Creating Development
Environments with Vagrant
Second Edition

Leverage the power of Vagrant to create and manage virtual
development environments with Puppet, Chef, and VirtualBox

PACKT 3

Creating Development Environments with
Vagrant Second Edition

Table of Contents

Creating Development Environments with Vagrant Second Edition
Credits

About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Getting Started with Vagrant

Introducing Vagrant

Requirements for Vagrant

Getting started

Installing VirtualBox
Installing Vagrant

Summary
2. Managing Vagrant Boxes and Projects

Creating our first Vagrant project

Managing Vagrant-controlled guest machines

Powering up a Vagrant-controlled virtual machine
Suspending a virtual machine
Resuming a virtual machine
Shutting down a virtual machine
Starting from scratch
Updating based on Vagrantfile changes
Connecting to the virtual machine over SSH
Managing integration between host and guest machines
Port forwarding
Synced folders
Networking
Autorunning commands
Managing Vagrant boxes
Adding Vagrant boxes
Listing Vagrant boxes
Checking for updates
Removing Vagrant boxes
Repackaging a Vagrant box

Updating the current environment’s box

Too many Vagrants!

Summary
3. Provisioning with Puppet
Provisioning
Puppet
Creating modules and manifests with Puppet

Puppet classes

Default Puppet manifests
Resources

Resource requirements

Resource execution ordering

The notify, subscribe, and refreshonly parameters

Executing resources in stages
Installing software
Updating our package manager
Installing the nginx package
Running the nginx service
File management
Copying a file
Creating a symlink
Creating folders
Creating multiple folders in one go
Cron management
Running commands
Managing users and groups
Creating groups
Creating users
Updating the sudoers file
Creating configurable classes
Puppet modules

Using Puppet to provision servers

Summary
. Using Ansible

Understanding Ansible
Installing Ansible

Creating an inventory

Creating Ansible playbooks

Modules — what Ansible can do

Installing software
Updating our package manager

Installing the nginx package
Running the nginx service

Understanding file management

Copying a file
Creating a symlink
Creating folders
Managing cron
Running commands
Managing users and groups
Creating groups
Creating users
Using Ansible roles
Using Ansible to provision servers
Summary
5. Using Chef
Knowing about Chef
Creating cookbooks and recipes with Chef
Resources — what Chef can do
Installing software
Updating our package manager

Installing the nginx package
Running the nginx service

Understanding file management

Copying a file

Creating a symlink
Creating folders

Creating multiple folders in a single process with looping

Managing cron
Running commands
Managing users and groups

Creating groups

Creating users

Updating the sudoers file

Knowing common resource functionalities

Using Chef cookbooks

Using Chef to provision servers

Summary
6. Provisioning Vagrant Machines with Puppet, Ansible, and Chef
Provisioning within Vagrant
Provisioning with Puppet on Vagrant
Using Puppet in standalone mode
Puppet provisioning in action
Using Puppet in client/server mode
Provisioning with Ansible on Vagrant
Provisioning with Chef on Vagrant
Using Chef-solo
Using Chef in client/server mode
Provisioning with SSH — a recap
Using multiple provisioners on a single project
Overriding provisioning via the command line
Summary
7. Working with Multiple Machines

Using multiple machines with Vagrant
Defining multiple virtual machines

Connecting to the multiple virtual machines over SSH
Networking the multiple virtual machines
Provisioning the machines separately

Destroying a multimachine project

Summary

8. Creating Your Own Box

Getting started

Preparing the VirtualBox machine

VirtualBox Guest Additions

Vagrant authentication

Vagrant user and admin group

The sudoers file

Insecure public/private key pair
Provisioners
Installing Puppet
Installing Chef
Cleaning up the VM
Export
Summary
9. HashiCorp Atlas
Discovering boxes
Installing new boxes
Updating existing boxes
Checking for outdated boxes
Distributing boxes
Sharing and connecting with Atlas
Logging Vagrant into Vagrant Cloud
Sharing a Vagrant virtual machine over HTTP(S)
Sharing and connecting to a Vagrant virtual machine

Summary
A. A Sample LEMP Stack

Creating the Vagrant project

Creating the Puppet manifests
Installing Nginx

Installing PHP
Installing the MySQL module

Default manifest

Installing Nginx and PHP

Hostname configuration

E-mail sending services

MySQL configuration
Launching the virtual machine

Creating Development Environments with
Vagrant Second Edition

Creating Development Environments with
Vagrant Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013
Second edition: March 2015
Production reference: 1050315
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-702-9

www.packtpub.com

http://www.packtpub.com

Credits

Author

Michael Peacock
Reviewers

Jonathan Bardo
Anirudh Bhatnagar
Commissioning Editor
Usha Iyer

Acquisition Editors
Richard Brookes-Bland
Ellen Bishop

Content Development Editor
Sriram Neelakantan
Technical Editor
Mrunal M. Chavan
Copy Editor

Rashmi Sawant
Project Coordinator
Aboli Ambardekar
Proofreaders

Simran Bhogal

Maria Gould

Paul Hindle

Indexer

Monica Ajmera Mehta
Production Coordinator
Arvindkumar Gupta
Cover Work

Arvindkumar Gupta

About the Author

Michael Peacock is an experienced software developer and team lead from Newcastle,
UK, with a degree in software engineering from the University of Durham.

After spending a number of years running his own web agency, and subsequently, working
directly for a number of software start-ups, he now runs his own software development
agency, working on a range of projects for an array of different clients.

He is the author of Creating Development Environments with Vagrant, PHP 5 Social
Networking, PHP 5 E-Commerce Development, Drupal 7 Social Networking, and Selling
online with Drupal e-Commerce and Building Websites with TYPO3, all by Packt
Publishing. The other publications Michael has been involved in include Advanced API
Security, Mobile Web Development, Jenkins Continuous Integration Cookbook, and
Drupal for Education and E-Learning; for these he acted as a technical reviewer.

Michael has also presented at a number of user groups and technical conferences,
including PHP UK Conference, Dutch PHP Conference, ConFoo, PHPNE, PHPNW, and
Could Connect Santa Clara.

You can follow Michael on Twitter (@michaelpeacock), or find out more about him
through his website (www.michaelpeacock.co.uk).
I’d like to thank the team at Packt Publishing for their help in getting this revised edition

of the book published, and the technical reviewers for ensuring technical accuracy in the
book.

http://www.michaelpeacock.co.uk

About the Reviewers

Jonathan Bardo is a Montreal-based web developer with a keen interest for new
technologies and automation. He has worked for many large-scale websites dealing with
millions of daily visitors on various platforms. When he is not programming, he likes to
watch a good TV show or travel somewhere he has never been before. If you see him
riding his motorcycle or skiing down a hill, just say hi! He is very friendly!

Jonathan runs his own consulting company, which lets him meet all sorts of interesting
clients, such as Fox Broadcasting (USA), Rogers Digital Media (Canada), and Yellow
Pages Group (Canada).

A special thanks to everyone who has been a part of my journey so far! I wouldn’t be here
without all the incredible people I worked with everyday.

Anirudh Bhatnagar is a principal consultant at Xebia. He started his career as a
developer working in product-based companies such as Adobe.

Anirudh has been working mostly with Java-based technology stacks that use Spring,
Hibernate, XML, web services, REST, CMS, SSO, ESB, and Liferay.

During the last few years, Anirudh has been advocating Continuous Delivery and is
interested in technologies such as Chef, Puppet, Jenkins, Vagrant, Docker, and many more.
He regularly contributes to the community via blogs, articles, meetups, conferences, and
open source projects.

More details about him can be found on his blog (http://anirudhbhatnagar.com).

http://anirudhbhatnagar.com

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT! i 1°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

Web-based software projects are increasingly complicated, with a range of different
dependencies, requirements, and interlinking components. Swapping between projects,
which require different versions of the same software, becomes troublesome. Getting team
members up and running on new projects becomes time-consuming.

Vagrant is a powerful tool used to create, manage, and work with virtualized development
environments for your projects. By creating a virtual environment for each project, their
dependencies and requirements are isolated, they also don’t interfere with the software
installed on your own machine such as WAMP or MAMP. Colleagues can be up and
running on a new project in minutes with a single command. With Vagrant, we can wipe
the slate clean if we break our environment and be back up and running in no time.

What this book covers

Chapter 1, Getting Started with Vagrant, introduces the concept of virtualization, its
importance in the role of the development environment, and walks you through the
Vagrant installation process.

Chapter 2, Managing Vagrant Boxes and Projects, walks you through creating Vagrant
projects, exploring and configuring the Vagrantfile, and working with base boxes.

Chapter 3, Provisioning with Puppet, explores Puppet, the provisioning tool, and how to
create Puppet manifests to provision a server.

Chapter 4, Using Ansible, explores Ansible, the provisioning tool, and how to create
Ansible playbooks to provision a server.

Chapter 5, Using Chef, explores Chef, the provisioning tool, and how to create Chef
recipes to provision a server.

Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and Chef, discusses how
to use Puppet, Ansible, and Chef within the context of Vagrant to provision development
environments.

Chapter 7, Working with Multiple Machines, explores using Vagrant to create and manage
projects that use multiple virtual machines, which communicate with each other.

Chapter 8, Creating Your Own Box, discusses the process of creating your own base box
for use within a Vagrant project.

Chapter 9, HashiCorp Atlas, walks you through using Vagrant Share to share SSH and
HTTP(S) access to a Vagrant-managed machine, and how to use the services provided
through the Vagrant Cloud.

Appendix, A Sample LEMP Stack, walks you through the process of creating a LEMP
server within a new Vagrant project.

What you need for this book

You will need a Windows, OS X, or Linux computer with Vagrant and Oracle VirtualBox
installed, although the installation process for these will be discussed in Chapter 1, Getting
Started with Vagrant.

Who this book is for

This book is for software developers, development managers, and technical team leaders
who want to have a more efficient, robust, and flexible development environment for their
projects and for their team.

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “After
installing Vagrant, we ran the vagrant command to check whether it was installed
correctly.”

A block of code is set as follows:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config]
config.vm.box = "base"

end

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

- hosts: default
tasks:
- name: update apt cache
apt: update_cache=yes
- name: ensure nginx 1is installed
apt: pkg=nginx state=present
- name: write the nginx config file
template: src=nginx-default-site.conf dest=/etc/nginx/sites-
available/default.conf
notify:
- restart nginx
- name: ensure nginx 1s running
service: name=nginx state=started
handlers:
- hame: restart nginx
service: name=nginx state=restarted

Any command-line input or output is written as follows:
ansible-playbook our-playbook.yml -i our-inventory-file

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “Again, on OS X, the first
step is to double-click on the Vagrant.pkg icon.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from

http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. Getting Started with Vagrant

Developing modern web-based applications can be complicated!

The technology behind our projects is becoming more advanced and diverse. Where once
projects ran with simply a web server, a database, and a set programming language, now
we use tools built in a variety of different languages. We use components and
dependencies that need to be installed, and their managed versions, and often projects
need to run across multiple machines.

Different projects have their own requirements and dependencies, which are often
incompatible with one another. A legacy project might require a specific version of PHP or
specific versions of extensions for Apache, whereas another project might require a newer
version of PHP and running on Nginx. Project switching in this scenario is not easy.

Often, we need to work with teams of people, some of which might be using their own
equipment, working remotely, and contractors. This requires you to ensure that everyone
runs the same development environment, regardless of their own system and its
configuration, the infrastructure changes for projects are tracked and made available to the
team, and the project setup is fast for new team members.

Combining these three factors and setting up traditional development environments is
becoming more difficult, less relevant, and less helpful for developers.

As projects get more complicated, it’s also easy for auxiliary configurations to be
forgotten about. Background workers, message queues, cron jobs, and multiserver
configurations need to be managed, distributed to the entire team, and then when the time
comes, applied to the project when it gets deployed into a production environment.

Virtualized development environments can help with this. Instead of having to battle
configurations when working on other projects, each project can simply have its own
virtualized environment. It can have its own dedicated web server, database server, and the
versions of the programming language and other dependencies it needs. Because it is
virtualized, it doesn’t impact on other projects; just shut it down and boot up the
environment for the other project.

With a virtualized environment, the development environments can also mimic the
production environment. You don’t need to worry about whether something will work
when it gets deployed, if it is being developed on a machine with the exact same software
configuration. Even if you deploy on a Linux machine but develop on Windows, your
virtualized environment can be Linux, running the same distribution as your production
environment.

While a virtualized environment makes different projects and their dependencies easier to
manage and separate, they are not the easiest of things to configure and manage. They still
need to be configured to work with the project in question, which often involves some
level of system administration skills, and we need to connect to these environments and
work with them. They also, by design, are not very portable. You need to export a large

image of the virtualized environment and share that with your colleagues, and keeping that
image up to date as projects evolve can be cumbersome. Thankfully, there is a tool that
can manage these virtualized environments for us, and provide a simple interface to
configure them; an interface that involves storing configurations in simple plain text files,
which are easy to share with colleagues, keeping everyone up to date as the project
changes. This tool is Vagrant.

Introducing Vagrant

Vagrant (http://www.vagrantup.com/) is a powerful development tool that lets you manage
and support the virtualization of your development environment. Instead of running all
your projects locally on your own computer, having to juggle the different requirements
and dependencies of each project, Vagrant lets you run each project in its own dedicated
virtual environment.

Vagrant provides a command-line interface and a common configuration language that
allows you to easily define and control virtual machines that run on your own systems, but
which tightly integrate, and also allows you to define how your own machine and the
virtual machine interact. This can involve syncing folders such that the project code,
which you edit using the IDE on your computer, is synced so that it runs on the Vagrant
development environment.

Vagrant uses providers to integrate with the third-party virtualization software, which
provides the virtualized machines for our development environment. The default provider
is for Oracle VirtualBox; however, there are commercial providers to work with VMware
Fusion and also plugins for Vagrant to work with Amazon Web Services. The entire
configuration is stored in simple plain text files. The Vagrant configuration (Vagrantfile),
and the configuration that defines how our Vagrant machines are configured (typically
Shell scripts, Ansible playbooks, Chef cookbooks or Puppet manifests that Vagrant has
built-in support for, as provisioners) are simply written in text files. This means that we
can easily share the configurations and projects with colleagues, using version control
systems such as Git.

When using Vagrant, the next time you need to go back to a previous project, you don’t
need to worry about any potential conflicts with changes made to your development
environment (for example, if you have upgraded PHP, MySQL, or Apache on your local
environment or within the Vagrant environment for another project), as the development
environment for these projects are completely self-contained. If you bring a new member
into the team, they can be up and running with your projects in minutes. Vagrant, along
with its integration with provisioners, will take care of all the software and services
needed to run the project on their machine. If you have one project that uses one web
server such as Apache, and another one that uses Nginx, Vagrant lets you run these
projects independently. If your project’s production environment involves multiple servers
(perhaps one for the Web and one for the database), Vagrant lets you emulate that with
separate virtual servers on your machine.

With Vagrant:

¢ Your development environment can mimic the production environment

¢ Integrated provisioning tools such as Puppet, Chef, and Ansible allow you to store
the configuration in a standard format, which can also be used to update production
environments

e FEach project is separate in its own virtualized environment, so issues as a result of
configuration and version differences for dependencies on different projects are a

http://www.vagrantup.com/

thing of the past

New team members can be onboarded to new projects as easy as git clone &&
vagrant up

“It works on my machine” as a response to bugs is a thing of the past

The headache of linking code that you write on your own machine to your virtualized
development environment is taken care of through synced folders

The environment can act as if it was your local machine and map the web server port
(80) of your development machine to your development environment if you wish, or
you can access it as you would another machine on your network

You can let colleagues view your own development environment as well as easily
share the development environment

You can share access to your own development environment over the Internet to
demo your project or to get support from a colleague

Your local WAMP or MAMP installations will be gathering dust!

In this chapter, we will cover the following topics:

Discuss the requirements and prerequisites for Vagrant
Install Oracle VirtualBox

Install Vagrant

Verify that Vagrant was successfully installed

Once we have Vagrant and its prerequisites on our machine, we can then take a look at
using it for our first project.

Requirements for Vagrant

Vagrant can be installed on Linux, Windows, and Mac OS X, and although it uses Ruby,
the package includes an embedded Ruby interpreter. The only other requirement is a
virtualization provider such as Oracle VirtualBox or VMware Fusion. The Oracle
VirtualBox provider is available for free and is the default provider for Vagrant. So, we
will use and install VirtualBox in order to use Vagrant during the course of this book.
Other providers are available, including one for VMware Fusion or Workstation, which is

available as a commercial add-on (http://www.vagrantup.com/vmware).

http://www.vagrantup.com/vmware

Getting started

Now that we know what software we need in order to get Vagrant running on our machine,
let’s start installing VirtualBox and Vagrant itself.

Installing VirtualBox

VirtualBox (https://www.virtualbox.org/) is an open source tool sponsored by Oracle that
lets you create, manage, and use virtual machines on your own computer.

VirtualBox is a graphical program with a command-line interface that lets you visually
create virtual machines, allocate resources, load external media such as operating system
CDs, and view the screen of the virtual machine. Vagrant wraps on top of this and
provides an intuitive command-line interface along with the integration of additional tools
(including integrations with provisioners and also HashiCorp Atlas (formerly, Vagrant
Cloud) that allow you to find and distribute base server images and share access to your
Vagrant environments), so that we don’t need to worry about how VirtualBox works or
what to do with it; Vagrant takes care of this for us.

The first stage is to download the installer from the VirtualBox downloads page
(https://www.virtualbox.org/wiki/Downloads), as shown in the following screenshot. We
need to select the option that is appropriate for our computer (OS X, Windows, Linux, or
Solaris):

@
search...
Legin Preferences

Download VirtualBox

Here, you will find links to VirtualBox binaries and its source code.
About

Screenshots VirtualBox binaries

Downloads By downloading, you agree to the terms and conditions of the respective license.

Recumantation + VirtualBox platform packages. The binaries are released under the terms of the GPL

End-user docs version 2.

= VirtualBox 4.3.14 for Windows hosts = x86/amd&4
= VirtualBox 4.3.14 for OS5 X hosts = x86/amda4

= VirtualBox 4.3.14 for Linux hosts

= VirtualBox 4.3.14 for Solaris hosts = amdé&4

Technical docs

Contribute

Community)
« VirtualBox 4.3.14 Oracle VM VirtualBox Extension Pack - All supported platforms
Support for USB 2.0 devices, VirtualBox RDF and PXE boot for Intel cards. See this
chapter from the User Manual for an introduction to this Extension Pack. The Extension
Note

At the time of writing this, Vagrant supports versions 4.0.x through 4.3.x of VirtualBox;
earlier versions are not supported.

Once downloaded, let’s open it and run the installer. On OS X, this involves clicking on
the VirtualBox.pkg icon, as shown in the following screenshot. On Windows, simply
opening the installer opens the installation wizard. On Linux, there are packages available
that can be installed through your chosen package manager, see
https://www.virtualbox.org/wiki/Linux_Downloads for more information.

https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Linux_Downloads

800 | VirtualBox

1 Double click on this icon:

\-\\ i

VirtualBox.pkg

[]

UserManual.pdf

Run the VirtualBox application
from the Applications Folder:

ey
o~

Applications

TOOL

VirtualBox_Uninstall.tool

Before the installer runs, it first checks whether the computer is capable of having
VirtualBox installed. We need to click on Continue to begin the installation process, as
shown in the following screenshot. While this process will vary from OS X to Windows to
Linux, the process is very similar across all platforms. There are fully detailed installation
instructions for all platforms on the VirtualBox website
(https://www.virtualbox.org/manual/ch02.html).

0.0 w Install Oracle VM VirtualBox &
- 5 This package will run a program to
. " determine if the software can be installed.
| i
& Introduct O—— To keep your computer secure, you should only run
programs or install software from a trusted source. If i
@ Destinatia you're not sure about this software's source, click installer will
: Cancel to stop the program and the installation. ow, you will
® Installatio g systems
feature set

@ Installatio | Cancel | [Continue]

@ Summary —

Go Back Continue

https://www.virtualbox.org/manual/ch02.html

The first step in the process provides us with an introduction to the installation process and
reminds us as to what we are actually installing:

800 @ Install Oracle VM VirtualBox &

Welcome to the Oracle VM VirtualBox Installer

Oracle VM VirtualBox for Mac OS X

| Welcome to Oracle VM VirtualBox 4.3.14 for Mac OS5 X! This installer will
| guide you through the installation process. In a minute from now, you will
@ Installation Type = be able to execute virtual machines running different operating systems

g on your desktop. You will find that VirualBox delivers a great feature set
@ Installation | and excellent performance.

& Introduction

@ Destination Select

@ Summary

) |

Co Back [Continue |

Next, the installer informs us as to how much space it will use on our computer, and
provides us with the option to customize the installation if we want to Change Install
Location..., and install the software in another location (perhaps another disk drive if our
disk gets full).

Let’s leave the default install location as it is, and click on the Install button to install
VirtualBox on our computer:

e 00 « Install Oracle VM VirtualBox &

Standard Install on “Macintosh HD"

& Introduction

@ Destination Select This will take 257.6 MB of space on your
computer.

@ Installation Type @.
& lnstallation Click Install to perform a standard installation of
this software for all users of this computer. All

® Summary users of this computer will be able to use this

software.

| Change Install Location... |

| Customize | GoBack | | Install |

After being prompted to provide administrative privileges, the installer then automatically
installs VirtualBox for us:

PR ‘s Install Oracle VM VirtualBox &

Installing Oracle VM VirtualBox

& Introduction
& Destination Select
& Installation Type

& Installation Writing files...
@ Summary

P

Go Back Continue

Once the installation has finished, we are shown a confirmation screen with the option of
clicking on Close to close the installer:

8 00 s Install Oracle VM VirtualBox &

The installation was completed successfully.

& Introduction

& Destination Select

& Installation Type/@

& Installation

© Summary The installation was successful.

The software was installed.

Go Back

Now we have successfully installed VirtualBox!

Installing Vagrant

Now that we have the prerequisites installed on our computer, we can actually install
Vagrant itself. This process is similar to that of installing VirtualBox. First, let’s download
the relevant installer from the Vagrant download page

(http://www.vagrantup.com/downloads.html):

\gh VAGRANT iy AWARE INTEGRATION % COWNLOADS DOCUMENTATION BLOG ABOUT

DOWNLOAD VAGRANT

Below are all available downloads for the latest version of Vagrant (1.6.3).
Latest Please download the proper package for your operating system and

architecture. You can find SHA256 checksums for packages here.

MAC OS X

Universal (32 and 64-bit)

Old Versi
ersions s

-
By WINDOWS

Universal (32 and 64-bit)

o
iy LINUX (DEB)

32-bit | 64-bit

Let’s open the installer and start the process. Again, on OS X, the first step is to double-
click on the Vagrant.pkg icon:

http://www.vagrantup.com/downloads.html

B s e grant

>

.

Vagrant.pkg

TOOL

uninstall.tool

VAGRANT

We now need to follow the installation steps that are provided; this is very similar to the
earlier steps for VirtualBox, and for most of the software packages in general. You might

be prompted to provide your computer’s administrative user privileges for the software to
be installed.

Let’s verify that Vagrant has been successfully installed. We can do this by opening a
terminal window (cmd on Windows) and running the vagrant command:

® 00 % michael — bash — 108x36 e

Print th p.

allation, remowval,

Michoelz-MacBook-Pro:~ michoel$

The preceding screenshot shows that we have successfully installed Vagrant, and we are
able to run it.

Running the vagrant command on its own lists a range of common subcommands, which
we can run within Vagrant, as well as instructions on how to access the help information
on Vagrant and any of its subcommands. We can access the help information on Vagrant
and its subcommands by adding the h flag, -h, to the end of the command when we run it.

Summary

In this chapter, we discussed the benefits of using virtualized development environments
and specifically, Vagrant. We then installed Oracle VirtualBox, which is the virtualization
provider Vagrant uses by default, and we installed Vagrant. After installing Vagrant, we
ran the vagrant command to check whether it was installed correctly.

Now that we have Vagrant and a provider installed, we can now move onto using Vagrant
to set up and manage some of our development projects in a virtual development
environment. In the next chapter, we will create our first project, learn about the
configuration file, and manage our Vagrant controlled machines.

Chapter 2. Managing Vagrant Boxes and
Projects

In this chapter, we will learn the basics of using Vagrant. We will take a look at initializing
projects, importing base boxes to be used as our operating system, and controlling the
virtual machine by powering on and off, suspending and resuming, and connecting to the
box. Finally, we will also learn how to configure some of the key integration points
between our own machine and our Vagrant-controlled virtual machine, including:

e Port forwarding
e Folder mapping
e Networking

Creating our first Vagrant project

Now that we have Vagrant installed on our machine, let’s take a look at creating Vagrant
projects. Any folder can act as a Vagrant project; it only requires a special configuration
file, called the Vagrantfile, within it. Vagrant uses this file to set up the virtual machines
(guests) and manage their integration with our computer (or host machine).

Vagrant has a command to create a Vagrantfile within the current directory you are in,
within your computer’s terminal: the vagrant init command. To create a new project,
let’s create a new folder anywhere in our system — ideally, somewhere easily reachable,
then we need to go into this folder, and run the init command:

Michaels—1iMac: St Re -
Micha ' : ; > mich e1$ cd p 0
Michagels—-1Mac: Pﬂnlf— n_rnn+ hoolk miEhﬂE1$ _rnn+ init

Vagrant will then create a Vagrantfile within that folder, and show us a confirmation
message:

“wagrant L your +1r_

n the
om™ for ;
Michoels—-1iMac:packt-vagrant- buuL mthuuli

If we take a look at the contents of this Vagrantfile file that was created, we will see a
range of configuration options. Most of the options are commented out (as they are
prefixed with a # character) to give us an idea of how we can configure the project.

There are only four lines of actual usable configuration in the file, as shown here:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.box = "base"

end

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

Different versions of Vagrant use different structures and instructions within their
Vagrantfile files. To make Vagrant backward compatible, the various settings are wrapped
in a block of code that contains the version of the configuration to be used. Configuration
Version 2 is compatible with Vagrant Version 1.1 up to Version 2.0.x (when released).

Within here, we have a single option —the type of Vagrant box to use. A Vagrant box is an
image of an operating system that is configured to work with Vagrant.

We can generate a Vagrantfile without the illustrative comments by providing the minimal
option (-m or --minimal, for example, vagrant init --minimal).

In order to boot our Vagrant machine, we run the vagrant up command:

Michoe lz-MacBook-Pro :packt—vagrant-book michoel$ vogront up

Bringing machine ‘'default' up with 'wirtuolbox' provider...

—= defoult: Box 'base’ could not be fourwd. Attespting to find and install...
default: virtualbox
default: = A

== default: {vA)} for provider: virtualbox

default: Downloading: bose

Michoe lz-MacBook-Pro :packt—vogrant-book michoe 1§

As Vagrant doesn’t know what the box base is, our project is unable to boot. While
Vagrant projects have their configuration stored within their projects folder, boxes are
installed globally on your computer and can be shared across projects. If Vagrant doesn’t
have a box installed with that name, it will either try to download it from the URL
provided in the Vagrantfile (if there is one provided) or it will look for the relevant box in
HashiCorp Atlas (formerly Vagrant Cloud). HashiCorp, the company behind Vagrant,
provides official boxes for the latest Long Term Support version of Ubuntu (this box is
hosted on and distributed through Vagrant Cloud; we will discuss this in more detail in
Chapter 9, HashiCorp Atlas). To use this box, we simply pass the name of the box to the
init command (or update the Vagrantfile). As we already have a Vagrantfile in place for
our project, we need to use the force option to override the existing file (-f or --force):

vagrant init --force hashicorp/precise64

Now if we try to run our Vagrant project, Vagrant will look for the box, and this time, it
will download the precise64 box from Vagrant Cloud, for use in our project:

http://www.packtpub.com
http://www.packtpub.com/support

= defcult Box mmlmmfpremseﬁﬁl [Il.lld nut he fuu'ld Atteapting to find and install...
default: virtualbox
default: = A

== defoult: Looding letudutu for box ‘hashicorp/precizetd’
default: URL: http: wagrantc loud .comAshashicorp/precizesd

roviderSvirtun

n:lEe'rn:Ju lt: Progres:

Typically, boxes are minimal installations of operating systems that contain only what is
required for the operating system to function, tools to integrate with Vagrant, and a
minimal amount of other tools. This provides greater flexibility when it comes to using
Vagrant to manage projects, as we can decide exactly what software we need to run on our
virtual machine for our project to function, without having to worry about the conflicting
versions of the said software. Some existing boxes may have more software installed, and
of course, we may want to package a box that contains some of the key software our
projects need (particularly, useful as a backup for users with unreliable Internet
connections).

Note

While we are using commands to initialize our Vagrant projects in this chapter, these are
simply quick ways to create a Vagrantfile file with some prepopulated values. A
vagrantfile file is the configuration file that defines how Vagrant should use the project
(such as operating system to be used, virtual machines to boot up, synced folders,
forwarded ports, and so on). We can, of course, create this file ourselves within the folder
we wish to use as our project.

Managing Vagrant-controlled guest
machines

The virtual machines, which Vagrant controls for us, still need to be managed and worked
with. We have seen that we can start a Vagrant project with vagrant up. Let’s learn more
about this command, and see how to perform other operations on our new virtual machine.

Powering up a Vagrant-controlled virtual machine

As we have just seen, we can power up a virtual machine using the vagrant up command.
With this command, Vagrant will first check whether a Vagrant environment has already
been set up. If a previously suspended environment is found, it will resume that
environment.

If the environment was not previously suspended, Vagrant then checks whether the base
box has already been downloaded onto the machine. If it hasn’t, it will download it, as it
did for us when we booted our project with the precise64 box for the first time.

Vagrant will then perform the following actions:

1.

Copy the base box (remember, base boxes are managed globally on our host
computer, so it takes a copy for each machine managed by it).

Create a new virtual machine with the relevant provider (the default being

Virtual Box).

Forward any configured ports; by default, it will forward port 22 (the SSH port) on
the virtual machine to port 2222 on the host. This will allow us to connect to the
virtual machine over SSH.

Boot (power up) the virtual machine.

Configure and enable networking, so that we can communicate with the virtual
machine.

Map shared folders between the host and the guest (by default, it will map the folder
that contains the Vagrant project to /vagrant on the guest machine).

Run any provisioning tools that are set up such as Puppet, Chef, or SSH commands
or scripts.

The actions performed by Vagrant will look something like this:

== defoult:
== defoult:
== defoult:
== defoult:
= defoult:
== defoult:
== defoult:
default:
== defoult:
default
== default:
== default:
defau lt.

= dEfl:l.l lt H
== defou lt 4

= dEfl:l.l It:
default:
Micha i

Importing base box ‘hoshicorp/precisetd ...

Hatching HAC oddress for HAT networking...

Checking if box ‘hashicorp/precisetd” is up to date...

Setting the nome of the W: pockt—vogront-book defoult_ 1487768623782 51173
Fixed port collision for 22 — 2277, Now on port Z2688.

Clearing any previously set network interfoces...

Preparing network interfoces based on configuration...

Adapter 1: not

Booting V...
¥oiting for lut:hme tu huut. Thiz may toke o few minutes..

ut. Retryving

agrant-book

Suspending a virtual machine

We can save the current state of the virtual machine to the disk (suspend it) so that we can
resume it later. If we run vagrant suspend, it will suspend the VM and stop it from
consuming our machine’s resources, except for the disk space it will occupy, ready for us

to use again later:

Resuming a virtual machine

In order to use a previously suspended virtual machine, we simply run vagrant resume:

Michae | z-MacBook-Pro:packt—vogront-book michael$ wagront resume

—= defoult: Resuming suspended YH. ..

= defoult: Booting YH...

—= defoult: Yaiting for sochine to boot. This may toke o few minutes...
o 1

default o 127.8.8.1:

default:

default:)

default: 2 . Retryving...
== defoul
Michoe lz-MacBook-Pro:packt—vagrant-book michoel$

Shutting down a virtual machine

We can shut down a running virtual machine using the vagrant halt command. This
instructs the VM to stop all running processes and shut down. To use it again, we need to
run vagrant up, which will power on the machine; provisioning is typically only ran on
the first vagrant up command. To ensure that provisioning runs when we boot up a saved
machine subsequently, we can use the --provision flag.

Michae | z-MacBook-Pro ipackt—vogront-book michazl$ wagrant halt
== defoult: Attesapting groceful shutdown of YH...

Michae | z-MacBook-Pro :packt—vogrant-book michae l$

Starting from scratch

Sometimes, things go wrong. It’s not inconceivable that we might make some changes to
our virtual machine, and find out that it no longer works. Thankfully, since we have a base
box, configuration file, and provisioning files, which are all stored separately, we can
instruct Vagrant to destroy our virtual machine, and then create it again, using the
configurations to set it up. This is done via the destroy command, and then we need to
use the up command to start it again:

vagrant destroy

vagrant up

Of course, if we update our Vagrantfile, provisioning manifests, or application code that
can also break things; so it is important that we use a version control system to properly
manage our project’s code and configuration, so that we can undo the changes there too;
Vagrant can only do so much to help us!

Updating based on Vagrantfile changes

If we make changes to our Vagrantfile, these changes won’t apply until we next shut down
and power on our virtual machine. As this isn’t very convenient, there is a handy reload
command that will shut down the machine, reload its configuration based on the

Vagrantfile as it currently is, and boot it up again:

vagrant reload

Running this command yields the following result:

Michae lz-MacBook-Pro:packt—vagrant-book michosl$ vagront relood

== defoult:
== defoult:
= defoult:
== defoult:
= defoult:
== defoult:
default:
== defoult:
default:
== defoult:
= defoult:
defaul
default:
defaul
default:
defoult:
defoult:
default:

Atteapting groceful shutdown of YH...
Checking if box ‘hashicorp/precisetd’ is up to date...
Clearing any previously set forwarded ports...
Fixed port collision for 22 — 2277, Now on port Z22688.
Clearing any previously set network interfoces...
Preparing network interfoces based on configuration...
Adapter 1: nat
Forwarding ports...
2288 {odopter 1%
ing YH...

¥oiting for mochine to boot. This may toke o few minutes...

ethod: priv
Warning: Connection tim etrving...
Checking for guest odditions in YH...
The guest additio th o hot match the inst

default: :

default:
default:
== defoult:
default:
== defoult:
== defoult:

VirtualBo]

Hounting shared folders

Avagrant. == AlUs chae | /Documentsprojects/packt-vagrant-book

Hochine already provizioned. Pun “vogront provision® or use the "—provision®
to force provisioning. Provisioners marked to run always will still run.

Michoe lz-MacBook-Pro :packt—vagrant-book michoe 1§

Connecting to the virtual machine over SSH

If we run the vagrant ssh command, Vagrant will then connect to the virtual machine
over SSH. Alternatively, we can SSH to localhost with port 2222, and this will tunnel into
the virtual machine, using the default forwarded SSH port.

If we run Vagrant on a Windows machine, we won’t have a built-in SSH client. We can
use a client such as PuTTY to connect to Vagrant. PUTTY can be downloaded from

http://www.chiark.greenend.org.uk/~sgtatham/putty/. More information on how to
configure PuTTY to work with Vagrant is available on the Vagrant website (http://docs-

vl.vagrantup.com/v1/docs/getting-started/ssh.html).

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html

Managing integration between host and
guest machines

Without any form of integration between the host machine and the guest, we would simply
have a bare bones virtual server running on top of our own operating system, which is not
particularly useful. We need our own machine to be capable of integrating tightly with the
guest (virtual machine).

Port forwarding

Although the virtual machine is running on our own machine, because of virtualization, it
acts and behaves like a completely different machine. Sometimes, this is what we want;
however, there might be times we want to have the virtual machine behave almost as an
extension of our own machine. One way to do this is through port forwarding, where we
can tunnel a port from the virtual machine to a port on the host machine. If, for example,
we have a web server running on our own machine, we obviously don’t want to map the
web server port from Vagrant onto the same port; otherwise, there would be a conflict.
Instead, we can map it to another port. If we map the web server port on the virtual
machine to port 8888 on the host, then navigating to http://localhost:8888 on our own
machine would show us the web service we run on the guest, despite the fact that the
localhost refers to our host machine.

The port forwarding is done via lines in the vagrantfile file; we simply provide the guest
and host ports we wish to map:

config.vm.network :forwarded_port, guest: 80, host: 8888

If we have other Vagrant managed virtual machines on our computer, which we wish to
run simultaneously, we can enable auto_correct on specific ports. This way, if a conflict
is found (for example, two virtual machines trying to map to the same port), one virtual
machine will try a different port instead:

, auto_correct: true

Ports below a certain range need elevated or root privileges on the host machine, so you
may be asked for your administrative password.

Synced folders

Synced folders allow us to share a folder between the host and the guest. By default,
Vagrant shares the folder that contains the Vagrant project /vagrant on the virtual
machine. We can use the following command in our vagrantfile to sync more folders if
we wish:

config.vm.synced_folder "/Users/michael/assets/" "/var/www/assets"

The first parameter is the path to the folder on our machine and the second is the mount
point on the VM. If we use a relative path on our machine, it would be relative to the
project folder.

If we want to override the default synced folder, we can do this too:

config.vm.synced_folder ".", "/var/another/folder"

The Network File System (NFS) can give us better performance with synced folders than
the default settings. This won’t have any effect on Windows hosts, and on Linux/OS X,
hosts will require root privileges. We can enable NFS on a per synced folder basis by
adding the following command to the preceding line:

, type: '"nfs"

Networking

By default, our Vagrant virtual machines are only accessible from the machines we run
Vagrant on, and other machines in our network won’t be able to access them. If we map
ports to our host, then we can share the services running on the virtual machine with our
colleagues within our network. If we want to allow our colleagues to access our Vagrant
managed virtual machines directly, we can attach the virtual machine to our internal
network, and VirtualBox will bridge the network between our machine and the virtual
machine, and the internal network between our machine and the rest of the machines in
our home or office.

config.vm.network "private_network", ip: "10.11.100.200"

This approach is also useful when wanting to have multiple Vagrant projects running at
the same time; if they are web projects, they can all expose port 80, but on different IP
addresses, and if we want, we can map these to the hostnames in our hosts file.

Note

The hosts file is a file on a computer that maps a domain name to an IP address. This can
be used to prevent the computer from having to look up the IP address for a domain and is
useful for locally hosted sites, as we can manually link the IP address to a domain name,
just for our local machine. On OS X and Linux, the hosts file is stored as /etc/hosts,
and on Windows it is stored as C:\Windows\System32\Drivers\etc\hosts.

If we want to share access to our virtual machine or demo something running on it, we can
use Vagrant Share through Vagrant Cloud, which we will discuss in Chapter 9, HashiCorp
Atlas.

It is also possible to have the IP address assigned via DHCP (typically, this will mean that
your network’s router will assign it an IP address):

config.vm.network "private_network", type: "dhcp"

Autorunning commands

One of the key concepts within Vagrant is provisioning. This involves turning a basic
virtual machine with a base operating system into a server that is ready to run for your
project, meeting your requirements. To go from the base operating system to a fully
fledged machine, we need to use a provisioning tool to install the software and configure
the machine. There are a number of key provisioning options within Vagrant:

Shell
Puppet
Ansible
Chef

Puppet, Ansible, and Chef are all third-party tools that Vagrant supports out of the box,
and provide specific languages to configure servers in an agnostic way that can be used for
different operating systems. The next three chapters will discuss these tools in more detail.
Vagrant also supports some other provisioning tools, including Salt, Docker, and
CFEngine.

SSH provisioning involves running a series of commands on the virtual machine over SSH
when the machine is first set up.

There are two key ways in which we can use SSH provisioning. We can either directly run
a command from our Vagrantfile or we can run the contents of a script.

The following line in our vagrantfile will run the inline command provided:

config.vm.provision "shell", inline: "sudo apt-get update"

Alternatively, we can tell Vagrant to run a particular shell script (the location of the script
specified is relative to our project root, that is, /vagrant):

config.vm.provision "shell", path: "provision.sh"

This shell script could contain all of the commands we need to convert a base box into a
box, which supports our project and application, perhaps installing web and database
Servers.

Managing Vagrant boxes

We can manage Vagrant boxes using the vagrant box command. Let’s run this command
with the help flag (- -help) and see what subcommands are available:

vagrant box --help

Running this command gives the following result:

For help on any individual subcommand run “wagrant box <subcommand= -h"

Michae | z-MacBook-Pro :packt—vogront-book michael$

There are six available box-related subcommands. With each of these, we can provide the
- -help flag to see what additional arguments are available. The available box-related
subcommands are:

add: This command adds a new box

list: This command lists all boxes installed

outdated: This command checks whether any boxes have updates available
remove: This command removes a box from the host

repackage: This command converts a Vagrant environment into a distributable box
update: This command will update the box being used by the current running
Vagrant environment

Adding Vagrant boxes

The add subcommand allows us to add a new box. It takes a single argument and a number
of optional flags. The argument is a name, URL, or path to a box file. If a name is
provided, Vagrant will download the box from Vagrant Cloud. If we provide a URL or
path to a box stored elsewhere, we need to give Vagrant a name to use. This is provided
with the - -name optional flag.

Some other optional flags that might be useful include: - -force, which will tell Vagrant to
remove a pre-existing box with the same name; - -clean, which will tell Vagrant to clean
any temporary downloaded files; and - -provider, which allows us to specify another
provider to back the box (the default provider being VirtualBox, however, there are
providers available for Vagrant, including VMware and Amazon EC2).

The following command will add a new packt box, and if an existing one is found, it will
override it:

vagrant box add --force packt http://our-server.vagrant/packt.box

The process of adding a box may take a while, as most Vagrant boxes will be at least 200
MB big. Once downloaded, the box will be extracted and available for us to use in our
Vagrant projects, as we observed when we started our first project earlier in the chapter.

Listing Vagrant boxes

The 1ist subcommand will list the boxes installed within Vagrant, along with the provider
that backs the box:

vagrant box list

Running this command gives the following output:

o o

t—book michael %

Checking for updates

Boxes, which are provided by Vagrant Cloud, may be regularly updated; we can use the
outdated subcommand to see whether there are updates available:

up to date...

vagrant-book. michoe 1§

Removing Vagrant boxes

We can remove the box with the remove subcommand. We need to provide the name of the
box to be removed. Optionally, we can also specify the provider and the version of the box
to be removed with the - -provider and - -box-version flags, respectively. The following
example will remove our precise64 box for VirtualBox:

vagrant box remove hashicorp/precise64 --provider virtualbox

Running this command gives the following output:

Michoe | z-MacBook-Propackt—vagrant-book michoel$ wvogrant box remove hoshicorpdprecisesd —-provider wirtuolbox

Removing hashicorp 4' {v1.1.8) with provider ‘'wvirtualbox'...
Michae | z-MacBook-Pro :packt—vogrant-book michael$

Repackaging a Vagrant box

The repackage subcommand lets us convert a Vagrant environment complete with any
customizations we have made to it, such as software we have installed on it, into a box
that we can reuse and distribute to others. We will use this command in Chapter 8,
Creating Your Own Box.

Updating the current environment’s box

We can use the update subcommand to update the box in use on the current Vagrant
environment:

vagrant box update

Alternatively, we can update a specific box, which isn’t tied to the current environment,
using the - -box flag to provide the name of the box (and the - -provider option too if we
wish).

Too many Vagrants!

Once we start using Vagrant on a range of projects, the lack of a GUI can make it easy to
lose track of which projects are running or suspended on your machine. This is especially
annoying when you want to boot up a new project, but an existing Vagrant project is either
causing a conflict or consuming too many resources on your machine. Thankfully, there is
now a command to list all active Vagrant environments on your host, for example,

This command lists the IDs, names, providers, and states of our Vagrant projects as well as
the directory they are running in:

directory
default wirtual

default wirtual B AUsers/michael/p
default wirtual ved Alsers/michael/p

default wirtual running ¢

default wirtual vear

default wirtual y

default wvirtual aved ;

default wirtualbox running AUsers/michael/project

We can append the ID to the end of the vagrant command to run the command against
that machine, without having to go into that folder, for example:

vagrant suspend 77e5115

Summary

In this chapter, we created projects with Vagrant, imported a base box to use, and booted
our Vagrant environment. We also looked at the commands needed to manage these boxes
and the Vagrant virtual machines. We looked at how we can configure our Vagrant
environment with networking, synced folders, and forwarded ports, and how to provision
software on our virtual machine with SSH commands. When it becomes a problem to have
multiple Vagrant projects running, we now know how to locate these running projects with
the global-status command.

In the next chapter, we will take a look at how to use Puppet, one of the provisioning tools
supported by Vagrant. We will cover installing and configuring services, managing files
and folders, running commands, and managing users and scheduled tasks.

Chapter 3. Provisioning with Puppet

Vagrant is a very powerful tool primarily because of the following key concepts it can
manage for us:

Virtualization
Provisioning
Box distribution
Sharing

In Chapter 1, Getting Started with Vagrant and Chapter 2, Managing Vagrant Boxes and
Projects, we learned to use Vagrant to manage virtual machines for us. While this is
useful, at this stage, these virtual machines are dumb; they have very little software
installed for us to use, and they are certainly not configured for our projects.

There are two approaches we can use to set up a Vagrant-managed virtual machine with all
the software required for a project:

e Use a base box that is preconfigured with the software or development stack that we
require

¢ Provision the exact software and configuration that we require using a provisioning
tool

Preconfigured base boxes are useful and have their place. If we were always using a
specific configuration or we were creating a Vagrant environment for an open source
project we were releasing, a configured box might be the best option. In that instance, a
configured base box will quickly get users up and running on the project. The downside is
that it isn’t easy to change the configuration as the needs of the project change, and certain
elements such as cron jobs and background workers would still need to be configured
separately.

Provisioning, however, automates the process of turning a base machine into one that is
configured for use with a specific project.

In this chapter, we will quickly take a look at the basics of Puppet, one of the various
provisioning options available within Vagrant. We won’t look at it within a Vagrant
context just yet; we will simply take a look at how a Puppet works, and how we can use it.
In Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and Chef, we will take
a look at how to connect what we will learn in this chapter with Vagrant itself. In this
chapter, we will learn the following topics:

e How Puppet works
e The basics behind Puppet modules and manifests
e How to use Puppet to perform the following tasks:

Install software

Manage files and folders within the filesystem
Manage cron jobs

Run commands

O O O o

o Manage users and groups

e Creating configurable classes
e How to use third-party Puppet modules and Puppet Forge
e How to manually run Puppet to provision a machine

Puppet itself is a large topic and the subject of several books. For a more detailed look at
Puppet, Packt Publishing has some titles dedicated to it:

e Puppet 2.7 Cookbook, John Arundel (http://www.packtpub.com/puppet-2-7-for-

reliable-secure-systems-cloud-computing-cookbook/book)
e Puppet 3: Beginners Guide, John Arundel (http://www.packtpub.com/puppet-3-

beginners-guide/book)

http://www.packtpub.com/puppet-2-7-for-reliable-secure-systems-cloud-computing-cookbook/book
http://www.packtpub.com/puppet-3-beginners-guide/book

Provisioning

Within this context, provisioning is the process of setting up a virtual machine so that it
can be used for a specific purpose or project. Typically, this involves installing software,
configuring the software, managing services running on the machine, and even setting up
users and groups on the machine.

For a web-based software project, provisioning will likely entail the installation of a web
server, a programming language, and a database system. Configuration changes will be
needed to set up a database on the database system and to allow the web server to write to
specific folders (to deal with user uploads).

Without this provisioning process, we would have an almost vanilla install of an operating
system, which contains a synced copy of our project folder; this vanilla install wouldn’t be
usable as a development environment for our project. Provisioning takes us to the next
level and gives us a fully working environment for our project.

Puppet

Puppet is a provisioning tool that we can use to set up a server for use for a project. The
configuration that determines how the server needs to be set up can be stored within our
Vagrant project and can be shared with teammates through a version control, ensuring
everyone gets an up-to-date copy of the required development environment.

Information about how a server should be configured, that is, its software, files, users, and
groups, is written into files known as the Puppet manifests. These manifests are written
using Puppet’s own language, which is a Ruby domain-specific language. Puppet takes
this information and compiles it into a catalog that is specific for the operating system it is
being applied to. The catalog is then applied to the machine.

For our purposes, we will use Puppet in standalone mode (this is also how Vagrant uses
it). Standalone mode means that everything runs from one machine. Puppet also has
client-server capabilities, where you can define the Puppet manifests for all the servers in
your infrastructure, on a central host, and it keeps your individual servers at the required
level of configuration.

Puppet is idempotent, which means running Puppet on a machine multiple times has the
same effect as running it only once. In effect, Puppet ensures that conditions are met, and
if they are not, it will perform actions to ensure that they are met, for example, Puppet
would install Nginx if it wasn’t already installed. If it was already installed, it would do
nothing. This means we can reprovision with Puppet many times without any detrimental
effect. This is useful as we can use it to keep the server in sync with our Puppet manifests
if they were to change.

Creating modules and manifests with Puppet

Puppet is made up of a manifest file and a number of modules (which also contain
manifests and other resources). The default manifest specifies which modules are to be
used, and depending on the module, provides customization options for it (for example,
the Puppet module for supervisord (http://supervisord.org/), a process control system,
allows us to specify any number of processes that should be managed using supervisord
through the module itself).

Modules make use of resources within Puppet to control and configure the machine, and
these modules can be imported to run in a specific sequence, through stages.

Puppet classes

Puppet modules typically consist of classes, which, in turn, utilize a number of resource
types (in this example, the package resource type, to install a software package) to achieve
a specific requirement for our server. It effectively allows us to bundle a number of these
resource types in a way, which means we can simply include the class by its name, and
have all of the instructions executed from within it.

A class in its most basic form is structured as follows:

class nginx {
package { '"nginx":
ensure => present,
require => Exec|['apt-get update']
}
}

For its most basic use within Vagrant, classes such as these will be saved as default.pp
within the modules/nginx/manifests/ folder. The class can contain many resource types
to achieve a desired goal (for instance, installing the Apache package isn’t the same as
preparing the web server fully for a project, related tasks can be bundled into the same
class).

Default Puppet manifests

For a given project, Puppet modules are typically all located in a specific modules
directory. Many modules can be customized when they are run, an example being the
supervisord module; it simply provides the structure for us to customize for each process
we want it to manage.

Because of this, we need to have a default Puppet manifest that includes a list of modules
to be run and any configurations for them. Because Puppet is aware of our module folder
location when we run it (and when it is run through Vagrant), we just list the modules to
be included and run.

A basic manifest that will include and run the nginx class we wrote earlier would be as
follows:

import '"nginx"

http://supervisord.org/

include nginx

I mentioned the supervisor module (https://github.com/plathrop/puppet-module-
supervisor) a few times as a module that is designed to be used for multiple different

things, which can be customized by the developer using it.

Note

Supervisord is the name of the software, however, the Puppet module we are going to use
to manage supervisord is called supervisor (no “d”)—so watch out for that!

Supervisord is a tool that maintains a number of running processes, for example, if you
have a background worker in a web application to resize images, the supervisor might be
responsible for keeping five workers running at any one instance, respawning them when
one has finished. The following is an example of how this module would be used in a
default Puppet manifest:

supervisor: :service {
'resize_images':

ensure => present,
command => '/usr/bin/php /vagrant/app/console img:resize',
user => 'root',
group => 'root',

autorestart => true,
startsecs => 0,
num_procs => 5,

require => [Package['php5-cli'], Package['beanstalkd']];
}
supervisor::service {
email':
ensure => present,
command => '/usr/bin/php /vagrant/app/console email',
user => 'root',
group => 'root',

autorestart => true,

startsecs => 0,

num_procs => 5,

require => [Package['php5-cli'], Package['beanstalkd']];
}
Here, we are instructing Puppet to use the supervisord module twice to set up and manage
two workers for us. For each of the workers, we have a set of five processes to be run, and
we have set the user and group to run them. We have defined PHP’s command-line
interface and the beanstalkd worker queue as requirements for the workers. This
illustrates the power that Puppet modules have.

Resources

Puppet provides a range of resource types that we can utilize to create our configuration
files. These resource types are translated and compiled depending on the operating system
being used. For example, if we were to use the package resource type to install some
software, this would use apt-get on Ubuntu and Yum on Fedora operating systems. A

https://github.com/plathrop/puppet-module-supervisor

small number of resource types are operating system specific, for example the
scheduled_task resource type is designed specifically for Windows, and the cron type is
designed for Linux and Unix-based systems.

Resource types available include:

e Cron: This resource type is used to manage cron jobs on Linux- and Unix-based
systems

e Exec: This resource type is used to run commands at the terminal/command prompt

File: This resource type is used to manage and manipulate files and folders on the

filesystem

Group: This resource type is used to manage user groups

Package: This resource type is used to install software

Service: This resource type is used to manage running services on the machine

User: This resource type is used to manage user accounts on the machine

When resource types are used directly (for example, we use the Package resource type to
install some software), they are used in lowercase (package). However, when we refer to a
resource type we have used, for example, as a requirement for another Puppet action, we
reference them with a leading capital letter (Package).

An example of this is as follows:

package { "nginx":

ensure => present,

require => Exec['apt-get update']
}
We tell Puppet to install the nginx package (lowercase “p” for package), but when we
specify the requirement of a previously executed exec command, we use a leading capital
letter. The options within this instruction for Puppet (ensure and require keywords) are
called parameters.

A full list of resource types is available on the Puppet website at
http://docs.puppetlabs.com/references/latest/type.html.

When using a resource type, a name is provided (in the preceding instance, this is nginx),
this is often dual purpose, serving both as a way for us to reference the action (in this case,
the package being installed) and also as an instruction (in this case, what package Puppet
needs to install). When it comes to the Exec resource type, the name is the command we
wish to run. By default, we need to provide the full path to the command that we run. We
can avoid this by providing the path from which the command should be run as a
parameter.

Resource requirements

Certain things that we do with Puppet will require other actions to have been performed
first. These can be defined using the require parameter, and we can specify multiple
requirements.

If we need to run or install something after both the MySQL Server and the MySQL client

http://docs.puppetlabs.com/references/latest/type.html

packages have been installed, we will use the require parameter to define them as
follows:

require => [Package['mysqgl-client'], Package['mysqgl-server']]
This defines an array of multiple requirements as a dependency for our Puppet code.
Resource execution ordering

Sometimes, we need to run specific blocks of the Puppet code before other blocks. In most
cases, we can use the require, notify, and subscribe parameters to get around this
problem.

The notify, subscribe, and refreshonly parameters

Sometimes, we want to have a Puppet command run multiple times when other commands
have finished. One example is to restart the nginx service. We will perform the following
steps:

1. Import a new configuration file.
2. Add new virtual hosts.

We can use the notify parameter to instruct one command to trigger another to be run. In
effect, this notifies the next command to tell it that there have been changes made
elsewhere, which requires that command to now run.

In the following example, we require a Puppet managed configuration file to be copied to
our Puppet managed machine. The code requires Nginx to be installed before it is run, and
after the file has been copied across, it will notify the nginx service to be restarted.
Importantly, this notification will be run each time the file changes, but won’t be triggered
when it runs where the file is unchanged:

file { '/etc/nginx/sites-available/default’:
source => "puppet:///modules/nginx/default",
owner => 'root',
group => 'root',
notify => Service['nginx'],
require => Package['nginx']
}
This can be also be achieved using the subscribe and refreshonly parameters, which
work in the opposite way to notify. The subscribe parameter instructs the command to

run every time any of the commands in the subscribe option have been run.

The refreshonly parameter, when set to true, instructs the command to only run when
one of the commands it subscribes to has run (leaving this out would mean the command
is also run in its own right):

service { "nginx":
refreshonly => false,
subscribe => File['/etc/nginx/sites-available/default'],

}

Here, the command to reload Nginx will only be run when the new configuration file has
been loaded. We can, of course, extend the subscribe parameter to contain other things
such as modules and other configurations, as discussed earlier.

Tip
Only service, exec, and mount resource types can be refreshed.

Executing resources in stages

Where require, notify, and subscribe are not suitable for our use case, we can use
stages. Puppet has a default stage, within which all commands run. We can create our own

stages, which run before or after this stage that allow us to force commands to be run in
specific orders.

We can define stages within our default Puppet manifest and then instruct Puppet to run
certain classes from within that stage. If, for example, we wanted to run our Nginx class
before anything else, we can create a stage to run first, and put the Nginx class within that
stage as follows:

stage { 'first': before => Stage[main] }

class {'nginx': stage => first}

This creates a stage called first, and anything assigned to this stage will be executed
before the default Puppet stage; next, it places the Nginx class within that stage. Once we
have a named stage, such as first, we can then create other stages, which can run before
this one too.

Note

Stages are useful when you need to group the ordering of certain tasks, however, they can
normally be avoided through the proper use of require, notify, and subscribe, which
should be used instead where possible.

Installing software

Let’s say we want to install Nginx on our server. There are three typical steps involved in
this process:

1. Updating our package manager.
2. Installing the nginx package.
3. Running the nginx service.

Because the first step is different, depending on the operating system we are running, we
would want to either move this out of Puppet at a later stage or look at using a module to
abstract it out, however, we will use it within Puppet for the time being. Any operating
specific commands (such as these) are written for Ubuntu, which is the operating system
we are using with Vagrant. If you are not using Ubuntu, the Exec command should be
rewritten to update the package manager on your system.

Note

This example is purely to illustrate the process of putting together a simple module. There
are many existing modules available on Puppet Forge, which we will come to later.

Updating our package manager

In order to update our package manager, we need to run a command on the server. This
can be achieved using the Exec resource within Puppet:

exec { 'apt-get update':
command => '/usr/bin/apt-get update',
timeout => 0

}

This instructs Puppet to run the apt-get update command. We have set a timeout of zero
so that if it takes a while (and after a fresh installation of an operating system through
Vagrant, it might), Puppet will run it for as long as it takes, overriding the default timeout.

Note

This isn’t the most elegant of approaches, especially with it being operating system
specific and subsequently a requirement for most of our other commands. In Appendix, A
Sample LEMP Stack, we will build a LEMP server project with Vagrant and Puppet, and
in the example, we use Vagrant’s SSH provisioning options to update the package
manager before we install the other software. Most base boxes don’t have up-to-date
package details to save space and due to their age, so updating the package manager is
required.

Installing the nginx package

We can use the Package resource to ensure that Nginx is installed, and if it isn’t, it will be
installed as follows:

package { "nginx":

ensure => present,
require => Exec['apt-get update']
3
Here, we told Puppet to ensure that the nginx package is present. We added our apt -get
update command as a prerequisite, so we know that our packages will be up to date.

Running the nginx service

Finally, to make sure that Nginx is running, we use the Service resource to ensure that the
nginx service is running. Obviously, this can’t be run if Nginx isn’t installed, so the nginx
package is a prerequisite:

service { "nginx":
ensure => running,
require => Package['nginx']

File management

We can use the File resource within Puppet to manage files and folders within the
filesystem. Let’s take a look at some examples, which allow us to:

Copy files

Create symlinks

Create folders

Create multiple folders in one go

Copying a file

One common file operation we might want to perform would be to take a configuration
file from our project and copy it into our virtual machine. One particular use case would
be an Nginx configuration file; we might want to define some virtual hosts and other
settings in a file, which we can share with our colleagues.

Tip

While this works well and can get us up and running quickly, there are modules out there
that allow us to configure Nginx and other types of software directly from Puppet. This
typically works by the module of storing a template file (a copy of the configuration file
with placeholders in it) and then, inserting data that we define within Puppet into the

template, and copying the file onto the machine. However, for the sake of this introductory
chapter, we will just copy a file across.

The file resource type allows us to create files, folders, and symlinks. In order to create a
file (or replace the contents of an existing file with another file), we simply tell Puppet
what file we want to create or replace (the destination), the source (that is, the file to be
copied and put into the destination), and the user and group who should own the file:

file { '/etc/nginx/sites-available/default':
source => 'puppet://modules/nginx/default’,
owner => 'root',
group => 'root',
require => Package['nginx']
}
As this is an Nginx configuration file, it is worth ensuring that Nginx is already installed;
otherwise, Nginx will override this when it installs the first time and this wouldn’t make

the process idempotent.

Tip

Here’s something to note about file locations: the source file in the preceding file resource
code is held within a Vagrant environment and the Puppet module itself. We can provide
two kinds of file paths: either the full path to the file on the machine, which Puppet is
running on (our Vagrant environment), such as /vagrant/path/to/default or a path
relative to Puppet modules. These Puppet paths are structured like this:

puppet:///modules/nginx/default. The difference you will note is that it automatically
looks for in the files/ folder within the nginx folder; we don’t need to specify that.

Creating a symlink

If we omit the source parameter and instead add an ensure parameter, and set that to
link, we can create a symlink. A target is used to define where the symlink should point
to, as shown in the following code:

file { '/var/www/vendor':
ensure => 'link"',
target => '/vagrant/vendor',
require => Package['nginx']

}
Creating folders

Similar to the preceding symlink code, this time, we simply need to set ensure to a
directory. This will then create a directory for us as follows:

file{ "/var/www/uploads":
ensure => "directory",
owner => "www-data",
group => "www-data"
mode = 777,

}

We can use the mode parameter to set the permissions of the folder (this also can be used
for files we create and manage).

Creating multiple folders in one go

In many web projects, we might need to create a number of folders within our servers or
our Vagrant virtual machines. In particular, we might want to create a number of cache
folders for different parts of our application, or we might want to create some upload
folders.

In order to do this, we can simply create an array that contains all of the folders we want
to create. We can then use the file resource type and pass the array to create them all, as
follows:

$cache_directories = [
"/var/www/cache/",
"/var/www/cache/pages",
"/var/www/cache/routes",
"/var/www/cache/templates",

]

file { $cache_directories:
ensure => "directory",
owner => "www-data",
group => "www-data",
mode = 777,

Cron management

The cron resource type lets us use Puppet to manage cron jobs, which we need to run on
the machine. We provide a name, in this case, web_cron, the command to run, the user to
run the command as, and the times at which to run the command, as shown in the
following code:

cron { web_cron:
command => "/usr/bin/php /vagrant/cron.php",
user => "root",
hour => [1-4],
minute => [0,30],
}

Puppet provides us with different configuration options to define the times at which a cron
should be run, which includes the following:

Hour: This value is between 0 and 23 inclusive
Minute: This value is between 0 and 59 inclusive
Month: This value is between 1 and 12 inclusive
MonthDay: This value is between 1 and 31 inclusive
Weekday: This value is Sunday (7 or 0) to Saturday (6)

If one of these is omitted from the configuration, then Puppet runs it for each one of the
available options (that is, if we omit month, it will run for January through to December).
When defining the dates and times, we can either provide a range, for example, [1-5] or
specifics, such as [1, 2, 10, 12].

Running commands

The Exec resource type allows us to run commands through the terminal on the machine
we are provisioning. One caveat with the exec command is that if you reprovision with
Puppet, it will rerun the command, which can be damaging depending on the command.
What we can do with the Exec resource type is set the creates parameter. The creates
parameter tells Puppet that a file will be created when the command is run, and if Puppet
finds that file, it knows that it has already been run and won’t run it again.

Take for example, the following configuration; this will use the PHP composer tool to
download dependencies. The command itself creates a file called composer.lock (we can,
of course, use the exec command itself to create a file manually, perhaps using the touch
command). Because of the lock file that is created, we can use the creates parameter to
prevent the command from being executed if it has previously been executed and has
created the lock file, as shown in the following code:

exec{ "compose":

command => '/bin/rm -rfv /var/www/repo/vendor/* && /bin/rm -f

/var/www/repo/composer.lock && /usr/bin/curl -s

http://getcomposer.org/installer | /usr/bin/php && cd
/var/www/repo && /usr/bin/php /var/www/repo/composer.
phar install',
require => [Package['curl'], Package['git-core']],
creates => "/var/www/repo/composer.lock",
timeout => 0

Managing users and groups

The user and group resource types let us create and manage users and groups. There are
differences between different operating systems as to what Puppet can do with the users
and groups and how this works. The code in the following section is tested on Ubuntu,
Linux. More information on the differences for users and groups on different platforms
can be found on the Puppet website at

http://docs.puppetlabs.com/references/latest/type.html#user.
Creating groups
The simplest way to create a group is simply to set the ensure parameter to present:

group { "wheel":
ensure => "present",

}
Creating users
To create a user, the basic information we should provide is as follows:

The username

The fact that we want the user to exist (ensure => present)

The group (gid) the user should be part of

The shell to use for the user

The home directory for the user

If we want Puppet to manage the home directory for the user, in this case, it will
create the folder for us if it does not exist

e The password for the user

e The requirements that we need the wheel group in place first

The code that will then create our user is as follows:

user { "developer":
ensure => "present",
gid => "wheel",
shell => "/bin/bash",
home => "/home/developer",
managehome => true,
password => "passwordtest",
require => Group["wheel"]

}
Updating the sudoers file

It’s all well and good being able to create users and groups on our machine, however, one
thing that we can’t do using the user and group resource types is define a user or group as
having elevated privileges, unless we make the user a part of the root group.

We can use an exec command to push some text to the end of our sudoers file; the text we
need to push just tells the file that we want to give the wheel group the sudo privileges, as
shown in the following code:

http://docs.puppetlabs.com/references/latest/type.html#user

exec { "/bin/echo \"%wheel ALL=(ALL) ALL\" >> /etc/sudoers":
require => Group["wheel"]

}

This code, however, will continually add this line to the file each time it is run, which we
don’t want, however, as we learned earlier, we can instruct the exec resources to only run
at certain times. Thanks to subscribe and refreshonly:

exec { "/bin/echo \"%wheel ALL=(ALL) ALL\" >> /etc/sudoers":
subscribe => Group["wheel"],
refreshonly => true

}

This still isn’t ideal, as if we decide to change the wheel group then this would be rerun,
so ideally, we might keep the sudoers file within our Puppet configuration instead and use
Puppet to manage the changes to it.

Creating configurable classes

One limitation that our entire Puppet code has so far in this chapter is that with the
exception of the contents of some files, the configuration is all fixed. If we want to reuse
some of the Puppet code on another project, we might need to change things such as
variable names, paths to files, or other project-or environment-specific properties.

To make our code more flexible, we can put the code into a class, and use class parameters
to dynamically inject variables into the class.

A class is, at its simplest level, a method of grouping related code together; however, we
can use them to build reusable and configurable modules. If we take the composer Exec
resource illustrated earlier, we can start to make that reusable by putting it into a class:

class composer {
exec{ "compose":

command => '/bin/rm -rfv /var/www/repo/vendor/* && /bin/rm -f
/var/www/repo/composer.lock && /usr/bin/curl -s
http://getcomposer.org/installer | /usr/bin/php && cd /var/www/repo &&
/usr/bin/php /var/www/repo/composer.phar install',

require => [Package['curl'], Package['git-core']],

creates => "/var/www/repo/composer.lock",

timeout => 0

}

While we can now more easily pull this into another project, we are locked down in terms
of the location of the composer file and also other parameters that might be required. We
also require two packages: we would either require that the developer adds these
elsewhere to their Puppet code, or we would include them here, however, including them
here would conflict with other modules and reduces flexibility. Class parameters let us
pass information to a class when it is used; this information can be used to control the
code within the class and also configure parts of the class.

For our Composer class, we might want to let the developer using it decide whether the
dependencies are installed by the module or not, and also provide paths to be used by the
module. Class parameters are defined in brackets immediately after the class name and
can have default values, so if they are omitted, their defaults are used.

We can then use control statements to decide whether the dependencies should be
installed, and we can pull in the contents of a variable using ${variable}:

class composer ($install_deps = true, $path = '/var/www/repo/’',
$composer_home = '/var/www/') {

if ($install_deps == true) {
package { "curl":
ensure => present

}

package { "git-core":
ensure => present

}

exec { "compose":

command => "/bin/rm -rfv ${path}vendor/* && cd ${path} &&
/usr/bin/curl -s http://getcomposer.org/installer | /usr/bin/php &&
COMPOSER_HOME=\"${composer_home}\" /usr/bin/php ${path}composer.phar
install",

require => [Package['curl'], Package['git-core'], Package['php5-
cli'] 1,

creates => "${path}composer.lock",

timeout => 0

}

Now, when we want to use this class, we pass the values along with these variable names.
Because of the way Puppet works, the ordering of the parameters doesn’t mater; they are
passed associatively with their corresponding variable names, as shown in the following
code:

class {
'composer':
install_deps => true

Puppet modules

There are many existing, well-written, reusable Puppet modules freely available to use.
Puppet Forge is a collection of modules, which is available at
http://forge.puppetlabs.com/. It is always worth checking whether there is an existing
module that solves your problem before writing your own.

http://forge.puppetlabs.com/

Using Puppet to provision servers

We are going to take a look at how to use Puppet with Vagrant in Chapter 6, Provisioning
Vagrant Machines with Puppet, Ansible, and Chef, however, Puppet can also be run
independently. If Puppet is installed (it will be on most Vagrant base boxes, but if you
want to run it on another machine, it might not be, so install it first), you can use the apply
subcommand, passing with it the location of the modules folder and the default manifest to
apply, as follows:

puppet apply --modulepath=/home/michael/provision/modules
/home/michael/provision/manifests/default.pp

Summary

In this chapter, we had a whirlwind tour of Puppet and explored the various ways in which
we could use it to provision a server for our projects. We installed software with the
Package resource, managed cron jobs with the Cron resource, managed users and groups
with the User and Group resources, and ran commands with the Exec resource. To manage
execution order and dependency relationships with Puppet, we looked at using Require,
Subscribe, Notify, and Refreshonly. We looked at how modules, classes, and stages
work as well as how to use class parameters to configure reusable Puppet code. Finally,
we looked at how to use Puppet to provision a machine.

In the next chapter, we will take a look at Ansible, another provisioning tool that has
support built into Vagrant.

Chapter 4. Using Ansible

Ansible is another provisioning tool supported by Vagrant that makes it easy for us to take
a base operating system installation and turn it into a full-fledged server that suits the
needs of our project.

In this chapter, we will quickly take a look at the basics of Ansible. We won’t look at it
within a Vagrant context just yet; we will simply take a look at how Ansible works, and
how we can use it. In Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible,
and Chef, we will take a look at how to connect what we will learn in this chapter with
Vagrant itself. In this chapter, we will learn the following topics:

e How Ansible works
e How to use Ansible to perform the following tasks:

Installing software

Managing files and folders within the filesystem
Managing cron jobs

Running commands

Managing users and groups

O O O O O

e How to use third-party Ansible roles
e How to manually run Ansible to provision a machine

Ansible itself is a large topic and subject of several books. For a more detailed look at
Ansible, Packt Publishing has some titles dedicated to provisioning with Ansible:

e Learning Ansible: https://www.packtpub.com/networking-and-servers/learning-
ansible

e Ansible Configuration Management: https://www.packtpub.com/networking-and-
servers/ansible-configuration-management

https://www.packtpub.com/networking-and-servers/learning-ansible
https://www.packtpub.com/networking-and-servers/ansible-configuration-management

Understanding Ansible

Ansible is an IT automation tool that provides provision, orchestration, and configuration
management features. Unlike with Puppet and Chef, Ansible doesn’t require any software
to be preinstalled on the server, other than an SSH service, as the heavy lifting is done by
our own computer that connects to our Ansible-managed servers and instructs the server
on how it needs to change.

Like Puppet and Chef, Ansible is also idempotent. This means each time we run Ansible,
it will only perform actions where a change is required—so if we install the Nginx web
server, the first run of Ansible will install it and subsequent runs won’t because it knows
Nginx is already installed.

Ansible configuration is written in Yaml Ain’t Markup Language (YAML), which
makes the configuration easy to read and write.

Conceptually, Ansible configuration is made up of playbooks that are made up of plays,
which are made up of tasks. A playbook is the configuration for an entire system or
environment, which is mapped to specific servers or hosts through plays—different plays
can be applied to different groups of servers at different times from the same playbook.
Each play contains a number of tasks, which, in turn, make calls to Ansible modules. In a
more advanced context, we can make use of roles within Ansible (reusable functionality)
such that our playbooks might simply be a mapping of hosts to roles. However, for the
purposes of this chapter, we will put tasks and module calls directly in our playbook.

Modules within Ansible are similar in context to resources within Puppet. There are
modules to deal with many different kinds of operations on a server, which we will discuss
shortly.

Installing Ansible

Because Ansible doesn’t require any software to be installed on the server side, we can’t
simply connect to a Vagrant virtual machine and try out Ansible because it isn’t installed
on there! In order to use it, both to try it out, and also when it comes to integrating with
Vagrant, we need to install Ansible on our own computer, which is known as the control
machine.

Although Ansible can be used to manage Windows Servers, it cannot be run from a
Windows control machine.

Packages are available for many Linux distributions, and Ansible can be installed on OS X
using Homebrew or Python’s pip. Complete details of the different operating systems are

available online at http://docs.ansible.com/intro_installation.html.
Note

Although we don’t need anything installed on the server being managed, we do need SSH
access to the machine, and unless we install additional plugins for Ansible, we will also
need to have public and private keys set up, so that we can connect to the machine we
wish to manage over SSH without a password from our control machine.

http://docs.ansible.com/intro_installation.html

Creating an inventory

When we run Ansible to provision or configure a machine, Ansible takes the hosts we
want to apply the configuration to, from our playbooks. It then looks up these machines in
its inventory, which specify the addresses and connection details for these machines, so
that Ansible can connect to them in order to check their status and run the provisioning
tasks.

At a minimum, the inventory needs to contain a name and an IP address for each server
that we want Ansible to manage. However, there are additional configurations we can
provide, for example, setting the user to connect as, the password to use (which requires
additional configuration), the port to connect through, and if we need to tunnel to the
server through another. An example of creating an inventory is as follows:

default ansible_ssh_host=192.168.100.123

Although we are looking at Ansible outside the context of Vagrant, we still might want to
use Ansible, independently, to connect to and configure a Vagrant-managed virtual
machine so that we can test it in isolation. In Chapter 6, Provisioning Vagrant Machines
with Puppet, Ansible, and Chef, we will learn how to do this within Vagrant itself. If we do
this, we need to provide the port. We might also wish to change the user that we connect
as to root, and ensure that a specific SSH key is used for the connection as follows:

default ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
ansible_ssh_user=root ansible_ssh_private_key=~/.ssh/id_rsa

This inventory file is simply a plain text file saved somewhere on our control machine. By
default, Ansible will look for a file called /etc/ansible/hosts, which it expects to be the
inventory, however, when we run Ansible, we can point to our own inventory file
elsewhere, which we will do later in this chapter.

Creating Ansible playbooks

As we discussed, an Ansible playbook is a YAML file. The following example is a simple
playbook that contains instructions to update the Apt package manager class on the
machine called by default in our inventory:

- hosts: default
tasks:
- name: update apt cache
apt: update_cache=yes

We can run this playbook by running the ansible-playbook our-playbook.yml -i our-
inventory-file command. Ansible will then look up that this playbook is to be applied to

the default machine, the default machine’s details, connect to it, and if appropriate, run the
command. We will walk through the execution process shortly.

Tasks are executed in the order that they appear within the playbook. However, we have
the option to call other tasks to be run later once an action is completed, through the use of
handlers, which we will discuss shortly.

Note

Because playbooks are written in YAML, the format and spacing/indentation in these files
is critical. Incorrect indentation can cause files to not be parsed correctly.

Modules — what Ansible can do

Ansible modules are similar to Puppet resources, and we can use them to install and
manage packages, servers, users, files, cron jobs, and so on.

The modules available include:

Apt: This is used to manage apt packages

Git: This is used to manage and deploy from git repositories
Service: This is used to manage running services on the server
Copy: This is used to copy files

Each module can be configured with different properties, as we will discuss in this
chapter. A complete list of the modules is available from the Ansible website at
http://docs.ansible.com/list_of all_modules.html.

http://docs.ansible.com/list_of_all_modules.html

Installing software

Let’s say we want to install Nginx on our server. There are three steps involved in this
process:

1. Updating our package manager.
2. Installing the nginx package.
3. Running the nginx service.

Updating our package manager

We can use the apt module (http://docs.ansible.com/apt_module.html) to update the apt
package manager’s cache, which is the equivalent of performing an apt-get update
command:

- name: update apt cache

apt: update_cache=yes
The update_cache parameter can also be provided when we run other apt-related tasks, so
instead of a dedicated task for it, we can instead specify that when we install Nginx, the
package manager’s cache must be up to date.

Installing the nginx package

We can use the apt module (http://docs.ansible.com/apt_module.html) to ensure that
Nginx is installed, and if it isn’t, it will be installed as follows:

- name: ensure nginx 1is installed

apt: pkg=nginx state=present update_cache=yes
Here, we told Ansible to ensure that the state of the nginx package is present, and that we
should update the package manager’s cache before installing it. There are different states
available, including the latest states to ensure that we have the latest version of a package
present, or absent to ensure that a package is not installed on the server.

Running the nginx service

Finally, to make sure that Nginx is running, we use the service module. While Nginx will
automatically run when we install it, we can connect to our new server and alter settings or
services by mistake. If this happens, we can simply rerun the provisioner, as Nginx will
already be installed, so it won’t reinstall it, but the service module will force the server to
start the nginx service. We can use the enabled parameter to ensure that the service is
configured to start automatically when the system boots next:

- name: ensure nginx is running
service: name=nginx state=started enabled=yes

http://docs.ansible.com/apt_module.html
http://docs.ansible.com/apt_module.html

Understanding file management

We can use the file, copy, and template modules within Ansible to manage files and
folders within the filesystem. Let’s take a look at some examples, which allow us to
perform the following:

e Copy files
e Create symlinks
e Create folders

Copying a file

One common file operation we might want to perform would be to take a configuration
file from our project and copy it into our virtual machine. One particular use case would
be an Nginx configuration file; we might want to define some virtual hosts and other
settings in a file, which we can share with our colleagues.

Tip

While this works well and can get us up and running quickly, there are roles out there that
allow us to configure Nginx and other software directly from Ansible. This typically
works by the role of storing a template file (a copy of the configuration file with
placeholders in it) and then, inserting data that we define within our playbook into the

template, and copying the file onto the machine. However, for the sake of this introductory
chapter, we will just copy a file across.

The template module (http://docs.ansible.com/template_module.html) allows us to copy a
file from our control machine onto the machine being provisioned as follows:

- name: write the nginx config file
template: src=nginx-default-site.conf dest=/etc/nginx/sites-
available/default.conf owner=www-data group=www-data

As this is our Nginx configuration file, it makes sense for us to reload or restart Nginx
when this file changes to ensure that the updated configuration is applied to the server. We
do this in two stages:

1. We set our task to notify a handler once it is done.
2. We create a handler, which is only activated when it is notified, to restart Nginx.

The following is a playbook that updates the apt cache, installs Nginx, ensures that the
service is running, copies the configuration file, and then ensures that Nginx is restarted
when that file changes through a notify operation and a handler. The notify and
handlers code sections are highlighted are follows:

- hosts: default
tasks:
- name: update apt cache
apt: update_cache=yes
- name: ensure nginx 1is installed

http://docs.ansible.com/template_module.html

apt: pkg=nginx state=present
- name: write the nginx config file
template: src=nginx-default-site.conf dest=/etc/nginx/sites-
available/default.conf
notify:
- restart nginx
- name: ensure nginx is running
service: name=nginx state=started
handlers:
- hame: restart nginx
service: name=nginx state=restarted

Creating a symlink

The file module (http://docs.ansible.com/file_module.html) allows us to create symbolic
links to the existing files and folders in the filesystem. If, for instance, we want to map a
public folder within our web servers root directory to a folder within our Vagrant shared
folder, we can do this as follows:

- name: make our Vagrant synced folder our web root
file: src=/vagrant dest=/var/www/site owner=www-data group=www-data
state=1link

Creating folders

We can also use the file resource type to create folders; this is particularly useful for
scenarios such as folders to hold files (avatars, attachments, and so on) uploaded by users
of a web application:

- name: create an uploads folder
file: path=/var/www/uploads owner=www-data group=www-data mode=0777
state=directory

We can use the mode parameter to set the permissions of the folder, and the owner and
group parameters to set the user and groups who own the directory (these also can be used
for files we create and manage too). Finally, the state parameter is used to ensure that the
path provided is a folder.

http://docs.ansible.com/file_module.html

Managing cron

The cron module (http://docs.ansible.com/cron_module.html) lets us use Ansible to
manage cron jobs, which we need to run on the machine. We provide a name (which is a
required parameter), in this case, web_cron, the command to run, the user to run the
command, and the times at which to run the command, as shown in the following code:

- name: Run some cron
cron: name="web_cron" hour="1-4" minute="0,30" job="/usr/bin/php
/vagrant/cron.php"

Ansible provides us with various different configuration options to define the times at
which a cron should be run. These include:

Hour: This value is between 0 and 23 inclusive

Minute: This value is between 0 and 59 inclusive
Month: This value is between 1 and 12 inclusive

Day: This value is between 1 and 31 inclusive
Weekday: This value is from Sunday (0) to Saturday (6)

If one of these is omitted from the configuration, then Ansible runs it for each one of the
available options (that is, if we omit month, it will run for January through to December),
as it has a default value of *. When defining the dates and times, we can either provide a
range, for example, 1-5 or specifics, such as 1,2,10,12.

http://docs.ansible.com/cron_module.html

Running commands

The command and shell modules allow us to run commands through the terminal on the
machine we are provisioning. The difference between the two is that the shell module
will run the commands through a shell on the remote system. So if we need to access
environment variables or operators, such as &, |, >, and <, then we need to use the shell
module.

Managing users and groups

The user and group modules (http://docs.ansible.com/user_module.html and
http://docs.ansible.com/group_module.html) let us create and manage users and groups.

Creating groups

We simply provide a name. By default, the state parameter is set to present:

- name: create some new group
group: name=newgroup state=present

Creating users

To create a user we can use the user module (http://docs.ansible.com/user_module.html);
the minimum information we need again is the username. However, we can also specify
their group, password (providing a crypted hash as per

module), and even whether an SSH key can be generated if the user does not have one:

- name: create a new user
user: name=ournewuser group=newgroup state=present

http://docs.ansible.com/user_module.html
http://docs.ansible.com/group_module.html
http://docs.ansible.com/user_module.html
http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module

Using Ansible roles

There are many existing, well-written, reusable Ansible roles freely available to use.
These roles typically manage large aspects of server functionality in one reusable bundle,
for example, there is an Nginx role to manage Nginx and configure sites with it. There are
many roles available on Ansible Galaxy (https://galaxy.ansible.com/), so it is worth
checking these out before writing our own code!

https://galaxy.ansible.com/

Using Ansible to provision servers

Once we have a playbook and inventory file, we can run the ansible-playbook command
to analyze our playbook, and ensure that the configuration for the matching servers in our
inventory file is updated:

ansible-playbook our-playbook.yml -i our-inventory-file

When this command was run for the first time against a particular server, the output was
something like this:

Michoelz-iMac ;packt-vogrant-2 michoel$ onzible-plavbook plov.yml -i inventory

PLAY [IjEﬂfI]LJlt] ook ok R K ook ook Rk Rk

|:| A T H E Fl I H |:| F A |: T El A 8 b b b g b

g ngim: iz installed] |
fault]

['.'.'I' ite the ng inx conf -i_g fi |.E'] B E E Ao O
default]

2 nginx iz running]
MOTIFIED:: [I' a o rt ng i r'IZ:':Z] 0 R e e § 8 o
changed: [default]

PLAY RECAP ¥k
default

Michaelz-iMac :pockt—vagrant-2 michoel$

Let’s walk through this screenshot to see what is going on:

1. First, Ansible pulls the files together and checks whether everything is valid.

2. Next, it gathers facts about the related machines it needs to connect to. This is done
by connecting over SSH and finding out information, such as specification,
networking details, and so on.

3. Next, it runs through the tasks in our playbook. When installing and writing our
configuration files, Ansible needs to make a change, because it isn’t installed and the
file isn’t there.

4. Once installed, Nginx automatically starts, so the task to ensure that it is running
doesn’t do anything (this comes back to the idempotency of Ansible). As the
configuration file writing notifies the handler to restart Nginx, Nginx is then restarted
at the end.

5. Finally, we see a recap, three changes were made, and five tasks resulted in an ok
response.

On subsequent runs, the output looks like this:

Hichoelz-iMac :;packt-vogrant-2 michoel$ onzible-plavbook plov.yml -i inventory
PLAY [defuult] R R R R R R R R R

GATHERIMG FACTS ebobsboohobbob ook b o obob bbb ob bbb bbb ook bob ook bob ok bbb ok ok bk ok ok ok ok

TAE' } o [Er‘l SUe R g 1 i 1 = 1 n= t (n] l l E'lj] 0 O

TASK : [write the nginx config filE] 4R K R R R o R R R R

TASK : [E!r'IE:LJI'E! nging iz I-|_"-|r-|-i_r-|,3] LR R R R R R R R R R R R R R % R R 8 R R R

LAY FECAR #hibo ook bk ook Rk
changed=A unreachab le=A failed=A

Michae lz-iMac :packt—vagrant-2 michoel$

There are two differences: firstly, Ansible doesn’t need to do anything, so everything is
green and we get four ok results. Again, this is because Ansible is idempotent, so it only
does things when a change to the system is required. Secondly, because we didn’t notify
the Nginx restart handler, the handler wasn’t even run as a task, which is why our recap
number has dropped to 4, and there was no related output for the handler.

Summary

In this chapter, we learned about Ansible, the IT automation tool. We looked at how it
works, and how to create an inventory file so Ansible can manage different servers, and
how to write playbooks, which can work with some of the different modules.

We installed the software and learned to update the package manager cache with the apt
module, and packages that are services were then started and managed with the service
module. The template module allowed us to copy files from our control machine to the
Ansible-managed machine. In order to trigger service reloads, we looked into notifying

handlers after specific tasks occur.

To create and manage, files, folders, and symlinks the file module was used, and we used
the cron module to create and manage cron jobs. Users and groups were created and
managed with the user and group modules and finally we looked into running commands
with the command and shell modules.

In the next chapter, we will take a look at Chef, the final provisioner that we will discuss
in this book, and also discuss how we can use it to provision servers.

Chapter 5. Using Chef

Chef is another provisioning tool supported by Vagrant that makes it easy for us to take a
base operating system installation and turn it into a full-fledged server suited to the needs
of our project.

In this chapter, we will quickly take a look at the basics of Chef. We won’t look at it
within a Vagrant context just yet; we will simply take a look at how Chef works, and how
we can use it. In Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and
Chef, we will take a look at how to connect what we will learn in this chapter with Vagrant
itself. In this chapter, we will learn the following topics:

e How Chef works
e The basics behind Chef cookbooks and recipes
e How to use Chef to perform the following tasks:

Installing software

Managing files and folders within the filesystem
Managing cron jobs

Running commands

Managing users and groups

O O O O O

e How to use third-party Chef cookbooks and recipes
e How to manually run Chef to provision a machine

Chef itself is a large topic and the subject of several books. For a more detailed look at
Chef, Packt Publishing has some titles dedicated to provisioning with Chef:

o Chef Infrastructure Automation Cookbook, http://www.packtpub.com/chef-
infrastructure-automation-cookbook/book
e [nstant Chef Starter, http://www.packtpub.com/chef-starter/book

http://www.packtpub.com/chef-infrastructure-automation-cookbook/book
http://www.packtpub.com/chef-starter/book

Knowing about Chef

Chef is a provisioning tool that we can use to set up a server for use for a project. The
configuration, which determines how the server needs to be set up, can be stored within
our Vagrant project and can be shared with teammates through version control, ensuring
that everyone gets an up-to-date copy of the required development environment.

Information about how a server should be configured, that is, its software, files, users, and
groups, is written into files known as Chef recipes. These recipes are written as Ruby files.
Chef takes this information and matches it to providers that are used to execute the
configuration on the machine in a compatible way.

For our purposes, we will use Chef-solo, which is its standalone mode (this is also how
Vagrant uses it). Chef-solo means that everything runs from one machine. Chef also has
client-server capabilities, where you can define the Chef cookbooks and roles for all the
servers in your infrastructure on a central host, and it keeps your individual servers at the
required level of configuration.

As with Puppet, Chef is also idempotent, which means running Chef on a machine
multiple times has the same effect as running it only once.

Creating cookbooks and recipes with Chef

Chef instructions are recipes that are bundled together in cookbooks. A cookbook contains
at least one recipe, which performs some actions. Cookbooks can contain multiple recipes
and other resources such as templates and files.

At its most basic level, a cookbook is a folder (named as the name of the cookbook) that
contains at least a recipes folder, which contains at least a default recipe file,
default.rb. Files are typically stored in a files folder within the cookbook folder and
template files within the templates folder.

Note

While both Puppet and Chef use Ruby, Puppet is a domain-specific language, which
makes it look and feel like its own language, whereas Chef is structured more like Ruby
itself.

Resources — what Chef can do

Chef uses resources to define the actions and operations that can be performed against the
system. Resources are mapped to a Chef code, which varies depending on the
platform/operating system being used. For example, on an Ubuntu machine, the package
resource is mapped to apt -get. Some of these system-specific instructions can also be
accessed directly via their own resources, apt_package. For example, this is used to
manage packages on Ubuntu- and Debian-based systems, whereas using the package
resource, Chef will work out which package manager to use based on the operating
system.

Resource types available include:

cron: This resource type is used to manage cron jobs on Linux- and Unix-based
systems

execute: This resource type is used to run commands at the terminal/command
prompt

file: This resource type is used to manage and manipulate files and folders on the
filesystem

group: This resource type is used to manage user groups

package: This resource type is used to install software

service: This resource type is used to manage running services on the machine
template: This resource type is used to manage file contents with an embedded Ruby
template

user: This resource type is used to manage user accounts on the machine

Each resource can be configured with different attributes, as we will discuss in this
chapter. A complete list of the resource types is available on the Opscode website
(Opscode is the company behind Chef) at http://docs.opscode.com/resource.html.

http://docs.opscode.com/resource.html

Installing software

Let’s say we want to install Nginx on our server. There are three steps involved in this
process:

1. Updating our package manager.
2. Installing the nginx package.
3. Running the nginx service.

Because the first step is different depending on the operating system we are running, we
might want to move this out of Chef at a later stage; however, we will use it within Chef
for the time being. Any operating specific commands (such as this) are written for
Ubuntu, which is the operating system we are using with Vagrant.

Updating our package manager

In order to update our package manager, we need to run a command on the server. This
can be achieved using the execute resource within Chef as follows:

execute "apt-get update" do
ignore_failure true
end

This instructs Chef to run the apt-get update command. As the name of the resource (the
part provided in quotes after the name of the resource) is the command we want to run,
this will be executed. If we use a friendly name instead, then we would need to provide a
command attribute as follows:

execute "update-package-manager" do
command "apt-get update"
ignore_failure true

end

By default, the execute resources have a timeout of 3,600 seconds, however, this can be
overridden by giving a timeout attribute to the resource and a time value, for example:

execute "apt-get update" do
ignore_failure true
timeout 6000

end

Installing the nginx package

We can use the package resource to ensure that Nginx is installed, and if it isn’t, it will be
installed as follows:

package "nginx" do
action :install
end

Here, we told Chef to ensure that the nginx package is installed. Provided that we have
included the recipe or cookbook that contains the apt-get update command before the
preceding code, our package manager will be up to date.

Running the nginx service

Finally, to make sure that Nginx is running, we use the service resource. As well as
ensuring Nginx runs when it is first installed, this also ensures that if we make any
changes to our server (and accidentally stop Nginx), we can simply rerun the provisioner.
As Nginx will already be installed it won’t reinstall it, but the service resource will force
Chef to enable the nginx service (so it automatically starts on system boot), and start the
service when the command is run, as follows:

service '"nginx" do
supports :status => true, :restart => true, :reload => true
action [:enable, :start]
end

The supports property is a list of attributes that instruct Chef on how to manage a
particular service. The action ensures that we enable the service (to have it run when the
machine boots up) and run the service (so, we don’t have to wait for a restart).

Understanding file management

We can use cookbook_file, directory, 1ink, and template resources within Chef to
manage files and folders within the filesystem. Let’s take a look at some examples, which
allow us to:

Copy files

Create symlinks

Create folders

Create multiple folders in one go

Copying a file

One common file operation we might want to perform would be to take a configuration
file from our project and copy it into our virtual machine. One particular use case would
be an Nginx configuration file; we might want to define some virtual hosts and other
settings in a file, which we can share with our colleagues.

Tip

While this works well and can get us up and running quickly, there are modules out there
that allow us to configure Nginx and other software directly from Chef. This typically
works by the module storing a template file (a copy of the configuration file with
placeholders in it) and then inserting data we define within Chef into the template as well

as copying the file onto the machine. However, for the sake of this introductory chapter,
we will just copy a file across.

The cookbook_file resource allows us to copy a file from a Chef cookbook onto the
machine as follows:

cookbook_file "/etc/nginx/sites-available/default" do
backup false
action :create_if_missing

end

Because we omitted the source and path attributes, Chef makes some assumptions. It takes
the basename (in effect, the last element) of the name and uses this as the source (the
basename of /etc/nginx/sites-available/default being the default) and uses the
name as the path (destination). The source file should be located in the files folder within
the cookbook’s own folder.

As this is an Nginx configuration file, it is worth ensuring that Nginx is already installed;
otherwise, Nginx will override this when it installs the first time, and this wouldn’t make
the process idempotent. We can do this by notifying the nginx service, for example:

cookbook_file "/etc/nginx/sites-available/default" do
backup false
action :create_if_missing
notifies :restart, "service[nginx]", :delayed

end

The delayed option allows all of these restart requests to be queued up and executed at
the end of Chef’s execution; the opposite of this being immediately.

Creating a symlink

The 1ink resource allows us to create symbolic links to the existing files and folders on
the filesystem. If, for instance, we want to map a public folder within our web server’s
root directory to a folder within our Vagrant shared folder, we can do this as follows:

link "/var/www/public" do
to "/vagrant/src/public"
end

Creating folders

We can use the directory resource to create folders; this is particularly useful for
scenarios such as folders to hold files (avatars, attachments, and so on) uploaded by users
of a web application:

directory "/var/www/uploads" do
owner "root"
group "root"

mode 00777
action :create
end

We can use the mode parameter to set the permissions of the folder, and the owner and
group parameters to set the user and groups who own the directory (these also can be used
for files we create and manage too). Finally, the :create action is used to ensure that the
folder is created.

Creating multiple folders in a single process with looping

In many web projects, we might need to create a number of folders within our servers or
our Vagrant virtual machines. In particular, we might want to create a number of cache
folders for different parts of our application, or we might want to create some upload
folders.

In order to do this, we can simply create an array that contains all of the folders we want
to create. We can then use the directory resource type and loop through a list of directory
names:

%w{dirl dir2 dir3}.each do |dir|
directory "/tmp/mydirs/#{dir}" do
mode 00777
owner "www-data"
group "www-data"
action :create
end
end

Managing cron

The cron resource type lets us use Chef to manage cron jobs that we need to run on the
machine. We provide a name, in this case, web_cron, the command to run, the user to run
the command, and the times at which to run the command, as shown in the following
code:

cron "web_cron" do
action :create
command "/usr/bin/php /vagrant/cron.php"
user '"root"
hour "1-4"
minute "0, 30"
end

Chef provides us with various different configuration options to define the times at which
a cron should be run; these include:

hour: This value is between 0 and 23 inclusive
minute: This value is between 0 and 59 inclusive
month: This value is between 1 and 12 inclusive
day: This value is between 1 and 31 inclusive
weekday: This value is Sunday (0) - Saturday (6)

If one of these is omitted from the configuration, then Chef runs it for each one of the
available options (that is, if we omit month, it will run from January through to
December). When defining the dates and times, we can either provide a range, for
example, 1-5, or specifics, such as 1, 2,10, 12. We can also provide an emailto property
to e-mail the resulting output from the cron to an e-mail address of our choice.

Running commands

The execute resource allows us to run commands through the terminal on the machine we
are provisioning. One caveat with the exec command is that if you reprovision with Chef
it will rerun the command, which can be damaging depending on the command. What we
can do with the execute resource is set the creates parameter. The creates parameter
tells Chef that a file will be created when the command is run; if Chef finds that file, it
knows that it has already been run, and it won’t run it again.

Take, for example, the following configuration; this would use the PHP composer tool to
download dependencies. The command itself creates a file called composer.lock (we can,
of course, use the exec command itself to create a file manually, perhaps using the touch
command). Because of the lock file that is created, we can use the creates parameter to
prevent the command from being executed multiple times when a lock file is found:

execute "compose" do
command "/bin/rm -rfv /var/www/repo/vendor/* && /bin/rm -f
/var/www/repo/composer.lock && /usr/bin/curl -s
http://getcomposer.org/installer | /usr/bin/php && cd
/var/www/repo && /usr/bin/php /var/www/repo/composer
.phar install"
creates "/var/www/repo/composer.lock"
timeout 6000
end

Managing users and groups

The user and group resource types let us create and manage users and groups. There are
differences between different operating systems as to what Chef can do with the users and
groups and how this works.

Creating groups
The simplest way to create a group is simply to set the action to :create, as follows:

group "wheel" do
action :create
end

Creating users
To create a user, we should provide the following basic information:

The username

The fact that we want to create the user

The group (gid) the user should be part of

The shell to use for the user

The home directory for the user

Whether we want Chef to manage the home directory for the user; in this case, it will
create the folder for us if it does not exist

e The password for the user

The code that will then create our user is as follows:

user "developer" do
action :create
gid "wheel"
shell "/bin/bash"
home "/home/developer"
supports {:manage_home => true}
password "passwordtest"
end

Updating the sudoers file

It’s all well and good being able to create users and groups on our machine, however, one
thing that we can’t do using the user and group resource types is define a user or group as
having elevated privileges, unless we make the user a part of the root group.

We can use an exec command through the execute resource to push some text to the end
of our suoders file; the text we need to push simply tells the file that we want to give the
wheel group sudo privileges. The command we will need to execute is as follows:

/bin/echo \"%wheel ALL=(ALL) ALL\" >> /etc/sudoers

Knowing common resource functionalities

There is also a set of common functionality available to all resources. This common
functionality includes:

The ability to do nothing with the :nothing action

Shared attributes available to all resources: ignore_failure, provider, retries,
retry_delay, and supports

The not_if and only_if conditions to ensure that actions only run when certain
conditions are met; these are commands that are run and depending on their return
value, recipes, and resources can be ignored

There are notifications to instruct other resources that another action has been
completed, or for a resource to take action if another resource changes (subscribes)

Using Chef cookbooks

There are many existing, well-written, reusable Chef cookbooks freely available to use.
The Opscode community site contains a collection of them at

http://community.opscode.com/cookbooks. It is always worth checking whether there is an
existing cookbook that solves your problem before writing your own.

http://community.opscode.com/cookbooks

Using Chef to provision servers

We will take a look at how to use Chef with Vagrant in Chapter 6, Provisioning Vagrant
Machines with Puppet, Ansible, and Chef; however, Chef can also be run in its own right.
Provided Chef is installed (it will be on most Vagrant base boxes, but if you want to run it
on another machine, it might not be, so install it first), you can use the chef-solo
command, passing with it the location of a configuration file to use, and a JSON file that
contains attributes we wish to use (this should include the rub list, which is the list of
recipes and cookbooks we wish to use), as follows:

chef-solo -c /home/michael/chefconfig.rb -j
/home/michael/attributes.json

There are some useful links in this list you can refer to for more information

e Chef-solo configuration: http://docs.opscode.com/config rb_solo.html

e Apply recipes to run lists: http://docs.chef.io/recipes.html#apply-to-run-lists

¢ Anatomy of a Chef run: https://github.com/jhotta/chef-fundamentals-
ja/blob/master/slides/anatomy-of-a-chef-run/01_slide.md

o Chef tutorial: http://www.mechanicalfish.net/configure-a-server-with-chef-solo-in-

five-minutes/

http://docs.opscode.com/config_rb_solo.html
http://docs.chef.io/recipes.html#apply-to-run-lists
https://github.com/jhotta/chef-fundamentals-ja/blob/master/slides/anatomy-of-a-chef-run/01_slide.md
http://www.mechanicalfish.net/configure-a-server-with-chef-solo-in-five-minutes/

Summary

In this chapter, we had a whirlwind tour of Chef and explored the various ways we could
use it to provision a server for our projects. This included how to install software packages
with the package resource and run services with the service resource. We also managed
cron jobs with the cron resource, managed users and groups, and ran commands. Finally,
we looked at how recipes and cookbooks work, and how we can use Chef to provision a
Server.

In the next chapter, we will take a look at how to use both Chef and Puppet to provision a
machine within the context of Vagrant.

Chapter 6. Provisioning Vagrant
Machines with Puppet, Ansible, and Chef

In Chapter 3, Provisioning with Puppet, Chapter 4, Using Ansible, and Chapter 5, Using
Chef, we had an introduction to Puppet, Chef, and Ansible, which are provisioning tools
with support built into Vagrant. However, we only looked at how the tools worked in a
general way; we didn’t look at how to use them with Vagrant.

In this chapter, you will learn the following topics:

Using Puppet within Vagrant

Using Chef within Vagrant

Using Ansible within Vagrant

Recapping how to provision with the built-in SSH provisioner
Working with multiple provisioners

How we can override the provisioning tools through the command line

Provisioning within Vagrant

Vagrant relies on base boxes for the guest virtual machines; these are specifically
preconfigured virtual machine images that have certain software packages preinstalled and
preconfigured. Puppet and Chef are two such software packages that are preinstalled
(Ansible is controlled by Vagrant itself on the host machine, so it isn’t installed on the
virtual machine, but requires an SSH connection to the virtual machine). Vagrant has its
own interface through to these packages from the host machine. This means we can
provide some configuration in our Vagrant file, and Vagrant will pass this information to
the relevant provisioners on the guest VM.

Provisioning with Puppet on Vagrant

Vagrant supports two methods of using Puppet:

e Puppet in standalone mode using the puppet apply command on the VM
e Puppet in client/server mode, whereby the VM (using the Puppet agent) will be
configured from a central server

Let’s take a look at how to configure Vagrant with Puppet using these two different
methods.

Using Puppet in standalone mode

Puppet standalone is the simplest way to use Puppet with Vagrant. We simply tell Vagrant
where we have put our Puppet manifests and modules, and what manifest should be run.
The smallest amount of configuration we need within our Vagrant file in order to use
Puppet is this:

config.vm.provision "puppet" do |puppet|
end

This should go within the vagrant.configure("2") do |config| .. end block of code
within the Vagrant file.

Along with this configuration, we will need a Puppet manifest called default.pp in the
manifests folder of our project root. Vagrant will then use this to provision the machine.

This will instruct Vagrant to run the Puppet provisioner either when the machine boots up
for the first time or if we run the vagrant provision command. The default Vagrant
Puppet setup will make the following assumptions, unless we override the settings:

e Manifests will be located in the manifests folder

e Modules will also be located in the manifests folder (we may want to point these
elsewhere, especially if we are using third-party modules, to keep them separate)

e The manifest file to use will be default.pp (It will obviously be within the
manifests folder; it can be useful to override this if we use Puppet modules and
manifests within the same project for multiple environments. We may have a
manifest for our Vagrant VM, one for our production environment and one for a user
acceptance testing platform, for example.)

We can modify these options by provisioning configuration options, as opposed to just
telling Vagrant to provision with Puppet. When creating projects that are managed by
Vagrant, I like to put all my provision-related files within the provision folder. In order to
override these, within the Puppet configuration for Vagrant, we can then specify options
for the location of the Puppet manifests (puppet.manifests_path), the name of the
Puppet manifest to apply (puppet.manifests_file), and the location of any Puppet
modules, which we may reference within our Puppet manifest (puppet.module_path).
The following customizes these options:

config.vm.provision "puppet" do |puppet|

puppet.manifests_path = "provision/puppet/manifests"
puppet.manifest_file = "default.pp"
puppet.module_path = "provision/puppet/modules"

end

It is important for us to have the ability to at least change the manifest file, as Vagrant also
supports a multi-VM environment, where a single project can have a number of virtual
machines (for example, a web server and a database server). With this setup, we will need
to tell Vagrant which manifest file to use for each of the machines, so that the web server
can be properly configured as a web server and the database server as a database server.

Puppet provisioning in action

With the knowledge we gained of creating Puppet modules and manifests from Chapter 3,
Provisioning with Puppet, we can now point our Vagrant configuration at these files, and
see it in action. If we run a Vagrant file on a project, which is suitably configured, we will
see the output of Puppet applying its settings to our virtual machine in the terminal
window, as shown in the following screenshot:

The console output highlights details of each Puppet instruction that is run, including:

e The stage the instruction is within (this is the Puppet stage, as we discussed in
Chapter 3, Provisioning with Puppet, which allows us to group classes together to
control the ordering of certain actions)

The module

The resource type

The resource name

Whether the instruction was executed successfully

Using Puppet in client/server mode

As discussed earlier, we can also run Puppet within our Vagrant environment in
client/server mode using the Puppet agent on the virtual machine. The configuration
required for this is minimal; we simply tell Vagrant the address of the Puppet server we
are using and the name of our node (the virtual machine we are setting up):

config.vm.provision "puppet_server" do |puppet|

puppet.puppet_server = "puppet.internal.michaelpeacock.co.uk"
puppet.puppet_node = "vm.internal.michaelpeacock.co.uk"
end

The node name is the reference for the machine within the Puppet server, so the Puppet
server knows how our VM should be configured. The node name is also used to generate
an SSL certificate so that the VM can authenticate with the Puppet server (more details on
this are available on the Puppet web51te https: //puppetlabs com, and the Puppet blog,

scaled environments.

https://puppetlabs.com
https://puppetlabs.com/blog/deploying-puppet-in-client-server-standalone-and-massively-scaled-environments

Provisioning with Ansible on Vagrant

In order to use Ansible within a Vagrant project, we need to tell Vagrant where the
playbook and inventory files are:

config.vm.provision "ansible" do |ansible]
ansible.playbook = "provision/ansible/playbook.yml"
end

Ansible needs to know which machines to provision; unlike with other provisioners,
where this is explicitly known from the Vagrantfile configuration, Ansible uses an
inventory file to configure this. The inventory file contains a list of environment names
and IP addresses; we use this file to restrict which commands Ansible runs on specific
environments. We can omit this file, and Vagrant will generate one for all of the virtual
machines it manages for us in the current project.

We can also create our own inventory file. At a minimum, it needs to know the name of
the virtual machine (from our Vagrantfile) and the IP address. To provide only these two
pieces of information, this requires the virtual machine to be running on its own IP address
(per the Vagrantfile networking configuration):

default ansible_ssh_host=10.11.100.123

Alternatively, we can provide the SSH port to use, so that Ansible can connect from our
host machine to our virtual machine:

default ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222

To tell Vagrant and Ansible about our own custom inventory file, we need to add it to our
Vagrantfile as follows:

config.vm.provision "ansible" do |ansible]|
ansible.playbook = "provision/ansible/playbook.yml"
ansible.inventory_file = "provision/ansible/inventory"
end

Provisioning with Chef on Vagrant

Vagrant also supports two methods of using Chef:

e Chef-solo
e Chef in client/server mode with Chef client

Let’s take a look at how to configure Vagrant with Chef using these two different methods.

Using Chef-solo

Chef-solo is the Chef equivalent of Puppet standalone.

The simplest way to use this within our project is simply to provide a Chef run list to
Vagrant; this tells Vagrant which cookbooks should be applied. The following is an
example of telling Vagrant to use the PHP cookbook:

config.vm.provision "chef_solo" do |chef|
chef.add_recipe "php"
end

This takes the PHP cookbook from the default cookbooks folder and applies it to the
virtual machine.

As with Puppet, Vagrant makes some assumptions by default; they are as follows:

e Cookbooks are stored in the cookbooks folder within the project root. The

chef.cookbooks_path setting allows us to override the cookbooks folder location.
We can either provide a single path or an array of paths (wrapped in square brackets,
separated with commas) if we want Vagrant and Chef to look in a range of folders for
our cookbooks. The following code will go into our Vagrant file to tell Vagrant to
override the cookbooks folder with provision/cookbooks:

config.vm.provision '"chef_solo" do |chef|
chef.cookbooks_path = "provision/cookbooks"
end

We can also use Chef roles by providing:

o The location of the roles folder
o The roles we wish to add to the VM

More information on Chef roles can be found on the Opscode website
(http://docs.opscode.com/essentials_roles.html).

The following code in our Vagrant file will set up our project to use Chef roles:

config.vm.provision "chef_solo" do |chef|
chef.roles_path = "provision/roles"
chef.add_role("web")

end

http://docs.opscode.com/essentials_roles.html

Using Chef in client/server mode

Like Puppet, Chef also has a client/server method to provision machines using Chef client
on the VM. To use Chef client, we need to tell Vagrant where the Chef server is located
(through the chef.chef_server_url setting), and provide the authorization key that will
be used to authenticate the VM with the server (through the chef.validation_key_path
setting).

The following code in our Vagrant file will instruct Vagrant to provision from a Chef
server:

config.vm.provision "chef_client" do |chef|
chef.chef_server_url = "http://chef.internal.michaelpeacock.
co.uk:4000/" chef.validation_key_path = "key.pem"
end

We can also override the run list that the Chef server provides for our VM by manually
adding roles and recipes to this configuration. If we have specified different environments
on our Chef server, we can specify which environment we want to use with the
chef.environment configuration.

Tip

Vagrant VMs that use Chef server will have the corresponding node and client entries on
the Chef server, which is named with the hostname of the VM. If we destroy the VM and
recreate it, Chef will generate an error because the client and node entries are already
present on the server. We need to remove these from the Chef server when we destroy a

VM. This can be done using the knife tool from Chef, knife node delete our-vm-
hostname &% knife client delete our-vm-hostname.

Provisioning with SSH — a recap

As we discussed in Chapter 2, Managing Vagrant Boxes and Projects, we can instruct
Vagrant to run a series of SSH commands on the VM. This can be used to provision the
server.

There are two ways to use SSH provisioning:

e Path: This provides a file to execute
¢ Inline: This is used to provide specific commands to run

Both of these are shown as follows:

config.vm.provision "shell", path: "provision/setup.sh"
config.vm.provision "shell", inline: "apt-get install apache2"

Using multiple provisioners on a single
project

We can use multiple provisioners within a single project if we wish; we simply need to put
them in the order we wish for them to be executed within our Vagrant file. The following
command will first run an SSH command before provisioning with Puppet:

Vagrant.configure("2") do |config]
Config.vm.box = "ubuntu/trusty64"

config.vm.provision "shell", inline: "apt-get update"

config.vm.provision "puppet" do |puppet|

puppet.manifests_path = "provision/puppet/manifests"
puppet.manifest_file = "default.pp"
puppet.module_path = "provision/puppet/modules"”
end
end

Using multiple provisioners can be useful, especially if one is more suited at specific tasks
than another, or if we require some prerequisites. For example, when using Puppet and
Chef in client/server mode, they need to have an SSH key to communicate with the server.
We can use a shell provisioner to instruct the VM to download the keys we prepared from
a secure location, before the Puppet or Chef provisioners kick in.

Overriding provisioning via the command
line

There may be instances where we want to restrict or enforce the execution of provisioning
or even a specific provisioner within a project. The following commands are all executed
from the host machine:

We can cancel a running provision by pressing CMD + C at the terminal.

We can instruct Vagrant to rerun provisioning on a VM using the vagrant provision
command.

We can also add - -no-provision to the up command to instruct Vagrant to not run
the provisioning tools when performing the up action, for example, vagrant up --
no-provision.

By default, Vagrant will only provision when it first boots a machine. For subsequent
boots of an existing machine, Vagrant knows that the machines are configured, and it
will not provision them. We can override this with the - -provision option, for
example, vagrant up --provision.

We can also provision with just a specific provisioner should we wish, for example, if
we want to instruct Vagrant to just run Puppet in standalone mode (in a project that
has multiple provisioners configured), we need to run vagrant provision --
provision-with=puppet.

Summary

In this chapter, we learned how we can apply our knowledge of Puppet and Chef from
Chapter 3, Provisioning with Puppet, Chapter 4, Using Ansible, and Chapter 5, Using
Chef, and configure Vagrant to use these tools to provision our virtual machines.

We started off by learning to use Puppet in standalone mode that uses the puppet apply
command to apply locally stored manifests and modules onto the machine. Then, we
continued using Puppet in the client/server mode that uses the Puppet agent to retrieve the
configuration from a central server to provision the machine.

We then learned how to use Ansible to run playbooks on specific machines along with the
fundamentals of Chef-solo, which applies locally stored cookbooks and recipes to the
machine. It also included the usage of Chef in client/server mode, which uses the Chef
client to retrieve the configuration from a central server to provision the machine.

Other standard provisioners were also checked using SSH provisioning and multiple
provisioning options for the same project. Finally, we rounded off by running multiple
provisioners within a single project, overriding provisioning on the command line and
rerunning the provisioning tools with vagrant provision.

Now, we have fully mastered how to set up, use, and manage Vagrant along with the
provisioning tools to work on a single machine project. In Chapter 7, Working with
Multiple Machines, we will take a look at how to use Vagrant and our knowledge of
provisioners to manage a multimachine project, with provisioners configuring different
machines for different purposes for use within the project, for example, a web server and a
database server.

Chapter 7. Working with Multiple
Machines

So far, we have seen how we can get Vagrant to a stage where our development
environment is contained in Vagrant-managed virtual machines, with one of the key
aspects being that these virtual machines mimic our production environment. It gives us
the flexibility of being able to encapsulate the development environment for different
projects so that we can easily switch from one to another without having to modify the
software on our own machines.

In many cases, the features we learned so far are enough. However, web projects are
becoming more and more complex, with developers continually improving, having to deal
with multiple machines in their architecture to help with scalability and stability. While it
can be said that scalability and stability issues won’t impact our development environment
(as we won’t have huge amounts of traffic coming to our development environment,
unless we load-test it), we want to ensure that the coupling between servers within our
code (such as application code connecting to a remote database) works in our development
environment before we put the project online.

Thankfully, Vagrant has support for running multiple virtual machines at the same time
within the same project. We can use this to test multimachine architectures and distributed
systems on our own local machine before we share our changes with colleagues in a
staging environment, and before the project goes live. Replicating a multimachine
environment in development greatly helps us improve the reliability of our projects and
instills confidence in the work that we do.

In this chapter, we will learn the following topics:

e How to run multiple virtual machines within a single Vagrant project
e How to provide different distinct configuration to these virtual machines, including
the following:

o Names

o [P addresses on a private network so that they can communicate with one
another

o Base boxes

o Provisioning

o Shared folders

e How to connect to the different virtual machines over SSH without having to know
or remember their IP addresses

Using multiple machines with Vagrant

In order to use multiple virtual machines within our project, we need to tell Vagrant about
them, and we need to provide additional configuration for the individual virtual machines.

Defining multiple virtual machines

Within the standard Vagrant project configuration file, we can tell Vagrant that we wish to
assign a name to a virtual machine being managed by the project. Within this
subconfiguration, we provide the information Vagrant needs that is specific to that VM.

The syntax for the subconfigurations is as follows:

config.vm.define :name_of_the_vm do |name_of_the_vm|
#configuration specific to the virtual machine
end

This is applied to a project that requires two virtual machines, named server1 and
server2, both running the precise64 box:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config]|
config.vm.define :serverl do |serverl|
serverl.vm.box = "hashicorp/precise64"
end
config.vm.define :server2 do |server2|
server2.vm.box = "hashicorp/precise64"

end

end

Connecting to the multiple virtual
machines over SSH

When our multiple machines boot up in our multimachine project, Vagrant automatically
maps different ports from our host machine to the SSH ports on the various guest
machines.

Let’s take a look at the console output when booting a Vagrant project with two virtual
machines within it:

Bringing machine up H1’rh]
== serverl: Importing bose box mmlmmfpremseﬁﬁl
== serverl: Hatching HAC oddress for HAT networking...
== serverl: Checking if box 'hashicorp/precizetd” iz up to date...
= serverl: Setting the nome of the WYW: pocki—vogrant-book serveril 1414969677048 91863
== serverl: Clearing any previously set network interfoces...
: Preparing network interfoces based on configuration...
: Adapter 1
: Adapter 2 tonly
Forwarding ports...
‘adopter 1%
Bootirg VH...
¥oiting for mochine to boot. This may toke o few minutes...

WiNg. ..

Ehackmg for g.lest uddltmns in 'lr'I'I...

[:mflg.[rmg and Eﬂ:tlllrl_] network interfoces..
I'qu'ltmg shared folders...
wogrant = chi = gl nack t—vagrant-book.
Imurtmg huse o mmlmmfpremseﬁﬁl
= Hatching HAC oddress for MAT networking...
: Checking if box ‘hashicorp/precizetd’ is up to date...
: Setting the nome of the YH: pockt—vogront—book_ server? 1414969743105 _973M
: Fixed port collision for 22 — 2272. How on port 2288,
: Clearing aony previously set network interfoces...
: Preparing network interfoces based on configuration...
Adapter 1: n
Adapter 2:
Forwarding ports

Wing. ..

= Checking for guest odditions in WH...
i ot match the ins
bt in

from
re thi

As shown in the preceding screenshot, Vagrant maps the SSH port on the virtual machine
designated server1 to port 2222 on the host machine, and the SSH port of the machine
designated server2 to the port 2200.

This gives us the opportunity of simply using the standard SSH command from a terminal
(or the likes of PuTTY on a Windows machine), to connect to localhost with the port
number that Vagrant assigns to each machine.

To connect to the machine that is mapped to port 2200, we simply run the ssh
vagrant@localhost -p2200 command. The -p22006 option tells the command to use a
nonstandard port, and specifies the port we wish to use, in this case 2200.

Alternatively, we can use the vagrant ssh command to connect to the virtual machines.
The difference is that in a multivirtual machine environment, we must also provide the
name of the virtual machine. For example, vagrant ssh serveri. This is the most
common usage of connecting to a machine, rather than directly connecting to the virtual
machine via its IP address.

Michae lz-MBP :packt-vagrant-book michae
Welcome to Ubuntu 12.84 LTS i

* Documentation: https:/Ahelp.ubuntu.com/
4.1 L

Run ‘'do-release-upgrade ' to upgrade to it.

Welcome to wour Magrant-built wirtual machine.
3:16:51 2814 from 18.8.2.2
vagrant@pr

Networking the multiple virtual machines

In a single virtual machine project, the IP address of the virtual machine isn’t that
important. In a multivirtual machine project, however, it is more likely that we want the
two machines to communicate with one another directly; in order to do this, we need to be
aware of their IP addresses, or we need to forward nonconflicting ports to the localhost
instead. As we want to have our Vagrant projects distributed to our team members, and
some of these team members may be within the same office, we need to:

¢ Predefine the IP address so that any of our projects code that needs to communicate
with the other virtual machine can do so, without the other team members needing to
change configurations

e Ensure that the virtual machines are running on a private network only that are
attached to the machine of the user running it; this will prevent the IP address
conflicts within the network

In order to do this, we simply use the networking options, which we learned in Chapter 2,
Managing Vagrant Boxes and Projects. Because we want the virtual machines to run in a

private network, it makes sense to use a range of private IP addresses, which are different
to your own network. For example, my network range is 192.168.1.xxx, so I will use the
range 10.11.1.xxx for my virtual machine network (the IP address ranges are a subset of
the range of addresses preassigned for internal networks), as shown in the following code:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.define :serverl do |serverl|
serverl.vm.box = "hashicorp/precise64"
serverl.vm.network "private_network", ip: "10.11.1.100"

end

config.vm.define :server2 do |server2|

server2.vm.box = "hashicorp/precise64"
server2.vm.network :private_network, ip: "10.11.1.101"
end

end

Let’s test this out and test whether we can connect from one machine to the other:

1. Power up the project (vagrant up).
2. Connect to serverl (vagrant ssh serverl).
3. Ping server2 from serveri (ping 10.11.1.101).

The output shows that we are able to communicate over the network from serveri to
server?2 as follows:

lp .ubuntu .. com/
lable.
to upgrade to it.

bi

from 18.11.1 HI!
from 168.11.1.181: icmp

Provisioning the machines separately

As the virtual machines in our projects are going to be used for different purposes, we
need to use different provisioning for the machines, so they both have only the software
and configurations needed to do their job.

We take the provisioning code, which we learned in Chapter 3, Provisioning with Puppet,
and Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and Chef, and we
place the relevant code within the virtual machine’s subconfiguration. There are some key
changes that we need to make:

e The opening line of the provision code must reference the server name of the virtual
machine it relates to

e For Puppet, we should use a different manifest file for the two virtual machines

e For Chef, we will apply different roles to the different machines

The following code provisions both the machines using Puppet. They both rely on the
same set of Puppet modules, the same path that points to the manifests folder, however,
they both use different manifests to set up the projects (alternatively, we can configure the
machines and identify them as nodes to a Puppet master to retrieve the appropriate
configuration):

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.define :serverl do |serverl|
serverl.vm.box = "hashicorp/precise64"

serverl.vm.network "private_network", ip: "10.11.1.100"

serverl.vm.provision :puppet do |puppet|

puppet.manifests_path = "provision/puppet/manifests"
puppet.manifest_file = "serverl.pp"
puppet.module_path = "provision/puppet/modules"

end

end

config.vm.define :server2 do |server2|
server2.vm.box = "hashicorp/precise64"
server2.vm.network :private_network, ip: "10.11.1.101"

server2.vm.provision :puppet do |puppet|

puppet.manifests_path = "provision/puppet/manifests"
puppet.manifest_file = "server2.pp"
puppet.module_path = "provision/puppet/modules"

end

end

end

Within the provisions for each machine, we would need to ensure that we allow both the
machines to communicate with one another. For example, by default, a MySQL Server
won’t accept connections from a remote server, so we would need to modify (or replace)
the configuration file with one that allows this, or we would need to use a Puppet module
or Chef cookbook that allows us to modify this configuration value.

Tip
You should check the documentation for any software you are communicating with over

the network to see how it needs to be configured. With MySQL, you need to edit the
my.cnf file, and set the bind address to 0.0.0.0.

Destroying a multimachine project

If we want to completely remove the virtual machines for our project from our host
machine, we can use the vagrant destroy command, as with normal projects. The
difference being that Vagrant will ask us to confirm the removal of each machine within
the project:

‘roamut L i michoelF

Summary

In this chapter, we set up a Vagrant project that uses multiple virtual machines. During the
course of this chapter, we learned how to create multiple virtual machines within a single
project. In order to achieve this, we also looked at how to assign specific names to these
individual machines, how to connect to the individual machines over SSH (as previously
vagrant ssh would take us to just a single machine), and how to configure the individual
machines, specifying IP addresses, base boxes, and different provisioning options for
them.

Now, we learned the vast majority of Vagrant’s functionality and how to use it within
different project scenarios. In the next chapter, we will take a look at how to build our own
custom base box to use with our projects, configuring a blank operating system
installation into a compatible base image.

Chapter 8. Creating Your Own Box

So far, we have used Vagrant with the freely available base boxes. There are also many
other existing base Vagrant boxes out there. In Chapter 9, HashiCorp Atlas, we will talk
about how we can discover and distribute base boxes. When we discussed Vagrant boxes
initially in Chapter 1, Getting Started with Vagrant, and Chapter 2, Managing Vagrant
Boxes and Projects, we learned about how we can export a Vagrant environment into a
new base box.

Creating a new base box involves us either taking an existing box, making changes to it,
and exporting it, or creating a new virtual machine entirely, installing the operating system
and building up a base box for export. In this chapter, we will take a look at how we can
take a Linux installation disk and turn it into a working Vagrant base box, which we can
further customize as much as we like.

In this chapter, you will learn about the following topics:

How to create a new VirtualBox machine, suitably configured for Vagrant
How to install the VirtualBox Guest Additions

How to set up the Linux installation to let Vagrant log in

How to install Puppet

How to install Chef

How to clean up the box

How to export the VM into a base box

Getting started

In order to create a new base box, we need to download a copy of the operating system we
want to use (we will use Ubuntu Server Version 13.04 64-bit from
http://releases.ubuntu.com/raring/). We then need to use VirtualBox to create a virtual
machine, powered by the operating system we have downloaded. Next, we need to
configure the virtual machine for Vagrant. Finally, we need to export the virtual machine
into a Vagrant base box.

Tip
You can also use other distributions of Linux or even Windows if you wish. Specifics will

vary with the operating system used, so you will need to consult the relevant
documentation.

The requirements for a new base box are detailed on the Vagrant website
(https://docs.vagrantup.com/v2/boxes/base.html).

http://releases.ubuntu.com/raring/
https://docs.vagrantup.com/v2/boxes/base.html

Preparing the VirtualBox machine

In order to create the virtual machine with VirtualBox, we need to open the VirtualBox
and click on the New button in the upper-left corner of the VirtualBox to start the process:

3

Mew

Let’s name the machine vagrant-ubuntu-raring. This is the format recommended by
Vagrant. Select Linux in the Type dropdown and Version as Ubuntu (64 bit):

800 Create Virtual Machine

Name and operating system

Please choose a descriptive name for the new virtual
machine and select the type of operating system you intend
to install on it. The name you choose will be used
throughout VirtualBox to identify this machine.

Name: 1..r.r_u:_;r.a¢r1'c—uI::untu—raxrin;;ﬂ

Type: Linux '%7.{

Version: | Ubuntu (64 bit)

a4k

a4k

Hide Description Go Back | Continue |

Vagrant recommends setting a memory allocation of 360 MB. This is typically sufficient
for a base installation, and users can override this within their Vagrantfile if they need
more resources:

I8 00 Create Virtual Machine

Memory size

Select the amount of memory (RAM) in megabytes to be
allocated to the virtual machine.

The recommended memory size is 512 MB.

—C y — —— 360/ MB

4 ME 4096 MB

| Go Back | [Continue |

We need our virtual machine to have some storage allocation, so let’s select Create a
virtual hard drive now:

806 Create Virtual Machine

Hard drive

If vou wish you can add a virtual hard drive to the new
machine. You can either create a new hard drive file or select
one from the list or from another location using the folder
icon.

If you need a more complex storage set-up you can skip this
step and make the changes to the machine settings once the
machine is created.

The recommended size of the hard drive is 8.00 GB.
(1 Do not add a virtual hard drive

(») Create a virtual hard drive now
() Use an existing virtual hard drive file

box-diskl.vmdk (Normal, 80.00 GB)

| GoBack | [Create |

We need to select VMDK (Virtual Machine Disk) as the disk type:

8re Create Virtual Hard Drive

Hard drive file type

Please choose the type of file that you would like to use for the new
virtual hard drive. If you do not need to use it with other virtualization
software you can leave this setting unchanged.

(VDI (VirtualBox Disk Image)
(=) VMDK (Virtual Machine Disk)
() VHD (Virtual Hard Disk)

() HDD (Parallels Hard Disk)

() QED (QEMU enhanced disk)
() QCOW (QEMU Copy-On-Write)

| Hide Description ._! Co Back | Continue |

We need to create a drive, which is dynamically allocated:

8006 Create Virtual Hard Drive

Storage on physical hard drive

Please choose whether the new virtual hard drive file should grow as it is
used (dynamically allocated) or if it should be created at its maximum
size (fixed size).

A dynamically allocated hard drive file will only use space on your
physical hard drive as it fills up (up to a maximum fixed size}, although
it will not shrink again automatically when space on it is freed.

A fixed size hard drive file may take longer to create on some systems
but is often faster to use.

You can also choose to split the hard drive file into several files of up to
two gigabytes each. This is mainly useful if you wish to store the virtual
machine on removable USB devices or old systems, some of which
cannot handle very large files.

{») Dynamically allocated
() Fixed size

| | Split into files of less than 2GB

| GoBack | [Continue

Let’s give the drive a maximum limit of 40.00 GB; the Vagrant documentation suggests
that this is typically sufficient for many projects:

8006 Create Virtual Hard Drive

File location and size

Please type the name of the new virtual hard drive file into the box below
or click on the folder icon to select a different folder to create the file in.

vagrant-ubuntu-raring P

Select the size of the virtual hard drive in megabytes. This size is the
limit on the amount of file data that a virtual machine will be able to
store on the hard drive.

/ ' 40.00 GB
4.00 MB 2.00 TB

GoBack | | Create |

Clicking on Create will then save the virtual machine within VirtualBox. We need to
make some additional configuration changes, which are not a part of the creation wizard,
so let’s click on the VM on the left-hand side of the screen, and then click on the Settings
button:

LS
.)
et

Settings

The first additional change is Audio, so let’s turn this off:

vagrant-ubuntu-raring - Audio

= EH = g @@Lﬂ

General Systern Display Storage Ports Shared Folders

[|Enable Audio

Host Audio Driver: | CoreAudio

Audio Controller: | ICH ACS7

@) [Cancel | [SOKSS

We need to ensure that the network adapter configured within VirtualBox is enabled and
uses NAT. Without this, Vagrant won’t work:

vagrant-ubuntu-raring - Metwork

= H =@ g ® (-

General Systermn Display Storage Audio Ports Shared Folders

g Adapter 2 =~ Adapter 3 | Adapter 4 |

™ Enable Network Adapter

Attached to: | NAT *

Name:

7 Advanced

Adapter Type: | Intel PRO/1000 MT Desktop (82540EM)

Promiscuous Mode: | Deny

MAC Address: |080027ACEB12 =
[E Cable connected

| Port Forwarding |

@) | Cancel | [OK |

Finally, let’s turn off USB support, as this is generally not required:

vagrant-ubuntu-raring - Ports

= =Y p & D

General System Display Storage Audio Metwork | Ports

| {3 Serial Ports m

Shared Folders

| | Enable USB Controller
Enable USB 2.0 (EHCI} Controller
USB Device Filters

[? | @ Non-optimal settings detected Cancel | OK]

Now we need to switch on the virtual machine. When it powers on, it asks us to select a
startup disk, which contains the operating system we wish to install. Clicking on the folder
icon on this screen lets us select a custom file; in our case, this will be our ubuntu-13.04-
server-amd64.iso file.

The virtual machine will then boot from the image file and take us to the installation
process. We should follow this process to set up the machine.

There are some specific values for some things that Vagrant expects, so wherever
appropriate we should ensure that we set them as follows:

¢ By convention, the operating system’s hostname should be of the vagrant -
operating-system-name format, for example, vagrant-ubuntu-raring
The domain is vagrantup.com

The root password is vagrant

The main account username is vagrant

The main account password is vagrant

In most other cases, the default options will be fine, as we will configure other aspects
later. When prompted as to any packages to install by default, we should select to install
openssh-server.

http://vagrantup.com

VirtualBox Guest Additions

First, let’s log in to our new virtual machine within VirtualBox. Once logged in, at the
terminal, we should run apt-get update to update our package manager.

Vagrant has a set of tools called Guest Additions that provide some key integration points
between the virtual machine and VirtualBox; this includes support for shared folders and
networking integration.

To install these tools, once the VM is running, we should click on the Devices menu
within Virtual Box and click on Install Guest Additions... (Host+D):

Devices [N

This simply boots a virtual CD within the virtual machine; we still need to actually install
the Guest Additions, as follows:

1. The first step is to install a prerequisite, which are the Linux headers:

sudo apt-get install linux-headers-$(uname -r) build-essential

2. Next, we will mount the virtual CD, which VirtualBox has loaded up into a folder
within the VM:

sudo mount /dev/cdrom /media/cdrom

3. Finally, we will run the installation command:

sudo sh /media/cdrom/VBoxLinuxAdditions.run

Vagrant authentication

Vagrant communicates with base boxes over SSH. Vagrant itself has a private key, for
which we need to install the corresponding public key into the virtual machine. Vagrant
expects a specific user with a predefined password to also be within the machine, and the
user needs to be configured so that it isn’t prompted for the password when attempting to
perform actions that require elevated privileges (sudo).

Vagrant user and admin group

Provided we created the Vagrant user during the installation process (as per the main
account user and password mentioned earlier), we then need to create an admin group and
add the Vagrant user to this group.

First, we need to create the group:

Sudo groupadd admin

To add the Vagrant user to this group, run the following command:

Sudo usermod -a -G admin vagrant

The sudoers file

In order to stop the virtual machine asking for the user’s password when running elevated
actions, we need to modify the sudoers file. This is a file that tells the operating system
which users can perform elevated actions and the settings around them. More information
can be found at https://help.ubuntu.com/community/Sudoers. We need to add a
configuration line to this file, which tells the operating system not to prompt for the
password. Because the file is very important, and an incorrect configuration would break
the operating system, there is a program built into Ubuntu, which won’t save if the file is
not edited correctly.

First, let’s run this program:
visudo

At the bottom of the file, let’s add this line to prevent the operating system from
prompting for the password:

%admin ALL=(ALL) NOPASSWD: ALL
Another requirement of Vagrant is that we add the following line near the top of the file:
Defaults env_keep="SSH_AUTH_SOCK"

We also need to disable requiretty in the sudoers file by commenting out the
appropriate line as follows:

#Default requiretty

Tip

requiretty is an option that requires users to have a physical connection to a server in
order to run the sudo commands.

https://help.ubuntu.com/community/Sudoers

Insecure public/private key pair

The insecure public and private key pair is publicly available at
https://github.com/mitchellh/vagrant/tree/master/keys/.

Tip
An upcoming version of Vagrant will change how Vagrant works with these insecure keys.

When detected, they will be replaced with new keys for your machine; however, at time of
writing, this has not yet been released.

We need to copy the contents of the public key and paste it into the authorized_hosts
file. Provided we are logged in as the Vagrant user, we can run the following command to
let us edit this file:

nano ~/.ssh/authorized_hosts

If the . ssh folder does not already exist, we first need to create it using the mkdir
command. Alternatively, we can download the file contents and put it straight into the
authorized_hosts file:

wget
https://raw.github.com/mitchellh/vagrant/master/keys/
vagrant.pub -0 ~/.ssh/authorized_hosts

Note

The . ssh directory needs to have permissions of 6700, and the authorized_hosts file
needs to have permissions of 0644 (chmod 0644 ~/.ssh/authorized_keys).

https://github.com/mitchellh/vagrant/tree/master/keys/

Provisioners

Because Vagrant provides support for provisioners, we should install these into the virtual
machine so that Vagrant can tell them to provision our environments.

Installing Puppet

Puppet is installed using the built-in package manager:

sudo apt-get install puppet

Tip

The version of Puppet in the various operating system repositories may be slightly dated.

Puppet can also be installed manually or via the repository site provided by Puppet Labs.
More information is available on the Puppet labs website at

http://docs.puppetlabs.com/guides/installation.html.

http://docs.puppetlabs.com/guides/installation.html

Installing Chef

As per the Chef documentation at https://www.chef.io/download-chef-client/, we can get a
single command to install Chef for us:

curl -L https://www.chef.io/chef/install.sh | sudo bash

https://www.chef.io/download-chef-client/

Cleaning up the VM

Before we package up the virtual machine into a Vagrant base box, let’s clean up some of
the files we used. We made use of the tmp folder, so let’s empty this. We should also clean
up our package manager’s cache, as this uses additional space when the base box is
packaged:

rm -rf /tmp/*
sudo apt-get clean

Export

Finally, we use Vagrant’s package subcommand on the host machine (not the guest) to
package up the box:

vagrant package --base vagrant-ubuntu-raring

The complete details of the package subcommand are available on the Vagrant website

(http://docs.vagrantup.com/v2/cli/package.html).

http://docs.vagrantup.com/v2/cli/package.html

Summary

In this chapter, we learned how to create, a base box for our Vagrant projects from scratch.
This can be used to create base boxes from operating systems, which don’t necessarily
have boxes available to download.

Now, we know how to create, manage, distribute, and even build development
environments from scratch for our projects!

Next, we will take a look at Vagrant Cloud, which lets us search for and discover different
base boxes as well as letting us distribute our own box—either to the public or to a private
team. Vagrant Cloud also has the functionality to allow us to share our Vagrant
development environment with others—be that to demonstrate the functionality we have
built on a Vagrant-supported project, or to provide SSH access to a team member who can
help us with support issues.

Chapter 9. HashiCorp Atlas

HashiCorp Atlas (https://atlas.hashicorp.com), formerly Vagrant Cloud, is a suite of online
services provided by HashiCorp (the commercial company behind Vagrant), which adds
additional capabilities to Vagrant and brings together many of their open source
components. Primarily, Atlas supports two features:

e Vagrant Share: The ability to share access to your Vagrant environment and to allow
others to remotely connect to it

e Vagrant box discovery and sharing: The ability to share Vagrant boxes with others,
hosting the metadata for boxes, their versions, and facilitating box updates

These features are available free of charge, though paying customers can gain access to
additional functionality, including the following:

e Custom and static domain names for Vagrant Share

e Private boxes that can be shared with specific teams privately

¢ Box hosting: Vagrant Cloud will actually store the box file on their platform as well
as the metadata

e Support for Windows and Mac Vagrant boxes

e Granular support for user access controls

In this chapter, you will learn about the following topics:

e How to discover and use boxes provided on Atlas

e How to distribute your own boxes on Atlas

e How to allow others to connect to your Vagrant machine through Atlas
e How to share your Vagrant machine through Atlas

https://atlas.hashicorp.com

Discovering boxes

The Atlas website contains a directory of public boxes for Vagrant
(https://atlas.hashicorp.com/boxes/search). Within this directory, we can search for the
specific operating system or distribution version that we are interested in:

Sign up 2+ Signin £

Discover Vagrant Boxes

This page lets you discover and use Vagrant Boxes created by the community. You can search by operating system,
architecture or provider.

Providerfilter virtualbox

Sortby Recently Created | Recently Updated

ard Ubuntu 12.04 LTS é4- i
1 Ubuntu 12.04 LTS 64-bit box. 944,021 downloads | 1,10

®
H
&

For each result, we can see the box name, which is formatted as the name of the distributor
followed by a slash, followed by the name or distribution name. In the following case, we
have the Ubuntu 12.04 LTS release that HashiCorp has provided (named
hashicorp/precise64):

H

~rd=ard Lk IO | TS Al O
dard Ubuntu 12.04 LTS 64-bit box. 244,021 dawr 11.0 lease 11 months ago

If we click in a box, we can see which providers the box supports. In this case, we can use
the box with VirtualBox, VMware Fusion, and Hyper-V. It is important to use boxes
that support the provider we are using—not all boxes support all providers.

https://atlas.hashicorp.com/boxes/search

Installing new boxes

To install a public box, we use the vagrant box add command, and pass the name of the
box:

vagrant box add hashicorp/precise64

The name of the box can either be a URL or file path to an existing box file (for example,
if we have one stored on our network that we wish to use) or an Atlas box name, like in
the preceding command.

Updating existing boxes

One of the key benefits of using Atlas for box discovery is that changes and versions of
these boxes can be managed. If a particular box contains a bug or security vulnerability,
distributors may update their boxes to fix these issues, or contain new functionality. This
can be useful, as it saves us the need to update our provisioning configuration to make
these updates.

When in a Vagrant projects folder, we can run the following command to check for
updates for the projects box and update it:

vagrant box update

This will download the new box; however, we won’t see the effect of the new box unless
we destroy our Vagrant machine and rebuild it from the updated box.

If we want to update a specific box, as opposed to the one that is tied to the project we are
in, we can use the box flag to provide the name of the box we want to update:

vagrant box update --box the-box/name

Checking for outdated boxes

We can quickly check to see whether any of the boxes we installed are out of date, by
running the following command:

vagrant box outdated --global

If we omit the global flag, then the command is only within the context of the current
Vagrant project with the flag it relates to all boxes installed:

Michaels-MBP:packt-vagrant-temp michael$ vagrant box outdated --global

g IDUNTU "US T4 | 14.94) 1S UuUp 3 AATTE

* 'quantaled4_roderik’™ wasn't added from a catalog, no version information
* 'quantalé4' wasn't added from a catalog, no version information

*

¥

"precisebd4’ wasn't added from a catalog, no version information
"laravel/homestead’ is outdated! Current: 0.1.9. Latest: 0.2.0

¥ "ha<shicorn/precisogd (vl 1) S up to date

Michaelz-MBP:ﬁﬂckt~vagrﬂﬂt~temp michuéls

Distributing boxes

To distribute boxes with Atlas, we need to create an account and log in to the Atlas
website (https://atlas.hashicorp.com/account/new). The username that we select when
registering is used as the prefix for boxes we distribute—unless, of course, we go onto a
paid plan, which has organizational support, or we collaborate with others on a box. Once
logged in, we need to click on the Create Box link to go to the box creation form

(https://atlas.hashicorp.com/boxes/new).

On this page, we need to provide a name and description for our box. As we are on the
free plan, we cannot make this a private box, so it will be made public:

Create a new box

Name
mkpeacock ﬂ !
The name of your box is used in tools, notifications, routing and Ul. Short and simple is best.
Private
Private boxes can only be accessed by collaborators and owners of the parent ocrganization.

Short description

The short description is used when there isn't enough space for the description, like in search results.

Description (vou can use

Your description will display as rendered Markdown on the boxes page.

As the boxes distributed through Atlas can be versioned, to let us roll out new updates to
users of the box, we need to create an initial version for the box, along with a description
of what the version contains:

https://atlas.hashicorp.com/account/new
https://atlas.hashicorp.com/boxes/new

New Box Version

Version

The version should be compatible with

Description (vou can use

4

The version description functions as release notes. Include any important changes here.

Create version

Next, we need to click on Create new provider to add a new provider that is supported by
this version of the box:

i EX
This version was a minute ago. There is not currently a released version Edit viil
Version

Providers

@ Thereare no providers for this version Create new provider

Finally, we specify the provider, and provide a URL to where the box can be downloaded.
With the free version of Atlas, we need to provide a link to the box, as there is no storage
allowance for Vagrant Cloud to host the file for us:

New Box Provider

Provider

Vagrant will need to know how to use this provider. Core providers: virtualbox, vinware_desktop, digitalocean, aws, rackspace,
hyperv, and parallels.

URL
Upload

Once a box has been created and published, it can be discovered and installed, as we
discussed in the Discovering boxes section, by the public, or by us using the name of the
box in our Vagrantfile, for example, mkpeacock/testbox.

Sharing and connecting with Atlas

With Atlas, there are three new Vagrant commands at our disposal, which are as follows:

® vagrant connect
® vagrant share
e vagrant login

Logging Vagrant into Vagrant Cloud

In order to share our Vagrant environment, we need to connect our Vagrant installation to
our Vagrant Cloud account. We can check to see whether this is already the case by
running the following command:

vagrant login --check

This will check to see whether we are already logged in:

Michaels-MBP:packt-vagrant-temp michael$ vagrant login --check

As we are not logged in, we need to run vagrant login in order to log in. First, we are
prompted for our username or e-mail address from Atlas, and then for our password:

Michaels-MBP:packt-vagrant-temp michael$ vagrant login

In a moment we'll ask for your username and password to Vagrant Cloud.
After authenticating, we will store an access token locally. Your
login details will be transmitted over a secure connection, and are
never stored on disk locally.

If you don't have a Vagrant Cloud account, sign up at vagrantcloud. com

Username or Email: mkpeacock@gmail.com
Password (will be hidden):
You're now logged 1in!

Michaels-MBP:packt-vagrant-temp michael$

Once logged in, we can use the logout flag to log out of Atlas:
vagrant login --logout

Michaels-MBP:packt-vagrant-temp michael$ vagrant login --logout

You are logged out.

Sharing a Vagrant virtual machine over HT'TP(S)

In order to share the web interface with a Vagrant virtual machine, the virtual machine
must either have its own IP address on our local network or an HTTP(S) port forwarded
from the guest to the host machine. Vagrant requires this so that your host machine can
connect to the relevant port on your virtual machine.

Provided we have either given the virtual machine its own network address or forward a
port to a recognizable HTTP(S) port, then we can run the vagrant share command to
create a public URL for this machine. We can also specify the HTTP and HTTPS ports
that we are using on the virtual machine if Vagrant doesn’t detect them with the --http
and - -https flags:

Michaels-MBP:packt-vagrant-temp michael$ vagrant share
==> default: Detecting network information for machine...
default: Local machine address: 192.168.33.10
default: Local HTTP port: 80
default: Local HTTPS port: disabled

==> default: Checking authentication and authorization...
==> default: Creating Vagrant Share session...
default: 11 be at: profound-cony-669

" S rur

After running vagrant share, Vagrant will generate a name and URL to access the share
from. As we are on a free plan, we cannot customize or reserve URLs. Our terminal
session is now locked to run this sharing session, so we need to leave this running. If we
visit the URL in a browser, we should be able to see whatever web service we are running
on our virtual machine:

= C' [profound-cony-6698.vagrantshare.com i~ B m -"E

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

To stop sharing, we need to close the terminal or stop the vagrant share command from
running:

ACEX1ting due to interrupt.

Michaels-MBP:packt-vagrant-temp michael$

Sharing and connecting to a Vagrant virtual
machine

By default, vagrant share only shares HTTP(S) traffic. We can, however, pass the --ssh
flag to also share SSH access that will allow other Vagrant users to connect to the
machine:

vagrant share --ssh

After running this command, we will be prompted to provide and confirm a password to
be used to encrypt the SSH key so that the users are required to provide a password when
they connect. If required, this can be omitted with the - -ssh-no-password flag instead of
- -ssh. We can also make a single use SSH connection with - -ssh-once, as shown in the
following screenshot:

Michaels-MBP:packt-vagrant-temp michael$ vagrant share --ssh
==> default: Detecting network information for machine...
default: Local machine address: 192.168.33.10¢
default: Local HTTP port: 80
default: Local HTTPS port: disabled
default: SSH Port: 22
==> default: Generating new SSH key...
default: Please enter a password to encrypt the key:
default: Repeat the password to confirm:
default: Inserting generated S5H key into machine...
> default: Checking authentication and authorization...
default: Creating Vagrant Share session...

default: Share will be at: difficult-e ant-4464
' ult: Your nt * T 11 '

As with a regular share command, we get a URL and a name. We can prevent HTTP(S)
from being shared by passing the - -disable-http flag.

Once the sharing process is running, we can provide the name and password to whomever
we want to be able to connect to the machine. They simply run the vagrant connect --
ssh difficult-elephant-4464 command (where the last parameter is the name of the
connection generated by Atlas) to start a connection with the machine, and provide the
password when prompted:

Press enter to continue,

Password for the private key:

Executing SSH...

Welcome to Ubuntu 14.04 LTS (GHNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/
System information as of Thu Nov 13 18:58:33 UTC 2014

System load: 0.0 Processes:

Usage of /: 2.7% of 39.34GB Users logged in:

Memory u o 26% IP address for eth®: 10.0.2.15
Swap usage: 0% IP address for ethl: 192.168.33.10

Graph this data and manage this system at:
https://landscape. canonical . com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu. com/business/services/cloud

The user is then logged into the Vagrant machine!

Summary

In this chapter, we learned about the extra functionality offered by the Vagrant Cloud
service.

We discovered how to find third-party Vagrant boxes for use with our projects, how to
check for updates for boxes that use Atlas, and how to distribute our own base boxes
through Atlas. Finally, we looked at authenticating with Atlas to share our Vagrant
environment with our colleagues.

Now that we know more about the functionality offered by Vagrant, we can use it
effectively in our projects!

Appendix A. A Sample LEMP Stack

Now that we have a good knowledge of using Vagrant to manage software development
projects and how to use the Puppet provisioning tool, let’s take a look at how to use these
tools to build a Linux, Nginx, MySQL, and PHP (LEMP) development environment
with Vagrant.

In this appendix, you will learn the following topics:

e How to update the package manager
e How to create a LEMP-based development environment in Vagrant, including the
following:

How to install the Nginx web server

How to customize the Nginx configuration file
How to install PHP

How to install and configure MySQL

How to install e-mail sending services

O O O O O

With the exception of MySQL, we will create simple Puppet modules to install and
manage the software required. For MySQL, we will use the official Puppet module from
Puppet Labs; this module makes it very easy for us to install and configure all aspects of
MySQL.

Creating the Vagrant project

First, we want to create a new project, so let’s create a new folder called lemp-stack and
initialize a new ubuntu/trusty64 Vagrant project within it by executing the following
commands:

mkdir lemp-stack
cd lemp-stack
vagrant init ubuntu/trusty64 ub

The easiest way for us to pull in the MySQL Puppet module is to simply add it as a git
submodule to our project. In order to add a git submodule, our project needs to be a git
repository, so let’s initialize it as a git repository now to save time later:

git init

To make the virtual machine reflective of a real-world production server, instead of
forwarding the web server port on the virtual machine to another port on our host
machine, we will instead network the virtual machine. This means that we would be able

to access the web server via port 80 (which is typical on a production web server) by
connecting directly to the virtual machine.

In order to ensure a fixed IP address to which we can allocate a hostname on our network,
we need to uncomment the following line from our Vagrantfile by removing the # from the
start of the line:

config.vm.network "private_network", ip: "192.168.33.10"
The IP address can be changed depending on the needs of our project.

As this is a sample LEMP stack designed for web-based projects, let’s configure our
projects directory to a relevant web folder on the virtual machine:

config.vm.synced_folder ".", "/var/www/project", type: '"nfs"

We will still need to configure our web server to point to this folder; however, it is more
appropriate than the default mapping location of /vagrant.

Before we run our Puppet provisioner to install our LEMP stack, we should instruct
Vagrant to run the apt-get update command on the virtual machine. Without this, it isn’t
always possible to install new packages. So, let’s add the following line to our Vagrant file
within the |config| block:

config.vm.provision "shell", inline: "apt-get update"

As we will put our Puppet modules and manifests in a provision folder, we need to
configure Vagrant to use the correct folders for our Puppet manifests and modules as well
as the default manifest file. Adding the following code to our Vagrantfile will do this for
us:

config.vm.provision :puppet do |puppet|
puppet.manifests_path = "provision/manifests"

puppet.module_path = "provision/modules"
puppet.manifest_file = "vagrant.pp"
end

Creating the Puppet manifests

Let’s start by creating some folders for our Puppet modules and manifests by executing
the following commands:

mkdir provision
cd provision
mkdir modules
mkdir manifests

For each of the modules we want to create, we need to create a folder within the
provision/modules folder for the module. Within this folder, we need to create a
manifests folder, and within this, our Puppet manifest file, init.pp. Structurally, this
looks something like the following:

| -- provision

| | -- manifests

| | ‘-- vagrant.pp

| *-- modules

| | -- our module

| | -- manifests

| T-- init.pp
"-- Vagrantfile

Installing Nginx

Let’s take a look at what is involved to install Nginx through a module and manifest file
provision/modules/nginx/manifests/init.pp. First, we define our class, passing in a
variable so that we can change the configuration file we use for Nginx (useful for using
the same module for different projects or different environments such as staging and
production environments), then we need to ensure that the nginx package is installed:

class nginx ($file = 'default') {

package {"nginx":
ensure => present
}

Tip
Note that we have not closed the curly bracket for the nginx class. That is because this is
just the first snippet of the file; we will close it at the end.

Because we want to change our default Nginx configuration file, we should update the
contents of the Nginx configuration file with one of our own (this will need to be placed in
the provision/modules/nginx/files folder; unless the file parameter is passed to the
class, the file default will be used):

file { '/etc/nginx/sites-available/default’:
source => "puppet:///modules/nginx/${file}",
owner => 'root',
group => 'root',
notify => Service['nginx'],
require => Package['nginx']

}

Finally, we need to ensure that the nginx service is actually running once it has been
installed:

service { "nginx":
ensure => running,
require => Package["nginx"]

This completes the manifest. We do still, however, need to create a default configuration
file for Nginx, which is saved as provision/modules/nginx/files/default. This will be
used unless we pass a file parameter to the nginx class when using the module. The
sample file here is a basic configuration file, pointing to the public folder within our
synced folder. The server name of lemp-stack.local means that Nginx will listen for
requests on that hostname and will serve content from our projects folder:

server {
listen 80;

root /var/www/project/public;
index index.php index.html index.htm;

server_name lemp-stack.local;

location / {
try_files $uri $uri/ /index.php?$query_string;
3

location ~ \.php$ {
try_files $uri =404;
fastcgi_split_path_info A(.+\.php)(/.+)$;
#fastcgi_pass 127.0.0.1:9000;
fastcgi_param SERVER_NAME $host;
fastcgi_pass unix:/var/run/php5-fpm.sock;
fastcgi_index index.php;
fastcgi_intercept_errors on;
include fastcgi_params;

3

location ~ /\.ht {
deny all;

3

location ~* \.(jpg|jpeg|gif|css|png|js|ico|html)$ {
access_log off;
expires max;

}

location ~* \.svgz {
add_header Content-Encoding "gzip";

¥
}

Tip
Because this configuration file listens for requests on lemp-stack.local, we need to add

a record to the hosts file on our host machine, which will redirect traffic from lemp-
stack.local to the IP address of our virtual machine.

Installing PHP

To install PHP, we need to install a range of related packages, including the Nginx PHP
module. This would be in the file provision/modules/php/manifests/init.pp.

On more recent (within the past few years) Linux and PHP installations, PHP uses a
handler called php-fpm as a bridge between PHP and the web server being used. This
means that when new PHP modules are installed or PHP configurations are changed, we
need to restart the php-fpm service for these changes to take effect, whereas in the past, it
was often the web servers that needed to be restarted or reloaded.

To make our simple PHP Puppet module flexible, we need to install the php5-fpm package
and restart it when other modules are installed, but only when we use Nginx on our server.
To achieve this, we can use a class parameter, which defaults to true. This lets us use the
same module in servers that don’t have a web server, and where we don’t want to have the
overhead of the FPM service, such as a server that runs background jobs or processing:

class php ($nginx = true) {

If the nginx parameter is true, then we need to install php5-fpm. Since this package is
only installed when the flag is set to true, we cannot have PHP and its modules requiring
or notifying the php-fpm package, as it may not be installed; so instead we need to have
the php5-fpm package subscribe to these packages:

if ($nginx) {
package { "php5-fpm":
ensure => present,
subscribe => [Package['php5-dev'], Package['php5-curl'],
Package['php5-gd'], Package['php5-imagick'], Package['php5-mcrypt'],
Package['php5-mhash'], Package['php5-pspell'], Package['php5-json'],
Package['php5-xmlrpc'], Package['php5-xsl'], Package['php5-mysql']]

b
¥
The rest of the manifest can then simply be the installation of the various PHP modules
that are required for a typical LEMP setup:

package { "php5-dev":

ensure => present

package { "php5-curl":
ensure => present
¥

package { "php5-gd":
ensure => present
by

package { "php5-imagick":
ensure => present
b

package { "php5-mcrypt":
ensure => present
}

package { "php5-mhash":
ensure => present
3

package { "php5-pspell":
ensure => present
3

package { "php5-xmlrpc":
ensure => present
3

package { "php5-xsl":
ensure => present
3

package { "php5-cli":
ensure => present

}

package { "php5-json'":
ensure => present

¥

Installing the MySQL module

Because we are going to use the Puppet module for MySQL provided by Puppet Labs,
installing the module is very straightforward; we simply add it as a git submodule to our
project with the following command:

git submodule add https://github.com/puppetlabs/puppetlabs-mysql.git
provision/modules/mysql

Tip
You might want to use a specific release for this module, as the code changes on a semi-

regular basis. A stable release is available at https://github.com/puppetlabs/puppetlabs-
mysql/releases/tag/3.1.0.

https://github.com/puppetlabs/puppetlabs-mysql/releases/tag/3.1.0

Default manifest

Finally, we need to pull these modules together, and install them when our machine is
provisioned. To do this, we simply add the following modules to our vagrant . pp manifest
file in the provision/manifests folder.

Installing Nginx and PHP

We need to include our nginx class and optionally provide a filename for the
configuration file; if we don’t provide one, the default will be used:

class {
"'nginx':
file => 'default'
}

Similarly for PHP, we need to include the class and in this case, pass an nginx parameter
to ensure that it installs PHP5-FPM too:

class {
"php':
nginx => true

Hostname configuration

We should tell our Vagrant virtual machine what its hostname is by adding a host resource
to our manifest:

host { 'lemp-stack.local':
ip => '127.0.0.1',
host_aliases => 'localhost',

E-mail sending services

Because some of our projects might involve sending e-mails, we should install e-mail
sending services on our virtual machine. As these are simply two packages, it makes more
sense to include them in our Vagrant manifest, as opposed to their own modules:

package { "postfix":
ensure => present
}

package { "mailutils":
ensure => present
}

MySQL configuration

Because the MySQL module is very flexible and manages all aspects of MySQL, there is
quite a bit for us to configure. We need to perform the following steps:

1. Create a database.

Create a user.

Give the user permission to use the database (grants).
Configure the MySQL root password.

Install the MySQL client.

Install the MySQL client bindings for PHP.

ok W

The MySQL server class has a range of parameters that can be passed to configure it,
including databases, users, and grants. So, first, we need to define what the databases,
users, and grants are that we want to be configured:

$databases = {
"lemp' => {
ensure => 'present',
charset => 'utf8'

iy
}

$users = {
'"lemp@localhost' => {

ensure => 'present’',
max_connections_per_hour => '0',
max_queries_per_hour = '0',
max_updates_per_hour = '0',
max_user_connections = '0',
password_hash => 'MySQL-Password-Hash',
3
h
Note

The password_hash parameter here is for a hash generated by MySQL. You can generate
a password hash by connecting to an existing MySQL instance and running a query such
as SELECT PASSWORD('password').

The grant maps our user and database and specifies what permissions the user can perform
on that database when connecting from a particular host (in this case, localhost—so from
the virtual machine itself):

$grants = {

'lemp@localhost/lemp.*"' => {
ensure => 'present',
options => ['GRANT'],
privileges => ['ALL'],
table = 'lemp.*',
user => 'lemp@localhost',

iy

}

We then pass these values to the MySQL server class. We also provide a root password for
MySQL (unlike earlier, this is provided in plain text), and we can override the options
from the MySQL configuration file. This is unlike our own Nginx module that provides a
full file—in this instance, the MySQL module provides a template configuration file and
the changes are replaced in that template to create a configuration file:

class { '::mysqgl::server':
root_password => 'lemp-root-password’,
override_options => { 'mysqld' => { 'max_connections' => '1024' } },
databases => $databases,
users => $users,
grants => $grants,
restart => true

}

As we will have a web server running on this machine, which needs to connect to this
database server, we also need the client library and the client bindings for PHP, so that we
can include them too:

include '::mysqgl::client'
class { '::mysql::bindings':

php_enable => true

}

Launching the virtual machine

In order to launch our new virtual machine, we simply need to run the following
command:

Vagrant up

As per Chapter 6, Provisioning Vagrant Machines with Puppet, Ansible, and Chef, we
should now see our VM boot and the various Puppet phases execute. If all goes well, we
should see no errors in this process.

Summary

In this chapter, we learned about the steps involved in creating a brand new Vagrant
project, configuring it to integrate with our host machine, and setting up a standard LEMP
stack using the Puppet provisioning tool. Now you should have a basic understanding of
Vagrant and how to use it to ensure that your software projects are managed more

effectively!

Index
A

e Ansible

about / Understanding Ansible

playbooks / Understanding Ansible
installing / Installing Ansible

operating systems, URL / Installing Ansible
inventory, creating / Creating an inventory

playbooks, creating / Creating Ansible playbooks
modules / Modules — what Ansible can do

software, installing / Installing software
cron module / Managing cron
commands, running / Running commands

user module, URL / Managing users and groups
group module, URL / Managing users and groups
roles, using / Using Ansible roles
Galaxy, URL / Using Ansible roles
used, for server provision / Using Ansible to provision servers
provisioning with / Provisioning with Ansible on Vagrant
Ansible, file management
about / Understanding file management
file, copying / Copying a file
symlink, creating / Creating a symlink
folders, creating / Creating folders
group module, creating / Creating groups
user module, creating / Creating users
Ansible software, installing
o package manager, updating / Updating our package manager
o nginx package, installing / Installing the nginx package
o nginx service, running / Running the nginx service
apt module
o URL / Updating our package manager, Installing the nginx package
Atlas
o boxes, discovering / Discovering boxes
boxes, URL / Discovering boxes
new boxes, installing / Installing new boxes
existing boxes, updating / Updating existing boxes
outdated boxes, checking for / Checking for outdated boxes
account, URL / Distributing boxes
boxes, distributing / Distributing boxes
box creation form, URL / Distributing boxes
sharing with / Sharing and connecting with Atlas

O 0O 0O O 0O O o o o o o o o o o o

O O O O O O

O O O O O O o o

o connecting with / Sharing and connecting with Atlas

o Vagrant,connecting to Vagrant Cloud / Logging Vagrant into Vagrant Cloud

o Vagrant virtual machine, sharing over HTTP(S) / Sharing a Vagrant virtual
machine over HTTP(S)

o Vagrant virtual machine, connecting to / Sharing and connecting to a Vagrant
virtual machine

o Vagrant virtual machine, sharing to / Sharing and connecting to a Vagrant virtual
machine

¢ authentication, Vagrant

o about / Vagrant authentication
admin group / Vagrant user and admin group

o
o user group / Vagrant user and admin group
o sudoers file / The sudoers file

e Chef

about / Knowing about Chef
cookbooks, creating with / Creating cookbooks and recipes with Chef

recipes, creating with / Creating cookbooks and recipes with Chef
resources / Resources — what Chef can do

cron resource type, managing / Managing cron
commands, running / Running commands

users, managing / Managing users and groups

groups, managing / Managing users and groups

groups, creating / Creating groups

users, creating / Creating users

sudoers file, updating / Updating the sudoers file

common resource functionalities / Knowing common resource functionalities
used, for provisioning servers / Using Chef to provision servers

URL, for tutorial / Using Chef to provision servers

on Vagrant, provisioning with / Provisioning with Chef on Vagrant

-solo using / Using Chef-solo
roles, URL / Using Chef-solo

using, in client/server mode / Using Chef in client/server mode
installing / Installing Chef

¢ Chef, file management

about / Understanding file management

file, copying / Copying a file

symlink, creating / Creating a symlink

folders, creating / Creating folders

multiple folders, creating in single process with looping / Creating multiple
folders in a single process with looping

e Chef, resource types

cron / Resources — what Chef can do

execute / Resources — what Chef can do

file / Resources — what Chef can do

group / Resources — what Chef can do

package / Resources — what Chef can do

service / Resources — what Chef can do

template / Resources — what Chef can do

user / Resources — what Chef can do

URL / Resources — what Chef can do

e Chef, software installing

about / Installing software
package manager, updating / Updating our package manager

nginx package, installing / Installing the nginx package
nginx service, running / Running the nginx service

0O 0 0O o 0O O o 0O o o o o 0o 0O 0O 0O 0o o o

O O O O O

O 0O 0O o o o o o o

O O O o

Chef-solo

o using / Using Chef-solo
Chef-solo configuration

o URL / Using Chef to provision servers
Chef cookbooks

o using / Using Chef cookbooks
Chef run, anatomy

o URL / Using Chef to provision servers
client/server mode

o Puppet using / Using Puppet in client/server mode
commands

o autorunning / Autorunning commands
configurable classes, Puppet

o creating / Creating configurable classes
cookbooks

o creating, with Chef / Creating cookbooks and recipes with Chef
cron module

o URL / Managing cron

F

e file module
o URL / Creating a symlink

G

e group module

o URL / Managing users and groups
e Guest Additions, VirtualBox

o about / VirtualBox Guest Additions

¢ host and guest machine interaction, managing
about / Managing integration between host and guest machines
port forwarding / Port forwarding
synced folders / Synced folders
o networking / Networking
e hostname

o configuring / Hostname configuration

(e]

(e]

(e]

I

e inventory, Ansible
o creating / Creating an inventory

e LEMP server / Updating our package manager

manifests
about / Default manifest

nginx, installing / Installing Nginx and PHP

PHP, installing / Installing Nginx and PHP
hostname configuration / Hostname configuration

e-mail sending services / E-mail sending services
o MySQL configuration / MySQL configuration
modules, Ansible
o about / Modules — what Ansible can do
Apt / Modules — what Ansible can do
Git / Modules — what Ansible can do
Service / Modules — what Ansible can do
Copy / Modules — what Ansible can do
o URL / Modules — what Ansible can do
multimachine project

o destroying / Destroying a multimachine project
multiple provisioners

o using, on single project / Using multiple provisioners on a single project
multiple virtual machines

o using, with Vagrant / Using multiple machines with Vagrant

o defining / Defining multiple virtual machines

o connecting, over SSH / Connecting to the multiple virtual machines over SSH

o networking / Networking the multiple virtual machines

o provisioning / Provisioning the machines separately
MySQL

o installing / Installing the MySQL module

o configuring / MySQL configuration

O O O O O

O O O o

Network File System (NFS) / Synced folders

networking
o about / Networking
nginx

o installing / Installing Nginx, Installing Nginx and PHP
notify parameter / The notify, subscribe, and refreshonly parameters

O

e Opscode community site, Chef cookbooks
o URL / Using Chef cookbooks

e package subcommand / Export
e parameters / Resources
e PHP

o installing / Installing PHP, Installing Nginx and PHP
e port forwarding

o about / Port forwarding
e project

o creating / Creating our first Vagrant project
e provisioners

o about / Provisioners

o Puppet, installing / Installing Puppet

o Chef, installing / Installing Chef
e provisioning

o about / Provisioning
with Vagrant / Provisioning within Vagrant
with Puppet, on Vagrant / Provisioning with Puppet on Vagrant
with Ansible ,on Vagrant / Provisioning with Ansible on Vagrant
with Ansible, on Vagrant / Provisioning with Ansible on Vagrant
with Chef, on Vagrant / Provisioning with Chef on Vagrant
with SSH / Provisioning with SSH — a recap

o overriding, via command line / Overriding provisioning via the command line
e provisioning, options
Shell / Autorunning commands
Puppet / Autorunning commands
Ansible / Autorunning commands

Chef / Autorunning commands
e Puppet

o about / Puppet
idempotent feature / Puppet

used, for creating modules / Creating modules and manifests with Puppet

used, for creating manifests / Creating modules and manifests with Puppet
classes / Puppet classes

default manifests / Default Puppet manifests

resource / Resources

notify parameter / The notify, subscribe, and refreshonly parameters
subscribe parameter / The notify, subscribe, and refreshonly parameters
refreshonly parameter / The notify, subscribe, and refreshonly parameters
file management / File management

cron resource type, managing / Cron management

commands, running / Running commands

user resource type, managing / Managing users and groups, Creating users
group resource type, managing / Managing users and groups

O O O O O O

O O O

(e]

O 0O 0O O 0O 0O o o o o o o o o

user resource type, URL / Managing users and groups
sudoers file, updating / Updating the sudoers file
configurable classes, creating / Creating configurable classes
modules / Puppet modules
used, for server provision / Using Puppet to provision servers
provisioning with, on Vagrant / Provisioning with Puppet on Vagrant
using, in standalone mode / Using Puppet in standalone mode
provisioning, in action / Puppet provisioning in action
using, in client/server mode / Using Puppet in client/server mode
URL / Using Puppet in client/server mode
blog, URL / Using Puppet in client/server mode

o installing / Installing Puppet
Puppet, file management

o about / File management

o file, copying / Copying a file

o symlink, creating / Creating a symlink

o folders, creating / Creating folders

o multiple folders, creating / Creating multiple folders in one go
Puppet, resource

o types / Resources

o types, URL / Resources

o requisites / Resource requirements
o execution, ordering / Resource execution ordering

o executing, in stages / Executing resources in stages
Puppet, resource types

o cron / Resources
exec / Resources
file / Resources
group / Resources
package / Resources
service / Resources

o user / Resources
Puppet Forge

o URL / Puppet modules
Puppet manifests

o creating / Creating the Puppet manifests
o nginx, installing / Installing Nginx
o PHP, installing / Installing PHP
o MySQL module, installing / Installing the MySQL module
o URL / Installing the MySQL module
Puppet software, installing

o about / Installing software
o package manager, updating / Updating our package manager
o nginx package, installing / Installing the nginx package

O 0O 0O O 0O 0O o o o o o

O O O O O

o nginx service, running / Running the nginx service
o PUTTY

o URL / Connecting to the virtual machine over SSH

R

e recipes

o creating, with Chef / Creating cookbooks and recipes with Chef
e recipes, Chef
o URL / Using Chef to provision servers
¢ refreshonly parameter / The notify, subscribe, and refreshonly parameters

servers

o provisioning, Chef used / Using Chef to provision servers
SSH

o provisioning with / Provisioning with SSH — a recap
o multiple virtual machines, connecting to / Connecting to the multiple virtual
machines over SSH
SSH provisioning
o about / Autorunning commands
standalone mode
o Puppet using / Using Puppet in standalone mode

subscribe parameter / The notify, subscribe, and refreshonly parameters
sudoers file

o URL / The sudoers file

o about / The sudoers file
/ The sudoers file
supervisord

o URL / Creating modules and manifests with Puppet
o about / Default Puppet manifests
supervisor module
o URL / Default Puppet manifests
symlink
o creating / Creating a symlink
synced folders
o about / Synced folders

T

e template module
o URL / Copying a file

U

e user module

o URL / Managing users and groups, Creating users

\Y

e Vagrant

e}

e}

(¢] O O O O O o o

O 0O 0O o o o o o o

e}

about / Introducing Vagrant, Too many Vagrants!

URL / Introducing Vagrant, Requirements for Vagrant, Connecting to the virtual
machine over SSH

configuration file / Introducing Vagrant
requisites / Requirements for Vagrant
VirtualBox, installing / Installing VirtualBox
installing / Installing Vagrant

download page / Installing Vagrant

project, creating / Creating our first Vagrant project, Creating the Vagrant project
-controlled guest machines, controlling / Managing Vagrant-controlled guest

machines

virtual machine, powering up / Powering up a Vagrant-controlled virtual
machine

virtual machine, suspending / Suspending a virtual machine

virtual machine, resuming / Resuming a virtual machine

virtual machine, shutting down / Shutting down a virtual machine

provisioning, options / Autorunning commands
provisioning with / Provisioning within Vagrant
provisioning, with Chef / Provisioning with Chef on Vagrant

multiple virtual machines, using / Using multiple machines with Vagrant
documentation, URL / Getting started

new base box, URL / Getting started
authentication / Vagrant authentication

e Vagrant authentication

e}

e}

insecure public key pair / Insecure public/private key pair
insecure private key pair / Insecure public/private key pair

e Vagrant boxes

e}

O O O O O O

O O O O O O

managing / Managing Vagrant boxes

add subcommand / Managing Vagrant boxes, Adding Vagrant boxes

list subcommand / Managing Vagrant boxes, Listing Vagrant boxes

outdated subcommand / Managing Vagrant boxes, Checking for updates
remove subcommand / Managing Vagrant boxes, Removing Vagrant boxes
repackage subcommand / Managing Vagrant boxes, Repackaging a Vagrant box
update subcommand / Managing Vagrant boxes, Updating the current
environment’s box

adding / Adding Vagrant boxes

listing / Listing Vagrant boxes

updates, checking for / Checking for updates

removing / Removing Vagrant boxes

repackaging / Repackaging a Vagrant box

current environments box, updating / Updating the current environment’s box

Vagrant boxes, Atlas

o discovering / Discovering boxes
o new boxes, installing / Installing new boxes

o existing boxes, updating / Updating existing boxes
o outdated boxes, checking for / Checking for outdated boxes

o distributing / Distributing boxes
Vagrant virtual machine, Atlas

o sharing, over HTTP(S) / Sharing a Vagrant virtual machine over HTTP(S)

VirtualBox

o installing / Installing VirtualBox
VirtualBox machine

o preparing / Preparing the VirtualBox machine
virtual machine
o cleaning up / Cleaning up the VM
o launching / Launching the virtual machine
virtual machine, Vagrant-controlled
o managing / Managing Vagrant-controlled guest machines
powering up / Powering up a Vagrant-controlled virtual machine
suspending / Suspending a virtual machine
resuming / Resuming a virtual machine
shutting down / Shutting down a virtual machine
starting, from scratch / Starting from scratch
off Vagrantfile changes, updating / Updating based on Vagrantfile changes
connecting to, over SSH / Connecting to the virtual machine over SSH

O O O O O o o

Y

e Yaml Ain’t Markup Language (YAML)
o about / Understanding Ansible

	Creating Development Environments with Vagrant Second Edition
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with Vagrant
	Introducing Vagrant
	Requirements for Vagrant
	Getting started
	Installing VirtualBox
	Installing Vagrant
	Summary
	2. Managing Vagrant Boxes and Projects
	Creating our first Vagrant project
	Managing Vagrant-controlled guest machines
	Powering up a Vagrant-controlled virtual machine
	Suspending a virtual machine
	Resuming a virtual machine
	Shutting down a virtual machine
	Starting from scratch
	Updating based on Vagrantfile changes
	Connecting to the virtual machine over SSH
	Managing integration between host and guest machines
	Port forwarding
	Synced folders
	Networking
	Autorunning commands
	Managing Vagrant boxes
	Adding Vagrant boxes
	Listing Vagrant boxes
	Checking for updates
	Removing Vagrant boxes
	Repackaging a Vagrant box
	Updating the current environment's box
	Too many Vagrants!
	Summary
	3. Provisioning with Puppet
	Provisioning
	Puppet
	Creating modules and manifests with Puppet
	Puppet classes
	Default Puppet manifests
	Resources
	Resource requirements
	Resource execution ordering
	The notify, subscribe, and refreshonly parameters
	Executing resources in stages
	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service
	File management
	Copying a file
	Creating a symlink
	Creating folders
	Creating multiple folders in one go
	Cron management
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Updating the sudoers file
	Creating configurable classes
	Puppet modules
	Using Puppet to provision servers
	Summary
	4. Using Ansible
	Understanding Ansible
	Installing Ansible
	Creating an inventory
	Creating Ansible playbooks
	Modules – what Ansible can do
	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service
	Understanding file management
	Copying a file
	Creating a symlink
	Creating folders
	Managing cron
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Using Ansible roles
	Using Ansible to provision servers
	Summary
	5. Using Chef
	Knowing about Chef
	Creating cookbooks and recipes with Chef
	Resources – what Chef can do
	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service
	Understanding file management
	Copying a file
	Creating a symlink
	Creating folders
	Creating multiple folders in a single process with looping
	Managing cron
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Updating the sudoers file
	Knowing common resource functionalities
	Using Chef cookbooks
	Using Chef to provision servers
	Summary
	6. Provisioning Vagrant Machines with Puppet, Ansible, and Chef
	Provisioning within Vagrant
	Provisioning with Puppet on Vagrant
	Using Puppet in standalone mode
	Puppet provisioning in action
	Using Puppet in client/server mode
	Provisioning with Ansible on Vagrant
	Provisioning with Chef on Vagrant
	Using Chef-solo
	Using Chef in client/server mode
	Provisioning with SSH – a recap
	Using multiple provisioners on a single project
	Overriding provisioning via the command line
	Summary
	7. Working with Multiple Machines
	Using multiple machines with Vagrant
	Defining multiple virtual machines
	Connecting to the multiple virtual machines over SSH
	Networking the multiple virtual machines
	Provisioning the machines separately
	Destroying a multimachine project
	Summary
	8. Creating Your Own Box
	Getting started
	Preparing the VirtualBox machine
	VirtualBox Guest Additions
	Vagrant authentication
	Vagrant user and admin group
	The sudoers file
	Insecure public/private key pair
	Provisioners
	Installing Puppet
	Installing Chef
	Cleaning up the VM
	Export
	Summary
	9. HashiCorp Atlas
	Discovering boxes
	Installing new boxes
	Updating existing boxes
	Checking for outdated boxes
	Distributing boxes
	Sharing and connecting with Atlas
	Logging Vagrant into Vagrant Cloud
	Sharing a Vagrant virtual machine over HTTP(S)
	Sharing and connecting to a Vagrant virtual machine
	Summary
	A. A Sample LEMP Stack
	Creating the Vagrant project
	Creating the Puppet manifests
	Installing Nginx
	Installing PHP
	Installing the MySQL module
	Default manifest
	Installing Nginx and PHP
	Hostname configuration
	E-mail sending services
	MySQL configuration
	Launching the virtual machine
	Summary
	Index

