




Creating	Development	Environments	with
Vagrant	Second	Edition



Table	of	Contents

Creating	Development	Environments	with	Vagrant	Second	Edition

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started	with	Vagrant

Introducing	Vagrant

Requirements	for	Vagrant

Getting	started

Installing	VirtualBox

Installing	Vagrant

Summary

2.	Managing	Vagrant	Boxes	and	Projects

Creating	our	first	Vagrant	project

Managing	Vagrant-controlled	guest	machines



Powering	up	a	Vagrant-controlled	virtual	machine

Suspending	a	virtual	machine

Resuming	a	virtual	machine

Shutting	down	a	virtual	machine

Starting	from	scratch

Updating	based	on	Vagrantfile	changes

Connecting	to	the	virtual	machine	over	SSH

Managing	integration	between	host	and	guest	machines

Port	forwarding

Synced	folders

Networking

Autorunning	commands

Managing	Vagrant	boxes

Adding	Vagrant	boxes

Listing	Vagrant	boxes

Checking	for	updates

Removing	Vagrant	boxes

Repackaging	a	Vagrant	box

Updating	the	current	environment’s	box

Too	many	Vagrants!

Summary

3.	Provisioning	with	Puppet

Provisioning

Puppet

Creating	modules	and	manifests	with	Puppet

Puppet	classes

Default	Puppet	manifests

Resources

Resource	requirements

Resource	execution	ordering

The	notify,	subscribe,	and	refreshonly	parameters



Executing	resources	in	stages

Installing	software

Updating	our	package	manager

Installing	the	nginx	package

Running	the	nginx	service

File	management

Copying	a	file

Creating	a	symlink

Creating	folders

Creating	multiple	folders	in	one	go

Cron	management

Running	commands

Managing	users	and	groups

Creating	groups

Creating	users

Updating	the	sudoers	file

Creating	configurable	classes

Puppet	modules

Using	Puppet	to	provision	servers

Summary

4.	Using	Ansible

Understanding	Ansible

Installing	Ansible

Creating	an	inventory

Creating	Ansible	playbooks

Modules	–	what	Ansible	can	do

Installing	software

Updating	our	package	manager

Installing	the	nginx	package

Running	the	nginx	service

Understanding	file	management



Copying	a	file

Creating	a	symlink

Creating	folders

Managing	cron

Running	commands

Managing	users	and	groups

Creating	groups

Creating	users

Using	Ansible	roles

Using	Ansible	to	provision	servers

Summary

5.	Using	Chef

Knowing	about	Chef

Creating	cookbooks	and	recipes	with	Chef

Resources	–	what	Chef	can	do

Installing	software

Updating	our	package	manager

Installing	the	nginx	package

Running	the	nginx	service

Understanding	file	management

Copying	a	file

Creating	a	symlink

Creating	folders

Creating	multiple	folders	in	a	single	process	with	looping

Managing	cron

Running	commands

Managing	users	and	groups

Creating	groups

Creating	users

Updating	the	sudoers	file

Knowing	common	resource	functionalities



Using	Chef	cookbooks

Using	Chef	to	provision	servers

Summary

6.	Provisioning	Vagrant	Machines	with	Puppet,	Ansible,	and	Chef

Provisioning	within	Vagrant

Provisioning	with	Puppet	on	Vagrant

Using	Puppet	in	standalone	mode

Puppet	provisioning	in	action

Using	Puppet	in	client/server	mode

Provisioning	with	Ansible	on	Vagrant

Provisioning	with	Chef	on	Vagrant

Using	Chef-solo

Using	Chef	in	client/server	mode

Provisioning	with	SSH	–	a	recap

Using	multiple	provisioners	on	a	single	project

Overriding	provisioning	via	the	command	line

Summary

7.	Working	with	Multiple	Machines

Using	multiple	machines	with	Vagrant

Defining	multiple	virtual	machines

Connecting	to	the	multiple	virtual	machines	over	SSH

Networking	the	multiple	virtual	machines

Provisioning	the	machines	separately

Destroying	a	multimachine	project

Summary

8.	Creating	Your	Own	Box

Getting	started

Preparing	the	VirtualBox	machine

VirtualBox	Guest	Additions

Vagrant	authentication

Vagrant	user	and	admin	group



The	sudoers	file

Insecure	public/private	key	pair

Provisioners

Installing	Puppet

Installing	Chef

Cleaning	up	the	VM

Export

Summary

9.	HashiCorp	Atlas

Discovering	boxes

Installing	new	boxes

Updating	existing	boxes

Checking	for	outdated	boxes

Distributing	boxes

Sharing	and	connecting	with	Atlas

Logging	Vagrant	into	Vagrant	Cloud

Sharing	a	Vagrant	virtual	machine	over	HTTP(S)

Sharing	and	connecting	to	a	Vagrant	virtual	machine

Summary

A.	A	Sample	LEMP	Stack

Creating	the	Vagrant	project

Creating	the	Puppet	manifests

Installing	Nginx

Installing	PHP

Installing	the	MySQL	module

Default	manifest

Installing	Nginx	and	PHP

Hostname	configuration

E-mail	sending	services

MySQL	configuration

Launching	the	virtual	machine



Summary

Index





Creating	Development	Environments	with
Vagrant	Second	Edition





Creating	Development	Environments	with
Vagrant	Second	Edition
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2013

Second	edition:	March	2015

Production	reference:	1050315

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-702-9

www.packtpub.com

http://www.packtpub.com




Credits
Author

Michael	Peacock

Reviewers

Jonathan	Bardo

Anirudh	Bhatnagar

Commissioning	Editor

Usha	Iyer

Acquisition	Editors

Richard	Brookes-Bland

Ellen	Bishop

Content	Development	Editor

Sriram	Neelakantan

Technical	Editor

Mrunal	M.	Chavan

Copy	Editor

Rashmi	Sawant

Project	Coordinator

Aboli	Ambardekar

Proofreaders

Simran	Bhogal

Maria	Gould

Paul	Hindle

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Arvindkumar	Gupta

Cover	Work

Arvindkumar	Gupta





About	the	Author
Michael	Peacock	is	an	experienced	software	developer	and	team	lead	from	Newcastle,
UK,	with	a	degree	in	software	engineering	from	the	University	of	Durham.

After	spending	a	number	of	years	running	his	own	web	agency,	and	subsequently,	working
directly	for	a	number	of	software	start-ups,	he	now	runs	his	own	software	development
agency,	working	on	a	range	of	projects	for	an	array	of	different	clients.

He	is	the	author	of	Creating	Development	Environments	with	Vagrant,	PHP	5	Social
Networking,	PHP	5	E-Commerce	Development,	Drupal	7	Social	Networking,	and	Selling
online	with	Drupal	e-Commerce	and	Building	Websites	with	TYPO3,	all	by	Packt
Publishing.	The	other	publications	Michael	has	been	involved	in	include	Advanced	API
Security,	Mobile	Web	Development,	Jenkins	Continuous	Integration	Cookbook,	and
Drupal	for	Education	and	E-Learning;	for	these	he	acted	as	a	technical	reviewer.

Michael	has	also	presented	at	a	number	of	user	groups	and	technical	conferences,
including	PHP	UK	Conference,	Dutch	PHP	Conference,	ConFoo,	PHPNE,	PHPNW,	and
Could	Connect	Santa	Clara.

You	can	follow	Michael	on	Twitter	(@michaelpeacock),	or	find	out	more	about	him
through	his	website	(www.michaelpeacock.co.uk).

I’d	like	to	thank	the	team	at	Packt	Publishing	for	their	help	in	getting	this	revised	edition
of	the	book	published,	and	the	technical	reviewers	for	ensuring	technical	accuracy	in	the
book.

http://www.michaelpeacock.co.uk




About	the	Reviewers
Jonathan	Bardo	is	a	Montreal-based	web	developer	with	a	keen	interest	for	new
technologies	and	automation.	He	has	worked	for	many	large-scale	websites	dealing	with
millions	of	daily	visitors	on	various	platforms.	When	he	is	not	programming,	he	likes	to
watch	a	good	TV	show	or	travel	somewhere	he	has	never	been	before.	If	you	see	him
riding	his	motorcycle	or	skiing	down	a	hill,	just	say	hi!	He	is	very	friendly!

Jonathan	runs	his	own	consulting	company,	which	lets	him	meet	all	sorts	of	interesting
clients,	such	as	Fox	Broadcasting	(USA),	Rogers	Digital	Media	(Canada),	and	Yellow
Pages	Group	(Canada).

A	special	thanks	to	everyone	who	has	been	a	part	of	my	journey	so	far!	I	wouldn’t	be	here
without	all	the	incredible	people	I	worked	with	everyday.

Anirudh	Bhatnagar	is	a	principal	consultant	at	Xebia.	He	started	his	career	as	a
developer	working	in	product-based	companies	such	as	Adobe.

Anirudh	has	been	working	mostly	with	Java-based	technology	stacks	that	use	Spring,
Hibernate,	XML,	web	services,	REST,	CMS,	SSO,	ESB,	and	Liferay.

During	the	last	few	years,	Anirudh	has	been	advocating	Continuous	Delivery	and	is
interested	in	technologies	such	as	Chef,	Puppet,	Jenkins,	Vagrant,	Docker,	and	many	more.
He	regularly	contributes	to	the	community	via	blogs,	articles,	meetups,	conferences,	and
open	source	projects.

More	details	about	him	can	be	found	on	his	blog	(http://anirudhbhatnagar.com).

http://anirudhbhatnagar.com




www.PacktPub.com



Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser



Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com




Preface
Web-based	software	projects	are	increasingly	complicated,	with	a	range	of	different
dependencies,	requirements,	and	interlinking	components.	Swapping	between	projects,
which	require	different	versions	of	the	same	software,	becomes	troublesome.	Getting	team
members	up	and	running	on	new	projects	becomes	time-consuming.

Vagrant	is	a	powerful	tool	used	to	create,	manage,	and	work	with	virtualized	development
environments	for	your	projects.	By	creating	a	virtual	environment	for	each	project,	their
dependencies	and	requirements	are	isolated,	they	also	don’t	interfere	with	the	software
installed	on	your	own	machine	such	as	WAMP	or	MAMP.	Colleagues	can	be	up	and
running	on	a	new	project	in	minutes	with	a	single	command.	With	Vagrant,	we	can	wipe
the	slate	clean	if	we	break	our	environment	and	be	back	up	and	running	in	no	time.



What	this	book	covers
Chapter	1,	Getting	Started	with	Vagrant,	introduces	the	concept	of	virtualization,	its
importance	in	the	role	of	the	development	environment,	and	walks	you	through	the
Vagrant	installation	process.

Chapter	2,	Managing	Vagrant	Boxes	and	Projects,	walks	you	through	creating	Vagrant
projects,	exploring	and	configuring	the	Vagrantfile,	and	working	with	base	boxes.

Chapter	3,	Provisioning	with	Puppet,	explores	Puppet,	the	provisioning	tool,	and	how	to
create	Puppet	manifests	to	provision	a	server.

Chapter	4,	Using	Ansible,	explores	Ansible,	the	provisioning	tool,	and	how	to	create
Ansible	playbooks	to	provision	a	server.

Chapter	5,	Using	Chef,	explores	Chef,	the	provisioning	tool,	and	how	to	create	Chef
recipes	to	provision	a	server.

Chapter	6,	Provisioning	Vagrant	Machines	with	Puppet,	Ansible,	and	Chef,	discusses	how
to	use	Puppet,	Ansible,	and	Chef	within	the	context	of	Vagrant	to	provision	development
environments.

Chapter	7,	Working	with	Multiple	Machines,	explores	using	Vagrant	to	create	and	manage
projects	that	use	multiple	virtual	machines,	which	communicate	with	each	other.

Chapter	8,	Creating	Your	Own	Box,	discusses	the	process	of	creating	your	own	base	box
for	use	within	a	Vagrant	project.

Chapter	9,	HashiCorp	Atlas,	walks	you	through	using	Vagrant	Share	to	share	SSH	and
HTTP(S)	access	to	a	Vagrant-managed	machine,	and	how	to	use	the	services	provided
through	the	Vagrant	Cloud.

Appendix,	A	Sample	LEMP	Stack,	walks	you	through	the	process	of	creating	a	LEMP
server	within	a	new	Vagrant	project.





What	you	need	for	this	book
You	will	need	a	Windows,	OS	X,	or	Linux	computer	with	Vagrant	and	Oracle	VirtualBox
installed,	although	the	installation	process	for	these	will	be	discussed	in	Chapter	1,	Getting
Started	with	Vagrant.





Who	this	book	is	for
This	book	is	for	software	developers,	development	managers,	and	technical	team	leaders
who	want	to	have	a	more	efficient,	robust,	and	flexible	development	environment	for	their
projects	and	for	their	team.





Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“After
installing	Vagrant,	we	ran	the	vagrant	command	to	check	whether	it	was	installed
correctly.”

A	block	of	code	is	set	as	follows:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"base"

end

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

---

-	hosts:	default

		tasks:

		-	name:	update	apt	cache

				apt:	update_cache=yes

		-	name:	ensure	nginx	is	installed

				apt:	pkg=nginx	state=present

		-	name:	write	the	nginx	config	file

				template:	src=nginx-default-site.conf	dest=/etc/nginx/sites-

available/default.conf

				notify:

				-	restart	nginx

		-	name:	ensure	nginx	is	running

				service:	name=nginx	state=started

		handlers:

				-	name:	restart	nginx

						service:	name=nginx	state=restarted

Any	command-line	input	or	output	is	written	as	follows:

ansible-playbook	our-playbook.yml	-i	our-inventory-file

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Again,	on	OS	X,	the	first
step	is	to	double-click	on	the	Vagrant.pkg	icon.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com




Chapter	1.	Getting	Started	with	Vagrant
Developing	modern	web-based	applications	can	be	complicated!

The	technology	behind	our	projects	is	becoming	more	advanced	and	diverse.	Where	once
projects	ran	with	simply	a	web	server,	a	database,	and	a	set	programming	language,	now
we	use	tools	built	in	a	variety	of	different	languages.	We	use	components	and
dependencies	that	need	to	be	installed,	and	their	managed	versions,	and	often	projects
need	to	run	across	multiple	machines.

Different	projects	have	their	own	requirements	and	dependencies,	which	are	often
incompatible	with	one	another.	A	legacy	project	might	require	a	specific	version	of	PHP	or
specific	versions	of	extensions	for	Apache,	whereas	another	project	might	require	a	newer
version	of	PHP	and	running	on	Nginx.	Project	switching	in	this	scenario	is	not	easy.

Often,	we	need	to	work	with	teams	of	people,	some	of	which	might	be	using	their	own
equipment,	working	remotely,	and	contractors.	This	requires	you	to	ensure	that	everyone
runs	the	same	development	environment,	regardless	of	their	own	system	and	its
configuration,	the	infrastructure	changes	for	projects	are	tracked	and	made	available	to	the
team,	and	the	project	setup	is	fast	for	new	team	members.

Combining	these	three	factors	and	setting	up	traditional	development	environments	is
becoming	more	difficult,	less	relevant,	and	less	helpful	for	developers.

As	projects	get	more	complicated,	it’s	also	easy	for	auxiliary	configurations	to	be
forgotten	about.	Background	workers,	message	queues,	cron	jobs,	and	multiserver
configurations	need	to	be	managed,	distributed	to	the	entire	team,	and	then	when	the	time
comes,	applied	to	the	project	when	it	gets	deployed	into	a	production	environment.

Virtualized	development	environments	can	help	with	this.	Instead	of	having	to	battle
configurations	when	working	on	other	projects,	each	project	can	simply	have	its	own
virtualized	environment.	It	can	have	its	own	dedicated	web	server,	database	server,	and	the
versions	of	the	programming	language	and	other	dependencies	it	needs.	Because	it	is
virtualized,	it	doesn’t	impact	on	other	projects;	just	shut	it	down	and	boot	up	the
environment	for	the	other	project.

With	a	virtualized	environment,	the	development	environments	can	also	mimic	the
production	environment.	You	don’t	need	to	worry	about	whether	something	will	work
when	it	gets	deployed,	if	it	is	being	developed	on	a	machine	with	the	exact	same	software
configuration.	Even	if	you	deploy	on	a	Linux	machine	but	develop	on	Windows,	your
virtualized	environment	can	be	Linux,	running	the	same	distribution	as	your	production
environment.

While	a	virtualized	environment	makes	different	projects	and	their	dependencies	easier	to
manage	and	separate,	they	are	not	the	easiest	of	things	to	configure	and	manage.	They	still
need	to	be	configured	to	work	with	the	project	in	question,	which	often	involves	some
level	of	system	administration	skills,	and	we	need	to	connect	to	these	environments	and
work	with	them.	They	also,	by	design,	are	not	very	portable.	You	need	to	export	a	large



image	of	the	virtualized	environment	and	share	that	with	your	colleagues,	and	keeping	that
image	up	to	date	as	projects	evolve	can	be	cumbersome.	Thankfully,	there	is	a	tool	that
can	manage	these	virtualized	environments	for	us,	and	provide	a	simple	interface	to
configure	them;	an	interface	that	involves	storing	configurations	in	simple	plain	text	files,
which	are	easy	to	share	with	colleagues,	keeping	everyone	up	to	date	as	the	project
changes.	This	tool	is	Vagrant.



Introducing	Vagrant
Vagrant	(http://www.vagrantup.com/)	is	a	powerful	development	tool	that	lets	you	manage
and	support	the	virtualization	of	your	development	environment.	Instead	of	running	all
your	projects	locally	on	your	own	computer,	having	to	juggle	the	different	requirements
and	dependencies	of	each	project,	Vagrant	lets	you	run	each	project	in	its	own	dedicated
virtual	environment.

Vagrant	provides	a	command-line	interface	and	a	common	configuration	language	that
allows	you	to	easily	define	and	control	virtual	machines	that	run	on	your	own	systems,	but
which	tightly	integrate,	and	also	allows	you	to	define	how	your	own	machine	and	the
virtual	machine	interact.	This	can	involve	syncing	folders	such	that	the	project	code,
which	you	edit	using	the	IDE	on	your	computer,	is	synced	so	that	it	runs	on	the	Vagrant
development	environment.

Vagrant	uses	providers	to	integrate	with	the	third-party	virtualization	software,	which
provides	the	virtualized	machines	for	our	development	environment.	The	default	provider
is	for	Oracle	VirtualBox;	however,	there	are	commercial	providers	to	work	with	VMware
Fusion	and	also	plugins	for	Vagrant	to	work	with	Amazon	Web	Services.	The	entire
configuration	is	stored	in	simple	plain	text	files.	The	Vagrant	configuration	(Vagrantfile),
and	the	configuration	that	defines	how	our	Vagrant	machines	are	configured	(typically
Shell	scripts,	Ansible	playbooks,	Chef	cookbooks	or	Puppet	manifests	that	Vagrant	has
built-in	support	for,	as	provisioners)	are	simply	written	in	text	files.	This	means	that	we
can	easily	share	the	configurations	and	projects	with	colleagues,	using	version	control
systems	such	as	Git.

When	using	Vagrant,	the	next	time	you	need	to	go	back	to	a	previous	project,	you	don’t
need	to	worry	about	any	potential	conflicts	with	changes	made	to	your	development
environment	(for	example,	if	you	have	upgraded	PHP,	MySQL,	or	Apache	on	your	local
environment	or	within	the	Vagrant	environment	for	another	project),	as	the	development
environment	for	these	projects	are	completely	self-contained.	If	you	bring	a	new	member
into	the	team,	they	can	be	up	and	running	with	your	projects	in	minutes.	Vagrant,	along
with	its	integration	with	provisioners,	will	take	care	of	all	the	software	and	services
needed	to	run	the	project	on	their	machine.	If	you	have	one	project	that	uses	one	web
server	such	as	Apache,	and	another	one	that	uses	Nginx,	Vagrant	lets	you	run	these
projects	independently.	If	your	project’s	production	environment	involves	multiple	servers
(perhaps	one	for	the	Web	and	one	for	the	database),	Vagrant	lets	you	emulate	that	with
separate	virtual	servers	on	your	machine.

With	Vagrant:

Your	development	environment	can	mimic	the	production	environment
Integrated	provisioning	tools	such	as	Puppet,	Chef,	and	Ansible	allow	you	to	store
the	configuration	in	a	standard	format,	which	can	also	be	used	to	update	production
environments
Each	project	is	separate	in	its	own	virtualized	environment,	so	issues	as	a	result	of
configuration	and	version	differences	for	dependencies	on	different	projects	are	a

http://www.vagrantup.com/


thing	of	the	past
New	team	members	can	be	onboarded	to	new	projects	as	easy	as	git	clone	&&
vagrant	up

“It	works	on	my	machine”	as	a	response	to	bugs	is	a	thing	of	the	past
The	headache	of	linking	code	that	you	write	on	your	own	machine	to	your	virtualized
development	environment	is	taken	care	of	through	synced	folders
The	environment	can	act	as	if	it	was	your	local	machine	and	map	the	web	server	port
(80)	of	your	development	machine	to	your	development	environment	if	you	wish,	or
you	can	access	it	as	you	would	another	machine	on	your	network
You	can	let	colleagues	view	your	own	development	environment	as	well	as	easily
share	the	development	environment
You	can	share	access	to	your	own	development	environment	over	the	Internet	to
demo	your	project	or	to	get	support	from	a	colleague
Your	local	WAMP	or	MAMP	installations	will	be	gathering	dust!

In	this	chapter,	we	will	cover	the	following	topics:

Discuss	the	requirements	and	prerequisites	for	Vagrant
Install	Oracle	VirtualBox
Install	Vagrant
Verify	that	Vagrant	was	successfully	installed

Once	we	have	Vagrant	and	its	prerequisites	on	our	machine,	we	can	then	take	a	look	at
using	it	for	our	first	project.





Requirements	for	Vagrant
Vagrant	can	be	installed	on	Linux,	Windows,	and	Mac	OS	X,	and	although	it	uses	Ruby,
the	package	includes	an	embedded	Ruby	interpreter.	The	only	other	requirement	is	a
virtualization	provider	such	as	Oracle	VirtualBox	or	VMware	Fusion.	The	Oracle
VirtualBox	provider	is	available	for	free	and	is	the	default	provider	for	Vagrant.	So,	we
will	use	and	install	VirtualBox	in	order	to	use	Vagrant	during	the	course	of	this	book.
Other	providers	are	available,	including	one	for	VMware	Fusion	or	Workstation,	which	is
available	as	a	commercial	add-on	(http://www.vagrantup.com/vmware).

http://www.vagrantup.com/vmware




Getting	started
Now	that	we	know	what	software	we	need	in	order	to	get	Vagrant	running	on	our	machine,
let’s	start	installing	VirtualBox	and	Vagrant	itself.



Installing	VirtualBox
VirtualBox	(https://www.virtualbox.org/)	is	an	open	source	tool	sponsored	by	Oracle	that
lets	you	create,	manage,	and	use	virtual	machines	on	your	own	computer.

VirtualBox	is	a	graphical	program	with	a	command-line	interface	that	lets	you	visually
create	virtual	machines,	allocate	resources,	load	external	media	such	as	operating	system
CDs,	and	view	the	screen	of	the	virtual	machine.	Vagrant	wraps	on	top	of	this	and
provides	an	intuitive	command-line	interface	along	with	the	integration	of	additional	tools
(including	integrations	with	provisioners	and	also	HashiCorp	Atlas	(formerly,	Vagrant
Cloud)	that	allow	you	to	find	and	distribute	base	server	images	and	share	access	to	your
Vagrant	environments),	so	that	we	don’t	need	to	worry	about	how	VirtualBox	works	or
what	to	do	with	it;	Vagrant	takes	care	of	this	for	us.

The	first	stage	is	to	download	the	installer	from	the	VirtualBox	downloads	page
(https://www.virtualbox.org/wiki/Downloads),	as	shown	in	the	following	screenshot.	We
need	to	select	the	option	that	is	appropriate	for	our	computer	(OS	X,	Windows,	Linux,	or
Solaris):

Note
At	the	time	of	writing	this,	Vagrant	supports	versions	4.0.x	through	4.3.x	of	VirtualBox;
earlier	versions	are	not	supported.

Once	downloaded,	let’s	open	it	and	run	the	installer.	On	OS	X,	this	involves	clicking	on
the	VirtualBox.pkg	icon,	as	shown	in	the	following	screenshot.	On	Windows,	simply
opening	the	installer	opens	the	installation	wizard.	On	Linux,	there	are	packages	available
that	can	be	installed	through	your	chosen	package	manager,	see
https://www.virtualbox.org/wiki/Linux_Downloads	for	more	information.

https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Linux_Downloads


Before	the	installer	runs,	it	first	checks	whether	the	computer	is	capable	of	having
VirtualBox	installed.	We	need	to	click	on	Continue	to	begin	the	installation	process,	as
shown	in	the	following	screenshot.	While	this	process	will	vary	from	OS	X	to	Windows	to
Linux,	the	process	is	very	similar	across	all	platforms.	There	are	fully	detailed	installation
instructions	for	all	platforms	on	the	VirtualBox	website
(https://www.virtualbox.org/manual/ch02.html).

https://www.virtualbox.org/manual/ch02.html


The	first	step	in	the	process	provides	us	with	an	introduction	to	the	installation	process	and
reminds	us	as	to	what	we	are	actually	installing:

Next,	the	installer	informs	us	as	to	how	much	space	it	will	use	on	our	computer,	and
provides	us	with	the	option	to	customize	the	installation	if	we	want	to	Change	Install
Location…,	and	install	the	software	in	another	location	(perhaps	another	disk	drive	if	our
disk	gets	full).

Let’s	leave	the	default	install	location	as	it	is,	and	click	on	the	Install	button	to	install
VirtualBox	on	our	computer:



After	being	prompted	to	provide	administrative	privileges,	the	installer	then	automatically
installs	VirtualBox	for	us:



Once	the	installation	has	finished,	we	are	shown	a	confirmation	screen	with	the	option	of
clicking	on	Close	to	close	the	installer:

Now	we	have	successfully	installed	VirtualBox!



Installing	Vagrant
Now	that	we	have	the	prerequisites	installed	on	our	computer,	we	can	actually	install
Vagrant	itself.	This	process	is	similar	to	that	of	installing	VirtualBox.	First,	let’s	download
the	relevant	installer	from	the	Vagrant	download	page
(http://www.vagrantup.com/downloads.html):

Let’s	open	the	installer	and	start	the	process.	Again,	on	OS	X,	the	first	step	is	to	double-
click	on	the	Vagrant.pkg	icon:

http://www.vagrantup.com/downloads.html


We	now	need	to	follow	the	installation	steps	that	are	provided;	this	is	very	similar	to	the
earlier	steps	for	VirtualBox,	and	for	most	of	the	software	packages	in	general.	You	might
be	prompted	to	provide	your	computer’s	administrative	user	privileges	for	the	software	to
be	installed.

Let’s	verify	that	Vagrant	has	been	successfully	installed.	We	can	do	this	by	opening	a
terminal	window	(cmd	on	Windows)	and	running	the	vagrant	command:



The	preceding	screenshot	shows	that	we	have	successfully	installed	Vagrant,	and	we	are
able	to	run	it.

Running	the	vagrant	command	on	its	own	lists	a	range	of	common	subcommands,	which
we	can	run	within	Vagrant,	as	well	as	instructions	on	how	to	access	the	help	information
on	Vagrant	and	any	of	its	subcommands.	We	can	access	the	help	information	on	Vagrant
and	its	subcommands	by	adding	the	h	flag,	-h,	to	the	end	of	the	command	when	we	run	it.





Summary
In	this	chapter,	we	discussed	the	benefits	of	using	virtualized	development	environments
and	specifically,	Vagrant.	We	then	installed	Oracle	VirtualBox,	which	is	the	virtualization
provider	Vagrant	uses	by	default,	and	we	installed	Vagrant.	After	installing	Vagrant,	we
ran	the	vagrant	command	to	check	whether	it	was	installed	correctly.

Now	that	we	have	Vagrant	and	a	provider	installed,	we	can	now	move	onto	using	Vagrant
to	set	up	and	manage	some	of	our	development	projects	in	a	virtual	development
environment.	In	the	next	chapter,	we	will	create	our	first	project,	learn	about	the
configuration	file,	and	manage	our	Vagrant	controlled	machines.





Chapter	2.	Managing	Vagrant	Boxes	and
Projects
In	this	chapter,	we	will	learn	the	basics	of	using	Vagrant.	We	will	take	a	look	at	initializing
projects,	importing	base	boxes	to	be	used	as	our	operating	system,	and	controlling	the
virtual	machine	by	powering	on	and	off,	suspending	and	resuming,	and	connecting	to	the
box.	Finally,	we	will	also	learn	how	to	configure	some	of	the	key	integration	points
between	our	own	machine	and	our	Vagrant-controlled	virtual	machine,	including:

Port	forwarding
Folder	mapping
Networking



Creating	our	first	Vagrant	project
Now	that	we	have	Vagrant	installed	on	our	machine,	let’s	take	a	look	at	creating	Vagrant
projects.	Any	folder	can	act	as	a	Vagrant	project;	it	only	requires	a	special	configuration
file,	called	the	Vagrantfile,	within	it.	Vagrant	uses	this	file	to	set	up	the	virtual	machines
(guests)	and	manage	their	integration	with	our	computer	(or	host	machine).

Vagrant	has	a	command	to	create	a	Vagrantfile	within	the	current	directory	you	are	in,
within	your	computer’s	terminal:	the	vagrant	init	command.	To	create	a	new	project,
let’s	create	a	new	folder	anywhere	in	our	system	–	ideally,	somewhere	easily	reachable,
then	we	need	to	go	into	this	folder,	and	run	the	init	command:

Vagrant	will	then	create	a	Vagrantfile	within	that	folder,	and	show	us	a	confirmation
message:

If	we	take	a	look	at	the	contents	of	this	Vagrantfile	file	that	was	created,	we	will	see	a
range	of	configuration	options.	Most	of	the	options	are	commented	out	(as	they	are
prefixed	with	a	#	character)	to	give	us	an	idea	of	how	we	can	configure	the	project.

There	are	only	four	lines	of	actual	usable	configuration	in	the	file,	as	shown	here:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.box	=	"base"

end

Tip
Downloading	the	example	code



You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

Different	versions	of	Vagrant	use	different	structures	and	instructions	within	their
Vagrantfile	files.	To	make	Vagrant	backward	compatible,	the	various	settings	are	wrapped
in	a	block	of	code	that	contains	the	version	of	the	configuration	to	be	used.	Configuration
Version	2	is	compatible	with	Vagrant	Version	1.1	up	to	Version	2.0.x	(when	released).

Within	here,	we	have	a	single	option	—the	type	of	Vagrant	box	to	use.	A	Vagrant	box	is	an
image	of	an	operating	system	that	is	configured	to	work	with	Vagrant.

We	can	generate	a	Vagrantfile	without	the	illustrative	comments	by	providing	the	minimal
option	(-m	or	--minimal,	for	example,	vagrant	init	--minimal).

In	order	to	boot	our	Vagrant	machine,	we	run	the	vagrant	up	command:

As	Vagrant	doesn’t	know	what	the	box	base	is,	our	project	is	unable	to	boot.	While
Vagrant	projects	have	their	configuration	stored	within	their	projects	folder,	boxes	are
installed	globally	on	your	computer	and	can	be	shared	across	projects.	If	Vagrant	doesn’t
have	a	box	installed	with	that	name,	it	will	either	try	to	download	it	from	the	URL
provided	in	the	Vagrantfile	(if	there	is	one	provided)	or	it	will	look	for	the	relevant	box	in
HashiCorp	Atlas	(formerly	Vagrant	Cloud).	HashiCorp,	the	company	behind	Vagrant,
provides	official	boxes	for	the	latest	Long	Term	Support	version	of	Ubuntu	(this	box	is
hosted	on	and	distributed	through	Vagrant	Cloud;	we	will	discuss	this	in	more	detail	in
Chapter	9,	HashiCorp	Atlas).	To	use	this	box,	we	simply	pass	the	name	of	the	box	to	the
init	command	(or	update	the	Vagrantfile).	As	we	already	have	a	Vagrantfile	in	place	for
our	project,	we	need	to	use	the	force	option	to	override	the	existing	file	(-f	or	--force):

vagrant	init	--force	hashicorp/precise64

Now	if	we	try	to	run	our	Vagrant	project,	Vagrant	will	look	for	the	box,	and	this	time,	it
will	download	the	precise64	box	from	Vagrant	Cloud,	for	use	in	our	project:

http://www.packtpub.com
http://www.packtpub.com/support


Typically,	boxes	are	minimal	installations	of	operating	systems	that	contain	only	what	is
required	for	the	operating	system	to	function,	tools	to	integrate	with	Vagrant,	and	a
minimal	amount	of	other	tools.	This	provides	greater	flexibility	when	it	comes	to	using
Vagrant	to	manage	projects,	as	we	can	decide	exactly	what	software	we	need	to	run	on	our
virtual	machine	for	our	project	to	function,	without	having	to	worry	about	the	conflicting
versions	of	the	said	software.	Some	existing	boxes	may	have	more	software	installed,	and
of	course,	we	may	want	to	package	a	box	that	contains	some	of	the	key	software	our
projects	need	(particularly,	useful	as	a	backup	for	users	with	unreliable	Internet
connections).

Note
While	we	are	using	commands	to	initialize	our	Vagrant	projects	in	this	chapter,	these	are
simply	quick	ways	to	create	a	Vagrantfile	file	with	some	prepopulated	values.	A
Vagrantfile	file	is	the	configuration	file	that	defines	how	Vagrant	should	use	the	project
(such	as	operating	system	to	be	used,	virtual	machines	to	boot	up,	synced	folders,
forwarded	ports,	and	so	on).	We	can,	of	course,	create	this	file	ourselves	within	the	folder
we	wish	to	use	as	our	project.





Managing	Vagrant-controlled	guest
machines
The	virtual	machines,	which	Vagrant	controls	for	us,	still	need	to	be	managed	and	worked
with.	We	have	seen	that	we	can	start	a	Vagrant	project	with	vagrant	up.	Let’s	learn	more
about	this	command,	and	see	how	to	perform	other	operations	on	our	new	virtual	machine.



Powering	up	a	Vagrant-controlled	virtual	machine
As	we	have	just	seen,	we	can	power	up	a	virtual	machine	using	the	vagrant	up	command.
With	this	command,	Vagrant	will	first	check	whether	a	Vagrant	environment	has	already
been	set	up.	If	a	previously	suspended	environment	is	found,	it	will	resume	that
environment.

If	the	environment	was	not	previously	suspended,	Vagrant	then	checks	whether	the	base
box	has	already	been	downloaded	onto	the	machine.	If	it	hasn’t,	it	will	download	it,	as	it
did	for	us	when	we	booted	our	project	with	the	precise64	box	for	the	first	time.

Vagrant	will	then	perform	the	following	actions:

1.	 Copy	the	base	box	(remember,	base	boxes	are	managed	globally	on	our	host
computer,	so	it	takes	a	copy	for	each	machine	managed	by	it).

2.	 Create	a	new	virtual	machine	with	the	relevant	provider	(the	default	being
VirtualBox).

3.	 Forward	any	configured	ports;	by	default,	it	will	forward	port	22	(the	SSH	port)	on
the	virtual	machine	to	port	2222	on	the	host.	This	will	allow	us	to	connect	to	the
virtual	machine	over	SSH.

4.	 Boot	(power	up)	the	virtual	machine.
5.	 Configure	and	enable	networking,	so	that	we	can	communicate	with	the	virtual

machine.
6.	 Map	shared	folders	between	the	host	and	the	guest	(by	default,	it	will	map	the	folder

that	contains	the	Vagrant	project	to	/vagrant	on	the	guest	machine).
7.	 Run	any	provisioning	tools	that	are	set	up	such	as	Puppet,	Chef,	or	SSH	commands

or	scripts.

The	actions	performed	by	Vagrant	will	look	something	like	this:





Suspending	a	virtual	machine
We	can	save	the	current	state	of	the	virtual	machine	to	the	disk	(suspend	it)	so	that	we	can
resume	it	later.	If	we	run	vagrant	suspend,	it	will	suspend	the	VM	and	stop	it	from
consuming	our	machine’s	resources,	except	for	the	disk	space	it	will	occupy,	ready	for	us
to	use	again	later:



Resuming	a	virtual	machine
In	order	to	use	a	previously	suspended	virtual	machine,	we	simply	run	vagrant	resume:



Shutting	down	a	virtual	machine
We	can	shut	down	a	running	virtual	machine	using	the	vagrant	halt	command.	This
instructs	the	VM	to	stop	all	running	processes	and	shut	down.	To	use	it	again,	we	need	to
run	vagrant	up,	which	will	power	on	the	machine;	provisioning	is	typically	only	ran	on
the	first	vagrant	up	command.	To	ensure	that	provisioning	runs	when	we	boot	up	a	saved
machine	subsequently,	we	can	use	the	--provision	flag.



Starting	from	scratch
Sometimes,	things	go	wrong.	It’s	not	inconceivable	that	we	might	make	some	changes	to
our	virtual	machine,	and	find	out	that	it	no	longer	works.	Thankfully,	since	we	have	a	base
box,	configuration	file,	and	provisioning	files,	which	are	all	stored	separately,	we	can
instruct	Vagrant	to	destroy	our	virtual	machine,	and	then	create	it	again,	using	the
configurations	to	set	it	up.	This	is	done	via	the	destroy	command,	and	then	we	need	to
use	the	up	command	to	start	it	again:

vagrant	destroy

vagrant	up

Of	course,	if	we	update	our	Vagrantfile,	provisioning	manifests,	or	application	code	that
can	also	break	things;	so	it	is	important	that	we	use	a	version	control	system	to	properly
manage	our	project’s	code	and	configuration,	so	that	we	can	undo	the	changes	there	too;
Vagrant	can	only	do	so	much	to	help	us!



Updating	based	on	Vagrantfile	changes
If	we	make	changes	to	our	Vagrantfile,	these	changes	won’t	apply	until	we	next	shut	down
and	power	on	our	virtual	machine.	As	this	isn’t	very	convenient,	there	is	a	handy	reload
command	that	will	shut	down	the	machine,	reload	its	configuration	based	on	the
Vagrantfile	as	it	currently	is,	and	boot	it	up	again:

vagrant	reload

Running	this	command	yields	the	following	result:



Connecting	to	the	virtual	machine	over	SSH
If	we	run	the	vagrant	ssh	command,	Vagrant	will	then	connect	to	the	virtual	machine
over	SSH.	Alternatively,	we	can	SSH	to	localhost	with	port	2222,	and	this	will	tunnel	into
the	virtual	machine,	using	the	default	forwarded	SSH	port.

If	we	run	Vagrant	on	a	Windows	machine,	we	won’t	have	a	built-in	SSH	client.	We	can
use	a	client	such	as	PuTTY	to	connect	to	Vagrant.	PuTTY	can	be	downloaded	from
http://www.chiark.greenend.org.uk/~sgtatham/putty/.	More	information	on	how	to
configure	PuTTY	to	work	with	Vagrant	is	available	on	the	Vagrant	website	(http://docs-
v1.vagrantup.com/v1/docs/getting-started/ssh.html).

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html




Managing	integration	between	host	and
guest	machines
Without	any	form	of	integration	between	the	host	machine	and	the	guest,	we	would	simply
have	a	bare	bones	virtual	server	running	on	top	of	our	own	operating	system,	which	is	not
particularly	useful.	We	need	our	own	machine	to	be	capable	of	integrating	tightly	with	the
guest	(virtual	machine).



Port	forwarding
Although	the	virtual	machine	is	running	on	our	own	machine,	because	of	virtualization,	it
acts	and	behaves	like	a	completely	different	machine.	Sometimes,	this	is	what	we	want;
however,	there	might	be	times	we	want	to	have	the	virtual	machine	behave	almost	as	an
extension	of	our	own	machine.	One	way	to	do	this	is	through	port	forwarding,	where	we
can	tunnel	a	port	from	the	virtual	machine	to	a	port	on	the	host	machine.	If,	for	example,
we	have	a	web	server	running	on	our	own	machine,	we	obviously	don’t	want	to	map	the
web	server	port	from	Vagrant	onto	the	same	port;	otherwise,	there	would	be	a	conflict.
Instead,	we	can	map	it	to	another	port.	If	we	map	the	web	server	port	on	the	virtual
machine	to	port	8888	on	the	host,	then	navigating	to	http://localhost:8888	on	our	own
machine	would	show	us	the	web	service	we	run	on	the	guest,	despite	the	fact	that	the
localhost	refers	to	our	host	machine.

The	port	forwarding	is	done	via	lines	in	the	Vagrantfile	file;	we	simply	provide	the	guest
and	host	ports	we	wish	to	map:

config.vm.network	:forwarded_port,	guest:	80,	host:	8888

If	we	have	other	Vagrant	managed	virtual	machines	on	our	computer,	which	we	wish	to
run	simultaneously,	we	can	enable	auto_correct	on	specific	ports.	This	way,	if	a	conflict
is	found	(for	example,	two	virtual	machines	trying	to	map	to	the	same	port),	one	virtual
machine	will	try	a	different	port	instead:

,	auto_correct:	true

Ports	below	a	certain	range	need	elevated	or	root	privileges	on	the	host	machine,	so	you
may	be	asked	for	your	administrative	password.



Synced	folders
Synced	folders	allow	us	to	share	a	folder	between	the	host	and	the	guest.	By	default,
Vagrant	shares	the	folder	that	contains	the	Vagrant	project	/vagrant	on	the	virtual
machine.	We	can	use	the	following	command	in	our	Vagrantfile	to	sync	more	folders	if
we	wish:

config.vm.synced_folder	"/Users/michael/assets/"	"/var/www/assets"

The	first	parameter	is	the	path	to	the	folder	on	our	machine	and	the	second	is	the	mount
point	on	the	VM.	If	we	use	a	relative	path	on	our	machine,	it	would	be	relative	to	the
project	folder.

If	we	want	to	override	the	default	synced	folder,	we	can	do	this	too:

config.vm.synced_folder	".",	"/var/another/folder"

The	Network	File	System	(NFS)	can	give	us	better	performance	with	synced	folders	than
the	default	settings.	This	won’t	have	any	effect	on	Windows	hosts,	and	on	Linux/OS	X,
hosts	will	require	root	privileges.	We	can	enable	NFS	on	a	per	synced	folder	basis	by
adding	the	following	command	to	the	preceding	line:

,	type:	"nfs"



Networking
By	default,	our	Vagrant	virtual	machines	are	only	accessible	from	the	machines	we	run
Vagrant	on,	and	other	machines	in	our	network	won’t	be	able	to	access	them.	If	we	map
ports	to	our	host,	then	we	can	share	the	services	running	on	the	virtual	machine	with	our
colleagues	within	our	network.	If	we	want	to	allow	our	colleagues	to	access	our	Vagrant
managed	virtual	machines	directly,	we	can	attach	the	virtual	machine	to	our	internal
network,	and	VirtualBox	will	bridge	the	network	between	our	machine	and	the	virtual
machine,	and	the	internal	network	between	our	machine	and	the	rest	of	the	machines	in
our	home	or	office.

config.vm.network	"private_network",	ip:	"10.11.100.200"

This	approach	is	also	useful	when	wanting	to	have	multiple	Vagrant	projects	running	at
the	same	time;	if	they	are	web	projects,	they	can	all	expose	port	80,	but	on	different	IP
addresses,	and	if	we	want,	we	can	map	these	to	the	hostnames	in	our	hosts	file.

Note
The	hosts	file	is	a	file	on	a	computer	that	maps	a	domain	name	to	an	IP	address.	This	can
be	used	to	prevent	the	computer	from	having	to	look	up	the	IP	address	for	a	domain	and	is
useful	for	locally	hosted	sites,	as	we	can	manually	link	the	IP	address	to	a	domain	name,
just	for	our	local	machine.	On	OS	X	and	Linux,	the	hosts	file	is	stored	as	/etc/hosts,
and	on	Windows	it	is	stored	as	C:\Windows\System32\Drivers\etc\hosts.

If	we	want	to	share	access	to	our	virtual	machine	or	demo	something	running	on	it,	we	can
use	Vagrant	Share	through	Vagrant	Cloud,	which	we	will	discuss	in	Chapter	9,	HashiCorp
Atlas.

It	is	also	possible	to	have	the	IP	address	assigned	via	DHCP	(typically,	this	will	mean	that
your	network’s	router	will	assign	it	an	IP	address):

config.vm.network	"private_network",	type:	"dhcp"





Autorunning	commands
One	of	the	key	concepts	within	Vagrant	is	provisioning.	This	involves	turning	a	basic
virtual	machine	with	a	base	operating	system	into	a	server	that	is	ready	to	run	for	your
project,	meeting	your	requirements.	To	go	from	the	base	operating	system	to	a	fully
fledged	machine,	we	need	to	use	a	provisioning	tool	to	install	the	software	and	configure
the	machine.	There	are	a	number	of	key	provisioning	options	within	Vagrant:

Shell
Puppet
Ansible
Chef

Puppet,	Ansible,	and	Chef	are	all	third-party	tools	that	Vagrant	supports	out	of	the	box,
and	provide	specific	languages	to	configure	servers	in	an	agnostic	way	that	can	be	used	for
different	operating	systems.	The	next	three	chapters	will	discuss	these	tools	in	more	detail.
Vagrant	also	supports	some	other	provisioning	tools,	including	Salt,	Docker,	and
CFEngine.

SSH	provisioning	involves	running	a	series	of	commands	on	the	virtual	machine	over	SSH
when	the	machine	is	first	set	up.

There	are	two	key	ways	in	which	we	can	use	SSH	provisioning.	We	can	either	directly	run
a	command	from	our	Vagrantfile	or	we	can	run	the	contents	of	a	script.

The	following	line	in	our	Vagrantfile	will	run	the	inline	command	provided:

config.vm.provision	"shell",	inline:	"sudo	apt-get	update"

Alternatively,	we	can	tell	Vagrant	to	run	a	particular	shell	script	(the	location	of	the	script
specified	is	relative	to	our	project	root,	that	is,	/vagrant):

config.vm.provision	"shell",	path:	"provision.sh"

This	shell	script	could	contain	all	of	the	commands	we	need	to	convert	a	base	box	into	a
box,	which	supports	our	project	and	application,	perhaps	installing	web	and	database
servers.





Managing	Vagrant	boxes
We	can	manage	Vagrant	boxes	using	the	vagrant	box	command.	Let’s	run	this	command
with	the	help	flag	(--help)	and	see	what	subcommands	are	available:

vagrant	box	--help

Running	this	command	gives	the	following	result:

There	are	six	available	box-related	subcommands.	With	each	of	these,	we	can	provide	the
--help	flag	to	see	what	additional	arguments	are	available.	The	available	box-related
subcommands	are:

add:	This	command	adds	a	new	box
list:	This	command	lists	all	boxes	installed
outdated:	This	command	checks	whether	any	boxes	have	updates	available
remove:	This	command	removes	a	box	from	the	host
repackage:	This	command	converts	a	Vagrant	environment	into	a	distributable	box
update:	This	command	will	update	the	box	being	used	by	the	current	running
Vagrant	environment



Adding	Vagrant	boxes
The	add	subcommand	allows	us	to	add	a	new	box.	It	takes	a	single	argument	and	a	number
of	optional	flags.	The	argument	is	a	name,	URL,	or	path	to	a	box	file.	If	a	name	is
provided,	Vagrant	will	download	the	box	from	Vagrant	Cloud.	If	we	provide	a	URL	or
path	to	a	box	stored	elsewhere,	we	need	to	give	Vagrant	a	name	to	use.	This	is	provided
with	the	--name	optional	flag.

Some	other	optional	flags	that	might	be	useful	include:	--force,	which	will	tell	Vagrant	to
remove	a	pre-existing	box	with	the	same	name;	--clean,	which	will	tell	Vagrant	to	clean
any	temporary	downloaded	files;	and	--provider,	which	allows	us	to	specify	another
provider	to	back	the	box	(the	default	provider	being	VirtualBox,	however,	there	are
providers	available	for	Vagrant,	including	VMware	and	Amazon	EC2).

The	following	command	will	add	a	new	packt	box,	and	if	an	existing	one	is	found,	it	will
override	it:

vagrant	box	add	––force	packt	http://our-server.vagrant/packt.box

The	process	of	adding	a	box	may	take	a	while,	as	most	Vagrant	boxes	will	be	at	least	200
MB	big.	Once	downloaded,	the	box	will	be	extracted	and	available	for	us	to	use	in	our
Vagrant	projects,	as	we	observed	when	we	started	our	first	project	earlier	in	the	chapter.



Listing	Vagrant	boxes
The	list	subcommand	will	list	the	boxes	installed	within	Vagrant,	along	with	the	provider
that	backs	the	box:

vagrant	box	list

Running	this	command	gives	the	following	output:



Checking	for	updates
Boxes,	which	are	provided	by	Vagrant	Cloud,	may	be	regularly	updated;	we	can	use	the
outdated	subcommand	to	see	whether	there	are	updates	available:



Removing	Vagrant	boxes
We	can	remove	the	box	with	the	remove	subcommand.	We	need	to	provide	the	name	of	the
box	to	be	removed.	Optionally,	we	can	also	specify	the	provider	and	the	version	of	the	box
to	be	removed	with	the	--provider	and	--box-version	flags,	respectively.	The	following
example	will	remove	our	precise64	box	for	VirtualBox:

vagrant	box	remove	hashicorp/precise64	--provider	virtualbox

Running	this	command	gives	the	following	output:



Repackaging	a	Vagrant	box
The	repackage	subcommand	lets	us	convert	a	Vagrant	environment	complete	with	any
customizations	we	have	made	to	it,	such	as	software	we	have	installed	on	it,	into	a	box
that	we	can	reuse	and	distribute	to	others.	We	will	use	this	command	in	Chapter	8,
Creating	Your	Own	Box.



Updating	the	current	environment’s	box
We	can	use	the	update	subcommand	to	update	the	box	in	use	on	the	current	Vagrant
environment:

vagrant	box	update

Alternatively,	we	can	update	a	specific	box,	which	isn’t	tied	to	the	current	environment,
using	the	--box	flag	to	provide	the	name	of	the	box	(and	the	--provider	option	too	if	we
wish).





Too	many	Vagrants!
Once	we	start	using	Vagrant	on	a	range	of	projects,	the	lack	of	a	GUI	can	make	it	easy	to
lose	track	of	which	projects	are	running	or	suspended	on	your	machine.	This	is	especially
annoying	when	you	want	to	boot	up	a	new	project,	but	an	existing	Vagrant	project	is	either
causing	a	conflict	or	consuming	too	many	resources	on	your	machine.	Thankfully,	there	is
now	a	command	to	list	all	active	Vagrant	environments	on	your	host,	for	example,

This	command	lists	the	IDs,	names,	providers,	and	states	of	our	Vagrant	projects	as	well	as
the	directory	they	are	running	in:

We	can	append	the	ID	to	the	end	of	the	vagrant	command	to	run	the	command	against
that	machine,	without	having	to	go	into	that	folder,	for	example:

vagrant	suspend	77e5115





Summary
In	this	chapter,	we	created	projects	with	Vagrant,	imported	a	base	box	to	use,	and	booted
our	Vagrant	environment.	We	also	looked	at	the	commands	needed	to	manage	these	boxes
and	the	Vagrant	virtual	machines.	We	looked	at	how	we	can	configure	our	Vagrant
environment	with	networking,	synced	folders,	and	forwarded	ports,	and	how	to	provision
software	on	our	virtual	machine	with	SSH	commands.	When	it	becomes	a	problem	to	have
multiple	Vagrant	projects	running,	we	now	know	how	to	locate	these	running	projects	with
the	global-status	command.

In	the	next	chapter,	we	will	take	a	look	at	how	to	use	Puppet,	one	of	the	provisioning	tools
supported	by	Vagrant.	We	will	cover	installing	and	configuring	services,	managing	files
and	folders,	running	commands,	and	managing	users	and	scheduled	tasks.





Chapter	3.	Provisioning	with	Puppet
Vagrant	is	a	very	powerful	tool	primarily	because	of	the	following	key	concepts	it	can
manage	for	us:

Virtualization
Provisioning
Box	distribution
Sharing

In	Chapter	1,	Getting	Started	with	Vagrant	and	Chapter	2,	Managing	Vagrant	Boxes	and
Projects,	we	learned	to	use	Vagrant	to	manage	virtual	machines	for	us.	While	this	is
useful,	at	this	stage,	these	virtual	machines	are	dumb;	they	have	very	little	software
installed	for	us	to	use,	and	they	are	certainly	not	configured	for	our	projects.

There	are	two	approaches	we	can	use	to	set	up	a	Vagrant-managed	virtual	machine	with	all
the	software	required	for	a	project:

Use	a	base	box	that	is	preconfigured	with	the	software	or	development	stack	that	we
require
Provision	the	exact	software	and	configuration	that	we	require	using	a	provisioning
tool

Preconfigured	base	boxes	are	useful	and	have	their	place.	If	we	were	always	using	a
specific	configuration	or	we	were	creating	a	Vagrant	environment	for	an	open	source
project	we	were	releasing,	a	configured	box	might	be	the	best	option.	In	that	instance,	a
configured	base	box	will	quickly	get	users	up	and	running	on	the	project.	The	downside	is
that	it	isn’t	easy	to	change	the	configuration	as	the	needs	of	the	project	change,	and	certain
elements	such	as	cron	jobs	and	background	workers	would	still	need	to	be	configured
separately.

Provisioning,	however,	automates	the	process	of	turning	a	base	machine	into	one	that	is
configured	for	use	with	a	specific	project.

In	this	chapter,	we	will	quickly	take	a	look	at	the	basics	of	Puppet,	one	of	the	various
provisioning	options	available	within	Vagrant.	We	won’t	look	at	it	within	a	Vagrant
context	just	yet;	we	will	simply	take	a	look	at	how	a	Puppet	works,	and	how	we	can	use	it.
In	Chapter	6,	Provisioning	Vagrant	Machines	with	Puppet,	Ansible,	and	Chef,	we	will	take
a	look	at	how	to	connect	what	we	will	learn	in	this	chapter	with	Vagrant	itself.	In	this
chapter,	we	will	learn	the	following	topics:

How	Puppet	works
The	basics	behind	Puppet	modules	and	manifests
How	to	use	Puppet	to	perform	the	following	tasks:

Install	software
Manage	files	and	folders	within	the	filesystem
Manage	cron	jobs
Run	commands



Manage	users	and	groups

Creating	configurable	classes
How	to	use	third-party	Puppet	modules	and	Puppet	Forge
How	to	manually	run	Puppet	to	provision	a	machine

Puppet	itself	is	a	large	topic	and	the	subject	of	several	books.	For	a	more	detailed	look	at
Puppet,	Packt	Publishing	has	some	titles	dedicated	to	it:

Puppet	2.7	Cookbook,	John	Arundel	(http://www.packtpub.com/puppet-2-7-for-
reliable-secure-systems-cloud-computing-cookbook/book)
Puppet	3:	Beginners	Guide,	John	Arundel	(http://www.packtpub.com/puppet-3-
beginners-guide/book)

http://www.packtpub.com/puppet-2-7-for-reliable-secure-systems-cloud-computing-cookbook/book
http://www.packtpub.com/puppet-3-beginners-guide/book


Provisioning
Within	this	context,	provisioning	is	the	process	of	setting	up	a	virtual	machine	so	that	it
can	be	used	for	a	specific	purpose	or	project.	Typically,	this	involves	installing	software,
configuring	the	software,	managing	services	running	on	the	machine,	and	even	setting	up
users	and	groups	on	the	machine.

For	a	web-based	software	project,	provisioning	will	likely	entail	the	installation	of	a	web
server,	a	programming	language,	and	a	database	system.	Configuration	changes	will	be
needed	to	set	up	a	database	on	the	database	system	and	to	allow	the	web	server	to	write	to
specific	folders	(to	deal	with	user	uploads).

Without	this	provisioning	process,	we	would	have	an	almost	vanilla	install	of	an	operating
system,	which	contains	a	synced	copy	of	our	project	folder;	this	vanilla	install	wouldn’t	be
usable	as	a	development	environment	for	our	project.	Provisioning	takes	us	to	the	next
level	and	gives	us	a	fully	working	environment	for	our	project.





Puppet
Puppet	is	a	provisioning	tool	that	we	can	use	to	set	up	a	server	for	use	for	a	project.	The
configuration	that	determines	how	the	server	needs	to	be	set	up	can	be	stored	within	our
Vagrant	project	and	can	be	shared	with	teammates	through	a	version	control,	ensuring
everyone	gets	an	up-to-date	copy	of	the	required	development	environment.

Information	about	how	a	server	should	be	configured,	that	is,	its	software,	files,	users,	and
groups,	is	written	into	files	known	as	the	Puppet	manifests.	These	manifests	are	written
using	Puppet’s	own	language,	which	is	a	Ruby	domain-specific	language.	Puppet	takes
this	information	and	compiles	it	into	a	catalog	that	is	specific	for	the	operating	system	it	is
being	applied	to.	The	catalog	is	then	applied	to	the	machine.

For	our	purposes,	we	will	use	Puppet	in	standalone	mode	(this	is	also	how	Vagrant	uses
it).	Standalone	mode	means	that	everything	runs	from	one	machine.	Puppet	also	has
client-server	capabilities,	where	you	can	define	the	Puppet	manifests	for	all	the	servers	in
your	infrastructure,	on	a	central	host,	and	it	keeps	your	individual	servers	at	the	required
level	of	configuration.

Puppet	is	idempotent,	which	means	running	Puppet	on	a	machine	multiple	times	has	the
same	effect	as	running	it	only	once.	In	effect,	Puppet	ensures	that	conditions	are	met,	and
if	they	are	not,	it	will	perform	actions	to	ensure	that	they	are	met,	for	example,	Puppet
would	install	Nginx	if	it	wasn’t	already	installed.	If	it	was	already	installed,	it	would	do
nothing.	This	means	we	can	reprovision	with	Puppet	many	times	without	any	detrimental
effect.	This	is	useful	as	we	can	use	it	to	keep	the	server	in	sync	with	our	Puppet	manifests
if	they	were	to	change.



Creating	modules	and	manifests	with	Puppet
Puppet	is	made	up	of	a	manifest	file	and	a	number	of	modules	(which	also	contain
manifests	and	other	resources).	The	default	manifest	specifies	which	modules	are	to	be
used,	and	depending	on	the	module,	provides	customization	options	for	it	(for	example,
the	Puppet	module	for	supervisord	(http://supervisord.org/),	a	process	control	system,
allows	us	to	specify	any	number	of	processes	that	should	be	managed	using	supervisord
through	the	module	itself).

Modules	make	use	of	resources	within	Puppet	to	control	and	configure	the	machine,	and
these	modules	can	be	imported	to	run	in	a	specific	sequence,	through	stages.

Puppet	classes
Puppet	modules	typically	consist	of	classes,	which,	in	turn,	utilize	a	number	of	resource
types	(in	this	example,	the	package	resource	type,	to	install	a	software	package)	to	achieve
a	specific	requirement	for	our	server.	It	effectively	allows	us	to	bundle	a	number	of	these
resource	types	in	a	way,	which	means	we	can	simply	include	the	class	by	its	name,	and
have	all	of	the	instructions	executed	from	within	it.

A	class	in	its	most	basic	form	is	structured	as	follows:

class	nginx	{

		package	{	"nginx":							

				ensure	=>	present,									

				require	=>	Exec['apt-get	update']		

		}

}

For	its	most	basic	use	within	Vagrant,	classes	such	as	these	will	be	saved	as	default.pp
within	the	modules/nginx/manifests/	folder.	The	class	can	contain	many	resource	types
to	achieve	a	desired	goal	(for	instance,	installing	the	Apache	package	isn’t	the	same	as
preparing	the	web	server	fully	for	a	project,	related	tasks	can	be	bundled	into	the	same
class).

Default	Puppet	manifests
For	a	given	project,	Puppet	modules	are	typically	all	located	in	a	specific	modules
directory.	Many	modules	can	be	customized	when	they	are	run,	an	example	being	the
supervisord	module;	it	simply	provides	the	structure	for	us	to	customize	for	each	process
we	want	it	to	manage.

Because	of	this,	we	need	to	have	a	default	Puppet	manifest	that	includes	a	list	of	modules
to	be	run	and	any	configurations	for	them.	Because	Puppet	is	aware	of	our	module	folder
location	when	we	run	it	(and	when	it	is	run	through	Vagrant),	we	just	list	the	modules	to
be	included	and	run.

A	basic	manifest	that	will	include	and	run	the	nginx	class	we	wrote	earlier	would	be	as
follows:

import	"nginx"

http://supervisord.org/


include	nginx

I	mentioned	the	supervisor	module	(https://github.com/plathrop/puppet-module-
supervisor)	a	few	times	as	a	module	that	is	designed	to	be	used	for	multiple	different
things,	which	can	be	customized	by	the	developer	using	it.

Note
Supervisord	is	the	name	of	the	software,	however,	the	Puppet	module	we	are	going	to	use
to	manage	supervisord	is	called	supervisor	(no	“d”)—so	watch	out	for	that!

Supervisord	is	a	tool	that	maintains	a	number	of	running	processes,	for	example,	if	you
have	a	background	worker	in	a	web	application	to	resize	images,	the	supervisor	might	be
responsible	for	keeping	five	workers	running	at	any	one	instance,	respawning	them	when
one	has	finished.	The	following	is	an	example	of	how	this	module	would	be	used	in	a
default	Puppet	manifest:

supervisor::service	{

		'resize_images':

				ensure						=>	present,

				command					=>	'/usr/bin/php	/vagrant/app/console	img:resize',

				user								=>	'root',

				group							=>	'root',

				autorestart	=>	true,

				startsecs	=>	0,

				num_procs	=>	5,

				require					=>	[	Package['php5-cli'],	Package['beanstalkd']	];

}

supervisor::service	{

		email':

				ensure						=>	present,

				command					=>	'/usr/bin/php	/vagrant/app/console	email',

				user								=>	'root',

				group							=>	'root',

				autorestart	=>	true,

				startsecs	=>	0,

				num_procs	=>	5,

				require					=>	[	Package['php5-cli'],	Package['beanstalkd']	];

}

Here,	we	are	instructing	Puppet	to	use	the	supervisord	module	twice	to	set	up	and	manage
two	workers	for	us.	For	each	of	the	workers,	we	have	a	set	of	five	processes	to	be	run,	and
we	have	set	the	user	and	group	to	run	them.	We	have	defined	PHP’s	command-line
interface	and	the	beanstalkd	worker	queue	as	requirements	for	the	workers.	This
illustrates	the	power	that	Puppet	modules	have.

Resources
Puppet	provides	a	range	of	resource	types	that	we	can	utilize	to	create	our	configuration
files.	These	resource	types	are	translated	and	compiled	depending	on	the	operating	system
being	used.	For	example,	if	we	were	to	use	the	package	resource	type	to	install	some
software,	this	would	use	apt-get	on	Ubuntu	and	Yum	on	Fedora	operating	systems.	A

https://github.com/plathrop/puppet-module-supervisor


small	number	of	resource	types	are	operating	system	specific,	for	example	the
scheduled_task	resource	type	is	designed	specifically	for	Windows,	and	the	cron	type	is
designed	for	Linux	and	Unix-based	systems.

Resource	types	available	include:

Cron:	This	resource	type	is	used	to	manage	cron	jobs	on	Linux-	and	Unix-based
systems
Exec:	This	resource	type	is	used	to	run	commands	at	the	terminal/command	prompt
File:	This	resource	type	is	used	to	manage	and	manipulate	files	and	folders	on	the
filesystem
Group:	This	resource	type	is	used	to	manage	user	groups
Package:	This	resource	type	is	used	to	install	software
Service:	This	resource	type	is	used	to	manage	running	services	on	the	machine
User:	This	resource	type	is	used	to	manage	user	accounts	on	the	machine

When	resource	types	are	used	directly	(for	example,	we	use	the	Package	resource	type	to
install	some	software),	they	are	used	in	lowercase	(package).	However,	when	we	refer	to	a
resource	type	we	have	used,	for	example,	as	a	requirement	for	another	Puppet	action,	we
reference	them	with	a	leading	capital	letter	(Package).

An	example	of	this	is	as	follows:

package	{	"nginx":					

			ensure	=>	present,			

			require	=>	Exec['apt-get	update']	

}

We	tell	Puppet	to	install	the	nginx	package	(lowercase	“p”	for	package),	but	when	we
specify	the	requirement	of	a	previously	executed	exec	command,	we	use	a	leading	capital
letter.	The	options	within	this	instruction	for	Puppet	(ensure	and	require	keywords)	are
called	parameters.

A	full	list	of	resource	types	is	available	on	the	Puppet	website	at
http://docs.puppetlabs.com/references/latest/type.html.

When	using	a	resource	type,	a	name	is	provided	(in	the	preceding	instance,	this	is	nginx),
this	is	often	dual	purpose,	serving	both	as	a	way	for	us	to	reference	the	action	(in	this	case,
the	package	being	installed)	and	also	as	an	instruction	(in	this	case,	what	package	Puppet
needs	to	install).	When	it	comes	to	the	Exec	resource	type,	the	name	is	the	command	we
wish	to	run.	By	default,	we	need	to	provide	the	full	path	to	the	command	that	we	run.	We
can	avoid	this	by	providing	the	path	from	which	the	command	should	be	run	as	a
parameter.

Resource	requirements

Certain	things	that	we	do	with	Puppet	will	require	other	actions	to	have	been	performed
first.	These	can	be	defined	using	the	require	parameter,	and	we	can	specify	multiple
requirements.

If	we	need	to	run	or	install	something	after	both	the	MySQL	Server	and	the	MySQL	client

http://docs.puppetlabs.com/references/latest/type.html


packages	have	been	installed,	we	will	use	the	require	parameter	to	define	them	as
follows:

require	=>	[	Package['mysql-client'],	Package['mysql-server']	]

This	defines	an	array	of	multiple	requirements	as	a	dependency	for	our	Puppet	code.

Resource	execution	ordering
Sometimes,	we	need	to	run	specific	blocks	of	the	Puppet	code	before	other	blocks.	In	most
cases,	we	can	use	the	require,	notify,	and	subscribe	parameters	to	get	around	this
problem.



The	notify,	subscribe,	and	refreshonly	parameters
Sometimes,	we	want	to	have	a	Puppet	command	run	multiple	times	when	other	commands
have	finished.	One	example	is	to	restart	the	nginx	service.	We	will	perform	the	following
steps:

1.	 Import	a	new	configuration	file.
2.	 Add	new	virtual	hosts.

We	can	use	the	notify	parameter	to	instruct	one	command	to	trigger	another	to	be	run.	In
effect,	this	notifies	the	next	command	to	tell	it	that	there	have	been	changes	made
elsewhere,	which	requires	that	command	to	now	run.

In	the	following	example,	we	require	a	Puppet	managed	configuration	file	to	be	copied	to
our	Puppet	managed	machine.	The	code	requires	Nginx	to	be	installed	before	it	is	run,	and
after	the	file	has	been	copied	across,	it	will	notify	the	nginx	service	to	be	restarted.
Importantly,	this	notification	will	be	run	each	time	the	file	changes,	but	won’t	be	triggered
when	it	runs	where	the	file	is	unchanged:

file	{	'/etc/nginx/sites-available/default':

						source	=>	"puppet:///modules/nginx/default",

						owner	=>	'root',

						group	=>	'root',

						notify	=>	Service['nginx'],

						require	=>	Package['nginx']

}

This	can	be	also	be	achieved	using	the	subscribe	and	refreshonly	parameters,	which
work	in	the	opposite	way	to	notify.	The	subscribe	parameter	instructs	the	command	to
run	every	time	any	of	the	commands	in	the	subscribe	option	have	been	run.

The	refreshonly	parameter,	when	set	to	true,	instructs	the	command	to	only	run	when
one	of	the	commands	it	subscribes	to	has	run	(leaving	this	out	would	mean	the	command
is	also	run	in	its	own	right):

service	{	"nginx":

			refreshonly	=>	false,

				subscribe	=>	File['/etc/nginx/sites-available/default'],

}

Here,	the	command	to	reload	Nginx	will	only	be	run	when	the	new	configuration	file	has
been	loaded.	We	can,	of	course,	extend	the	subscribe	parameter	to	contain	other	things
such	as	modules	and	other	configurations,	as	discussed	earlier.

Tip
Only	service,	exec,	and	mount	resource	types	can	be	refreshed.

Executing	resources	in	stages
Where	require,	notify,	and	subscribe	are	not	suitable	for	our	use	case,	we	can	use
stages.	Puppet	has	a	default	stage,	within	which	all	commands	run.	We	can	create	our	own



stages,	which	run	before	or	after	this	stage	that	allow	us	to	force	commands	to	be	run	in
specific	orders.

We	can	define	stages	within	our	default	Puppet	manifest	and	then	instruct	Puppet	to	run
certain	classes	from	within	that	stage.	If,	for	example,	we	wanted	to	run	our	Nginx	class
before	anything	else,	we	can	create	a	stage	to	run	first,	and	put	the	Nginx	class	within	that
stage	as	follows:

stage	{	'first':	before	=>	Stage[main]	}	

class	{'nginx':	stage	=>	first}

This	creates	a	stage	called	first,	and	anything	assigned	to	this	stage	will	be	executed
before	the	default	Puppet	stage;	next,	it	places	the	Nginx	class	within	that	stage.	Once	we
have	a	named	stage,	such	as	first,	we	can	then	create	other	stages,	which	can	run	before
this	one	too.

Note
Stages	are	useful	when	you	need	to	group	the	ordering	of	certain	tasks,	however,	they	can
normally	be	avoided	through	the	proper	use	of	require,	notify,	and	subscribe,	which
should	be	used	instead	where	possible.



Installing	software
Let’s	say	we	want	to	install	Nginx	on	our	server.	There	are	three	typical	steps	involved	in
this	process:

1.	 Updating	our	package	manager.
2.	 Installing	the	nginx	package.
3.	 Running	the	nginx	service.

Because	the	first	step	is	different,	depending	on	the	operating	system	we	are	running,	we
would	want	to	either	move	this	out	of	Puppet	at	a	later	stage	or	look	at	using	a	module	to
abstract	it	out,	however,	we	will	use	it	within	Puppet	for	the	time	being.	Any	operating
specific	commands	(such	as	these)	are	written	for	Ubuntu,	which	is	the	operating	system
we	are	using	with	Vagrant.	If	you	are	not	using	Ubuntu,	the	Exec	command	should	be
rewritten	to	update	the	package	manager	on	your	system.

Note
This	example	is	purely	to	illustrate	the	process	of	putting	together	a	simple	module.	There
are	many	existing	modules	available	on	Puppet	Forge,	which	we	will	come	to	later.

Updating	our	package	manager
In	order	to	update	our	package	manager,	we	need	to	run	a	command	on	the	server.	This
can	be	achieved	using	the	Exec	resource	within	Puppet:

exec	{		'apt-get	update':

				command	=>	'/usr/bin/apt-get	update',

				timeout	=>	0

}

This	instructs	Puppet	to	run	the	apt-get	update	command.	We	have	set	a	timeout	of	zero
so	that	if	it	takes	a	while	(and	after	a	fresh	installation	of	an	operating	system	through
Vagrant,	it	might),	Puppet	will	run	it	for	as	long	as	it	takes,	overriding	the	default	timeout.

Note
This	isn’t	the	most	elegant	of	approaches,	especially	with	it	being	operating	system
specific	and	subsequently	a	requirement	for	most	of	our	other	commands.	In	Appendix,	A
Sample	LEMP	Stack,	we	will	build	a	LEMP	server	project	with	Vagrant	and	Puppet,	and
in	the	example,	we	use	Vagrant’s	SSH	provisioning	options	to	update	the	package
manager	before	we	install	the	other	software.	Most	base	boxes	don’t	have	up-to-date
package	details	to	save	space	and	due	to	their	age,	so	updating	the	package	manager	is
required.

Installing	the	nginx	package
We	can	use	the	Package	resource	to	ensure	that	Nginx	is	installed,	and	if	it	isn’t,	it	will	be
installed	as	follows:

package	{	"nginx":



			ensure	=>	present,

						require	=>	Exec['apt-get	update']

}

Here,	we	told	Puppet	to	ensure	that	the	nginx	package	is	present.	We	added	our	apt-get
update	command	as	a	prerequisite,	so	we	know	that	our	packages	will	be	up	to	date.

Running	the	nginx	service
Finally,	to	make	sure	that	Nginx	is	running,	we	use	the	Service	resource	to	ensure	that	the
nginx	service	is	running.	Obviously,	this	can’t	be	run	if	Nginx	isn’t	installed,	so	the	nginx
package	is	a	prerequisite:

service	{	"nginx":

				ensure	=>	running,

						require	=>	Package['nginx']

}



File	management
We	can	use	the	File	resource	within	Puppet	to	manage	files	and	folders	within	the
filesystem.	Let’s	take	a	look	at	some	examples,	which	allow	us	to:

Copy	files
Create	symlinks
Create	folders
Create	multiple	folders	in	one	go

Copying	a	file
One	common	file	operation	we	might	want	to	perform	would	be	to	take	a	configuration
file	from	our	project	and	copy	it	into	our	virtual	machine.	One	particular	use	case	would
be	an	Nginx	configuration	file;	we	might	want	to	define	some	virtual	hosts	and	other
settings	in	a	file,	which	we	can	share	with	our	colleagues.

Tip
While	this	works	well	and	can	get	us	up	and	running	quickly,	there	are	modules	out	there
that	allow	us	to	configure	Nginx	and	other	types	of	software	directly	from	Puppet.	This
typically	works	by	the	module	of	storing	a	template	file	(a	copy	of	the	configuration	file
with	placeholders	in	it)	and	then,	inserting	data	that	we	define	within	Puppet	into	the
template,	and	copying	the	file	onto	the	machine.	However,	for	the	sake	of	this	introductory
chapter,	we	will	just	copy	a	file	across.

The	file	resource	type	allows	us	to	create	files,	folders,	and	symlinks.	In	order	to	create	a
file	(or	replace	the	contents	of	an	existing	file	with	another	file),	we	simply	tell	Puppet
what	file	we	want	to	create	or	replace	(the	destination),	the	source	(that	is,	the	file	to	be
copied	and	put	into	the	destination),	and	the	user	and	group	who	should	own	the	file:

file	{	'/etc/nginx/sites-available/default':

			source	=>	'puppet://modules/nginx/default',

			owner	=>	'root',

			group	=>	'root',

			require	=>	Package['nginx']

}

As	this	is	an	Nginx	configuration	file,	it	is	worth	ensuring	that	Nginx	is	already	installed;
otherwise,	Nginx	will	override	this	when	it	installs	the	first	time	and	this	wouldn’t	make
the	process	idempotent.

Tip
Here’s	something	to	note	about	file	locations:	the	source	file	in	the	preceding	file	resource
code	is	held	within	a	Vagrant	environment	and	the	Puppet	module	itself.	We	can	provide
two	kinds	of	file	paths:	either	the	full	path	to	the	file	on	the	machine,	which	Puppet	is
running	on	(our	Vagrant	environment),	such	as	/vagrant/path/to/default	or	a	path
relative	to	Puppet	modules.	These	Puppet	paths	are	structured	like	this:
puppet:///modules/nginx/default.	The	difference	you	will	note	is	that	it	automatically
looks	for	in	the	files/	folder	within	the	nginx	folder;	we	don’t	need	to	specify	that.



Creating	a	symlink
If	we	omit	the	source	parameter	and	instead	add	an	ensure	parameter,	and	set	that	to
link,	we	can	create	a	symlink.	A	target	is	used	to	define	where	the	symlink	should	point
to,	as	shown	in	the	following	code:

file	{	'/var/www/vendor':

				ensure	=>	'link',

						target	=>	'/vagrant/vendor',

								require	=>	Package['nginx']

}

Creating	folders
Similar	to	the	preceding	symlink	code,	this	time,	we	simply	need	to	set	ensure	to	a
directory.	This	will	then	create	a	directory	for	us	as	follows:

file{	"/var/www/uploads":

				ensure	=>	"directory",

				owner		=>	"www-data",

				group		=>	"www-data"

				mode			=>	777,

}

We	can	use	the	mode	parameter	to	set	the	permissions	of	the	folder	(this	also	can	be	used
for	files	we	create	and	manage).

Creating	multiple	folders	in	one	go
In	many	web	projects,	we	might	need	to	create	a	number	of	folders	within	our	servers	or
our	Vagrant	virtual	machines.	In	particular,	we	might	want	to	create	a	number	of	cache
folders	for	different	parts	of	our	application,	or	we	might	want	to	create	some	upload
folders.

In	order	to	do	this,	we	can	simply	create	an	array	that	contains	all	of	the	folders	we	want
to	create.	We	can	then	use	the	file	resource	type	and	pass	the	array	to	create	them	all,	as
follows:

$cache_directories	=	[	

			"/var/www/cache/",	

			"/var/www/cache/pages",

			"/var/www/cache/routes",	

			"/var/www/cache/templates",

]

file	{	$cache_directories:

				ensure	=>	"directory",

				owner		=>	"www-data",

				group		=>	"www-data",

				mode			=>	777,

}



Cron	management
The	cron	resource	type	lets	us	use	Puppet	to	manage	cron	jobs,	which	we	need	to	run	on
the	machine.	We	provide	a	name,	in	this	case,	web_cron,	the	command	to	run,	the	user	to
run	the	command	as,	and	the	times	at	which	to	run	the	command,	as	shown	in	the
following	code:

cron	{	web_cron:

				command		=>	"/usr/bin/php	/vagrant/cron.php",

				user		=>	"root",

				hour		=>	[1-4],

				minute		=>	[0,30],

}

Puppet	provides	us	with	different	configuration	options	to	define	the	times	at	which	a	cron
should	be	run,	which	includes	the	following:

Hour:	This	value	is	between	0	and	23	inclusive
Minute:	This	value	is	between	0	and	59	inclusive
Month:	This	value	is	between	1	and	12	inclusive
MonthDay:	This	value	is	between	1	and	31	inclusive
Weekday:	This	value	is	Sunday	(7	or	0)	to	Saturday	(6)

If	one	of	these	is	omitted	from	the	configuration,	then	Puppet	runs	it	for	each	one	of	the
available	options	(that	is,	if	we	omit	month,	it	will	run	for	January	through	to	December).
When	defining	the	dates	and	times,	we	can	either	provide	a	range,	for	example,	[1-5]	or
specifics,	such	as	[1,	2,	10,	12].



Running	commands
The	Exec	resource	type	allows	us	to	run	commands	through	the	terminal	on	the	machine
we	are	provisioning.	One	caveat	with	the	exec	command	is	that	if	you	reprovision	with
Puppet,	it	will	rerun	the	command,	which	can	be	damaging	depending	on	the	command.
What	we	can	do	with	the	Exec	resource	type	is	set	the	creates	parameter.	The	creates
parameter	tells	Puppet	that	a	file	will	be	created	when	the	command	is	run,	and	if	Puppet
finds	that	file,	it	knows	that	it	has	already	been	run	and	won’t	run	it	again.

Take	for	example,	the	following	configuration;	this	will	use	the	PHP	composer	tool	to
download	dependencies.	The	command	itself	creates	a	file	called	composer.lock	(we	can,
of	course,	use	the	exec	command	itself	to	create	a	file	manually,	perhaps	using	the	touch
command).	Because	of	the	lock	file	that	is	created,	we	can	use	the	creates	parameter	to
prevent	the	command	from	being	executed	if	it	has	previously	been	executed	and	has
created	the	lock	file,	as	shown	in	the	following	code:

exec{	"compose":

			command	=>	'/bin/rm	-rfv	/var/www/repo/vendor/*	&&	/bin/rm	–f

				/var/www/repo/composer.lock	&&	/usr/bin/curl	–s

						http://getcomposer.org/installer	|	/usr/bin/php	&&	cd

								/var/www/repo	&&	/usr/bin/php	/var/www/repo/composer.

										phar	install',	

				require	=>	[	Package['curl'],	Package['git-core']	],

			creates	=>	"/var/www/repo/composer.lock",

			timeout	=>	0	

}



Managing	users	and	groups
The	user	and	group	resource	types	let	us	create	and	manage	users	and	groups.	There	are
differences	between	different	operating	systems	as	to	what	Puppet	can	do	with	the	users
and	groups	and	how	this	works.	The	code	in	the	following	section	is	tested	on	Ubuntu,
Linux.	More	information	on	the	differences	for	users	and	groups	on	different	platforms
can	be	found	on	the	Puppet	website	at
http://docs.puppetlabs.com/references/latest/type.html#user.

Creating	groups
The	simplest	way	to	create	a	group	is	simply	to	set	the	ensure	parameter	to	present:

group	{	"wheel":

		ensure	=>	"present",

}

Creating	users
To	create	a	user,	the	basic	information	we	should	provide	is	as	follows:

The	username
The	fact	that	we	want	the	user	to	exist	(ensure	=>	present)
The	group	(gid)	the	user	should	be	part	of
The	shell	to	use	for	the	user
The	home	directory	for	the	user
If	we	want	Puppet	to	manage	the	home	directory	for	the	user,	in	this	case,	it	will
create	the	folder	for	us	if	it	does	not	exist
The	password	for	the	user
The	requirements	that	we	need	the	wheel	group	in	place	first

The	code	that	will	then	create	our	user	is	as	follows:

user	{	"developer":

		ensure	=>	"present",

		gid	=>	"wheel",

		shell	=>	"/bin/bash",

		home	=>	"/home/developer",

		managehome	=>	true,

		password	=>	"passwordtest",

		require	=>	Group["wheel"]

}

Updating	the	sudoers	file
It’s	all	well	and	good	being	able	to	create	users	and	groups	on	our	machine,	however,	one
thing	that	we	can’t	do	using	the	user	and	group	resource	types	is	define	a	user	or	group	as
having	elevated	privileges,	unless	we	make	the	user	a	part	of	the	root	group.

We	can	use	an	exec	command	to	push	some	text	to	the	end	of	our	sudoers	file;	the	text	we
need	to	push	just	tells	the	file	that	we	want	to	give	the	wheel	group	the	sudo	privileges,	as
shown	in	the	following	code:

http://docs.puppetlabs.com/references/latest/type.html#user


exec	{	"/bin/echo	\"%wheel		ALL=(ALL)	ALL\"	>>	/etc/sudoers":

		require	=>	Group["wheel"]

}

This	code,	however,	will	continually	add	this	line	to	the	file	each	time	it	is	run,	which	we
don’t	want,	however,	as	we	learned	earlier,	we	can	instruct	the	exec	resources	to	only	run
at	certain	times.	Thanks	to	subscribe	and	refreshonly:

exec	{	"/bin/echo	\"%wheel		ALL=(ALL)	ALL\"	>>	/etc/sudoers":

		subscribe	=>	Group["wheel"],

		refreshonly	=>	true

}

This	still	isn’t	ideal,	as	if	we	decide	to	change	the	wheel	group	then	this	would	be	rerun,
so	ideally,	we	might	keep	the	sudoers	file	within	our	Puppet	configuration	instead	and	use
Puppet	to	manage	the	changes	to	it.



Creating	configurable	classes
One	limitation	that	our	entire	Puppet	code	has	so	far	in	this	chapter	is	that	with	the
exception	of	the	contents	of	some	files,	the	configuration	is	all	fixed.	If	we	want	to	reuse
some	of	the	Puppet	code	on	another	project,	we	might	need	to	change	things	such	as
variable	names,	paths	to	files,	or	other	project-or	environment-specific	properties.

To	make	our	code	more	flexible,	we	can	put	the	code	into	a	class,	and	use	class	parameters
to	dynamically	inject	variables	into	the	class.

A	class	is,	at	its	simplest	level,	a	method	of	grouping	related	code	together;	however,	we
can	use	them	to	build	reusable	and	configurable	modules.	If	we	take	the	composer	Exec
resource	illustrated	earlier,	we	can	start	to	make	that	reusable	by	putting	it	into	a	class:

class	composer	{

				exec{	"compose":

									command	=>	'/bin/rm	-rfv	/var/www/repo/vendor/*	&&	/bin/rm	–f	

/var/www/repo/composer.lock	&&	/usr/bin/curl	–s	

http://getcomposer.org/installer	|	/usr/bin/php	&&	cd	/var/www/repo	&&	

/usr/bin/php	/var/www/repo/composer.phar	install',	

								require	=>	[	Package['curl'],	Package['git-core']	],

								creates	=>	"/var/www/repo/composer.lock",

								timeout	=>	0	

				}

}

While	we	can	now	more	easily	pull	this	into	another	project,	we	are	locked	down	in	terms
of	the	location	of	the	composer	file	and	also	other	parameters	that	might	be	required.	We
also	require	two	packages:	we	would	either	require	that	the	developer	adds	these
elsewhere	to	their	Puppet	code,	or	we	would	include	them	here,	however,	including	them
here	would	conflict	with	other	modules	and	reduces	flexibility.	Class	parameters	let	us
pass	information	to	a	class	when	it	is	used;	this	information	can	be	used	to	control	the
code	within	the	class	and	also	configure	parts	of	the	class.

For	our	Composer	class,	we	might	want	to	let	the	developer	using	it	decide	whether	the
dependencies	are	installed	by	the	module	or	not,	and	also	provide	paths	to	be	used	by	the
module.	Class	parameters	are	defined	in	brackets	immediately	after	the	class	name	and
can	have	default	values,	so	if	they	are	omitted,	their	defaults	are	used.

We	can	then	use	control	statements	to	decide	whether	the	dependencies	should	be
installed,	and	we	can	pull	in	the	contents	of	a	variable	using	${variable}:

class	composer	($install_deps	=	true,	$path	=	'/var/www/repo/',	

$composer_home	=	'/var/www/')		{

				if	($install_deps	==	true)	{

								package	{	"curl":

												ensure	=>	present

								}

								package	{	"git-core":

												ensure	=>	present



								}

				}

				exec	{	"compose":

								command	=>	"/bin/rm	-rfv	${path}vendor/*	&&	cd	${path}	&&	

/usr/bin/curl	-s	http://getcomposer.org/installer	|	/usr/bin/php	&&	

COMPOSER_HOME=\"${composer_home}\"	/usr/bin/php	${path}composer.phar	

install",

								require	=>	[	Package['curl'],	Package['git-core'],	Package['php5-

cli']	],

								creates	=>	"${path}composer.lock",

								timeout	=>	0

				}

}

Now,	when	we	want	to	use	this	class,	we	pass	the	values	along	with	these	variable	names.
Because	of	the	way	Puppet	works,	the	ordering	of	the	parameters	doesn’t	mater;	they	are
passed	associatively	with	their	corresponding	variable	names,	as	shown	in	the	following
code:

class	{

				'composer':

								install_deps	=>	true

}



Puppet	modules
There	are	many	existing,	well-written,	reusable	Puppet	modules	freely	available	to	use.
Puppet	Forge	is	a	collection	of	modules,	which	is	available	at
http://forge.puppetlabs.com/.	It	is	always	worth	checking	whether	there	is	an	existing
module	that	solves	your	problem	before	writing	your	own.

http://forge.puppetlabs.com/


Using	Puppet	to	provision	servers
We	are	going	to	take	a	look	at	how	to	use	Puppet	with	Vagrant	in	Chapter	6,	Provisioning
Vagrant	Machines	with	Puppet,	Ansible,	and	Chef,	however,	Puppet	can	also	be	run
independently.	If	Puppet	is	installed	(it	will	be	on	most	Vagrant	base	boxes,	but	if	you
want	to	run	it	on	another	machine,	it	might	not	be,	so	install	it	first),	you	can	use	the	apply
subcommand,	passing	with	it	the	location	of	the	modules	folder	and	the	default	manifest	to
apply,	as	follows:

puppet	apply	--modulepath=/home/michael/provision/modules	

		/home/michael/provision/manifests/default.pp





Summary
In	this	chapter,	we	had	a	whirlwind	tour	of	Puppet	and	explored	the	various	ways	in	which
we	could	use	it	to	provision	a	server	for	our	projects.	We	installed	software	with	the
Package	resource,	managed	cron	jobs	with	the	Cron	resource,	managed	users	and	groups
with	the	User	and	Group	resources,	and	ran	commands	with	the	Exec	resource.	To	manage
execution	order	and	dependency	relationships	with	Puppet,	we	looked	at	using	Require,
Subscribe,	Notify,	and	Refreshonly.	We	looked	at	how	modules,	classes,	and	stages
work	as	well	as	how	to	use	class	parameters	to	configure	reusable	Puppet	code.	Finally,
we	looked	at	how	to	use	Puppet	to	provision	a	machine.

In	the	next	chapter,	we	will	take	a	look	at	Ansible,	another	provisioning	tool	that	has
support	built	into	Vagrant.





Chapter	4.	Using	Ansible
Ansible	is	another	provisioning	tool	supported	by	Vagrant	that	makes	it	easy	for	us	to	take
a	base	operating	system	installation	and	turn	it	into	a	full-fledged	server	that	suits	the
needs	of	our	project.

In	this	chapter,	we	will	quickly	take	a	look	at	the	basics	of	Ansible.	We	won’t	look	at	it
within	a	Vagrant	context	just	yet;	we	will	simply	take	a	look	at	how	Ansible	works,	and
how	we	can	use	it.	In	Chapter	6,	Provisioning	Vagrant	Machines	with	Puppet,	Ansible,
and	Chef,	we	will	take	a	look	at	how	to	connect	what	we	will	learn	in	this	chapter	with
Vagrant	itself.	In	this	chapter,	we	will	learn	the	following	topics:

How	Ansible	works
How	to	use	Ansible	to	perform	the	following	tasks:

Installing	software
Managing	files	and	folders	within	the	filesystem
Managing	cron	jobs
Running	commands
Managing	users	and	groups

How	to	use	third-party	Ansible	roles
How	to	manually	run	Ansible	to	provision	a	machine

Ansible	itself	is	a	large	topic	and	subject	of	several	books.	For	a	more	detailed	look	at
Ansible,	Packt	Publishing	has	some	titles	dedicated	to	provisioning	with	Ansible:

Learning	Ansible:	https://www.packtpub.com/networking-and-servers/learning-
ansible
Ansible	Configuration	Management:	https://www.packtpub.com/networking-and-
servers/ansible-configuration-management

https://www.packtpub.com/networking-and-servers/learning-ansible
https://www.packtpub.com/networking-and-servers/ansible-configuration-management


Understanding	Ansible
Ansible	is	an	IT	automation	tool	that	provides	provision,	orchestration,	and	configuration
management	features.	Unlike	with	Puppet	and	Chef,	Ansible	doesn’t	require	any	software
to	be	preinstalled	on	the	server,	other	than	an	SSH	service,	as	the	heavy	lifting	is	done	by
our	own	computer	that	connects	to	our	Ansible-managed	servers	and	instructs	the	server
on	how	it	needs	to	change.

Like	Puppet	and	Chef,	Ansible	is	also	idempotent.	This	means	each	time	we	run	Ansible,
it	will	only	perform	actions	where	a	change	is	required—so	if	we	install	the	Nginx	web
server,	the	first	run	of	Ansible	will	install	it	and	subsequent	runs	won’t	because	it	knows
Nginx	is	already	installed.

Ansible	configuration	is	written	in	Yaml	Ain’t	Markup	Language	(YAML),	which
makes	the	configuration	easy	to	read	and	write.

Conceptually,	Ansible	configuration	is	made	up	of	playbooks	that	are	made	up	of	plays,
which	are	made	up	of	tasks.	A	playbook	is	the	configuration	for	an	entire	system	or
environment,	which	is	mapped	to	specific	servers	or	hosts	through	plays—different	plays
can	be	applied	to	different	groups	of	servers	at	different	times	from	the	same	playbook.
Each	play	contains	a	number	of	tasks,	which,	in	turn,	make	calls	to	Ansible	modules.	In	a
more	advanced	context,	we	can	make	use	of	roles	within	Ansible	(reusable	functionality)
such	that	our	playbooks	might	simply	be	a	mapping	of	hosts	to	roles.	However,	for	the
purposes	of	this	chapter,	we	will	put	tasks	and	module	calls	directly	in	our	playbook.

Modules	within	Ansible	are	similar	in	context	to	resources	within	Puppet.	There	are
modules	to	deal	with	many	different	kinds	of	operations	on	a	server,	which	we	will	discuss
shortly.



Installing	Ansible
Because	Ansible	doesn’t	require	any	software	to	be	installed	on	the	server	side,	we	can’t
simply	connect	to	a	Vagrant	virtual	machine	and	try	out	Ansible	because	it	isn’t	installed
on	there!	In	order	to	use	it,	both	to	try	it	out,	and	also	when	it	comes	to	integrating	with
Vagrant,	we	need	to	install	Ansible	on	our	own	computer,	which	is	known	as	the	control
machine.

Although	Ansible	can	be	used	to	manage	Windows	Servers,	it	cannot	be	run	from	a
Windows	control	machine.

Packages	are	available	for	many	Linux	distributions,	and	Ansible	can	be	installed	on	OS	X
using	Homebrew	or	Python’s	pip.	Complete	details	of	the	different	operating	systems	are
available	online	at	http://docs.ansible.com/intro_installation.html.

Note
Although	we	don’t	need	anything	installed	on	the	server	being	managed,	we	do	need	SSH
access	to	the	machine,	and	unless	we	install	additional	plugins	for	Ansible,	we	will	also
need	to	have	public	and	private	keys	set	up,	so	that	we	can	connect	to	the	machine	we
wish	to	manage	over	SSH	without	a	password	from	our	control	machine.

http://docs.ansible.com/intro_installation.html


Creating	an	inventory
When	we	run	Ansible	to	provision	or	configure	a	machine,	Ansible	takes	the	hosts	we
want	to	apply	the	configuration	to,	from	our	playbooks.	It	then	looks	up	these	machines	in
its	inventory,	which	specify	the	addresses	and	connection	details	for	these	machines,	so
that	Ansible	can	connect	to	them	in	order	to	check	their	status	and	run	the	provisioning
tasks.

At	a	minimum,	the	inventory	needs	to	contain	a	name	and	an	IP	address	for	each	server
that	we	want	Ansible	to	manage.	However,	there	are	additional	configurations	we	can
provide,	for	example,	setting	the	user	to	connect	as,	the	password	to	use	(which	requires
additional	configuration),	the	port	to	connect	through,	and	if	we	need	to	tunnel	to	the
server	through	another.	An	example	of	creating	an	inventory	is	as	follows:

default	ansible_ssh_host=192.168.100.123

Although	we	are	looking	at	Ansible	outside	the	context	of	Vagrant,	we	still	might	want	to
use	Ansible,	independently,	to	connect	to	and	configure	a	Vagrant-managed	virtual
machine	so	that	we	can	test	it	in	isolation.	In	Chapter	6,	Provisioning	Vagrant	Machines
with	Puppet,	Ansible,	and	Chef,	we	will	learn	how	to	do	this	within	Vagrant	itself.	If	we	do
this,	we	need	to	provide	the	port.	We	might	also	wish	to	change	the	user	that	we	connect
as	to	root,	and	ensure	that	a	specific	SSH	key	is	used	for	the	connection	as	follows:

default	ansible_ssh_host=127.0.0.1	ansible_ssh_port=2222	

ansible_ssh_user=root	ansible_ssh_private_key=~/.ssh/id_rsa

This	inventory	file	is	simply	a	plain	text	file	saved	somewhere	on	our	control	machine.	By
default,	Ansible	will	look	for	a	file	called	/etc/ansible/hosts,	which	it	expects	to	be	the
inventory,	however,	when	we	run	Ansible,	we	can	point	to	our	own	inventory	file
elsewhere,	which	we	will	do	later	in	this	chapter.





Creating	Ansible	playbooks
As	we	discussed,	an	Ansible	playbook	is	a	YAML	file.	The	following	example	is	a	simple
playbook	that	contains	instructions	to	update	the	Apt	package	manager	class	on	the
machine	called	by	default	in	our	inventory:

---

-	hosts:	default

		tasks:

		-	name:	update	apt	cache

				apt:	update_cache=yes

We	can	run	this	playbook	by	running	the	ansible-playbook	our-playbook.yml	-i	our-
inventory-file	command.	Ansible	will	then	look	up	that	this	playbook	is	to	be	applied	to
the	default	machine,	the	default	machine’s	details,	connect	to	it,	and	if	appropriate,	run	the
command.	We	will	walk	through	the	execution	process	shortly.

Tasks	are	executed	in	the	order	that	they	appear	within	the	playbook.	However,	we	have
the	option	to	call	other	tasks	to	be	run	later	once	an	action	is	completed,	through	the	use	of
handlers,	which	we	will	discuss	shortly.

Note
Because	playbooks	are	written	in	YAML,	the	format	and	spacing/indentation	in	these	files
is	critical.	Incorrect	indentation	can	cause	files	to	not	be	parsed	correctly.



Modules	–	what	Ansible	can	do
Ansible	modules	are	similar	to	Puppet	resources,	and	we	can	use	them	to	install	and
manage	packages,	servers,	users,	files,	cron	jobs,	and	so	on.

The	modules	available	include:

Apt:	This	is	used	to	manage	apt	packages
Git:	This	is	used	to	manage	and	deploy	from	git	repositories
Service:	This	is	used	to	manage	running	services	on	the	server
Copy:	This	is	used	to	copy	files

Each	module	can	be	configured	with	different	properties,	as	we	will	discuss	in	this
chapter.	A	complete	list	of	the	modules	is	available	from	the	Ansible	website	at
http://docs.ansible.com/list_of_all_modules.html.

http://docs.ansible.com/list_of_all_modules.html


Installing	software
Let’s	say	we	want	to	install	Nginx	on	our	server.	There	are	three	steps	involved	in	this
process:

1.	 Updating	our	package	manager.
2.	 Installing	the	nginx	package.
3.	 Running	the	nginx	service.

Updating	our	package	manager
We	can	use	the	apt	module	(http://docs.ansible.com/apt_module.html)	to	update	the	apt
package	manager’s	cache,	which	is	the	equivalent	of	performing	an	apt-get	update
command:

-	name:	update	apt	cache	

		apt:	update_cache=yes

The	update_cache	parameter	can	also	be	provided	when	we	run	other	apt-related	tasks,	so
instead	of	a	dedicated	task	for	it,	we	can	instead	specify	that	when	we	install	Nginx,	the
package	manager’s	cache	must	be	up	to	date.

Installing	the	nginx	package
We	can	use	the	apt	module	(http://docs.ansible.com/apt_module.html)	to	ensure	that
Nginx	is	installed,	and	if	it	isn’t,	it	will	be	installed	as	follows:

-	name:	ensure	nginx	is	installed	

		apt:	pkg=nginx	state=present	update_cache=yes

Here,	we	told	Ansible	to	ensure	that	the	state	of	the	nginx	package	is	present,	and	that	we
should	update	the	package	manager’s	cache	before	installing	it.	There	are	different	states
available,	including	the	latest	states	to	ensure	that	we	have	the	latest	version	of	a	package
present,	or	absent	to	ensure	that	a	package	is	not	installed	on	the	server.

Running	the	nginx	service
Finally,	to	make	sure	that	Nginx	is	running,	we	use	the	service	module.	While	Nginx	will
automatically	run	when	we	install	it,	we	can	connect	to	our	new	server	and	alter	settings	or
services	by	mistake.	If	this	happens,	we	can	simply	rerun	the	provisioner,	as	Nginx	will
already	be	installed,	so	it	won’t	reinstall	it,	but	the	service	module	will	force	the	server	to
start	the	nginx	service.	We	can	use	the	enabled	parameter	to	ensure	that	the	service	is
configured	to	start	automatically	when	the	system	boots	next:

-	name:	ensure	nginx	is	running	

		service:	name=nginx	state=started	enabled=yes

http://docs.ansible.com/apt_module.html
http://docs.ansible.com/apt_module.html


Understanding	file	management
We	can	use	the	file,	copy,	and	template	modules	within	Ansible	to	manage	files	and
folders	within	the	filesystem.	Let’s	take	a	look	at	some	examples,	which	allow	us	to
perform	the	following:

Copy	files
Create	symlinks
Create	folders

Copying	a	file
One	common	file	operation	we	might	want	to	perform	would	be	to	take	a	configuration
file	from	our	project	and	copy	it	into	our	virtual	machine.	One	particular	use	case	would
be	an	Nginx	configuration	file;	we	might	want	to	define	some	virtual	hosts	and	other
settings	in	a	file,	which	we	can	share	with	our	colleagues.

Tip
While	this	works	well	and	can	get	us	up	and	running	quickly,	there	are	roles	out	there	that
allow	us	to	configure	Nginx	and	other	software	directly	from	Ansible.	This	typically
works	by	the	role	of	storing	a	template	file	(a	copy	of	the	configuration	file	with
placeholders	in	it)	and	then,	inserting	data	that	we	define	within	our	playbook	into	the
template,	and	copying	the	file	onto	the	machine.	However,	for	the	sake	of	this	introductory
chapter,	we	will	just	copy	a	file	across.

The	template	module	(http://docs.ansible.com/template_module.html)	allows	us	to	copy	a
file	from	our	control	machine	onto	the	machine	being	provisioned	as	follows:

	-	name:	write	the	nginx	config	file

			template:	src=nginx-default-site.conf	dest=/etc/nginx/sites-

available/default.conf	owner=www-data	group=www-data

As	this	is	our	Nginx	configuration	file,	it	makes	sense	for	us	to	reload	or	restart	Nginx
when	this	file	changes	to	ensure	that	the	updated	configuration	is	applied	to	the	server.	We
do	this	in	two	stages:

1.	 We	set	our	task	to	notify	a	handler	once	it	is	done.
2.	 We	create	a	handler,	which	is	only	activated	when	it	is	notified,	to	restart	Nginx.

The	following	is	a	playbook	that	updates	the	apt	cache,	installs	Nginx,	ensures	that	the
service	is	running,	copies	the	configuration	file,	and	then	ensures	that	Nginx	is	restarted
when	that	file	changes	through	a	notify	operation	and	a	handler.	The	notify	and
handlers	code	sections	are	highlighted	are	follows:

---

-	hosts:	default

		tasks:

		-	name:	update	apt	cache

				apt:	update_cache=yes

		-	name:	ensure	nginx	is	installed

http://docs.ansible.com/template_module.html


				apt:	pkg=nginx	state=present

		-	name:	write	the	nginx	config	file

				template:	src=nginx-default-site.conf	dest=/etc/nginx/sites-

available/default.conf

				notify:

				-	restart	nginx

		-	name:	ensure	nginx	is	running

				service:	name=nginx	state=started

		handlers:

				-	name:	restart	nginx

						service:	name=nginx	state=restarted

Creating	a	symlink
The	file	module	(http://docs.ansible.com/file_module.html)	allows	us	to	create	symbolic
links	to	the	existing	files	and	folders	in	the	filesystem.	If,	for	instance,	we	want	to	map	a
public	folder	within	our	web	servers	root	directory	to	a	folder	within	our	Vagrant	shared
folder,	we	can	do	this	as	follows:

-	name:	make	our	Vagrant	synced	folder	our	web	root

		file:	src=/vagrant	dest=/var/www/site	owner=www-data	group=www-data	

state=link

Creating	folders
We	can	also	use	the	file	resource	type	to	create	folders;	this	is	particularly	useful	for
scenarios	such	as	folders	to	hold	files	(avatars,	attachments,	and	so	on)	uploaded	by	users
of	a	web	application:

-	name:	create	an	uploads	folder

		file:	path=/var/www/uploads	owner=www-data	group=www-data	mode=0777	

state=directory

We	can	use	the	mode	parameter	to	set	the	permissions	of	the	folder,	and	the	owner	and
group	parameters	to	set	the	user	and	groups	who	own	the	directory	(these	also	can	be	used
for	files	we	create	and	manage	too).	Finally,	the	state	parameter	is	used	to	ensure	that	the
path	provided	is	a	folder.

http://docs.ansible.com/file_module.html


Managing	cron
The	cron	module	(http://docs.ansible.com/cron_module.html)	lets	us	use	Ansible	to
manage	cron	jobs,	which	we	need	to	run	on	the	machine.	We	provide	a	name	(which	is	a
required	parameter),	in	this	case,	web_cron,	the	command	to	run,	the	user	to	run	the
command,	and	the	times	at	which	to	run	the	command,	as	shown	in	the	following	code:

-	name:	Run	some	cron

		cron:	name="web_cron"	hour="1-4"	minute="0,30"	job="/usr/bin/php	

/vagrant/cron.php"

Ansible	provides	us	with	various	different	configuration	options	to	define	the	times	at
which	a	cron	should	be	run.	These	include:

Hour:	This	value	is	between	0	and	23	inclusive
Minute:	This	value	is	between	0	and	59	inclusive
Month:	This	value	is	between	1	and	12	inclusive
Day:	This	value	is	between	1	and	31	inclusive
Weekday:	This	value	is	from	Sunday	(0)	to	Saturday	(6)

If	one	of	these	is	omitted	from	the	configuration,	then	Ansible	runs	it	for	each	one	of	the
available	options	(that	is,	if	we	omit	month,	it	will	run	for	January	through	to	December),
as	it	has	a	default	value	of	*.	When	defining	the	dates	and	times,	we	can	either	provide	a
range,	for	example,	1-5	or	specifics,	such	as	1,2,10,12.

http://docs.ansible.com/cron_module.html


Running	commands
The	command	and	shell	modules	allow	us	to	run	commands	through	the	terminal	on	the
machine	we	are	provisioning.	The	difference	between	the	two	is	that	the	shell	module
will	run	the	commands	through	a	shell	on	the	remote	system.	So	if	we	need	to	access
environment	variables	or	operators,	such	as	&,	|,	>,	and	<,	then	we	need	to	use	the	shell
module.



Managing	users	and	groups
The	user	and	group	modules	(http://docs.ansible.com/user_module.html	and
http://docs.ansible.com/group_module.html)	let	us	create	and	manage	users	and	groups.

Creating	groups
We	simply	provide	a	name.	By	default,	the	state	parameter	is	set	to	present:

-	name:	create	some	new	group

		group:	name=newgroup	state=present

Creating	users
To	create	a	user	we	can	use	the	user	module	(http://docs.ansible.com/user_module.html);
the	minimum	information	we	need	again	is	the	username.	However,	we	can	also	specify
their	group,	password	(providing	a	crypted	hash	as	per
http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-
module),	and	even	whether	an	SSH	key	can	be	generated	if	the	user	does	not	have	one:

-	name:	create	a	new	user

		user:	name=ournewuser	group=newgroup	state=present

http://docs.ansible.com/user_module.html
http://docs.ansible.com/group_module.html
http://docs.ansible.com/user_module.html
http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module


Using	Ansible	roles
There	are	many	existing,	well-written,	reusable	Ansible	roles	freely	available	to	use.
These	roles	typically	manage	large	aspects	of	server	functionality	in	one	reusable	bundle,
for	example,	there	is	an	Nginx	role	to	manage	Nginx	and	configure	sites	with	it.	There	are
many	roles	available	on	Ansible	Galaxy	(https://galaxy.ansible.com/),	so	it	is	worth
checking	these	out	before	writing	our	own	code!

https://galaxy.ansible.com/


Using	Ansible	to	provision	servers
Once	we	have	a	playbook	and	inventory	file,	we	can	run	the	ansible-playbook	command
to	analyze	our	playbook,	and	ensure	that	the	configuration	for	the	matching	servers	in	our
inventory	file	is	updated:

ansible-playbook	our-playbook.yml	-i	our-inventory-file

When	this	command	was	run	for	the	first	time	against	a	particular	server,	the	output	was
something	like	this:

Let’s	walk	through	this	screenshot	to	see	what	is	going	on:

1.	 First,	Ansible	pulls	the	files	together	and	checks	whether	everything	is	valid.
2.	 Next,	it	gathers	facts	about	the	related	machines	it	needs	to	connect	to.	This	is	done

by	connecting	over	SSH	and	finding	out	information,	such	as	specification,
networking	details,	and	so	on.

3.	 Next,	it	runs	through	the	tasks	in	our	playbook.	When	installing	and	writing	our
configuration	files,	Ansible	needs	to	make	a	change,	because	it	isn’t	installed	and	the
file	isn’t	there.

4.	 Once	installed,	Nginx	automatically	starts,	so	the	task	to	ensure	that	it	is	running
doesn’t	do	anything	(this	comes	back	to	the	idempotency	of	Ansible).	As	the
configuration	file	writing	notifies	the	handler	to	restart	Nginx,	Nginx	is	then	restarted
at	the	end.

5.	 Finally,	we	see	a	recap,	three	changes	were	made,	and	five	tasks	resulted	in	an	ok
response.

On	subsequent	runs,	the	output	looks	like	this:



There	are	two	differences:	firstly,	Ansible	doesn’t	need	to	do	anything,	so	everything	is
green	and	we	get	four	ok	results.	Again,	this	is	because	Ansible	is	idempotent,	so	it	only
does	things	when	a	change	to	the	system	is	required.	Secondly,	because	we	didn’t	notify
the	Nginx	restart	handler,	the	handler	wasn’t	even	run	as	a	task,	which	is	why	our	recap
number	has	dropped	to	4,	and	there	was	no	related	output	for	the	handler.





Summary
In	this	chapter,	we	learned	about	Ansible,	the	IT	automation	tool.	We	looked	at	how	it
works,	and	how	to	create	an	inventory	file	so	Ansible	can	manage	different	servers,	and
how	to	write	playbooks,	which	can	work	with	some	of	the	different	modules.

We	installed	the	software	and	learned	to	update	the	package	manager	cache	with	the	apt
module,	and	packages	that	are	services	were	then	started	and	managed	with	the	service
module.	The	template	module	allowed	us	to	copy	files	from	our	control	machine	to	the
Ansible-managed	machine.	In	order	to	trigger	service	reloads,	we	looked	into	notifying
handlers	after	specific	tasks	occur.

To	create	and	manage,	files,	folders,	and	symlinks	the	file	module	was	used,	and	we	used
the	cron	module	to	create	and	manage	cron	jobs.	Users	and	groups	were	created	and
managed	with	the	user	and	group	modules	and	finally	we	looked	into	running	commands
with	the	command	and	shell	modules.

In	the	next	chapter,	we	will	take	a	look	at	Chef,	the	final	provisioner	that	we	will	discuss
in	this	book,	and	also	discuss	how	we	can	use	it	to	provision	servers.





Chapter	5.	Using	Chef
Chef	is	another	provisioning	tool	supported	by	Vagrant	that	makes	it	easy	for	us	to	take	a
base	operating	system	installation	and	turn	it	into	a	full-fledged	server	suited	to	the	needs
of	our	project.

In	this	chapter,	we	will	quickly	take	a	look	at	the	basics	of	Chef.	We	won’t	look	at	it
within	a	Vagrant	context	just	yet;	we	will	simply	take	a	look	at	how	Chef	works,	and	how
we	can	use	it.	In	Chapter	6,	Provisioning	Vagrant	Machines	with	Puppet,	Ansible,	and
Chef,	we	will	take	a	look	at	how	to	connect	what	we	will	learn	in	this	chapter	with	Vagrant
itself.	In	this	chapter,	we	will	learn	the	following	topics:

How	Chef	works
The	basics	behind	Chef	cookbooks	and	recipes
How	to	use	Chef	to	perform	the	following	tasks:

Installing	software
Managing	files	and	folders	within	the	filesystem
Managing	cron	jobs
Running	commands
Managing	users	and	groups

How	to	use	third-party	Chef	cookbooks	and	recipes
How	to	manually	run	Chef	to	provision	a	machine

Chef	itself	is	a	large	topic	and	the	subject	of	several	books.	For	a	more	detailed	look	at
Chef,	Packt	Publishing	has	some	titles	dedicated	to	provisioning	with	Chef:

Chef	Infrastructure	Automation	Cookbook,	http://www.packtpub.com/chef-
infrastructure-automation-cookbook/book
Instant	Chef	Starter,	http://www.packtpub.com/chef-starter/book

http://www.packtpub.com/chef-infrastructure-automation-cookbook/book
http://www.packtpub.com/chef-starter/book


Knowing	about	Chef
Chef	is	a	provisioning	tool	that	we	can	use	to	set	up	a	server	for	use	for	a	project.	The
configuration,	which	determines	how	the	server	needs	to	be	set	up,	can	be	stored	within
our	Vagrant	project	and	can	be	shared	with	teammates	through	version	control,	ensuring
that	everyone	gets	an	up-to-date	copy	of	the	required	development	environment.

Information	about	how	a	server	should	be	configured,	that	is,	its	software,	files,	users,	and
groups,	is	written	into	files	known	as	Chef	recipes.	These	recipes	are	written	as	Ruby	files.
Chef	takes	this	information	and	matches	it	to	providers	that	are	used	to	execute	the
configuration	on	the	machine	in	a	compatible	way.

For	our	purposes,	we	will	use	Chef-solo,	which	is	its	standalone	mode	(this	is	also	how
Vagrant	uses	it).	Chef-solo	means	that	everything	runs	from	one	machine.	Chef	also	has
client-server	capabilities,	where	you	can	define	the	Chef	cookbooks	and	roles	for	all	the
servers	in	your	infrastructure	on	a	central	host,	and	it	keeps	your	individual	servers	at	the
required	level	of	configuration.

As	with	Puppet,	Chef	is	also	idempotent,	which	means	running	Chef	on	a	machine
multiple	times	has	the	same	effect	as	running	it	only	once.





Creating	cookbooks	and	recipes	with	Chef
Chef	instructions	are	recipes	that	are	bundled	together	in	cookbooks.	A	cookbook	contains
at	least	one	recipe,	which	performs	some	actions.	Cookbooks	can	contain	multiple	recipes
and	other	resources	such	as	templates	and	files.

At	its	most	basic	level,	a	cookbook	is	a	folder	(named	as	the	name	of	the	cookbook)	that
contains	at	least	a	recipes	folder,	which	contains	at	least	a	default	recipe	file,
default.rb.	Files	are	typically	stored	in	a	files	folder	within	the	cookbook	folder	and
template	files	within	the	templates	folder.

Note
While	both	Puppet	and	Chef	use	Ruby,	Puppet	is	a	domain-specific	language,	which
makes	it	look	and	feel	like	its	own	language,	whereas	Chef	is	structured	more	like	Ruby
itself.



Resources	–	what	Chef	can	do
Chef	uses	resources	to	define	the	actions	and	operations	that	can	be	performed	against	the
system.	Resources	are	mapped	to	a	Chef	code,	which	varies	depending	on	the
platform/operating	system	being	used.	For	example,	on	an	Ubuntu	machine,	the	package
resource	is	mapped	to	apt-get.	Some	of	these	system-specific	instructions	can	also	be
accessed	directly	via	their	own	resources,	apt_package.	For	example,	this	is	used	to
manage	packages	on	Ubuntu-	and	Debian-based	systems,	whereas	using	the	package
resource,	Chef	will	work	out	which	package	manager	to	use	based	on	the	operating
system.

Resource	types	available	include:

cron:	This	resource	type	is	used	to	manage	cron	jobs	on	Linux-	and	Unix-based
systems
execute:	This	resource	type	is	used	to	run	commands	at	the	terminal/command
prompt
file:	This	resource	type	is	used	to	manage	and	manipulate	files	and	folders	on	the
filesystem
group:	This	resource	type	is	used	to	manage	user	groups
package:	This	resource	type	is	used	to	install	software
service:	This	resource	type	is	used	to	manage	running	services	on	the	machine
template:	This	resource	type	is	used	to	manage	file	contents	with	an	embedded	Ruby
template
user:	This	resource	type	is	used	to	manage	user	accounts	on	the	machine

Each	resource	can	be	configured	with	different	attributes,	as	we	will	discuss	in	this
chapter.	A	complete	list	of	the	resource	types	is	available	on	the	Opscode	website
(Opscode	is	the	company	behind	Chef)	at	http://docs.opscode.com/resource.html.

http://docs.opscode.com/resource.html


Installing	software
Let’s	say	we	want	to	install	Nginx	on	our	server.	There	are	three	steps	involved	in	this
process:

1.	 Updating	our	package	manager.
2.	 Installing	the	nginx	package.
3.	 Running	the	nginx	service.

Because	the	first	step	is	different	depending	on	the	operating	system	we	are	running,	we
might	want	to	move	this	out	of	Chef	at	a	later	stage;	however,	we	will	use	it	within	Chef
for	the	time	being.	Any	operating	specific	commands	(such	as	this)	are	written	for
Ubuntu,	which	is	the	operating	system	we	are	using	with	Vagrant.

Updating	our	package	manager
In	order	to	update	our	package	manager,	we	need	to	run	a	command	on	the	server.	This
can	be	achieved	using	the	execute	resource	within	Chef	as	follows:

execute	"apt-get	update"	do	

		ignore_failure	true

end

This	instructs	Chef	to	run	the	apt-get	update	command.	As	the	name	of	the	resource	(the
part	provided	in	quotes	after	the	name	of	the	resource)	is	the	command	we	want	to	run,
this	will	be	executed.	If	we	use	a	friendly	name	instead,	then	we	would	need	to	provide	a
command	attribute	as	follows:

execute	"update-package-manager"	do	

		command	"apt-get	update"

		ignore_failure	true

end

By	default,	the	execute	resources	have	a	timeout	of	3,600	seconds,	however,	this	can	be
overridden	by	giving	a	timeout	attribute	to	the	resource	and	a	time	value,	for	example:

execute	"apt-get	update"	do	

		ignore_failure	true

		timeout	6000

end

Installing	the	nginx	package
We	can	use	the	package	resource	to	ensure	that	Nginx	is	installed,	and	if	it	isn’t,	it	will	be
installed	as	follows:

package	"nginx"	do	

		action	:install	

end

Here,	we	told	Chef	to	ensure	that	the	nginx	package	is	installed.	Provided	that	we	have
included	the	recipe	or	cookbook	that	contains	the	apt-get	update	command	before	the
preceding	code,	our	package	manager	will	be	up	to	date.



Running	the	nginx	service
Finally,	to	make	sure	that	Nginx	is	running,	we	use	the	service	resource.	As	well	as
ensuring	Nginx	runs	when	it	is	first	installed,	this	also	ensures	that	if	we	make	any
changes	to	our	server	(and	accidentally	stop	Nginx),	we	can	simply	rerun	the	provisioner.
As	Nginx	will	already	be	installed	it	won’t	reinstall	it,	but	the	service	resource	will	force
Chef	to	enable	the	nginx	service	(so	it	automatically	starts	on	system	boot),	and	start	the
service	when	the	command	is	run,	as	follows:

service	"nginx"	do	

		supports	:status	=>	true,	:restart	=>	true,	:reload	=>	true	

				action	[	:enable,	:start	]	

end

The	supports	property	is	a	list	of	attributes	that	instruct	Chef	on	how	to	manage	a
particular	service.	The	action	ensures	that	we	enable	the	service	(to	have	it	run	when	the
machine	boots	up)	and	run	the	service	(so,	we	don’t	have	to	wait	for	a	restart).



Understanding	file	management
We	can	use	cookbook_file,	directory,	link,	and	template	resources	within	Chef	to
manage	files	and	folders	within	the	filesystem.	Let’s	take	a	look	at	some	examples,	which
allow	us	to:

Copy	files
Create	symlinks
Create	folders
Create	multiple	folders	in	one	go

Copying	a	file
One	common	file	operation	we	might	want	to	perform	would	be	to	take	a	configuration
file	from	our	project	and	copy	it	into	our	virtual	machine.	One	particular	use	case	would
be	an	Nginx	configuration	file;	we	might	want	to	define	some	virtual	hosts	and	other
settings	in	a	file,	which	we	can	share	with	our	colleagues.

Tip
While	this	works	well	and	can	get	us	up	and	running	quickly,	there	are	modules	out	there
that	allow	us	to	configure	Nginx	and	other	software	directly	from	Chef.	This	typically
works	by	the	module	storing	a	template	file	(a	copy	of	the	configuration	file	with
placeholders	in	it)	and	then	inserting	data	we	define	within	Chef	into	the	template	as	well
as	copying	the	file	onto	the	machine.	However,	for	the	sake	of	this	introductory	chapter,
we	will	just	copy	a	file	across.

The	cookbook_file	resource	allows	us	to	copy	a	file	from	a	Chef	cookbook	onto	the
machine	as	follows:

cookbook_file	"/etc/nginx/sites-available/default"	do	

		backup	false	

		action	:create_if_missing	

end

Because	we	omitted	the	source	and	path	attributes,	Chef	makes	some	assumptions.	It	takes
the	basename	(in	effect,	the	last	element)	of	the	name	and	uses	this	as	the	source	(the
basename	of	/etc/nginx/sites-available/default	being	the	default)	and	uses	the
name	as	the	path	(destination).	The	source	file	should	be	located	in	the	files	folder	within
the	cookbook’s	own	folder.

As	this	is	an	Nginx	configuration	file,	it	is	worth	ensuring	that	Nginx	is	already	installed;
otherwise,	Nginx	will	override	this	when	it	installs	the	first	time,	and	this	wouldn’t	make
the	process	idempotent.	We	can	do	this	by	notifying	the	nginx	service,	for	example:

cookbook_file	"/etc/nginx/sites-available/default"	do	

		backup	false	

		action	:create_if_missing	

		notifies	:restart,	"service[nginx]",	:delayed

		

end



The	delayed	option	allows	all	of	these	restart	requests	to	be	queued	up	and	executed	at
the	end	of	Chef’s	execution;	the	opposite	of	this	being	immediately.

Creating	a	symlink
The	link	resource	allows	us	to	create	symbolic	links	to	the	existing	files	and	folders	on
the	filesystem.	If,	for	instance,	we	want	to	map	a	public	folder	within	our	web	server’s
root	directory	to	a	folder	within	our	Vagrant	shared	folder,	we	can	do	this	as	follows:

link	"/var/www/public"	do	

		to	"/vagrant/src/public"	

end

Creating	folders
We	can	use	the	directory	resource	to	create	folders;	this	is	particularly	useful	for
scenarios	such	as	folders	to	hold	files	(avatars,	attachments,	and	so	on)	uploaded	by	users
of	a	web	application:

directory	"/var/www/uploads"	do	

		owner	"root"	

		group	"root"	

		mode	00777	

		action	:create	

end

We	can	use	the	mode	parameter	to	set	the	permissions	of	the	folder,	and	the	owner	and
group	parameters	to	set	the	user	and	groups	who	own	the	directory	(these	also	can	be	used
for	files	we	create	and	manage	too).	Finally,	the	:create	action	is	used	to	ensure	that	the
folder	is	created.

Creating	multiple	folders	in	a	single	process	with	looping
In	many	web	projects,	we	might	need	to	create	a	number	of	folders	within	our	servers	or
our	Vagrant	virtual	machines.	In	particular,	we	might	want	to	create	a	number	of	cache
folders	for	different	parts	of	our	application,	or	we	might	want	to	create	some	upload
folders.

In	order	to	do	this,	we	can	simply	create	an	array	that	contains	all	of	the	folders	we	want
to	create.	We	can	then	use	the	directory	resource	type	and	loop	through	a	list	of	directory
names:

%w{dir1	dir2	dir3}.each	do	|dir|	

		directory	"/tmp/mydirs/#{dir}"	do	

				mode	00777	

				owner	"www-data"	

				group	"www-data"	

				action	:create	

		end	

end



Managing	cron
The	cron	resource	type	lets	us	use	Chef	to	manage	cron	jobs	that	we	need	to	run	on	the
machine.	We	provide	a	name,	in	this	case,	web_cron,	the	command	to	run,	the	user	to	run
the	command,	and	the	times	at	which	to	run	the	command,	as	shown	in	the	following
code:

cron	"web_cron"	do

		action	:create

		command	"/usr/bin/php	/vagrant/cron.php"

				user		"root"

		hour	"1-4"

				minute	"0,30"

end

Chef	provides	us	with	various	different	configuration	options	to	define	the	times	at	which
a	cron	should	be	run;	these	include:

hour:	This	value	is	between	0	and	23	inclusive
minute:	This	value	is	between	0	and	59	inclusive
month:	This	value	is	between	1	and	12	inclusive
day:	This	value	is	between	1	and	31	inclusive
weekday:	This	value	is	Sunday	(0)	-	Saturday	(6)

If	one	of	these	is	omitted	from	the	configuration,	then	Chef	runs	it	for	each	one	of	the
available	options	(that	is,	if	we	omit	month,	it	will	run	from	January	through	to
December).	When	defining	the	dates	and	times,	we	can	either	provide	a	range,	for
example,	1-5,	or	specifics,	such	as	1,2,10,12.	We	can	also	provide	an	emailto	property
to	e-mail	the	resulting	output	from	the	cron	to	an	e-mail	address	of	our	choice.



Running	commands
The	execute	resource	allows	us	to	run	commands	through	the	terminal	on	the	machine	we
are	provisioning.	One	caveat	with	the	exec	command	is	that	if	you	reprovision	with	Chef
it	will	rerun	the	command,	which	can	be	damaging	depending	on	the	command.	What	we
can	do	with	the	execute	resource	is	set	the	creates	parameter.	The	creates	parameter
tells	Chef	that	a	file	will	be	created	when	the	command	is	run;	if	Chef	finds	that	file,	it
knows	that	it	has	already	been	run,	and	it	won’t	run	it	again.

Take,	for	example,	the	following	configuration;	this	would	use	the	PHP	composer	tool	to
download	dependencies.	The	command	itself	creates	a	file	called	composer.lock	(we	can,
of	course,	use	the	exec	command	itself	to	create	a	file	manually,	perhaps	using	the	touch
command).	Because	of	the	lock	file	that	is	created,	we	can	use	the	creates	parameter	to
prevent	the	command	from	being	executed	multiple	times	when	a	lock	file	is	found:

execute	"compose"	do	

		command	"/bin/rm	-rfv	/var/www/repo/vendor/*	&&	/bin/rm	–f

				/var/www/repo/composer.lock	&&	/usr/bin/curl	–s

						http://getcomposer.org/installer	|	/usr/bin/php	&&	cd

								/var/www/repo	&&	/usr/bin/php	/var/www/repo/composer

										.phar	install"

			creates	"/var/www/repo/composer.lock"

		timeout	6000

end



Managing	users	and	groups
The	user	and	group	resource	types	let	us	create	and	manage	users	and	groups.	There	are
differences	between	different	operating	systems	as	to	what	Chef	can	do	with	the	users	and
groups	and	how	this	works.

Creating	groups
The	simplest	way	to	create	a	group	is	simply	to	set	the	action	to	:create,	as	follows:

group	"wheel"	do

		action	:create

end

Creating	users
To	create	a	user,	we	should	provide	the	following	basic	information:

The	username
The	fact	that	we	want	to	create	the	user
The	group	(gid)	the	user	should	be	part	of
The	shell	to	use	for	the	user
The	home	directory	for	the	user
Whether	we	want	Chef	to	manage	the	home	directory	for	the	user;	in	this	case,	it	will
create	the	folder	for	us	if	it	does	not	exist
The	password	for	the	user

The	code	that	will	then	create	our	user	is	as	follows:

user	"developer"	do

		action	:create

		gid	"wheel"

		shell	"/bin/bash"

		home	"/home/developer"

		supports	{:manage_home	=>	true}

		password	"passwordtest"

end

Updating	the	sudoers	file
It’s	all	well	and	good	being	able	to	create	users	and	groups	on	our	machine,	however,	one
thing	that	we	can’t	do	using	the	user	and	group	resource	types	is	define	a	user	or	group	as
having	elevated	privileges,	unless	we	make	the	user	a	part	of	the	root	group.

We	can	use	an	exec	command	through	the	execute	resource	to	push	some	text	to	the	end
of	our	suoders	file;	the	text	we	need	to	push	simply	tells	the	file	that	we	want	to	give	the
wheel	group	sudo	privileges.	The	command	we	will	need	to	execute	is	as	follows:

/bin/echo	\"%wheel		ALL=(ALL)	ALL\"	>>	/etc/sudoers



Knowing	common	resource	functionalities
There	is	also	a	set	of	common	functionality	available	to	all	resources.	This	common
functionality	includes:

The	ability	to	do	nothing	with	the	:nothing	action
Shared	attributes	available	to	all	resources:	ignore_failure,	provider,	retries,
retry_delay,	and	supports
The	not_if	and	only_if	conditions	to	ensure	that	actions	only	run	when	certain
conditions	are	met;	these	are	commands	that	are	run	and	depending	on	their	return
value,	recipes,	and	resources	can	be	ignored
There	are	notifications	to	instruct	other	resources	that	another	action	has	been
completed,	or	for	a	resource	to	take	action	if	another	resource	changes	(subscribes)



Using	Chef	cookbooks
There	are	many	existing,	well-written,	reusable	Chef	cookbooks	freely	available	to	use.
The	Opscode	community	site	contains	a	collection	of	them	at
http://community.opscode.com/cookbooks.	It	is	always	worth	checking	whether	there	is	an
existing	cookbook	that	solves	your	problem	before	writing	your	own.

http://community.opscode.com/cookbooks


Using	Chef	to	provision	servers
We	will	take	a	look	at	how	to	use	Chef	with	Vagrant	in	Chapter	6,	Provisioning	Vagrant
Machines	with	Puppet,	Ansible,	and	Chef;	however,	Chef	can	also	be	run	in	its	own	right.
Provided	Chef	is	installed	(it	will	be	on	most	Vagrant	base	boxes,	but	if	you	want	to	run	it
on	another	machine,	it	might	not	be,	so	install	it	first),	you	can	use	the	chef-solo
command,	passing	with	it	the	location	of	a	configuration	file	to	use,	and	a	JSON	file	that
contains	attributes	we	wish	to	use	(this	should	include	the	rub	list,	which	is	the	list	of
recipes	and	cookbooks	we	wish	to	use),	as	follows:

chef-solo	–c	/home/michael/chefconfig.rb	–j	

		/home/michael/attributes.json

There	are	some	useful	links	in	this	list	you	can	refer	to	for	more	information

Chef-solo	configuration:	http://docs.opscode.com/config_rb_solo.html
Apply	recipes	to	run	lists:	http://docs.chef.io/recipes.html#apply-to-run-lists
Anatomy	of	a	Chef	run:	https://github.com/jhotta/chef-fundamentals-
ja/blob/master/slides/anatomy-of-a-chef-run/01_slide.md
Chef	tutorial:	http://www.mechanicalfish.net/configure-a-server-with-chef-solo-in-
five-minutes/

http://docs.opscode.com/config_rb_solo.html
http://docs.chef.io/recipes.html#apply-to-run-lists
https://github.com/jhotta/chef-fundamentals-ja/blob/master/slides/anatomy-of-a-chef-run/01_slide.md
http://www.mechanicalfish.net/configure-a-server-with-chef-solo-in-five-minutes/




Summary
In	this	chapter,	we	had	a	whirlwind	tour	of	Chef	and	explored	the	various	ways	we	could
use	it	to	provision	a	server	for	our	projects.	This	included	how	to	install	software	packages
with	the	package	resource	and	run	services	with	the	service	resource.	We	also	managed
cron	jobs	with	the	cron	resource,	managed	users	and	groups,	and	ran	commands.	Finally,
we	looked	at	how	recipes	and	cookbooks	work,	and	how	we	can	use	Chef	to	provision	a
server.

In	the	next	chapter,	we	will	take	a	look	at	how	to	use	both	Chef	and	Puppet	to	provision	a
machine	within	the	context	of	Vagrant.





Chapter	6.	Provisioning	Vagrant
Machines	with	Puppet,	Ansible,	and	Chef
In	Chapter	3,	Provisioning	with	Puppet,	Chapter	4,	Using	Ansible,	and	Chapter	5,	Using
Chef,	we	had	an	introduction	to	Puppet,	Chef,	and	Ansible,	which	are	provisioning	tools
with	support	built	into	Vagrant.	However,	we	only	looked	at	how	the	tools	worked	in	a
general	way;	we	didn’t	look	at	how	to	use	them	with	Vagrant.

In	this	chapter,	you	will	learn	the	following	topics:

Using	Puppet	within	Vagrant
Using	Chef	within	Vagrant
Using	Ansible	within	Vagrant
Recapping	how	to	provision	with	the	built-in	SSH	provisioner
Working	with	multiple	provisioners
How	we	can	override	the	provisioning	tools	through	the	command	line



Provisioning	within	Vagrant
Vagrant	relies	on	base	boxes	for	the	guest	virtual	machines;	these	are	specifically
preconfigured	virtual	machine	images	that	have	certain	software	packages	preinstalled	and
preconfigured.	Puppet	and	Chef	are	two	such	software	packages	that	are	preinstalled
(Ansible	is	controlled	by	Vagrant	itself	on	the	host	machine,	so	it	isn’t	installed	on	the
virtual	machine,	but	requires	an	SSH	connection	to	the	virtual	machine).	Vagrant	has	its
own	interface	through	to	these	packages	from	the	host	machine.	This	means	we	can
provide	some	configuration	in	our	Vagrant	file,	and	Vagrant	will	pass	this	information	to
the	relevant	provisioners	on	the	guest	VM.





Provisioning	with	Puppet	on	Vagrant
Vagrant	supports	two	methods	of	using	Puppet:

Puppet	in	standalone	mode	using	the	puppet	apply	command	on	the	VM
Puppet	in	client/server	mode,	whereby	the	VM	(using	the	Puppet	agent)	will	be
configured	from	a	central	server

Let’s	take	a	look	at	how	to	configure	Vagrant	with	Puppet	using	these	two	different
methods.



Using	Puppet	in	standalone	mode
Puppet	standalone	is	the	simplest	way	to	use	Puppet	with	Vagrant.	We	simply	tell	Vagrant
where	we	have	put	our	Puppet	manifests	and	modules,	and	what	manifest	should	be	run.
The	smallest	amount	of	configuration	we	need	within	our	Vagrant	file	in	order	to	use
Puppet	is	this:

config.vm.provision	"puppet"	do	|puppet|

end

This	should	go	within	the	Vagrant.configure("2")	do	|config|	…	end	block	of	code
within	the	Vagrant	file.

Along	with	this	configuration,	we	will	need	a	Puppet	manifest	called	default.pp	in	the
manifests	folder	of	our	project	root.	Vagrant	will	then	use	this	to	provision	the	machine.

This	will	instruct	Vagrant	to	run	the	Puppet	provisioner	either	when	the	machine	boots	up
for	the	first	time	or	if	we	run	the	vagrant	provision	command.	The	default	Vagrant
Puppet	setup	will	make	the	following	assumptions,	unless	we	override	the	settings:

Manifests	will	be	located	in	the	manifests	folder
Modules	will	also	be	located	in	the	manifests	folder	(we	may	want	to	point	these
elsewhere,	especially	if	we	are	using	third-party	modules,	to	keep	them	separate)
The	manifest	file	to	use	will	be	default.pp	(It	will	obviously	be	within	the
manifests	folder;	it	can	be	useful	to	override	this	if	we	use	Puppet	modules	and
manifests	within	the	same	project	for	multiple	environments.	We	may	have	a
manifest	for	our	Vagrant	VM,	one	for	our	production	environment	and	one	for	a	user
acceptance	testing	platform,	for	example.)

We	can	modify	these	options	by	provisioning	configuration	options,	as	opposed	to	just
telling	Vagrant	to	provision	with	Puppet.	When	creating	projects	that	are	managed	by
Vagrant,	I	like	to	put	all	my	provision-related	files	within	the	provision	folder.	In	order	to
override	these,	within	the	Puppet	configuration	for	Vagrant,	we	can	then	specify	options
for	the	location	of	the	Puppet	manifests	(puppet.manifests_path),	the	name	of	the
Puppet	manifest	to	apply	(puppet.manifests_file),	and	the	location	of	any	Puppet
modules,	which	we	may	reference	within	our	Puppet	manifest	(puppet.module_path).
The	following	customizes	these	options:

config.vm.provision	"puppet"	do	|puppet|

		puppet.manifests_path	=	"provision/puppet/manifests"

		puppet.manifest_file		=	"default.pp"

		puppet.module_path	=		"provision/puppet/modules"

end

It	is	important	for	us	to	have	the	ability	to	at	least	change	the	manifest	file,	as	Vagrant	also
supports	a	multi-VM	environment,	where	a	single	project	can	have	a	number	of	virtual
machines	(for	example,	a	web	server	and	a	database	server).	With	this	setup,	we	will	need
to	tell	Vagrant	which	manifest	file	to	use	for	each	of	the	machines,	so	that	the	web	server
can	be	properly	configured	as	a	web	server	and	the	database	server	as	a	database	server.



Puppet	provisioning	in	action
With	the	knowledge	we	gained	of	creating	Puppet	modules	and	manifests	from	Chapter	3,
Provisioning	with	Puppet,	we	can	now	point	our	Vagrant	configuration	at	these	files,	and
see	it	in	action.	If	we	run	a	Vagrant	file	on	a	project,	which	is	suitably	configured,	we	will
see	the	output	of	Puppet	applying	its	settings	to	our	virtual	machine	in	the	terminal
window,	as	shown	in	the	following	screenshot:

The	console	output	highlights	details	of	each	Puppet	instruction	that	is	run,	including:

The	stage	the	instruction	is	within	(this	is	the	Puppet	stage,	as	we	discussed	in
Chapter	3,	Provisioning	with	Puppet,	which	allows	us	to	group	classes	together	to
control	the	ordering	of	certain	actions)
The	module
The	resource	type
The	resource	name
Whether	the	instruction	was	executed	successfully



Using	Puppet	in	client/server	mode
As	discussed	earlier,	we	can	also	run	Puppet	within	our	Vagrant	environment	in
client/server	mode	using	the	Puppet	agent	on	the	virtual	machine.	The	configuration
required	for	this	is	minimal;	we	simply	tell	Vagrant	the	address	of	the	Puppet	server	we
are	using	and	the	name	of	our	node	(the	virtual	machine	we	are	setting	up):

config.vm.provision	"puppet_server"	do	|puppet|	

		puppet.puppet_server	=	"puppet.internal.michaelpeacock.co.uk"

		puppet.puppet_node	=	"vm.internal.michaelpeacock.co.uk"

end

The	node	name	is	the	reference	for	the	machine	within	the	Puppet	server,	so	the	Puppet
server	knows	how	our	VM	should	be	configured.	The	node	name	is	also	used	to	generate
an	SSL	certificate	so	that	the	VM	can	authenticate	with	the	Puppet	server	(more	details	on
this	are	available	on	the	Puppet	website,	https://puppetlabs.com,	and	the	Puppet	blog,
https://puppetlabs.com/blog/deploying-puppet-in-client-server-standalone-and-massively-
scaled-environments.

https://puppetlabs.com
https://puppetlabs.com/blog/deploying-puppet-in-client-server-standalone-and-massively-scaled-environments




Provisioning	with	Ansible	on	Vagrant
In	order	to	use	Ansible	within	a	Vagrant	project,	we	need	to	tell	Vagrant	where	the
playbook	and	inventory	files	are:

config.vm.provision	"ansible"	do	|ansible|	

		ansible.playbook	=	"provision/ansible/playbook.yml"

end

Ansible	needs	to	know	which	machines	to	provision;	unlike	with	other	provisioners,
where	this	is	explicitly	known	from	the	Vagrantfile	configuration,	Ansible	uses	an
inventory	file	to	configure	this.	The	inventory	file	contains	a	list	of	environment	names
and	IP	addresses;	we	use	this	file	to	restrict	which	commands	Ansible	runs	on	specific
environments.	We	can	omit	this	file,	and	Vagrant	will	generate	one	for	all	of	the	virtual
machines	it	manages	for	us	in	the	current	project.

We	can	also	create	our	own	inventory	file.	At	a	minimum,	it	needs	to	know	the	name	of
the	virtual	machine	(from	our	Vagrantfile)	and	the	IP	address.	To	provide	only	these	two
pieces	of	information,	this	requires	the	virtual	machine	to	be	running	on	its	own	IP	address
(per	the	Vagrantfile	networking	configuration):

default	ansible_ssh_host=10.11.100.123

Alternatively,	we	can	provide	the	SSH	port	to	use,	so	that	Ansible	can	connect	from	our
host	machine	to	our	virtual	machine:

default	ansible_ssh_host=127.0.0.1	ansible_ssh_port=2222

To	tell	Vagrant	and	Ansible	about	our	own	custom	inventory	file,	we	need	to	add	it	to	our
Vagrantfile	as	follows:

config.vm.provision	"ansible"	do	|ansible|	

		ansible.playbook	=	"provision/ansible/playbook.yml"

		ansible.inventory_file	=	"provision/ansible/inventory"

end





Provisioning	with	Chef	on	Vagrant
Vagrant	also	supports	two	methods	of	using	Chef:

Chef-solo
Chef	in	client/server	mode	with	Chef	client

Let’s	take	a	look	at	how	to	configure	Vagrant	with	Chef	using	these	two	different	methods.



Using	Chef-solo
Chef-solo	is	the	Chef	equivalent	of	Puppet	standalone.

The	simplest	way	to	use	this	within	our	project	is	simply	to	provide	a	Chef	run	list	to
Vagrant;	this	tells	Vagrant	which	cookbooks	should	be	applied.	The	following	is	an
example	of	telling	Vagrant	to	use	the	PHP	cookbook:

config.vm.provision	"chef_solo"	do	|chef|	

		chef.add_recipe	"php"	

end

This	takes	the	PHP	cookbook	from	the	default	cookbooks	folder	and	applies	it	to	the
virtual	machine.

As	with	Puppet,	Vagrant	makes	some	assumptions	by	default;	they	are	as	follows:

Cookbooks	are	stored	in	the	cookbooks	folder	within	the	project	root.	The
chef.cookbooks_path	setting	allows	us	to	override	the	cookbooks	folder	location.
We	can	either	provide	a	single	path	or	an	array	of	paths	(wrapped	in	square	brackets,
separated	with	commas)	if	we	want	Vagrant	and	Chef	to	look	in	a	range	of	folders	for
our	cookbooks.	The	following	code	will	go	into	our	Vagrant	file	to	tell	Vagrant	to
override	the	cookbooks	folder	with	provision/cookbooks:

config.vm.provision	"chef_solo"	do	|chef|	

		chef.cookbooks_path	=	"provision/cookbooks"

end

We	can	also	use	Chef	roles	by	providing:

The	location	of	the	roles	folder
The	roles	we	wish	to	add	to	the	VM

More	information	on	Chef	roles	can	be	found	on	the	Opscode	website
(http://docs.opscode.com/essentials_roles.html).

The	following	code	in	our	Vagrant	file	will	set	up	our	project	to	use	Chef	roles:

config.vm.provision	"chef_solo"	do	|chef|	

		chef.roles_path	=	"provision/roles"

		chef.add_role("web")	

end

http://docs.opscode.com/essentials_roles.html


Using	Chef	in	client/server	mode
Like	Puppet,	Chef	also	has	a	client/server	method	to	provision	machines	using	Chef	client
on	the	VM.	To	use	Chef	client,	we	need	to	tell	Vagrant	where	the	Chef	server	is	located
(through	the	chef.chef_server_url	setting),	and	provide	the	authorization	key	that	will
be	used	to	authenticate	the	VM	with	the	server	(through	the	chef.validation_key_path
setting).

The	following	code	in	our	Vagrant	file	will	instruct	Vagrant	to	provision	from	a	Chef
server:

config.vm.provision	"chef_client"	do	|chef|	

		chef.chef_server_url	=	"http://chef.internal.michaelpeacock.

				co.uk:4000/"	chef.validation_key_path	=	"key.pem"

end

We	can	also	override	the	run	list	that	the	Chef	server	provides	for	our	VM	by	manually
adding	roles	and	recipes	to	this	configuration.	If	we	have	specified	different	environments
on	our	Chef	server,	we	can	specify	which	environment	we	want	to	use	with	the
chef.environment	configuration.

Tip
Vagrant	VMs	that	use	Chef	server	will	have	the	corresponding	node	and	client	entries	on
the	Chef	server,	which	is	named	with	the	hostname	of	the	VM.	If	we	destroy	the	VM	and
recreate	it,	Chef	will	generate	an	error	because	the	client	and	node	entries	are	already
present	on	the	server.	We	need	to	remove	these	from	the	Chef	server	when	we	destroy	a
VM.	This	can	be	done	using	the	knife	tool	from	Chef,	knife	node	delete	our-vm-
hostname	&&	knife	client	delete	our-vm-hostname.





Provisioning	with	SSH	–	a	recap
As	we	discussed	in	Chapter	2,	Managing	Vagrant	Boxes	and	Projects,	we	can	instruct
Vagrant	to	run	a	series	of	SSH	commands	on	the	VM.	This	can	be	used	to	provision	the
server.

There	are	two	ways	to	use	SSH	provisioning:

Path:	This	provides	a	file	to	execute
Inline:	This	is	used	to	provide	specific	commands	to	run

Both	of	these	are	shown	as	follows:

config.vm.provision	"shell",	path:	"provision/setup.sh"

config.vm.provision	"shell",	inline:	"apt-get	install	apache2"





Using	multiple	provisioners	on	a	single
project
We	can	use	multiple	provisioners	within	a	single	project	if	we	wish;	we	simply	need	to	put
them	in	the	order	we	wish	for	them	to	be	executed	within	our	Vagrant	file.	The	following
command	will	first	run	an	SSH	command	before	provisioning	with	Puppet:

Vagrant.configure("2")	do	|config|	

		Config.vm.box	=	"ubuntu/trusty64"

		config.vm.provision	"shell",	inline:	"apt-get	update"

		config.vm.provision	"puppet"	do	|puppet|

							puppet.manifests_path	=	"provision/puppet/manifests"

							puppet.manifest_file		=	"default.pp"

							puppet.module_path	=	"provision/puppet/modules"

		end

		

end

Using	multiple	provisioners	can	be	useful,	especially	if	one	is	more	suited	at	specific	tasks
than	another,	or	if	we	require	some	prerequisites.	For	example,	when	using	Puppet	and
Chef	in	client/server	mode,	they	need	to	have	an	SSH	key	to	communicate	with	the	server.
We	can	use	a	shell	provisioner	to	instruct	the	VM	to	download	the	keys	we	prepared	from
a	secure	location,	before	the	Puppet	or	Chef	provisioners	kick	in.





Overriding	provisioning	via	the	command
line
There	may	be	instances	where	we	want	to	restrict	or	enforce	the	execution	of	provisioning
or	even	a	specific	provisioner	within	a	project.	The	following	commands	are	all	executed
from	the	host	machine:

We	can	cancel	a	running	provision	by	pressing	CMD	+	C	at	the	terminal.
We	can	instruct	Vagrant	to	rerun	provisioning	on	a	VM	using	the	vagrant	provision
command.
We	can	also	add	--no-provision	to	the	up	command	to	instruct	Vagrant	to	not	run
the	provisioning	tools	when	performing	the	up	action,	for	example,	vagrant	up	--
no-provision.
By	default,	Vagrant	will	only	provision	when	it	first	boots	a	machine.	For	subsequent
boots	of	an	existing	machine,	Vagrant	knows	that	the	machines	are	configured,	and	it
will	not	provision	them.	We	can	override	this	with	the	--provision	option,	for
example,	vagrant	up	--provision.
We	can	also	provision	with	just	a	specific	provisioner	should	we	wish,	for	example,	if
we	want	to	instruct	Vagrant	to	just	run	Puppet	in	standalone	mode	(in	a	project	that
has	multiple	provisioners	configured),	we	need	to	run	vagrant	provision	--
provision-with=puppet.





Summary
In	this	chapter,	we	learned	how	we	can	apply	our	knowledge	of	Puppet	and	Chef	from
Chapter	3,	Provisioning	with	Puppet,	Chapter	4,	Using	Ansible,	and	Chapter	5,	Using
Chef,	and	configure	Vagrant	to	use	these	tools	to	provision	our	virtual	machines.

We	started	off	by	learning	to	use	Puppet	in	standalone	mode	that	uses	the	puppet	apply
command	to	apply	locally	stored	manifests	and	modules	onto	the	machine.	Then,	we
continued	using	Puppet	in	the	client/server	mode	that	uses	the	Puppet	agent	to	retrieve	the
configuration	from	a	central	server	to	provision	the	machine.

We	then	learned	how	to	use	Ansible	to	run	playbooks	on	specific	machines	along	with	the
fundamentals	of	Chef-solo,	which	applies	locally	stored	cookbooks	and	recipes	to	the
machine.	It	also	included	the	usage	of	Chef	in	client/server	mode,	which	uses	the	Chef
client	to	retrieve	the	configuration	from	a	central	server	to	provision	the	machine.

Other	standard	provisioners	were	also	checked	using	SSH	provisioning	and	multiple
provisioning	options	for	the	same	project.	Finally,	we	rounded	off	by	running	multiple
provisioners	within	a	single	project,	overriding	provisioning	on	the	command	line	and
rerunning	the	provisioning	tools	with	vagrant	provision.

Now,	we	have	fully	mastered	how	to	set	up,	use,	and	manage	Vagrant	along	with	the
provisioning	tools	to	work	on	a	single	machine	project.	In	Chapter	7,	Working	with
Multiple	Machines,	we	will	take	a	look	at	how	to	use	Vagrant	and	our	knowledge	of
provisioners	to	manage	a	multimachine	project,	with	provisioners	configuring	different
machines	for	different	purposes	for	use	within	the	project,	for	example,	a	web	server	and	a
database	server.





Chapter	7.	Working	with	Multiple
Machines
So	far,	we	have	seen	how	we	can	get	Vagrant	to	a	stage	where	our	development
environment	is	contained	in	Vagrant-managed	virtual	machines,	with	one	of	the	key
aspects	being	that	these	virtual	machines	mimic	our	production	environment.	It	gives	us
the	flexibility	of	being	able	to	encapsulate	the	development	environment	for	different
projects	so	that	we	can	easily	switch	from	one	to	another	without	having	to	modify	the
software	on	our	own	machines.

In	many	cases,	the	features	we	learned	so	far	are	enough.	However,	web	projects	are
becoming	more	and	more	complex,	with	developers	continually	improving,	having	to	deal
with	multiple	machines	in	their	architecture	to	help	with	scalability	and	stability.	While	it
can	be	said	that	scalability	and	stability	issues	won’t	impact	our	development	environment
(as	we	won’t	have	huge	amounts	of	traffic	coming	to	our	development	environment,
unless	we	load-test	it),	we	want	to	ensure	that	the	coupling	between	servers	within	our
code	(such	as	application	code	connecting	to	a	remote	database)	works	in	our	development
environment	before	we	put	the	project	online.

Thankfully,	Vagrant	has	support	for	running	multiple	virtual	machines	at	the	same	time
within	the	same	project.	We	can	use	this	to	test	multimachine	architectures	and	distributed
systems	on	our	own	local	machine	before	we	share	our	changes	with	colleagues	in	a
staging	environment,	and	before	the	project	goes	live.	Replicating	a	multimachine
environment	in	development	greatly	helps	us	improve	the	reliability	of	our	projects	and
instills	confidence	in	the	work	that	we	do.

In	this	chapter,	we	will	learn	the	following	topics:

How	to	run	multiple	virtual	machines	within	a	single	Vagrant	project
How	to	provide	different	distinct	configuration	to	these	virtual	machines,	including
the	following:

Names
IP	addresses	on	a	private	network	so	that	they	can	communicate	with	one
another
Base	boxes
Provisioning
Shared	folders

How	to	connect	to	the	different	virtual	machines	over	SSH	without	having	to	know
or	remember	their	IP	addresses



Using	multiple	machines	with	Vagrant
In	order	to	use	multiple	virtual	machines	within	our	project,	we	need	to	tell	Vagrant	about
them,	and	we	need	to	provide	additional	configuration	for	the	individual	virtual	machines.



Defining	multiple	virtual	machines
Within	the	standard	Vagrant	project	configuration	file,	we	can	tell	Vagrant	that	we	wish	to
assign	a	name	to	a	virtual	machine	being	managed	by	the	project.	Within	this
subconfiguration,	we	provide	the	information	Vagrant	needs	that	is	specific	to	that	VM.

The	syntax	for	the	subconfigurations	is	as	follows:

config.vm.define	:name_of_the_vm	do	|name_of_the_vm|

				#configuration	specific	to	the	virtual	machine

end

This	is	applied	to	a	project	that	requires	two	virtual	machines,	named	server1	and
server2,	both	running	the	precise64	box:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	:server1	do	|server1|

				server1.vm.box	=	"hashicorp/precise64"

		end

		config.vm.define	:server2	do	|server2|

				server2.vm.box	=	"hashicorp/precise64"

		end

end





Connecting	to	the	multiple	virtual
machines	over	SSH
When	our	multiple	machines	boot	up	in	our	multimachine	project,	Vagrant	automatically
maps	different	ports	from	our	host	machine	to	the	SSH	ports	on	the	various	guest
machines.

Let’s	take	a	look	at	the	console	output	when	booting	a	Vagrant	project	with	two	virtual
machines	within	it:



As	shown	in	the	preceding	screenshot,	Vagrant	maps	the	SSH	port	on	the	virtual	machine
designated	server1	to	port	2222	on	the	host	machine,	and	the	SSH	port	of	the	machine
designated	server2	to	the	port	2200.

This	gives	us	the	opportunity	of	simply	using	the	standard	SSH	command	from	a	terminal
(or	the	likes	of	PuTTY	on	a	Windows	machine),	to	connect	to	localhost	with	the	port
number	that	Vagrant	assigns	to	each	machine.

To	connect	to	the	machine	that	is	mapped	to	port	2200,	we	simply	run	the	ssh
vagrant@localhost	–p2200	command.	The	–p2200	option	tells	the	command	to	use	a
nonstandard	port,	and	specifies	the	port	we	wish	to	use,	in	this	case	2200.

Alternatively,	we	can	use	the	vagrant	ssh	command	to	connect	to	the	virtual	machines.
The	difference	is	that	in	a	multivirtual	machine	environment,	we	must	also	provide	the
name	of	the	virtual	machine.	For	example,	vagrant	ssh	server1.	This	is	the	most
common	usage	of	connecting	to	a	machine,	rather	than	directly	connecting	to	the	virtual
machine	via	its	IP	address.



Networking	the	multiple	virtual	machines
In	a	single	virtual	machine	project,	the	IP	address	of	the	virtual	machine	isn’t	that
important.	In	a	multivirtual	machine	project,	however,	it	is	more	likely	that	we	want	the
two	machines	to	communicate	with	one	another	directly;	in	order	to	do	this,	we	need	to	be
aware	of	their	IP	addresses,	or	we	need	to	forward	nonconflicting	ports	to	the	localhost
instead.	As	we	want	to	have	our	Vagrant	projects	distributed	to	our	team	members,	and
some	of	these	team	members	may	be	within	the	same	office,	we	need	to:

Predefine	the	IP	address	so	that	any	of	our	projects	code	that	needs	to	communicate
with	the	other	virtual	machine	can	do	so,	without	the	other	team	members	needing	to
change	configurations
Ensure	that	the	virtual	machines	are	running	on	a	private	network	only	that	are
attached	to	the	machine	of	the	user	running	it;	this	will	prevent	the	IP	address
conflicts	within	the	network

In	order	to	do	this,	we	simply	use	the	networking	options,	which	we	learned	in	Chapter	2,
Managing	Vagrant	Boxes	and	Projects.	Because	we	want	the	virtual	machines	to	run	in	a
private	network,	it	makes	sense	to	use	a	range	of	private	IP	addresses,	which	are	different
to	your	own	network.	For	example,	my	network	range	is	192.168.1.xxx,	so	I	will	use	the
range	10.11.1.xxx	for	my	virtual	machine	network	(the	IP	address	ranges	are	a	subset	of
the	range	of	addresses	preassigned	for	internal	networks),	as	shown	in	the	following	code:

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	:server1	do	|server1|

				server1.vm.box	=	"hashicorp/precise64"

				server1.vm.network	"private_network",	ip:	"10.11.1.100"

		end

		config.vm.define	:server2	do	|server2|

				server2.vm.box	=	"hashicorp/precise64"

				server2.vm.network	:private_network,	ip:	"10.11.1.101"

		end

end

Let’s	test	this	out	and	test	whether	we	can	connect	from	one	machine	to	the	other:

1.	 Power	up	the	project	(vagrant	up).
2.	 Connect	to	server1	(vagrant	ssh	server1).
3.	 Ping	server2	from	server1	(ping	10.11.1.101).

The	output	shows	that	we	are	able	to	communicate	over	the	network	from	server1	to
server2	as	follows:





Provisioning	the	machines	separately
As	the	virtual	machines	in	our	projects	are	going	to	be	used	for	different	purposes,	we
need	to	use	different	provisioning	for	the	machines,	so	they	both	have	only	the	software
and	configurations	needed	to	do	their	job.

We	take	the	provisioning	code,	which	we	learned	in	Chapter	3,	Provisioning	with	Puppet,
and	Chapter	6,	Provisioning	Vagrant	Machines	with	Puppet,	Ansible,	and	Chef,	and	we
place	the	relevant	code	within	the	virtual	machine’s	subconfiguration.	There	are	some	key
changes	that	we	need	to	make:

The	opening	line	of	the	provision	code	must	reference	the	server	name	of	the	virtual
machine	it	relates	to
For	Puppet,	we	should	use	a	different	manifest	file	for	the	two	virtual	machines
For	Chef,	we	will	apply	different	roles	to	the	different	machines

The	following	code	provisions	both	the	machines	using	Puppet.	They	both	rely	on	the
same	set	of	Puppet	modules,	the	same	path	that	points	to	the	manifests	folder,	however,
they	both	use	different	manifests	to	set	up	the	projects	(alternatively,	we	can	configure	the
machines	and	identify	them	as	nodes	to	a	Puppet	master	to	retrieve	the	appropriate
configuration):

#	-*-	mode:	ruby	-*-

#	vi:	set	ft=ruby	:

VAGRANTFILE_API_VERSION	=	"2"

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		config.vm.define	:server1	do	|server1|

				server1.vm.box	=	"hashicorp/precise64"

				server1.vm.network	"private_network",	ip:	"10.11.1.100"

				server1.vm.provision	:puppet	do	|puppet|

						puppet.manifests_path	=	"provision/puppet/manifests"

						puppet.manifest_file		=	"server1.pp"

						puppet.module_path	=	"provision/puppet/modules"

				end

		end

		config.vm.define	:server2	do	|server2|

				server2.vm.box	=	"hashicorp/precise64"

				server2.vm.network	:private_network,	ip:	"10.11.1.101"

				server2.vm.provision	:puppet	do	|puppet|

						puppet.manifests_path	=	"provision/puppet/manifests"

						puppet.manifest_file		=	"server2.pp"

						puppet.module_path	=	"provision/puppet/modules"

				end

				

		end



end

Within	the	provisions	for	each	machine,	we	would	need	to	ensure	that	we	allow	both	the
machines	to	communicate	with	one	another.	For	example,	by	default,	a	MySQL	Server
won’t	accept	connections	from	a	remote	server,	so	we	would	need	to	modify	(or	replace)
the	configuration	file	with	one	that	allows	this,	or	we	would	need	to	use	a	Puppet	module
or	Chef	cookbook	that	allows	us	to	modify	this	configuration	value.

Tip
You	should	check	the	documentation	for	any	software	you	are	communicating	with	over
the	network	to	see	how	it	needs	to	be	configured.	With	MySQL,	you	need	to	edit	the
my.cnf	file,	and	set	the	bind	address	to	0.0.0.0.





Destroying	a	multimachine	project
If	we	want	to	completely	remove	the	virtual	machines	for	our	project	from	our	host
machine,	we	can	use	the	vagrant	destroy	command,	as	with	normal	projects.	The
difference	being	that	Vagrant	will	ask	us	to	confirm	the	removal	of	each	machine	within
the	project:





Summary
In	this	chapter,	we	set	up	a	Vagrant	project	that	uses	multiple	virtual	machines.	During	the
course	of	this	chapter,	we	learned	how	to	create	multiple	virtual	machines	within	a	single
project.	In	order	to	achieve	this,	we	also	looked	at	how	to	assign	specific	names	to	these
individual	machines,	how	to	connect	to	the	individual	machines	over	SSH	(as	previously
vagrant	ssh	would	take	us	to	just	a	single	machine),	and	how	to	configure	the	individual
machines,	specifying	IP	addresses,	base	boxes,	and	different	provisioning	options	for
them.

Now,	we	learned	the	vast	majority	of	Vagrant’s	functionality	and	how	to	use	it	within
different	project	scenarios.	In	the	next	chapter,	we	will	take	a	look	at	how	to	build	our	own
custom	base	box	to	use	with	our	projects,	configuring	a	blank	operating	system
installation	into	a	compatible	base	image.





Chapter	8.	Creating	Your	Own	Box
So	far,	we	have	used	Vagrant	with	the	freely	available	base	boxes.	There	are	also	many
other	existing	base	Vagrant	boxes	out	there.	In	Chapter	9,	HashiCorp	Atlas,	we	will	talk
about	how	we	can	discover	and	distribute	base	boxes.	When	we	discussed	Vagrant	boxes
initially	in	Chapter	1,	Getting	Started	with	Vagrant,	and	Chapter	2,	Managing	Vagrant
Boxes	and	Projects,	we	learned	about	how	we	can	export	a	Vagrant	environment	into	a
new	base	box.

Creating	a	new	base	box	involves	us	either	taking	an	existing	box,	making	changes	to	it,
and	exporting	it,	or	creating	a	new	virtual	machine	entirely,	installing	the	operating	system
and	building	up	a	base	box	for	export.	In	this	chapter,	we	will	take	a	look	at	how	we	can
take	a	Linux	installation	disk	and	turn	it	into	a	working	Vagrant	base	box,	which	we	can
further	customize	as	much	as	we	like.

In	this	chapter,	you	will	learn	about	the	following	topics:

How	to	create	a	new	VirtualBox	machine,	suitably	configured	for	Vagrant
How	to	install	the	VirtualBox	Guest	Additions
How	to	set	up	the	Linux	installation	to	let	Vagrant	log	in
How	to	install	Puppet
How	to	install	Chef
How	to	clean	up	the	box
How	to	export	the	VM	into	a	base	box



Getting	started
In	order	to	create	a	new	base	box,	we	need	to	download	a	copy	of	the	operating	system	we
want	to	use	(we	will	use	Ubuntu	Server	Version	13.04	64-bit	from
http://releases.ubuntu.com/raring/).	We	then	need	to	use	VirtualBox	to	create	a	virtual
machine,	powered	by	the	operating	system	we	have	downloaded.	Next,	we	need	to
configure	the	virtual	machine	for	Vagrant.	Finally,	we	need	to	export	the	virtual	machine
into	a	Vagrant	base	box.

Tip
You	can	also	use	other	distributions	of	Linux	or	even	Windows	if	you	wish.	Specifics	will
vary	with	the	operating	system	used,	so	you	will	need	to	consult	the	relevant
documentation.

The	requirements	for	a	new	base	box	are	detailed	on	the	Vagrant	website
(https://docs.vagrantup.com/v2/boxes/base.html).

http://releases.ubuntu.com/raring/
https://docs.vagrantup.com/v2/boxes/base.html




Preparing	the	VirtualBox	machine
In	order	to	create	the	virtual	machine	with	VirtualBox,	we	need	to	open	the	VirtualBox
and	click	on	the	New	button	in	the	upper-left	corner	of	the	VirtualBox	to	start	the	process:

Let’s	name	the	machine	vagrant-ubuntu-raring.	This	is	the	format	recommended	by
Vagrant.	Select	Linux	in	the	Type	dropdown	and	Version	as	Ubuntu	(64	bit):

Vagrant	recommends	setting	a	memory	allocation	of	360	MB.	This	is	typically	sufficient
for	a	base	installation,	and	users	can	override	this	within	their	Vagrantfile	if	they	need
more	resources:



We	need	our	virtual	machine	to	have	some	storage	allocation,	so	let’s	select	Create	a
virtual	hard	drive	now:

We	need	to	select	VMDK	(Virtual	Machine	Disk)	as	the	disk	type:



We	need	to	create	a	drive,	which	is	dynamically	allocated:



Let’s	give	the	drive	a	maximum	limit	of	40.00	GB;	the	Vagrant	documentation	suggests
that	this	is	typically	sufficient	for	many	projects:

Clicking	on	Create	will	then	save	the	virtual	machine	within	VirtualBox.	We	need	to
make	some	additional	configuration	changes,	which	are	not	a	part	of	the	creation	wizard,
so	let’s	click	on	the	VM	on	the	left-hand	side	of	the	screen,	and	then	click	on	the	Settings
button:

The	first	additional	change	is	Audio,	so	let’s	turn	this	off:



We	need	to	ensure	that	the	network	adapter	configured	within	VirtualBox	is	enabled	and
uses	NAT.	Without	this,	Vagrant	won’t	work:

Finally,	let’s	turn	off	USB	support,	as	this	is	generally	not	required:



Now	we	need	to	switch	on	the	virtual	machine.	When	it	powers	on,	it	asks	us	to	select	a
startup	disk,	which	contains	the	operating	system	we	wish	to	install.	Clicking	on	the	folder
icon	on	this	screen	lets	us	select	a	custom	file;	in	our	case,	this	will	be	our	ubuntu-13.04-
server-amd64.iso	file.

The	virtual	machine	will	then	boot	from	the	image	file	and	take	us	to	the	installation
process.	We	should	follow	this	process	to	set	up	the	machine.

There	are	some	specific	values	for	some	things	that	Vagrant	expects,	so	wherever
appropriate	we	should	ensure	that	we	set	them	as	follows:

By	convention,	the	operating	system’s	hostname	should	be	of	the	vagrant-
operating-system-name	format,	for	example,	vagrant-ubuntu-raring
The	domain	is	vagrantup.com
The	root	password	is	vagrant
The	main	account	username	is	vagrant
The	main	account	password	is	vagrant

In	most	other	cases,	the	default	options	will	be	fine,	as	we	will	configure	other	aspects
later.	When	prompted	as	to	any	packages	to	install	by	default,	we	should	select	to	install
openssh-server.

http://vagrantup.com




VirtualBox	Guest	Additions
First,	let’s	log	in	to	our	new	virtual	machine	within	VirtualBox.	Once	logged	in,	at	the
terminal,	we	should	run	apt-get	update	to	update	our	package	manager.

Vagrant	has	a	set	of	tools	called	Guest	Additions	that	provide	some	key	integration	points
between	the	virtual	machine	and	VirtualBox;	this	includes	support	for	shared	folders	and
networking	integration.

To	install	these	tools,	once	the	VM	is	running,	we	should	click	on	the	Devices	menu
within	Virtual	Box	and	click	on	Install	Guest	Additions…	(Host+D):

This	simply	boots	a	virtual	CD	within	the	virtual	machine;	we	still	need	to	actually	install
the	Guest	Additions,	as	follows:

1.	 The	first	step	is	to	install	a	prerequisite,	which	are	the	Linux	headers:

sudo	apt-get	install	linux-headers-$(uname	-r)	build-essential

2.	 Next,	we	will	mount	the	virtual	CD,	which	VirtualBox	has	loaded	up	into	a	folder
within	the	VM:

sudo	mount	/dev/cdrom	/media/cdrom

3.	 Finally,	we	will	run	the	installation	command:

sudo	sh	/media/cdrom/VBoxLinuxAdditions.run





Vagrant	authentication
Vagrant	communicates	with	base	boxes	over	SSH.	Vagrant	itself	has	a	private	key,	for
which	we	need	to	install	the	corresponding	public	key	into	the	virtual	machine.	Vagrant
expects	a	specific	user	with	a	predefined	password	to	also	be	within	the	machine,	and	the
user	needs	to	be	configured	so	that	it	isn’t	prompted	for	the	password	when	attempting	to
perform	actions	that	require	elevated	privileges	(sudo).



Vagrant	user	and	admin	group
Provided	we	created	the	Vagrant	user	during	the	installation	process	(as	per	the	main
account	user	and	password	mentioned	earlier),	we	then	need	to	create	an	admin	group	and
add	the	Vagrant	user	to	this	group.

First,	we	need	to	create	the	group:

Sudo	groupadd	admin

To	add	the	Vagrant	user	to	this	group,	run	the	following	command:

Sudo	usermod	-a	-G	admin	vagrant



The	sudoers	file
In	order	to	stop	the	virtual	machine	asking	for	the	user’s	password	when	running	elevated
actions,	we	need	to	modify	the	sudoers	file.	This	is	a	file	that	tells	the	operating	system
which	users	can	perform	elevated	actions	and	the	settings	around	them.	More	information
can	be	found	at	https://help.ubuntu.com/community/Sudoers.	We	need	to	add	a
configuration	line	to	this	file,	which	tells	the	operating	system	not	to	prompt	for	the
password.	Because	the	file	is	very	important,	and	an	incorrect	configuration	would	break
the	operating	system,	there	is	a	program	built	into	Ubuntu,	which	won’t	save	if	the	file	is
not	edited	correctly.

First,	let’s	run	this	program:

visudo

At	the	bottom	of	the	file,	let’s	add	this	line	to	prevent	the	operating	system	from
prompting	for	the	password:

%admin	ALL=(ALL)	NOPASSWD:	ALL

Another	requirement	of	Vagrant	is	that	we	add	the	following	line	near	the	top	of	the	file:

Defaults	env_keep="SSH_AUTH_SOCK"

We	also	need	to	disable	requiretty	in	the	sudoers	file	by	commenting	out	the
appropriate	line	as	follows:

#Default	requiretty

Tip
requiretty	is	an	option	that	requires	users	to	have	a	physical	connection	to	a	server	in
order	to	run	the	sudo	commands.

https://help.ubuntu.com/community/Sudoers


Insecure	public/private	key	pair
The	insecure	public	and	private	key	pair	is	publicly	available	at
https://github.com/mitchellh/vagrant/tree/master/keys/.

Tip
An	upcoming	version	of	Vagrant	will	change	how	Vagrant	works	with	these	insecure	keys.
When	detected,	they	will	be	replaced	with	new	keys	for	your	machine;	however,	at	time	of
writing,	this	has	not	yet	been	released.

We	need	to	copy	the	contents	of	the	public	key	and	paste	it	into	the	authorized_hosts
file.	Provided	we	are	logged	in	as	the	Vagrant	user,	we	can	run	the	following	command	to
let	us	edit	this	file:

nano	~/.ssh/authorized_hosts

If	the	.ssh	folder	does	not	already	exist,	we	first	need	to	create	it	using	the	mkdir
command.	Alternatively,	we	can	download	the	file	contents	and	put	it	straight	into	the
authorized_hosts	file:

wget

		https://raw.github.com/mitchellh/vagrant/master/keys/

				vagrant.pub	–O	~/.ssh/authorized_hosts

Note
The	.ssh	directory	needs	to	have	permissions	of	0700,	and	the	authorized_hosts	file
needs	to	have	permissions	of	0644	(chmod	0644	~/.ssh/authorized_keys).

https://github.com/mitchellh/vagrant/tree/master/keys/




Provisioners
Because	Vagrant	provides	support	for	provisioners,	we	should	install	these	into	the	virtual
machine	so	that	Vagrant	can	tell	them	to	provision	our	environments.



Installing	Puppet
Puppet	is	installed	using	the	built-in	package	manager:

sudo	apt-get	install	puppet

Tip
The	version	of	Puppet	in	the	various	operating	system	repositories	may	be	slightly	dated.
Puppet	can	also	be	installed	manually	or	via	the	repository	site	provided	by	Puppet	Labs.
More	information	is	available	on	the	Puppet	labs	website	at
http://docs.puppetlabs.com/guides/installation.html.

http://docs.puppetlabs.com/guides/installation.html


Installing	Chef
As	per	the	Chef	documentation	at	https://www.chef.io/download-chef-client/,	we	can	get	a
single	command	to	install	Chef	for	us:

curl	-L	https://www.chef.io/chef/install.sh	|	sudo	bash

https://www.chef.io/download-chef-client/




Cleaning	up	the	VM
Before	we	package	up	the	virtual	machine	into	a	Vagrant	base	box,	let’s	clean	up	some	of
the	files	we	used.	We	made	use	of	the	tmp	folder,	so	let’s	empty	this.	We	should	also	clean
up	our	package	manager’s	cache,	as	this	uses	additional	space	when	the	base	box	is
packaged:

rm	–rf	/tmp/*

sudo	apt-get	clean





Export
Finally,	we	use	Vagrant’s	package	subcommand	on	the	host	machine	(not	the	guest)	to
package	up	the	box:

vagrant	package	--base	vagrant-ubuntu-raring

The	complete	details	of	the	package	subcommand	are	available	on	the	Vagrant	website
(http://docs.vagrantup.com/v2/cli/package.html).

http://docs.vagrantup.com/v2/cli/package.html




Summary
In	this	chapter,	we	learned	how	to	create,	a	base	box	for	our	Vagrant	projects	from	scratch.
This	can	be	used	to	create	base	boxes	from	operating	systems,	which	don’t	necessarily
have	boxes	available	to	download.

Now,	we	know	how	to	create,	manage,	distribute,	and	even	build	development
environments	from	scratch	for	our	projects!

Next,	we	will	take	a	look	at	Vagrant	Cloud,	which	lets	us	search	for	and	discover	different
base	boxes	as	well	as	letting	us	distribute	our	own	box—either	to	the	public	or	to	a	private
team.	Vagrant	Cloud	also	has	the	functionality	to	allow	us	to	share	our	Vagrant
development	environment	with	others—be	that	to	demonstrate	the	functionality	we	have
built	on	a	Vagrant-supported	project,	or	to	provide	SSH	access	to	a	team	member	who	can
help	us	with	support	issues.





Chapter	9.	HashiCorp	Atlas
HashiCorp	Atlas	(https://atlas.hashicorp.com),	formerly	Vagrant	Cloud,	is	a	suite	of	online
services	provided	by	HashiCorp	(the	commercial	company	behind	Vagrant),	which	adds
additional	capabilities	to	Vagrant	and	brings	together	many	of	their	open	source
components.	Primarily,	Atlas	supports	two	features:

Vagrant	Share:	The	ability	to	share	access	to	your	Vagrant	environment	and	to	allow
others	to	remotely	connect	to	it
Vagrant	box	discovery	and	sharing:	The	ability	to	share	Vagrant	boxes	with	others,
hosting	the	metadata	for	boxes,	their	versions,	and	facilitating	box	updates

These	features	are	available	free	of	charge,	though	paying	customers	can	gain	access	to
additional	functionality,	including	the	following:

Custom	and	static	domain	names	for	Vagrant	Share
Private	boxes	that	can	be	shared	with	specific	teams	privately
Box	hosting:	Vagrant	Cloud	will	actually	store	the	box	file	on	their	platform	as	well
as	the	metadata
Support	for	Windows	and	Mac	Vagrant	boxes
Granular	support	for	user	access	controls

In	this	chapter,	you	will	learn	about	the	following	topics:

How	to	discover	and	use	boxes	provided	on	Atlas
How	to	distribute	your	own	boxes	on	Atlas
How	to	allow	others	to	connect	to	your	Vagrant	machine	through	Atlas
How	to	share	your	Vagrant	machine	through	Atlas

https://atlas.hashicorp.com


Discovering	boxes
The	Atlas	website	contains	a	directory	of	public	boxes	for	Vagrant
(https://atlas.hashicorp.com/boxes/search).	Within	this	directory,	we	can	search	for	the
specific	operating	system	or	distribution	version	that	we	are	interested	in:

For	each	result,	we	can	see	the	box	name,	which	is	formatted	as	the	name	of	the	distributor
followed	by	a	slash,	followed	by	the	name	or	distribution	name.	In	the	following	case,	we
have	the	Ubuntu	12.04	LTS	release	that	HashiCorp	has	provided	(named
hashicorp/precise64):

If	we	click	in	a	box,	we	can	see	which	providers	the	box	supports.	In	this	case,	we	can	use
the	box	with	VirtualBox,	VMware	Fusion,	and	Hyper-V.	It	is	important	to	use	boxes
that	support	the	provider	we	are	using—not	all	boxes	support	all	providers.

https://atlas.hashicorp.com/boxes/search


Installing	new	boxes
To	install	a	public	box,	we	use	the	vagrant	box	add	command,	and	pass	the	name	of	the
box:

vagrant	box	add	hashicorp/precise64

The	name	of	the	box	can	either	be	a	URL	or	file	path	to	an	existing	box	file	(for	example,
if	we	have	one	stored	on	our	network	that	we	wish	to	use)	or	an	Atlas	box	name,	like	in
the	preceding	command.



Updating	existing	boxes
One	of	the	key	benefits	of	using	Atlas	for	box	discovery	is	that	changes	and	versions	of
these	boxes	can	be	managed.	If	a	particular	box	contains	a	bug	or	security	vulnerability,
distributors	may	update	their	boxes	to	fix	these	issues,	or	contain	new	functionality.	This
can	be	useful,	as	it	saves	us	the	need	to	update	our	provisioning	configuration	to	make
these	updates.

When	in	a	Vagrant	projects	folder,	we	can	run	the	following	command	to	check	for
updates	for	the	projects	box	and	update	it:

vagrant	box	update

This	will	download	the	new	box;	however,	we	won’t	see	the	effect	of	the	new	box	unless
we	destroy	our	Vagrant	machine	and	rebuild	it	from	the	updated	box.

If	we	want	to	update	a	specific	box,	as	opposed	to	the	one	that	is	tied	to	the	project	we	are
in,	we	can	use	the	box	flag	to	provide	the	name	of	the	box	we	want	to	update:

vagrant	box	update	--box	the-box/name



Checking	for	outdated	boxes
We	can	quickly	check	to	see	whether	any	of	the	boxes	we	installed	are	out	of	date,	by
running	the	following	command:

vagrant	box	outdated	--global

If	we	omit	the	global	flag,	then	the	command	is	only	within	the	context	of	the	current
Vagrant	project	with	the	flag	it	relates	to	all	boxes	installed:





Distributing	boxes
To	distribute	boxes	with	Atlas,	we	need	to	create	an	account	and	log	in	to	the	Atlas
website	(https://atlas.hashicorp.com/account/new).	The	username	that	we	select	when
registering	is	used	as	the	prefix	for	boxes	we	distribute—unless,	of	course,	we	go	onto	a
paid	plan,	which	has	organizational	support,	or	we	collaborate	with	others	on	a	box.	Once
logged	in,	we	need	to	click	on	the	Create	Box	link	to	go	to	the	box	creation	form
(https://atlas.hashicorp.com/boxes/new).

On	this	page,	we	need	to	provide	a	name	and	description	for	our	box.	As	we	are	on	the
free	plan,	we	cannot	make	this	a	private	box,	so	it	will	be	made	public:

As	the	boxes	distributed	through	Atlas	can	be	versioned,	to	let	us	roll	out	new	updates	to
users	of	the	box,	we	need	to	create	an	initial	version	for	the	box,	along	with	a	description
of	what	the	version	contains:

https://atlas.hashicorp.com/account/new
https://atlas.hashicorp.com/boxes/new


Next,	we	need	to	click	on	Create	new	provider	to	add	a	new	provider	that	is	supported	by
this	version	of	the	box:

Finally,	we	specify	the	provider,	and	provide	a	URL	to	where	the	box	can	be	downloaded.
With	the	free	version	of	Atlas,	we	need	to	provide	a	link	to	the	box,	as	there	is	no	storage
allowance	for	Vagrant	Cloud	to	host	the	file	for	us:



Once	a	box	has	been	created	and	published,	it	can	be	discovered	and	installed,	as	we
discussed	in	the	Discovering	boxes	section,	by	the	public,	or	by	us	using	the	name	of	the
box	in	our	Vagrantfile,	for	example,	mkpeacock/testbox.





Sharing	and	connecting	with	Atlas
With	Atlas,	there	are	three	new	Vagrant	commands	at	our	disposal,	which	are	as	follows:

vagrant	connect

vagrant	share

vagrant	login



Logging	Vagrant	into	Vagrant	Cloud
In	order	to	share	our	Vagrant	environment,	we	need	to	connect	our	Vagrant	installation	to
our	Vagrant	Cloud	account.	We	can	check	to	see	whether	this	is	already	the	case	by
running	the	following	command:

vagrant	login	--check

This	will	check	to	see	whether	we	are	already	logged	in:

As	we	are	not	logged	in,	we	need	to	run	vagrant	login	in	order	to	log	in.	First,	we	are
prompted	for	our	username	or	e-mail	address	from	Atlas,	and	then	for	our	password:

Once	logged	in,	we	can	use	the	logout	flag	to	log	out	of	Atlas:

vagrant	login	--logout



Sharing	a	Vagrant	virtual	machine	over	HTTP(S)
In	order	to	share	the	web	interface	with	a	Vagrant	virtual	machine,	the	virtual	machine
must	either	have	its	own	IP	address	on	our	local	network	or	an	HTTP(S)	port	forwarded
from	the	guest	to	the	host	machine.	Vagrant	requires	this	so	that	your	host	machine	can
connect	to	the	relevant	port	on	your	virtual	machine.

Provided	we	have	either	given	the	virtual	machine	its	own	network	address	or	forward	a
port	to	a	recognizable	HTTP(S)	port,	then	we	can	run	the	vagrant	share	command	to
create	a	public	URL	for	this	machine.	We	can	also	specify	the	HTTP	and	HTTPS	ports
that	we	are	using	on	the	virtual	machine	if	Vagrant	doesn’t	detect	them	with	the	--http
and	--https	flags:

After	running	vagrant	share,	Vagrant	will	generate	a	name	and	URL	to	access	the	share
from.	As	we	are	on	a	free	plan,	we	cannot	customize	or	reserve	URLs.	Our	terminal
session	is	now	locked	to	run	this	sharing	session,	so	we	need	to	leave	this	running.	If	we
visit	the	URL	in	a	browser,	we	should	be	able	to	see	whatever	web	service	we	are	running
on	our	virtual	machine:

To	stop	sharing,	we	need	to	close	the	terminal	or	stop	the	vagrant	share	command	from
running:





Sharing	and	connecting	to	a	Vagrant	virtual
machine
By	default,	vagrant	share	only	shares	HTTP(S)	traffic.	We	can,	however,	pass	the	--ssh
flag	to	also	share	SSH	access	that	will	allow	other	Vagrant	users	to	connect	to	the
machine:

vagrant	share	--ssh

After	running	this	command,	we	will	be	prompted	to	provide	and	confirm	a	password	to
be	used	to	encrypt	the	SSH	key	so	that	the	users	are	required	to	provide	a	password	when
they	connect.	If	required,	this	can	be	omitted	with	the	--ssh-no-password	flag	instead	of
--ssh.	We	can	also	make	a	single	use	SSH	connection	with	--ssh-once,	as	shown	in	the
following	screenshot:

As	with	a	regular	share	command,	we	get	a	URL	and	a	name.	We	can	prevent	HTTP(S)
from	being	shared	by	passing	the	--disable-http	flag.

Once	the	sharing	process	is	running,	we	can	provide	the	name	and	password	to	whomever
we	want	to	be	able	to	connect	to	the	machine.	They	simply	run	the	vagrant	connect	--
ssh	difficult-elephant-4464	command	(where	the	last	parameter	is	the	name	of	the
connection	generated	by	Atlas)	to	start	a	connection	with	the	machine,	and	provide	the
password	when	prompted:



The	user	is	then	logged	into	the	Vagrant	machine!





Summary
In	this	chapter,	we	learned	about	the	extra	functionality	offered	by	the	Vagrant	Cloud
service.

We	discovered	how	to	find	third-party	Vagrant	boxes	for	use	with	our	projects,	how	to
check	for	updates	for	boxes	that	use	Atlas,	and	how	to	distribute	our	own	base	boxes
through	Atlas.	Finally,	we	looked	at	authenticating	with	Atlas	to	share	our	Vagrant
environment	with	our	colleagues.

Now	that	we	know	more	about	the	functionality	offered	by	Vagrant,	we	can	use	it
effectively	in	our	projects!





Appendix	A.	A	Sample	LEMP	Stack
Now	that	we	have	a	good	knowledge	of	using	Vagrant	to	manage	software	development
projects	and	how	to	use	the	Puppet	provisioning	tool,	let’s	take	a	look	at	how	to	use	these
tools	to	build	a	Linux,	Nginx,	MySQL,	and	PHP	(LEMP)	development	environment
with	Vagrant.

In	this	appendix,	you	will	learn	the	following	topics:

How	to	update	the	package	manager
How	to	create	a	LEMP-based	development	environment	in	Vagrant,	including	the
following:

How	to	install	the	Nginx	web	server
How	to	customize	the	Nginx	configuration	file
How	to	install	PHP
How	to	install	and	configure	MySQL
How	to	install	e-mail	sending	services

With	the	exception	of	MySQL,	we	will	create	simple	Puppet	modules	to	install	and
manage	the	software	required.	For	MySQL,	we	will	use	the	official	Puppet	module	from
Puppet	Labs;	this	module	makes	it	very	easy	for	us	to	install	and	configure	all	aspects	of
MySQL.



Creating	the	Vagrant	project
First,	we	want	to	create	a	new	project,	so	let’s	create	a	new	folder	called	lemp-stack	and
initialize	a	new	ubuntu/trusty64	Vagrant	project	within	it	by	executing	the	following
commands:

mkdir	lemp-stack

cd	lemp-stack

vagrant	init	ubuntu/trusty64	ub

The	easiest	way	for	us	to	pull	in	the	MySQL	Puppet	module	is	to	simply	add	it	as	a	git
submodule	to	our	project.	In	order	to	add	a	git	submodule,	our	project	needs	to	be	a	git
repository,	so	let’s	initialize	it	as	a	git	repository	now	to	save	time	later:

git	init

To	make	the	virtual	machine	reflective	of	a	real-world	production	server,	instead	of
forwarding	the	web	server	port	on	the	virtual	machine	to	another	port	on	our	host
machine,	we	will	instead	network	the	virtual	machine.	This	means	that	we	would	be	able
to	access	the	web	server	via	port	80	(which	is	typical	on	a	production	web	server)	by
connecting	directly	to	the	virtual	machine.

In	order	to	ensure	a	fixed	IP	address	to	which	we	can	allocate	a	hostname	on	our	network,
we	need	to	uncomment	the	following	line	from	our	Vagrantfile	by	removing	the	#	from	the
start	of	the	line:

#	config.vm.network	"private_network",	ip:	"192.168.33.10"	

The	IP	address	can	be	changed	depending	on	the	needs	of	our	project.

As	this	is	a	sample	LEMP	stack	designed	for	web-based	projects,	let’s	configure	our
projects	directory	to	a	relevant	web	folder	on	the	virtual	machine:

config.vm.synced_folder	".",	"/var/www/project",	type:	"nfs"

We	will	still	need	to	configure	our	web	server	to	point	to	this	folder;	however,	it	is	more
appropriate	than	the	default	mapping	location	of	/vagrant.

Before	we	run	our	Puppet	provisioner	to	install	our	LEMP	stack,	we	should	instruct
Vagrant	to	run	the	apt-get	update	command	on	the	virtual	machine.	Without	this,	it	isn’t
always	possible	to	install	new	packages.	So,	let’s	add	the	following	line	to	our	Vagrant	file
within	the	|config|	block:

config.vm.provision	"shell",	inline:	"apt-get	update"

As	we	will	put	our	Puppet	modules	and	manifests	in	a	provision	folder,	we	need	to
configure	Vagrant	to	use	the	correct	folders	for	our	Puppet	manifests	and	modules	as	well
as	the	default	manifest	file.	Adding	the	following	code	to	our	Vagrantfile	will	do	this	for
us:

config.vm.provision	:puppet	do	|puppet|

				puppet.manifests_path	=	"provision/manifests"



				puppet.module_path	=	"provision/modules"

				puppet.manifest_file		=	"vagrant.pp"

end





Creating	the	Puppet	manifests
Let’s	start	by	creating	some	folders	for	our	Puppet	modules	and	manifests	by	executing
the	following	commands:

mkdir	provision

cd	provision

mkdir	modules

mkdir	manifests

For	each	of	the	modules	we	want	to	create,	we	need	to	create	a	folder	within	the
provision/modules	folder	for	the	module.	Within	this	folder,	we	need	to	create	a
manifests	folder,	and	within	this,	our	Puppet	manifest	file,	init.pp.	Structurally,	this
looks	something	like	the	following:

|--	provision

|			|--	manifests

|			|			`--	vagrant.pp

|			`--	modules

|							|--	our	module

|											|--	manifests

|															`--	init.pp

`--	Vagrantfile



Installing	Nginx
Let’s	take	a	look	at	what	is	involved	to	install	Nginx	through	a	module	and	manifest	file
provision/modules/nginx/manifests/init.pp.	First,	we	define	our	class,	passing	in	a
variable	so	that	we	can	change	the	configuration	file	we	use	for	Nginx	(useful	for	using
the	same	module	for	different	projects	or	different	environments	such	as	staging	and
production	environments),	then	we	need	to	ensure	that	the	nginx	package	is	installed:

class	nginx	($file	=	'default')	{

		package	{"nginx":

				ensure	=>	present

		}

Tip
Note	that	we	have	not	closed	the	curly	bracket	for	the	nginx	class.	That	is	because	this	is
just	the	first	snippet	of	the	file;	we	will	close	it	at	the	end.

Because	we	want	to	change	our	default	Nginx	configuration	file,	we	should	update	the
contents	of	the	Nginx	configuration	file	with	one	of	our	own	(this	will	need	to	be	placed	in
the	provision/modules/nginx/files	folder;	unless	the	file	parameter	is	passed	to	the
class,	the	file	default	will	be	used):

file	{	'/etc/nginx/sites-available/default':

						source	=>	"puppet:///modules/nginx/${file}",

						owner	=>	'root',

						group	=>	'root',

						notify	=>	Service['nginx'],

						require	=>	Package['nginx']

}

Finally,	we	need	to	ensure	that	the	nginx	service	is	actually	running	once	it	has	been
installed:

service	{	"nginx":

				ensure	=>	running,

				require	=>	Package["nginx"]

		}

}

This	completes	the	manifest.	We	do	still,	however,	need	to	create	a	default	configuration
file	for	Nginx,	which	is	saved	as	provision/modules/nginx/files/default.	This	will	be
used	unless	we	pass	a	file	parameter	to	the	nginx	class	when	using	the	module.	The
sample	file	here	is	a	basic	configuration	file,	pointing	to	the	public	folder	within	our
synced	folder.	The	server	name	of	lemp-stack.local	means	that	Nginx	will	listen	for
requests	on	that	hostname	and	will	serve	content	from	our	projects	folder:

server	{

				listen			80;

				root	/var/www/project/public;

				index	index.php	index.html	index.htm;



				server_name	lemp-stack.local;

				location	/	{

								try_files	$uri	$uri/	/index.php?$query_string;

				}

				location	~	\.php$	{

								try_files	$uri	=404;

								fastcgi_split_path_info	^(.+\.php)(/.+)$;

								#fastcgi_pass	127.0.0.1:9000;

								fastcgi_param	SERVER_NAME	$host;

								fastcgi_pass	unix:/var/run/php5-fpm.sock;

								fastcgi_index	index.php;

								fastcgi_intercept_errors	on;

								include	fastcgi_params;

				}

				location	~	/\.ht	{

								deny	all;

				}

				location	~*	\.(jpg|jpeg|gif|css|png|js|ico|html)$	{

								access_log	off;

								expires	max;

				}

				location	~*	\.svgz	{

								add_header	Content-Encoding	"gzip";

				}

}

Tip
Because	this	configuration	file	listens	for	requests	on	lemp-stack.local,	we	need	to	add
a	record	to	the	hosts	file	on	our	host	machine,	which	will	redirect	traffic	from	lemp-
stack.local	to	the	IP	address	of	our	virtual	machine.



Installing	PHP
To	install	PHP,	we	need	to	install	a	range	of	related	packages,	including	the	Nginx	PHP
module.	This	would	be	in	the	file	provision/modules/php/manifests/init.pp.

On	more	recent	(within	the	past	few	years)	Linux	and	PHP	installations,	PHP	uses	a
handler	called	php-fpm	as	a	bridge	between	PHP	and	the	web	server	being	used.	This
means	that	when	new	PHP	modules	are	installed	or	PHP	configurations	are	changed,	we
need	to	restart	the	php-fpm	service	for	these	changes	to	take	effect,	whereas	in	the	past,	it
was	often	the	web	servers	that	needed	to	be	restarted	or	reloaded.

To	make	our	simple	PHP	Puppet	module	flexible,	we	need	to	install	the	php5-fpm	package
and	restart	it	when	other	modules	are	installed,	but	only	when	we	use	Nginx	on	our	server.
To	achieve	this,	we	can	use	a	class	parameter,	which	defaults	to	true.	This	lets	us	use	the
same	module	in	servers	that	don’t	have	a	web	server,	and	where	we	don’t	want	to	have	the
overhead	of	the	FPM	service,	such	as	a	server	that	runs	background	jobs	or	processing:

class	php	($nginx	=	true)	{

If	the	nginx	parameter	is	true,	then	we	need	to	install	php5-fpm.	Since	this	package	is
only	installed	when	the	flag	is	set	to	true,	we	cannot	have	PHP	and	its	modules	requiring
or	notifying	the	php-fpm	package,	as	it	may	not	be	installed;	so	instead	we	need	to	have
the	php5-fpm	package	subscribe	to	these	packages:

				if	($nginx)	{

								package	{	"php5-fpm":

										ensure	=>	present,

										subscribe	=>	[Package['php5-dev'],	Package['php5-curl'],	

Package['php5-gd'],	Package['php5-imagick'],	Package['php5-mcrypt'],	

Package['php5-mhash'],	Package['php5-pspell'],	Package['php5-json'],	

Package['php5-xmlrpc'],	Package['php5-xsl'],	Package['php5-mysql']]

								}

				}

The	rest	of	the	manifest	can	then	simply	be	the	installation	of	the	various	PHP	modules
that	are	required	for	a	typical	LEMP	setup:

				package	{	"php5-dev":

								ensure	=>	present

				}

				package	{	"php5-curl":

								ensure	=>	present

				}

				package	{	"php5-gd":

								ensure	=>	present

				}

				package	{	"php5-imagick":

								ensure	=>	present

				}



				package	{	"php5-mcrypt":

								ensure	=>	present

				}

				package	{	"php5-mhash":

								ensure	=>	present

				}

				package	{	"php5-pspell":

								ensure	=>	present

				}

				package	{	"php5-xmlrpc":

								ensure	=>	present

				}

				package	{	"php5-xsl":

								ensure	=>	present

				}

				package	{	"php5-cli":

								ensure	=>	present

				}

				package	{	"php5-json":

								ensure	=>	present

				}

}





Installing	the	MySQL	module
Because	we	are	going	to	use	the	Puppet	module	for	MySQL	provided	by	Puppet	Labs,
installing	the	module	is	very	straightforward;	we	simply	add	it	as	a	git	submodule	to	our
project	with	the	following	command:

git	submodule	add	https://github.com/puppetlabs/puppetlabs-mysql.git	

provision/modules/mysql

Tip
You	might	want	to	use	a	specific	release	for	this	module,	as	the	code	changes	on	a	semi-
regular	basis.	A	stable	release	is	available	at	https://github.com/puppetlabs/puppetlabs-
mysql/releases/tag/3.1.0.

https://github.com/puppetlabs/puppetlabs-mysql/releases/tag/3.1.0




Default	manifest
Finally,	we	need	to	pull	these	modules	together,	and	install	them	when	our	machine	is
provisioned.	To	do	this,	we	simply	add	the	following	modules	to	our	vagrant.pp	manifest
file	in	the	provision/manifests	folder.



Installing	Nginx	and	PHP
We	need	to	include	our	nginx	class	and	optionally	provide	a	filename	for	the
configuration	file;	if	we	don’t	provide	one,	the	default	will	be	used:

class	{

				'nginx':

								file	=>	'default'

}

Similarly	for	PHP,	we	need	to	include	the	class	and	in	this	case,	pass	an	nginx	parameter
to	ensure	that	it	installs	PHP5-FPM	too:

class	{

				'php':

								nginx	=>	true

}



Hostname	configuration
We	should	tell	our	Vagrant	virtual	machine	what	its	hostname	is	by	adding	a	host	resource
to	our	manifest:

host	{	'lemp-stack.local':

				ip	=>	'127.0.0.1',

				host_aliases	=>	'localhost',

}



E-mail	sending	services
Because	some	of	our	projects	might	involve	sending	e-mails,	we	should	install	e-mail
sending	services	on	our	virtual	machine.	As	these	are	simply	two	packages,	it	makes	more
sense	to	include	them	in	our	Vagrant	manifest,	as	opposed	to	their	own	modules:

package	{	"postfix":

				ensure	=>	present

}

package	{	"mailutils":

				ensure	=>	present

}



MySQL	configuration
Because	the	MySQL	module	is	very	flexible	and	manages	all	aspects	of	MySQL,	there	is
quite	a	bit	for	us	to	configure.	We	need	to	perform	the	following	steps:

1.	 Create	a	database.
2.	 Create	a	user.
3.	 Give	the	user	permission	to	use	the	database	(grants).
4.	 Configure	the	MySQL	root	password.
5.	 Install	the	MySQL	client.
6.	 Install	the	MySQL	client	bindings	for	PHP.

The	MySQL	server	class	has	a	range	of	parameters	that	can	be	passed	to	configure	it,
including	databases,	users,	and	grants.	So,	first,	we	need	to	define	what	the	databases,
users,	and	grants	are	that	we	want	to	be	configured:

$databases	=	{

		'lemp'	=>	{

				ensure		=>	'present',

				charset	=>	'utf8'

		},

}

$users	=	{

		'lemp@localhost'	=>	{

				ensure																			=>	'present',

				max_connections_per_hour	=>	'0',

				max_queries_per_hour					=>	'0',

				max_updates_per_hour					=>	'0',

				max_user_connections					=>	'0',

				password_hash												=>	'MySQL-Password-Hash',

		},

}

Note
The	password_hash	parameter	here	is	for	a	hash	generated	by	MySQL.	You	can	generate
a	password	hash	by	connecting	to	an	existing	MySQL	instance	and	running	a	query	such
as	SELECT	PASSWORD('password').

The	grant	maps	our	user	and	database	and	specifies	what	permissions	the	user	can	perform
on	that	database	when	connecting	from	a	particular	host	(in	this	case,	localhost—so	from
the	virtual	machine	itself):

$grants	=	{

		'lemp@localhost/lemp.*'	=>	{

				ensure					=>	'present',

				options				=>	['GRANT'],

				privileges	=>	['ALL'],

				table						=>	'lemp.*',

				user							=>	'lemp@localhost',

		},



}

We	then	pass	these	values	to	the	MySQL	server	class.	We	also	provide	a	root	password	for
MySQL	(unlike	earlier,	this	is	provided	in	plain	text),	and	we	can	override	the	options
from	the	MySQL	configuration	file.	This	is	unlike	our	own	Nginx	module	that	provides	a
full	file—in	this	instance,	the	MySQL	module	provides	a	template	configuration	file	and
the	changes	are	replaced	in	that	template	to	create	a	configuration	file:

class	{	'::mysql::server':

		root_password				=>	'lemp-root-password',

		override_options	=>	{	'mysqld'	=>	{	'max_connections'	=>	'1024'	}	},

		databases	=>	$databases,

		users	=>	$users,

		grants	=>	$grants,

		restart	=>	true

}

As	we	will	have	a	web	server	running	on	this	machine,	which	needs	to	connect	to	this
database	server,	we	also	need	the	client	library	and	the	client	bindings	for	PHP,	so	that	we
can	include	them	too:

include	'::mysql::client'

class	{	'::mysql::bindings':

		php_enable	=>	true

}





Launching	the	virtual	machine
In	order	to	launch	our	new	virtual	machine,	we	simply	need	to	run	the	following
command:

Vagrant	up

As	per	Chapter	6,	Provisioning	Vagrant	Machines	with	Puppet,	Ansible,	and	Chef,	we
should	now	see	our	VM	boot	and	the	various	Puppet	phases	execute.	If	all	goes	well,	we
should	see	no	errors	in	this	process.





Summary
In	this	chapter,	we	learned	about	the	steps	involved	in	creating	a	brand	new	Vagrant
project,	configuring	it	to	integrate	with	our	host	machine,	and	setting	up	a	standard	LEMP
stack	using	the	Puppet	provisioning	tool.	Now	you	should	have	a	basic	understanding	of
Vagrant	and	how	to	use	it	to	ensure	that	your	software	projects	are	managed	more
effectively!



Index
A

Ansible
about	/	Understanding	Ansible
playbooks	/	Understanding	Ansible
installing	/	Installing	Ansible
operating	systems,	URL	/	Installing	Ansible
inventory,	creating	/	Creating	an	inventory
playbooks,	creating	/	Creating	Ansible	playbooks
modules	/	Modules	–	what	Ansible	can	do
software,	installing	/	Installing	software
cron	module	/	Managing	cron
commands,	running	/	Running	commands
user	module,	URL	/	Managing	users	and	groups
group	module,	URL	/	Managing	users	and	groups
roles,	using	/	Using	Ansible	roles
Galaxy,	URL	/	Using	Ansible	roles
used,	for	server	provision	/	Using	Ansible	to	provision	servers
provisioning	with	/	Provisioning	with	Ansible	on	Vagrant

Ansible,	file	management
about	/	Understanding	file	management
file,	copying	/	Copying	a	file
symlink,	creating	/	Creating	a	symlink
folders,	creating	/	Creating	folders
group	module,	creating	/	Creating	groups
user	module,	creating	/	Creating	users

Ansible	software,	installing
package	manager,	updating	/	Updating	our	package	manager
nginx	package,	installing	/	Installing	the	nginx	package
nginx	service,	running	/	Running	the	nginx	service

apt	module
URL	/	Updating	our	package	manager,	Installing	the	nginx	package

Atlas
boxes,	discovering	/	Discovering	boxes
boxes,	URL	/	Discovering	boxes
new	boxes,	installing	/	Installing	new	boxes
existing	boxes,	updating	/	Updating	existing	boxes
outdated	boxes,	checking	for	/	Checking	for	outdated	boxes
account,	URL	/	Distributing	boxes
boxes,	distributing	/	Distributing	boxes
box	creation	form,	URL	/	Distributing	boxes
sharing	with	/	Sharing	and	connecting	with	Atlas



connecting	with	/	Sharing	and	connecting	with	Atlas
Vagrant,connecting	to	Vagrant	Cloud	/	Logging	Vagrant	into	Vagrant	Cloud
Vagrant	virtual	machine,	sharing	over	HTTP(S)	/	Sharing	a	Vagrant	virtual
machine	over	HTTP(S)
Vagrant	virtual	machine,	connecting	to	/	Sharing	and	connecting	to	a	Vagrant
virtual	machine
Vagrant	virtual	machine,	sharing	to	/	Sharing	and	connecting	to	a	Vagrant	virtual
machine

authentication,	Vagrant
about	/	Vagrant	authentication
admin	group	/	Vagrant	user	and	admin	group
user	group	/	Vagrant	user	and	admin	group
sudoers	file	/	The	sudoers	file



C
Chef

about	/	Knowing	about	Chef
cookbooks,	creating	with	/	Creating	cookbooks	and	recipes	with	Chef
recipes,	creating	with	/	Creating	cookbooks	and	recipes	with	Chef
resources	/	Resources	–	what	Chef	can	do
cron	resource	type,	managing	/	Managing	cron
commands,	running	/	Running	commands
users,	managing	/	Managing	users	and	groups
groups,	managing	/	Managing	users	and	groups
groups,	creating	/	Creating	groups
users,	creating	/	Creating	users
sudoers	file,	updating	/	Updating	the	sudoers	file
common	resource	functionalities	/	Knowing	common	resource	functionalities
used,	for	provisioning	servers	/	Using	Chef	to	provision	servers
URL,	for	tutorial	/	Using	Chef	to	provision	servers
on	Vagrant,	provisioning	with	/	Provisioning	with	Chef	on	Vagrant
-solo	using	/	Using	Chef-solo
roles,	URL	/	Using	Chef-solo
using,	in	client/server	mode	/	Using	Chef	in	client/server	mode
installing	/	Installing	Chef

Chef,	file	management
about	/	Understanding	file	management
file,	copying	/	Copying	a	file
symlink,	creating	/	Creating	a	symlink
folders,	creating	/	Creating	folders
multiple	folders,	creating	in	single	process	with	looping	/	Creating	multiple
folders	in	a	single	process	with	looping

Chef,	resource	types
cron	/	Resources	–	what	Chef	can	do
execute	/	Resources	–	what	Chef	can	do
file	/	Resources	–	what	Chef	can	do
group	/	Resources	–	what	Chef	can	do
package	/	Resources	–	what	Chef	can	do
service	/	Resources	–	what	Chef	can	do
template	/	Resources	–	what	Chef	can	do
user	/	Resources	–	what	Chef	can	do
URL	/	Resources	–	what	Chef	can	do

Chef,	software	installing
about	/	Installing	software
package	manager,	updating	/	Updating	our	package	manager
nginx	package,	installing	/	Installing	the	nginx	package
nginx	service,	running	/	Running	the	nginx	service



Chef-solo
using	/	Using	Chef-solo

Chef-solo	configuration
URL	/	Using	Chef	to	provision	servers

Chef	cookbooks
using	/	Using	Chef	cookbooks

Chef	run,	anatomy
URL	/	Using	Chef	to	provision	servers

client/server	mode
Puppet	using	/	Using	Puppet	in	client/server	mode

commands
autorunning	/	Autorunning	commands

configurable	classes,	Puppet
creating	/	Creating	configurable	classes

cookbooks
creating,	with	Chef	/	Creating	cookbooks	and	recipes	with	Chef

cron	module
URL	/	Managing	cron



F
file	module

URL	/	Creating	a	symlink



G
group	module

URL	/	Managing	users	and	groups
Guest	Additions,	VirtualBox

about	/	VirtualBox	Guest	Additions



H
host	and	guest	machine	interaction,	managing

about	/	Managing	integration	between	host	and	guest	machines
port	forwarding	/	Port	forwarding
synced	folders	/	Synced	folders
networking	/	Networking

hostname
configuring	/	Hostname	configuration



I
inventory,	Ansible

creating	/	Creating	an	inventory



L
LEMP	server	/	Updating	our	package	manager



M
manifests

about	/	Default	manifest
nginx,	installing	/	Installing	Nginx	and	PHP
PHP,	installing	/	Installing	Nginx	and	PHP
hostname	configuration	/	Hostname	configuration
e-mail	sending	services	/	E-mail	sending	services
MySQL	configuration	/	MySQL	configuration

modules,	Ansible
about	/	Modules	–	what	Ansible	can	do
Apt	/	Modules	–	what	Ansible	can	do
Git	/	Modules	–	what	Ansible	can	do
Service	/	Modules	–	what	Ansible	can	do
Copy	/	Modules	–	what	Ansible	can	do
URL	/	Modules	–	what	Ansible	can	do

multimachine	project
destroying	/	Destroying	a	multimachine	project

multiple	provisioners
using,	on	single	project	/	Using	multiple	provisioners	on	a	single	project

multiple	virtual	machines
using,	with	Vagrant	/	Using	multiple	machines	with	Vagrant
defining	/	Defining	multiple	virtual	machines
connecting,	over	SSH	/	Connecting	to	the	multiple	virtual	machines	over	SSH
networking	/	Networking	the	multiple	virtual	machines
provisioning	/	Provisioning	the	machines	separately

MySQL
installing	/	Installing	the	MySQL	module
configuring	/	MySQL	configuration



N
Network	File	System	(NFS)	/	Synced	folders
networking

about	/	Networking
nginx

installing	/	Installing	Nginx,	Installing	Nginx	and	PHP
notify	parameter	/	The	notify,	subscribe,	and	refreshonly	parameters



O
Opscode	community	site,	Chef	cookbooks

URL	/	Using	Chef	cookbooks



P
package	subcommand	/	Export
parameters	/	Resources
PHP

installing	/	Installing	PHP,	Installing	Nginx	and	PHP
port	forwarding

about	/	Port	forwarding
project

creating	/	Creating	our	first	Vagrant	project
provisioners

about	/	Provisioners
Puppet,	installing	/	Installing	Puppet
Chef,	installing	/	Installing	Chef

provisioning
about	/	Provisioning
with	Vagrant	/	Provisioning	within	Vagrant
with	Puppet,	on	Vagrant	/	Provisioning	with	Puppet	on	Vagrant
with	Ansible	,on	Vagrant	/	Provisioning	with	Ansible	on	Vagrant
with	Ansible,	on	Vagrant	/	Provisioning	with	Ansible	on	Vagrant
with	Chef,	on	Vagrant	/	Provisioning	with	Chef	on	Vagrant
with	SSH	/	Provisioning	with	SSH	–	a	recap
overriding,	via	command	line	/	Overriding	provisioning	via	the	command	line

provisioning,	options
Shell	/	Autorunning	commands
Puppet	/	Autorunning	commands
Ansible	/	Autorunning	commands
Chef	/	Autorunning	commands

Puppet
about	/	Puppet
idempotent	feature	/	Puppet
used,	for	creating	modules	/	Creating	modules	and	manifests	with	Puppet
used,	for	creating	manifests	/	Creating	modules	and	manifests	with	Puppet
classes	/	Puppet	classes
default	manifests	/	Default	Puppet	manifests
resource	/	Resources
notify	parameter	/	The	notify,	subscribe,	and	refreshonly	parameters
subscribe	parameter	/	The	notify,	subscribe,	and	refreshonly	parameters
refreshonly	parameter	/	The	notify,	subscribe,	and	refreshonly	parameters
file	management	/	File	management
cron	resource	type,	managing	/	Cron	management
commands,	running	/	Running	commands
user	resource	type,	managing	/	Managing	users	and	groups,	Creating	users
group	resource	type,	managing	/	Managing	users	and	groups



user	resource	type,	URL	/	Managing	users	and	groups
sudoers	file,	updating	/	Updating	the	sudoers	file
configurable	classes,	creating	/	Creating	configurable	classes
modules	/	Puppet	modules
used,	for	server	provision	/	Using	Puppet	to	provision	servers
provisioning	with,	on	Vagrant	/	Provisioning	with	Puppet	on	Vagrant
using,	in	standalone	mode	/	Using	Puppet	in	standalone	mode
provisioning,	in	action	/	Puppet	provisioning	in	action
using,	in	client/server	mode	/	Using	Puppet	in	client/server	mode
URL	/	Using	Puppet	in	client/server	mode
blog,	URL	/	Using	Puppet	in	client/server	mode
installing	/	Installing	Puppet

Puppet,	file	management
about	/	File	management
file,	copying	/	Copying	a	file
symlink,	creating	/	Creating	a	symlink
folders,	creating	/	Creating	folders
multiple	folders,	creating	/	Creating	multiple	folders	in	one	go

Puppet,	resource
types	/	Resources
types,	URL	/	Resources
requisites	/	Resource	requirements
execution,	ordering	/	Resource	execution	ordering
executing,	in	stages	/	Executing	resources	in	stages

Puppet,	resource	types
cron	/	Resources
exec	/	Resources
file	/	Resources
group	/	Resources
package	/	Resources
service	/	Resources
user	/	Resources

Puppet	Forge
URL	/	Puppet	modules

Puppet	manifests
creating	/	Creating	the	Puppet	manifests
nginx,	installing	/	Installing	Nginx
PHP,	installing	/	Installing	PHP
MySQL	module,	installing	/	Installing	the	MySQL	module
URL	/	Installing	the	MySQL	module

Puppet	software,	installing
about	/	Installing	software
package	manager,	updating	/	Updating	our	package	manager
nginx	package,	installing	/	Installing	the	nginx	package



nginx	service,	running	/	Running	the	nginx	service
PuTTY

URL	/	Connecting	to	the	virtual	machine	over	SSH



R
recipes

creating,	with	Chef	/	Creating	cookbooks	and	recipes	with	Chef
recipes,	Chef

URL	/	Using	Chef	to	provision	servers
refreshonly	parameter	/	The	notify,	subscribe,	and	refreshonly	parameters



S
servers

provisioning,	Chef	used	/	Using	Chef	to	provision	servers
SSH

provisioning	with	/	Provisioning	with	SSH	–	a	recap
multiple	virtual	machines,	connecting	to	/	Connecting	to	the	multiple	virtual
machines	over	SSH

SSH	provisioning
about	/	Autorunning	commands

standalone	mode
Puppet	using	/	Using	Puppet	in	standalone	mode

subscribe	parameter	/	The	notify,	subscribe,	and	refreshonly	parameters
sudoers	file

URL	/	The	sudoers	file
about	/	The	sudoers	file

/	The	sudoers	file
supervisord

URL	/	Creating	modules	and	manifests	with	Puppet
about	/	Default	Puppet	manifests

supervisor	module
URL	/	Default	Puppet	manifests

symlink
creating	/	Creating	a	symlink

synced	folders
about	/	Synced	folders



T
template	module

URL	/	Copying	a	file



U
user	module

URL	/	Managing	users	and	groups,	Creating	users



V
Vagrant

about	/	Introducing	Vagrant,	Too	many	Vagrants!
URL	/	Introducing	Vagrant,	Requirements	for	Vagrant,	Connecting	to	the	virtual
machine	over	SSH
configuration	file	/	Introducing	Vagrant
requisites	/	Requirements	for	Vagrant
VirtualBox,	installing	/	Installing	VirtualBox
installing	/	Installing	Vagrant
download	page	/	Installing	Vagrant
project,	creating	/	Creating	our	first	Vagrant	project,	Creating	the	Vagrant	project
-controlled	guest	machines,	controlling	/	Managing	Vagrant-controlled	guest
machines
virtual	machine,	powering	up	/	Powering	up	a	Vagrant-controlled	virtual
machine
virtual	machine,	suspending	/	Suspending	a	virtual	machine
virtual	machine,	resuming	/	Resuming	a	virtual	machine
virtual	machine,	shutting	down	/	Shutting	down	a	virtual	machine
provisioning,	options	/	Autorunning	commands
provisioning	with	/	Provisioning	within	Vagrant
provisioning,	with	Chef	/	Provisioning	with	Chef	on	Vagrant
multiple	virtual	machines,	using	/	Using	multiple	machines	with	Vagrant
documentation,	URL	/	Getting	started
new	base	box,	URL	/	Getting	started
authentication	/	Vagrant	authentication

Vagrant	authentication
insecure	public	key	pair	/	Insecure	public/private	key	pair
insecure	private	key	pair	/	Insecure	public/private	key	pair

Vagrant	boxes
managing	/	Managing	Vagrant	boxes
add	subcommand	/	Managing	Vagrant	boxes,	Adding	Vagrant	boxes
list	subcommand	/	Managing	Vagrant	boxes,	Listing	Vagrant	boxes
outdated	subcommand	/	Managing	Vagrant	boxes,	Checking	for	updates
remove	subcommand	/	Managing	Vagrant	boxes,	Removing	Vagrant	boxes
repackage	subcommand	/	Managing	Vagrant	boxes,	Repackaging	a	Vagrant	box
update	subcommand	/	Managing	Vagrant	boxes,	Updating	the	current
environment’s	box
adding	/	Adding	Vagrant	boxes
listing	/	Listing	Vagrant	boxes
updates,	checking	for	/	Checking	for	updates
removing	/	Removing	Vagrant	boxes
repackaging	/	Repackaging	a	Vagrant	box
current	environments	box,	updating	/	Updating	the	current	environment’s	box



Vagrant	boxes,	Atlas
discovering	/	Discovering	boxes
new	boxes,	installing	/	Installing	new	boxes
existing	boxes,	updating	/	Updating	existing	boxes
outdated	boxes,	checking	for	/	Checking	for	outdated	boxes
distributing	/	Distributing	boxes

Vagrant	virtual	machine,	Atlas
sharing,	over	HTTP(S)	/	Sharing	a	Vagrant	virtual	machine	over	HTTP(S)

VirtualBox
installing	/	Installing	VirtualBox

VirtualBox	machine
preparing	/	Preparing	the	VirtualBox	machine

virtual	machine
cleaning	up	/	Cleaning	up	the	VM
launching	/	Launching	the	virtual	machine

virtual	machine,	Vagrant-controlled
managing	/	Managing	Vagrant-controlled	guest	machines
powering	up	/	Powering	up	a	Vagrant-controlled	virtual	machine
suspending	/	Suspending	a	virtual	machine
resuming	/	Resuming	a	virtual	machine
shutting	down	/	Shutting	down	a	virtual	machine
starting,	from	scratch	/	Starting	from	scratch
off	Vagrantfile	changes,	updating	/	Updating	based	on	Vagrantfile	changes
connecting	to,	over	SSH	/	Connecting	to	the	virtual	machine	over	SSH



Y
Yaml	Ain’t	Markup	Language	(YAML)

about	/	Understanding	Ansible


	Creating Development Environments with Vagrant Second Edition
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with Vagrant
	Introducing Vagrant
	Requirements for Vagrant
	Getting started
	Installing VirtualBox
	Installing Vagrant
	Summary
	2. Managing Vagrant Boxes and Projects
	Creating our first Vagrant project
	Managing Vagrant-controlled guest machines
	Powering up a Vagrant-controlled virtual machine
	Suspending a virtual machine
	Resuming a virtual machine
	Shutting down a virtual machine
	Starting from scratch
	Updating based on Vagrantfile changes
	Connecting to the virtual machine over SSH
	Managing integration between host and guest machines
	Port forwarding
	Synced folders
	Networking
	Autorunning commands
	Managing Vagrant boxes
	Adding Vagrant boxes
	Listing Vagrant boxes
	Checking for updates
	Removing Vagrant boxes
	Repackaging a Vagrant box
	Updating the current environment's box
	Too many Vagrants!
	Summary
	3. Provisioning with Puppet
	Provisioning
	Puppet
	Creating modules and manifests with Puppet
	Puppet classes
	Default Puppet manifests
	Resources
	Resource requirements
	Resource execution ordering
	The notify, subscribe, and refreshonly parameters
	Executing resources in stages
	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service
	File management
	Copying a file
	Creating a symlink
	Creating folders
	Creating multiple folders in one go
	Cron management
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Updating the sudoers file
	Creating configurable classes
	Puppet modules
	Using Puppet to provision servers
	Summary
	4. Using Ansible
	Understanding Ansible
	Installing Ansible
	Creating an inventory
	Creating Ansible playbooks
	Modules – what Ansible can do
	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service
	Understanding file management
	Copying a file
	Creating a symlink
	Creating folders
	Managing cron
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Using Ansible roles
	Using Ansible to provision servers
	Summary
	5. Using Chef
	Knowing about Chef
	Creating cookbooks and recipes with Chef
	Resources – what Chef can do
	Installing software
	Updating our package manager
	Installing the nginx package
	Running the nginx service
	Understanding file management
	Copying a file
	Creating a symlink
	Creating folders
	Creating multiple folders in a single process with looping
	Managing cron
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Updating the sudoers file
	Knowing common resource functionalities
	Using Chef cookbooks
	Using Chef to provision servers
	Summary
	6. Provisioning Vagrant Machines with Puppet, Ansible, and Chef
	Provisioning within Vagrant
	Provisioning with Puppet on Vagrant
	Using Puppet in standalone mode
	Puppet provisioning in action
	Using Puppet in client/server mode
	Provisioning with Ansible on Vagrant
	Provisioning with Chef on Vagrant
	Using Chef-solo
	Using Chef in client/server mode
	Provisioning with SSH – a recap
	Using multiple provisioners on a single project
	Overriding provisioning via the command line
	Summary
	7. Working with Multiple Machines
	Using multiple machines with Vagrant
	Defining multiple virtual machines
	Connecting to the multiple virtual machines over SSH
	Networking the multiple virtual machines
	Provisioning the machines separately
	Destroying a multimachine project
	Summary
	8. Creating Your Own Box
	Getting started
	Preparing the VirtualBox machine
	VirtualBox Guest Additions
	Vagrant authentication
	Vagrant user and admin group
	The sudoers file
	Insecure public/private key pair
	Provisioners
	Installing Puppet
	Installing Chef
	Cleaning up the VM
	Export
	Summary
	9. HashiCorp Atlas
	Discovering boxes
	Installing new boxes
	Updating existing boxes
	Checking for outdated boxes
	Distributing boxes
	Sharing and connecting with Atlas
	Logging Vagrant into Vagrant Cloud
	Sharing a Vagrant virtual machine over HTTP(S)
	Sharing and connecting to a Vagrant virtual machine
	Summary
	A. A Sample LEMP Stack
	Creating the Vagrant project
	Creating the Puppet manifests
	Installing Nginx
	Installing PHP
	Installing the MySQL module
	Default manifest
	Installing Nginx and PHP
	Hostname configuration
	E-mail sending services
	MySQL configuration
	Launching the virtual machine
	Summary
	Index

