

root 4592 4548 0 13:29 2 00:00:00 nginx: master process nginx
www-data 4593 4592 0 13:29 2 00:00:00 nginx: worker process
www-data 4594 4592 0 13:29 2 00:00:00 nginx: worker process
www-data 4595 4592 0 13:29 2 00:00:00 nginx: worker process
www-data 4596 4592 0 13:29 2 00:00:00 nginx: worker process

We need to know the ID of our container, which we get from docker ps. We then pass
that to docker top and get a nice listing of what’s running in our container, ordered by
PID just as we’d expect from Linux ps output.

Some oddities exist here, though. The primary one of these is namespacing of user IDs
and filesystems.

For example, a user might exist in a container’s /etc/passwd that does not exist on the host
machine. In the case where that user is running a process in a container, the ps output on
the host machine will show a numeric ID rather than a user name. In some cases, two
containers might have users squatting on the same numeric ID, or mapping to an ID that is
a completely different user on the host system.

For example, if you had a production Docker server using CentOS 7 and ran the following
commands, you would see that UID 7 is named halt:

$ id 7
uid=7(halt) gid=0(root) groups=0(root)

NOTE

Don’t read too much into the UID number we are using here. It was chosen simply because it is used by
default on both platforms but represents a different username.

If we then enter the standard Ubuntu container on that Docker host, you will see that UID
7 is set to 1p in /etc/passwd. By running the following commands, you can see that the

container has a completely different perspective of who UID 7 is:

$ docker run -ti ubuntu:latest /bin/bash
root@f86f8e528h92:/# grep x:7: /etc/passwd
lp:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin
root@f86f8e528h92:/# id 1p

uid=7(1lp) gid=7(1lp) groups=7(1lp)
root@409c2a8216bl:/# exit

If we then run ps au on the Docker host while that container is running as UID 7 (-u 7),
we would see that the Docker host would show the container process as being run by halt
instead of 1p:

$ docker run -d -u 7 ubuntu:latest sleep 1000

5525..06c6

$ ps ua | grep sleep
1185 halt sleep 1000
1192 root grep sleep

This could be particulary confusing if a well-known user like nagios or postgres were
configured on the host system but not in the container, yet the container ran its process
with the same ID. This namespacing can make the ps output look quite strange. It might,
for example, look like the nagios user on your Docker host is running the postgresql
daemon that was launched inside a container, if you don’t pay close attention.

TIP

One solution to this is to dedicate a nonzero UID to your containers. On your Docker hosts, you can create
a container user as UID 5000 and then create the same user in your base container images. If you then run

all your containers as UID 5000 (-u 5000), you will not only improve the security of your system by not
running container processes as UID 0, but you will also make the ps output on the Docker host easier to
decipher by displaying the container user for all of your running container processes.

Likewise, because the process has a different view of the filesystem, paths that are shown
in the ps output are relative to the container and not the host. In these cases, knowing it is

in a container is a big win.

So that’s how you use the Docker tooling to look at what’s running in a container. But
that’s not the only way, and in a debugging situation, it might not be the best way. If you
hop onto a Docker server and run a normal Linux ps to look at what’s running, you get a
full list of everything containerized and not containerized just as if they were all
equivalent processes. There are some ways to look at the process output to make things a
lot clearer. Debugging can be facilitated by looking at the Linux ps output in tree form so
that you can see all of the processes descended from Docker. Here’s what that can look
like using the BSD command-line flags. We’ll chop the output to just the part we care
about:

$ ps axlfww
. /usr/bin/docker -d
_ docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 6379..
_ redis-server *:6379
_ docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 27017..
_ mongod

NOTE

Many of the ps commands in the preceding example work only on true Linux distributions. Boot2Docker is
based on busybox, which provides a stripped-down ps command.

Here you can see that we’re running one Docker daemon and two instances of the docker -

proxy, which we will discuss in more detail in “Network Inspection”. Everything else
under those processes represents Docker containers. In this example, we have two
containers. They show up as top-level processes under docker. In this case, we are
running one Redis server in a container, and one MongoDB server in another container.
Each container has a related docker -proxy process that is used to map the required

network ports between the container and the host Docker server. It’s pretty clear how they
are related to each other, and we know they’re running in a container because they are in
docker’s process tree. If you’re a bigger fan of Unix SysV command-line flags, you can
get a similar, but not as nice looking, tree output with ps -ejH:

$ ps -ejH

40643.. docker

43689.. docker

43697... docker

43702... start

43716.. java

46970.. docker

46976... supervisord
46990... supervisor_remo
46991... supervisor_stdo
46992.. nginx

47030.. nginx

47031.. nginx

47032.. nginx

47033.. nginx

46993... ruby

47041.. ruby

47044.. ruby

You can get a more concise view of the docker process tree by using the pstree
command. Here, we’ll use pidof to scope it to the tree belonging to docker:

$ pstree “pidof docker"

docker——2*[docker 6* [{docker}]]
Fmongod—10*[{mongod}]
[—redis-server—2*[{redis-server}]
L18*[{docker}]

This doesn’t show us PIDs and therefore is only useful for getting a sense of how things
hang together in our containers. But this is pretty nice output when there are a lot of
containers running on a host. It’s far more concise and provides a nice high-level map of
how things connect. Here we can see the same containers that were shown in the ps output

above, but the tree is collapsed so we get multipliers like 10* when there are 10 duplicate
processes.

We can actually get a full tree with PIDs if we run pstree, as shown here:

$ pstree -p “pidof docker’
docker (4086)——docker (6529)——{docker} (6530)

——{décker}(esss)

—mongod(6675)——{mongod} (6737)

—{mongod} (6756)
—redis-server(6537)——{redis-server}(6576)
L{redis-server}(6577)

—{docker}(4089)

‘—{(.jtl)cker}(6738)

This output provides us with a very good look at all the processes attached to Docker and
what they are running. It is, however, difficult to see the docker -proxy in this output,
since it is really just another forked docker process.

Process Inspection

If you’re logged in to the Docker server, you can inspect running processes in many of the
same ways that you would on the host. Common debugging tools like strace work as

expected. In the following code, we’ll inspect a unicor process running inside a Ruby
webapp container:
$ strace -p 31292

Process 31292 attached - interrupt to quit
select(11, [10], NULL, [7 8], {30, 103848}) = 1 (in [10], left {29, 176592})

fcntl(10, F_GETFL) = Ox802 (flags O_RDWR|O_NONBLOCK)
accept4(10, Ox7fff25c17b4@, [128], SOCK_CLOEXEC) = -1 EAGAIN (...)
getppid() 17

select(11, [10], NULL, [7 8], {45, 0})
fcntl(10, F_GETFL)
accept4(10, Ox7fff25c17b40, [128], SOCK_

getppid()

1 (in [10], left {44, 762499})
0x802 (flags O_RDWR|O_NONBLOCK)
LOEXEC) = -1 EAGAIN (...)

17

o n i n

You can see that we get the same output that we would from noncontainerized processes
on the host. Likewise, an 1sof shows us that the files and sockets that a process has open

work as expected:

$ lsof -p 31292
COMMAND... NAME

ruby ... /data/app

ruby 4

ruby ... /Jusr/local/rbenv/versions/2.1.1/bin/ruby

ruby ... /Jusr/.../is0_8859_1.s0 (stat: No such file or directory)
ruby ... Jusr/.../fiber.so (stat: No such file or directory)

ruby ... Jusr/.../cparse.so (stat: No such file or directory)

ruby ... /Jusr/.../libsasl2.s0.2.0.23 (path dev=253,0, inode=1443531)
ruby ... /1ib64/libnspr4.so (path dev=253,0, inode=655717)

ruby ... /1ib64/1libplc4.so (path dev=253,0, inode=655718)

ruby ... /1lib64/1ibplds4.so (path dev=253,0, inode=655719)

ruby ... /usr/l1lib64/libnssutil3.so (path dev=253,0, inode=1443529)
ruby ... /usr/1ib64/1ibnss3.so (path dev=253,0, inode=1444999)

ruby ... /usr/1lib64/1ibsmime3.so (path dev=253,0, inode=1445001)
ruby ... /usr/1ib64/1ibssl3.so (path dev=253,0, inode=1445002)

ruby ... /1lib64/1liblber-2.4.s0.2.5.6 (path dev=253,0, inode=655816)
ruby ... /1lib64/1libldap_r-2.4.s0.2.5.6 (path dev=253,0, inode=655820)

Note that the paths to the files are all relative to the container’s view of the backing

filesystem, which is not the same as the host view. Therefore, inspecting the version of the
file on the host will not match the one the container sees. In this case, it’s probably best to
enter the container to look at the files with the same view that the processes inside it have.

It’s possible to run the GNU debugger (gdb) and other process inspection tools in the same
manner as long as you’re root and have proper permissions to do so.

Controlling Processes

When you have a shell directly on the Docker server, you can treat containerized
processes just like any other process running on the system. If you’re remote, you might
send signals with docker kill because it’s expedient. But if you’re already logged in to a
Docker server for a debugging session or because the Docker daemon is not responding,
you can just kill away like you would normally. Note that unless you kill the top-level

process in the container, however, this will not terminate the container itself. That might
be desirable if you were killing a runaway process, but might leave the container in an
unexpected state if developers on remote systems expect that all the processes are running
if they can see their container in docker ps.

These are just normal processes in many respects, and can be passed the whole array of
Unix signals listed in the man page for the Linux kill command. Many Unix programs
will perform special actions when they receive certain predefined signals. For example,
nginx will reopen its logs when receiving a SIGUSR1 signal. Using the Linux kill
command, it is possible to send any Unix signal to a container process on the local Docker
server.

NOTE

We consider it to be a best practice to run some kind of process control in your production containers.
Whether it be systemd, upstart, runit, supervisor, or your own homegrown tools, this allows you to
treat containers atomically even when they contain more than one process. You want docker ps to reflect
the presence of the whole container and don’t want to worry if one of the processes inside it has died. If you
can assume that the presence of a container and absence of error logs means that things are working, it
allows you to treat docker ps output as the truth about what’s happening on your Docker systems. Because
containers ship as a single artifact, this tends to be how people think of them. But you should only run
things that are logically the same application in a single container.

Network Inspection

Unlike process inspection, debugging containerized applications at the network level can
be more complicated. Unless you are running Docker containers with the host networking
option, which we will discuss in “Networking”, your containers will have their own IP
addresses and therefore won’t show up in all netstat output. Running netstat -an on
the Docker server, for example, works as expected, as shown here:

$ sudo netstat -an
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 10.0.3.1:53 0.0.0.0:* LISTEN
tcp (¢} 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp6 (0] 0 :::23235 . LISTEN
tcp6 (0] 0 :::2375 H LISTEN
tcp6 (0] 0 :::4243 . LISTEN
tcp6 0 0 feB80::389a:46ff:fe92:53 :::* LISTEN
tcp6 (0] 0 :::22 . LISTEN
udp o] 0 10.0.3.1:53 0.0.0.0:*

udp 0 0 0.0.0.0:67 0.0.0.0:*

udp 0 0 0.0.0.0:68 0.0.0.0:*

udp6 0 0 feB80::389a:46ff:fe92:53 :::*

Here we can see all of the interfaces that we’re listening on. Our container is bound to port
23235 on IP address 0.0.0.0. That shows up. But what happens when we ask netstat to
show us the process name that’s bound to the port?

$ netstat -anp
Active Internet connections (servers and established)

Proto.. Local Address Foreign Address State PID/Program name
tcp ... 10.0.3.1:53 0.0.0.0:% LISTEN 23861/dnsmasq
tcp ... 0.0.0.0:22 0.0.0.0:% LISTEN 902/sshd

tcp6 ... :::23235 S LISTEN 24053/docker-proxy
tcp6 ... :::2375 i LISTEN 954/docker
tcp6 ... :::4243 N LISTEN 954/docker
tcp6 ... feB80::389a:46ff:fe92:53 :::* LISTEN 23861/dnsmasq
tcp6 ... :::22 N LISTEN 902/sshd

udp ... 10.0.3.1:53 0.0.0.0:% 23861/dnsmasq
udp ... 0.0.0.0:67 0.0.0.0:% 23861/dnsmasq
udp ... 0.0.0.0:68 0.0.0.0:% 880/dhclient3
udp6 ... feB80::389a:46ff:fe92:53 :::* 23861/dnsmasq

We see the same output, but notice what is bound to the port: docker -proxy. That’s

because Docker actually has a proxy written in Go that sits between all of the containers
and the outside world. That means that when we look at output, we see only docker -

proxy and that masks which container this is bound to. Luckily, docker ps shows us

which containers are bound to which ports, so this isn’t a big deal. But it’s not necessarily
expected, and you probably want to be aware of it before you’re debugging a production
failure.

If you’re using host networking in your container, then this layer is skipped. There is no
docker -proxy, and the process in the container can bind to the port directly.

Other network inspection commands work as expected, including tcpdump, but it’s
important to remember that docker -proxy is there, in between the host’s network interface
and the container.

Image History

When you’re building and deploying a single container, it’s easy to keep track of where it
came from and what images it’s sitting on top of. But this rapidly becomes unmanageable
when you’re shipping many containers with images that are built and maintained by
different teams. How can you tell what images are actually underneath the one your
container is running on? docker history does just that. You can see the image IDs that

are layered into the image and the sizes and commands that were used to build them:

$ docker history centurion-test:latest

IMAGE CREATED CREATED BY SIZE
ec64a324e9cc 7 months ago /bin/sh -c #(nop) CMD [/bin/sh -c ngi 0 B
f38017917dal 7 months ago /bin/sh -c #(nop) EXPOSE map[80/tcp:{ 0 B
dfedssde81la 7 months ago /bin/sh -c #(nop) ADD dir:617ceac®bel 20.52 kB
booaf4e7a358 11 months ago /bin/sh -c #(nop) ADD file:76c644211a 518 B
2d4b732ca5cf 11 months ago /bin/sh -c #(nop) ADD file:7b7ef6cc04 239 B
b6f49406bcf® 11 months ago /bin/sh -c echo "HTML is working" > / 16 B
£384626619d9 11 months ago /bin/sh -c mkdir /srv/www 0B
5c29c073d362 11 months ago /bin/sh -c apt-get -y install nginx 16.7 MB
de8d285012c8 11 months ago /bin/sh -c apt-get -y install python- 42.54 MB
340b0525d160f 11 months ago /bin/sh -c apt-get update 74.51 MB
8e2b3cf3ca53 12 months ago /bin/bash 1.384 kB
24ba2ee5d982 13 months ago /bin/sh -c #(nop) ADD saucy.tar.xz in 144.6 MB
cc7385a89304 13 months ago /bin/sh -c #(nop) MAINTAINER Tianon G 0 B
511136ea3c5a 19 months ago 0B

This can be useful, for example, when determining that a container that is having a
problem was actually built on top of the right base image. Perhaps a bug fix was a applied
and the particular container in question didn’t get it because it was still based on the
previous base image. Unfortunately the ADD commands show a hash rather than the actual
files, but they do show whether it was a directory or a file that was added, which can help
you determine which statement in the Dockerfile is being referred to.

Inspecting a Container

In Chapter 4, we showed you how to read the docker inspect output to see how a

container is configured. But underneath that is a directory on the host’s disk that is
dedicated to the container. Usually this is in /var/lib/docker/containers. If you look at that
directory, it contains very long SHA hashes, as shown here:

$ 1s /var/lib/docker

106ead0d55af55bd803334090664e4bc821c76dadf231elaab7798d1baal9121
28970c706db0f69716af43527ed926achd82581elcef5e4e6ff152fcelb79972
3c41916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b
589f2ad301381b7704c9cade7da6b34046ef69ebe3d6929b9bc24785d7488287
959db1611d632dc27a86efch66f1c6268d948d6T22e81e2a22a57610b5070b4d
alel15f197ea0996d31f69c332f2b14e18b727e53735133a230d54657ac6aasdd
bad35aac3f503121abf0e543e697fcade78f0d30124778915764d85Tb10303a7
bc8c72c965ebca7db9a2b816188773a5864aa381b81c3073b9d3e52e977c55ba
daa75fb108a33793a3f8fcef7ba65589e124af66bc52c4a070f645Fffbbc498e
e2ac800b58c4c72e240b90068402b7d4734a7dd03402ee2bce3248cc6T44d676
e8085ebc102b5f51cl13cc5¢c257ach2274e7f8d1645af7baadOch6fe8eef36e24
f8e46Taa3303d93fc424e289d09b4ffbalfc7782b9878456e0fell1f1f6814e4b

That’s a bit daunting. But those are just the container IDs in long form. If you want to look
at the configuration for a particular container, you just need to use docker ps to find its
short ID, and then find the directory that matches:

$ docker ps
CONTAINER ID IMAGE COMMAND
106eadod55af kmatthias/centurion-test:latest "/bin/sh -c nginx"

You can look at the short ID from docker ps, then match it to the 1s /var/lib/docker
output to see that you want the directory beginning with 1066eadods5af. If you need exact
matching, you can do a docker inspect 106ead0@ds55af and grab the long ID from the

output. As we discussed in Chapter 5, this directory contains some files that are bind-
mounted directly into your container, like hosts:

$ cd /var/lib/docker/\
containers/106ead0d55af55bd803334090664e4bc821c76dadf231elaab7798d1baa19121

$ 1s -la

total 32

drwx------ 2 root root 4096 Jun 23 2014 .

drwx------ 14 root root 12288 Jan 9 11:33 ..

SrW------- 1 root root 0 Jun 23 2014 106ead@d55a..baal9121-json.log
-rw-r--r-- 1 root root 1642 Jan 23 14:36 config.json

-rw-r--r-- 1 root root 350 Jan 23 14:36 hostconfig.json

-frw-r--r-- 1 root root 8 Jan 23 14:36 hostname

-rw-r--r-- 1 root root 169 Jan 23 14:36 hosts

This directory is also where Docker stores the JSON file containing the log that is shown
with the docker logs command, the JSON configuration that backs the docker inspect

output (config.json), and the networking configuration for the container (hostconfig.json)
are located.

Even if we’re not able to enter the container, or if docker is not responding, we can look at
how the container was configured. It’s also pretty useful to understand what’s backing that

mechanism inside the container. Keep in mind that it’s not a good idea to modify these
files. Docker expects them to contain reality, and if you alter that reality, you’re asking for
trouble. But it’s another avenue for information on what’s happening in your container.

Filesystem Inspection

Docker, regardless of the backend actually in use, has a layered filesystem that allows it to
track the changes in any given container. This is how the images are actually assembled
when you do a build, but it is also useful when trying to figure out if a Docker container
has changed anything, and if so, what. As with most of the core tools, this is built into the
docker command-line tooling and is also exposed via the API. Let’s take a look at what
this shows us in Example 8-1. We’ll assume that we already have the ID of the container
we’re concerned with.

Example 8-1. docker diff

sudo docker diff 89b8e19707df
/var/log/redis
/var/log/redis/redis.log
/var/run
/var/run/cron.reboot
/var/run/crond.pid
/var/lib/logrotate.status
/var/lib/redis
/var/lib/redis/dump.rdb
/var/spool/cron
/var/spool/cron/root

>O>00>>0>O0®H

Each line begins with either A or C, which are just shorthand for added or changed. We
can see that this container is running redis, that the redis log is being written to, and that
someone or something has been changing the crontab for root. Logging to the local
filesystem is not a good idea, especially for anything with high-volume logs. Being able to
find out what is writing to your Docker filesystem can really help you understand where
things are filling up, or give you a preview of what would be added if you were to build an
image from it.

Further detailed inspection requires jumping into the container with docker exec or
nsenter and the like in order to see what is exactly in the filesystem. But docker diff
gives you a good place to start.

Moving Along

At this point, you can deploy and debug containers in your production environment, but
how do you start to scale this for large applications? In the next chapter, we will expore
some of the tools that are avaliable to help you scale Docker inside your data center and in
the cloud.

Chapter 9. Docker at Scale

One of Docker’s major strengths is its ability to abstract away the underlying hardware
and operating system so that your application is not constrained to any particular host or
environment. It facilitates not just horizontally scaling a stateless application within your
data center, but also across cloud providers without many of the traditional barriers to
similar efforts. True to the shipping container metaphor, a container on one cloud looks
like a container on another.

Many organizations will find cloud deployments of Docker very appealing because they
can gain any of the immediate benefits of a scalable container-based platform without
needing to completely build something in-house. But the barrier is low for creating your
own clusters, and we’ll cover some options for doing that shortly.

It is easy to install Docker on almost any Linux-based cloud instance. However, Docker
and almost every major public cloud provider is actively developing tooling for
intelligently deploying and managing Docker containers across a cluster. At the time of
this writing, many of these projects are usable, but still in the early stages.

If you have your own private cloud, you can leverage a tool like Docker Swarm to deploy
containers easily across a large pool of Docker hosts, or use the community tool Centurion
or Helios to quickly facilitate multi-host deployments. If you have already experimented
with Docker at scale and are looking to build something more like what the cloud
providers themselves offer, then you should consider Kubernetes or Mesos, which we
addressed in the last chapter.

The major public cloud providers have all made efforts to support containers natively on
their offering. Some of the biggest efforts to implement Docker containers on the public
cloud include:

m Amazon EC2 Container Service
m Google Container Engine

m Red Hat OpenShift 3

Even cloud providers running on non-Linux operating systems like SmartOS and
Windows are actively finding ways to support the Docker ecosystem:

m Joyent Triton
m Microsoft Azure

In this chapter, we’ll cover some options for running Docker at scale in your own data
center, first with a pass through Docker Swarm and Centurion, and then take a dive into

http://aws.amazon.com/ecs/
http://bit.ly/1R3wcvZ
https://www.openshift.com
http://bit.ly/1R3weUC
http://bit.ly/1R3winh

the Amazon EC2 Container Service (Amazon ECS). All of these examples will hopefully
give you a view of how Docker can be succesfully leveraged to provide an incredibly
flexible platform for your application workloads.

Docker Swarm

In early 2015, Docker revamped its six-month-old 1ibswarm project and released the first
beta of the new Swarm tool to the public. The idea behind Swarm is to present a single
interface to the docker client tool but have that interface be backed by a whole cluster

rather than a single Docker daemon. Swarm doesn’t concern itself with application
configuration or repeatable deployments; it is aimed at clustering computing resources for
wrangling by the Docker tools. As such, it is a building block of a more complex solution.

Swarm is implemented as a single Docker container that acts as both the central
management hub for your Docker cluster and also as the agent that runs on each Docker
host. By deploying it to all of your hosts, you merge them into a single, cohesive cluster
than can be controlled with the Swarm and Docker tooling.

NOTE

It is actually possible to compile Swarm as a standalone binary that can be run directly on a host if you
prefer not to use the containerized version. But, as with any containerized application, the container is
simpler to deploy. Here we’ll cover the containerized deployment.

Let’s get a Swarm cluster up and running. As with any Docker deployment, the very first
thing we should do is download the Swarm container onto our Docker host by running a
docker pull, as shown here:

$ docker pull swarm

511136ea3c5a: Pull complete

aell5241d78a: Pull complete

£49087514537: Pull complete

fff73787bdof: Pull complete

97c8f6e912d7: Pull complete

33f9d1e808cf: Pull complete

62860d7acc87: Pull complete

bf8b6923851d: Pull complete

swarm:latest: The image you are pulling has been verified. Important:
image verification is a tech preview feature and should not be
relied on to provide security.

Status: Downloaded newer image for swarm:latest

We now need to create our Docker cluster by running the Swarm container on our
preferred Docker host.

$ docker run --rm swarm create
e480f01dd24432adc551e72faa37bddd

This command returns a hash that represents a unique identifier for your newly created
Docker cluster, and is typically referred to as the cluster ID.

NOTE

Docker Swarm needs to keep track of information about the cluster it will manage. When invoked, it needs
to discover the hosts and their containers. The default method uses a token and a simple discovery API
located on Docker Hub at discovery.hub.docker.com. But it also supports other discovery methods,
including etcd and Consul.

https://github.com/coreos/etcd
https://www.consul.io

To register a Docker host with our cluster, we need to run the Swarm container with the
join argument. In the following command, we need to be sure and provide the address

and port for our Docker host, and the token that we received when we first created the
cluster:
$ docker run -d swarm join --addr=172.17.42.10:2375 \

token://e480f01dd24432adc551e72faa37bddd
6c0e36c1479b360ac63ec23827560bafcc44695a8cdd82aec8c44af2f2fe6910

The swarm join command launches the Swarm agent on our Docker host and then returns
the full hash to the agent container. If we now run docker ps against our Docker host we
will see the Swarm agent running, and that its short hash matches the first 12 characters of
the full hash that we received from the previous command:

$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
6c0e36c1479b swarm:latest "/swarm join --addr= ... 2375/tcp mad_lalande

NOTE

At this point, we have a single host cluster. Under normal circumstances, we would want to add additional
Docker hosts to the cluster, and you can do this very easily by starting a second Docker host using your
preferred tool of choice, like docker-machine, vagrant, etc.

We now want to deploy the Swarm manager to any one of the Docker hosts in our cluster:

$ docker run -d -p 9999:2375 swarm manage \
token://87711cac095fe3440f74161d16b4bd9o4
4829886f68bh6ad9bb5021fde3a32f355fad23b91bc45bf145b3f0f2d70f3002b

NOTE

You can expose the Swarm manager on any port. In this case, we are using 9999, since 2375 and/or 2376
are already in use on the Docker host by the Docker server.

If we rerun docker ps, we will now see both Swarm containers running on our Docker
host:

$ docker ps.. IMAGE COMMAND ... PORTS
. swarm:latest "/swarm manage token ... 0.0.0.0:9999->2375/tcp
. swarm:latest "/swarm join --addr= ... 2375/tcp

We can list all of the nodes in our cluster by running;:

$ docker run --rm swarm list token://87711cac095fe3440f74161d16b4bd94
172.17.42.10:2375

The diagram in Figure 9-1 gives a good overview of the components that make up the
Docker Swarm cluster.

Docker Server Docker Server
w/Swarm Join Container w/Swarm Join Container

Docker Server : Docker Server
w/Swarm Join Container w/Swarm Manager Container
w/Swarm Join Container

By 3

Docker Client
Pointing to Swarm Manager

discovery.hub.docker.com
or Other Supported
Service Discovery Method

Figure 9-1. Swarm Manager controlling Docker cluster

At this point we can start using docker to interact with our Docker cluster, instead of with
an individual host. Since we don’t have TLS enabled for Swarm, we need to ensure that
the Docker command doesn’t try to use TLS when connecting to the Swarm port. We can
do this by running the following commands:

TIP

Before clearing the following variables, you might want to jot down their current values so you can reset
them when you are done experimenting with Swarm.

echo $DOCKER_HOST; unset DOCKER_HOST

echo $DOCKER_TLS_VERIFY; unset DOCKER_TLS_VERIFY
echo $DOCKER_TLS; unset DOCKER_TLS

echo $DOCKER_CERT_PATH; unset DOCKER_CERT_PATH

R R e

By setting the DOCKER_HOST environment variable to the IP address and port that our

Swarm manager is running on, we can now run normal Docker commands against our
Swarm-based Docker cluster, as shown here:

$ export DOCKER_HOST="tcp://172.17.42.10:9999"((("docker", "info")))
$ docker info
Containers: 37
Nodes: 1
core-01: 172.17.42.10:2375
L Containers: 37
L Reserved CPUs: 20 / 2
L Reserved Memory: 1.367 GiB / 997.9 MiB

The above output from docker info shows some basic details about all of the nodes in
our cluster.

When we are in clustering mode, we can’t use some Docker commands, like docker
pull, but we can still run a new container within our cluster and the agent will take the
required steps, including pulling the image down from the registry.

We can test this by running an nginx container in our new cluster using the following
command:

$ docker run -d nginx
5519a2a379668ceab685a1d73d7692dd0a81lad92a7ef61f0cd54d2c4c95d3f6e

Running docker ps again will now show that we have a container running within the
context of the cluster.

$ docker ps
CONTAINER ID IMAGE COMMAND ... NAMES
5519a2a37966 nginx:1 '"nginx -g 'daemon of ... core-01/berserk_hodgkin

An interesting thing to note is that the container name (berserk_hodgkin) is now prefixed
by the name of the node (core-01) that it is running on. If we look back at the output from
docker info, we will see the node name listed there, like this:

core-01: 172.17.42.10:2375

If we now run docker ps -a, we will see an interesting behavior. In addition to containers
that are not running, we will also see containers that are running outside the scope of the
cluster (like the swarm containers, themselves) and therefore are “unknown” to the cluster,
although still actually running on one of our hosts.

$ docker ps -a.. IMAGE COMMAND PORTS
nginx:1 "nginx -g 'daemon of 80/tcp, 443/tcp
swarm:latest "/swarm manage token 172.17.42.10:9999->2375/tcp
swarm:latest "/swarm join --addr= 2375/tcp

Although Swarm does not list its own images in standard docker ps output, it will happily let you docker
stop the Swarm management or agent containers, which will, in turn, break things. Don’t do that.

This covers the basics of using Docker Swarm and should help get you started building
your own Docker cluster for deployment.

NOTE

When you are done using Swarm, you will need to reset your DOCKER_HOST environment variable to point
directly at your Docker host. If your host is using TLS, then you will also need to set DOCKER_TLS_VERIFY,
DOCKER_TLS, and DOCKER_CERT_PATH back to their previous values.

http://nginx.org

Centurion

Centurion, which we discussed in Chapter 8, is one of many tools that enables repeatable
deployment of applications to a group of hosts. Unlike Swarm, which treats the cluster as
a single machine, you tell Centurion about each host you want it to know about. Its focus
is on guaranteeing repeatability of container creation and simplifying zero-down-time
deployment. It assumes that a load balancer sits in front of your application instances. It is
an easy first step in moving from traditional deployment to a Docker workflow.

NOTE

We could equally be covering Spotify’s Helios here, or Ansible’s Docker tooling, but we believe that
Centurion is the simplest of these tools to get up and running. You are encouraged to see if there are tools
that are a better fit for your deployment needs, but this section will hopefully give you a taste of what you
might achieve as a first step.

Let’s look at deploying a simple application with Centurion. Here we’ll deploy the public
nginx container as our web application. It won’t do much, but will serve up a welcome
page that we can see in a browser. You could easily switch in your custom application.
The only requirement is that it be deployed to a registry.

Before we can deploy, we have to satisfy the dependencies for the tool and get it installed.
Centurion depends on having the Docker command-line tool present and requires that you
have Ruby 1.9 or higher so you’ll want to make sure you have a system with these
installed. Centurion can run on Linux or Mac OS X. Windows support is untested.
Packages are available via yum or apt-get on all popular Linux distributions. Generally,

any distribution with a kernel new enough to run Docker will ship with packages that meet
this requirement. On recent Mac OS X versions, you will already have the right version of
Ruby. If you are on an older release, you can install a recent Ruby with Homebrew. Most
Linux distributions that are capable of running Docker also ship with a modern enough
Ruby to run Centurion. You can check if you have Ruby installed and if you have a
version new enough like this:

$ ruby -v
ruby 2.2.1p85 (2015-02-26 revision 49769) [x86_64-darwinl12.0]

Here, we have Ruby 2.2.1, which is plenty new enough. Once you have Ruby running,
install Centurion with the Ruby package manager:

$ gem install centurion

Fetching: logger-colors-1.0.0.gem (100%)
Successfully installed logger-colors-1.0.0
Fetching: centurion-1.5.1.gem (100%)

Successfully installed centurion-1.5.1

Parsing documentation for logger-colors-1.0.0
Installing ri documentation for logger-colors-1.0.0
Parsing documentation for centurion-1.5.1
Installing ri documentation for centurion-1.5.1
Done installing documentation for logger-colors, centurion after © seconds
2 gems installed

https://github.com/newrelic/centurion

You can now invoke centurion from the command line to make sure it’s available:

$ centurion --help

Options:
-p, --project=<s> project (blog, forums..)
-e, --environment=<s> environment (production, staging..)
-a, --action=<s> action (deploy, list..) (default: 1list)
-i, --image=<s> image (yourco/project..)
-t, --tag=<s> tag (latest..)
-h, --hosts=<s> hosts, comma separated
-d, --docker-path=<s> path to docker executable (default: docker)
-n, --no-pull Skip the pull _image step
--registry-user=<s> user for registry auth
--registry-password=<s> password for registry auth
-0, --override-env=<s> override environment variables, comma separated
-1, --help Show this message

There are a lot of options there, but right now we’re just making sure that it’s installed and
working. If Centurion is not yet available and you get an error, we can add it to our path:

$ gempath="gem environment | grep "INSTALLATION DIRECTORY" | awk '{print $4}'"
$ export PATH=$gempath/bin:$PATH

You should now be able to invoke centurion --help and see the output of the help.

To begin with, we’ll just make a directory in which we’ll store the Centurion
configuration. If this were your own application, this might be the application’s directory,
or it might be a directory in which you store all the deployment configs for all of your
applications. We encourage that pattern for larger installations. Since we’re just going to
deploy the public nginx container, let’s create a directory to house our configs. Then we’ll

change into it and tell Centurion to scaffold a basic config for us with the centurionize
tool:

$ mkdir nginx

$ cd nginx

$ centurionize -p nginx

Creating /Users/someuser/apps/nginx/config/centurion

Writing example config to /Users/someuser/apps/nginx/config/centurion/nginx.rake
Writing new Gemfile to /Users/someuser/apps/nginx/Gemfile

Adding Centurion to the Gemfile

Remember to run “bundle install’ before running Centurion

Done!

We can ignore the Gemfile stuff for now and just open the config it generated for us. You

might take a look at it to see what it put in place in order to get an idea of what Centurion
can do. The scaffolded config contains examples of how to use many of the features of
Centurion. We’ll just edit it down to the basics we care about:

namespace :environment do
desc 'Staging environment'
task :staging do
set_current_environment(:staging)
set :image, 'nginx'

env_vars MY_ENV_VAR: 'something important'

host_port 10234, container_port: 80

host 'docker1'
host 'docker2'
end
end

Centurion supports multiple environments in the same config. Here we’re just going to
deploy to staging. We could add as many as we like. The default file also uses a pattern
where common configurations between environments are put into a common section that
is called by each of the environments. For demonstration purposes, we cut this config
down to a bare minimum.

What we now have is a config that will let us deploy the nginx image from the public
registry to two hosts, docker1l and docker2, while setting the environment variable
MY_ENV_VAR to some text and mapping port 80 inside the container to the public port
10234. It supports any number of environment variables, hosts, ports, or volume mounts.
The idea is to store a repeatable configuration for your application that can be stamped out
onto as many Docker hosts as needed.

Centurion supports a rolling deployment model out of the box for web applications. It will
cycle through a set of hosts, taking one container down at a time to keep the application up
during deployment. It uses a defined health check endpoint on a container to enable rolling
deployments. By default, this is “/” and that’s good enough for us with our simple
welcome page application. Nearly all of this is configurable, but we’ll keep it simple.

We’re ready, so let’s deploy this to staging. We’ll tell Centurion to use the nginx project,
the staging environment, and to do a web application zero-downtime deployment with
rolling_deploy. Centurion will initiate a docker pull on the hosts in parallel, then on

each host in turn it will create a new container, tear down the old one, and start up the new
one. We’ll cut down the very verbose output to get a clearer idea of the process:

$ centurion -p nginx -e staging -a rolling_deploy..

I, [2015.. #51882] INFO—: Fetching image nginx:latest IN PARALLEL
I, [2015.. #51882] INFO—: Using CLI to pull

I, [2015.. #51882] INFO—: Using CLI to pull

4f903438061c: Pulling fs
1265e16d0c28: Pulling fs

layer
layer
layer..

Ocbe7e43ed7f: Pulling fs
** Invoke deploy:verify_image (first_time)
Execute deploy:verify_image

* %

I, [2015.. #51882] INFO—: ----- Connecting to Docker on dockerl -----
I, [2015.. #51882] INFO—: Image 224873bd found on dockerl..

I, [2015.. #51882] INFO—: ----- Connecting to Docker on docker2 -----
I, [2015.. #51882] INFO—: Image 224873bd found on docker?2..

I, [2015.. #51882] INFO—: ----- Connecting to Docker on dockerl -----
I, [2015.. #51882] INFO—: Stopping container(s):

[{"Command"=>"nginx -g 'daemon off;'", "Created"=>1424891086,
"Id"=>"6b77a8dfc18bd6822eb2f9115e0accfd261e99e220f96a6833525e7d6b7ef723",
"Image"=>"2485b0f89951", "Names"=>["/nginx-63018cc0f9d268"],
"Ports"=>[{"PrivatePort"=>443, "Type"=>"tcp"}, {"IP"=>"172.16.168.179",
"PrivatePort"=>80, "PublicPort"=>10234, "Type"=>"tcp"}],

"Status"=>"Up 5 weeks"}]
I, [2015.. #51882] INFO-:
(/nginx-63018cc0f9d268)

Stopping old container 6b77a8df

I, [2015.. #51882] INFO—: Creating new container for 224873bd
I, [2015.. #51882] INFO—: Starting new container 8e84076e
I, [2015.. #51882] INFO—: Waiting for the port to come up

[2015.. #51882] INFO—: Found container up for 1 seconds

[2015.. #51882] WARN—: Failed to connect to http://docker1:10234/,
socket open.

[2015.. #51882] 1INFO—: Waiting 5 seconds to test the / endpoint..
[2015.. #51882] INFO—: Found container up for 6 seconds

, [2015.. #51882] INFO—: Container is up!

~

~

~

c HHHDS = H
o<

*
* =

Execute deploy:cleanup

[2015.. #51882] INFO—: ----- Connecting to Docker on dockerl -----
[2015.. #51882] 1INFO—: Public port 10234

[2015.. #51882] INFO—: Removing old container e64a2796 (/sad_kirch)
[2015.. #51882] INFO—: ----- Connecting to Docker on docker2 -----
[2015.. #51882] 1INFO—: Public port 10234

[2015.. #51882] 1INFO—: Removing old container dfc6a240 (/prickly_morse)

~

~

~

~

H o HHH -
<

~

What we see happening here is pulling the requested image, verifying that it pulled
properly, and then connecting to the hosts to stop the old container, create a new one, start
it, and health-check it until it’s up. At the very end, it cleans up the old containers so they
don’t hang around forever.

Now we have the container up and running on both docker1 and docker2. We can connect
with a web browser by hitting http://docker2:10234 or the same URI on dockerl. In
real production, you’ll want a load balancer configured to sit in front of these hosts and
point your clients to either of the instances. There is nothing dynamic to this setup, but it
gets your application deployed with all the basic benefits of Docker for a minimal
investment of time.

That’s all there is to it for a basic setup. Centurion supports a lot more than this, but you
can start to get the sense of the kinds of things some of the community tooling can
support.

This class of tooling is very easy to get started with and will get you to a production
infrastructure quickly. But growing your Docker deployment to a vast scale will likely
involve a distributed scheduler, or one of the cloud providers. In that vein, let’s look at
Amazon’s new service.

http://docker2:10234

Amazon EC2 Container Service

One of the most popular cloud providers is Amazon via their AWS offering. Support for
running containers natively has existed in Elastic Beanstalk since mid-2014. But that
service assigns only a single container to an Amazon instance, which means that it’s not
ideal for short-lived or lightweight containers. EC2 itself is a great platform for hosting
your own Docker environment, though, and because Docker is powerful, you don’t
necessarily need much on top of your instances to make this a productive environment to
work in. But Amazon has spent a lot of engineering time building a service that treats
containers as first-class citizens: the EC2 Container Service.

We’re going to cover the EC2 Container Service (ECS) to give you a taste of where the cloud providers are
going so that you can see what a productionized cloud service could look like. At the time of this writing,
the EC2 Container Service is in preview mode. Anyone can request access access to the service, but
Amazon is only slowly adding the service to accounts as it ramps everything up and ensures a stable
experience for its customers.

This section assumes that you have access to an AWS account and some familiarity with
the service. Amazon provides detailed documentation online that covers everything
required to bootstrap an EC2 container install, including signing up for AWS, creating a
user, creating a Virtual Private Cloud (VPC), etc.

The container service offering is an orchestration of several parts. You first define a
cluster, then put one or more EC2 instances running Docker and Amazon’s special agent
into the cluster, and then push containers into the cluster. The agent works with the ECS
service to coordinate your cluster and schedule containers to hosts.

http://amzn.to/1F9dHlG

IAM Role Setup

In AWS, Identity and Access Management (IAM) roles are used to control what actions a
user can take within your cloud environment. We need to make sure we can grant access
to the right actions before moving on with the EC2 Container Service.

To work with the EC2 Container Service, you need a role that consists of a policy with the
privileges:

{
"Version": "2012-10-17",

"Statement": [
{

"Effect": "Allow",

"Action": [
"ecs:CreateCluster",
"ecs:RegisterContainerInstance",
"ecs:DeregisterContainerInstance",
"ecs:DiscoverPollEndpoint",
"ecs:Submit*",
"ecs:Poll"

1,

"Resource": [

nxn

]
3
]
}

NOTE

In this example, we are only giving out the specific ecs privileges that we need for normal interaction with
the service. ecs:CreateCluster is optional if the cluster you will be registering the EC2 container agent

with already exists.

AWS CLI Setup

Amazon supplies comand-line tools that make it easy to work with their API-driven
infrastructure. You will need to install version 1.7 or higher of the AWS Command Line
Interface (CLI) tools. Amazon has detailed documentation that covers installation of their
tools, but the basic steps are as follows.

Installation

Mac OS X

In Chapter 3, we discussed installing Homebrew. If you previously did this, you can install
the AWS CLI using the following commands:

$ brew update
$ brew install awscli

Windows

Amazon provides a standard MSI installer for Windows, which can be downloaded from
Amazon S3 for your architecture:

m 32-Bit Windows
= 64-Bit Windows

Other

The Amazon CLI tools are written in Python. So on most platforms, you can install the
tools with the Python pip package manager by running the following from a shell:

$ pip install awscli

Some platforms won’t have pip installed by default. In that case, you can use the
easy_install package manager, like this:

$ easy_install awscli

Configuration

Quickly verify that your AWS CLI version is at least 1.7.0 with the following command:

$ aws --version
aws-cli/1.7.0 Python/2.7.6 Darwin/14.1.0

To quickly configure the AWS CLI tool, ensure that you have access to your AWS Access
Key ID and AWS Secret Access Key, and then run the following. You will be prompted
for your authentication information and some preferred defaults:

$ aws configure
AWS Access Key ID [None]: EXAMPLEEXAMPLEEXAMPLE

http://amzn.to/1PCpPNA
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi

AWS Secret Access Key [None]: ExaMPleKEy/7EXAMPL3/EXaMPLeEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: json

You can quickly test that the CLI tools are working correctly by running the following
command to list the IAM users in your account:

$ aws iam list-users

Assuming everything went according to plan and you chose JSON as your default output
format, you should get something like the return shown here:

{
"Users": [
{
"UserName": "myuser",
"Path“: ll/ll’

"CreateDate": "2015-01-15T18:30:302",
"UserId": "EXAMPLE123EXAMPLEID",
"Arn": "arn:aws:iam::01234567890:user/myuser"

Container Instances

The first thing you need to do after installing the required tools is to create at least a single
cluster that your Docker hosts will register with when they are brought online.

NOTE

The default cluster name is imaginatively named “default.” If you keep this name, you do not need to
specify - -cluster-name in many of the commands that follow.

The first thing we need to do is start a cluster in the container service. We’ll then push our
containers into the cluster once it’s up and running. For these examples, we will start by
creating a cluster called “testing”:

$ aws ecs create-cluster --cluster-name testing

{
"cluster": {
"clusterName": "testing",
"status": "ACTIVE",
"clusterArn": "arn:aws:ecs:us-east-1:0123456789:cluster/testing"
}
}

You will now need to create an instance via the Amazon console. You could use your own
AMI with the ECS agent and Docker installed, but Amazon provides one that we’ll use
here. This is almost always the way you’ll want to use it since most of your custom code
will ship in Docker containers anyway, right? So we’ll deploy that AMI and configure it
for use in the cluster. Consult Amazon’s detailed documentation for this step.

NOTE

If you are creating a new EC2 instance, be sure and note the IP address that it is assigned so that you can
connect to it later.

As we mentioned, it is also possible to take an existing Docker host within your EC2
environment and make it compatible with the EC2 Container Service. To do this, you need
to connect to the EC2 instance and ensure that you are running Docker version 1.3.3 or
greater, and then deploy the Amazon ECS Container Agent to the local Docker host with
the proper environment variable configured for your setup, as shown here:

$ sudo docker --version
Docker version 1.4.1, build 5bc2ff8

$ sudo docker run --name ecs-agent -d \

-v /var/run/docker.sock:/var/run/docker.sock \
-v /var/log/ecs/:/log -p 127.0.0.1:51678:51678 \
-e ECS_LOGFILE=/log/ecs-agent.log \

-e ECS_LOGLEVEL=info \

-e ECS_CLUSTER=testing \
amazon/amazon-ecs-agent:latest

Once you have at least a single instance running and registered into your cluster, you can
check it by running:

$ aws ecs list-container-instances --cluster testing

{

http://amzn.to/1PCqQFn
http://amzn.to/1PCqT4a

"containerInstanceArns": [
"arn:aws:ecs:us-east-1:01234567890:
container-instance/zsel12345-12b3-45gf-6789-12ab34cd56ef78"

Taking the UID from the end of the previous command’s output, we can request even
more details about the container instance with the command shown here:

$ aws ecs describe-container-instances --cluster testing \
--container-instances zsel2345-12b3-459f-6789-12ab34cd56ef78

"failures": [],
"containerInstances": [
{
"status": "ACTIVE",
"registeredResources": [

{
"integervValue": 1024,
"longvalue": 0,
"type": "INTEGER",
"name": "CPU",
"doublevalue": 0.0
iy
{
"integervalue": 3768,
"longvalue": 0,
"type": "INTEGER",
"name": "MEMORY",
"doublevalue": 0.0
s
{
"name": "PORTS",
"longvalue": 0,
"doublevalue": 0.0,
"stringSetvalue": [
"2376" ,
Il22ll ,
"51678",
||2375ll
1,
"type": "STRINGSET",
"integervalue": 0
}

1,
"ec2InstancelId": "i-aal23456",

"agentConnected": true,

"containerInstanceArn": "arn:aws:ecs:us-east-1:
01234567890:container-instance/
zsel12345-12bh3-45gf-6789-12ab34cd56ef78",

"remainingResources": [

{
"integervalue": 1024,
"longvalue": 0,
"type": "INTEGER",
llnamell : “CPU“,
"doublevValue": 0.0

iy

{
"integervalue": 3768,
"longValue": 0,
"type": "INTEGER",
"name": "MEMORY",
"doublevValue": 0.0

iy

{

"name": "PORTS",
"longValue": 0,
"doublevalue": 0.0,
"stringSetVvalue": [

"2376" ,

||22|| ,

"51678",

"2375"

1
"type": "STRINGSET",
"integervValue": 0

It is interesting to note that the output includes both the container instance’s registered
resources, as well as its remaining resources. When you have multiple instances, this
information helps the service determine where to deploy containers within the cluster.

Tasks

Now that our container cluster is up and running, we need to start putting it to work. To do
this, we need to create at least one task definition. The Amazon EC2 Container Service
defines the phrase “task definition” as a list of containers grouped together.

To create your first task definition, open up your favorite editor, copy in the following
JSON, and then save it as starwars-task.json in your home directory, as shown here:

[
{
"name": "starwars",
"image": "rohan/ascii-telnet-server:latest",
"essential": true,
"cpu": 50,
"memory": 128,
"portMappings": [
{

"containerPort": 23,
"hostPort": 2323
}
1,

"environment": [

{

"name": "FAVORITE_CHARACTER",
"value": "Boba Fett"

3

{
"name": "FAVORITE_EPISODE",
"Va.lue“ : |lvll

}

1

"entryPoint": [
"/usr/bin/python",
"/root/ascii-telnet-server.py"

1

"command": [
u_fn’
"/root/swl.txt"

]
3
]

In this task definition, we are saying that we want to create a task called starwars that will
be based on the Docker image rohan/ascii-telnet-server:latest. This Docker image launches
a Python-based telnet server that serves the Ascii Art version of the movie Star Wars to
anyone who connects.

In addition to typical variables included in a Dockerfile or via the docker run command,

we define some constraints on memory and CPU usage for the container, in addition to
telling Amazon whether this container is essential to the task. The essential flag is useful

when you have multiple containers defined in a task, and not all of them are required for
the task to be successful. If essential is true and the container fails to start, then all the

containers defined in the task will be killed and the task will be marked as failed.

To upload this task definition to Amazon, we run a command similar to that shown here:

$ aws ecs register-task-definition --family starwars-telnet \
--container-definitions file://$HOME/starwars-task.json

http://bit.ly/1PCrfI2
http://www.asciimation.co.nz

"taskDefinition": {
"taskDefinitionArn": "arn:aws:ecs:us-east-1:
01234567890: task-definition/starwars-telnet:1",
"containerDefinitions": [

{

"environment": [
{
"name": "FAVORITE_EPISODE",
"Vaer” : ||V||
3

{
"name": "FAVORITE_CHARACTER",

"value": "Boba Fett"

}
1,
"name": "starwars",
"image": "rohan/ascii-telnet-server:latest",
"cpu": 50,
"portMappings": [

{

"containerPort": 23,
"hostPort": 2323

}
1,
"entryPoint": [

"/usr/bin/python",
"/root/ascii-telnet-server.py"

1

"memory": 128,
"command": [
n_fn
4
"/root/swl.txt"
1,

"essential": true

}
1,

"family": "starwars-telnet",
"revision": 1
We can then list all of our task definitions by running the following:
$ aws ecs list-task-definitions

"taskDefinitionArns": [
"arn:aws:ecs:us-east-1:01234567890:task-definition/starwars-telnet:1"
1

Now we are ready to run our first task in our cluster. This is easily achieved with the
command here:

$ aws ecs run-task --cluster testing --task-definition starwars-telnet:1 \

--count 1
{
"failures": [],
"tasks": [
{
"taskArn": "arn:aws:ecs:us-east-1:

01234567890: task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",
"overrides": {
"containerOverrides": [

{
b

"name": "starwars"

3

"lastStatus": "PENDING",

"containerInstanceArn": "arn:aws:ecs:us-east-1:
01234567890:container-instance/
zsel2345-12b3-45gf-6789-12ab34cd56ef78",

"desiredStatus": "RUNNING",

"taskDefinitionArn": "arn:aws:ecs:us-east-1:
01234567890: task-definition/starwars-telnet:1",

"containers": [

{

"containerArn": "arn:aws:ecs:us-east-1:
01234567890:container/
zsel12345-12b3-45gf-6789-12abExamPLE",

"taskArn": "arn:aws:ecs:us-east-1:

01234567890: task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",

"lastStatus": "PENDING",

"name": "starwars"

}

The count argument allows us to define how many copies of this task we want deployed
into our cluster. For this job, one is enough.

NOTE

The task-definition value is a name followed by a number (starwars-telnet:1). The number is the
revision. If you edit your task and re-register it with the aws ecs register-task-definition command,
you will get a new revision, which means that you will want to reference that new revision in your aws ecs
run-task. If you don’t change that number, you will continue to launch containers using the older JSON.

This verisioning makes it very easy to roll back changes and test new revisions without impacting all future
instances.

In the output from the previous command, it is very likely that the lastStatus key
displayed a value of PENDING.

You can now describe that task to ensure that it has transitioned into a RUNNING state by
locating the task Arn from the previous output and then executing the code shown here:

$ aws ecs describe-tasks --cluster testing \
--task b64b1d23-bad2-872e-b007-88fd6ExaMPle

"failures": [],
"tasks": [
{
"taskArn": "arn:aws:ecs:us-east-1:
01234567890: task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",
"overrides": {
"containerOverrides": [

{
"name": "starwars"
}
1
}
"lastStatus": "RUNNING",
"containerInstanceArn": "arn:aws:ecs:us-east-1:

017663287629:container-instance/
zs€12345-12b3-45¢gf-6789-12ab34cd56ef78",
"desiredStatus": "RUNNING",
"taskDefinitionArn": "arn:aws:ecs:us-east-1:
01234567890: task-definition/starwars-telnet:1",
"containers": [

{

"containerArn": "arn:aws:ecs:us-east-1:

01234567890:container/
zsel12345-12b3-45gf-6789-12abExamPLE",
"taskArn": "arn:aws:ecs:us-east-1:
01234567890: task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",
"lastStatus": "RUNNING",
"name": "starwars",
"networkBindings": [

"bindIP": "0.0.0.0",

"containerPort": 23,
"hostPort": 2323

After verifying that the lastStatus key is set to RUNNING, we should be able to test our
container.

Testing the Task

You will need either netcat or a telnet client installed on your system to connect to the
container.

Installing NetCat/Telnet
Mac OS X

Mac OS X ships with a copy of netcat in /usr/bin/nc, but you can also install it via
Homebrew:

$ brew install netcat

In this case, you will find the binary is called netcat rather than nc.
Debian-based system

$ sudo apt-get install netcat

RedHat-based systems

$ sudo yum install nc

Windows

Windows comes with a supported telnet client, but it is typically not installed by default.
You can launch an administrative command prompt and type a single command to install
the telnet client.

1. Click start and under search, type cMD.
2. Right-click cMD and click Run as administrator.
3. If prompted, enter your Administrator password.

4. In the command prompt that launches, type the following command to enable the
telnet client:

$ pkgmgr /iu:"TelnetClient"

Connecting to the container

We can now test the containerized task using either netcat or telnet. Launch a command
prompt and then run the following commands. Be sure to replace the IP address with the
address assigned to your EC2 instance.

When you connect to the container, you should see an ASCII version of the Star Wars
movie playing on your console.

netcat

http://nc110.sourceforge.net
http://www.asciimation.co.nz

$ clear
$ nc 192.168.0.1 2323

To exit, simply press Ctrl-C.
telnet

$ clear
$ telnet 192.168.0.1 2323

To exit, press Ctrl-], and in the telnet prompt, type quit, then press Enter.

Stopping the task

We can list all the tasks running in our cluster using the following command:

$ aws ecs list-tasks --cluster testing

{
"taskArns": [
"arn:aws:ecs:us-east-1:
01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle"
1
}

We can further describe the task by reusing the aws ecs describe-tasks command:

$ aws ecs describe-tasks --cluster testing \
--task b64b1d23-bad2-872e-b007-88fd6ExaMPle

Finally, we can stop the task by running;:

$ aws ecs stop-task --cluster testing \
--task b64b1d23-bad2-872e-b007-88fd6ExaMPle

"lastStatus": "RUNNING",

"desiredStatus": "STOPPED",

If we describe the task again, we should now see that the lastStatus key is set to
STOPPED:

$ aws ecs describe-tasks --cluster staging_cluster \
--task b64b1d23-bad2-872e-b007-88fd6ExaMPle

"lastStatus": "STOPPED",

"desiredStatus": "STOPPED",

And finally, listing all the tasks in our cluster should return an empty set.
$ aws ecs list-tasks --cluster testing
"taskArns": []
At this point, we can start creating more complicated tasks that tie multiple containers

together and rely on the EC2 Container Service tooling to deploy the tasks to the most idle
hosts in our cluster.

Wrap-Up

After reading this chapter, you should have a good idea of the type of tools you can use to
create a truly dynamic Docker cluster for your applications to live in. With Docker’s
highly portable container format and its ability to abstract away so much of the underlying

Linux system, it is easy to move your applications fluidly between your data center and as
many cloud providers as you want.

Chapter 10. Advanced Topics

In this chapter, we’ll do a quick pass through some of the more advanced topics. We’re
going to assume that you have a pretty good hold on Docker by now and that you’ve
already got it in production or at least you’re a regular user. We’ll talk some more about
deployment tools, networking, orchestration, security, and advanced configuration.

Some of this chapter covers configurable changes you can make to your Docker
installation. These can be useful. But Docker has good defaults and the defaults are much
better tested and usually more robust than the alternatives. Keep in mind that this is early
production release software and things are moving fast. The defaults have the most
eyeballs on them and therefore have had the largest number of bug fixes. You should stick
to the defaults on your operating system unless you have a good reason to change them
and have educated yourself on what those changes mean to you.

Pluggable Backends

Docker has a very clean external interface and, in part because it’s largely a single static
Go binary, it looks pretty monolithic. But there’s actually a lot going on under the covers
that is configurable, and the two kinds of backends are a good example. With Docker, you
can easily swap both how Docker interacts with the underlying filesystem and how it talks
to the kernel about containers! Those are powerful switches and you’ll want to know what
they do before throwing them. First we’ll talk about execution drivers, then the filesystem
backends.

Execution Drivers

Docker is not the mechanism for talking to the Linux kernel and managing the life cycle
of containers. It seems like it because it knows how to do the right things out of the box.
But that’s because it ships with a few swappable container engines known as execution
drivers. These are implemented to a standard API and while they have to be built into
Docker at compile time, they are switchable at runtime with a command-line argument.
By default, Docker ships with the “native” driver enabled. You can change it to the LXC
driver (which we’ll explain in a minute) with a simple command-line argument when you
start Docker, like this:

$ docker -d -e 1lxc

Because it’s so easy to change, it might seem like a small thing. It’s not. Changing your
execution drivers drastically affects how Docker interacts with the kernel and may
introduce additional runtime dependencies to your environment. There is every chance in
the world that you will never change this setting. But it’s worthwhile understanding how
this mechanism works and why you might do that.

All distributions that we are familiar with ship with “native” as the default Docker
execution driver. This continues to be where the heaviest development work takes place.
And from Docker 1.5.0 and up, the /stats endpoint on the API, which we talked about in

Chapter 8, is only available on the native execution driver. So let’s find out what your
system is running. You can see what your system is running by using docker info:

$ docker info
Containers: 18
Images: 286
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Backing Filesystem: extfs
Dirs: 323
Execution Driver: native-0.2
Kernel Version: 3.8.0-35-generic
Operating System: Ubuntu precise (12.04.3 LTS)
CPUs: 1
Total Memory: 987.9 MiB
Name: ubuntu
ID: UNKL:ZFZ5:ELSF:DU7Z:WJBM:NVPO:WDUZ:B053:UFAD:KARC:NSSH:ZA5Q

We’ve shown this before, but hopefully after this chapter you’ll have a better idea of what
that means. This Ubuntu server is running the “native-0.2” execution driver. The native
driver is versioned so that in theory you could compile your Docker against different
versions of libcontainer and have it exercise only the functionality that’s available in
that version of the library. Unless you are building Docker from source and intentionally
changing things, these will always be correctly matched for you and are therefore nothing
to worry about.

native, Ixc, etc.

Until around Docker 0.9, the project leveraged work done by the Linux Containers Project

https://linuxcontainers.org

(LXC) to control container life cycles. This was the one and only execution driver. A
change was made in Docker 0.9 to support a standardized API for execution drivers with
the intention of bringing many other virtualization layers into the fold, including non-
container engines. It was envisioned that things like FreeBSD jails and Solaris Zones
might appear as execution drivers. We haven’t seen that really play out so far; one of the
main draws to Docker is using it to control Linux containers. But there are still two
container-based execution drivers that ship with Docker: the original LXC driver and the
“native” driver we saw a moment ago.

Because LXC was not a part of the Docker project, it was hard for Docker to ensure that
the LXC project didn’t introduce changes that caused issues with Docker. It also made it
challenging for Docker to ensure that important changes required in the next LXC release
were prioritized.

As a result, in version 0.9, the LXC execution driver was replaced with 1ibcontainer, a
Docker-native Go library for working with containers, namespaces, and cgroups. All
modern Docker builds use libcontainer as the default backend. But LXC is still
available, and in certain cases it might be a good choice if you were, for example,
integrating with systems that were already using LXC containers prior to Docker’s release.
LXC also provides some much finer-grained control via command-line tools on the server
itself. We showed you how to change the driver to LXC, above. Let’s take a look at doing
that and also some of the gotchas:

$ docker -d -H tcp://0.0.0.0:2375 \
-H unix:///var/run/docker.sock -e 1lxc

INFO[000O] +job serveapi(tcp://0.0.0.0:2375, unix:///var/run/docker.sock)
INFO[0000] Listening for HTTP on tcp (0.0.0.0:2375)

INFO[0000] Listening for HTTP on unix (/var/run/docker.sock)

INFO[0000] +job init_networkdriver()

INFO[000O] -job init_networkdriver() = OK (0)

INFO[00OO] WARNING: Your kernel does not support cgroup swap limit.

INFO[0000] Loading containers: start....... ..o
INFO[0000] Loading containers: done.

INFO[00OO] ... daemon: 1.5.0 aB8a3lef; execdriver: 1xc-0.7.5; graphdriver: aufs
INFO[0000] +job acceptconnections()

INFO[0000]

-job acceptconnections() = OK (0)

This is what the Docker daemon looks like when starting up the LXC backend in the
foreground. Let’s leave that running in the foreground and then switch to another terminal
to run the Docker commands. That way we can see what the daemon shows us. By
restarting Docker to switch backends, we killed off all of our running containers. Note that
even containers that were supposed to start on Docker daemon startup don’t come back
up. We’ll show you why in a minute. But they are still visible even if created with the
“native” backend:

$ docker ps -a
CONTAINER ID IMAGE
e64a279663aa e426T6ef897e

COMMAND
"nginx

. STATUS

-g 'daemon of . Exited (@) 1 minutes ago

So what happens when we try to start it back up?

http://bit.ly/1PCtdIj
http://bit.ly/1PCtfQs
https://github.com/docker/libcontainer

$ docker start e64a279663aa
e64a279663aa

If we look back at the other window, we see the code shown here (shortened to fit the
page):

INFO[0170] POST /v1.17/containers/e64a279663aa/start
INFO[0170] +job start(e64a279663aa)

INFO[0170] +job allocate_interface(e64a279663aabb7)
INFO[0170] -job allocate_interface(e64a279663aabb7) = OK (0)
INFO[0170] +job allocate_port(e64a279663aabb7)

INFO[0170] -job allocate_port(e64a279663aabb7) = 0K (0)
INFO[0170] +job log(start, e64a279663aabb7)

INFO[0170] -job log(start, e64a279663aabb7) = OK (0)
INFO[0170] -job start(e64a279663aa) = OK (0)

INFO[0170] +job log(die, e64a279663aabb7)

That’s Docker telling us that it has created interfaces and ports for a container. It sure
looks like it started. We got a container ID back on the command line, and in the log we
can see start(..) = OK. But the clue is in that last line, 1og(die..). And, when we look at
docker ps, it’s blank. With docker ps -a, we see:

$ docker ps -a
CONTAINER ID IMAGE
e64a279663aa e426f6ef897e

COMMAND
"nginx -g 'daemon

. STATUS
. Exited (255) 3 minutes ago

So what happened? docker logs tells us more when we look at the Docker daemon logs:

INFO[0388]
INFO[0388]
INFO[0388]

GET /v1.17/containers/e64a279663aa/json
+job container_inspect(e64a279663aa)
-job container_inspect(e64a279663aa) = OK (0)

INFO[0388]
INFO[0388]
INFO[0388]
INFO[0388]
INFO[0388]
1xc-start:
1xc-start:

GET /v1.17/containers/e64a279663aa/logs?stderr=1&stdout=1&tail=all
+job container_inspect(e64a279663aa)
-job container_inspect(e64a279663aa) =
+job logs(e64a279663aa)

-job logs(e64a279663aa) = OK (0)
unknown key 1xc.cap.keep

0K (0)

failed to read configuration file

There it is: 1xc-start: failed to read configuration file. That’s because “native”
containers are not compatible with LXC. They are looking for LXC container
configuration files which Docker did not write out when we created these containers. The
reverse is true: had we created the container with LXC and swapped back to
libcontainer-based “native,” we would lose all of our containers.

Containers configured with different execution drivers are not compatible with each other. You will need to
re-create containers when swapping the execution driver.

There are a couple of other gotchas with running the LXC execution driver. One problem
is that you need to be careful about which version of LXC you run. Docker is developed

against a particular version that might or might not match the one in your distribution. If

you need to switch to the LXC driver, you should make sure you can support the version

Docker that works best with. Running something outside the tested path is likely to

encounter issues. The second issue is that the Linux Containers Project has begun
implementing a competitor to Docker called LXD. We expect that it will get most of the
development attention, with LXC moving to maintenance mode.

So why would we change our execution driver to LXC? One reason, as stated above, is for
compatibility with other tooling or environments. The LXC backend also supports a lot of
configuration items that the native driver doesn’t. You can set things like fine-grained
resource control, DHCP configuration options, and other host and volume settings at
creation time. Additionally, LXC has some nice command-line tools for controlling things
like cgroups more easily from the server.

https://linuxcontainers.org/lxd/introduction/

Storage

Backing all of the images and all of the containers on your Docker server is a storage
backend that handles reading and writing all of that data. Docker has some strenuous
requirements on its storage backend: it has to support layering, the mechanism by which
Docker tracks changes and reduces both how much disk a container occupies and how
much is shipped over the wire to deploy new images. Using a copy-on-write strategy,
Docker can start up a new container from an existing image without having to copy the
whole image. The storage backend supports that. The storage backend is what makes it
possible to export images as groups of changes in layers, and also lets you save the state of
a running container. In most cases, you need the kernel’s help in doing this efficiently.
That’s because the filesystem view in your container is generally a union of all of the
layers below it, which are not actually copied into your container. Instead, they are made
visible to you, and only when you make changes does anything get written to your
container’s own filesystem.

Docker relies on an array of possible kernel drivers to handle the layering. The Docker
codebase contains code that can handle interaction with all of these backends, and the
decision about which to use can be configured on daemon restart. So let’s take a look at
what is available and some of the pluses and minuses of each.

AUFS, Device Mapper, BTRFS, vfs

Various backends have different limitations that may or may not make them your best
choice. In some cases, your choices of which backend to use are limited by what your
distribution of Linux actually supports. Using drivers that are built in to the kernel that
your distribution ships with will make life ever so much easier. It’s generally best to stay
near the tested path here as well. We’ve seen all manner of oddities from various backends
since Docker’s release. And, as usual, the common case is always the best supported one.
Different backends also report different statistics up through the Docker Remote API
(/info endpoint). This is potentially useful for monitoring your Docker systems.

AUFS

The original backend, and at the time of this writing the officially recommended one,
is AUFS: a union filesystem driver with reasonable support on various popular Linux
distributions. It was never accepted into the mainline kernel, however, and this has
limited its availability on various distributions. It is not supported on recent versions
of RedHat, Fedora, or CentOS, for example. It is not shipped in the standard Ubuntu
distribution, but is in the Ubuntu linux-image-extra package.

Its status as a second-class citizen in the kernel has lead to the development of many
of the other backends now available. Older, but still recent, versions of AUFS had a
limitation of 42 layers, which might constrain how you build base images if you are
running on such a version. If you are shipping images for public consumption, you
should definitely keep this limitation in mind because even if you don’t have it,
someone else probably does. The current limit in Docker for AUFS is 127 layers,
which is probably well more than you should ever use for performance reasons.
AUEFS has been a pretty good performer on recent kernels and is quite well-tested
with Docker.

devicemapper

RedHat’s various distributions have not supported AUFS recently, so RedHat
contributed a backend to the Docker project based on devicemapper, which is a
heavily tested layer of the Linux kernel that underpins things like LVM, disk
encryption, and other software RAID implementations.

The Docker backend was written quickly to just get some support for Docker into
RedHat-based distributions, and at first had some major flaws. Most of these have
been addressed now and it’s reasonably stable. But even in later versions of Docker,
it has been shown to be only somewhat reliable in production. Unlike AUFS, which
can usually be unloaded from the kernel and then reloaded, devicemapper often has
other kernel modules that depend on it. That means that the worst failure modes
currently require a reboot of the whole server on which Docker is running.
Performance is reasonable, but no one would call it speedy when using the loopback
mode (the default). It does support using disk partitions raw, which should be faster.
It does not have much tolerance for having anything at all written into the container
during runtime. It’s the default choice on RedHat/CentOS distributions before
RedHat/CentOS 7.

BTRFS

http://red.ht/1PCwg34

vfs

btrfs is fundamentally a copy-on-write filesystem, which means it’s a pretty good fit
for the Docker image model. On systems that don’t support AUFS and where the
btrfs driver is present, it’s the default backend. This includes, for example, RHEL
and CentOS 7. It also works on various Ubuntu versions. Like AUFS and unlike
devicemapper, Docker is using the backend in the way it was intended. That means
it’s both pretty stable in production and also a good performer. It scales reasonably to
thousands of containers on the same system. A major drawback for Red Hat—based
systems is that btrfs does not support SELinux. If you have btrfs available, we
currently recommend it as the most stable backend for production. The space is
changing rapidly, however, and new backends keep becoming available.

The vfs driver is the simplest, and slowest, to start up of the supported drivers. It
doesn’t really support copy-on-write. Instead, it makes a new directory and copies
over all of the existing data. It was originally intended for use in tests and for
mounting host volumes. It is very slow to create new containers, but runtime
performance is native, which is a real benefit. It is very simple in mechanism, which
means there is less to go wrong. Docker, Inc., does not recommend it for production
use so you should proceed with caution if you think it’s the right solution for your
production environment.

overlayfs

overlayfs is now the union filesystem driver that is supported in the mainline Linux
kernel as of version 3.18. That’s good news for its long-term support. It also means
that it’s likely to get a lot of attention to performance and will be available on most
Linux distributions once they catch up with version 3.18 and higher kernels. It is a bit
like AUFS but fundamentally simpler underneath, which leads to very strong
performance. The Docker backend is still under active development, but we expect it
to be a good option going forward.

Storage backends can have a big impact on the performance of your containers. And if you swap the
backend on your Docker server, all of your existing images will disappear. They are not gone, but they will
not be visible until you switch the driver back. Caution is advised.

You can use docker info to see which storage backend your system is running. It will

also tell you what the underlying filesystem is in cases where there is one. In some cases,
like with devicemapper on raw partitions or with btrfs, there won’t be a different

underlying filesystem.

Like with execution drivers, storage backends can be swapped via command-line
arguments to docker on startup. If we wanted to switch our Ubuntu system from AUFS to

devicemapper, we would do that like this:

$ docker -d --storage-driver=devicemapper

http://bit.ly/1PCwkQw
http://bit.ly/1zFjGhH

That will work on pretty much any Linux system that can support Docker because
devicemapper is almost always present. You will need to have the actual underlying
dependencies in place for the other drivers. For example, without AUFS in the kernel —
usually via a kernel module — Docker will not start up with AUFS set as the storage
driver.

Getting the right storage driver for your systems and deployment needs is one of the more
important technical items to get right when taking Docker to production. Be conservative;
make sure the path you choose is well-supported in your kernel and distribution.

Containers in Detail

While we all talk about Linux containers as a single entity, they are implemented through
several separate mechanisms that all work together: Control Groups (cgroups),
namespaces, and SELinux/AppArmor. cgroups provide for resource limits, namespaces
allow for processes to use identically named resources and isolate them from each other’s
view of the system, and SELinux/AppArmor provides strong security isolation. We’ll talk
about SELinux and AppArmor in a bit. But what do cgroups and namespaces do for you?

Control Groups (cgroups)

Operations teams have often aimed for one server per intensive task. So, for example, you
don’t run your applications on the database server because they have competing resource
demands and their resource usage could grow unbounded and come to dominate the
server, starving neighbors of performance.

On real hardware systems, this could be quite expensive and so solutions like virtual
servers are very appealing, in part because you can share expensive hardware between
competing applications, and the virtualization layer would handle your resource
partitioning. While it saves money, this is a reasonably expensive way to go about it if you
don’t need all the other separation provided by virtualization, because running multiple
kernels introduces a reasonable overhead on the applications. Maintaining virtual
machines is also not the cheapest solution. All the same, cloud computing has shown that
it’s immensely powerful and with the right tooling, incredibly effective.

But if the only kind of isolation you needed was resource partitioning, wouldn’t it be great
if you could do that on the same kernel? For many years, you could assign a “niceness”
value to a process and it would give the scheduler hints about how you wanted this
process to be treated in relation to others. But it wasn’t possible to impose hard limits like
those that you get with virtual machines. And niceness is not at all fine-grained: I can’t
give something more I/O and less CPU than other processes. This fine-grained control, of
course, is one of the promises of Docker, and the mechanism that it uses to do that is
cgroups, which predate Docker and were invented to solve just that problem.

Control Groups, or cgroups for short, allow you to set limits on resources for processes
and their children. This is the mechanism that Docker uses to control limits on memory,
swap, and CPU resources. They are built in to the Linux kernel and originally shipped
back in 2007 in Linux 2.6.24. The official kernel documentation defines them as “a
mechanism for aggregating/partitioning sets of tasks, and all their future children, into
hierarchical groups with specialized behaviour.” It’s important to note that this setting
applies to a process and all of the children that descend from it. That’s exactly how
containers are structured.

Every Docker container is assigned a cgroup that is unique to that container. All of the
processes in the container will be in the same group. This means that it’s easy to control
resources for each container as a whole without worrying about what might be running. If
a container is redeployed with new processes added, you can have Docker assign the same
policy and it will apply to all of them.

We talked previously about the cgroups hooks exposed by Docker via the Remote API.
This allows you to control memory, swap, and disk usage. But there are lots of other
things you can limit with cgroups, including the number of I/O operations per second
(iops) a container can have, for example. You might find that in your environment you
need to use some of these levers to keep your containers under control, and there are a few
ways you can go about doing that. cgroups by their nature need to do a lot of accounting

http://bit.ly/1PCxJ9y

of resources used by each group. That means that when you’re using them, the kernel has
a lot of interesting statistics about how much CPU, RAM, disk I/O, and so on. that your
processes are using. So Docker uses cgroups not just to limit resources but also to report
on them. These are many of the metrics you see, for example, in the output of docker

stats.

The LXC execution driver

The first way is via the LXC execution driver we showed you earlier. To be able to pass
any of these settings to a container, you will need to have switched your execution driver
to LXC and re-created any containers that you need to run. You can specify, for example, a
cgroups blkio.throttle.write_iops_device setting at container creation time to restrict
the number of write iops a container may have on a device. Docker doesn’t do that with
the native driver, but the LXC driver allows very fine-grained control of cgroups settings.
If we pass this setting to the LXC execution driver, it will live for the life of the container
regardless of how many times we stop and start it. To do that, we specify an - -1xc-conf
option to the docker command-line tool when creating the container:

$ docker run -d --1xc-conf="1xc.cgroups.blkio.throttle.write_iops = 500" \
adejonge/helloworld

This tells the kernel to limit the number of write I/O operations per second to 500 for this
container. That means we can guarantee we’re leaving some spare I/0O capacity for other
containers even if our process goes completely awry in its own container. You can see how
this level of control makes it far easier to share resources on the same hardware, much like
with a full virtual machine.

The LXC backend has a unique feature that allows you to pass any cgroup configuration
to the container configuration. This fine-grained control is not currently possible through
the native libcontainer-based backend. It’s reasonable to expect that this will eventually
be possible, but for now it is not. You can read a lot more about which settings are
possible with cgroups in the kernel documentation.

When you use the --1xc-conf argument to pass settings directly to the LXC execution driver, Docker does

not know that it happened. This is usually OK if you are just passing cgroups information. If you use it to
configure other settings, you might run into trouble when managing the container from Docker.

The /sys filesystem

The second way to control cgroups in a fine-grained manner, even if you configured them
with Docker or via the LXC execution driver, is to manage them yourself. This is the most
powerful method because changes don’t just happen at creation time, they can be done on
the fly.

On systems with systemd, there are command-line tools like systemct1 that you can use

http://bit.ly/1PCxJ9y

to do this. But since cgroups are built into the kernel, the method that works everywhere is
to talk to the kernel directly via the /sys filesystem. If you’re not familiar with /sys, it’s a
filesystem that directly exposes a number of kernel settings and outputs. You can use it
with simple command-line tools to tell the kernel how to behave in a number of ways.

It’s important to note that this method of configuring cgroups controls for containers only
works directly on the Docker server and is not available remotely via any API. If you use
this method, you’ll need to figure out how to script this for your own environment.

Changing cgroups values yourself, outside of any Docker configuration, breaks some of the repeatability of
Docker deployment. Unless you tool changes into your deployment process, settings will go away when
containers are replaced.

Let’s use an example of changing the CPU cgroups settings for a container we already
have running. First we need to get the long ID of the container, and then we need to find it
in the /sys filesystem. Here’s what that looks like:

$ docker ps --no-trunc
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
dcbbaa763.. 0415448f2cc2 "supervisord" 3 weeks ago Up 2 days romantic_morse

Here we’ve had docker ps give us the long ID in the output, and the ID we want is
“dcbbaa763daff1dc0a91e7675d3c93895cb6a6d83371e25b7f0bd62803ed8e86”. You can
see why Docker normally truncates this. In the examples we’re going to truncate it, too, to
make it at least a little readable and fit into the constraints of a printed page. But you need
to use the long one!

Now that we have the ID, we can find our container’s cgroup in the /sys filesystem.
Cgroups are laid out so that each kind of setting is grouped into a module and that module
is exposed at a different place in the /sys filesystem. So when we look at CPU settings,
we won’t see blkio settings, for example. You might take a look around in the /sys to see
what else is there. But for now we’re looking at the CPU controller, so let’s inspect what
that gives us. You need root access on the system to do this because you’re manipulating
kernel settings:

$ 1s /sys/fs/cgroup/cpu/docker/dcbbaa763daf
cgroup.clone_children cpu.cfs_period_us cpu.rt_runtime_us notify_on_release

cgroup.event_control cpu.cfs_quota_us cpu.shares tasks
cgroup.procs cpu.rt_period_us cpu.stat
NOTE

The exact path above will change a bit depending on the Linux distribution your Docker server is running
on and what the hash of your container is. For example, on CoreOS, the path would look something like
this: /sys/fs/cgroup/cpu/system.slice/docker-8122be2d7a67a52e949582f6d5
cb2771a8469abh20ecf7b6915€9217d92ddde98. scope/

You can see that under cgroups, there is a docker directory that contains all of the Docker

containers that are running on this host. You can’t set cgroups for things that aren’t
running because they apply to running processes. This is an important point that you
should consider. Docker takes care of reapplying cgroups settings for you when you start
and stop containers. Without that mechanism, you are somewhat on your own.

Back to our task. Let’s inspect the CPU shares for this container. Remember that we
earlier set these via the Docker command-line tool. But for a normal container where no
settings were passed, this setting is the default:

$ cat /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
1024

1024 CPU shares means we are not limited at all. Let’s tell the kernel that this container
should be limited to half that:

$ echo 512 > /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
$ cat /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
512

There you have it. We’ve changed the container’s settings on the fly. This method is very
powerful because it allows you to set any cgroups setting at all for the container. But as we
mentioned earlier, it’s entirely ephemeral. When the container is stopped and restarted, the
setting is reset to the default:

$ docker stop dcbbaa763daf

dcbbaa763daf

$ cat /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
cat: /sys/fs/.../cpu.shares: No such file or directory

You can see that the directory path doesn’t even exist any more now that the container is
stopped. And when we start it back up, the directory comes back but the setting is back to
1024:

$ docker start dcbbaa763daf

dcbbaa763daf

$ cat /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
1024

If you were to change these kinds of settings in a production system via the /sys fileystem
directly, you’d want to tool that directly. A daemon that watches the docker events

stream and changes settings at container startup, for example, is a possibility. Currently,
the community has not contributed much rich tooling to this aspect. It’s likely that Docker
will eventually expand the native driver’s functionality to allow this level of configuration.

NOTE

As of Docker 1.6, it is possible to create custom cgroups outside of Docker and then attach a new container
to that cgroup using the - -cgroup-parent argument to docker create.

Kernel Namespaces, User Namespaces

Inside each container, you see a filesystem, network interfaces, disks, and other resources
that all appear to be unique to the container despite sharing the kernel with all the other
processes on the system. The network interface on the actual machine, for example, is a
single shared resource. But to your container it looks like it has the run of an entire
network interface to itself. This is a really useful abstraction: it’s what makes your
container feel like a machine all by itself. The way this is implemented in the kernel is
with namespaces. Namespaces take a single global resource and make it appear as a single
owned resource to the container.

Rather than just having a single namespace, however, containers have a namespace on
each of the six types of resources that are currently namespaced in the kernel: mounts,
UTS, IPC, PID, network, and user namespaces. We’ll explain all of those in a minute. But
essentially when you talk about a container, you’re talking about a number of different
namespaces that Docker sets up on your behalf. So what do they all do?

Mount namespaces

Docker uses these primarily to make your container look like it has its entire own
filesystem namespace. If you’ve ever used a chroot jail, this is its tougher cousin. It
looks a lot like a chroot jail but goes all the way down to the kernel so that even
mount and unmount system calls are namespaced. If you use docker exec or nsenter
to get into a container, you’ll see a filesystem rooted on “/”. But we know that this
isn’t the actual root partition of the system. It’s the mount namespaces that make that
possible.

UTS namespaces

Named for the kernel structure they namespace, and ultimately from the “Unix
Timesharing System,” UTS namespaces give your container its own hostname and
domain name. This is also used by older systems like NIS to identify which domain a
host belongs to. When you enter a container and see a hostname that is not the same
as the machine on which it runs, it’s this namespace that makes that happen.

IPC namespaces

These isolate your container’s System V IPC and POSIX message queue systems
from those of the host. Some IPC mechanisms use filesystem resources like named
pipes, and those are covered by the mount namespace. The IPC namespace covers
things like shared memory and semaphores that aren’t filesystem resources but which
really should not cross the container wall.

PID namespaces

We already showed you that you can see all of the processes in containers in the
Linux ps output on the host Docker server. But inside the container, processes have a
totally different PID. This is the PID namespace in action. A process has a unique
PID in each namespace to which it belongs. If you look in /proc inside a container,
or run ps, you will only see the processes inside the container’s PID namespace.

Network namespaces

This is what allows your container to have its own network devices, ports, etc. When
you run docker ps and see the bound ports for your container, you are seeing ports
from both namespaces. Inside the container your nginx might be bound to port 80,
but that’s on the namespaced network interface. This namespace makes it possible to
have what seems to be a completely separate network stack for your container.

User namespaces

These provide isolation between the user and group IDs inside a container and those
on the Docker host. Earlier when we looked at ps output outside the container and
inside and saw different user IDs, this is how that happened. A new user inside a
container is not a new user on the Docker host’s main namespace, and vice versa.
There are some subtleties here, though. For example, root in a user namespace is not
necessarily root on the main system. Some of this work is reasonably new to the
Linux kernel and there are concerns about security leakage, which we’ll talk about in
a bit.

So namespaces provide the visual, and in many cases functional, isolation that makes a
container look like a virtual machine even though it’s on the same kernel. Let’s explore
what some of that namespacing that we just described actually looks like.

Exploring Namespaces

One of the easiest to demonstrate is the UTS namespace, so let’s use docker exec to get a
shell in a container and take a look. From within the docker server, run the following:

$ hostname

docker2

$ docker exec -i -t 28970c706dbe® /bin/bash -1

hostname
28970c706db0o

Although docker exec will work from a remote system, here we ssh into the Docker

server itself in order to demonstrate that the hostname of the server is different from inside
the container.

That docker exec command line gets us an interactive process (-1i) and allocates a
pseudo-tty (-t), and then executes /bin/bash while executing all the normal login process
in the bash shell (-1). Once we have a terminal open inside the container’s namespace, we
ask for the hostname and get back the container ID. That’s the default hostname for a
Docker container unless you tell Docker to name it otherwise. This is a pretty simple
example, but it should clearly show that we’re not in the same namespace as the host.

Another example that’s easy to understand and demonstrate is with PID namespaces. Let’s
log in to the Docker server again, take a look at the process list of one of our containers,
and then get the same list from inside the container:

$ docker exec -i -t 28970c706db0 /bin/bash -1

ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 22:20 7 00:00:00 /bin/bash

root 22 0 0 22:53 7 00:00:00 /bin/bash -1

exit

logout

$ ps axlf..

46049 1 20 0 706552 18228 futex_ Ssl 2 2:16 /usr/bin/docker -d

46135 46049 20 0 18104 1892 n_tty_ Ss+ pts/0 0:00 _ /bin/bash

What we can see here is that from inside our container, the original command run by
Docker from the CMD in our Dockerfile is /bin/bash and it has been assigned the PID 1
inside the container. You might recall that this is the PID normally used by the init
process on Unix systems. In this case, the /bin/bash we started to create the container in
the first place is the first PID, so it gets ID 1. But in the Docker host’s main namespace,
we do a little work to find our container’s processes and we see the PID there is not 1, it’s
46135 and it’s a child of the docker daemon, which is PID 46049.

The other namespaces work in essentially the same manner and you probably get the idea
by now. It’s worth pointing out here that when we were working with nsenter back in
Chapter 4, we had to pass a pretty arcane (at that point) set of arguments to the command
when we ran it to enter a container from the Docker server. Let’s look at that command
line now:

$ sudo nsenter --target $PID --mount --uts --ipc --net --pid
root@3c4f916619a5: /#

After explaining namespaces in detail, this probably makes a lot more sense to you.
You’re telling nsenter exactly which of the namespaces you want to enter. It can also be
educational to use nsenter to only enter parts of the namespace of a throwaway container
to see what you get. In the example above, we enter all of the namespaces we just talked
about.

When it comes down to it, namespaces are the primary thing that make a container look
like a container. Combine them with cgroups and you have a reasonably robust isolation
between processes on the same kernel.

Security

We’ve spent a good bit of space now talking about how Docker contains applications,
allows you to constrain resources, and uses namespaces to give the container a view of the
world that is unique to the container. We also briefly mentioned the need for
SELinux/AppArmor. One of the wins for containers is the ability to replace virtual
machines in a number of cases. So let’s take a look at what isolation we really get, and

what we don’t.

How Secure Is Your Container?

You are undoubtedly aware by now that the isolation you get from a container is not as
strong as that from a virtual machine. We’ve been reinforcing the idea from the start of
this book that containers are just processes running on the Docker server. Despite the
isolation provided by namespaces, containers are not as secure as you might imagine if the
idea of a lightweight virtual machine persists.

One of the big boosts in performance for containers, and one of the things that makes them
lightweight, is that they share the kernel of the Docker server. This is also the source of the
greatest security concerns around Docker containers. The main reason is that not
everything in the kernel is namespaced. We talked about all of the namespaces that exist
and how the container’s view of the world is constrained by the namespaces it runs in. But
there are still lots of places in the kernel where really no isolation exists. And namespaces
only constrain you if you can’t tell the kernel to give you access to a different one.

For purposes of security, containers are more secure than an application on the host
directly because cgroups (if you use them), and namespaces provide some isolation from
the host’s core resources. But you must not think of containers as a substitute for good
security practices. If you think about how you would run an application on a production
system, that is really how you should run your containers. If your application would run as
a non-privileged user in a non-container environment, then it should be run in the same
manner inside the container, for example. You can tell Docker to run your whole container
as a non-privileged user, and in production deployments, this is probably what you want to
do. You can’t, unfortunately, enforce that Docker start all containers as non-privileged
users at this time. But starting them that way yourself, or at least dropping privileges
inside the running application as soon as possible, is a good idea.

Let’s look at some security risks and controls.

UID 0

The first and most overarching security risk in a container is that the root user in the
container is actually the root user on the system. There are extra constraints on root in a
container, and namespaces do a good job of isolating root in the container from the most
dangerous parts of the /proc and /sys filesystems, for example. But generally speaking
you have root access so if you can get access to resources outside of your namespace, then
the kernel will see you as root. And Docker starts all services in containers as root by
default which means you are then responsible for managing privilege in your applications
just like you are on any Linux system. Let’s explore some of the limits on root access and
look at some obvious holes. This is not intended to be an exhaustive statement on
container security, but rather to give you a healthy understanding of some of the classes of
security risks.

First, we’ll fire up a container and get a bash shell using the public Ubuntu image shown
in the following code. Then we’ll see what kinds of access we have:

$ sudo docker run -t -i ubuntu /bin/bash
root@808a2b8426d1i:/# lsmod

Module Size Used by

Xt_nat 12726 2

xt_tcpudp 12603 8

veth 13244 0

xt_addrtype 12713 2

xt_conntrack 12760 1

iptable_filter 12810 1

acpiphp 24119 0

ipt_MASQUERADE 12759 4

aufs 191008 14

iptable_nat 12909 1

nf_conntrack_ipv4 14538 2

nf_defrag_ipv4 12729 1 nf_conntrack_ipv4
nf_nat_ipv4 13316 1 iptable_nat

nf_nat 26158 4 ipt_MASQUERADE,nf_nat_ipv4
nf_conntrack 83996 6 ipt_MASQUERADE,nf_nat
ip_tables 27473 2 iptable_filter,iptable_nat
x_tables 29938 7 ip_tables, xt_tcpudp

bridge 101639 0

floppy 70206 O..

We’ve cut the output down a bit, but what we’re looking at here is a new container that we
started and we’ve just asked the kernel to tell us what modules are loaded. That’s not too
surprising: a normal user can do that. But it does reinforce that we’re talking to the same
Linux kernel. If you run this listing on the Docker server itself, it will be identical. So we
can see the kernel modules; what happens if we try to unload the floppy module?

root@808a2b8426d1:/# rmmod floppy
rmmod: ERROR: ... kmod_module_remove_module() could not remove 'floppy':
rmmod: ERROR: could not remove module floppy: Operation not permitted

That’s the same error message we would get if we were a nonprivileged user telling the
kernel what to do. This should give you a good sense that the kernel is doing its best to
prevent us from doing things we shouldn’t. And because we’re in a limited namespace, we
also can’t get the kernel to give us access to the top-level namespace either. We’re really
relying on there being no bugs in the kernel that allow us to escalate that, however,
because if we do, we’re root and can change things.

We can contrive a simple example of how things can go wrong by starting a bash shell in
a container that has had the Docker server’s /etc bind mounted into the container’s

namespace. Keep in mind that anyone who can start a container on your Docker server can
do what we’re about to do any time they like because you can’t configure Docker to
prevent it:

$ docker run -i -t -v /etc:/host_etc ubuntu /bin/bash
root@e674eb96bb74:/# more /host_etc/shadow
root:!1:16230:0:99999:7:::

daemon:*:16230:0:99999:7:::

bin:*:16230:0:99999:7:::

SysS:*:16230:0:99999:7:::

irc:*:16230:0:99999:7:::

nobody: *:16230:0:99999:7:::

libuuid:!:16230:0:99999:7:::

syslog:*:16230:0:99999:7:::

messagebus: *:16230:0:99999:7:::

kmatthias:1aTAYQT. j$3xamPL3dHGOW4ITBdRh1:16230:0:99999:7:::
sshd:*:16230:0:99999:7: ::

1xc-dnsmasq:!:16458:0:99999:7: ::

Here we’ve used the -v switch to Docker to tell it to mount a host path into the container.
The one we’ve chosen is /etc, which is a dangerous thing to do. But it serves to prove a
point: we are root in the container and root has file permissions in this path. So we can
look at the real /etc/shadow file any time we like. There are plenty of other things you
could do here, but the point is that by default you’re only partly constrained.

It is a bad idea to run your container processes with UID 0. This is because any exploit that allows the
process to somehow escape its namespaces will expose your host system to a fully privileged process. You
should always run your standard containers with a non-privileged UID.

Privileged containers

There are times when you need your container to have special kernel capabilities that
would normally be denied to the container. This could include many things like mounting
a USB drive, modifying the network configuration, or creating a new Unix device.

In the following code, we try to change the MAC address of our container:

$ docker run --rm -ti ubuntu /bin/bash

root@b328e3449da8:/# ip link 1s

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state..
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

9: eth@: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state..
link/ether 02:42:0a:00:00:04 brd ff:ff:ff:ff:ff:ff

root@h328e3449da8:/# ip link set eth@® address 02:0a:03:0b:04:0c

RTNETLINK answers: Operation not permitted

root@h328e3449da8: /# exit

As we can see, it doesn’t work. This is because the underlying Linux kernel blocks the
nonprivileged container from doing this, which is exactly what we normally want.
However, assuming that we need this functionality for our container to work as intended,
the easiest way to significantly expand a container’s privileges is by launching it with the
--privileged=true argument:

$ docker run -ti --rm --privileged=true ubuntu /bin/bash

root@88d9di17dc13c:/# ip link 1s

1: lo: <LOOPBACK,UP, LOWER_UP> mtu 65536 qdisc noqueue state..
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

9: eth®: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state..
link/ether 02:42:0a:00:00:04 brd ff:ff:ff:ff:ff.ff

root@88d9d17dc13c:/# ip link set eth® address 02:0a:03:0b:04:0c

root@88d9d1i7dc13c:/# ip link 1ls

1: lo: <LOOPBACK, UP, LOWER_UP> mtu 65536 gdisc noqueue state..
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

9: eth®: <BROADCAST,UP, LOWER_UP> mtu 1500 qdisc noqueue state..
link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff.ff

root@88d9di17dc13c:/# exit

In the preceding output, you will notice that we no longer get the error and the
link/ether entry for etho has been changed.

The problem with using the --privileged=true argument is that you are giving your

http://bit.ly/1F9loIz

container very broad privileges, and in most cases you likely only need one or two kernel
capabilities to get the job done.

If we explore our privileged container some more, we will discover that we have
capabilities that have nothing to do with changing the MAC address. I can even do things
that could cause issue with both Docker and the host system. In the following code, we are
going to create a memory swapfile! and enable it:

$ docker run -ti --rm --privileged=true ubuntu /bin/bash
root@offcdd8f7535:/# dd if=/dev/zero of=/swapfilel bs=1024 count=100
100+0 records in

100+0 records out

102400 bytes (102 kB) copied, 0.00046004 s, 223 MB/s
root@offcdd8f7535:/# mkswap /swapfilel

Setting up swapspace version 1, size = 96 KiB

no label, UUID=fc3d6118-83df-436e-867f-87e9fbce7692
root@offcdd8f7535:/# swapon /swapfilel
root@0ffcdd8f7535:/# swapoff /swapfilel
root@offcdd8f7535:/# exit

exit

In the previous example, if you do not disable the swapfile before exiting your container, you will leave
your Docker host in a bad state where Docker can’t destroy the container because your host is accessing a
swapfile that is inside the container’s filesystem.

In that case, the error message will look something like this:

FATAL [0049] Error response from daemon:
Cannot destroy container 0Off..670:

Driver overlay failed to remove root filesystem Off..670:
remove /var/lib/docker/overlay/0ff..670/upper/swapfilel:
operation not permitted

You can fix this from the Docker server by running:

$ sudo swapoff /var/lib/docker/overlay/0ff..670/upper/swapfilel

So as we’ve seen, it is possible for people to do bad things in a fully privileged container.

To change the MAC address, the only kernel capability we actually need is
CAP_NET_ADMIN. Instead of giving our container the full set of privileges, we can give it
this one privilege by launching our Docker container with the - -cap-add argument, as
shown here:

$ docker run -ti --rm --cap-add=NET_ADMIN ubuntu /bin/bash

root@852d18f5c38d:/# ip link set eth® address 02:0a:03:0b:04:0c

root@852d18f5c38d:/# ip link 1ls

1: lo: <LOOPBACK, UP, LOWER_UP> mtu 65536 qdisc noqueue state..
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

9: eth®: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state..
link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff.ff

root@852d18f5c38d:/# exit

You should also notice that although we can change the MAC address, we can no longer
use the swapon command inside our container.

$ docker run -ti --rm --cap-add=NET_ADMIN ubuntu /bin/bash
root@848aa7924594:/# dd if=/dev/zero of=/swapfilel bs=1024 count=100
100+0 records in

100+0 records out

102400 bytes (102 kB) copied, 0.000575541 s, 178 MB/s
root@848aa7924594:/# mkswap /swapfilel

Setting up swapspace version 1, size = 96 KiB

no label, UUID=3b365d90-8116-46ad-80c5-24341299dc41
root@848aa7924594:/# swapon /swapfilel

swapon: /swapfilel: swapon failed: Operation not permitted
root@848aa7924594: /# exit

By using both the - -cap-add and - -cap-drop arguments to docker run, you can finely
control the Linux kernel capabilities that your container has.

SElinux, AppArmor

Earlier we talked about how containers are a combination of two or three things: cgroups,
namespaces, and SELinux or AppArmor. We’re going to talk about the latter two systems
now. They allow you to apply security controls that extend beyond those normally
supported by Unix systems. SELinux originally came out of the US National Security
Agency and supports very fine-grained control. AppArmor is an effort to achieve many of
the same goals without the level of complication involved in SELinux. It actually predates
SELinux, having first appeared in 1998 in the Immunix Linux distribution. Novell, SuSE,
and Canonical have been some of its recent champions.

Docker ships by default with reasonable profiles enabled on platforms that support them.
This means that on Ubuntu systems, AppArmor is enabled and configured, and on
CentOS/RHEL/Fedora systems, SELinux is. You can further configure these profiles to
prevent things like what we’ve just done in Chapter 9, and if you’re running Docker in
production, you should do a risk analysis and determine if this is something you should
look at. Here’s a quick outline of the benefits we’re getting from these systems.

They provide what is known as Mandatory Access Control. This is a class of security
system where a system-wide security policy grants users (or “initiators”) access to a
resource (or “target”). What this allows you to do is to prevent anyone, including root,
from accessing a part of the system that they should not have access to. You can apply the
policy to a whole container so that all processes are constrained. Many chapters would be
required to give a very clear overview of how to configure these systems in detail. The
default profiles are doing things like blocking access to parts of the /proc and /sys
filesystems that would be dangerous to expose in the container, even though they show in
the container’s namespace. They also provide more narrowly scoped mount access to
prevent containers from getting ahold of mount points they should not see.

If you are considering using Docker containers in production, you should make certain
that the systems you are running have AppArmor or SELinux enabled and running. For
the most part, both systems are reasonably equivalent. But in the Docker context, one
notable limitation of SELinux is that it only works fully on systems that support filesystem
metadata, which means that it won’t work for you on BTRFS-backed Docker daemons, for
example. Only the devicemapper backend currently fully supports SELinux.

Unfortunately, that backend is also not currently very stable for production. The
OverlayFS backend is going to support this shortly. AppArmor, on the other hand, does
not use filesystem metadata and so works on all of the Docker backends. Which one you
use is going to be somewhat distribution-centric, so you may be forced to choose a
filesystem backend based on which distribution you run.

How Secure Is the Docker Daemon?

From a security standpoint, the Docker daemon is the only completely new risk you are
introducing to the network. Your containerized applications are not less secure and are at
least a little more secure than they would be if deployed outside of containers. But without
the containers, you would not be running the daemon. You can run Docker such that it
doesn’t expose any ports on the network. In this model, you’d need to do something like
set up an SSH tunnel to each Docker server if you wanted to control the containers. That’s
not very useful, so nearly everyone will expose one or more ports on the local network.

The default configuration for Docker on all the distributions we’re familiar with leave
Docker isolated from the network with only a local Unix socket exposed. Since you
cannot remotely administer Docker when it is set up this way, many people add the
nonencrypted port 2375 to the configuration. This is great for getting going with Docker,
and depending on your security analysis it might be all right for you. But it’s probably not
what you should do in any environment where you need a reasonable level of security.

You can do a few things to tighten Docker down that make sense in most production
environments. But no matter what you do, you are relying on the Docker daemon itself to
be resilient against things like buffer overflows and race conditions, two of the more
common classes of security vulnerabilities. This is true of any network service. The risk is
perhaps a little higher from Docker because it has access to control all of your
applications, and because of the privileges required, it has to run as root.

The basics of locking Docker down are common with many other network daemons:
encrypt your traffic and authenticate users. The first is reasonably easy to set up on Docker
and the second is not as easy. If you have certificates you can use for protecting HTTP
traffic to your hosts, such as a wildcard cert for your domain, you can turn on TLS support
to encrypt all of the traffic to your Docker servers. This is a good step. The Docker
documentation will walk you through doing this.

Authorization is more complicated: Docker does not provide any kind of fine-grained
authorization: you either have access or you don’t. But the authentication control it does
provide is reasonably strong: signed certificates. Unfortunately this also means that you
don’t get a cheap step from no authentication to some authentication without also having
to set up your own certificate authority in most cases. If your organization already has one,
then you are in luck. Certificate management needs to be implemented carefully in any
organization both to keep them secure and to distribute them efficiently. So, given that,
here are the basic steps:

1. Set up a method of generating and signing certificates.
2. Generate certificates for the server and clients.
3. Configure Docker to require certificates with - -t1lsverify.

Detailed instructions on getting a server and client set up, as well as a simple certificate

https://docs.docker.com/articles/https/

authority are included in the Docker documentation.

Because it’s a daemon that runs with privilege, and because it has direct control of your
applications, it’s probably not a good idea to expose Docker directly on the Internet. If you
need to talk to your Docker hosts from outside your network, you should consider
something like a VPN or an SSH tunnel to a jump host.

https://docs.docker.com/articles/https/

Networking

Early on we described the layers of networking that are in place between a Docker
container and the real live network. Let’s take a closer look at how that works. Figure 10-1
shows a drawing of a typical Docker server, where there are three containers running on
their private network, shown on the right. One of them has a public port (TCP port 10520)
that is exposed on the Docker server. We’ll track how an inbound request gets to the
Docker container and also how a Docker container can make an outbound connection to
the external network.

Virtual Network

Docker Server

R

TCP 80 Container 1

Network €——

S

docker0

172.16.23.7 Container 2
_‘

\
Container 3

Outbound S

Request 172.16.23.1
from Container

Inbound Request
to Exposed Port
TCP 10520

docker-proxy

Figure 10-1. Swarm Manager controlling Docker cluster

If we have a client somewhere on the network that wants to talk to the nginx server
running on TCP port 80 inside Container 1, the request will come into the etho interface
on the Docker server. Because Docker knows this is a public port, it has spun up an
instance of docker -proxy to listen on port 10520. So our request is passed to the docker -
proxy process, which then makes the request to the correct container address and port on
the private network. Return traffic from the request flows through the same route.

Outbound traffic from the container follows a different route, in which the docker-proxy
is not involved at all. In this case, Container 3 wants to contact a server on the public
Internet. It has an address on the private network of 172.16.23.1 and its default route is the
dockero interface 172.16.23.7. So it sends the traffic there. The Docker server now sees
that this traffic is outbound and it has traffic forwarding enabled. And since the virtual
network is private, it wants to send the traffic from its own public address instead. So the
request is passed through the kernel’s network address translation layer (NAT) and put
onto the external network via the etho interface on the server. Return traffic passes
through the same route. Note that the NAT is one-way, so containers on the virtual
network will see real network addresses in response packets.

You’ve probably noted that it’s not a simple configuration. It’s a fair amount of
mechanism, but it makes Docker seem pretty transparent. It’s also a contributor to the
security posture of the Docker stack because the containers are namespacd into their own
network namespace, are on their own private network, and don’t have access to things like
the main system’s DBus or [PTables.

Let’s take a look at what is happening at a more detailed level. The interfaces that show up
in ifconfig or ip addr show in the Docker container are actually virtual Ethernet

interfaces on the Docker server’s kernel. They are then mapped into the network
namespace of the container and given the names that you see inside the container. Let’s
take a look at what we see when running ip addr show on a Docker server. We’ll shorten

the output a little for clarity and typesetting issues, as shown here:

ip addr show
lo: <LOOPBACK, UP, LOWER_UP>
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host
valid_1ft forever preferred_l1ft forever
2: eth®: <BROADCAST,MULTICAST, UP, LOWER_UP>
link/ether 00:0c:29:b2:2a:21 brd ff:ff:ff:ff:ff:ff
inet 172.16.168.178/24 brd 172.16.168.255 scope global eth®
inet6 fe80::20c:29ff:feb2:2a21/64 scope link
valid_1ft forever preferred_lft forever
4: docker®: <BROADCAST,MULTICAST, UP, LOWER_UP>
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
inet 172.17.42.1/16 scope global dockero
inet6 fe80::5484:7aff:fefe:9799/64 scope link
valid_1ft forever preferred_l1ft forever
112: vethf3e8733: <BROADCAST, UP, LOWER_UP>
link/ether b6:3e:7a:ba:5e:1c brd ff:ff:ff:ff:ff:ff
inet6 fe80::b43e:7aff:feba:5elc/64 scope link
valid_1ft forever preferred_lft forever

= &

What that is telling us is that we have the normal loopback interface, our real Ethernet
interface etho, and then the Docker bridge interface, dockero, that we described earlier.
This is where all the traffic from the Docker containers is picked up to be routed outside
the virtual network. The surprising thing in this output is that vethf3e8733 interface.
When Docker creates a container, it creates two virtual interfaces, one of which sits on the
server-side and is attached to the dockero bridge, and one that is exposed into the
container’s namespace. What we’re seeing here is the server side interface. Notice how it
doesn’t show up as having an IP address assigned to it? That’s because this interface is just
joined to the bridge. This interface will also have a totally different name in the
container’s namespace as well.

It would be entirely possible to run a container without the whole networking
configuration that Docker puts in place for you. And the docker-proxy can be somewhat
throughput limiting for very high-volume data services. So what does it look like if we
turn it off? Docker lets you do this on a per-container basis with the - -net=host
command-line switch. There are times, like when you want to run high throughput
applications, where you might want to do this. But you lose some of Docker’s flexibility
when you do it. Even if you never need or want to do this, it’s useful to expose how the

mechanism works underneath.

Like other things in this chapter, this is not a setting you should take lightly. It has operational and security
implications that might be outside your tolerance level. It can be the right thing to do, but you should
consider the repercussions.

Let’s start a container with - -net=host and see what happens, as shown here:

docker run -i -t --net=host ubuntu /bin/bash
ip addr show
lo: <LOOPBACK, UP, LOWER_UP>
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
2: eth®: <BROADCAST,MULTICAST, UP, LOWER_UP>
link/ether 00:0c:29:b2:2a:21 brd ff:ff:ff:ff:ff:ff
inet 172.16.168.178/24 brd 172.16.168.255 scope global eth®
inet6 fe80::20c:29ff:feb2:2a21/64 scope link
valid_1ft forever preferred_1ft forever
3: 1xchbr®: <BROADCAST,MULTICAST, UP, LOWER_UP>
link/ether fe:59:0b:11:c2:76 brd ff:ff:ff:ff:ff:ff
inet 10.0.3.1/24 brd 10.0.3.255 scope global 1lxcbre
inet6 fe80::fc59:bff:fell:c276/64 scope link
valid_1ft forever preferred_lft forever
4: docker®: <BROADCAST,MULTICAST, UP, LOWER_UP>
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff.ff
inet 172.17.42.1/16 scope global dockero
inet6 fe80::5484:7aff:fefe:9799/64 scope link
valid_1ft forever preferred_lft forever
112: vethf3e8733: <BROADCAST, UP, LOWER_UP>
link/ether b6:3e:7a:ba:5e:1c brd ff:ff:ff:ff:ff:ff
inet6 fe80::b43e:7aff:feba:5elc/64 scope link
valid_1ft forever preferred_lft forever

R &% e

That should look pretty familiar. That’s because when we run a container with the host
networking option, we’re just in the host’s network namespace. Note that we’re also in the
server’s UTS namespace. Our server’s hostname is “docker2,” so let’s see what the
container’s hostname is:

$ hostname
docker2

If we do a mount to see what’s mounted, though, we see that Docker is still maintaining
our /etc/resolv.conf, /etc/hosts, and /etc/hostname. Interestingly, the
/etc/hostname simply contains the server’s hostname. Just to prove that we can see all
the normal networking on the Docker server, let’s look at netstat -an and see if we can
see the docker daemon running;:

$netstat -an | grep 2375
tcp6 (¢} 0 :::2375 A LISTEN

So we are indeed in the server’s network namespace. What all of this means that if we
were to launch a high-throughput network service, we would be able to expect network
performance from it that is essentially native. But it also means we could bind to ports that

would collide with those on the server, so if you do this you should be careful about how
you allocate port assignments.

There is a lot more you can configure with the Docker network layer. But the defaults and
the host networking are the two you’re most likely to use or encounter in the wild. But
some of the other things you can configure, for example, are the DNS servers that are
used, the DNS search domain, your own bridge interface, and more. The networking
section of the Docker documentation gives an overview of how to do some of these things.

NOTE

For advanced network configuration of Docker, check out Weave — a virtual network tool for spanning
containers across multiple Docker hosts. And if you are going to be using Kubernetes, take a look at
CoreOS’s flannel, which is an etcd-backed network fabric for containers.

! Swapfiles are used to virtually extend your system’s memory capacity by giving it access
to a large file for additional storage space.

https://docs.docker.com/articles/networking/
https://github.com/zettio/weave
https://github.com/coreos/flannel

Chapter 11. Designing Your Production
Container Platform

When implementing any core technology in production, the most mileage is often gained
by designing a resilient platform that is forgiving of the unexpected issues that will
eventually occur. When used as intended, with close attention to detail, Docker can be an
incredibly powerful tool. As a young technology that is going through very rapid growth
cycles, you are bound to trigger frustrating bugs in Docker and its interactions with the
underlying kernel.

If, instead of simply deploying Docker into your environment, you take the time to build a
well-designed container platform on top of Docker, you can enjoy the many benefits of a
Docker-based workflow while protecting yourself from some of the sharper exposed edges
that typically exist in such a high-velocity project.

Like all other technology, Docker doesn’t magically solve all your problems. To reach its
true potential, organizations must make very conscious decisions about why and how they
are going to use it. For very small projects, it is possible to use Docker in a very simple
manner; however, if you plan to support a large project that can scale with demand, it
quickly becomes important to ensure that you are making very deliberate decisions about
how your applications and platform are designed. This ensures that you can maximize the
return on your investment in the technology. Taking the time to design your platform with
intention can also make it much easier to modify your production workflow over time. A
well-designed Docker platform will ensure that your software is running on a dynamic
foundation that can easily be upgraded as technology and processes develop over time.

Below we will explore some of the leading thinking about how container platforms should
be designed to improve the resiliency and supportability of the overall platform.

The Twelve-Factor App

In November of 2011, Adam Wiggins, cofounder of Heroku, and his colleagues, released
an article called “The Twelve-Factor App.” This document describes a series of 12
distilled practices that come from the experiences of Heroku engineers on how to design
applications that will thrive and grow in a modern Software-as-a-Service (SaaS)
environment.

Although not required, applications built with these 12 steps in mind are ideal candidates
for the Docker workflow. Below we explore each of these steps and why they can, in
numerous ways, help improve your development cycle.

http://12factor.net

Codebase
A single codebase tracked in revision control.

Many instances of your application will be running at any given time, but they should all
come from the same code repository. Each and every Docker image of an application
should be built from a single source code repository that contains all the code required to
build the Docker container. This ensures that the code can easily be rebuilt, and that all
third-party requirements are well defined within the repository, if not actually directly
included.

What this means is that building your application shouldn’t require stitching together code
from multiple source repositories. That is not to say that you can’t have a dependency on
an artifact from another repo. But it does mean that there should be a clear mechanism for
determining which pieces of code were shipped when you built your application. Docker’s
ability to simplify dependency management is much less useful if building your
application requires pulling down mutiple source code repositories and copying pieces
together. And it’s not repeatable unless you know the magic incantation.

Dependencies
Explicitly declare and isolate dependencies.

Never rely on the belief that a dependency will be made available via some other avenue,
like the operating system install. Any dependencies that your application requires should

be well-defined in the code base and pulled in by the build process. This will help ensure

that your application will run when deployed, without relying on libraries being installed

by other processes. This is particularly important within a container since the container’s

processes are isolated from the rest of the host operating system and will usually not have
access to anything outside the container image’s filesystem.

The Dockerfile and language-dependent configuration files like Node’s package.json or
Ruby’s Gemfile should define every nonexternal dependency required by your application.
This ensures that your image will run correctly on any system to which it is deployed.
Gone will be the days when you deploy and run your application only to find out that
important libraries are missing or installed with wrong version. This has huge reliability
and repeatability advantages, and very positive ramifications for system security. If you
update the OpenSSL or 1ibyaml libraries that your Dockerized application uses to fix a
security issue, you can be assured that it will always be running with that version
wherever you deploy that particular application.

It is also important to note that most Docker base images are actually much larger than
they need to be. Remember that your application process will be running on a shared
kernel, and the only files that you actually need inside your base image are ones that the
process will require to run. It’s good that the container makes this repeatable. But it can
sometimes mask hidden dependencies. Although people often start with a minimal install
of Ubuntu or centos, these images still contain a lot of operating system files that your
process almost certainly does not need, or possibly some that you rely on and don’t realize
it. You need to be in charge of your dependencies, even when containerizing your
application.

A good way to shed light on the depth of your application’s dependency tree is to compare
it to a container for a statically linked program written in a language like Go or C. They
don’t need any libraries or command-line binaries. To explore what one of these ultra-light
containers might look like, let’s run a statically linked Go program in a container by
executing the following command:

$ docker run --publish=8085:8080 --detach=true \
--name=static-helloworld adejonge/helloworld:latest
365cc5ddb0c40a50763217c66be26959933028631ef24a60a7da9944971587a3

Keep a copy of the long ID hash for your container, because you will need it in a moment.
If you now point a local web browser at port 8085 on your Docker server (i.e.,

http://172.17.42.10:8085/) you would see the message:

Hello World from Go in minimal Docker container

http://172.17.42.10:8085/

Contrary to everything we’ve looked at in this book so far, this very minimal container
does not contain a shell or SSH. This means we can’t use ssh, nsenter, or docker exec to
examine it. Instead we can examine the container’s filesystem by logging directly into the
Docker server via ssh, and then looking into the container’s filesystem itself. To do that,
we need to find the filesystem on the server’s disk. We do this by first running docker
info to determine the root directory for the storage driver.

$ docker info..
Storage Driver: aufs
Root Dir: /mnt/sdal/var/lib/docker/aufs..

NOTE

The Docker Root Dir and the Root Dir are not the same things. We specifically want the Root Dir listed
under Storage Driver.

By combining the Docker root directory and the container hash into a file path, it is
possible to view the container’s filesystem from the Docker server. You might need to
poke around in the storage driver’s root directory a bit to determine the exact location of
the container filesystems. In our case, it is under the additional directory called mnt.

If we now list the files in that directory, we will discover that the number of files in this
container is incredibly small:

$ 1s -R /mnt/sdal/var/lib/docker/aufs/mnt/36..a3
/mnt/sdal/var/lib/docker/aufs/mnt/36..a3:
dev/ etc/ helloworld proc/ sys/

/mnt/sdal/var/lib/docker/aufs/mnt/36..a3/dev:
console pts/ shm/

/mnt/sdal/var/lib/docker/aufs/mnt/36..a3/dev/pts:
/mnt/sdal/var/lib/docker/aufs/mnt/36..a3/dev/shm:

/mnt/sdal/var/lib/docker/aufs/mnt/36..a3/etc:
hostname hosts mtab resolv.conf

/mnt/sdal/var/lib/docker/aufs/mnt/36..a3/proc:

/mnt/sdal/var/lib/docker/aufs/mnt/36..a3/sys:

You can see that in addition to console device and basic /etc files, the only other file is
the helloworld binary, which contains everything our simple web application needs to run
on a modern Linux kernel, and hence from within a container.

In addition to the filesystem layers used by Docker, keeping your containers stripped
down to the bare necessities is another great way to keep your images slim and your
docker pull commands fast. It’s much harder to do with interpreted languages living in a
container. But the point is that you should try to keep as minimal a base layer as needed so
that you can reason about your dependencies. Docker helps you package them up, but you
still need to be in charge of them.

Config
Store configuration in environment variables, not in files checked into the code base.

This makes it simple to deploy the exact same code base to different environments, like
staging and production, without maintaining complicated configuration in code or
rebuilding your container for each environment. This keeps your code base much cleaner
by keeping environment-specific information like database names and passwords out of
your source code repository. More importantly though, it means that you don’t bake
deployment environment assumptions into the repository, and because of that it is
extremely easy to deploy your applications anywhere that it might be useful. You also
need to be able to test the same image you will ship to production. You can’t do that if you
have to build an image for each environment with all of its configuration baked in.

As discussed in Chapter 5, this can be achieved by launching docker run commands that
leverage the -e command-line argument. Using -e APP_ENV=production tells Docker to

set the environment variable APP_ENYV to the value “production” within the newly
launched container.

For a real-world example, let’s assume we pulled the image for the chat robot hubot with

the HipChat adapter installed. We’d issue something like the following command to get it
running:

docker run \
-e BIND_ADDRESS="0.0.0.0"
-e ENVIRONMENT="development" \
-e SERVICE_NAME="hubot" \
-e SERVICE_ENV="development" \
-e EXPRESS_USER="hubot" \
-e EXPRESS_PASSWORD="Chd273gdEXAmMP13wlkjdf" \
-e PORT="8080" \
-e HUBOT_ADAPTER="hipchat" \
-e HUBOT_ALIAS="/" \
-e HUBOT_NAME="hubot" \
-e HUBOT_HIPCHAT_JID="someroom@chat.hipchat.com" \
-e HUBOT_HIPCHAT_PASSWORD='SOMEEXAMPLE"' \
-e HUBOT_HIPCHAT_NAME="hubot" \
-e HUBOT_HIPCHAT_ROOMS="anotherroom@conf.hipchat.com" \
-e HUBOT_HIPCHAT_JOIN_ROOMS_ON_INVITE="true" \
-e REDIS_URL="redis://redis:6379" \
-d --restart="always" --name hubot hubot:latest

Here we are passing a whole set of environment variables into the container when it is
created. When the process is launched in the container, it will have access to these
environment variables so that it can properly configure itself at runtime. These
configuration items are now an external dependency that we can inject at runtime.

In the case of a Node.js application like hubot, you could then write the following code to
make decisions based on these environment variables:
switch(process.env.ENVIRONMENT){
case 'development':

console.log('Running in development');

case 'staging':
console.log('Running in staging');

https://www.hipchat.com/

case 'production':
console.log('Running in production');

default:
console.log('Assuming that I am running in development');

Keeping specific configuration information out of your source code makes it very easy to
deploy the exact same container to multiple environments, with no changes and no
sensitive information committed into your source code repository. Crucially, it supports
testing your container images thoroughly before deploying to production by allowing the
same image to be used in both environments.

Backing Services
Treat backing services as attached resources.

Local databases are no more reliable than third-party services, and should be treated as
such. Applications should handle the loss of an attached resource gracefully. By
implementing graceful degradation in your application and ensuring that you never
assume that any resource, including filesystem space, is available, your application will
continue to perform as many of its functions as it can, even when external resources are
unavailable.

This isn’t something that Docker helps you with directly, and although it is always a good
idea to write robust services, it is even more important when you are using containers.
High availability is most often achieved through horizontal scaling and rolling
deployments when using containers, instead of relying on the live migration of long-
running process, like on traditional virtual machines. This means that specific instances of
a service will often come and go over time and your service should be able to handle this
gracefully.

Additionally, because Docker containers have limited filesystem resources, you can’t
simply rely on having some local disk available. You need to plan that into your
application’s dependencies and handle it explicitly.

Build, Release, Run
Strictly separate build and run stages.

Build the code, release it with the proper configuration, and then deploy it. This ensures
that you maintain control of the process and can perform any single step without
triggering the whole workflow. By ensuring that each of these steps are self-contained in a
distinct process, it allows you to tighten the feedback loop and react more quickly to any
problems within the deployment flow.

As you design your Docker workflow, you want to ensure that each step in the deployment
process is clearly separated. It is perfectly fine to have a single button, that builds a
container, tests it, and then deploys it, assuming that you trust your testing processes —
but you don’t want to be forced to rebuild a container simply in order to deploy it to
another environment.

Docker supports the twelve-factor ideal well in this area because there is a clean hand-off
point between building an image and shipping it to production: the registry. If your build
process generates images and pushes them to the registry, then deployment can simply be
pulling the image down to servers and running it.

Processes
Execute the app as one or more stateless processes.

All shared data must be accessed via a stateful backing store, so that application instances
can easily be redeployed without losing any important session data. You don’t want to
keep critical state on disk in your ephemeral container, nor in the memory of one of its
processes. Containerized applications should always be considered ephemeral. A truly
dynamic container environment requires the ability to destroy and recreate containers at a
moment’s notice. This flexibility helps enable the rapid deployment cycle and outage
recovery demanded by modern, Agile workflows.

As much as possible, it is preferable to write applications that do not need to keep state
longer than the time required to process and respond to a single request. This ensures that
the impact of stopping any given container in your application pool is very minimal. When
you must maintain state, the best approach is to use a remote datastore like Redis,
PostgreSQL, Memcache, or even Amazon S3, depending on your resiliency needs.

Port Binding
Export services via port binding.

Your application needs to be addressable by a port specific to itself. Applications should
bind directly to a port to expose the service and should not rely on an external daemon like
inetd to handle that for them. You should be certain that when you’re talking to that port,
you’re talking to your application. Most modern web platforms are quite capable of
directly binding to a port and servicing their own requests.

Exposing a port from your container, as discussed in Chapter 4, can be achieved by
launching docker run commands that use the -p command-line argument. Using -p
80:8080 would tell Docker to proxy the container’s port 80 on the host’s port 8080.

The statically linked Go hello world container that we discussed in “Dependencies” is a
great example of this because the container contains nothing but our application to serve
its content to a web browser. We did not need to include any additional web servers, which
would require additional configuration, add additional complexity, and increase the
number of potential failure points in our system.

Concurrency
Scale out via the process model.

Design for concurrency and horizontal scaling within your applications. Increasing the
resources of an existing instance can be difficult and hard to reverse. Adding and
removing instances as scale fluctuates is much easier and helps maintain flexibility in the
infrastructure. Launching another container on a new server is incredibly inexpensive
compared to the effort and expense required to add resources to an underlying virtual or
physical system. Designing for horizontal scaling allows the platform to react much faster
to changes in resource requirements.

This is where tools like swarm, mesos, and kubernetes really begin to shine. Once you
have implemented a Docker cluster with a dynamic scheduler, it is very easy to add three
more instances of a container to the cluster as load increases, and then to later remove two
instances of your application from the cluster as load starts to decrease again.

Disposability
Maximize robustness with fast startup and graceful shutdown.

Services should be designed to be ephemeral. We already talked a little bit about this when
talking about external state. But dynamic horizontal scaling, rolling deploys, and
responding to unexpected problems require applications that can quickly and easily be
started or shut down. Services should respond gracefully to a SIGTERM signal from the
operating system and even handle hard failures with aplomb. Most importantly, we
shouldn’t need to care if any given container for our application is up and running. As
long as requests are being served, the developer should be freed from being concerned
about the health of any given single component within the system. If an individual node is
behaving poorly, turning it off or redeploying it should be an easy decision that doesn’t
entail long planning sessions and concerns about the health of the rest of the cluster.

As discussed in Chapter 8, Docker sends standard Unix signals to containers when it is
stopping or Kkilling them, therefore it is possible for any containerized application to detect
these signals and take the appropriate steps to shut down gracefully.

Development/Production Parity
Keep development, staging, and production as similar as possible.

The same processes and artifacts should be used to build, test, and deploy services into all
environments. The same people should do the work in all environments, and the physical
nature of the environments should be as similar as reasonably possible. Repeatability is
incredibly important. Almost any issue discovered in production points to a failure in the
process. Every area where production diverges from staging is an area where risk is being
introduced into the system. These inconsistencies ensure that you are blind to certain types
of issues that could occur in your production environment until it is too late to proactively
deal with them.

In many ways, this repeats the essence of a few of the early recommendations. However,
the specific point here is that any environment divergence introduces risks, and although
these differences are common in many organizations, they are much less necessary in a
containerized environment. Docker servers can normally be created so that they are
identical in all of your environments and environment-based configuration changes, and
should typically only affect which endpoints your service connects to without specifically
changing the applications behavior.

Logs
Treat logs as event streams.

Services should not concern themselves with routing or storing logs. Instead, events
should be streamed, unbuffered, to STDoUT for handling by the hosting process. In
development, STDOUT can be easily viewed, while in staging and production, the stream
can be routed to anything, including a central logging service. Different environments
have different exceptions for log handling. This logic should never be hard-coded into the
application. By streaming everything to STDOUT, it is possible for the top-level process
manager to handle the logs via whichever method is best for the environment, and this
allows the application developer to focus on core functionality.

In Chapter 6, we discussed the docker logs command which collects the output from
your container’s STDOUT and records them as logs. If you write logs to random files within

the container’s filesystem, you will not have easy access to them. It is also possible to send
logs to a local or remote logging system using things like rsyslog or heka.

If you use a process manager or init system, like upstart, systemd, or supervisord with
the remote-logging plug-in, it is usually very easy to direct all process output to STDOUT
and then have your process monitor capture it and send it to a remote logging host.

Admin Processes
Run admin/management tasks as one-off processes.

One-off administration tasks should be run via the exact same code base and configuration
that the application uses. This helps avoid problems with synchronization and
code/schema drift problems. Oftentimes, management tools exist as one-off scripts or live
in a completely different code base. It is much safer to build management tools within the
application’s code base, and utilize the same libraries and functions to perform required
work. This can significantly improve the reliability of these tools by ensuring that they
leverage the same code paths that the application relies on to perform its core
functionality.

What this means is that you should never rely on random cron-like scripts to perform
administrative and maintenance functions. Instead, include all of these scripts and
functionality in your application code base. Assuming that these don’t need to be run on
every instance of your application, you can launch a special short-lived container
whenever you need to run a maintenance job, which simply executes the one job, reports
its status somewhere, and then exits.

Twelve-Factor Wrap-Up

While it wasn’t written as a Docker-specific manifesto, almost all of this can be applied to
writing and deploying applications on a Docker platform. This is in part because “The
Twelve-Factor App” document heavily influenced the design of Docker, and in part
because the manifesto itself codified many of the best practices promoted by modern
software architects.

The Reactive Manifesto

Riding alongside “The Twelve-Factor App,” another pertinent document was released in
July of 2013 by Jonas Bonér, cofounder and CTO of Typesafe: “The Reactive Manifesto.”
Jonas originally worked with a small group of contributors to solidify a manifesto that
discusses how the expectations for application resiliency have evolved over the last few
years, and how applications should be engineered to react in a predictable manner to
various forms of interaction, including events, users, load, and failures.

In the Manifesto, it states that “Reactive Systems” are responsive, resilient, elastic, and
message-driven.

http://bit.ly/1F9pHng
http://www.reactivemanifesto.org
http://bit.ly/1F9pMHJ

Responsive
The system responds in a timely manner if at all possible.

In general, this means that the application should respond to requests very quickly. User
simply don’t want to wait, and there is almost never a good reason to make them. If you
have a containerized service that renders large PDF files, design it so that it immediately
responds with a job submitted message so that the user can go about his day, and then
provide a message or banner that informs the user when the job is finished and where he
can download the resulting PDF.

Resilient
The system stays responsive in the face of failure.

When your application fails for any reason, the situation will always be worse if the
application becomes unresponsive. It is much better to handle the failure gracefully, and
dynamically reduce the application’s functionality or even display a simple but clear
problem message to the user while reporting the issue internally.

Elastic
The system stays responsive under varying workload.

With Docker, this is achieved by dynamically deploying and decommissioning containers
as requirements and load fluctuate so that your application is always able to handle server
requests quickly, without deploying a lot of underutilized resources.

Message Driven

Reactive systems rely on asynchronous message-passing to establish a boundary between
components.

Although not directly addressed by Docker, the idea here is that there are times when an
application can become busy or unavailable. If you utilize asynchronous message-passing
between your services, you can help ensure that your service will not lose requests and
that these will be processed as soon as possible.

In Summary

All four of these design features require application developers to design graceful
degradation and a clear separation of responsibilities into their applications. By treating all
dependencies as attached resources, properly designed, dynamic container environments
allow you to easily maintain n+2 status across your application stack, reliably scale
individual services in your environment, and quickly replace unhealthy nodes.

The core ideas in “The Reactive Manifesto” merge very nicely with “The Twelve-Factor
App” and the Docker workflow. These documents successfully attempt to frame many of
the most important discussions about the way you need to think and work if you want to
be successful in meeting new expectations in the industry. The Docker workflow provides
a practical way to implement many of these ideas in any organization in a completely
approachable way.

Chapter 12. Conclusion

We’ve had a pretty good tour through what Docker is and isn’t, and how it can benefit you
and your organization. We also mapped some of the common pitfalls. We have tried to
impart to you many of the small pieces of wisdom that we picked up from running Docker
in production. Our personal experience has shown that the promise of Docker is
realistically achievable, and we’ve seen significant benefits in our organization as a result.
Like other powerful technologies, Docker is not without its downsides, but the net result
has been a big positive for us, our teams, and our organization. If you implement the
Docker workflow and integrate it into the processes you already have in your organization,
there is every reason to believe that you can benefit from it as well. So let’s quickly review
the problems that Docker is designed to help you solve and some of the power it brings to
the table.

The Challenges

In traditional deployment workflows, there are all manner of required steps that
significantly contribute to the overall pain felt by teams. Every step you add to the
deployment process for an application increases the overall risk inherent in shipping it to
production. Docker combines a workflow with a simple tool set that is targeted squarely at
addressing these concerns. Along the way, it aims your development process toward some
industry best practices, and its opinionated approach leads to better communication and
more robustly crafted applications. Some of the specific problems that Docker can help
mitigate include:

m Qutdated build and release processes that require multiple levels of handoff between
development and operations teams.

m The giant build-deploy step required by many frontend sites that require asset
compilation, or dynamic languages that need dependencies to be assembled together.

= Divergent dependency versions required by applications that need to share the same
hardware.

= Managing multiple Linux distributions in the same organization.
» Building one-off deployment processes for each application you put into production.

m The constant need to patch dependencies for security vulnerabilities while running your
application in production.

By using the registry as a handoff point, Docker eases and simplifies communication
between operations and development teams, or between multiple development teams on
the same project. By bundling all of the dependencies for an application into one shipping
artifact, Docker eliminates concerns about which Linux distrubition developers want to
work on, which versions of libraries they need to use, and how they compile their assets or
bundle their software. It isolates operations teams from the build process and puts
developers in charge of their dependencies.

The Docker Workflow

Docker’s workflow helps organizations tackle really hard problems — some of the same
problems that DevOps processes are aimed at solving. A major problem in incorporating
DevOps successfully into a company’s processes is that many people have no idea where
to start. Tools are often incorrectly presented as the solution to what are fundamentally
process problems. Adding virtualization, automated testing, deployment tools, or
configuration management suites to the environment often just changes the nature of the
problem without delivering a resolution.

It would be easy to dismiss Docker as just another tool making unfulfillable promises
about fixing your business processes, but that would be selling it short. Where Docker’s
power meets the road is in the way that its natural workflow allows applications to travel
through their whole life cycle, from conception to retirement, within one ecosystem. That
workflow is often opinionated, but it follows a path that simplifies the adoption of some of
the core principles of DevOps. It encourages development teams to understand the whole
life cycle of their application, and allows operations teams to support a much wider variety

of applications on the same runtime environment. And that delivers value across the
board.

Minimizing Deployment Artifacts

Docker alleviates the pain induced by sprawling deployment artifacts. It does this by
defining the result of a build as a single artifact, the Docker image, which contains
everything your Linux application requires to run, and it executes it within a protected
runtime environment. Containers can then be easily deployed on modern Linux
distributions. But because of the clean split between Docker client and server, developers
can build their applications on non-Linux systems and still participate in the Linux
container environment remotely.

Leveraging Docker allows software developers to create Docker images that, starting with
the very first proof of concept release, can be run locally, tested with automated tools, and
deployed into integration or production environments without ever rebuilding them. This
ensures that the application will run in production in the exact same environment in which
it was built and tested. Nothing needs to be recompiled or repackaged during the
deployment workflow, which significantly lowers the normal risks inherent in most
deployment processes. It also means that a single build step replaces a typically error-
prone process that involves compiling and packaging multiple complex components for
distribution.

Docker images also simplify the installation and configuration of an application by
ensuring that every single piece of software that an application requires to run on a
modern Linux kernel is contained in the image, with nothing else that might cause
dependency conflicts in many environments. This makes it trivial to run multiple
applications that rely on different versions of core system software on the exact same
server.

Optimizing Storage and Retrieval

Docker leverages filesystem layers to allow containers to be built from a composite of
multiple images. This shaves a vast amount of time and effort off of many deployment
processes by shipping only significant changes across the wire. It also saves considerable
disk space by allowing multiple containers to be based on the same lower-level OS image,
and then utilizing a copy-on-write process to write new or modified files into a top layer.
This also helps in scaling an application by simply starting more copies on the same
servers without the need to push it across the wire for each new instance.

To support image retrieval, Docker leverages the image registry for hosting images. While
not revolutionary on the face of it, the registry actually helps split team responsibilities
clearly along the lines embraced by DevOps principles. Developers can build their
application, test it, ship the final image to the registry, and deploy the image to the
production environment, while the operations team can focus on building excellent
deployment and cluster management tooling that pulls from the registry, runs reliably, and
ensures environmental health. Operations teams can provide feedback to developers and
see it tested at build time rather than waiting to find problems when the application is
shipped to production. This enables both teams to focus on what they do best without a
multiphased handoff process.

The Payoff

As teams become more confident with Docker and its workflow, the realization often
dawns that containers create an incredibly powerful abstraction layer between all of their
software components and the underlying operating system. Done correctly, organizations
can begin to move away from the legacy need to create custom physical servers or virtual
machines for most applications, and instead deploy fleets of identical Docker hosts that
can then be used as a large pool of resources to dynamically deploy their applications to,
with an ease that was never before so smooth.

When these process changes are successful, the cultural impact within a software
engineering organization can be dramatic. Developers gain more ownership of their
complete application stack, including many of the smallest details, which would typically
be handled by a completely different group. Operations teams are simultaneously freed
from trying to package and deploy complicated dependency trees with little or no detailed
knowledge of the application.

In a well-designed Docker workflow, developers compile and package the application,
which makes it much easier to become more operationally focused and ensure that their
application is running properly in all environments, without being concerned about
significant changes introduced to the application environment by the operations teams. At
the same time, operations teams are freed from spending most of their time supporting the
application and can focus on creating a robust and stable platform for the application to
run on. This dynamic creates a very healthy environment where teams have clearer
ownership and responsibilities in the application delivery process, and friction between the
teams is significantly decreased.

Getting the process right has a huge benefit to both the company and the customers. With
organizational friction removed, software quality is improved, processes are streamlined,
and code ships to production faster. This all helps free the organization to spend more time
providing a satisfying customer experience and delivering directly to the broader business
objectives. A well-implemented Docker-based workflow can greatly help organizations
achieve those goals.

The Final Word

You are now armed with knowledge that we hope can help you with the process of getting
Docker into production. We encourage you to experiment with Docker on a small scale on
your laptop or in a VM to develop a strong understanding of how all of the pieces fit
together, and then consider how you might begin to implement it yourself. Every
organization or individual developer will follow a different path determined by their own
needs and competencies. If you’re looking for guidance on how to start, we’ve found
success in tackling the deployment problem first with simpler tools, and then moving on to
things like service discovery and distributed scheduling. Docker can be made as
complicated as you like, but as with anything, starting simple usually pays off.

We hope you can now go forth with the knowledge we’ve imparted and make good on
some of the promise for yourself.

Index

A

admin management, Admin Processes

Amazon AWS, Amazon EC2 Container Service-Configuration

(see also EC2 Container Service)
Amazon ECS (see EC2 Container Service)
Ansible, Orchestration Tools, Centurion
Apache Mesos, Distributed Schedulers, Docker at Scale

API (application programming interface), Application Programming Interface
(API), Container Stats

AppArmor, Containers in Detail, SElinux, AppArmor
architectural philosophy, The Promise of Docker

architecture, Architecture-Container Networking

API (application programming interface), Application Programming Interface
(API)

client/server model, Client/Server Model
command-line tool, Docker Command-Line Tool

container networking, Container Networking-Container Networking, Networking-
Networking

ports (see network ports)

tooling, Robust Tooling

(see also tools)

artifacts, packaged, Benefits of the Docker Workflow

atomic hosts, Atomic hosts-Atomic hosts, Important Terminology
AUFS, AUFS, Device Mapper, BTRFS, vfs

Azure, Docker at Scale

B
backend storage, Storage-AUFS, Device Mapper, BTRFS, vfs

backing services, Backing Services
base images, Custom Base Images
bind mounts, Hostname

Bonér, Jonas, The Reactive Manifesto

Boot2Docker, What Docker Isn’t, Docker Client, Non-Linux VM-Based Server

daemon configuration, Boot2Docker

installation, Mac OS X 10.10-Microsoft Windows 8
bridge interface, Container Networking
BTRFS, AUFS, Device Mapper, BTRFS, vfs
builds, Building, Build, Release, Run

bundling, Benefits of the Docker Workflow

C

cAdyvisor, cAdvisor-cAdvisor
Centurion, Orchestration Tools, Docker at Scale, Centurion-Centurion

cgroups, Control Groups (cgroups)-The /sys filesystem

freezer, Pausing and Unpausing a Container
and LXC execution drivers, The LXC execution driver

and the /sys Filesystem, The /sys filesystem-The /sys filesystem

client/server model, Client/Server Model

cloud deployment, Docker at Scale, Amazon EC2 Container Service-Wrap-Up

(see also EC2 Container Service)
cloud platforms, What Docker Isn’t, Docker at Scale-Docker at Scale
cloud-init tool, Vagrant
codebase, Codebase
command-line tool (Docker), Docker Command-Line Tool
commands, order of, Anatomy of a Dockerfile
communication issues, The Promise of Docker-The Promise of Docker
community tooling, The Docker Ecosystem-Additional tools
Compose, Robust Tooling
concurrency, Concurrency
configuration (Docker), Config-Config

configuration management, The Promise of Docker, What Docker Isn’t, Towards an
Immutable Infrastructure, Orchestration Tools

Container Engine, Docker at Scale
container instances, Container Instances-Container Instances

containers, Working with Docker Containers-Cleaning Up Containers and Images

(see also production containers)
auto-restarting, Auto-Restarting a Container

benefits of, Benefits of the Docker Workflow, Containers Are Not Virtual
Machines-Externalizing State

cgroups, Control Groups (cgroups)-The /sys filesystem

cleaning up, Cleaning Up Containers and Images-Cleaning Up Containers and

Images
CPU usage, Resource Quotas-CPU pinning
creating, Creating a Container-ulimits

debugging, Debugging Containers-Moving Along

(see also debugging containers)
defined, Important Terminology, What Are Containers?
deleting, Cleaning Up Containers and Images-Cleaning Up Containers and Images
disposability of, The Promise of Docker
distinction from virtual machines, Containers Are Not Virtual Machines
domain name service (DNS), Domain Name Service (DNS)
entering already running, Getting Inside a Running Container-nsenter
exploring the shell, Exploring the Shell
externalizing state, Externalizing State
hostname, Hostname-Hostname
images (see images)

inspecting, Inspecting a Container-Inspecting a Container, Inspecting a Container-
Inspecting a Container

isolation and, Limited Isolation

killing, Killing a Container

labels, Labels

lightweight, Containers Are Lightweight
Linux, Benefits of the Docker Workflow

media access control (MAC) address, Media Access Control (MAC) address

memory constraints, Memory-Memory

namespaces, Kernel Namespaces, User Namespaces-Exploring Namespaces
naming, Container name

networking, Container Networking-Container Networking

overview and background, What Are Containers?-History of Containers
pausing/unpausing, Pausing and Unpausing a Container

resource quotas, Resource Quotas-ulimits

returning a result, Returning a Result-Returning a Result

shipping container metaphor, Packaging

starting, Starting a Container-Auto-Restarting a Container

stateless aspects of, Stateless Applications

stats on, Container Stats-Container Stats

stopping, Stopping a Container-Stopping a Container

storage volumes, Storage Volumes-Storage Volumes

support and adoption, Broad Support and Adoption

ulimits, ulimits

CoreOS, Vagrant

daemon configuration, CoreOS

Enterprise Registry, Public Registries, Private Registries
Fleet, Distributed Schedulers

Rocket, History of Containers

CPUs
pinning, CPU pinning

shares, CPU shares-CPU shares
usage, Resource Quotas-CPU pinning

custom base images, Custom Base Images

D

daemon

configuring, Configuring the Docker daemon-CoreOS

security, How Secure Is the Docker Daemon?-How Secure Is the Docker Daemon?
daemon mode, Docker Server
Debian systems, Docker Client

debugging containers, Debugging Containers-Moving Along

controlling processes, Controlling Processes

filesystem inspection, Filesystem Inspection

image history, Image History

inspecting, Inspecting a Container-Inspecting a Container
network inspection, Network Inspection-Network Inspection
process inspection, Process Inspection-Process Inspection
process output, Process Output-Process Output

deleting containers and images, Cleaning Up Containers and Images-Cleaning Up
Containers and Images

dependencies, Dependencies-Dependencies

deployment, Deploying, Deploying-Deployment Wrap-Up

distributed schedulers, Distributed Schedulers
frameworks, What Docker Isn’t

orchestration tools, Orchestration Tools

process simplification, Process Simplification-Process Simplification
tooling, Classes of Tooling-Classes of Tooling
deployment artifacts, minimizing, Minimizing Deployment Artifacts
design (see platform design)

devicemapper, AUFS, Device Mapper, BTRFS, vfs, AUFS, Device Mapper, BTRFS,
vis

disposability, Disposability
distributed schedulers, Distributed Schedulers
Distribution, Other Approaches to Image Delivery

Docker

introduction of, The Birth of Docker

limitations and compatible tools, What Docker Isn’t-What Docker Isn’t
support and adoption, Broad Support and Adoption

terminology, Important Terminology

uses and benefits, The Challenges-The Payoff

workflow benefits, Benefits of the Docker Workflow-Benefits of the Docker
Workflow, The Docker Workflow

docker

-d, Network Ports and Unix Sockets, Container Networking, Docker Server,
Configuring the Docker daemon, ulimits, Server Information, Process Output,
Execution Drivers, native, Ixc, etc., AUFS, Device Mapper, BTRFS, vfs, Exploring
Namespaces

build, Building, Building an Image, Building an Image, Quick Overview

create, Creating a Container, Hostname, Resource Quotas, Starting a Container,
The /sys filesystem

diff, Filesystem Inspection, Filesystem Inspection
events, Monitoring Docker, Docker Events, Docker Events, The /sys filesystem

exec, docker exec, docker exec, nsenter, nsenter, Filesystem Inspection, Kernel
Namespaces, User Namespaces, Exploring Namespaces, Exploring Namespaces,
Dependencies

export, Exploration

history, Image History

images, Cleaning Up Containers and Images, Cleaning Up Containers and Images
import, Exploration

info, Boot2Docker, Vagrant, Resource Quotas, Server Information, nsenter,
Docker Swarm, Execution Drivers, AUFS, Device Mapper, BTRFS, vfs

inspect, Anatomy of a Dockerfile, Labels, Inspecting a Container, Inspecting a
Container, nsenter, Inspecting a Container

kill, Killing a Container, Controlling Processes

load, Other Approaches to Image Delivery

login, Logging in to a registry, Logging in to a registry
logout, Logging in to a registry

logs, Docker Logs, Docker Logs, Docker Logs, Inspecting a Container, native, Ixc,
etc., Logs

pause, Stopping a Container, Pausing and Unpausing a Container

ps, Running Your Image, Environment Variables, Labels, Starting a Container,
Auto-Restarting a Container, Stopping a Container, Killing a Container, Pausing
and Unpausing a Container, Cleaning Up Containers and Images, Inspecting a
Container, Inspecting a Container, nsenter, Process Output, Controlling Processes,
Network Inspection, Inspecting a Container, Docker Swarm, Docker Swarm,
Docker Swarm, Docker Swarm, native, Ixc, etc., The /sys filesystem, Kernel
Namespaces, User Namespaces

pull, Testing the local registry mirror service, Downloading Image Updates,
Downloading Image Updates, Classes of Tooling, Docker Swarm, Docker Swarm,
Centurion, Dependencies

push, Quick Overview
restart, Boot2Docker

rm, Container name, Cleaning Up Containers and Images, Cleaning Up
Containers and Images

rmi, Testing the local registry mirror service, Cleaning Up Containers and Images,
Cleaning Up Containers and Images

run, Ubuntu, Running Your Image, Environment Variables, Launching the local
registry mirror service, Creating a Container, Labels, Hostname, Storage Volumes,
CPU shares, CPU shares, CPU pinning, Memory, ulimits, Auto-Restarting a
Container, Inspecting a Container, Getting Inside a Running Container, docker
exec, Returning a Result, Container Stats, cAdvisor, cAdvisor, Classes of Tooling,
Quick Overview, Process Output, Docker Swarm, Docker Swarm, Docker Swarm,
Container Instances, Tasks, The LXC execution driver, UID 0, UID 0, Privileged
containers, Privileged containers, Privileged containers, Networking,
Dependencies, Config, Port Binding

save, Other Approaches to Image Delivery

start, init.d-Based Linux, Creating a Container, Hostname, Starting a Container,
Killing a Container, Docker Events, The /sys filesystem

stats, Monitoring Docker, Container Stats, cAdvisor, Control Groups (cgroups)

stop, Environment Variables, Stopping a Container, Stopping a Container, Killing
a Container, Docker Events, Docker Swarm, The /sys filesystem

tag, Quick Overview
top, Debugging Containers, Process Output
unpause, Stopping a Container, Pausing and Unpausing a Container

version, Printing the Docker Version

Docker client installations, Docker Client-Microsoft Windows 8

Linux, Linux
Mac OS X, Mac OS X 10.10-Homebrew installation
Microsoft Windows, Microsoft Windows 8
Docker client, defined, Important Terminology
Docker Compose, Robust Tooling

Docker container, Important Terminology

(see also containers)
Docker Distribution project, Other Approaches to Image Delivery
Docker ecosystem, The Docker Ecosystem-Additional tools
Docker events, Docker Events-Docker Events
Docker Fig, Robust Tooling
Docker host IP address, Running Your Image
Docker Hub, Public Registries, Creating a Docker Hub account

Docker images, Important Terminology

(see also images)
Docker logs, Docker Logs-Docker Logs

Docker Machine, What Docker Isn’t, Robust Tooling, Docker Machine-Docker
Machine

Docker Registry, Anatomy of a Dockerfile, Launching the local registry mirror
service

Docker server installations, Docker Server-Vagrant

Linux-based installations, Systemd-Based Linux

testing, Test the Setup

Docker server, defined, Important Terminology

Docker Swarm, Robust Tooling, Classes of Tooling, Distributed Schedulers, Docker
at Scale, Docker Swarm-Docker Swarm

Docker tooling, Orchestration Tools, Centurion

Docker version, printing, Printing the Docker Version-Printing the Docker Version
docker-registry, Private Registries, Launching the local registry mirror service
Dockerfile, Anatomy of a Dockerfile-Anatomy of a Dockerfile

dogestry, Other Approaches to Image Delivery

domain name service (DNS), Domain Name Service (DNS)

E

EC2 Container Service, Amazon EC2 Container Service-Stopping the task

CLI (command line interface) setup, AWS CLI Setup

configuration, Configuration

container instances, Container Instances-Container Instances

IAM role setup, IAM Role Setup

tasks, Tasks-Stopping the task
elasticity, Elastic
entering a running container, Getting Inside a Running Container-nsenter
enterprise virtualization platforms, What Docker Isn’t

environment variables, Externalizing State, Environment Variables, Launching the
local registry mirror service, Config-Config

execution drivers, Execution Drivers-native, Ixc, etc.

external dependencies, Outside Dependencies

F

Fedora, Fedora Linux 21 (64-bit), Systemd-Based Linux, Fedora

(see also Linux)
Fig, Robust Tooling
filesystem inspection, Filesystem Inspection
filesystem layers, Filesystem layers
Fleet, Distributed Schedulers

G
git, Vagrant, Building an Image

Google

cAdvisor, cAdvisor-cAdvisor
Container Engine, Docker at Scale
Kubernetes, Distributed Schedulers, Docker at Scale

GUI installer, GUI installer

H

Helios, Orchestration Tools, Docker at Scale, Centurion

Heroku, Process Simplification, The Twelve-Factor App

Homebrew (MacOS X), Docker Client, Homebrew installation, Centurion
horizontal scaling, Concurrency

hostname, Hostname-Hostname

hypervisors, Limited Isolation, Docker Machine, Vagrant, What Are Containers?

(see also VirtualBox)

I
I/0 operations (iops), Control Groups (cgroups)

image tags, Image tags

images, Working with Docker Images-Other Approaches to Image Delivery,
Dependencies

authenticating to a registry, Authenticating to a Registry-Logging in to a registry
build speeds, Building an Image, Building an Image
building, Building an Image-Building an Image

cleaning up, Cleaning Up Containers and Images-Cleaning Up Containers and
Images

configuring with environment variables, Environment Variables

custom base, Custom Base Images

deleting, Cleaning Up Containers and Images-Cleaning Up Containers and Images
delivery options, Other Approaches to Image Delivery

Docker host IP address, Running Your Image

Docker Hub, Public Registries, Creating a Docker Hub account

Docker Registry, Anatomy of a Dockerfile

Dockerfile, Anatomy of a Dockerfile-Anatomy of a Dockerfile
downloading updates, Downloading Image Updates

history, Image History

layered, Benefits of the Docker Workflow

mirroring, Mirroring a Registry-Testing the local registry mirror service
private registries for, Private Registries

public registries for, Public Registries

registries, Client/Server Model

(see also registries)

running, Running Your Image-Environment Variables

storing, Storing Images-Other Approaches to Image Delivery, Optimizing Storage
and Retrieval

infrastructure, immutable, Towards an Immutable Infrastructure

Init systems

init.d-based Linux, init.d-Based Linux

systemd-based Linux, Systemd-Based Linux

upstart-based Linux, Upstart-Based Linux
init.d, init.d-Based Linux

inspecting containers, Inspecting a Container-Inspecting a Container, Inspecting a
Container-Inspecting a Container

inspecting processes, Process Inspection-Process Inspection

installation, Installing Docker-Wrap-Up

(see also Docker client installations, Docker server installations)

IPC namespaces, Kernel Namespaces, User Namespaces

J
Joyent

SmartOS, Docker at Scale

Triton, Docker at Scale

K

kernel capabilities, Privileged containers
kernel namespaces, Kernel Namespaces, User Namespaces-Exploring Namespaces
Kitematic, Non-Linux VM-Based Server

Kubernetes, Distributed Schedulers, Docker at Scale

L
labels, Labels

latest tag, Image tags

layered images, Benefits of the Docker Workflow

leveraging Docker, Getting the Most from Docker-Externalizing State
libcontainer, native, Ixc, etc.

Linux

Docker client installation, Linux
init.d-based, init.d-Based Linux
requirements for Docker, Installing Docker
systemd-based, Systemd-Based Linux
upstart-based, Upstart-Based Linux

Linux Containers Project, native, Ixc, etc.

log treatment, Logs

logging, Docker Logs

Logspout, Docker Logs

LXC execution drivers, Execution Drivers-native, Ixc, etc., The LXC execution driver

M

Mac OS X, Docker Client, Mac OS X 10.10-Homebrew installation, Non-Linux VM-
Based Server

Machine (see Docker Machine)

Mandatory Access Control, SElinux, AppArmor

media access control (MAC) address, Media Access Control (MAC) address
memory constraints, Memory-Memory

Mesos, Distributed Schedulers, Docker at Scale

message-driven system, Message Driven

Microsoft

Azure, Docker at Scale

Windows, Docker Client
Microsoft Windows, Microsoft Windows 8, Non-Linux VM-Based Server
mirroring a registry, Mirroring a Registry-Testing the local registry mirror service

monitoring, Monitoring Docker-cAdvisor

cAdvisor, cAdvisor-cAdvisor
container stats, Container Stats-Container Stats
Docker events, Docker Events-Docker Events

mount namespaces, Kernel Namespaces, User Namespaces

N

namespaces, Process Output, Containers in Detail, Kernel Namespaces, User
Namespaces-Exploring Namespaces

native execution drivers, Execution Drivers-native, Ixc, etc.
network inspection, Network Inspection-Network Inspection
network namespaces, Kernel Namespaces, User Namespaces

network ports, Network Ports and Unix Sockets, Container Networking, Docker
Server, Boot2Docker, Vagrant, Creating a Container, Container Stats, cAdvisor,
Process Output, Network Inspection, Docker Swarm-Docker Swarm, Centurion-
Centurion, Kernel Namespaces, User Namespaces, How Secure Is the Docker
Daemon?, Networking-Networking, Networking

networking, Container Networking-Container Networking, Networking-Networking

bridge interface, Container Networking

default network approach, Container Networking

New Relic

Centurion, Orchestration Tools, Docker at Scale, Centurion-Centurion
Dogestry, Other Approaches to Image Delivery
supervisor-remote-logging, Docker Logs

Node, Anatomy of a Dockerfile-Anatomy of a Dockerfile

non-Linux platforms, Docker Client

nsenter, nsenter-nsenter

0]
OpenShift, Docker at Scale

operating system virtualization, What Are Containers?
orchestration toolset, Robust Tooling, Orchestration, Orchestration Tools

OS X, Docker Client, Mac OS X 10.10-Homebrew installation, Non-Linux VM-Based
Server

outside dependencies, Outside Dependencies
OverlayFS, AUFS, Device Mapper, BTRFS, vfs

P
packaged artifacts, Benefits of the Docker Workflow

packaging, Benefits of the Docker Workflow, Packaging
PID namespaces, Kernel Namespaces, User Namespaces, Exploring Namespaces

platform design, Designing Your Production Container Platform-Twelve-Factor
Wrap-Up

admin management, Admin Processes
backing services, Backing Services

build, release, run separation, Build, Release, Run

codebase, Codebase

concurrency and horizontal scaling, Concurrency

configuration information, Config-Config

dependencies, Dependencies-Dependencies
development/production parity, Development/Production Parity
disposability, Disposability

logs, Logs

port binding, Port Binding

stateless processes, Processes

pluggable backends, Pluggable Backends-AUFS, Device Mapper, BTRFS, vfs

execution drivers, Execution Drivers-native, Ixc, etc.
storage, Storage-AUFS, Device Mapper, BTRFS, vfs
port binding, Port Binding
portability, The Promise of Docker

printing the Docker version, Printing the Docker Version-Printing the Docker
Version

private image registries, Private Registries

privileged containers, Privileged containers-Privileged containers
process control, Controlling Processes

process inspection, Process Inspection-Process Inspection

process output, Process Output-Process Output

processes, stateless, Processes

production containers, The Path to Production Containers-Outside Dependencies

(see also containers)

deploying, Deploying-Deployment Wrap-Up

(see also deployment)
testing, Testing Containers-Outside Dependencies
public image registries, Public Registries
push-to-deploy systems, Process Simplification

Q
Quay.io, Public Registries

R

Reactive Manifesto, The Reactive Manifesto-In Summary
Red Hat OpenShift, Docker at Scale
Red Hat systems, Docker Client

registries, Client/Server Model, Public Registries-Testing the local registry mirror
service

authenticating to, Authenticating to a Registry-Logging in to a registry
Docker Hub, Creating a Docker Hub account
logging into, Logging in to a registry
mirroring, Mirroring a Registry-Testing the local registry mirror service
private, Private Registries
public, Public Registries
Registry, Anatomy of a Dockerfile, Launching the local registry mirror service
resilience, Resilient

resource quotas, Resource Quotas-ulimits

CPU pinning, CPU pinning

CPU shares, CPU shares-CPU shares
memory, Memory-Memory
ulimits, ulimits
responsiveness, Responsive
returning a result, Returning a Result-Returning a Result
revision control, Revision Control
root access limits, UID 0-UID 0

Ruby, Centurion

S
scalability, Docker at Scale-Wrap-Up

Amazon EC2 Container Service, Amazon EC2 Container Service-Wrap-Up

(see also EC2 Container Service)

Centurion, Centurion-Centurion

(see also Centurion)

Docker Swarm, Docker Swarm-Docker Swarm

(see also Docker Swarm)
Kubernetes, Distributed Schedulers, Docker at Scale
Mesos, Distributed Schedulers, Docker at Scale

security, Security-How Secure Is the Docker Daemon?

and the Docker daemon, How Secure Is the Docker Daemon?-How Secure Is the
Docker Daemon?

AppArmor, SElinux, AppArmor
Mandatory Access Control, SElinux, AppArmor

privileged containers, Privileged containers-Privileged containers

root access limits, UID 0-UID 0

SELinux, SElinux, AppArmor
SELinux, Containers in Detail, SElinux, AppArmor
separating build, release, run stages, Build, Release, Run
server information, Server Information
shell, exploring, Exploring the Shell
shipping, Testing
SmartOS, Docker at Scale
sockets (see Unix sockets)
software packaging, Benefits of the Docker Workflow
software shipping, The Promise of Docker

Spotify, Docker Logs, Orchestration Tools

(see also Helios)

state, externalizing, Externalizing State

stateless applications, Getting the Most from Docker, Stateless Applications

stateless versus stateful applications, Getting the Most from Docker

storage backends, Storage-AUFS, Device Mapper, BTRFS, vfs

storage volumes, Storage Volumes-Storage Volumes
supervisor-remote-logging, Docker Logs

Swarm (see Docker Swarm)

/sys Filesystem, The /sys filesystem-The /sys filesystem

systemd, Systemd-Based Linux

T

TCP ports, Network Ports and Unix Sockets
terminology, Important Terminology
testing, Testing, Testing Containers-Outside Dependencies

tooling, Robust Tooling

and Docker API, Application Programming Interface (API)
atomic hosts, Atomic hosts-Atomic hosts

classes of, Classes of Tooling-Classes of Tooling

command-line tool, Docker Command-Line Tool

distributed schedulers, Distributed Schedulers

orchestration, Robust Tooling, Orchestration, Orchestration Tools
reuse between applications, Packaging

support and adoption, Broad Support and Adoption

tools

boot2docker (see boot2docker)

cAdyvisor, cAdvisor-cAdvisor

Centurion, Orchestration Tools, Docker at Scale, Centurion-Centurion
Compose, Robust Tooling

Docker Machine, What Docker Isn’t, Docker Machine-Docker Machine
Docker tooling, Centurion

fig, Robust Tooling

Helios, Orchestration Tools, Docker at Scale, Centurion

Kubernetes, Distributed Schedulers, Docker at Scale

Mesos, Distributed Schedulers, Docker at Scale

Registry, Anatomy of a Dockerfile, Launching the local registry mirror service
Swarm (see Docker Swarm)
Vagrant, What Docker Isn’t, Docker Client, Vagrant-Vagrant

torrent-docker, Other Approaches to Image Delivery

Triton, Docker at Scale

Twelve-Factor App, The Twelve-Factor App-Twelve-Factor Wrap-Up

U
Ubuntu, Ubuntu Linux 14.04 (64-bit), Upstart-Based Linux, Ubuntu

(see also Linux)
UID 0, UID 0-UID 0
ulimits, ulimits

Unix sockets, Network Ports and Unix Sockets, Docker Server, Vagrant, Process
Inspection, How Secure Is the Docker Daemon?

upstart, Upstart-Based Linux
user namespaces, Kernel Namespaces, User Namespaces-Exploring Namespaces

UTS namespaces, Kernel Namespaces, User Namespaces, Exploring Namespaces

\%
Vagrant, What Docker Isn’t, Docker Client, Vagrant-Vagrant

vendor support and adoption, Broad Support and Adoption
version, printing, Printing the Docker Version-Printing the Docker Version
vfs, AUFS, Device Mapper, BTRFS, vfs

virtual machines

as Docker hosts, Non-Linux VM-Based Server-Vagrant

distinction from containers, Containers Are Not Virtual Machines

VirtualBox, Homebrew installation, Microsoft Windows 8, Docker Machine

W
Wiggins, Adam, The Twelve-Factor App

Windows, Docker Client, Microsoft Windows 8, Non-Linux VM-Based Server

workflow, The Docker Workflow-Additional tools

benefits of, Benefits of the Docker Workflow-Benefits of the Docker Workflow
builds, Building

community tooling, The Docker Ecosystem-Additional tools

deployment, Deploying

filesystem layers, Filesystem layers

image tags, Image tags

packaging, Packaging

revision control, Revision Control-Image tags

testing, Testing

workload management tools, What Docker Isn’t

About the Authors

Sean Kane is currently a Lead Site Reliability Engineer at New Relic. He has had a long
career in production operations, with many diverse roles, in a broad range of industries.
He has spoken about subjects like alerting fatigue and hardware automation at various
meet-ups and technical conferences, including Velocity.

Sean spent most of his youth living overseas, and exploring what life has to offer,
including graduating from the Ringling Bros. and Barnum & Bailey Clown College,
completing two summer internships with the US Central Intelligence Agency, and
building the very first web site in the state of Alaska. He gratefully lives in the US Pacific
Northwest with his wife and children an loves traveling and still photography.

Karl Matthias has worked as a developer, systems administrator, and network engineer
for everything from startups to Fortune 500 companies. After working for startups
overseas for a few years in Germany and the UK, he has recently returned with his family
to Portland, Oregon, to work as Lead Site Reliability Engineer at New Relic. When not
devoting his time to things digital, he can be found herding his two daughters, shooting
film with vintage cameras, or riding one of his bicycles.

Colophon

The animal on the cover of Docker: Up and Running is a bowhead whale (Balaena
mysticetus). Also known as the Greenland right whale or the Arctic whale, this species
lives entirely in Arctic or sub-Arctic waters, which distinguishes it from other whales that
migrate to low latitude waters to feed or reproduce.

Originally thought to be identical to its right whale cousins in the North Atlantic, North
Pacific, and Southern Oceans, the bowhead whale was separated from the right whales in
1821 by the work of John Edward Gray. It is now in a monotypic genus, and the
Balaenidae family remains the subject of great taxonometric debate.

The bowhead whale is dark-colored, stocky, and without a dorsal fin. It can grow up to 66
feet long and weigh between 74 long tons and 98 long tons, and boasts the thickest
blubber of any animal, averaging 17-20 inches thick. Its bony skull is massive and is used
to break through Arctic ice for air. It has been reported to surface through 24 inches of ice.
The bowhead whale has the largest mouth of any animal, a strongly bowed lower jaw and
narrow upper jaw. Its paired blowholes can spout a blow 20 feet high.

Bowhead whales are slow swimmers that travel alone or in herds of up to six. It can
remain submerged for up to 40 minutes in a single dive. Its behavior is similar to its
cousin, the right whale, which includes curiosity toward humans, breaching, tail slapping,
and spyhopping. It is very vocal, using underwater sounds to communicate during travel,
feeding, and socialization. Bowhead whales are social, nonaggressive animals; when
threatened, it retreats below the ice. Previously a whaling target, the bowhead whale’s
population has since recovered from a severe reduction thanks to a 1966 moratorium. It is
now rated “Least Concern.”

Many of the animals on O’Reilly covers are endangered; all of them are important to the
world. To learn more about how you can help, go to http://animals.oreilly.com.

The cover image is from Braukhaus Lexicon. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

Foreword

Preface
Who Should Read This Book

Why Read This Book?
Navigating This Book
Conventions Used in This Book
Safari® Books Online

How to Contact Us
Acknowledgments

1. Introduction
The Birth of Docker

The Promise of Docker
Benefits of the Docker Workflow

What Docker Isn’t

2. Docker at a Glance

Process Simplification
Broad Support and Adoption

Architecture
Client/Server Model

Network Ports and Unix Sockets

Robust Tooling

Docker Command-Line Tool

Application Programming Interface (API)
Container Networking

Getting the Most from Docker

Containers Are Not Virtual Machines

Containers Are Lightweight
Towards an Immutable Infrastructure
Limited Isolation

Stateless Applications

Externalizing State

The Docker Workflow

Revision Control

Building

Testing

Packaging

Deploying

The Docker Ecosystem
Wrap-Up

3. Installing Docker

Important Terminology

Docker Client

Linux
Mac OS X 10.10
Microsoft Windows 8

Docker Server

Systemd-Based Linux
Upstart-Based Linux
init.d-Based Linux
Non-Linux VM-Based Server

Test the Setup
Ubuntu

Fedora
CentOS
Wrap-Up

4. Working with Docker Images

Anatomy of a Dockerfile
Building an Image

Running Your Image

Environment Variables
Custom Base Images

Storing Images

Public Registries

Private Registries

Authenticating to a Registry
Mirroring a Registry

Other Approaches to Image Delivery

5. Working with Docker Containers
What Are Containers?

History of Containers

Creating a Container

Basic Configuration

Storage Volumes

Resource Quotas
Starting a Container
Auto-Restarting a Container
Stopping a Container
Killing a Container

Pausing and Unpausing a Container

Cleaning Up Containers and Images
Next Steps

6. Exploring Dockert

Printing the Docker Version
Server Information
Downloading Image Updates
Inspecting a Container

Getting Inside a Running Container

docker exec

nsenter
Exploring the Shell
Returning a Result
Docker Logs

Monitoring Docker

Container Stats

Docker Events

cAdvisor
Exploration

7. The Path to Production Containers
Deploying

Classes of Tooling
Orchestration Tools
Distributed Schedulers
Deployment Wrap-Up

Testing Containers

Quick Overview

Outside Dependencies

8. Debugging Containers

Process Output
Process Inspection
Controlling Processes
Network Inspection
Image History
Inspecting a Container
Filesystem Inspection
Moving Along

9. Docker at Scale

Docker Swarm
Centurion

Amazon EC2 Container Service
IAM Role Setup

AWS CLI Setup

Container Instances

Tasks

Testing the Task

Stopping the task
Wrap-Up

10. Advanced Topics
Pluggable Backends

Execution Drivers
Storage

Containers in Detail

Control Groups (cgroups)

Kernel Namespaces, User Namespaces

Security

How Secure Is Your Container?
How Secure Is the Docker Daemon?
Networking

11. Designing Your Production Container Platform
The Twelve-Factor App
Codebase

Dependencies

Config

Backing Services

Build, Release, Run
Processes

Port Binding
Concurrency
Disposability
Development/Production Parity
Logs

Admin Processes
Twelve-Factor Wrap-Up

The Reactive Manifesto

Responsive

Resilient

Elastic

Message Driven
In Summary

12. Conclusion

Index

The Challenges

The Docker Workflow
Minimizing Deployment Artifacts
Optimizing Storage and Retrieval
The Payoff

The Final Word

	Foreword
	Preface
	Who Should Read This Book
	Why Read This Book?
	Navigating This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. Introduction
	The Birth of Docker
	The Promise of Docker
	Benefits of the Docker Workflow

	What Docker Isn’t

	2. Docker at a Glance
	Process Simplification
	Broad Support and Adoption
	Architecture
	Client/Server Model
	Network Ports and Unix Sockets
	Robust Tooling
	Docker Command-Line Tool
	Application Programming Interface (API)
	Container Networking

	Getting the Most from Docker
	Containers Are Not Virtual Machines
	Containers Are Lightweight
	Towards an Immutable Infrastructure
	Limited Isolation
	Stateless Applications
	Externalizing State

	The Docker Workflow
	Revision Control
	Filesystem layers
	Image tags

	Building
	Testing
	Packaging
	Deploying
	The Docker Ecosystem
	Orchestration
	Atomic hosts
	Additional tools

	Wrap-Up

	3. Installing Docker
	Important Terminology
	Docker Client
	Linux
	Ubuntu Linux 14.04 (64-bit)
	Fedora Linux 21 (64-bit)

	Mac OS X 10.10
	GUI installer
	Homebrew installation

	Microsoft Windows 8

	Docker Server
	Systemd-Based Linux
	Upstart-Based Linux
	init.d-Based Linux
	Non-Linux VM-Based Server
	Boot2Docker
	Docker Machine
	Vagrant

	Test the Setup
	Ubuntu
	Fedora
	CentOS

	Wrap-Up

	4. Working with Docker Images
	Anatomy of a Dockerfile
	Building an Image
	Running Your Image
	Environment Variables

	Custom Base Images
	Storing Images
	Public Registries
	Private Registries
	Authenticating to a Registry
	Creating a Docker Hub account
	Logging in to a registry

	Mirroring a Registry
	Configuring the Docker daemon
	Boot2Docker
	Ubuntu
	Fedora
	CoreOS

	Launching the local registry mirror service
	Testing the local registry mirror service

	Other Approaches to Image Delivery

	5. Working with Docker Containers
	What Are Containers?
	History of Containers

	Creating a Container
	Basic Configuration
	Container name
	Labels
	Hostname
	Domain Name Service (DNS)
	Media Access Control (MAC) address

	Storage Volumes
	Resource Quotas
	CPU shares
	CPU pinning
	Memory
	ulimits

	Starting a Container
	Auto-Restarting a Container
	Stopping a Container
	Killing a Container
	Pausing and Unpausing a Container
	Cleaning Up Containers and Images
	Next Steps

	6. Exploring Dockert
	Printing the Docker Version
	Server Information
	Downloading Image Updates
	Inspecting a Container
	Getting Inside a Running Container
	docker exec
	nsenter

	Exploring the Shell
	Returning a Result
	Docker Logs
	Monitoring Docker
	Container Stats
	Docker Events
	cAdvisor

	Exploration

	7. The Path to Production Containers
	Deploying
	Classes of Tooling
	Orchestration Tools
	Distributed Schedulers
	Deployment Wrap-Up

	Testing Containers
	Quick Overview
	Outside Dependencies

	8. Debugging Containers
	Process Output
	Process Inspection
	Controlling Processes
	Network Inspection
	Image History
	Inspecting a Container
	Filesystem Inspection
	Moving Along

	9. Docker at Scale
	Docker Swarm
	Centurion
	Amazon EC2 Container Service
	IAM Role Setup
	AWS CLI Setup
	Installation
	Mac OS X
	Windows
	Other

	Configuration

	Container Instances
	Tasks
	Testing the Task
	Installing NetCat/Telnet
	Mac OS X
	Debian-based system
	RedHat-based systems
	Windows

	Connecting to the container
	netcat
	telnet

	Stopping the task

	Wrap-Up

	10. Advanced Topics
	Pluggable Backends
	Execution Drivers
	native, lxc, etc.

	Storage
	AUFS, Device Mapper, BTRFS, vfs

	Containers in Detail
	Control Groups (cgroups)
	The LXC execution driver
	The /sys filesystem

	Kernel Namespaces, User Namespaces
	Exploring Namespaces

	Security
	How Secure Is Your Container?
	UID 0
	Privileged containers
	SElinux, AppArmor

	How Secure Is the Docker Daemon?

	Networking

	11. Designing Your Production Container Platform
	The Twelve-Factor App
	Codebase
	Dependencies
	Config
	Backing Services
	Build, Release, Run
	Processes
	Port Binding
	Concurrency
	Disposability
	Development/Production Parity
	Logs
	Admin Processes
	Twelve-Factor Wrap-Up

	The Reactive Manifesto
	Responsive
	Resilient
	Elastic
	Message Driven

	In Summary

	12. Conclusion
	The Challenges
	The Docker Workflow
	Minimizing Deployment Artifacts
	Optimizing Storage and Retrieval
	The Payoff
	The Final Word

	Index

