

Docker Quick Start Guide

Learn Docker like a boss, and finally own your applications

Earl Waud

BIRMINGHAM - MUMBAI

Docker Quick Start Guide
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Noyonika Das
Content Development Editor: Kirk Dsouza
Technical Editor: Niral Almeida
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Alishon Mendonsa
Production Coordinator: Arvindkumar Gupta

First published: November 2018

Production reference: 1281118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-732-6

www.packtpub.com

http://www.packtpub.com

Creating this book was a major undertaking and, as a result, I owe a debt of gratitude to many.

First, thank you to my Heavenly Father. Thank you for my days, and for my many blessings.
Thank you for this book. Thank you for the opportunity to learn and grow as I created its

content. Thank you for allowing me to get it right. And thank you for blessing all who read it so
that they can find the solutions they need. I love Thee very much. Thank you.

Thank you to my amazing wife, Patti. Thank you, honey, for your patience with me and for
being okay with all the time I had to invest in creating this book. You offered me unswerving

support so that I could research, write, and revise the information within these pages and,
without your support, this book would not exist. Thank you for your confidence in me. And

thank you for loving me. Thank you for seeing me as your warrior king. Thank you for Finlee. I
love you very much. Thank you.

Thank you to my daughter, Madison. Thank you, Madison, for your light, and for your faith in
me. Thank you for seeing me the way that you do. I love you very much. Thank you.

Thank you to my daughter, Alexis. Thank you, Lexi, for believing in me. And thank you for the
confidence and pride you have for me. Thank you for having faith in my ability to be a writer. I

love you very much. Thank you.

Thank you to my daughter, Daniella. Thank you, Dani, for your energy and unique perspective.
Thank you for your support and your belief in me and in my ability to write this book. I love

you very much. Thank you.

Thank you to my friends and reviewers – Rod Foster, Jitesh Marathe, and Mert Cubukcuoglu.
Thank you all for poring over the chapters of this book and making sure I've presented the most

accurate content and examples possible. Thank you.

Thank you to my friend Tom "Big Al" Schreiter. Thank you, Tom, for suggesting that I start
writing books and for being such a great example by taking your own advice and creating a

fantastic set of training books. Thank you.

– Earl Waud

"I can no other answer make, but, thanks, and thanks."

– William Shakespeare

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Foreword
By eliminating variability in shipping and logistics, containers revolutionized the world
back in 1956. This paradigm shift alone increased trade between nations, grew markets to a
global scale, and decreased loading costs by approximately 97%. Today, Docker containers
are having a similar revolutionary impact on the IT industry that no one can afford to fall
behind.

I have been in the industry for more than 14 years, leading next-generation technology
implementation efforts in world-class enterprise companies where technology is in the
heart of the business, contributing toward their revenue. Throughout my professional
journey, I've had a chance to be a part of many technology shifts, including virtualization,
public cloud, software-defined data centers, infrastructure as a code, and containers. Lately,
I've been focusing on delivering a universal container image and artifact management
platform for one of the top global fintech companies, Intuit.

I met the author of this book, Earl Waud, during a technology presentation back in 2010.
First impressions matter most, and I accidentally spilled a cup of coffee on his
notebook—which turned out to be the beginning of a lifelong friendship.

After knowing Earl for more than eight years, I would describe him as a very professional,
innovative, methodical, self-driven, and genuine person, allowing him to achieve any goal
that he desires. There are countless examples of him coming up with an innovative idea,
designing it on paper, engineering it in the lab, and implementing it in production to help
and serve mission-critical, multibillion-dollar, revenue-generating products.

Historically, the infrastructure side and the software side of the IT industry have been
disconnected for a long time. There are many interdependencies between both sides, yet
most of the technologies and capabilities were siloed and handled differently. Docker
container technology is bridging this gap by introducing a standardized way of building,
packaging, and delivering software. Although there are several container technologies
available, many professionals have chosen to use Docker because it is one of the most stable
and effective platforms.

In Docker Quick Start Guide, by Earl Waud, Earl clearly depicts how you can build, package,
and deploy your software as a container. He provides insight into many container related
technologies with hands-on examples, allowing you to pick the right containerization
approach for your software. With the skill set that you will gain from this book, you will be
able to transform your traditional software to containerized software very rapidly,
effectively, and successfully for all your business needs.

If decreasing cost, time to market, and variability is important for your business, and
software containerization is in your roadmap to achieve these goals, Docker Quick Start
Guide is one of the most important references that you can have in your library.

I would like to conclude by, one more time, saying thank you to the author of this book,
Earl Waud, for leading the way by setting an example for the rest of the world, both at a
professional level and a personal level. "We always win" my friend.

– Mert Cubukcuoglu

Senior Manager, Intuit Inc.

Contributors

About the author
Earl Waud is a virtualization development professional with more than 20 year's
experience developing customer-facing, enterprise-grade software for VM, and works with
container provisioning, management, and automation.

Earl has a proven track record of delivering on-time solutions that significantly impact
business results; solutions that align engineering strategies with organizational vision.

Recently, Earl has been creating AWS-based container solutions for enterprises using
Docker, Kubernetes, Artifactory, Xray, and Twistlock.

Currently, Earl is a senior software engineer with Intuit Inc. Other books by Earl include
Mastering Chef Provisioning and Chef: Powerful Infrastructure Automation. Earl can be found
online at SanDiegoEarl (dot) com.

Thank you to the people without whom this book would not have been written. First,
thanks to my Heavenly Father. Thanks also to my family: Patti, Alexis, Daniella, and
Madison. Thanks to my friends and reviewers – Rod, Jitesh, and Mert. Thank you as well
to my friend, Tom "Big Al" Schreiter. And finally, thanks to my entire Packt team, but
especially Douglas Paterson, Kirk Dsouza, Hardik Bhinde, Noyonika Das, and Niral
Almeida. Thank you all!

About the reviewers
Paul Adamson has worked as an Ops engineer, a developer, a DevOps engineer, and
everything in between. When not reviewing this book, Paul keeps busy helping companies
embrace the AWS infrastructure. His language of choice is PHP, for all the good reasons
and even some of the bad, but mainly out of habit. While reviewing this book, Paul has
been working for Healthy Performance Ltd, helping to apply cutting-edge technology to a
cutting-edge approach to well being.

Mert Cubukcuoglu is a senior information technology leader with more than 12 years
experience in implementing and leading enterprise-level, next-generation platform
solutions within large data centers and the public cloud. His expertise in delivering
mission-critical innovative technology solutions that are aligned with overall strategy and
business goals provides him with a competitive advantage in any industry. Currently, Mert
is leading compute engineering and automation teams at Intuit, a leader in the small
business and personal finance software industry.

Rod Foster is an innovative, pro-active, and performance-driven Solutions Architect with
more than 14 years of experience in the Information Technology and Services industry,
including 10 years of direct focus on Virtualization. Rod is currently one of the leaders on
Intuit's exceptional Cloud and Hypervisor Team, he is directly responsible for the
engineering and implementation of Intuit's Cloud (AWS) and VMware vSphere
architecture that support its TurboTax, QuickBooks, and Mint offerings. When Rod isn't
busy innovating, mentoring and providing quality assurance oversight to Intuit's vast
portfolio of services, he enjoys fitness, music, and traveling! Special thanks to Earl Waud for
allowing me to take part in the creation of this book!

Jitesh Marathe is an IT professional with a Bachelor degree in Computer Application; he
has spent most of his career being a System Administrator in various IT companies and
specialized in the System and DevOps Role. Jitesh enjoys traveling to new places with his
family. Jitesh has reviewed a few other books including Linux Utilities Cookbook, and
Mastering Linux Network Administration.

Vishnu Gopal is an engineer with strong product and user-experience skills, with
experience in product development, web development, and engineering management. He
was part of the initial team that built SlideShare Inc., which then went on to be acquired by
LinkedIn. He has been working in the web and mobile development field for over 10 years.
He is currently CTO of SV.CO, a product accelerator for students based in India. He lives in
Kochi, India.

I would like to thank Sanjay Vijayakumar, my best friend since school. In times happy and
sad, in waters troubled and still, he's always been a constant soul in my life.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Setting up a Docker Development Environment 7
Technical requirements 8
Setting up your Docker development environment 8

Installing Docker on a Linux workstation 9
Installing Docker on a CentOS workstation 9

Installing Docker CE via the Docker Repository 10
Installing Docker CE manually using a downloaded RPM 13
Installing Docker CE by running convenience scripts 14
Post-install steps you might want to consider 15

Installing Docker on an Ubuntu workstation 17
Installing Docker CE via the Docker Repository 17
Installing Docker CE manually using a DEB package 20
Installing Docker CE by running convenience scripts 22
Post-install steps you might want to consider 23

Installing Docker on a Windows workstation 24
Post-install steps you might want to consider 26

Installing Kitematic 26
Setting up DockerCompletion for PowerShell 27

Installing Docker on an OS X workstation 28
Post-install steps you might want to consider 30

Installing Kitematic 30
Installing Docker command-line completion 31

References 32
What differences to watch out for between OSes 33
Summary 34

References 34

Chapter 2: Learning Docker Commands 35
Technical requirements 35
Information about command syntax 36
The version command 37
The Docker run command 38

The list container command 41
The remove container command 43
The stop container command 47
The container logs command 47
The container top command 48
The container inspect command 48
The container stats command 50
The container attach command 53
The container exec command 55

Table of Contents

[ii]

The container commit command 56
Back to the Docker run command 57

Summary 59
References 59

Chapter 3: Creating Docker Images 60
Technical requirements 60
What is a Dockerfile? 61
The FROM instruction 62
The LABEL instruction 63
The COPY instruction 65
The ADD instruction 67

The difference between COPY and ADD 67
The ENV instruction 69
The ARG instruction 70

The difference between ENV and ARG 72
The USER instruction 73
The WORKDIR instruction 75
The VOLUME instruction 76
The EXPOSE instruction 79
The RUN instruction 79
The CMD instruction 81
The ENTRYPOINT instruction 82

The difference between CMD and ENTRYPOINT 84
The HEALTHCHECK instruction 85
The ONBUILD instruction 86
The STOPSIGNAL instruction 88
The SHELL instruction 88
The Docker image build command 89

Parser Directives 90
The build context 91
The .dockerignore file 92

Summary 93
References 93

Chapter 4: Docker Volumes 94
Technical requirements 94
What is a Docker volume? 95

References 96
Creating Docker volumes 96

References 103
Removing volumes 103

References 104
Sharing data between containers with data volume containers 105

Table of Contents

[iii]

References 106
Summary 106

Chapter 5: Docker Swarm 107
Technical requirements 108
What is Docker swarm? 108

References 110
How to set up a Docker swarm cluster 110

docker swarm init 112
docker swarm join-token 112
docker swarm join 113
docker swarm ca 114
docker swarm unlock 116
docker swarm unlock-key 116
docker swarm update 117
docker swarm leave 118
References 118

Managers and workers 119
References 120

Swarm services 121
References 126

Accessing container applications in a swarm 126
References 127

Summary 128

Chapter 6: Docker Networking 129
Technical requirements 130
What is a Docker network? 130

References 132
Built-in (local) Docker networks 132

References 137
Third-party (remote) network drivers 137

References 141
Creating Docker networks 142

References 144
Free networking features 144

References 145
Which Docker network driver should I use? 146
Summary 146

Chapter 7: Docker Stacks 147
Technical requirements 147
Understanding the use of Docker stacks 148

References 150
How to create and use a compose YAML files for Stacks 150

Table of Contents

[iv]

The rest of the stack commands 163
Best practices for scaling a stack application 166

References 166
Summary 167

Chapter 8: Docker and Jenkins 168
Technical requirements 169
Using Jenkins to build Docker images 169

References 175
Setting up a Dockerized Jenkins server 175

References 177
Building Docker images inside of a Dockerized Jenkins server 177

References 180
Using Docker containers for your Jenkins build nodes 180

Building the Docker image 181
Pushing the new image to a Docker registry 182
Turning off the default Jenkins build agents 183
Installing the Docker plugin for Jenkins 184
Creating a new Cloud to enable our Dockerized build agents 186
Testing our new build agents 190

Building, testing, and pushing Docker images inside Dockerized
build nodes 192
Summary 201

Other Books You May Enjoy 203

Index 206

Preface
Usually, the first question I get when I mention Docker or this book is What is Docker? So,
we might as well answer that question right now and get it out of the way...

Within the circle of friends I hang out with, I would answer that question by saying Docker
is a software solution used to build, ship, and run containers anywhere. But if you are not a
computer person, then that answer would mean next to nothing to you. So, let's try again,
and answer the question What is Docker? in a way that is worthy of a Quick Start Guide.

Docker is a tool that allows software developers to easily create applications, and wrap
those applications in a special package called a container. Used correctly, an application
packaged as a container can be run very efficiently, and very securely. And since the
container has everything the application needs to run, it also allows the developer to share
their application nearly anywhere, without ever having to re-create or re-package it.

This means that as a result of using Docker, a developer can create, run, and test their
application container on their own laptop and then share the exact same container with
their peers so that it can be run and tested by them as well. Then, they can share the same
container with the quality assurance team for further validation of quality, and ultimately,
the exact same container can be run and used by customers in a production setting.

Using Docker, software developers can create better, more secure software that can be
tested and deployed faster than ever before.

Within the pages of this book, you are going to find all of the information that you need to
understand what Docker is and what benefits Docker provides. Using detailed, yet easy-to-
follow, descriptions and examples, this Quick Start Guide will teach you how to set up your
own Docker development environment, and how to create enterprise-grade Docker images
that utilize all of the important features that Docker provides. This Quick Start Guide will
teach you how to use Docker networking and Docker's storage features. You will also learn
how to create and deploy multi-container applications, and how to set up Docker clustering
using Docker Swarm. By the time you finish the Quick Start Guide, you will be building
and sharing your own Docker images, and running your most important applications in
Docker containers. This Quick Start Guide will thoroughly prepare you to use Docker for
all of your future projects. If you are ready to get started, turn the page...

Preface

[2]

Who this book is for
This Quick Start Guide is written for anyone who wants to know what Docker is and
understand why so many people are so excited about using it. It is intended for developers
who want to get started using Docker right away and don't have time to wade through a
full Mastering Docker book, or attend a week-long training course. This guide is for anyone
who needs to make a quick decision about using Docker for their next project and get
started right away.

What this book covers
Chapter 1, Setting up a Docker Development Environment, covers getting everything set up
for Docker development on our workstation. We learn how to set up a Docker development
environment on Linux, Windows, and OS X workstations. We will then handle some post-
installation steps for each OS. Lastly, we will learn how using Docker on each OS differs
and what to watch out for between them.

 Chapter 2, Learning Docker Commands, introduces a number of essential Docker
commands. While we focus on one of the most important commands, the container run
command, we will also cover many other commands that you will be using on a daily basis.
These commands include the list container command, the stop container command, and the
remove container command. Along the way, we will also discover other container
commands, such as logs, inspect, stats, attach, exec, and commit. I think you will find this
chapter to be an excellent foundation in terms of your Docker education.

Chapter 3, Creating Docker Images, covers how to create enterprise-grade Docker images.
We will start off by learning about the main building block of Docker images; specifically,
the Dockerfile. We will then explore all the instructions available to use in a Dockerfile.
There are some instructions, that, on the face of it, will seem very similar. We will uncover
the differences between the COPY and ADD instructions, the ENV and ARG instructions,
and, most importantly, between the CMD and ENTRYPOINT instructions. Then, we will
find out what the build context is and why it is important. Finally, we will cover the actual
image build command.

Preface

[3]

Chapter 4, Docker Volumes, uncovers the secrets of Docker volumes. We will learn how to
use folders on your workstation inside your Docker containers, as well as how to create and
use persistent volumes, allowing multiple containers to share data. We will learn how to
clean up after unused volumes. And finally, to round it out, we will learn how to create
data volume containers to become the source of volumes for other containers.

Chapter 5, Docker Swarm, covers what Docker swarm is, and how to set up a Docker swarm
cluster. We will find out more about swarm managers and swarm workers. We will
discover Swarm Services. We will find out how easy it is to access a container application
running on any node in the swarm cluster.

Chapter 6, Docker Networking, introduces Docker networking. We will dive deep into
Docker networking, learning how containers can be isolated, how they can communicate
with each other, and how they can communicate with the outside world. We will explore
the local network drivers Docker provides in the out-of-the-box installation. We will then
examine the use of remote network drivers with an example deployment of the Weave
driver. After that, we will learn how to create Docker networks and round out the
discussion with a look at the free services that we get with our Docker networks.

Chapter 7, Docker Stacks, brings together everything we will have learned in the first six
chapters in order to be able to define, deploy, and manage multi-container applications. We
will achieve this via the use of Docker stacks. We are going to learn how to use Docker
stacks and the YAML files required to define multi-container applications. And, we will
leverage what we learned about Docker services, Docker volumes, Docker swarm, and
Docker networking to create full-featured, multi-service Docker-based applications.

Chapter 8, Docker and Jenkins, covers how to leverage Jenkins to build our Docker images
and deploy our Docker containers. We will learn how to deploy our Jenkins server as a
Docker container. We will follow that by learning how to build Docker images within the
Dockerized Jenkins server. This is what is often referred to as Docker in Docker. Finally, we
will see how to utilize Docker containers as the Jenkins build agents, allowing every build
to be run in a pristine, ephemeral Docker container. Of course, we will show how to build
Docker images, test applications, and push tested images to a Docker registry, all within
our Dockerized Jenkins build agents. This will provide you with all the tools you will need
to set up your CI/CD systems.

Preface

[4]

To get the most out of this book
You should have a developer workstation that you can install Docker on and use to test out
the examples included in this book. You will learn the most by actually trying each of the
examples yourself instead of just reading over them. In addition, you should have access to
at least one other, but preferably two or three other, servers to configure as a Docker
swarm. These servers can be EC2 instances in AWS; or VMs on VMware Workstation or
Fusion; or, worst case scenario, VMs in VirtualBox. All of the software used throughout this
book is free or open source, so you should be able to try out everything you are learning
here. Most of the examples will work equally well regardless of the OS you are using, and I
have tried to call out the differences where appropriate. You should have an account
created on https:/ ​/​hub. ​docker. ​com, and an account on https:/ ​/ ​github. ​com. All of the
code samples have been tested by me, as well as by several reviewers, so if you don't get
them to work, double-check the code and try again, or download the code from Packt and
cut and paste it into your system, and then try again. You'll get the hang of it.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Docker- ​Quick- ​Start- ​Guide. In case there's an update to the code, it will
be updated on the existing GitHub repository.

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide
https://github.com/PacktPublishing/Docker-Quick-Start-Guide

Preface

[5]

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Code in action
Visit the following link to check out videos of the code being run:
 http://bit.ly/2Q1DbPq

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "In the networks key section, we are instructing Docker to create two networks,
one named frontend and one named backend."

Any command-line input or output is written as follows:

Enable autolock on your swarm cluster
docker swarm update --autolock=true
Adjust certificate expiry to 30 days
docker swarm update --cert-expiry 720h

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Once the configuration has been saved, let's test the job by clicking on the Build Now
link."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://bit.ly/2Q1DbPq

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Setting up a Docker

Development Environment
"Suddenly it occurred to me: Would it not be great if my trailer could simply be lifted up
and placed on the ship without its contents being touched?"

 - Malcolm McLean, American trucking entrepreneur

In this chapter, we are going to get everything set up for Docker development on our
workstation. We will learn how to set up a Docker development environment on Linux,
Windows, and OS X workstations. Then we will handle some post-installation steps for
each OS. Lastly, we will learn how using Docker on each OS differs and what to watch out
for between them.

By the end of this chapter, you will know the following:

How to set up your Docker development environment, irrespective of whether
your workstation is running on the following:

CentOS
Ubuntu
Windows
OS X

The differences to be aware of when using Docker on different OSes

Setting up a Docker Development Environment Chapter 1

[8]

Technical requirements
You will need a development workstation using the OS of your choice, including Linux,
Windows, or OS X. You will need sudo or admin access on the workstation. And since you
will be installing Docker software that will be pulled from the internet, you will need basic
internet connectivity on your workstation.

The code files of this chapter can be found on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Docker- ​Quick- ​Start- ​Guide/ ​tree/ ​master/
Chapter01

Check out the following video to see the code in action:
http:/​/​bit.​ly/​2rbGXqy

Setting up your Docker development
environment
It's time to get our hands dirty. Let's dive in and set up our workstation. No matter what
your preferred OS might be, there's a Docker for that. Using the following as a guide, we
will walk you through the setup of Docker on your workstation. We can begin with setting
up your Linux workstation, then we'll tackle a Windows system, and finish up with what is
probably the most common developer option, the OS X workstation. While OS X may be
the most popular developer option, I would recommend that you consider a Linux
distribution for your workstation of choice. We'll talk more about why I make that
recommendation later in the Installing Docker on an OS X workstation section. But for now,
just pay close attention during the Linux install discussion in case you are persuaded to
develop on Linux.

Generally speaking, there are two flavors of Docker to consider: Docker Enterprise Edition,
or Docker EE, and Docker Community Edition, or Docker CE. Typically, in an enterprise,
you would opt for the Enterprise Edition, especially for the production environments. It is
intended for business-critical use cases, and Docker EE, as the name suggests, is certified,
secured, and supported at an enterprise-grade level. It is a commercial solution that is
supported by and purchased from Docker.

https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter01
http://bit.ly/2rbGXqy
http://bit.ly/2rbGXqy
http://bit.ly/2rbGXqy
http://bit.ly/2rbGXqy
http://bit.ly/2rbGXqy
http://bit.ly/2rbGXqy
http://bit.ly/2rbGXqy
http://bit.ly/2rbGXqy
http://bit.ly/2rbGXqy

Setting up a Docker Development Environment Chapter 1

[9]

The other flavor, Docker CE, is a community-supported product. CE is available free and is
often the choice for production environments of small businesses, and for developer
workstations. Docker CE is a fully capable solution that allows the developer to create
containers that can be shared with team members, used with automated build tools for
CI/CD, and, if desired, shared with the Docker community at large. As such, it is the ideal
option for a developer's workstation. It is worth noting that Docker CE has two release
paths: stable and edge. We will be using the stable release path of Docker CE for all of the
installation examples in this chapter.

We are going to start off the installation discussion with CentOS Linux, but feel free to skip
ahead to the Ubuntu, Windows, or Mac section if you are in a hurry.

Installing Docker on a Linux workstation
We will be executing the Linux installation steps of Docker for both an RPM-based
workstation (using CentOS) and a DEB-based workstation (using Ubuntu) so that you will
have instructions that fit the Linux distribution that most closely matches what you are
currently using, or plan on using at some point in the future. We will begin our installation
journey with CentOS.

You can find all of the download links used in the installation of all OSes
in the References section.

Installing Docker on a CentOS workstation
Docker CE for CentOS requires a maintained version of CentOS 7. Although installation
may work on archived versions, they are neither tested nor supported.

There are three methods to install Docker CE on CentOS:

Via Docker repositories
Downloading and manually installing the RPMs
Running Docker's convenience scripts

The most common method used is via Docker repositories, so let's begin there.

Setting up a Docker Development Environment Chapter 1

[10]

Installing Docker CE via the Docker Repository
First, we will need to install some required packages. Open a terminal window and enter
the following command:

installing required packages
sudo yum install -y yum-utils \
 device-mapper-persistent-data \
 lvm2

This will make sure that we have both the yum-config-manager utility and the device
mapper storage driver installed on the system. It is illustrated in the following screenshot:

Note that your installation of CentOS 7 may already have these installed,
and in that case the yum install command will report that there is
nothing to do.

Next, we will set up the CentOS stable repository for Docker CE.

It is worth noting that you will still need to set up the stable repository even if you want to
install the edge releases.

Enter the following command to set up the stable repository:

adding the docker-ce repo
sudo yum-config-manager \
 --add-repo \
 https://download.docker.com/linux/centos/docker-ce.repo

Optionally, if you want to use the edge release, you can enable it with the following
command:

enable edge releases
sudo yum-config-manager --enable docker-ce-edge

Setting up a Docker Development Environment Chapter 1

[11]

Similarly, you can disable access to the edge release with this command:

disable edge releases
sudo yum-config-manager --disable docker-ce-edge

Now the fun begins... We are going to install Docker CE. To do so, enter the following
command:

install docker
sudo yum -y install docker-ce

If you get an error about the need to have container-selinux installed, use this
command to install it, then try again:

install container-selinux
sudo yum -y --enablerepo=rhui-REGION-rhel-server-extras \
 install container-selinux

sudo yum -y install docker-ce

There you have it! Installing Docker CE was way easier than you thought it was going to
be, right?

Let's use the most basic method to confirm a successful install, by issuing the version
command.

This command validates that we installed Docker CE, and shows us what version of Docker
was just installed. Enter the following command:

validate install with version command
docker --version

The latest version of Docker CE, at the time of writing, is 18.03.1:

We have one more critical step. Although Docker CE is installed, the Docker daemon has
not yet been started. To start it, we need to issue the following command:

start docker deamon
sudo systemctl start docker

Setting up a Docker Development Environment Chapter 1

[12]

It should quietly start up, looking something like this:

We saw how to validate that Docker installed using the version command. That is a great
quick test, but there is an easy way to confirm not just the install, but that everything
started and is working as expected, which is by running our first Docker container.

Let's issue the following command to run the hello-world container:

run a test container
sudo docker run hello-world

If all is well, you will see something like the following:

Setting up a Docker Development Environment Chapter 1

[13]

We've got Docker CE installed on our CentOS workstation, and it is already working and
running containers. We are off to a great start. Now that we know how to do an install
using the Docker repositories, let's have a look at how to manually install using a
downloaded RPM.

Installing Docker CE manually using a downloaded RPM
Another way to install Docker CE is to use a downloaded RPM. This method involves
downloading the Docker CE RPM for the version you wish to install. You need to browse to
the Docker CE Stable RPM downloads site. The URL for this is https:/ ​/​download. ​docker.
com/​linux/​centos/ ​7/ ​x86_ ​64/ ​stable/ ​Packages:

Click on the version of Docker CE you want to download, and when prompted, tell your
browser to save the file. Next, issue the yum install command, providing the path and
filename for the downloaded RPM file. Your command should look something like this:

install the docker rpm
sudo yum install ~/Downloads/docker-ce-18.03.1.ce-1.el7.centos.x86_64.rpm

You will need to start the Docker daemon. You'll use the preceding command in the repo
section:

start docker
sudo systemctl start docker

https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages

Setting up a Docker Development Environment Chapter 1

[14]

And, as we learned before, you can validate the functionality of your installation with the
following commands:

validate the install and functionality
docker --version
sudo docker run hello-world

While this method might seem simpler and easier to execute, it is less desirable because it is
more of a manual process, especially when it comes time to update your version of Docker
CE. You have to again browse to the downloads page, find the later version, download it,
then do the yum install. Using the Docker Repository method described earlier,
upgrades are as simple as issuing a yum upgrade command. Let's now take a look at one
more method of installing Docker CE on your CentOS workstation.

Installing Docker CE by running convenience scripts
The third way to install Docker is to use the convenience scripts provided by Docker. The
scripts allow you to install either the latest edge version or the latest test version of Docker.
It is not recommended that either of these is used in a production environment, but they do
serve a purpose for testing and developing the latest Docker versions. The scripts are
somewhat limited in that they do not allow you to customize any options during the install.
The same scripts can be used across a variety of Linux distributions as they determine the
base distro you are running and then do the install based on that determination. The
process is simple.

Use curl to pull down the desired script, and then use sudo to run the script.

The commands to run the latest edge version are as follows:

download and run the install script
curl -fsSL get.docker.com -o get-docker.sh
sudo sh get-docker.sh

Executing the script will result in output that looks like the following:

Setting up a Docker Development Environment Chapter 1

[15]

The docker group has been created for you by the script, but since CentOS is RPM centric,
you still need to start the Docker service yourself:

start docker
sudo systemctl start docker

If this were a Debian-based system, the Docker service would have been
started automatically by the script.

Now that we have examined the three ways to install Docker on your CentOS workstation,
it is a good time to discuss a few additional steps that are recommended in your post-
installation setup.

Post-install steps you might want to consider
All three of the install methods automatically create a docker group for you, but if you
want to be able to run Docker commands without using root or sudo, then you will want
to add your user to the docker group.

Setting up a Docker Development Environment Chapter 1

[16]

Be aware that many Docker commands require full admin access to
execute, so adding a user to the docker group is comparable to granting
them root access, and the security implications should be considered. If
the user already has root access on their workstation, adding them to the
docker group is only providing them a convenience.

Adding the current user to the docker group is easily accomplished with the following
command:

add the current user to the docker group
sudo usermod -aG docker $USER

You will need to log out and log back in to update the group memberships on your
account, but once you have done that, you should be all set to execute any Docker
commands without using sudo.

This can be validated by running the hello-world container without sudo:

test that sudo is not needed
docker run hello-world

Next, you will want to configure your system to have the Docker service start on system-
boot:

configure docker to start on boot
sudo systemctl enable docker

Another post-install step you should consider is installing docker-compose.

This tool can be an important addition to your Docker tool belt and we will be discussing
its use in Chapter 7, Docker Stacks. The command to install docker-compose is:

install docker compose
sudo curl -L \
https://github.com/docker/compose/releases/download/1.21.2/docker-compose-$
(uname -s)-$(uname -m) \
 -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Congratulations, your CentOS workstation is now ready to start developing your Docker
images and deploying your Docker containers. Next up, we will learn how to install Docker
onto a DEB-based system using an Ubuntu workstation. If you're ready, read on.

Setting up a Docker Development Environment Chapter 1

[17]

Installing Docker on an Ubuntu workstation
As we did on the CentOS workstation, we are going to install Docker CE on our Ubuntu
workstation. The requirement for installing Docker CE on Ubuntu is that you have to be
running a 64-bit recent LTS release, such as Bionic, Xenial, or Trusty. You can install an
edge version of Docker CE onto the Artful version of Ubuntu.

There are three methods to install Docker CE on Ubuntu:

Via Docker repositories
Downloading and manually installing the DEB packages
Running convenience scripts

The most common method used is via Docker repositories, so let's begin there.

Installing Docker CE via the Docker Repository
We need to set up the Docker repository first, and then we can do the installation, so let's
take care of the repo now.

The first step will be to update the apt package index. Use the following command to do
that:

update apt-get libraries
sudo apt-get update

Now we need to install some supporting packages:

install required packages
sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

Next, we need to get the GPG key for Docker:

get the GPG key for docker
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \
 sudo apt-key add -

You can confirm that you have added Docker's GPG key successfully; it will have a
fingerprint of 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88.

Setting up a Docker Development Environment Chapter 1

[18]

You can verify the key by checking the last eight characters match 0EBFCD88 with this
command:

validating the docker GPG key is installed
sudo apt-key fingerprint 0EBFCD88

Finally, we need to actually set up the repository. We will be focusing on the stable repo for
our examples.

If you want to install the edge or test versions of Docker CE, be sure to add the word edge
or test after the word stable (do not replace the word stable) in the following
command:

adding the docker repository
sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

Now that our system is set up with the correct repository for installing Docker CE,
let's install it.

Start by making sure that all of the packages are up to date by issuing the apt-get
update command:

update apt-get libraries again
sudo apt-get update

And now we will actually install Docker CE:

install docker
sudo apt-get install docker-ce

Docker is installed. You can check the Docker version after the install to confirm a
successful installation:

validate install with version command
docker --version

The version command should look something like this:

Setting up a Docker Development Environment Chapter 1

[19]

Now, let's validate that the Docker installation is working as desired. To do this, we will
run the hello-world Docker image using the following command:

validating functionality by running a container
sudo docker run hello-world

Did you notice something interesting happened?

We did not have to start Docker after the installation as we did in the CentOS installation.
That is because, on DEB-based Linux systems, the install process also starts Docker for us.
Additionally, the Ubuntu workstation is configured to start Docker on boot. So both of the
Docker start steps are handled for you during the installation. Nice! Your Ubuntu
workstation now has Docker installed and we've verified it is working as desired.

Although using the Docker repository is the best way to install Docker on your
workstation, let's take a quick look at another way to install Docker CE on an Ubuntu
workstation, that being by manually installing it with a DEB package.

Setting up a Docker Development Environment Chapter 1

[20]

Installing Docker CE manually using a DEB package
Now we will show you how to download and install the Docker CE DEB package. You
should consider using this method if, for whatever reason, the repositories are not available
for your workstation.

You will need to download the Docker CE package, so start by opening your browser and
going to the Ubuntu Docker CE packages download site at https:/ ​/​download. ​docker. ​com/
linux/​ubuntu/​dists/ ​.​

There, you will find a list of Ubuntu version folders listed, which looks something like this:

You want to select the folder that matches the version of Ubuntu installed on your
workstation, which in my case is the xenial folder.

Continue browsing to /pool/stable/ and then to the processor folder that matches your
workstation hardware. For me that is amd64, and it looks like this:

Now click on the version of Docker CE you want to download and install.

https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/

Setting up a Docker Development Environment Chapter 1

[21]

Be sure to select the Save File option before you click OK.

Once the package has been downloaded to your workstation, to install it, just use the dpkg
command for manually installing a package.

You provide the path and filename for the downloaded Docker CE package as a parameter
to dpkg. Here is the command I used for the package that was just downloaded:

installing docker package
sudo dpkg -i ~/Downloads/docker-ce_18.03.1~ce-0~ubuntu_amd64.deb

Executing the command looks like this:

Now that Docker is installed, let's use the version command to confirm successful install,
and then run the hello-world container to validate that Docker is working as desired:

validating the install and functionality
docker --version
sudo docker run hello-world

This is good. Just like the repository installation, your docker group has been created and
both of the start steps are handled for you in the manual package installation. You do not
have to start Docker, and you do not have to configure Docker to start on boot. So, you are
ready to start creating Docker images and running Docker containers.

However, before we get going with creating and running, there is one more method of
installing Docker on an Ubuntu workstation that we will cover. You can use Docker's
convenience scripts to install the latest edge or test versions of Docker CE. Let's take a look
at how to do that now.

Setting up a Docker Development Environment Chapter 1

[22]

Installing Docker CE by running convenience scripts
Another method of installing Docker is to use the convenience scripts provided by Docker.
The scripts allow you to install either the latest edge version or the latest test version of
Docker. It is not recommended that either of these is used in a production environment,
however, they do serve a purpose for testing and developing the latest Docker versions.
The scripts are somewhat limited in that they do not allow you to customize any options in
the install. The same scripts can be used across a variety of Linux distributions as they
determine the base distro you are running, and then do the install based on that
determination. The process is simple. Use curl to pull down the desired script, and then
use sudo to run the script. The commands to run the latest edge version are as follows.

Use the following command to install curl:

install curl
sudo apt-get install curl

Now get the script and run the docker script to install:

download and run the docker install script
curl -fsSL get.docker.com -o get-docker.sh
sudo sh get-docker.sh

Executing the script will result in output that looks like the following:

The docker group has been created for you by the script. The Docker service has been
started, and the workstation has been configured to run Docker on boot. So, once again,
you are ready to start using Docker.

Setting up a Docker Development Environment Chapter 1

[23]

We have examined the three ways to install Docker on your Ubuntu workstation, so now is
a good time to discuss an additional step that is recommended for your post-installation
setup.

Post-install steps you might want to consider
All three of these install methods automatically create a docker group for you, but if you
want to be able to run Docker commands without using root or sudo, you will want to add
your user to the docker group.

Be aware that many Docker commands require full admin access to
execute, so adding a user to the docker group is comparable to granting
them root access, and the security implications should be considered. If
the user already has root access on their workstation, adding them to
the docker group is only providing them a convenience.

Adding the current user to the docker group is easily accomplished with the following
command:

add the current user to the docker group
sudo usermod -aG docker $USER

You will need to log out and log back in to update the group memberships on your
account, but once you have done that, you should be all set to execute any Docker
commands without using sudo.

This can be validated with the hello-world container:

validate that sudo is no longer needed
docker run hello-world

Another post-install step you should consider is installing docker-compose.

This tool can be an important addition to your Docker tool belt and we will be discussing
its use in Chapter 7, Docker Stacks. The command to install docker-compose is:

install docker-compose
sudo curl -L
https://github.com/docker/compose/releases/download/1.21.2/docker-compose-$
(uname -s)-$(uname -m) -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Congratulations, your Ubuntu workstation is now ready to start developing your Docker
images and deploying your Docker containers. Next up, we will learn how to install Docker
onto a Windows-based workstation. If you're ready, read on.

Setting up a Docker Development Environment Chapter 1

[24]

Installing Docker on a Windows workstation
The Windows version of Docker CE is compatible with Windows 10 Pro or Enterprise
editions. Docker CE on Windows provides a complete Docker development solution by
integrating with Windows Hyper-V virtualization and networking. Docker CE on
Windows supports creating and running both Windows and Linux containers. Docker CE
on Windows is available from the Docker store at https:/ ​/​store. ​docker. ​com/ ​editions/
community/​docker- ​ce- ​desktop- ​windows.

You will need to log in to the Docker store to download the Docker CE for Windows
installer, so if you don't already have an account, go ahead and create one now and then log
in to it.

Be sure to save your Docker credentials securely as you will be using them
a lot in the future.

After logging in, you should see the Get Docker download button. Click on the download
button and allow the installer to download to your workstation. Once the installer has
finished downloading, you can click the Run button to begin the installation. If you get the
security check, confirm that you want to run the installer executable by clicking the Run
button. If you have UAC enabled on your workstation, you may see the User Account
Control warning asking you to confirm that you want to allow the Docker CE installer to
make changes to your device. You have to check Yes to continue, so go ahead and click it
now.

The Docker CE installer will run and it will begin downloading Docker. Once the Docker
installation files have been successfully downloaded, the installer will ask you to confirm
your desired configuration. The options here are few. It is my recommendation that you
add the shortcut to the desktop and that you do not check the Use Windows containers
instead of Linux containers option:

https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows

Setting up a Docker Development Environment Chapter 1

[25]

The installer will unpack the Docker CE files. When the files are unpacked, you will get the
Installation succeeded notification. According to the current documentation, the installer
will run Docker for you at the end of the installation. It has been my experience that it does
not always happen. Be patient and give it time, but if it does not start that first time you
may have to run Docker manually.

If you selected the configuration option to add a shortcut for Docker to your desktop, you
will now be able to double-click that shortcut icon and start Docker for the first time.

Docker will run and you will get a Welcome screen that lets you know that Docker is up
and running. It is recommended that you provide your Docker credentials and log in at this
time.

Whenever Docker is running, you will see a whale icon in the taskbar notifications area. If
you mouse over that icon, you can get the status of the Docker process. You will see such
statuses as Docker is starting and Docker is running. You can right-click on the icon to
bring up the Docker for Windows menu:

Once you have Docker running on your Windows workstation, you can open up a
Windows PowerShell command window and start using Docker. To verify that the
installation was completed successfully, open a PowerShell window and enter the version
command. To confirm that Docker is working as desired, run the hello-world Docker
container:

validate install and functionality
docker --version
docker run hello-world

Your Windows 10 workstation is now set up to create Docker images and run Docker
containers. Docker should also be configured to start up on boot so that when you need to
reboot your workstation, it will start up automatically.

Be aware that using Docker CE on a Windows workstation is not exactly like using Docker
CE on a Linux workstation. There is an additional layer of virtualization this is hidden
behind the scenes. Docker is running a small Linux VM in Hyper-V and all of your Docker
interactions are passed through, to, and from, this Linux VM. For most use cases, this is
never going to present any issues, but it does affect performance. We will talk more about
this in the Discovering the differences to watch out for between OSes section.

Setting up a Docker Development Environment Chapter 1

[26]

There is one more bit of setup that we want to take a look at, so if you are ready, jump right
into the next section.

Post-install steps you might want to consider
Here are a couple of post-install steps I recommend for your Docker Windows workstation.

Installing Kitematic
The Windows installation of Docker CE integrates with a graphical user interface tool
called Kitematic. If you are a graphical interface kind of person (and since you are using
Windows for Docker, I will guess that you are), you will want to install this tool.

Find the Docker icon in the taskbar notifications area and right-click on it to bring up the
Docker for Windows menu. Click on the Kitematic menu option. Kitematic is not installed
by default. You have to download the archive that contains the application. When you click
the Kitematic menu option for the first time, you will be prompted to download it. Click
the Download button, and save the archive file to your workstation:

You will need to unzip the Kitematic archive to use it. The uncompressed Kitematic folder
needs to be in the C:\Program Files\Docker folder with a folder name of Kitematic
for the Docker submenu integration to work correctly. Once you have Kitematic installed in
the correct path on your Windows workstation, you can right-click the Docker icon in the
task bar notifications area and select the Kitematic option again.

Setting up a Docker Development Environment Chapter 1

[27]

You will be prompted to enter your Docker credentials again to connect to Docker Hub.
You can skip this step, but it is my recommendation that you go ahead and log in now.
Once you log in (or skip the login step), you will see the Kitematic user interface. It allows
you to download and run Docker containers on your workstation. Go ahead and try one,
such as the hello-world-nginx container, or if you want to play a game, try the Minecraft
container.

You are now ready to create Docker images and run Docker containers in your Windows 10
workstation, but we have one more workstation OS to learn how to install Docker CE on.
Let's look at installing it on an OS X workstation next.

Setting up DockerCompletion for PowerShell
If you have ever used command-line completion, you will want to consider installing
DockerCompletion for PowerShell. This tool provides command-line completion for
Docker commands. It is fairly easy to install. You will need your system set up to allow the
execution of the downloaded module. To do this, open a PowerShell command window
with Run as Administrator, and issue the following command:

allow remote signed scripts to run
Set-ExecutionPolicy RemoteSigned

You can now close the Administrator command window and open a normal user
PowerShell command window. To install the DockerCompletion module, issue this
command:

install Docker completion
Install-Module DockerCompletion -Scope CurrentUser

And finally, to activate the module in your current PowerShell window, use this command:

enable Docker completion
Import-Module DockerCompletion

Now you can use the features of command completion for all your Docker commands. This
is a great keystroke saver!

Note that the Import-Module command is only active in the current
PowerShell command window. If you want to have it available to all
future PowerShell sessions, you will need to add the Import-Module
DockerCompletion to your PowerShell profile.

Setting up a Docker Development Environment Chapter 1

[28]

You can easily edit your PowerShell profile (or create a new one if you haven't already)
with this command:

update your user profile to enable docker completion for every PowerShell
command prompt
notepad $PROFILE

Enter the Import-Module DockerCompletion command and save the profile. Now your
Docker command-line completion feature will be active in all future PowerShell sessions.

Installing Docker on an OS X workstation
The story for Docker on Mac has advanced a lot in recent years, and it is now a real, usable
development solution for your Mac workstation. Docker CE for Mac requires OS X El
Capitan 10.11 or newer macOS releases. The Docker CE app integrates with the hypervisor,
network, and filesystem built into OS X. The installation process is simple: download the
Docker installer image and launch it. You can download the installer image from the
Docker store. You must log in to the Docker store be able to download the install image, so,
create an account there if you don't have one already.

Be sure to save your credentials securely as you will need them later.

Browse to the Docker store page for Docker CE for Mac at https:/ ​/ ​store. ​docker. ​com/
editions/​community/ ​docker- ​ce- ​desktop- ​mac. Remember that you must log into the
Docker store to be able to download the installer image.

Once logged in to the Docker store, the Get Docker button will be available to click. Go
ahead and click on it to start the download. The Docker CE for Mac install image may take
some time to download. When the download has completed, double-click on
the Docker.dmg image file to mount and open it:

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac

Setting up a Docker Development Environment Chapter 1

[29]

Once the Docker CE for Mac image has mounted and opened, click the Docker icon and
drag it onto the Applications icon to complete the install. The copying Docker to
Applications action will be initiated. And when the copy process completes, the Docker
application will be available to run from your Applications folder. Double-click on your
Docker icon to launch it. Launching Docker for the first time will caution you that you are
running an application downloaded from the internet to make sure you really want to open
it. When the Docker app opens, you will be greeted with a friendly Welcome to Docker
message.

Clicking next on the welcome message will warn you that Docker requires elevated
privileges to run and will inform you that you must provide your credentials to install
Docker's networking and app links. Enter your username and password. The Docker
application will launch, adding a whale icon to the menu-notification area.

You will also be prompted to enter Docker store credentials to allow Docker for Mac to log
in to the store. Enter your credentials and click on the Log In button. You will get a
confirmation showing that you are currently logged in.

To validate that our installation was successful and confirm the functionality of our
installation, we will issue the version command and then run Docker's hello-world
container:

validate install and functionality
docker --version
docker run hello-world

Your macOS workstation is now set up to create Docker images and run Docker containers.
You are ready to containerize your apps! You can easily use your terminal window for all
of your Docker work, but you may be interested in the graphical UI tool that is available for
Mac, called Kitematic. Let's install Kitematic next.

Setting up a Docker Development Environment Chapter 1

[30]

Post-install steps you might want to consider
Here are a couple of post-install steps I recommend for your Docker OS X workstation.

Installing Kitematic
Although you can use the Docker CLI in your OS X terminal window, and probably will do
so for most of your Docker development work, you have the option of using a graphical UI
tool called Kitematic instead. To install Kitematic, right-click on the whale icon in the OS X
menu-notification area to open the Docker for Mac menu. Click on the Kitematic menu
option to download (and later to run) the Kitematic application. If you have not yet
installed Kitematic, when you click on the Docker for Mac menu for it, you will be shown a
message that includes a download link. The message also reminds you that you must install
Kitematic into your Applications folder to enable Docker menu-integration. Click the
here link to download the Kitematic application:

Once the download completes, move the downloaded application into your Applications
folder, as directed earlier. Then, using the Docker for Mac menu, click on the Kitematic
menu option again. This time it will run the Kitematic application. The first time you run
the application, you will get the standard warning that you are running something that has
been downloaded from the internet, asking if you really want to open it. Click on the Open
button to do so.

Once you have Kitematic installed on your Mac workstation, you can click the Docker
whale icon in the menu bar notifications area and select the Kitematic option again.

You will be prompted to enter your Docker credentials to connect Kitematic to Docker Hub.
You can skip this step, but it is my recommendation that you go ahead and log in now.
Once you log in (or skip the login step), you will see the Kitematic user interface. This
allows you to download and run Docker containers on your workstation. Go ahead and try
one, such as the hello-world-nginx container, or if you want to play a game, try the Minecraft
container.

Setting up a Docker Development Environment Chapter 1

[31]

Congratulations! You are now set up to use both the Docker CLI and the Kitematic
graphical UI to run your Docker containers and manage your Docker images. However,
you will do your Docker image creation using the OS X terminal and your favorite code
editor.

Installing Docker command-line completion
Install Homebrew. You may (probably) already have Homebrew installed on your Mac, but
if not, you should install it now. Here is the command to install it:

install homebrew
/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Next, use Homebrew to install bash-completion. Here is the command:

use homebrew to install bash completion
brew install bash-completion

The installation of bash-completion will instruct you to add the following line to your
~/.bash_profile file:

update the bash profile to enable bash completion for every terminal
session
[-f /usr/local/etc/bash_completion] && . /usr/local/etc/bash_completion

Now, create the links necessary to enable the Docker command-line completion feature.
There is one link for each of the Docker toolsets. Here are the link commands for bash (if
you use zsh, check the next code block for the link commands):

create links for bash shell
ln -s /Applications/Docker.app/Contents/Resources/etc/docker.bash-
completion $(brew --prefix)/etc/bash_completion.d/docker
ln -s /Applications/Docker.app/Contents/Resources/etc/docker-machine.bash-
completion $(brew --prefix)/etc/bash_completion.d/docker-machine
ln -s /Applications/Docker.app/Contents/Resources/etc/docker-compose.bash-
completion $(brew --prefix)/etc/bash_completion.d/docker-compose

Note that if you are using zsh instead of bash, the link commands are different. Here are
the link commands for zsh:

create links for zsh shell
ln -s /Applications/Docker.app/Contents/Resources/etc/docker.zsh-completion
/usr/local/share/zsh/site-functions/_docker
ln -s /Applications/Docker.app/Contents/Resources/etc/docker-machine.zsh-
completion /usr/local/share/zsh/site-functions/_docker-machine

Setting up a Docker Development Environment Chapter 1

[32]

ln -s /Applications/Docker.app/Contents/Resources/etc/docker-compose.zsh-
completion /usr/local/share/zsh/site-functions/_docker-compose

Finally, restart your terminal session—you can now use Docker command completion! Try
it by typing docker and hitting the Tab key twice.

References
Docker Enterprise Edition data: https:/ ​/​www. ​docker. ​com/ ​enterprise- ​edition

Docker Community Edition data: https:/ ​/​www. ​docker. ​com/ ​community- ​edition

Download Docker CE for CentOS: https:/ ​/ ​store. ​docker. ​com/ ​editions/
community/ ​docker- ​ce- ​server- ​centos

Download Docker CE for Ubuntu: https:/ ​/​store. ​docker. ​com/ ​editions/
community/ ​docker- ​ce- ​server- ​ubuntu

Download Docker CE for Windows: https:/ ​/​store. ​docker. ​com/ ​editions/
community/ ​docker- ​ce- ​desktop- ​windows

Download Docker CE for Mac: https:/ ​/​store. ​docker. ​com/​editions/
community/ ​docker- ​ce- ​desktop- ​mac

The Docker CE Stable RPM download site for CentOS: https:/ ​/​download.
docker.​com/ ​linux/ ​centos/ ​7/ ​x86_​64/ ​stable/ ​Packages

The Docker Install Repo: https:/ ​/​github. ​com/ ​docker/ ​docker- ​install
The Docker CE DEB package download site for Ubuntu: https:/ ​/​download.
docker.​com/ ​linux/ ​ubuntu/ ​dists/ ​

Running Windows Docker containers on Windows: https:/ ​/ ​blog. ​docker. ​com/
2016/​09/ ​build- ​your- ​first- ​docker- ​windows- ​server- ​container/ ​

DockerCompletion for PowerShell: https:/ ​/ ​github. ​com/ ​matt9ucci/
DockerCompletion

Docker CE for Mac: https:/ ​/​store. ​docker. ​com/ ​editions/ ​community/ ​docker-
ce-​desktop- ​mac

Command-line completion for Mac: https:/ ​/​docs. ​docker. ​com/ ​docker- ​for-
mac/​#install- ​shell- ​completion

Installing Homebrew on your Mac: https:/ ​/ ​brew. ​sh/​

https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/enterprise-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-centos
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-server-ubuntu
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://download.docker.com/linux/centos/7/x86_64/stable/Packages
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://github.com/docker/docker-install
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://download.docker.com/linux/ubuntu/dists/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://blog.docker.com/2016/09/build-your-first-docker-windows-server-container/
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://github.com/matt9ucci/DockerCompletion
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://docs.docker.com/docker-for-mac/#install-shell-completion
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Setting up a Docker Development Environment Chapter 1

[33]

What differences to watch out for between
OSes
Docker images, by design, are self-contained packages that include everything needed to
run the application they are designed to execute. One of the great strengths of Docker is
that Docker images can be run on almost any operating system. That being said, there are
some differences in the experience of running Docker images on different OSes. Docker was
created on Linux and is deeply integrated with some key Linux constructs. So, as you
would expect, when you run Docker on Linux, everything integrates directly and
seamlessly with the OS. Docker leverages the Linux kernel and filesystem natively.

Unfortunately, when you run Docker for Windows or Docker for Mac, Docker cannot
leverage the same constructs that it does natively on Linux because they just do not exist on
these other OSes. Docker handles this by creating a small, efficient Linux VM in a
hypervisor for the non-Linux OS. With Docker for Windows, this Linux VM is created in
Hyper-V. On macOS, the VM is created in a custom hypervisor, called hyperkit.

As you might expect, there is a performance overhead associated with the helper VMs.
However, if you do use Windows or OS X for your development workstation, you will be
pleased to know that Docker has made a lot of positive strides on both platforms, reducing
the overhead and improving performance significantly with each new major version
released. There are a lot of reports of high CPU utilization for the hyperkit hypervisor on
OS X, but I have not personally experienced the issue. With the current stable versions of
Docker CE, I believe that both Windows and OS X can be successfully used for Docker
development.

Still, there are other differences, besides processing performance, to consider. There are two
that you should be aware of: file mounts and endpoints.

Docker CE on a Linux OS is able to directly use the filesystem for its file mounts in the
running containers—this provides native-disk-performance levels. You also can change the
filesystem drivers used to achieve different levels of performance. This is not available for
Docker on Windows or Docker on Mac. For both Windows and OS X, there is an additional
filesystem tool that handles the file mounts. On Windows, you will be using Windows
shared files, and on OS X it is osxfs. Unfortunately for the Windows and OS X users, the
performance hit on the file mounts is significant. Even though Docker has made leaps and
bounds in improving the file mount story for Windows and for OS X with version 17 and
later, both are still measurably slower compared to running natively on a Linux OS. For
Windows specifically, the file mount options are very restrictive. If you are developing an
application that is disk-utilization heavy, this difference might be enough to have you
immediately consider switching to a Linux development workstation.

Setting up a Docker Development Environment Chapter 1

[34]

One other area that differs between Docker on Linux and Docker for Windows or Docker
for Mac is the utilization of endpoint ports. One example is with Docker for Windows; you
are not able to access a container's endpoint from its the host using localhost. This is a
known bug, but the only workaround is to access your container's endpoints from a
different host than you are running them on. With Docker for Mac, there are other endpoint
limitations, such as not being able to ping a container (because Docker for Mac cannot route
the ping traffic to and from the container) and you cannot have per-container IP addressing
(because the Docker bridge network is not reachable from macOS).

Any of these limitations might be enough for you to consider switching your development
workstation to an Ubuntu or CentOS operating system. It was for me, and you will find
that most of the examples found in this book will be executed on my Ubuntu workstation. I
will try to point out any areas that may be significantly different if you are using Windows
or OS X.

Summary
Wow! We covered a lot in this first chapter. You should now be able to install Docker on
your workstation, regardless of the OS that it is running. You should be able to install
Docker onto a Linux workstation using three different methods, and know some of the
differences between installing on an RPM-based system and a DEB-based system.

We also covered some very significant reasons why you might consider using a Linux
workstation for your development, instead of using a Windows or macOS workstation.
And by now, you should be able to easily validate the successful installation of Docker by
checking the version of Docker installed.

You should be able to easily confirm that Docker is working as desired by running a hello-
world container. Not bad for your first chapter, right? Well, with this foundation, and your
newly Docker-ready workstation, let's move right into Chapter 2, Learning Docker
Commands, where we will learn about many Docker commands you'll use every day.

References
Docker for Windows limitations: https:/ ​/​docs. ​docker. ​com/ ​docker- ​for-
windows/ ​troubleshoot/ ​#limitations- ​of- ​windows- ​containers- ​for- ​localhost-
and-​published- ​ports

Docker for Mac limitations: https:/ ​/​docs. ​docker. ​com/ ​v17.​09/ ​docker- ​for- ​mac/
networking/ ​#known- ​limitations- ​use- ​cases- ​and- ​workarounds

https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/docker-for-windows/troubleshoot/#limitations-of-windows-containers-for-localhost-and-published-ports
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/v17.09/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds

2
Learning Docker Commands

In this chapter, we will learn some essential Docker commands. While we focus on one of
the most important commands, the container run command, we will also cover many
other commands that you will be using every day. These commands include the list
container command, the stop container command, and the remove container command.
Along the way, we will also discover other container commands such as logs, inspect, stats,
attach, exec, and commit. I think you will find this chapter to be an excellent foundation for
Docker education.

BIC: The Bureau of International des Containers was founded in 1933 as a neutral, non-
profit, international organization whose mission is to promote the safe, secure, and
sustainable expansion of containerization and intermodal transportation.

By the end of this chapter, you will know the following:

The current and previous command-line syntax
Both ways to use the version commands
How to use the container run command and many of its optional parameters
How to start and stop your containers, view information about your containers,
interact with running containers, and how to save and reuse changes made to
your containers

Technical requirements
You will be pulling Docker images from Docker's public repo, and installing the jq software
package, so basic internet access is required to execute the examples within this chapter.

The code files of this chapter can be found on GitHub:
https:/​/​github.​com/ ​PacktPublishing/ ​Docker- ​Quick- ​Start- ​Guide/ ​tree/ ​master/
Chapter02

https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter02

Learning Docker Commands Chapter 2

[36]

Check out the following video to see the code in action:
http:/​/​bit.​ly/​2P43WNT

Information about command syntax
Before we dive into learning about Docker commands and their many options, I want to
inform you of a change to the Docker CLI that happened in January 2017.

The number of commands and associated options have been increasing with each new
release of Docker. Docker decided that the complexity this was creating needed to be
addressed. So, with the release of Docker version 1.13 (Docker also changed the version
numbing scheme in 2017), the CLI commands have been divided into management
functional groups. For example, there is now a container management group of commands,
and an image management group of commands. This changes how you run Docker
commands. Here is an example of the use of the old and new run command:

the new command syntax...
docker container run hello-world
the old command syntax...
docker run hello-world

This change provides better command organization, but also adds some verbosity to the
command line. It's a trade-off. For now, as far as I know, the old command syntax still
works for all Docker commands, but for the rest of the examples in this book, I am planning
to use the new syntax. At least I'll try, as old habits die hard.

One other note I would like to make here is that most command options have a short and
long format. I will try to share the long format as an option in my examples at least once so
you will know what the short version stands for. If you installed the Docker command-line
completion, it will be a helpful resource for remembering both the new Docker
management-based commands and the parameters that can be used with them. Here is a
look at the top-level command-completion help for the container commands:

http://bit.ly/2P43WNT
http://bit.ly/2P43WNT
http://bit.ly/2P43WNT
http://bit.ly/2P43WNT
http://bit.ly/2P43WNT
http://bit.ly/2P43WNT
http://bit.ly/2P43WNT
http://bit.ly/2P43WNT
http://bit.ly/2P43WNT

Learning Docker Commands Chapter 2

[37]

That command list gives us a sneak peek at some of the commands we are going to review
in this chapter, so let's get started with learning Docker commands. In Chapter 1, Setting up
a Docker Development Environment, we used two very common Docker commands: the
version command and the run command. While you think you know pretty much
everything there is to know about the version command, you may be surprised to learn
that it has another trick up its sleeve. There is another version of Docker's version
command.

The version command
You have already used the docker --version command as a quick test to confirm that
Docker was installed. Now try the command without the dashes:

docker version

This version of the command gives you greater detail about the version of Docker installed
on your system. It is worth noting that the docker-compose command, which we will talk
about later, also has two versions of the version command—one with the dashes providing
a single-line response, and one without the dashes that delivers more details.

Learning Docker Commands Chapter 2

[38]

Remember that all the Docker commands have a rich help system built in.
Try it by entering any part of a Docker command and using the --help
parameter. For example, docker container run --help.

The Docker run command
Since we will be using the run command a lot, we should take a look at that now. You have
already used the run command in its most basic form:

new syntax
Usage: docker container run [OPTIONS] IMAGE [COMMAND] [ARG...]
docker container run hello-world

old syntax
docker run hello-world

This command tells Docker that you want to run a container based on the image described
as hello-world. You may be asking yourself, did the hello-world container image get
installed when I installed Docker? The answer is no. The docker run command will look
at the local container image cache to see whether there is a container image that matches the
description of the requested container. If there is, Docker will run the container from the
cached image. If the desired container image is not found in the cache, Docker will reach
out to a Docker registry to try to download the container image, storing it in the local cache
in the process. Docker will then run the newly-downloaded container from the cache.

A Docker registry is just a centralized location to store and retrieve Docker images. We will
talk more about registries and the Docker registry specifically later. For now, just
understand that there is a local image cache and a remote image store. You saw the
container not found locally process occur when we ran the hello-world container in
Chapter 1, Setting up a Docker Development Environment. Here is what it looks like when
Docker does not find the container image in the local cache and has to download it from the
registry:

Learning Docker Commands Chapter 2

[39]

You can pre-seed the local docker cache with container images you plan to run by using the
docker pull command; for example:

new syntax
Usage: docker image pull [OPTIONS] NAME[:TAG|@DIGEST]
docker image pull hello-world

old syntax
docker pull hello-world

If you prefetch the container image with a pull command, when you execute the docker
run command, it will find the image in the local cache and not need to download it again.

You may have noticed in the preceding screenshot that you requested the hello-
world container image and Docker unsuccessfully searched the local cache and then
downloaded the hello-world:latest container image from the repository. Each
container image description is made up of three parts:

Docker registry host name
Slash-separated name
Tag name

The first part, the registry host name, we have not seen or used yet, but it was included via
a default value of the public Docker registry. Whenever you do not specify a registry host
name, Docker will invisibly use the public Docker registry. This registry host name is
docker.io. The contents of the Docker registry can be browsed at https:/ ​/​hub. ​docker.
com/​explore. This is the main public store for Docker images. It is possible to set up and
use other public or private image registries, and many corporations will do just that, setting
up their own private Docker image registry. We will talk a little more about that in Chapter
8, Docker and Jenkins. For now, just understand that the first part of a Docker image
description is the registry host name that hosts the container image. It is worth noting that
the registry host name can include a port number. This can be used for registries that are
configured to serve data on a non-default port value.

The second part of the container image description is the slash-separated name. This part is
like a path to, and name of, the container image. There are certain official container images
that do not need to specify the path. For those images, you can simply specify the name
portion of the slash-separated name. In our example, that is the hello-world part of the
description.

https://hub.docker.com/explore
https://hub.docker.com/explore
https://hub.docker.com/explore
https://hub.docker.com/explore
https://hub.docker.com/explore
https://hub.docker.com/explore
https://hub.docker.com/explore
https://hub.docker.com/explore
https://hub.docker.com/explore
https://hub.docker.com/explore

Learning Docker Commands Chapter 2

[40]

The third part of the container image description is the tag name. This part is considered
the version tag for the image, but it does not need to be made up of just numbers. The tag
name can be any set of ASCII characters, including uppercase and lowercase letters,
numbers, dashes, underscores, or periods. About the only restrictions on tag names are that
they cannot start with a period or dash, and have to be 128 characters or fewer. The tag
name is separated from the slash-separated name by a colon. This brings us back to the
hello-world:latest image description we saw earlier. Like the registry host name, there
is a default value for the tag name. That default value is latest. In our example, the tag
name being used is the default, and it is shown in the search and download as hello-
world:latest. You can see all of this in action in the following example:

We confirmed that our local image cache is empty, with the docker images command,
and we then pulled the fully qualified hello-world image to prefetch it into our local cache.
Then we used the same short description as we did in all of our previous hello-world
examples, and Docker runs the container without downloading again, showing that the
default values are used and that they match the fully-qualified values.

Okay, now that we have all of the basics of the Docker run command out of the way, let's
dig a little deeper and examine some of the optional parameters that you can use with the
run command. If you look at the full run command syntax, you will see this:

Usage: docker container run [OPTIONS] IMAGE [COMMAND] [ARG...]

Learning Docker Commands Chapter 2

[41]

Note that the last parts of the command are [COMMAND] [ARG...]. This tells us that the
container run command has an optional command parameter that can also include its
own optional parameters. Docker container images are built with a default command that is
executed when you run a container based on the image. For the hello-world container, the
default command is /hello. For a full Ubuntu OS container, the default command is bash.
Whenever you run an Ubuntu container and don't specify a command to run in the
container, the default command will be used. Don't worry if this doesn't make much sense
yet—we will cover the default command and overriding it at runtime later in this chapter
in the Back to the Docker run command section. For now, it is enough to know that when you
run a container, it will execute a command that is either the default command or, if
provided to the container run command, an override command to execute in the
running container. One last note: when the command being executed by the running
container (either default or override) terminates, the container will exit. In our examples
using the hello-world container, as soon as the /hello command terminates inside the
container, the hello-world container exits. In a moment, you will learn more about the
difference between a running container and one that has exited.

For now, we will continue our run command discussion with one of my favorite optional
parameters, the --rm parameter. A little background information is required here. As you
may recall from Chapter 1, Setting up a Docker Development Environment, a Docker image is
made up of layers. Whenever you run a docker container, it is really just using the locally-
cached docker image (which is a stack of layers), and creating a new layer on top that is a
read/write layer. All of the execution and changes that occur during the running of a
container are stored in its own read/write layer.

The list container command
The indication of a running container can be shown using the following command:

Usage: docker container ls [OPTIONS]
docker container ls

Learning Docker Commands Chapter 2

[42]

This is the list containers command, and without any additional parameters, it will list the
currently-running containers. What do I mean by currently running? A container is a
special process running on the system, and like other processes on the system, a container
can stop or exit. However, unlike other types of processes on your system, the default
behavior for a container is to leave behind its read/write layer when it stops. This is because
you can restart the container if desired, keeping the state data it had when it exited. As an
example, imagine you run a container that is an OS, such as Ubuntu, and in that container
you install wget. After the container exits, you can restart it, and it will still have wget
installed. Remember that each running container has its own read/write layer, so, if you run
one Ubuntu container and install wget, then you run another Ubuntu container, it will not
have wget. The read/write layers are not shared between containers. However, if you
restart a container that had the wget installed, it will still be installed.

So, the difference between a running container and a stopped one is that the process is
either running or it has exited, leaving behind its own read/write layer. There is a
parameter to the list containers command that allows you to list all of the containers, both
those running and those that have exited. As you may have guessed, it is the --all
parameter, and it looks like this:

short form of the parameter is -a
docker container ls -a
long form is --all
docker container ls --all

old syntax
docker ps -a

Now, let's go back to one of my favorite optional run command parameters, the --rm
parameter:

there is no short form of the --rm parameter
docker container run --rm hello-world

This parameter instructs Docker to remove the container's read/write layer automatically
when the container exits. When you run a docker container without the --rm parameter,
the container data is left behind when the container exits so that the container can be
restarted again later. If, however, you include the --rm parameter when you run a
container, all of the container's read/write data is removed at the time the container exits.
This parameter provides an easy clean up on exit function that you will often find very
helpful. Let's see this with a quick example using the run and container ls commands
we just discussed:

Learning Docker Commands Chapter 2

[43]

First, we confirmed we had the hello-world image in our local cache. Next, we listed all of
the containers on our system, both running and exited. Note the distinction between images
and containers. If you are familiar with VMware, the analogy would be somewhat like a
template and a VM. Next, we ran the hello-world container using the --rm parameter. The
hello-world container prints its message and then immediately exits (we redirected the
output to /dev/null to keep the example output short). Next, we listed the containers
again, as we saw that the hello-world container's read/write data was automatically
removed when the container exited. After that, we ran the hello-world container again, but
this time did not use the --rm parameter. When we listed the containers this time, we saw
the indication of the (exited) container. Often you will run a container, knowing that you
will never need to restart it later, and using the --rm parameter to automatically clean it up
is very handy. But what if you don't use the --rm parameter? Are you stuck with an ever-
growing list of containers? Of course not. Docker has a command for that. It is the
container rm command.

The remove container command
The remove container command looks something like this:

the new syntax
Usage: docker container rm [OPTIONS] CONTAINER [CONTAINER...]
docker container rm cd828234194a

the old syntax
docker rm cd828234194a

Learning Docker Commands Chapter 2

[44]

The command requires a value that uniquely identifies a container; in this case, I used the
full container ID for the hello-world container that we just ran. You can use the first few
characters of a container's ID, as long as it provides a unique identifier between all of the
containers on your system. Another way to uniquely identify the container is by the name
assigned to it. Docker will provide a unique randomly-generated name for your container
when you run it. In the preceding example, the random name assigned was
competent_payne. So we could have used the remove command like this:

using the randomly generated name
docker container rm competent_payne

While the randomly-generated names provided by docker are more human-readable than
the container IDs it assigns, they still may not be as relevant as you would like. This is why
docker has provided an optional parameter to the run command for naming your
containers. Here is an example using the --name parameter:

using our own name
docker container run --name hi-earl hello-world

Now when we list all of the containers, we can see our container has the name hi-earl. Of
course, you would probably want to use a better container name, perhaps one that
describes the function performed by the container, such as db-for-earls-app.

Note: Like the container IDs, the container names must be unique on a
host. You cannot have two containers (even if one has exited) that have
the same name. If you will have more than one container running the
same image, such as web server image, name them uniquely, for example,
web01 and web02.

You can delete multiple containers at the same time by providing the unique identifier for
each on the command line:

removing more than one
docker container rm hi-earl hi-earl2

Learning Docker Commands Chapter 2

[45]

Usually, you will remove containers only after they have exited, such as the hello-world
containers that we have been using. However, sometimes you will want to remove a
container even if it is currently running. You can use the --force parameter to handle that
situation. Here is an example of using the force parameter to remove a running container:

removing even if it is running
docker container rm --force web-server

Here is what that would look like:

Notice that in the first container ls command, we didn't use the --all parameter. This
reminds us that the web server container is running. When we tried to remove it, we were
informed that the container is still running and would not be removed. This is a good
safeguard to help prevent the removal of running containers. Next, we used the force
command, and the running container was removed without any warning. Finally, we did
another container ls command, including the --all parameter to show that the
read/write data for our container was actually removed this time.

If you have set up Docker command completion, you can type in the
command up to where you need to enter the unique identifier for the
container(s) and then use the Tab key to get a list of containers, tabbing to
the one you want to delete. Once you've highlighted the container to
delete, use the space or Enter key to select it. You can hit Tab again to
select another container to delete more than one at a time. Once you have
all the containers selected, press Enter to execute the command.
Remember that you will only see stopped containers when you tab for the
rm command unless you include the force parameter, rm -f.

Learning Docker Commands Chapter 2

[46]

Sometimes, you may want to remove all of the containers on your system, running or not.
There is a useful way to handle that situation. You can combine the container ls
command and the container remove command to get the job done. You will be using a new
parameter on the container ls command to accomplish this—the --quiet parameter.
This command instructs Docker to only return the container IDs instead of the full list with
a header. Here is the command:

list just the container IDs
docker container ls --all --quiet

Now we can feed the values returned by the container ls command as input parameters
to the container remove command. It will look like this:

using full parameter names
docker container rm --force $(docker container ls --all --quiet)
using short parameter names
docker container rm -f $(docker container ls -aq)

using the old syntax
docker rm -f $(docker ps -aq)

This will remove all of the containers both running and exited from your system, so be
careful!

You will probably use this shortcut often, so creating a system alias for it
is pretty handy.
You can add something like the following to your ~/.bash_profile or
~/zshrc file: alias RMAC='docker container rm --force
$(docker container ls --all --quiet)'.

Many containers are designed to run and exit immediately, such as the hello-world
example we've used several times already. Other container's images are created so that,
when you run a container using it, the container will continue running, providing some
ongoing useful function, such as serving web pages. When you run a container that
persists, it will hold onto the foreground process until it exits, attaching to the processes:
standard input, standard output, and standard error. This is okay for some testing and
development use cases, but normally, this would not be desired for a production container.
Instead, it would be better to have the container run as a background process, giving
you back control of your terminal session once it launches. Of course, there is a parameter
for that. It is the --detach parameter. Here is what using that parameter looks like:

using the full form of the parameter
docker container run --detach --name web-server --rm nginx
using the short form of the parameter
docker container run -d --name web-server --rm nginx

Learning Docker Commands Chapter 2

[47]

Using this parameter detaches the process from the foreground session and returns control
to you as soon as the container has started. Your next question is probably, how do I stop a
detached container? Well, I am glad you asked. You use the container stop command.

The stop container command
The stop command is easy to use. Here are the syntax and an example of the command:

Usage: docker container stop [OPTIONS] CONTAINER [CONTAINER...]
docker container stop web-server

In our case, we used the --rm parameter when running the container, so as soon as the
container is stopped, the read/write layer will be automatically deleted. Like many of the
Docker commands, you can provide more than one unique container identifier as
parameters to stop more than one container with a single command.

Now you might be wondering if I use the --detach parameter, how do I see what is
happening with the container? There are several ways you can get information from, and
about, the container. Let's take a look at some of them before we continue with our run
parameter exploration.

The container logs command
When you run a container in the foreground, all of the output the container sends to
standard output and standard error is displayed in the console for the session that ran the
container. However, when you use the --detach parameter, control of the session is
returned as soon as the container starts so you don't see the data sent to stdout and
stderr. If you want to see that data, you use the container logs command. That
command looks like this:

the long form of the command
Usage: docker container logs [OPTIONS] CONTAINER
docker container logs --follow --timestamps web-server
the short form of the command
docker container logs -f -t web-server

get just the last 5 lines (there is no short form for the "--tail"
parameter)
docker container logs --tail 5 web-server

the old syntax
docker logs web-server

Learning Docker Commands Chapter 2

[48]

The --details, --follow, --timestamps, and --tail parameters are all optional, but I
have included them here for reference. When you use the container logs command with
no optional parameters, it will just dump all of the contents of the container's logs to the
console. You can use the --tail parameter with a number to dump just the last number of
lines. You can combine the parameters (except for --tail and --follow) to get the results
you want. The --follow parameter is like using a tail -f command when viewing logs
that are being continually written to, and will display each line as it is written to the log.
You use Ctrl + C to exit the log being followed. The --timestamps parameter is great for
evaluating the frequency at which lines have been written to the container's logs.

The container top command
You may not always want to simply view the logs of a container; sometimes you want to
know what processes are running inside a container. That's where the container top
command comes in. Ideally, each container is running a single process, but the world is not
always ideal, so you can use a command such as this to view all the processes running in
the targeted container:

using the new syntax
Usage: docker container top CONTAINER [ps OPTIONS]
docker container top web-server

using the old syntax
docker top web-server

As you might expect, the container top command is only used for viewing the processes
of a single container at a time.

The container inspect command
When you run a container, there is a lot of metadata that gets associated with the container.
There are many times that you will want to review that metadata. The command for doing
that is:

using the new syntax
Usage: docker container inspect [OPTIONS] CONTAINER [CONTAINER...]
docker container inspect web-server

using the old syntax
docker inspect web-server

Learning Docker Commands Chapter 2

[49]

As mentioned, this command returns a lot of data. You may only be interested in a subset
of the metadata. You can use the --format parameter to narrow the data returned. Check
out these examples:

Getting some State data:

if you want to see the state of a container you can use this command
docker container inspect --format '{{json .State}}' web-server1 | jq

if you want to narrow the state data to just when the container started,
use this command
docker container inspect --format '{{json .State}}' web-server1 | jq
'.StartedAt'

Getting some NetworkSettings data:

if you are interested in the container's network settings, use this
command
docker container inspect --format '{{json .NetworkSettings}}' web-server1 |
jq

or maybe you just want to see the ports used by the container, here is a
command for that
docker container inspect --format '{{json .NetworkSettings}}' web-server1 |
jq '.Ports'

maybe you just want the IP address used by the container, this is the
command you could use.
docker container inspect -f '{{json .NetworkSettings}}' web-server1 | jq
'.IPAddress'

Getting data for more than one container with a single command:

maybe you want the IP Addresses for a couple containers
docker container inspect -f '{{json .NetworkSettings}}' web-server1 web-
server2 | jq '.IPAddress'

since the output for each container is a single line, this one can be
done without using jq
docker container inspect -f '{{ .NetworkSettings.IPAddress }}' web-server1
web-server2 web-server3

Learning Docker Commands Chapter 2

[50]

Most of these examples use the json processor, jq. If you haven't already installed it on
your system, now is a good time to do so. Here are the commands to install jq on each of
the OSes we've used in this book:

install jq on Mac OS
brew install jq

install jq on ubuntu
sudo apt-get install jq

install jq on RHEL/CentOS
yum install -y epel-release
yum install -y jq

install jq on Windows using Chocolatey NuGet package manager
chocolatey install jq

The --format parameter of the inspect command uses go templates. You can find more
information about them on the Docker document pages for formatting output: https:/ ​/
docs.​docker.​com/ ​config/ ​formatting.

The container stats command
Another very useful Docker command is the stats command. It provides live, continually-
updated usage statistics for one or more running containers. It is a bit like using the Linux
top command. You can run the command with no parameters to view the stats for all
running containers, or you can provide one or more unique container identifiers to view the
stats for one or more container's specific containers. Here are some examples of using the
command:

using the new syntax, view the stats for all running containers
Usage: docker container stats [OPTIONS] [CONTAINER...]
docker container stats

view the stats for just two web server containers
docker container stats web-server1 web-server2

using the old syntax, view stats for all running containers
docker stats

When you have seen enough stats, you use Ctrl + C to exit the view.

https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting

Learning Docker Commands Chapter 2

[51]

Getting back to run command parameters, next, we'll discuss two parameters for the run
command that are usually used together. Sometimes you run a container, and you want to
have an interactive session with it. For example, you may run a container that executes
some application inside a more or less full OS, such as Ubuntu, and you want to have
access inside that container to change the configuration or debug some issue, similar to
using SSH to connect to a server. As with most things Docker, there is more than one way
to accomplish this. One common method is to use two optional parameters for the run
command: --interactive and --tty. Let's take a look at how that works now. You have
already seen how we can use the --detach parameter startup disconnected from the
container we are running:

running detached
docker container run --detach --name web-server1 nginx

When we run this command to start up our nginx web server and browse to
http://localhost, we find that it is not serving the welcome page we expect. So we
decide to do some debugging, and, instead of detaching from our container, we decide to
run it interactively using the two --interactive and --tty parameters. Now, since this
is a nginx container, it has a default command that is executed when the container starts.
That command is nginx -g 'daemon off;'. Since that is the default command, it won't
do us any good to interact with the container. So we are going to override the default
command by providing one as a parameter to our run command. It will look something like
this:

using the long form of the parameters
docker container run --interactive --tty --name web-server2 nginx bash

using the short form of the parameters (joined as one), which is much
more common usage
docker container run -it --name web-server2 nginx bash

Learning Docker Commands Chapter 2

[52]

This command will run the container as before, but instead of executing the default
command, it will execute the bash command. It will also open a terminal session with the
container that we can interact with. As needed, we can execute commands inside of the
container as the root user. We can view folders and files, we can edit configuration
settings, we can install packages, and so on. We can even run the image's default command
to see whether we have resolved any issues. Here is a somewhat contrived example:

You may have noticed the -p 80:80 parameter. That is the short form of the publish
parameter, which we will discuss shortly in the Back to the Docker run command section.
Using the container ls command, you can see the differences between running the
container using the default command versus running the container using an override
command:

Web-server run used the default CMD, and web-server2 used the override CMD bash. This
is a contrived example to help you understand these concepts. A real-world example might
be when you want to interactively connect with an OS-based container, such as Ubuntu.
You may recall that at the beginning of Chapter 1, Setting up a Docker Development
Environment, it said that the default command run in an Ubuntu container is bash. Since
that is the case, you don't have to supply a command to override the default. You can use a
run command like this:

running interactively with default CMD
docker container run -it --name earls-dev ubuntu

Learning Docker Commands Chapter 2

[53]

With this container run command, you are connected to an interactive terminal session
of your running Ubuntu container. You can do pretty much anything you would normally
do when ssh-ed into an Ubuntu server. You can install software with apt-get, you can
view running processes, you can execute a top command, and so on. That might look like
this:

There are a couple of other container commands that help you interact with a container that
is already running and is detached. Let's take a quick look at these commands now.

The container attach command
Suppose you have a running container. It is currently detached from your terminal session.
You can use the container attach command to bring that container's executing process
to be the foreground process of your terminal session. Let's use the web-server example we
used earlier:

run a container detached
docker container run --detach -it --name web-server1 -p 80:80 nginx

show that the container is running
docker container ps

attach to the container
Usage: docker container attach [OPTIONS] CONTAINER
docker container attach web-server1

Learning Docker Commands Chapter 2

[54]

issue a Ctrl + PQ keystroke to detach (except for Docker on Mac, see
below for special Mac instructions)

again, show that the container is running detached.
docker container ps

When you attach to the running container, its executing command becomes the foreground
process for your terminal session. To detach from the container, you need to issue a Ctrl +
PQ keystroke. If you issue a Ctrl + C keystroke, the container's executing process will
receive a sig-term signal and will terminate, which in turn will exit the container. This is
usually not desired. So remember to detach by using a Ctrl + PQ keystroke.

However, there is a known issue on macOS: for Docker on Mac, the Ctrl + PQ keystroke
does not work, and unless you use another parameter, the --sig-proxy=false
parameter, on the attach command, you will not be able to detach from the container
without terminating it with a Ctrl + C keystroke:

when you are using Docker for Mac, remember to always add the "--sig-
proxy=false" parameter
docker attach --sig-proxy=false web-server1

When you provide the --sig-proxy=false parameter to the attach command, you can
issue a Ctrl + C keystroke to the attached container and it will detach without sending the
sig-term signal to the container process, thus keeping the container running, once again
detached from your terminal session:

Learning Docker Commands Chapter 2

[55]

The container exec command
Sometimes, when you have a container running detached, you might want to get access to
it, but don't want to attach to the executing command. You can accomplish this by using the
container exec command. This command allows you to execute another command in the
running container, without attaching to or interfering with the already-running command.
This command is often used to create an interactive session with an already-running
container or to execute a single command within the container. The command looks like
this:

start an nginx container detached
docker container run --detach --name web-server1 -p 80:80 nginx

see that the container is currently running
docker container ls

execute other commands in the running container
Usage: docker container exec [OPTIONS] CONTAINER COMMAND [ARG...]
docker container exec -it web-server1 bash
docker container exec web-server1 cat /etc/debian_version

confirm that the container is still running
docker container ls

When the exec command completes, you exit the bash shell, or the file contents have been
displaced, then it exits back to the terminal session leaving the container running detached:

Let's take a look at another Docker command before we continue our discussion of the
many optional container run parameters.

Learning Docker Commands Chapter 2

[56]

The container commit command
It is important to know that when you are attached to a running container and make
changes to it, such as installing new packages, or changing configuration files, that those
changes only apply to that running container. If, for example, you use an Ubuntu image to
run a container and then install curl into that container, the change does not apply back to
the image you ran the container from, in this example, Ubuntu. If you were to start another
container from the same Ubuntu image, you would need to install curl again. However, if
you want to have the changes you make inside a running container persist and be available
when you run new containers, you can use the container commit command. The
container commit command allows you to save the current read/write layer of a
container along with the layers of the original image, creating a brand new image. When
you run containers using the new image, it will include the changes you made and saved
with the container commit command. Here is what the container commit command
looks like:

Usage: docker container commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]
docker container commit ubuntu new-ubuntu

And here is an example of using the container commit command to install curl to a
running container, and then creating a new container that includes the installed curl
command:

Learning Docker Commands Chapter 2

[57]

With this example, I can now run new containers from the ubuntu-curl image, and all of
them will have the curl command already installed.

Back to the Docker run command
Now, let's return to our discussion of the container run command. Earlier, you saw an
example of using the run command with the --publish parameter. Using the optional
publish parameter allows you to specify what ports will be opened related to the run
container. The --publish parameter includes pairs of port numbers separated by a colon.
For example:

create an nginx web-server that redirects host traffic from port 8080 to
port 80 in the container
docker container run --detach --name web-server1 --publish 8080:80 nginx

Learning Docker Commands Chapter 2

[58]

The first port number is associated with the host running the container. In the nginx
example, 8080 is exposed on the host; in our case that would be
http://localhost:8080. The second port number is the port that is open on the running
container. In this case, it would be 80. Speaking out the description of the --publish
8080:80 parameter, you would say something like, the traffic sent to port 8080 on the host
is redirected to port 80 on the running container:

It is an important distinction to make between the host ports and the container ports. I can
run several containers on the same system that all expose port 80, but only one container
can have traffic from each port on the host. Look at the following examples to better
understand:

all of these can be running at the same time
docker container run --detach --name web-server1 --publish 80:80 nginx
docker container run --detach --name web-server2 --publish 8000:80 nginx
docker container run --detach --name web-server3 --publish 8080:80 nginx
docker container run --detach --name web-server4 --publish 8888:80 nginx

however if you tried to run this one too, it would fail to run
because the host already has port 80 assigned to web-server1
docker container run --detach --name web-server5 --publish 80:80 nginx

Know that this is a limitation of networking in general, not a limitation of Docker or
containers. Here we can see these commands and their output. Notice the ports and names,
and how the use of a port already used as an endpoint fails:

Learning Docker Commands Chapter 2

[59]

That was a lot of data on various options parameters for the container run command. It's
not all the options parameters, but it should be enough to get you off to a great start. If you
want to learn more about the optional parameters we explored, or find out about the ones
we didn't cover here, be sure to visit the docker documents page for the container run
command, which can be found at https:/ ​/​docs. ​docker. ​com/ ​engine/ ​reference/ ​run/ ​.

Summary
In this chapter, we learned about Docker image descriptions and a little about Docker
registries. Then we saw that there is another form of the version command. After that, we
explored a lot of Docker container commands, including run, stop, ls, logs, top, stats,
attach, exec, and the commit command. Finally, we found out how to expose your
containers by opening ports from your host and to your containers. You should feel pretty
good about what you can do with Docker already, but hang on—in Chapter 3, Creating
Docker Images, we are going to show you how to create your own Docker images with a
Dockerfile and the image build command. If you're ready, turn the page.

References
Docker registry: https:/ ​/​hub. ​docker. ​com/ ​explore/ ​

All of the parameters for the container run command: https:/ ​/​docs. ​docker.
com/​engine/ ​reference/ ​run/ ​

Using the --format parameter with the container inspect command: https:/ ​/
docs.​docker. ​com/ ​config/ ​formatting

The json jq parser: https:/ ​/ ​stedolan. ​github. ​io/ ​jq/​

The Chocolatey Windows package manager: https:/ ​/​chocolatey. ​org/ ​

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://hub.docker.com/explore/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://docs.docker.com/config/formatting
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/

3
Creating Docker Images

In this chapter, we will learn how to create enterprise-grade Docker images. We will start
off by learning about the main building block of Docker images, specifically the Dockerfile.
Then, we will explore all the instructions available to use in a Dockerfile. There are some
instructions that on the surface seem very similar. We will uncover what the differences are
between the COPY and ADD instructions, the ENV and ARG instructions, and most
importantly between the CMD and ENTRYPOINT instructions. Next, we will find out what the
build context is and why it is important. Finally, we will cover the actual image build
command.

If well-maintained, the average shipping container has a lifespan of around 20 years,
whereas the average lifespan of a Docker container is 2.5 days.

 – https:/​/​www. ​tintri. ​com/ ​blog/ ​2017/ ​03/​tintri- ​supports- ​containers- ​advanced-
storage-​features

In this chapter, we will cover the following topics:

What is a Dockerfile?
All of the instructions that can be used in a Dockerfile
When to use either the COPY or the ADD instruction
The difference between the ENV and ARG variables
Why you use the CMD and ENTRYPOINT instructions
The importance of the build context
Building Docker images using a Dockerfile

Technical requirements
You will be pulling Docker images from Docker's public repository, so basic internet access
is required to execute the examples within this chapter.

https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features
https://www.tintri.com/blog/2017/03/tintri-supports-containers-advanced-storage-features

Creating Docker Images Chapter 3

[61]

The code files of this chapter can be found on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Docker- ​Quick- ​Start- ​Guide/ ​tree/ ​master/
Chapter03

Check out the following video to see the code in action:
http:/​/​bit.​ly/​2rbHvwC

What is a Dockerfile?
You learned in Chapter 2, Learning Docker Commands, that you can run a Docker container,
make modifications to that running container, and then using the docker commit
command, save those changes, effectively creating a new Docker image. Although this
method works, it is not the preferred way to create Docker containers. The best way to
create Docker images is to use the Docker image build command with a Dockerfile that
describes your desired image.

A Dockerfile (yes, the correct spelling is all one word, with a capital D) is a text file that
contains instructions used by the Docker daemon to create a Docker image. The
instructions are defined using a type of value pair syntax. Each one has an instruction word
followed by the parameters for that instruction. Every command gets its own line in the
Dockerfile. Although the Dockerfile instructions are not case-sensitive, there is a well-used
convention that the instruction word is always uppercase.

The order of the instructions in the Dockerfile is significant. Instructions are evaluated in
sequential order, starting at the top of the Dockerfile and finishing at the bottom of the file.
If you recall from Chapter 1, Setting up a Docker Development Environment, Docker images
are made up of layers. All of the instructions found in the Dockerfile will result in a new
layer being generated as the Docker image is built, however, some instructions will only
add a zero-byte-sized metadata layer to the created image. Since it is a best practice to keep
Docker images as small as possible, you will want to use instructions that create non-zero-
byte-sized layers as efficiently as possible. In the following sections, we'll note where using
an instruction creates a non-zero-byte-sized layer, and how to best use that instruction to
minimize the number and size of layers. Another important consideration is the ordering of
the instructions. Certain instructions must be used before others, but with those exceptions,
you can place the other instructions in any order you please. The best practice is to use
instructions that change least early in the Dockerfile, and instructions that change more
frequently in the later part of the Dockerfile. The reason is that when you need to rebuild an
image, the only layers that get rebuilt are the ones that are at, or after, the first line changed
in the Dockerfile. If you don't understand this yet, don't worry, it will make more sense
once we see some examples.

https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter03
http://bit.ly/2rbHvwC
http://bit.ly/2rbHvwC
http://bit.ly/2rbHvwC
http://bit.ly/2rbHvwC
http://bit.ly/2rbHvwC
http://bit.ly/2rbHvwC
http://bit.ly/2rbHvwC
http://bit.ly/2rbHvwC
http://bit.ly/2rbHvwC

Creating Docker Images Chapter 3

[62]

We will review the build command at the end of this section, but we will start with the
instructions available to the Dockerfile first, beginning with the instruction that has to be
the first instruction in your Dockerfile: the FROM instruction.

The FROM instruction
Every Dockerfile must have a FROM instruction, and it must be the first instruction in the
file. (Actually, the ARG instruction can be used before a FROM instruction, but it is not a
required instruction. We will talk more about that in the ARG instruction section.)

The FROM instruction sets the base for the image being created and instructs the Docker
daemon that the base of the new image should be the existing Docker image specified as
the parameter. The specified image can be described using the same syntax we saw in the
Docker container run command from Chapter 2, Learning Docker Commands. Here, it's a
FROM instruction that specifies using the official nginx image with a version of 1.15.2:

Dockerfile
FROM nginx:1.15.2

Note that in this example, there is no repository specified that indicates that the specified
image is the official nginx image. If no tag is specified, the latest tag will be assumed.

The FROM instruction will create the first layer in our new image. That layer will be the size
of the image specified in the instruction's parameter so it is best to specify the smallest
image that meets the criteria needed for your new image. An application-specific image,
such as nginx, is going to be smaller than an OS image, such as ubuntu. And, the OS image
for alpine will be much smaller than images of other OSes, such as Ubuntu, CentOS, or
RHEL. There is a special keyword that can be used as the parameter to the FROM instruction.
It is scratch. Scratch is not an image that you can pull or run, it just a signal to the Docker
daemon that you want to build an image with an empty base-image layer. The FROM
scratch instruction is used as the base layer for many other base images, or for specialized
app-specific images. You have already seen an example of such a specialized app image:
hello-world. The full Dockerfile for the hello-world image looks like this:

hello-world Dockerfile
FROM scratch
COPY hello /
CMD ["/hello"]

Creating Docker Images Chapter 3

[63]

We will discuss the COPY and CMD instructions shortly, but you should get a sense of how
small the hello-world image is based on its Dockerfile. In the world of Docker images,
smaller is definitely better. Take a look at the size of some images for reference:

The LABEL instruction
The LABEL instruction is a way to add metadata to your Docker image. This instruction
adds embedded key-value pairs to the image. The LABEL instruction adds a zero-byte-sized
layer to the image when it is created. An image can have more than one LABEL, and each
LABEL instruction can provide one or more LABELs. The most common use for the LABEL
instruction is to provide information about the image maintainer. This data used to have its
own instruction. See the following tip box about the now-deprecated MAINTAINER
instruction. Here are some examples of valid LABEL instructions:

LABEL instruction syntax
LABEL <key>=<value> <key>=<value> <key>=<value> ...
LABEL maintainer="Earl Waud <earlwaud@mycompany.com>"
LABEL "description"="My development Ubuntu image"
LABEL version="1.0"
LABEL label1="value1" \
 label2="value2" \
 lable3="value3"
LABEL my-multi-line-label="Labels can span \
more than one line in a Dockerfile."
LABEL support-email="support@mycompany.com" support-phone="(123) 456-7890"

Creating Docker Images Chapter 3

[64]

The LABEL instruction is one of the instructions that can be used multiple times in a
Dockerfile. You will learn later that some instructions that can be used multiple times will
result in only the last use being significant, thus ignoring all previous uses. The LABEL
instruction is different. Every use of the LABEL instruction adds an additional label to the
resulting image. However, if two or more uses of LABEL have the same key, the label will
get the value provided in the last matching LABEL instruction. That looks like this:

earlier in the Dockerfile
LABEL version="1.0"
later in the Dockerfile...
LABEL version="2.0"
The Docker image metadata will show version="2.0"

It is important to know that the base image specified in your FROM instruction may include
labels created with the LABEL instruction and that they will automatically be included in
the metadata of the image you are building. If a LABEL instruction in your Dockerfile uses
the same key as a LABEL instruction used in the FROM image's Dockerfile, your (later)
value will override the one in the FROM image. You can view all of the labels for an image
by using the inspect command:

The MAINTAINER instruction
There is a Dockerfile instruction specifically for providing the info about
the image maintainer, however, this instruction has been deprecated. Still,
you will probably see it used in a Dockerfile at some point. The syntax
goes like this: "maintainer": "Earl Waud
<earlwaud@mycompany.com>".

Creating Docker Images Chapter 3

[65]

The COPY instruction
You have already seen an example of using the COPY instruction in the hello-world
Dockerfile shown in The FROM instruction section. The COPY instruction is used to copy
files and folders into the Docker image being built. The syntax for the COPY instruction is as
follows:

COPY instruction syntax
COPY [--chown=<user>:<group>] <src>... <dest>
Use double quotes for paths containing whitespace)
COPY [--chown=<user>:<group>] ["<src>",... "<dest>"]

Note that the --chown parameter is only valid for Linux-based containers. Without the --
chown parameter, the owner ID and group ID will both be set to 0.

The <src> or source is a filename or folder path and is interpreted to be relative to the
context of the build. We will talk more about the build context later in this chapter, but for
now, think of it as where the build command is run. The source may include wildcards.

The <dest> or destination is a filename or path inside of the image being created. The
destination is relative to the root of the image's filesystem unless there is a preceding
WORKDIR instruction. We will discuss the WORKDIR instruction later, but for now, just think
of it as a way to set the current working directory. When the COPY command comes after a
WORKDIR instruction in a Dockerfile, the file or folders being copied into the image will be
placed in the destination relative to the current working directory. If the destination
includes a path with one or more folders, all of the folders will be created if they don't
already exist.

In our earlier hello-world Dockerfile example, you saw a COPY instruction that copied an
executable file, named hello, into the image at the filesystem's root location. It looked like
this: COPY hello /. That is about as basic a COPY instruction as can be used. Here are
some other examples:

COPY instruction Dockerfile for Docker Quick Start
FROM alpine:latest
LABEL maintainer="Earl Waud <earlwaud@mycompany.com>"
LABEL version=1.0
copy multiple files, creating the path "/theqsg/files" in the process
COPY file* theqsg/files/
copy all of the contents of folder "folder1" to "/theqsg/"
(but not the folder "folder1" itself)
COPY folder1 theqsg/
change the current working directory in the image to "/theqsg"
WORKDIR theqsg

Creating Docker Images Chapter 3

[66]

copy the file special1 into "/theqsg/special-files/"
COPY --chown=35:35 special1 special-files/
return the current working directory to "/"
WORKDIR /
CMD ["sh"]

We can see what the resulting image's filesystem would get using the preceding Dockerfile
by running a container from the image, and executing an ls command, which would look
like this:

You can see that folders specified in the destination path were created during the COPY.
You will also notice that providing the --chown parameter sets the owner and group on the
destination files. An important distinction is that when the source is a folder, the contents of
the folder are copied but not the folder itself. Notice that using a WORKDIR instruction
changes the path in the image filesystem and following COPY instructions will now be
relative to the new current working directory. In this example, we returned the current
working directory to / so that commands executed in containers will run relative to /.

Creating Docker Images Chapter 3

[67]

The ADD instruction
The ADD instruction is used to copy files and folders into the Docker image being built. The
syntax for the ADD instruction is as follows:

ADD instruction syntax
ADD [--chown=<user>:<group>] <src>... <dest>
Use double quotes for paths containing whitespace)
ADD [--chown=<user>:<group>] ["<src>",... "<dest>"]

About now, you are thinking that the ADD instruction seems to be just like the COPY
instruction that we just reviewed. Well, you are not wrong. Basically, all of the things we
saw the COPY instruction do, the ADD instruction can do as well. It uses the same syntax as
the COPY instruction and the effects of WORKDIR instructions are the same between the two.
So, why do we have two commands that do the same thing?

The difference between COPY and ADD
The answer is that the ADD instruction can actually do more than the COPY instruction. The
more is dependent upon the values used for the source input. With the COPY instruction,
the source can be files or folders. However, with the ADD instruction, the source can be files,
folders, a local .tar file, or a URL.

When the ADD instruction has a source value that is a .tar file, the contents of that TAR file
are extracted into a corresponding folder inside the image.

When you use a .tar file as the source in an ADD instruction and include
the --chown parameter, you might expect the owner and group in the
image to be set on the files extracted from the archive. This is currently not
the way it works. Unfortunately, the owner, group, and permissions on
the extracted contents will match what is contained within the archive in
spite of the --chown parameter. When you use a .tar file, you will
probably want to include RUN chown -R X:X after the ADD.

Creating Docker Images Chapter 3

[68]

As mentioned, the ADD instruction can use a URL as the source value. Here is an example
Dockerfile that includes an ADD instruction using a URL:

ADD instruction Dockerfile for Docker Quick Start
FROM alpine
LABEL maintainer="Earl Waud <earlwaud@mycompany.com>"
LABEL version=3.0
ADD
https://github.com/docker-library/hello-world/raw/master/amd64/hello-world/
hello /
RUN chmod +x /hello
CMD ["/hello"]

While using a URL in an ADD instruction works, downloading the file into the image, this
feature is not recommended, even by Docker. Here is what the Docker documentation has
to say about using ADD:

So, generally speaking, whenever you can get the desired content into the image using a
COPY instruction, then you should choose to use COPY instead of ADD.

Creating Docker Images Chapter 3

[69]

The ENV instruction
As you may guess, the ENV instruction is used to define environment variables that will be
set in the running containers created from the image being built. The variables are defined
using typical key-value pairs. A Dockerfile can have one or more ENV instructions. Here is
the ENV instruction syntax:

ENV instruction syntax
This is the form to create a single environment variable per instruction
Everything after the space following the <key> becomes the value
ENV <key> <value>
This is the form to use when you want to create more than one variable
per instruction
ENV <key>=<value> ...

Each ENV instruction will create one or more environment variables (unless the key name is
repeated). Let's take a look at some ENV instructions in a Dockerfile:

ENV instruction Dockerfile for Docker Quick Start
FROM alpine
LABEL maintainer="Earl Waud <earlwaud@mycompany.com>"
ENV appDescription This app is a sample of using ENV instructions
ENV appName=env-demo
ENV note1="The First Note First" note2=The\ Second\ Note\ Second \
note3="The Third Note Third"
ENV changeMe="Old Value"
CMD ["sh"]

After building the image using this Dockerfile, you can inspect the image metadata and see
the environment variables that have been created:

Environment variables can be set (or overridden) when a container is run using the --env
parameter. Here, we see this feature in action:

Creating Docker Images Chapter 3

[70]

It is important to know that using ENV instructions create a zero-byte-sized additional layer
in the resulting image. If you are adding more than one environment variable to your
image and can use the form of the instruction that supports setting multiple variables with
one instruction, doing so will only create a single additional image layer, so that is the way
to go.

The ARG instruction
Sometimes when building Docker images, you may need to use variable data to customize
the build. The ARG instruction is the tool to handle that situation. To use it, you add ARG
instructions to your Dockerfile, and then when you execute the build command, you pass
in the variable data with a --build-arg parameter. The --build-arg parameter uses the
now familiar key-value pair format:

The ARG instruction syntax
ARG <varname>[=<default value>]

The build-arg parameter syntax
docker image build --build-arg <varname>[=<value>] ...

You can use multiple ARG instructions in your Dockerfile with corresponding --build-
arg parameters on the docker image build commands. You have to include an ARG
instruction for every use of the --build-arg parameter. Without the ARG instruction, the -
-build-arg parameter will not be set during the build, and you will get a warning
message. If you do not provide a --build-arg parameter or you do not provide the value
part of the key-value pair for a --build-arg parameter for an existing ARG instruction,
and that ARG instruction includes a default value, then the variable will be assigned the
default value.

Creating Docker Images Chapter 3

[71]

Be aware that during the image build, even though --build-arg is included as a
parameter of the docker image build command, the corresponding variable does not get set
until the ARG instruction is reached in the Dockerfile. Said another way, the value of the
key-value pair of a --build-arg parameter will never be set until after its corresponding
ARG line in the Dockerfile.

The parameters defined in ARG instructions do not persist into containers run from the
created image, however, ARG instructions create new zero-byte-sized layers in the
resulting images. Here is an educational example of using the ARG instruction:

ARG instruction Dockerfile for Docker Quick Start
FROM alpine
LABEL maintainer="Earl Waud <earlwaud@mycompany.com>"

ENV key1="ENV is stronger than an ARG"
RUN echo ${key1}
ARG key1="not going to matter"
RUN echo ${key1}

RUN echo ${key2}
ARG key2="defaultValue"
RUN echo ${key2}
ENV key2="ENV value takes over"
RUN echo ${key2}
CMD ["sh"]

Create a Dockerfile with the contents shown in the preceding code block and run the
following build command to see how the scope of the ENV and ARG instructions play out:

Build the image and look at the output from the echo commands
 docker image build --rm \
 --build-arg key1="buildTimeValue" \
 --build-arg key2="good till env instruction" \
 --tag arg-demo:2.0 .

You will see by the first echo ${key1} that even though there is a --build-
arg parameter for key1, it will not be stored as key1 because there is an ENV instruction
that has the same key name. This still holds true for the second echo ${key1}, which is
after the ARG key1 instruction. The ENV variable values will always be the winner when
there are both ARG and EVN instructions with the same key name.

Creating Docker Images Chapter 3

[72]

Then, you will see that the first echo ${key2} is empty even though there is a --build-
arg parameter for it. It is empty because we have not reached the ARG key2 instruction
yet. The second echo ${key2} will contain the value from the corresponding --build-
arg parameter even though there is a default value provided in the ARG key2 instruction.
The final echo ${key2} will show the value provided in the ENV key2 instruction in spite
of there being both a default value in the ARG and a value passed in via the --build-arg
parameter. Again, this is because ENV always trumps ARG.

The difference between ENV and ARG
Again, here is a pair of instructions that have a similar functionality. They both can be used
during the build of an image, setting parameters to be available to use within other
Dockerfile instructions. The other Dockerfile instructions that can use these parameters are
FROM, LABEL, COPY, ADD, ENV, USER, WORKDIR, RUN, VOLUME, EXPOSE, STOPSIGNAL, and
ONBUILD. Here is an example of using the ARG and ENV variables in other Docker
commands:

ENV vs ARG instruction Dockerfile for Docker Quick Start
FROM alpine
LABEL maintainer="Earl Waud <earlwaud@mycompany.com>"
ENV lifecycle="production"
RUN echo ${lifecycle}
ARG username="35"
RUN echo ${username}
ARG appdir
RUN echo ${appdir}
ADD hello /${appdir}/
RUN chown -R ${username}:${username} ${appdir}
WORKDIR ${appdir}
USER ${username}
CMD ["./hello"]

Creating Docker Images Chapter 3

[73]

With this Dockerfile, you would want to provide --build-arg parameters for the appdir
ARG instruction, and the username (if you want to override the default) to the build
command. You could also provide an --env parameter at runtime to override the lifecycle
variable. Here are possible build and run commands you could use:

Build the arg3 demo image
docker image build --rm \
 --build-arg appdir="/opt/hello" \
 --tag arg-demo:3.0 .

Run the arg3 demo container
docker container run --rm --env lifecycle="test" arg-demo:3.0

While the ENV and ARG instructions might seem similar, they are actually quite different.
Here are the key differences to remember between the parameters created by the ENV and
ARG instructions:

ENVs persist into running containers, ARGs do not.
ARGs use corresponding build parameters, ENVs do not.
ENV instructions must include both a key and a value, ARG instructions have a
key but the (default) value is optional.
ENVs are more significant than ARGs.

You should never use either ENV or ARG instructions to provide secret data
to the build command or resulting containers because the values are
always visible in clear text to any user that runs the docker history
command.

The USER instruction
The USER instruction allows you to set the current user (and group) for all of the
instructions that follow in the Dockerfile, and for the containers that are run from the built
image. The syntax for the USER instruction is as follows:

User instruction syntax
USER <user>[:<group>] or
USER <UID>[:<GID>]

Creating Docker Images Chapter 3

[74]

If a named user (or group) is provided as parameters to the USER instruction, that user (and
group) must already exist in the passwd file (or group file) of the system, or a build error
will occur. If you provide the UID (or GID) as the parameter to the USER command, the
check to see whether the user (or group) exists is not performed. Consider the following
Dockerfile:

USER instruction Dockerfile for Docker Quick Start
FROM alpine
LABEL maintainer="Earl Waud <earl@mycompany.com>"
RUN id
USER games:games
run id
CMD ["sh"]

When the image build starts, the current user is root or UID=0 GID=0. Then, the USER
instruction is executed to set the current user and group to games:games. Since this is the
last use of the USER instruction in the Dockerfile, all containers run using the built image
will have the current user (and group) set to games. Here is what the build and run look
like:

Creating Docker Images Chapter 3

[75]

Notice that the output from Step 3/6:RUN id shows the current user as root, and then in
Step 5/6 (which is after the USER instruction) it shows the current user as games. Finally,
notice that the container run from the image has the current user games. The USER
instruction creates a zero-byte-sized layer in the image.

The WORKDIR instruction
We have seen the WORKDIR instruction used in some of the examples used to demonstrate
other instructions. It is sort of like a combination of the Linux cd and mkdir commands.
The WORKDIR instruction will change the current working directory in the image to the
value provided in the instruction. If any segment of the path in the parameter of the
WORKDIR instruction does not yet exist, it will be created as part of the execution of the
instruction. The syntax for the WORKDIR instruction is as follows:

WORKDIR instruction syntax
WORKDIR instruction syntax
WORKDIR /path/to/workdir

The WORKDIR instruction can use ENV or ARG parameter values for all or part of its
parameter. A Dockerfile can have more than one WORKDIR instruction, and each subsequent
WORKDIR instruction will be relative to the previous one (if a relative path is used). Here is
an example that demonstrates this possibility:

WORKDIR instruction Dockerfile for Docker Quick Start
FROM alpine
Absolute path...
WORKDIR /
relative path, relative to previous WORKDIR instruction
creates new folder
WORKDIR sub-folder-level-1
RUN touch file1.txt
relative path, relative to previous WORKDIR instruction
creates new folder
WORKDIR sub-folder-level-2
RUN touch file2.txt
relative path, relative to previous WORKDIR instruction
creates new folder
WORKDIR sub-folder-level-3
RUN touch file3.txt
Absolute path, creates three sub folders...
WORKDIR /l1/l2/l3
CMD ["sh"]

Creating Docker Images Chapter 3

[76]

Building the image from this Dockerfile will result in the image having three levels of
nested folders. Running a container from the image and listing the files and folders will
look like this:

The WORKDIR instruction will create a zero-byte-sized layer in the resulting image.

The VOLUME instruction
You should remember that a Docker image is made up of a series of read-only layers built
upon one another, and that when you run a container from a Docker image, it creates a new
read-write layer that you can think of as being on top of the read-only layers. All the
changes to the container are applied to the read-write layer. If you make a change to a file
found in one of the read-only layers, a copy of that file is made and added to the read-write
layer. Then, all the changes are applied to the copy. The copy hides the version found in the
read-only layer so, from the point of view of the running container, there is only one
version of the file, and it is the one that has been changed. This is roughly how the Unified
File System works.

This is actually a great thing. However, it presents a challenge, this being that when the
running container exits and is removed, all of the changes are removed with it. This is
normally OK until you want to have some data that persists after the life of the container, or
when you want to share data between containers. Docker has an instruction to help you
solve this issue, the VOLUME instruction.

Creating Docker Images Chapter 3

[77]

The VOLUME instruction will create a storage location that is outside of the United File
System, and by so doing, allow storage to persist beyond the life of your container. Here is
the syntax of the VOLUME instruction:

VOLUME instruction syntax
VOLUME ["/data"]
or for creating multiple volumes with a single instruction
VOLUME /var/log /var/db /moreData

Other ways to create volumes are to add volume parameters to the docker container run
command or to use the docker volume create command. We will cover those methods in
detail in Chapter 4, Docker Volumes.

Here is a simple example Dockerfile. It creates a volume at /myvol that will have a file
named greeting:

VOLUME instruction Dockerfile for Docker Quick Start
FROM alpine
RUN mkdir /myvol
RUN echo "hello world" > /myvol/greeting
VOLUME /myvol
CMD ["sh"]

Running a container based on an image made from this Dockerfile will create a mount
point on the host system that initially contains the greeting file. When the container exits,
the mount point will remain. Be careful with the use of the --rm parameter when running a
container that has mount points you wish to persist. Using --rm, with no other volume
parameters, will cause the mount points to be cleaned up along with the container when it
exits. Here is what that looks like:

Creating Docker Images Chapter 3

[78]

We start out with no volumes. Then, we run a container based on the image made from the
preceding Dockerfile in detached mode. We check the volumes again, and we see the
volume created by running the container. Then, we stop the container and check for
volumes again, and the volume is now gone. Usually, the purpose of using a VOLUME
instruction is to have data in a mount point that persists after the container is gone. So, if
you are going to use --rm when you run a container, you should include the --mount run
parameter, which we will cover in detail in Chapter 4, Docker Volumes.

You can interact with the data on the host using the mount point for a volume. Here is an
example that demonstrates this:

In this demo, we run a container that is based on an image created with the preceding
Dockerfile. Then, we list the volumes and see the myvolsrc volume (we already knew the
name since we provided it in the run command, but you can use the ls command to find
volume names that you might not otherwise know). Using the volume's name, we inspect
the volume to find its mount point on the host. To verify the contents of the volume in the
container, we use an exec command to do an ls of the folder. Next, using the mount point
path, we create a new file using the touch command. Finally, we use the same exec
command and see that inside the container the volume has been changed (from actions
outside of the container). Similarly, if the container makes changes to the contents of the
volume, they are reflected instantly on the host mount point.

The preceding example will not work on OS X directly as shown. It
requires some extra work. Don't panic though! We'll show you how to
deal with the extra work required for OS X in Chapter 4, Docker Volumes.

Creating Docker Images Chapter 3

[79]

Using the VOLUME instruction is both powerful and dangerous. It is powerful in that it lets
you have data that will persist beyond the life of your containers. It is dangerous because
data is passed instantaneously from the container to the host, and if the container is ever
compromised, that can spell trouble. That is why, for security purposes, it is best practice to
not include host-based VOLUME mounts in your Dockerfiles. We will cover some safer
alternatives in Chapter 4, Docker Volumes.

The VOLUME instruction will add a zero-bytes sized layer to your resulting Docker image.

The EXPOSE instruction
The EXPOSE instruction is a way to document what network ports the image expects to be
opened when a container is run from the image built using the Dockerfile. The syntax for
the EXPOSE instruction is as follows:

EXPOSE instruction syntax
EXPOSE <port> [<port>/<protocol>...]

It is important to understand that including the EXPOSE instruction in the Dockerfile does
not actually open network ports in containers. When containers are run from the images
with the EXPOSE instruction in their Dockerfile, it is still necessary to include the -p or -
P parameters to actually open the network ports to the container.

You can include multiple EXPOSE instructions in your Dockerfile as needed. Including the -
P parameter at runtime is a shortcut way to automatically open ports for all of the EXPOSE
instructions included in the Dockerfile. The corresponding host ports will be randomly
assigned when using the -P parameter on the run command.

Think of the EXPOSE instruction as a message from the image developer telling you that the
application in the image is expecting you to open the indicated port(s) when you run your
containers. The EXPOSE instruction creates a zero-byte-sized layer in the resulting image.

The RUN instruction
The RUN instruction is the real workhorse of the Dockerfile. It is the tool by which you affect
the most change in the resulting docker image. Basically, it allows you to execute any
command in the image. There are two forms of the RUN instruction. Here is the syntax:

RUN instruction syntax
Shell form to run the command in a shell

Creating Docker Images Chapter 3

[80]

For Linux the default is "/bin/sh -c"
For Windows the default is "cmd /S /C"
RUN <command>

Exec form
RUN ["executable", "param1", "param2"]

Every RUN instruction creates a new layer in the image, and the layers for each instruction
that follow will be built on the results of the RUN instruction's layer. The shell form of the
instruction will use the default shell unless it is overridden using a SHELL instruction,
which we will discuss in The SHELL instruction section. If you are building a container that
does not include a shell, you will need to use the exec form of the RUN instruction. You can
also use the exec form of the instruction to use a different shell. For example, to run a
command using the bash shell, you could add a RUN instruction, like so:

Exec form of RUN instruction using bash
RUN ["/bin/bash", "-c", "echo hello world > /myvol/greeting"]

The uses for the RUN command are limited only by the imagination, so providing an
exhaustive list of RUN instruction samples would be impossible, but here are a few using
both forms of the instruction, just to give you some ideas:

RUN instruction Dockerfile for Docker Quick Start
FROM ubuntu
RUN useradd --create-home -m -s /bin/bash dev
RUN mkdir /myvol
RUN echo "hello DQS Guide" > /myvol/greeting
RUN ["chmod", "664", "/myvol/greeting"]
RUN ["chown", "dev:dev", "/myvol/greeting"]
VOLUME /myvol
USER dev
CMD ["/bin/bash"]

There is a fun and useful RUN instruction you can add when you know
your image will include bash. This idea was shared with me by my
colleague Marcello de Sales after he learned of it at Dockercon 16.

You can use the following code to create a custom prompt displayed when you shell into your containers. If
you don't like the whale graphic, you can switch it up and use anything you like better. I've included some of
my favorite options. Here's the code:

RUN instruction Dockerfile for Docker Quick Start
FROM ubuntu
RUN useradd --create-home -m -s /bin/bash dev
Add a fun prompt for dev user of my-app
whale: "\xF0\x9F\x90\xB3"

Creating Docker Images Chapter 3

[81]

alien:"\xF0\x9F\x91\xBD"
fish:"\xF0\x9F\x90\xA0"
elephant:"\xF0\x9F\x91\xBD"
moneybag:"\xF0\x9F\x92\xB0"
RUN echo 'PS1="\[$(tput bold)$(tput setaf 4)\]my-app $(echo -e
"\xF0\x9F\x90\xB3") \[$(tput sgr0)\] [\\u@\\h]:\\W \\$ "' >>
/home/dev/.bashrc && \
 echo 'alias ls="ls --color=auto"' >> /home/dev/.bashrc
USER dev
CMD ["/bin/bash"]

The resulting prompt looks like this:

The CMD instruction
The CMD instruction is used to define the default action taken when containers are run from
images built with their Dockerfile. While it is possible to include more than one CMD
instruction in a Dockerfile, only the last one will be significant. Essentially, the final CMD
instruction provides the default action for the image. This allows you to either override or
use the CMD in the image used in the FROM instruction of your Dockerfile. Here is an
example where a trivial Dockerfile does not contain a CMD instruction and relies on the one
found in the ubuntu image used in the FROM instruction:

Creating Docker Images Chapter 3

[82]

You can see from the output of the history command that the ubuntu image includes
the CMD ["/bin/bash"] instruction. You will also see that our Dockerfile does not have its
own CMD instruction. When we run the container, the default action is to run "/bin/bash".

There are three forms of the CMD instruction. The first is a shell form. The second is an exec
form, which is the best practice form to use. And, the third is a special exec form that has
exactly two parameters, and it is used in conjunction with the ENTRYPOINT instruction,
which we will talk about in The ENTRYPOINT instruction section. Here is the syntax for the
CMD instruction.

CMD instruction syntax
CMD command param1 param2 (shell form)
CMD ["executable","param1","param2"] (exec form)
CMD ["param1","param2"] (as default parameters to ENTRYPOINT)

Here are a few CMD instruction examples for your enjoyment:

CMD instruction examples
CMD ["/bin/bash"]
CMD while true; do echo 'DQS Expose Demo' | nc -l -p 80; done
CMD echo "How many words are in this echo command" | wc -
CMD tail -f /dev/null
CMD ["-latr", "/var/opt"]

Like the RUN instruction, the shell form of the CMD instruction will use the ["/bin/sh", "-
c"] shell command (or ["cmd", "/S", "/C"] for Windows) by default unless it is
overridden with a SHELL instruction. However, unlike the RUN instruction, the CMD
instruction does not execute anything during the building of the image but instead is
executed when containers built from the image are run. If the container image being built
will not have a shell, then the exec form of the instruction can be used as it does not invoke
a shell. The CMD instruction adds a zero-byte-sized layer to the image.

The ENTRYPOINT instruction
The ENTRYPOINT instruction is used to configure a docker image to run like an application
or a command. For example, we can use the ENTRYPOINT instruction to make an image that
displays help for the curl command. Consider this Dockerfile:

ENTRYPOINT instruction Dockerfile for Docker Quick Start
FROM alpine
RUN apk add curl
ENTRYPOINT ["curl"]
CMD ["--help"]

Creating Docker Images Chapter 3

[83]

We can run the container image with no overriding CMD parameter and it will show help for
the curl command. However, when we run the container with a CMD override parameter,
in this case, a URL, the response will be to curl the URL. Take a look:

When run parameters are provided to a container that has the exec form of the ENTRYPOINT
command, those parameters will be appended to the ENTRYPOINT instruction,
overriding anything provided in a CMD instruction. In this example, --help is overridden
with the google.com run parameter, so the resulting instruction is curl google.com.
Here is the actual syntax for the ENTRYPOINT instruction:

ENTRYPOINT instruction syntax
ENTRYPOINT command param1 param2 (shell form)
ENTRYPOINT ["executable", "param1", "param2"] (exec form, best practice)

Like the CMD instruction, only the last ENTRYPOINT instruction is significant. Again, this
allows you to either use or override the ENTRYPOINT instruction in the FROM image used.
Like both the RUN and CMD instructions, using the shell form will invoke a shell as
["/bin/sh", "-c"] (or ["cmd", "/S", "/C"] on Windows). This is not the case when
using the exec form of the instruction. This is key if you have an image that does not have a
shell or if the shell is not available to the active user context. However, you will not get
shell processing, so any shell environment variables will not get substituted when using the
exec form of the instruction. It is generally considered best practice to use the exec form of
the ENTRYPOINT instruction whenever possible.

Creating Docker Images Chapter 3

[84]

The difference between CMD and ENTRYPOINT
Here again, we have two instructions that on the surface seem to be very much the same. It
is true that there is some overlap of functionality between the two. Both instructions
provide a way to define a default application that is executed when containers are run.
However, they each serve their own unique purpose, and in some cases work together to
provide greater functionality than either instruction alone.

The best practice is to use the ENTRYPOINT instruction when you want a container to
execute as an application, providing a specific (developer) defined function, and to use CMD
when you want to give the user more flexibility in what function the container will serve.

Both of these instructions have two forms: a shell form and an exec form. It is best practice
to use the exec form of either whenever possible. The reason for this is that the shell form,
by definition, will run ["/bin/sh", "-c"] (or ["cmd", "/S", "/C"] on Windows) to
launch the application in the parameter of the instruction. Because of this, the primary
process running in the container is not the application. Instead, it is the shell. This affects
how the container exits, it affects how signals are processed, and it can really cause
problems for images that do not include "/bin/sh". One use case where you might need
to use the shell form is if you require shell-environment-variable substitution.

There is also a use case for using both instructions in your Dockerfile. When you use both,
you can define a specific application that gets executed when the container is run, and
allow the user to easily provide the parameters that get used with the defined application.
In this scenario, you would use the ENTRYPOINT instruction to set the application being
executed and provide a default set of parameters for the application using the CMD
instruction. With this configuration, the user of the container can benefit from the default
parameters supplied in the CMD instruction, or they can easily override those parameters
used in the application by supplying them as arguments in the container run command.
It is highly recommended that you use the exec form of both instructions when you use
them together.

Creating Docker Images Chapter 3

[85]

The HEALTHCHECK instruction
The HEALTHCHECK instruction, which is a fairly new addition to the Dockerfile, is used to
define the command to run inside a container to test the container's application health.
When a container has a HEALTHCHECK, it gets a special status variable. Initially, that
variable will be set to starting. Any time a HEALTHCHECK is performed successfully, the
status will be set to healthy. When a HEALTHCHECK is performed and fails, the fail count
value will be incremented and then checked against a retries value. If the fail count equals
or exceeds the retries value, the status is set to unhealthy. The syntax of the HEALTHCHECK
instruction is as follows:

HEALTHCHECK instruction syntax
HEALTHCHECK [OPTIONS] CMD command (check container health by running a
command inside the container)
HEALTHCHECK NONE (disable any HEALTHCHECK inherited from the base image)

There are four options that can be used when setting the HEALTHCHECK, and these options
are as follows:

HEALTHCHECK CMD options
--interval=DURATION (default: 30s)
--timeout=DURATION (default: 30s)
--start-period=DURATION (default: 0s)
--retries=N (default: 3)

The --interval option allows you to define the amount of time between the
HEALTHCHECK tests. The --timeout option allows you to define the amount of time that is
considered too long for a HEALTHCHECK test. If the timeout is exceeded, the test is
automatically considered a failure. The --start-period option allows for the definition
of a no-fail time period during the container startup. Finally, the --retries option allows
you to define how many consecutive failures it takes to update the HEALTHCHECK status to
unhealthy.

Creating Docker Images Chapter 3

[86]

The CMD part of the HEALTHCHECK instruction follows the same rules as the CMD instruction.
Please review the preceding section regarding the CMD instruction for complete details. The
CMD that is used will provide a status when it exits, which will be either a 0 for success or a
1 for fail. Here is a Dockerfile example that uses the HEALTHCHECK instruction:

HEALTHCHECK instruction Dockerfile for Docker Quick Start
FROM alpine
RUN apk add curl
EXPOSE 80/tcp
HEALTHCHECK --interval=30s --timeout=3s \
 CMD curl -f http://localhost/ || exit 1
CMD while true; do echo 'DQS Expose Demo' | nc -l -p 80; done

Running a container from an image built with the preceding Dockerfile looks like this:

You can see that the HEALTHCHECK initially reported a status of starting, but once
the HEALTHCHECK CMD reported success, the status updated to healthy.

The ONBUILD instruction
The ONBUILD instruction is a tool used when creating images that will become the
parameter to the FROM instructions in another Dockerfile. The ONBUILD instruction just
adds metadata to your image, specifically a trigger that is stored in the image and not
otherwise used. However, that metadata trigger does get used when your image is
supplied as the parameter in the FROM command of another Dockerfile. Here is the
ONBUILD instruction syntax:

ONBUILD instruction syntax
ONBUILD [INSTRUCTION]

Creating Docker Images Chapter 3

[87]

The ONBUILD instruction is kind of like a Docker time machine used to send instructions
into the future. (You might laugh if you knew how many times I just typed Doctor time
machine!) Let's demonstrate the use of the ONBUILD instruction with a simple example. First,
we will build an image named my-base using the following Dockerfile:

my-base Dockerfile
FROM alpine
LABEL maintainer="Earl Waud <earlwaud@mycompany.com>"
ONBUILD LABEL version="1.0"
ONBUILD LABEL support-email="support@mycompany.com" support-phone="(123)
456-7890"
CMD ["sh"]

Next, let's build an image named my-app that is built FROM the my-base image, like so:

my-app Dockerfile
FROM my-base:1.0
CMD ["sh"]

Inspecting the resulting my-app image shows us that the LABEL commands provided in
the ONBUILD instructions were sent forward in time, arriving at the my-app image:

If you did a similar inspect of the my-base image, you would find that it does not contain
the version and support labels. Note also that the ONBUILD instruction is a one-time-use
time machine. If you were to build a new image using the my-app in the FROM instruction,
the new image would not get the labels that were provided in the ONBUILD instructions of
the my-base image.

Creating Docker Images Chapter 3

[88]

The STOPSIGNAL instruction
The STOPSIGNAL instruction is used to set the system call signal that will be sent to the
container to tell it to exit. The parameter used in the instruction can be an unsigned
number, which equals a position in the kernel's syscall table, or it can be an actual signal
name in uppercase. Here is the syntax for the instruction:

STOPSIGNAL instruction syntax
STOPSIGNAL signal

Examples of the STOPSIGNAL instruction include the following:

Sample STOPSIGNAL instruction using a position number in the syscall
table
STOPSIGNAL 9
or using a signal name
STOPSIGNAL SIGQUIT

The parameter supplied to the STOPSIGNAL instruction is used when a docker container
stop command is issued. Remember that it is vital to use the exec form of your
ENTRYPOINT and/or CMD instructions so that the application is PID 1, and will receive the
signals directly. Here is a link to an excellent blog post on using signals with
Docker: https:/​/​medium. ​com/ ​@gchudnov/ ​trapping- ​signals- ​in-​docker- ​containers-
7a57fdda7d86. The article provides an excellent example of using a node.js app to handle
the signals, complete with code and Dockerfile.

The SHELL instruction
As you have read in many sections throughout this chapter, there are several instructions
that take two forms, the exec form or the shell form. As mentioned, the default used by all
of the shell forms is ["/bin/sh", "-c"] for Linux containers, and ["cmd", "/S",
"/C"] for Windows containers. The SHELL instruction allows you to change that default.
Here is the syntax for the SHELL instruction:

SHELL instruction syntax
SHELL ["executable", "parameters"]

The SHELL instruction can be used more than once in a Dockerfile. All instructions that use
a shell, and that come after a SHELL instruction, will use the new shell. Thus, you can
change the shell multiple times in a single Dockerfile as needed. This can be especially
powerful when creating Windows containers since it allows you to switch back and forth
between using cmd.exe and powershell.exe.

https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86

Creating Docker Images Chapter 3

[89]

The Docker image build command
OK, so the image build command is not a Dockerfile instruction. Instead, it is the docker
command that is used to turn your Dockerfile into a docker image. The Docker image build
command sends the docker build context, including the Dockerfile, to the docker daemon,
which parses the Dockerfile and builds the image layer by layer. We will discuss the build
context shortly, but for now, consider it to be everything that is needed to build the Docker
image based on the content found in the Dockerfile. The build command syntax is as
follows:

Docker image build command syntax
Usage: docker image build [OPTIONS] PATH | URL | -

There are many options for the image build command. We will not be covering all of the
options now, but let's take a look at a few of the most common:

Common options used with the image build command
--rm Remove intermediate containers after a successful build
--build-arg Set build-time variables
--tag Name and optionally a tag in the 'name:tag' format
--file Name of the Dockerfile (Default is 'PATH/Dockerfile')

The Docker daemon builds the image by creating a new image from each command in the
Dockerfile. Each new image is built upon the previous. Using the optional --rm parameter
will instruct the daemon to delete all the intermediate images when the build completes
successfully. Using this will slow the build process when you rebuild a successfully built
image, but will keep the local image cache cleaner.

We have already talked about build args when we covered the ARG instruction. Remember
that the --build-arg option is how you provide a value to the ARG instruction in the
Dockerfile.

The --tag option allows you to give your images a more human-readable name and
version. We have seen this option used in several of the earlier examples as well.

The --file option allows you to use a filename other than Dockerfile, and to keep the
Dockerfile in a path other than the build context folder.

Here are some image build commands for reference:

build command samples
docker image build --rm --build-arg username=35 --tag arg-demo:2.0 .
docker image build --rm --tag user-demo:1.0 .
docker image build --rm --tag workdir-demo:1.0 .

Creating Docker Images Chapter 3

[90]

You will notice the trailing . in each of the preceding examples. This period is indicating
that the current working directory is the root of the build context for the image build.

Parser Directives
Parser Directives are a special subset of optional comment lines in the Dockerfile. Any
parser directives must occur before the first normal comment line. They must also precede
any blank lines or other build instructions, including the FROM instruction. Basically, all
parser directives must be at the very top of the Dockerfile. By the way, if you haven't
figured it out yet, you can create a normal comment line in a Dockerfile by starting that line
with a # character. The syntax for a parser directive is as follows:

directive=value
The line above shows the syntax for a parser directive

So, what can you do with a parser directive? Well right now, the only one supported is
escape. The escape parser directive is used to change what character is used to indicate
that the next character in the instruction is to be treated as a character and not as the special
character it represents. The default value if no parser directive is used is \. You have seen
this used in several examples throughout this chapter to escape the newline character,
allowing for instructions to be continued onto the next line in the Dockerfile. If it is
necessary to use a different escape character, you can use the escape parser directive to
handle that. You can set the escape character to one of two choices:

escape=\ (backslash)
Or
escape=` (backtick)

One example where you might want to change the character used as the escape character
is when you are creating a Dockerfile on Windows systems. As you know, the \ is used to
distinguish folder levels in path strings, such as c:\windows\system32
\drivers. Switching to the backtick for the escape character will avoid needing to escape
such strings as this: c:\\windows\\system32\\drivers.

Creating Docker Images Chapter 3

[91]

The build context
The build context is everything that gets sent to the Docker daemon when using the build
image command. This includes the Dockerfile and the contents of the current working
directory when the build command is issued, including all subdirectories that the current
working directory may contain. It is possible to have the Dockerfile in a directory other
than the current working directory by using a -f or --file option, but the Dockerfile still
gets sent with the build context. Using the .dockerignore file, you can exclude files and
folders from the build context when it gets sent to the Docker daemon.

When building Docker images, it is very important to keep the build context as small as
possible. This is because the entire build context is sent to the Docker daemon for building
the image. If you have unnecessary files and folders in the build context, then it will slow
the build process, and depending on the contents of the Dockerfile, can result in bloated
images. This is such an important consideration, that every image build command displays
the size of the build context as the first line of the command's output. It looks like this:

The build context becomes the filesystem root for the commands in the Dockerfile. For
example, consider using the following COPY instruction:

build context Dockerfile for Docker Quick Start guide
FROM scratch
COPY hello /
CMD ["/hello"]

This tells the Docker daemon to copy the hello file from the root of the build context into
the root of the container image.

Creating Docker Images Chapter 3

[92]

If the command completes successfully, the image ID will be displayed, and if a --
tag option is provided, the new tag and version will be shown as well:

One of the keys to keeping the build context small is the use of a .dockerignore file.

The .dockerignore file
If you are familiar with using .gitignore files, then you will already have a basic
understanding of the purpose for the .dockerignore file. The .dockerignore file is used
to exclude files that you do not want to be included with the build context during a docker
image build. Using it helps to prevent sensitive and other unwanted files from being
included in the build context, and potentially in the docker image. It is an excellent tool to
help keep your Docker images small.

The .dockerignore file needs to be in the root folder of the build context. Like a
.gitignore file, it uses a newline-separated list of patterns. Comments in the
.dockerignore file are denoted by a # as the first character of a line. You can override a
pattern by including an exception line. An exception line is denoted with a ! as the first
character of the line. All other lines are considered patterns to use to exclude files and/or
folders.

Line order in the .dockerignore file is significant. Matching patterns of lines later in the
file will override matching lines earlier in the file. If you add a pattern that matches the
.dockerignore file or the Dockerfile file, they will still be sent to the docker daemon with
the build context, but they will not be available to any ADD or COPY instructions, and
therefore cannot end up in the resulting image. Here is an example:

Example of a .dockerignore file
Exclude unwanted files
**/*~
**/*.log
**/.DS_Store

Creating Docker Images Chapter 3

[93]

Summary
OK! That was an adventure. You should now be able to build any type of Docker image
that your heart desires. You know when to use COPY versus ADD, when to use ENV versus
ARG, and perhaps most importantly, when to use CMD versus ENTERYPOINT. You even
learned how to travel through time! This information is really a great foundation for getting
started with Docker and will serve as a great reference as you develop more complex
Docker images.

I hope you have learned a lot from this chapter, but we still have more to learn, so let's turn
our attention to the next topic. In Chapter 4, Docker Volumes, we are going to learn more
about Docker volumes. Turn the page and let's continue our quick-start journey.

References
Check out the following links for information about topics discussed in this chapter:

The hello-world GitHub repository: https:/ ​/​github. ​com/ ​docker- ​library/
hello-​world

Docker volumes: https:/ ​/​docs.​docker. ​com/ ​storage/ ​volumes/ ​

Using signals with Docker: https:/ ​/​medium. ​com/ ​@gchudnov/ ​trapping- ​signals-
in-​docker- ​containers- ​7a57fdda7d86

The .dockerignore reference document: https:/ ​/​docs. ​docker. ​com/ ​engine/
reference/ ​builder/ ​#dockerignore- ​file

Best practices for the Dockerfile: https:/ ​/​docs. ​docker. ​com/ ​v17. ​09/ ​engine/
userguide/ ​eng- ​image/ ​dockerfile_ ​best- ​practices/ ​

https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://github.com/docker-library/hello-world
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://medium.com/@gchudnov/trapping-signals-in-docker-containers-7a57fdda7d86
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/v17.09/engine/userguide/eng-image/dockerfile_best-practices/

4
Docker Volumes

In this chapter, we will learn the secrets of Docker volumes. We will learn how to use
folders on your workstation inside of your Docker containers, and we will learn how to
create and use persistent volumes, allowing multiple containers to share data. We will learn
how to clean up after unused volumes. And, to round out this chapter, we will learn how to
create data-volume containers to become the source of volumes for other containers.

Approximately 675 shipping containers are lost at sea each year. In 1992, a 40 ft container
full of toys actually fell into the Pacific Ocean and 10 months later some of its toys drifted
ashore on the Alaskan coastline

 – https:/​/​www. ​clevelandcontainers. ​co. ​uk/ ​blog/ ​16-​fun- ​facts- ​about-
containers

In this chapter, we will cover the following topics:

What is a Docker volume?
Creating Docker volumes
Two ways to remove Docker volumes
Sharing data between containers with data volume containers

Technical requirements
You will be pulling Docker images from Docker's public repo, so basic internet access is
required to execute the examples within this chapter.

The code files of this chapter can be found on GitHub:
https:/​/​github.​com/ ​PacktPublishing/ ​Docker- ​Quick- ​Start- ​Guide/ ​tree/ ​master/
Chapter04

Check out the following video to see the code in action:
http:/​/​bit.​ly/​2QqK78a

https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://www.clevelandcontainers.co.uk/blog/16-fun-facts-about-containers
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter04
http://bit.ly/2QqK78a
http://bit.ly/2QqK78a
http://bit.ly/2QqK78a
http://bit.ly/2QqK78a
http://bit.ly/2QqK78a
http://bit.ly/2QqK78a
http://bit.ly/2QqK78a
http://bit.ly/2QqK78a
http://bit.ly/2QqK78a

Docker Volumes Chapter 4

[95]

What is a Docker volume?
As we learned in Chapter 3, Creating Docker Images, Docker uses a special filesystem called
a Union File System. This is the key to Docker's layered image model and allows for many
of the features that make using Docker so desirable. However, the one thing that the Union
File System does not provide for is the persistent storage of data. If you recall, the layers of
a Docker image are read-only. When you run a container from a Docker image, the Docker
daemon creates a new read-write layer that holds all of the live data that represents your
container. When your container makes changes to its filesystem, those changes go into that
read-write layer. As such, when your container goes away, taking the read-write layer goes
with it, and any and all changes the container made to data within that layer are deleted
and gone forever. That equals non-persistent storage. Remember, however, that generally
speaking this is a good thing. A great thing, in fact. Most of the time, this is exactly what we
want to happen. Containers are meant to be ephemeral and their state data is too. However,
there are plenty of use cases for persistent data, such as customer order data for a shopping
site. It would be a pretty bad design if all the order data went bye-bye if a container crashed
or had to be re-stacked.

Enter the Docker volume. The Docker volume is a storage location that is completely
outside of the Union File System. As such, it is not bound by the same rules that are placed
on the read-only layers of an image or the read-write layer of a container. A Docker volume
is a storage location that, by default, is on the host that is running the container that uses
the volume. When the container goes away, either by design or by a catastrophic event, the
Docker volume stays behind and is available to use by other containers. The Docker
volume can be used by more than one container at the same time.

The simplest way to describe a Docker volume is this: a Docker volume is a folder that
exists on the Docker host and is mounted and accessible inside a running Docker container.
The accessibility goes both ways, allowing the contents of that folder to be modified from
inside the container, or on the Docker host where the folder lives.

Now, this description is a bit of a generalization. Using different volume drivers, the actual
location of the folder being mounted as a volume can be hosted somewhere not on the
Docker host. With volume drivers, you are able to create your volumes on remote hosts or
cloud providers. For example, you can use an NFS driver to allow the creation of Docker
volumes on a remote NFS server.

Like Docker image and Docker container, the volume commands represent their own
management category. As you would expect, the top-level management command for
volumes is as follows:

Docker volume managment command
docker volume

Docker Volumes Chapter 4

[96]

The subcommands available in the volume management group include the following:

Docker volume management subcommands
docker volume create # Create a volume
docker volume inspect # Display information on one or more volumes
docker volume ls # List volumes
docker volume rm # Remove one or more volumes
docker volume prune # Remove all unused local volumes

There are a few different ways you can create a Docker volume, so let's continue our
investigation of Docker volumes by creating some.

References
Check out the following links for more information:

The Docker reference for using Docker volumes: https:/ ​/​docs. ​docker. ​com/
storage/ ​volumes/ ​

Docker volume plugin information: https:/ ​/​docs. ​docker. ​com/ ​engine/ ​extend/
plugins_ ​volume/ ​

Docker engine volume plugins: https:/ ​/​docs. ​docker. ​com/ ​engine/ ​extend/
legacy_​plugins/ ​#volume- ​plugins

Creating Docker volumes
There are a few ways to create a Docker volume. One way is to use the volume create
command. The syntax for that command is as follows:

Syntax for the volume create command
Usage: docker volume create [OPTIONS] [VOLUME]

In addition to the optional volume name parameter, the create command allows for these
options:

The options available to the volume create command:
-d, --driver string # Specify volume driver name (default "local")
--label list # Set metadata for a volume
-o, --opt map # Set driver specific options (default map[])

Let's start with the simplest example:

Using the volume create command with no optional parameters
docker volume create

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins

Docker Volumes Chapter 4

[97]

Executing the preceding command will create a new Docker volume and assign it a random
name. The volume will be created using the built-in local driver (by default). Using the
volume ls command, you can see what random name the Docker daemon assigned our
new volume. It will look something like this:

Stepping it up a notch, let's create another volume, this time supplying an optional volume
name with the command. The command will look something like this:

Create a volume with a fancy name
docker volume create my-vol-02

This time, the volume is created and is given the name my-vol-02, as requested:

This volume still uses the default local driver. Using the local driver simply means that the
actual location for the folder this volume represents can be found locally on the Docker
host. We can use the volume inspect subcommand to see where that folder can actually be
found:

Docker Volumes Chapter 4

[98]

As you can see in the preceding screenshot, the volume's mount point is on the Docker
host's filesystem at /var/lib/docker/volumes/my-vol-02/_data. Notice that the
folder path is owned by root, which means you need elevated permissions to access the
location from the host. Notice also that this example was run on a Linux host.

If you are using OS X, you need to remember that your Docker install is actually using a
mostly seamless virtual machine. One of the areas where the seams do show up is with the
use of the Docker volumes. The mount point that is created when you create a Docker
volume on an OS X host is stored in the filesystem of the virtual machine, not on your OS X
filesystem. When you use the docker volume inspect command and see the path to the
mount point of your volume, it is not a path on your OS X filesystem, but rather the path on
the filesystem of the hidden virtual machine.

There is a way to view the filesystem (and other features) of that hidden virtual machine.
With a command, often referred to as the Magic Screen command, you can access the
running Docker VM. That command looks like this:

The Magic Screen command
screen ~/Library/Containers/com.docker.docker/Data
/com.docker.driver.amd64-linux/tty
or if you are using Mac OS High Sierra
screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty

Docker Volumes Chapter 4

[99]

Use Ctrl + AK to kill the screen session.
You can detach with Ctrl + A Ctrl + D, then use screen -r to reconnect,
but don't detach and then start a new screen session. Running more than
one screen to the VM will give you tty garbage.

Here is an example of accessing the mount point for a volume created on an OS X host.
Here is the setup:

Start by creating a new volume
docker volume create my-osx-volume
Now find the Mountpoint
docker volume inspect my-osx-volume -f "{{json .Mountpoint}}"
Try to view the contents of the Mountpoint's folder
sudo ls -l /var/lib/docker/volumes/my-osx-volume
"No such file or directory" because the directory does not exist on the
OS X host

And here is what the setup looks like:

Now, here is how to use the magic screen command to accomplish what we want, which is
access to the volume mountpoint:

Now issue the Magic Screen command and hit <enter> to get a prompt
screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty
You are now root in the VM, and can issue the following command
ls -l /var/lib/docker/volumes/my-osx-volume
The directory exists and you will see the actual Mountpoint sub folder
"_data"
Now hit control-a followed by lower case k to kill the screen session
<CTRL-a>k

Docker Volumes Chapter 4

[100]

And voila...

Now is a good time to point out that we have created these volumes without ever creating
or using a Docker container. This is an indication that a Docker volume is outside of the
realm of the normal container-union filesystem.

We saw in Chapter 3, Creating Docker Images, that we can also create volumes using a
parameter on the container run command, or by adding a VOLUME instruction in the
Dockerfile. And, as you might expect, you are able to mount volumes pre-created using the
Docker volume create command into containers by using a container run parameter,
namely the --mount parameter, for example, as follows:

mount a pre-created volume with --mount parameter
docker container run --rm -d \
--mount source=my-vol-02,target=/myvol \
--name vol-demo2 \
volume-demo2:1.0 tail -f /dev/null

This example will run a new container that will mount the existing volume named my-
vol-02. It will mount that volume in the container at /myvol. Note that the preceding
example could also have been run without pre-creating the my-vol-02:volume, and the
act of running the container with the --mount parameter would create the volume as part
of the process of starting up the container. Note that any contents defined in the image's
mount point folder will be added to the volume when the volume is mounted. However, if
a file exists in the image's mount point folder, it also exists in the host's mount point, and
the contents of the host's file will be what ends up being in the file. Using an image from
this Dockerfile, here is what that looks like:

VOLUME instruction Dockerfile for Docker Quick Start
FROM alpine
RUN mkdir /myvol
RUN echo "Data from image" > /myvol/both-places.txt
CMD ["sh"]

Docker Volumes Chapter 4

[101]

Note the Data from image line. Now, using a pre-created volume that contains a file with
the matching name of both-places.txt, but has the Data from volume contents in the
file, we will run a container based on the image. Here is what happens:

As you can see, even though the Dockerfile created a file with the Data from
image contents, when we ran a container from that image and mounted a volume that had
the same file, the contents from the volume (Data from volume) prevailed and is what
was found in the running container.

Remember that you cannot mount a pre-created volume via a VOLUME instruction in a
Dockerfile. There is no such thing as a Dockerfile VOLUME instruction named volume. The
reason for this is that the Dockerfile cannot dictate the location on the host that a volume is
mounted from. Allowing that would be bad for a few reasons. First, since the Dockerfile
creates an image, every container that was run from that image would be trying to mount
the same host location. That could get real bad real fast. Second, since a container image can
be run on different host operating systems, it is quite possible that the definition of the host
path for one OS would not even work on another OS. Again, bad. Third, defining the
volumes host path would open up all kinds of security holes. Bad, bad, bad! Because of this,
running a container from an image build with a Dockerfile that has a VOLUME instruction
will always create a new, uniquely-named mount point on the host. Using the VOLUME
instruction in a Dockerfile has somewhat limited use cases, such as when a container will
run an application that will always need to read or write data that is expected at a specific
location in the filesystem but should not be a part of the Union File System.

Docker Volumes Chapter 4

[102]

It is also possible to create a one-to-one mapping of a file on the host to a file in a container.
To accomplish this, add a -v parameter to the container run command. You will need to
provide the path and filename to the file to be shared from the host and the fully-qualified
path to the file in the container. The container run command might look like this:

Map a single file from the host to a container
echo "important data" > /tmp/data-file.txt
docker container run --rm -d \
 -v /tmp/data-file.txt:/myvol/data-file.txt \
 --name vol-demo \
 volume-demo2:1.0 tail -f /dev/null
Prove it
docker exec vol-demo cat /myvol/data-file.txt

Here is what that might look like:

There are a few different ways to define the volume in the container run command. To
illustrate this point, look at the following run commands, each of which will accomplish the
same thing:

Using --mount with source and target
docker container run --rm -d \
 --mount source=my-volume,target=/myvol,readonly \
 --name vol-demo1 \
 volume-demo:latest tail -f /dev/null

Using --mount with source and destination
docker container run --rm -d \
 --mount source=my-volume,destination=/myvol,readonly \
 --name vol-demo2 \
 volume-demo:latest tail -f /dev/null

Using -v
docker container run --rm -d \
 -v my-volume:/myvol:ro \
 --name vol-demo3 \
 volume-demo:latest tail -f /dev/null

Docker Volumes Chapter 4

[103]

All three of the preceding container run commands will create a container that has
mounted the same volume, in read-only mode. This can be verified with the following
command:

Check which container have mounted a volume by name
docker ps -a --filter volume=in-use-volume

References
Check out these links for more information:

The Docker volume create reference: https:/ ​/​docs. ​docker. ​com/​engine/
reference/ ​commandline/ ​volume_ ​create/ ​

The Docker storage reference documentation: https:/ ​/​docs. ​docker. ​com/
storage/ ​

Removing volumes
We have already seen and used the volume list command, volume ls, and the inspect
command, volume inspect, and I think you should have a good grasp of what these
commands do. There are two other commands in the volume-management group, both for
volume removal. The first is the volume rm command, which you can use to remove one
or more volumes by name. Then, there is the volume prune command; with the prune
command, you can remove ALL unused volumes. Be extra careful with the use of this
command. Here is the syntax for the remove and prune commands:

Remove volumes command syntax
Usage: docker volume rm [OPTIONS] VOLUME [VOLUME...]
Prune volumes command syntax
Usage: docker volume prune [OPTIONS]

https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/
https://docs.docker.com/storage/

Docker Volumes Chapter 4

[104]

Here are some examples of using the remove and prune commands:

Since the in-use-volume volume is mounted in the vol-demo container, it did not get
removed with the prune command. You can use a filter on the volume list command to see
what volumes are not associated with a container, and as such would be removed with the
prune command. Here is the filtered ls command:

Using a filter on the volume ls command
docker volume ls --filter dangling=true

References
Check out the following links for more information:

Docker's Wiki document for the volume remove command: https:/ ​/ ​docs.
docker.​com/ ​engine/ ​reference/ ​commandline/ ​volume_ ​rm/​

Docker's Wiki document for the volume prune command: https:/ ​/​docs.
docker.​com/ ​engine/ ​reference/ ​commandline/ ​volume_ ​prune/
Info on pruning Docker objects: https:/ ​/​docs. ​docker. ​com/ ​config/ ​pruning/ ​

https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/engine/reference/commandline/volume_prune
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/
https://docs.docker.com/config/pruning/

Docker Volumes Chapter 4

[105]

Sharing data between containers with data
volume containers
There is another feature of Docker volumes that allows you to share the volume(s) mounted
in one Docker container with other containers. It is called data volume containers. Using
data volume containers is basically a two-step process. In the first step, you run a container
that either creates or mounts Docker volumes (or both), and in the second step, you use the
special volume parameter, --volumes-from, when running other containers to configure
them to mount all of the volumes mounted in the first container. Here is an example:

Step 1
docker container run \
 --rm -d \
 -v data-vol-01:/data/vol1 -v data-vol-02:/data/vol2 \
 --name data-container \
 vol-demo2:1.0 tail -f /dev/null
Step 2
docker container run \
 --rm -d \
 --volumes-from data-container \
 --name app-container \
 vol-demo2:1.0 tail -f /dev/null
Prove it
docker container exec app-container ls -l /data
Prove it more
docker container inspect -f '{{ range .Mounts }}{{ .Name }} {{ end }}' app-
container

Here is what that looks like when executed:

Docker Volumes Chapter 4

[106]

In this example, the first container run command is creating the volumes, but they could
have just as easily been pre-created with an earlier container run command, or from a
volume create command.

References
Here is an excellent article on data volume containers, including using them to do data
backup and restore: https:/ ​/ ​www. ​tricksofthetrades. ​net/ ​2016/ ​03/​14/ ​docker- ​data-
volumes/​.

Summary
In this chapter, we took a deep-dive into Docker volumes. We learned what Docker
volumes actually are, along with a few ways to create them. We learned the differences
between creating Docker volumes with the volume create command, with the container
run command, and the Dockerfile VOLUME instruction. We looked at a couple of ways to
remove volumes, and how to use a data container to share volumes with other containers.
All in all, you should feel pretty confident in your Docker volume skills right now. So far,
we have built a strong base of Docker knowledge.

In Chapter 5, Docker Swarm, we are going to add to that base by learning about Docker
Swarm. This is where things will really start to get exciting. If you are ready to learn more,
turn the page!

https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/
https://www.tricksofthetrades.net/2016/03/14/docker-data-volumes/

5
Docker Swarm

In this chapter, we will learn what Docker swarm is, and how to set up a Docker swarm
cluster. We'll learn about all of the swarm management commands, and then we will find
out more about swarm managers and swarm workers. Next, we will discover swarm
services. And finally, we will find out how easy it is to access a container application
running on any node in a swarm cluster.

There are currently over 17,000,000 shipping containers in the world, and 5 or 6,000,000
of them are currently shipping around the world on vessels, trucks, and trains. In total,
they make around 200,000,000 trips a year.

 – https:/ ​/​www. ​billiebox. ​co. ​uk/ ​facts- ​about- ​shipping- ​containers

In this chapter, we will cover the following topics:

What is Docker swarm?
Setting up a Docker swarm cluster
Managers and workers
Swarm services
Accessing container applications in a swarm

https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers
https://www.billiebox.co.uk/facts-about-shipping-containers

Docker Swarm Chapter 5

[108]

Technical requirements
You will be pulling Docker images from Docker's public repo, so basic internet access is
required to execute the examples within this chapter. You will be setting up a multi-node
swarm cluster, so you will need multiple nodes to complete the examples in this chapter.
You can use physical servers, EC2 instances, Virtual Machines on vSphere or Workstation
or even on Virtual Box. I utilized 6 VMs on Vmware Workstation for my nodes. Each VM is
configured with 1 GB ram, 1 CPU, and 20 GB HDD. The guest OS utilized is Xubuntu 18.04
for its small size and full Ubuntu feature set. Xubuntu can be downloaded from https:/ ​/
xubuntu.​org/​download/ ​. Virtually any modern Linux operating system choice would be
acceptable for the nodes.

The code files of this chapter can be found on GitHub:
https:/​/​github.​com/ ​PacktPublishing/ ​Docker- ​Quick- ​Start- ​Guide/ ​tree/ ​master/
Chapter05

Check out the following video to see the code in action:
http:/​/​bit.​ly/​2KENJOD

What is Docker swarm?
You probably have not noticed this, but so far, all of the Docker workstation deployments,
or nodes that we have used in our examples have been run in single-engine mode. What
does that mean? Well, it tells us that the Docker installation is managed directly and as
a standalone Docker environment. While this is effective, it is not very efficient and it does
not scale well. Of course, Docker understands the limitations and has provided a powerful
solution to this problem. It is called Docker swarm. Docker swarm is a way to link Docker
nodes together, and manage those nodes and the dockerized applications that run on them
efficiently and at scale. Simply stated, a Docker swarm is a group of Docker nodes
connected and managed as a cluster or swarm. Docker swarm is built into the Docker
engine, so no additional installation is required to use it. When a Docker node is part of a
swarm, it is running in swarm mode. If there is any doubt, you can easily check whether a
system running Docker is part of a swarm or is running in single-engine mode using the
docker system info command:

https://xubuntu.org/download/
https://xubuntu.org/download/
https://xubuntu.org/download/
https://xubuntu.org/download/
https://xubuntu.org/download/
https://xubuntu.org/download/
https://xubuntu.org/download/
https://xubuntu.org/download/
https://xubuntu.org/download/
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter05
http://bit.ly/2KENJOD
http://bit.ly/2KENJOD
http://bit.ly/2KENJOD
http://bit.ly/2KENJOD
http://bit.ly/2KENJOD
http://bit.ly/2KENJOD
http://bit.ly/2KENJOD
http://bit.ly/2KENJOD
http://bit.ly/2KENJOD

Docker Swarm Chapter 5

[109]

The features that provide swarm mode are part of the Docker SwarmKit, which is a tool for
orchestrating distributed systems at scale, that is, Docker swarm clusters. Once a Docker
node joins a swarm, it becomes a swarm node, becoming either a Manager node or a
Worker node. We will talk about the difference between managers and workers shortly. For
now, know that the very first Docker node to join a new swarm becomes the first Manager,
also known as the Leader. There is a lot of technical magic that happens when that first
node joins a swarm (actually, it creates and initializes the swarm, and then joins it) and
becomes the leader. Here is some of the wizardry that happens (in no particular order):

A Swarm-ETCD-based configuration database or cluster store is created and
encrypted
Mutual TLS (mTLS) authentication and encryption is set up for all inter-node
communication
Container orchestration is enabled, which takes responsibility for managing
which containers run on which nodes
The cluster store is configured to automatically replicate to all manager nodes
The node gets assigned a cryptographic ID
A Raft-based distributed consensus-management system is enabled
The node becomes a Manager and is elected to the status of swarm leader
The swarm managers are configured for HA
A public-key infrastructure system is created
The node becomes the certificate authority, allowing it to issue client certificates
to any nodes that join the swarm
A default 90-day certificate-rotation policy is configured on the certificate
authority

Docker Swarm Chapter 5

[110]

The node gets issued its client certificate, which includes its name, ID, the swarm
ID, and the node's role in the swarm
Creating a new cryptographic join token for adding new swarm managers occurs
Creating a new cryptographic join token for adding new swarm workers occurs

That list represents a lot of powerful features that you get by joining the first node to a
swarm. And, with great power comes great responsibility, meaning that you really need to
be prepared to do a lot of work to create your Docker swarm, as you might well imagine.
So, let's move on to the next section, where we will discuss how to enable all of these
features when you set up a swarm cluster.

References
Check out the following links for more information:

The repository for SwarmKit: https:/ ​/ ​github. ​com/ ​docker/ ​swarmkit

The Raft consensus algorithm: https:/ ​/ ​raft. ​github. ​io/ ​

How to set up a Docker swarm cluster
You have just learned about all of the incredible features that get enabled and set up when
you create a Docker swarm cluster. So, now I am going to show you all of the steps needed
to set up a Docker swarm cluster. Are you ready? Here they are:

Set up your Docker swarm cluster
docker swarm init

What? Wait? Where is the rest of it? Nope. There is nothing missing. All of the setup and
functionality that is described in the preceding section is achieved with one simple
command. With that single swarm init command, the swarm cluster is created, the node
is transformed from a single-instance node into a swarm-mode node, the role of manager is
assigned to the node and it is elected as the leader of the swarm, the cluster store is created,
the node becomes the certificate authority of the cluster and assigns itself a new certificate
that includes a cryptographic ID, a new cryptographic join token is created for managers,
and another is created for workers, and on and on. This is complexity made simple.

https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://github.com/docker/swarmkit
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/

Docker Swarm Chapter 5

[111]

The swarm commands make up another Docker management group. Here are the swarm-
management commands:

We'll review the purpose for each these commands in just a moment, but before we do, I
want to make you aware of some important networking configurations. We will talk more
about Docker networking in Chapter 6, Docker Networking, but for now be aware that you
may need to open access to some protocols and ports on your Docker nodes to allow
Docker swarm to function properly. Here is the information straight from Docker's Getting
started with swarm mode wiki:

Docker Swarm Chapter 5

[112]

Two other ports that you may need to open for the REST API are as follows:

TCP 2375 for Docker REST API (plain text)
TCP 2376 for Docker REST API (ssl)

Alright, let's move on to reviewing the swarm commands.

docker swarm init
You have already seen what the init command is for, that being to create the swarm cluster,
add (this) the first Docker node to it, and then set up and enable all of the swarm features
we just covered. The init command can be as simple as using it with no parameters, but
there are many optional parameters available to fine-tune the initialization process. You can
get a full list of the optional parameters, as usual, by using --help, but let's consider a few
of the available parameters now:

--autolock: Use this parameter to enable manager autolocking.
--cert-expiry duration: Use this parameter to change the default validity
period (of 90 days) for node certificates.
--external-ca external-ca: Use this parameter to specify one or more
certificate-signing endpoints, that is, external CAs.

docker swarm join-token
When you initialize the swarm by running the swarm init command on the first node,
one of the functions that is executed creates unique cryptographic join tokens, one joins
additional manager nodes, and one joins worker nodes. Using the join-token command,
you can obtain these two join tokens. In fact, using the join-token command will deliver
the full join command for whichever role you specify. The role parameter is required. Here
are examples of the command:

Get the join token for adding managers
docker swarm join-token manager
Get the join token for adding workers
docker swarm join-token worker

Docker Swarm Chapter 5

[113]

Here is what that looks like:

Rotate the worker join token
docker swarm join-token --rotate worker

Note that this does not invalidate existing workers that have used the old, now invalid, join
token. They are still a part of the swarm and are unaffected by the change in the join token.
Only new nodes that you wish to join to the swarm need to use the new token.

docker swarm join
You have already seen the join command used in the preceding docker swarm join-token
section. The join command is used, in conjunction with a cryptographic join token, to add a
Docker node to the swarm. All nodes except the very first node will use the join command
to become part of the swarm (the first node uses the "init" command, of course). The join
command has a few parameters, the most important of them being the --token parameter.
This is the required join token, obtainable with the join-token command. Here is an
example:

Join this node to an existing swarm
docker swarm join --token
SWMTKN-1-3ovu7fbnqfqlw66csvvfw5xgljl26mdv0dudcdssjdcltk2sen-
a830tv7e8bajxu1k5dc0045zn 192.168.159.156:2377

Docker Swarm Chapter 5

[114]

You will notice that the role is not needed for this command. This is because the token itself
is associated with the role it has been created for. When you execute the join, the output
provides an informational message telling you what role the node has joined as manager or
worker. If you have inadvertently use a manager token to join a worker or vice versa, you
can use the leave command to remove a node from the swarm, and then using the token
for the actual desired role, rejoin the node to the swarm.

docker swarm ca
The swarm ca command is used when you want to view the current certificate for the
swarm, or you need to rotate the current swarm certificate. To rotate the certificate, you
would include the --rotate parameter:

View the current swarm certificate
docker swarm ca
Rotate the swarm certificate
docker swarm ca --rotate

The swarm ca command can only be executed successfully on a swarm manager node. One
reason you might use the rotate swarm certificate feature is if you are moving from the
internal root CA to an external CA, or vice versa. Another reason you might need to rotate
the swarm certificate is in the event of one or more manager nodes getting compromised. In
that case, rotating the swarm certificate will block all other managers from being able to
communicate with the manager that rotated the certificate or each other using the old
certificate. When you rotate the certificate, the command will remain active, blocking until
all swarm nodes, both managers and workers, have been updated. Here is an example of
rotating the certificate on a very small cluster:

Docker Swarm Chapter 5

[115]

Since the command will remain active until all nodes have updated both the TLS certificate
and the CA certificate, it can present an issue if there are nodes in the swarm that are
offline. When that is a potential problem, you can include the --detach parameter, and the
command will initiate the certificate rotation and return control immediately to the session.
Be aware that you will not get any status as to the progress, success, or failure of the
certificate rotation when you use the --detach optional parameter. You can use the node ls
command to query the state of the certificates within the cluster to check the progress. Here
is the full command you can use:

Query the state of the certificate rotation in a swarm cluster
docker node ls --format '{{.ID}} {{.Hostname}} {{.Status}} {{.TLSStatus}}'

The ca rotate command will continue trying to complete, either in the foreground, or in
the background if detached. If a node was offline when the rotate is initiated, and it comes
back online, the certificate rotation will complete. Here is an example of node04 being
offline when the rotate command was executed, and then a while later, after it came back
on; check the status found it successfully rotated:

Another important point to remember is that rotating the certificate will immediately
invalidate both of the current join tokens.

Docker Swarm Chapter 5

[116]

docker swarm unlock
You may recall from the discussion regarding the docker swarm init command that one
of the optional parameters that you can include with the init command is --autolock.
Using this parameter will enable the autolock feature on the swarm cluster. What does that
mean? Well, when a swarm cluster is configured to use auto-locking, any time the docker
daemon of a manager node goes offline, and then comes back online (that is, is restarted) it
is necessary to enter an unlock key to allow the node to rejoin the swarm. Why would you
use the auto-lock feature to lock your swarm? The auto-lock feature helps to protect
the mutual TLS encryption key of the swarm, along with the encrypt and decrypt keys used
with the swarm's raft logs. It is an additional security feature intended to supplement
Docker Secrets. When the docker daemon restarts on the manager node of a locked swarm,
you must enter the unlock key. Here is what using the unlock key looks like:

By the way, to the rest of the swarm, a manager node that has not been unlocked will report
as down, even though the docker daemon is running. The swarm auto-lock feature can be
enabled or disabled on an existing swarm cluster using the swarm update command,
which we will take a look at shortly. The unlock key is generated during the swarm
initialization and will be presented on the command line at that time. If you have lost the
unlock key, you can retrieve it on an unlocked manager node using the swarm unlock-
key command.

docker swarm unlock-key
The swarm unlock-key command is much like the swarm ca command. The unlock-key
command can be used to retrieve the current swarm unlock key, or it can be used to rotate
the unlock key to a new one:

Retrieve the current unlock key
docker swarm unlock-key
Rotate to a new unlock key
docker swarm unlock-key --rotate

Depending on the size of the swarm cluster, the unlock key rotation can take a while for all
of the manager nodes to get updated.

Docker Swarm Chapter 5

[117]

It is a good idea to keep the current (old) key handy for a while when you
rotate the unlock key, on the off-chance that a manager node goes offline
before getting the updated key. That way, you can still unlock the node
using the old key. Once the node is unlocked and receives the rotated
(new) unlock key, the old key can be discarded.

As you might expect, the swarm unlock-key command is only useful when issued on a
manager node of a cluster with the auto-lock feature enabled. If you have a cluster that
does not have the auto-lock feature enabled, you can enable it with the swarm update
command.

docker swarm update
There are several swarm cluster features that are enabled or configured when you initialize
the cluster on the first manager node via the docker swarm init command. There may
be times that you want to change which features are enabled, disabled, or configured after
the cluster has been initialized. To accomplish this, you will need to use the swarm update
command. For example, you may want to enable the auto-lock feature for your swarm
cluster. Or, you might want to change the length of time that certificates are valid for. These
are the types of changes you can execute using the swarm update command. Doing so
might look like this:

Enable autolock on your swarm cluster
docker swarm update --autolock=true
Adjust certificate expiry to 30 days
docker swarm update --cert-expiry 720h

Here is the list of settings that can be affected by the swarm update command:

Docker Swarm Chapter 5

[118]

docker swarm leave
This one is pretty much what you would expect. You can remove a docker node from a
swarm with the leave command. Here is an example of needing to use the leave
command to correct a user error:

Node03 was intended to be a manager node. I accidentally added the node as a worker.
Realizing my error, I used the swarm leave command to remove the node from the
swarm, putting it back into single instance mode. Then, using the manager join token, I re-
added the node to the swarm as a manager. Phew! Crisis averted.

References
Check out these links for more information:

Getting started with swarm mode tutorial: https:/ ​/​docs. ​docker. ​com/ ​engine/
swarm/​swarm- ​tutorial/ ​

The docker swarm init command wiki doc: https:/ ​/​docs. ​docker. ​com/
engine/​reference/ ​commandline/ ​swarm_ ​init/ ​

The docker swarm ca command wiki doc: https:/ ​/​docs. ​docker. ​com/ ​engine/
reference/ ​commandline/ ​swarm_ ​ca/​

The docker swarm join-token command wiki doc: https:/ ​/​docs. ​docker.
com/​engine/ ​reference/ ​commandline/ ​swarm_ ​join- ​token/ ​

https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_init/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_ca/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/
https://docs.docker.com/engine/reference/commandline/swarm_join-token/

Docker Swarm Chapter 5

[119]

The docker swarm join command wiki doc: https:/ ​/​docs. ​docker. ​com/
engine/​reference/ ​commandline/ ​swarm_ ​join/ ​

The docker swarm unlock command wiki doc: https:/ ​/​docs. ​docker. ​com/
engine/​reference/ ​commandline/ ​swarm_ ​unlock/ ​

The docker swarm unlock-key command wiki doc: https:/ ​/​docs. ​docker.
com/​engine/ ​reference/ ​commandline/ ​swarm_ ​unlock- ​key/ ​

The docker swarm update command wiki doc: https:/ ​/​docs. ​docker. ​com/
engine/​reference/ ​commandline/ ​swarm_ ​update/ ​

The docker swarm leave command wiki doc: https:/ ​/​docs. ​docker. ​com/
engine/​reference/ ​commandline/ ​swarm_ ​leave/ ​

Learn more about Docker Secrets: https:/ ​/​docs. ​docker. ​com/ ​engine/ ​swarm/
secrets/ ​

Managers and workers
We have discussed swarm managers a little in the previous sections, but let's take a closer
look at what swarm managers do. The swarm managers do exactly what you would expect.
They manage and maintain the state of the swarm cluster. They schedule swarm services,
which we will talk about in Swarm services section of this chapter, but for now, think of
swarm services as running containers. Manager nodes also serve up the API endpoints of
the cluster, allowing for programmatic access via REST. Managers also direct traffic to the
running services so that any container can be reached through any manager node without
having to know which node is actually running the containers. As part of maintaining the
state of the cluster, the managers will deal with the loss of nodes in the system, electing a
new leader node in the event that the manager lost was the leader, and they will keep the
desired number of service containers running if containers or nodes go down.

The best practices for the number of manager in a swarm are three, five, or seven. You'll
note that all of these options represent an odd number of manager nodes. This is so that if
the leader node is lost, the raft consensus algorithm can more easily select a new leader for
the swarm. You can run a swarm cluster with one manager node, and that is actually a
better option than having two manager nodes. But, for a much more highly available
swarm cluster, it is recommended that you have at least three manager nodes. For larger
clusters, having five or seven managers is good, but it is not recommended to have more
than seven. Once you have more than seven managers in the same cluster, you actually
experience degraded performance.

https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_join/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_unlock-key/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_update/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/reference/commandline/swarm_leave/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/

Docker Swarm Chapter 5

[120]

Another important consideration for the manager nodes is the network performance
between them. Managers need a low-latency network connection for optimal performance.
If you are running your swarm in AWS, for example, you probably don't want the
managers within a swarm spread across regions. You would likely encounter issues with
the swarm if you were to do so. If you put the managers within a swarm in different
availability zones within a single region, you shouldn't have any network-performance-
related issues.

Worker nodes don't do anything except run containers. They don't have a say in electing
new leaders when the leader node goes down. They don't handle API calls. They don't
direct traffic. They do nothing but run containers. In fact, you can't have a swarm with just
a worker node. On the other hand, you can have a swarm with just a manager node, in
which case the manager will also act as a worker and run containers in addition to its
manager duties.

All manager nodes are actually worker nodes as well by default. This means that they can
and will run containers. If you want to keep your managers from running workloads, you
need to change the node's availability setting. Changing it to draining will carefully stop
any running containers on the manager node marked as draining, and will start up those
containers on other (non-draining) nodes. No new container workloads will be started on a
node in drain mode, for example as follows:

Set node03's availability to drain
docker node update --availability drain ubuntu-node03

There may be times when you want or need to change the role of a docker node in the
swarm. You can promote a worker node to manager status, or you can demote a manager
node to worker status. Here are some examples of these activities:

Promote worker nodes 04 and 05 to manager status
docker node promote ubuntu-node04 ubuntu-node05
Demote manager nodes 01 and 02 to worker status
docker node demote ubuntu-node01 ubuntu-node02

References
Check out the official documentation on how nodes work at https:/ ​/ ​docs. ​docker. ​com/
engine/​swarm/​how- ​swarm- ​mode- ​works/ ​nodes/ ​.

https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/

Docker Swarm Chapter 5

[121]

Swarm services
Alright. Now you know a lot about setting up a Docker swarm cluster, and how its nodes
go from single-engine mode into swarm mode. You also know that the significance of that
is to free you from directly managing individual running containers. So, you may be
starting to wonder, if I don't manage my containers directly and individually now, how do
I manage them? You've come to the right place! This is where swarm services come into
play. swarm services allow you to define the desired state for your container application in
terms of how many concurrent running copies of the container there should be. Let's take a
quick look at what commands are available to us in the management group for swarm
services, and then we'll talk about those commands:

The first thing that you'll probably want to do is create a new service, so we will begin our
swarm services discussion with the service create command. Here is the syntax and a
basic sample of the service create command:

Syntax for the service create command
Usage: docker service create [OPTIONS] IMAGE [COMMAND] [ARG...]
Create a service
docker service create --replicas 1 --name submarine alpine ping google.com

Docker Swarm Chapter 5

[122]

OK. Let's break down the sample service create command shown here. First, you have
the management group service followed by the create command. Then, we start getting
into the parameters; the first one is --replicas. This defines the number of copies of the
container that should be run concurrently. Next, we have the --name parameter. This one
is pretty obvious and is the name of the service we are creating, in this case, submarine.
We will be able to use the stated name in other service commands. After the name
parameter, we have the fully-qualified Docker image name. In this case, it is just alpine. It
could have been something such as alpine:3.8, or alpine:latest, or something more
qualified such as tenstartups/alpine:latest. Following the image name to use for the
service is the command to use when running the container and the parameters to pass to
that command—ping and google.com, respectively. So, the preceding sample service
create command will launch a single container from the alpine image, which will run
the ping command with the google.com parameter, and then name the service submarine.
Here is what that looks like:

You now know the basics of creating docker services. But, before you get too excited,
there's still a lot of ground to cover for the service create command. In fact, this
command has so many options that listing them all out would take two pages in this book.
So, rather than do that, I want you to use the --help feature and enter the following
command now:

Get help with the service create command
docker service create --help

I know, right? There are a lot of optional parameters you can use. Don't worry. I'm not
going to leave you out to dry here. I'll give you some guidance to help you get a firm
foundation for creating services, and then you can branch out and try some of the other
parameters you see in --help.

Docker Swarm Chapter 5

[123]

Just so you know, the two parameters we used so far, --replicas and --name, are both
optional. If you don't provide a number of replicas to use, the service will be created with a
default of 1. Also, if you don't provide a name for the service, a fanciful name will be made
up and given to the service. This is the same type of default naming we saw when using the
docker container run command in Chapter 2, Learning Docker Commands. It is
generally better to provide both of these options for each service create command
issued.

Also, know that generally speaking, the command and command parameters for the image
that were supplied in the preceding sample are optional as well. In this specific case, they
are necessary because, by itself, a container run from the alpine image with no other
command or parameters supplied will just exit. In the sample, that would show up as a
failure to converge the service and Docker would perpetually try to restart the service.
Stated another way, you can leave off the command and its parameters if the image being
used has them built in (such as in the CMD or ENTRYPOINT instruction of the Dockerfile).

Let's move on to some more create parameters now. You should recall from Chapter 2,
Learning Docker Commands that there is a --publish parameter you can use on a docker
container run command that defines the port exposed on the docker host and the port in
the container that the host port is mapped to. It looked something like this:

Create a nginx web-server that redirects host traffic from port 8080 to
port 80 in the container
docker container run --detach --name web-server1 --publish 8080:80 nginx

Well, you need the same functionality for a swarm service, and in their wisdom, Docker
made the parameter used for both the container run command and the service
create command the same: --publish. You can use the same abbreviated format we saw
before, --publish 8080:80, or you can use a more verbose format: --publish
published=8080, target=80. This still translates to redirect host traffic from port 8080 to
port 80 in the container. Let's try out another example, this time one that uses the --
publish parameter. We'll give the nginx image another run:

Create a nginx web-server service using the publish parameter
docker service create --name web-service --replicas 3 --publish
published=8080,target=80 nginx

Docker Swarm Chapter 5

[124]

This example will create a new service that runs three container replicas, using the nginx
image and exposing port 80 on the containers and port 8080 on the hosts. Have a look:

Now, you're getting there. Let's quickly cover three more parameters and you will be ready
to take on the world (of swarm services, at least). First up, --restart-window. This
parameter is used to tell the Docker daemon how long to wait for the container to start up
its application before testing to see whether it is healthy. The default is five seconds. If you
create an app in your container that will take more than five seconds to start up and report
as healthy, you will want to include a --restart-window parameter with your service
create. Next up, --restart-max-attempts. This parameter tells the Docker daemon
how many times to keep trying to start a container replica that is not reporting as
healthy before giving up. The default is Never give up. Never surrender! Finally, let's talk
about the --mode parameter. The default mode for a swarm service is replicated. That
means the Docker daemon will continue to stand up containers for your service until the
number of concurrently running containers is equal to the value you provided in the --
replicas parameter (or 1 if you don't provide the parameter). For example, with a --
replicas 3 parameter, you will get three containers running in the swarm for your
service. There is another mode, called global. If you provide the --mode
global parameter when you create your service, the Docker daemon will stand up exactly
one container on every node in the cluster. If you have a six-node cluster, you will end up
with six containers running, one per node. With a 12-node cluster, you get 12 containers,
and so on. This is a very handy option when you have services that provide functionality
for each host, such as a monitoring app or log forwarder.

Let's review some of the other service commands you will want to know and use. Once
you've created some services, you might want a list of those services. This can be achieved
with the service list command. It looks like this:

List services in the swarm
Usage: docker service ls [OPTIONS]
docker service list

Docker Swarm Chapter 5

[125]

Once you have reviewed the list of running services, you might want more details about
one or more of those services. To achieve this, you would use the service ps command.
Have a look:

List the tasks associated with a service
Usage: docker service ps [OPTIONS] SERVICE [SERVICE...]
docker service ps

Once a service has outlived its usefulness, you might want to terminate it. The command to
do that is the service remove command. Here is what that looks like:

Remove one or more services from the swarm
Usage: docker service rm SERVICE [SERVICE...]
docker service remove sleepy_snyder

If you want to remove all of the services running in the swarm, you can combine some of
these commands and execute something such as this:

Remove ALL the services from the swarm
docker service remove $(docker service list -q)

Finally, if you realize that the number of replicas currently configured is not set to the
desired number, you can use the service scale command to adjust it. Here is how you
do that:

Adjust the configured number of replicas for a service
Usage: docker service scale SERVICE=REPLICAS [SERVICE=REPLICAS...]
docker service scale web-service=4

Docker Swarm Chapter 5

[126]

That should be enough to keep you busy for a while. Before we move on Chapter 6, Docker
Networking, let's cover one more topic in this chapter: accessing your container applications
running in a swarm.

References
Read more about the Docker service create reference at https:/ ​/​docs. ​docker. ​com/​engine/
reference/​commandline/ ​service_ ​create/ ​.

Accessing container applications in a
swarm
So, now you have a swarm running with an odd number of manager nodes, and a number
of worker nodes. You have deployed some swarm services to run your favorite
containerized applications. What's next? Well, you just might want to access one or more of
the applications running in your swarm. Perhaps you have deployed a web server
application. It would be nice to be able to visit the web pages shared by that web server,
right? Let's take a quick look and see how easy it is to do so.

One of the features that the swarm managers handle for us is to direct traffic to our
services. In an earlier example, we set up a web service that was running three replicas in
the swarm. The swarm I am currently using happens to have three manager nodes and
three worker nodes. All six nodes are eligible to run workloads so when the service is
started, three of the six nodes will end up running a container. If we take a look at the
details of the tasks of the service using the service ps command, you can see which of the
six nodes are running the web-service containers:

https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/

Docker Swarm Chapter 5

[127]

In this example, you can see that the web service containers are running on node 01, 02, and
04. The wonderful thing is that you don't need to know which nodes are running your
service containers. You can access the service via any node in the swarm. Of course, you
would expect to be able to access the container on node 01, 02, or 04, but have a look at this:

There is an unfortunate side-effect of having the ability to access a service from any node in
the swarm. Can you think of what it might be? I won't keep you in suspense for long. The
side effect is that you can only assign a (host) port to one service in the swarm. In our
example, we are using port 8080 for our web service. That means that we cannot use
port 8080 for the host port of any other service we want to run in this swarm:

References
Check out the following links for more information:

Wiki doc with a very detailed overview of deploying services on a
swarm: https:/ ​/​docs. ​docker. ​com/​v17. ​09/ ​engine/ ​swarm/ ​services/ ​

How services work: https:/ ​/​docs. ​docker. ​com/ ​engine/ ​swarm/ ​how- ​swarm- ​mode-
works/​services/ ​

Docker's getting started with swarm mode training: https:/ ​/​docs. ​docker. ​com/
v17.​09/ ​engine/ ​swarm/ ​swarm- ​tutorial/ ​

https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/v17.09/engine/swarm/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/
https://docs.docker.com/v17.09/engine/swarm/swarm-tutorial/

Docker Swarm Chapter 5

[128]

Summary
In this chapter, we finally started to pull some of the pieces together and make some fun
stuff happen. We learned how much functionality we get by enabling swarm mode, and
creating a swarm cluster. And, we found out just how easy it is to set everything up, using
one single swarm init command. Then, we learned how to grow and manage our swarm
cluster, and finally, we learned how to run our containers as services within our new
swarm cluster. It's been fun, right?!

Now, let's take things to the next level. In Chapter 6, Docker Networking, we'll learn about
Docker Networking. If you're ready for more good stuff, turn the page.

6
Docker Networking

In this chapter, we will learn about Docker networking. We will dive deep into Docker
networking, learning how containers can be isolated, how they can communicate with each
other, and how they can communicate with the outside world. We will explore the local
network drivers Docker provides in the out-of-the-box installation. Then, we will examine
the use of remote network drivers with an example deployment of the Weave driver. After
that, we will learn how to create Docker networks. We will round out the discussion with a
look at the free services that we get with our Docker networks.

"Approximately 97% of all shipping containers are manufactured in China. It is far easier
to produce the container close to the shipment than to re-position containers around the
world."

 – https:/ ​/ ​www.​billiebox. ​co. ​uk/ ​

In this chapter, we will cover the following topics:

What is a Docker network?
What built-in (also known as local) Docker networks are all about
What about third-party (also known as remote) Docker networks?
How to create Docker networks
The free service discovery and load balancing features
The right Docker network driver to use for your needs

https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/
https://www.billiebox.co.uk/

Docker Networking Chapter 6

[130]

Technical requirements
You will be pulling Docker images from Docker's public repo, and installing network
drivers from Weave, so basic internet access is required to execute the examples within this
chapter. Also, we will be using the jq software package, so if you haven't installed it yet,
please see the instructions on how to do so—they can be found in The container inspect
command section of Chapter 2, Learning Docker Commands.

The code files of this chapter can be found on GitHub:
https:/​/​github.​com/ ​PacktPublishing/ ​Docker- ​Quick- ​Start- ​Guide/ ​tree/ ​master/
Chapter06

Check out the following video to see the code in action:
http:/​/​bit.​ly/​2FJ2iBK

What is a Docker network?
As you already know, a network is a linkage system that allows computers and other
hardware devices to communicate. A Docker network is the same thing. It is a linkage
system that allows Docker containers to communicate with each other on the same Docker
host, or with containers, computers, and hardware outside of the container's host, including
containers running on other Docker hosts.

If you are familiar with the cloud computing analogy of pets versus cattle, you understand
the necessity of being able to manage resources at scale. Docker networks allow you to do
just that. They abstract away most of the complexity of networking, delivering easy-to-
understand, easy-to-document, and easy-to-use networks for your containerized apps. The
Docker network is based on a standard, created by Docker, called the Container Network
Model (CNM). There is a competing networking standard, created by CoreOS, called the
Container Network Interface (CNI). The CNI standard has been adopted by several
projects, most notably Kubernetes, and arguments can be made to support its use.
However, in this chapter, we will focus our attention on the CNM standard from Docker.

https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter06
http://bit.ly/2FJ2iBK
http://bit.ly/2FJ2iBK
http://bit.ly/2FJ2iBK
http://bit.ly/2FJ2iBK
http://bit.ly/2FJ2iBK
http://bit.ly/2FJ2iBK
http://bit.ly/2FJ2iBK
http://bit.ly/2FJ2iBK
http://bit.ly/2FJ2iBK

Docker Networking Chapter 6

[131]

The CNM has been implemented by the libnetwork project, and you can learn more about
that project by following the link in the references for this section. The CNM
implementation, written in Go, is made up of three constructs: the sandbox, the endpoint,
and the network. The sandbox is a network namespace. Each container has its own
sandbox. It holds the configuration of the container's network stack. This includes its
routing tables, interfaces, and DNS settings for IP and MAC addresses. The sandbox also
contains the network endpoints for the container. Next, the endpoints are what join the
sandbox to networks. Endpoints are essentially network interfaces, such as eth0. A
container's sandbox may have more than one endpoint, but each endpoint will connect to
only a single network. Finally, a network is a collection of connected endpoints, which
allow communication between connections. Every network has a name, an address space,
an ID, and a network type.

Libnetwork is a pluggable architecture that allows network drivers to implement the
specifics for the components we just described. Each network type has its own network
driver. Docker provides built-in drivers. These default, or local, drivers include the bridge
driver and the overlay driver. In addition to the built-in drivers, libnetwork supports third-
party-created drivers. These drivers are referred to as remote drivers. Some examples of
remote drivers include Calico, Contiv, and Weave.

You now know a little about what a Docker network is, and after reading these details, you
might be thinking, where's the easy that he talked about? Hang in there. now we are going
to start discussing how easy it is for you to create and use Docker networks. As with
Docker volume, the network commands represent their own management category. As you
would expect, the top-level management command for network is as follows:

Docker network managment command
docker network

The subcommands available in the network management group include the following:

Docker network management subcommands
docker network connect # Connect a container to a network
docker network create # Create a network
docker network disconnect # Disconnect a container from a network
docker network inspect # Display network details
docker network ls # List networks
docker network rm # Remove one or more networks
docker network prune # Remove all unused networks

Let's now take a look at the built-in or local network drivers.

Docker Networking Chapter 6

[132]

References
Check out the following links for more information:

Pets versus cattle talk slide-deck: https:/ ​/​www. ​slideshare. ​net/ ​randybias/
architectures- ​for- ​open- ​and- ​scalable- ​clouds

Libnetwork project: https:/ ​/​github. ​com/ ​docker/ ​libnetwork

Libnetwork design: https:/ ​/​github. ​com/​docker/ ​libnetwork/ ​blob/ ​master/
docs/​design. ​md

Calico network driver: https:/ ​/​www.​projectcalico. ​org/ ​

Contiv network driver: http:/ ​/​contiv. ​github. ​io/ ​

Weave network driver: https:/ ​/​www. ​weave. ​works/ ​docs/ ​net/ ​latest/ ​overview/ ​

Built-in (local) Docker networks
The out-of-the-box install of Docker includes a few built-in network drivers. These are also
known as local drivers. The two most commonly used drivers are the bridge network
driver and the overlay network driver. Other built-in drivers include none, host, and
MACVLAN. Also, without your creating networks, your fresh install will have a few
networks pre-created and ready to use. Using the network ls command, we can easily see
the list of pre-created networks available in the fresh installation:

https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
http://contiv.github.io/
http://contiv.github.io/
http://contiv.github.io/
http://contiv.github.io/
http://contiv.github.io/
http://contiv.github.io/
http://contiv.github.io/
http://contiv.github.io/
http://contiv.github.io/
http://contiv.github.io/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/

Docker Networking Chapter 6

[133]

In this list, you will notice that each network has its unique ID, a name, a driver used to
create it (and that controls it), and a network scope. Don't confuse a scope of local with the
category of driver, which is also local. The local category is used to differentiate the driver's
origin from third-party drivers that have a category of remote. A scope value of local
indicates that the limit of communication for the network is bound to within the local
Docker host. To clarify, if two Docker hosts, H1 and H2, both contain a network that has the
scope of local, containers on H1 will never be able to communicate directly with containers
on H2, even if they use the same driver and the networks have the same name. The other
scope value is swarm, which we'll talk more about shortly.

The pre-created networks that are found in all deployments of Docker are
special in that they cannot be removed. It is not necessary to attach
containers to any of them, but attempts to remove them with the docker
network rm command will always result in an error.

There are three built-in network drivers that have a scope of local: bridge, host, and none.
The host network driver leverages the networking stack of the Docker host, essentially
bypassing the networking of Docker. All containers on the host network are able to
communicate with each other through the host's interfaces. A significant limitation to using
the host network driver is that each port can only be used by a single container. That is, for
example, you cannot run two nginx containers that are both bound to port 80. As you may
have guessed because the host driver leverages the network of the host it is running on,
each Docker host can only have one network using the host driver:

Docker Networking Chapter 6

[134]

Next up, is the null or none network. Using the null network driver creates a network that
when a container is connected to it provides a full network stack but does not configure any
interfaces within the container. This renders the container completely isolated. This driver
is provided mainly for backward-compatibility purposes, and like the host driver, only one
network of the null type can be created on a Docker host:

The third network driver with a scope of local is the bridge driver. Bridge networks are the
most common type. Any containers attached to the same bridge network are able to
communicate with one another. A Docker host can have more than one network created
with the bridge driver. However, containers attached to one bridge network are unable to
communicate with containers on a different bridge network, even if the networks are on the
same Docker host. Note that there are slight feature differences between the built-in bridge
network and any user-created bridge networks. It is best practice to create your own bridge
networks and utilize them instead of the using the built-in bridge network. Here is an
example of running a container using a bridge network:

Docker Networking Chapter 6

[135]

In addition to the drivers that create networks with local scope, there are built-in network
drivers that create networks with swarm scope. Such networks will span all the hosts in a
swarm and allow containers attached to them to communicate in spite of running on
different Docker hosts. As you probably have surmised, use of networks that have swarm
scope requires Docker swarm mode. In fact, when you initialize a Docker host into swarm
mode, a special new network is created for you that has swarm scope. This swarm scope
network is named ingress and is created using the built-in overlay driver. This network is
vital to the load balancing feature of swarm mode that saw used in the Accessing container
applications in a swarm section of Chapter 5, Docker Swarm. There's also a new bridge
network created in the swarm init, named docker_gwbridge. This network is used by
swarm to communicate outward, kind of like a default gateway. Here are the default built-
in networks found in a new Docker swarm:

Docker Networking Chapter 6

[136]

Using the overlay driver allows you to create networks that span Docker hosts. These are
layer 2 networks. There is a lot of network plumbing that gets laid down behind the scenes
when you create an overlay network. Each host in the swarm gets a network sandbox with
a network stack. Within that sandbox, a bridge is created and named br0. Then, a VXLAN
tunnel endpoint is created and attached to bridge br0. Once all of the swarm hosts have the
tunnel endpoint created, a VXLAN tunnel is created that connects all of the endpoints
together. This tunnel is actually what we see as the overlay network. When containers are
attached to the overlay network, they get an IP address assigned from the overlay's subnet,
and all communications between containers on that network are carried out via the overlay.
Of course, behind the scenes that communication traffic is passing through the VXLAN
endpoints, going across the Docker hosts network, and any routers connecting the host to
the networks of the other Docker hosts. But, you never have to worry about all the behind-
the-scenes stuff. Just create an overlay network, attach your containers to it, and you're
golden.

The next local network driver that we're going to discuss is called MACVLAN. This driver
creates networks that allow containers to each have their own IP and MAC addresses, and
to be attached to a non-Docker network. What that means is that in addition to the
container-to-container communication you get with bridge and overlay networks, with
MACVLAN networks you also are able to connect with VLANs, VMs, and other physical
servers. Said another way, the MACVLAN driver allows you to get your containers onto
existing networks and VLANs. A MACVLAN network has to be created on each Docker
host where you will run containers that need to connect to your existing networks. What's
more, you will need a different MACVLAN network created for each VLAN you want
containers to connect to. While using MACVLAN networks sounds like the way to go,
there are two important challenges to using it. First, you have to be very careful about the
subnet ranges you assign to the MACVLAN network. Containers will be assigned IPs from
your range without any consideration of the IPs in use elsewhere. If you have a DHCP
system handing out IPs that overlap with the range you gave to the MACVLAN driver, it
can easily cause duplicate IP scenarios. The second challenge is that MACVLAN networks
require your network cards to be configured in promiscuous mode. This is usually frowned
upon in on-premise networks but is pretty much forbidden in cloud-provider networks
such as AWS and Azure, so the MACVLAN driver will have very limited use cases.

There is a lot of information covered in this section on local or built-in network drivers.
Don't despair! They are much easier to create and use than this wealth of information seems
to indicate. We will go into creating and using info shortly in the Creating Docker networks
section, but next, let's have a quick discussion about remote (also known as third-party)
network drivers.

Docker Networking Chapter 6

[137]

References
Check out these links for more information:

Excellent, in-depth Docker article for Docker networking: https:/ ​/​success.
docker.​com/ ​article/ ​networking

Networking with Overlay Networks: https:/ ​/​docs. ​docker. ​com/ ​network/
network- ​tutorial- ​overlay/ ​

Using MACVLAN networks: https:/ ​/​docs. ​docker. ​com/​v17. ​12/ ​network/
macvlan/ ​

Third-party (remote) network drivers
As mentioned previously in the What is a Docker network? section, in addition to the built-in,
or local, network drivers provided by Docker, the CNM supports community- and vendor-
created network drivers. Some examples of these third-party drivers include Contiv,
Weave, Kuryr, and Calico. One of the benefits of using one of these third-party drivers is
that they fully support deployment in cloud-hosted environments, such as AWS. In order
to use these drivers, they need to be installed in a separate installation step for each of your
Docker hosts. Each of the third-party network drivers brings their own set of features to the
table. Here is the summary description of these drivers as shared by Docker in the reference
architecture document:

https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://success.docker.com/article/networking
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/
https://docs.docker.com/v17.12/network/macvlan/

Docker Networking Chapter 6

[138]

Although each of these third-party drivers has its own unique installation, setup, and
execution methods, the general steps are similar. First, you download the driver, then you
handle any configuration setup, and finally you run the driver. These remote drivers
typically do not require swarm mode and can be used with or without it. As an example,
let's take a deep-dive into using the weave driver. To install the weave network driver,
issue the following commands on each Docker host:

Install the weave network driver plug-in
sudo curl -L git.io/weave -o /usr/local/bin/weave
sudo chmod a+x /usr/local/bin/weave
Disable checking for new versions
export CHECKPOINT_DISABLE=1
Start up the weave network
weave launch [for 2nd, 3rd, etc. optional hostname or IP of 1st Docker host
running weave]
Set up the environment to use weave
eval $(weave env)

The preceding steps need to be completed on each Docker host that will be used to run
containers that will communicate with each other over the weave network. The launch
command can provide the hostname or IP address of the first Docker host, which was set
up and already running the weave network, to peer with it so that their containers can
communicate. For example, if you have set up node01 with the weave network when you
start up weave on node02, you would use the following command:

Start up weave on the 2nd node
weave launch node01

Alternatively, you can connect new (Docker host) peers using the connect command,
executing it from the first host configured. To add node02 (after it has weave installed and
running), use the following command:

Peer host node02 with the weave network by connecting from node01
weave connect node02

You can utilize the weave network driver without enabling swarm mode on your hosts.
Once weave has been installed and started, and the peers (other Docker hosts) have been
connected, your containers will automatically utilize the weave network and be able to
communicate with each other regardless of whether they are on the same Docker host or
different ones.

Docker Networking Chapter 6

[139]

The weave network shows up in your network list just like any of your other networks:

Let's test out our shiny new network. First, make sure that you have installed the weave
driver on all the hosts you want to be connected by following the steps described
previously. Make sure that you either use the launch command with node01 as a
parameter, or from node01 you use the connect command for each of the additional nodes
you are configuring. For this example, my lab servers are named ubuntu-node01 and
ubuntu-node02. Let's start with node02:

Note the following, on ubuntu-node01:

Install and setup the weave driver
sudo curl -L git.io/weave -o /usr/local/bin/weave
sudo chmod a+x /usr/local/bin/weave
export CHECKPOINT_DISABLE=1
weave launch
eval $(weave env)

And, note the following, on ubuntu-node02:

Install and setup the weave driver
sudo curl -L git.io/weave -o /usr/local/bin/weave
sudo chmod a+x /usr/local/bin/weave
export CHECKPOINT_DISABLE=1
weave launch
eval $(weave env)

Now, back on ubuntu-node01, note the following:

Bring node02 in as a peer on node01's weave network
weave connect ubuntu-node02

Docker Networking Chapter 6

[140]

Now, let's launch a container on each node. Make sure we name them for easy
identification, starting with ubuntu-node01:

Run a container detached on node01
docker container run -d --name app01 alpine tail -f /dev/null

Now, launch a container on ubuntu-node02:

Run a container detached on node02
docker container run -d --name app02 alpine tail -f /dev/null

Excellent. Now, we have containers running on both nodes. Let's see whether they can
communicate. Since we are on node02, we will check there first:

From inside the app02 container running on node02,
let's ping the app01 container running on node01
docker container exec -it app02 ping -c 4 app01

Docker Networking Chapter 6

[141]

Yeah! That worked. Let's try going the other way:

Similarly, from inside the app01 container running on node01,
let's ping the app02 container running on node02
docker container exec -it app01 ping -c 4 app02

Perfect! We have bi-directional communication. Did you notice anything else? We have
name resolution for our app containers (we didn't have to ping by IP only). Pretty nice,
right?

References
Check out these links for more information:

Installing and using the weave network driver: https:/ ​/​www. ​weave. ​works/ ​docs/
net/​latest/ ​overview/ ​

Weaveworks weave github repo: https:/ ​/​github. ​com/ ​weaveworks/ ​weave

https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://www.weave.works/docs/net/latest/overview/
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave

Docker Networking Chapter 6

[142]

Creating Docker networks
OK, you now know a lot about both the local and the remote network drivers, and you
have seen how several of them are created for you when you install Docker and/or initialize
swarm mode (or install a remote driver). But, what if you want to create your own
networks using some of these drivers? It is really pretty simple. Let's take a look. The built-
in help for the network create command looks like this:

Docker network create command syntax
Usage: docker network create [OPTIONS] NETWORK

Examining this, we see there are essentially two parts of this command we need to handle,
the OPTIONS followed by the NETWORK name to make the network we wish to create.
What are our options? Well, there are quite a lot, but let's pick out a few to get you going
quickly.

Probably the most important option is the --driver option. This is how we tell Docker
which of the pluggable network drivers to use when creating this network. As you have
seen, the choice of driver determines the network characteristics. The value you supply to
the driver option will be like the ones shown in the DRIVER column of the output from the
docker network ls command. Some of the possible values are bridge, overlay, and
macvlan. Remember that you cannot create additional host or null networks as they are
limited to one per Docker host. So far, what might this look like? Here is an example of
creating a new overlay network, using mostly defaults for options:

Create a new overlay network, with all default options
docker network create -d overlay defaults-over

That works just fine. You can run new services and attach them to your new network. But
what else might we want to control in our network? Well, how about the IP space? Yep,
and Docker provides options for controlling the IP settings for our networks. This is done
using the --subnet, --gateway, and --ip-range optional parameters. So, let's take a
look at creating a new network using this options. See Chapter 2, Learning Docker
Commands, for how to install jq if you have not done so already:

Create a new overlay network with specific IP settings
docker network create -d overlay \
--subnet=172.30.0.0/24 \
--ip-range=172.30.0.0/28 \
--gateway=172.30.0.254 \
specifics-over
Initial validation
docker network inspect specifics-over --format '{{json .IPAM.Config}}' | jq

Docker Networking Chapter 6

[143]

Executing the preceding code in my lab looks like this:

Looking over this example, we see that we created a new overlay network using specific IP
parameters for the subnet, the IP range, and the gateway. Then, we validated that the
network was created with the requested options. Next, we created a service using our new
network. Then, we found the container ID for a container belonging to the service and used
it to inspect the network settings for the container. We can see that the container was run
using an IP address (in this case, 172.30.0.7) from the IP range we configured our
network with. Looks like we made it!

As mentioned, there are many other options available when creating Docker networks, and
I will leave it as an exercise for you to discover them with the docker network create -
-help command, and to try some of them out to see what they do.

Docker Networking Chapter 6

[144]

References
You can find the documentation for the network create command at https:/ ​/​docs.
docker.​com/​engine/ ​reference/ ​commandline/ ​network_ ​create/ ​.

Free networking features
There are two networking features or services that you get for free with your Docker swarm
networks. The first is Service Discovery, and the second is load balancing. When you create
Docker services, you get these features automatically. We experienced these features in this
chapter and in Chapter 5, Docker Swarm, but didn't really refer to them by name. So, let's
call them out here.

First up is Service Discovery. When you create a service, it gets a unique name. That name
gets registered with the swarm DNS. And, every service uses the swarm DNS for name
resolution. Here is an example for you. We are going to leverage the specifics-over
overlay network we created earlier in the creating Docker networks section. We'll create
two services (tester1 and tester2) attached to that network, then we will connect to a
container in the tester1 services and ping the tester2 service by name. Check it out:

Create service tester1
docker service create --detach --replicas 3 --name tester1 \
 --network specifics-over alpine tail -f /dev/null
Create service tester2
docker service create --detach --replicas 3 --name tester2 \
 --network specifics-over alpine tail -f /dev/null
From a container in the tester1 service ping the tester2 service by name
docker container exec -it tester1.3.5hj309poppj8jo272ks9n4k6a ping -c 3
tester2

Here is what the preceding commands look like when executed:

https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_create/

Docker Networking Chapter 6

[145]

Note that I typed the first part of the service name (tester1) and used command-line
completion by hitting Tab to fill in the container name for the exec command. But, as you
can see, I was able to reference the tester2 service by name from within a tester1
container.

For free!

The second free feature we get is Load balancing. This powerful feature is pretty easy to
understand. It allows traffic intended for a service to be sent to any host in a swarm
regardless of whether that host is running a replica of the service.

Imagine a scenario where you have a six-node swarm cluster, and a service that has only
one replica deployed. You can send traffic to that service via any host in the swarm and
know that it will arrive at the service's one container no matter which host the container is
actually running on. In fact, you can direct traffic to all hosts in the swarm using a load
balancer, say in a round-robin model, and each time traffic is sent to the load balancer, that
traffic will get delivered to the app container without fail.

Pretty handy, right? Again, for free!

References
Want to have a go at service discovery? Then check out https:/ ​/ ​training. ​play- ​with-
docker.​com/​swarm- ​service- ​discovery/ ​.

You can read about swarm service load balancing at https:/ ​/​docs. ​docker. ​com/ ​engine/
swarm/​key-​concepts/ ​#load- ​balancing.

https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://training.play-with-docker.com/swarm-service-discovery/
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing

Docker Networking Chapter 6

[146]

Which Docker network driver should I use?
The short answer to that question is the right one for the job. That means there is no single
network driver that is the right fit for every situation. If you're doing work on your laptop,
running with swarm inactive, and you just need your containers to be able to communicate
with each other, the simple bridge mode driver is ideal.

If you have multiple nodes and just need container-to-container traffic, the overlay driver is
the right one to use. This one works well in AWS, if you are within the container-to-
container realm. If you need container-to-VM or container-to-physical-server
communication (and can tolerate promiscuous mode), the MACVLAN driver is the way to
go. Or, if you have a more complex requirement, one of the many remote drivers might be
just what the doctor ordered.

I've found that for most multi-host scenarios, the overlay driver will get the job done, so I
would recommend that you enable swarm mode, and give the overlay driver a try before
you ramp up to any of the other multi-host options.

Summary
How do you feel about Docker networking now? Docker has taken a complex technology,
networking, and made it easy to understand and use. Most of the crazy, difficult setup stuff
is literally handled with a single swarm init command. Let's review: you learned about
the network design that Docker created, called the container network model, or CNM.
Then, you learned how the libnetwork project turned that model into a pluggable
architecture. After that, you found out that Docker created a powerful set of drivers to plug
into the libnetwork architecture to enable a variety of network options for most of your
container communication needs. Since the architecture is so pluggable, others have created
even more network drivers that solve any edge cases that the Docker drivers don't handle.
Docker networking has really come into its own.

I hope you are ready for more, because in Chapter 7, Docker Stacks, we are going to dive
into Docker stacks. This is where all of the information you have learned so far really comes
together into a symphony of brilliance. Take a deep breath and turn the page!

7
Docker Stacks

In this chapter, we will bring together all that we've learned from the first six chapters and
use it to define, deploy, and manage multi-container applications. We will achieve this via
the use of Docker stacks. We are going to learn how to use Docker stacks and the YAML
files required to define multi-container applications. And we will leverage what we learned
about Docker services, Docker volumes, Docker swarm, and Docker networking to create
full-featured multi-service Docker-based applications.

The largest cargo ship is 400 meters long and can carry between 15,000 and 18,000
shipping containers!

In this chapter, we will cover the following topics:

Using Docker stacks
Deploying a multi-service Docker application
Creating and using compose (stack) YAML files
Scaling a deployed multi-service Docker application

Technical requirements
You will be pulling Docker images from Docker's public repo, and installing network
drivers from Weave, so basic internet access is required to execute the examples within this
chapter. Also, we will be using the jq software package, so if you haven't installed it yet,
please see the instructions on how to do so; they can be found in the Container inspect
command section of Chapter 2, Learning Docker Commands.

The code files of this chapter can be found on GitHub:
https:/​/​github.​com/ ​PacktPublishing/ ​Docker- ​Quick- ​Start- ​Guide/ ​tree/ ​master/
Chapter07

Check out the following video to see the code in action:
http:/​/​bit.​ly/​2E2qc9U

https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter07
http://bit.ly/2E2qc9U
http://bit.ly/2E2qc9U
http://bit.ly/2E2qc9U
http://bit.ly/2E2qc9U
http://bit.ly/2E2qc9U
http://bit.ly/2E2qc9U
http://bit.ly/2E2qc9U
http://bit.ly/2E2qc9U
http://bit.ly/2E2qc9U

Docker Stacks Chapter 7

[148]

Understanding the use of Docker stacks
So far, we have mostly been looking at running a Docker container from a single Docker
image, simplifying the Docker model to imagine a world where every application only
required a single service, and thus a single Docker image, to run. However, as you know,
that is a pretty unrealistic model. Real-world applications are composed of multiple
services, and those services are deployed using multiple Docker images. To run all of the
necessary containers, and maintain them at the desired number of replicas, handling
planned and unplanned downtimes, scaling requirements and all of the other service
management needs is a really daunting and complex task. In the recent past, this scenario
was handled using a tool called Docker Compose. Docker Compose (as you learned in
Chapter 1, Setting up a Docker Development Environment) is an additional tool that you can
install in your Docker environment, which we did to complete our workstation's
environment. While much of the functionality of Docker Compose is similar to what you
find in Docker stacks, we will be focusing on Docker stacks in this chapter. We are doing
this because Docker Compose is used to manage containers, and the Docker world has
evolved toward the commodity unit being services instead of containers. Docker stacks
manages services, and so I see Docker stacks as the evolution of Docker Compose (which
was the evolution of a project named Fig). The reason we did not install Docker stacks in
Chapter 1, Setting up a Docker Development Environment, is that Stacks is already included as
part of a standard Docker installation.

OK, so Docker stacks is the new and improved Docker Compose, and it is included in our
installation. I bet you're thinking, Great. But what does that mean? What is the use case of
Docker stacks? Great question! Docker stacks is the way to leverage all of the functionality
that we have learned about in the earlier chapters, such as the Docker commands, Docker
images, Docker services, Docker volumes, Docker swarm, and Docker networks, wrapping
it all up in an easy-to-use, easy-to-understand, declarative document file that will
instantiate and maintain a complex, multi-image application on our behalf.

Most of your work, which is still the easy part, will be in creating the compose file that will
be used in the Docker stack commands. All of the really hard work will be done by Docker
when it creates, starts, and manages all of the services required for your multi-service
(multi-container) applications. All of this is handled by a single command on your part. Just
like image, the container and swarm stacks are another Docker management group. Let's
take a look at the stack management commands:

Docker Stacks Chapter 7

[149]

So, what do we have here? For all the power that this management group represents, it has
a pretty simple set of commands. The main command is the deploy command. It is the
powerhouse! With this command (and a compose file), you will stand up your application,
pulling any images that are not local to your environment, running the images, creating
volumes as needed, creating networks as needed, deploying the defined number of replicas
for each image, spreading them across your swarm for HA and load-balancing purposes,
and more. This command is kind of like the one ring in The Lord of the Rings. In addition to
deploying your application, you will use this same command to update running
applications, when you need to do things such as scale your application.

The next command in the management group is the list stacks command. As the name
implies, the ls command allows you to get a list of all the stacks currently deployed to your
swarm. When you need more detailed information about a particular stack that is running
in your swarm, you will use the ps command to list all of the tasks of a particular stack.
When it comes time to end of life a deployed stack, you will use the mighty rm command.
And finally, rounding out the management commands, we have the services command,
which allows us to get a list of the services that are part of the stack. There is one more
important part of the stack puzzle, that being the --orchestrator option. With this
option, we can instruct Docker to use either Docker swarm or Kubernetes for the stack
orchestration. Of course, to use Kubernetes, it must be installed, and to use swarm—which
is the default if the option is not specified—swarm mode must be enabled.

Docker Stacks Chapter 7

[150]

In the rest of this chapter, we are going to take a deep dive into Docker stacks using a
sample application. Docker provides several such samples, but the one we are going to
examine is the voting application sample. I will provide a link to the Docker repo for the
app, as well as a link to a fork of the project in my space in the event that the Docker app
changes drastically or the project goes away. Let's take a look at the stack file for the
example voting application.

References
Check out the following links for more information:

Docker Compose Overview: https:/ ​/​docs. ​docker. ​com/ ​compose/ ​overview/ ​

Docker stack command reference: https:/ ​/​docs. ​docker. ​com/​engine/
reference/ ​commandline/ ​stack/ ​

Docker samples: https:/ ​/ ​github. ​com/ ​dockersamples

Docker voting app example: https:/ ​/​github. ​com/​dockersamples/ ​example-
voting-​app

My fork of the voting app: https:/ ​/​github. ​com/ ​EarlWaud/ ​example- ​voting- ​app

How to create and use a compose YAML
files for Stacks
The stack file is a YAML file, and is basically the same thing as a Docker Compose file. Both
are YAML files that define a Docker base application. Technically, a stack file is a compose
file that requires a specific version (or above) of the compose specification. Only the version
3.0 specification and above are supported by Docker stacks. If you have an existing project
that uses Docker compose YAML files, and those files are using the version 2 or older
specification, then you will need to update the YAML files to the version 3 spec to be able to
use them with Docker stacks. It is worth noting that the same YAML file can be used with
either Docker stacks or Docker compose (provided it is written using the version 3
specification or higher). However, there are some instructions that will be ignored by one
or the other tools. For example, the build instruction is ignored by Docker stacks. That is
because one of the most significant differences between stacks and compose is that all
utilized Docker images must be pre-created for use with stacks, whereas Docker images can
be created as part of the process of standing up a compose-based application. Another
significant difference is the stack file is able to define Docker services as part of the
application.

https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://docs.docker.com/engine/reference/commandline/stack/
https://github.com/dockersamples
https://github.com/dockersamples
https://github.com/dockersamples
https://github.com/dockersamples
https://github.com/dockersamples
https://github.com/dockersamples
https://github.com/dockersamples
https://github.com/dockersamples
https://github.com/dockersamples
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app
https://github.com/EarlWaud/example-voting-app

Docker Stacks Chapter 7

[151]

Now would be a good time to clone the voting app project and the visualizer image repos:

Clone the sample voting application and the visualizer repos
git clone https://github.com/EarlWaud/example-voting-app.git
git clone https://github.com/EarlWaud/docker-swarm-visualizer.git

Strictly speaking, you don't need to clone these two repos because all you really need is the
stack compose file from the voting app. This is because all of the images are already created
and publicly available to pull from hub.docker.com, and when you deploy the stack, the
images will be pulled for you as part of the deployment. So, here is the command to obtain
just the stack YAML file:

Use curl to get the stack YAML file
curl -o docker-stack.yml\
https://raw.githubusercontent.com/earlwaud/example-voting-app/master/docker
-stack.yml

Of course, if you want to customize the app in any way, having the project local allows you
to build your own versions of the Docker images and then deploy your custom version of
the app using your custom images.

Once you have the project (or at least the docker-stack.yml file) on your system, you can
begin to play around with the Docker stack commands. So now, let's go ahead and kick
things off by using the docker-stack.yml file to deploy our application. You will need to
have your Docker nodes set up and have swarm mode enabled for this to work, so if you
haven't done so already, set up your swarm as described in Chapter 5, Docker Swarm. Then,
use the following command to deploy your example voting application:

Deploy the example voting application
using the downloaded stack YAML file
docker stack deploy -c docker-stack.yml voteapp

Docker Stacks Chapter 7

[152]

Here is what this might look like:

Let me quickly explaining this command: we are using the deploy command with the
docker-stack.yml compose file, and naming our stack voteapp. This command will
handle all of the configuration, deployment, and management for our new application. It
will take some time to get everything up and running as defined in the docker-stack.yml
file, so while that is happening, let's start diving into our stack compose file.

By now, you know we are using the docker-stack.yml file. So, as we explain the various
parts of the stack compose file, you can bring that file up in your favorite editor, and follow
along. Here we go!

The first thing we are going to look at is the top-level keys. In this case, they are as follows:

version
services
networks
volumes

As mentioned previously, the version must be at least 3 to work with Docker stacks.
Looking at line 1 (the version key is always on line 1) in the docker-stack.yml file, we
see the following:

Docker Stacks Chapter 7

[153]

Perfect! We have a compose file that is at the version 3 specification. Skipping over the
(collapsed) services key section for a minute, let's take a look at the networks key and then
the volumes key. In the networks key section, we are instructing Docker to create two
networks, one named frontend, and one named backend. Actually, in our case, the
networks will have the names voteapp_frontend and voteapp_backend. This is because
we named our stack voteapp, and Docker will prepend the name of the stack to the
various components it deploys as part of the stack. Simply by including the names for our
desired networks within the networks key of our stack file, Docker will create our networks
when we deploy our stack. We can provide specific details for each network (as we learned
in Chapter 6, Docker Networking), but if we don't provide any, then certain default values
will be used. It's probably been long enough for our stack to deploy our networks, so let's
use the network list command and take a look at what networks we have now:

Docker Stacks Chapter 7

[154]

There they are: voteapp_frontend and voteapp_backend. You might be wondering
what the voteapp_default network is. When you deploy a stack, you will always get a
default swarm network and all containers are attached to it if they don't have any other
network connection defined for them in the stack compose file. This is very cool, right?!
You didn't have to do any docker network create commands, and your desired networks
are created and ready to use in your application.

The volumes key section does pretty much the same thing as the networks key section,
except it does it for volumes. You get your defined volumes created automatically when
you deploy the stack. The volumes are created with default settings if no additional
configuration is provided in the stack file. In our example, we are asking Docker to create a
volume named db-data. As you may have guessed, the volume created actually has the
name of voteapp_db-data because Docker prepended the name of our stack to the
volume name. In our case, it looks like this:

So, deploying our stack created our desired networks and our desired volume. All with the
easy-to-create, and easy-to-read-and-understand content in our stack compose file. OK, so
we now have a good grasp of three of the four top-level key sections in our stack compose
file. Now, let's return to the services key section. If we expand this key section, we will see
definitions for each of the services we wish to deploy as part of the application. In the case
of the docker-stack.yml file, we have six services defined. These are redis, db, vote,
result, worker, and visualizer. In the stack compose file, they look like this:

Docker Stacks Chapter 7

[155]

Let's expand the first one, redis, and take a closer look at what is defined as the redis service
for our application:

If you recall the discussion of Docker services from Chapter 5, Docker Swarm, many of the
keys shown here should seem familiar to you. Let's examine the keys in the redis service
now. First up, we have the image key. The image key is required for the service definition.
This key is telling docker that the Docker image to pull and run for this service is
redis:alpine. As you should understand now, this means that we are using the official
redis image from hub.docker.com, requesting the version tagged as alpine. The next key,
ports, is defining what port the images will be exposing from the container, and from the
hosts. In this case, the port on the host that is to be mapped to the container's exposed port
(6379) is left to Docker to assign. You can find the port assigned using the docker
container ls command. In my case, the redis service is mapping port 30000 on the host
to port 6379 on the container. The next key used is networks. We already have seen that
deploying the stack will create our networks for us. This directive is telling Docker which
networks that the redis replica containers should be connected to; in this case it is the
frontend network. If we inspect a redis replica container, examining the networks section,
we will see this to be accurate. You can have a look at your deployment with a command
such as this (note that the container name will be slightly different on your system):

Inspect a redis replica container looking at the networks
docker container inspect voteapp_redis.1.nwy14um7ik0t7ul0j5t3aztu5 \
 --format '{{json .NetworkSettings.Networks}}' | jq

In our example, you should see that the container is attached to two networks: the ingress
network and our voteapp_frontend network.

Docker Stacks Chapter 7

[156]

The next key in our redis service definition is the deploy key. This is a key category that
was added to the compose file specification with version 3. It is what defines the specifics
for running the containers based on the image in this service: in this case, the redis image. It
is essentially the orchestration instructions. The replicas tag tells docker how many
copies or containers should be running when the application is fully deployed. In our
example, we are stating that we only need one instance of the redis container running for
our application. The update_config key provides two sub keys, parallelism and
delay, that tell Docker how many container replicas should be started in parallel, and
how much time to wait between starting each parallel set of container replicas. Of
course, with one replica, the parallelism and delay details have little use. If the value for
replicas were something greater, such as 10, our update_config keys would result in two
replicas starting at a time, with a wait of 10 seconds between starts. The final deploy key is
restart_policy, and this defines the conditions that a new replica will be created in a
deployed stack. In this case, if a redis container fails, a new redis container will be started to
take its place. Let's take a look at the next service in our application, the db service:

The db service will have several keys in common with the redis service, but with different
values. First, we have the image key. This time we are indicating that we want the official
postgres image with the tag for version 9.4. Our next key is the volumes key. We are
indicating that we are using the volume named db-data, and that in the DB container the
volume should be mounted at /var/lib/postgresql/data. Let's take a look at the
volume information in our environment:

Docker Stacks Chapter 7

[157]

Using the volume inspect command, we get the volume mount point and then compare the
contents of the folder within the container to the contents of the mount point on the host:

Voila! As expected, they match. This is not as straightforward on a Mac. See Chapter
4, Docker Volumes, on Docker volumes for details on how to handle this on OS X. The next
key is the networks key, and here we are directing Docker to attach the backend network to
our db container. Next up is the deploy key. Here, we see a new sub-key, called
placement. This is a directive to tell Docker that we only want db containers to run on
manager nodes, that is, on nodes that have the role of manager.

Docker Stacks Chapter 7

[158]

You may have noticed that there are some sub-keys of the deploy key that are present in
the redis service, but are absent in our db service—most notably, the replicas key. By
default, if you do not specify the number of replicas to maintain, Docker will default to
having one replica. All in all, the description of the db service configuration is pretty much
the same as the redis service. You will see this similarity between the configuration of all
the services. This is because Docker has made it very easy to define the desired state of our
services, and by correlation, our applications. To validate this, let's take a look at the next
service in the stack compose file, the vote service:

You should be starting to get familiar with these keys and their values. Here in the vote
service we see that the image defined is not one of the official container images, but instead
is in a public repo named dockersamples. Within that repo, we are using the image
named examplevotingapp_vote, with a version tag of before. Our ports key is telling
Docker, and us, that we want to open port 5000 on the swarm hosts and have traffic on that
port mapped to port 80 in the running vote service containers. As it turns out, the vote
service is the face of our application and we will access it via port 5000. Since it is a
service, we can access it by going to port 5000 on any of the hosts in the swarm, even when
a particular host is not running one of the replicas.

Docker Stacks Chapter 7

[159]

Looking at the next key, we see that we are attaching the frontend network to our vote
service containers. Nothing new there, however, as our next key is one we have not seen
before: the depends_on key. This key is telling Docker that our vote service requires the
redis service to function. What this means to our deploy command is that the service or
services that are depended on need to be started before starting this service. Specifically, the
redis service needs to be started before the vote service. One key distinction here is that I
said started. This does not mean that the depended-upon service has to be running before
starting this service; the depended-on service just has to be started before it. Again,
specifically, the redis service does not have to be at the state of running before starting the
vote service, it just has to be started before the vote service is started. There is nothing we
haven't seen yet in the deploy key in for the vote service, with the only difference being that
we are asking for two replicas for the vote service. Are you beginning to understand the
simplicity and the power of the service definition in the stack compose file?

The next service defined in our stack compose file is for the result service. However, since
there are no keys present in that service definition that we haven't seen in the previous
services, I will skip the discussion on the result service, and move on to the worker service
where we'll see some new stuff. Here is the worker service definition:

Docker Stacks Chapter 7

[160]

You know about the image key and what it means. You know about the networks key and
what it means too. You know about the deploy key, but we have some new sub-keys here
so let's talk about them, starting with the mode key. You may recall from our discussion of
services in Chapter 5, Docker Swarm, that there is a --mode parameter that can have one of
two values: global or replicated. This key is exactly the same as the parameter we saw
in Chapter 5, Docker Swarm. The default value is replicated, and so if you do not specify the
mode key, you will get the replicated behavior, which is to have exactly the number of
replicas that are defined (or one replica if no number of replicas is specified). Using the
other value option of global will ignore the replicas key and deploy exactly one container to
every host in the swarm.

The next key that we have not seen before in this stack compose file is the labels key. The
location of this key is significant as it can appear as its own upper-level key, or as a sub-key
to the deploy key. What is the distinction? When you use the labels key as a sub-key to
the deploy key, the label will be set only on the service. When you use the labels key as its
own upper-level key, the label will be added to each replica, or container, deployed as part
of the service. In our example, the APP=VOTING label will be applied to the service because
the labels key is a sub-key to the deploy key. Again, let's see this in our environment:

Inspect the worker service to see its labels
docker service inspect voteapp_worker \
 --format '{{json .Spec.Labels}}' | jq

Here is what that looks like on my system:

Executing an inspect command on a worker container to view the labels on it will show that
the APP=VOTING label does not appear. If you want to confirm this on your system, the
command will look like this (with a different container name):

Inspect the labels on a worker container
docker container inspect voteapp_worker.1.rotx91qw12d6x8643z6iqhuoj \
 -f '{{json .Config.Labels}}' | jq

Docker Stacks Chapter 7

[161]

Again, here is what it looks like on my system:

Two new sub-keys for the restart_policy key are the max_attempts and window keys. You
can probably guess their purpose; the max_attempts key tells Docker to keep trying to
start the worker containers if they fail to start, up to three times before giving up. The
window key tells Docker how long to wait before retrying to start a worker container if it
failed to start previously. Pretty straightforward, right? Again, these definitions are easy to
set up, easy to understand, and extremely powerful for orchestrating the services of our
application.

Alright. We have one more service definition to review for new stuff, that being the
visualizer service. Here is what it looks like in our stack compose file:

Docker Stacks Chapter 7

[162]

The only truly new key is the stop_grace_period key. This key tells Docker how long to
wait after it tells a container to stop before it will forcefully stop the container. The default
time period, if the stop_grace_period key is not used, is 10 seconds. When you need to
update a stack, essentially do a re-stack, the containers of a service will be told to shut
down gracefully. Docker will wait for the amount of time specified in the
stop_grace_period key, or for 10 seconds if the key is not provided. If the container
shuts down during that time, the container will be removed, and a new container will be
started in its place. If the container does not shut down during that window of time, it will
be stopped by force, killing it, then removing it, then starting a new container to take its
place. The significance of this key is that it allows the necessary time for containers that are
running processes that take longer to stop gracefully to actually stop gracefully.

The last aspect of this service that I want to point out and that is regarding the kind of
strange volume listed. This is not a typical volume and has no entry in the volumes key
definitions. The /var/run/docker.sock:/var/run/docker.sock volume is a way to
access the Unix socket that the host's Docker daemon is listening on. In this case, it's
allowing the container to communicate with its host. The visualizer container is gathering
information about what containers are running on what hosts and is able to present that
data in a graphical way. You will notice that it maps the 8080 host port to the 8080 container
port, so we can have a look at what data it shares by browsing to port 8080 on any of our
swarm nodes. Here is what it looks like on my (current) three-node swarm:

Docker Stacks Chapter 7

[163]

The rest of the stack commands
Now, let's take a quick look at our other stack-related commands through the lens of the
swarm where we deployed our voteapp stack. First up, we have the list stacks command:
docker stack ls. Giving that a try looks like this:

List the stacks deployed in a swarm
docker stack ls

Here is what it looks like in the example environment:

This is showing that we have one stack named voteapp currently deployed, and that it is
composed of six services and is using swarm mode for its orchestration. Knowing the name
of a deploy stack allows us to gather more information about it using the other stack
commands. Next up is the list stack tasks command. Let's give this command a try in our
example environment:

List the tasks for our voteapp stack filtered by desried state
docker stack ps voteapp --filter desired-state=running

Here are the results in my environment right now; yours should look very similar:

Now, we will have a look at the stack services command. This command will give us a nice
summary of the services that are deployed as part of our stack application. The command
looks like this:

Look at the services associated with a deployed stack
docker stack services voteapp

Docker Stacks Chapter 7

[164]

This is what we see in the example environment:

This command provides some very useful information. We can quickly see the names of
our services, the number of replicas desired, and the actual number of replicas for each
service. We can see the image used to deploy each service, and we can see the port
mapping used for each service. Here, we can see the visualizer service is using port 8080,
as we mentioned earlier. We can also see that our vote service is exposed on port 5000 of
our swarm hosts. Let's have a look at what we are presenting in our voteapp by browsing
to port 5000 (on any node in the swarm) now:

Are you a dog person or a cat person? You can express yourself by voting in your
own voteapp! Cast your vote and then use the data in the stack service command to see the
results of the vote by browsing to port 5001:

Docker Stacks Chapter 7

[165]

Yes, I am a dog person. There is one final stack command: the remove command. We can
quickly and easily take down an application deployed with the stack deploy command by
issuing the rm command. Here is what that looks like:

Remove a deploy stack using the rm command
docker stack rm voteapp

Now you see it, now you don't:

You should notice that there was none of the are you sure? hand-holding, so be very sure
and very careful before pressing Enter on this command. Let's close out the discussion on
Docker stacks with a quick look at the best practices for scaling or restacking an application
deployed as a Docker stack.

Docker Stacks Chapter 7

[166]

Best practices for scaling a stack
application
As with most things Docker, there are a few different ways to accomplish desired states for
your applications. When you are using Docker stacks, you should always use the same
method for updating the application as you did for deploying it. Make any desired state
changes in the stack compose file, and then run the exact same command you used to
deploy the stack. This allows you to use standard source-code-control features to properly
handle your compose file, such as tracking and reviewing changes. And, it allows Docker to
do the right things for orchestrating your application. If you need to scale a service up or
down within your application, you should update the replicas key in the stack compose file
and then run the deploy command again. In our example, we have two replicas for our vote
service. If the demands for voting skyrocketed, we can easily scale our application by
changing the replica value from 2 to, say, 16 by editing the docker-stack.yml file, then
issuing the same command we originally used to deploy the application:

After updating the docker-stack.yml file, scale the app using the same
deploy command
docker stack deploy -c docker-stack.yml voteapp

Now, when we check the services, we can see we are scaling our app:

There you have it, an easy-to-use, easy-to-understand, and very, very powerful Docker
application orchestration!

References
Check out the following links for more information:

The compose file reference: https:/ ​/​docs. ​docker. ​com/ ​compose/ ​compose- ​file/ ​

Some compose file examples: https:/ ​/ ​github. ​com/ ​play- ​with- ​docker/ ​stacks

Docker sample images on Docker hub: https:/ ​/ ​hub.​docker. ​com/ ​u/
dockersamples/ ​

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://github.com/play-with-docker/stacks
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/
https://hub.docker.com/u/dockersamples/

Docker Stacks Chapter 7

[167]

Official redis image tags found on Docker hub: https:/ ​/​hub. ​docker. ​com/​r/
library/ ​redis/ ​tags/ ​

A great article about using the Docker daemon socket: https:/ ​/​medium. ​com/
lucjuggery/ ​about- ​var- ​run- ​docker- ​sock- ​3bfd276e12fd

The stack deploy command reference: https:/ ​/​docs. ​docker. ​com/​engine/
reference/ ​commandline/ ​stack_ ​deploy/ ​

The stack ps command reference: https:/ ​/​docs. ​docker. ​com/ ​engine/ ​reference/
commandline/ ​stack_ ​ps/ ​

The stack services command reference: https:/ ​/ ​docs. ​docker. ​com/ ​engine/
reference/ ​commandline/ ​stack_ ​services/ ​

Summary
Now you know a lot about Docker stacks. You can easily create application definitions with
a compose file and then deploy those applications using the stack deploy command. You
can explore the details of your deployed stacks with the ls, ps, and services commands. You
can scale your applications with easy modifications to your compose file and by executing
the same command used to deploy your app. Finally, you can remove an application that
has reached the end of its life with the stack rm command. With great power comes great
responsibility, so be very careful with that remove command. You have enough
information to create and orchestrate world-class enterprise-grade applications now, so get
busy! However, if you would like to learn how to use Docker with Jenkins, you'll be
pleased to know that that's the topic of Chapter 8, Docker and Jenkins, so turn the page and
start reading!

https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://hub.docker.com/r/library/redis/tags/
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://medium.com/lucjuggery/about-var-run-docker-sock-3bfd276e12fd
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_deploy/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_ps/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/
https://docs.docker.com/engine/reference/commandline/stack_services/

8
Docker and Jenkins

In this chapter, we will learn how to leverage Jenkins to build our Docker images and
deploy our Docker containers. Next, we will learn how to deploy our Jenkins server as a
Docker container. We will follow that by learning how to build Docker images within the
Dockerized Jenkins server. This is what is often called Docker in Docker. Finally, we will
see how to utilize Docker containers as Jenkins build agents, allowing every build to be run
in a pristine, ephemeral Docker container. Of course, we will show how to build Docker
images, test applications, and push tested images to a Docker registry, all within our
Dockerized Jenkins build agents. This will provide you will all the tools you will need to set
up your CI/CD systems.

If all the containers in the world were laid end to end, they would go around the earth
more than twice.

– https:/ ​/​www. ​bigboxcontainers. ​co.​za/ ​

In this chapter, we will cover the following topics:

Using Jenkins to build Docker images
Setting up a Dockerized Jenkins server
Building Docker images inside a Dockerized Jenkins server
Using Docker containers for your Jenkins build nodes
Building, testing, and pushing Docker images inside Dockerized build nodes

https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/
https://www.bigboxcontainers.co.za/

Docker and Jenkins Chapter 8

[169]

Technical requirements
You will be pulling Docker images from Docker's public repo, and installing the Jenkins
server software, so basic internet access is required to execute the examples within this
chapter. Note also that these examples have higher system requirements than those
presented in previous chapters. The server used in this chapter's examples has 8 GB ram, 2
CPUs, and 20 GB of HDD.

The code files of this chapter can be found on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Docker- ​Quick- ​Start- ​Guide/ ​tree/ ​master/
Chapter08

Check out the following video to see the code in action:
http://bit.ly/2AyRz7k

Using Jenkins to build Docker images
You probably already know that Jenkins is a widely-used tool for continuous
integration/continuous delivery (CI/CD) systems. Virtually every company, both large and
small, is using it in some capacity. It is extremely effective, and highly configurable,
especially with the variety of plugins that can be used with it. So, it is very natural to
expand its use to create Docker images. This first step in using Jenkins with Docker is pretty
easy to accomplish. If you have an existing Jenkins server in use today, all you need to do to
use it to build Docker images is to install Docker on the Jenkins server. You use the exact
same installation techniques that we saw and used in Chapter 1, Setting up a Docker
Development Environment. Based on the OS of the system that is running your Jenkins
server, you follow the install steps you learned in Chapter 1, Setting up a Docker
Development Environment; when you are done, you can use Jenkins to build Docker images.

https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/Docker-Quick-Start-Guide/tree/master/Chapter08
http://bit.ly/2AyRz7k

Docker and Jenkins Chapter 8

[170]

If you don't already have a Jenkins server up and running, you can follow the guide found
in the Installing Jenkins web page link in the following References section and install Jenkins
on whatever OS you're using. As an example, we will be using the information from that
page to set up a Jenkins server on an Ubuntu system. Start by opening a terminal window.
Now get the apt-key for Jenkins packages. Next, you will add the Debian Jenkins source to
the apt sources list. Next, you will update the packages on the system, and finally, you will
install Jenkins using apt-get. The commands look like the following:

If Java has not yet been installed, install it now
sudo apt install openjdk-8-jre-headless

Install Jenkins on an Ubuntu system
wget -q -O - https://pkg.jenkins.io/debian/jenkins.io.key | sudo apt-key
add -
sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'
sudo apt-get update
sudo apt-get install jenkins

Running these commands on my system looks like the following:

Docker and Jenkins Chapter 8

[171]

When the install completes, you will want to open your browser and browse to port 8080
on the system to finish the setup and configuration of your Jenkins system. This will
include entering the admin password and then deciding which plugins to install as part of
the initial deployment of your Jenkins server. I recommend using the set recommended by
Jenkins as it is a great starting point:

Now that you have a Jenkins server, you can begin creating jobs for it to execute to confirm
that it is working as desired. Let's start out with a trivial Hello world! job to confirm that
Jenkins is working. Log into your Jenkins server and click on the New Item link. In the new
item page, enter the name for our job. I'm using hello-test. Select the type of job that we
want to create as pipeline. Next, click the OK button near the bottom left of the page. This
will take you to the configuration screen for our new job. This one is going to be very
simple. We are going to create a pipeline script, so scroll down until you see the Pipeline
script input box, and enter the following script (note that the pipeline script is written in
groovy, which uses the Java (and C) form of comments):

// Our hello world pipeline script, named "hello-test"
node {
 stage('Say Hello') {

Docker and Jenkins Chapter 8

[172]

 echo 'Hello Docker Quick Start Guide Readers!'
 }
}

That's all for now, so click on the Save button to save the updated configuration of our
Jenkins job. Once the configuration has been saved, let's test the job by clicking on the Build
now link. If everything is functioning as expected, we should see the job complete
successfully. It will look something like the following:

Docker and Jenkins Chapter 8

[173]

Now let's create another job. Click the link to go back to the dashboard and then click the
New Item link again. This time, let's name the job hello-docker-test. Again, select the
pipeline for the type of job you want to create and then click the OK button. Again, scroll
down to the Pipeline script input and enter the following:

// Our Docker hello world pipeline script, named "hello-docker-test"
node {
 stage('Hello via Alpine') {
 docker.image('alpine:latest').inside {
 sh 'echo Hello DQS Readers - from inside an alpine container!'
 }
 }
}

Click on the Save button to save the configuration for the new job, and then click the Build
Now link to launch the Jenkins job. The following is what it might look like this time:

Docker and Jenkins Chapter 8

[174]

What happened this time? This one didn't complete successfully. Well, obviously it failed
because we don't have Docker installed on our Jenkins server yet. So let's go ahead and
follow the instructions found in Chapter 1, Setting up a Docker Development Environment, for
installing Docker, and install it on our Jenkins server. Once you have it installed, there is
one additional step you will want to do, which is to add the Jenkins user to the Docker
group. The following is the command:

Add the jenkins user to the docker group
sudo usermod -aG docker jenkins
Then restart the jenkins service
sudo service jenkins restart

It is very much like the command we used to add the current user of our Docker server to
the docker group so that it was unnecessary to use sudo for Docker commands. OK, now
let's go back to our Jenkins server UI and to our hello-docker-test job and click the
Build now button again.

Docker and Jenkins Chapter 8

[175]

Congratulations! You have a shiny, new Jenkins server, properly configured to build (test,
push, and deploy) Docker images. Well done. Still, while this is a great accomplishment, it
was kind of a lot of work. Don't you wish there was an easier way to set up a new Jenkins
server? So, you know how you already have a nice set of servers running Docker? Do you
think you can use that environment to stand up your Jenkins server in an easier way? You
betcha! Let's take a look.

References
The following is the web page to install Jenkins: https:/ ​/ ​jenkins. ​io/ ​doc/ ​book/
installing/​.

Setting up a Dockerized Jenkins server
You have just seen how much work it is to set up a new Jenkins server. While it is not a
Herculean effort, there are at least five steps you have to do before you can pick your
plugins and log in to get to work. And in the spirit of the game show Name That Tune, I can
deploy a Jenkins server in three steps, and the first two are just to allow our Jenkins data to
persist beyond the life of the Docker container that hosts the Jenkins server. Assuming you
have a Docker host set up-and-running as per the instructions in Chapter 1, Setting up a
Docker Development Environment, we want to create a location for the Jenkins server to store
its data. We will create a folder and assign ownership to it. It will look like the following:

Setup volume location to store Jenkins configuration
mkdir $HOME/jenkins_home
chown 1000 $HOME/jenkins_home

The owner 1000 is the user ID that will be used for the jenkins user inside the Docker
container.

The third step is to deploy our container. Before I show you the command, let me talk a
little about which container image to use. I am including a link for searching on the Docker
hub for Jenkins images. If you use that link or search on your own, you will see that there
are a lot of options to choose from. Initially, you might think about using the official Jenkins
image. However, if you browse to that repo, you will find what I feel is kind of odd, which
is that the official image is deprecated. It has stopped being updated past version LTS
2.60.x:

https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/

Docker and Jenkins Chapter 8

[176]

It recommends using the image found in the jenkins/jenkins:lts Jenkins repo, which at the
time of writing is version 2.149.x. This is the image we will use in the following example.
The following is the command we are going to use to deploy our Jenkins server container:

Deploy a Jenkins server that is configured to build Docker images
docker container run -d -p 8080:8080 -p 50000:50000 \
-v $HOME/jenkins_home:/var/jenkins_home \
--name jenkins --rm jenkins/jenkins:lts

Taking a closer look at this command, we see that we are launching the container as a
daemon (non-interactively). We see that we are opening two ports on the host, which are
mapped to the same port numbers on the container, specifically 8080 and 50000. Next, we
see that we are using a volume, and it is mapping to the folder we created earlier. This is
where Jenkins will store its data, such as the jobs we create and the status of their execution.
Then you will notice we are nameing the container jenkins. After that, we tell Docker to
remove the container when it exits using the --rm flag. Finally, we tell Docker what image
we want to run.

When you run this container, giving it a minute or two to start up and browse to port 8080
on the Docker host, you will see the same prompt for a password that you see when you
deploy Jenkins as a standalone application. That will be followed by the create-the-first-
user screen and the default-plugin-configuration screen. Go ahead and give it a try.

Since we have created a volume for the Jenkins data (written to /var/jenkins_home), our
Jenkins configuration data is being saved to the host and will live beyond the life of the
container itself. Of course, you can use a storage driver and have this data somewhere more
permanent than the Docker host, but you get the idea, right?

The only problem is that neither the official Jenkins image nor the jenkins/jenkins
image supports creating jobs that will build a Docker image. And since this book is all
about Docker, we need to do something more than just run our Jenkins server using the
aforementioned images. Don't worry, I have a plan for that… Keep reading.

Docker and Jenkins Chapter 8

[177]

References
Docker hub search for Jenkins images: https:/ ​/​hub. ​docker. ​com/ ​search/ ​?
isAutomated= ​0 ​isOfficial= ​0​page= ​1​pullCount= ​0 ​q=​jenkins ​starCount= ​0
Official Jenkins image repo: https:/ ​/ ​hub.​docker. ​com/ ​_​/​jenkins/ ​

Jenkins/jenkins repo: https:/ ​/ ​hub. ​docker. ​com/ ​r/​jenkins/ ​jenkins/ ​

Building Docker images inside of a
Dockerized Jenkins server
Alright. Now you know how to deploy Jenkins as a Docker container, but we really want to
be able to use Jenkins to build Docker images, as we did in the standalone deployment of
Jenkins. To do that, we could deploy the same Jenkins image, and exec into it and install
Docker and could probably get it to work, but we don't need to go to that much trouble.
We're not the first pioneers to go down this road. There are several Docker images that
have been created to do just what we are looking to do. One such image is
h1kkan/jenkins-docker:lts. You can read about it by following the link in the
following References section, but for now just know that it is an image that has been set up
as a Jenkins server, and has Docker already installed in it. In fact, it also has Ansible and the
AWSCLI pre-installed so you can do more than just build Docker images using it.

To begin, we will create a location on the Docker host to mount a Docker volume to store
and preserve the Jenkins configuration. If you are using the same Docker host as you used
in the previous section, you should already have created your folder and assigned
ownership of it to ID 1000. If not, the following are the commands you use to do so:

Setup volume location to store Jenkins configuration
mkdir $HOME/jenkins_home
chown 1000 $HOME/jenkins_home

Also, if you haven't done so already, you can use the docker container stop jenkins
command to stop (and remove) the Jenkins container that we created in the previous
section to clear the way for our new and improved Jenkins server. When you are ready to
create the new container, you can use these commands:

Deploy a Jenkins server that is configured to build Docker images
docker container run -d -p 8080:8080 -p 50000:50000 \
-v $HOME/jenkins_home:/var/jenkins_home \
-v /var/run/docker.sock:/var/run/docker.sock \
--name jenkins --rm h1kkan/jenkins-docker:lts

https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=jenkins&starCount=0
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/
https://hub.docker.com/r/jenkins/jenkins/

Docker and Jenkins Chapter 8

[178]

Start the Docker service in the Jenkins docker container
docker container exec -it -u root jenkins service docker start

You will have noticed a couple of differences in this code block. The first is the use of a
second volume. This is a well-known trick, of sorts, that allows a container to issue Docker
commands to its host. This essentially allows what is known as Docker-in-Docker. The next
difference is an extra Docker command that will start the Docker service inside the running
container. Because each container starts up with a single process, having both a Jenkins
server process and a Docker daemon running requires this extra step.

Once the Docker service has started within the Jenkins container, you are all set to create
new Jenkins jobs that use and build Docker images. You can test it out yourself by
recreating the second example above, hello-docker-test, in your new Jenkins server.
And since we are using the Docker volume mounted on the host at $HOME/jenkins_home
to store our Jenkins data, this should be the last time you need to create this job.

This is all working wonderfully, but you may recall from Chapter 7, Docker Stacks, that we
have a better way to deploy apps than by using the docker container run command,
namely using Docker stacks. So would you like to see our example re-imagined as a Docker
stack? Me too! OK then, let's do it.

First off, use the container stop command to stop your current Jenkins container. It will
leave behind the jenkins_home folder with our Jenkins server's data, but if for some
reason you skipped ahead to this part of the chapter and haven't created that yet, the
following are the commands to use:

Setup volume location to store Jenkins configuration
mkdir $HOME/jenkins_home
chown 1000 $HOME/jenkins_home

Again, if you did those two commands for one of the previous examples, and you are using
the same Docker host, you don't have to do that again because the folder already exists and
has the right ownership.

Next, you need to create a compose file for our Jenkins stack. I called mine jenkins-
stack.yml and entered the following YML code into it:

jenkins-stack.yml
version: "3"
services:
 jenkins:
 image: h1kkan/jenkins-docker:lts
 ports:
 - 8080:8080
 - 50000:50000

Docker and Jenkins Chapter 8

[179]

 volumes:
 - $HOME/jenkins_home:/var/jenkins_home
 - /var/run/docker.sock:/var/run/docker.sock
 deploy:
 replicas: 1
 restart_policy:
 condition: on-failure
 placement:
 constraints: [node.role == manager]

 registry:
 image: registry
 ports:
 - 5000:5000
 deploy:
 replicas: 1
 restart_policy:
 condition: on-failure

You will notice that we are creating two services; one is our Jenkins server, and the other is
a Docker registry. We will use the registry service in an upcoming example, so keep that in
your back pocket for now. Looking at the Jenkins service description, there is nothing we
did not see already in Chapter 7, Docker Stacks, when we learned about Docker stacks. You
will notice our two port mappings and the two volumes that were used in the last example.
We are confining the single Jenkins replica to our manager node.

Remember that to use Docker stacks we have to be running in swarm mode, so if you have
not done so already, create your swarm with the docker swarm init command that we
learned in Chapter 5, Docker Swarm.

Understand that if your swarm has more than one manager node, you will
need to further confine the Jenkins replica to just the single manager that
has your jenkins_home volume mount point. This can be accomplished
with a combination of roles and labels. Alternatively, you can use a
storage driver and mount a volume that can be shared among swarm
managers. For simplicity, we are assuming a single manager node for our
example.

Now use the stack deploy command to set up the Jenkins application. The following is an
example of the command to use:

Deploy our Jenkins application via a Docker stack
docker stack deploy -c jenkins-stack.yml jenkins

Docker and Jenkins Chapter 8

[180]

Once the stack is deployed and the services up and running, you can browse to any node in
your swarm, on port 8080, and get to your Jenkins server. What's more, if you are reusing
the jenkins_home folder from our previous example, you will not have to supply the
admin password, create a new user, and select your plugins because all of the data related
to those tasks was stored in the jenkins_home folder and is reused now by your stack-
based Jenkins service. One more interesting note is that you do not have to start the Docker
service when you use this image in a stack application. Bonus!

OK, we now have a sweet stack-based Jenkins service that is capable of using and building
Docker images. Everything seems right with the World. But there is one thing that could
make this better. And by better, I mean more Docker-y: instead of using the normal Jenkins
agents for our build jobs, what if we wanted to spin up a new, pristine Docker container to
use for each execution of our Jenkins jobs? This would ensure that every build was built
from scratch in a clean, consistent environment. Plus, it really takes the Docker inception
level up a notch, so I like it a lot. If you want to see how it's done, keep reading.

References
H1kkan/jenkins-docker repo: https:/ ​/ ​hub.​docker. ​com/ ​r/​h1kkan/ ​jenkins-
docker/​

Using Docker containers for your Jenkins
build nodes
To use Docker containers for the Jenkins build agents, you need to do a few things to your
Jenkins configuration:

Build a new Docker image that can act as a Jenkins build agent, and is capable of
building Docker images (of course)
Push the new image to a Docker registry
Turn off the default Jenkins build agents
Install the Docker plugin for Jenkins
Configure a new cloud to enable Dockerized build agents

https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/
https://hub.docker.com/r/h1kkan/jenkins-docker/

Docker and Jenkins Chapter 8

[181]

Building the Docker image
Let's get started. The first thing we want to do is build our specialized Docker image that
can be used for our Jenkins agents. To do this, we are going to use the skills we learned in
Chapter 3, Creating Docker Images, to create Docker images. Start by creating a new folder on
your development system, and then change your working directory to that folder. I named
mine jenkins-agent:

Make a new folder to use for the build context of your new Docker image,
and cd into it
mkdir jenkins-agent
cd jenkins-agent

Now create a new file, named Dockerfile, using your favorite editor, enter the following
code into it, and then save it:

jenkins-agent Dockerfile
FROM h1kkan/jenkins-docker:lts-alpine
USER root
ARG user=jenkins

ENV HOME /home/${user}
ARG VERSION=3.26
ARG AGENT_WORKDIR=/home/${user}/agent

RUN apk add --update --no-cache curl bash git openssh-client openssl procps
\
 && curl --create-dirs -sSLo /usr/share/jenkins/slave.jar
https://repo.jenkins-ci.org/public/org/jenkins-ci/main/remoting/${VERSION}/
remoting-${VERSION}.jar \
 && chmod 755 /usr/share/jenkins \
 && chmod 644 /usr/share/jenkins/slave.jar \
 && apk del curl

ENV AGENT_WORKDIR=${AGENT_WORKDIR}
RUN mkdir -p /home/${user}/.jenkins && mkdir -p ${AGENT_WORKDIR}
USER ${user}

VOLUME /home/${user}/.jenkins
VOLUME ${AGENT_WORKDIR}
WORKDIR /home/${user}

Docker and Jenkins Chapter 8

[182]

Here is what our new Dockerfile is doing: in our FROM instruction, we are using the same
Docker image that we used in our Docker-in-Docker example above so that we have a base
image that will allow us to build Docker images. Next, we use the USER command to set the
current user to root. Next, we create an ARG named user and set it to a value of jenkins.
After that, we set an environment variable named HOME that has a value for the Jenkins
user's home folder. Then, we set two more ARGs, one for the version and one for the Jenkins
agent's working directory. The next one is where the magic happens. We are using a RUN
command to set up and curl the Jenkins slave.jar file. This is the bit that is required to
run as a Jenkins agent. We also set some permissions on the folder and file, and then clean
up a bit by deleting curl. After that, we set another environment variable, this one for
AGENT_WORKDIR. Next up, we create a couple of folders in the container. Then, we use the
USER instruction again, this time setting the current user to our Jenkins user. We round out
the Dockerfile by creating a couple of VOLUME instances and, finally, we set the current
working directory to the home directory for our Jenkins user. Phew! That seems like a lot,
but really it's not so bad, and all you have to do copy and paste the preceding code into
your Dockerfile and save it.

Now that we have our Dockerfile ready to use, it might be a good time to create a git repo
and save your code to it. Once you are satisfied that your project has been properly set up
with git, we can build our new Docker image. The following is the command you will use
for that:

Build our new Jenkins agent image
docker image build -t jenkins-agent:latest .

It should build successfully and create a locally-cached image tagged as jenkins-
agent:latest.

Pushing the new image to a Docker registry
Next, we need to push our new image to a Docker registry. Of course, we could push it to
our repo within hub.docker.com, but since we have an application stack that just so
happens to have deployed a Docker registry, why don't we utilize it for our Jenkins agent
image? First, we need to tag our new image with the registry. Your tag command will differ
from mine based on the domain name of your Docker swarm, but for my example, the
following is what my tag command looks like:

Tag the image with our swarm service registry
docker image tag jenkins-agent:latest ubuntu-node01:5000/jenkins-
agent:latest

Docker and Jenkins Chapter 8

[183]

Now that the image is tagged locally, we can push it to the registry with the following
command; again, your command will be different based on the domain name of your
swarm:

Push the Jenkins agent image to the registry
docker image push ubuntu-node01:5000/jenkins-agent:latest

All of these commands might utilize a better version scheme than the oversimplified use of
the latest tag, but you should be able to address that on your own. With our image built,
tagged, and pushed to the Docker registry, we are ready to update our Jenkins
configuration to use it.

Turning off the default Jenkins build agents
Now we are ready to update our Jenkins configuration to support our Dockerized build
agents. The first configuration change we are going to make is to turn off the default build
agents. To do this, log into your Jenkins server, and click the Manage Jenkins menu link.
This will take you to a variety of configuration groups you can manage, such as system,
plugins, and CLI settings. For now, we will need to go to the Configure System
management group:

Once you are in the Configure System management group, you are going to change the
value for # of executors to 0. It should look something like the following:

Docker and Jenkins Chapter 8

[184]

When you have changed the # of executors value to 0, you can go ahead and save the
settings by clicking the Save button in the lower-left part of the screen. At this point, with
this change in place, your Jenkins server will not be able to run any jobs because there are
no Jenkins agents configured to run them. So let's move on quickly to the next step, which
is to install the Docker plugin.

Installing the Docker plugin for Jenkins
Now we need to install the Docker plugin for Jenkins. You accomplish this as you would
other plugin installations. Click on the Manage Jenkins menu link, and from the list of
configuration groups, click the link for the Manage Plugins group:

Docker and Jenkins Chapter 8

[185]

Once you are in the Manage Plugins configuration group, select the tab for Available
plugins, and then in the filter box, type docker to narrow down the list of available plugins
to those related to Docker:

Even with a filtered list, there are still a lot of plugins to choose from. Find and check the
box for the Docker plugin. It looks like the following:

With the Docker plugin checkbox checked, scroll down and click the Install without restart
button. This will download and install the plugin for you, and then enable it as soon as
Jenkins restarts. On the install screen, you have the option to execute a restart as soon as the
plugin is installed. To do this, check the Restart Jenkins when installation is complete and
no jobs are running checkbox:

Docker and Jenkins Chapter 8

[186]

Since we set the # of executors to 0 a few minutes ago, there will not be any jobs running
now, so as soon as the plugin is installed, Jenkins will restart. As soon as Jenkins comes
back online, the plugin will be installed. We need to log back in to Jenkins and set up our
Cloud.

Creating a new Cloud to enable our Dockerized
build agents
Now we will tell Jenkins to use our custom Docker image to run containers as Jenkins build
agents. Once more, click on the Manage Jenkins menu link. From the list of configuration
groups, you will again click the link for the Configure System group. You will find the
Cloud configuration near the bottom of the configuration options. Click on the Add a new
cloud dropdown and select Docker:

The screen will update and you will have two new configuration groups: Docker Cloud
details... and Docker Agent templates...:

Docker and Jenkins Chapter 8

[187]

Let's take care of the Docker Cloud details first. Click on that button now. You can leave the
Name value as the default for docker. In the Docker Host URI field, enter
unix:///var/run/docker.sock. You can find this value by clicking the question mark
help icon and copying and pasting it into the input field. Next, click the Test Connection
button and you should see a version line show up, similar to the one you will see in the
following screenshot. Make note of the API Version number as you will need it for the
Advanced... setup. Click the Advanced... button and enter the API Version number in the
Docker API Version field. You need to check the Enabled checkbox to enable this feature,
so be sure to do so. Finally, you may want to change the number of containers that the
system can run concurrently. The default is 100. For my example, I reduced the value to 10.
When you are done, your configuration should look something like the following:

Docker and Jenkins Chapter 8

[188]

Next, click the Docker Agent templates... button and then click the Add Docker template
button that appears so that we can to configure the Jenkins agent settings. Here, you will
want to click the agent's Enabled checkbox to enable our new agent template. You can give
a name to use as the prefix for the containers that are run by Jenkins as the build agents, or
you can leave the name blank and the docker prefix will be used. Next, enter the
repository and the name tag for the image you want to use for the build agent containers.
We created our custom image, tagged it, and pushed it to our Jenkins stack application repo
using the ubuntu-node01:5000/jenkins-agent:latest image name, so enter that
value into the Docker Image field. Set the Instance Capacity value to 1, and the Remote
File System Root value to /home/jenkins/agent. Make sure the Usage value is set to
Use this node as much as possible, and use the Attach Docker container value
for the Connect method. Set the User to root. Change the Pull strategy value to Pull
once and update latest:

Docker and Jenkins Chapter 8

[189]

Finally, we need to configure some Container settings..., so click to expand that section.
The value we need to enter here is the command we want to use when the container is run.
The value you need in the Docker Command field is java -jar
/usr/share/jenkins/slave.jar. The value you need in the Volumes field is
/var/run/docker.sock:/var/run/docker.sock:

And lastly, check the checkbox for Allocate a pseudo-TTY:

Docker and Jenkins Chapter 8

[190]

Scroll down to the bottom of the configuration screen and click the Save button to save all
of the Cloud settings. That was some serious configuration Kung Fu—great job! However,
just in case you want a quick reference for all of the values entered, here are all of the
custom (or non-default) values entered to configure the Docker Cloud in our example:

Field name Value used
Docker Host URI unix:///var/run/docker.sock

Docker API Version 1.38 (match the version shown in the connection test)
Docker Cloud Enabled Checked
Container Cap 10

Docker Agent Enabled Checked
Docker Agent Template Name agent

Docker Image ubuntu-node01:5000/jenkins-agent:latest

Instance Capacity 1

Remote File System Root /home/jenkins/agent

Usage Use this node as much as possible

Connection Method Attach Docker container

User root

Pull Strategy Pull once and update latest

Docker Command java -jar /usr/share/jenkins/slave.jar

Volumes /var/run/docker.sock:/var/run/docker.sock

Allocate a pseudo-TTY Checked

Now that everything is configured, let's give our newly-defined Jenkins agents a test.

Testing our new build agents
Head back to the Jenkins dashboard and click on the Schedule a Build button for our
hello-docker-test job. This will start a new build for our job, which in turn will create a
new Dockerized build agent. It uses the configuration we set to execute a docker
container run command to run a new container based on the image we specified.
Initially, the executor will be offline as the container spins up:

Docker and Jenkins Chapter 8

[191]

Notice that the executor name has the agent prefix that we specified. Once the container is
running, the Jenkins job will be initiated within it, essentially using the docker
container exec command. When the Jenkins job has started, the normal job-progress
graphic will display, and the executor will no longer show as offline. The status will then
look something like this:

If you click on the progress bar of the executing job, you can view the job's console output,
and after a short while the job will show the finished: SUCCESS status, like the following:

Docker and Jenkins Chapter 8

[192]

A job well done! Let's examine one last example Jenkins job to show a pipeline script that
has more stages, and represents a real-world example of a Docker job. Are you ready? Read
on.

Building, testing, and pushing Docker
images inside Dockerized build nodes
To wrap up this chapter on Docker and Jenkins, let's walk through the steps of creating a
template for a real-world Dockerized node application. The following is what we will do:

Prepare our application:

Create a new repo on GitHub
Clone the repo to our development workstation
Create our application files
Push our application files up to GitHub

Create and test the Jenkins job that will build our Dockerized node application:

Create a new Jenkins job that utilizes the GitHub repo
Test our Jenkins job that will pull the repo, build the app, test it, and publish the
image
Celebrate our success!

Let's begin by preparing our application.

Docker and Jenkins Chapter 8

[193]

The first thing we want to do is create our application repo on GitHub. Browse and log into
github.com, go to your repositories page, and click on the Create New Repo button. Enter a
name for the new repository. For our example, I used dqs-example-app. Enter an
appropriate description. You can make your repo public or private. For this example, I am
keeping it public for the simplicity of not needing to authenticate to pull the repo later.
Check the Initialize the repository checkbox so you can immediately clone the empty repo
on your workstation. You can select the project type to use when creating the .gitignore
file. I selected Node. When you have entered and selected all this, it will look much like the
following:

Click on the Create repository button to create your new application repo. Now that it is
created on GitHub, you will want to clone it to your workstation. Use the Clone or
download button and then the copy button to copy the repo's URL for the cloning step:

http://www.github.com

Docker and Jenkins Chapter 8

[194]

Now, return to your workstation and, in the location where you keep your local repos,
clone the new (mostly) empty repo. Then change directory into the new repo's folder. For
me, that looked like the following:

Now we are going to create the application's scaffolding. This will consist of creating a
Dockerfile, a Jenkinsfile, the main.js and test.js files, and the package.json file.
Use your favorite editor to create each of these files in your application folder. The
following are the contents for the files:

The following are the contents of the Dockerfile file:

FROM node:10-alpine
COPY . .
RUN npm install
EXPOSE 8000
CMD npm start

The following are the contents of the Jenkinsfile file:

node {
 def app
 stage('Clone repository') {
 /* Clone the repository to our workspace */
 checkout scm
 }
 stage('Build image') {

Docker and Jenkins Chapter 8

[195]

 /* Builds the image; synonymous to docker image build on the command
line */
 /* Use a registry name if pushing into docker hub or your company
registry, like this */
 /* app = docker.build("earlwaud/jenkins-example-app") */
 app = docker.build("jenkins-example-app")
 }
 stage('Test image') {
 /* Execute the defined tests */
 app.inside {
 sh 'npm test'
 }
 }
 stage('Push image') {
 /* Now, push the image into the registry */
 /* This would probably be docker hub or your company registry, like
this */
 /* docker.withRegistry('https://registry.hub.docker.com', 'docker-
hub-credentials') */

 /* For this example, We are using our jenkins-stack service registry
*/
 docker.withRegistry('https://ubuntu-node01:5000') {
 app.push("latest")
 }
 }
}

The following are the contents of the main.js file:

// load the http module
var http = require('http');

// configure our HTTP server
var server = http.createServer(function (request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.end("Hello Docker Quick Start\n");
});

// listen on localhost:8000
server.listen(8000);
console.log("Server listening at http://127.0.0.1:8000/");

The following are the contents of the package.json file:

{
 "name": "dqs-example-app",
 "version": "1.0.0",

Docker and Jenkins Chapter 8

[196]

 "description": "A Docker Quick Start Example HTTP server",
 "main": "main.js",
 "scripts": {
 "test": "node test.js",
 "start": "node main.js"
 },
 "repository": {
 "type": "git",
 "url": "https://github.com/earlwaud/dqs-example-app/"
 },
 "keywords": [
 "node",
 "docker",
 "dockerfile",
 "jenkinsfile"
],
 "author": "earlwaud@hotmail.com",
 "license": "ISC",
 "devDependencies": { "test": ">=0.6.0" }
}

And finally, the following are the contents of the test.js file:

var assert = require('assert')

function test() {
 assert.equal(1 + 1, 2);
}

if (module == require.main) require('test').run(test);

When you are all done, your repo folder should look something like the following:

Docker and Jenkins Chapter 8

[197]

Now, let's push our work up to the GitHub repo. You will use standard git commands to
add the files, commit the files, and then push the files up to the repo. The following are the
commands I used:

Initial commit of our application files to the new repo
git add Dockerfile Jenkinsfile main.js package.json test.js
git commit -m "Initial commit"
git push origin master

The following is what that looked like for me:

Now that the initial version of our application has been created and pushed to our GitHub
repo, we are ready to create the Jenkins job to pull our repo code, build our application
image, test it, and then publish our application's Docker image. Start off by creating a new
Jenkins job, by logging into your Jenkins server and clicking on the New Item link. Next,
enter the name you want to use for the job in the Enter an item name input box. I am using
dqs-example-app. Select Pipeline for the type of job we are creating, and then click the
OK button.

You can, and probably should, provide a meaningful description for the build job we are
creating. Just enter it into the Description: input box at the top of the configuration screen.
For our example, I have entered the somewhat terse description Build the dqs-
example-app using a pipeline script from SCM. You can probably do a lot better.

Docker and Jenkins Chapter 8

[198]

We are going to set up the Jenkins job to poll the GitHub repo every five minutes to look for
changes to the master branch. There are better options where changes to the repo can
trigger the build job without scheduled polling, but for the simplicity of this example, we
will just use a poll method. So scroll down to the Build Triggers section of the job's
configuration and check Poll SCM. Then in the schedule, enter a value of H/5 * * * *:

Next, we want to set up our pipeline. Unlike the previous examples, this time we will select
the Pipeline script from SCM option. We will select Git for our SCM, and then enter the
Repository URL for our application's repo on GitHub. For this example, that URL is
https://github.com/EarlWaud/dqs-example-app.git. Make sure that the Branches
to build value is set to */master, which is the default value. Your pipeline definition
should like a lot like the following:

Docker and Jenkins Chapter 8

[199]

There is one more key setting for the pipeline, and that is the Script Path. This is the (path
and) filename to the Jenkins script file. In our case, that is literally just Jenkinsfile
because the name we gave the file is Jenkinsfile and it is in the root of our repo. This is
what our example's input looks like:

That is all the configuration needed at this time. Everything else is already set up in our
source files, and they will be pulled from our application repo. All that's left to do for the
configuration is to click the Save button. Back at the job's page, we are ready to execute our
first build. The newly-created job screen looks like this in our example:

Docker and Jenkins Chapter 8

[200]

Now, just wait. In five minutes or fewer, the first build of the job will kick off automatically
because we have set up polling the repo at five-minute intervals. We will take a look at the
console log when the job has finished, but first here is our Jenkins job view after the job
completes (successfully, of course!):

The following is an edited view of the console log output for reference (the full log output
can be found in the source bundle):

Started by an SCM change
Started by user Earl Waud
Obtained Jenkinsfile from git
https://github.com/EarlWaud/dqs-example-app.git
[Pipeline] node
Running on agent-00042y2g983xq on docker in
/home/jenkins/agent/workspace/dqs-example-app
[Pipeline] { (Clone repository)
Cloning repository https://github.com/EarlWaud/dqs-example-app.git
> git init /home/jenkins/agent/workspace/dqs-example-app # timeout=10
[Pipeline] { (Build image)
+ docker build -t jenkins-example-app .
Successfully built b228cd7c0013
Successfully tagged jenkins-example-app:latest
[Pipeline] { (Test image)
+ docker inspect -f . jenkins-example-app
+ npm test
> node test.js
Passed:1 Failed:0 Errors:0
[Pipeline] { (Push image)
+ docker tag jenkins-example-app ubuntu-node01:5000/jenkins-example-
app:latest
+ docker push ubuntu-node01:5000/jenkins-example-app:latest
Finished: SUCCESS

Docker and Jenkins Chapter 8

[201]

All that is left to do now is celebrate our success:

Seriously, this is a great foundation for creating your own Dockerized applications and
building, testing and publishing them using Jenkins. Consider it as a template that you can
reuse and build from. You are now ready to utilize Docker with Jenkins in any way you
desire.

Summary
Well, here we are, at the end of the chapter. I hope you had as much fun reading this
chapter as I had writing it. We had the opportunity to use many of the skills that we
learned in the previous chapters. Not only that, there are some really useful Jenkins lessons
in this chapter as well. So much so that you could seriously consider skipping any planned
Jenkins training or book-reading because pretty much everything you need to know about
using Jenkins is right here.

Let's recap: first, we learned how to set up a standalone Jenkins server. We quickly
transitioned into deploying a Jenkins server as a Docker container. That's the kind of thing
you're reading this book for, right? Then we learned how to build a Docker image in a
Dockerized Jenkins server. Next, we found out how to replace the boring Jenkins agents
with super-cool Docker containers that can build our Docker image. You might think about
this and Docker-in-Docker-in-Docker. Have you seen the movie Inception? Well, you just
lived it. Finally, to wrap up the chapter, we created an example dockerized app and the
Jenkins job that builds, tests, and publishes that app's image. It's an example that you can
use as a template and foundation for the real-world applications you will create in the
future.

Docker and Jenkins Chapter 8

[202]

And, here we are at the end of the book. I'll say it again… I hope you had as much fun
reading it as I had writing it. And I hope you learned as much reading it as I did writing it.
We covered a lot of Docker information throughout these chapters. We nailed Docker
workstation setup in the Chapter 1, Setting up a Dockerized Development Environment,
regardless of the type of OS you prefer. In Chapter 2, Learning Docker Commands, we
learned just about everything there is to know about the Docker command set. In Chapter
3, Creating Docker Images, we studied the Dockerfile instruction set in depth and learned
how to create just about any Docker image you could want to build. Chapter 4, Docker
Volumes, showed us the power and usefulness of Docker volumes. We started putting
several of the lessons from the earlier chapters to use when we exercised the features of the
almost magical Docker swarm in Chapter 5, Docker Swarm. Then, in Chapter 6, Docker
Networking, we continued our Docker education, this time learning how Docker has
simplified the complex topic of networking for us. And in Chapter 7, Docker Stacks, we saw
more Docker magic and power when we learned about Docker stacks. Finally, in Chapter
8, Docker and Jenkins, we put all of our learning to use and leveraged Docker with Jenkins to
prepare us to create real-world applications.

All that is left is for me to say thanks and wish you success in your Docker journey.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Docker Cookbook - Second Edition
Jeeva S. Chelladhurai, Ken Cochrane, Et al
ISBN 978-1-78862-686-6

Install Docker on various platforms
Work with Docker images and containers
Container networking and data sharing
Docker APIs and language bindings
Various PaaS solutions for Docker
Implement container orchestration using Docker Swarm and Kubernetes
Container security
Docker on various clouds

https://india.packtpub.com/in/virtualization-and-cloud/docker-cookbook-second-edition

Other Books You May Enjoy

[204]

Containerizing Java EE 8 Apps Using Docker and Kubernetes [Video]
Sebastian Daschner
ISBN: 978-1-78883-338-7

Package, distribute, and run applications in Docker containers
Install and configure containerized Java EE application servers
Deploy enterprise applications as Kubernetes pods, deployments, and services
Leverage Kubernetes' production-readiness
Configure containerized and orchestrated applications
Realize persistence in cluster environments
Access orchestrated external systems
Troubleshoot containers and orchestration environments

https://india.packtpub.com/in/networking-and-servers/containerizing-java-ee-8-apps-using-docker-and-kubernetes-video

Other Books You May Enjoy

[205]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
ADD instruction
 about 67
 versus COPY instruction 67
ARG instruction
 about 70, 71, 72
 versus ENV instruction 72

B
built-in Docker networks 132, 134, 135, 136

C
Calico network driver
 reference 132
CMD instruction
 about 81, 82
 versus ENTRYPOINT instruction 84
command syntax 36
compose file
 references 166
compose YAML files
 creating, for Stacks 150, 153, 155, 156, 158,

159, 160, 162
container applications
 accessing, in swarm 126
container attach command 53
container commit command 56
container exec command 55
container inspect command 48, 50
container logs command 47
Container Network Interface (CNI) 130
Container Network Model (CNM) 130
container stats command 50, 52
container top command 48
Contiv network driver
 reference 132

COPY instruction
 about 65, 66
 versus ADD instruction 67

D
data volume containers
 data, sharing between containers 105
 reference 106
Docker CE 8, 9
Docker CLI 36
Docker command
 references 118
Docker Compose Overview
 reference 150
Docker containers, using for Jenkins build nodes
 about 180
 build agents, testing 190
 cloud, creating to enable Dockerized build

agents 186, 188, 189, 190
 default Jenkins build agents, turning off 183
 Docker image, building 181, 182
 Docker plugin, installing for Jenkins 184
 new image, pushing to Docker registry 182
Docker development environment
 setting up 8
Docker EE 8
Docker image build command
 .dockerignore file 92
 about 89
 build context 91
 Parser Directives 90
Docker images
 building, inside Dockerized Jenkins server 177,

178, 179
 building, Jenkins used 169, 171, 173, 174, 175
Docker network driver
 selecting 146

[207]

Docker network
 about 130, 131
 creating 142, 143
Docker networking
 reference 137
Docker registry 38
Docker run command
 about 38, 39, 40, 41, 57, 58
 container attach command 53
 container commit command 56
 container exec command 55
 container inspect command 48, 50
 container logs command 47
 container stats command 50, 52
 container top command 48
 list container command 41, 42, 43
 remove container command 43, 45, 46, 47
 stop container command 47
Docker samples
 reference 150
Docker Secrets
 reference 119
Docker service create
 reference 126
Docker stack command
 reference 150
Docker stacks
 compose YAML files, creating for 150, 153, 155,

158, 160, 162
 use 148, 149
Docker swarm 108, 109
docker swarm ca command 114, 115
Docker swarm cluster
 setting up 110, 111
docker swarm init command 112
docker swarm join command 113
docker swarm join-token command 112
docker swarm leave command 118
docker swarm unlock command 116
docker swarm unlock-key command 116
docker swarm update command 117
Docker volumes
 about 95
 creating 96, 97, 98, 100, 101
 references 96, 103

 removing 103
Docker voting app example
 reference 150
Docker, installing on CentOS workstation
 about 9
 Docker CE, installing by running convenience

scripts 14
 Docker CE, installing via Docker Repository 10,

12

 Docker CE, installing with downloaded RPM 13,
14

 post-install steps 15, 16
Docker, installing on OS X workstation
 about 28, 29
 Docker command-line completion, installing 31
 Kitematic, installing 30
 post-install steps 30
Docker, installing on Ubuntu workstation
 about 17
 Docker CE, installing by running convenience

scripts 22
 Docker CE, installing via Docker Repository 17,

18

 Docker CE, installing with DEB package 20
 post-install steps 23
Docker, installing on Windows workstation
 about 24, 25
 DockerCompletion, setting up for PowerShell 27
 Kitematic, installing 26, 27
 post-install steps 26
Docker
 installing, on Linux workstation 9
 references 32, 34
Dockerfile 61
Dockerized build nodes
 Docker images, building 192, 194
 Docker images, pushing 195
 Docker images, testing 197
Dockerized Jenkins server
 setting up 175, 176

E
ENTRYPOINT instruction
 about 82
 versus CMD instruction 84

[208]

ENV instruction
 about 69
 versus ARG instruction 72
eth0 131
EXPOSE instruction 79

F
fork, voting app
 reference 150
free networking features
 load balancing 145
 Service Discovery 144
FROM instruction 62

H
H1kkan
 reference 180
HEALTHCHECK instruction 85, 86
hyperkit 33

J
jenkins-docker repo
 reference 180
Jenkins
 reference 175
 used, for building Docker images 169, 171, 173,

174, 175

L
LABEL instruction 63, 64
Libnetwork design
 reference 132
Libnetwork project
 reference 132
Linux workstation
 Docker, installing on 9
list container command 41, 42, 43

M
MACVLAN networks
 reference 137
managers 119, 120

N
network create command
 reference 144

O
ONBUILD instruction 86, 87
Overlay Networks
 reference 137

P
pets, versus cattle talk slide-deck
 reference 132

R
Raft consensus algorithm
 reference 110
remove container command 44, 45, 46, 47
repository, for SwarmKit
 reference 110
RUN instruction 79, 80

S
service discovery
 reference 145
SHELL instruction 88
stack application
 scaling, best practices 166
stack deploy command
 reference 167
stack ps command
 reference 167
stack services command
 reference 167
stacks commands 163, 164, 165
stop container command 47
STOPSIGNAL instruction 88
swarm service load balancing
 reference 145
Swarm services 121, 122, 123, 124
swarm
 container applications, accessing 126
 references 127

T
third-party network drivers 137, 138, 140

U
Union File System 95
USER instruction 73, 75

V
version command 37
VOLUME instruction 76, 77, 78, 79

volume prune command
 reference 104
volume remove command
 reference 104

W
weave network driver
 reference 132, 141
Weaveworks weave github repo
 reference 141
WORKDIR instruction 75, 76
workers 120

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Setting up a Docker Development Environment
	Technical requirements
	Setting up your Docker development environment
	Installing Docker on a Linux workstation
	Installing Docker on a CentOS workstation
	Installing Docker CE via the Docker Repository
	Installing Docker CE manually using a downloaded RPM
	Installing Docker CE by running convenience scripts
	Post-install steps you might want to consider

	Installing Docker on an Ubuntu workstation
	Installing Docker CE via the Docker Repository
	Installing Docker CE manually using a DEB package
	Installing Docker CE by running convenience scripts
	Post-install steps you might want to consider

	Installing Docker on a Windows workstation
	Post-install steps you might want to consider
	Installing Kitematic
	Setting up DockerCompletion for PowerShell

	Installing Docker on an OS X workstation
	Post-install steps you might want to consider
	Installing Kitematic
	Installing Docker command-line completion

	References

	What differences to watch out for between OSes
	Summary
	References

	Chapter 2: Learning Docker Commands
	Technical requirements
	Information about command syntax
	The version command
	The Docker run command
	The list container command
	The remove container command
	The stop container command
	The container logs command
	The container top command
	The container inspect command
	The container stats command
	The container attach command
	The container exec command
	The container commit command
	Back to the Docker run command

	Summary
	References

	Chapter 3: Creating Docker Images
	Technical requirements
	What is a Dockerfile?
	The FROM instruction
	The LABEL instruction
	The COPY instruction
	The ADD instruction
	The difference between COPY and ADD

	The ENV instruction
	The ARG instruction
	The difference between ENV and ARG

	The USER instruction
	The WORKDIR instruction
	The VOLUME instruction
	The EXPOSE instruction
	The RUN instruction
	The CMD instruction
	The ENTRYPOINT instruction
	The difference between CMD and ENTRYPOINT

	The HEALTHCHECK instruction
	The ONBUILD instruction
	The STOPSIGNAL instruction
	The SHELL instruction
	The Docker image build command
	Parser Directives
	The build context
	The .dockerignore file

	Summary
	References

	Chapter 4: Docker Volumes
	Technical requirements
	What is a Docker volume?
	References

	Creating Docker volumes
	References

	Removing volumes
	References

	Sharing data between containers with data volume containers
	References

	Summary

	Chapter 5: Docker Swarm
	Technical requirements
	What is Docker swarm?
	References

	How to set up a Docker swarm cluster
	docker swarm init
	docker swarm join-token
	docker swarm join
	docker swarm ca
	docker swarm unlock
	docker swarm unlock-key
	docker swarm update
	docker swarm leave
	References

	Managers and workers
	References

	Swarm services
	References

	Accessing container applications in a swarm
	References

	Summary

	Chapter 6: Docker Networking
	Technical requirements
	What is a Docker network?
	References

	Built-in (local) Docker networks
	References

	Third-party (remote) network drivers
	References

	Creating Docker networks
	References

	Free networking features
	References

	Which Docker network driver should I use?
	Summary

	Chapter 7: Docker Stacks
	Technical requirements
	Understanding the use of Docker stacks
	References

	How to create and use a compose YAML files for Stacks
	The rest of the stack commands
	Best practices for scaling a stack application
	References

	Summary

	Chapter 8: Docker and Jenkins
	Technical requirements
	Using Jenkins to build Docker images
	References

	Setting up a Dockerized Jenkins server
	References

	Building Docker images inside of a Dockerized Jenkins server
	References

	Using Docker containers for your Jenkins build nodes
	Building the Docker image
	Pushing the new image to a Docker registry
	Turning off the default Jenkins build agents
	Installing the Docker plugin for Jenkins
	Creating a new Cloud to enable our Dockerized build agents
	Testing our new build agents

	Building, testing, and pushing Docker images inside Dockerized build nodes
	Summary

	Other Books You May Enjoy
	Index

